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Abstract 

In any population of cells, individual cells grow for some period of time and then divide 

into two or more parts, called daughters. 1b describe this process mathematically, we 
need to specify functions describing the growth rate, size at division, and proportions into 

which each cell divides. In this thesis, it is assumed that the growth rate of a cell can be 
determined precisely from its size, but that both its size at division and the proportions 
into which it divides may be described stochastically, by probability density functions 

whose parameters are dependent on cell size and age (or birth-size). Special cases are also 
considered where all cells with the same birth-size divide at the same size, or where all 
cells divide exactly in half. 

We consider a population of cells growing and dividing steadily, such that the total cell 
population is increasing, but the proportion of cells in any size class remains constant. In 
Chapter 1, equations are derived which need to be solved in order to deduce the shape of 
the steady size distribution (or steady sizelage or sizelbirth-size distributions) from any 
given growth rate and probability distributions describing the division rate and division 
proportions. In the general case, a Fredholm-type integral equation is obtained, but if the 
probability of cell division depends on cell size only (i.e. not age or birth-size), and all cells 

divide into equal-sized daughters, then we obtain a functional differential equation. 

In two special cases, the resulting equations simplify considerably, and it is these cases 

which are explored further in this thesis. The first is where the probability of a cell 
dividing in any instant of time is a constant, independent of cell age or size. In Chapter 2, 
the functional differential equation resulting when cells divide into equal-sized daughters 
is solved for the special case where the growth rate is constant, and in an appendix the case 
where the growth rate is described by a power law is dealt with. The second case which 
simplifies is where the time-independent part of the growth rate of a cell is proportional 
to cell size. This case is particularly important, as it is a good first-order approximation 
to the real cell growth rate in some structured tissues, and in some bacteria. The special 

case in which this leads to a functional difl'erential equation is discussed in Chapter 3,-and 
the integral equation arising in the general case is dealt with in Chapter 4. Finally, the 
conditions under which the integral operator in Chapter 4 will be both square-integrable 
and non-factorable are discussed in Chapter 5. It is shown that if these conditions are 
satisfied then a unique, stable, steady size distribution will exist. 
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Chapter! 

Introduction and Model 
ForlDulation 

1.1 Unstructured Population Models 

Historically, the earliest population models developed were unstructured - they ignored 

the properties of individuals and considered only the total number of individuals in the 

population. In the eighteenth century, Malthus [35] analysed what we now term the 

human "population explosion", using the unstructured model of populations which we now 

write as 

dN �(t) == r}{(t), (1 .1 ) 

where }{(t) is the total population at time t. The population's intrinsic growth rate or 

Malthusian parameter, r, is given by 

r == f3 - p, (1.2) 

where f3 is the population's birth rate per unit time (per head of population), and p is the 

corresponding death rate. If r is independent of time, and r > 0, then the population will 

grow exponentially for all time. Note that in this model, and throughout this thesis, it is 
assumed that there is no immigration or emigration of individuals. 

An extension of this idea is to allow the Malthusian parameter, r == P - p, to vary with 

time. For example, r may be assumed to depend on the environment in some way, with 
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the population growing at a given instant if r > 0 and contracting if r < O. It is possible to 

look back at historical records and deduce the Malthusian parameter for any given periods 
in the history of a population - not surprisingly, this turns out to be positive during the 
"good times", and negative during wars and famines! 

For a more predictive model, it is often assumed that r is directly dependent on the 
total population N(t), and therefore only indirectly dependent on t. For example, we may 
decide that r should decrease as N(t) increases (possibly because of crowding effects or 
competition for resources), in which case a differential equation of the form 

tiN = 1()(1 _ ( N(t) )4)N(t) 
dt Nmax (1 .3) 

may be appropriate, with A. > 0 so the intrinsic growth rate is negative if N(t) > Nmax• The 
intrinsic growth rate for small N(t) is just 1(). If A. = 1 ,  then we have the usual form of the 
logistic equation first discussed by Verhulst [65] in 1838. The solution of (1 .3) with A. = 1 ,  
in conjunction with the initial condition N(O) = No, is 

where 

NllJIAX N(t) = 1 -Ae7Ol' 

Nmax A =l - - . No 

(1.4) 

(1 .5) 

The various other extensions of the logistic and alternative unstructured continuous-time 
population models that have appeared during the last two centuries can generally also be 
regarded as variations on (1 .1) in which r is dependent either on time t explicitly or on 
the total population N(t). One alternative which should be mentioned here because of the 
application it has found in biology generally, and in the study of tumor growth particularly, 
(Laird [32]; Simpson-Herren and Uoyd [51 ]), is the Gompertz growth law, proposed by 
Gompertz [1 2] in 1825. We can regard this model as one where the Malthusian parameter 
is proportional to the log of the ratio of the current population N(t) to some maximum 
population size Nmza., so 

':: = (-aIOg(:� )) N(t). 

If we once again let No be the population at time t = 0, then the solution is 

(N )[1-'-4 
N(t) =No ;: . 

(1 .6) 

(1 .7) 

Unstructured population models, based on total population alone, are useful where the 
individuals in a population are indistinguishable or where the observed differences do not 
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appear to influence the processes of birth and death. However, this is not the case for the 
cell populations discussed later in this thesis, nor is it the case for human populations. 
Because of the interest in human population growth, where the death rates and birth rates 
are most obviously dependent on the age of individuals, the first structured population 
models to appear were those structured on age. 

1.2 Age-Structured PopulatioDS 

The obvious deficiency of unstructured population models is that they ignore the differences 
between individuals. For example, in animal and human populations it is clearly a better 
approximation to make the birth rate fJ dependent on the number of females of child­
bearing age rather than on the total population. In order to do this, we need a model 
structured on age at least (the sex structure is often allowed for by ignoring the males 
altogether, and just modelling the female population!). Early work on age-structured 
populations was carried out by Euler in the 18th century (for an English translation see 
Smith and Keyfitz [54]), and in the early twentieth century by Lotka [34] and Sharpe and 
Lotka [50], with some mathematical rigour added in 1941 by Feller [11 ]. The problem was 
first formulated as a partial differential equation by M'Kendrick [36] in 1926, but it was 
not until the work ofScherbaum and Rasch [49] in 1957 and von Foerster [66] in 1959 that 
this approach was taken up again by mathematical demographers. 

In this approach, we consider a continuous number density n(a,t), such that at any time 
t, 1:: n(a,t)da is the number of individuals with age a lying between a1 and a2. Note 
that this approach requires that the numbers involved are in some sense "large", 80 that 
the approximation of the population by a continuous number density is reasonable. We 
assume that the proportions of individuals in any age range dying or giving birth are 
independent of time. It is then possible to define a death rate pea) and a birth rate (or 
"procreation rate") pea) such that p(a)dt and p(a)dt give the proportions of individuals of 
age a which die or give birth respectively in a short time period tit. Then for t,a > 0 we 
have a partial differential equation, 

lJn on 
&t + oa 

= -p(a)n(a, t), (1 .8) 

which can be regarded as a statement of number conservation. Equation (1 .8) is known, 
somewhat unjustly, as "von Foerster's equation". The initial condition at time t = 0 is 
given by 

n(a, 0) = 1IO(a), 
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and the boundary condition or "renewal equation" at age a = 0 is given by 

n(O,t) = looo p(a)n(a, t)da. (1.10) 

The book by Metz and Diekmann [37] discusses a wide range of structured population 
models, and has one chapter devoted exclusively to age-structured models. Age-structured 
models and the von Foerster equation are also discussed in Oster [39], and applications 
to cell populations are discussed by Trucco ([57] , [58] ) and Rubinow [46] . A more general 
approach would be to allow Jl and p to depend on t as well (which caters for possible 
environmental changes), or on the total population N(t) (Gurtin and Macamy [15]). 

1.3 Populations Structured on Many Properties 

Instead of considering a population structured on just one variable (such as age in the 
previous section), consider a population where the individuals are distinguished by say m 

properties, ! = {Xl ... X".}. One of these properties may be age, as in the previous section, 
and others may include such things as mass, height or chemical content. Each individual 
is born with a set of values for these properties, which may depend in some way on the 

properties of the parent, then these properties change as time goes on. 

In this thesis, attention is restricted to continuous properties of individuals only, by which 
we mean that between birth and death the properties of an individual change continuously. 
Following the ideas of the previous section, we define a continuous number density ne!, t) 
such that J ... ne!, t}4.x, tDab = {!:;a � ! � !b}, gives the number of individuals with properties 
in the range!a to !b. We will call the region in which it is possible for n to be non-zero 
o. Then given that there is no immigration or emigration, we can write a simple number 
balance at! E Cl symbolically as 

a . 

al(!' t) + v 1! = (birth rate) - (death rate), (1.11) 

where I! is the vector flux of individuals at ! in the m-dimensional property space. The 
birth and death rates are defined more clearly below. 

One way of characterising continuous structured population models is according to whether 
the processes are deterministic, in the sense that they are completely determined by the 
properties of the individUal! and the time t, or whether they are in some sense stochastic. 

Processes we may wish to consider in this light are: 
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• Growth rates, or rates of change of each property Xj. Section 1 .4 of this chapter 
looks briefly at the case where the growth of individuals is described as a stochastic 
process, but in the rest of this thesis it is assumed that the growth rate of the ith 
property of an individual is a determined entirely by the individual's properties; and 
the time I, so we may write the growth rate of the ith property as 

dxj di = gi(;, I). (1.12) 

• Birth Rates. Whether or not an adult will give birth will in general be dependent 
on its properties ; and time I. We will allow birth to be a stochastic process, by 
defining a birth rate P(;, I) such that P(;, 1)tIt gives the probability that an adult with 
properties; at time I will give birth in the next short time interval dt. We show later 
that the case of deterministic birth of individuals can be regarded as a special case of 
this general case. 

• Death Rates. We also treat death as a stochastic process, defining a death rate 
Jl(;, I) such that Jl(;, l)dt gives the probability that an adult with properties; at tune 
I will die in the next short time interval dl. Once again, deterministic death can be 
regarded as a special case of this general case. 

• Heredity. Each new-born individual must be given a set of properties to begin with. 
If heredity were to be modelled deterministically, then the properties of the newborn 
individual would be precisely given by some function of the properties of the parent. 
Instead, we describe heredity in a stochastic manner, defining a heredity function 
71(;,�,I) such that 71(;,�,I)4t gives the expected number of offspring with properties 
in the range ; to ; + 4t produced by an individual with properties � giving birth 
at time I. This heredity function 71 is non-local in that it describes the properties 
of an individual at one point ; in the property space in terms of the properties of 
another point�. Note that this formulation also means that the number of newborn 
individuals produced when an adult gives birth need not be deterministic. 

We need to consider two possibilities with respect to newborn individuals: 

• Newborn individuals may appear on a boundary of the region Q. Usually this means 
that one of the variables is age, a, as in the previous section, and newborn individuals 
appear as a flux over the boundary at a = o. In Chapter 4 we use a slightly different 
formulation in terms of birth-size instead of age, where newborn individuals appear 
on a boundary of a different type. 
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• Newborn individuals may appear throughout the region n. Usually this occurs when 
there is no age-like variable in the structured population model. 

1b simplify the following discussion we assume that all properties Xi are restricted to the 
region [0,00), so n = [0,00) x ... x [0,00). 

1.3.1 Models with Age 

Consider the case where all our functions are dependent on age a, time t, and m other 
variables -! = (Xl, . . .  Xm). Hence we write n(-!, a, t), gi(-!,a, t), p(-!,a, t), Jl(-!,a, t), and 77(-!,�, a, t). 
In this case, in the region n the vector flux I!. is given by I!. = �(-!, a, t)n(-!, a, t), so the number 
conservation law (1.11 ) is written as the partial differential equation 

an an � a -a 
+ -a + � o:(gi(-!,a, t)n) = -Jl(-!,a, t)n. 

t a i=l u'X, 
(1 .13) 

This equation is discussed in Oster and Takahashi [40], and a detailed derivation for the 
special case of populations structured on age a and one other variable X is given in Sinko 
and Streifer [52]. For a brief derivation of the general case, see Chapter 3 ofRandolph and 
Larson [43]. Note that because birth occurs on the boundary of n, there is no source term 
on the right hand side of (1 .13), and that the term containing the partial derivative with 
respect to a is particularly simple because � = 1 .  The initial condition corresponding to 

this PDE should be given in the form 

n(-!,a, O) = no(-!,a). 

The boundary condition (or "renewal equation") at a = ° may be written as 

n(-!, O, t) = kP(�,a, t)77(-!,�,a, t)n(�, a,t')d§da. 

(1.14) 

(1 .15) 

Fig. 1 .1 shows why this is so diagramatically for m = 2 - the number of individuals born 
in time dl with property 1 in the range Xl to Xl + dxl and property 2 in the range X2 to 
X2 + dx2 is simply the number in the lower box (which has height dl because � = 1), and 
this must equal the sum of the numbers of offspring from the individuals in all possible 
boxes like the upper one. 

If a boundary condition is needed at any of the other boundaries of n, we simply use the 
zero flux conditions 

gi(-!,a, t)n(-!, a, t)\x;=o = gi(-!, a, t)n(-!, a, t)\x;=oo = 0, i = 1, ... ,m. 
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a 

Figure 1 .1 :  The number of new-born individuals appearing over the boundary a = 0 in 
time tit with properties in the range (Xl ,X2) to (Xl + dxl , X2 + dx2) must equal the sum of all 
contributions from cells dividing in the appropriate proportions in the same time tit. 

For large age, we use 

n(�,oo,t) = O. (1 .17) 

Note that in some population models, a physwlogical or developmental age is used instead 
of chronological age. Under this formulation, individuals are still all born with age 
zero, but some small changes need to be made to (1 .13) and (1 .15) because � 1: 1 for 
physiological or developmental age. Van Sickle [64], Rubinow [47] and Sundareshan and 
Fundakowski [56] discuss models of this type, while Weiss [68] allows stochastic variation 
in the rate of change of physiological age. 

L3.2 Models without Age 

If none of the relevant properties of individuals are age-like variables, then a source term 
is required on the right-hand side of the PDE corresponding to (1 .13), but no boundary 
condition is necessary. The PDE becomes 

(1 .18) 

The last term in (1 .18) comes from equating the number of newborn cells formed in time tin 
some small m-cube in m-dimensional property space to the sum of contributions from cells 
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Figure 1 .2: The number of new·born individuals appearing in some short time interval lit, 
with properties in the the range (Xl,X2)  to (Xl + dxl,X2 + dx2), must equal the sum of all 
contributions from cells with properties (st ,$2) dividing in appropriate proportions in the 
same time dt. 

anywhere in the space dividing in appropriate proportions. Fig. 1 .2 shows the situation 

for m = 2, where the number of newborn cells formed in a short time lit with property 

1 in the range Xl to Xl + dxl and property 2 in the range X2 + dx2 is equal to the sum of 

contributions from cells with any properties (st ,$2) dividing in time lit. Alternatively, (1 .18) 
may be obtained by considering a model with age incorporated, but where the functions jJ, 
p, f, and gi, i = 1 ,  ... ,m, are in fact independent of a. We can then integrate (1 .13) over all 
age a, so that 

:,<1000 nda) + n(�, oo, t) - n(�, O, t) + i� �/gi(�, t) 1000 nda) = -jJ(�,t) 1000 nda. (1 .19) 

Now we use (1 .15) and (1 .17) to replace n(�, O, t) and n(�,oo, t) respectively, then replace 

fo n(�,a,t)da by n(�, t) to obtain (1 .18). 

Once again, if boundary conditions are required they are given by the zero-flux conditions 

(1 .20) 

1.4 Population Models with Non-Deterministic Growth Rates 

This thesis is concerned with steady size distributions arising in models of cell populations 

where birth, death, and heredity processes are stochastic, but growth rates are determine 

istic. However, it may be that there is experimental evidence showing significant variation 
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in the growth rates of individuals all with the same measured properties, and in this case 

the deterministic growth models discussed here would be inappropriate. In this section 

we take a brief look at the situation where the growth rate of individuals may be regarded 

as a stochastic process. The changes in a property are assumed to be local in the sense 

that the change in some time interval tu must tend to zero as III - o. 

Consider the growth rate of just one property of individuals, x say, which we will call size. 

'Ib simplify notation we will write just II(X, t). Then instead of writing the growth rate of 

x as g(x), we choose some short time period tu and for each x and t define a probability 

distribution r(x, t, e) such that r(x, t, e)de gives the probability that an individual with size 

x at time t will increase size x by between e and e + de in the next tu. Then for any x and t, 
ignoring birth and death terms for the moment, we have 

II(X,t + Ill) = 1: II(X - e,t)r(x - e,t,e)de. (1 .21) 

Expanding the expression inside the integral as a partial Taylor series about II(X, t)r(x, t, e) 
gives 

II(X,t + tu) = 
1: [1I(X,t)r(x,t,e) - e !(II(x,t)r(x,t,e» + � ::2 (II(X,t)r(x,t, e» - .. .J de (1 .22) 

We now assume that the probability density function r is sharply peaked about its mean 

for each x and t, so that we may ignore terms of order higher than two. Changing the order 

of differentiation and integration then gives 

n(x,t + tu) = n(x,t) 1: r(x,t,e)de 

-! [ n(x,t) L: £1(x,t,e) 4£] + �:; [1I(X,t) 1: �r(x,t,e) de] (1 .23) 

Now to simplify notation we make the following substitutions, using EO to indicate expected 

values for fixed x and t: 
L: r(e)de = 1 (1 .24) 

f: £1(e)de = E[e} (1 .25) 

L: �r(e)de = E[�] (1 .26) 

If we now include mortality and birth as in the deterministic case, writing J.l(x, t), fJ(x, t), 
and 11(X, s, t), (1 .23) becomes 

o 1 � [ ] II(X,t + M) = n(x,t) - Ox [(n(x,t)E[e]] + 2 {Jx2 II(X,t)E[�] 
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so that 

- p(x, t)n(x, t)&I+ kP(S, t)T1(X, S, t)n(s, t)ds&l, (1 .27) 

n(x, t + &I) - n(x, t) _ 

&I - a [ E[E] ] 1 [j2 [ E[e2]j - Ox (n(x, t) &I + '2 Br n(x, t)--:it 
- p(x, t)n(x, t) + kP(S, t)T1(X,s, t)n(S, t)ds. (1 .28) 

Now we let &I - 0 and define 

so 

g(x, t) 

D(x, t) 

an a 1 Q2 
at = -Bx [g(x, t)n(x, t)] + '2 or [D(x, t)n(x, t)] 

-p(x, t)n(x, t) + kP(S, t)T1(X,s, t)n(s, t)ds. 

(1 .29) 

(1 .30) 

(1 .31 )  

This is in the form of a Fokker-Planck equation (Cox and Miller [8]), where D(x, t) is called 

the dispersion coefficient, and g(x, t) approximates the mean growth rate. This second order 

partial differential equation (1 .31) incorporates stochastic birth and death, as in (1 .18), as 

well as stochastic growth rates of individuals. The only difference between this model and 

the deterministic models we consider elsewhere in this thesis is the term involving the 
dispersion coefficient D(x, t). 

For an alternative but similar approach to deriving (1 .31 ) in the context of structured 

populations, using the limit as &I - 0 of short finite transitions, see Ricciardi [44] or 

Weiss [68]. The book by Cox and Miller [8] diBCUBseS both this approach and an approach 

utilising Wiener processes in a more general context, and also contains a wider di8CU88ion 

of stochastic processes with the property that both the mean and variance are proportional 

to &I, so the definitions (1 .29) and (1 .30 above make sense. For a more general model A 
involving non-deterministic growth and transition probabilities, and another approach to 

deriving the Fokker-Planck equation, see Rotenberg [45]. 

In a "dispersion-like" model as described above, the growth rate of an individual is 

stochastic in nature and the trajectories of individuals with the same initial x value would 

be expected to cross and re-cross in x - t space (Fig. 1.3(a». Such a model would be 

inappropriate if the tnijectories of individuals were more like those shown in Fig. 1.3(b). 
A more appropriate model in this case might be to hypothesise some extra property of 
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Figure 1.3: Sample tnijectories of individuals with size Xo at time t = O. In case (a) the 
"dispersion-like" model given by (1.31) may be appropriate, whereas in (b) it would not. 

individuals, previously unused, which affects the growth rate of x, and include this as an 
extra dimension in a deterministic model. However, additional information or hypotheses 

would then be required to describe how this new variable changes with time, and how it is 

passed onto newborn individuals, so this approach may not be feasible in many situations. 

Kirkpatrick [29] makes the same distinction, calling the case shown in Fig. 1.3(b) the 
assignment at birth growth model, and that shown in Fig. 1 .3(a) the variable growth 

model. 

1.5 Cell Population Models with Size Structure Only 

In this thesis we will be concerned with populations of cells which reproduce by fission into 

two or more parts. During fission the original or parent cell disappears and is replaced by 

two or more newborn cells, called daughters. 

We will call a property of a cell a size if it is conserved during cell division, in the sense 

that the sum of the sizes of the new-born daughter cells must equal the size of the original 

parent cell. Properties which could be called the size of a cell include mass, volume, 

quantity of DNA, or in some cases lengtb.. A size may only take on positive values. We will 
restrict our attention to cell populations structured on a single size variable I only, with a 

strictly positive growth rate which we write as gl(/,t) > 0, VI. Our choice ofthe symbol I for 

the size variable here is motivated by the work in Chapter 4, where cell length is the size 
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variable chosen. We now write (1.18) as 
8 8 tX> 8tn(/, t) + 8lg1(/, t)n(/, t) = -p(/, t)n(/, t) + 10 P(S,t)71(/, s, t)n(s, t)ds. (1.32) 

S ize-structured models of cell populations were given prominence by a number of re­

searchers in the 1960's, including Collins and Richmond [7], Koch and Schaechter [30], 

Powell [42] and Painter and Marr [41]. More recently, there has been the mini-review by 

Tyson [6P], the papers by Koppes et al. [31] and Grover et al. [13], papers by 1Yson and 

DiekmsDD [61] and 1Yson and Hannsgen [62], and the book by Metz and Diekmann [37] 

which contains a good discussion of the special case of (1.32) where all cells divide exactly 

in half. 

When a cell divides, it generally does not split into daughters all of the same size, although 

this is clearly one limiting case which should be considered (Metz and DiekmsDD [37]). 
Experimentally, the most important quantity in predicting the size of a daughter cell from 

the size of the parent is the ratio of the daughter size to the parent size. This suggests that 

instead of using the heredity function 71(I, s, t) for cells reproducing by fission, we should 

define a probability density function/(P,I, t) such thatl(p, I, t)dp gives the probability that 

a particular daughter lies between fraction p and p + dp of the parent cell size, given that 

the cell was derived from a parent which divided at time t and size I. 

Now because p is the ratio of the size of a daughter cell to its parent, and we do not wish to 
allow negative cell sizes or daughters larger than the parent, we demand that the support 

of I as a function of p be some subset of [0, 1]  for all I and t. Further, I is a probability 

distribution so for all I and t we must havel(P,I, t) � 0, Vp and also 

fo1
/(P,I, t)dp = 1. (1.33) 

Finally, conservation of size properties requires that if the mean number of cells formed 

when an adult cell of size I divides at time t is a(/, t), then we must have 

101 
pl(p, I, t)dp = [a(/, t)r1 , (1.34) 

which requires a(/, t) > 1. Note that it is often assumed that cells divide into exactly two 

parts, in which case a is given the value 2 for alII and t. 

We note that 71(I,s,t)dlshould give the average number of daughter cells with size lto I +dl 
produced by a parent cell of size s at time t, which is terms ofl is 

I dl q(l,s, t)dl = a(s, t)f(- ,s, t)-. (1.35) s s 
12 



For simplicity, and because we are interested primarily in populations of cells which do not 

disappear or die by any mechanism other than fission, we assume that fission is the only 

way in which cells "die-. Hence the two separate functions P and p. as in Section 1.3 are 

unnecessary, and we simply define a function b(l, t) such that b(/, t)dt gives the probability 

that a cell of size I at time t will divide in the next short time interval dt. Using (1.35) and 

replacing P(l, t) and p.(l, t) by b(/, t), we write (1.32) as 

a a tJO I ds 
a,n(/, t) + 8lg1(/, t)n(/, t) = -b(I, t)n(/, t) + 10 b(s, t)a(s, ty"<-;,s, t)n(s, t)s· (1.36) 

The equation given by Sinko and Streifer [53] for the special case where cells always divide 

into two pieces whose sizes are in some fixed ratio, can be obtained by substitution of the 

appropriate combination of Dirac delta functions into (1.36). Equation (1.36) is the most 

general form of the equation for the number density n(/, t) in size-structured populations 

with deterministic growth and no cell death. However, noting as earlier that heredity is 

primarily dependent on the ratio of daughter to parent cell size, we assume throughout 

the remainder of this thesis that: 

• The fractional-size pdf,/, is dependent only on the proportionp, so we may wrltef(P) 

instead of/(P,I, t). It then follows from (1.34) that a is a constant. 

The PDE for a size-structured cell population with deterministic growth and stochastic 

division is thus 

a a lOO I ds 
a,n(l, t) + 8lg1(l, t)n(l, t) = -b(/, t)n(l, t) + a 10 b(s ,t)f(-;)n(s, t)s' 

which must be solved subject to an initial condition 

n(/, 0) = no(/) 

and the zero-flux boundary condition 

gIO , t)n(O, t) = #oo, t)n(oo, t) = o. 

1.6 Steady Size Distributions 

(1.37) 

(1.38) 

(1.39) 

If we now define a hazard rate hi such that hl(l, t)dl gives the probability that a cell which 

reaches size I at time t will divide before reaching size I + dl. Then 

hl(/, t)dl = b(l, t)dt, (1.40) 
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so 

where we know g(l, t) > O. 

b(l, t) hl(/, t) = 
g(l, t)

, (1.41) 

Now we are interested in steady size distributions (S S Ds) which can arise where the total 

number of cells in the population is increasing, but the proportion of the population in any 

given size range remains constant. This idea is £emiJiar from the demographic literature, 

where distributions of such quantities as age and height in a population are regularly 

tabulated and graphed, and the shape of "steady" age distributions, which develop in the 

presence of time-independent birth and death rates, are studied (Keyfitz [28]). Steady 

size distributions have been studied extensively in the bacteriological literature (e.g. 

Collins and Richmond [7], Lasota and Mackey [33], Koch and Schaechter [30], Tyson and 

Hannsgen [63]). Fig. (1.4) is an example of a experimentally measured S S D, taken from 

Harvey et al [22]. 

.6 .I 1 U lA 
Cell Volume epI) 

Figure 1.4: An experimentally measured steady size distribution (S S D) for Escherichia 
coli bacteria, taken from Harvey et al [22]. 

