Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE NUTRITIONAL VALUE OF PROTEINS WITH SPECIAL REFERENCE TO:

- A) THE AVAILABILITY OF AMINO ACIDS IN MEAT MEALS TO CHICKS, AND
 - B) THE CHEMICAL CHANGES WITH HEAT-DAMAGE OF PURE PROTEINS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University

Margaret Nellie Wilson

1974

ABSTRACT

Meat meals are highly variable in protein quality and this may be due in part to heat-damage. This possibility was investigated by estimating the available lysine content of meat meals by chick growth assay. In addition, the combined urinary and faecal excretion of dietary amino acids by chicks, fed a meat meal as the sole source of protein, was determined, and by subtraction from the amount consumed, values for the apparent retention of dietary amino acids were obtained.

In a second part of the study, the mechanism of heat-damage to pure proteins was investigated. Since cross-linkages may form during heat-damage of proteins, enzymatic digests were examined for the presence of peptides with enzyme-resistant linkages. Samples of unheated and heat-damaged haemoglobin or globin were digested with either trypsin, or exhaustively, using several proteolytic enzymes.

Chick growth assay for lysine. A chick growth assay for lysine was developed using wheat gluten as the protein source in a semi-purified diet. The meat meals were added to the basal diet either at the expense of starch or by isonitrogenous substitution of wheat gluten.

Estimated potencies based on weight gain varied with the method of meat meal addition to the basal diet. This variation was probably due to an effect on the appetite of the chicks as estimates based on food conversion efficiency did not differ significantly with the method of meat meal inclusion.

The percentage of lysine biologically available in eight meat meals ranged from 61 to 105%, suggesting that some meals had been heat-damaged.

Apparent retention of dietary amino acids. Estimates of the apparent retention of essential amino acids in six meat meals ranged from 79 to 100%. The apparent retention of lysine was generally much higher than

the estimated potencies by chick growth assay. The difference in the two biological estimates indicated that other factors, apart from digestibility, and absorption and urinary excretion of peptides and amino acids, must be responsible for the reduced availability of lysine in heat-damaged proteins.

Tryptic digests of unheated and heated haemoglobin and globin. Several large fragments were isolated from digests of heated globin which were not present in digests of unheated globin. The fragments had more than one amino-terminal but individual peptides could not be separated. It was not possible to determine if cross-linkages were present.

Exhaustive enzyme digests of unheated and heated globin. A peptide was isolated from digests of heated globin which was not present in unheated globin digests. Results obtained indicated that the peptide was a cyclic tetrapeptide composed of equal quantities of lysine and aspartic acid. It was suggested that the peptide was the result of cross-linkages formed during heat-damage of globin, between the β -carboxyl groups of aspartic acid and the ϵ -amino groups of lysine.

It is considered that the formation of covalent bonds with the \(\begin{align*} \epsilon -\text{amino} & \text{groups} & \text{would} & \text{account for an appreciable proportion of the} \)

decreased availability of lysine in heat-damaged proteins.

PREFACE

I would like to thank my supervisors, Professor R.D. Batt, and Mr M.R. Patchell, for their interest and cooperation during this investigation. In particular, I wish to express my appreciation to Dr G.G. Midwinter for his advice, assistance and encouragement on many occasions. I am also very grateful for the aid and skill of the staff of the Poultry Research Centre and for assistance by the technical staff of the Chemistry, Biochemistry and Biophysics Department, Massey University. I am indebted to Dr W.S. Hancock for peptide synthesis, and to Dr D. Harding and Professor R. Hodges for mass spectrometry.

