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Abstract

This thesis studies rapid object detection, focusing on feature-based methods. Firstly,

modifications of training and detection of the Viola-Jones method are made to improve

performance and overcome some of the current limitations such as rotation, occlusion and

articulation. New classifiers produced by training and by converting existing classifiers

are tested in face detection and hand detection.

Secondly, the nature of invariant features in terms of the computational complexity,

discrimination power and invariance to rotation and scaling are discussed. A new fea-

ture extraction method called Concentric Discs Moment Invariants (CDMI) is developed

based on moment invariants and summed-area tables. The dimensionality of this set of

features can be increased by using additional concentric discs, rather than using higher

order moments. The CDMI set has useful properties, such as speed, rotation invariance,

scaling invariance, and rapid contrast stretching can be easily implemented. The results of

experiments with face detection shows a clear improvement in accuracy and performance

of the CDMI method compared to the standard moment invariants method. Both the

CDMI and its variant, using central moments from concentric squares, are used to assess

the strength of the method applied to hand-written digits recognition.

Finally, the parallelisation of the detection algorithm is discussed. A new model for

the specific case of the Viola-Jones method is proposed and tested experimentally. This

model takes advantage of the structure of classifiers and of the multi-resolution approach

associated with the detection method. The model shows that high speedups can be

achieved by broadcasting frames and carrying out the computation of one or more cascades

in each node.
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Chapter 1

Introduction

1.1 Motivation

Computer Vision is a fascinating topic. Despite decades of research and despite all the

improvements made both in hardware and in algorithms, one can appreciate that we are

far away from matching the accuracy and the performance of mammalian vision. Even if,

for many industrial applications, it is not necessary to have such a sophisticated approach,

new applications arise where the current state-of-the-art struggles to meet a good response.

For example, video compression could rely on the correct object segmentation to improve

the performance and the compression ratio. However, there is no method that can reliably

track objects such as cars or pedestrians in an arbitrary environment, where the lighting

and the background can vary considerably.

In 2001, Viola and Jones (2001a) published an influential paper. For the first time, a

simple approach enabled detection and tracking of human faces in real-time. Theoretically,

their methodology would be applicable to any other object, however this was not the case.

For many objects it is not possible to train an accurate classifier. To explain the limitations

of the method it is necessary to study it in depth. It is useful to identify the limitations

of the method and introduce modifications that could improve and generalise it.

The main objective of this thesis is to improve the knowledge of real-time object

detection using simple feature extraction and learning methods. At the time of the writing

of this document the most reliable and efficient method to detect faces is the Viola-Jones

method (Viola and Jones, 2001a).

A list of objectives addressed in this thesis follows:

• improve detection under shadow and partial occlusions.

• deal with in-plane rotation of the detectable objects more efficiently.

• experiment with detection using other feature extraction methods.

• apply parallelisation strategies to the detection.
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The main research questions are:

• Is it possible to improve the training performance by using a different set of features

that can cope with rotation as well as scaling? Haar-like feature have been used

successfully, however they are not invariant to rotation (Viola and Jones, 2004).

Attempts have been made to create systems in which rotation is dealt with, but a

more generic feature extraction method without the need to retrain classifiers would

be useful.

• Are moment invariants discriminative enough for generic detection and recognition

tasks? It has been suggested that invariant features tend to be less discriminative

(Postma et al., 1997). Also the number of independent moments that can be applied

are limited by accuracy and noise issues (Teh and Chin, 1988).

1.2 Research Scope

The scope of this work is limited to feature-based systems. The training algorithms are

based on modifications of the AdaBoost (Freund and Schapire, 1996), using simple thresh-

olding to create weak classifiers. Although the approaches used in the experiments can

be very fast, it is not among the objectives to optimise code. Even without optimisation,

the new feature extraction method developed for this thesis achieved reasonable frame

rates, when detecting objects in images acquired from a web camera (using a resolution

of 640x480 pixels).

Training is carried out over limited databases of face images, hand images and hand-

written digit images. The training is designed specifically to cover certain topics such

as partial occlusion for face detection or a single gesture detection, rather than general

classifiers.

1.3 Original Contributions

The main original contribution of this thesis is the development of a rapid feature extrac-

tion method based on moments that keeps invariance characteristics and can be used in

a broad category of real-time applications. The method, called Concentric Disc Moment

Invariants (CDMI), consists in extracting moment invariants from concentric discs of cho-

sen sub-windows of the image. The increased number of dimensions in the feature set

facilitates the training process, without the addition of noise.

Other contributions include:

• The proposal and evaluation of rotation invariant approaches for Haar-like features.
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• The generation of special positive examples to train classifiers for partial occlusions

and for hand detection.

• The proposal of a model for the use of parallel classifiers based on the Viola and

Jones method. Characteristics of the parallelisation are evaluated using Beowulf

clusters.

1.4 Publications related to this work

This research has resulted in the publications listed below.

• Barczak, A. L. C., Messom, C. H. and Johnson, M. J. (2003), Performance Charac-

teristics of a Cost-effective Medium-sized Beowulf Cluster Supercomputer, in ‘LNCS

2660’, Springer-Verlag, pp. 1050-1059. This paper describes the performance of a

Beowulf computer built by the Computer Sciences department at Massey University.

The discussion and results are presented in section 3.4.

• Barczak, A. L. C. (2004a), Evaluation of a Boosted Cascade of Haar-like Features

in the Presence of Partial Occlusions and Shadows for Real-time Face Detection,

in Proceedings of the PRICAI 2004, LNAI3157’, Springer-Verlag, Auckland, NZ,

pp.969-970. This paper is a short version of chapter 4.

• Barczak, A. L. C., Dadgostar, F. and Johnson, M. J. (2005), Real-time Hand Track-

ing Using the Viola and Jones Method, in ‘SIP 2005’, Honolulu, HI, pp. 336-341

and Barczak, A. L. C., Dadgostar, F and Messom, C. H. (2005), Real-time Hand

Tracking Based on Non-invariant Features, in ‘IMTC2005’, Ottawa, Canada, pp.

2192-2199. These papers were published in preparation for chapter 5.

• Barczak, A. L. C. (2005), Toward an Efficient Implementation of a Rotation Invari-

ant Detector using Haar-like Features, in ‘IVCNZ05’, Dunedin, NZ, pp. 31-36 and

Barczak, A. L. C., Johnson, M. J. and Messom, C. H. (2006), Real-time Compu-

tation of Haar-like Features at Generic Angles for Detection Algorithms, ‘Research

Letters in the Information and Mathematical Sciences’, v. 9, pp. 98-111. These

papers were published as part of the preparation for chapter 6.

• Barczak, A. L. C. and Johnson, M. J. (2006), A New Rapid Feature Extraction

Method for Computer Vision Based on Moments, in ‘International Conference in

Image and Vision Computing NZ (IVCNZ 2006)’, Auckland, NZ, pp.395-400. This

paper presents part of the moment invariants feature extraction presented in chapter

7.

• Barczak, A. L. C., Johnson, M. J. and Messom, C. H.(2005), A Mobile Parallel

Platform for Real-time Object Recognition, in ‘ENZCon05’, Auckland, NZ, pp.
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153-158. This paper relates to the work described in chapter 9. An extension of the

model applied to a 4-nodes mobile Beowulf cluster is described in: Barczak, A. L. C.

and Chemudugunta, R., Experiments with a Mobile Cluster for Real-time Object

Detection, in ‘3rd International Conference on Autonomous Robots and Agents

(ICARA 2006)’, Palmerston North, NZ, pp. 303-308.

Additional co-authored papers that uses parts of the work presented in this thesis

include:

• Dadgostar, F., Barczak, A.L.C. and Sarrafzadeh, A. (2005), “A Colour Hand Gesture

Database for Evaluating and Improving Algorithms on Hand Gesture and Posture

Recognition”, Research Letters in the Information and Mathematical Sciences, Vol.

5, pp. 127-134.

• Messom, C.H. and Barczak, A.L.C. (2006), Fast and Efficient Rotated Haar-like

Features using Rotated Integral Images, in ‘proc. of the Australasian Conference

on Robotics and Automation (ACRA2006)’, Auckland, NZ,

• Reyes, N., Barczak, A.L.C. and Messom, C.H. (2006), Fast Colour Classification

for Real-time Colour Object Identification: AdaBoost Training of Classifiers, in

‘proc. of the 3rd International Conference on Autonomous Robots and Agents

(ICARA2006)’, Palmerston North, NZ, pp. 611-616.

1.5 Outline of the Thesis

Chapter 2 presents a literature review, focusing on feature based computer vision

systems. It includes a discussion of the problems faced by detection algorithms in the

presence of partial occlusion and rotation.

Chapter 3 describes the computational infra-structure used for the experiments carried

out. This chapter also describes the methodology used to generate image samples and

to collect data. The problems of AdaBoost convergence are discussed and a solution is

proposed for finite sets of samples.

Chapter 4 describes the approach tested to overcome the problem suffered by the Viola-

Jones method regarding partial occlusions. The experiments showed that by including

random patches over the original positive set improves the response of the classifiers when

faced with partial occlusions for face detection.

Chapter 5 shows experiments carried out to generically detect hands. Hand detection

without the use of skin colour segmentation is a very difficult problem. Due to the different

patterns generated by images that present hands at an angle and with different articu-

lations, specialised classifiers are needed. An alternative method to generate samples is

used in order to provide classifiers able to cope with rotation.
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Chapter 6 extends the concept of rotation by proposing alternatives for Haar-like

feature extraction. A variation of a summed-area table to extract Haar-like features at an

arbitrary angle is proposed. A detailed analysis of the errors is presented.

Chapter 7 proposes a new feature extraction method based on moment invariants.

The method is capable of increasing the dimensionality of the moment invariants set by

using concentric circular areas of extraction (CDMI), and it keeps the rotation and scaling

invariance. The performance and accuracy are experimentally tested and discussed. A

simple method to extract moment invariants under different lighting conditions is also

proposed. Face detection is investigated by training classifiers with AdaBoost.

Chapter 8 discusses the application of the moment invariant method developed in

chapter 7 applied to hand-written digit recognition. Experiments are carried out using

the MNIST database. Classifiers are trained, using both rotation invariant (CDMI) and

non-invariant moments (Central Moments extracted from concentric squares). Although

the technique could not be used on its own, the results are promissing.

Chapter 9 proposes a model for parallel cascade classifiers, which was drawn based

on the performance characteristics of clusters obtained from previous experiments. It is

possible to estimate the expected frame rate for a parallel detection system using this

model.

Chapter 10 presents the final conclusions and recommendations for future work.
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Chapter 2

Literature Review

This chapter presents a review of the literature focusing on two topics: rapid detection

(to some extent related to recognition and tracking) and parallel computing applied to

computer vision. In section 2.1, image-based object detection, object recognition, and

object tracking methods are discussed. In section 2.2, the Viola-Jones method (Viola

and Jones, 2001a) is discussed in greater detail, including discussions about the current

limitations of the method. In section 2.3, the parallel approach using a cluster of computers

is described and its implications for machine vision are discussed. Finally, in section 2.4, a

summary of the chapter shows the limitations of the Viola-Jones method, its relationship

with other methods and the direction for the experiments carried out for this thesis.

2.1 Computer Vision and Rapid Object Detection

A generic computer vision system is usually presented as a set of serial steps. Figure 2.1

shows a generic model, which is based on Computer Vision models presented by Luo (1998)

and Awcock and Thomas (1996) and DeRidder (2001). Each step has a specific function in

the computer vision chain. Between each step the input data differs from the output data

in size and nature. There are no general rules that guarantee that the data size decreases

when passing through one step, although that is what usually happens with feature-based

systems. There are other systems that increase dimensionality in intermediate steps.

Examples of the latter systems are Neural Network-based system such as LeCun et al.

(1998) and Rowley (1999). The final steps of figure 2.1 have limited inputs, as the main

task of a computer vision system is to analyse and act upon the information obtained via

the processing of images. Typical responses are the identification of certain events (e.g.

some movement in front of the camera) or the return of the position where an object is

to be found.