'lb find the equations governing the form of S S Ds, we look for separable solutions of (1.37) 

such that 

n(l, t) = N(t)y(/), (1.42) 

where N(t) is the total cell population at time t, and y(/) is a probability density function 

with 

1000 y(/)dl = 1, 
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and y(/) � 0, VI. 

In order to find such separable solutions, we assume: 

• The hazard rate is time-independent, so we may write h,(/) instead of hl(l, t) 
• The growth rate is separable with respect to time, 80 we may replace g,(l, t) by g(l)r(t) 

say 

These assumptions mean we restrict our attention to situations where environmental 

changes may increase or decrease the growth rate of all cells by the same proportion r(t), 
but these changes have no effect on the size at which cells divide. 

Given these assumptions, and making the substitutions b(/, t) = h,(/)g(l)r(t) from (1.41) and 

n(l, t) = N(t)y(l) from (1.42), (1.37) becomes 

dN d [00 I ds 
dty(/) + r(t)N(t) dlg(I)y(/) = -r(t)N(t}h,(/)g(I)y(I) + r(t)N(t)a 10 h,(s)g(s)f(;)Y(s)s' (1.44) 

Separation of variables in this equation leads to 

� _ 
-�g(l)y(l) - h,(l)g(l)y(l) + a 10 hl(S)g(Sy(�)Y(s)� = Q (1.45) r(t)N(t) - y(l) - . 

An expression for the unknown Q may be obtained from the right hand equality here, 

d [00 I ds Qy(l) = -d/g(l)y(l» - h,(l)g(l)y(l) + a 10 h,(s)g(s)f(;)y(s)s' (1.46) 

We now integrate over all I and apply the zero flux boundary condition which from (1.39) is 

g(O)y(O) = g( oo)y( 00) = 0 (1.47) 

and the normalising condition (1.43) to obtain 

Q = (a - 1) looo h,( l)g( l)y( l)dl. (1.48) 

Also from (1.45), we see that the growth rate of the population as a whole is dependent on 

this functional Q, with 

dN � = Qr(t)N(t). (1.49) 

In the simplest case, where the growth rate of individuals is independent of time, we may 

set r(t) = 1 so Q becomes the exponential rate of growth of the population. 
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An alternative expression for Q may be obtained by considering the rate of increase of the 

total size of all the individuals in the population. This can be found either by integrating 

first over all sizes then differentiating with respect to t, or simply by integrating the growth 

rate over all individuals in the population. Equating these gives 

! [1000 W(t)Y(l)dl] = 1000 N(t)y(l)g(l)dl, 

or 

': [1000 ly(l)dl] = r(t)N(t) 1000 
y(l)g(l)dl, 

then using (1 .49) we obtain 

Q = 
fooo g(/)y(l)dl 
fooo Iy( l)dl 

, 

(1 .50) 

(1 .51) 

(1 .52) 

so Q may also be regarded as ratio of the average growth rate of the individuals in the 
population to their average size. 

Rearranging (1 .46), the PDE for the SSD y(1) becomes 

d lOO I ds 
&g(/)y(/) = -(hl(/)g(1) + Q)y(/) + a hl(S)g(S)f( -)y(s)-, o s s (1 .53) 

which must be solved subject to the normalising condition (1 .43) and the boundary 
condition (1.47). Note that (1 .48) was deduced by integrating (1 .46) and applying the 
normalisation (1 .43) and the boundary condition (1 .47), so (1 .48) should be regarded as 

an alternative normalising condition rather than an independent equation. A non-zero 
normalisation condition of some sort is clearly necessary in order to obtain a non-trivial 
solution, because (1 .53) is homogeneous and therefore admits the solution y(/) == O. 

One special case is worth mentioning here, as it is used in both Chapter 2 and Chapter 3 
and has been considered extensively in the literature (e.g. Sinko and Streifer [53], Koch 

and Schaechter [30]). If all cells divide into exactly a pieces each of the same size, we can 

write 

f(P) = 6(p - a-I ), (1 .54) 

where 6(p - a-I ) is a translated Dirac delta function. We thus obtain the functional 

differential equation 

d 
&g(/)y(/) = -(hl(l)g(/) + Q)y(l) + �hl(al)g(al)y(al). (1.55) 

A more direct derivation of (1 .55) is discussed in the book by Metz and Diekmann [37]. 
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In Chapter 2, we solve this equation for the simplest possible case, where both g and hi 
are constants, and in Chapter 3 the case where g(/) = gl is considered along with various 

forms of hi (I). In Appendix D, a general method of solution is presented for equations of 

the form y'(x) = -p(x)y(x) + q(x)y(ax), which could be used to solve (1 .55) in any situation 

where Q is known. 

1.7 Cell Populations with age and size structure 

The case where an age variable is included along with a single size variable requires a 

similar set of definitions to the size-only case: 

• n(/, a, t) is the population number density, with n(1, a, t)dlda giving the number of cells 

in the size range I to I + dl and age range a to a + da at time t. 

• g(/, a, t) is the growth rate of a cell of size I and age a at time t. 

• f(P) is a pdf such thatf(P)dp gives the probability that a particular daughter cell lies 
between fraction p and fraction p + dp of the parent cell size. 

• a, the average number of newborn cells formed when an adult divides, is then given 

by a = (fJ pf(P )dpJ-l . 
• bC/, a, t) is the probability per unit time that an adult divides, 80 that b(/, a, t)dt gives 

the probability that an adult cell of size I and age a at time t will divide in the next 

short time interval dt. 

Using this notation, the pde for the number denSity. n(/, a, t) becomes (from (1 .13» 

() () () 
()tn(/,a, t) + ()a n(/, a, t) + mgl(l, a, t)n(/, a, t) = -b(/, a, t)n(/, a, t). (1 .56) 

This equation is discussed by Heijmans [24], as well as in a review by Oster [38], and a 

detailed derivation is found in Webb [67]. The initial condition corresponding to (1 .56) is 
given by 

n(/, a, O) = 1I()(l, a), (1 .57) 

and the zero flux boundary condition is 

gl(O, a, t)n(O, a, t) = gl(oo,a, t)n(oo, a, t) = 0. (1 .58) 
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'lb obtain a renewal condition at age a = ° corresponding to (1 .35) we substitute TI(I, s, a, t) = 
!If(�)  into (1 .15), giving 

10001000 I ds 
n(I, O , t) = a b(s, a, t)f(-)n(s, a, t)-da. o 0 s s 

(1 .59) 

Streifer [55] and Sinko and Streifer [52] contain good general discussions of size/age 

models, including forms of equations (1 .56) and (1 .59). Gyllenberg and Webb [1 7] discuss 

an elaboration of this model in which the cells are divided into populations of "quiescent" 

and "normal" cells. 

1.8 Steady Size/Age Distributions 

Corresponding to SSDs in the case of size-structured populations, steady size I age distri­

butwns can arise in a population of cells with size and age structure, where the proportion 

of cells in any given size and age range remains steady while the total population grows. 
This idea was first given prominence in a series of papers by Anderson, Bell and others in 

the late 1960's (Bell and Anderson [6], Anderson and Peterson [4], Bell [5], and Anderson 

et al [3]). Following the approach in section (1 .6), we look for separable solutions of (1 .56) 

such that 

n(l, a, t) = N(t)y(l, a), (1 .60) 

and we define the following: 

• N(t) is the total population at time t. 

• y(l, a) is the steady size/age distribution such that y(l, a)dlda gives the proportion of 

cells in the size range I to I + dl and the age range a to a + da, 80 

1000 1000 y(l, a)dlda = 1 .  (1 .61)  

• r(t) and g(l, a) are, respectively, the time-varying and time-independent components 

of the separable growth rate gl(l, a, t), such that 

gl(l,a, t) = g(l, a)r(t). (1 .62) 

• h,(l, a) is the time-independent hazard rate such that h/(I, a)dl gives the probability 

that a parent cell of size I and age a will divide before reaching size 1 +  dl, 80 

h (I ) 
b(l, a, t) ( I , a = 

g(l,a)r(t) ' 
1 .63) 
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Our assumption that hi is independent of time is equivalent to assuming that b is 
proportional to r( I). 

Note that these definitions assume the same separability and time-independence properties 

used in Section 1 .6. 

Substituting (1 .60), (1 .62), and (1 .63) into (1 .56), we obtain 

dN 8y f) 
(jiy(/, a) + N(/) f)a 

(/,a) + r(t)N(t) 8lg(/, a)y(/, a) = -r(t)N(t)hl(/,a)g(/, a)y(/,a) . (1 .64) 

The zero-flux boundary condition (1 .58) becomes 

g(O,a)y(O,a) = g(oo,a)y(oo,a) = 0,  

and the renewal condition (1 .59) gives 

1000 1000 I ds y(/, O) = r(t)a h,(s, a)g(s, ay( -)y(s,a)-da. o 0 s s 

(1 .65) 

(1 .66) 

Separation of variables in (1 .64) is not immediately possible as it was in the case where 

the population was structured on size only (equation (1 .45). This is reasonable, in the 

sense that we cannot expect separable solutions for n(/,a, t) of the form given by (1 .60) if 
the growth rate varies with time, because ;. = 1 implies that any variation of growth in 
size with time must also affect age structure. We proceed here assuming that r(t) = 1 80 

the growth rate ofindividuals is independent of time, but in later chapters we explore two 

more general ways of proceeding: 

• In Chapter 4, we reformulate the problem so that instead of looking for steady 

size/age distributions, we look for steady si.zelbirth-size distributions, which can 

exist in the presence of a separable time-dependent growth rate, then calculate the 
corresponding time-dependent size/age distribution from this . 

• In Chapter 5, we use a transformed time variable with respect to which steady 

size/age distributions are possible. 

Now setting 

r(/) == 1 , 

19 

(1 .67) 



separation of variables in (1 .64) leads to 

� _ -/ay(l, a) - &(g(l, a)y(l, a» - h/(l, a)g(l, a)y(l, a) 
_ Q � - �� - . (1.68) 

An expression for the unknown constant Q may be obtained by rewriting the right hand 

equality as 

() () Qy(l,a) = -()ay(l, a) 
-

81 (g(l, a)y(l, a» - h/(l, a)g(l, a)y(l, a). (1.69) . 

Proceeding as in Section 1.6, we integrate (1 .69) over all I and a and apply the normalisation 

condition (1 .61 ), the zero-flux condition (1 .65), and the renewal condition (1 .66) to obtain 

Q = (a - 1 ) f 1000 h/(l, a)g(l, a)y(l, a)dlda. 

The exponential growth rate of the total population is simply Q, because 

dN 
di = QN(t). 

(1 .70) 

(1.71) 

Once again, an alternative expression for Q may be obtained by considering the rate of 

increase of the total size of all the individuals in the population. Following the approach 

in Section 1 .6, we have 

or 

! [1000 1000 LN(t)Y(I, a)dlda] = 1000 1000 N(t)y(l, a)g(l, a)dlda, 

':: [loOO 1000 ly(l, a)dlda] = N(t) 1000 1000 y(l, a)g(l,a)dlda, 

then using (1 .71 ) we obtain 

Q 
_ 10 1000 g(l, a)y(l, a)dlda 
- fO 1000 ly(l, a)dlda , 

(1 .72) 

(1 .73) 

(1 .74) 

80 once again Q may be regarded as ratio of the average growth rate of the individuals in 
the population to their average size. 

Rearranging (1 .69), the PDE for the SSD y(l) becomes 

() () 
8ay(l,a) + 8lg(I, �)y(I, a) = -(h/(l, a)g(l, a) + Q)y(l, a), 

and substituting r(t) = 1 into (1 .66) the renewal condition at age a = 0 is 

10
00 
10
00 

I ds y(I,O) = a h,(s, aY( -)g(s,a)y(s,a)-da. o 0 s s 
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This system must be solved subject to the normalising condition (1 .61), and the zero flux 
boundary condition (1 .65). 

In the special case where all cells divide exactly into a pieces each of the same size, we 
have 

f(P) = 6(p - a-I ),  (1 .77) 

so the renewal condition may be written simply as 

y(/, O) = a2 1000 
h,(al,a)g(al,a)y(al,a)da. (1 .78) 

1.9 The Simplest Case: A Constant Probability of Division 

A major difficulty in dealing with (1 .53) or (1 .75) is the presence of the functional Q. In 
general, finding Q is diffi.cult, because it involves solving a transcendental equation, or 
some other iterative technique. For example, (1 .53), or (1 .75) in conjunction with (1.76), 

may be solved assuming a zero-flux boundary condition at 1 = 00 to obtain a solution 
in terms of the unknown Q. '1b find Q we then apply the zero-flux boundary condition 
at 1 = 0, which gives in general a transcendental equation known as a characteristic 
equation (Gyllenberg [1 7]). This terminology is similar to that used in demography, 
where a "characteristic equation" is used to determine the intrinsic rate of growth of 
age-structured populations (Keyfitz [28]). 

There appear to be just two situations in which Q can be known in advance. The first, 
simpler but less interesting case, arises when 

h,(l,a)g(/, a) = b, (1 .79) 

or, in the case of populations structured on size alone, 

h,(l)g(l) = b, (1 .80) 

where b is a constant. Note that this b is not the same as b(l,a, t) and b(/, t) defined in 
sections (1 .7) and (1 .5) respectively, as in this special case we have b(l, a, t) = r(t)b and 
b(/, t) = r(t)b. 
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Using (1 .79) or (1.80) and (1.48) or (1 .70), along with the appropriate normalisation 

condition for y, we then have simply 

Q = (a - 1 )b. (1 .81 ) 

Chapter 2 and Appendix B deal with size-structured populatioDB satisfying (1 .80), in which 

each cell divides into a daughters all of the same size. In this case we substitute (1 .81) 
into (1 .55), giving the simple functional differential equation 

d 
dlg(l)y(l) = -bay(l) + ba2y(al). (1 .82) 

In Chapter 2, a series solution is obtained for this equation in the special case where the 

growth rate g is a constant, and some interesting properties of the solution are outlined. 

In Appendix B, a series solution is obtained for the case where gel) is given by a power law. 

1.10 A Special Case: Cells in One-Dimensional Structured Tis­

sues 

The second case in which Q may be evaluated immediately is the case where the time­

independent component of the growth rate of cells is proportional to cell size, so that 

g(l, a) = gl. (1 .83) 

or, in the case of a population structured on size only, 

gel) = gl, (1 .84) 

where the g on the right hand side is a constant. The case where cells grow exponentially 

in size is a sub-case of this, with r(t) a constant. The constant g is arbitrary, as a given cell 
growth rate g, specifies what the product r(t)g must be, but neither g nor r(t) is specified 

uniquely. Indeed, we describe below a situation in which it is natural to choose g = 1 .  

'Ib find Q with (1.83) or (1 .84), we substitute into (1 .74) or (1 .52), respectively, to obtain 

Q = g. (1 .85) 

One situation in which (1.83) or (1.84) holds is of particular interest to plant scientists and 

others studying structured tissues. Fig. 1 .5 shows a longitudinal section of part of the 
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direction of growth 

Figure 1 .5: A longitudinal section of part of the meristem of a Zea mays root. This 
reproduction is taken from the data collected by Erickson for the classical paper by 
Erickson and Sax [9]. Growth of the tissue involves expansion in the direction shown, 
with cell division occurring by insertion of new cross-walls at right angles to the direction 
of growth. 
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meristem of a Zea mays root, which is typical oflongitudinal sections from roots or leaves 
in a large number of plant species. Growth of the tissue occurs mainly by expansion in 
one direction, with cell division occurring by insertion of new cross-walls at right angles 
to this direction. For this reason we refer to tissues like that shown in Fig. (1.5) as 

one-dimensional structured tissues. 

Direction of growth 
.. . 

Figure 1 .6: An idealised section of plant tissue growing by elongation in one dimension. 
Cells are arranged in files and are locked together by common longitudinal walls. When 
cells divide, new cross-walls (dashed lines) form within the parent cell, and two new cells 
are formed (i.e. a = 2). We assume there are sufficient files at right angles to the direction 
of growth to allow use of continuous number density and probability density functions. 

Fig. 1 .6 shows an idealised section of a root or leaf, elongating in a spatially homogeneous 
manner such that any two points a unit distance apart separate at a time-varying rate r(t). 
The assumption of spatial homogeneity will usually be applicable only to small regions 
of the growth zone; in large regions the rate of expansion r(t) will vary spatially in the 
direction of growth shown. As can be seen from Fig. 1.5, different files of cells in a 
one-dimensional structured tissue may contain dift'erent types of cells. We restrict our 
attention here to files of cells of a single type, where the idealisation exemplified by Fig. 

1 .6 is a good approximation. We take the size of a cell to be its length, I, in the direction of 
growth. The important characteristic of a structured tissue in this context is that it grows 
symplastically, i.e. with longitudinal files of cells locked together so that cells in adjacent 
files do not slip past each other. This means that all cells in a small region can be assumed 
to grow at the same relative growth rate r(t), so the growth rate for a cell of size I is 

gl(l, a, t) = Ir(t), 
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or, for size-only models, 

gJ(I, I) = lr(I). (1 .87) 

The time-independent part of the growth rate is then given by (1 .83) or (1 .84) with constant 
g = 1 . 

There are other situations where the time-independent component of the cell growth rate is 

proportional to cell size. In populations of bacterial cells, an exponential growth rate oftbe 
form (1 .83) or (1 .84) has been assumed by Tyson and Diekmann [61], while experimental 
evidence shows that exponential growth in cell size is a good approximation for some types 
of bacteria (Schaechter et al [48], Grover et al [13], Painter and Marr [41 ]), but not for 
others (Harvey et al [22], Anderson et al [3], Collins and Richmond [7], Grover et al [13], 
Painter and Marr [41]). 

In the case of a size-structured cell population, substitution of (1 .84) and (1 .85) into (1 .53) 
leads to 

(1 .88) 

or in the case where all cells divide into exactly a pieces each of the same size, we obtain 
from (1 .55) the functional differential equation 

: = -(hJ(l) + � )y(l) + rl hJ(al)y(al). (1 .89) 

In Chapter 3, (1 .89) is solved subject to the normalisation condition (1 .43), for a range of 
forms of the hazard rate hJ(I). 

For a population structured on size and age, we substitute (1 .83) and (1.85) into (1.75) to 
obtain the partial differential equation 

fiy fiy 
Ba 

+ glm = -(glhJ(l, a) + 2g)y(I,a), (1 .90) 

and from (1 .76) the renewal condition at a = ° is 1000 1000 I y(I, O) = ga hJ(s, a)f(-)y(s,a)dsda. 
o 0 s (1 .91) 

However, as pointed out in section (1 .8), the solution of these equations for the steady 
size/age distribution y(l, a) is valid only in the case where the growth rate of individuals is 

independent of time, so r(l) = 1 and the growth is strictly exponential. In Chapter 4 we 
reformulate the problem in terms of cell size and cell birth-size, instead of cell size and 
age, in order to obtain more widely applicable solutions. 
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In Chapter 5, we look at the question of whether the steady size, size/age, or sizelbirth-size 
distributions arising in this case are stable. In other words; given any initial distribution 
of cell size and age or birth-size, we look for conditions under which the size (or size/age or 
sizelbirth-size) distribution will approach the calculated steady distributions. 
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Cbapter 2 

The Equation y' (x) -ay(x) + aay( ax) 

This chapter is a slight modification of a paper published in the Journal of the Australian 
Mathematics Society, series B (Hall and Wake [18]). The introduction has been abbreviated 

as most of this material is covered in Chapter 1 (particularly Sections 1 .5,1.6, and 1 .9), but 

some extra mathematical detail, which was omitted in the paper for the sake of brevity, 

has been inserted into other sections. The notation used is the same as that used in 

Chapter 1 except that we use x instead of I to represent cell size. 

2.1 Introduction 

We consider here a cell population structured on one size variable x only, where each 

parent cell divides evenly to produce exactly a daughters all of the same size. Substituting 

f(P) = o(p - a-I ) into (1 .37) in Section 1 .5, the partial differential equation for the number 

density n(x, t) is 

{J {J 
{J/n(x, t» + ax(g(x, t)n(x, t» = -b(x, t)n(x, t) + a2b(ax, t)n(ax, t) . (2.1 ) 

We now look for a steady size distribution, y(x), which can develop under the conditions 

outlined in Section 1 .6. After following the development in that section, we replace h,( l)g(l) 
in (1 .55) by the single function b(x) to obtain a functional differential equation for y(x), 

d 
dx(g(x)y(x» = -[b(x) + Q]y(x) + �b(ax)y(ax), (2.2) 
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where Q is a functional on y(x) given from (1 .48) by 

Q = (a - 1 ) 1000 b(x)y(x)dt, 

and y is a probability density function 80 must satisfy the n ormalisation condition 

1000 y(x)dt = 1 .  

(2.3) 

(2.4) 

The case we consider here is the simplest non-trivial case, with b(x) and g(x) both constants, 

say b and g respectively. As pointed out in Section 1 .9, in the case where b(x) is a constant 

the value of the functional Q can be calculated in advance from (2.3) to be 

Q = (a - 1 )b. (2.5) 

While this case where g and b are both constants is not particularly realistic, its solution 

does offer some ideas which can be further explored in more realistic examples, as in 

Chapter 3. The equation to solve then becomes, after simplification using (2.4), 

g: = -bay(x) + ba2y(ax), 

which is just (1 .82) with g( l) replaced by the constant g. 

(2.6) 

Finally, assnming g :f 0 we can substitute a = a:, forming the functional differential 

equation 

: = -ay(x) + aay( ax), (2.7) 

which we wish to solve subject to the normalising condition (2.4) and a zero-flux boundary 

condition, which from (1 .47) is written 

y(O) = y(oo) = O. (2.8) 

Kato and Mcleod [27] have studied the equation y'(x) = ay(Ax) + by(x) subject to the initial 
condition y(O) = Yo. Here we show how with the aid of the integral condition the solution 

can be obtained directly by application of the Laplace Transform technique, and that 

the application of the integral condition (2.4) (instead of the more usual initial condition 

y(O) = Yo) leads to a solution which can be regarded as a probability density function (pdi), 

which has a number of interesting properties not previously investigated. We do not 
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restrict our interest to the case a = 2 which is usually used for cell growth, but rather 

treat (2.7) as an equation in which a can take on any real value a > 1 .  Fractional values, 

a = � say, could be regarded as representing a conbination of fusion processes, in which 

a number (q) of individuals fuse together to form one large entity, then this large entity 

divides into a number (p) of equal parts. We show that pure fusion processes, which would 

require a < 1 ,  cannot have a steady size distribution y(x) satisfying (2.7). 

2.2 Preliminaries 

We now proceed to study the solution of (2.7) and (2.4) in the region x � 0, ignoring the 

manner in which these equations were derived. As a first step in this process, we note that 

we may restrict our attention to a > 0, as y(tu) is undefined for a < 0, and a = 0 leads 

trivially to the simple solution y = ae-II%. We may also assume a :F 1 ,  as if a = 1 then (2.7) 

reduces immediately to y(x) = 0 which has no solutions satisfying (2.4). 

We shall first derive necessary properties of the solution, assuming at this stage that it 

exists. 

2.2.1 y(O) and y( 00 ) 

Condition (2.4) does not directly provide us with the initial condition y(O), but we can show 

that the realistic assumption y(O) = y( (0) = 0 can be derived from (2.7) and (2.4) alone. H 
we integrate (2.7) then take limits as x - 00 we get 

and so 

lim(y(x) - y(O» = lim(-a r'y(s)ds+ aa r'y(as)ds), %-+00 %-+00 Jo Jo 

%�(y(x» = -a + a + y(O), 

%�(y(x» = y(O) . (2.9) 

Now if y(O) :I 0 then y( (0) :I 0 so Jooo y(x)dx does not converge, contradicting (2.4). Hence 

we must have 

y(O) = 0 (2.10) 
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and 

lim (y(x» = O. %-00 (2.11 )  

The first of these results gives us the appropriate initial condition, and the second ensures 
that y(x) is of exponential order so Laplace transforms can be applied. 

It is interesting to note that ify(O) = 0, all derivatives ofy are also zero at x = O. This can 

be shown iteratively by first substituting x = 0 into (2.7) to show y' = 0, then differentiating 
(2.7) and substituting x = 0 to show y't = 0, and so on. Hence the solution is "infinitely 
flat" and therefore not analytic at x = o. 

2.2.2 Restrictions on y, a, and a 

Given y(O) = y( 00) = 0, and 10 y(x)dx = 1 > 0, it follows that y(x) is positive for some range 
of x values. It therefore has a maximum at some point X say, so from (2.7) we have 

o = -ay(x) + aay( ai), 

and so 

y( ax) = y(x) . 
a 

(2.12) 

Hence for a < 1 we would conclude y(ax) > y(x) contradicting the assumption that y has 
its maximum at x. Hence we must have 

a >  1 ,  (2.13) 

and no SSD can exist in the fu,sron case, where a < 1 .  

We can show y(x) > 0 (\Ix > 0) by considering the variable Z(x) = f%oo y(s)ds. Integrating 
equation (2.7) leads to 

100 y(s)ds = -aZ(x) + aa 100 
y(as)ds, 

so 

Z(x) = -aZ(x) + aZ(ax). (2.14) 

This is subject of course to the conditions Z(O) = 1 (from (2.4» and Z( 00) = o. 
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Assume for the moment that there exists a point Xl E (0, 00) at which Z'(Xl ) = -Y(Xl ) = 0, 

and Z(Xl ) i- O. Then Z( aXl ) = Z(Xl ) and there must be a point X2 � aXl such that Z'(X2) = 0 

and IZ(X2)1 � lZ(xt } l· 

Without loss of generality, assume Z(Xl ) > O. Then one of the following must hold: 

• (a) Z'( aXl )  > 0 in which case such a X2 must exist, or 

• (b) Z'(axl ) = 0 so we can choose X2 = axl , or 

• (c) Z'(axt } < 0 so 3x* E (Xl , axt ) such that Z'(x*) = 0 and Z(x*) > Z(xt }, so Z(ax*) > 
Z(axl ) also. Then we have axl < ax* < 00 but Z(ax*) > Z(axl ) and Z(ax*) > Z(oo), 80 

there must be some point X2 > axl where Z'(X2) = 0 and Z(X2) > Z(Xl )  as required. 

The argument for Z(Xl ) < 0 is almost identical. Hence we can find a sequence of points 

(XII) -- 00 as n -- 00, at which Z'(xlI) = 0, whose images under the function Z, (Z(lIt» f+ O. 
This contradicts Z( 00) = 0, so it follows that Z has no non-zero stationary points on (0, 00), 

so Z is monotonically decreasing with Z'(x) � 0 ("Ix > 0). As y(x) = -Z'(x) we have for X > 0 

y(X) � 0, 

so y(x) is a probability density function as desired. 

