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Abstract 
 

A matrix that has most of its elements equal to zero is called a sparse matrix. The zero 

elements in a sparse matrix reduce the number of parameters for its potential 

interpretability. Bayesians desiring a sparse model frequently formulate priors that 

enhance sparsity.  However, in most settings, this leads to sparse posterior samples, 

not to a sparse posterior mean. A decoupled shrinkage and selection posterior - 

variable selection approach was proposed by (Hahn & Carvalho, 2015) to address this 

problem in a regression setting to set some of the elements of the regression 

coefficients matrix to exact zeros. Hahn & Carvallho (2015) suggested to work on a 

decoupled shrinkage and selection approach in a Gaussian graphical models setting 

to set some of the elements of a precision matrix (graph) to exact zeros. In this thesis, 

I have filled this gap and proposed decoupled shrinkage and selection approaches to 

sparsify the precision matrix and the factor loading matrix that is an extension of Hahn 

& Carvallho’s (2015) decoupled shrinkage and selection approach. The decoupled 

shrinkage and selection approach proposed by me uses samples from the posterior 

over the parameter, sets a penalization criteria to produce progressively sparser 

estimates of the desired parameter, and then sets a rule to pick the final desired 

parameter from the generated parameters, based on the posterior distribution of fit.  

My proposed decoupled approach generally produced sparser graphs than a range of 

existing sparsification strategies such as thresholding the partial correlations, credible 

interval, adaptive graphical 𝐿𝑎푠푠𝑜, and ratio selection, while maintaining a good fit 

based on the log-likelihood. In simulation studies, my decoupled shrinkage and 

selection approach had better sensitivity and specificity than the other strategies as 
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the dimension 𝑝 and sample size 𝑛 grew. For low-dimensional data, my decoupled 

shrinkage and selection approach was comparable with the other strategies.  

Further, I have extended my proposed decoupled shrinkage and selection approach 

for one population to two populations by modifying the ADMM (alternating directions 

method of multipliers) algorithm in the 𝐽𝐺𝐿 (joint graphical 𝐿𝑎푠푠𝑜) R – package 

(Danaher et al, 2013) to find  sparse sets of differences between two inverse 

covariance matrices. The simulation studies showed that my decoupled shrinkage and 

selection approach for two populations for the sparse case had better sensitivity and 

specificity than the sensitivity and specificity using 𝐽𝐺𝐿. However, sparse sets of 

differences were challenging for the dense case and moderate sample sizes. My 

decoupled shrinkage and selection approach for two populations was also applied to 

find sparse sets of differences between the precision matrices for cases and controls 

in a metabolomics dataset.   

Finally, decoupled shrinkage and selection is used to post-process the posterior mean 

covariance matrix to produce a factor model with a sparse factor loading matrix 

whose expected fit lies within the upper 95% of the posterior over fits. In the Gaussian 

setting, simulation studies showed that my proposed DSS sparse factor model 

approach performed better than 풇풂풏풄 (factor analysis using non-convex penalties) 

(Hirose and Yamamoto, 2015) in terms of sensitivity, specificity, and picking the 

correct number of factors. Decoupled shrinkage and selection is also easily applied to 

models where a latent multivariate normal underlies non-Gaussian marginals, e.g., 

multivariate probit models. I illustrate my findings with moderate dimensional data 

examples from modelling of food frequency questionnaires and fish abundance. 
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Chapter - 01 

Introduction 

1.1 Introduction 

A covariance matrix quantifies the linear relationships among the variables in multivariate 

Gaussian data. The inverse covariance matrix quantifies the partial covariances between 

pairs 풊 and 풋, given the other variables in a multivariate normal context. The zero elements 

in the inverse covariance matrix denote the conditional independence between each pair 

of variables given the relationships among other variables. The non-zero elements in the 

inverse covariance matrix are called the edges. Sparsification of some of the elements of 

the inverse covariance matrix to exact zeros is of utmost importance since we have fewer 

elements in the inverse covariance matrix to interpret. 

The estimation of the sample covariance matrix in a high-dimensional setting is 

challenging, particularly when the dimension  (풑) is greater than the sample size (풏) i.e. 

풑 > 풏 . In this case, the estimate will not be of full rank unless additional structure is 

imposed. To address this issue, a range of penalized likelihood and Bayesian methods 

discussed in chapter 2  have been proposed for fitting sparse models of covariance 

matrices that have fewer parameters than a full covariance matrix for its potential 

interpretability.  

Model selection was performed on the inverse covariance matrix (precision matrix) using 

covariance selection modelling proposed by Dempster (1973). Frequentist methods such 

as the graphical 𝐿𝑎𝑠𝑠𝑜 (Friedman et al, 2008), the adaptive graphical 𝐿𝑎𝑠𝑠𝑜  (Choi et al, 

2010) discussed in chapter 2 use different penalization techniques to shrink some of the 

off-diagonal elements of the precision matrix to exact zeros. Similarly, Bayesian 

approaches such as the Bayesian graphical 𝐿𝑎𝑠𝑠𝑜  and the Bayesian adaptive graphical 

𝐿𝑎𝑠𝑠𝑜  (Wang, 2012), also, discussed in chapter 2 use different priors to generate the 

posterior samples of the covariance matrix, and then shrink some of the off-diagonal 

elements of the precision matrix to exact zeros.  Peterson et al. (2013) obtained the 

posterior samples of inverse covariance matrices using Bayesian adaptive graphical 
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𝐿𝑎𝑠𝑠𝑜 (Wang, 2012) and set two strategies to sparsify the inverse covariance matrix. The 

first strategy suggested by (Wang, 2012) was setting to exact zeros the off-diagonal 

elements of the inverse covariance matrix that had absolute partial correlations less than 

0.1, and setting to non-zero (edges) the off-diagonal elements of the inverse covariance 

matrix that had absolute partial correlations greater than or equal to 0.1. The second 

strategy, suggested by (Wang, 2012) was to set to zero the off-diagonal elements of the 

inverse covariance matrix for which the 90% credible interval included zeros. Most of the 

penalized likelihood and Bayesian approaches have arbitrary criterion for selection of final 

inverse covariance matrix. I have proposed a DSS (decoupled shrinkage and selection) 

approach summarized in subsection 1.1.1 to sparsify some of the elements of the inverse 

covariance matrix to exact zeros. My proposed DSS approach picks the final inverse 

covariance matrix from a set of generated inverse covariance matrices based on a certain 

rule explained in subsection 1.1.1.   

1.1.1 My Main Contribution 

Hahn & Carvalho (2015) proposed a posterior variable-selection summary approach in 

regression setting called DSS (decoupled shrinkage and selection) to set some of the 

elements of the regression coefficients matrix to zero, detailed in chapter 2. Hahn & 

Carvalho (2015) suggested to extend their DSS approach in regression setting to DSS 

approach in a Gaussian graphical models setting to set some of the elements of the 

precision matrix to zero. I have filled this gap and proposed a decoupled shrinkage and 

selection approach for estimation of edges in an inverse covariance matrix detailed in 

section 1.3.  The Gaussian graphical models and factor analysis models are discussed in 

section 1.2. 

My proposed DSS approach for sparsification of inverse covariance matrix and the factor 

analysis models is based on the following steps: 

1. Generate the samples from the posterior over the parameter (precision matrix or 

factor loading matrix). 

 

2. Set a criterion to produce progressively sparse estimates of the desired parameter. 
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3. Set a rule to pick the final desired parameter matrix from the generated desired 

parameter matrices, based on posterior distribution of fit. 

 

Danaher et al. (2013) proposed a new joint graphical 𝐿𝑎𝑠𝑠𝑜 (𝐽𝐺𝐿) convex-optimization 

methodology discussed in chapter 3 for joint estimation of precision matrices in a high 

dimensional data setting for multiple classes, which had a faster computation time as 

compared to the proposal of Guo et al. (2011). I extended my proposed DSS-based 

method for one graph to DSS-based method for two graphs to find the sparse sets of 

differences between the two precision matrices by using a different penalty function in the 

𝐽𝐺𝐿 algorithm.  

A factor loading matrix represents correlations between the observed quantitative 

variables and unobserved latent variables called factors. A zero correlation between an 

observed variable and a factor means that the variable and the factor are independent 

from each other. I also propose a DSS sparse factor model to shrink some of the elements 

of the factor loading matrix to exact zeros so that the dimension is reduced and we are 

left with fewer variables and factors for easy interpretation. My proposed DSS approach 

is also an arbitrary approach that provides a framework to compare different selection 

methods with comparable thresholds such as thresholding the partial correlations, 

credible interval, the adaptive graphical 𝐿𝑎𝑠𝑠𝑜, and ratio selection methods which all have 

arbitrary thresholds as well to select the precision matrix. 

Some matrix norms and performance measures are explained in section 1.4. Section 1.5 

gives the outline of the thesis. 

1.2 Gaussian Graphical and Factor Analysis Models 

The details about the Gaussian graphical models and factor analysis models are given in 

subsections 1.2.1 and 1.2.2 respectively. 

1.2.1 Gaussian Graphical Models 

A graph is represented by vertices (variables) and the non-zero relationships among 

variables are denoted by the edges 𝑬. There are several types of graphs, including null 
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or empty graphs (having 0 edges), directed graphs and undirected graphs. In a directed 

graph, the relationships among variables have specific directions, represented by arrows 

(Figure 1.2). With undirected graphs, relationships have no specific direction (Figure 1.1).  

  

  

  

  

  

 

           Figure 1.1: An Undirected Graph                                         Figure 1.2: A Directed Graph 

 

In Gaussian graphical models (GGMs), we assume that the data follow a multivariate 

normal distribution. We can represent the precision matrix, denoted by 휴, as a graph with 

vertices 𝑽 corresponding to variables and 𝑬 corresponding to edges (the non-zero 

elements in 휴). The zero elements in 휴 reduce the number of parameters. Sparsification 

of a graph is desirable for its potential interpretability. Graphical models have vast 

applications such as inferring protein interaction networks, gene regulatory networks and 

co-expression networks in genomics and proteomics (Dobra et al, 2004; Friedman, 2004; 

Mukherjee and Speed, 2008; Stingo et al, 2010). These models are also used to infer 

international financial flows (Giudici and Spelta, 2016).  The graphical models also have 

wide applications in fault diagnosis (Adel Aloraini and Moamar Sayed-Mouchaweh, 2014).  

1.2.2 Factor Analysis Models 

The covariance/correlation structure among the variables can be analysed by a statistical 

technique called factor analysis that is an alternative to the Gaussian graphical model 

representing a different sort of structure. The relationship between the factors and the 

variables is represented by a factor loading matrix, denoted here by 횲. The factor loading 

matrix obtained using standard factor analysis does not have any zero loadings, which 
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can be considered a drawback. The interpretation of the correlations among the observed 

quantitative variables and the factors could be simplified by shrinking some of the 

correlations in the factor loading matrix to exact zeros.  Where a factor and a variable 

have no relationship, this is represented by a factor loading equal to zero. If 풌 is the 

number of factors, then the Gaussian factor model is expressed as follows: 

( × ) =  횲
( × ) ( × ) +  ( × )                         (1.1) 

The observed variables vector is denoted by 𝑦  , the factor scores vector is denoted by 𝜂  

, and the idiosyncratic noise is represented by 𝜖  ~ 𝑁(ퟎ, 횿) with 횿 = 𝑑𝑖𝑎𝑔 𝜎 , . . . , 𝜎 . In 

Gaussian graphical models, we set to zero some of the elements of a precision matrix. 

Whereas, a Gaussian factor model has a different sort of structure in which observed 

quantitative variables make a meaningful pattern with unobserved latent variables called 

factors, and we set to zero some of the elements of the factor loading matrix. Several 

sparse factor analysis models detailed in chapter 4 have been proposed to sparsify the 

factor loading matrix given in Equation (1.1).  

1.3 Proposed Decoupled Shrinkage and Selection Method 

Let 횺풌 denote 풌 posterior samples of covariance matrices of future observations, and 횺 ퟏ 

be the posterior mean of 풌 inverse covariance matrices, then my proposed decoupled 

shrinkage and selection equation in Gaussian graphical and factor model setting is as 

follows: 

𝑓𝑖𝑡(횺 ퟏ 횺풌) = 𝑙𝑜𝑔 𝑑𝑒𝑡(횺 ퟏ) − 𝑡𝑟(횺풌횺 ퟏ)     (1.2) 

The above Equation (1.2) denotes a sample from distribution of 𝒇풊풕(횺 ퟏ). 

After getting the posterior samples 횺풌 and 횺풌
ퟏ,  we follow the following steps in one of  

our proposed DSS approaches called DSS credible interval approach: 

1. Calculate the mean of 횺풌 ,  횺, and 횺 ퟏ. Where, the Bayes estimate of 횺 ퟏ is not 

sparse.  
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2. Find a central 90% credible interval for the range of fit of 횺 ퟏ. 

 
3. Find the 𝑿% credible intervals for the 흎풊풋 based on the sampled inverse 

covariance matrices. 
 

4. Observe the credible intervals where the elements are zero representing 

conditional independence between the variables given the other variables. 
 

5. Find the maximum likelihood estimate with certain values fixed at zero by using 

the graphical 𝐿𝑎𝑠𝑠𝑜 algorithm (Friedman et al, 2008).   

 
6. Finally, choose the final inverse covariance matrix with a suitable fit based on the 

log-likelihood.  
 

1.4 Matrix Norms and Performance Measures 

The size of the covariance matrix and the inverse covariance matrix, denoted here by 휴, 

can be estimated by applying matrix norms such as 𝑳ퟏ-norm, 𝑳ퟐ-norm and 𝑳 -norm in a 

Gaussian graphical models setting, which are used in penalization / regularization 

strategies such as 𝐿𝑎𝑠𝑠𝑜, the adaptive 𝐿𝑎𝑠𝑠𝑜 , the graphical 𝐿𝑎𝑠𝑠𝑜 , and the adaptive 

graphical 𝐿𝑎𝑠𝑠𝑜 . The performance of estimated inverse covariance matrix 휴 for graph 

recovery is measured as sensitivity or recall, specificity, precision or positive predictive 

value, and 𝑴𝑪𝑪 (Mathews’ correlation coefficient). The details of these matrix norms and 

performance measures are provided in subsections 1.4.1 and 1.4.2. 

1.4.1 Matrix Norms 

The details of the matrix norms such as 𝑳ퟏ - norm, 𝑳ퟐ - norm and 𝑳  - norm are given as 

follows: 

(풊) 𝑳ퟏ − Norm 

It is the sum of the absolute values of a matrix.  

‖𝑋‖  =  ∑ |𝑋 |       (1.3) 
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where, 𝑋  is a vector. 

(풊풊) 𝑳ퟐ − Norm 

It is the square root of the sum of the squared values of a matrix. It is also called the 

Euclidean norm.   

    ‖𝑋‖ =  ∑ 𝑋                  (1.4) 

(풊풊풊) 𝑳  − Norm  

It is defined as the maximum absolute value of a matrix.  

                                 ‖𝑋‖ = 𝑚𝑎𝑥(|𝑋 |)                  (1.5) 

1.4.2 Performance Measures 

(풊) Sensitivity 

Sensitivity is the ratio between 𝑻𝑷 (true positives) and the sum of 𝑻𝑷 and 𝑭𝑵 (false 

negatives). It is also called the true positive rate (𝑻𝑷𝑹), or recall. The proportion of true 

positives that are correctly identified is measured by ‘sensitivity’. It is calculated using the 

following formula: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑇𝑃𝑅) =                                        (1.6) 

(풊풊) Specificity 

Specificity is the ratio between 𝑻𝑵 (true negatives) and the sum of 𝑻𝑵 and 𝑭𝑷 (false 

positives). It is also called the true negative rate (𝑻𝑵𝑹). The proportion of true negatives 

that are correctly identified is measured by ‘specificity’. It is calculated using the following 

formula: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑇𝑁𝑅) =                                        (1.7) 
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(풊풊풊) Precision 

Precision is the ratio between 𝑻𝑷 (true positives) and all the positives i.e. sum of 𝑻𝑷 and 

𝑭𝑷 (false positives). It is also called positive predicted value. Precision tells us about 

correct positive predictions.  It’s calculated using the following formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =                                           (1.8) 

(풊풗) Mathews’ Correlation Coefficient 

Mathews’ correlation coefficient (𝑴𝑪𝑪) is the correlation coefficient between true and 

false negatives and positives which can be used for classes of different sizes. It lies 

between −1 and +1. The −1 value indicates complete disagreement between observed 

and predicted binary classifications, and +1 value indicates a perfect prediction. The 

formula for 𝑴𝑪𝑪 is as follows: 

  𝑀𝐶𝐶 =  ∗ ∗
( )( )( )( )

                            (1.9)  

1.5 Outline of Thesis 

1. In chapter 2, I evaluate a new Bayesian method called decoupled shrinkage and 

selection (DSS) approach in Gaussian graphical models setting for adjusting to 

zero some of the off-diagonal elements of a precision matrix. The Bayes estimate 

of the posterior mean inverse covariance matrix is not sparse even for the posterior 

over sparse models. My proposed DSS method is based on generating posterior 

samples of covariance matrices, estimating means of the posterior samples of 

covariance matrices and the inverse covariance matrices, and then shrinking some 

of the off-diagonal elements of the inverse covariance matrices to exact zeros 

using different edge selection criterion. I compare the performance of my proposed 

DSS method with previous strategies on the basis of sensitivity and specificity. I 

apply my proposed DSS method on a real dataset of frequencies of 𝑝 =  174 

metabolites in the fecal sample of 49, 8 year old children born at term, and compare 

my DSS method with other edge selection strategies such as the adaptive 
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graphical 𝐿𝑎𝑠𝑠𝑜, thresholding the partial correlations, credible interval, and ratio 

selection methods.  

 

2. In chapter 3, I extend my proposed DSS method for one population to two 

populations to find differences in the covariance matrices of two datasets with the 

same variables. I use simulation studies to compare the performance of my 

proposed DSS method for two graphs with 𝑱𝑮𝑳 (Joint graphical 𝐿𝑎𝑠𝑠𝑜) (Danaher 

et al, 2013) based on sensitivity, specificity, and 𝑴𝑪𝑪. I apply the DSS method for 

two graphs to find important 휴 differences between cases and controls metabolites 

data. 

 

3. In chapter 4, I propose a DSS sparse factor model to shrink some elements of the 

factor loading matrices to exact zeros. After generating posterior samples of the 

loading matrices using a certain algorithm, I use the following expression to convert 

the loading matrices into the covariance matrices, and then apply my DSS sparse 

factor model to shrink some of the elements of the loading matrices to exact zeros. 

Σ =  ΛΛ  +  Ψ                 (1.10) 

where, Ψ denotes the unique variances obtained using 𝑏𝑓𝑎 (Bayesian factor 

analysis) 𝑅 – package (Murray et. al, 2013). 

I use simulation studies to assess the performance of my proposed DSS sparse 

factor model based on true positive rate, true negative rate, and true discovery 

rate, with 𝒇𝒂풏𝒄 (factor analysis using non-convex penalties) – based methods 

(Hirose and Yamamoto, 2015). I also compare the number of factors identification 

with the true factor model using my proposed DSS sparse factor model and  𝒇𝒂풏𝒄 

– based methods (Hirose et. al, 2015). I apply my proposed DSS sparse factor 

model on a continuous food questionnaire dataset (Mumme et. al, 2019), and a 

discrete fishes abundance dataset (Smith, Duffy and Leathwick, 2013), to shrink 

some of the elements of the factor loading matrices to exact zeros for both 

continuous and discrete cases. 
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4. Chapter 5 presents the conclusions and recommendations regarding my proposed 

decoupled shrinkage and selection methods in chapters 2, 3, and 4 respectively. 

 



11 
 

Chapter - 02       

Sparse Estimates of Precision Matrices Using Gaussian Graphical 
Models 

2.1 Introduction 

Sparsifying a precision matrix (graph) by setting some of the off-diagonal elements to 

exact zeros is desirable because zero elements in a graph reduce the number of 

parameters for its potential interpretability. Penalized likelihood approaches, such as the 

graphical 𝐿𝑎𝑠𝑠𝑜 (Friedman et al, 2008), the adaptive graphical 𝐿𝑎𝑠𝑠𝑜, and CLIME 

(Constrained 𝑳𝟏 minimization estimation) (Cai et al, 2011), have been proposed to set to 

zero some of the off-diagonal elements of a precision matrix. In addition, a variety of 

Bayesian models have been proposed for model selection to produce sparse graphs in 

Gaussian graphical models. Generation of a posterior distribution over graphs is 

computationally intensive and involves exploring a large discrete space, despite recent 

advances (Muhammadi and Wit, 2015). The Bayes estimate of the posterior mean inverse 

covariance matrix is not sparse even for the posterior over sparse models (see Table 2.2). 

Methods such as the conjugate inverse Wishart prior, the factor analysis models (West, 

2003), regularized inverse Wishart (Kundu et al., 2018), and the Bayesian adaptive 

graphical 𝐿𝑎𝑠𝑠𝑜 (Wang, 2012; Peterson et al, 2013) are appropriate methods for shrinking 

the covariance model where graphs are not required to be sparse. Yet, in many cases, 

sparse graphs are required and the development of accurate and efficient methods of 

producing sparse graphs is an active area of research.  

Several methods of producing sparse graphs have been proposed. Peterson et al. (2013) 

consider the edges in the precision matrix to be connected if the absolute partial 

correlation between the edges is greater than 0.1. This method of selection is considered 

arbitrary. Wang (2012) suggests that the edges in the precision matrix are connected if 

and only if the posterior mean of inverse covariance matrices using the graphical 𝐿𝑎𝑠𝑠𝑜 

priors and the expected value of the posterior mean of inverse covariance matrices using 

𝑾(𝟑, 𝑰𝒑) has a ratio greater than 0.5. Here, 𝑾(𝟑, 𝑰𝒑) is the standard conjugate Wishart 

prior. Like that of Peterson et al. (2013), this method of selection is considered arbitrary. 
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Hahn & Carvalho (2015) proposed the DSS (Decoupled Shrinkage and Selection) method 

to produce sparse estimates in a regression setting. Hahn & Carvalho’s (2015) DSS-

based method produces the posterior predictive distribution of the future data, and Hahn 

& Carvalho (2015) gave preliminary suggestions to extend their DSS method for 

estimation of precision matrices.  

Here, I am extending the DSS-based method for estimation of edges in a precision matrix 

in Gaussian graphical models. My proposed DSS-based method selects the final 

precision matrix based on the posterior predictive distribution of the future data and the 

log-likelihood of the fit of the model to these future data.  

The objective of this chapter is to evaluate a new method of model selection for Gaussian 

graphical models. I propose a DSS method for edge detection in a precision matrix and 

compare its performance with previous strategies. The proposed method performs well 

based on sensitivity and specificity for low to moderate dimensional data. 

 

The remainder of this chapter is organised as follows. Section 2.2 presents a review of 

current approaches, including those based on penalized likelihood (the graphical 𝐿𝑎𝑠𝑠𝑜; 

the adaptive graphical 𝐿𝑎𝑠𝑠𝑜; Constrained 𝑳𝟏 minimization estimation, or CLIME; elastic 

net; Tuning insensitive graph estimation and regression, or TIGER) and methods for 

tuning based on log-likelihood (cross-validation; stability selection; and BINCO, a 

frequentist approach for model selection based on controlling the false discovery rate). 

Section 2.3 describes Bayesian approaches for the estimation of precision matrix 

including my proposed DSS method. Section 2.4 describes methodological comparisons 

based on a simulation study, Section 2.5 describes methodological comparisons based 

on real data, and section 2.6 presents the conclusion.  

2.2 Review of Current Approaches 

2.2.1 Penalized Likelihood Approaches               

Penalized likelihood estimation approaches include the graphical 𝐿𝑎𝑠𝑠𝑜, the adaptive 

graphical 𝐿𝑎𝑠𝑠𝑜, CLIME (Constrained 𝑳𝟏 minimization estimation), and elastic net. All 

these methods select edges in a precision matrix based on some penalty with tuning 
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parameters. The graphical 𝐿𝑎𝑠𝑠𝑜, the adaptive graphical 𝐿𝑎𝑠𝑠𝑜 and CLIME use 𝑳𝟏 

penalty, whereas, elastic net uses a combination of 𝑳𝟏 and 𝑳𝟐 penalties.  

2.2.1.1 Graphical 𝑳𝒂𝒔𝒔𝒐 

In Gaussian graphical models, Σ denotes the population covariance matrix, and Ω denotes 

the population precision matrix.  The data dimension is denoted by 𝒑, and the number of 

observations is denoted by 𝒏. To overcome the problem of estimating Σ and Ω for high-

dimensional data (𝒑 > 𝒏), the graphical 𝐿𝑎𝑠𝑠𝑜  was developed by (Friedman et al, 2008). 

Graphical 𝐿𝑎𝑠𝑠𝑜 penalizes the sum of absolute values of the off-diagonal elements of the 

inverse covariance matrix. The purpose of the graphical 𝐿𝑎𝑠𝑠𝑜 was the estimation of 

sparse inverse covariance matrix for undirected graphs. The graphical 𝐿𝑎𝑠𝑠𝑜 is a 

penalized likelihood estimation method and solves the following problem: 

                          𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝛀{𝑙𝑜𝑔 𝑑𝑒𝑡 𝛀 − 𝑡𝑟𝑎𝑐𝑒(𝚺 𝛀) − 𝜆‖𝛀‖1} ,                  (2.1) 

where, 𝜆 is a tuning parameter that is non-negative. The sum of absolute off-diagonal 

entries of the precision matrix are penalized using 𝑳𝟏 penalty. The graph becomes sparser 

as the tuning parameter 𝜆 increases, and all the estimates of non-zero entries are biased 

towards 0.     

2.2.1.2 Adaptive Graphical 𝑳𝒂𝒔𝒔𝒐 

One problem with the graphical 𝐿𝑎𝑠𝑠𝑜 is that, to achieve more sparsity, one must tolerate 

downwardly biased estimates of the precision matrix towards zero. To overcome this 

problem, the adaptive graphical 𝐿𝑎𝑠𝑠𝑜 adjusts the penalty of each 𝜔𝑖𝑗 with the following 

factor: 

𝜉𝑖𝑗 =
1
Ω
𝛾                                              (2.2) 

Here, Ω= 𝜔𝑖,𝑗 1≤𝑖,𝑗≤𝑝
 can be any consistent estimate of Ω.  Also 𝛾 > 0, (usually taken to 

a fixed value 𝛾 = 1
2
) (Zou, 2006). 

Thus, the adaptive graphical 𝐿𝑎𝑠𝑠𝑜 algorithm solves the following problem: 
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                          𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝛀 𝑙𝑜𝑔 𝑑𝑒𝑡 𝛀 − 𝑡𝑟𝑎𝑐𝑒(𝚺 𝛀) − 𝜆 𝝃𝒊𝒋 𝝎𝒊𝒋 1
              (2.3) 

The weighted penalty used in the adaptive graphical 𝐿𝑎𝑠𝑠𝑜 reduces the bias because the 

weighted penalty imposes less shrinkage on the coefficients with larger magnitude.  