CONTENTS

CHAPTER		PAGE
	ABSTRACT	ii
	PREFACE	iv
	LIST OF TABLES	x
	LIST OF FIGURES x	ciii
I	INTRODUCTION	1
	Effect of heat-damage on carbohydrate-free proteins	3
	1. Amino acid composition of heat-damaged proteins	3
	2. Availability of amino acids from heat-damaged	
	proteins	3
	3. Nitrogen and amino acid digestibility of heat-	
	damaged proteins	6
	4. Rate of digestion of heat-damaged proteins	9
	a. <u>In vitro</u> digestion studies	9
	b. <u>In vivo</u> digestion studies	10
	5. Absorption and urinary excretion of amino acids	
	and peptides from heat-damaged proteins	11
	Conclusion	13
II	PART I : A, CHICK GROWTH ASSAY FOR LYSINE	15
	INTRODUCTION	15
	MATERIALS AND METHODS	18
	Management and conditions of chick experiments	18
	Diets	19
	Preparation of diets	19
	Meat meals	19

CHAPTER		PAGE
II (cont)	Chemical analysis	20
	Statistical analysis	20
EX	PERIMENTS WITH CHICKS AND RESULTS	22
	Experiment 1, development of basal diet	22
	Results	23
	Experiment 2, development of basal diet and	
	preliminary bioassay	23
	Results	26
	Experiment 3, bioassay of Meat meals, A, B and	C 28
	Results	29
	Experiment 4, bioassay of Meat meal, H	34
	Results	36
	Experiment 5, bioassay of Meat meals, D, E, F	
	and G	36
	Results	39
	Experiment 6, the effect of added oil on the	
	bioassay of Meat meal, F	39
	Results	43
III PART I	: B, APPARENT RETENTION OF DIETARY AMINO ACIDS	47
IM	TRODUCTION	47
MA	TENIALS AND METHODS	49
	Management and conditions of chick experiments	49
	Diets	49
	Collection of excreta	50
	Analysis of excreta samples	50
	Calculation of amino acid excretion and	
	apparent retention of dietary amino acids	50

				vii.
CHAPTI	ER .			PAGE
III	(cont)	EXPER	RIMENTS WITH CHICKS AND RESULTS	51
			Experiment 7, the apparent retention of amino	
			acids in wheat gluten	51
			Results	53
			Experiment 8, the apparent retention of amino	
			acids in meat meals	59
			Results	60
			•	
IV	PART	I : I	DISCUSSION	68
		A.	Growth assay for lysine	68
		B.	Apparent retention of dietary amino acids	70
		Compa	arison of available lysine estimates	71
V	PART	II:	MECHANISM OF HEAT-DAMAGE TO PURE PROTEINS	75
		INTRO	DDUCTION	75
		MATEI	RIALS AND METHODS	78
			Chemicals	78
			Preparation of haemoglobin and globin samples	78
			Heat-damaged haemoglobin or globin samples	78
			Enzymes	79
			Tryptic digests of haemoglobin or globin	79
			Exhaustive enzyme digests of globin	80
			Separation of peptides	80
			Detection of peptides	84
			Chemical analysis	85
		RESU	LTS AND DISCUSSION	87
		I.	Comparison of unheated and heated haemoglobin	87
			and globin samples	

CHAPTER			PAGE
V (cont)		Amino acid composition	87
		FDNB-reactive lysine	87
		Amino-terminal analysis	89
		Gel filtration of heated globin on Sephadex	
		G-50	89
		Rate of digestion with trypsin	93
	II.	Comparison of tryptic digests of unheated and	
		heated haemoglobin or globin	95
		Digest I	95
		Part A	96
		Part B	97
		Digest II	103
		Digest III	115
		Analysis of fractions from zones B and C from	
		heated globin	128
		Origin of fragments from zones B and C of	131
		tryptic digests of globin	
	III.	Comparison of exhaustive enzyme digests of	
		unheated and heated globin	133
		Exhaustive enzyme digests I	133
		Exhaustive enzyme digests II	138
		Purification of fraction XY	138
		Composition and size of compound XY-1	140
		Sequence studies with compound XY-1	141
		Structure and origin of tetrapeptide	148
		General comment	152

			ix.
CHAPTER			PAGE
	APPENDIC	ES	155
	1.	Diet data for chick experiments	155
	2.	Analysis of variance of bioassays	165
	3.	Amino acid sequence of bovine globin	169
	BIBLIOGR	APHY	171