Now equation (2.7) can be written as the integral equation 

y(X) = a 1«% y(s)ds, 

so as y(x) > 0, a necessary condition for the existence of an SSD must be 

a > O. 

2.2.3 Uniqueness of the Solution 

(2.15) 

(2.16) 

(2.17) 

Let there be two solutions to (2.7) and (2.4), Yl (x) and Y2(X). Then the variable Z(x) = 

fzoo(Yl (s) - Y2(s»m must satisfy equation (2.14) but this time with the conditions Z(O) = 0 

and Z( 00) = O. Now if Z(x) i- 0 for any x, then there must be a stationary point Xl of Z such 
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that Z(Xl ) :F 0, which by a similar argument to that given above leads to a contradiction. 

Hence we have Z(x) == 0 so Z'(x) == 0 and 

Y1 (x) == Y2(X), 

so there can be at most one solution to (2.7) and (2.4). 

2.2.4 Moments of the SSD 

(2.18) 

Because of the integral condition (2.4), it is in fact easier to find the moments of the SSD, 

than the function y(x) itself. The nth moment ofy(x) about the origin is 

p" = 1000 x"y(x)d% 

so we multiply (2.7) by X' and integrate, giving 

1000 i'''(x)dx = -ap" + aa r. x"y(ax)d% 

and 

(2.19) 

(2.20) 

(2.21 ) 

where we have used integration by parts on the left and the substitution z = ax on the 

right. This procedure is equivalent to taking the Mellin Transform. of each side if the 

equation. We now rearrange (2.21) to obtain an iterative equation for J.4., 

(2.22) 

with from (2.4), 

JIG = ! .  (2.23) 

Now iterating n times, the nth moment ofy about the origin is given by 

n! 
(2.24) p" = 

a" 11::1 (1 - a-I) ' 

Hence the mean cell size, /J, is given by 

1 
(2.25) JJ = a(l _ a-I ) , 
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and the variance of the cell size, UJ, is 

The third moment about the mean, ma, can be shown from (2.24) to be 

2 
ma = Q8(1 _ a-i) ' 

80 the coefficient of SkeWneB8 �fJt is given by 

1fJJ. 
_ ma _ 2(a + 1 )�a2 - 1  

v' - a:a - a2 + a + 1  

Thus the coefficient of skewnes8 is dependent on a only. 

2.3 Solution of the SSD Equation 

(2.26) 

(2.27) 

(2.28) 

We now establish that equations ( 2.7) and (2.4) have a solution, which by section (2.2.3) 

is unique. We first take Laplace transforms of each side of (2.7), remembering y(O) = 0, 

giving 

(2.29) 

so 

PY(P) = ay(�) - ay(P). (2.30) 

Thus we have an iterative equation with an initial value given by the integral condition 

(2.4), 

with 

Iterating n + 1 times, we get 

1 p y(P) = 1 + eY(;)' 
tJ 

y(O) = 1 .  

y(P) = (1 + �)(1 + �) ... (1 + faal( a�+l )' 
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Now as a > 1 we know that 

so we get 

�Y(;+I ) = y(O) = 1 ,  

(P) _ lim TI
N 1 

Y -
N-ooo,,:o (1 + a-"�r 

Expressing this product 88 a sum of partial fractions we can write 

N 1 N Q.( -aa") TI (1 + a-"!)  = L (1 + a-"! ) '  ,,:0 • tc:O • 

(2.34) 

(2.35) 

(2.36) 

where Q,,(P) is the Pt:Oduct on the left hand side of this equation excluding the factor 
involving a-". Thus, 

1 
Q,,(P) = (1 + �)(1 + a-1 !) ... (1 + a-(,,-I )!)(l + a-("+1 )�) .. . (l + a-N�) (2.37) 

and 

Q,,( -aa") = (1 _ ate)(l _ ate-I ) .. . (1 _ a)(l � a-I )(1 _ a-2) ... (1 _ a-(N-,,» · (2.38) 

Simplifying and taking limits, we get 
1 00 1 1 y(P) = K ,,� (1 - a)(l - a2) . . . (1 - ate) (1 + a-"�) ' 

where the product in the denominator is given the value 1 when 11 = 0, and 
00 

K = TI (1 - a-"). 11=1 
Now taking the inverse laplace transform term by term we get 

( )  1 � 1 a" -11th Y X = K II� (1 _ a)(l _ a2) . . . (1 _ a")a e , 

so noting that a >  1 ,  we write 

a 00 ( -1 )"a"e-a-x 
y(x) = K II� (a - 1 )(a2 - l ) . . . (ate - 1 ) " 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

This solution is in the same general form as that given by Kato and Mcleod [27], but we 
have simplified the notation slightly by using the convention that when 11 = 0, the empty 
product in the denominator is given the value 1. 
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2.4 Discussion 

2.4.1 The Constant K 

The infinite product in (2.40), which gives the value of K, has been studied in some depth 
by number theorists and others. Perhaps the best known result involving this product, 
and one which offers a rapidly convergent way of calculating K, is Euler's Pentagonal 

Number Theorem (Andrews [2]). This is 

00 
il(l - q") = f (�1 )"q",..-l) 
11=1 

where Iql < 1 ,  so we have 

11=-00 

= 1 - (q + q'A) + (t! + q7) _ (tl'l + q15) + ... 

K = 1 - (a-1 + a-2) + (a-5 + a-7) _ (a-12 + a-15) + .. . . 

(2.43) 

(2.44) 

Another interesting (and rapidly convergent) series for K can be deduced by substituting 
p = 0 in (2.39) and using (2.32), giving 

K = I, (-1)" , 
11=0 (a - 1 )( a2 - 1 ) . . .  ( a" - 1)  

which could also have been deduced by substitution of q = a-I and z = -q in 
00 qill(II-1)z" 00 !o (1 - q)(1 _ if) ... (1 _ q") = !! (1 + zq"), 

(2.45) 

(2.46) 

which is also given by Andrews [2]. Once again, we are using the convention that the 

product in the denominator is given the value 1 when n = O. 

Another expre88ion for K, but one we do not actually use here, can be derived from a 
formula involving Jacobian elliptic functions. Formula 16.37.1 in Abramowitz and Stegun 
[1 ] leads to 

(2.47) 

which could be used to calculate K if we make the substitution q = a-i. This transfers the 
problem to relating the elliptic function parameter m to the nome q, which is possible via 
Landen's transformation. 
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2.4.2 Properties of the Solution 

From a cursory inspection of (2.42) alone, it is not at all obvious that y(x) satisfies all the 
properties that we deduced earlier it must have. 

Firstly, we calculate y(O) by substituting x = 0 in equation (2.42), which leads to 
a � (-1 )" a" y(O) = K !:o  (a - I )(a2 - I ) . . .  (a" - 1 ) "  (2.48) 

Consider the finite form. of the sum on the right hand side. Expanding the a" in the 

numerator as (a" - 1 ) + 1 ,  we get 

f (-1 )" a" 
11::0 (a - I )(a2 - I ) . . . (a" - 1) 

f ( -1 r( a" - 1 )  
+ f (-1 r (2.49) = 

,.::() (a - 1  )(a2 - 1 ) . . . (a" - 1) Il=O (a - 1 )(a2 - 1 ) . . . (a" - 1) "  
We then drop the first term. in the first sum on the right (which is zero), which means 
that we can cancel (a" - 1) from numerator and denominator then change the summation 
variable to m = n - 1 so 

f (-I )"a" 
11=0 (a - 1)(a2 - 1 ) . . .  (eJ'I - 1) 

= _
Nf (-I f' + f (-I r 
m=O (a - 1  )(a2 - I ) . . . (aM - 1) Il=O (a - I )(a2 - I ) . . . (a" - 1) 

(-I f = (a - I )(a2 - I ) . . .  (aA' - 1) "  (2.50) 

Taking limits as N -+ 00, by substituting (2.50) into (2.48) we have 

y(O) = � lim (-If = 0, K N-oo (a - I )(a2 - I ) . .. (aN - 1) 
because a > 1, so the denominator grows without limit as N -+ 00. 

(2.51 )  

1b verify by substitution that (2.42) satisfies the integral condition (2.4), we interchange 
the integral and summation signs (which is valid in view of the uniform convergence of 
the series), so 1000 

a 1000 00 ( -1 r et'rlla"% 
O y(x)d% - - L ��-:---:;.----::-�,--� - K 0 11=0 (a - I )(a2 - 1) .. .  (all - 1) 

= !. f (-1)" 
K ,,::0 (a - 1 )( a2 - 1 ) . . . ( a" - 1) , 
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then apply (2.45), giving 

(2.52) 

as required. 

Verifying the expression for the nth moment (2.24) by direct substitution of (2.42) in 

Jl,t = fooo x"y(x)d% requires a similar interchange of order, 

Jl,t = looo x"y(x)d% 

= a � ( -1 'ra'" 100 x" -ot-%dx K ".-:O (a - 1 )(a2 - 1 ) ... (tr"- 1 ) 10 e 

n! 00 ( -1)'" = Kd' lo (a - 1)( a2 - 1 ) ... ( aW'-- 1 )a- . 

We now apply (2.46) with z = _a-(II+I) and q = a-I then simplify further using (2.40), 
which gives 

n! 
= d'(1 - a-I )(1 - a-2) • • .  (1 - a-II) , (2.53) 

as required. 

2.4.3 An Example 

Consider a population of cells undergoing binary fission (a = 2) with a constant growth 

rate g of 0.2 size units per second, and a division rate b of 0 .1 per cell per second. Then 

and 

00 1 11  

ba a = - = 1  
g 

K = 1£1 - 2 ) 
11= " 1 1 1 1 1 1 = 1 - (2 + 4) + ( 32 + 128) - (

4096 + 32768
) + . . . 

::::: .288788 . 
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The mean, variance, and coefficient of skewness of the SSD are obtained by substitution 

in (2.25), (2.26), and (2.28) respectively, giving 

JJ = 2, (2.54) 

a2 4 (2.55) = 3 � 1 .3333, 

and v'/Jt 6-/3 (2.56) = 7 � 1 .4846. 
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Figure 2.1 : The solution for a = 1 and a = 2. The dashed line is the graph ofy(x) = ie-G. 
Figure 2.1 shows the shape of the SSD function y(x) in this case as given by (2.42). 

The qualitative features of Figure 2.1 remain for all a and a. The parameter a acts 

as a simple scaling factor for x (the substitutions t = ax and z(t) = y(x) make equation 

(2.7) independent of a). Equation (2.28) shows that the coefficient of skewness is always 

positive, increasing from 0 to 2 as a increases from 1 to 00. 

2.4.4 The Solution for Extreme Values of a 

In the light of the comments at the end of the example, it is worth considering the form 

of the solution when a - 00 and a - 1 +. The first is easy - if we write (2.42) in a form 
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similar to that given in Kato and Mcleod [27], namely 

a _Q 00 (-1 )1Ia"e-4I(a"-lF 
y(x) = Ke (1 + II� (a - 1 )(a2 - 1 ) ... (aII - 1 » ' (2.57) 

then it is clear that for all a, y(x) � fe-tlZ for large x, and that in particular for all x > 0 we 

have 

(2.58) 

Hence in the limit as a -- 00, y(x) approaches an exponential pdfwith parameter a. 

1 

.g 
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Figure 2.2: The normalised pM Y(z) = ay( az + Jl) for various values of a. The dashed line 
is the pdf of the standard normal distribution. 

The limit as a - 1 + is much more difficult. Inspection of (2.42) shows that each term 

in the series becomes infinite as a -- 1 +, and (2.24) shows that all the moments become 

infinite as well. This suggests that we "normalise" the equation using the transformation 

and 

x - Jl  
z = -­

a 

Y(z) = oy(x), 

where Jl and a are given by (2.25) and (2.26). 
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Figure 2.2, which shows Y( z) plotted for various values of a, suggests that in the limit as 
a - I +, Y(z) approaches the pdfofthe standard normal distribution N(O, I ). 

Substituting (2.60) and (2.59) into (2.4), Y must satisfy the normalisation condition 

Now differentiating (2.60) and (2.59), we get 

.J( ) _ r(:) 
J x - -:;r- , C1 

and making the appropriate substitutions in y(ax) = Y(z(ax)) we have 

( ) _ Y(az + (a - l );) y ax - . 
C1 

Now substituting (2.62) and (2.63) into (2.7) we obtain 

yI(z) 
= 

_a Y(z) + aa Y(az + (a - 1  )i) 
er- C1 C1 '  

(2.61 )  

(2.62) 

(2.63) 

(2.64) 

which after substitution for Jl and C1 using (2.25) and (2.26) gives "normalised" functional 
differential equation 

(2.65) 

Now to find out what happens as a - I  +, we expand the Y( az + .J a2 - 1 )  as a Taylor series 
about Y(z) up to all terms of order (a - 1 ), giving 

80 

yea: + v' a2 - 1 ) = Y(z + [(a - 1): + v' a2 - I D, (2.66) 

yea: + Ja2 - 1 ) � Y(z) + [(a - 1)z + .j  a2 - IJY'(z) + a2 2
- 1 Y" (z). (2.67) 

Substituting this expression into (2.65) and simplifying, we get 

aY(z) + a2zy'(z) + [(a + 1 ).j a2 - 1] Y'(:) + a2(� + 1 ) Y"(:) = O. (2.68) 

Substitution of a = 1 now leads to the second order differential equation 

Y"(:) + zY'(:) + Y(z) = 0, 
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with an integral condition given from (2.61 ) by 

1:00 Y(z)dz = 1 ,  (2.70) 

because from (2.25) and (2.26) we have lima-+l (Jl/O') = 00. 

It is trivial to show that 

Y(z) = Yl (Z) = e-� (2.71) 

is a solution of (2.69). A second (independent) solution can then be found by substituting 

say Y(z) = Y2(Z) = U(Z)Yl (z), leading (after cancellation OfYl (x» to 

U"(z) - zU'(z) = o. (2.72) 

One solution of this equation is 

U'(z) = e� , (2.73) 

so we may choose 

(2.74) 

The general solution of (2.69) is then 

(2.75) 

where Cl and C2 are arbitrary constants, and Yl(Z) and Y2(Z) are given by (2.71) and (2.74) 
respectively. Now applying (2.70), we note that Icoo Y2(Z)dz is infinite for all c, so we must 

have C2 = o. Hence Cl = Ai, and the only solution to (2.69) and (2.70) is 

1 _.t Y(z) = rn=e T ,  
v21r 

which is the pdf of the standard normal distribution as expected. 

(2.76) 

Consideration of the neglected terms in (a - 1) shows that we can write, for all a close to 

1, 

(2.77) 
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Reverting to the original coordinates, we can then say that for a close to 1 ,  

y(x) =
" 
�e-(·;JI (1 + o(Ja - 1 ») , (2.78) 

where J.l and a2 are given by (2.25) and (2.26) respectively. Thus as a - 1 +, y(x) approaches 

the pM of a normal distribution. 

Clearly, if the limit as a - 1 + of the SSD is a normal distribution, the expression given 

in (2.24) for the nth moment of the distribution should tend to the expression for the 
corresponding nth moment of the normal distribution. In Appendix A, we show that this 
is true provided that 

lim [ (1 + q) 1 I,(-1t n! ] _  { 0 , n odd 
q_1- 1 - q t=O (n - k)!k!q -

(n - 1 )! !  , n even 
(2.79) 

This result is then proved, as this has apparently not been done elsewhere in the 

combinatorial literature. 

2.4.5 The Form of the Time-dependent Number Density n(x, t) 

Assuming that r( t) = 1 80 the growth rate is independent of time, then substituting b(x) = b 
and Q = (a - 1 )b) into (1 .49), gives 

so 

dN di = N(t)( a - 1 )b, (2.80) 

N(t) = Noe(a-1)bt, (2.81 ) 

where No = N(O). We can now substitute (2.42) and (2.81 ) into n(x, t) = N(t)y(x) to obtain 

the separable form of n(x, t) which applies when the size distribution is given by the SSD, 

n(x, t) = N(t)y(x) 

= aNo (a-1 )bt I, (-1 )"a"e-a-z 
K e 

lI=o (a - 1 )(a2 - 1 ) .. . (a" - 1 ) " 
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Chapter 3 

Size-Structured Models for Cells 
Growing Exponentially 

This chapter is a slight modification of a second paper published in the Journal of the 
Australian Mathematics Society, series B (Hall and Wake [19]). The introduction has once 
again been abbreviated, the first part being in fact identical to that of Chapter 2. The 
remainder of the paper has been slightly expanded, with some extra mathematical detail 
being inserted. The notation used is the same as that used in Chapter 1 except that we 
use x instead of I to represent cell size. 

3.1 Introduction 

We consider here, as in Chapter 2, a cell population structured on one size variable x only, 
where each parent cell divides evenly to produce exactly a daughters all of the same size. 
Substituting/(p) = 6(p - a-I ) into (1 .37) in Section 1.5, the partial differential equation 
for the number density n(x, t) is 

{J {J 
{J,(n(x, t» + {Jx(g(x, t)n(x, t» = -b(x, t)n(x, t) + a2b(ax, t)n(ax, t). (3.1 ) 

We once again look for a steady size distribution, y(x), which can develop under the 
conditions outlined in Section 1 .6. After following the development in that section, we 
replace h,(l)g(l) in (1.55) by the single function b(x) to obtain a functional differential 
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equation for y(x), 
d 
dt(g(x)y(x» = -[b(x) + Q}y(x) + a2b(ax)y(ax), (3.2) 

where Q is a functional on y(x) given from (1 .48) by 

Q = (a - 1 ) 1000 b(x)y(x)d:t. (3.3) 

We note here that all cells must be of positive size, so we may set y(x) == 0 for x < 0, and as 

y(x) is a probability density function it must satisfy the conditions 

and 

1000 y(x)dx = 1 ,  (3.4) 

y(x) � O. (3.5) 

It is difficult to see how to obtain closed-form solutions to (3.2) subject to (3.4) and (3.5) in 
the most general case, most obviously because of the presence of the unknown functional 
Q. However, as pointed out in Sections 1.9 and 1 .10, in two simple cases we can find Q 
readily. The first of these is if b(x) = b, a constant, so that from (3.3) Q = (a - 1 )b. A 
solution for this case with g(x) also constant was given in Chapter 2. In Appendix B, a 
solution with b(x) constant and g(x) = gr-k (k > 0) is obtained by using the transformation 

Z(x) = g(x)y(x) to obtain an equation of the same form as equation (3.20) below. 

As discussed in Section 1.10, the case where 

g(x) = gx, (3.6) 

where the g on the right hand side is a constant, is of particular importance, both for 
cells in one-dimensional tissues and also for some types of bacterial cells. In this case, as 

pointed out in Section 1.10, (3.3) may be replaced by 

Q = g. (3.7) 

Ifr(t) = 1 ,  then g(x) = gx corresponds to the case where the cells grow in size exponentially 
during their life cycle. 

Substituting (3.6) and (3.7) into (3.2), we obtain a functional differential equation similar 
to (1.89), 

gxy'(x) = -[b(x) + 2g)y(x) + a2b(ax)y(ax). (3.8) 
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In this chapter we seek solutions to this equation, subject to the normalising and non­
negativity conditions (3.4) and (3.5). 

3.2 Preliminaries 

In Appendix D, it is shown that 

y = 6(x), (3.9) 

where 6(x) is the Dirac delta function, is a generalised solution of(3.8) for all forms of b(x), 
and is in fact a solution of (3.2) for any g(x) such that g(O) = O. Further, it is shown that 
y(x) = 6(x) is the only non-negative1 generalised solution satisfying (3.4), and therefore 
the only generalised solution'which may be regarded as a probability distribution. The 
existence of this solution is reasonable in that it says that if we have a population all of 
size zero at any time, this situation will not change provided g(O) = o. 

We now look for classical solutions to (3.8) subject to conditions (3.4) and (3.5). Multiplying 
(3.8) by x and rearranging gives 

g[x2y'(x) + 2xy(x)] = -xb(x)y(x) + a2xb(ax)y(ax). 

This suggests the change of variable 

to give 

Setting 

simplifies (3.12) to 

Z(x) = .ry(x) 

gZ'(x) = _ b(x)Z(x) + b(ax)Z(ax). x x 

a(x) = b(x) 
gx 

Z'(x) = -a(x)Z(x) + aa(ax)Z(ax). 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

1 A generalised function /(x) is defined as non-negative if for all appropriately -BJDooth- Don-negative teat 
functions ;(x) we have f�oo/(x);(x)dz � O. 
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This equation needs to be solved subject to Z(X) � 0 and either of the conditions 

or 

1000 Z�:) dx = 1 ,  

100 a(x)Z(x) 
dx = 

1 
10 x a - I '  

(3.15) 

(3.16) 

Here the second condition follows either from Q = g, or from integration by parts and 

substituting from (3.14). Equations (3.14) and (3.15) together are equivalent to (3.14) and 

(3.16) together. 

Note that equation (3.14) can be written in the integral form 

Z(x) = 1"" a(s)Z(s)dJ, (3.17) 

which despite superficial similarities is very different from the classical Volterra integral 
equation. It follows that 

Z(O) = 0, (3.18) 

then substitution into (3.14) and its derivatives shows that 

z{1I}(0) = 0 , "In � O. (3.19) 

Hence any solution to (3.14) must be non-analytic (-mfinitely flat") at the origin. 

In the next three sections we examine solutions of (3.14) subject to (3.15) or (3.16) for 
different forms of b(x). We find solutions involving series of exponentials for the two cases 

b(x) = bxl and b(x) = bxlH(x - Xl ), and then describe a general method of solution in cases 

where b(x) is zero below some mjnjmum size for division XI . and becomes infinite at some 
maximum cell size X2. A general method for solving functional differential equations of 
the form (3.14), involving series of multiple integrals, is outlined in Appendix C. 

/ 
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3.3 The case b(x) = bxk 

In this case, we have a(x) = � = axl-1 say (where a = :), so that (3.14) becomes 

Z'(x) = xk-l (-aZ(x) + a�Z(ax» . 

We now make the substitutions z = � and Y(z) = Z(x), so 

Z'(x) = Y'(z): = xk-1 Y'(z) 

and 

Z(ax) = Y« a;)k ) = Y(�z), 

then (3.20) becomes (after cancellation of xk-1 ) 

Y'(z) = -aY(z) + a�Y(�z). 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

This equation is in the same form as that dealt with in Chapter 2, except that the 
normalisation required will be different. Using (2.42), we can therefore write the solution 
immediately, which in terms of the variables used here is 

00 ( -1 )" ab' _01-, Y(z) = c,,� (at - 1 ) . . . (ab' _ 1 )e , (3.24) 

where by convention the expression in the denominator is given the value 1 when n = o. 
This solution is unique apart form the multiplicative constant C. Now reverting to our Z 

and x notation we obtain 

_ 00 
( -1)"ab' -G� Z(x) - c 1 (at - 1) ... (ab' _ 1 )e 

The probability density function for the SSD is then given (from (3.11» by 

Z(x) 
y(x) = -2 ' X 

(3.25) 

(3.26) 

with the constant C to be evaluated from condition (3.16), which can be written in this 
case as 

(00 �k-2 1 
lo X"� 

Z(x)dt = a(a - 1 r 
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Note that if k = 0 the transformation, and therefore the solution, is ill-defined, and for 
k < 0 the series does not converge. The solution is therefore valid only for 

k > O. (3.28) 

Obtaining the solution (3.25) was straightforward because we managed to transform the 
original problem into one for which the solution was known. However, using the integral 
condition (3.27) to find the constant C is not so easy, as it involves carrying out the the 
integration in 

(3.29) 

for all k > O. 

For 0 < k 5 1, care must be taken over interchanging the integral and summation signs in 
this expression, as Jooo xPe-

%dx does not exist for p 5 -1 .  It is necessary to treat two cases 

separately: k = m-I for some integer m, and k f; m-I for any such m. 

3.3.1 The Case k =f:. m-I 

Firstly, consider the integral Jooo xPZ(x)dx, where p f; -1 . Integrating by parts, we get 1000 [ xP+I 1 00 1 1000 X'Z(x)dx = --lZ(x) - --1 X'+1Z'(x)dx. o p + 0 p + 0 (3.30) 

Now the square-bracket term is zero because Z is infinitely fiat at the origin, and 
l'Hopital's rule together with the zero-flux boundary condition can be used to show that 
lim%_ooxPZ(x) = 0 for all real p. We can then substitute from (3.20) for Z'(x) to give 

1000 X'Z(x)dx = -p! 1 [-a 1000 x'+lZ(x)dx + , aa1 1000 X'+lZ(ax)dx] , (3.31) 
then change variable from x to ax, giving 

foo X'Z(x)dx = 
a(l - a-CP+l » foo X'+lZ(x)dx. 

Jo p + 1 Jo (3.32) 

If we apply this iteration m times, starting with p = k - 2, (and remembering that 
km # 1 , 'im E [+) we get 

foo xl-2Z(x)dx = ""(1 - al-k)(l - al-21) 
• • •  

(1 - ai-IRk) foo xCm+l )k-2Z(x)dx. (3.33) 10 (k - 1 )(2k - 1 )  . . .  (mk - 1 )  Jo 
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Now for all k > 0, it is possible to choose m E 1+ such that k > "'�i - for k > 1 we would 
choose m = O. With such a choice of m, we can now substitute for Z(x) and interchange the 

summation and integral signs to give 

a"'(1 - a1-k)(1 - al-2A:) . . .  (1 _ a1--) C Ck - 1 )(2k - 1 )  . . . (mk - 1 )  
. I, (-1 )lIaD (00 X<"'+1)A:-2e-a� dx. 
11=0 (al - 1 )  ... (ab' - 1) 10 (3.34) 

Note that for k < "'�i the interchange would not be permitted as the resulting integral 
would not be finite. 

Making the natural substitution z = iaMxk we get 

and 

80 

r-1 = (;) "'-1 �(1-->z"'-1 

-Ilk xk-1 dx = �dz, a 

= c (!)"'-l a"'-1 (1 - a1-k)(l - al-2A:) . • •  (1 - a1--) 
a (k - 1 )(2k - 1 ) . . .  (mk - 1) 

00 (-1 )lIaII(l-_> (00 1 
• II� (ak - 1 ) .. . ( ab' - 1 )  10 z"'- e-'dz. 