2.2.1.3 Constrained 𝑳𝟏 Minimization Estimation (CLIME) 

Cai et al. (2011) developed a new approach, CLIME (Constrained 𝑳𝟏 minimization 

estimation), for estimating high-dimensional inverse covariance matrices. Let Ω1  be the 

following optimization problem solution set:  

   min‖𝛀‖1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: |𝚺𝑛Ω − 𝑰|  ≤  λ𝑛 ,   Ω ϵ 𝑅𝑝×𝑝   (2.4)            

where, 𝜆𝑛 is the tuning parameter and 𝚺𝒏 is the sample covariance matrix. Here the 

symmetry condition i.e. Ω = Ω is not applied on 𝛺. The symmetrizing of Ω1 is done to 

obtain the CLIME estimator of Ω0. In order to symmetrize Ω1, we write Ω1 as below: 

    𝛀1 = (𝝎𝑖𝑗1 ) = (𝝎11 ,   .  .  .  , 𝝎𝑃1  )                        (2.5) 

 Ω  that is the CLIME estimator of Ω0 is defined as below: 

𝛀 = 𝝎𝑖𝑗 ,                  (2.6) 

where,       𝝎𝑖𝑗 = 𝝎𝑗𝑖 = 𝝎𝑖𝑗1 𝑰 𝝎𝑖𝑗1 ≤ 𝝎𝑗𝑖1 + 𝝎𝑗𝑖1 𝑰 𝝎𝑖𝑗1 > 𝝎𝑗𝑖1    

This causes the estimated precision matrix Ω to be symmetric. The graphical 𝐿𝑎𝑠𝑠𝑜  log-

likelihood is a smooth curve with respect to 𝜆 but the analogous log-likelihood of CLIME 

forms a polygon. In contrast to the graphical 𝐿𝑎𝑠𝑠𝑜 where the 𝑳𝟏 norm is used, element-

wise 𝑳  norm is used for graphical model selection in CLIME.  

Cai et al. (2011) compared the numerical performance of CLIME estimator with the 

graphical 𝐿𝑎𝑠𝑠𝑜 and SCAD (Smoothly Clipped Absolute Deviation) (Fan and Li, 2001) 

based on sensitivity, specificity and MCC (Mathews’ correlation coefficient) with simulated 

data. CLIME performed better than the graphical 𝐿𝑎𝑠𝑠𝑜 and SCAD in terms of sensitivity 

(true positive rate) and 𝑀𝐶𝐶, and was comparable with the graphical 𝐿𝑎𝑠𝑠𝑜 and SCAD in 
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terms of specificity (true negative rate). The tuning parameter 𝜆 was selected in the 

graphical 𝐿𝑎𝑠𝑠𝑜, SCAD and CLIME for comparison using cross-validation. In the graphical 

𝐿𝑎𝑠𝑠𝑜, the adaptive graphical 𝐿𝑎𝑠𝑠𝑜 and CLIME, model selection is equivalent to tuning 

parameter selection. 

2.2.1.4 Elastic Net 

Ridge regression helps in reducing the multicollinearity (dependence of explanatory 

variables on each other) by penalizing the sum of squared coefficients using an 

𝑳𝟐 penalty. The 𝐿𝑎𝑠𝑠𝑜 algorithm is based on an 𝑳𝟏 penalty, and the ridge methods are 

based on an 𝑳𝟐 penalty. The 𝑳𝟐 penalty penalizes the sum of squared values of the off-

diagonal elements of a precision matrix in Gaussian graphical models. Elastic net is a 

methodology that linearly combines both 𝑳𝟏 and 𝑳𝟐 penalties of 𝐿𝑎𝑠𝑠𝑜 and ridge methods 

respectively, as follows: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝛀{𝑙𝑜𝑔 𝑑𝑒𝑡 𝛀 − 𝑡𝑟𝑎𝑐𝑒(𝚺 𝛀) − 𝜆2‖Ω‖22 − 𝜆1‖Ω‖1}        (2.7) 

where, ‖Ω‖22 is the quadratic part of the penalty; and ‖Ω‖1 is the 𝐿𝑎𝑠𝑠𝑜 penalty. Strict 

convexity is achieved by the quadratic penalty in the loss function 2.7. Hence, it has a 

unique minimum. Elastic net is equivalent to 𝐿𝑎𝑠𝑠𝑜 when  𝜆1 =  𝜆, 𝑎𝑛𝑑 𝜆2 = 0, and to ridge 

when 𝜆1 =  0, 𝑎𝑛𝑑 𝜆2 = 𝜆.  The elastic net is actually a 𝐿𝑎𝑠𝑠𝑜 on an augmented data set. 

The ridge method does not enforce the off-diagonal elements of the precision matrix to 

be exactly zero. However, elastic net does set some elements to zero, thereby producing 

sparse models (Zou & Hastie; 2005). 

2.2.2 Tuning-free Method  

Most of the penalized-likelihood approaches require the selection of at least one tuning 

parameter. Liu and Wang (2012) proposed a new tuning-free method, TIGER (tuning-

Insensitive graph estimation and regression), for estimating high-dimensional Gaussian 

Graphical models. TIGER uses the SQRT-𝐿𝑎𝑠𝑠𝑜 regression (Belloni et al, 2012) to solve 

the sparse regression problem. The SQRT-𝐿𝑎𝑠𝑠𝑜 equation to find the estimates 𝛽 for the 

linear regression problem: 𝒚 = 𝑿𝛽 + 𝜖; is as follows: 
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𝛽 = rg𝑚𝑖𝑛
𝛽𝜖ℝ𝑑

1
√𝑛
‖𝒚 − 𝑿𝛽‖2 + 𝜆‖𝛽‖1                            (2.8) 

where, 𝑦 is the response variable, 𝑋 is the design matrix, 𝛽 is the unknown coefficients 

vector, 𝜖 is the noise vector, and 𝜆 is the tuning parameter. Belloni et al (2012) showed 

that the tuning parameter 𝜆 choice for SQRT-𝐿𝑎𝑠𝑠𝑜 was independent of any unknown 

parameter. However, heavy reliance on the known standard deviation of the error term is 

required for methods such as the 𝐿𝑎𝑠𝑠𝑜 and Dantzig selector (Yuan, 2009). The 

explanation of TIGER in terms of estimation of the precision matrix is given as follows: 

Let 𝚪:= 𝑑𝑖𝑎𝑔 𝚺  represents a diagonal matrix with dimension “𝑑”, and let us assume that 

it has the same diagonal elements as those in Σ. Now we define: 

𝒁 ≔ (𝑍1, . . . , 𝑍𝑑) = 𝑿𝚪−1/2                                       (2.9) 

Also we define: 

𝛽𝑗 ≔ 𝚪∖𝑗,∖𝑗
1
2  𝚪𝑗𝑗

−12𝛼𝑗    𝑎𝑛𝑑   𝜏𝑗2 =  𝜎𝑗2 𝚪𝑗𝑗−1                  (2.10) 

where, 𝛼𝑗 ≔ 𝚺∖𝑗,∖𝑗
−1
𝚺∖𝑗,𝑗 ∈ ℝ𝑑−1 and 𝜎𝑗2 ≔ 𝚺𝑗𝑗 − 𝚺∖𝑗,𝑗 𝚺∖𝑗,∖𝑗

−1
𝚺∖𝑗,𝑗 

Hence, we have: 

𝑍𝑗 =  𝛽𝑗 𝒁∖𝑗 +  𝚪𝑗𝑗
−12𝜖𝑗                                                   (2.11) 

Liu and Wang (2012) proposed TIGER for the estimation of precision matrix Θ as follows: 

𝛽𝑗 ≔  
rg𝑚𝑖𝑛
𝛽𝑗𝜖ℝ𝑑−1

1 − 2𝛽𝑗  𝑹∖𝑗,𝑗 + 𝛽𝑗  𝑹∖𝑗,∖𝑗𝛽𝑗 +  𝜆 𝛽𝑗 1
,        (2.12) 

 �̂�𝑗 ≔  1 − 2𝛽𝑗  𝑹∖𝑗,𝑗 + 𝛽𝑗  𝑹∖𝑗,∖𝑗 𝛽𝑗 , 

 𝚯𝑗𝑗 =  �̂�𝑗−2  𝚪𝑗𝑗−1 𝑎𝑛𝑑  𝚯∖𝑗,𝑗 = − �̂�𝑗−2  𝚪𝑗𝑗
−12  𝚪∖𝑗,∖𝑗

−1
2  𝛽𝑗 

The tuning parameter 𝜆 for TIGER is as follows: 
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𝜆 ∶=  𝜁𝜋 log𝑑
2𝑛

                                                  (2.13) 

where, 𝜁 is chosen between the interval √2
𝜋
, 1   for finite samples. Since TIGER solves 

the SQRT-𝐿𝑎𝑠𝑠𝑜 problem, and SQRT-𝐿𝑎𝑠𝑠𝑜 does not depend on unknown parameters or 

quantities, TIGER may be considered a tuning-insensitive method. Therefore, it is 

sufficient to cross-validate and finalize the best value from one of the following three 

values: 𝜁 𝜖 √2
𝜋
, 0.6, 1 . All these values produce relatively sparse precision matrices 

solutions, and the TIGER algorithm runs very smoothly and efficiently as well (Liu and 

Wang, 2012).  

2.2.3 Methods for Tuning based on Log-likelihood 

The following methods namely, cross-validation, stability selection and BINCO (Bootstrap 

inference for network construction) (Li et al, 2013), tune the regularization parameter 𝜆 

based on the log-likelihood. 

2.2.3.1 Cross-Validation 

In cross-validation, the data are partitioned into a training set and a validation set, with 

the latter used to evaluate the out-of-sample predictive power of the model, usually based 

on the log-likelihood. In 𝒌-fold cross-validation, the original sample is divided into 𝒌 

subsamples. One sample from each of the 𝒌 subsamples is withheld in turn as a part of 

the validation sample set, and the remaining 𝒌  – 1 subsamples are used as training data. 

This procedure is repeated 𝒌  times and then the optimum value of the tuning parameter 

𝜆 is selected based on maximizing the log-likelihood with respect to the withheld data. 

Cross-validation reduces the chances of over-fitting. 

2.2.3.2 Stability Selection 

In Gaussian Graphical models, one of the challenges is the selection of the regularization 

parameter,𝜆, for high-dimensional data. Methods like cross-validation, 𝐴𝐼𝐶 (Akaike 

Information Criterion), and 𝐵𝐼𝐶 (Bayesian Information Criterion) can be used with 

Gaussian graphical models to select the values of 𝜆.  Cross-validation,𝐴𝐼𝐶 and 𝐵𝐼𝐶 
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produce sparse graphs by using the smaller values of regularization parameter 𝜆 when 

applied on a low-dimensional data. However, they do not produce sparse graphs by using 

the smaller values of regularization parameter 𝜆 when applied to a high-dimensional data.  

Stability selection approaches are alternative approaches to cross-validation,𝐴𝐼𝐶 and 𝐵𝐼𝐶 

for model selection which aim to select the regularization parameter 𝜆 to produce sparse 

graphs. Stability selection approaches work well both for low-dimensional and high-

dimensional settings using the least amount of regularization parameter 𝜆  to produce 

sparse graphs. 𝐹𝑙𝑎𝑟𝑒 (family of 𝐿𝑎𝑠𝑠𝑜 regression) R-package (Li et al, 2015) implements 

stability selection. The 𝐹𝑙𝑎𝑟𝑒 R-package has two criteria (CLIME and TIGER) for the 

selection of non-zero elements in a precision matrix. The optimum precision matrix using 

𝐹𝑙𝑎𝑟𝑒 R-package is chosen using cross-validation or 𝑆𝑡𝑎𝑟𝑠 (Stability approach to 

regularization selection) (Liu et al, 2010). When the regularization parameter 𝜆 is 0, the 

graph is empty (i.e., a null graph). When we increase the regularization parameter 𝜆, the 

graph variability increases as well and, as a consequence, the stability decreases.   

The 𝑆𝑡𝑎𝑟𝑠 procedure is as follows: 

Let 𝑎 =  𝑎(𝑛) be such that 1 < 𝑎(𝑛) < 𝑛.  Now we randomly draw without replacement 𝑁 

subsamples of size 𝑎 from 𝑋1, . . . , 𝑋𝑛. The subsamples, denoted as 𝑆1, . . . , 𝑆𝑁, have a total 

sample size of 𝑛
𝑎  across all subsamples. Note that 𝑆𝑡𝑎𝑟𝑠 differs from bootstrapping in 

that it uses sampling without replacement (Efron, 1982).  Graphical 𝐿𝑎𝑠𝑠𝑜  (Friedman et 

al; 2008) is used to construct a graph for each subsample for each regularization 

parameter λ, producing 𝑁 estimated edge matrices.  

Let us focus now on one edge (𝑠, 𝑡) and one value of regularization parameter 𝜆. Let 

𝜉𝑠𝑡𝑎 (𝜆) denotes the instability of an edge across the subsamples; and 0 ≤ 𝜉𝑠𝑡𝑎 (𝜆) ≤ 1/2. 

The total instability of a graph is obtained by averaging over all the edges: 

𝐷𝑎(𝜆) =  
∑ 𝜉𝑠𝑡

𝑎
𝑠<𝑡
𝑝
2

                                    (2.14) 
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It is evident that 𝐷𝑎 (0) =  0 at the boundary 0 ≤ 𝜉𝑠𝑡𝑎 (𝜆) ≤
1
2
. In addition, 𝐷𝑎(𝜆) will increase 

with increasing values of 𝜆. However, dense graphs are produced for very large values of 

𝜆.  To obtain stable sparse graphs, 𝐷𝑎(𝜆) is monotonized by defining: 

�̅�𝑎(𝜆) =  𝑠𝑢𝑝0 ≤ 𝑡 ≤ 𝜆 𝐷𝑎(𝑡)                                     (2.15) 

The regularization parameter 𝜆 is chosen by 𝑆𝑡𝑎𝑟𝑠 by defining: 

𝜆𝑠 = 𝑠𝑢𝑝{𝜆 ∶  �̅�𝑎(𝜆) ≤  𝛼 }                                      (2.16) 

where, 𝛼 is a specified cut-off value. The value of 𝛼 is set to an arbitrary value, of 0.05. 

𝑆𝑡𝑎𝑟𝑠 is based on subsampling; sample size 𝑎 instead of 𝑛 is used for the estimation of 

selected graph. One of the disadvantages of 𝑆𝑡𝑎𝑟𝑠 is its efficiency loss for low-

dimensional data, (i.e. data with a small number of features 𝑝). However, this efficiency 

loss decreases as the dimension increases.  

2.2.3.3 Bootstrap Inference for Network Construction 

Traditional methods for model selection, such cross-validation and 𝐵𝐼𝐶 (Bayesian 

Information Criterion), work by minimizing the prediction error or maximizing a penalized 

likelihood function. They do not explicitly estimate and control the 𝐹𝐷𝑅 (false discovery 

rate) (Li et al, 2013). Li et al. (2013) proposed a frequentist approach, BINCO (bootstrap 

inference for network construction) that directly controls the 𝐹𝐷𝑅𝑠 in the selection of 

edges. BINCO was proposed for network inference of high-dimensional data. Let 𝐴(𝜆) is 

an edge-selection procedure having 𝜆 as a regularization parameter. Let a 𝑝 −  

dimensional random vector 𝒀 = 𝑌1, … , 𝑌𝑝  that follows a multivariate normal distribution 

𝑁(0, Σ), where Σ is a positive definite matrix with dimension 𝑝 × 𝑝. When 𝐴(𝜆) is applied 

to data 𝒀, we obtain the set of selected edges: 

𝑆𝜆(𝒀) ≡ 𝑆𝜆(𝐴(𝜆), 𝒀)                                        (2.17) 

Let 𝑝𝑖𝑗 be the probability of edge selection given as: 

𝑝𝑖𝑗 = 𝐸 𝑰 (𝑖, 𝑗)𝜖𝑆𝜆(𝒀)                                    (2.18) 



20 
 

where, 𝐼{. } represents the indicator function. 

Let us denote 𝑅(𝑌) as the space of resamples obtained by doing bootstrapping or 

subsampling on 𝑌. If 𝑌 represents a random resample from 𝑅(𝑌), then: 

𝑝𝑖𝑗 = 𝐸 𝑰 (𝑖, 𝑗)𝜖𝑆𝜆 𝒀 = 𝐸 𝐸 𝑰 (𝑖, 𝑗)𝜖𝑆𝜆 𝒀 𝒀                (2.19) 

𝑝𝑖𝑗 and 𝑝𝑖𝑗  are very close in many cases (Li et al,  2013). 𝑝𝑖𝑗  can be estimated by selection 

frequency 𝑋𝑖𝑗 as follows: 

𝑋𝑖𝑗𝜆 ≡ 𝑋𝑖𝑗 𝐴(𝜆); 𝒀1, . . . , 𝒀𝐵𝜖 𝑅(𝒀)                                   (2.20) 

        = 1
𝐵
∑ 𝑰𝐾
𝑘=1 (𝑖. 𝑗)𝜖𝑆𝜆(𝒀𝑘) ,    1 ≤ 𝑖 < 𝑗 ≤ 𝑝  

where, 𝐵 represents the number of resamples. The 𝐵 resamples 𝑌1, . . . , 𝑌𝐵 are 

aggregated in the calculation of selection frequencies expressed in Equation (2.21). 

The edges of large selection frequencies are chosen using  𝑆𝑐𝜆  for the aggregation-based 

procedures as follows: 

𝑆𝑐𝜆 = (𝑖, 𝑗): 𝑋𝑖𝑗𝜆 ≥ 𝑐           𝑓𝑜𝑟 𝑐 𝜖 [0,1]                           (2.21)     

If most of the selection frequencies for the true edges are greater than or equal to 𝑐, 𝑆𝑐𝜆  

is reasonable. The null edges have selection frequencies less than 𝑐. The estimation of 

𝐹𝐷𝑅𝑠 is done by fitting a mixture model for edge selection frequency distribution in 

Equation (2.22). The calculation of selected frequencies is done using model aggregation 

as explained in Equation (2.21). The mixture density of 𝑋𝑖𝑗𝜆  is 𝑓𝜆(𝑥) =  (1 − 𝜋)𝑓0𝜆(𝑥) +

𝜋𝑓1𝜆(𝑥), 𝑥𝜖 0, 1 𝐵 ,
2
𝐵 ,… ,1 , where 𝑓0𝜆(𝑥) and 𝑓1𝜆(𝑥) are the densities of 𝑋𝑖𝑗𝜆  if it belongs 

to null and true categories respectively. The (positive) 𝐹𝐷𝑅 of  𝑆𝑐𝜆 ; based on the mixture 

model is as below: 

𝐹𝐷𝑅 𝑆𝑐𝜆 = 𝑃𝑟 (𝑖, 𝑗)𝜖𝐸𝑐 (𝑖, 𝑗)𝜖𝑆𝑐𝜆 = ∑ (1−𝜋)𝑓0𝜆(𝑥)𝑥≥𝑐
∑ 𝑓𝜆𝑥≥𝑐 (𝑥)

                            (2.22) 
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Here 𝐸 is the edge set, 𝑐 is the threshold, 𝜋 is the proportion of true edges, and 𝜆 is the 

regularization parameter. 

The estimation of true edges number in 𝑆𝑐𝜆 is done as follows: 

𝑁𝐸 𝑆𝑐𝜆 = 𝑆𝑐𝜆 1 − 𝐹𝐷𝑅 𝑆𝑐𝜆                                                 (2.23) 

where, 𝐹𝐷𝑅 𝑆𝑐𝜆  is an estimate of 𝐹𝐷𝑅 𝑆𝑐𝜆 . For different values of 𝑐 and 𝜆, it can be used 

to compare the achieved power of 𝑆𝑐𝜆 when the total number of true edges is a constant. 

For each 𝜆, the optimal threshold 𝑐 is calculated using the following formula: 

𝑐∗(𝜆) = 𝑚𝑖𝑛 𝑐: 𝐹𝐷𝑅 𝑆𝑐𝜆 ≤ 𝛼                                                (2.24) 

where, 𝛼 is the targeted 𝐹𝐷𝑅 level. 

The calculation of optimal regularization parameter 𝜆 is done using the following formula: 

            𝜆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜆𝜖 𝑁𝐸 𝑆𝑐∗(𝜆)

𝜆                                                 (2.25) 

where, 𝑆𝑐∗(𝜆∗)
𝜆∗  indicates maximal power, while the 𝐹𝐷𝑅 does not exceed the specified 

target level of 𝛼. BINCO performed well in controlling the 𝐹𝐷𝑅 and gaining decent power 

even when the data were generated from non-normal distributions (t-distribution and 

Uniform distribution).  

2.3 Bayesian Approaches 

The estimation of precision matrices can also be done using Bayesian approaches. In 

certain methods, some elements may be inferred to be zero, producing a sparse precision 

matrix (graph). I describe the Bayesian approaches for model selection in the following 

subsections.  

2.3.1 Model Search in Discrete Space 

Bayesian model selection approaches to inferring 𝛴,  or equivalently 𝛺, usually specify 

the prior over 𝛴, conditional on graph 𝐺, to be the hyper-inverse Wishart (𝐻𝐼𝑊).  This is 

a conjugate prior, with its support restricted to Σ corresponding to symmetric positive 
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definite 𝛺 with zero elements as dictated by 𝐺. Many authors take this to be a multiple of 

the identity: 𝚺 ~ 𝐻𝐼𝑊𝐺(𝛿, 𝜏𝑰). However, a 𝑔-prior approach  (𝚺|𝐺) ~ 𝐻𝐼𝑊𝐺(𝑔𝑛, 𝑔𝑋 𝑋), is 

also possible (Scott and Carvalho, 2008).  

The 𝐺-Wishart over Ω has the following density: 

𝑝(𝛀|𝐺, 𝑏, 𝐷) = 𝐼𝐺(𝑏, 𝐷)−1|𝛀|
𝑏−2
2 𝑒𝑥𝑝 −1

2
 𝑡𝑟 (Ω𝐷) ,       Ω ∈ 𝑃𝐺                       (2.26) 

where, the parameter 𝑏 > 2 represents degrees of freedom, the positive definite 

symmetric matrix 𝐷 has a dimension of 𝑝 𝑥 𝑝, the normalizing constant is represented by 

𝐼𝐺  , and the set of all positive definite symmetric matrices having dimension 𝑝 𝑥 𝑝 and 𝜔𝑖𝑗 

= 0 are represented by 𝑃𝐺. The normalizing constant has closed form only for the subclass 

of decomposable (triangulated) graphs, making this subclass much more computationally 

tractable than the non-decomposable graphs. 

A uniform prior over graphs places most of the mass on graphs with intermediate numbers 

of edges, but sparsity can be encouraged with the use of further priors. A common choice 

is the Bernoulli prior on the number of edges  𝑒: 𝜋𝑒(1 − 𝜋)𝑡−𝑒, where 𝑡 is the total possible 

number of edges and 𝜋 is set to encourage sparsity. Scott and Carvalho (2008) place a 

uniform prior on 𝜋, and show it can be integrated out. 

Model selection requires to perform a search in a discrete space that is relatively difficult 

compared to model search in a continuous space. Stochastic search methods are used 

to search model spaces which are very high-dimensional. Jones et al. (2005) discussed 

stochastic computation methods in Gaussian graphical models in detail for their 

computational efficiency, performance, and scalability with dimension. Their proposed 

stochastic search method was compared with the MCMC (Markov chain Monte Carlo) for 

moderate (12-20) to large (150) numbers of variables. A Bernoulli prior over the graph 

space determined the prior probability of inclusion of an edge in a graph to produce 

sparser graphs. MH (Metropolis-Hastings), SSS (Shotgun stochastic search) algorithms 

were considered both for decomposable models and unrestricted models for the 

comparison of run time and quality of best graph (based on the computation of an entire 

likelihood and perfect ordering of each proposed graph) between them. The SSS 
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(decomposable) had the lowest run time (in hours) and the highest log posterior (log of 

the posterior) as compared to MH (decomposable) and SSS (Unrestricted) for moderate 

dimensional data. For unrestricted models, the SSS algorithm performed better as 

compared to the MCMC algorithm.  

FINCS (Future-inclusion stochastic search) method (Scott and Carvalho, 2008) is a 

search algorithm shown to achieve better model selection in terms of prediction than 

𝐿𝑎𝑠𝑠𝑜-based approaches, especially in case of higher dimensions. FINCS is used for an 

edge addition or deletion at a time 𝑡. The addition or deletion of an edge is done by 

posterior probability of inclusion of an edge at step 𝑡 using the following formula: 

𝑞𝑖𝑗(𝑡) =  
∑ 1(𝑖,𝑗)𝜖𝒢𝑘
𝑘=𝑡
𝑘=1 𝑃 𝑋 𝒢𝑘 𝜋(𝒢𝑘))

∑ 𝑃 𝑋 𝒢𝑘 𝜋(𝒢𝑘))𝑘=𝑡
𝑘=1

                                         (2.27) 

where, 𝜋(𝒢𝑘) is the graph’s prior probability. FINCS retains the models list based on higher 

posterior probability of inclusion of an edge at time 𝑡. 𝑃(𝑋|𝒢𝑘) is calculated using the 

following formula: 

𝑝(𝑋|𝒢) = (2𝜋)
−𝑛𝑝
2  ℎ 𝒢,𝑔𝑛,𝑔𝑋 𝑋

ℎ(𝒢,𝑛,𝑋 𝑋)
                                           (2.28) 

where, the sum of squares of data matrix 𝑋 are represented by 𝑋 𝑋 and; 𝑔 (the 𝑔-prior) 

is set to 1/𝑛; and ℎ represents the hyper-inverse Wishart distribution normalizing 

constant. 

Fitch et al. (2014) studied the behaviour of Bayesian methods of model selection for 

decomposable Gaussian graphical models for which the true model was non-

decomposable. A superset graph is a graph that includes all the edges of an undirected 

graph 𝒢 =  (𝑉, 𝐸) plus one other edge at least that is not in the edge set 𝐸. It was shown 

that the Bayesian procedures converged to minimal supersets (i.e., minimum number of 

extra edges required in a non-decomposable graph to achieve decomposability) of the 

true graph.  FINCS-based methods were compared by Fitch et al. (2014) with 𝐿𝑎𝑠𝑠𝑜-

based methods on the basis of precision (positive predictive value) and recall (sensitivity, 

or true positive rate), Kullback-Leibler divergence criterion, and sum of squared prediction 

errors. FINCS - based methods had consistently higher precision than the precision of 
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𝐿𝑎𝑠𝑠𝑜 - based methods. However, for small sample sizes, the recall of the 𝐿𝑎𝑠𝑠𝑜 - based 

methods were almost the same as the recall of the FINCS – based methods.  FINCS-

based methods produced lower Kullback-Leibler divergence as compared to the 

Kullback-Leibler divergence of the 𝐿𝑎𝑠𝑠𝑜 -based methods. The sum of squared prediction 

errors was low for FINCS-based methods as compared to the sum of squared prediction 

errors for the 𝐿𝑎𝑠𝑠𝑜 - based methods. Thus, overall, FINCS-based methods produced 

superior results as compared to the 𝐿𝑎𝑠𝑠𝑜 - based methods, especially for higher 

dimensional data. 

Generation of a posterior distribution of graphs is computationally intensive and involves 

exploring a large discrete space. Mohammadi and Wit (2015) proposed a unique 

Bayesian framework for the determination of a Gaussian graphical model based on a 

continuous time birth-death process. In the continuous time birth-death process, birth is 

regarded as an appearance of an individual and death is regarded as the removal of an 

individual. They designed a Bayesian algorithm, BDMCMC (birth-death MCMC), to 

perform parameter estimation and graph structure learning as a birth-death process. 

FINCS (Scott and Carvalho, 2008) is used to add and delete edges based on posterior 

probability of the inclusion of that edge at each iteration 𝑡 in Equation (2.27). However, 

BDMCMC adds an edge in the event of a birth (appearance of an individual), and removes 

an edge in the event of a death (removal of an individual). They modelled the birth and 

death rates using independent Poisson processes, and the time between the two 

successive events with an exponential distribution. The probability of the next birth or 

death event is calculated as follows: 

𝑃(𝑏𝑖𝑟𝑡ℎ 𝑓𝑜𝑟 𝑒𝑑𝑔𝑒 𝑒) =  𝛽𝑒(𝐾)
𝛽(𝐾)+𝛿(𝐾)

,            𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒 𝜖 �̅�          (2.29) 

𝑃(𝑑𝑒𝑎𝑡ℎ 𝑓𝑜𝑟 𝑒𝑑𝑔𝑒 𝑒) =  𝛿𝑒(𝐾)
𝛽(𝐾)+𝛿(𝐾)

 ,        𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒 𝜖 𝐸       (2.30) 

where, 𝐾 is the precision matrix,  𝛽𝑒(𝐾) is the birth rate in a precision matrix, 𝛿𝑒(𝐾) is the 

death rate in a precision matrix, 𝛽(𝐾) is the overall birth rate, and 𝛿(𝐾) is the overall death 

rate. 