The various steps presented in figure 2.1 often overlap, so it is not always possible to

isolate them completely or present them separately on real-life computer systems. For the
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purpose of the discussions in this thesis, computer vision systems were classified into two

categories, depending on the way features are extracted and interpreted:

• feature-based systems: the feature extraction methods are clearly separable from

the other steps. The interpretation of the values obtained on the feature extraction

step can be implemented independently. Example: Viola-Jones method (Viola and

Jones, 2001a)

• mixed-stage systems: in these systems the feature extraction method either de-

pends on training or is inherently mixed with other steps. Example: Neural Network-

based computer vision systems such as LeCun et al. (1998) and Rowley (1999).

Feature-based systems are easier to analyse because one can get a set of numbers

from the feature extraction step. Also training, detection, and feature extraction can be

completely separated. Mixed-stage systems, on the other hand, work like a “black box”:

the feature extraction process is somewhat hidden and mixed with the recognition step.

Mixed-stage systems also have other problems. For example, de Sa (2001) points out that

one disadvantage of Neural Networks is that no semantic information is available. While

in statistical classifiers, one can often describe how the output was arrived at, “such a

perception is usually impossible in the case of Neural Networks”.

Based on the colour characteristics, one can also classify object detection systems as:

• Colour-based: a colour segmentation is an essential step in the computer vision

chain.

• Shape-based: grey-scale images are used so that the feature extraction step has all

the information necessary.

For feature-based systems, one can classify object detection based on the the feature’s

mathematical nature in terms of their ability to cope with transformations:

• Invariant features: there is no need to recompute features even if the images are

transformed.

• Non-invariant features: the feature values are dependent on the transformations.

2.1.1 Real-time Object Detection, Recognition and Tracking

The area of Object Detection and Recognition has made significant progress in the last few

years. Many algorithms developed recently in this area relate to human face detection and

recognition due to its potential applications in security and surveillance. Yet, a generic,

reliable, and fast human face detection was, until very recently, impossible to achieve in

real-time.
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Figure 2.1: A generic computer vision Model (adapted from Awcock and Thomas (1996)).
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The concepts involved in object detection, object recognition, and object tracking

often overlap. Each of these computer vision techniques try to achieve the following:

• Object Tracking: dynamically locates objects by determining their position in each

frame.

• Object Detection: locate generic classes of objects in the image (such as faces).

• Object Recognition: classify specific objects in the image (such as a face that belongs

to one individual, a certain printed character etc)

In practice, the same methods with minor variations are used to achieve one of the

three tasks presented above. For example, by detecting objects in a video sequence in real-

time, one can also achieve tracking. Other methods use a completely different approach,

tracking with previously marked images without relying on detection or recognition. An

example is seen in Lucas and Kanade (1981), which uses an optical flow approach to track

previously marked objects. The robustness of the latter approach is weaker than using

some form of detection, since optical flow related methods do not use pattern recognition

techniques. Optical flow techniques can be very susceptible to mistakes if the camera is

not stationary.

Many algorithms for object recognition are too slow to be considered for use in real-

time applications; even with relatively fast feature calculations such as FFTs, wavelets or

eigenvalues, it is still a challenge to produce a robust classifier that is fast enough to be

used in real-time on a desktop computer.

Tracking specific objects such as frontal faces or cars is an important sub-set of the

generic video detection problem. In these cases, geometric characteristics of the objects

can influence the method that is being applied. Objects being tracked may be rigid, semi-

rigid (such as hands articulating or a pedestrian walking) or completely flexible. The

environment, notably lighting, also plays an important role because it can change the

patterns related to the image. Rowley (1999) mentioned that the difficulty of detecting

objects varies according to their nature: “The car detection problem has several sources of

difficulty that are not present in the frontal face detector. In the face detector, the neural

network had to deal with essentially one pattern, that of a frontal face, which does not vary

much from person to person. For the car detector to work, the neural network would have

to detect any car shape (of which there are a great variety), and to deal with appearance

changes caused by specular reflections of the environment off of the car bodies.” Detecting

cars from one specific view point could be useful for specific applications, but it still does

not explain why generic detectors are so difficult to train. Human faces have a very specific

geometric pattern that can be explored to create classifiers.

Accuracy and performance in computer vision can be measured in many different

ways, and often the literature refers to “de facto” standards established over the years.
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For object detection, accuracy is measured in terms of hit rates (percent of correctly

identified objects) and false detection rates (percent of images that do not belong to that

object class). However, there are many problems with this simple measurement. It is

often difficult to tune systems to their optimum response, as improving the hit rate also

increases the false detection rate. The ROC (receiver operating characteristic) curve can

be used to compare different systems (Egan, 1975). Performance is usually associated

with speed, most commonly a frame rate if the images are coming via cameras or video

sequences.

2.1.2 Face Detection

Gong et al. (2000) published a complete review of different methods for face detection,

including discussions on commercial applications and databases used for benchmarking.

A survey by Yang et al. (2002) defines Face Detection as the location of faces in an

arbitrary image. They found that all published methods could fit into four main cate-

gories (that overlap each other): knowledge-based methods, feature invariant approaches,

template matching methods, and appearance-based methods. More importantly, there

are methods that rely on skin colour segmentation as a crucial step. Some methods can

be generalised to find other objects, while others are inherently limited to face detection

tasks.

Sung and Poggio (1998) developed one of the earliest methods for face detection based

on Neural Networks. They carried out experiments with several distance measurements

for the training and different Neural Networks set ups. The performance and accuracy

were measured using their own data set, which was later incorporated into the CMU-MIT

data set (Rowley et al., 1998b).

Schneiderman and Kanade (2000) (see also Schneiderman and Kanade (1998)) devel-

oped one of the earlier successful object detection methods using simple decision rules and

wavelets. The system was reported to get about 85% to 95% detections with a relatively

high number of false detections, but was quite slow (about 5 seconds to scan a 320x240

pixels frame ).

Rowley et al. (1998b) developed a face detector using an image pyramid and extracting

20x20 pixel sub-windows. After correcting lighting and equalising the sub-window, the

system passed the sub-window through a NN filter, where a face or non-face label was the

result. Several experiments using different NN (or a combination of NN) yielded detection

rates between 85% to 93%. Face detection was high in some cases, with the best tradeoff

resulting in 85.4% detections. The system was later expanded to be rotational invariant

(Rowley et al., 1998a).

An influential paper from Viola and Jones (2001a) received considerable attention

from the Computer Vision community and it has generated many other experiments.
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Viola and Jones (2001a) created a complete method for face detection based on Haar-like

features. Using what they called Integral Images (originally called Summed-area Tables

by Crow (1984)), a feature only needed a few lookups to be computed at any position and

scale. Viola and Jones computed Haar-like features in such a way that the features were

scaling invariant. Their approach was extended and was partially implemented in open

source image processing libraries such as OpenCV (Bradski, 2002, 2000). Training was

based on a variation of AdaBoost (Freund and Schapire, 1996) where the classifiers were

organised in a cascade. More details about this method is discussed in the next section.

Many variations on Viola-Jones method have been published. Li et al. (2002) modified

AdaBoost (calling it FloatBoost) and improved the accuracy of the multi-view detector

for faces. The new boosting algorithm worked by eliminating some of the weak classifiers

that did not improve the overall classification. Other proposed variations include Lienhart

and Maydt (2002),Cristinacce and Cootes (2003), McCane and Novins (2003),Lienhart,

Kuranov and Pisarevsky (2003), Menezes et al. (2004), and Mita et al. (2005).

Garcia and Delakis (2004) used a Convolutional Neural Network to detect faces. Con-

volution Networks (LeCun et al., 1998) were originally created for applications in OCR.

This method achieved multi-view face detection, limited to +- 20o in plane rotation and +-

60o perpendicular rotation. The results were promising, although the system was slower

and less accurate than Viola-Jones. The authors reported 0.25 seconds for a 384x288

pixels frame and about 90% hits on the CMU.

Osadchy et al. (2005) also used a Convolutional Neural Network as the basic archi-

tecture for a face detector. Their system used raw pixels to learn (via a special Neural

Networks approach) both low-level features and high-level representation. The training

integrated feature detection with the classifier. This approach is very promising for multi-

view face detection. The idea was somewhat opposed to the prevalent one that classifiers

should be trained separately for different tasks. Osadchy et al. (2005) claimed that by

joining multi-view detection and pose estimation in one classifier, it generalised better

and required fewer examples. However, this idea does not seem to work with the origi-

nal Viola-Jones method, as it is known that joining tasks in a monolithic classifier yields

too many false detections (Jones and Viola, 2003). ROC curves presenting the results

actually show that frontal faces are better recognised. Rotated faces yielded relatively

good results, but faces in profile are the worst (with an acceptable result of 75% for one

false detection per image). The performance of their system compared to Jones and Viola

(2003) was very similar. The number of examples was higher (52850 images of 32x32

pixels), although the training time was around 26 hours, very short in comparison to the

Viola-Jones method. Detection achieved a rate of 5 frames per second, which is somewhat

slower than what can be achieved with the Viola-Jones method.
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2.1.3 Invariant Features and Non-invariant Features

In feature-based methods, the features used can be invariant or non-invariant. Invariant

features do not depend on geometric transformations of the image. Usually, the trans-

formations required are rotation, translation and scaling, but it can also include affine

transformations, contrast stretching etc. Non-invariant features, on the other hand, are

dependent on these transformations. Invariant features are usually invariant to one or

more transformations such as translation, rotation, scaling, general affine transformations

etc. A review of the general problem of invariant and feature-based object recognition is

discussed by Wood (1996) and by Postma et al. (1997).

Feature extraction may yield feature sets that are unable to discriminate classes of im-

ages. For example, Postma et al. (1997) cited the “scrambling problem”. Two images can

be modified in such a way that they have identical histograms. Features extracted from

histograms do not keep information about the position of the pixels. Even though his-

tograms might be useful for eliminating a small portion of all the possible false detections,

their discriminating characteristics are insufficient to unambiguously classify images. Our

early experiments with histograms are illustrated in Figure 2.2. The second image was

modified to fit the histogram of the first image.

Marr (1982), in his classic book, proposed the use of features which go beyond a set

of raw pixels and are partially based on a better understanding of the physiology of the

human eye and human vision strategies. According to Marr, there was evidence that

edge and corner detectors are used by human vision. However, generic detectors based

only on these features did not yield reliable results, unless for very simple problems in

controlled environments. It is not always clear how to correlate certain objects with edges

and corners. It is also difficult to automatically tune parameters in order to get good

edges (see for example Stenger (2004) using Canny edge detectors). Although systems

using such approaches were developed (an example is described by Gong et al. (2000)),

problems such as face detection were only solved satisfactorily using more sophisticated

techniques and features that do not depend directly on edge detection.

Another aspect of the feature space is the dimensionality. Marr (1982) and Postma

et al. (1997) discussed and presented some evidence that the brain uses a high dimensional

feature space for images (in fact much higher than the image space itself in the retina). A

typical problem in machine learning is the so-called “curse of dimensionality”. Usually, the

feature space has to have a minimum number of dimensions in order to allow classification.

But, if the number of dimensions is too high, the training process may be unfeasible or

becomes impractically long.

For some time, the focus in Object Recognition was on training algorithms rather than

features or the geometry of the objects. Successful work was done in character recognition,

but trying to apply similar algorithms to any type of object was elusive for a long time.
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In the 90’s, researchers began to realise the importance of the features rather than the

training. Ripley (1996), for example, stressed the fact that the choice of features can

be more important than the training itself.“Much of the enhanced success of Zip code

recognition systems has come from better features rather than through more complicated

classifiers” (Ripley, 1996). Freund (1998) also observed that it was common that good

features beat good training.

Optimum selection of features that require less computation time and are more accu-

rate is still an unsolved problem. Research into feature-based object recognition, according

to Postma et al. (1997), suffers from three, as yet, unsolved problems:

1. what makes a good feature: characteristics such as computational complexity, dis-

crimination power, and robustness to noise.

2. how many features should be used: the “curse of dimensionality” describes the

problem well, as the more features a system has, the more information about the

image is obtained. However, the more features the harder the training process.