In order to simplify this complicated-looking expression, we define 

00 (-1 )11/1' K(a,fJ) = It;' (a - 1) . . .  (� - 1 ) '  

(3.35) 

(3.36) 

(3.37) 

(3.38) 

which may be regarded as a generalisation of the definition of the constant K in 2.40. The 
function K( a, fJ) defined in (3.38) has a number of useful properties. Firstly, if we take the 

well-known identity (e.g. Andrews [2], Goulden and Jackson [14]) 
00 qlll(lI-l )r" 00 1: ( q2 = n(l + uf), 11::0 (1 - q) 1 - ) ... (1 - q") 11::0 

and substitute q = a-k then we get 

00 aD'zII 00 II� (at - 1 )(a2A: - l) . . . (aM - 1 ) = !l (1 + za-b) . 
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Substituting fJ = -akz gives 

f (-1 )"/1' = fi (1 - pa-b) 
,,::0 (at - 1 ) ... (aM - 1 ) 11=1 

so that using the definition of K given in (3.38) we obtain 

00 K(a1,fJ) = n (1 - pa-ka). 
,,=1 

Secondly, substituting fJ = at" into (3.42) gives 

00 K( a1, at") = n (1 _ a-1(,,-1 )+--t), 
,,=1 

so 

Now by definition, 

rep) = 1000 x,P-le-JCdx, 

so using (3.38) we can write (3.37) 88 1000 xt-2Z(x)th 

(3.41 ) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

= c (�)"'-l a"'-� (1 - a1-1)(1 - al-2A:) . . . (1 - al-lfIl) K(ak �-IfIl)r( 1 _ !.) a (k - 1 )(2k - 1 ) . . .  (mk - 1 ) , m + 
A: 

= C 
(�) -1 (1 - a1-1)(! - al-2A:) • • •  (1 -

l
a1--) K( a1, al--)r(m + 1 _ !. ) . (3.46) a a(1 - I )(2 - i') . . .  (m - I) k 

Now we have 

1 1 1 1 1 r(m + 1 - i) = (m - i ) '  . .  (2 - i )(1 - i )r(1 - i) 
and, using (3.44) repeatedly, 

so (3.46) can be simplified to 

fOO (k) -1 1 1 
10 xt-2Z(x)dx = C a ;K(a1 , a)r(l - i)' 
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So from the integral condition (3.16) we get 

(Ie) l 1 
C = a (a - 1  )K(al, a)r(l - if (3.50) 

Note that using (3.42), we could write K(ak, a) in a somewhat neater form as the infinite 
product 

3.3.2 The Case k = m-I 

00 
K(�, a) = TI(I - aI-a). 

11=1 
(3.51) 

For le = �, m E 1+, if we start with p = le - 2 we can only apply the iterative relationship 
(3.32) used in the previous section m - I times, giving 

tX> -2 _ a"'-l (1 - al-k)(1 - al-2k) • • •  (1 - a1-(Ift-I).t) tx) -1 Jo xk Z(x)dx - (le - 1  )(2/c - 1 ) . . .  «m - 1 )1e - 1 ) Jo x Z(x)dx. 

The integral on the right can be integrated by parts once more, giving 

loOO x-1Z(x)d% = - looo 10gXZ'(x)d% 

= a [loOO (logx�-IZ(x)dx - � looo (logX�-IZ(ax)dx] 

(3.52) 

= a [loOO (logx�-IZ(x)dx - looo (log;f - IOg aV-1Z(s)ds] , (3.53) 

where once again we have used (3.14) to replace Z'(x), so 

(3.54) 

Now substitute for Z(x) from (3.25) and interchange the integral and summation signs 
(which is now permitted) to give 

(3.55) 



Now fooo se-Ills = 1,  so using (3.38) this simplifies to 

1000 x-1Z(x)dx = CK(�,l ) log a. 

Thus (3.52) becomes 
/00 -2 a"'-1(1 - al-k)(l - a1-2k) . . .  (1 - al-(",-1)k) 

10 xl Z(x)dx = CK(�,l ) log a (t - 1 )(21 - 1 ) . . .  «m - l)t - 1 ) . 

Applying the integral condition (3.27) leads to 

C _ (t - 1  )(2t - 1 ) . . .  «m - 1)t - 1 ) 1 
- (1 - a1-k)(1 - a1-2k) . . .  (1 - a1-(",-1)k) a"'(a - l )K(ak, l ) log a · 

The numerator in the first fraction can be simplified by taking out m factors of t, so 

(3.56) 

(3.57) 

(3.58) 

1 1 1 1 1 (t - 1 )(21 - 1 )  . . .  « m  - 1 )t - 1 )  = (-1 j- t"'i( i - 1 )( i - 2) . . .  (i - (m - 1», (3.59) 

then replacing i by m we have 

(k - 1  )(2k - 1 ) . . .  « m  - 1)t  - 1 )  = (-1 j-1k"'m(m - 1 )(m - 2) . . .  (1 ) = (-1 )",-1t"'m! (3.60) 

The denominator of the first fraction can also be simplified a little, replacing the nwneral 
1 in the exponents by mk, then simplifying so 

(1 _ a1-k)(1 _ �-2k) (1 _ �-("'-1 )k) = 
(_l j-1 (a(m-1)k _ 1 )(a(m-2)k - 1 ) . . .  (� - 1) ,  (3.61) 

then from (3.58) we have 
• 

C _ (�) 1 m! 1 
-

a (ak - l )(a2k - 1 ) . . .  (amk - l) K(ak, l ) log a ' 
where of course mk = 1 .  

3.3.3 Discussion and Examples 

We have shown that the SSD in the case g(x) = gx and b(x) = bxl, 

C 00 (-l)lIak"e-� 
y(x) = x2 ! (ak - 1 ) ... (ab' - 1 ) '  

where a = � and { (k) l _ 1 • (01-1 )(CIS -1 ) ... (11-'-1) K(OI,1 ) 101 a C =  (k) l 1 
• (a-1)K(at,a)r(1-t> 

, t  = �, m E 1+ 
, t  # �, m E 1+. 
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Continuity of C 

In order to show that C is a continuous function of le, we need to prove that 

lim K(�,a)r(l _ �) = 
(ak - 1)(a2k - 1); . .  (a(lII-l)k - 1 ) K(�, l ) loga. (3.65) 

1 __ -1 � m. 
Now using (3.42) and separating out the one factor which becomes zero as le _ m-I , we 
write 

00 
K(ak, a) = (1 - ai-h) n (1 - ai-kit). 

II=I,llPt 
(3.66) 

Similarly, we separate out the factor in r(1 - i) which causes difficulties as le _ m-I , by 
applying the iterative relationship r(x - 1 )  = ��l m times, giving 

r 1 _ !. - [
_

1
_
] r(l - i + m) ( t ) - m - I  (1 - i)(2 - i) . . .  «m - 1) - i> "  

Substituting these expansions into the left hand side of(3.65) we have 

lim K(ak a)r(l - !.) - lim { r(l - i +m)�I,lle(l - ai-kit) [_l _-_al"7"-_h] } 
1 __ -1 ' le - 1 __ -1 (1 - t )(2 - t) . . .  «m - 1) -i) m - i 

(3.67) 

(3.68) 

Now the limit of the expression in square brackets can be found by a single application of 
l'Hopital's rule, 

(3.69) m 
Substituting le = m-I into the rest of (3.68) then gives 

Now 

lim K(ak, a)r(l - !.) = 
r(l )�I,ll#,(l - aI-� ) log a 

1 ..... 111-1 le (-1 )",-1 (m - 1  )(m - 2) . . .  1 m (3.70) 

(3.71 ) 

so after expanding the left-hand product then changing the summation variable in the 
right-hand product to get it into the form required by (3.42) we get 

00 n (1 - aI-� ) = (-1 j-l (� - 1  )(� - 1) . . .  (a(lII-l)k - l )K(ak, l ) . (3.72) 
1I=I,llPt 

Substitution ofthis expression into (3.70) now gives (3.65), so C is a continuous function of 
le as expected. 
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Moments of �he SSD 

When k is an integer, we can obtain the kth moment of the SSD about the origin, 
Ilk = fooo xky(x)dx, directly from the integral condition (3.27) as 

1 
Pt. 

= 
a(a - 1 ) "  (3.73) 

An iterative expression for moments beyond the kth is obtainable by applying a Mellin 

Transform to (3.20): multiplying through by .%"'-1 , where m is an integer, and integrating 
over all x, remembering that y(x) = x-2Z(x) gives 

1000 ,t"-lZ'(x)dx = -ap",+k + a 1000 ak,t"+A:[x-2Z(ax)]dt. (3.74) 

Integration by parts on the left and the substitution z = ax on the right then leads to 

(3.75) 

so we have the iterative equation 

(m - 1 ) 
(3.76) 

provided m > 1.  This enables us to deduce all the moments of the SSD once we have found 
the kth moment by using (3.73) and all other moments up to the (t + 1 )th by integration of 
(3.63) directly. 

For example, in the particular case t = 1 ,  the mean is 

1 
(3.77) Jl = 

a(a - 1 ) 
and the second moment about the origin (Jl2 = fO'ry(x)dx = fooo Z(x)dt) can be obtained by 
integrating (3.25) term by term to give 

1 
Jl2 = a2(a - 1 ) log a ·  

We can then apply (3.76) repeatedly to obtain 

(n - 2)! 
JI,a = ---........:..-��--� 

a"( a - 1 )  log a n;j(1 - a-A:) 
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Figure 3.1 : SSD probability density functions y(x) for g(x) = gx and hex) = hxk for a range 
of values of le. The variables a and a have been fixed at 1 and 2 respectively. 

An Example 

Figure 3.1 shows the shape of the SSD function y(x) with a = 1 and a = 2 for a range of 
values of /c. Consideration of the differential equation formed in the extreme cases shows 
that as le -- 0, the SSD y(x) approaches the Dirac delta function 6(x), and as /c __ 00 it 
approaches (Koch and Schaechter [30)) the function 

y(x) = (a-l)ii ' a < x <
.
Q { 11 11 

o , OtherwISe. 
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3.4 A Minimum Size for Division: The Case b(x) = bxkH(x - Xl ) 

This case is the same as that discussed in the previous section, except that there is a 
minimum size Xl > 0 below which cells do not divide. Substituting b(x) = bxkH(x - Xl )' 
k > 0, (where H is the Heavyside or unit step function and b and Xl are constants) into 
equation (3.14) we get 

Z'(X) = xf-l ( -aH(x - XI )Z(X) + a�H(ax - XI)Z(ax» , (3.81 ) 

where as in Section 3.3 we have made the substitution a = � . In this case we choose to 
couple (3.81 ) with the integral condition (3.16) as this simplifies to a condition dependent 
only on Z(x) for X � Xl , namely 

100 -2 1 
;q 

xf Z(x)dt = a(a - 1  r (3.82) 

It is convenient to solve the equation in three regions starting with the region X > Xl . We 
let { ZI (X),X � Xl (region 1 )  

Z(x) = Z:a (x) , � � X � Xl (region 2) 
Zs(x),x � � (region 3) 

where continuity considerations require ZI (XI )  = Z:a(XI )  and Zs(�) = Z:a(�). 

3.4.1 Region 1, x � Xl 

In this region, (3.81 ) becomes (3.20), so the solution is 

00 ( -1 )" aD !!!{t ZI (X) = C ,,� (a-t - l ) . . . (aG - 1/
-

'lb find the constant C, we substitute Z(x) = Zl (x) into (3.82) above, giving 

c 100 [I ( -1 )"ab' xl-2 -/l�l dx _ 1 
;q ,,=0 (a-t - 1) .. . (aG - 1 ) e - a(a - 1 ) " 

(3.83) 

(3.84) 

(3.85) 

This time there is no difficulty in immediately interchanging the integral and summation 
operations as the integration starts at Xl > 0 and therefore avoids the singularity at X = 0 
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when le � 1 .  Making the change of variable z = a� in each integral leads to 
• 

Hence we can write 

(le) 1 1 
c - --

a (a - l)S' 
where 

and r(c,x) = f%oo r-le-'ds is an incomplete gamma (unction. 

In the particular case le = 1 ,  (3.87) reduces to 

c = le 
a(a - 1 )S 

where 

and El is the exponential integral. 

8.4.2 Region 2, � :::; x < Xl 

(3.86) 

(3.87) 

(3.88) 

(3.89) 

(3.90) 

In this region we have H(x - Xl ) = 0 and H( c:u - Xl ) = 1 80 we may immediately integrate 
(3.81 ) to obtain 

(3.91 ) 

This integration can be carried out term by term, using the substitution z = a�, to give 

00 (-1 'f [ _* _tl,,*l)A/j �(x) = C,.!O (at - 1) .. . (abt - 1 ) 
e - e I , 

where the constant C is the same as that in the expression for Zl (x) in (3.84). 
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3.4.3 Region 3, x < � 

In this region the (3.81 ) becomes 

�(X) = 0 

so as we have Z3(�) = ZJ(�) = 0 from (3.92) the solution is simply 

Za(X) = 0 

as expected. 

3.4.4 Discussion and EXamples 

(3.93) 

(3.94) 

Combining the results above and noting Z(x) = ry(x), the SSD in the case g(x) = gx and 
b(x) = bxkH(x - Xl ) is given by 

(3.95) 

where 
(k) l 1 c - -- a (a - l)S (3.96) 

and 

(3.97) 

Figure 3.2 shows this piecewise function for y(x) for a range of mjnjmum sizes for cell 

division xl t  with k = 2, a = � = 1 ,  and a = 2. The discontinuity in the slope ofy(x) at x = Xl 
is a natural consequence of the step change in the probability of cell division b(x) (from 0 
to b�) at this size. The form ofy(x) for small values of Xl approaches the form given in Fig. 
2.1 for k = 2. 
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Figure 3.2: SSD probability density functions y(x) for g(x) = gx and b(x) = bxkH(x - Xl ), 
with k = 2, a = 1 ,  a = 2, and a range of values of Xl 

3.5 A Minimum and Maximum Size for Cell Division 

Consider the case where g(x) = gx and there exists a mjnjmum size for cell division Xl as 

in the previous section, and there is also a maximum cell size X2 (0 < Xl < X2) such that all 
cells divide before they reach size X2. This means we are considering non-negative forms 
of a(x) = W such that 

a(x) = O,x � Xl , 

a(x) -- oo,x  -- Xi , 
(3.98) 

(3.99) 

and we will assume y(x) = 0 for X > X2. For reasons that will become apparent later we will 

in fact restrict our attention to forms of a(x) which are integrable over all closed regions 
[c,d] such that 0 < c < d < X2, but with a non-integrable singularity at X2, 80 

1%t a(x)dx = 00 (3.100) 

for any c < X2. 
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3.5.1 The Solution Method 

The solution, Z(x), to (3.14) can be constructed as follows. Firstly, let m be the largest 
integer such that Xl < X2a-IJI. In typical cell populations, m is usually quite small - lets 
than 3. Tyson and Diekman [61] give the solution for the special case m = 0 and a = 2, 
and show how in this case solutions may be obtained for forms of g(x) other than g(x) = gx 

by treating Q (see introduction) as an unknown constant to be found numerically. The 
method outlined here could be similarly extended to more general forms of g(x). 

We split Z(x) into regions so that 

Z(x) = 
{ Zo(X), X � X2 

Zk (x) , X2a-k 5 X < X2a-k-1 , 1  < k 5 m + 1 .  

region: 

I I I I 
I m+ I I "  • k I 0 

I l(x)- �_.(x� . . .  z,(x) l.(x) I z.(X)-O 

��F�! 
x<x,a-1 : : 
l(x)-O I I I 

X.Il- I X. I I I I 
Xall�' XaIl- XaIl-o XaIl-' XaIl-' .. 

X 

(3.101 ) 

Figure 3.3: Regions used in solving for the SSD. Zl (x) is found first using (3.103), �(x) 
to 4n+I(X) are found iteratively using (3.104), then finally Z(x) for x < Xl is found using 
(3.105). 

This scheme is shown in Fig. 3.3. Note that as no cell division occurs below size Xl , no new 
cells can appear of size less than Xl a-I ,  so we must have Z(x) = 0 for X < Xl a-I . We now 
write (3.14) in the form 

(3.102) 
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This equation can then be used iteratively to find Z(x) over the whole range of sizes of 
interest. We know Zo == 0 (because y(x) = 0 for x > X2), so it follows from (3.102) that 

(3.103) 

where C is a constant to be evaluated, and A'(x) = a(x). Ifwe now assume that the solution 
in region le is known, then (3.102) becomes a simple first-order ODE in Zl+l (X), and the 

solution is 

.... -.t l-aI-.t ,..-1 
Zl+l (X) = ef. a(.r)drZl(X2a-1) - ca eJ• II(.r'}dI' a(s)Zl(s}df, (3.104) 

where the limits of the integration have been fixed by the continuity requirement 
Zl+l (X2a-1) = Zl(X2a-1). Hence we can deduce the solution Zl(X) for all le � 1 ,  then 
calculate the constant C from the either of the integral conditions (3.15) or (3.16). The 
desired SSD can then be simply calculated from y(x) = x-2Z(x). 

Two points are worth noting in this solution process. Firstly, from (3.103), continuity of Zl 
with Zo at x = X2 for non-zero C requires that A(X2) = 00, so X2 must be a non-integrable 
singularity of a(x) as pointed out earlier. The alternative would be to allow a discontinuity 
in Z(x) at X2, in which case y(x) would be discontinous at x = xa-1 for 0 � le � m + 1 , 80 the 

argument involving continuity used above would be invalid. Equation (3.103) must clearly 
be used in place of (3.104) for le = 0 because the first term in (3.104) becomes a product of 
infinity and zero. Secondly, once the solution has been found in the size region between Xl 
and X2 using the above process, the solution in the region x < Xl is most simply found by 
noting that a(x) == 0, so the integral form of the equation (3.17) can be used in the form 

Z(x) = L«Z a(s)Z(s)df , x  < Xl . (3.105) 

It is clear from this formulation that we will have Z(x) = 0 for x < Xl as expected, with 
continuity ofZ(x) at x = Xl . 

3.5.2 An example 

As an analytical example of this process, consider the simplest form of a(x) which satisfies 
the conditions (3.99), namely 

a(x) = { t-z (3.106) ,X < Xl , 
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which corresponds to a birth rate b(x) of 

{ -'!... 
b(x) = �-z (3.107) 

where g is the constant in g(x) = gx. We will choose Xl = a-2x2 exactly, as this is the 

simplest choice which involves use of all of the equations (3.103),(3.104), and (3.105). In 

region 1 we then find, using (3.103), 

In region 2, using (3.104) we obtain 
x X -1 Z2(x) = CX2(1 - -)[1 - a 10g(1 - -) + a log(1 - a )] . X2 X2 

Applying integral condition (3.16) we get 
f7JJa-1 Zt(x) dx + f7JJ Zl (X) dx = � lzsa-I X(X2 - x) lzsa-1 X(X2 - x) a - I  

which leads to 
• 1 C =  [(a - l )[(2 + a log(l - a-1 » 10g a + a(S(a-1 ) - S(a-2»]] - , 

where Se") = I..�1 S· 
We now use (3.105) to find the solution in the region x < Xl as 

Zs(x) = CX2a [(1 + a log(1 - a-l » [� - a-a] X2 
+ (1 - a� )�og(1 - a�) - 1] - (1 - a-2)�og(1 - a-2) - 1 ]] . X2 X2 

Now using y(x) = x-2Z(x) we can write the SSD y(x) as 

y(x) = 

o 

� a [(1 + a log(1 - a-I » [� - a-8] 
+(1 - a� )[log(l - a�) - 1] 
-(1 - a-2)�og(1 - a-2) - 1]] 

�(1 - �)[1 - a 10g(1 - �) + alog(l - a-I )] 
�(1 - �) 
o 
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,X2a-2 < X � x2a-l 
,X2a-1 < X � X2 
,X > X2· 

(3.108) 

(3.109) 

(3.110) 

(3.111)  

(3.112) 

(3.113) 



x 

Figure 3.4: The SSD probability density function y(x) for a(x) = � = (1 - x)-lH(x - 0 .25) 
and a = 2. 

where C is given by (3.111 ). 

Fig. 3.4 shows this function with binary fission (a = 2) and with X2 equal to one size unit. 
Substitution is straightforward apart from the calculation of S(0.5) and S(0.25) required 
to find C. Jolley [26] gives 

S(O 5) = tfJ _ (log2� . 12 2 '  (3.114) 

but the only way to find S(0.25) seems to be to substitute into the series, which actually 
converges very rapidly in this case. From the form of (3.113) it is clear that X2 isjust a 
scaling factor, so the solution for other values of %2 is simply obtained by relabelling the 
horizontal and vertical axes in Fig. (3.4) as � and X2Y(x) respectively. 
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Cbapter 4 

Cell Populations with Age and Size 
Structure 

This chapter is a slight modification of a paper published in the Journal of Mathematical 
Biology (Hall, Wake, and Gandar [20]), with a few general comments having been moved to 

Chapter 1 and some extra mathematical detail added in places. The development provided 
in the first three sections of Part I of this chapter, based on the use of cell birth-size rather 
than cell age, parallels the development based on age in Sections 1 .7 and 1 .8 of Chapter 1 
but is more general in that it allows for non-steady size/age distributions. 

In Part I, we first discuss the case where cells grow without structural constraints, then 
show how the theory of this general case can be simplified and developed when the cells 
are constrained to grow in one dimension within structured tissues, as in Section 1 .10 of 
Chapter 1 .  Steady size/age and sizelbirth-size distributions of cens are expressed in terms 
of the steady cell birth-size distribution, which is shown to be the principal eigenfunction 
of a Fredholm integral operator. In Part II, we solve some special cases analytically and 
present a simple numerical method which can be used in analytically intractible cases. 



4.1 Part I: An Integral Equation for the Birth-size Distribution 

4.Ll Introduction: Size/Age and SizelBirth-size Distributions 

Consider a population of cells, growing and dividing without mortality so that the total 

cell population is always increasing. We consider the important attributes of cells to be 

age, a, and size, I, and assume that the cell population is sufficiently large to be adequately 

described by a continuous number density n.,(I,a, t) at any time t. Then n.,(I,a, t)dadJ gives 

the number of cells in the age range a to a + da and size range I to I + dl, and the total 

cell population at t is N(t) = fO Jo fIt,(l,a, t)dadl. This size/age approach is the one taken 

in Sinko and Streifer [52] and Dster [38] amongst others, and contrasts with the simpler 

size-based approach of Koch and Schaechter [30] and Collins and Richmond [7]. 

In this chapter, cell size may be taken as being synonymous with cell length. We assume 

that the growth of each individual cell is detenninistic in the sense that given its age 

a (time since it was formed by fission of a parent cell) and size I, then it is possible to 
determine its growth rate gG(I,a, t) precisely at any time t. Dispersive growth as discussed 

in Section 1 .4 is not considered. 

If cell growth rates are deterministic and positive, models in which all functions and 

number densities are defined in terms of initial cell size s and current size I are equivalent 

to size/age models. Using this sizelbirth-size approach, we let n(I, s, t) be the continuous 

cell number density such that n(I, s, t)dlds gives the number of cells that were born in the 
size range s to s + ds and lie in the size range I to I + dl at time t, and we write the cell 

growth rate as gl(l, s, t). Fig. 4.1 shows typical paths followed by a cell in l-a and l-s spaces. 

In this chapter we choose to work in l-s space because, as we shall show later, steady 

sizelbirth-size distributions may arise in some situations where the size/age distribution 

is non-steady. Some simplification is also achieved because individual cells follow straight 

paths parallel to the I axis in l-s space, whereas paths are generally curved in I-a space 

(Fig. 4.1). 

In the cell division process, we allow for possible variation both in the size at which a cell 
may divide, and in the proportions into which it divides. Firstly, we specify a "hazard rate­

hl(l,s, t) such that hl(l, s, t)dl gives the probability that a cell which was born at size s and 

which reaches size I at time t will divide before reaching size 1 +  dl. Secondly, we introduce 

a "fractional-size" probability density function (pdf)/(p, l, s, t) such that/(p, l, s, t)dp gives 
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(a) l=s 

Size, 1 Size, 1 

Figure 4.1 : Possible paths followed by a single cell in (a) sizelage space, and (b) sizelbirth­
size space. The solid lines show cell trajectories, the dashed lines show where cell division 
may take place, and the dotted lines show where new cells may appear. 

the probability that the birth-size of a daughter cell lies between fraction p and p + tip of 
the parent cell size, given that the parent cell was born at size s and divides at time t and 
size I. For all I, s, and t, we require/(p, I, s, t) = 0 for p > 1 and p < 0, and 

10
1
/(p, I, s, t)dp = 1 .  (4.1 ) 

If the mean number of cells formed when an adult cell born at size s and dividing at time t 
and size I is a(l,s, t), then conservation of total cell size during division means that 

for alI I, s, and t. 

10
1 

p/(P, I, s, t)dp = [a(l, s, t)t1 (4.2) 

The special case where all cells divide exactly in half and hi is independent of initial cell 
size s (which means we write hl(l) only and set/ equal to a Dirae delta function) has been 
discussed in Chapter 2 of this thesis and in Tyson and DiekmsDD [61], amongst others. In 

this chapter, we deal with uneven cell division, discussing the theory of the more general 
case in Part I, then, in Part 11, solving extreme cases where either the division size of a 
cell is precisely determined by its birth size s, or where hi is completely independent of s. 

Using the notation established above, number conservation arguments based on the 

equation (1 .11 )  in Chapter 1 show that the number density, n(l, s, t), must satisfy 
{J (J 
(J,n(I, s, t) + m

gl(l,s, t)n(l,s, t) = -hl(l,s, t)gl(l,s, t)n(l,s, t). (4.3) 
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for s > 0 and 1 > s, along with an appropriate boundary condition on the line 1 = s. 

r + I1r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  · · · · · · · ·�;
ID r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . • . . . . . . . . . . .  

-:11f: 

Size 
1 + 111 

Figure 4.2: Formation of new cells along the line 1 = s by division of cells in the region 
1 > s. The parallelogram indicates the region containing all cells born in the size range s 
to s + & in time M. 

New cells come into existence along 1 = s as a result of cell division in the region 1 > s. 
Consider the number of new cells born in the small size range s to s + & in the short time 
interval III (Fig. 4.2). Summing the contributions from cells dividing all over the feasible 
region 1 > s, we obtain 

n(s, s , t)gl(s,s, t)M& = f t (hl(/, r, t)gl(/, r, t)fJ) (a(/, r, t)f(7 , I, r, t)�) (n(l, r, t�) . (4.4) 
1::3 ,::0 

The first of the bracketed group of terms on the right hand side is the probability that 
a cell of size 1 and birth-size r will divide in time M, the second is the mean number of 
daughter cells in the size range s to s + & produced by such a division, and the third is the 
number of cells in the size range 1 to 1 + l!J with birth-size r to r + M .  Dividing through by 
Ill& and taking limits we obtain the boundary condition in the form of a renewal equation, 

[00 (I S dl gl(S,S, t)n(s,s, t) = 
I Jo hl(/, r, t)gll, r, t)a(/, r, tY{ I ' I, r, t)n(/, r, t)drT' 

4.1.2 Steady Sizelbirth-size Distributions 

We now make the following assumptions: 
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• The hazard rate, hi, is time-independent, i.e. hi = hl(/,s). 
• The fractional-size pdf,/, is dependent only on the proportion p, i.e. / =/(p). It then 

follows from (4.2) that a is a constant. Then (4.1 ) and (4.2) become 

lol /(P)dp = 1 (4.6) 

and 

lol p/(P,I, s, t)dp = [a(/,s , t)r1 (4.7) 

respectively. 