Let us consider the birth rates 𝛽𝑒(𝐾)  and death rates 𝛿𝑒(𝐾)  as follows:  
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𝛽𝑒(𝐾) =  
𝑃 𝐺+𝑒,𝐾+𝑒 \ 𝑘𝑖𝑗,𝑘𝑗𝑗 ∕𝑋

𝑃(𝐺,𝐾  \𝑘𝑗𝑗∕𝑋)
,                 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒 𝜖 �̅�         (2.31) 

𝛿𝑒(𝐾) =  
𝑃 𝐺−𝑒,𝐾−𝑒\𝑘𝑗𝑗 𝑋⁄

𝑃 𝐺,𝐾 \ 𝑘𝑖𝑗,𝑘𝑗𝑗 𝑋⁄
,                      𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒 𝜖 𝐸               (2.32) 

The process jumps to a new state; 𝐺−𝑒,𝐾−𝑒 according to Equation (2.32) in the event of 

a death; and, 𝐺+𝑒,𝐾+𝑒 according to Equation (2.31) in the event of a birth.  

The sum of the birth rates 𝛽𝑒(𝐾) and the death rates 𝛿𝑒(𝐾) are expressed as follows: 

𝛽(𝐾) =  ∑ 𝛽𝑒(𝐾)𝑒∈�̅�                                          (2.33) 

𝛿(𝐾) =  ∑ 𝛿𝑒(𝐾)𝑒∈𝐸                                          (2.34) 

Therefore, the proposed BDMCMC algorithm (Mohammadi and Wit, 2015) calculates the 

birth rates according to Equation (2.31), the death rates according to Equation (2.32), 

aggregate the birth rates according to Equation (2.33) and the death rates according to 

Equation (2.34) in the first step, calculates the waiting times 𝑤(𝐾) = 1 𝛽(𝐾) + 𝛿𝑒(𝐾)
 in 

the second step, simulates the jump type (birth or death) by Equation (2.29) and Equation 

(2.30) in the third step; and then samples from the new inverse covariance matrix on the 

basis of the type of jump. In this way, the BDMCMC algorithm samples from the posterior 

distribution of the inverse covariance matrix (𝐾).   

As the dimension grows, the BDMCMC efficiently eliminates the problems of 

convergence, computes the prior normalizing constant, and generates samples from the 

posterior distribution of the inverse covariance matrix. In contrast, the Bayesian graph 

structure learning in Gaussian graphical models has problems with these processes as 

the dimension is increased. The BDMCMC algorithm is extremely efficient and 

computationally fast because it always accepts moves between the models, contrary to 

the reverse-jump MCMC algorithms of (Wang and Li, 2012; Lenkoski, 2013; Cheng et al, 

2012). 
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2.3.2 Bayesian Graphical 𝑳𝒂𝒔𝒔𝒐 and Bayesian Adaptive Graphical 𝑳𝒂𝒔𝒔𝒐 

Laplace prior distributions may be used in a Bayesian setting in the same way as the 

𝐿𝑎𝑠𝑠𝑜-type penalties are used in a penalized-likelihood setting. The estimates of 𝐿𝑎𝑠𝑠𝑜 

match the Bayesian 𝑀𝐴𝑃 (maximum a posteriori) estimates when we place 𝐷𝐸 (double 

exponential) priors over regression coefficients (with fixed 𝜆) (Tibshirani, 1996). This is 

also true for graphs. 

Wang (2012) used the graphical 𝐿𝑎𝑠𝑠𝑜 priors with a double exponential density as follows: 

𝑝 (𝒚𝑖|𝛀) = 𝑁 (𝒚𝑖|0, 𝛀−1),      (𝑖 = 1 , . . . , 𝑛),                              (2.35) 

𝑝 (𝛀|λ) =  𝐶−1  ∏ 𝐷𝐸 𝜔𝑖𝑗 λ  ∏ 𝐸𝑋𝑃 𝜔𝑖𝑖
λ
2
 1𝛀 𝛜 𝑴+𝑃

𝑖=1𝑖<𝑗   

The off-diagonal elements of 𝛺 are shrunk towards zero by double exponential (𝐷𝐸) 

density function in the Bayesian graphical 𝐿𝑎𝑠𝑠𝑜 Equation (2.35). The term 𝐸𝑋𝑃 𝜔𝑖𝑖
λ
2

 

represents the exponential density function. Here 𝐶 is the normalizing constant and 𝜆 is 

the tuning parameter. The adaptive version of the Bayesian graphical 𝐿𝑎𝑠𝑠𝑜 they 

proposed is: 

𝑝 (𝒚𝑖|𝛀) = 𝑁 (𝒚𝑖|0, 𝛀−1),      (𝑖 = 1 , . . . , 𝑛),                               (2.36)     

𝑝 𝛀 𝜆𝑖𝑗 𝑖≤𝑗 = 𝐶 𝜆𝑖𝑗 𝑖≤𝑗
−1 ∏ 𝐷𝐸 𝜔𝑖𝑗 𝜆𝑖𝑗𝑖<𝑗 ∏ 𝐸𝑋𝑃 𝜔𝑖𝑖

𝜆𝑖𝑖
2

1𝛀𝜖𝑀+,
𝑝
𝑖=1           

 𝑝 𝜆𝑖𝑗 𝑖<𝑗 {𝜆𝑖𝑖}𝑖=1
𝑝 ∝  𝐶 𝜆𝑖𝑗 𝑖≤𝑗 ∏ 𝐺𝐴(𝑟,𝑠)𝑖<𝑗

  

where, 𝐺𝐴 (𝑟, 𝑠) represents the Gamma hyper-prior on the tuning parameters 𝜆𝑖𝑗; where 

the hyper-parameters 𝑟 and 𝑠 are fixed. The hyper-parameters for the diagonal elements 

are denoted by {𝜆𝑖𝑖}𝑖=1
𝑝 . Over-penalization of large effects is a drawback of the Bayesian 

graphical 𝐿𝑎𝑠𝑠𝑜, which is avoided in the Bayesian adaptive graphical 𝐿𝑎𝑠𝑠𝑜. Applying a 

prior over 𝜆 does not produce sparse posterior mean Σ̅ in the Bayesian graphical 𝐿𝑎𝑠𝑠𝑜. 
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2.3.3 Some Bayesian Methods for Edges Selection 

Some other Bayesian methods for selection of edges in a precision matrix have been 

proposed in the literature. Peterson et al. (2013) consider that the edges in the precision 

matrix are connected if the absolute partial correlation between the edges is greater than 

0.1. This method of selection is considered arbitrary.  

Wang (2012) suggested that the edges in the precision matrix were connected if and only 

if the estimate of posterior mean of inverse covariance matrices using graphical 

𝐿𝑎𝑠𝑠𝑜 priors and the expected value of the posterior mean of inverse covariance matrices 

using 𝑾(𝟑, 𝑰𝒑) had a ratio greater than 0.5 (an arbitrary value). Here 𝑾(𝟑, 𝑰𝒑) is the 

standard conjugate Wishart prior. Like that of (Peterson et al, 2013), this method of 

selection is considered arbitrary as well. One more approach was considered where the 

edges were connected if the 95% credible interval of the posterior sample of the precision 

matrix did not include 0. Wang (2012) proposed an algorithm named block Gibbs sampler 

for covariance matrices simulations. Wang (2012) also compared the performance of their 

proposed Bayesian adaptive graphical 𝐿𝑎𝑠𝑠𝑜 method with the Bayesian graphical 𝐿𝑎𝑠𝑠𝑜 

and the frequentist approaches such as the graphical 𝐿𝑎𝑠𝑠𝑜, the adaptive graphical 𝐿𝑎𝑠𝑠𝑜 

and SCAD (Smoothly clipped absolute deviations) (Fan et. al, 2009). Wang (2012) 

considered 𝑛 = 50, 𝑝 = 30 and 𝑛 = 200, 𝑝 = 100 scenarios. 10,000 simulations with 

5,000 burn-ins were considered. The performance of the five methods was judged based 

on sensitivity, specificity and 𝑀𝐶𝐶. The proposed Bayesian adaptive 𝐿𝑎𝑠𝑠𝑜 method 

performed well based on higher specificity and 𝑀𝐶𝐶 as compared to the Bayesian 

graphical 𝐿𝑎𝑠𝑠𝑜, the graphical 𝐿𝑎𝑠𝑠𝑜, the adaptive graphical 𝐿𝑎𝑠𝑠𝑜 and SCAD .  

Peterson et al. (2013) proposed the Bayesian adaptive graphical 𝐿𝑎𝑠𝑠𝑜 with informative 

priors for the estimation of precision matrix.  

The hyper-prior on the shrinkage parameters is as follows: 

 𝑝 𝜆𝑖𝑗 𝑖<𝑗 {𝜆𝑖𝑖}𝑖=1
𝑃 ∝ 𝐶 ∏

𝑠𝑖𝑗
𝑟  𝜆𝑖𝑗

𝑟−1e  {−𝜆𝑖𝑗𝑠𝑖𝑗}

Γ𝑟𝑖<𝑗                         (2.37) 
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where, the term   
𝑠𝑖𝑗
𝑟  𝜆𝑖𝑗

𝑟−1e  {−𝜆𝑖𝑗𝑠𝑖𝑗}

Γ𝑟
  is Gamma (𝑟, 𝑠𝑖𝑗) prior on 𝜆𝑖𝑗 ; and 𝑠𝑖𝑗 are the hyper-

parameters allowing the incorporation of edge specific information. 

2.3.4 Model Selection through Shrinkage and Selection 

The most commonly used priors for model shrinkage and selection in a Bayesian setting 

are the Laplace prior and the Bernoulli prior respectively. The Laplace prior shrinks some 

of the off-diagonal partial correlations of a precision matrix, but does not set them to exact 

zeros, so it is not considered a method of model selection. Rajesh Talluri et al. (2014) 

combined these strategies (Laplace and Bernoulli priors) and proposed various Bayesian 

graphical methods (adaptive GGMs and mixtures of GGMs) for model selection and 

parameter estimation simultaneously. The parameterization was divided into shrinkage 

and selection. 

Rajesh Talluri et al. (2014) used the Laplace prior on the shrinkage matrix (𝑅) elements 

defined as: 

𝑓 𝑅𝑖𝑗
𝜏𝑖𝑗 ∝  1

2𝜏𝑖𝑗
𝑒𝑥𝑝 − 𝑅𝑖𝑗

𝜏𝑖𝑗
                                      (2.38) 

where, the level of sparsity was controlled by 𝜏𝑖𝑗. 

The shrinkage matrix (𝑅) elements variable selection was performed by the selection 

matrix (𝐴). The off-diagonal elements of the selection matrix (𝐴) were the binary variables 

(either 0 or 1). The exchangeable Bernoulli prior was used on the off-diagonal elements 

of selection matrix (𝐴) defined as: 

𝐴𝑖𝑗
𝑞𝑖𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑞𝑖𝑗 , 𝑖 < 𝑗                                    (2.39) 

where, 𝑞𝑖𝑗 represented the selection probability of 1 for the 𝑖𝑗𝑡ℎ element. 

The joint prior for 𝐴 and 𝑅 was expressed as follows: 

𝑅𝑖𝑗 , 𝐴𝑖𝑗
𝜏𝑖𝑗 , 𝑞𝑖𝑗 ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 0 , 𝜏𝑖𝑗 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑞𝑖𝑗 𝐼 𝑪 ∈ ℂ𝑝               (2.40) 
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where, −1 ≤ 𝑅𝑖𝑗 ≤ 1, 0 ≤ 𝑞𝑖𝑗 ≤ 1 𝑎𝑛𝑑 𝐼 𝑪 ∈  ℂ𝑝𝒑 = 1 in case 𝐶 was a correlation matrix 

and 0 elsewhere. 

The Hadamard product between the selection matrix (𝐴) and the shrinkage matrix (𝑅) 

should be equal to the correlation matrix (𝐶 = 𝐴⨀𝑅) to fulfil positive definite constraint for 

joint prior specification. The implementation of posterior inference in the proposed models 

was done through posterior simulation schemes like Gibbs sampling and MCMC sampling 

using the proposed adaptive Bayesian model and the non-adaptive fit (Fraley & Raftery, 

2007). The validation of the proposed Bayesian models was done by comparing these 

with the graphical 𝐿𝑎𝑠𝑠𝑜 and MB (Meinshausen & Buhlmann, 2006) methods on genomics 

dataset, with the proposed Bayesian methods outperforming the graphical 𝐿𝑎𝑠𝑠𝑜 and MB 

in terms of Kullback-Leibler loss.  

2.3.5 Decoupled Shrinkage and Selection for Regression 

Variable selection in regression is a long studied problem; the graphical 𝐿𝑎𝑠𝑠𝑜, the 

adaptive graphical 𝐿𝑎𝑠𝑠𝑜, and Bayesian variable selection methods were all preceded by 

analogous regression methods. Hahn & Carvalho (2015) proposed a DSS (decoupled 

shrinkage and selection) loss function, which is a posterior variable selection summary 

approach, as follows: 

    ℒ(𝛾) = 𝜆‖𝛾‖0 + 𝑛−1 𝑿�̅� − 𝑿𝛾 2
2
                  (2.41)  

Here      , is the parsimony - encouraging penalty (counting penalty in which non-zero 

elements in a vector are counted which is called the 𝐿0– norm) that distinguishes DSS 

from 𝐿𝑎𝑠𝑠𝑜, 𝛾 are the model selection vectors; and �̅� is the posterior mean of 𝛽. The 

optimal solution 𝛽𝜆 to the DSS loss function is as follows: 

    𝛽𝜆 ≡ 𝑎𝑟𝑔 𝑚𝑖𝑛𝛾  𝜆‖𝛾‖0 + 𝑛−1 𝑿�̅� − 𝑿𝛾 2
2
        (2.42)                                                                                                              

Hahn & Carvalho (2015) approximated this with the adaptive 𝐿𝑎𝑠𝑠𝑜 solution.  DSS distils 

the full posterior distribution into a sequence of sparse linear predictors. DSS summary 

plots were given for different datasets using different priors like the horseshoe prior, a 𝑔-
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prior (Zellner, 1986), where 𝑔 =  𝑛, and the robust prior (Bayarri et. al, 2012). Selection 

of the number of variables was done by plotting the expected value and 90% credible 

intervals for posterior samples of 𝜌𝜆2 (variation-explained in 𝑋) against the model size and 

to compare the fit of the sparsified vector (posterior mean) to “typical” posterior samples. 

Models selected on the basis of DSS outperformed the median probability model in both 

fit and sparsity.  

2.3.6 Proposed Method: Decoupled Shrinkage and Selection in a Graph  

Hahn & Carvalho (2015) proposed the DSS method for regression. Here, I extend the 

DSS method for estimation of edges in a precision matrix in Gaussian graphical models. 

Let Ω =  Σ−1 and Γ be the estimate of Ω = Σ−1 . Let the future observations are denoted 

by 𝑋 and the sample size is denoted by 𝑛∗. The log-likelihood is an efficient method to 

find out the fit (predictive accuracy) of 𝑛∗ future observations 𝑋. The expectation of 𝑋  𝑋
𝑛∗

 is 

equivalent to the covariance matrix posterior mean denoted by  Σ̅. The expected fit of Γ is 

as follows: 

𝐸[𝑓𝑖𝑡(𝚪)] = 𝐸 𝑙𝑜𝑔𝑑𝑒𝑡(𝚪) − 𝑡𝑟 𝑿𝑻𝑿 𝚪
𝑛∗

                  (2.43)  

             =  𝑙𝑜𝑔𝑑𝑒𝑡(𝚪) − 𝑡𝑟(�̅� 𝚪)                                        

The expected fit is maximized at Γ =  Σ̅−1 (Figure 2.5). 

The  fit(𝚪) =  logdet(𝚪) − tr 𝑿𝑻𝑿 𝚪
𝑛∗

  is a random variable that is controlled by the posterior 

predictive distribution of 𝑋. Let Σ𝑘  denote the posterior samples of covariance matrices 

of future observations. Then: 

𝑓𝑖𝑡(�̅�−𝟏 𝚺𝒌) = 𝑙𝑜𝑔 𝑑𝑒𝑡(�̅�−𝟏) − 𝑡𝑟(𝚺𝒌�̅�−𝟏)              (2.44) 

The above Equation (2.44) denotes a sample from distribution of 𝑓𝑖𝑡(Σ̅−1). 

where, 𝑘 Є 1,2 , … , 𝐾. The next thing is to judge the acceptable fit. If the estimate with the 

best expected fit will have actual fit below 𝐹, say, 5% of the time, a sparsified choice for 
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𝜞 with expected fit 𝐹 should be considered adequate. The choice of 𝐹= 5% is arbitrary, 

and can be set by the user.  

Once we have the posterior samples Σ𝑘 and Ω𝑘 =  Σ𝑘−1, then the procedure for the 

proposed DSS credible interval approach is as follows: 

1. Calculate the mean of  Σ𝑘 ,  Σ̅, and Σ̅−1. The Bayes estimate of 𝛺 is denoted by Σ̅−1 

which is not sparse. 

 

2. Let the future data be represented by the sampled Σ𝑘. And then calculate the Σ̅−1 

fit for each future dataset. Compute 5% quantile of these fits. 

 
3. Calculate the 𝑃 credible intervals for 𝜔𝑖𝑗  which are based on sampled Ω𝑘. 

 

4. Find the elements where the credible intervals include 0. For this location, 

constrain Γ𝑃 to be 0. 

 

5. Find  Γ𝑃 that maximizes 𝑙𝑜𝑔𝑑𝑒𝑡 (Γ𝑃) − 𝑡𝑟( Σ̅Γ𝑃) (see below) 
 

6. If  𝑓𝑖𝑡  Γ
 Σ̅

 = 𝑙𝑜𝑔𝑑𝑒𝑡 (Γ𝑃) − 𝑡𝑟( Σ̅Γ𝑃) is greater than 5% quantile of 𝑓𝑖𝑡 Σ̅−1

Σ𝑘
 

and; 𝑃 <  100%, increase the value of 𝑃 and come back to step 3. 
 
The steps 1 and 2 are the same for the other proposed DSS approaches. The different 

steps for the proposed DSS adaptive graphical 𝐿𝑎𝑠𝑠𝑜 approach are as follows: 

3. Compute 𝜔𝑖𝑗 for different values of the tuning parameter 𝜆 which are based on 

sampled Ω𝑘. 

4. Find  Γ𝐴 that maximizes 𝑙𝑜𝑔𝑑𝑒𝑡 (Γ𝐴) − 𝑡𝑟( Σ̅Γ𝐴) (see below) 

5. If  𝑓𝑖𝑡  Γ
 Σ̅

 = 𝑙𝑜𝑔𝑑𝑒𝑡 (Γ𝐴) − 𝑡𝑟( Σ̅Γ𝐴) is greater than 5% quantile of 𝑓𝑖𝑡 Σ̅−1

Σ𝑘
, 

 increase the value of 𝜆 and come back to step 3. 
 
The different steps for the proposed DSS 𝜌 threshold approach are as follows: 
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3. Compute the absolute partial correlations |𝜌| of 𝜔𝑖𝑗 which are based on sampled 

Ω𝑘. 

4. Find  Γ𝐴𝐵𝑆 that maximizes 𝑙𝑜𝑔𝑑𝑒𝑡 (Γ𝐴𝐵𝑆) − 𝑡𝑟( Σ̅Γ𝐴𝐵𝑆) (see below) 

5. If  𝑓𝑖𝑡  Γ
 Σ̅

 = 𝑙𝑜𝑔𝑑𝑒𝑡 (Γ𝐴𝐵𝑆) − 𝑡𝑟( Σ̅Γ𝐴𝐵𝑆) is greater than 5% quantile of 𝑓𝑖𝑡 Σ̅−1

Σ𝑘
, 

 increase the value of |𝜌| and come back to step 3. 
 
After the above steps, we choose the sparsest estimate of Γ with a suitable fit based on 

the log-likelihood (Figure 2.5). 

Step (5) is carried out using the graphical 𝐿𝑎𝑠𝑠𝑜 algorithm (Friedman et al, 2008). 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝛀{𝑙𝑜𝑔 𝑑𝑒𝑡 𝛀 − 𝑡𝑟𝑎𝑐𝑒(𝚺 𝛀) − 𝜆‖𝛀‖1} 

When Σ  is positive definite, we can set 𝜆 = 0 in my proposed algorithm in order to find the 

best fitted Γ which follows a specified 0 pattern.  Σ̅ will always be positive definite because 

I consider the posterior distributions which are over positive definite matrices. I use cross-

validation to select the tuning parameter in the graphical 𝐿𝑎𝑠𝑠𝑜  algorithm, and to generate 

the starting point of inverse covariance matrix in the Bayesian adaptive graphical 

𝐿𝑎𝑠𝑠𝑜 MCMC algorithm. 

The proposed DSS methodology differs from Hahn & Carvalho’s (2015) methodology in 

the following ways: 

1. Hahn & Carvalho (2015) obtained posterior samples of regression coefficients 

matrices and then calculated the posterior mean denoted by �̅�𝑖 . However, we 

obtained the posterior samples of Σ𝑘 and Ω𝑘 =  Σ𝑘−1,  and then calculated their means  Σ̅, 

and Σ̅−1.  

 

2. Hahn & Carvalho (2015) plotted 90% credible intervals for posterior samples of 𝜌𝜆2 

(variation-explained in 𝑋) sparsified vector (posterior mean) to “typical” posterior 

samples. However, we plotted the sparsified versions of precision matrices for 

different strategies against the range of fit of posterior mean inverse Σ̅−1. 
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2.4 Methodological Comparison 

In this section, I compare the proposed method with alternatives proposed in the 

literature. Comparisons were made using simulated data and real data. 

2.4.1 Example: Simulated Data 

In this section, I assess the performance of the proposed decoupled shrinkage and 

selection method (DSS) and compare it to alternative methods—specifically, thresholding 

the absolute partial correlations (Peterson et al, 2013), credible interval method (edges 

are connected if the 95% credible interval of the posterior sample of precision matrix does 

not include 0), and ratio selection method (Wang, 2012)—using simulated data with 

known properties. Methods were compared on the basis of sensitivity (true positive rate) 

and specificity (false positive rate).  

2.4.1.1 Data Generation and Simulation 

The data generation and simulation were done as follows: 

1. Generate data matrices 𝑦 of size 𝑛 = 50 with dimension 𝑝 =  30, 𝑛 = 100 with 

dimension 𝑝 =  100, 𝑛 =  200 with dimension 𝑝 =  100, and 𝑛 = 300 with 

dimension 𝑝 =  100. This was done using the MatLab code proposed by Wang 

(2012). 

2. Fit the Bayesian adaptive graphical 𝐿𝑎𝑠𝑠𝑜, with 𝑟 =  10−2 and 𝑠 =  10−6 as the 

prior distributions of 𝜆𝑖𝑗  with 𝜆𝑖𝑖 = 1  for 𝑖 =  1, . . . , 𝑝, to obtain the posterior 

covariance matrices, which are not sparse.  

3. Draw 10,000 samples from the dense posterior covariance matrices, thinned to 

1,000, with 5,000 burn-ins. Two simulation scenarios were considered for this 

purpose, which are as follows: 

 

a) Simulation 1: An 𝐴𝑅 (2) model having 𝜔𝑖𝑖 = 1 , 𝜔𝑖,𝑖−1 = 𝜔𝑖−1,1 = 0.5 , and 

𝜔𝑖,𝑖−2 = 𝜔𝑖−2,1 = 0.25. Just to give an idea of the structure of true inverse 

covariance matrix (𝛺), we present it for 𝑝 =  10 as follows: 
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(

 
 
 
 
 
 
 

1 0.5 0.25 0 0 0 0 0 0 0
0.5 1 0.5 0.25 0 0 0 0 0 0
0.25 0.5 1 0.5 0.25 0 0 0 0 0
0 0.25 0.5 1 0.5 0.25 0 0 0 0
0 0 0.25 0.5 1 0.5 0.25 0 0 0
0 0 0 0.25 0.5 1 0.5 0.25 0 0
0 0 0 0 0.25 0.5 1 0.5 0.25 0
0 0 0 0 0 0.25 0.5 1 0.5 0.25
0 0 0 0 0 0 0.25 0.5 1 0.5
0 0 0 0 0 0 0 0.25 0.5 1 )

 
 
 
 
 
 
 

          (2.45) 

 

b) Simulation 2: A 𝑆𝑡𝑎𝑟 model in which only the first node is connected to every 

node. And 𝜔𝑖𝑖 = 1, 𝜔1,𝑖 = 𝜔𝑖,1 = 0.1  and 𝜔𝑖𝑗 = 0 elsewhere. 

(

 
 
 
 
 
 
 

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 1 0 0 0 0 0 0 0 0
0.1 0 1 0 0 0 0 0 0 0
0.1 0 0 1 0 0 0 0 0 0
0.1 0 0 0 1 0 0 0 0 0
0.1 0 0 0 0 1 0 0 0 0
0.1 0 0 0 0 0 1 0 0 0
0.1 0 0 0 0 0 0 1 0 0
0.1 0 0 0 0 0 0 0 1 0
0.1 0 0 0 0 0 0 0 0 1 )

 
 
 
 
 
 
 

                      (2.46) 

 

My main motivation was to sparsify the posterior mean in a way that did not degrade the 

fit.   

 
2.4.1.2 Results 
 

Stability selection using TIGER had better sensitivity both for 𝐴𝑅(2) and 𝑆𝑡𝑎𝑟 cases 

(Table 2.1); when 𝑛 =  50 and  𝑝 =  30. However, the performance measures for the 

DSS adaptive graphical 𝐿𝑎𝑠𝑠𝑜, DSS credible interval, and DSS ρ threshold methods were 

more or less the same for 𝑆𝑡𝑎𝑟 case when 𝑛 =  50 and 𝑝 =  30.. For 𝑛 = 100 and 𝑝 =

 100, the DSS ρ threshold method performed well for 𝐴𝑅(2) case; and DSS adaptive 

graphical 𝐿𝑎𝑠𝑠𝑜 method performed well for the 𝑆𝑡𝑎𝑟 case. For 𝑛 = 200 and 𝑝 =  100, the 

DSS ρ threshold method performed well for 𝐴𝑅(2) case; and DSS adaptive graphical 
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𝐿𝑎𝑠𝑠𝑜 method performed well for 𝑆𝑡𝑎𝑟 case. For 𝑛 = 300 and 𝑝 =  100, the DSS ρ 

threshold method performed well for 𝐴𝑅(2) case; and DSS adaptive graphical 𝐿𝑎𝑠𝑠𝑜 

method performs well for 𝑆𝑡𝑎𝑟 case.  

 

Table 2.1: Multivariate normal data was simulated from two different model structures, 𝑨𝑹(𝟐) and 

𝑺𝒕𝒂𝒓, for each of the 𝒑;  𝒏 combinations given. BAGL posterior samples were generated, and three 

different sparsification strategies applied, to select the sparsest model with fit above the 5% fit 

quantile. Fifty replicates are performed; average sensitivity and specificity for each scenario are 

given as percentages. 