3. how to cope with insensitivity to spatial information: a typical example is the his-

togram, with which one can differentiate images, but with which all the spatial

information is lost. In figure 2.2 there are two images with the same histogram,

showing that histograms do not have good discrimination powers.

Figure 2.2: Histograms as features for computer vision systems: the hand and the table
have identical histograms.

An important class of invariants are related to geometric moments (Hu, 1962). Chap-

ters 7 and 8 of this thesis is dedicated to these features.
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2.2 Rapid Object Detection: a review of the Viola and

Jones Method

This sub-section examines some of the details about the Viola and Jones (2001a) method.

Three characteristics of their method were important to obtain performance and accuracy.

The first was the use of a special data structure that allows a very fast calculation of

features. The second was the use of AdaBoost, a training algorithm first proposed by

Freund and Schapire (1999) allowing the selection of the few best features that fit the

positive example. The third was the combination of the resulting classifiers in a cascade,

allowing a fast elimination of sub windows that do not contain the object. Viola and

Jones work was, in part, based on work done previously by Rowley et al. (1998a) and

by Papageorgiou et al. (1998).
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Figure 2.3: Examples of Haar-like Features.

The Viola-Jones method has been used mainly for face detection (Viola and Jones,

2001b), face recognition (Guo and Zhang, 2001; Froba et al., 2003), and hand detection

(Kolsch and Turk, 2004a,c; Ong and Bowden, 2004). Other uses include robot-soccer ball

detection (Mitri et al., 2004), license plate detection (Dlagnekov, 2004), and even for

ecological applications, such as wild life surveillance (Burghardt, Thomas, Barham and

Calic, 2004; Burghardt, Calic and Thomas, 2004).

2.2.1 Haar-like Features

The first contribution of Viola and Jones algorithm was the fast calculation of features.

The features used by their method are called Haar-like features (figure 2.3) because of

their similarity with the Haar Basis functions. The basic shape of a Haar-like feature used

is rectangular. The sum of the pixels of a rectangular region was subtracted from the sum

of the pixels of another region of the image.

The Haar like features are defined as the difference of the sum of the pixels of rect-

angular areas. In figure 2.3, feature types 0 and 1 are two rectangular Haar-like feature.
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The sum of the pixels in the shaded rectangle is subtracted from the white rectangle.

Feature types 2, 3, 4 and 5 are three rectangle features where sum of the pixels of the

dark rectangle is subtracted from the sum of the pixels of the other two. Type 6 is a

two rectangle feature where the dark area is a rectangle inside the main rectangle (not

used in the original Viola and Jones (2001a)). Type 7 is a four rectangle feature and the

difference between diagonal pairs of rectangles is the feature value.

The values of features in figure 2.3 are computed by:

V =

w1

∑

i ǫ area1

i(x, y) + w2

∑

i ǫ area2

i(x, y) + w3

∑

i ǫ area3

i(x, y)

s2
(2.1)

Where wi are constants inversely proportional to the area sizes (in number of pixels) and

s is the scale factor, with s ≥ 1. In practice, it is easier to compute an area correspondent

to the entire feature with w1 = 1 and subtract the darker areas separately. So 2w2 = −w1

for types 0 and 1, 3w2 = −w1 for types 2 and 3, 2w2 = −w1 for types 4 and 5, 9w2 = −w1

for type 6 and 2w2 = 2w3 = −w1 for type 7.

These features are said to over-represent the objects, as they are redundant and more

numerous than the image intensities themselves. In order to achieve scaling invariance,

it suffices to divide the feature values by the area (measure in pixels). These features

are computed at various scales by using what Viola and Jones (2001a) called the integral

image, also called Summed-area Tables (SAT), discussed in the next section.

Lienhart and Maydt (2002) worked on some improvements for better accuracy with

Viola-Jones method by adding tilted Haar-like features (feature types 10 to 17 of figure

2.5) . These tilted features represent diagonal areas of the image. Tilted Haar-like

feature computation uses the same SAT data structure. A special tilted SAT must be

created. They reported some improvement in the accuracy, but it required extra time

for training because the feature set was enlarged. The real-time constraints for detection

were maintained. Although it was not proved beyond doubt that these extra features were

essential to improve accuracy, they could potentially be used to create tilted classifier for

searching rotated objects. Further exploration of this idea is discussed in chapter 6.

2.2.2 Summed-area Tables or Integral Images

Integral images, formerly known as Summed-area Tables (SAT), can be traced back to

a paper by Crow (1984). Originally, Crow used SATs for texture mapping. A SAT is

defined as a matrix in which each element contains the sum of all the pixels that belong to

upper left parts of the original image. Given an image i(xi, yi), the Summed-area Table

I(x, y) is:
I(x, y) =

∑

x≤xi,y≤yi

i(xi, yi) (2.2)
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where: i(xi, yi) is the set of pixels of the image.

Once a Summed-area Table is created for a certain image, the sum of rectangular areas

over the image can be computed with 4 lookups. Figure 2.4 shows an example. With four

points of the Summed-area Table the sum of the pixels contained in the grey area is:

∑

pix = pt4 − pt3 − pt2 + pt1 (2.3)

Haar-like feature values are rapidly computed at any position and any scale directly

from the SATs. The Haar-like features in figure 2.3 need a certain number of lookups

depending on their shape. For example, types 0 and 1 need 6 lookups each, types 2 to 6

need 8 lookups each and type 7 needs 9 lookups.

A recursive algorithm for creating the table can be based on the following equation:

I(x, y) = I(x− 1, y) + I(x, y − 1) − I(x− 1, y − 1) + i(x, y) (2.4)

Where I(x, y) is the SAT element and i(x, y) is the image element for the point (x, y).

In order to avoid negative indexes, the SAT is padded with zeros in the first row and

column. The complexity of the SAT calculation is O(N), where N is the total number of

pixels in the image.

1 2

3 4

Figure 2.4: The SAT. The sum of the pixels in the shaded area is area4-area3-area2+area1
(area1 was subtracted twice as it is contained in areas 2 and 3)

Lienhart and Maydt (2002) extended the Haar-like feature set including new tilted

features (areas at 45o angle) (figure 2.5). To compute Rotated SATs Ir recursively, they
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used the following approach:

Ir(x+ 1, y + 1) = Ir(x, y) + Ir(x+ 2, y) − Ir(x+ 1, y − 1) + I(x, y) + I(x, y − 1) (2.5)
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Figure 2.5: Examples of tilted Haar-like Features.

2.2.3 Adaboost

Viola and Jones have chosen a training algorithm called AdaBoost, first proposed by

Freund and Schapire (1999). Generally speaking, Boosting is a statistical method that

modifies the original distribution of positive and negative examples, and combine simple

rules (called “weak” classifiers) to compose a stronger classifier. AdaBoost is most com-

monly used for binary classification, but with minor modifications it can also deal with

many classes. The so-called “simple rules” could be any classification method that, for a

given distribution, is just slightly better than chance. One could use, for example, simple

Bayesian rules, simple histogram based threshold, decision trees etc. It has been argued

that due to the difficulty of modeling distributions, a rule based approach can be more

accurate and effective than a model based approach (Freund, 1998). AdaBoost uses the

original distribution to compute rules that fit the data to a given hit rate and a false

detection rate. The resulting classifier is a combination of these rules.

AdaBoost is considered one of the best learning algorithms introduced in the last

decade (Hastie et al., 2001). Advantages of AdaBoost are:

• it is simple to implement;

• it generalises training for large dimensions;

• and it automatically selects features from large feature spaces.

In the last few years some disadvantages have been reported (Rudin et al., 2004):

• it does not necessarily converge and might go into a cycle.

• robustness against overfitting cannot be guaranteed.
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• multiple classes are difficult to train.

The simplest and most popular version is the one proposed by Freund and Schapire

(1996). Given a two class data set:

Algorithm 1 AdaBoost((value, class), T )

The input is a set of training examples (x1, y1), (x2, y2), ...(xn, yn) where xi is a feature ∈
X and yi is a class ∈ {−1,+1}, and a number of rounds T . It outputs a linear combination
of weak classifiers ht(xi), each a factor αt.
Initialise weights for each element D1(i) = 1/(n) where n is the number of elements
For t = 1, 2...T :

1. Train a weak classifier ht (e.g. a simple threshold) using the weights in Dt so that
ht ∈ {−1,+1}

2. Compute the error associated with the weak classifier:

errort =
∑

i(Dt(i)ht(xi)yi) (the sum of the elements’ weight that are incor-
rectly classified)

3. Compute αt = 0.5 ln( (1−errort)
errort

)

4. Update the weights Dt+1(i) such as Dt+1 is a new distribution:

Dt+1(i) = Dt(i) exp(−αtyiht(xi))
(the weights decrease if the element is classified correctly or increase if it is

classified incorrectly)

normalise the weights Dt+1(i) = Dt+1(i)
P

iDt+1(i)

5. After T rounds the final classifier is: H(x) = sign(
∑

t αtht(x))

This version of the algorithm works with one dimension. With a minor modification

the algorithm is suited for a larger number of dimensions. For each round of AdaBoost,

instead of computing one hypothesis ht, one hypothesis for each dimension is found, and

the one with the smallest error is chosen. Sets with a very large number of dimensions

can be successfully trained using AdaBoost because it essentially does a greedy search

(Freund and Schapire, 1999). Each hypothesis tries to find the correlation between the

training set and a certain feature. After the re-weighting it is very likely that another

feature (represented as one coordinate of the feature space) is chosen. The process goes

on until the required training error is achieved.

To understand the mechanism behind AdaBoost, Figure 2.6 shows an example of colour

classification in an earlier experiment for this work. A number of pixels were represented

by their values in HSV 1 colour space, of which it is assumed that there was no correlation

with V (so only two dimensions are used for training). Each round of AdaBoost increased

the weights of incorrectly classified examples. Thresholds were found for each distribution

so the error was minimised for both H and S dimensions. The best threshold was chosen,

1H is hue, S is saturation and V is value.



20 Chapter 2. Literature Review

and the re-weighting process was carried out once more. After 5 rounds, the final classifier

divided the HxS space in 12 rectangles. Each rectangle only contained either positive or

negative examples and therefore the training error was zero.

h {=
+1 if >217 

−1 if <=2175

h1 {=
+1 if > 62

−1 if <=62

α1h1
+Final Classifier :  H = sign ( + + +hα hα α h α h )2 2 3 3 4 4 5 5

α  = 0.752Round 2:   error = 0.181 2 h {=
2

+1 if > 154
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4
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Figure 2.6: AdaBoost applied in a colour classification problem.

Viola and Jones (2001a) used algorithm 2, a modified version from the original Ad-

aBoost. A single strong classifier did not suffice to achieve the real-time constraints of the

detection application. They solved this problem using a cascade of classifiers. The version

of AdaBoost used by Viola and Jones was also modified to accept the expected hit and

false detection rates rather than fixing the number of rounds T .

Lienhart, Kuranov and Pisarevsky (2003) experimented with slightly different boosting

methods, namely Discrete AdaBoost, Real AdaBoost, and Gentle AdaBoost. Discrete

AdaBoost uses binary weak classifiers. Real AdaBoost uses a probability function as the

weak classifiers. Gentle AdaBoost uses a regression function by weighted least-square of

yi to xi. Lienhart, Kuranov and Pisarevsky (2003) results showed that gentle AdaBoost

slightly outperformed the other two methods for the case of face detection.