LIST OF TABLES

TABLE		PAGE
I	Mean weight gain and food consumption, g/chick, 14 - 28	
	days, experiments 1 and 2	24
II	Diets: experiment 3	30
III	Mean weight gain, food consumption (g/chick) and feed	
	conversion efficiency (g gain/g food eaten) of chicks,	
	14 - 28 days; bioassay of Mm A, Mm B and Mm C,	
	experiment 3	31
IV	Diets: experiment 4	35
V	Mean weight gain, food consumption (g/chick) and feed	
	conversion efficiency (g gair/g food eaten) of chicks,	
	14 - 28 days; bioassay of Mm H, experiment 4	37
VI	Diets: experiment 5	38
VII	Mean weight gain, food consumption (g/chick) and feed	
	conversion efficiency (g gain/g food eaten) of chicks,	
	21 - 28 days; bioassay of Mm D, Mm E, Mm F and Mm G,	
	experiment 5	40
VIII	Diets: experiment 6	42
IX	Mean weight gain, food consumption (g/chick) and feed	
	conversion efficiency (g gain/g food eaten) of chicks,	
	14 - 28 days; bioassay of Mm F, with or without added	
	corn oil, experiment 6	44
X	Estimated potencies of meat meals (Mm A - Mm H), g lysin	ne/
	16 g N, with approximate 95% fiducial limits, calculated	l
	with either a) weight gain or b) feed conversion efficie	ency
	(FCE), as the response; experiments 3 - 6	45
IX	Body weight change and food consumption (g/chick per	
	seven day period) for each period of treatment regimes,	
	experiment 7	55

TABLE	•	PAGE
XII	Amino acid excretion by chicks fed either 2 or 4% protein	L
	diets, experiment 7	56
XIII	Amino acid excretion by chicks of dietary amino acids	
	from wheat gluten, experiment 7	57
VIX	Apparent retention (%) by chicks of dietary amino acids	
	from wheat gluten, experiment 7	58
XV	Body weight change and food consumption (g/chick per	
	seven day period) for each period of treatment regimes,	
	experiment 8	62
XVI	Amino acid excretion by chicks fed either a protein-free	
	diet or a 2% protein diet, experiment 8	64
IIVX	Apparent retention (%) by chicks of dietary amino acids	
	from meat meals (Mm A - Mm F), experiment 8	65
IIIVX	Amino acid excretion by chicks of dietary amino acids	
	from meat meals (Mm A - Mm F), experiment 8	66
XIX	% lysine available in meat meals by chick growth assay	
	(based on FCE), apparent retention and as FDNB-reactive	
	lysine	72
XX	Amino acid molar ratios of unheated and heated globin,	
	together with the combined residues of alpha and beta	
	chains of bovine globin	88
IXX	Amino acid molar ratios of fractions A, B and C from	
	heated globin compared with reported values for alpha and	ì
	beta chains of bovine globin	91
IIXX	Amino acid composition (μ mols/100 mg globin) of fraction	
	D from heated globin; unhydrolysed and hydrolysed	
	samples	92

TABLE		PAGE
XXIII	Outline of methods used with Digest I, unheated and	
	heated haemoglobin	96
VIXX	Outline of methods used with Digest II, unheated	
	haemoglobin	105
VXX	Outline of methods used with Digest II, heated	
	haemoglobin	106
IVXX	Outline of methods used with Digest III, unheated globin	116
XXVII	Outline of methods used with Digest III, heated globin	117
XXVIII	Amino acid composition and amino-terminal of fraction	
	3M2B-A (see Figure 21) from a tryptic digest of unheated	
	globin, together with the composition of two tryptic	
	peptides (∞-13 and β-5) from bovine globin	126
XIXX	Amino acid molar ratios and amino-terminals, of fractions	
	from zone B of tryptic digests of heated globin or	
	haemoglobin	129
XXX	Amino acid molar ratios and amino-terminals, of fractions	
	from zone C of a tryptic digest of heated globin	130
IXXX	Amino acid molar ratios of unhydrolysed and hydrolysed	
	samples of exhaustive enzyme digests of unheated and	
	heated globin	134
IIXXX	Amino acid molar ratios of compounds X, Y and XY-1,	
	isolated from exhaustive digests of heated globin	139
IIIXXX	Amino acid molar ratios with subtractive Edman	
	degradation of compound XY-1	143
VIXXX	Amino acid composition (nmols) and electrophoretic	
	mobility of bands formed on electrophoresis of a partial	
	acid hydrolysate of compound XY-1	146
XXXV	Possible structures for the tetrapeptide isolated from	
	heated globin	150