  
𝑨𝑹(𝟐) 𝑺𝒕𝒂𝒓 

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) 

𝒏 = 𝟓𝟎, 𝒑 = 𝟑𝟎 
DSS adaptive Graphical 𝐿𝑎𝑠𝑠𝑜 25.6 99.7 - 100.0 
DSS credible Interval 29.0 100.0 - 100.0 
DSs ρ Threshold 28.0 100.0 0.1 100.0 
TIGER 38.3 97.9 0.55 99.8 

𝒏 = 𝟏𝟎𝟎, 𝒑 = 𝟏𝟎𝟎 
DSS adaptive Graphical 𝐿𝑎𝑠𝑠𝑜 77.0 98.0 99.9 97.5 
DSS credible Interval 84.4 98.4 73.9 94.4 
DSs ρ Threshold 87.1 98.5 47.9 92.8 
TIGER 52.0 99.3 35.4 100.0 

𝒏 = 𝟐𝟎𝟎, 𝒑 = 𝟏𝟎𝟎 
DSS adaptive Graphical 𝐿𝑎𝑠𝑠𝑜 95.1 99.3 100.0 98.9 
DSS credible Interval 97.9 99.5 90.0 97.0 
DSs ρ Threshold 98.3 99.6 78.0 94.0 
TIGER 79.6 99.3 69.4 100.0 

𝒏 = 𝟑𝟎𝟎, 𝒑 = 𝟏𝟎𝟎 
DSS adaptive Graphical 𝐿𝑎𝑠𝑠𝑜 98.4 99.7 100.0 99.8 
DSS credible Interval 99.4 99.9 96.7 98.5 
DSs ρ Threshold 99.5 99.9 92.0 96.5 
TIGER 94.8 99.2 82.5 99.9 
 

In summary, for most of the sample sizes and dimensions examined here, the DSS ρ 

threshold method generally performed best for 𝐴𝑅(2) case, whereas, the DSS adaptive 

graphical 𝐿𝑎𝑠𝑠𝑜 methods performed well for the 𝑆𝑡𝑎𝑟 case. 
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For comparisons of predictive accuracy for future data across methods, we present box 

plots of the log-likelihood (Equation 2.43), for 𝑛 =  200, 𝑝 =  100 for 𝐴𝑅(2) and 𝑆𝑡𝑎𝑟 

cases, evaluated for new data, simulated using the true covariance matrix (Figures 2.1, 

2.2). Stability selection approach (𝑓𝑙𝑎𝑟𝑒) was applied using TIGER method. Then 

optimum precision matrix was selected using cross-validation. DSS credible interval fits 

the future data well on the basis of log-likelihood as compared to the other methods 

(Figure 2.1).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Box plots for future data for 𝑨𝑹(𝟐) case, 𝒏 =  𝟐𝟎𝟎, 𝒑 =  𝟏𝟎𝟎 
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For populations with 𝐴𝑅(2) covariance structure, our proposed DSS credible interval 
method performs well on the basis of log-likelihood and fits the future data well as 
compared to the other methods (Figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Box plots for future data for 𝑺𝒕𝒂𝒓 case, 𝒏 =  𝟐𝟎𝟎, 𝒑 =  𝟏𝟎𝟎 

For populations with 𝑆𝑡𝑎𝑟 covariance structure, our proposed DSS adaptive graphical 

𝐿𝑎𝑠𝑠𝑜 method performs well on the basis of log-likelihood and fits the future data well as 

compared to the other methods (Figure 2.2).Stability selection using CLIME was also 

used for precision matrix estimation, but it had poor log-likelihood estimates and did not 

fit the future data well. 
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2.4.2 Example: Metabolomics Network 

The methods used in the previous section were also compared here to estimate the 

number of connected edges in a precision matrix. 

2.4.2.1 Data and Methods 

Here, I used a published dataset of frequencies of 𝑝 =  174 metabolites in the fecal 

sample of 49, 8 year old children born at term. It was the control data in a sense that 8 

year old children born at term had no disease. The purpose of the study was to find out 

the conditionally dependent metabolites. The same Matlab code Wang (2012) that I used 

for generating posterior samples of covariance matrices in the simulation study was used 

to obtain the posterior samples of covariance matrices generated from the control data 

using Bayesian adaptive graphical 𝐿𝑎𝑠𝑠𝑜 method. 

Since 𝒑 > 𝒏, I calculated the initial inverse covariance matrix for metabolites data using 

graphical 𝐿𝑎𝑠𝑠𝑜 (Friedman et al, 2008). The inverse covariance matrix obtained using 

graphical 𝐿𝑎𝑠𝑠𝑜  was then used as an initial value for 10,000 samples simulations on 

control data with 5,000 burn-ins to obtain the posterior samples of covariance matrices 

using Bayesian adaptive graphical 𝐿𝑎𝑠𝑠𝑜 method. The 10,000 posterior covariance 

matrices samples were then thinned to 1,000. 

The validity of the simulated covariance matrices using the Bayesian adaptive graphical 

𝐿𝑎𝑠𝑠𝑜 was checked by plotting 1,000 simulated 𝜆 (tuning parameter) values shown in 

Figure 2.3, and by plotting the maximum eigenvalues of a sample of 1,000 simulated 

covariance matrices shown in Figure 2.4, on the basis of smooth plot pattern. Figure 2.3 

shows that the simulated tuning parameters are mixing well. However, Figure 2.4 shows 

that some but not all of the simulated covariance matrices are auto-correlated.   

I considered a sample of 1,000 covariance matrices and then calculated the posterior 

mean from those matrices. Then I used the posterior sample to characterize the range of 

fit for the posterior mean inverse. The purpose was to understand how the lack of fit  
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Figure 2.3:  1000 Simulated tuning parameter values using Bayesian adaptive graphical 𝑳𝒂𝒔𝒔𝒐 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 2.4: Maximum Eigenvalues for 1,000 simulated covariance matrices using Bayesian 
adaptive graphical 𝑳𝒂𝒔𝒔𝒐 
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Induced by shrinking the posterior mean compared to my uncertainty about the 

parameter. A 90% credible interval was used for the range of fit of posterior mean of 

inverse covariance matrices. 

Sparsification methods, such as rho threshold based on thresholding the absolute partial 

correlations, credible interval based on thresholding 𝑋% credible interval, ratio selection 

(Wang, 2012), and adaptive graphical 𝐿𝑎𝑠𝑠𝑜, can be used to detect the connected edges 

in a graph. All these strategies can be tuned up to produce a sparse graph. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5: Expected fit for sparse summaries of the precision matrix for 174 volatile compounds 
measured for 49 individuals. The 𝒙 𝒂𝒙𝒊𝒔 shows the coverage of the credible interval used to select 
zero elements for 𝜞; the top axis shows the resulting number of edges in the graph. The 90% 
credible interval for the fit of �̅�−𝟏 (blue region), and its expected fit (central line) are shown for 
comparison. 
 
2.4.2.2 Comparison of Selection Strategies  
 
 
The expected fit for sparse summaries of the precision matrix for 174 volatile compounds 

measured for 49 children born at term using the DSS credible interval method, where we 
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set those elements to zero where 𝑋% credible interval contains zero, is portrayed in 

Figure 2.5. The connected edges are those edges where 𝑋% credible intervals do not 

contain zero. I obtained different numbers of connected edges in a precision matrix for 

different credible intervals ranging from 10% to 99% (I have shown only 10% to 30% 

credible intervals in Figure 2.5).  Each red dot is an estimated inverse covariance matrix 

for 𝑋% credible interval. The last red dot within the blue region denotes the final estimated 

precision matrix that I am going to pick. It can be seen that the last red dot inside the blue 

shaded area is against the 23% credible interval (𝑥 − 𝑎𝑥𝑖𝑠), and the corresponding 

connected edges against the 23% credible interval are 1407 (𝑦 − 𝑎𝑥𝑖𝑠). Therefore, my 

final estimated inverse covariance matrix against a 23% credible interval has 1407 non-

zero elements. My approach can also be used for DSS adaptive graphical 𝐿𝑎𝑠𝑠𝑜, DSS 𝜌 

threshold and DSS ratio selection approaches. 

Table 2.2: Comparison of sparsification strategies for the volatilome data. For each strategy, the 

criteria corresponding to the sparsest model inside the top 95% of fits is given, as well as the 

number of edges of that model. By design, the expected fit of each selected model should be 

approximately the same, and the E(fit) column confirms this. The expected fit of the Bayes estimate 

is also given for comparison. 

 

Approach Criteria to Retain Number of Edges E(fit) 
Bayes estimate (�̅�−𝟏) - 15051 65.4 
DSS ratio selection Ratio > 0.45 2212 59.4 
DSS adaptive graphical 𝐿𝑎𝑠𝑠𝑜 λ > 6.8 x 10-7 1760 58.4 
DSS 𝜌 threshold |𝜌| > 0.015 1551 58.7 
DSS credible Interval 23% credible interval 1407 58.8 

 
 

The number of connected edges based on Bayes estimate, DSS ratio selection, DSS 

adaptive graphical 𝐿𝑎𝑠𝑠𝑜, DSS 𝜌 threshold and DSS credible interval are given in Table 

(2.2). The inverse of the posterior mean is dense, having all the possible edges (15051). 

Therefore, the posterior mean inverse matrix is not sparse at all. DSS ratio selection has 

2212 connected edges, DSS adaptive graphical 𝐿𝑎𝑠𝑠𝑜 has 1760 connected edges, DSS 

𝜌 threshold has 1551 connected edges, and DSS credible interval has 1407 connected 

edges. All the sparsification strategies produce approximately the same level of fit (Table 

2.2).  The sparsification strategy that produces optimal fit with the sparsest graph is 
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desirable. Here, the DSS credible interval method produces the sparest graph (1407 

connected edges) for approximately the same level of fit. I can conclude that my proposed 

DSS credible interval method can be used to produce sparsest graphs for moderate to 

high-dimensional data. Figure 2.6 is the graphical display of the comparison of 

sparsification strategies for the volatilome data (Table 2.2).  The number of edges 

retained decreases since the precision matrix becomes sparser as the threshold 

increases (Figure 2.6). 

 

2.5 Comparison of DSS Methods with other Methods on Metabolomics Data 
 

I used my proposed DSS methods to estimate the number of connected edges in the final 

inverse covariance matrix for metabolites data. I compared my DSS methods with 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6: Expected fit for sparse summaries of the precision matrix for 174 volatile compounds 
measured for 49 individuals, using different selection criteria. The 90% credible interval for the fit 
of �̅�−𝟏  (blue region), and its expected fit (central line) are shown for comparison. 
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CLIME, stability selection and BINCO for the estimation of connected edges in the inverse 

covariance matrix in the following subsections. 
 
2.5.1 CLIME Using Cross-Validation for Estimation of Connected Edges 

I used R-package CLIME (Cai et al, 2011) to produce the inverse covariance estimates 

for a grid of constrained 𝜆 values on metabolites data having dimension 𝑝 =  174 with 

sample of size 𝑛 =  49. CV.CLIME (Cross-validated CLIME) is a function in R-package 

CLIME that selects the optimal value of tuning parameter 𝜆 based on the log-likelihood 

loss to produce the optimal graph, and, this is an advantage since we do not need to 

worry about choosing the tuning parameter. The estimated precision matrix 

corresponding to the optimal lambda value (𝜆 = 0.1507) was selected to identify the 

connected edges. There were 680 off-diagonal edges selected, based on the criterion of 

having an absolute value greater than 10-03. CLIME produced a sparser graph (680 

connected edges) as compared to our proposed DSS methods, but it yielded a poorer fit 

according to the log-likelihood (Figure 2.7). 

2.5.2 Stability Selection Using CLIME for Estimation of Connected Edges 

𝐹𝑙𝑎𝑟𝑒 (A new family of 𝐿𝑎𝑠𝑠𝑜 regression) R-package (Li et al, 2015) was used for stability 

selection. The 𝐹𝑙𝑎𝑟𝑒 function 𝑠𝑢𝑔𝑚 was used for the estimation of high-dimensional (𝑝 =

 174 metabolites) sparse precision matrices with CLIME method. We obtained different 

precision matrices estimates for a grid of 𝜆 values. The next step was to apply the stability 

approach in order to find out the optimal graph using cross-validation selection that gives 

us the cross-validated optimal 𝜆 value and its corresponding selected final model.  

The resampling was done using cross-validation. The log-likelihood loss was used in 

cross-validation. The 𝑠𝑢𝑔𝑚. 𝑠𝑒𝑙𝑒𝑐𝑡 (Li et al, 2015) function applied cross-validation to 

select the optimal graph at the optimal lambda value of 𝜆 = 0.218. Those absolute off-

diagonal edges were selected which were greater than 10−3. There were 392 connected 

edges on the basis of this criterion. 

Stability selection using CLIME produced a sparser model (392 edges) as compared to 

CLIME using cross-validation (680 edges). Although, stability selection using CLIME 
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produced the sparest graph (392 connected edges) as compared to our proposed DSS 

methods, yet, for the simulated data, it did not fit the future data well based on log-

likelihood (Figure 2.7). 

2.5.3 BINCO for Estimation of Connected Edges 

The stability selection package 𝐹𝑙𝑎𝑟𝑒 uses cross-validated CLIME for the final model 

selection without estimating and controlling the 𝐹𝐷𝑅 (False discovery rate). Whereas, 

BINCO uses 𝑆𝑃𝐴𝐶𝐸  (Sparse partial correlation estimation) algorithm (Peng et al, 2009) 

to estimate the partial correlations using the neighbourhood selection approach 

(Meinshausen and Buhlmann,2006). BINCO directly controls the 𝐹𝐷𝑅𝑠 (false discovery 

rates) for selecting the edges. The resampling for stability selection using cross-validated 

CLIME is done using cross-validation using the log-likelihood loss function. Whereas, 

resampling in BINCO is done using bootstrapping. I obtain the connected edges in the 

final model using BINCO for different 𝐹𝐷𝑅𝑠. 

BINCO requires the generation of selection frequencies for a specified number of 

resamples, generally 100 resamples. This is done using the 𝑆𝑃𝐴𝐶𝐸 algorithm. There are 

two ways to apply 𝑆𝑃𝐴𝐶𝐸 algorithm, one using 𝐿𝑎𝑠𝑠𝑜, and the other using the elastic net. 

BINCO is applied using 𝐿𝑎𝑠𝑠𝑜, and  elastic net in 𝑆𝑃𝐴𝐶𝐸 . The 𝑆𝑃𝐴𝐶𝐸  algorithm has two 

penalty terms 𝜆1 and 𝜆2. If 𝜆2 = 0, then 𝐿𝑎𝑠𝑠𝑜 method is applied in 𝑆𝑃𝐴𝐶𝐸  algorithm. If 𝜆2 

is not equal to zero, then elastic net method is applied in 𝑆𝑃𝐴𝐶𝐸  algorithm. Both 𝐿1 and 𝐿2 

penalties of 𝐿𝑎𝑠𝑠𝑜 and ridge methods respectively are linearly combined in elastic net. I 

obtained the inverse covariance matrices using 𝑆𝑃𝐴𝐶𝐸  algorithm using 𝐿𝑎𝑠𝑠𝑜 in 𝑆𝑃𝐴𝐶𝐸  

and elastic net in 𝑆𝑃𝐴𝐶𝐸 , and then applied the BINCO R-package (Li et al, 2013) to 

estimate the connected number of edges for different 𝐹𝐷𝑅𝑠.  

BINCO results are shown in Table 2.3. The number of connected edges for BINCO using 

𝐿𝑎𝑠𝑠𝑜 in 𝑆𝑃𝐴𝐶𝐸 for FDRs 0.05, 0.10 and 0.20 are 2349, 2610, and 3219 respectively. 

However, the number of connected edges for BINCO using elastic net in 𝑆𝑃𝐴𝐶𝐸 for the 

same FDRs are 2784, 3219, and 4002 respectively. Therefore, BINCO using 𝐿𝑎𝑠𝑠𝑜 in 

𝑆𝑃𝐴𝐶𝐸  algorithm produces sparser graphs as compared to BINCO using elastic net in 

𝑆𝑃𝐴𝐶𝐸  algorithm.  



45 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure2.7:  Box plots for future data for 𝑨𝑹(𝟐) case, 𝒏 =  𝟐𝟎𝟎, 𝒑 =  𝟏𝟎𝟎 

 

If we compare the stability selection approach with BINCO for detection of connected 

edges in the final model, we can clearly see that the stability selection using cross-

validated CLIME produces the sparsest model (392 connected edges). Whereas, the 

connected edges selected by BINCO given in Table 2.3 indicate that BINCO does not 

produce a sparser model as compared to stability selection approach using cross-

validated CLIME. My proposed DSS methods still produce sparser graphs as compared 

to the graphs produced by the BINCO algorithm.  
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Table 2.3:  BINCO Results 

BINCO Using FDR Connected Edges 

𝐿𝑎𝑠𝑠𝑜 in 𝑆𝑃𝐴𝐶𝐸 0.05 2349 

0.10 2610 

0.20 3219 

Elastic Net in 𝑆𝑃𝐴𝐶𝐸 0.05 2784 

0.10 3219 

0.20 4002 

2.6 Conclusions 
 
In this chapter, I proposed flexible DSS-based methods to produce sparse estimates from 

the posterior distribution over the inverse covariance matrices. The posterior mean serves 

as a positive definite covariance matrix that is used to satisfy the convergence property 

of my proposed algorithm. In simulation studies, my proposed DSS-based methods 

generally produced sparser graphs than the other strategies, such as CLIME, BINCO, 

and stability selection, by providing a good fit to future data (based on the log-likelihood). 

For a real metabolites dataset, my DSS-based method for credible intervals produced the 

sparsest graph as compared to the other DSS-based methods. The DSS credible interval 

method also fitted the future data well in the simulation study for 𝐴𝑅(2) case based on 

the log-likelihood of future data. Therefore, the DSS credible interval is recommended 

when sparse inverse covariance matrices are required. DSS based on thresholding the 

partial correlations performed better based on higher sensitivity and specificity in 𝐴𝑅(2) 

case in the simulation study. However, DSS adaptive graphical 𝐿𝑎𝑠𝑠𝑜 outperformed the 

other methods in 𝑆𝑡𝑎𝑟 case based on highest sensitivity in the simulation study. To 

summarize the findings, I can conclude that my proposed DSS-based sparsification 

strategies have a great advantage over other sparsification strategies when producing 

sparse graphs. 

 

The main advantage of the proposed DSS-based methods is that they produce a sparse, 

interpretable summary of a complex posterior distribution. I apply various shrinkage 

techniques to the relevant parameterization of the posterior mean covariance, and the 

uncertainty represented by the posterior distribution provides the relevant scale to 
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understand when I have shrunk enough versus too much. The sensitivity and specificity 

keep increasing for my proposed methods as the dimension and sample size grow. 

Having low sensitivity for a low-dimensional data for the 𝑆𝑡𝑎𝑟 case in the simulation study 

is a disadvantage of my DSS-based methods. Therefore, I can conclude that my 

proposed DSS-based methods perform well based on sensitivity and specificity for 

moderate-dimensional data, and do not perform well for low-dimensional data.  
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Chapter - 03          

Estimating Multiple Graphs with Gaussian Graphical Models 

3.1 Introduction 

The off-diagonal elements of a precision matrix represent the partial correlations between 

pairs of variables, given the relationships among the other variables. The partial 

correlations are calculated by the formula  𝜌 = − 𝝎𝒊𝒋
𝝎𝒊𝒊 . 𝝎𝒋𝒋

 . If we have two or more 

precision matrices, we may wish to identify which elements are the same or different 

between the two. Substantial attention has been paid to identify changes in the precision 

matrices under different conditions (Tian et al, 2016; Zhao et at, 2014; Guo et al, 2011; 

Cai et al, 2016;  Danaher et al, 2013), including the Bayesian approaches (Peterson et 

al, 2015;  Mitra et al, 2016). Danaher et al. (2013) proposed a new joint graphical 𝐿𝑎𝑠𝑠𝑜 

(𝐽𝐺𝐿) convex-optimization methodology for the estimation of precision matrices in a high 

dimensional data setting for multiple classes, which has a faster computation time than 

the method proposed by (Guo et al, 2011). The joint graphical 𝐿𝑎𝑠𝑠𝑜 (𝐽𝐺𝐿)is an extension 

of the graphical 𝐿𝑎𝑠𝑠𝑜  (Equation 2.1) for multiple classes. The joint graphical 𝐿𝑎𝑠𝑠𝑜 (𝐽𝐺𝐿) 

proposed by (Danaher et al, 2013) has an arbitrary criteria for the selection of tuning 

parameters, and it uses ADMM (alternating directions method of multipliers) algorithm. 

Moreover, for high-dimensional data, 𝐽𝐺𝐿 does not detect important sparse set of 

differences between the precision matrices (Table 2, Danaher et al, 2013).   

In this chapter, I further extend my DSS-based method proposed for one graph (Chapter 

2) to DSS- based method for two graphs to find the sparse sets of differences between 

the two precision matrices. I modify the ADMM algorithm (Danaher et al, 2013) by 

replacing the graphical 𝐿𝑎𝑠𝑠𝑜 penalty with the adaptive graphical 𝐿𝑎𝑠𝑠𝑜 penalty to 

produce the sparse set of differences between the inverse covariance matrices. I also 

modify the original fused joint graphical 𝐿𝑎𝑠𝑠𝑜 loss function (Danaher et al, 2013) such 

that my modified loss function picks the tuning parameters automatically. My proposed 

DSS-based method has an advantage over 𝐽𝐺𝐿 (Danaher et al, 2013) in that the selection 

of tuning parameters is not arbitrary, and it can identify a sparse set of differences 

between the precision matrices even for high-dimensional data. A review of current 
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methodologies for multiple graphs is given in section 3.2. My proposed DSS-based 

method to find sparse sets of differences between the two precision matrices is explained 

in section 3.3. 

3.2 Review of Current Methodologies for Multiple Graphs 

Comparison between two or more populations is usually done by the researchers using 

the principal method for selecting the penalty for performance improvement fitting of 

multiple graphs. This could include searching for similarities (zero patterns of precision 

matrices elements) and differences among the precision matrices in two or more sets of 

observations from different populations on the same variables. The estimation of 

precision matrices for multiple graphs can be done using penalized likelihood approaches 

or Bayesian approaches given in the subsections 3.2.1 and 3.2.2 respectively. 

3.2.1 Penalized Likelihood Approaches 

The graphical methods such as the graphical 𝐿𝑎𝑠𝑠𝑜, the adaptive graphical 𝐿𝑎𝑠𝑠𝑜 and 

CLIME focus on the estimation of a single precision matrix only, but can be extended to 

find similarities (connected edges) and differences (differential edges) between the two 

inverse covariance matrices.  

The likelihood based method proposed by (Guo et al, 2011) was used for joint estimation 

of multiple graphical models. They used the following penalized log-likelihood function: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒{𝜽} ∑ 𝑛=1 𝑙𝑜𝑔𝑑𝑒𝑡𝜽( ) − 𝑡𝑟𝑎𝑐𝑒 𝑺( )𝜽( ) − 𝑃({𝜽})      (3.1) 

Where , 𝑃({𝜽}) =  𝜆 ∑ ∑ 𝜽( )           (3.2) 

where, 𝑺( ) is the sample covariance matrix for the 𝑘𝑡ℎ class, 𝜽( ) is the estimated inverse 

covariance matrix for the 𝑘𝑡ℎ class, and 𝑃({𝜽}) is the penalty term. 

Here, 𝜆 is the single penalty term that was selected using 𝐵𝐼𝐶 (Bayesian Information 

Criterion). This method encourages only similar patterns (zero patterns i.e. common 

structure of precision matrices elements) of sparsity across multiple classes. This method 

has a limitation of ignoring the non-zero edges values and signs. However, for multiple 
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graphical structures, cooperative 𝐿𝑎𝑠𝑠𝑜 (Chiquet et al, 2011), that is built on Group- 𝐿𝑎𝑠𝑠𝑜 

(Yuan and Lin, 2006), enforces the same signs among the non-zero edges. 

The method proposed by Guo et al. (2011) has a limitation that it has a single penalty 

term in Equation (3.2) that is not convex and makes computation time very slow, and 

therefore, the method is avoided for high-dimensional data. Danaher et al. (2013) 

proposed a new joint graphical 𝐿𝑎𝑠𝑠𝑜 (𝐽𝐺𝐿) convex-optimization methodology for the 

estimation of precision matrices in a high dimensional data setting for multiple classes, 

which has a faster computation time as compared to the computation time of method 

proposed by Guo et al. (2011). Danaher et al. (2013) proposed the joint graphical 𝐿𝑎𝑠𝑠𝑜 

as an extension of graphical 𝐿𝑎𝑠𝑠𝑜 (Equation 2.1) for multiple classes. Danaher et al. 

(2013) approach was to maximize the penalized log-likelihood function in Equation (3.3). 

Two variations of the 𝐽𝐺𝐿 approach may be used—fused graphical 𝐿𝑎𝑠𝑠𝑜 (𝐹𝐺𝐿) and 

Group graphical 𝐿𝑎𝑠𝑠𝑜 (𝐺𝐺𝐿)—which differ with respect to the term 𝑃({𝜃}), which is the 

penalized log-likelihood function.  

Both 𝐹𝐺𝐿 and 𝐺𝐺𝐿 have two penalty terms 𝜆1 and 𝜆2.Penalty term 𝜆1 encourages the 

sparsity between the two precision matrices by penalizing the off-diagonal elements, and 

the penalty term 𝜆2 encourages the similarity between the precision matrices by 

penalizing the sum of absolute differences between the corresponding elements of each 

pair of precision matrices.  

The expression for 𝑃 ({𝛩}) for 𝐹𝐺𝐿 and 𝐺𝐺𝐿, respectively, are given by: 

  𝑃({𝜃}) = 𝜆1 ∑ ∑ 𝜃( )=1 + 𝜆2 ∑ ∑ 𝜃( ) − 𝜃( ),<      (3.3)  

  𝑃({𝜽}) = 𝜆1 ∑ ∑ 𝜽( )=1 + 𝜆2 ∑ ∑ 𝜽( )=1      (3.4) 

Danaher et al. (2013) selected the penalty terms using 𝐴𝐼𝐶 (Akaike Information Criterion). 

Danaher et al. (2013) found 𝐹𝐺𝐿 to be better as compared to 𝐺𝐺𝐿, since 𝐹𝐺𝐿 encouraged 

similarity (identical inverse covariance matrix elements) between precision matrices, 

whereas, 𝐺𝐺𝐿 only encouraged shared patterns of sparsity. An ADMM (Danaher et al, 

2013) algorithm was introduced for the estimation of joint graphical 𝐿𝑎𝑠𝑠𝑜. Danaher et al. 
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(2013) presented a comparison among the graphical 𝐿𝑎𝑠𝑠𝑜., 𝐹𝐺𝐿, 𝐺𝐺𝐿, and the method 

proposed by (Guo et al, 2011) using both simulated and real data. For the simulation 

study, true positive differential edges were plotted against false positive differential edges 

and it was seen that 𝐹𝐺𝐿 performed better as compared to the other methods because of 

having the highest area under the ROC (receiver operating characteristic) curve (𝐴𝑈𝐶).  

Sum of the squared errors were plotted against total edges selected and it was seen that 

𝐹𝐺𝐿, 𝐺𝐺𝐿, and the method proposed by (Guo et al, 2011) had smaller sum of squared 

errors as compared to separate estimation with the graphical 𝐿𝑎𝑠𝑠𝑜. The graphical 𝐿𝑎𝑠𝑠𝑜, 

which estimated networks separately, had the worst Kullback-Leibler divergence. The run 

time in seconds was plotted against total non-zero edges selected and it was seen that 

the graphical 𝐿𝑎𝑠𝑠𝑜 was fastest followed by 𝐹𝐺𝐿, then by 𝐺𝐺𝐿. Guo et al.’s (2011) method 

had the longest running time. Both Kullback-Leibler divergence and sensitivity of 

detection of non-zero edges improved for 𝐹𝐺𝐿 and 𝐺𝐺𝐿 as the sample size increased. 

𝐹𝐺𝐿 and 𝐺𝐺𝐿 are better than the penalty (Equation 3.2) proposed by (Guo et al, 2011) in 

a way that penalty (Equation 3.2) is not convex that makes the run time very slow for the 

algorithm proposed by (Guo et al, 2011), whereas, 𝐹𝐺𝐿 (Equation 3.3)  and 𝐺𝐺𝐿 (Equation 

3.4)  have convex penalty terms that result in faster computation time. 