AdaBoost is able to choose the most significant features given a few thousand positive

examples and negative examples. Thus, even if the feature space has a very high dimen-
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Algorithm 2 AdaBoost ViolaJones((value, class), Prequ, Frequ)

The input is a set of training examples (x1, y1), (x2, y2), ...(xn, yn) where xi is a feature ∈
X and yi is a class ∈ {0, 1}, and a number of rounds T . It outputs a linear combination
of weak classifiers ht(xi), each a factor αt.
Initialise weights for each element D1(i) = 1/(n) where n is the number of elements.
Initialise the positive hit rate P = 0, the false detection rate F = 1 and the round t = 0.
The expected positive hit rate for this round is typically Prequ > 0.99 and the expected
false detection rate for this round is typically Frequ < 0.30.
While P < Prequ and F > Frequ:

1. Normalise the weights Dt+1(i) = Dt+1(i)
P

iDt+1(i) (so Dt+1(i) is a distribution)

2. For each feature j train a weak classifier ht,j (e.g. a simple threshold) using the
weights in Dt so that ht,j ∈ {0, 1}

3. Compute the error associated with the weak classifier of each feature:

et,j =
∑

i(Dt(i)ht(xi)yi) (sum the elements’ weights that are incorrectly
classified)

4. Choose the classifier ht(xi) = ht,j with the smallest error et,j

5. Compute βt = ( (et)
1−et

) and αt = ln(1/βt)

6. Update the weights Dt+1(i):

Dt+1(i) = Dt(i) β
1−ht(xi)
t

(the weights decrease if the element is classified correctly or increase if it is
classified incorrectly)

7. After t+ 1 rounds the classifier is: H(x) =

{

1
∑

t αtht(x) ≥ 1
2

∑

t αt
0 otherwise

8. Compute the positive hit rate P and the false detection rate F for round t+ 1
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sionality, it is still possible to train a classifier with good accuracy. However, there may

be so many features to be examined that even using just a few thousand examples can

make the training process a very long endeavour. It can take weeks of run-time to obtain

good classifiers, a problem that Viola and Jones (2004) solved by simple parallelisation.

Once the classifier is created, it can be used in real-time detection.

McCane and Novins (2003) discussed the problems of long training times and found

a solution to speedup the training. Rather than rely on an exhaustive search for finding

the best weak classifier, they used an heuristic optimisation procedure based on the error

function. The solution showed an improvement of 300 times for specific cases.

Li (2005) proposed an alternative called FloatBoost. He demonstrated that, in many

cases, the rules added to the final classifier do not necessarily improve its accuracy. De-

pending on the dataset, some of these rules could be safely deleted, improving the overall

performance without any loss of accuracy.

Wu et al. (2003) argued that the way Viola and Jones used the AdaBoost algorithm

is an indirect way of feature selection and other methods could train a cascade more

efficiently. They used a forward feature selection approach and claimed to have achieved

good classifiers with about a 100th of the time taken by Viola and Jones. However, it has

not been proved that simple feature selection solves the problem in a better way. In fact,

the evidence supports the opposite.

2.2.4 Cascades of Classifiers

The third contribution of Viola and Jones (2001a) is the arrangement of partial classifiers

in a cascade. Each stage is only required to eliminate slightly more than 50% of false

detection as long as it kept the positive hit rate close to 100%. Each stage examines

what are the chances that a particular sub-window has in presenting the object being

detected. After 20 or 30 stages most of the false positives are eliminated. The remaining

sub-windows are eventually scanned by the last cascade. What remained should be the

sub-windows that contained the image of the object for which the classifier was trained.

Figure 2.7 shows an example of the expected results of cascading classifiers in this way.

As an example, lets assume that each stage of the cascade (each stage is itself a

classifier) eliminates 50% of the false positives, while it wrongly eliminates about 0.2% of

true positives. If there are 20 stages (Viola and Jones, 2001a):

0.5020 = 0.00000095 = 0.000095% of false positives

0.99820 = 0.961 ≃ 96% hit rate

Viola and Jones (2001a) claimed that similar accuracies could be achieved using a

monolithic classifier with one layer (or stage), but the performance of a cascade (with

multiple stages) was much better. In fact, most of the false sub-window are eliminated

by the first few stages. The multi-stage classifier that Viola and Jones trained for face
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Figure 2.7: A cascade of classifiers (Adapted from Viola and Jones (2001a)).

detection has just a few weak classifiers in the first few stages. The last few layers have

more features, as it takes more weak classifiers to eliminate false sub-windows that present

a much more similar pattern when compared to face images.

McCane et al. (2005) discussed the optimisation of cascades classifiers. Rather than

starting subsequent rounds of Adaboost based directly on the features’ weak classifiers

(one feature per weak classifier in the original Viola-Jones method), they used previous

layers of the cascade as weak classifiers. This resulted in fewer weak classifiers per cascade

and therefore a more efficient cascade. They also modeled the detection computational

cost of a cascade. The results showed that cascades are computationally more efficient

than a single stage classifier, but after adding a certain number of stages there was no

improvement. A larger number of stages in the cascade increases the chances of missing

hits, and therefore, there is an optimum number of stages for a certain cascade.

2.2.5 Multiresolution Analysis in Feature-based Systems

Methods using either invariant or non-invariant features should have different approaches

regarding translation, scaling, rotation, lighting conditions, and articulation. As invari-

ance is usually limited to a few transformations (there is no ideal feature set that is absolute

invariant to all transformations), even invariant features often need to be computed over

sub-sets of pixels (such as sub-windows at a specific position, scale and rotation). To be

able to compute features on the region where the image of the object is, one needs to

compute the feature set in many sub-windows using many different scales and positions.

An exhaustive search is usually impossible due to the real-time constraints.

The Haar-like features used by Viola and Jones (2001a) can be made invariant to

scaling (by dividing the feature value by the area of the feature), but not to any other

transformation. This requires the use of a multi-scale approach where each sub-window

is a rectangular sub-set of the image. Multiresolution analysis would usually require an

image pyramid approach, which is computationally expensive.
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Next, it is discussed how to assess sub-windows of a frame in view of translation,

scaling, and rotation. For Haar-like features, rotation is limited to specific angles, while

translation and scaling are only limited by accuracy and speed.

• Translation

In order to detect an object of the same size as the kernel, several sub-windows are

examined. If the original kernel has a size NxM pixels and the image has a size

WxH pixels, then the number of sub-windows S is:

S =
(W −M).(H −N)

t
(2.6)

where:

– W,H are the width and the height of the image

– M,N are the width and the height of the kernel

– t is the translation factor in pixels

A common problem is the fact that classifiers can hit the same object more than

once. This happens because two different sub-windows that are very close to each

other can yield values that are within the margins allowed by the classifier. Usually,

some form of post-processing is necessary to eliminate these additional hits and

compose a single coherent hit. Two approaches are possible. The first approach,

used in the OpenCV library, is to eliminate little hit regions inside other larger hit

regions and take an average for the final hit position. The second approach, is to

take into account how close each hit was from the final classifier threshold, and it

assumes that the actual hit position is the one with the best threshold.

• Scaling

The smallest sub-window is of the size of the images with which the classifier was

trained. This base window is called a kernel.

Scaling is necessary to find the objects with different sizes from the trained kernel.

Once a classifier is trained, there is no need to scale down the image to be assessed.

Instead, Haar-like features can be computed directly from the SATs, once for each

frame (Viola and Jones, 2004). One drawback occurs due to the rounding process,

the discrete nature of digital images causes scaling to generate fractional positions

and sizes. Lienhart, Kuranov and Pisarevsky (2003) showed how to compute cor-

rection factors that minimised this problem.

Computing every possible scale is not feasible if the real-time constraints are to be

met. A reasonable number of sub-windows have to be neglected. Typically, scales



2.2. Rapid Object Detection: a review of the Viola and Jones Method 25

are computed using factors from 1.1 up to 1.4. The smaller the factor, the more

demanding the computation. If the factor is too large, objects may be missed. The

total size of sub-windows that have to be assessed is :

n
∑

i=0

(W −M.f i)(H −N.f i) (2.7)

where:

– W,H are the width and the height of the image

– M,N are the width and the height of the kernel

– f is the scaling factor (the kernel sizes need to be rounded to an integer)

– n is the maximum number of times the scaling is computed, limited by:

Round(M.fn) < W and Round(N.fn) < H

For example, for a 640x480 pixels frame, with a kernel of size 24x24 pixels and a

factor of 1.1, the total number of sub-windows is 4482974. At 15 frames per second,

and if each feature needs 8 lookups, approximately 5.3× 108 lookups per second are

needed just for the calculation of features. In practice, translation with scaling are

usually computed in steps of more than one pixel. By using large translation and

scaling factors, there can be loss of accuracy in the form of missed objects. On the

other extreme, small translation and scaling factors can slow down the classification

process and present an overwhelming number of detections.

• Rotation

Haar-like features are not invariant to rotation and it is computationally expensive

to rotate every sub-window and detect all possible rotations. An alternative for

dealing with rotation using Haar-like features is to train several classifiers using

rotated examples. The disadvantage of this is the added time and effort to train the

set of classifiers, but this is compensated by the flexibility and by the control over

separate parts of this process. Jones and Viola (2003) suggested that for faces only

a few extra classifiers for different angles would be necessary.

In order to deal with the problem of multi-view faces, Lienhart, Liang and Kuranov

(2003) implemented the idea of a detector tree (rather then a single cascade classi-

fier). They validated the results with the XM2FDB video database and concluded

that a tree structure for the classifier improves both accuracy and performance. Sev-

eral parallel cascades of classifiers would also work well for objects that could have

very different patterns when assessed from different view points.
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Summary of Multiresolution Analysis

Various approaches to analysis of sub-windows in images have been described. The perfor-

mance of detection and recognition systems are related to the total number of sub-windows

surveyed. This number depends on various factors that have to be tuned for best perfor-

mance or best accuracy. The factors are:

• Kernel size (base sub-window)

• Translation factor

• Scaling factor

• Number of simultaneous classifiers

• Number of SAT

2.2.6 Lighting Conditions

The way an object appears may change dramatically with variations in the environment.

Lighting conditions may vary not only due to changes in the light sources, and other

objects producing shadows over the detectable object, but also because of the automatic

gain control and shutter of a digital camera. Haar-like features can yield good results

as long as the positive examples represent different lighting conditions. However, if new

situations arise, detection is difficult. Lienhart and Maydt (2002) used an extra SAT to

compute the sum of the square of the pixels. With this extra SAT they implemented a

simple form of contrast stretching based on the variance:

ī(x, y) =
i(x, y) − µ

cσ
, c ∈ ℜ+ (2.8)

The Haar-like properties allowed the computation of the stretched feature values with-

out changing the image itself. The mean and variance can be obtained for each sub-window

directly from the SAT and an extra square SAT.

2.2.7 Articulated Objects and Motion Features

The current limitations of Haar-like features are mostly concerned with images of artic-

ulated objects such as hands. Haar-like features are very robust as long as the object

presents a stable shape. Articulated objects cannot benefit directly from this method,

unless several parallel classifiers are used for different shapes. Considering that many

classifiers are already needed for rotation for a single viewpoint, it would be infeasible to

represent all possible shapes where the articulation is too complex. A possible approach

is to limit the set of possible articulations. Training of the classifiers may consider each
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articulation to be a different object. There is a potential advantage in this approach,

since standard gestures could be individually recognised. In a video sequence, where a

person gesticulates, the order of two or more recognised articulations could be interpreted

as a certain meaning. However, the number of classifiers necessary for a more generic

application still poses a problem for real-time application using a single processor.

The original Viola-Jones Method was not very successful in detecting pedestrians. The

patterns present in pedestrian detection can vary considerably with lighting and clothes,

as well as articulation (non-rigid object). Another factor, was that while in the training

of faces, the positive images could be completely separated from the background, that

was not the case for pedestrians. Viola et al. (2005) proposed additional filters that

took motion into account to try to overcome these difficulties. These modifications were

reported to be very successful to track pedestrians in situations where the pure Haar-like

feature-based classifier could not cope very well.

Motion filters operate on five images (called motion images) obtained from a pair of

contiguous images from the video sequence. The five images are created by computing

the absolute difference between each pair of frames. The first motion image (Df) was

computed as a simple subtraction. The other four motion images (U, D, L and R) were

created by shifting the second frame by one pixel to the right, to the left, to the top, and

down, respectively.

Four types of filters were created by using the five motion images. They are able to

generate thousands of possible features in an analogous way as the Haar-like features.