• The growth rate is separable with respect to time, i.e. gl(/, s, t) = g(/,s)r(t) say. 

We are interested in the situation where the total number of cells in the population is 

increasing, but the proportion of the population currently in any given size range and born 

in a given size range remains constant. Under these conditions, the cell number density 

function n(l,s,t) is separable, and we may write 

n(l, s, t) = N(t)y(/, s), (4.8) 

where y(/,s) is a probability density function so 

loOO 100 y(/, s)dlds = 1 ,  (4.9) 

and of course we need y(/, s) � 0, VI,s. The proportion of cells in the size It to 12 which were 

born in the size range SI to S2 is given by Jkl J: y(/, s)dsdl. We will refer to y(l,s) as the 

steady sizeJbirth-size distribution. 

Substituting (4.8) into (4.3), we now obtain 

dN {) 
diy(l, s) + N( t)r(t) m(g(l,s)y(/, s)) = -N(t)r(t)hl(l, s)g(/,s)y(/, s), (4.10) 

and the renewal equation, (4.5), becomes 

fOO fl s dl g(s,s)y(s, s) = a JI Jo y(/,r)hl(/, r)g(l, r)f(I)drT· 

Integrating (4.10) over all s and I, substituting g(s,s)y(s, s) from (4.11 )  leads to 

dN = �(t)r(t) , 
dl 
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where Q is the functional on y defined by 

Q = (a - 1 )  1000 100 y(l, s)h/(l, s)g(l, s)dlds. (4.13) 

Substituting the expression for dN /tit given in (4.12) into (4.10), we obtain a partial 

differential equation for y(l,s), 

8g(I,�:<" s) = -(hI(l,s)g(l, s) + Q)y(l,.r). (4.14) 

Thus the problem of finding the steady sizelbirth-size distribution y(l,s) becomes one of 

solving (4.14) with its boundary condition, (4.11 ), subject to the normalising condition 

(4.9). Note that (4.13) can be obtained by integrating (4.14) over all I and s then using (4.9) 
and (4.11 ), so (4.13) is an alternative normalising condition rather than an independent 

equation. 

4.L3 Growth Rate Proportional to Cell Size 

Direction of growth 
. .. 

Figure 4.3: An idealised section of plant tissue growing by elongation in one dimension. 
Cells are arranged in files and are locked together by common longitudinal walls. When 
cells divide, new cross-walls (dashed lines) form within the parent cell, and two new cells 
are formed (i.e. a = 2). We assume there are sufficient files at right angles to the direction 
of growth to allow use of continuous number density and probability density functions. 

In this chapter we are interested in steady cell size distributions in plant tissues growing 

in one dimension only. Fig. 4.3 reproduces Fig 1 .6 from Chapter 1 ,  showing an idealised 
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section of a root or leaf, elongating in a spatially homogeneous manner such that any two 
points a unit distance apart separate at a time-varying rate r(t). We take the size of a 
cell to be its length, I, in the direction of growth. Plants grow symplastically, i.e. with 
longitudinal files of cells locked together 80 that cells in adjacent files do not slip past each 
other. This means that all cells in a small region may be assumed to grow at the same 
relative growth rate r(t), so that 

g,(/,I, t) = lr(t). (4.15) 

This assumption is central to all that follows, as it leads to considerable simplification of 
the more general theory. 

Now the total length of all cells in a section of tissue as in Fig. 4.3 is lOO 1 to n(/,I, t)dsdl, 
and the rate of change caused by cell growth is 1000 J/,g,(/,I ,t)n(/, I, t)dsdl. Using (4.8) and 
(4.15) we then have 

! (1000 110' Y(/,I)N(t)dsdl) = 1000 lo'lr(t)y(/,')N(t)dsdl. (4.16) 

Interchanging the order of differentiation and integration and substituting for dN / tIt using 
(4.12) yields simply 

Q = 1 ,  (4.17) 
which is the same as (1 .85) with the constant g == 1 .  Substituting this value of Q and 
g(/, I) = 1 into (4.14), we obtain 

IOy�t) = -(h,(/,3)J + 2)y(/,3), (4.18) 
and the renewal equation (4.11) may be rewritten as 

SY(I,I) = a 100 t y(/, r)h,(/, r)f(j)drdl. (4.19) 

Since both (4.18) and (4.19) are homogeneous, any solution of this system will contain an 
arbitrary multiplicative constant. This constant can be evaluated either using the unit 
integral condition (4.9), or using(4.13) with Q = 1 ,  i.e., 

(a - 1 )  1000 100 ly(/, I)h,(/,I)dlds = 1 .  (4.20) 

Following standard reliability or demographic theory, we now introduce a survivor (unction, 

B,(/,3), which is the probability that a cell initially of size 1 will survive without division to 
at least size I. In terms of the hazard rate h" BI(/,I) is given by 

B,(1,3) = e- I: It, (tJ,I)da. (4.21 ) 
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If for a given birth size s, there is a maximum ceU size L(s) such that f; h,(CT,S)dCT is finite 

for I < L(s) but f,(6) h,( CT, S)dCT is infinite, then B(L(s) ,s) = 0, and we set y(/,s) = 0 outside 

the region s ::; I ::;  L(s). The derivative of B" 

b (I ) = lJB,(/,s) I , s lJI ' (4.22) 

is a pdf such that b,(/,s)dl gives the probability that a cell initially of size s will divide in 

the size range I to 1 + dJ. From (4.21) and (4.22) it follows that 

(4.23) 

The characteristics of (4.18) are parallel to the I axis, so (4.18) can be integrated directly 

(cf. Sinko and Streifer [52] where the problem is formulated in terms of cell size and age) 

to give 

(4.24) 

where ; is a function yet to be found, and B,(/,s) is the survivor function given by (4.21 ). 

4.L4 Size, size/age, and birth-size distributions 

We leave to one side for the moment the question of how ;(s) in (4.24) is to be evaluated, 

and look at ways in which various other distributions may be expressed in terms of ;(s). 

Integrating (4.24), we obtain the one-dimensional cell size pdf Y(l) = Foy(/,s)ds), 

Y(/) = � t s;(s)B,(/,s)ds. (4.25) 

1b describe a size/age distribution, we define a pdfy.{l, a, t) such that Y4l(/, a, t)dadl gives the 

proportion of cells whose ages lie in the range a to a + da and whose sizes lie between I 
and 1 + dl. In general, the size/age distribution may be non-steady when the sizelbirth-size 

distribution is steady. The growth rate of an individual cell of size I (and any initial size s) 
is given by (4.15), so we solve dl/tit = r(t)1 to obtain 

s = le - t_ ,(t'}dt' • 
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Given this relationship between s and a , we must have y.(I, a, t)da = -y(l, s)ds where 

ds = -r(t - a)le- t_r(t')dt' da, so 

YIJ(I,a,t) = r(t - a)le-t_r(t')dt' y(l,le-t_r(t"�'). (4.27) 

Using (4.24), we can then obtainy.(I,a, t) in terms of ;(1) as 

Steady size/age distributions Y.( I, a) are only possible if the growth rate is steady, i.e. when 

r(t) is a constant, say g. In this case, we obtain 

(4.29) 

From (4.28), the size distribution of newborn cells is just 

,.(I, O , t) = r(t);(l), (4.30) 

so we may interpret ;(1) as a multiple of the pdf describing the newborn cell size 

distribution. Substituting (4.24) into (4.9) and integrating by parts, we have 

1000 ;(s)ds - 1000 s;(s) [f bl(�'S) dl] ds = 1 .  (4.31 ) 

Similarly, substituting (4.24) into (4.20) gives 

(4.32) 

Adding (4.31) to (4.32), we then obtain the condition 

(4.33) 

which will be used to normalise ;(s) where required in Part IT of this chapter. If we 

now define a birth-size distribution yo(s) such that yo(s)ds gives the probability that a 

given newborn cell lies in the size range s to s + ds, then as Yo is proportional to ; and 

Iooo yo(s)ds = 1, we must have 

Yo(s) = (1 - a-I );(s) . (4.34) 
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4.LIS A Fredholm InteJral Equation for ;(s) and its Unique Solution 

An integral equation for ;(s) is obtained by substituting the solution (4.24) into the 

boundary condition (4.19), giving 

100 r s 1 
�s) = a , 10 r;(r)b,(I, r)f(l)

pdrdl, (4.35) 

where b, is given by (4.22). We then change the order of integration, writing (4.35) in the 

form. of a homogeneous Fredholm integral equation, 

;(/) = a 1000 K(/,s);(s)ds, 

where the kernel K(l,s) is given by 

(4.36) 

(4.37) 

and we note that!a) = 0 ifr  < I. Changing the variable of integration to p  = f gives as an 

alternative form for the kernel, 

S {1 I 
K(/,s) = 1 10 !(P)b,(p 's)dp. (4.38) 

We assume that ! and b, are such that this kernel K(/,s) exists and is square-integrable 

on the appropriate subset of the 1 - s plane. We wish to show that (4.36), with a kernel 

given by (4.37) or (4.38), has just one independent, non-negative solution. Hochstadt 

[25] shows that every continuous, strictly positive kernel K(/, s) on a finite rectangle has 

a largest positive eigenvalue, and that associated with this principal eigenvalue there is 

only one independent eigenfunction. This eigenfunction is also strictly positive (or strictly 

negative). Zabreyko et al. [69] show that this result can be extended to non-negative 

kernels like K(/,s) given by (4.37) or (4.38), provided that the kernels are non-factorable in 

the appropriate subset of the 1 - s plane. That is, for any ; � O, � 0 and 1 > 0, we must 

have 

(4.39) 

for some N � 0, where K(N) is the Nth iterated kernel as defined in either Hochstadt [25] 
or Kabreyko et al. [69]. A non-negative kernel satisfying (4.39) must then have a largest 

positive eigenvalue, and corresponding to this eigenvalue there is just one independent 

eigenfunction, which is non-negative (or non-positive) but not identically zero. Biologically, 

(4.39) is equivalent to restricting! and b, to functions such that an ancestral cell of some 
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birth-size can produce, after a finite number of generations, a descendent cell with any 

other birth-size in the domain considered. A set of precise conditions on f and b" which 

are sufficient to ensure that the kernel K(I,s) given by (4.38) is both square-integrable and 

non-factorable, is presented in Section 5.1 . 

Let the largest positive eigenvalue be 4, and let _(I) be a multiple of the corresponding 

eigenfunction chosen such that _ is non-negative. Then 

1000 K(I,s)_(s)ds = .a;(I), 

and, using (4.37), it follows that 

.t 1000 1_(1)dl = 1000 I (1000 K(I,s)_(s)ds) dl 

= 1000 '1000 s [00 f(�)bI(r,S) �dr;(S)dsdl. 

Changing the order of integration gives 

1000 1000 100 1000 
I I dl 

.t 1;(1)dl = s_(s) b,(r,s) f( -)--drds. o 0 , 0 r r r 

(4.40) 

(4.41 ) 

(4.42) 

Noting that f(P) = 0 for p > 1 and using (4.7) and the fact that J,oo b,(r, s)dr = 1 ,  Vs, we 

obtain 

.t 1000 1_(1)dl = a-I 1000 s;(s)ds. 

As ;(s) is non-negative and not identically zero, we therefore have 

.t = a-I . 

(4.43) 

(4.44) 

Thus a-I is the principal eigenvalue of the kernel K(I, s) in (4.37) or (4.38), and it follows 

that the Fredholm integral equation (4.36) has just one independent solution, which is 

also non-negative (or non-positive) but not identically zero. Hence there will be just one 

function ;(1) satisfying both (4.36) and (4.33), and as the integral is positive this ;(1) will 

in fact be non-negative and not identically zero. 

4.L6 Discussion 

We have shown in (4.24) that the steady sizelbirth-size pM, y(l, s), for cells in small 

regions within one-dimensional plant tissues, can be expressed in terms of ;(s), a multiple 
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of the cell birth-size pdI. The corresponding size/age distribution Ya(/, a, t) is given by 

(4.28) and the one-dimensional steady size distribution Y(/) given by (4.25). All of these 

solutions depend on ;(s), which is the eigenfunction of the Fredholm kernel (4.37) or (4.38), 
normalised by (4.33). In the Part II of this chapter we show that this eigenfunction can be 

found in some special cases using analytical techniques, and more generally by a simple 

numerical iteration. 

However, even without finding the birth-size distribution ;(s), it is possible to make some 

comments on the general shapes of the functions y(/,s), Y(/), and Ya(/, a, t), given realistic 

forms of the pdfs/(P) and b,(/,s). Biological considerations dictate that there will be limits 

on the proportions into which a cell can divide, so the support of/ must be rPt ,P2] with 

o < Pt < P2 < 1.  Similarly, for any initial cell size s, there will be some mjnjmum size 

L*(s), below which a cell cannot divide, and some maximum size, L(s), by which it will 

definitely have divided, with s < L*(s) < L(s) (Fig. 4.4). Both L*(s) and L(s) should be 

11Wnotonic non-decreasing functions of s, because cells which are born at a larger size 

should in general also divide at a larger size, but the functions L*(s)ls and L(s)ls should 

be monotonic decreasing in the sense that cells which are born at a smaller size in general 

need to grow to a greater multiple of their initial size before dividing. 

Ifwe let the support of ;(s) be [SmiD,smu], a cell of birth-size Smin must divide as an adult so 

that the smallest possible size for any of its offspring is also Smin. Thus Smin is the solution 

of 

SmiD = PlL *(Smin) , (4.45) 

and this will be unique because of the monotonicity of L*(s)ls. Similarly, Smu is the unique 

solution of 

(4.46) 

In Fig. 4.4 the regions in which y(/,s) can be non-zero are shaded. In region A there is no 

cell division, so B,( I, s) = l, and from (4.24) y( I, s) varies as liP along any line parallel to the 
I axis. Cell division occurs in region B, so y(/,s) drops faster than l iP. there, reaching zero 

on the line I = L(s). In some situations, it is possible for L*(smin) to be greater than Smu, 
in which case for L*(smin) > I > Smax, the integral in (4.25) is a constant, so Y(/) obeys an 

inverse-square law. This occurs irrespective of the precise forms of/(P) or b,(/, s), provided 

that the condition L *(Smin) > Smu is satisfied. This "inverse square" behaviour in a central 

region is apparent in published examples of steady cell size pdfs Y(/) where the relative 

growth rate of cells is roughly constant in this region. (e.g. Collins and Richmond [7]). 
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&-
Size, 1 

Figure 4.4: Regions in which y(I,s) is non-zero. Cell division takes place in region B only, 
where I >  L*(s). 
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4.2 Part 11: Solving the Integral Equation 

In Part 11, we solve (4.36) for various choices of/(P) and bl(l, s), using (4.33) to normalise 

the solution, ;(s). In each case, the sizelbirth-size distribution, y(l, s) and the overall size 

distribution, yell are then calculated from (4.24) and (4.25) respectively and an example is 
displayed in grapbical form. 

4.2.1 Constant cell division size 

Consider the simplest possible case with uneven division, where all cells divide at the 
same size, L. We do not impose restrictions on the form of/(P), so we consider the feasible 

region for cells to be the triangle shaded in Fig. 4.5. Since all cells divide on the line I = L, 
bl(l, s) = 6(1 - L), (4.47) 

where 6 represents the Dirac delta function. Hence the kernel, (4.37), of the homogeneous 

Fredholm equation becomes 

and (4.36) becomes 

a 1 fL ;(1) = Li/(I) 10 s;(s)ds. 

The integral in (4.49) does not depend on 1, so we may write simply 

;(1) = A/(L )' 

We now substitute this ;(1) into the integral condition, (4.33), to obtain 

A -
1 

- (1 - a-I )L '  
so that 

From (4.24) we then have 

1 s s 
y(l, s) = (1 _ a-I )L?P(I.)' 
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1 = 8  

Size, l 

Figure 4.5: The feasible region when all cells divide at the same size, L. A cell born on the 
line I = s divides on reaching the vertical line I = L. 

and the one-dimensional steady size distribution is found using (4.25) to be 

L rf Y(/) = 
(1 - a-I )P Jo sf(s)ds. (4.54) 

Fig. 4.6(a) shows y(/, s) in the case where f(P) is a normal distribution with mean 0.5 
(so a = 2) and standard deviation 0.1 . Note that if the standard deviation of the normal 
distribution were chosen to be much larger, care would need to be taken in truncating 
it so that the support off is limited to [0,1]. The corresponding one-dimensional size 
distribution Y(/) is shown in Fig. 4.6(b), with the line Y = LIP. shown as a dashed line for 
comparison. 

The size/age distribution corresponding to (4.53) may be obtained from (4.28). In the 
particular case where the growth rate is steady with r(t) = g, (4.29) gives the steady 
size/age distribution as 

(4.55) 
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<a) (b) 

Figure 4.6: (a) The steady size/birth-size pMy(l, s) and (b), the steady size pdf Y(I) in the 
case wheref(p) is a normal distribution with mean 0.5 and standard deviation 0.1 . 

4.2.2 Hazard Rate Independent of Initial Cell Size 

A general solution process 

Consider the case where the hazard rate h,(l,s) is independent of the initial cell size s, i.e. 

h, = h,(l). The stability of the steady size distribution in this model has been discussed in 

Heijmans [23], and a solution procedure for the special case f(P) = 6(p - 1/  a) has been 

described in Chapter 2 of this thesis. 

From (4.21 ) we have 

B,(l, s) = e- t,1I1(1')dl', I >  s, 
which is clearly not independent of s in general. It is useful, therefore, to define 

Bi(l) = e- 1011,(" )1 ,  
with the corresponding pM 

Thus we can write 

bi(l) = -
dB;l) . 

Bi(l) B,(l, s) = Bi(s) ' I >  s, 
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so for any 1 and s, 

bj(l) 
bl(l, s) = 

Bj(s)
H(l - s), (4.60) 

where H is the unit step function. Because the hazard rate is independent of cell birth­

size, the minimum and maximum sizes for cell division, L*(s) and L(s), (Fig. 4.4) become 

constants, L* and L respectively. All cells must then divide in the region (L* ,L) (Fig. 4.7(a) 

). If the support of! is rPt ,P:a], with 0 < Pl < P2 < I , the feasible region for cells is that 

shaded in Fig. 4.7(a). With this notation, bj(/) may be specified as any pdfon (L* ,L), then 

bl(l, s) can be found using (4.60). For s < L*, bl(l, s) is identical to bj(I), 80 bj(l)dl may be 

interpreted the probability that a cell with birth size less than L * will divide between size 

1 and size {at dl. 
1=s (b) 

.. 

. M .. , 
� I 
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I 
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Figure 4.7: (a) The feasible region for cells when the hazard rate is independent of initial 
cell size. Cell division takes place only where I > L*. (b) The regions used in solving for 
the eigenfunction ,(1). See text for details. 

Given this form of bl( i, s), we may write the kernel (4.38) of the Fredholm integral equation 

as 

a 1P1 I I 
KCl,s) = 

lBj(a) PI !(P)bj(p)H(p - s)dp, (4.61 ) 

so we obtain from (4.36>, after a change of integration order, 

;(/) = 7 [!(P)bj(;) 
[fo� ��i:�dfl dp, (4.62) 

where the upper limit of the integral with respect to s has come from Heaviside function 

in (4.61 ). We now define 

(I) - f(1) " - roo �d.s ' JO Hf\ij 
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so (4.62) may be rewritten as 

(4.64) 

Now P < P2 < 1 ,  so in the inner integral s > I/P2 > I. Hence (4.64) expresses f'(I) in terms 

of f'(s) Is > I/P2, which suggests that we may solve iteratively for f'(I) in a finite number of 

steps provided that P2 is strictly less than 1 .  1b provide a starting point for this iteration, 

we observe from Fig. 4.7(a) that f'(I) = 0 for I >  P2L and for 1 < PJ.L*. We divide the region 

PIL* < 1 � L (Fig. 4.7(b» into m sub-regions, where m is the smallest integer such that 

�L � PJ.L*, with the kth region RA; as 

RA; = {I I �� < 1 � �-IL}, 1 � ,, �  m. (4.65) 

The mth region may be "truncated", having a lower bound of PJ.L * instead of IIrL. Then we 

denote the solution in region RA; by f'1(I). and the solution in the union of regions RI to RA; 
by f';(I), as shown in Fig. 4.7(b). 

Starting with region RI we have 

9'l (I) = 0, 

92(1) 
a lh 1 = T PI !(P)b;(;)dp, 

(4.66) 

(4.67) 

(4.68) 

The iteration stops at ",,(I), at which stage we know f'(1) in the entire region (p].L*,P2L). 
Hence, from (4.63), ;(1) is 

(4.69) 

where from the integral condition (4.33). 

(4.70) 

We can then use (4.24), (4.25), and (4.28) to find y(l, s), Y(I), and Ya(l, a, t) respectively. 
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The "no overlap" case 

In the particular case where there is no overlap in size between the size distributions of 

newborn cells and of parent cells (L* � p� in Fig. 4.7), a much simpler solution can be 

presented. In this case the inner integral in (4.62) is a constant, Al say, so that (4.62) may 

be written as 

a (PI I ;(I) = AI 7 JPI f(P)bj(p)dp. (4.71 ) 

The constant Al is evaluated using the integral condition (4.33). After simplification using 

(4.6) and (4.2) we obtain 

Substituting (4.71 ) into (4.24), we have 

Bj(l) 11'1 s y(l,s) = Al a p PI f(P)bj(p)dp, 

and then from (4.25) the steady size pdf is 

Y(l) = Al aB�l) [Pf(P)(l - Bj(;»)dp. 

(4.72) 

(4.73) 

(4.74) 

This expression for Y(l) is a particular case of a more general result given in Tyson and 

Diekmsnn [61 ]. 

The general form of the size-age distribution at time t may be found by substituting (4.71) 

into (4.28), or if the growth rate is steady with r(t) = g we use (4.29) to obtain 

B*(le-fG) 11'1 le-fG � y(l,a) = Al a I l PI 1(P)bj( p)dp.� (4.75) 

As an illustrative example which can be solved analytically, we choosef(P) to be the quartic 

with minima at {In , 0) and (P2, 0), scaled so that (4.6) is satisfied and truncated so that 

f(P) = ° for P > P2 and for P < Pt , 

f(P) - 30 CR2 - p)2(P - Pt )2H(p - P)H(P - Pt ) (4.76) - � _ pt )5 2 • 

For bj(l) we choose a quartic similarly truncated at minima at (L* , 0) and (L, O), 

bj(l) = 30 (L - 1'f(I - L*)2H(L _ l)H(I _ L*) (L - L*)" . 
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(a) (b) 

Figure 4.8: (a) The steady sizelbirth-size pdfy(l,s) and (b) the steady size pdf Y(l) where 
J(P) is a quartic truncated at minima at P1 = 0.35 and P2 = 0.65, and bi is also a quartic, 
truncated at minima at L* = O.7L and L. 

The factor 30 comes from the requirement that J and bi are both probability density 

functions, so each must �ve unit integral. In the example shown in Fig. 4.8, we have 

chosen P1 = 0.35, P2 = 0.65, and L* = 0.7L, 80 the condition L* < P2L is satisfied. We 

have then used equations (4.73) and (4.74) to obtain y(l,s) and Y(l) as shown in Fig. 4.8 

(a) and (b) respectively. If we chose different forms ofJ(P) and bi(l), the two-dimensional 

sizeibirth-size distribution y(l,s) as in Fig. 4.8(a) would still consist of a set of "inverse 

square" lines along the characteristics up to 1 = L *, then a more rapid decrease down to 
y(L, s) = O. The dashed line in Fig. 4.8(b) is the line Y = A1L/P, which closely matches the 
solution Y(L) on a region larger thanjust f.R2L,L* ). 

4.2.3 Cell Division Size Precisely Determined by Birth-size 

The Simplifled Kernel 

In the previous section, we considered the case in which the hazard rate is completely 

independent of initial cell size. Here we consider the opposite extreme, where cell division 

size is precisely determined by initial size, i.e. where all cells born at one size will divide at 

the same larger size. This means that the minimum and maximium sizes for cell division, 

L*(s) and L(s) (Fig. 4.4), are made to coincide, 80 we set 

8,(/, s) = 1 - H(l - L(s)), 
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where H is the unit step function, and 

b/(/,s) = 6(1 - L(s» , (4.79) 
where 6 is the Dirac delta function. Thus, cells born at size 3 grow without division until 

they reach 1 = L(s) and then divide. 

Under these conditions, we can substitute (4.79) into the kernel of the Fredholm integral 

(4.37) to obtain 

so the equation for ;(/) is 

3 1 K(/,3) = (L(3» 1I(L(S» ' (4.80) 

(4.81 ) 

Once again, ; must satisfy the integral condition (4.33), and we note that/(ljL(s» = 0 for 

L(s) < I. 

Despite its apparent simplicity (4.81 ) is not easy to deal with in general. In the follOwing, 

we choose a realistic form for L(s) together with the simplest possible form of/(P) in order 

to obtain a series solution. 

A Special Case: A Power Law L(s), and a Uniform Distribution for f(P) 

We consider here the special case 

L(s) = Ll-TST, 0 <  r < 1 ,  (4.82) 
where L is now a parameter with units oflengtb. We make 0 < r < 1 so that L(s) satisfies 

the requirements set out in section 4.1 .6, that L(s) is monotonic non-decreasing on (O,L) 
and L(s)js is monotonic decreasing. 

The kernel, (4.80), of the Fredholm integral equation then becomes 

;-2T I 
K(l,s) = L2(1-r1(o-rsT ). 

For /(P), we choose the uniform distribution on (0, 2a-1 ), 
f(P) = 

;H(2a-1 - p), 
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so that the mean of the distribution is a-I as required by (4.7). This choice of / is 
unrealistic, but it allows us to illustrate the use of analytical solution techniques. Note 

that for this form of/(P) it is necessary that a � 2, to prevent formation of daughter cells 

larger than parent cells. 