Guo et al.’s (2011) method uses a penalized-likelihood approach for joint estimation of 

multiple graphical models that encourages similar patterns of sparsity across multiple 

classes. In contrast, Cai et al. (2016) proposed  weighted constrained minimization 

method for joint estimation of 𝐾 sparse matrices (MPE) when the precision matrices were 

expected to be similar. MPE is an extension of CLIME (Equation 2.4) (Cai et al, 2011) for 

multiple precision matrices. For 𝐾 precision matrices, sparsity is encouraged by the   

objective function. The precision matrices Ω  for 𝐾 groups were estimated, where  Ω =

 𝜔 , using the following constrained optimization (Cai et al, 2016):  

Ω1
( )

11≤ ≤Ω( ) ,1≤ ≤
,                                          (3.5) 
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 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ∑ 𝜔 Σ( )Ω1
( ) − 𝐼

2

=1 ≤ 𝜆
,

 

where 𝜔 =   is the 𝑘𝑡ℎ group weight and 𝜆  is the penalty term. If the solution to 

Equation (3.5) is denoted by Ω1
( )(1 < 𝑘 ≤ 𝐾), then in general Ω1

( )
 are not necessarily 

symmetrical and the model would be misspecified. The estimator Ω( ) = 𝜔 ( )  of Ω  is 

obtained by symmetrizing Ω1
( )

 as follows: 

𝜔( ) = 𝜔( ) ≔ 𝜔1
( )𝐼 𝜔1

( ) ≤ 𝜔1
( ) + 𝜔1

( )𝐼 𝜔1
( ) > 𝜔1

( )           (3.6) 

The tuning parameters selection was done using Bayesian information criterion. The 

Equation (3.5) is similar to the sum of constrained optimization function for estimation of 

a single precision matrix with CLIME (Equation 2.4); the main difference is that CLIME 

does not use the weight factor 𝜔 =  . Cai et al.’s (2016) method was proposed for 

partial homogeneity in the graphical structures of 𝐾 precision matrices. 

Cai et al. (2016) did simulation studies and considered the dimension 𝑝 =  200, three 

number of groups 𝐾 =  3, sample sizes of each group 𝑛 = 80,120, 150, for the three 

groups 𝑘 = 1, 2, 3 respectively, with 100 replications. The Cai et al.’s (2016) method had 

the best sensitivity, specificity and Mathews’ correlation coefficient , as compared to 

CLIME for single precision matrix (Cai et al, 2011), the graphical 𝐿𝑎𝑠𝑠𝑜 (Friedman et al, 

2008), (Guo et al’s, 2011) method, 𝐹𝐺𝐿 and 𝐺𝐺𝐿 (Danaher et al, 2013). 

3.2.2 Bayesian Approaches 

Peterson et al. (2015) proposed a Bayesian approach for the joint inference of multiple 

Gaussian graphical models. The proposed Bayesian approach was used for inferring 

multiple undirected networks that may be unrelated or may share some common features 

(same edges). The undirected graphical models are also referred to as Markov random 

fields (MRFs). The estimated graphical structures were linked to MRF prior, which 

encouraged common structures (same edges) in the related graphs. If we have 1, . . . , 𝐾 

graphs, then the binary vector 𝑔 = 𝑔1, , 𝑔2, , . . . , 𝑔 ,  represents the inclusion of edge 
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(𝑖, 𝑗) in these graphs. If the probability of an edge inclusion for binary vectors 𝑔  is 

represented by 𝑃 𝑔 𝜐 , Θ , then the graphs (𝐺1, 𝐺2, . . . , 𝐺 ) have a product of each edge 

densities as a joint prior as follows: 

𝑝(𝐺1, . . . , 𝐺 |𝜈, Θ) = ∏ 𝑝 𝑔 𝜈 , Θ<                          (3.7) 

𝑊ℎ𝑒𝑟𝑒,               𝜐 = 𝜐 1 ≤ 𝑖 < 𝑗 ≤ 𝑃  

Here 𝜈  is an edge-specific parameter related to 𝑔  (each set of edges), Θ is a symmetric 

matrix having 𝐾 rows and 𝐾 columns that represent the graphs pairwise relatedness 

(same edges) for each sample group. We set the diagonal entries of Θ to zero, and the 

network relatedness is represented by the non-zero entries in the off-diagonal elements 

of Θ. The edges prior probabilities of inclusion are influenced by the parameters 𝜐 and Θ. 

Peterson et al. (2015) performed the simulation studies for the assessment of parameter 

inference, and to compare the performance of the proposed method (Peterson et al, 

2015) with fused graphical 𝐿𝑎𝑠𝑠𝑜, and group graphical 𝐿𝑎𝑠𝑠𝑜 (Danaher et al,  2013) using 

tuning parameters chosen with 𝐴𝐼𝐶, and separate estimation of the two precision matrices 

with 𝐺-Wishart prior: 

𝑝(𝛀|𝐺, 𝑏, 𝐷) = 𝐼 (𝑏, 𝐷)−1|𝛀| 𝑒𝑥𝑝 −1
2
 𝑡𝑟 (Ω𝐷) ,       Ω ∈ 𝑃                  (3.8) 

where, the parameter 𝑏 > 2 represents degrees of freedom, the positive definite 

symmetric matrix 𝐷 has a dimension of 𝑝 𝑥 𝑝, the normalizing constant is represented by 

𝐼  , and the set of all positive definite symmetric matrices having a dimension 𝑝 𝑥 𝑝 and 

𝜔  = 0 are represented by 𝑃 . 

In simulation studies, the dimension was set to 𝑝 = 20. The precision matrices obtained 

were made positive-definite by using the sum of off-diagonal elements of each row of the 

precision matrix as a divisor for each off-diagonal element of the precision matrix, and 

then taking average of the precision matrix with its transpose (Danaher et al, 2013). For 

the detection of differential edges, the true positive rate (𝑇𝑃𝑅), and area under an 𝑅𝑂𝐶 

curve (𝐴𝑈𝐶) were maximum both for 𝑛 = 50 and 𝑛 = 100 for Peterson’s method (Peterson 

et al, 2015) as compared to 𝐹𝐺𝐿 and 𝐺𝐺𝐿 (Danaher et al, 2013). For graph structure 
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learning, 𝐹𝐺𝐿 and 𝐺𝐺𝐿 (Danaher et al, 2013) had the highest 𝑇𝑃𝑅 (true positive rate) and 

𝐹𝑃𝑅 (false positive rate) both for 𝑛 = 50 and 𝑛 = 100, and, the proposed method 

(Peterson et al,  2015) had the highest 𝐴𝑈𝐶.  

The similarities among the groups were judged on the basis of 𝑃𝑃𝐼 (posterior probabilities 

of inclusion) of the parameters. Those set of edges were selected which had 𝑃𝑃𝐼 > 0.50. 

An MCMC sampler was constructed for updating graph, precision matrix, parameters of 

network relatedness and edge-specific parameters. The small values of standard errors 

of 25 simulated datasets showed the stability of the results for the proposed method 

(Peterson et al, 2015) when the sample sizes of the datasets were moderate (𝑛 = 100) 

and the dimension 𝑝 was equal to 20.  

Peterson et al. (2015) proposed a Bayesian approach for the joint inference of multiple 

Gaussian graphical models for several related graphs using MRF over graphs. However, 

(Mitra et al, 2016) proposed a Hierarchical Bayesian graphical model to address 

heterogeneity (differences) and joint inference on dependence structure across two 

related subgroups. Let 𝐺1 and 𝐺2 be the two graphs, 𝑦 be the observed data, 𝜋 be the 

hyper-parameter which is the joint probability of common edges between 𝐺1 and 𝐺2 and 

Θ and 𝛽 be the parameters for 𝑦. Let the prior graph is denoted by 𝐺0. Then the uniform 

prior for 𝐺1 is, 𝐺1~ 𝑈(𝐺0). The graph  𝐺1 comprises of each edge of the graph   𝐺0 

independently selected with probability 0.5. The difference between two graphs is 

denoted by 𝛿 , and 𝛿  ~ 𝐵𝑒𝑟 (𝜋), 𝑖 < 𝑗. The hyper-prior  ~ 𝐵𝑒𝑡𝑎 (𝑎, 𝑏) , where 𝑎  and 𝑏 are 

the parameters of Beta distribution chosen arbitrarily. The non-zero elements have 

independent priors which are as follows:  

𝛽 ~𝑁 0, 𝜎2 , 𝑖, 𝑗𝜖𝐸  , 𝑘 = 1,2                         (3.9) 

The process for comparing graphs depended on a threshold for the posterior probability 

of an edge (or lack of an edge) being the same in the two graphs. However, Mitra et al. 

(2016) gave the relationship between the latent binary indicators 𝜐 , where 𝜐  are 

interpreted as protein activation or histone modification presence, respectively. The data 

model is as follows: 
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  𝑝(𝑦 |𝜈  , 𝜃 ) ∝  
𝑁(𝜇1 , 𝜎12 )   𝑖𝑓 𝜈 = 0,
𝑁(𝜇2 , 𝜎22 )   𝑖𝑓 𝜈 = 1

                  (3.10) 

 

where, 𝜃  represent the parameters used for indexing the sampling model. 

Simulation studies were conducted by Mitra et al. (2016) to compare the performance of 

their proposed differential graph method with the methods proposed (Danaher et al, 2013;  

Guo et al, 2011) , based on 𝐴𝑈𝐶. The proposed differential graph method by Mitra et al. 

(2016) outperformed methods designed for multivariate normal data (Danaher et al, 2013;  

Guo et al, 2011) by having the highest area under the 𝑅𝑂𝐶 curve (𝐴𝑈𝐶). Mitra et al’s. 

(2016) method was not compared to Peterson et al’s (2015) method. The limitations of 

the method proposed by Mitra et al. (2016) are that it can only compare two graphs that 

are low or moderate in size, and it is computationally intensive.  

3.3 Extension of DSS-based Method to Two Graphs to find Important 𝛀 

Differences Across Conditions in Precision Matrices  

My main emphasis is to extend my proposed DSS-based method for a single precision 

matrix to finding a sparse set of differences between two precision matrices. The process 

involves first generating independent posterior samples of precision matrices for each 

group, and then combining the posterior samples to form a joint posterior distribution. 

Then, some elements are made identical subject to modification in the combined posterior 

mean inverse covariance matrix 𝚺𝒄−𝟏.  

The modification in 𝚺𝒄−𝟏 is done using a variation of the 𝐹𝐺𝐿 – fused Joint Graphical 𝐿𝑎𝑠𝑠𝑜 

(Danaher et al, 2013). The penalized likelihood form of this algorithm is as follows: 

Γ ∑ 𝑛𝐶
=1 𝑙𝑜𝑔𝑑𝑒𝑡 Γ − 𝑡𝑟(𝑆 Γ ) + 𝜆1 ∑ ∑ 𝛾𝐶

=1 + 𝜆2 ∑ ∑ 𝛾 − 𝛾,<     (3.11) 

The sparsity of the elements is governed by 𝜆1 , and the similarity is governed by 𝜆2 . To 

produce exact equality between the off-diagonal elements of 𝐶 precision matrices, the 𝐿1 

penalties could be used, but very strong penalization is required for producing exact 

equality between the off-diagonal elements of 𝐶  precision matrices. The matrices that 

already had identical patterns of non-zero elements at many positions, and penalty 
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parameters that were moderate, the number of identical elements were reduced by 

optimization. Danaher et al. (2013) suggested that the selection of penalty parameter be 

guided by “practical considerations” since overly dense models are produced by the 

conventional criterion for penalty parameters selection such as 𝐴𝐼𝐶, 𝐵𝐼𝐶 and cross-

validation. 

3.3.1  Proposed Method 

I used the posterior covariance mean 𝚺 in my proposed DSS algorithm for one population 

to set to zero some of the off-diagonal elements of a precision matrix. Further, I extended 

my proposed DSS approach for one population to two populations by using the combined 

posterior mean covariance matrix 𝚺𝒄 instead of 𝑺 in Equation (3.11) to detect sparse sets 

of differences between two precision matrices. I also changed the penalization strategy.  

To obtain sparse matrices, an adaptive graphical 𝐿𝑎𝑠𝑠𝑜 penalty of the following form may 

be used: 

Γ =  𝑚𝑎𝑥Γ 𝑙𝑜𝑔𝑑𝑒𝑡 (Γ) − 𝑡𝑟(Γ𝑆) − 𝜆∑
∗

                  (3.12) 

Suppose that a set 𝓗 holds the selected elements (identical elements across conditions), 

then the objective function may be modified: 

Γ ∑ 𝑛𝐶
=1 𝑙𝑜𝑔𝑑𝑒𝑡 Γ − 𝑡𝑟(Σ Γ ) + 𝜆1 ∑ ∑

∗
𝐶
=1 + 𝜆2 ∑ ∑ 𝛾 − 𝛾,  ∈ ℋ<  (3.13) 

In order to penalize the differences in elements across conditions, I choose to penalize 

only those elements that are identical across conditions. The sparsity of the elements is 

governed by 𝜆1 , and the similarity is governed by 𝜆2. 

The term 𝛾 − 𝛾  is forced to 0 for (𝑖, 𝑗)𝜖 ℋ by taking large values of 𝜆2. Optimization 

is done using the ADMM algorithm. The elements of 𝓗 are selected using the posteriors 

of 𝛀𝒄; specifically, if zero is included in a 𝑃% credible interval for 𝛾 − 𝛾 , (𝑖, 𝑗) ,  is 

included in ℋ  (set of zero elements based on 𝑃% credible interval).  Progressively sparse 
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sets of differences are generated by increasing the credible interval 𝑃. The tuning 

parameter 𝑛  is set to be proportional to each group’s sample size.  

3.4 Simulation Study 

A simulation study was done to evaluate the performance of my proposed method by 

detecting the differences in pairs between the inverse covariance matrices. 50 replicates 

were considered for the two scenarios in the simulation study. The two scenarios were 

the sparse case and the dense case. 

For the simulations, the sets of differences between the true inverse covariance matrices 

were sparse. In both sparse and dense cases, true inverse covariance matrices were 

modified by making 50 random changes along the off-diagonal elements. Thus, both 

sparse and dense cases had a true inverse covariance matrix and a modified true inverse 

covariance matrix. I obtained 10,000 samples of posterior covariance matrices using 

Bayesian adaptive graphical 𝐿𝑎𝑠𝑠𝑜 (Wang, 2012), thinned to 1,000, with 5,000 burn-ins 

both for sparse and dense cases. I considered 𝛾 − 𝛾   = 0.1 in order to select edges 

which differ between the pair in the simulation study.  

3.4.1 Sparse Case 

In the sparse case, one of the two matrices is an 𝐴𝑅 (2) inverse covariance matrix with 

𝜔 = 1 , 𝜔 , −1 = 𝜔 −1,1 = 0.5 , and 𝜔 , −2 = 𝜔 −2,1 = 0.25. Just to give an idea of the 

structure of true inverse covariance matrix (𝛺), I present it for 𝑝 =  10 as follows: 

 

(

 
 
 
 
 
 
 

1 0.5 0.25 0 0 0 0 0 0 0
0.5 1 0.5 0.25 0 0 0 0 0 0
0.25 0.5 1 0.5 0.25 0 0 0 0 0
0 0.25 0.5 1 0.5 0.25 0 0 0 0
0 0 0.25 0.5 1 0.5 0.25 0 0 0
0 0 0 0.25 0.5 1 0.5 0.25 0 0
0 0 0 0 0.25 0.5 1 0.5 0.25 0
0 0 0 0 0 0.25 0.5 1 0.5 0.25
0 0 0 0 0 0 0.25 0.5 1 0.5
0 0 0 0 0 0 0 0.25 0.5 1 )
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The other matrix is the inverse covariance matrix differing at 50 random off-diagonal 

elements of the 𝐴𝑅 (2) inverse covariance matrix. 

3.4.2 Dense Case 

In the dense case, one of the two matrices is an inverse covariance matrix having ones 

as the diagonal element and 0.05 as all the off-diagonal elements. Just to give an idea of 

the structure of true inverse covariance matrix (𝛺), I present it for 𝑝 =  10 as follows: 

 

(

 
 
 
 
 
 
 

1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.05 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.05 0.05 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.05 0.05 0.05 1 0.05 0.05 0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05 1 0.05 0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05 0.05 1 0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05 0.05 0.05 1 0.05 0.05 0.05
0.05 0.05 0.05 0.05 0.05 0.05 0.05 1 0.05 0.05
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 1 0.05
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 1 )

 
 
 
 
 
 
 

 

 

The other matrix is the inverse covariance matrix differing at 50 random off-diagonal 

elements of the dense inverse covariance matrix. 

I ran simulations with 𝑛 =  200, and 𝑝 =  100  for both sparse and dense cases. Previous 

work has shown that the sample size 𝑛 =  200 was challenging for detecting the 

differential edges using 𝐽𝐺𝐿 (Table 2, Danaher et al, 2013). I varied  𝜆1 and 𝜆2 for the 

sparse case. For the dense case, I set 𝜆1 equal to zero and varied the value of 𝜆2.  

Results from both sparse and dense cases were compared with the results from 𝐽𝐺𝐿. 𝐽𝐺𝐿 

was fine-tuned to produce the same number of differences between the precision 

matrices as were obtained for sparse and dense cases for fair comparison.  

3.4.3 Simulation Results 

The individual inverse covariance matrices pairs obtained through 𝐽𝐺𝐿 and my posterior 

summary had a difference of not more than two, producing an identical number of average 

differences (Table 3.2).  Improved sensitivity and 𝑀𝐶𝐶 as compared to the sensitivity and 
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𝑀𝐶𝐶 using  𝐽𝐺𝐿 were obtained by our posterior summary method for the sparse case, 

throughout the 50 replicates (Table 3.1). There was an improvement of 16% in the 

sensitivity with a standard deviation of 6% (Table 3.3) using our proposed posterior 

summary method. The specificity of my proposed posterior summary method was almost 

the same as the specificity using 𝐽𝐺𝐿 (Table 3.1). The dense case had a comparable 

sensitivity to 𝐽𝐺𝐿 with my posterior summary method (Table 3.1). The 𝑀𝐶𝐶 was better for 

the posterior summary methods as compared to 𝑀𝐶𝐶 for 𝐽𝐺𝐿 both for sparse and dense 

cases (Table 3.1). 

Table 3.1: Sensitivity, specificity and 𝑴𝑪𝑪 for my procedure for detecting precision matrix 

differences, averaged over 50 replicates of simulated data with 𝒑 =  𝟏𝟎𝟎, 𝒏 =  𝟐𝟎𝟎. In each case 

there are 50 off-diagonal differences between the matrices being compared, with magnitude 0.1. 

The matrix before changes is either an 𝑨𝑹(𝟐) structure (sparse case), or one with diagonal 1 and 

all off-diagonals 0.05. I compare  the 𝑱𝑮𝑳 inferred differences, with 𝝀 selected to match the number 

of edges detected.  

 Sparse Case Dense Case 

 Posterior Summary 𝑱𝑮𝑳 Posterior Summary 𝑱𝑮𝑳 

Sensitivity 58.6 42.6 8.9 8.1 

Specificity 97.9 97.8 98.9 98.9 

𝑀𝐶𝐶 35.5 25.4 7.1 6.4 

 

Figures 3.1 portrays the differential edges between the inverse covariance matrices for 

sparse case at 𝑋%  (where 𝑋 < 100%) credible interval.  

The central line represents the fit of the differences between the posterior mean inverse 

covariance matrices, gray area represents central 90% credible interval for the range of 

fit of posterior mean inverse covariance differences, and the red dots represent the 

differential edges matrices between the two inverse covariance matrices at 𝑋% credible 

interval. The last red dot above the gray area denotes the final estimated matrix of 

precision matrix differences that I am going to pick. The last dot above the gray area is a 

matrix of precision matrices differences having 170 differential edges (Figure 3.1).Figure 

3.2 portrays the differential edges between the inverse covariance matrices for dense 
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case at 𝑋% credible interval. The last red dot above the gray area is a matrix of precision 

matrices differences having 80 differential edges. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Graph with edges corresponding to my inferred differential precision matrices elements 

for sparse case simulation study considering 𝒏 =  𝟐𝟎𝟎, 𝒑 =  𝟏𝟎𝟎. 𝒀 − 𝒂𝒙𝒊𝒔 represents the range of 

fit of posterior means differences. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Graph with edges corresponding to my inferred differential precision matrices elements 

for dense case simulation study considering 𝒏 =  𝟐𝟎𝟎, 𝒑 =  𝟏𝟎𝟎 
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Table 3.2:  Comparison between 𝑱𝑮𝑳 differential edges and my posterior summary approach 

differential edges for sparse case over 50 replicates of simulated data with 𝒑 =  𝟏𝟎𝟎, 𝒏 =  𝟐𝟎𝟎 

Replication 𝑱𝑮𝑳  
Differential 

Edges 

Posterior 
Summary 

Differential 
Edges 

Difference Replication 𝑱𝑮𝑳 
Differential 

Edges 

Posterior 
Summary 

Differential 
Edges 

Difference 

1 170 170 0 26 161 161 0 

2 107 106 1 27 130 128 2 

3 185 186 -1 28 130 131 -1 

4 86 84 2 29 97 96 1 

5 131 130 1 30 123 125 -2 

6 114 113 1 31 127 128 -1 

7 109 110 -1 32 139 137 2 

8 145 145 0 33 127 126 1 

9 130 131 -1 34 126 127 -1 

10 151 152 -1 35 110 111 -1 

11 149 150 -1 36 75 75 0 

12 138 138 0 37 112 111 1 

13 127 126 1 38 147 148 -1 

14 148 148 0 39 167 166 1 

15 131 131 0 40 109 110 -1 

16 103 103 0 41 111 112 -1 

17 161 160 1 42 124 125 -1 

18 139 137 2 43 115 116 -1 

19 111 110 1 44 157 156 1 

20 121 119 2 45 152 151 1 

21 137 136 1 46 125 125 0 

22 112 112 0 47 159 160 -1 

23 142 141 1 48 105 106 -1 

24 161 162 -1 49 129 130 -1 

25 131 131 0 50 116 117 -1 

Average of Differential Edges 0.06 ≅ 0 
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Table 3.3:  Comparison between 𝑱𝑮𝑳 inferred differences in sensitivity and my posterior summary 

approach for sparse case over 50 replicates of simulated data with 𝒑 =  𝟏𝟎𝟎, 𝒏 =  𝟐𝟎𝟎 

Replication Sensitivity 
Posterior 
Summary 

Sensitivity 

𝑱𝑮𝑳 

Difference Replication Sensitivity 
Posterior 
Summary 

Sensitivity 

𝑱𝑮𝑳 

Difference 

1 62% 46% 16% 26 62% 36% 26% 

2 64% 42% 22% 27 58% 46% 12% 

3 74% 48% 26% 28 52% 32% 20% 

4 38% 20% 18% 29 56% 36% 20% 

5 52% 46% 6% 30 56% 36% 20% 

6 52% 34% 18% 31 62% 46% 16% 

7 44% 30% 14% 32 64% 56% 8% 

8 56% 50% 6% 33 62% 42% 20% 

9 56% 44% 12% 34 54% 36% 18% 

10 60% 54% 6% 35 50% 40% 10% 

11 64% 56% 8% 36 48% 38% 10% 

12 68% 42% 26% 37 50% 36% 14% 

13 64% 40% 24% 38 76% 62% 14% 

14 60% 46% 14% 39 62% 32% 30% 

15 64% 48% 16% 40 60% 42% 18% 

16 52% 28% 24% 41 56% 48% 8% 

17 72% 44% 28% 42 74% 52% 22% 

18 60% 54% 6% 43 58% 46% 12% 

19 58% 50% 8% 44 62% 44% 18% 

20 64% 48% 16% 45 60% 46% 14% 

21 58% 38% 20% 46 52% 40% 12% 

22 52% 36% 16% 47 66% 48% 18% 

23 54% 42% 12% 48 54% 32% 22% 

24 52% 38% 14% 49 58% 46% 12% 

25 58% 48% 10% 50 58% 42% 16% 

 
Average of Sensitivity Differences 

16% 

Standard Deviation of Sensitivity Differences 6% 
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3.5 Metabolomics Example – Important 𝛀 Differences Between Case and Control 

Here, I used a published dataset comprising of the dimension 𝑝 =  174 metabolites in the 

fecal sample of 49 eight year old children born at term (a child born between 37 and 42 

weeks of pregnancy), and 42, eight year old children born preterm (a child born before 37 

weeks of pregnancy). The 49 eight year old children’s data was considered as controls 

since the children were not born premature, and the 42, eight year old children’s data was 

considered as cases since the children were born premature. I compared the differences 

(differential edges) between the precision matrices of 49 controls with the precision 

matrices of 42 cases. 

My inferences were based on posterior distributions generated independently from the 

Bayesian adaptive graphical 𝐿𝑎𝑠𝑠𝑜 (Wang, 2012). The cases and controls precision 

matrices differential edges graph is shown in Figure 3.3, representing 499 differences. 

Most of the vertices have differences of 1 to 10 of their incident edges (sharing common 

vertices). There are 14 vertices shaded in black, which have differences in excess of 10 

of their incident edges. Two vertices are not involved in any altered edges. 

 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 3.3: Graph with edges corresponding to my inferred differential precision matrix elements 

for 174 volatile compounds measured for 42 cases and 49 controls. Vertices with more than 10 

altered matrix elements are shown in black. 



64 
 

3.6 Conclusions 

I demonstrate that my extended DSS-based approach is recommended to select sparse 

sets of differences in the inverse covariance matrices across conditions. Inference about 

which elements are similar in a set of the inverse covariance matrices is not addressed 

by any existing Bayesian methods. Consequently, when we have individual dense 

matrices, my proposed method is adequate to infer sparse sets of differences between 

the inverse covariance matrices, though for moderate sample sizes, my proposed method 

appeared to be a challenging problem in my simulation study (Table 3.1). Clear criterion 

to select sparse sets of differences between the inverse covariance matrices is not 

provided by the frequentist approaches, though increasingly sparse sets of differences 

are produced by the frequentist approaches. A further advantage of my proposed DSS-

based method for one graph is that it is easily extendable to the multiple graphs case 

without requiring any separate implementation. If the shared elements in the precision 

matrices are modelled in detail (Peterson et al, 2015), even then my proposed method 

will be very worthwhile preliminary to modelling choices investigation.  
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Chapter - 04 

 

Decoupled Shrinkage and Selection Sparse Factor Models  
 

4.1 Introduction  

In Chapter 2, I proposed decoupled shrinkage and selection methodology to sparsify 

some elements of a precision matrix to exact zeros in a Gaussian graphical models 

setting. In Chapter 3, I extended the decoupled shrinkage and selection approach to 

two populations to detect sparse sets of differences between the precision matrices. 

In this chapter, I apply similar decoupled shrinkage and selection methodology to 

sparsify factor analysis models.  

Factor analysis is a statistical technique used to analyse the covariance/correlation 

structure among the observed quantitative variables in terms of unobserved variables 

called factors. The factor loading matrix 𝚲 represents the relationships between the 

factors and the variables. Sparsification of 𝚲 may be desirable for simplifying the 

interpretation of the results of factor analysis by setting some parameters to zero. A 

factor loading of zero indicates no relationship between a variable and a factor. One 

of the drawbacks of standard factor analysis is that it does not shrink any elements of 

the factor loading matrix to exactly zero, so sparse factor models may be used when 

model interpretation is important. 

Various Gaussian penalized factor analysis models have been proposed to induce 

sparsity in the factor loading matrix using penalized maximum likelihood estimation 

(Choi et al, 2010; Hirose and Yamamoto 2014, 2015; Ning and Georgiou, 2011). 