The first filter type subtracted the first motion image from the other four motion images,

extracting information about the movement. The second filter type was similar to the

Haar-like features applied to one of the motion images (U, D, L or R). The third filter

type measured the magnitude of motion in the images. Finally, the fourth type of filter

(called “appearance filter”) was computed from Haar-like features extracted from the first

frame. This would represent the shape of the object without any motion. Although these

results were not proved to be as generic as the ones for face detection, the results showed

that the method worked well with pedestrian detection.

2.3 Parallel Computing

The main reasons for building a parallel computing system are the limitations of the

processing speed, memory access speed and the bus speed of a single processor machine.

In this section, the parallelisation techniques in view of Computer Vision systems are

discussed.

For some time, it was believed that only very few classes of problems would benefit

from parallelisation due to Amdahl’s law implications. However, many practical problems

can benefit from parallelisation if the communication between nodes can be minimised
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(Wilkinson and Allen, 1999). In image processing and computer vision the work tended

to be focused on special hardware (such as FPGAs). Very little work has been done with

commodity hardware like Beowulf clusters.

In the next subsection, the parallel approach is discussed, focusing on computer vision

using the methods described in the first part of the chapter.

2.3.1 Types of parallel machines

The idea of parallel computers is that one or more tasks are divided into as many processors

as possible in order to, either minimise the response time, or to solve a problem that

occupies too much memory to fit in a single processor system (usually due to restrictions

on memory size or memory access). There are basically two ways of dividing a task, by

function decomposition or data decomposition. In data decomposition, the same algorithm

is repeated by each individual node, but each has a portion of the whole original problem.

In function decomposition, each process makes a portion of the computation using the

whole of the data available.

A Shared Memory Multiprocessor System consists of processors sharing a single or

various memory modules. The interconnection between the processors and the memories

is done via bus or interconnection network. Modern operating systems use virtual memory,

and this concept can be extended to a shared memory multiprocessor. The main advantage

of this type of implementation is that it is simple to program. However, the hardware

is especially difficult and expensive to implement when there are many processors on the

same board.

A cheaper hardware alternative is a Message-passing Multicomputer which is created

by connecting commodity computers through a network. In this kind of parallel computer

each node has its own memory, and therefore it is not directly accessible by any other

processor. The network is used to send and receive messages (data or partial results)

from other processors. The main advantage of this kind of arrangement is the price and

scalability. The system can grow according to the needs. In the past, the main disad-

vantage was the programming, which involved a lot of effort from programmers to avoid

interprocess communication mistakes. In the last few years, several good library imple-

mentations (such as MPI) minimised the problem, allowing relatively easy programming.

The message-passing paradigm requires that an efficient communication infrastructure is

available. Even the best network technology available imposes some performance limits.

This is compensated by the fact that there is no need for special hardware mechanisms to

control simultaneous access to memory, as occurs with a shared memory system.
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2.3.2 Beowulf Clusters

A cluster of computers is not a new idea. For many years, even the major computer

industries had some kind of cluster available for specific applications. When the RISC

computers were launched, a number of suppliers made available SMP machines connected

via a dedicated network interconnection (Aoyama and Nakano, 1999). Although most

clusters available at that time used some brand of Unix, they were built based on pro-

prietary hardware and software, and were expensive to buy and to maintain. The idea

of simple PCs connected via standard network infrastructure was only recognised as a

serious option in the last decade. The original Beowulf cluster project started in 1994

with a few old PCs and the idea quickly spread (Sterling et al., 1995a, 1999). The charac-

teristics that made Beowulf clusters an attractive alternative to other commercial parallel

systems were price/performance, scalability, availability of open source software, and re-

usability of previously developed parallel code. Sterling et al. (1999), Bookman (2003),

and Sloan (2004) discussed the details of building and maintaining clusters focusing on

Linux operating system to support it.

Nowadays, Beowulf clusters built from commodity hardware are very common. The

performance ranges from a few Gigaflops up to a few Teraflops. At Massey a small 16

node cluster was built in 1999 using Linux and Pentium III monoprocessors (Grosz and

Barczak, 2000). Although the performance was very limited by the Ethernet technologies

available at the time, the CS group gained experience in dealing with them. In 2002, a

more powerful cluster was built, making use of the now commodity Gigabit Ethernet. The

cluster achieved the 304th place in the top500 list (Barczak et al., 2003).

2.3.3 Cluster Topology

The ideal, although usually impractical, way to link the nodes is an exhaustive connection.

In this mode, each node is connected to every other node in the cluster. Hence n nodes

are connected with n − 1 links from each node. There are a total of n(n−1)
2 links. In

practice, a fully connected cluster is not economical. Other possibilities for the topology

of a distributed memory computer were discussed by a number of authors (see for example

Wilkinson and Allen (1999)). Historically, there were four important network links: the

line, the mesh, the hypercube, and the tree network. Currently, the choices to build

economic machines are limited by the restrictions of off-the-shelf components (such as

motherboards, NICs, switches etc).

With cheaper switches, which virtually eliminated Ethernet collision problems, the

topology models have more theoretical than practical implications for Beowulf Clusters.

Three key factors that may limit the overall performance of a Cluster are the network

bandwidth, the network latency and the cost of communication infrastructure.
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2.3.4 Bandwidth and Latency

Bandwidth is defined by the rate in which data can be transmitted from one node to an-

other. Bandwidth is affected by the hardware (transmission speeds) and by the protocols

(reliable protocols cost a percentage of the available bandwidth). For the scope of this

thesis, bandwidth is given by the the average data transmission rate (nominal bandwidth

less the overheads imposed by the protocols and operating system).

Latency is defined as the time delay to start communication. Again, latency is affected

by the hardware and by the protocols. It is difficult to measure latency and bandwidth

in isolation. A practical way to measure latency in clusters is to measure the time to

transmit an empty message.

16 processors

16 processors

str
ipe data decomposit

ion

Original 

   Data

boundary size

boundary size

block data decomposition

Figure 2.8: Data decomposition: a block data decomposition has a boundary half as large
as the stripe data decomposition.

Communication time should be minimised. In many cases, changing the data decom-

position strategy changes the communication patterns. For example, in a heat transfer

problem the results for the boundaries of the decomposed data have to be sent to the

neighbour nodes. The data decomposition could be done contiguously (in stripes) or dis-

contiguously (in blocks). For a 16 node algorithm the block decomposition is faster than

that for a stripe decomposition (figure 2.8) because the smaller boundaries imply shorter

communication times between the nodes.

The effect of the Latency can also be minimised via a strategy called “latency hiding”

(Wilkinson and Allen, 1999; Gropp, Lusk and Skjellum, 1999), where the processors are

kept busy for as long as possible. The use of non-blocking MPI calls or persistent commu-

nication are different methods to achieve this. The use of threads may also help in some
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cases.

2.3.5 Speedup in parallel computers

Most authors in the parallel computing area define a speedup factor (Wilkinson and

Allen, 1999), which defines the application’s relative performance running in either a

single processor or a multiprocessor system. It can be written as

speedup =
Ts
Tm

(2.9)

where Ts and Tm are the execution times for single processor and multiprocessor,

respectively.

It is expected that, even for the best implementation of a parallel version of a certain

algorithm, linear speedups would rarely be achieved. There are many reasons, but the

most common is the extra communication effort to synchronise or to gather data from

neighbour nodes due to unbalanced loads. Depending on the algorithm, there may be also

extra tasks to be done. For example, if 16 processors are working on segmentation of a

partitioned image, one object may be split in different nodes, requiring an extra step to

join the pieces.

Even if the above mentioned problems do not occur, there is a theoretical limit for

the maximum speedup known as Amdahl’s law. It imposes a limit to the maximum

speedup given that all programs may have serial portions and parallelisable portions. If

the program has a considerable percentage of the time on a serial section, it may not be

worth to parallelise it, as the speedup may be very low. On the other hand, if the program

in question has a fairly small serial portion, then the speedup could be close to a linear

one. Amdahl’s law may be written as

MaxSpeedup =
n

1 + (n− 1)fs
(2.10)

where n is the number of processors and fs is the portion of the algorithm that can-

not be parallelised (or the serial portion as a fraction of the total). Amdahl’s law was

widely accepted as a real limitation for parallel computers. An analysis of the Amdahl’s

formula presented above showed that the serial portion is considered independently from

the problem size. Gustafson observed that, in practice, a problem of larger size could be

solved without increasing the serial portion runtime (Wilkinson and Allen, 1999), mak-

ing the percentage of the serial portion a function of the problem size. In that case, an

alternative formula (called Gustafson’s law, or scaled speedup) is:
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MaxSpeedup = f + (1 − f)n (2.11)

where n is the number of processors and f is the portion of the algorithm that cannot

be parallelised. Wilkinson and Allen (1999) illustrate the effects of this law by saying that,

for an algorithm that has 5% of serial section and 20 processors, Amdahl’s law results in

a maximum speedup of 10.26 while Gustafson’s law results in a 19.05 speedup.

2.3.6 Message passing paradigm

Message passing libraries were created to facilitate parallel programming for clusters. A

message passing library provides communication methods and process initialisation meth-

ods and has been the most common paradigm used amongst Beowulf cluster programmers.

The most popular message passing is MPI (Message Passing Interface). The three

important advantages of MPI are portability, performance, and availability in different

platforms. A full description of the MPI is found in Gropp, Lusk and Skjellum (1999) and

Gropp, Lusk and Thakur (1999). Proprietary implementations for specific hardware are

also available, see for example, Aoyama and Nakano (1999).

MPI has communication calls for point-to-point communication and for collective com-

munication. Point-to-point messages establishes communication between two nodes, while

collective communication does the same for a group of nodes. Messages can use either

blocking or non-blocking calls. Blocking messages make the node idle until the communi-

cation is completed. Non-blocking messages release the processor to carry on other tasks

that are independent of the communication. Non-blocking messages need a system call to

test for completion of the communication.

One of the problems with message passing for real time applications is latency. For

example, some of the MPI calls use reliable protocols that might put the processor in

a wait state until an acknowledgement is received. Unless the algorithm requires little

communication, the efficiency of the parallelisation can be very low. When little commu-

nication is needed and a simple decomposition is feasible, the resulting parallelisation is

called “embarrassingly” parallel. High speedups are achieved in these cases. An alter-

native to that is the improvement of performance using special protocols. For example,

Balaji et al. (2002) used sockets to obtain low latency and high bandwidth, at the expense

of the loss of portability.

2.3.7 Parallel Image Processing

Low level image processing is somewhat simple to parallelise. Wilkinson and Allen (1999)

discuss many of the low level image processing and their suitability for parallelisation. Sim-

ple image processing can usually be solved with an “embarrassingly” parallel approach. If
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the algorithm allows each processor to work independently and no communication is neces-

sary until the final result, high efficiencies are obtained with a simple data decomposition.

Some problems may require an overlapped boundary.

Higher level image processing usually needs better parallelisation strategies, as partial

calculations from neighbour nodes may be needed before carrying out other computations.

The amount of data and the frequency of communication between two or more processors

depends, intrinsically, on the nature of the algorithm.

Image Processing in Clusters

Barbosa and Padilha (1998) studied how to find the ideal number of processors to obtain

the minimum processing time for a certain image processing algorithm. Their tests run on

a network of personal computers using edge detection and histogram algorithms. Amdahl’s

Law was used to explain the times obtained during the tests. They concluded that it is

possible to compute the ideal number of processors to execute a certain algorithm as

long as the algorithm’s parameters (related to the communication and computational

patterns) are known in advance. In practice, however, the communication patterns can be

more complicated than the two algorithms tested and, therefore, it is very dubious that a

simple formula could generalise the behaviours of more complex algorithms. Their model

did not consider classification operations required for object detection/recognition.

Segmentation is a very common operation in computer vision. The watershed trans-

form is a popular yet expensive method of segmentation. The pixels are represented as

topographic landscape and imaginary “water” is poured into the image forming water-

sheds. These watersheds define regions and separate objects the same way mountains

separate two valleys. Moga et al. (1998) used a simple data decomposition for watershed

segmentation and reported good results, although the speedup quickly decreased when

using more then 8 processors. Moga (1999) changed the parallel approach by adding a

multiresolution analysis step and obtained good speedups, using up to 32 processors.