Size- I 

Figure 4.9: The feasible region for cells when L(s) = Ll -rsr, and /(p) = H(2a-1 - p)a/2. 
For a = 2, Smu = L, but in this figure a > 2, so from (4.85) Smu < L. 
For this form of/(P), PI = 0, so from (4.45) we have Smin = O. Substituting (4.82) and 
P2 = 2a-1 into (4.46), we obtain 

(4.85) 

which gives the feasible region for cells shaded in Fig. 4.9. Note that if a = 2, we would 

have Smu = L 80 the shading would continue up to the point where the line I = S meets the 
line I = Ll-rsr. In the shaded region, substitution of (4.83) into (4.36) gives 

a2 [- 2 I sl -2r 
;(1) = 2" 0 H(;; - Ll -rsr )L2(I-r) ;(s)ds 

which can be written as 
2 1'-;(l) = 2(I-r) ( 1 )1 

;-2r ;(s)ds. 
Smu iiiiU " -

Differentiating both sides of (4.87) we obtain 

;' (I) =-(_1 ) � 2.f2mu; ( _I 
) t smu) . Smu r{3 Smu 

(4.86) 

(4.87) 

(4.88) 

'1b turn this into a simpler dimensionless form, we make the substitution I = smue-"', with 

M(m) = ;(1), so 

M'(m) = ;'(I).!!!.. = -smue-"';'(I) din 
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and 

(4.90) 

Substitution into (4.87) then gives after some simplification the functional differential 

equation 

(4.91) 

Earlier success applying Laplace transform techniques to functional differential equations 

involving terms like M(r-1m) (see Chapter 2) encouraged us to try this approach here. 
Taking Laplace transforms of both sides of(4.91), we obtain 

pM(P) = 2M«(P - 2)r + 2), 
which we write in the iterative form 

Iterating N + 1 times, we get 

- 2 -M(P) = pM«(P - 2)r + 2). 

(4.92) 

(4.93) 

M(P) = �[(� - 1 )r + 1][(� - 1 )�2 + 1] ... [(i - 1 ),-N + I]M«(P - 2)?+1 + 2), (4.94) 

which taking limits N - 00 gives 

(4.95) 

This limit exists, because r < 1 . Expressing this product as a sum of partial fractions, 

where 

N 1 N QII(2(1 - r-II» Ill] [(i - 1 )ya + 1 ] = 
II� [(i - 1 )ya + 1 ) ' (4.96) 

1 QII(P) = � [(� - 1 )r + 1 )] ... [(� _ 1 )ya-1 + 1][(� - 1 )ya+l + 1 ] .. . [(j - 1 ),-N + 1] ' (4.97) 

so that 

QII(2(1 - r-II» = (1 _ r-II) • • •  (l _ r-1�(1 _ r) . . .  (l _ rN-II) · (4.98) 

Hence in the limit as N - 00, we have 

_It (-1 )" 1 QII(2(1 - r » = (r-II - 1  ) . .. (r-1 - 1 ) K(r) , 
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where 
00 

K(y) = IT (1 - r"). (4.100) 11=1 
The constant K referred to in Chapter 2 is in fact K(a), where the function K is given by 
(4.100), 80 for a discussion of this function, including alternative expressions and series, 

the reader is referred to Section (2.4.1). 

We now write (4.95) as 

M - M(2) � ( -1 )" [ 1 ] 
(P) - K(y) to (y-l - 1  ) . . .  (y-II - 1 ) (i - 1 )r" + 1 

(4.101) 

so 

- 2M(2) 00 (-1 )"y-II r _ 1 ] 
M(P) = K(y) II� (y-l - 1 ) . . . (y-II - 1 ) LP + 2(y-" - 1 ) 

, (4.1 02) 

where we are using the convention that the empty product in the denominator is given the 

value 1 when n = O. 

Taking inverse Laplace transforms term by term we obtain 

00 ( 1 )" -11 M(m) - A � - y e-2m(r---1 ) - to (y-l - 1  ) . .. (y-II - 1 ) 
(4.103) 

where A is a constant to be evaluated from (4.33). Reverting to the original coordinates, 
we substitute e-Ift = I/smax and M(m) = ;(1), giving 

00 (_l )"y-" ( I )2(r---1) 
;(1) = A 

II� (y-l - 1  ) .. .  (y-II - 1 )  Smax 
. (4.104) 

1b find the unknown constant A, we apply the integral condition, (4.33), using Smu as the 

upper limit of integration. This gives 

-1 00 (-l )"r-1I 1 

[ ( 
) ] -1 A = (1 - a )smax 1 (y-l - 1  ) . .. (r-II - 1 ) 2y-1I - 1  

(4.105) 

The sizelbirth-size distribution in the region shaded in Fig. 4.9 is found by substituting of 

(4.1 04) into (4.24), setting BI(I, s) = 1 so 

s 00 (_l )"y-1 ( S )2(r---1 ) 
y(l,s) = A P. II� (y-l - 1  ) . . . (y-II _ 1 )  Smu 

. 
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(a) (b) 

Figure 4.10: (a) The steady sizelbirth-size pdfy(/,s) and (b) the steady size pdf Y(/) when 
f(P) is the uniform distribution on (0, 1 )  and L(s) = Ll-rsr with r = 0.25. 

Fig. 4.10(a) shows the steady sizelbirth-size distribution ](/,s) obtained with a = 2 and 

the arbitrary r = 0.25. For this value of r, the series in (4.10ijconverges very rapidly, 

even for s = Smax. The singu1aJ;ity at (0, 0)  appears as a consequence of choosingf(P) as a 

uniform distribution extending to p = O. As I, s -- 0 along the line I = s, y(/,s) -- 00, but as 
I, s -- 0 along the line I = Ll-rsr, y(/,s) -- 0 . 

1b find the steady size distribution Y(/), we substitute (4.104) into (4.25) and integrate 

term by term between a lower limit of s = P./rLl-l/r and an upper limit of I (for 1 <  smax) 
or Smax (for I � Smax). This gives 

where 

Y(/) _ As2max � (-1 r F (I) - 2P ,..;0 (r-1 - 1 ) . . . (r-" - 1 )  
,. (4.107) 

(4.108) 

Fig. 4.1 O(b) shows the form of Y(/) in the case where a = 2 (so Smax = L) and r = 0 .25. 

This one dimensional size distribution has a finite non-zero value at I = 0, and the series 

in (4.107) converges rapidly for all values of I. 

The general form of the corresponding size/age distribution can be found by substituting 

(4.1 04) into (4.28). In the particular case where the growth rate is constant, with r(t) = g, 
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we obtain 
00 (-I )"r-1I ( I ) 2(r---1 ) 

y(l, a) = Ae-2Ia L ( -1 - 1 )  ( -11 _ 1 ) -e-IG 'j '  11=0 r . . .  r Smu: 

4.2.4 Numerical Solution 

, 
(4.109) 

In earlier sections, we demonstrated methods for finding solutions to the homogeneous 
Fredholm integral equation (4.36) with a kernel given by (4.37) or (4.38), in some special 
cases, and with the solution, ;(1), normalised so that it satisfied the integral condition 
(4.33). In the general case, the eigenfunction ;(1) corresponding to the principal eigenvalue 
a-1 must be found numerically. Here we scale all cell sizes so that Smu � 1 ,  then use the 
straightforward iteration 

,(0) (1) = 1 ,  O < I � I , 
,(11+1) (1) = a 101 

K(I,s),(II)(s)tU, 

(4.110) 

(4.111 ) 

to estimate ,(1) = limll_OO ,(11)(1). Once such an eigenfunction is found, we can normalise 
using (4.33) to obtain ;(1) and, as before, apply (4.24), (4.25), and (4.29) to find y(l,s), 
Y(I), and Yil(l, a). Figs. 4.11 and 4.12 illustrate two examples of solutions using this 
technique. In each case we obtained convergence to within four decimal places in ,(1) 
within eight integral iterations. Varying ,(0)(1) to other forms such as triangular or 
normal distributions did not affect the final solution ,(1), and actually improved the rate 
of convergence. 

Figs. 4.11(a) and (b) show the steady size/birtb-size and steady size distributions in the 
case where cell division size is precisely determined by cell birth-size, as in Section 4.2.3, 
with the cell division size given by (4.82) and the kernel given by (4.83), but withf(P) as a 
normal distribution, 

(ra)1 
1 -

f(P) = � e ." 
21r� 

(4.112) 

with mean � = 0.5 (so that from (4.2), a = 2) and standard deviation � = 0.1 .  This is more 
realistic than the uniform distribution for f used in Section 4.2.3. We choose r = 0.25, 
so the feasible region for cells is the same as it was for the solution given Fig. 4.10(a). 
AB there is almost no overlap between the size distribution of dividing cells and the size 
distribution ofnewbom cells, th� dashed line Y = Lfo s;(s)ds]/p. in Fig. 4.11(b) touches the 
line Y = Y(I). 

89 



(a) (b) 

Si2Ie, l 

Figure 4.11 :  (a) The steady size/birth-size pdf, y(l, s), and (b) the steady size pdf, Y(I), 
where /(p) is given by (4.112), and all cells divide on the line I = L(s) with L(s) given by 
(4.82). The dashed line in (b) is the line Y = ut s;(s)ds]/(l. 

(a) (b) 

Size, 1 

Figure 4.12: (a) The steady sizelbirth-size pdfy(l,s) and (b), the steady size pdfY(I) where 
/(P) is given by (4.112), and the cell division size is variable, with b/(I, s) given by (4.113). 
The dashed line in (b) is once again the line Y = ucf s;(s)ds]/(l. 
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As a second example, we again choose f(P) to be the normal distribution (4.112) with 
J.I{ = 0.5 and � = 0.1 , but rather than force a cell of initial size s to divide exactly at size 
L(s) given by (4.82) we allow some variation about this. We do this by setting b,(/, s), for 
any s, to be a normal distribution with mean L(s) and standard deviation dependent on s, 
80 that 

1 (I-y.� b,(l, s) = ..f2i e -I(�.} ) 
2#0),(s) 

We choose a,,(s), the standard deviation of this distribution, to be 

( )  � (L(s) - s)(L - L(s» 
0), s = Jb (L - s) 

(4.113) 

(4.114) 

where/b is a constant. Fig. 4.12(a) and (b) show the steady sizelbirth-size and steady size 
distributions respectively when L(s) is given by (4.82) with r = 0 .25 as before, and with 

fb = 0.3 in (4.114). 

4.2.5 Discussion 

In all the models described in this chapter, we have assumed the following: 

• (Is), - The cell population is spatially homogeneous, so we may ignore the location 

of cells in space. 

• (I,) - Cell growth rate is proportional to current cell size, but may vary with time, 
80 g(l,s, t) = r(t)/. 

• (18)  - The probability that a cell initially of size s will survive without division to 
size 1 is independent of time, i.e. B, = B,(l, s). 

• (//) - The pdf describing the proportions into which a parent cell may divide is 
independent of both time and current or initial size of the parent cell, i.e. / =/(p). 

If we follow a cohort of cells as in Fig. 4.3 as it moves along a leaf or root, it passes first 
through the meristem where both cell division and cell growth are occuring, then through 
a growth-only region, then finally passes into mature tissue. If we choose a cohort which 
covers just a short length of root or leaf, it is possible to satisfy assumption (Is) fairly 
closely, 80 as discussed in Section 4.1 .3, symplastic growth assures us that assumption (I,) 
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also holds. The time-invariance implied by assumptions (IB) and (If) will hold only in parts 
of the meristem in which B/ and ! do not change significantly with spatial position, but 
provided that the rate of change of B/ and! with position is slow compared with the mean 
distance covered by a cell during its lifetime, steady size and sizelbirth-size distributions 
calculated using the models described here should be close to the size and sizelbirth-size 
distributions observed. Assumption (//) has been made for the sake of simplicity, but there 
is little data available to support or contradict this. 

Of course, the models here may be applied to cell growth in situations other than one­
dimensional plant tissues, but we have not addressed this question specifically. We have 
taken cell size to be synonymous with cell length, but it could equally well be any other 
property which is conserved when cells divide, such as cell mass, volume, or DNA content. 
Some types of bacterial cells have been observed to grow approximately exponentially in 
size (for example, see Schaechter et al. [48] or Bell and Anderson [6]), so assumption (I,) 
may be made in these situations. Plant tissue growth is symplastic whether the cells are 
growing in one, two, or three dimensions, so in all these cases, provided that we consider 
a region of tissue in which (Is) holds, we could expect (I,) to hold too. 

Our specific choices of forms for B/ and ! have been guided in earlier sections by a 
desire for simplification, but it is interesting to note that the birth-size independence 
postulated in Section 4.2.2 has been assumed in a number of papers on bacterial cell size 
distributions (Koch and Schaechter [30], Collins and Richmond [7], Tyson and DiekmaDD 
[61]). This assumption is made because it is very difficult to measure cell birth-size 
(or alternatively cell age), so simple one-dimensional models for Y(l) are the only ones 
which can be compared easily with existing data. However, a comparison of Figs. 4.8(b), 
4.11 (b), and 4.12(b) shows that very similar shapes for Y(l) may be obtained from what are 
fundamentally quite different models, so one should be wary asserting that a particular 
model is correct on the grounds of the predicted one-dimensional size distributions. The 
two-dimensional sizelbirth-size distributions shown in Figs. 4.8(a), 4.11(a), and 4.12(a) 
show greater variation, so these (or size/age distributions) might be a better basis for 
comparison of models if measurement difficulties could be overcome. It is unclear whether 
the most general type of model with distributions like those in Fig. 4.12 provides a 
significant improvement in accuracy over more deterministic models with distributions 
like those in Fig. 4.11.  

The "power law" used for L(s) in Sections 4.2.3 and 4.2.4 is the simplest form which 
satisfies the requirements for "realism" outlined in Section 4.1.6, but of course other forms 
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are also possible. If we look at Figs. 4.11  or 4.12, we see that only the central section 
of the line I = L(s) actually affects the solution, so the precise form of L(s) over all s is 
unimportant. A normal distribution for f(P), which we used in the examples shown in 
Figs. 4.6, 4.11 ,  and 4.12, seems a reasonable assumption, but its standard deviation must 
be chosen to be sufficiently small so that fJ f(P)dp = 1 is a reasonable approximation. 
While there is little experimental evidence for any particular choice off, the assumption 
of a normal distribution is certainly more realistic than the assumption that all cells 
divide exactly in half, as in the models of Hall and Wake [19] and Bell and Anderson [6]. 

Tyson and Diekmann [61] point out that in the case of exponential growth of cell size and 
division of cells exactly in half, the steady size distribution is not asymptotically stable, 
whereas Heijmans [23] shows that if cells are allowed to divide unevenly, the steady size 
distribution in the birth-size-independent case is approached asymptotically. 
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Chapter 5 

Existence" Uniqueness, and 
Stability of SSDs 

The objective of this chapter is to examjne the existence, uniqueness, and stability of the 

steady sizelbirth-size distributions discussed in Chapter 4, where the growth rate of cells 

is given by g,(/) = r(t)/. 

5.1 Existence and Uniqueness 

Consider the Fredholm integral equation (4.36) for the birth-size distribution ;(/) in 

Chapter 4, with the kernel given by (4.37) or (4.38). In Section 4.1 .5 we noted that there 

is just one non-negative solution ;(/) which satisfies both the integral equation (4.36) and 

the normalising condition (4.33), provided that the kernel is both square-integrable and 

non-factorable. 

Let the support off be -r(f) = (pt ,P2]. where 0 � 1'1 < P2 � 1 ,  as in Section (4.1.6). We show 

here that the kernel will be square-integrable and non-factorable provided that: 

• (Ai) There exist continuous functions L*(s) � s and L(s) � L*(s) such that 

b,(/, s) > O forL*(s) < 1 < L(s) and b,(/,s) = O elsewhere, and ofcourse .rt.<eJ) b,(/, s)dl = 1.  

This situation is shown in Fig. 4.4. We permit b,(/, s) to be a Dirac delta function of 
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the form bl(/, s) = 6(1 - L(s» if desired, in which case we have L*(s) = L(s). 

• (AI) f is bounded, so there exists a constant MI > 0 such that 

(5.1 ) 

• (..4".) There exists a mjnjmum cell birth-size Smin, and a maximum cell birth-size 

Smax, such that 

PtL * (Smin) = Smin, (5.2) 

and 

(5.3) 

with 0 $ Smin < Smax. Further, we require that for all S E  (Smin,smax), we must have 

p?,L(s) $ Smax and PtL*(s) � Smin. This enables us to restrict the domain of the integral 

operator to functions ;(s) such that the support of ; is contained in [Smin,Smax], that is 

(5.4) 

• (.A.r) For S E (Smin,smax), we require that PtL*(s) < S and p2L(s) > s. In fact, 

in order to prove that the kernel is non-factorable, we need to strengthen these 

inequalities, and require that for all S E  (Smin,smax), 

"lE > 0, 36 > 0 : Vs � Smin + E, PtL*(s) $ (1 - 6)s, (5.5) 

and 

"lE > 0, 36 > 0 : Vs $ Smax - E, P2L(S) � (1 + 6)s. (5.6) 

In the particular case where Smin = 0, which from (5.2) can occur either because Pt = 0 
or L*(s) = s, one extra condition is required in order to ensure that the kernel is square­
integrable: 

• (Ao) If Smin = 0 then there must exist constants Mb > 0 and u < 1 such that 

Vs E (0, smax], 

(5.7) 

One consequence of (5.7) is that the expected value of the inverse square of cell 

division size, J,L(I) �dr, must grow more slowly than Mb/s2 as S .... o. 
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5.LI Square-integrability of the Kernel 

Consider the kernel (4.37), which as/(P) = 0 for p > 1 may be written in the form 

K(I,s) = sl°O /(� )b,(r,s) fir. (5.8) mu(l .. ) r r2 
From (5.1 ) we have 

so as 
K(I,s) � sM, foo b,(r,s) dr, lmu(l .. ) r2 

1 1 
_2 < ( )'" 

r � max(l, s), ,- - max I,s • 

and b,(r,s) is a probability density function in r for all s, we have 

sM, K(I,s) � max(l,s)2 . 
Hence provided that Smtn > 0 we have 

so 

sm.uM, K(I,s) � �. ' 
JDlD 

1"1IIU [- (sm.u - s_,_)2s! MJ IK(I,s)12dldf � IIIUI mu f , "miD "miD .r'min 
and the kernel is square-integrable as required. 

If Smin = 0, then using (5.7) and (5.9), we find that the kernel must satisfy 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

K(I s) < 
sM,Mb ( ) , - scr[max(l,s)]C7 ' 5.14 

so 

1o"mu fo"lIIU 1K(I, s) 12dldf � M!Mf 1o"mu J:- [m:;�:)]2crdlds. 
We now split the inner integral into two parts, I > s and I < s, so 

1o"mu 1o"mu IK(I, s) 12dldf � M!Mf [10'--J: s2-4C7dlds + J:DIaZ l"mu s2-2crr2crdlds] , 
then changing the order of integration in the second term we obtain 

1o"m- 1o"mu IK(/,s) l:ldldf � M!M: [10"- s2�C7 J: dlds + J:DIaZ r2C71o' s2-2C7dfdl] . 
As eT < 1 we can carry out the integrations to obtain 

{'O ('mu :I MJ�S!!!;C7) (2 - CT) 

10 10 IK(I,s) 1 dlds � 
2(1 - CT)(3 - 2eT) , 

so the kernel (5.8) is square-integrable as required. 
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s.u Non-factorabillty of the Kernel 

Zabreyko et al [69] define a square-integrable kernel K(/, s) on a bounded domain 0 to be 

non-factorable if and only if for any square-integrable function �(/) � 0, �(/) � 0, which is 

not identically zero, and any 1 e O, there exists an iteration K(N)(/,s) of the kernel, 

K(N)(I,s) = la la · · · la K(/,sdK(st , S2)  . . .  K(SN_t , s)dsN_l . . .  ds2dst , (5.19) 

such that 

In K(N) (/,s);(s)ds > O. (5.20) 

Heijmans [24] uses the term TWn-8upporting instead of non-factorable. 

Given a non-negative ;(s) such that ;(s) > 0 for s e  (SI ,S.,) C (Smin,smax), and l e  (Smin,smax), 
then if 1 E (SI,S.,), (5.20) is satisfied for all N � O. Otherwise, we must have either 

1 e (Smin,s,] or 1 E [S." sma). Here we consider only the first of these cases, as the proof in 

the second case is almost identical. 

Given 1 E (Smin,SI], choose £ = 1 - Smin and a corresponding 6 from (5.5). Becausef(P) > 0 
for P E <Pt ,P2), Pl < P2, and b,(r,s) > 0 for L(s) < r < L*(s), the kernel (5.8) must satisfy 

K(l', s) > 0, PlL*(s) < l' < P'JL(s). 

Hence given ;(s) > 0, S, < s < s." we must have 

1'-K(l', s);(s)ds > 0, PlL*(sl) < l' < P'JL(s.,), '-
so applying (5.5) and (5.6), we have 

r:: K(l',s);(s)ds > 0,  (1 - 6)s1 < r < s.,. 

Now we choose the smallest integer N such that 

that is the smallest positive integer such that 

log(f) 
N > 

log(l � 6) . 

Iterating the argument leading to (5.23) N times then gives 

1'-K(N)(l',s)�(s)ds > 0, (1 - 6,/,sl < l' < s." '-
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(5.21 ) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 



so from (5.24) we have 

rma K(N) (I, s);(s)ds > o. l'fIdn (5.27) 

A very similar argument can be applied if l E  [S." ,,_), 80 we conclude that the kernel (5.8) 

is non-factorable. 
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5.2 The Time-dependent Problem 

5.2.1 Formulation and Simplification 

We consider here the time-dependent problem giving rise to the steady sizelbirth-size 

distributions discussed in Chapter 4. The time-dependent number density is the solution 

of (4.3), 

{} {} 
{}l(l, s, t) + mg,(I, s, t)n(l, s, t) = -h,(l,s, t)g,(l, s, t)n(l, s, t), 

subject to an initial condition 

n(l, s, O) = noel,s), 

and the boundary or renewal condition given by (4.5), [00 {' s dl gl(S,S, t)n(s,s, t) = 6 10 ht(l, r, t)gl(l, r, t)a(l, r, t)f(l ' l, r, t)n(l, r, t)drZ. 

(5.28) 

(5.29) 

(5.30) 

The notation used here is exactly that used in Chapter 4. As in that chapter, we consider 

the special case arising when 

and 

g,(I, s, t) = r(t)l, 
"'(I, s, t) = ht(l, s) , 

f(P, l, r, t) = f(P). 

The probability distributionf(p) must have support -r(f) � [0 , 1] and satisfy 

10
1 
f(P)dp = 1 ,  

and 

101 pf(P)tlp = a-I , 

and a must be a constant. As in Chapter 4, we define 

B,(l, s) = e- t. II(r)dr, 
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(5.31 ) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 



and the probability density function 

oB, b,(/,s) = - m = h,(/,s)B,(/, s). 

Making the appropriate substitutions into (5.28) gives the time-dependent PDE 

o 0 
otn(/,s, t) + m[r(t)ln(/,s, t)] = -h,(/,s)r(t)ln(/,s, t). 

with a boundary condition given from (5.30) by 

sn(s, s, t) = 100 10' h,(/, r)a!(l)n(/, r, t)drdl, 

and an initial condition given by (5.29). 

(5.37) 

(5.38) 

(5.39) 

In order to avoid the explicit dependence of the PDE (5.38) on time t, we replace t by the 

dimensionless time-like variable 

t' = R(t), (5.40) 

where 

R(t) = lot r(-r)d-r. (5.41 ) 

Note that if r(t) = 1 then t' = t. Also, for any r(t), t' is the log of the factor by which the 

total biomass has grown since t = O. We can ensure that t' is positive for t > 0 and that 

(5.40) is invertible, ifwe require that 

r(t) � rmin > 0, 

where rmin is a constant. From (5.40) we have 

on on 
ot = r(t) lJt" 

so substituting (5.40) into (5.38) we have 

on on 
Ot + 1 {)l = -(IJa,(/,s) + 1 )n(l, s, t) ,  

(5.42) 

(5.43) 

(5.44) 

where we have replaced t' by t in order to avoid excessive notational compexity in what 

follows. Note that the boundary condition (5.39) and the initial condition (5.29) remain 

unchanged despite the change in the nature of the time variable t. Equation (5.40) has 
transformed (5.38) into (5.44), which represents the case where r(t) = 1, so from (5.31) the 

growth rate of cells may be regarded as just 

g,(I, s, t) = I. (5.45) 

In the following, we consider just this special case, on the understanding that we can 

transform to the more general case using the inverse of (5.40). 
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5.2.2 Solution using Characteristics 

1b integrate along characteristics, we choose as new variables in (5.44) 11 = Ie-t and -r = I, 
so I = 11e�, to obtain 

lJn 
lJ-r = - ( 11e�h,( 11e�,s) + 1 )n. (5.46) 

This first order PDE has the solution 

(5.47) 

where \If is an "arbitrary" function to be determined by either the boundary condition 

(5.39) or the initial condition (5.29), whichever is appropriate. Reverting to the original 
variables, we obtain 

(5.48) 

We now define a "birth rate" function cz,(I,S) such that cz,(I, s)dstlt gives the number of cells 
born in a short time tit in the size range s to s + tb. Then 

cz,(I,S) = 

= 
= 
= 

dl 
n(s,s, t) dt l,=.r 
n(s,s, l)g,(S, s, I) 
sn(s,s, l) 
se-t ",(se-t ,s), 

because from (5.45) we have g,(S,S,I) = .1, and from (5.36), B,(s,s) = 1 .  Hence 

so (5.48) may be written as 

(I ) _ �(- IOg(f), s) '" , s  - I 

B,(l s) I 
n(l,s, l) = z' cz,(t - log(s)'S). 

5.2.3 The Region In1luenced Directly by the Initial Condition 

For the region 

1 01 

(5.49) 

(5.50) 

(5.51) 

(5.52) 



we substitute (5.51 ) into the initial condition (5.29) which gives 

80 

and 

I I 
�(- log(;), s) = Bl(I,S)no(I,S) 

se-I 
�(t, S) = B ( 1 )no(se-', s), 

I se- ,s  

I le-I 
�(t - log(;),s) = Bl(le-l, s)no(le-' , S). 

Substituting this into (5.51 ) then gives 

(I ) 
BI(I, s) -I (le-' ) n ,s, t = Bl(le-' , S) e no ,s  . 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

Note that the fraction at the start of this expression cannot exceed 1 , 80 provided that no 
is bounded, n(l,s, t) must decay exponentially in the supremum norm in this region. 

5.2.4 The Region Influenced by the Boundary Condition 

For the region 

t >  log (i) 
we substitute (5.51 ) into the boundary condition (5.39) which leads to 

tx) (' s I dl �(t,s) = 10 10 at(l)bl(l, r)�(t - log (,J, r)drT' 

(5.57) 

(5.58) 

Changing the order of integration, then making the change of variable a = log( �) in the 

inner integral, gives 100100 S �(t, s) = at( -e-)b,(rtf, r)tl>(t - a, r)dadr. 
o 0 r 

(5.59) 

We need to split the inner integral in (5.59) into two parts, with separate integrals for the 

regions a > t and a < t. In the region a > t, �(t - a, r) is given by (5.54) as 

rtf-I 
�(t - a, r) = B ( I ) no(rtf-' , r) ,a > t. 