LIST OF FIGURES

FIGURE		PAGE
1	Effect of supplementary lysine on mean weight gains with	ı
	standard diets, experiment 2.	27
2	Effect of supplementary lysine on mean weight gains with	ı
	standard diets, experiments 3 - 6.	32
3	Effect of supplementary lysine on the feed conversion	
	efficiency of standard diets, experiments 3 - 6	33
4	Schematic diagram of treatment regimes in experiment 7	54
5	Schematic diagram of treatment regimes in experiment 8	61
6	Gel filtration of an extract, with 30% acetic acid, of	
	heated globin	90
7	Rate of trypsin digestion of haemoglobin.	94
	A, unheated; B, heated	
8	Digest I: Chromatography on Dowex 50-X2 of a tryptic	
	digest of haemoglobin. A, unheated; B, heated	98
9	Digest I: Gel filtration of a tryptic digest of	
	hasmoglobin. A, unheated; B, heated	100
10	Digest I: Chromatography on Dower 1-X2 of fraction 1	
	from a tryptic digest of haemoglobin. A, unheated;	
	B, heated	101
11	Digest I: Chromatography on Dowex 50-X2 of zone 6 from	а
	tryptic digest of haemoglobin. A, unheated; B, heated	102
12	Digest I: Chromatography on Dowex 1-X2 of fraction 2	
	from a tryptic digest of haemoglobin. A, unheated;	
	B, heated	104
13	Digest II: Gel filtration of tryptic digests of unheat	ed
	haemoglobin. A, 4 hour digest; B, fraction X	
	re-digested for 2 hours	107

FIGURE	P.	ΛGE
14	Digest II: Gel filtration of tryptic digests of heated	
	haemoglobin. A, 4 hour digest; B, fraction X	
	re-digested 2 hours	108
15	Digest II: Chromatography on Dowex 1-X2 of fraction 1	
	from a tryptic digest of haemoglobin. A, unheated;	
	B, heated	110
16	Digest II: Chromatography on Dowex 1-X2 of fraction 2	
	from a tryptic digest of haemoglobin. Λ , unheated;	
	B, heated	112
17	Digest II: Gel filtration of zones B and C from a tryptic	
	digest of heated haemoglobin. A, zone B; B, zone C;	
	C, fraction N from zone B	113
18	Digest III: Gel filtration of a tryptic digest of globin.	
	A, unheated; B, heated	118
19	Digest III: Chromatography on Dowex 1-X2 of fraction 1	
	from a tryptic digest of globin. Λ , unheated; B, heated	119
20	Digest III: Chromatography on Dowex 1-X2 of fraction 2	
	from a tryptic digest of globin. A, unheated; B, heated	120
21	Digest III: Gel filtration of zone B from a tryptic	
	digest of globin. A, unheated; B, heated	122
22	Digest III: Gel filtration of zone C from a tryptic digest	;
	of globin. A, unheated; B, heated	123
23	Digest III: Initial purification of fragments from zone B	
	of heated (3D2B-M to P) and unheated globin (3M2B-A)	124
24	Digest III: Initial purification of fragments from zone C	ŧ
	of heated globin (3D2C-E to H)	1 24
25	Digest III: Final purification of fragments from zone C of	
	heated globin (3D2C-E, 3D2C-F and two fractions from	
	3D2C_F)	107

FIGURE		PAGE
26	Chromatography on Beckman UR-30 resin of an exhaustive	
	enzyme digest of globin. A, unheated; B, heated	136
27	Map, by electrophoresis, of ninhydrin positive compounds	
	in an exhaustive enzyme digest of globin. Λ , unheated;	
	B. heated	137