Another watershed algorithm parallelisation was presented by Roerdink and Meijster

(2000). They discussed the two possible decomposition models for watershed transform.

In data decomposition, the efficiency depended on the synchronisation of the the neigh-

bouring partial results, as parts of the image of the same object could be sent to more then

one processor. In functional decomposition, the efficiency depends on the number of local

minima and on the sizes of the corresponding basins, in which case load balancing posed

problems. Their conclusion was that watershed transform “remains a global operation,

and therefore in the case of parallel implementation at most modest speedups are to be

expected”. This is an important indication that the key for any successful parallelisation

lies in the possibility of minimising the communication among the nodes.
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Video Processing in Clusters

A real-time parallel processing system was built by Arita et al. (1999, 2000); Arita and

Taniguchi (2001). They used a cluster with Myrinet (with a latency of about 500ns and

a bandwidth of 1.28Gbps) and created a whole new protocol (called RPV - Real-time

Parallel Vision) to deal with the real-time constraints that standard MPI or PVM cannot

deal with. Their system needed to synchronise three cameras in order to obtain 3D images

to be analysed. They discussed four main schemes for the parallelisation of computer

vision systems, shown in figure 2.9. A brief description and a discussion considering the

algorithms described for object detection follows.

b) Data parallel

Results

a)  Pipeline

Results

c) Data gathering

Results

d) Function parallel 

Results

Figure 2.9: Four schemes for Parallel Computer Vision, according to Arita et al. (2000).

• pipeline parallel processing - A frame is acquired and processed serially. Each

processor deals with the responses of the previous processor.

• data parallel processing - Uses simple data decomposition. The frames are split

into the processors and the results are gathered by one processor at the end.

• data gathering - Each front processor receives a frame, processes it and the results

are gathered by one processor at the end.

• function parallel processing - Each frame is spread to multiple nodes, so that

different algorithms can run independently and their results unified at the end.

In all the four cases, the obstacle for linear speedups is the communication infra-

structure, despite improvements that have been made to standard Ethernet adapters and

switches (e.g., Gigabit Ethernet).
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The pipeline model would be suitable for repetitive processing where some delay would

be acceptable. The more nodes are added, the longer the delay. It achieves high through-

puts, but latency becomes a problem after a few nodes are added to the pipeline.

Not all computer vision algorithms would work well in the data parallel scheme. A

typical example is an algorithm that uses multiresolution analysis. In a multiresolution

analysis, if the original frame is divided fairly, some of the sub-windows are split in two

or more portions among the processors. In this case, this scheme needs an overlapping

boundary, which is usually inefficient. Also, if a classifier is involved in the processing, it

is difficult to optimise the system because certain regions of the image would require more

processing than others.

The data gathering model could be very similar in performance to the data parallel

model. However, the node that gathers the information from the other nodes can become

a bottleneck in the system. If the main part of the algorithm needs the pre-processed

data from the nodes attached to the camera, then the receiving node needs to be more

powerful than the other nodes. Arita et al. (2000) used this scheme because it is suitable

for systems with multiple cameras.

In the function parallel approach, it would be very difficult to achieve load balancing.

The dynamics of the algorithms do not necessarily fit the available hardware. The function

parallel model would suit well systems that need to process independent instances of

algorithms, using the data from a single source. Each frame could be broadcast to the

nodes. If it is a true broadcast, the communication times would be practically limited by

the bandwidth. This model would demand the use of low level protocols, possibly without

any of the extra costs of reliability and fairness, in order to achieve good speedups.

In summary, of the four models, the function parallel would be the most suitable for

object detection from a single image stream. Load balancing can present a challenge,

except if the nodes run instances of the same algorithm with the same data.

2.4 Conclusions of Literature Review

The topic of the Rapid Object Detection was discussed, showing that the applications

based on Viola-Jones are, to some extent, successful. However, limitations and gaps in

the knowledge regarding the generalisation of the method were identified.

Several training parameters may influence the accuracy of the final classifier. The

size of the kernel, the number of stages in the cascades and the variant of the AdaBoost

algorithm.

The training images are themselves a source of uncertainty. At least three problems

with the training set (positive and negative sets) were identified. These issues are discussed

in chapter 3:
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• Marking the images using only square kernels.

• The alignment of the positive images, a problem that was also described in early

stages in Rowley (1999). Misalignment could cause Haar-like features to be located

in different parts of the image yielding a poor quality classifier. Human faces are

relatively easy to align, as they have strong geometric characteristics such as two

dark spots in the eyes location, but that is not necessarily true for other objects.

• The number of images used did not necessarily translate to good accuracy.

At detection, the following limitations were identified:

• Occlusion and lighting: Variation on the lighting condition and partial occlusion

may cause the cascades to completely miss objects. Is it possible to yield more

generic classifiers based on a modified positive set? The case of partial occlusion for

face detection is discussed in chapter 4.

• Articulation: How to generalise detection when the object is not rigid? Parallel

cascades are a possibility that are explored in this work. The case of hand detection

is discussed in chapter 5.

• Rotation: Haar-like features are not invariant to rotation. Objects can be missed

when they are under rotation that was not predicted at the training phase. Rotation

for Haar-like features is discussed in chapter 6. A new feature extraction method

based on invariant features is discussed in chapter 7.

The parallelisation of these algorithms has to be carried out in such a way that it

minimises communication between the processors. The Viola-Jones approach is suitable

for parallelisation because very little communication is needed and the cascades can be

trained to work independently. The tasks related to detection using a single cascade

classifier, however, requires typical serial processing that makes it difficult to achieve high

efficiencies. In many circumstances, more than one classifier is needed (either to detect

different objects in the same scene or to detect objects at different angles), and specific

strategies to cope with multiple classifiers are discussed in chapter 9.
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Chapter 3

Methods and Preliminary

Experiments

This chapter presents the methods and the equipment used to collect data for the ex-

periments carried out for this thesis. Section 3.1 discusses implementation aspects of the

training and the detection algorithms, as well as methods for collecting sample images.

Section 3.2 presents preliminary results of experiments carried out with face detection.

Section 3.3 discusses practical issues regarding the implementation of Beowulf clusters.

Finally, section 3.4 examines the performance of two clusters built for the Institute.

For the detection experiments two desktop machines were used with the following

specifications:

• Dual Core AMD Opteron(tm) Processor 170 2.0 GHz, cache size 1024KB, 2GB

RAM, 4023.85 BogoMips1 (each processor)

• Intel(R) Pentium(R) IV CPU 2.53GHz, cache size 512 KB, 500MB RAM, 5072.48

BogoMips

The cluster node specifications were:

• Dual AMD Athlon(TM) MP 2100+ Processor, 1.7 GHz, cache size 256KB, 1GB

RAM, 3457.02 BogoMips (each processor)

The image acquisition process was done using a cheap, but good quality, Logitech 4000

web camera (Philips chipset), which can deliver 30 frames per second for a size of 640x480

pixels.

1BogoMips is performance benchmark commonly used in Linux
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3.1 Implementing the Rapid Object Recognition Training

algorithms

This section discusses two training algorithms, the marking process used to gather positive

face images, and performance measurements for object detection. For the experiments

carried out in Chapters 4 and 5, the original OpenCV implementation of the Viola-Jones

methods was used. However, for the other chapters, where major modifications on the

original method were made, a new implementation was coded in order to accommodate

the changes. The AdaBoost algorithm has problems with convergence for certain training

sets, and a simple modification to cope with the problem is proposed in this section.

A simple Convex Hull based classifier is described. This type of classifier has a limited

accuracy, but it can be used to pre-process a large portion of sub-windows.

The methods to collect sample images depend on manual marking. The methods used

to mark faces and hands are briefly described. Finally, the methods and databases used

to measure accuracy of classifiers for object detection are presented.

3.1.1 Adaboost: a simple modification for convergence and speed

B

A

Figure 3.1: Classification using thresholds does not converge.

Recently, a few problems with the convergence of the AdaBoost algorithm have been

reported (Rudin et al., 2004). It has been known, for some time, that training with certain

sets do not converge when using simple threshold as weak classifiers. As an example, lets

consider the figure 3.1. This figure shows two very small positive and negative sets.

By trying to set simple thresholds there are four possibilities to classify correctly each

element. It is shown that there is no solution in which the training error converges to



3.1. Implementing the Rapid Object Recognition Training algorithms 39

zero. Assuming that two thresholds, A and B, are used to separate the positive and

negative sets, the hypothesis would be as follows:

H(x) =

{

1 a.h(x) + b.h′(x) ≥ 0

−1 otherwise

For a correct classification, one would need to solve the following system, for which

there is no solution for a and b ∈ ℜ:

− a− b < 0

− a+ b ≥ 0

a− b ≥ 0

a+ b < 0

The effect of this characteristic is serious during training. The threshold values go

through an infinite cycle, yielding classifiers for which the training error does not improve,

no matter how many weak classifiers are added to them. Rudin et al. (2004) analysed

the dynamics of AdaBoost and its cyclic behaviour, though many open questions remain.

It is not known in which conditions AdaBoost converges or behaves chaotically. More

interestingly, it is also not known why it does achieve a strong generalisation performance

in most cases. Our own experiments suggests that training large sets with a large number

of dimensions tend to produce good classifiers, while training with small sets, with a small

number of dimensions, may cause the process to behave erratically.

A possible solution for this impasse is to use more than one stage. Like Viola-Jones

method, the hit rate is maximised by changing the stage threshold. Each stage may be

limited by either the number of weak classifiers or by a maximum false detection rate. For

example, the set seen in figure 3.2 has no solution if a single stage is used. However, by

using sub-sets of the negative set to train various stages, it yields a good classifier.

This training strategy is simple, but effective. Depending on the difficulty of the

problem, it may take many stages, especially if the positive set data does not cluster in

the feature space. If positive and negative samples are located in the exact same point
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1

2

3

4

5
E

D

C

A B

1 2 3 4

Figure 3.2: This set converges if the the classifier has four stages.

of the feature space, then the training would never converge to zero. Viola and Jones

(2001a) used several stages in their method in order to achieve performance, not due

to convergence problems. In fact, due to the high number of dimensions of Viola-Jones

feature space, AdaBoost converges without problems when using the original Haar-like

feature set.

A modified AdaBoost, shown in algorithm 3, was used in this thesis for many of the

experiments. 2 Algorithm 3 is very similar to the AdaBoost version used by Viola and

Jones (2001a), but the goal is different. While in Viola-Jones method the cascades were

used for performance, here the cascade approach was used to achieve convergence with

high positive hits.

When both the positive and negative sets are finite, it is sometimes convenient to force

the hit rate to 100%. In order to do that, the thresholds of the stage being trained are

changed. This causes the false detection rates to increase.

During the training process, if a certain stage of the cascade does not achieve the

hit and false detection specified, negative elements are discarded. The training of that

particular stage starts again with a smaller negative set. The discarded negative samples

are added later, to the negative set of the next stage. This process of using negative sub-

sets splits the negative set in more feasible portions, facilitating the training. If enough

stages are trained, the training error converges to zero.

There is one drawback for this approach. Depending on the distribution of the fea-

ture values, it may happen that very few negative elements are eliminated at a certain

2All the classifiers used in the experiment 7, in chapter 7, and the classifiers used in chapter 8, were
produced using algorithm 3.
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stage. The number of weak classifiers may surpass the number of elements in the training

sets, which may yield long and inefficient cascades. This problem can be minimised by

clustering the negative set.