I re"- , r  
(5.60) 
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Hence (5.59) becomes 

where 

1000 10
' S tl»(t,s) = af( -e-)b,(rt!' , r)4l(t - a, r)dadr + �O(t,S), o 0 r 

1000 100 
S rtfl-I 

�o(t, s) = a/(-e-lJ)b,(rt!', r)B ( -I )no(rell-', r)dadr. o 1 r I rt!' , r  

The form of�(t,s) 8S t - 00 is discussed in the following section. 
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5.3 Stability of the SizelBirth-size Distributions 

We are interested in the properties ofn(l,s, t), and therefore ofcz,(t,s), as t --+ 00. In order to 
show that that the steady sizelbirth-size distributions calculated in Chapter 4 are stable, 
we need to show that for large t, we may write for some ;(s), 

cz,(t,s) = eI( ;(s) + 0(1 » .  (5.63) 

Because we .have transformed to a dimensionless time variable, we anticipate that the 
coefficient of t in the exponent is simply one. If we can show that cz,(t, s) takes the form 
(5.63), then as in Chapter 4 we may interpret ;(s) as the steady size distribution ofnewbom 
cells. 

In order to establish (5.63), we follow the approach of Heijmans [24], and look at the 
properties of a family of operators on the Laplace transform of cz, rather than study the 
properties of the integral operator in (5.61) directly. All of the conditions (Ai), (At), (.A...), 
(.A.r), and ifnecessary (..40), specified in Section (5.1 ), are assumed to hold throughout this 

section. We also assume that the initial cell siZ&'i>irth-size distribution, no(l,s), is zero 
outside the region Smin < s < SJJW[, s < 1 < L(s). 

5.3.1 The Laplace Transform of the Operator 

We now proceed to take Laplace transforms of both sides of equation (5.61 ), denoting the 
Laplace transform of cz, by � and the Laplace transform of � by cito. Then we have 

(5.64) 

The Laplace transform ofcz,o(t, s), �o(A.,s), exists and is analytic for A. > 0 provided that no 
is bounded and has as its support the "feasible region" shaded in Fig. 4.4. Now we make 
the change of variable a = t - a, giving 

�(A.,s) = rx> (00 (t af(�e-(t-'»)bl(re(t-/) , r)cz,(a', r)e-Alda'dtdr + �o(A., s), (5.65) Jo Jo Jo r 

then swap the order of the two inner integrals and change variables again using t' = t - a, 
so that 

(5.66) 
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Now replace the dummy variables a' and t' by t and a respectively, then change the order 
of the inner integrals again to obtain 

cP(A., s) = 1000 [1000 a!(;e-tl)bl(rtl' , r)e-Aada] cP(A., r)dr + cPo(A., s). (5.67) 

This is in the usual form of an inhomogenous Fredholm integral equation, 

cP(A., I) = 1000 k,,(I, s)cP(A.,s)ds + cPo(A., l), (5.68) 

where 

(5.69) 

Alternatively, we can substitute r = sell to obtain 

(5.70) 

More formally, using operator terminology we may write 

(5.71 ) 

where k(A.) is the operator defined by 

(5.72) 

Inverting (5.71 ), we have 

cP(A.) = (/ - k(A.))-lci»o(.t), (5.73) 

where I is the identity operator. We define an operator 

R(.t) = (I - k(.t))-l . (5.74) 

Now in order to evaluate the inverse Laplace transform of cP( A.) precisely, we would want to 
be able to find all the singularities of R(.t) and their orders. However, as we are interested 
only in that part of �(t,s) which grows most rapidly at large time, it is sufficient to find 
just the .t with the largest real part for which R(.t) is singular. It is clear that R(.t) can be 
singular only if k(A.) has an eigenvalue of one, 80 we now proceed to find the maximum 
value of A. for which this is possible. 
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5.8.2 Eigenvalues of the Operator K(A.) 
.. . " . . � ", I 

t' • d • .. . " "'. 

The kernel of the operator k given by (5.70) and the kernel K given by (5.8) both have the 
same support, so the argument used in Section (5.1 .2) to show that the kernel K(/,s) is 
non-factorable is equally applicable to the kernel t..t. Hence the kernel tA. is non-factorable 
for alLt > O. 

The kernel kA. is clearly square-integrable for ,\ � 1 ,  as in this case we have kA.(/,s) $ 
aK(I, s), Vs, 1 E [Smin,smaxJ, and K(/, s) has been shown to be square-integrable in section 
(5.1 .1 ). For '\ < 1 ,  the situation is somewhat more complex. Provided that Smin > 0, we 
can use arguments as in Section 5.1 .1 to obtain 

[-1"- " 2 a2(Smu - smin)2s2max.utJ IkA.(/,s) 1 dlds $ �+2X ' 
IJBiD laiD min 

(5.75) 

so kA.(/, s) is square-integrable (et: 5.1 3). If ,\  < 1 and Smin = 0, then we need to assume 
(5.7), and consider only ,\ > 20' - 1 .  Then from (5.70), noting the restrictions to f(P) and 
b,(/, s) applied in Section 5.1 , 

(5.76) 

so as L(s) is finite we may write 

lL(l) L(sf-A. 
kA.(/,s )  $ a�MI b,(r, s) r2 tIr. max(',r) 

(5.77) 

Then applying (5.7) and an argument identical to that used in deriving (5.18), we obtain 

-- Ima A 2 a2MJ��-A.)s�..t-2cr)(l + ,\  - 0') [.m L.m IkA.(/, 8) 1 dlds $ 
(1 + ,\  _ 0') (1 + 2,\ _ 20') ' (5.78) 

where Lsup = sup(L(s», O $ 8 $ Smax. Hence the kernel (5.70) is square-integrable if 
Smin = 0 provided '\ > 20' - 1 ,  which is not too restrictive because 20' - 1 < 0' < 1.  

Hence iff(P) and b,(l,s) satisfy the conditions outlined in Section 5.1 , there exists a constant 
Ao < 1 such that for all '\ > Ao, the kernel kA.(/,s) given by (5.70) is both square-integrable 
and non-factorable. From the above, we may choose Ao = 0 if Smin > 0, or Ao = 20' - 1 if 

Smin = O. As pointed out in Section (4.1 .5), this means that the operator K('\) must have 
a largest positive eigenvalue which is simple, and all other eigenvalues of K('\) have real 
part strictly less than this. 
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Let hax be the largest positive eigenvalue corresponding to the kernel for some 
A. > Ao, and let �(l) be a multiple of the corresponding eigenfunction chosen such that ; is 
non-negative, and not identically zero. Then 

7maz;(I) = 1000 k.t(l,s);(s)ds, 

so substituting from (5.70), multiplying by f- and integrating gives 

1iuax 1000 r;(l)dl = 1000 r (1000 k.t(l,s);(s)ds) dl 

(5.79) 

_ loo af {OO�lOO/(!)b,(r,s) 1
1+.tdr;(s)dsdl. (5.80) 10 10 • r r 

Changing the order of integration, we have 

(5.81) 

because /(p) = 0 for p > 1 .  Hence as J. b,(r,s)dr = 1 , Vs, and ;(I) is non-negative and not 
identically zero we have 

(5.82) 

• If A. = 1 , then 1S:nax = 1 is an eigenvalue of the operator K{A.), and all other eigenvalues 
of K(A.) have real part strictly less than one. 

• If A. > 1 ,  then as � is monotonic decreasing with A. for p E [0,11, we must have 
7max < 1 .  This means that 'Y = 1 cannot be an eigenvalue of K{A.). 

• If A. < 1 ,  then the monotonicity of p1 implies 1mu > 1 ,  and all other eigenvalues of 
K(A.) must have real part strictly less than 1mu. There must be some � say such that 
if A.t < A. < 1 , then all eigenvalues apart from 1iuax (which is greater than one) must 
have real part less than one. Hence for � < .t < 1 ,  it is impossible K(A.) to have an 
eigenvalue of one. 

If we now let % = max{Ao, �) < 1 ,  we can say that the only value of .t with real part 
greater than A.l for which K(A.) has an eigenvalue of one is A. = 1 . 
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5.3.3 The Inverse Laplace Transform 

It follows immediately from the previous section that the operator R(A) given by (5.74) has 
a singularity at .1. = 1,  and no other singu1arities in the region .1. > At .  Now the operator 
K(A) is analytic in a neighbourhood of .1. = 1 ,  so in this neighbourhood we may use the 
Taylor series expansion 

00 
K(A) = L (.1. - 1  )"K", (5.83) 

11=0 

where the XII operators are not functions of .1.. If the order of the pole of R( .1.) at .1. = 1 is 
p � 1 ,  then we may write a Laurent series expansion for R( .1.), 

00 
R(A) = L (.1. - l )"R,,, (5.84) 

II=-p 

where R_p :/; o. Now from the definition ofR(A), (5.74), 

R(A)(I - K(A)) = (1 - K(A»)R(A) = I, (5.85) 

so substituting the series (5.83) and (5.84), then multiplying through by (.1. - 1)P gives 

00 00 ( L (.1. - 1 )"R,._p)(1 - L (A. - 1 fK,.) 
11=0 11=0 

Equating coefficients of (A. - 1 )
0 

then gives 

00 00 
= (/ - L (.1. - 1 )"K")( L (.1. - 1 )"R,._p) 11::0 11::0 
= (A - 1rI. 

R_p(1 - Ko) = (I - Ko)R_p = 0, 

and equating coefficients of (.1. - 1 )1 we have 

- R-,xl + Rl_p(I - Ko) = 
' { 0 p > 1  

I, p = 1 .  

(5.86) 

(5.87) 

(5.88) 

Let us assume that p > 1 and look for a contradiction. Then from (5.87) and (5.88) it 
follows that 

(5.89) 

Now in (5.87), we have Ko = K(l) and R_p :/; 0, 80 the right hand equality can hold only 
if for all yt, R_p yt is an eigenfunction corresponding to the eigenvalue r = 1 of K(l ). Also 
Kl = ixK(A.)I.1.::b which is a strictly negative operator, 80 R_pX1R_p cannot be the zero 

operator. Hence p = 1 and R(A.) has a simple pole at .1. = 1. 
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We now proceed to find the inverse Laplace transform of �(,t), which is given by 

1 lc+iOO 4 

Cl>(t) = 
21fi c-ioo �Cl>(,t)d,t 

1 lc+ioo = 
21fi c-ioo �R(,t)ci>o(A.)d,t (5.90) 

where c > 1 as shown in Fig. 5.1 . Consider the integral around the closed path shown in 
Fig. 5.1 , in the limit as e -+ 00, with � < d < 1. It follows from the previous section that 
this path encloses just the one simple pole at ,t = 1 ,  80 the total integral around the path 
is equal to 21fi times the residue of the pole at ,t = 1. That is, 

(5.91) 

As both � and ci-o(,t) are analytic in a neighbourhood of ,t = 1, and R(,t) has a simple pole 
at A. = 1 ,  we have 

(5.92) 

Now as noted above, R-l is the operator which maps any non-zero function directly to an 
eigenfunction of the operator K(I ). Provided that Cl>o(t, s) is not identically zero, �o(l )  is 

not identically zero either. Hence we have 

(5.93) 

where ;(s) is a normalised eigenfunction of K(I), and C is a non-zero constant dependent 
on the ci-o(l )  and therefore on 4»0. We note that K(I ) is the integral operator with a 
kernel given by (5.8) or (4.37), so ;(s) is a multiple of the steady birth-size distribution as 
discussed earlier. If we choose to normalise ;(s) using (4.33), then the function ; referred 
to in (5.93) is exactly the same function ; as in Chapter 4. 

We note that in the limit as e -+ 00, the integrals along the upper and lower edges of the 
path in Fig. 5.1 approach zero, 80 from (5.90) we have 

1 [ A t+iOO 4 1 Cl>(t, s) = -
2 

. (21fi) (residue(�R(,t)4to(,t,s)) I.l=l ) + . �R(,t)Cl>o(,t,s)d,t . 
1f1 a-lOO 

Now the residue at ,t = 1 can be found from (5.92) and (5.93) to be 

residue (e.1lR(,t�o(,t)) l.l=l = tc;(s), 

and 1
2
1

. r�iOO �R(A.�o(,t)dA.1 5: M(s)eD, 1fl 1d-100 
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I I 

d�e�--------�--------1C� 

I 
C R(A) d • 

1 

d-ie�--------------""",c-ie r 

Figure 5.1 : The integration path in the complex plane, r, used to estimate «I»(t,s). We 
choose c > 1 ,  A.I < d < 1 ,  and let e -+ 00. 
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where 

M(s) = 
2
1 

1 1
00 

R(d - il1)d>O(d - il1,s)d771. 
K -00 

Substituting (5.95) and (5.96) into (5.94), we get 

fZ>(t,s) - C;(s)t � M(s�, VAt < d < 1 ,  

so for large t it is possible to write 

fZ>(t,s) = t(C;(s) + 0(1 ) )  

(5.97) 

(5.98) 

(5.99) 

as required, because i(l-d)t must decay with t for d < 1 .  Hence, given the conditions 
outlined in Section 5.1 , the steady birth-size distribution can be regarded as stable, 80 

the steady size and steady sizelbirth-size distributions will also be stable. We note that 
(5.99) is expressed in terms of dimensionless time. Ifwe transform back to real time using 
(5.40), and let the birth rate function in terms of real time be f%>'(t,s) = cz,(t',s), then we 

have simply 

f%>'(t,s) = e'l(I)(C;(S) + 0(1 )), (5.100) 

so the stability in terms of dimensionless time implies stability in real time. 
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5.4 Examples and Counter-examples 

Section 5.3 shows that the sufficient conditions for unique steady size distributions (SSDs) 
and steady size/birth-size distributions to exist, discussed in Section 5.1 , are also sufficient 
to ensure that they will be stable. By this we mean that given an initial cell size 
distribution no(l, s) such that no is not identically zero, no is bounded, and no = 0 outside 
the feasible region shaded in Fig. 4.4, then after a sufficiently large time we will have 

n(l, s, t) = I'(I)(Cy(I,s) + 0(1 » , (5.101) 

where y(l,s) is the steady sizelbirth-size distribution given by (4.24). 

5.4.1 Some Stable Cases 

We consider here the cases solved analytically in Chapter 4, assnming that in each case 
the initial size distribution no(/,s) is zero outside the region defined by Smin < S < Smu, 
S < 1 <  L(s). 

The simple case discussed in Section 4.2.1 , where all cells divide at the same size, with 

bl(l, s) given by (4.47), is stable provided that!(p) is bounded. As L*(s) = L(s) = L, we have 
Smin = fJ1L from (5.2), and Smu = fJ2L from (5.3), which satisfies (AI) and (...4...). 'Ib check 
that (A.,) is satisfied, let us consider first (5.5). We have for s � Smin + e, 

e PlL*(s) = fJ1L = Smin :$ s(1 - s), (5.102) 

so (5.5) is satisfied with 6 = e/smax. We can show that (5.6) holds in a similar manner, 80 

(A.,) is satisfied. In the particular case where SmiD = 0, we have for s :$ I < L, 

1L "'(r, s) dr - .!. 
I r2 - L2 ' (5.103) 

so we can satisfy (Ao) by choosing a = 0 and Mb = 1 /L2. If we also choose a bounded!, 80 

that (Af) is satisfied, then it follows that the case where all cells divide at the same size is 
stable. 

In the case where the hazard rate is independent of initial cell size, discussed in Section 
4.2.2, we have L* and L as constants with L* < L, and also Smin = PlL* and Smax = p,p: (Fig. 
4.7). Conditions (At) and (Am) are clearly satisfied, and (Ar) follows in much the same 
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way as in the case where all cells divide at the same size. AB Pl > 0 so Smin > 0, we do 

not need to check (..40), so we conclude that the steady sizelbirth-size distribution will be 

stable provided that/(p) is bounded (so (.AI) is satisfied). 

In Section 4.2.3, we discussed the case where b,(l,s) = 6(1-L(s», with L*(s) = L(s) = Lt-rsT, 
and /(p) = H(l - p) SO Pl = 0 and p2 = 1 .  Conditions (A,) and (At) are clearly satisfied, 
and from Section 4.2.3 we have "miD = 0 and Smu given by (4.85), so (A".) holds. 'lb show 

that (�) is satisfied, we note first that PlL*(s) = 0 so (5.5) is satisfied, then we consider 

(5.6). Given E > 0, we have for s 5 Smu - E, 

(5.104) 

As in Section 4.2.3, we assume that a � 2, so from (4.85) we have Smax ::; L. Hence 

S < L - E and the factor (�)I-r is strictly greater than one. Thus there exists a 6 
such that p2L(s) � s(l + 6), so (A,) is satisfied. Finally, as b,(l, s) = 6(l - L(s» , with 

L*(s) = L(s) = Ll-rST, we have for all s ::; I ::;  L(s), 

lL(.f) b,(r,s) 1 1 
I r2 dr = L(s)2 = L(s)O'L(s)2-O' · (5.105) 

Now if we choose a = r'11 < 1 ,  and note that L(s)O' � zcr and L(s)2-O' = (Lt-rST)2-O', we 

obtain after some simplification 

lL(.f) b,(r,s) 1 
I r2 dr ::; L2(I -O')(ls)O" (5.106) 

so (..40) is satisfied with Mb = L -2(1-0'). Hence the case dealt with in Section 4.2.3 is stable. 

5.4.2 Some Unstable Cases 

We consider here some examples in which one or more of the conditions specified in Section 

5.1 are violated in some way, and show using elementary arguments in each case that a 

unique stable sizeA>irth-size distribution will not in general be approached at large time. 

Multiple solutions for Smin and Smax 

Let us choose L*(s), L(s), Smin, and Saura: such that conditions (A,) and (A".) are satisfied, and 

choose/(P) to be bounded (so (At) holds) with Pl > 0 (so (.Ao) is unnecessary). However, 
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we violate (�) by allowing there to be points Smin,; E (Smin,smax) such that 

PlL*(Smin,;) = Smin,;, 

and points Smax,; E (Smin,smax) such that 

s 

8min,2 
8 . 1 -. 

8mos,2 

(5.107) 

(5.108) 

1 

Figure 5.2: A case where the steady size distribution is not unique because (�) 
fails. We have smin/L*(smin) = Smin� /L*(smin;d  = smin:J,/L*(smin:J, = Pl and smax/L(smax) = 

smax� /L(smax� ) = smax:J,/L(smax:J, = P2. All cells divide between the lines 1 = L*(s) and 
1 = L(s). 

The example we consider is shown in Fig. 5.2, where there are two points, Smin� 
, 

and Smin,2, satisfying (5.107), and two points, smax� and smax:J" satisfying (5.108), with 

Smax� < Smax,2 < Smin� < Smin,2 as shown. If we restricted the domain of possible cell 

birth-sizes to (Smin, smax� ), by choosing no(/,s) to be zero outside the lower shaded region 

in Fig. 5.2, then a steady birth-size distribution would develop with support (Smin,smax,l ), 
say � (s). Similarly, If we restricted the domain of possible cell birth-sizes to (Smin,2 ,Smax), 
by choosing no(/,s) to be zero outside the upper shaded region in Fig. 5.2, then a steady 

birth-size distribution would develop With support (Smin,2,Smax), say �(s). Hence in this 

case a steady cell birth-size distribution may develop given any no(/,s), but on (Smin,smax) 
this distribution will not be unique, as changing no{l,s) will change the linear combination 

of � (s) and �(s) which will make up the final steady birth-size distribution. 
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Mean cell size always decreasina 

We first consider the way in which the mean cell size changes with the generation-by­

generation iteration 

ft+1 (/) = a looo K(/,s)�(s)ds. 

The mean cell size after the iteration is 
- foOO 1;1,:+ldl a foOO 11000 K(/,s);';(s)dsdl 
�+1 = foOO ;';+ldl 

= foOO fO K(/,s);I,:(s)dsdl ' 

(5.109) 

(5.110) 

which, after manipulations simi1ar to those used in deriving (4.43) from (4.40), gives 

- fOO s;';(s)<b 
;1.:+1 = !&J!l . 

a fO s J. � dr�(s)ds 

Now we consider the particular case where, within the support of ;1,:, we have 

with 1 5 m* < m. Then 

so (5.111) gives 

b,(/,s) = { _!,.. ... , m*s 5 1 5  ms 

0, otherwise, 

s 100 b,(r, s) dr = 
1 

10 (�) 
.. r . m - m* 

g 
m* ' 

- m - m* -
;1.:+1 = a log(:' ) ;.;

. 

As an example, we consider the case shown in Fig. (5.3), where a = 2 and 

b,(/, s) = { LC"\-'" s 5 1 5  L(s) 
0, otherwise, 

where L*(s) = s and 

Hence we have 

{ (2p2"1 - 1 )s, 0 < s < 2I's
j

-l L(s) = 
L, 2p,�-1 � S < L. 

{ (2 - P2)s, 0 < s < 2I'
j 1 L«(}p2 = L 
II -

p�, 2p,1_1 5 s < L, 
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_(5.111) 

(5.112) 

(5.113) 

(5.114) 

(5.115) 

(5.116) 

(5.117) 



s 

. . ........... . 
-

L 1 

Figure 5.3: A case in which there is no steady size distribution because the mean size gets 
smaller every generation. Cells may exist in the shaded region only, with b,(l,s) given by 
(5.115). 

and it can be shown that (Ai), (.Af), (..4".), and (�) are all satisfied if we choose Smin = 0 
and SJIUIX = p�. However, (.Ao) is not satisfied, because for example for s < 2,:'-1 we have 
from (5.115) and (5.116), 

(5.118) 

Indeed, this example cannot have a steady birth-size distribution, because given any 
birth-size distribution � and P2 < 1, we have from (5.114) with m* = 1 and m = 2pi1 - 1, 

(P-l _ 1 ) _ 

�+1 � 2 ;t log(2P2"1 - 1 ) 
< �, (5.119) 

where we have used P2 � 0.5 and the fact that L(s) � (2pi1 - 1 )s. Hence after each 
iteration the mean cell size gets smaller, 80 there can be no steady cell size distribution. 

Mean cell birth-size always increasing 

Consider a case in which (Am) is violated because there is no maximum birth-size Smu, and 
for large s, b,(l, s) is given by 5.112. Then by choosing m* sufficiently large, we can show in 
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a similar manner to the example above that the mean cell size must always increase, 80 

no steady size distribution in possible. 

It is interesting to note that the stability proof in Heijmans [24], for the case where all 
cells split exactly in half, fails if the domain of the kernel is not bounded by a requirement 

that all cells must divide before reaching some maximum cell size. As a simple example, 

using Heijmans' notation we choose a growth rate given by 

g(x) = x + l , 
a fission rate of b(a,x) given by 

and a death rate given by 

b(a,x) = { 0, 
1 , 

a s log(3) 

a > log(3), 

Jl(a,x) = O. 

(5.120) 

(5.121)  

(5.122) 

Here a stands for cell age and x for cell size, and b(a,x)dt gives the probability that a 

cell of age a and size x divides in a short time interval dt (in the notation of Section 1.8, 

b(a,x) = h/(x, a)g(x, a» . Then the minjmum age at which a cell can divide is ao = log(3), and 

all ofHeijmans' assumptions (A,), (Ab), (Ap), and (Ad) are satisfied, as well his Assumption 

6.4. However, it is a simple matter to show that a cell which is born at size x will reach size 

3x + 2 at age ao, so its division size must be greater than size 3x + 2, and both daughter cells 

will have size greater than 1 .5x + 1 ,  which is strictly greater than x. Hence all daughter 

cells will be born at a strictly larger size than the parent cells, 80 no stable size distribution 

is possible. 

f(P) a delta function 

Here we consider the the stability of the case dealt with in Chapter 3, where cells divide 

into a daughters all of the same size, so 

f(P) = 6(p - a-I ) , (5.123) 

where 6 is the Dirac delta function. A number of authors have pointed that a population 

of cells growing exponentially in size and dividing exactly in half will not, in general, 

approach a stable size distribution (e.g. Trucco [59], Hannsgen et al [21], Tyson and 

Diekmann [61 ], and Heijmans [24]). However, as we found in Chapter 3, a steady but 

unstable size distribution can exist, and we note the justification given a footnote in 1Yson 

and Diekmann [61] for studying the steady size distribution in this unstable case: 
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"Our rationale is that any small aberration from either true exponential growth 
or exactly symmetric division yields stable distributions which are close to the 
ones we calculate." 

Clearly, iff(P) is given by (5.123) then assumption (AI) cannot be satisfied, 80 we would not 
necessarily expect this case to be stable even if all the other assumptions were satisfied. 
A simple "mind experiment" shows that a stable size distribution cannot be approached 
because there is no "spreading" of cells into wider size-classes. Consider a group of cells 
whose sizes at time t = 0 all lie between 11 and 12 (Fig. 5.4(a», but which may have any 
distribution of ages or birth-sizes, and for simplicity choose r(t) = 1 80 the growth rate 
is simply g,(l) = I. Any offspring produced by these cells in the next instant of time will 

lie between sizes a-lit and ·a-112, as shown. A short time 'r later, we have the situation 
shown in Fig. 5.4(b), where the original cells now lie between sizes 11 e� and 12e� and their 
daughter cells have all grown to sizes between a-lit e� and a-lI2e�. But any cells newborn 
at t = 'r will fall exactly into the latter size range, i.e. (a-lit e� , a-1 12e�), and all cells born 
between time t = 0 and t = 'r will also lie in this size range at time t = 'r. Fig. 5.4(c) shows 
the situation after a large time, with cells from a number of generations present. The cells 
from each generation are confined to a small range of sizes, with the size limits increasing 
exponentially with time until all cells of that generation have divided. Hence no stable 
size distribution is approached. 
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(a) 
t = o  

size ,I 

(b) 
t = T  

size ,I 

(c) 
t -+ 00 

Figure 5.4: Time series of size distributions where cells grow exponentially in size and 
divide into exactly a equal-sized daughters. (a) At t = 0, an initial size distribution has 
support (h , 12), with daughter cells being born in the size interval (a-Ih ,  a-112). (b) A short 
time -r later, all cells born between t = 0 and t = -r lie in the size range (a-I ll e', a-l/2e'). (c) 
At large time, as t - 00, each generation of cells still present lies within a range of sizes 
(lkl , Ik2), where lk2/1ld = 12/h . 
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Appendix A 

MODlents of a LiDliting 
Distribution 

In Chapter 2, we showed that in the limit as a -+ 1 +, the solution of the functional 
differential equation y'(x) = -ay(x) + aay(ax), x > 0, subject to the normalising condition 
fooo y(x)dx = 1 ,  tends to a normal distribution. H this is the case, it follows that all the 
moments of the y(x) given by (2.42) should tend to the corresponding moments of the 
normal distribution as a -+ 1 + . 