Bayesian sparse factor models were proposed by West (2003) and Carvalho et. al, 

(2008). Hui et al. (2018) applied 𝑶𝑭𝑨𝑳 – Ordinary factor analysis 𝐿𝑎𝑠𝑠𝑜 – using non-

convex penalties on normal as well as non-normal (negative Binomial) responses 

without pre-specifying the number of factors 𝑘, and Kim et. al (2015) applied 𝑺𝑭𝑨 – 

sparse factor analysis methodology on non-normal (combination of binary and count) 

data. Bayesian approaches for non-normal data i.e. multivariate probit data have also 

been proposed (Chib and Greenberg, 1998; Hahn, Carvallho and Scott, 2012). 
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Let 𝒑 be the data dimension, and 𝒌 be the number of factors. A Gaussian factor model 

is expressed as follows: 

𝑦 = 𝚲𝜂 +  𝜖 ,     (4.1) 

where, the observed variables vector is represented by 𝑦  with dimension 𝑝 × 1, the 

factor loading matrix of dimension 𝑝 × 𝑘 is represented by 𝚲(𝑘 < 𝑝), factor scores or 

latent variables vector of dimension 𝑘 × 1 is represented by 𝜂  ~ 𝑁(𝟎, 𝑰), and the 

idiosyncratic noise is represented by 𝜖  ~ 𝑁(𝟎, 𝚿) with 𝚿 = 𝑑𝑖𝑎𝑔 𝜎 , . . . , 𝜎 .  

The covariance matrix Σ can be estimated as follows: 

Σ =  ΛΛ  +  Ψ                      (4.2) 

Some Bayesian factor models have been proposed which generate the posterior 

samples of factor loading matrices (Hahn, Carvalho and Scott, 2012; Murray et. al. 

2013; Bhattacharya and Dunson 2011). Hahn, Carvalho and Scott (2012) proposed a 

Bayesian probit factor model to sparsify the posterior samples of the factor loading 

matrices, Murray et. al (2013) worked with the dense matrix, and Bhattacharya and 

Dunson (2011) generated a sparse posterior. A penalization method called 𝒇𝒂𝒏𝒄 

(factor analysis using non-convex penalties) was proposed by Hirose and Yamamoto 

(2015) to shrink the factor loading matrix with shrinkage parameter selection by using 

different selection criterion such as 𝐴𝐼𝐶, 𝐵𝐼𝐶, 𝐶𝐴𝐼𝐶, and 𝐸𝐵𝐼𝐶.  

In chapter 2, I proposed a decoupled shrinkage and selection (DSS) method for one 

graph in a GGM setting that was based on generating posterior samples of inverse 

covariance matrices and then shrink some of the off-diagonal elements of the inverse 

covariance matrices to exact zeros. Here, I apply the DSS method in the factor 

analysis setting to produce sparse factor models. My proposed DSS sparse factor 

model includes generating posterior samples of factor loading matrices, and then 

shrinking the factor loading matrices by selecting tuning parameters. The difference 

between my proposed DSS method for one graph and the DSS sparse factor model 

is that I am sparsifying the factor loading matrices instead of sparsifying the inverse 

covariance matrices. My proposed DSS sparse factor model picks the final factor 

loading matrix that is within the 90% credible interval of range of fit of posterior mean 

inverse against the sparsity-inducing parameters (𝜌, 𝛾). The main difference with 𝒇𝒂𝒏𝒄 

is that I operate on a posterior covariance mean instead of a sample covariance matrix 
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when I use 𝒇𝒂𝒏𝒄 to sparsify the factor loading matrix. In addition, the final sparsity-

inducing parameters against which the final factors loading matrix is selected using 

my proposed DSS factor analysis model is different from the sparsity-inducing 

parameters selected using 𝒇𝒂𝒏𝒄. I show that the DSS sparse factor model has a 

higher true negative rate and picking correct number of factors as compared to the 

𝒇𝒂𝒏𝒄-based methods in the simulation studies. 

The remainder of this chapter is structured as follows. Section 4.2 details existing 

sparse factor models; section 4.3 details my proposed decoupled shrinkage and 

selection sparse factor model; section 4.4 details the simulation studies for continuous 

and discrete cases; section 4.5 details two applications of my proposed DSS sparse 

factor model on real life data both for continuous (multivariate normal) and discrete 

(multivariate binary) cases; and section 4.6 presents conclusions and 

recommendations.  

4.2 Sparse Factor Models 

4.2.1 Bayesian Approaches (Gaussian Case)  

Bayesian specifications (Arminger & Muth´en, 1998; Song & Lee,2001) of factor 

analysis models (Equation 4.1) have used inverse-gamma prior distributions on the 

error variance, and normal prior distributions on the diagonal and off-diagonal 

elements of the loading matrix. These choices led to a Gibbs sampler for posterior 

computation. However, when there were highly correlated variables, the Gibbs 

sampler behaved very poorly. More efficient Gibbs samplers have been proposed to 

address this issue (Ghosh & Dunson, 2009; Liu & Wu, 1999; Gelman, 2006).  

A Bayesian sparse factor model that specifies the normal priors on the elements Λ  

of the factor loading matrix 𝚲, to induce zeros in the factor loading matrix with high 

probability, considering many explanatory variables was proposed by West (2003). 

The proposed Bayesian specification of a sparse factor model is as follows: 

𝜋 𝛿 Λ + 1 − 𝜋 𝑁 Λ 0,1     (4.3) 

where 𝜋  has a prior that has heavy concentration close to 1; 𝛿 (∙) denotes the unit 

point mass at 0; and Λ  denotes the 𝑖  variable and 𝑗  factor elements of the factor 

loading matrix 𝚲. The sparse latent-factor model proposed by West (2003) worked well 
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in sparsifying the factor loading matrix 𝚲 for small numbers of factors. Fitting a large 

number of factors in the sparse latent factor model proposed by West (2003) was 

computationally challenging.  

Carvalho et. al (2008) extended the Bayesian specification of sparse factor model 4.3 

proposed by West (2003) by adopting the sparsity prior of Lucas et. al (2006) as 

follows: 

Λ ~ 1 −  𝜋 𝛿 Λ +  𝜋  𝑁 Λ 0, 𝜏            (4.4) 

where, Λ  denote the elements of the factor loading matrix 𝚲; 𝑖 represents variables; 𝑗 

represents the factors; and 𝜋  (the individual association probabilities or variable 

inclusion probabilities with any factor) represents prior probability that Λ  is exactly 

zero. Therefore, 𝜋  proposed in Equation (4.4) is an extension to 𝜋  used in Equation 

(4.3). The selection of non-zero factor loading were based on the following posterior 

probabilities: 

𝜋 = Pr Λ  ≠ 0|𝑿 ∶      (4.5) 

Variable-factor significant relationships were defined based on higher 𝜋  values. 

The extended Bayesian sparse factor model in Equation (4.4) improved the sparsity 

structure of the factor loading matrix as compared to the sparsity structure of factor 

loading matrix obtained using Equation (4.3).  

Dependence in the multivariate data is typically characterized using Gaussian factor 

models. A method based on generation of posterior samples of loading matrices and 

covariance matrices was proposed by (Murray et. Al, 2013). Murray et. al (2013) 

developed 𝑏𝑓𝑎 (Bayesian factor analysis) R - package to implement Gaussian factor 

models (𝑏𝑓𝑎  in the 𝑏𝑓𝑎 package), Gaussian copula factor models (𝑏𝑓𝑎 ), and 

mixed-scale Gaussian factor models (𝑏𝑓𝑎 ) for discrete margins probit 

specifications (the latter two are discussed in subsection 4.2.2). 𝑏𝑓𝑎 has a  drawback 

that  the user must specify the number of factors. The 𝑏𝑓𝑎  initializes and fits a 

Gaussian factor model by pre-specifying the number of MCMC iterations, and the 

number of factors to produce posterior samples of loading matrices and covariance 

matrices. Murray et. al (2013) proposed an efficient Gibbs sampling algorithm to 

produce the posterior samples of factor loading matrices, and covariance matrices.  
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The generalized form of a Gaussian factor model to the Gaussian copula factor model 

proposed by Murray et. al (2013) is as follows: 

𝜂   ~ 𝑁 (0, 𝑰),     𝑧 |𝜼𝒊 ~ 𝑁 (𝚲 𝜼𝒊 , 𝑰 )     (4.6) 

where 𝑧  are the latent Gaussian variables, and different priors such as normal prior, 

𝐺𝐷𝑃 prior, and Pointmass prior can be used one at a time on 𝚲. The 𝐺𝐷𝑃 (generalized 

double Pareto) prior (Armagan and Dunson, 2011) is a default choice in the 𝑏𝑓𝑎 R 

package, with density: 

𝜋 𝜆 =  1 +  
( )

              (4.7) 

The scaled loading are referred to as 𝜆 ~𝐺𝐷𝑃(𝛼, 𝛽), where 𝛼 and 𝛽 are scale 

parameters. 

Inferring the number of factors in factor analysis has always been challenging (Lucas 

et. al, 2006; Carvalho et. al 2008) due to the sensitivity in choosing the priors 

subjectively. Bhattacharya and Dunson (2011) addressed this problem by proposing 

a multiplicative Gamma process shrinkage prior that allowed infinitely many factors. 

The factor loading matrix was shrunk to zero as the column index increased. They 

proposed Bayesian latent factors models to sparsify the factor loading matrices in a 

high-dimensional (large 𝑝) setting. Bhattacharya and Dunson (2011) developed an 

efficient Gibbs sampler for posterior computation that scaled well as the data 

dimension increased and picked the number of factors without pre-specifying the 

number of factors. 

4.2.2 Bayesian Approaches (Non-Gaussian Case)  

The latent variables influence both the form and dependence structure of the marginal 

distributions, complicating the interpretations of the Gaussian factor models when the 

Gaussian factor models are generalized to the non-normal measured variables. To 

decouple the marginal distributions from the latent factors, Murray et. al (2013) 

proposed a class of Gaussian copula factor models. Let the copula be denoted by ℂ 

having a dimension 𝑝, then the joint distribution of copulas is as follows: 

𝐹 𝑦 , . . . , 𝑦 =  ℂ 𝐹 (𝑦 ), . . . , 𝐹 𝑦      (4.8) 

The Gaussian copula is as follows: 
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ℂ 𝑢 , . . . , 𝑢 =  Φ (Φ (𝑢 ), . . . , Φ 𝑢 𝑪⁄ , 𝑢 , . . . , 𝑢 𝜖[0,1] ,   (4.9) 

The Gaussian 𝐶𝐷𝐹 with dimension 𝑝, and the correlation matrix 𝑪 is represented by 

Φ (. |𝑪), and the univariate standard normal cumulative distribution function is denoted 

by Φ. Therefore, the joint distribution of 𝐹 can be written as follows: 

𝐹 𝑦 , . . . , 𝑦 =  Φ (Φ 𝐹 (𝑦 ) , . . . , Φ 𝐹 𝑦 ) 𝑪     (4.10) 

The latent Gaussian variables are denoted by 𝑧, the pseudo-inverse of the marginal 

distributions 𝐹  of 𝐹 is expressed as follows: 

𝐹 (𝑡) = inf 𝑡 ∶  𝐹 (𝑦) ≥ 𝑡, 𝑦 𝜖 ℝ       (4.11) 

Let the covariance matrix be denoted by 𝚺, and 𝑪 be its correlation matrix. If the latent 

Gaussian variables  𝑧 ~ 𝑁 (0, 𝚺) , and, 

𝑦 =  𝐹 Φ 𝑧
𝜔  𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑝,     (4.12) 

Then the Gaussian copula is represented by 𝐹 (𝑦) has the correlation matrix 𝑪, and 

the univariate marginal distributions 𝐹 .  

The normal prior 𝜆 ~𝑁 0,  is a common prior on unrestricted loading matrix for 

probit, Gaussian, or mixed factor models. However, the normal priors have some 

properties which are inappropriate when the model is not a Gaussian factor model i.e. 

mixed Gaussian/probit or probit factor models. The unique variances 𝑢  in the 

Gaussian/probit, copula (Murray et. al, 2013), or probit factor models have implied 

prior when 𝜎 ≡ 1 as follows: 

𝜋 𝑢 =
⁄

⁄  
( ⁄ )

× 𝑒𝑥𝑝 −                  (4.13) 

The normal priors are quite informative on the scaled loadings for smaller 𝑘 values, 

but they do not shrink 𝜆  toward zero values. Increasing the variance of the prior 

worsens this effect. The problem arises due to the normal prior putting insufficient 

mass near 0, which deflates 𝑢 , produces spurious correlations, and assigns higher 

probability to the scaled loadings values close to ±1. Therefore, the normal prior is a 

poor choice for this type of Gaussian copula factor models.  
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The copula factor model considers the continuous cases to interpret the conditional 

independence between two variables given the other variables. However, when the 

cases are discrete, or a mix of continuous and discrete, then care should be taken to 

interpret the coefficients using a copula factor model. The special cases of the 

Gaussian copula factor models are the probit factor models and the Gaussian factor 

model (Equation 4.1). The probit factor models are for ordered categorical or binary 

data for discrete margins, where the margins are parameterized by the “cut-points”. 

These probit factor models extend to mixed-scale Gaussian factor models for discrete 

margins probit specifications. The ordered categorical or binary data can be modeled 

using the probit factor models. Let 𝛾 , . . . , 𝛾  be the collection of “cut-points” 

considering 𝛾 =  −∞ and 𝛾 =  ∞ so that 𝐹 (𝑐) = Φ 𝛾 1 + ∑ 𝜆
⁄

. Then 

the pseudoinverse of 𝐹  is as follows: 

𝐹 𝑢 = ∑ 𝑐𝟏 Φ
∑

< 𝑢 ≤ Φ
∑

          (4.14) 

After plugging Equation (4.14) in Equation (4.12) and simplifying, we obtain the 

following expression for an ordinal probit factor model: 

𝑦 =  ∑ 𝑐𝟏 𝛾 < 𝑧 ≤ 𝛾                             (4.15) 

where, 𝑧 ~ 𝑁(𝟎, 𝚲𝚲𝑻 + 𝑰). 

The 𝑏𝑓𝑎_𝑚𝑖𝑥𝑒𝑑 option in the 𝑏𝑓𝑎 R package initializes and fits mixed-scale Gaussian 

factor model for discrete margins probit specifications. The 𝑏𝑓𝑎_𝑚𝑖𝑥𝑒𝑑 option pre-

specifies the number of MCMC iterations, and the number of factors to produce 

posterior samples of loading matrices and covariance matrices (Murray et al, 2013). 

Chib and Greenberg (1998) also proposed a Bayesian multivariate probit model for 

the analysis of correlated binary data, with the drawback of not including the latent 

factor scores in their model. Hahn, Carvallho and Scott (2012) extended the existing 

Bayesian multivariate probit model proposed by (Chib and Greenberg, 1998) that 

included the latent factor scores in their model. The sparse factor probit model 

proposed by Hahn, Carvalho and Scott (2012) was based on drawing correlated 

posterior samples using a Gibbs sampler. 
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Alternative methods in this setting for covariance estimation, such as the 𝐿  

regularization or banding, lack the interpretational advantages of Hahn, Carvalho and 

Scott’s (2012) proposed sparse factor probit model, and cannot accommodate some 

useful modelling structures, such as spatial models and time series models. Hahn, 

Carvalho and Scott’s (2012) sparse factor probit model could be considered as an 

exploratory tool for high-dimensional categorical data that are correlated.  

Most research into factor analysis has been focused on count, continuous, and 

categorical data. The observed continuous data were converted to the z-scale by 

Quinn (2004) to combine the underlying categorical and ordered data with the latent 

z-scale. Quinn’s method was extended by Murray et al (2013), where empirical inverse 

cumulative distribution function (𝐶𝐷𝐹) was used on the z-scale for the placement of 

any variable class. Kim et al (2015) proposed sparse factor analysis (𝑺𝑭𝑨) for the 

estimation of underlying dimensionality of binary or count data, and then finding the 

transformed scale correlational structure. The 𝑺𝑭𝑨 method differs from Murray et al’s 

(2013) method in the way that the estimation of cut points is done. 𝑺𝑭𝑨 was designed 

to combine textual data and vote data when estimating word effect, underlying 

dimensionality, and ideal points. The 𝑺𝑭𝑨 method, Quinn’s (2004) method, and Murray 

et al’s (2013) method are all examples of Gaussian copula models.  

4.2.3 Penalized Likelihood Approaches (Gaussian Case) 

In factor analysis, different factor rotation techniques can be used to produce a factor 

loading matrix. Factor rotation has an alternative in the form of penalization for sparse 

estimation of factor loading matrix. Penalized factor analysis models using the 𝐿  

penalty were independently proposed by Ning and Georgiou (2011) and Choi et al. 

(2010). Ordinary 𝐿𝑎𝑠𝑠𝑜 based on 𝐿   penalization is biased towards producing overly 

dense models (Zhang, 2010; Zou, 2006). Choi et al. (2010) addressed this issue and 

proposed the adaptive 𝐿𝑎𝑠𝑠𝑜 to obtain sparser solutions than ordinary 𝐿𝑎𝑠𝑠𝑜. The 

penalized adaptive 𝐿𝑎𝑠𝑠𝑜 estimator proposed by Choi et al (2010) is as follows: 

𝑚𝑎𝑥
Λ, Ψ 𝑙(𝚲, 𝚿) − 𝜌 ∑ ∑ 𝑤 𝜆     (4.16) 

Where, 𝑤 =   .The adaptive 𝐿𝑎𝑠𝑠𝑜 proposed by Choi et al. (2010) is different from 

an ordinary adaptive 𝐿𝑎𝑠𝑠𝑜. The construction of  𝑤  is dependent on an unpenalized 
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maximum likelihood estimator in ordinary adaptive 𝐿𝑎𝑠𝑠𝑜. However, rotational 

indeterminacy causes an uncertain maximum likelihood estimator in factor analysis in 

adaptive 𝐿𝑎𝑠𝑠𝑜 proposed by (Choi et al, 2010), and we are limited as to which 

maximum likelihood estimator should be used to construct  𝑤 . An adaptive 𝐿𝑎𝑠𝑠𝑜  

estimator proposed by Choi et al (2010) is more sophisticated in estimating 𝑤  as 

compared to an ordinary adaptive 𝐿𝑎𝑠𝑠𝑜, but is highly dependent on 𝜌 to construct the 

weight 𝑤 .  Hirose and Yamamoto (2015) addressed this issue and proposed a 

penalized factor analysis algorithm, 𝒇𝒂𝒏𝒄 (factor analysis using non-convex penalties) 

for sparse estimation of factor analysis model, and to interpret changes in the factor 

loading matrix for a range of tuning parameters (𝜌, 𝛾).   

𝑚𝑎𝑥
Λ, Ψ 𝑙(𝚲, 𝚿) − 𝑛 ∑ ∑ 𝜌𝑃 𝜆 ;  𝜌, 𝛾     (4.17) 

The non-convex penalty called the minimax concave penalty (MCP) (Zhang, 2010) is 

denoted by 𝑃(𝜃; 𝜌, 𝛾).  

𝜌𝑃(|𝜃|;  𝜌, 𝛾) = ∫ 1 − 𝑑𝑥| |       (4.18) 

= 𝜌 |𝜃| − 𝐼(|𝜃| < 𝜌𝛾) +  𝐼(|𝜃| ≥ 𝜌𝛾)  

A 𝐿𝑎𝑠𝑠𝑜 penalty is yielded for each value of 𝜌 > 0, and 𝛾 → ∞. The shrinkage increases 

with an increase in the 𝜌 values and decrease in the 𝛾 values. 

The 𝒇𝒂𝒏𝒄 algorithm is a two-step approach in which it computes and then shrinks 

some elements of the loading matrix based on the combinations of two sparsity-

inducing penalties (𝜌, 𝛾) as follows: 

𝑓𝑖𝑡 <  −𝑓𝑎𝑛𝑐 (𝑋, 𝑘, 𝜌, 𝛾)              (4.19) 

where, 𝑋 denotes the data matrix or covariance (correlation) matrix and 𝑘 denotes the 

number of factors to be considered. The tuning parameter 𝜌 varies and 𝛾 value is kept 

fixed. The 𝒇𝒂𝒏𝒄 algorithm uses model selection criterion such as 𝐴𝐼𝐶,𝐵𝐼𝐶, 𝐸𝐵𝐼𝐶, and 

𝐶𝐴𝐼𝐶 as follows: 

𝐴𝐼𝐶 =  −2ℓ Λ, Ψ + 2𝑑 ,     (4.20) 

𝐵𝐼𝐶 =  −2ℓ Λ, Ψ + (𝑙𝑜𝑔𝑁)𝑑 ,              (4.21) 
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𝐸𝐵𝐼𝐶 = 𝐵𝐼𝐶 + 2𝑑 𝛿 𝑙𝑜𝑔(𝑝𝑘),    (4.22) 

𝐶𝐴𝐼𝐶 =  −2ℓ Λ, Ψ + (𝑙𝑜𝑔𝑁 + 1)𝑑    (4.23) 

where Λ is the estimated factor loading matrix, Ψ is the estimated diagonal matrix, 𝑝 

is the data dimension, 𝑘 is the number of factors, and 𝑑  denotes the non-zero 

parameters numbers. One of the advantages and flexibility of the 𝒇𝒂𝒏𝒄 algorithm is 

that the final model can be selected based on any model selection criterion, such as 

𝐴𝐼𝐶, 𝐵𝐼𝐶, 𝐸𝐵𝐼𝐶, or 𝐶𝐴𝐼𝐶. Incorrect number of factors can be suggested to 𝒇𝒂𝒏𝒄 to see 

if it picks the true number of factors in the model, by way of having all loadings for 

some factors equal to zero. For example, suppose we generate data from a 

multivariate normal distribution with 2 true factors. We then estimate the observed 

covariance matrix of generated data, and use this observed covariance matrix as an 

argument in the 𝒇𝒂𝒏𝒄 algorithm using an incorrect number of factors, say 𝑘 = 5, for a 

range of sparsity-inducing penalties (𝜌, 𝛾). The 𝒇𝒂𝒏𝒄 algorithm will produce sparse 

factor loading matrices with correct i.e. 𝑘 = 2, or incorrect i.e. 2 < 𝑘 ≤ 5 number of 

factors in the factor loading matrices. 

Hui et al. (2018) proposed 𝑶𝑭𝑨𝑳 – Ordered factor 𝐿𝑎𝑠𝑠𝑜 for factor order selection, and 

to achieve sparsity in 𝑮𝑳𝑳𝑽𝑴𝒔 (generalized linear latent variables models). The 𝑶𝑭𝑨𝑳 

penalty was the first penalty that shrunk entire columns of the factor loading matrix to 

zero for latent variable models. 𝑶𝑭𝑨𝑳 achieved sparsity in the individual elements 

using adaptive 𝐿𝑎𝑠𝑠𝑜 . The 𝑶𝑭𝑨𝑳 estimator proposed by (Hui et al, 2018) is as follows: 

𝜃 = 𝑙(𝜃) − 𝑛𝑠 ∑ 𝜔 ∑ ∑ 𝜆 − 𝑛𝑠 ∑ ∑ 𝜔 𝜆  (4.24) 

where, the marginal likelihood is denoted by 𝑙(𝜃), and the positive adaptive weights 

are denoted by {𝜔 ; 𝑙 = 1, . . . , 𝑑} and 𝜔 ; 𝑗 = 1, . . . , 𝑝; 𝑘 = 1, . . . , 𝑑 . The 𝑶𝑭𝑨𝑳 

penalty’s first component in Equation (4.24) performs to achieve the factor order 

selection in the factor loading matrix by shrinking all the column entries of the factor 

loading matrix to zero. My proposed DSS method (see section 4.3) for non-normal 

responses could be extended to specify a parametric marginal distribution such as 

negative Binomial using the 𝑶𝑭𝑨𝑳 penalty. The 𝑶𝑭𝑨𝑳 penalty does not remove the 

first factor while retaining the second factor in the model. The tuning parameter 𝑠 for 
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𝑶𝑭𝑨𝑳 were selected using 𝑬𝑹𝑰𝑪 – Extended Regularized Information Criterion as 

follows: 

𝐸𝑅𝐼𝐶(𝑠) =  −2𝑙 𝜃 − 𝑙𝑜𝑔(𝑠) ∑ ∑ ퟙ 𝜆 ≠ 0   (4.25) 

where, the marginal log-likelihood is denoted by 𝑙 𝜃 , and ퟙ 𝜆 ≠ 0  is equal to 1 in 

case the estimated loading 𝜆  is not shrunk to 0, and 0 elsewhere. Sparser estimates 

of the factor loading matrix were obtained using 𝐸𝑅𝐼𝐶 for tuning parameter selection 

as compared to other tuning parameter selection criterion i.e. 

(𝑓𝑎𝑛𝑐: 𝐴𝐼𝐶, 𝑓𝑎𝑛𝑐: 𝐵𝐼𝐶, 𝑓𝑎𝑛𝑐: 𝐸𝐵𝐼𝐶) (Hirose and Yamamoto, 2015). 

4.2.4 Penalized Likelihood Approaches (Non-Gaussian Case) 

Hui et al. (2018) also applied 𝑶𝑭𝑨𝑳 penalty on non-normal responses i.e. negative 

Binomial 𝑮𝑳𝑳𝑽𝑴 on a lower dimension 𝑝 = 27 and 𝑛 = 54 species data (Hostie et al, 

2003). Hui et al. (2018) considered only moderate dimensional data i.e. (𝑝 = 30) in the 

simulation studies they conducted.  

4.3 Proposed Decoupled Shrinkage and Selection Sparse Factor Model 

I propose a decoupled shrinkage and selection sparse factor model. I introduce a 

factor model for a particular 𝑘, and then obtain the simulated factor loading using the 

R package 𝒃𝒇𝒂 (Murray et. al, 2013). I consider 10,000 MCMC iterations with 1,000 

burn-ins to obtain the posterior samples of factor loading matrices of dimension 𝑝 × 𝑘. 

Then I thin the 10,000 posterior samples of factor loading matrices to 1000 by keeping 

every 10th posterior sample. We can explore the performance of my proposed 

decoupled shrinkage and selection sparse factor model for low to moderate-

dimensional data as well for a range of number of factors. My main purpose is to shrink 

some elements of the factor loading matrix to exactly zero. After thinning the factor 

loading to 1,000 posterior samples of factor loading matrices, I use the following 

formula to convert the factor loading matrices to the implied covariance matrices: 

Σ = Λ  Λ +  Ψ     (4.26) 

where, Σ is the estimated implied covariance matrix, Λ is the estimated factor loading 

matrix, and Ψ represents the unique variances, Ψ = 𝑑𝑖𝑎𝑔 𝜎 , . . . , 𝜎 . After converting 

the 1,000 posterior samples of factor loading matrices to 1,000 posterior samples of 

covariance matrices using Equation (4.26), I average the 1,000 posterior samples of 
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implied covariance matrices and find the implied covariance mean. I then use the 𝒇𝒂𝒏𝒄 

algorithm (Hirose and Yamamoto, 2015) to process this posterior mean covariance 

matrix and infer the factor loading matrices for different combinations of 𝜌 and 𝛾, where 

𝜌 is varied and 𝛾 is a fixed value. We can use different dimensions, sample sizes, and 

number of factors in 𝒇𝒂𝒏𝒄. 

 

In Figure: 4.1, the 𝑥-axis shows the coverage of 𝜌 used to select zero elements for  Λ; 

the top axis shows the resulting number of factor loading in the factor loading matrices. 

The 90% credible interval for the fit of 𝚺 𝟏 (blue region), and its expected fit (central 

line) are shown for comparison. Let 𝚺𝒌  denote the posterior samples of covariance 

matrices of future observations. Then: 

𝑓𝑖𝑡(𝚺 𝟏 𝚺𝒌) = 𝑙𝑜𝑔 𝑑𝑒𝑡(𝚺 𝟏) − 𝑡𝑟(𝚺𝒌𝚺 𝟏)              (4.27) 

The above Equation (4.27) is same as Equation (2.44) that appeared in chapter 2, 

denotes a sample from distribution of 𝑓𝑖𝑡(Σ ). 

I vary the parameter 𝜌, and keep 𝛾 equal to a specific grid value in 𝒇𝒂𝒏𝒄 algorithm. 