Algorithm 3 AdaBoost2 ((value, class), T )

The input is a set of training examples (x1, y1), (x2, y2), ...(x2, y2) where xi is a feature ∈
X and yi is a class ∈ {−1,+1}, and a number of rounds T . It outputs a linear combination
of weak classifiers ht(xi), each a factor αt.
Initialise weights for each element D1(i) = 1/(n) where n is the number of elements
While P < Prequ and F > Frequ:

1. Train a weak classifier ht (e.g. a simple threshold) using the weights in Dt so that
ht ∈ {−1,+1}

2. Compute the error associated with the weak classifier:

errort =
∑

i(Dt(i)ht(xi)yi) (the sum of the elements’ weight that are incor-
rectly classified)

3. Compute αt = 0.5 ln( (1−errort)
errort

)

4. Update the weights Dt+1(i) such as Dt+1 is a new distribution:

Dt+1(i) = Dt(i) exp(−αtyiht(xi))
(the weights decrease if the element is classified correctly or increase if it is

classified incorrectly)

normalise the weights Dt+1(i) = Dt+1(i)
P

iDt+1(i)

5. After T rounds the final classifier is: H(x) = sign(
∑T

t=1 αtht(x))

6. Compute the positive hit rate P and the false detection rate F for round t+ 1

7. If the F > FMax per round

restart round t with a sub-set of the negative set (choose N elements (xn, yn)
where yi = −1)

8. Else

start round t+ 1 after eliminating all negative samples that have not passed
round 0 to t
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3.1.2 Building Classifiers with a set of Convex Hulls

Given a set of points P , a Convex Hull is defined as the smallest convex set of points that

contains P and is a sub-set of P . The Convex Hull was used before in Pattern Recognition

(see for example Akl and Toussaint (1978)). The following algorithm (algorithm 4) is a

very efficient one to compute convex hulls (Andrew, 1979):

Algorithm 4 ChainHull((value, class), T )

Input: a set S = P = (P.x,P.y) of N points
Sort S by increasing x- and then y-coordinate.
Let P[] be the sorted array of N points.
Get the points with 1st x min or max and 2nd y min or max

• minmin = index of P with min x first and min y second

• minmax = index of P with min x first and max y second

• maxmin = index of P with max x first and min y second

• maxmax = index of P with max x first and max y second

Compute the lower hull stack as follows:

1. Let Lmin be the lower line joining P[minmin] with P[maxmin].

2. Push P[minmin] onto the stack.

3. for i = minmax+1 to maxmin-1 (between the min and max)

if (P[i] is above or on Lmin)

Ignore it and continue.

while (there are at least 2 points on the stack)

Let PT1 = the top point on the stack.

Let PT2 = the second point on the stack.

if (P[i] is strictly left of the line from PT2 to PT1) break out of this while
loop.

Pop the top point PT1 off the stack.

Push P[i] onto the stack.

4. Push P[maxmin] onto the stack.

Similarly, compute the upper hull stack.

Let W = the join of the lower and upper hulls.

Output: W = the convex hull of S.

Algorithm 4 is only suitable for two dimensions. To be able to cope with a higher

dimensionality, an approach to combine two dimensions was used, finding a convex hull

for each pair of features. At the detection phase, a sub-window’s pair of features is

examined to see if they are within the borders of their particular convex hull. If any point
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is outside the boundary, the classifier considers that as a negative answer, discarding that

sub-window. The Convex Hull classifiers only work well if the features cluster into a single

cloud in the feature space, otherwise the number of false detections would be too high.

Convex hull classifiers can also be used as a pre-processing stage for detection, as it is able

to eliminate a number of negative points very rapidly. The advantage of such classifiers

is that the time to train and detect is extremely fast.

A sample of a convex hull used in early experiments with OCR is shown in figure

3.3. In this figure, the moment invariants for hand digits zero samples were computed,

with the first two moments plotted. The time to train 55 convex hulls with 6000 positive

samples took less than a second.
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Figure 3.3: Example of convex hull used as a classifier.

3.1.3 Marking the positive examples

In practice, the marking of the positive examples, either to use them in the training

or in the testing set, is a tedious job. The same can be said about the negative set,

which has to be checked not to contain any image that could be considered positive. In

that sense, the job is very subjective and the person who is choosing and marking can

negatively influence the training process. Currently, it is not possible to automate the

process completely unless a classifier partially trained is already available. For marking

faces, it was decided to use a three points method that takes into consideration the fact

that people have slightly different shapes and proportions. The marker has to pick three

points, two points in the centre of the eyes and one point in the centre of the mouth. With

the three points marked, a circle can be found. Its centre and radius are parameters for

the rectangle (or square) final marking, which is used to separate the positive example
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Figure 3.4: Marking a face from the CMU-MIT database

and to create truth tables for testing. Figure 3.4 shows how the marking process works.

Typically, the width of the square marker is 1.5 times the diameter of the circle.

3.1.4 Accuracy and Performance Measurements

There are various sources of inaccuracies for detection algorithms, including possible neg-

ative images that are so similar to the positive pattern that it affects the learning process.

Images rarely present linearly separable features. One could expect a much higher false

positive rate and a lower hit rate, when effectively using the classifier with test data. One

way of measuring the quality of the classifier is to use a ROC curve (Receiver Operating

Characteristic curve, Egan (1975)). Cost curves were appointed as an alternative for clas-

sifiers comparison by Drummond and Holte (2006). Different authors may use different

methods to plot ROC curves, but it is widely accepted that it is difficult to compare

methods by only using a single hit rate (Viola and Jones, 2001a). A general discussion

on practises for performance and accuracy measurements for computer vision applications

were presented by Thacker et al. (2005). In order to measure accuracy in face detection,

the most widely used database is the CMU-MIT, which was created by Rowley (1999) as

an extension of a previously created database

There is no agreed benchmark for performance (measured in terms of speed or frames

per second). However, it is expected that real-time detection delivers, at least, more

than one frame per second. Performance varies with certain parameters, translation and

scaling factors being the two most important ones. Also it is important to consider

some heuristics that might change the performance characteristics. For example, in the

original implementation of OpenCV, the function to compute Haar-like features uses half-
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resolution images3, which decreases the number of sub-windows classified by the detector.

The parameters that affect training are:

1. the kernel size.

2. number of samples (positive and negative images).

3. number of stages in each cascade classifier (influenced by the hit rate target and the

false detection rate target).

4. Haar-like types (normal only or both normal and tilted).

And the following parameters affect the detection phase:

1. image resolution.

2. translation factor.

3. scaling factor.

4. number of cascades.

3.2 Preliminary Experiments

For reference, ROC curves were plotted using the original implementation of Viola-Jones

in OpenCV (figures 3.5, 3.6, 3.7, 3.8, 3.9). The tests were carried out using the original

version of Adaboost found in the OpenCV library Bradski (2000).

In these experiments, the classifiers were trained with frontal faces only. All the

positive examples were extracted from the FERET dataset and the negative examples

were extracted from a mix of images that did not contain any faces. The CMU-MIT

dataset was used as a test set to plot the ROC curves. This dataset contains many non-

frontal faces, as well as cartoon-like faces that are not recognised by our classifiers. For

this reason, it is not expected that the classifiers achieve the same level of accuracy of

the sample classifiers from OpenCV. The ROC curves in this section were produced with

fixed detection parameters:

• scaling 1.2

• translation 1

When using only the upright features (from figure 2.3), the set of features is called

BASIC. If the classifiers use both upright and tilted features, they are called ALL (figure

2.3 shows the upright features and figure 2.5 shows the tilted features). The sample

3haarobjectdetection() in OpenCV
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Figure 3.5: ROC curve BASIC versus ALL features, 100 positive examples

classifier from OpenCV used both normal and tilted features, and it was originally trained

with a very large face database, including non-frontal faces (Lienhart and Maydt, 2002).

Figures 3.5 to 3.9 show the comparison between using all types of feature (ALL) and

only upright ones (BASIC), with kernel sizes varying between 20x20 to 36x36 pixels. Each

figure has a different number of training examples. The results showed that when using

large kernels the results were not as accurate as the classifiers using small kernels. The

larger the kernel the more features the training process has to cope with. Training becomes

more difficult, not only because there are more dimensions to compute, but also due to

the increasing number of possible images that exist at a certain resolution. At detection,

cascades with larger kernels miss some of the faces, because the scale of the face is smaller

than that of the kernel.

In terms of feature type, there was no significant difference in accuracy between using

only upright features (BASIC) or including tilted features (ALL). However, the classifiers

with BASIC needed more weak classifiers than their counterparts using ALL. As expected,

classifiers trained with more positive examples presented better accuracies.

These preliminary results guided the experiments carried out in the other chapters.

Next, the performance characteristics of Beowulf clusters is presented.

3.3 Building Beowulf Clusters

This section presents some performance results obtained from two Beowulf clusters called

“Sisters” and “Helix”. These clusters were built at Massey University in 1999 and 2002,

respectively. Issues concerning network latency and the effect of the switching fabric and
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Figure 3.6: ROC curve BASIC versus ALL features, 250 positive examples
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network topology on performance are discussed. In order to assess how the system per-

formed using the message passing interface (MPI), two test suites (mpptest and jumpshot)

were used to provide a comprehensive network performance analysis. The performance of

both clusters are compared in this section. These clusters were used to train and assess

the performace of all the classifiers produced for this Thesis.

Many benchmarks are available, but few are able to characterise a cluster in a useful

and reproducible way. Gropp and Lusk (1999) discussed many of the traps found in

performance measurement. The Linpack benchmark was chosen as the floating point

benchmark because it would test the scalability of the Helix rather than just the raw

peak performance. The macro performance of the machine is illustrated by the Linpack

benchmark, but the micro performance of the Helix system also needs to be analysed. In

order to do that, the mpptest test suite, developed by Gropp and Lusk (1999), was used.

3.3.1 A brief description of the clusters

The “Sisters”

The Sisters was the first Beowulf cluster built at Massey University. It consists of 16

nodes connected by a fast Ethernet network. The nodes used Pentium III CPUs, running

at 667MHz with 256MB Ram (they were since upgraded using dual processor nodes). The

server is a dual Pentium III with 1GB Ram. There is a single switch linking the main

server and the nodes. Key bottlenecks in the system includes the high latency and low

bandwidth of the network.

The “Helix”

Considering all available options at the time, the nodes were built with dual Athlon

MP2100+ CPUs, 1GB memory and dual 3com 64bit gigabit network interface cards. The

dual processor configuration is favoured so that the network interconnect costs would

be limited. The communication between the nodes is achieved with standard unmanaged

gigabit switches. Each node has two Gigabit Ethernet cards. Theoretically, a dual network

increases the available bandwidth. In practice, there are bus contention issues that may

prevent the cards from working simultaneously at full speed. The topology is a simple

grid, with the nodes arranged in rows and columns, shown in figure 3.10. Each node

chooses the best path to the next node based on static tables. Given the constraints, i.e.,

the number of nodes and the availability of ports on the switches, the connections between

nodes need a maximum of 2 hops.
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Figure 3.10: The Helix Beowulf-type cluster’s topology (built in 2002 for Massey Univer-
sity).



3.4. Performance of Clusters 51

Figure 3.11: Linpack Rmax rating versus number of processors.

3.4 Performance of Clusters

The testing of the Helix performance using the Linpack benchmark and specific issues

regarding the network infrastructure (using mmptest and jumpshot) are investigated next.

3.4.1 Linpack performance results

The Linpack benchmark measures the performance of a distributed memory computer

while solving a dense linear system in double precision (Dongarra, 1989). Several factors

determine the performance achieved on this benchmark, but the bandwidth and latency

are a significant component. High bandwidth and low latency ensure that the commu-

nication is not a bottleneck. Each of the nodes in the Helix contains 1GB of RAM, so

this provides a limit to the maximum problem size. Since 8 bytes per double precision

floating point number are required, the maximum theoretical matrix size is 94,118 by

94,118. However, due to operating system overheads, a more realistic size using 80% of

the memory gives a figure of 80,000 by 80,000. The theoretical peak performance (Rpeak)

of the Helix (the maximum Gflop rating that the machine is guaranteed never to exceed)

is 448.8 Gflops, however, this is not a useful measure since it is not achieved even if ev-

ery machine is working independently. The peak Linpack performance (Rmax) using a

problem size of 82080 was 234.8 Gflops (Top 500 computers, n.d.).

The performance of the Helix on the Linpack benchmark versus number of processors

shows that the system scales almost linearly (see figure 3.11). This is due to the high

bandwidth, reasonable latency switching and the grid topology. The switches each have

24 ports (as seen in figure 3.10) and the vertical connections connect up to 22 nodes on a



52 Chapter 3. Methods and Preliminary Experiments

Figure 3.12: Point to point messages in Helix (short, blocking)

single switch. This means that up to 44 processors can be connected with a single high

bandwidth hop between processors. When a larger number of processors are required for

the Linpack benchmark, then the nodes must be selected to make optimal use of the grid

layout.