A.t Formulation as a Combinatoric Limit 

Rewriting the expression given by (2.24) for the nth moment about the origin in terms of 
q = a-I , we obtain 

It! 
E{x"] = 

a"(1 - q)(1 - if) . . .  (1 - if) '  (At) 

for all positive integers It, where the notation EO indicates the expected value. We write 
the mean and variance (from (2.25) and (2.26» as 

1 
Jl = a(1 _ q) (A2) 

and 
1 

a" = 02(1 _ q2) (A3) 
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respectively. Then, using the binomial expansion of (x - JJ)", we obtain 

so that 

11 n I ll_A: k!( -1 )  
. 

( )  
" -le 

E[(x - JJ)"] = k k ( a(l - q» al(l - q)(l - q2) . . .  (l - qi) ' 

ri-le 
X - JJ 

_ , _ .!l i � (-1 ) E[( U )"] - n.(l q ) � (n _ k)!(l _ q)"-A:(l _ q)(l _ q2) . . . (1 _ qi) ' 
Borrowing some notation from combinatorics, we may write this as 

x - JJ 11 (1 + q) I 11 . n-k n! 
E[(--q) ]  = 1 - q �(-1) (n - k)!k!q ' 

where we define klq to be 

A: 1 - tI 1-1 . 
k!q = TI -1- = TI(l + q +" + . . . + q') , i=1 - q i=O 

(AA) 

(AS) 

(AS) 

(A.7) 

as in Goulden and Jackson [14]. Note that in the limit as q - 1 - , klq approaches the usual 
factorial, 

so k!q is called a q-analog factorial. 

lim k!q = kt, q ..... l-
(AB) 

Now if the SSD, y(x), tends to a normal distribution as q - 1 - (i.e. as a - I  +), then the 
distribution of the variable (x - JJ)/u must tend to the unit normal distribution N(O, 1 ). 
The nth moment of the normal distribution in given by 

JI:(O�)  _ { 0 , n  odd 
- (n - I)! ! , n even ' 

where (n - 1  )!! is the so-called "double factorial", which for n even is given by 

n' (n - 1 )!! = 1 .3.5 . . .  (n - 1 )  = 21 � " I'  

(A9) 

(A10) 

Comparing (A. b) with (A9), for the limit of the distribution of (x - JJ)/ u as q - 1- (i.e. as 
a - I  +) to be a unit normal distribution, we must have 

lim [(1 + q) I ± ( 1 t n! 1 { 0 , n odd 
q ..... l- 1 - q A:=O - (n - k)!klq = (n - I )!! , n even 
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While there are some results in the literature which are superficially similar to (All) 
(Goulden and Jackson [14]), this result itself does not appear, nor apparently any other 

results from which (All) could easily be deduced. The following proof starts from what 

could be regarded as "first principles" and is therefore rather long! 

A.2 Formulation Involving Polynomial Coefticients 

From (A 7), we have for le, n E 1+ and le < n, 

n!q = k!q(1 + q + . . .  + t/) . . . (1 + q + . . .  + tt-I ), 

so the left hand side of (All ) can be written as 

lim q ( I t n. [(1 + ) 1 11  
' ] q-+l- 1 - q lo - (n - k)!k!q 

(AI2) 

= 
lim [ (1 + q)l ] Il:o( -118(1 + q + . . . + tf) . . .  (1 + q + . . .  + (,-1 ) .  

(A13) 
9_1 - n!q (1 - q)1 

The limit as q - 1 of the fraction in square brackets in this expression is �. Expressing 

the right-hand fraction in terms of p = 1 - q gives 

where 

lim [ (1 + q) t I,(-I )1 n! ] _ 2
1 

lim !Jil 
q-l- 1 - q 1::0 (n - k)!klq 

-
n! ,-.0+ pi ' 

A n' 11-1 I 
f(P) 

= k�( -1)" (n -·k) ! !] �(1 -pi· 

For (All ) to hold, it follows from (A14) that 

. [f(P)] { 0 
,l!..r:.. pi 

= 1I!(�i)!! , n odd 

, n even. 

(Al.) 

(AtS) 

(A16) 

Now f(P) is a polynomial in p, so the limit in (A16) can exist only if all coefficients of p' in 
f(P) are zero for r < i. The coefficient ofp' with r = i (n even only) must be chosen 80 that 

(All) holds, but coefficients ofP' for r > i are irrelevant. Hence (All) will hold provided 

that 
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{ 0 , r < i [p'1f(P) = 1I!(�"t)!! , r = i, n even ' 

where the notation flf1f(P) is used to indicate the coefficient ofp' inf(P). 

A.S An expression for fJfV(P) 

Now 

(l -pi = I,(-l Y( i )JI j=O 1 
so after a change of order of snmmation we have 

±(l -pi = ±(-1YJI± ( i ) . .=0 }=o .=} 1 
We can now apply the combinatorial identity 

± ( � ) = ( � + 1 ) , i=j J J + 1 
which can be proved easily by induction on I, to obtain 

±(1 -pi = ±(-1 Y ( 1 + 1  )JI. i=O j=O 1 + 1  
Substituting this result into (A.15) we obtain 

For each k, consider 

11 n! 11-1 I ( I + 1 ) i 1(P) = L(-1 t (n _ k), fI � i + 1  
(-p) .  1=0 • l=k .=o 

(A.l 7) 

(A.l8) 

(A.19) 

(A.20) 

(A.21 ) 

(A22) 

(A23) 

as a product of (n - k) terms, which we number according to the I value, from k to (n - l ). 
The constant term in the product is then simply the product of the constant terms in each 
of the factors, 

(A24) 
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so that 

[p0lf(P) = f, ( -1 )t n! n! = n! t ( -ll ( 
n 
) . 1=0 (n - k)! k! t::O k 

We can then apply the identity 

so for all n > 0 we have 

f,(-lt( 
n 
) = { 0 

1::0 k 1 

, n  > 0 

, n  = 0 

(A.25) 

(A.26) 

Hence in order to establish (A.17) we may now restrict our attention to 0 < r � j. Note, in 
particular, that the term in (A.22) with k = n is a constant, so we ignore that term from 
here on and sum over all k up to (n - 1 ) only. Note also that we may assume 

n � 2r. (A. 27) 

Now for any r > 0, we choose some partition ! = (it , i2 , . . .  , i",) ofr, such that r = it +i2+ . . .  i"" 
and ij > 0, Vi. Note that therefore the order of the partition, m, must satisfy 

m � r, (A.28) 

and equality can occur only in the case where ! = (1 , 1 , . . .  , 1 ). 

For the chosen partition b we choose the constant term from all factors in (A.23) except 
that we choose the term involving JIt from the it th factor, the term involving Jia from the 
hth factor, and in general the term involving pit from the if th factor, with it < 12 < . . . < 1",. 
Note that if m > n - k, this would not be possible, so such a partition could not give rise to 
terms in p' for the chosen k value. We then calculate the coefficient of ( -p)' corresponding 
to the selection i = Ut. ,12 , ·  . .  1",) of factors and the partition b by taking the expression 

(A.24) for [po] and adjusting it for each of the factors if' so· 

where 

11-1 I ( I + 1 
) 

. n ' '" 
[( -P)']ij n L . + 1 (-p)' = k; n Jr(q), 

- - Id i:::O I • 9=1 
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This notation ensures that if there is no term involving p� in the chosen factor, then 

1f(q) = O. Since [(-p)'Y(P) = (-1 ),rP'1f(P), summing over all partitions ! (which implicitly 

sums over all m as well), and summing within each over all possible factor sequences � 
leads to 

[JlY(P) = n!(-l)' '':£ (-l )k( n ) I 
k=O " ! 

"f 6(1 ) /I
-I-1 ) 6(2)... /If 1f(q)... 1: 6(m - 1 )  /If 1f(m). (A 30) 

it =k h=it +1 jf=jf-l +1 j.-l =i_s+1 j.=j.
-
l +1 

If le > n - m, then any partitions of order m should not contribute to the sum. This can 

be achieved by ensuring at all stages that if the lower limit of a sum is greater than the 

upper limit, a contribution of zero is made to any resulting total. 

We now shift the summation with respect to ! to the left, and reverse the order of all the 

other sums to get 

A.4 Proof of the Main Result 

(A31) 

In order to progress step-wise through the multiple sum in (A 31 ), we introduce the 

abbreviation Sq to represent the inner sum in this expression back to summation with 

respect tojq. That is, 

i.+l -1 i.
-1 

.is-1 it 
( n ) Sq == I 6(q) . . .  I 6(2) I 6(1 )n!( -1 'f I ( _1 )k . 

j.=IfI-q .hi =1 it ::O  k=O " 
(A32) 

Note that if q = m, we replace the upper limit of the outer sum by n - 1  so that S". gives the 

total coefficient of If for the particular partition !. 

Given n > 0, it can be proved by induction on m that 

(A33) 
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80 the sum with respect to it in (A31) is 

SI = L K(I )n!( -1 y( -1 )'1 , 
il-l . ( n - 1  ) 
i1=O }1 

(AM) 

We now substitu� Cor K(I ) using (A30), and use the Cact that K(I ) = 0 Cor it < it to raise 
the lower limit of this sum from it = 0 to it = 11 , A change of summation variable from h 
to it - il then yields 

(-I)it .;.-it -l . (n - I )! SI = n!(-I )' C l )' 1:, (-1 )'1 ( j , 1)" 
'1 + . h ::/j  n - 1 - '1 - , 

(A35) 

which can be written as 

i (n - I )! b-it -1 . ( n - (il + 1 )  ) SI = n!( -1 n -1 ) 1  C 1 )'( (i 1 » ' 1:, (-1 )'1 , . 
, + ,

n - 1 + ' h ::/j 11 
(A 36) 

In the next section we show by induction on q that Sf can be written as 

i,+1 -6(f) . ( n _ S(q» ) 6(!t-l i,+l -C . ( n - c ) Sq = 'I'(q) L (-I Y' + 2, ac L (-1 Y' , 
i,:O if t=f i,:O }q 

(A37) 

where the Dc can be any constants, 

and 

Now 

s(q) = t(ic: + 1 ), (A 38) 
c=1 

'1'( ) = n'(-1 )'(-1 )�1 � 
(n - 1 )! 1 

(A q ,  fi1Ll (i.t + l )!](n - s(q» ! m.:f(n - s(d» ' 
39) 

rP'"Y(P) = 1:,S", 
i 

(A40) 

so substituting q = m and s(m) = I:'=l (ic + 1 )  = r + m into (A37) we have 

where the Dc are a set oC constants. 
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In (A41 ), e � r + m - I , 80 e � 2r - 1 from (A28) and, using (A.27), e < n. Hence n - e > 0 
so from (A.26) the last sum in (A41 ) must be zero for all e, so all terms involving the 

constants tic are zero. Also, from (A26), the first sum in (A41) is zero for m < r because 
n � 2r. However, as pointed out after (A28), the only partition of r for which m I. r is 

the partition ! = (1 ,1 , ... , 1 ), so this is the only partition we need retain in (A41). Hence, 
substituting iq = 1 , Vq into (A39) and (A41) we get, for n � 21', 

, (n - I )! 1 a-2r . ( n - 2r ) fp']f(P) = n!( -1 ) (-1 Y (2')(n _ 2r)! (n _ 2)(n _ 4) ... 4.2 i-'I:o (-1 Y- j", 
. 

Since this sum is zero for n > 2r, and one for n = 2r, we get finally 

[p"lf(P) = { '���1l11 

which is equivalent to (A.17), as required. 

, n  > 2r 
, n = 2r ' 

A.5 Proof By Induction of the Expression for Sq 

(A42) 

(A.43) 

We know from (A36) that the expression for Sf' (A37), is correct when q = 1 . We now 
assume (A37) is true for some q and show it must then be true when q is replaced by q + 1 
and hence true for all q up to n. Then we have, from the definition (A32), 

if+I-1 Sq+! = I "(q + 1 ) 
if+t=q 

[,¥(q)it+t(f)(_I-;' (  n -.s(q» ) + '(£"1 t1cif+fC(_I '/t ( n � e )] . 
jt=O }II t=q k=O }q 

(A«) 

If we apply (A33) to both the sums with respect to }q, and raise the lower limit on the 
outer sum in each case to take account of the fact that the inner sum is zero if its lower 
limit exceeds the upper, we obtain 

(A45) 
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Now we note that for any c > 0 and i � }, it is possible to choose a set of constants bd such 
that 

1qUq - 1 ) ... Uq - iq + 1 ) = Uq - c)Uq - (c + 1 )  ... Uq - (c + iq) + 1) 
i,-1 

+ I, bdUq - c)Uq - (c + 1 )) ... Uq - (c + d) + 1) (A.46) 
d::O 

The coefficients, bd, could be evaluated by equating coefficients of powers of}, but we avoid 
this step as we are not interested in the actual values. Hence, substituting (A.30) into 
(A45) and rearranging, we can write for some new set of constants bct/, 

.�) �+1 -1 jf+S-1 
+ I, 1: bct/ 1: 
c=q d=O jf+1 =+4 

[Uq+! - C)Uq+l - (C.+ 1 )) ... Uq+l - (C + d) + 1 ) (_1 Yt+1 ( n - c - 1  )] . ('q+l + 1 )! iq+l - c 
(A.47) 

Note that the lower limits of the outer sums have been raised again because the product 
is zero in the intermediate cases, and that the unknown constants in the expansion of the 

first sum have been included in the second, which is why the upper limit on the sum with 
respect to d has been raised to s( q). 

We now note that the last sum in (A. 4 7) can be rearranged to give 

jf!1 [Uq+l - C)Uq+l - (C + 1 )) . . . �q+l - (C + d) + 1 ) (_1 Yt+l ( n - c - 1 )] 
jf+l=+4 (Iq+l + 1 ). iq+l - C 

= (n - (c + 1 ))(n - (c + 2)) . .. (n _ (c + d)) 
jfr

1 
(_1 yf+l ( n - (c + d) - 1  ) (A.48) 

jt+l=+4 1q+l - (c + d) 
and that a similar rearrangement of the first sum with respect to 1q+l can be made, with c 
replaced by s(q) and d replaced by iq+l . We now change the summation variable from}q+! 
to 1q+l - (s(q) + iq+l ) in the first sum, and from 1.+1 to }q+! - (c + d) in the last, and also 

replace the summation variable c by c + 1 . Then, grouping "'like binomials", we have for a 
new set of constants llc, 

[
(I.:(� 1 ) , ( -1 )*

)(n - .r(q) + 1 » ... (n - (s(q) + I<+t l) ( -1 )'(f) ( -1 )'] 
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(A49) 

where the upper limit of the sum with respect to c has been increased from s(q) + 1 to 

s(q) + i.+l by setting the appropriate constants Ilc to zero. 

Now s(q) + (if+l + 1 )  = s(q + 1 )  and the first expression in square brackets of (A49) 
simplifies to 'I'(q + 1 ), so we have finally 

as required. 

'I'(q + 1 )
i
f+I�f

+l
) [(-1 yf+l ( 11 - s(q + 1 )  ) ] 

if+l::O if+l 

+ L tic L (_1 yf+l . -
.r(HI )-1 i.-+.-c [ ( " c )] 
C=f+1 it+l::O )f+1 

129 

(A50) 



Appendix B 

The case b(x) · = b with g(x) = gxk 

Here we consider again the special case described in Section 1 .9, where the product of 
the hazard rate, hi, and the time-independent part of the growth rate growth rate, g, is 

assumed to be constant «1 .79) or (1 .80». As pointed out in Section 1 .9, this means that the 
probability of cell division in a short time interval ell is independent of cell size I and cell 
age a, but is proportional to the time-dependent part of the growth rate r(t). We assume 
also that all cells divide into exactly a daughters all of the same size, but instead of 
assuming that the time-independent part of the growth rate g is a constant as in Chapter 
2, we assume 

g(/) = gf-k, t > 0, (B.1) 

where the g on the right hand side is a constant. Substituting (B.1) into (1.82), the 
functional differential equation for the SSD y(/) becomes 

Now if we substitute 

and 

into (B.2) we obtain 

d 
dlgr -ly(/) = -bay(/) + ba2y(al). 

Z(/) = g(I)y(/) = g/l-ly(l) 

ba a = -g 

Z'(l) = r-1 ( -aZ(/) + a�Z(al). 
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As pointed out in Section 3.1 , this is exactly of the form (3.20), the solution of which is 

given by (3.25), 

_ 
00 (-1 )"ab' -tJ.;t Z(l) - C! (al - 1) ... (abt _ l )e (B.6) 

1b find the constant C in this case, we use the normalisation condition obtained by 

substituting (B.3) into (1 .43), which is 

[00 
\JIt-l 10 Z(l� dl = g. 

Substituting the solution (B.6) into (B.7), we obtain 

00 00 (-1 )"Ir" -1 -tJ.;t 
[ 

_� 

]
-1 

C = g 10 ! (ak _ 1) . . . (abt _ 1 )
r e dl 

(B.7) 

(B.B) 

As k > 0, we may now simply interchange the order of summation and integration, and 

perform the integration term by term to obtain 

_ 1: (-1 )"ab' [00 
r-1 

e-
� dl 

,,::0 (a! - l ) . . . (aAII - 1 ) 10 
= I, (-I ra: 1 

,,::0 (ak - l) . . . (a - l ) aaU 

- !. I, a! (-1 rAIl '  (B.9) a ,,::0 ( - l ) . . .  (a - 1 )  
Now if we use the definition of K( a,/J) given by (3.38), the sum on the right hand side is 
simply K( at, 1 ), so from (B.B), C is given by 

ga C = K(aA,l ) , 

Hence the solution of(B.5) subject to (B.7) may be written as 

ga � (-1)"ab' _� 
Z(l) = K(ak,l ) ,.� (al - 1 ) . . .  (abt _ l )e , 

so the SSD y(x) is given from (B.3) as 

_ 
alk-1 00 (-1)"ab' -.;t y(l) - K(ak,l ) ! (al - 1 )  . .. (abt - 1/ . 
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Appendix C 

The General Equation 
Y' (x) = -p(x)y(x) + q(x)y( ax) 

Equation (1 .55) gives the general form of the functional differential equation arising in 
the case of a population structured on size only, where all cells divide into exactly a pieces 

all of the same size. Here we develop a general series solution for equations of this form, 
assuming that a value for Q is given. 

Consider the functional differential equation of the general form 

y(x) = -p(x)y(x) + q(x)y(ax), (C.1 ) 

where a > 1 and we are interested only in the region x > 0. We wish to find an expression 
for the solution to this equation, assuming for the moment that it exists. 

Firstly, let us assume that there is a maximum value of x, x* say, such that 

y(x) == O,x > x*. (C.2) 

We then write y(x) as { 0, x � x* y(x) = YA:(x), x* a-A: $ x < x* a-(A:-l ) . (C.3) 

We will refer to the range of x values x*a-l $ x < x*a-(l-l) as region k, so the regions are 

labelled in the same way as in Fig. 3.3. The solution in region k we will call Yl(X). 
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In region 0, we have simply 

yo(x) = o. 

In region 1 ,  from (CA) we have y(ax) = 0, 80 (C.1 ) gives 

>1 (x) = -p(x)Yl (x), 

so ifwe let P(x) be an anti-derivative ofp(x) we have 

Yl (x) = Ce-P(z), 

where C is an arbitrary constant. 

In region k + 1 ,  k > 0, (C.I ) gives 

Yt+l (X) = -p(X)yl+l (X) + q(X)Y1(ax), 

which if we let 

for all k simplifies to 

W1+1 (x) = -af(ax)Wk(ax), 

where 

(CA) 

(C.5) 

(C.6) 

(C.7) 

(C.B) 

(C.9) 

(C.IO) 

We now assume that y(x), and therefore W(x), is continuous at x = x*a-1 so (C.9) can be 
written in integral form as 

�a1� 
W1+l (X) = W1(x*a-1) + lax /(S)W1(s)ds. (C.lI) 

From (C.6) we know Wl(X) = C, so it is possible to apply (C.lI)  repeatedly. By induction, 

we can then show 

so the solution to (C.I) can be written as 

y(x) = Ce-P(z) 1 +  L 1  /(s,,) 1 /(s,,-t }  . . .  I /(st}dst . . . ds,.-lds,. , 
[ 1-1 �a;l-. x-al-· � 

1 11=1 ax a:.r. J cut 

(C.12) 

x*a-1 � x < x*a-(k-l) (C.13) 
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in the case where (C.2) holds. Note that for all x > 0, only a finite number of integrals are 
required, but if x· is particularly large or x is particularly small, the number of integrals 

required could be very large. In applications where the x is cell size, there will normally 

be a minimum size X() say below which it is known that y(x) = 0, so for all "feasible" cell 

sizes x in the range X() $ x $ x*, the number of terms in the sum in (C.l3) will not exceed 

log(x* /Xo)/ log(a). 

Now if we choose some x and let x* -+ 00, then it is apparent that k -+ 00 also. Hence 

we can find the solution to (C.l) without the restriction (C.2) by taking limits of (C.l3) as 
x· -+ 00 and k -+ 00. The result, independent of the order in which these limits are taken 

and the value of x, is 

-P(:t) [ 00 100 100 100 1 y(x) = Ce 1 + l: I(s,,) I(s,,-I ) . . .  l(st)t/.rJ. . . .  ds"_lds,, , 
11=1 ca cu. cut 

(C.14) 

provided of course that the integrals exist and the sum converges. A necessary condition 

for all the integrals to exist is clearly that lim:t_oo!(x) = 0, but it appears that the most 

straightforward way to check whether the series solution (C.14) exists is to calculate the 

multiple integrals and substitute to check for convergence of the series. All solutions 

given in this thesis for the case where cells divide into exactly a pieces of equal size can be 

regarded as special cases of either the infinite series (C.l4) or the finite series (C.l3). 

For example, in the case considered in Section 3.3, in (3.20) we have 

p(x) = axk-1 (C.l5) 

so 

P(x) = ixl, (C.l6) 

and 

q(x) = �xl-l . (C.l7) 

From (C.lO) we then have 

(C.l8) 

so 

(C.l9) 
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Once again using induction, we can show that 

100 100 100 (-1 yaaMe-(czM-l)fzi z I(s,,) 
I

. I(s,,-d · · ·  12 I(st }dst  . . . ds,._lds. = (at _ 1 )( a21 _ 1 ) . . .  (aM _ 1 r (C.20) 

The solution then becomes 

_ -Ix' [ 00 ( -1 )"aMe-(aM-l)fzi 1 
y(x) - Ce 1 + .� (at - 1 )(a21 - 1) . . . (aM - 1 ) ' 

This is just a slight rearrangement of the solution for Z(x) given in (3.25). 
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Appendix D 

Generalised Solutions of the 
Functional Differential Equation 

We consider here the possible generalised solutions of (3.8), which can arise at size x = 0 
because the growth rate is zero at size zero. 

Firstly, we show that the Dirac delta function 6(x) is a solution of(3.8) for any given b(x). 
Intuitively, this corresponds to the idea that if the growth rate is zero at size zero (as it 
is for g(x) = gx), then given'an initial population all of size 0, the whole population will 

remain at size 0 for all time! 

The following elementary results hold for any function b(x): 

and we note also that 

1000 b(x)6(x)dx = b(O), 

b(x)6(x) = b(0)6(x), 

b(ax)6(ax) = b(O) 6�) , 

xcS'(x) = -6(x). 

Substitution ofy(x) = 6(x) into (3.8) then leads to the trivial identity 

-g6(x) = -[b(O) + (a - 1 )b(O) + g]6(x) + a2b(O) 6(x) , a 
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so y(x) = 6(x) is always a solution of (3.8). Note that 6(x) also satisfies the unit integral 
condition (3.4) and the non-negativity condition (3.5), so y(x) = 6(x) satisfies all the 

conditions required to be a SSD. 

In general, 6(x) is NOT the only generalised solution with point support the origin. 1b see 

whether other generalised solutions are possible, we substitute the most general possible 
solution with point support at the origin, 

00 
y(x) = L C"cS<")(X), (D.6) 

11=0 

into (3.8), then equate coefficients of each derivative of the delta function. Using the 
identities above, we obtain a set of equations of the form 

(gn - S)CII = (-1 )"(1 - aI-") � ( j )bU-II) (O)(-I'/Cj 
J=ll n 

where 

Substituting n = 0 leads to 

00 
S = (a - 1) L(-1'/bV1(0) 

j=O 

-SCo = -S 
so either S = 0 or Co = 1 ,  then substituting n = 1 gives 

so either S = g or Cl = O. 

(D.7) 

(D.8) 

(D.9) 

(D.10) 

For n > 1 the equation contains as many Cj terms as there are non-zero derivatives of b(x) 
at x = 0, so the situation becomes very complex. However, it is clear that if b{IR) (0) <> 0 
but bV1 (O) = 0 for all j > m, then it is possible to choose C2 up to CIR+l arbitrarily, then all 
C/s for j > m + 1 can be expressed in terms of these. The term ( � ) on the right hand 

side seems to ensure that the coefficients will get smaller as n increases. In other words, 
it is possible to in general choose solutions of the form 

00 
y(x) = 6(x) + L CII6(1I)(X), (D.ll) 

11=2 

where the C.'s are non-zero. 
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For example, if b'(O) < >  0 but bV) = 0 for 1 > 1 ,  then S = (a - 1 )b(0) and we get as a 
solution 

00 
y(x) = 6(x) + A [6(2) (x) + L All 6(11) (x)] 11=3 

where A is arbitrary and 

A _ 2«a - a-I )b(0) - 2g) . . . « a  - a2-II)b(O) - (11 - l )g) 
11 - [(1 _ a-I ) . . .  (1 _ a2-)]II!(b'(O»"-2 

(D.l2) 

(D.tS) 

Note that because all derivatives of the delta function have zero integral, solutions of the 
form (D.ll) satisfy the unit integral condition (S.4). We now define non-negativity of a 
generalised function t(x) in the natural way, such that 

• A generalised function t(x) is non-negative iff V; E S (where S is the set of "smooth­
test functions) such that ;(x) � 0, "Ix, J�oo t(x);(x)dx � O. 

Then we have 

(D.l4) 

so from (D.l2), 

i: y(x);(x)dx = ;(0) + ! CII( -1 )";(")(0). (D.t5) 

Now for any 11 > 1, it is possible to choose a ; such that -CII( -1 )";(")(0) > ;(0) for any 
finite CII' and ;v) = 0, "11 :; 11, j � 2. Therefore if CII '1 0 for any 11 � 2, y(x) cannot be said 
to be non-negative. 

Hence y(x) = 6(x) is the only non-negative generalised solution of(S.8). 
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