Progressively sparser estimates of the factor loading matrices are obtained for a 

sequence of 𝜌 values, and a fixed 𝛾 value. It can be observed in Figure: 4.1 that there 

are flat regions where the fit is insensitive to small changes in the 𝜌 values for a fixed 

𝛾 = 3.75 value. This indicates that 𝒇𝒂𝒏𝒄 algorithm is not altering the elements of / 

unless one can be shrunk all the way to zero. The last red dot within the 90% credible 

envelope represents the final sparse factor model. The factor loading matrix 

represents associations between the variables and the factors. A factor loading equal 

to zero means no relationship between that variable and that factor. 

 

4.4 Simulation Studies 

4.4.1 Continuous Case 

I simulated the true factor model having the true factor loading matrices (Appendix A) 

using the multivariate Normal distribution for 18 different “scenarios”; i.e., 

combinations of dimensions 𝑝 = 30, 100, sample sizes  𝑛 = 100, 500, 1000, and 

number of factors 𝑘 = 2, 5, 10.  
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The simulated data was then used as an input for 𝑏𝑓𝑎   to obtain posterior samples 

of factor loading matrices for all 18 scenarios (Table: 4.1). I initially specified the correct 

number of factors, but then to assess robustness, incorrect number of factors 𝑘 were 

allocated in the 𝑏𝑓𝑎  package as follows: 

x 𝑘 = 5, when 𝑘 = 2 in the true factor model. 

x 𝑘 = 10, when 𝑘 = 5 in the true factor model. 

x 𝑘 = 15. When 𝑘 = 10 in the true factor model. 

I used the decoupled shrinkage and selection procedure explained in section 4.3. The 

final posterior factor loading matrices were selected using my proposed DSS sparse 

factor model, 𝒇𝒂𝒏𝒄-based methods using the selection criterion such as 𝐴𝐼𝐶, 𝐵𝐼𝐶, and 

𝐶𝐴𝐼𝐶. The performance of my proposed DSS sparse factor model was compared with 

𝒇𝒂𝒏𝒄-based methods on the basis of 𝑇𝑃𝑅 (true positive rate), 𝑇𝑁𝑅 (true negative rate), 

and 𝑇𝐷𝑅 (true discovery rate):  

𝑇𝑃𝑅 =       (4.28) 

𝑇𝑁𝑅 =        (4.29) 

𝐹𝐷𝑅 =       (4.30) 

𝑇𝐷𝑅 =  1 − 𝐹𝐷𝑅          (4.31) 

4.4.1.1 Results 

Initially I fixed the number of factors 𝑘 in 𝒇𝒂𝒏𝒄 to the exact number of factors as in the 

true factor model. The main purpose of fixing the number of factors in 𝒇𝒂𝒏𝒄 exactly 

equal to the number of factors in the true factor model was to compare the 

performance of my proposed DSS sparse factor model with 𝒇𝒂𝒏𝒄-based methods for 

the same number of factors in 𝒇𝒂𝒏𝒄 and my proposed DSS sparse factor model. I vary 

the parameter 𝜌, and keep 𝛾 always equal to 𝛾 = 3.75 in 𝒇𝒂𝒏𝒄 algorithm. The true 

factor loading matrices for all the 6 combinations of 𝑝, and 𝑘 are given in the Appendix 

A. 

I have compared the performance measures of my proposed DSS sparse factor model 

with 𝑓𝑎𝑛𝑐: 𝐴𝐼𝐶, 𝑓𝑎𝑛𝑐: 𝐵𝐼𝐶, and 𝑓𝑎𝑛𝑐: 𝐶𝐴𝐼𝐶, on the basis of averages over 50 
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replications of 𝑇𝑃𝑅 (true positive rate), 𝑇𝑁𝑅 (true negative rate), and 𝑇𝐷𝑅 (true 

discovery rate) in Table: 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Expected fit for sparse summaries of factor loading for continuous case considering 

𝒑 = 𝟏𝟎𝟎, 𝒏 = 𝟓𝟎𝟎, 𝒌 = 𝟓. Rho is the tuning parameter. Range of fit of the posterior mean inverse 

is along the 𝒚 − 𝒂𝒙𝒊𝒔. Blue area represents 90% credible interval for the range of fit of posterior 

mean inverse. 
 

For a lower dimension i.e. 𝑝 = 30, my proposed DSS sparse factor model outperforms 

all the other 𝒇𝒂𝒏𝒄 – based methods by having the highest 𝑇𝑁𝑅 and 𝑇𝐷𝑅 for most of 

the cases. My proposed DSS sparse factor model has the best 𝑇𝑁𝑅 and 𝑇𝐷𝑅 for  𝑝 =

30, 𝑛 = 100, 𝑘 = 10. However, 𝑓𝑎𝑛𝑐: 𝐴𝐼𝐶 has the highest 𝑇𝑃𝑅 for almost all the cases.  

However, for a higher dimension i.e. 𝑝 = 100,  my proposed DSS sparse factor model 

has the highest 𝑇𝑁𝑅 for all the cases. My proposed DSS sparse factor model is more 

specific than 𝒇𝒂𝒏𝒄 – based methods, and 𝑓𝑎𝑛𝑐: 𝐴𝐼𝐶 is more sensitive for sparsifying 

the factor loading matrices for almost all the possible 𝑝, 𝑛, 𝑘 combinations detailed in 

Table: 4.1. 
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Table: 4.1 (Performance Measures Comparisons – Continuous Case) 

*The best cases are bold. 

𝒑 = 𝟑𝟎 

𝒏 
Performance 

Measures 

𝒌 = 𝟐 𝒌 = 𝟓 𝒌 = 𝟏𝟎 

DSS 

FA 

𝒇𝒂𝒏𝒄 

𝑨𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑩𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑪𝑨𝑰𝑪 

DSS 

FA 

𝒇𝒂𝒏𝒄 

𝑨𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑩𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑪𝑨𝑰𝑪 

DSS 

FA 

𝒇𝒂𝒏𝒄 

𝑨𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑩𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑪𝑨𝑰𝑪 

100 

𝑻𝑷𝑹 (%)  50   90   88   86   22   67   57   38   12   50   22   20  

𝑻𝑵𝑹 (%)  57   11   13   18   95   32   43   69   99   50   85   91  

𝑻𝑫𝑹 (%)  52   50   50   51   58   20   21   25   66   10   16   22  

500 

𝑻𝑷𝑹 (%)  60   89   84   81   18   37   36   34   9   18   17   15  

𝑻𝑵𝑹 (%)  60   9   13   17   87   69   71   74   97   89   90   92  

𝑻𝑫𝑹 (%)  62   49   49   49   26   23   23   23   22   16   16   18  

1000 

𝑻𝑷𝑹 (%)  48   89   85   84   20   31   31   31   11   19   18   14  

𝑻𝑵𝑹 (%)  48   13   17   20   85   75   76   76   97   91   92   92  

𝑻𝑫𝑹 (%)  46   51   50   50   24   25   25   25   29   18   19   15  

𝒑 = 𝟏𝟎𝟎 

𝒏 
Performance 

Measures 

𝒌 = 𝟐 𝒌 = 𝟓 𝒌 = 𝟏𝟎 

DSS 

FA 

𝒇𝒂𝒏𝒄 

𝑨𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑩𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑪𝑨𝑰𝑪 

DSS 

FA 

𝒇𝒂𝒏𝒄 

𝑨𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑩𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑪𝑨𝑰𝑪 

DSS 

FA 

𝒇𝒂𝒏𝒄 

𝑨𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑩𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑪𝑨𝑰𝑪 

100 

𝑻𝑷𝑹 (%)  53   98   98   98   25   93   92   91   12   87   85   84  

𝑻𝑵𝑹 (%)  20   3   3   3   72   6   8   10   88   13   14   16  

𝑻𝑫𝑹 (%)  39   50   50   50   19   20   20   20   10   10   10   10  

500 

𝑻𝑷𝑹 (%)  49   97   96   96   18   91   71   69   10   79   64   64  

𝑻𝑵𝑹 (%)  43   3   3   3   79   9   29   30   90   21   36   36  

𝑻𝑫𝑹 (%)  46   50   50   50   17   20   20   20   10   10   10   10  

1000 

𝑻𝑷𝑹 (%)  60   97   97   97   23   86   63   63   11   70   56   56  

𝑻𝑵𝑹 (%)  59   3   3   3   81   14   34   34   90   31   45   45  

𝑻𝑫𝑹 (%)  60   50   50   50   22   20   19   19   11   10   10   10  
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It can be concluded that my DSS sparse factor model is to be preferred in situations 

where specificity is important.  

Sparser estimates of factor loading matrices are obtained by varying 𝜌, and keeping 𝛾 

to a fixed value. I conducted initial experiments with different 𝛾 values, and used 𝛾 =

3.75  in the simulation studies since it produced appropriately sparse factor loading 

matrices (smaller 𝛾 values produced sparser factor loading).  

4.4.1.2 Identification of Correct Number of Factors for Continuous Case 

The exact number of factors in the true factor models were 𝑘 = 2, 5, 10 respectively 

both for 𝑝 =  30, and 𝑝 =  100. However, in order to compare my proposed DSS 

sparse factor model with 𝒇𝒂𝒏𝒄 – based methods for identification of correct number of 

factors as in the true factor models, I allocated incorrect number of factors both in 𝒇𝒂𝒏𝒄 

and 𝑏𝑓𝑎_𝑔𝑎𝑢𝑠𝑠 as follows: 

x 𝑘 = 5, when 𝑘 = 2 in the true factor model. 

x 𝑘 = 10, when 𝑘 = 5 in the true factor model. 

x 𝑘 = 15. When 𝑘 = 10 in the true factor model. 

Table: 4.2 compares my proposed DSS sparse factor model with 𝑓𝑎𝑛𝑐: 𝐴𝐼𝐶, 

𝑓𝑎𝑛𝑐: 𝐵𝐼𝐶 , and 𝑓𝑎𝑛𝑐: 𝐶𝐴𝐼𝐶 for the identification of the correct number of factors.  

For a lower dimension i.e. 𝑝 =  30, 𝑛 = 100, 500, 1000, 𝑘 = 2, my proposed DSS 

sparse factor model outperforms the 𝒇𝒂𝒏𝒄-based methods. However, for the higher 𝑘 

values such as 𝑘 = 5, 10,  𝑓𝑎𝑛𝑐: 𝐴𝐼𝐶 and 𝑓𝑎𝑛𝑐: 𝐵𝐼𝐶 outperform my DSS sparse factor 

model by discovering more factors. This behaviour is consistent with the higher 

specificity for DSS observed in subsection 4.4.1.1. For a higher dimension i.e. 𝑝 =

 100, my proposed DSS sparse factor model outperforms the 𝒇𝒂𝒏𝒄-based methods in 

identifying the correct number of factors as in the true factor model. 

4.4.2 Discrete Case 

The main purpose of the simulations studies for the discrete case was to choose 

between the two priors namely the 𝐺𝐷𝑃 prior (Equation 4.7) and the Pointmass prior 

(Equation 4.3) to give as an argument in the 𝑏𝑓𝑎_𝑚𝑖𝑥𝑒𝑑 package. I simulated the true 

factor model using multivariate Normal distribution considering 18 different  
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Table: 4.2 (Correct Number of Factors Comparisons) 

𝒑 = 𝟑𝟎 

 True Factors 𝒌 = 2 𝒌 = 5 𝒌 = 10 

𝒏 

Factors given 

in 

𝒇𝒂𝒏𝒄 & 𝒃𝒇𝒂  

 

𝒌 = 5 𝒌 = 10 𝒌 = 15 

Descriptive 

Statistics 

DSS 

FA 

𝒇𝒂𝒏𝒄 

𝑨𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑩𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑪𝑨𝑰𝑪 

DSS 

FA 

𝒇𝒂𝒏𝒄 

𝑨𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑩𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑪𝑨𝑰𝑪 

DSS 

FA 

𝒇𝒂𝒏𝒄 

𝑨𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑩𝑰𝑪 

𝒇𝒂𝒏𝒄 

𝑪𝑨𝑰𝑪 

100 

Mean 2.0 5.0 5.0 4.5 2.0 10.0 5.6 3.4 1.9 15.0 5.5 4.4 

Minimum 2.0 5.0 5.0 2.0 2.0 10.0 2.0 2.0 1.0 15.0 3.0 3.0 

Maximum 2.0 5.0 5.0 5.0 2.0 10.0 10.0 6.0 3.0 15.0 9.0 7.0 

500 

Mean 2.0 3.3 2.4 2.2 3.6 4.2 4.0 3.8 4.0 6.1 5.9 5.3 

Minimum 2.0 2.0 2.0 2.0 2.0 4.0 4.0 2.0 3.0 5.0 4.0 4.0 

Maximum 2.0 5.0 4.0 4.0 4.0 6.0 5.0 4.0 5.0 7.0 6.0 6.0 

1000 

Mean 2.0 2.7 2.3 2.2 4.0 4.0 4.0 4.0 4.2 6.1 6.0 5.8 

Minimum 2.0 2.0 2.0 2.0 3.0 4.0 4.0 4.0 4.0 6.0 5.0 4.0 

Maximum 2.0 5.0 4.0 4.0 4.0 5.0 4.0 4.0 5.0 7.0 6.0 6.0 

𝒑 = 𝟏𝟎𝟎 

100 

Mean 2.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 10.0 15.0 15.0 15.0 

Minimum 2.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 10.0 15.0 15.0 15.0 

Maximum 2.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 10.0 15.0 15.0 15.0 

500 

Mean 2.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 10.0 15.0 15.0 13.4 

Minimum 2.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 10.0 15.0 15.0 10.0 

Maximum 2.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 10.0 15.0 15.0 15.0 

1000 

Mean 2.0 5.0 5.0 5.0 5.0 10.0 9.5 8.3 10.0 14.9 11.5 10.9 

Minimum 2.0 5.0 5.0 5.0 5.0 10.0 5.0 5.0 10.0 13.0 10.0 10.0 

Maximum 2.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 10.0 15.0 15.0 13.0 

*The best cases are bold. 
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combinations of dimensions 𝑝 = 30, 100, sample sizes  𝑛 = 100, 500, 1000, and 

number of factors 𝑘 = 2, 5, 10. After that, I set a cut-off value of 0.5 on the simulated 

data to convert it into multivariate binary data. The values less than 0.5 were converted 

to 0, and the values greater than or equal to 0.5 were converted to 1. 

The simulated data was then used as an input in the R package – 𝑏𝑓𝑎_ 𝑚𝑖𝑥𝑒𝑑 to obtain 

posterior samples of factor loading matrices for all 18 scenario (Table: 4.3). Incorrect 

number of factors 𝑘 were allocated in the 𝑏𝑓𝑎_𝑚𝑖𝑥𝑒𝑑 package as follows for a lower 

dimension i.e. 𝑝 = 30 case: 

x 𝑘 = 5, when 𝑘 = 2 in the true factor model. 

x 𝑘 = 10, when 𝑘 = 5 in the true factor model. 

x 𝑘 = 15. When 𝑘 = 10 in the true factor model. 

However, correct number of factors i.e. 𝑘 = 2, 𝑘 = 5,  𝑎𝑛𝑑 𝑘 = 10 were given in 

𝑏𝑓𝑎_ 𝑚𝑖𝑥𝑒𝑑 package for a higher dimension i.e. 𝑝 = 100 case. 

I repeated the decoupled shrinkage and selection procedure explained in section 4.3. 

I varied the parameter 𝜌, and kept 𝛾 always equal to the 7th grid value i.e. 𝛾 = 3.75 in 

𝒇𝒂𝒏𝒄 algorithm. The final posterior factor loading matrices were selected using my 

proposed DSS sparse factor model using the “𝐺𝐷𝑃 prior” and the “Pointmass prior” 

separately, and the performance was compared as well on the basis of 𝑇𝑃𝑅, 𝑇𝑁𝑅, and 

𝑇𝐷𝑅. The expected fit for sparse summaries of factor loading for discrete case both 

for the “𝐺𝐷𝑃 prior” and the “Pointmass prior” displayed in the Figures: 4.2 and 4.3 

showed that the fit was sparser using the “Pointmass prior” than using the “𝐺𝐷𝑃 prior”. 

The expected fit using the “𝐺𝐷𝑃 prior” selected the factor loading matrix that was only 

13% sparse (Figure: 4.2). Whereas, the expected fit using the “Pointmass prior” 

selected the factor loading matrix that was 46% sparse (Figure: 4.3). However, the 

true sparsity level was 50%.  

4.4.2.1 Results 

Initially I fixed the number of factors 𝑘 in 𝒇𝒂𝒏𝒄 to the exact number of factors in the 

true factor model to assess the performance of my proposed DSS sparse factor model 

based on “𝐺𝐷𝑃 prior” and “Pointmass prior” for the same number of factors in 𝒇𝒂𝒏𝒄 

and the number of factors given in 𝑏𝑓𝑎. For a lower dimension i.e. 𝑝 = 30, the factor  
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 loading matrices using “Pointmass prior” had the highest 𝑇𝑃𝑅, 𝑇𝑁𝑅, 𝑎𝑛𝑑 𝑇𝐷𝑅 for most 

of the cases (Table: 4.3). For a higher dimension i.e. 𝑝 = 100, the factor loading 

matrices using “𝐺𝐷𝑃 prior” had the highest 𝑇𝑃𝑅 for most of the cases. However, factor 

loading matrices using “Pointmass prior” still had better 𝑇𝑁𝑅, 𝑎𝑛𝑑 𝑇𝐷𝑅 for most of the  

  Figure 4.2: Expected fit for sparse summaries of factor loading for discrete case considering 

𝒑 = 𝟏𝟎𝟎, 𝒏 = 𝟏𝟎𝟎, 𝒌 = 𝟐. and 𝑮𝑫𝑷 prior. 

 

cases.  For the rest of the cases, “𝐺𝐷𝑃 prior” and “Pointmass prior” were competitive. 

It is evident from Figures: 4.2, 4.3, and Table:4.3 that “Pointmass prior” produced 

sparser factor loading matrices as compared to the factor loading matrices produced 

using “𝐺𝐷𝑃 prior” since factor loading matrices using “Pointmass prior” had the highest 

 𝑇𝑁𝑅 for most of the cases confirming the presence of more zeros in the factor loading 

matrices (Table: 4.3). 
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Figure 4.3: Expected fit for sparse summaries of factor loading for discrete case considering 

𝒑 = 𝟏𝟎𝟎, 𝒏 = 𝟏𝟎𝟎, 𝒌 = 𝟐. and Pointmass prior. 

 

4.5  Examples 

I considered data from a food frequency questionnaire that had been converted to 

amounts in grams for 56 different foods (Mumme et. al, 2019). A further example is 

provided for binary data, using the presence and absence of different fish species 

(Smith, Duffy and Leathwick, 2013). 

4.5.1 Food Questionnaire Data (Continuous Case) 

Data on 𝑝 = 56  food items comprising of fruits, vegetables, meat, drinks, processed 

food, and poultry were collected from 𝑛 = 367  respondents using a food frequency 

questionnaire. I used the food questionnaire standardized data as an input in 
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Table: 4.3 (Performance Measures Comparisons – Discrete Case) 

*The best cases are bold. 

𝒑 = 𝟑𝟎 

𝒏 
Performance 

Measures 

𝒌 = 𝟐 𝒌 = 𝟓 𝒌 = 𝟏𝟎 

𝑮𝑫𝑷 Pointmass 𝑮𝑫𝑷 Pointmass 𝑮𝑫𝑷 Pointmass 

100 

TPR (%)  62   40   28   20   14   2  

TNR (%)  51   61   81   96   90   100  

TDR (%)  56   48   31   55   13   74  

500 

TPR (%)  46   53   16   19   10   9  

TNR (%)  43   55   83   94   96   97  

TDR (%)  45   54   17   42   22   24  

1000 

TPR (%)  55   54   25   16   11   8  

TNR (%)  54   54   86   88   97   96  

TDR (%)  52   52   29   22   28   23  

 

𝒑 = 𝟏𝟎𝟎 

𝒏 

 

Performance 

Measures 

𝒌 = 𝟐 𝒌 = 𝟓 𝒌 = 𝟏𝟎 

𝑮𝑫𝑷 Pointmass 𝑮𝑫𝑷 Pointmass 𝑮𝑫𝑷 Pointmass 

100 

TPR (%)  87   66   73   21   50   10  

TNR (%)  12   55   28   77   48   89  

TDR (%)  50   55   20   20   10   9  

500 

TPR (%)  66   51   41   22   40   11  

TNR (%)  28   36   56   78   60   89  

TDR (%)  51   41   19   20   10   9  

1000 

TPR (%)  63   43   32   22   28   10  

TNR (%)  40   29   68   78   73   90  

TDR (%)  53   37   20   21   10   11  
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 𝑏𝑓𝑎_𝑐𝑜𝑝𝑢𝑙𝑎 and used the "𝐺𝐷𝑃 prior” to obtain the posterior samples of factor loading 

matrices. I used copula because it was not necessarily Gaussian as shown in the 

histograms for common foods such as apples/pears, and bananas. Both the 

histograms for apples/pears, and bananas depict skewed distributions shown in 

Figures: 4.4 and 4.5.  

The number of factors given to the 𝑏𝑓𝑎_𝑐𝑜𝑝𝑢𝑙𝑎 package was 𝑘 = 2 that is concordant 

with the 2 dietary patterns derived by principal component analysis with rotation for 

the same dataset (Mumme et. al, 2019). 

 

       Figure 4.4: Histogram of apples/pears intake in grams per day.  
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       Figure 4.5: Histogram of bananas intake in grams per day.  

 

I repeated the decoupled shrinkage and selection procedure explained in section 4.3. 

I varied the parameter 𝜌, and kept 𝛾 equal to the 9th grid value i.e. 𝛾 = 1.01 in 

𝒇𝒂𝒏𝒄 algorithm (Figure: 4.6). The final posterior factor loading matrices were selected 

using my proposed DSS sparse factor model. The last red dot within the blue area 

represented the selected factor loading matrix. The final selected factor loading matrix 

had 71 non-zero, and 41 zero factor loading out of 112 possible factor loading making 

it 37% sparse. 

 

Table: 4.4 displays the factor loading matrix selected for the food questionnaire data 

using my proposed DSS sparse factor model. The consumption of processed food, 

drinks, and meat are making the 1st factor. Fruits and vegetables are making the 2nd 

factor. My proposed DSS sparse factor model has the advantage that the foods 
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loading on each factor are selected automatically.  Principal components loading are 

typically subjected to an arbitrary threshold prior to interpretation (Mumme et. al, 

2019). 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Expected fit for sparse summaries of factor loading for Food Questionnaire data 

considering  𝒌 = 𝟐.  

 

4.5.2 NZ Reef Fish Abundance Data (Discrete Case) 

I applied my DSS sparse factor model to a dataset of occurrences of NZ reef fish 

(Smith, Duffy and Leathwick, 2013). The data were collected for 𝑝 = 158  species at 

𝑛 = 467 surveys by scuba divers, made around coastal New Zealand between 1986 

and 2004.  

I selected the fish that were observed at least 20 times across the 467 locations, 

reducing the data to 𝑝 = 72 variables. The non-zero entries in the data were converted  
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Table: 4.4 (Factor Loading Matrix for Food Questionnaire Data) 

Food Groups Factor1 Factor2 
All other fruit  -     0.57  
Alliums  -     0.61  
Alternate  (0.21)  0.41  
Apple/Pear  -     0.36  
Banana  -     -    
Beer  0.53   -    
Berry fruits  -     0.54  
Biscuits, cakes and pastries  0.66   (0.18) 
Bran cereal  -     -    
Breakfast cereal  0.34   -    
Carrots  -     0.52  
Cheese and creamy dairy  0.45   0.23  
Chocolate  0.34   0.21  
Citrus etc  -     0.30  
Confectionery  0.52   (0.22) 
Cruciferous  -     0.48  
Diet drinks  0.37   (0.18) 
Dressings  0.57   0.41  
Dried Fruit  -     0.35  
dried Legumes  -     0.45  
Eggs  -     0.36  
fresh/frozen Legumes  -     0.25  
Green leafy cruciferous  -     0.83  
Juices  0.23   -    
Milk  0.27   -    
Nuts and seeds  (0.23)  0.62  
Oily fish  -     0.51  
Olives and Avocados  -     0.60  
Other Alcohol  0.17   -    
Other milks etc  (0.19)  0.32  
Other sweetened Dairy  0.56   -    
Other vegetables  -     0.83  
Poultry  0.21   -    
Processed fish  0.44   -    
Processed Meats  0.83   (0.25) 
Red Meat  0.46   -    
Red Wine  0.29   -    
Refined grain  0.45   -    
Root/starchy vegetables  0.27   0.32  
Salad vegetables  -     0.74  
Sauces, chutneys etc  0.66   0.44  
Savoury  0.69   (0.32) 
SFA  -     0.22  
Shellfish  0.19   0.33  
Soup  -     -    
Spices  -     0.51  
Stone fruit  0.22   0.30  
sugared drinks  0.29   (0.17) 
Tea and coffee  0.23   -    
Tomatoes  0.20   0.49  
USFA  0.31   -    
Water  (0.17)  0.48  
White fish  -     0.42  
Wholegrain  0.23   0.25  
Yeast spread  -     -    
Yoghurt  -     0.31  
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to 1 to make the dataset multivariate binary. I used NZ reef fish data as an input in the 

𝑏𝑓𝑎_𝑚𝑖𝑥𝑒𝑑 package and used “Pointmass prior” to obtain the posterior samples of  

factor loading matrices. I kept different number of factors such as 𝑘 = 2, 𝑘 = 3, 𝑘 =

4, 𝑘 = 5 in 𝑏𝑓𝑎_𝑚𝑖𝑥𝑒𝑑 package separately to check which number of factors input was 

producing the most meaningful interpretations of the factor loading matrices for the 

fish data. The 𝑏𝑓𝑎_𝑚𝑖𝑥𝑒𝑑 package with 𝑘 = 2 produced the most interpretable results. 

I repeated the decoupled shrinkage and selection procedure explained in section 4.3. 

I varied the parameter 𝜌, and kept 𝛾 equal to the 9th grid value i.e. 𝛾 = 1.01 (Hirose 

and Yamamoto, 2015) in 𝒇𝒂𝒏𝒄 algorithm (Figure: 4.7). The final posterior factor 

loading matrices were selected using our proposed DSS sparse factor model. The last  

Figure 4.7: Expected fit for sparse summaries of factor loading for NZ Reef Fish data considering 

 𝒌 = 𝟐.  

red dot within the blue area represented the selected factor loading matrix. The final 

selected factor loading matrix had 102 non-zero, and 42 zero factor loading out of 144 

possible factor loading making it 29% sparse.  
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Table: 4.5 (Factor Loading Matrix for NZ Reef Fish Data) 

NZ Reef Fish Factor 1 Factor 2 
Dasyatis brevicaudata  -     0.51  
Myliobatis tenuicaudatus  -     0.29  
Gymnothorax nubilus  -     2.09  
Gymnothorax prasinus  0.71   1.66  
Conger verreauxi  0.52   -    
Lotella rhacina  0.67   -    
Pseudophycis barbata  0.44   -    
Optivus elongatus  0.94   0.86  
Paratrachichthys trailli  0.86  -0.63  
Centroberyx affinis  -     1.05  
Zeus faber  0.50   0.72  
Helicolenus percoides  0.32  -1.10  
Scorpaena cardinalis  0.45   2.78  
Scorpaena papillosa  0.55   -    
Caesioperca lepidoptera  0.63   -    
Caprodon longimanus  -     1.84  
Hypoplectrodes huntii  0.81  -0.30  
Hypoplectrodes dimidius  0.33   2.79  
Decapterus koheru  0.69   1.52  
Pseudocaranx dentex  -     0.95  
Seriola lalandi  -     0.90  
Trachurus novaezelandiae  -     -    
Arripis trutta  -     -    
Pagrus auratus  0.58   1.63  
Upeneichthys porosus  0.31   0.55  
Pempheris adspersa  1.06   1.92  
Atypichthys latus -0.67   1.32  
Scorpis lineolata  0.70   0.60  
Scorpis violacea  -     1.75  
Kyphosus sydneyanus  -     0.59  
Girella cyanea -0.61   1.41  
Girella tricuspidata  0.67   0.45  
Amphichaetodon howensis -0.82   1.92  
Chromis dispilus  0.52   2.98  
Parma alboscapularis  -     1.87  
Chironemus marmoratus  0.64   0.70  
Aplodactylus arctidens  0.69   -    
Cheilodactylus spectabilis  0.84   0.76  
Nemadactylus douglasii  0.69   1.87  
Nemadactylus macropterus  0.56  -0.48  
Latridopsis ciliaris  0.46  -0.43  
Latris lineata  -    -1.32  
Mendosoma lineatum  0.40  -1.92  
Aldrichetta forsteri -0.30  -0.56  
Notolabrus celidotus  -    -0.89  
Notolabrus cinctus  -    -2.33  
Notolabrus fucicola  0.90   -    
Notolabrus inscriptus -0.53   1.38  
Pseudolabrus luculentus  -     3.24  
Pseudolabrus miles  0.98  -0.42  
Coris sandeyeri  -     2.83  
Suezichthys aylingi  -     1.47  
Bodianus unimaculatus  1.00   2.85  
Odax pullus  0.72   -    
Parapercis colias  -    -1.10  
Forsterygion flavonigrum  0.43   -    
Forsterygion lapillum -0.29  -0.49  
Forsterygion malcolmi  0.98  -0.66  
Forsterygion varium  0.31  -0.87  
Forsterygion gymnotum  -     -    
Karalepis stewarti  0.63   -    
Notoclinops caerulepunctus  0.81   -    
Notoclinops segmentatus  0.73   -    
Notoclinops yaldwyni  0.64   0.78  
Forsterygion maryannae  0.81   -    
Ruanoho decemdigitatus  -    -0.42  
Ruanoho whero  0.69   -    
Parablennius laticlavius  -     1.43  
Plagiotremus tapeinosoma -0.50   2.02  
Thalasseleotris adela  -     -    
Meuschenia scaber  0.51   0.64  
Canthigaster callisterna  -     1.96  
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Factor 1 (Table: 4.5) identifies species that inhabit deeper, exposed, high-current, 

temperate sites, such as the outer Marlborough Sounds and outer Hauraki Gulf. The 

species whose loadings are set to zero for factor 1 are those typically found in shallow 

water and/or subtropical climates. 

Factor 2 (Table: 4.5) species with positive values are those that occur in the north, and 

with negative values are those that occur in the south. The species for which the 

loadings are set to zero are those that do not follow any clear latitudinal gradient. 

4.6 Conclusions and Recommendations 

My proposed decoupled shrinkage and selection sparse factor model shrinks some 

elements (correlations between observed variables and factors) of the factor loading 

matrix to exact zeros. The performance comparisons based on the true positive rate, 

true negative rate, and true discovery rate between my proposed DSS sparse factor 

model and 𝒇𝒂𝒏𝒄 – based methods (Hirose and Yamamoto, 2015) for continuous case 

in simulation studies indicated that DSS sparse factor model had the higher true 

negative rate and true discovery rate than 𝒇𝒂𝒏𝒄 – based methods for a low 

dimensional data i.e. 𝑝 = 30 for most of the cases, and the highest true negative rate 

than 𝒇𝒂𝒏𝒄 – based methods for all the cases for a high dimensional data i.e. 𝑝 = 100.  

Simulation studies for discrete case showed that DSS sparse factor model using 

“Pointmass prior” had the highest true positive rate, true negative rate, and true 

discovery rates for most of the cases for a low dimensional data i.e. 𝑝 = 30, and the 

highest true negative, and true discovery rates for a high dimensional data i.e. 𝑝 =

100. 

 DSS sparse factor model outperformed 𝒇𝒂𝒏𝒄 – based methods in identifying the 

correct number of factors 𝑘 as in the true factor model both for low dimensional i.e. 

𝑝 = 30, and moderate dimensional i.e. 𝑝 = 100 data. 

DSS sparse factor model applied on real continuous (food) (Mumme et. al, 2019) and 

discrete (fish) (Smith, Duffy and Leathwick, 2013) data produced reasonably sparse 

i.e. 37% and 29% sparse factor models for food and fish data respectively. The low 

number of factors is another form of simplicity/sparsity of the final factor loading 

matrices, allowing for more meaningful interpretations of the factors for both the food 

and the fish data. 
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My proposed DSS sparse factor model is different from 𝒇𝒂𝒏𝒄 – based methods since 

it picks the final factor loading matrix using a range of tuning parameters (𝜌, 𝛾) to 

produce covariance matrices whose expected fit lies within the 90% credible interval 

of fit. The proposed DSS sparse factor model has an advantage over principal 

components analysis, or a maximum likelihood factor fit in automatically selecting the 

non-zero factor loadings.   

Using 𝑏𝑓𝑎 as the source of posterior samples to feed into DSS has a disadvantage of 

needing to pre-specify the number of factors. However, simulation studies showed that 

DSS sparse factor model frequently identified the correct numbers of factors,  as long 

as a “large enough” value was provided to 𝑏𝑓𝑎 (Table: 4.2) that is its desirable 

property. For future research, DSS sparse factor models may be extended to two 

groups’ cases where important similarities and differences between the factor loading 

matrices may be modelled. 
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Chapter - 05 

 

General Conclusions and Recommendations 
 

Significant work has been done in recent years to estimate covariance matrices when 

the dimension 풑 is greater than the number of observations 풏 i.e. 풑 > 풏.  However, 

there has always been a strong demand to develop methodologies to shrink some of 

the elements of the inverse covariance matrices and factor loading matrices to exact 

zeros in the context of multivariate analyses, such as Gaussian graphical models and 

factor analysis respectively. Sparse models allow for easier interpretations of the 

inverse covariance matrices (GGMs) and the factor loading matrices (sparse factor 

models). 

In this thesis, my main objectives were to develop methods to sparsify the inverse 

covariance matrix for one population, to sparsify the differences between two inverse 

covariance matrices from two populations, and to sparsify the factor loading matrix in 

the context of factor analysis. I am proposing a sparse, interpretable summary of a 

complex posterior distribution. I apply various shrinkage techniques to the relevant 

parameterization of the posterior mean covariance, and the uncertainty represented 

by the posterior distribution provides the relevant scale to understand when I have 

shrunk enough versus too much. My proposed Bayesian DSS approaches reduce the 

computational burden, are subjective but intuitive methods to select the level of 

sparsity, and are new and original. The proposed Bayesian DSS approaches can 

easily be extended to other circumstances such as two group case, sparse factor 

models, and non-normal cases. In this chapter, the findings regarding the three 

proposed methods are summarized in sections 5.1, 5.2, and 5.3 respectively. The 

recommendations and future directions are given in section 5.4. 

5.1 Decoupled Shrinkage and Selection for One Population 

I proposed a DSS method to shrink some elements of an inverse covariance matrix to 

exact zeros. My proposed DSS method is an extension of DSS applied to the 

regression setting by Hahn & Carvalho (2015). Sparse estimates of desired 

parameters from the posterior distribution are produced using my proposed DSS 



95 
 

method. My proposed DSS method generally produced sparser graphs than a range 

of existing sparsification strategies such as thresholding the partial correlations, 

credible interval, adaptive graphical 𝐿𝑎𝑠𝑠𝑜, and ratio selection, while maintaining good 

fit based on the log-likelihood. The DSS credible interval approach produced the 

sparsest graph for a real metabolites dataset (chapter 2), as compared to the graphs 

produced by other DSS-based methods. In simulation experiments, my DSS-based 

methods had better sensitivity and specificity for detecting true edges for cases with 

high dimension 풑 and large sample size 풏. For low 풑, DSS had comparable 

performance to the alternative methods. My proposed DSS approach still requires a 

subjective decision by the user in specifying the credible region corresponding to the 

“acceptable” loss of fit.   

5.2 Decoupled Shrinkage and Selection for Two Populations 

In Chapter 3, I extended my DSS approach to detect sparse sets of differences 

between two inverse covariance matrices from two samples. Application of the DSS 

method to the two-population case was motivated by Danaher et al.’s (2013) 

suggestion that the selection of the penalty parameter be guided by “practical 

considerations”, since overly dense models are produced by conventional criterion 

such as 𝐴𝐼𝐶, 𝐵𝐼𝐶 and cross-validation. The main contribution I made was using the 

combined posterior covariance mean 횺풄 instead of 푺 in fused Joint Graphical 𝐿𝑎𝑠𝑠𝑜 

(𝑭𝑮𝑳; Danaher et al, 2013), modifying the graphical 𝐿𝑎𝑠𝑠𝑜 penalty to adaptive 

graphical 𝐿𝑎𝑠𝑠𝑜 penalty, and making some elements identical by modifying the 

combined posterior mean inverse covariance matrix  횺풄
ퟏ. There were no existing 

Bayesian methods to infer identical elements (Peterson et al, 2015) between precision 

matrices, and my proposed DSS method filled this gap. Existing frequentist 

approaches produce progressively sparser sets of differences between the precision 

matrices, but they do not provide a criterion for selecting the values of tuning 

parameters. My proposed DSS method fills this gap as well through a data-driven 

approach to penalty selection. An advantage of my proposed DSS method for one 

population is its easy extension to the DSS method for two populations by introducing 

a new prior, without any separate implementation. Detecting a sparse set of 

differences was challenging for dense matrices for moderate sample sizes. I further 

demonstrate my DSS method to detect sparse sets of differences between the inverse 

covariance matrices with the cases and control metabolites datasets (chapter 3). 
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5.3 Decoupled Shrinkage and Selection Sparse Factor Models 

I applied the DSS method to factor analysis, to shrink some of the elements of the 

factor loading matrix to exact zeros. Based on the true positive rate, true negative rate, 

and true discovery rate for simulated data, my proposed DSS sparse factor model 

performed well overall for both continuous and discrete cases, in comparison with the 

existing 풇풂풏풄-based methods (Hirose and Yamamoto, 2015). Moreover, my proposed 

DSS sparse factor model outperformed the 풇풂풏풄-based methods in identifying the 

correct number of factors (Table: 4.2) as in the true factor loading matrices. Selection 

of the number of factors was challenging in both my proposed DSS sparse factor 

model and principal component analysis. However, DSS performed well if the upper 

limit on the number of factors provided to the algorithm was large enough. The 

proposed DSS sparse factor model produced meaningful factor loading matrices both 

for continuous food frequency questionnaire data (Mumme et al, 2019), and discrete 

fish abundance data (Smith, Duffy and Leathwick, 2013). Pre-specifying the number 

of factors is a limitation of my proposed DSS sparse factor model. 

5.4 Future Work 

Possible extensions to my three proposed methods are as follows: 

1. My proposed DSS approach for one and two populations could be extended to 

cases where the variables are observed as a multivariate time series rather 

than independently and identically distributed observations.  

 

2. For more than two populations, modifications in the joint graphical 

𝐿𝑎𝑠𝑠𝑜 algorithm could be done to penalize sum of differences or absolute sum 

of differences among three or more inverse covariance matrices. 

 
3. The copula approach could be used to make my sparse GGM method suitable 

for non-normal data.  

 

4. I used 풇풂풏풄 in my proposed DSS sparse factor model to shrink some of the 

elements of the factor loading matrix to exact zeros. Future research could use 

the 𝑶𝑭𝑨𝑳 penalty (Hui et al, 2018) to shrink some of the entire columns of the 

factor loading matrix to exact zeros. 
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5. My method for non-normal responses could be extended to specify a 

parametric marginal distribution such as the negative Binomial. 

 

6. The DSS sparse factor model for one population could be extended to develop 

a DSS sparse factor model for two populations to detect sparse sets of 

differences between two factor loading matrices.  
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 Appendix “A”  
 

True Factor Loadings Matrix for 𝒑 = ퟑ𝟎,𝒌 = 𝟐 & 𝒌 = ퟓ. 

Variables 
𝒌 = 𝟐 𝒌 = ퟓ 

Factor1 Factor2 Factor1 Factor2 Factor3 Factor4 Factor5 

X1 0.95 0 0.90 0 0 0 0 

X2 0.90 0 0.85 0 0 0 0 

X3 0.85 0 0.80 0 0 0 0 

X4 0.80 0 0.75 0 0 0 0 

X5 0.75 0 0.70 0 0 0 0 

X6 0.70 0 0.65 0 0 0 0 

X7 0.65 0 0 0.65 0 0 0 

X8 0.60 0 0 0.70 0 0 0 

X9 0.55 0 0 0.75 0 0 0 

X10 0.50 0 0 0.80 0 0 0 

X11 0.45 0 0 0.85 0 0 0 

X12 0.40 0 0 0.90 0 0 0 

X13 0.35 0 0 0 0.60 0 0 

X14 0.30 0 0 0 0.55 0 0 

X15 0.25 0 0 0 0.50 0 0 

X16 0 0.25 0 0 0.45 0 0 

X17 0 0.30 0 0 0.40 0 0 

X18 0 0.35 0 0 0.35 0 0 

X19 0 0.40 0 0 0 0.35 0 

X20 0 0.45 0 0 0 0.40 0 

X21 0 0.50 0 0 0 0.45 0 

X22 0 0.55 0 0 0 0.50 0 

X23 0 0.60 0 0 0 0.55 0 

X24 0 0.65 0 0 0 0.60 0 

X25 0 0.70 0 0 0 0 0.30 

X26 0 0.75 0 0 0 0 0.25 

X27 0 0.80 0 0 0 0 0.20 

X28 0 0.85 0 0 0 0 0.15 

X29 0 0.90 0 0 0 0 0.10 

X30 0 0.95 0 0 0 0 0.05 

              



99 
 

True Factor Loadings Matrix for 𝒑 = ퟑ𝟎,𝒌 = 𝟏𝟎 

Variables Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8 Factor9 Factor10 

X1 0.90 0 0 0 0 0 0 0 0 0 

X2 0.85 0 0 0 0 0 0 0 0 0 

X3 0.80 0 0 0 0 0 0 0 0 0 

X4 0 0.80 0 0 0 0 0 0 0 0 

X5 0 0.85 0 0 0 0 0 0 0 0 

X6 0 0.90 0 0 0 0 0 0 0 0 

X7 0 0 0.75 0 0 0 0 0 0 0 

X8 0 0 0.70 0 0 0 0 0 0 0 

X9 0 0 0.65 0 0 0 0 0 0 0 

X10 0 0 0 0.65 0 0 0 0 0 0 

X11 0 0 0 0.70 0 0 0 0 0 0 

X12 0 0 0 0.75 0 0 0 0 0 0 

X13 0 0 0 0 0.60 0 0 0 0 0 

X14 0 0 0 0 0.55 0 0 0 0 0 

X15 0 0 0 0 0.50 0 0 0 0 0 

X16 0 0 0 0 0 0.50 0 0 0 0 

X17 0 0 0 0 0 0.55 0 0 0 0 

X18 0 0 0 0 0 0.60 0 0 0 0 

X19 0 0 0 0 0 0 0.45 0 0 0 

X20 0 0 0 0 0 0 0.40 0 0 0 

X21 0 0 0 0 0 0 0.35 0 0 0 

X22 0 0 0 0 0 0 0 0.35 0 0 

X23 0 0 0 0 0 0 0 0.40 0 0 

X24 0 0 0 0 0 0 0 0.45 0 0 

X25 0 0 0 0 0 0 0 0 0.30 0 

X26 0 0 0 0 0 0 0 0 0.25 0 

X27 0 0 0 0 0 0 0 0 0.20 0 

X28 0 0 0 0 0 0 0 0 0 0.20 

X29 0 0 0 0 0 0 0 0 0 0.25 

X30 0 0 0 0 0 0 0 0 0 0.30 
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True Factor Loadings Matrix for 𝒑 = 𝟏𝟎𝟎, 𝒌 = 𝟐 & 𝒌 = ퟓ. 

Variables 
𝒌 = 𝟐 𝒌 = ퟓ 

Factor1 Factor2 Factor1 Factor2 Factor3 Factor4 Factor5 
X1 0.99 0 0.99 0 0 0 0 
X2 0.98 0 0.98 0 0 0 0 
X3 0.97 0 0.97 0 0 0 0 
X4 0.96 0 0.96 0 0 0 0 
X5 0.95 0 0.95 0 0 0 0 
X6 0.94 0 0.94 0 0 0 0 
X7 0.93 0 0.93 0 0 0 0 
X8 0.92 0 0.92 0 0 0 0 
X9 0.91 0 0.91 0 0 0 0 
X10 0.90 0 0.90 0 0 0 0 
X11 0.89 0 0.89 0 0 0 0 
X12 0.88 0 0.88 0 0 0 0 
X13 0.87 0 0.87 0 0 0 0 
X14 0.86 0 0.86 0 0 0 0 
X15 0.85 0 0.85 0 0 0 0 
X16 0.84 0 0.84 0 0 0 0 
X17 0.83 0 0.83 0 0 0 0 
X18 0.82 0 0.82 0 0 0 0 
X19 0.81 0 0.81 0 0 0 0 
X20 0.80 0 0.80 0 0 0 0 
X21 0.79 0 0 0.80 0 0 0 
X22 0.78 0 0 0.81 0 0 0 
X23 0.77 0 0 0.82 0 0 0 
X24 0.76 0 0 0.83 0 0 0 
X25 0.75 0 0 0.84 0 0 0 
X26 0.74 0 0 0.85 0 0 0 
X27 0.73 0 0 0.86 0 0 0 
X28 0.72 0 0 0.87 0 0 0 
X29 0.71 0 0 0.88 0 0 0 
X30 0.70 0 0 0.89 0 0 0 
X31 0.69 0 0 0.90 0 0 0 
X32 0.68 0 0 0.91 0 0 0 
X33 0.67 0 0 0.92 0 0 0 
X34 0.66 0 0 0.93 0 0 0 
X35 0.65 0 0 0.94 0 0 0 
X36 0.64 0 0 0.95 0 0 0 
X37 0.63 0 0 0.96 0 0 0 
X38 0.62 0 0 0.97 0 0 0 
X39 0.61 0 0 0.98 0 0 0 
X40 0.60 0 0 0.99 0 0 0 
X41 0.59 0 0 0 0.79 0 0 
X42 0.58 0 0 0 0.78 0 0 
X43 0.57 0 0 0 0.77 0 0 
X44 0.56 0 0 0 0.76 0 0 
X45 0.55 0 0 0 0.75 0 0 
X46 0.54 0 0 0 0.74 0 0 
X47 0.53 0 0 0 0.73 0 0 
X48 0.52 0 0 0 0.72 0 0 
X49 0.51 0 0 0 0.71 0 0 
X50 0.50 0 0 0 0.70 0 0 
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X51 0 0.50 0 0 0.69 0 0 
X52 0 0.51 0 0 0.68 0 0 
X53 0 0.52 0 0 0.67 0 0 
X54 0 0.53 0 0 0.66 0 0 
X55 0 0.54 0 0 0.65 0 0 
X56 0 0.55 0 0 0.64 0 0 
X57 0 0.56 0 0 0.63 0 0 
X58 0 0.57 0 0 0.62 0 0 
X59 0 0.58 0 0 0.61 0 0 
X60 0 0.59 0 0 0.60 0 0 
X61 0 0.60 0 0 0 0.60 0 
X62 0 0.61 0 0 0 0.61 0 
X63 0 0.62 0 0 0 0.62 0 
X64 0 0.63 0 0 0 0.63 0 
X65 0 0.64 0 0 0 0.64 0 
X66 0 0.65 0 0 0 0.65 0 
X67 0 0.66 0 0 0 0.66 0 
X68 0 0.67 0 0 0 0.67 0 
X69 0 0.68 0 0 0 0.68 0 
X70 0 0.69 0 0 0 0.69 0 
X71 0 0.70 0 0 0 0.70 0 
X72 0 0.71 0 0 0 0.71 0 
X73 0 0.72 0 0 0 0.72 0 
X74 0 0.73 0 0 0 0.73 0 
X75 0 0.74 0 0 0 0.74 0 
X76 0 0.75 0 0 0 0.75 0 
X77 0 0.76 0 0 0 0.76 0 
X78 0 0.77 0 0 0 0.77 0 
X79 0 0.78 0 0 0 0.78 0 
X80 0 0.79 0 0 0 0.79 0 
X81 0 0.80 0 0 0 0 0.59 
X82 0 0.81 0 0 0 0 0.58 
X83 0 0.82 0 0 0 0 0.57 
X84 0 0.83 0 0 0 0 0.56 
X85 0 0.84 0 0 0 0 0.55 
X86 0 0.85 0 0 0 0 0.54 
X87 0 0.86 0 0 0 0 0.53 
X88 0 0.87 0 0 0 0 0.52 
X89 0 0.88 0 0 0 0 0.51 
X90 0 0.89 0 0 0 0 0.50 
X91 0 0.90 0 0 0 0 0.49 
X92 0 0.91 0 0 0 0 0.48 
X93 0 0.92 0 0 0 0 0.47 
X94 0 0.93 0 0 0 0 0.46 
X95 0 0.94 0 0 0 0 0.45 
X96 0 0.95 0 0 0 0 0.44 
X97 0 0.96 0 0 0 0 0.43 
X98 0 0.97 0 0 0 0 0.42 
X99 0 0.98 0 0 0 0 0.41 

X100 0 0.99 0 0 0 0 0.40 
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True Factor Loadings Matrix for 𝒑 = 𝟏𝟎𝟎, 𝒌 = 𝟏𝟎 

Variables Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8 Factor9 Factor10 
X1 0.99 0 0 0 0 0 0 0 0 0 
X2 0.98 0 0 0 0 0 0 0 0 0 
X3 0.97 0 0 0 0 0 0 0 0 0 
X4 0.96 0 0 0 0 0 0 0 0 0 
X5 0.95 0 0 0 0 0 0 0 0 0 
X6 0.94 0 0 0 0 0 0 0 0 0 
X7 0.93 0 0 0 0 0 0 0 0 0 
X8 0.92 0 0 0 0 0 0 0 0 0 
X9 0.91 0 0 0 0 0 0 0 0 0 

X10 0.90 0 0 0 0 0 0 0 0 0 
X11 0 0.90 0 0 0 0 0 0 0 0 
X12 0 0.91 0 0 0 0 0 0 0 0 
X13 0 0.92 0 0 0 0 0 0 0 0 
X14 0 0.93 0 0 0 0 0 0 0 0 
X15 0 0.94 0 0 0 0 0 0 0 0 
X16 0 0.95 0 0 0 0 0 0 0 0 
X17 0 0.96 0 0 0 0 0 0 0 0 
X18 0 0.97 0 0 0 0 0 0 0 0 
X19 0 0.98 0 0 0 0 0 0 0 0 
X20 0 0.99 0 0 0 0 0 0 0 0 
X21 0 0 0.89 0 0 0 0 0 0 0 
X22 0 0 0.88 0 0 0 0 0 0 0 
X23 0 0 0.87 0 0 0 0 0 0 0 
X24 0 0 0.86 0 0 0 0 0 0 0 
X25 0 0 0.85 0 0 0 0 0 0 0 
X26 0 0 0.84 0 0 0 0 0 0 0 
X27 0 0 0.83 0 0 0 0 0 0 0 
X28 0 0 0.82 0 0 0 0 0 0 0 
X29 0 0 0.81 0 0 0 0 0 0 0 
X30 0 0 0.80 0 0 0 0 0 0 0 
X31 0 0 0 0.80 0 0 0 0 0 0 
X32 0 0 0 0.81 0 0 0 0 0 0 
X33 0 0 0 0.82 0 0 0 0 0 0 
X34 0 0 0 0.83 0 0 0 0 0 0 
X35 0 0 0 0.84 0 0 0 0 0 0 
X36 0 0 0 0.85 0 0 0 0 0 0 
X37 0 0 0 0.86 0 0 0 0 0 0 
X38 0 0 0 0.87 0 0 0 0 0 0 
X39 0 0 0 0.88 0 0 0 0 0 0 
X40 0 0 0 0.89 0 0 0 0 0 0 
X41 0 0 0 0 0.79 0 0 0 0 0 
X42 0 0 0 0 0.78 0 0 0 0 0 
X43 0 0 0 0 0.77 0 0 0 0 0 
X44 0 0 0 0 0.76 0 0 0 0 0 
X45 0 0 0 0 0.75 0 0 0 0 0 
X46 0 0 0 0 0.74 0 0 0 0 0 
X47 0 0 0 0 0.73 0 0 0 0 0 
X48 0 0 0 0 0.72 0 0 0 0 0 
X49 0 0 0 0 0.71 0 0 0 0 0 
X50 0 0 0 0 0.70 0 0 0 0 0 
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X51 0 0 0 0 0 0.70 0 0 0 0 
X52 0 0 0 0 0 0.71 0 0 0 0 
X53 0 0 0 0 0 0.72 0 0 0 0 
X54 0 0 0 0 0 0.73 0 0 0 0 
X55 0 0 0 0 0 0.74 0 0 0 0 
X56 0 0 0 0 0 0.75 0 0 0 0 
X57 0 0 0 0 0 0.76 0 0 0 0 
X58 0 0 0 0 0 0.77 0 0 0 0 
X59 0 0 0 0 0 0.78 0 0 0 0 
X60 0 0 0 0 0 0.79 0 0 0 0 
X61 0 0 0 0 0 0 0.69 0 0 0 
X62 0 0 0 0 0 0 0.68 0 0 0 
X63 0 0 0 0 0 0 0.67 0 0 0 
X64 0 0 0 0 0 0 0.66 0 0 0 
X65 0 0 0 0 0 0 0.65 0 0 0 
X66 0 0 0 0 0 0 0.64 0 0 0 
X67 0 0 0 0 0 0 0.63 0 0 0 
X68 0 0 0 0 0 0 0.62 0 0 0 
X69 0 0 0 0 0 0 0.61 0 0 0 
X70 0 0 0 0 0 0 0.60 0 0 0 
X71 0 0 0 0 0 0 0 0.60 0 0 
X72 0 0 0 0 0 0 0 0.61 0 0 
X73 0 0 0 0 0 0 0 0.62 0 0 
X74 0 0 0 0 0 0 0 0.63 0 0 
X75 0 0 0 0 0 0 0 0.64 0 0 
X76 0 0 0 0 0 0 0 0.65 0 0 
X77 0 0 0 0 0 0 0 0.66 0 0 
X78 0 0 0 0 0 0 0 0.67 0 0 
X79 0 0 0 0 0 0 0 0.68 0 0 
X80 0 0 0 0 0 0 0 0.69 0 0 
X81 0 0 0 0 0 0 0 0 0.59 0 
X82 0 0 0 0 0 0 0 0 0.58 0 
X83 0 0 0 0 0 0 0 0 0.57 0 
X84 0 0 0 0 0 0 0 0 0.56 0 
X85 0 0 0 0 0 0 0 0 0.55 0 
X86 0 0 0 0 0 0 0 0 0.54 0 
X87 0 0 0 0 0 0 0 0 0.53 0 
X88 0 0 0 0 0 0 0 0 0.52 0 
X89 0 0 0 0 0 0 0 0 0.51 0 
X90 0 0 0 0 0 0 0 0 0.50 0 
X91 0 0 0 0 0 0 0 0 0 0.50 
X92 0 0 0 0 0 0 0 0 0 0.51 
X93 0 0 0 0 0 0 0 0 0 0.52 
X94 0 0 0 0 0 0 0 0 0 0.53 
X95 0 0 0 0 0 0 0 0 0 0.54 
X96 0 0 0 0 0 0 0 0 0 0.55 
X97 0 0 0 0 0 0 0 0 0 0.56 
X98 0 0 0 0 0 0 0 0 0 0.57 
X99 0 0 0 0 0 0 0 0 0 0.58 
X100 0 0 0 0 0 0 0 0 0 0.59 
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