3.4.2 An analysis of performance using mpptests

This set of applications evaluates how efficiently the hardware is being used by the whole

system, including the operating system and MPI (Gropp and Lusk, 1999). There are

other benchmarks available that test a variety of MPI calls, for example SkaMPI Reussner

(2001).

A point to point test shows that for short messages, in a Gigabit Ethernet, the times

are almost constant. For message sizes of up to 1000 bytes, the communication times

are around 35 microseconds (figure 3.12). This may be considered as an indication of the

latency itself. This compares favourably with the same test run in an older cluster with fast

Ethernet. In the cluster called Sisters, as the message size increases the communication

times build up quickly, and it goes to 250 microseconds for a message size of 1000 bytes

(figure 3.13).

Theoretically, the gigabit Ethernet should be 10 times faster but due to latency effects,

the speedup is not as high for small messages. The latency of less than 40ms is reasonable

for the gigabit Ethernet system. The communication times for very short messages are

about 75% when compared to the fast Ethernet and there is a gain in speed for any

message size. The bigger the messages, the more advantageous becomes the use of Gigabit
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Figure 3.13: Point to point messages in Sisters (short, blocking)

Figure 3.14: Point to point messages in Helix (long, blocking)
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Figure 3.15: Point to point messages in Sisters (long, blocking)

Ethernet. Figure 3.14 shows that the times grows linearly up to 65KB in the Helix. The

same tests running on the Sisters (using fast Ethernet) are shown on figure 3.15. For

65KB the transfer times are approximately 6.7 times the ones obtained on Helix. The same

trends were observed when using non-blocking/point to point messages. The maximum

theoretical bandwidth in the fast Ethernet and on a Gigabit Ethernet are 12.5MB/s and

125MB/s, respectively. For long messages (figures 3.14 and 3.15), Fast Ethernet is

approximately 87% as fast as the maximum. A similar analysis for the Gigabit Ethernet

shows that it is only about 59% as fast as the theoretical maximum.

Collective operations may present a different challenge for performance measurements

due to the particular way they are implemented. Both clusters were measured using

goptest with -bcast option operations. Figure 3.16 shows an example of collective calls in

MPI. In this example, one can see that the communication times increase dramatically

with the increase of the number of processors.

3.4.3 Ring test using jumpshot

An interesting observation was made by Zaki et al. (1999). They found that the Beowulf

network structure can sometimes be revealed by running a ring test application in MPI.

Applying this same concept, ring tests were run in the Helix cluster. When two neigh-

bouring nodes are not located in the same switch, it would be expected that a slightly

longer message passing time would be measured. For example, there are two hops between

nodes 36 and 37 (figure 3.10). Running a ring test with a 127KB message size, a CLOG

file was obtained and it is shown in figure 3.17.
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Figure 3.16: Goptest (Broadcast operation) running in 128 processors.

Figure 3.17: A ring test using 127KB message and 128 processors
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Figure 3.17 shows that there is no noticeable effect of the topology, even when using

relatively long messages. Several tests using the processors in different order were carried

out to confirm the results. This figure also shows that the point to point messages are

being delivered with little degradation, when making multiple hops over switches. This

could be explained by the fact that the additional delay introduced by the switches is

small compared to the communication overheads of MPI.

3.5 Summary

This chapter showed the influence of important parameters in the original Viola-Jones

method. Generally, the more training samples the better the chances of detection. The

influence of the kernel size was that the larger the kernel, the more difficult is to train the

classifiers. This was due to a larger number of Haar-like features the training algorithm

had to cope with. The influence of the feature type was surprisingly small. A few normal

features were able to achieve the same discriminative job of the set that included tilted

features.

The parallelisation and Beowulf cluster implementation was discussed in this chap-

ter and performance results showed the differences of the two Beowulf clusters built for

the institute. The classifiers produced for this thesis were trained using both clusters.

Based on these preliminary results, as well as on the Viola-Jones method communication

patterns, a model for the parallelisation of the detection algorithms was proposed and

tested (details in chapter 9). A platform for a mobile computer vision system based on

Viola-Jones method is also discussed in that chapter.
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Chapter 4

Partial Occlusions in Face

Detection

4.1 Introduction

In this chapter, the Viola-Jones detector was evaluated in the presence of partial occlusions

for face detection. The hypothesis that it is possible to train a single classifier to find

partially occluded objects is tested. The experimental results shows that the method can

be very robust to partial occlusions and that the hit rates can be improved by generating

random occlusions on the positive example set. However, the results also shows that the

negative example set must not be neglected otherwise the number of false positives may

increase.

The problem of tracking and recognising objects in real-time presents specific chal-

lenges, due to the balance between real-time constraints and the accuracy needed. There

are additional problems in the presence of partial occlusions and shadows. Even the best

algorithms can fail or behave erratically under those circumstances. Figure 4.1 shows

typical frames in which faces are partially occluded.

The initial hypothesis was that with the correct positive examples the features would

be chosen in such a way that partial occlusions and shading would be treated as part

of the object, improving the hit rate when these events occurred. But, what composes

a good positive example set of images? It would be infeasible to provide a training set

with all the possible variations of partial occlusions. The first idea was to use occlusions

from the background. However, these occlusions might get specific characteristics of the

background and might not be generic enough. The second idea was to generate occlusions

randomly. Both ideas were tried in the experiments described in the next section.

The following section describes how the training process was set up. Next, the details

about how the experiments were carried out in order to test the classifiers are presented.

Then, in the results section the hit rates for various classifiers and problems related with
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Figure 4.1: Examples of partial occluded faces found in the three sets.

false detections are discussed.

4.2 The Training Process

The training process started by choosing a number of images for the positive images set

and the negative images set. The division, simple in principle, is in itself subject to errors

on both sets due to alignment problems and unexpected similarities between the object

and some negative images.

Positive images were gathered from the FERET database (Phillips et al., 2000). Neg-

ative images were gathered from the web, from images acquired with the web camera

and from image libraries such as the CorelDraw image dataset. The negative images set

needed to be checked for the existence of any object that could have an impact on the

training process. False positive objects on the negative images may cause the training

process to discard good features. This looks like a simple problem, but errors may appear

due to resolution changes in the original set. Figure 4.2 shows an example where part of

the background in a lower resolution was wrongly classified as a face by an earlier version

of the face classifier. The only way to check for false positives is by searching the negative

images set manually.

The next step of the training process was the calculation of the Haar-like features

over the positive and negative image examples. The total number of features per frame

may surpass the total number of pixels, making the computation very intense. Due to

these constraints all the images for training were changed to a lower resolution. In these

experiments, all the images had a resolution of 24x24 pixels. Then the classifiers were

trained using the stump version implementation of AdaBoost available in OpenCV (Brad-

ski, 2002).

Three training experiments were carried out. In the first one, a web camera was used

to acquire images of a single person with and without occlusions and shadows (as an

example, see the first image to the left of figure 4.3). In the second experiment, FERET
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Figure 4.2: Example of a false positive object within the negative set.

Table 4.1: The training parameters for the classifiers.
Classifier 1 Classifier 2 Classifier 3

Number of positive images 976 4767 13566

Training images web-cam, 1 person FERET FERET

Presence of occluded images? yes no yes

Number of negative images 1134 1134 1134

images were used, all quasi-frontal faces without any occlusions. In the third experiment,

modified FERET frontal face images were used to train a classifier with occlusions. Gentle

Adaboost with the complete Haar-like features (upright and tilted features) were used in

all experiments. The classifiers produced by these training experiments had 30 layers

each. Table 4.1 shows the different parameters used in the training processes.

In the first experiment, 976 images of a person were acquired by a web camera at an

initial resolution of 352x288 pixels. Random portions of the face were manually occluded

with background pixels obtained randomly from images that did not contain any face.

The marking process was manual, according to the process described in section 3.1.3.

The resulting classifier of this training process was called Classifier 1.

The second experiment used 4767 FERET faces for the positive images set. The main

reason to have this classifier was for reproducibility purposes and to compare the false

detection rates with the other two classifiers. It was expected that this classifier would not

be as generic as the original OpenCV sample classifier, because it was trained with frontal

faces only. The resulting classifier of the second training process was called Classifier 2.

In the third experiment, 1938 of the FERET frontal images were partially occluded

with random pixels instead of background pixels. When providing these images with

occlusions, one would expect that the Adaboost algorithm would yield a more generic

classifier. Partial occlusion and shading effects would be regarded as part of the object.

Whenever at least half of the face would be visible, a hit would be expected. The position

of each face was marked as before. Based on the position and sizes found in this step,
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Figure 4.3: The occlusion process creates 6 additional positive examples for each frontal
face.

6 different partial occlusions were calculated, varying from one quarter of the area of

the sub-window up to half of the area. As the objective was to produce final 24x24 pixel

images to the training process, each image was filled by either 12x12 or by 12x24 occlusion

patches. All the patches’ pixels varied from 0 to 255, randomly. The initial set of 1938

images composed a total of 13566 positive examples. Figure 4.3 shows an example of how

the six additional positive images were created. It is important to stress that images from

this person were not used in the training process, only images belonging to the FERET

database were used as part of the positive set. The resulting classifier of the third training

process was called Classifier 3.

The number of negative images stated in table 4.1 gives just an indication of how

many negative images were used in each layer. The total number of negative images

used depends on each layer’s result. Initially, sub-windows with sizes of 24x24 pixels were

used to train the first layer. As the training proceeds, new negative images are acquired

from the same set by scanning the set and finding new sub-windows that are classified as

positives.

4.3 Testing the classifiers

The sample classifier provided with OpenCV library worked very well for frontal faces, but

it was unable to detect faces that presented any partial occlusion and shadows, especially

if those were in the region of the eyes. The reasons for that were well understood, as the

features with better weights tended to be around the eyes, cheeks and nose. Using only

positive images without occlusions produced a classifier that disregarded images where

occlusions could cause a significant change in the pattern. However, sometimes the partial

occlusions coincided with the expected pattern and there was a consequent hit. It was

very difficult to compare, appropriately, the performance of such classifiers because of the

lack of standard occluded images from the literature. Certain parameters, such as scale
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Table 4.2: Testing images: number of occluded frames and non-occluded frames.
Total number Images with Images with faces

of images partial occlusions free from occlusions

Test Set 1 (Akiyo) 90 0 90

Test Set 2 (web camera) 277 241 36

Table 4.3: Hit rates (%) for the sets of images using different classifiers.
Sample Classifier 1 Classifier 2 Classifier 3

Test Set 1 (Akiyo) 100.0 0.0 46.6 97.7

Test Set 2 (web camera) 57.0 44.0 44.4 74.0

factor and smoothing methods for scaling the sub-windows, might also affect the way each

classifier was used. In all the experiments, a scale factor of 1.1 was used. In order to do an

initial test, an image sequence known as Akiyo (Test Set 1) was used, but this sequence

contained no partial occlusion. The sequence was used as a set of images independent

from each other and the hit rate and false detection rates measured accordingly.

A test set was created using a web camera (Test Set 2), with a resolution of 640x480

pixels. Ideally, different people should be present in the set of images, but the experiments

were limited to the scope of a simple face detection using one person on the test set.

However, as all the positive images used in the training process did not present that

particular person, it is reasonable to assume that the classifier would generalise in a

similar way with any other faces. Table 4.2 shows how many frames, partial occlusions,

and free faces that each set contains. Figure 4.1 shows examples of the partial occlusions

that were created for test set 2.

4.4 Experimental results and discussion

The sample classifier from OpenCV worked very well with generic quasi-frontal faces, so it

found 100% of the faces in the Akiyo sequence. As it was expected, the classifier 1 did not

find any faces on the Akiyo sequence because it was trained with images belonging to a

different person. Classifier 2 found most of the frontal faces, but the classifier missed most

of the non-frontal faces where the angle of rotation was more than 15o. It is interesting

to notice that the results improved dramatically on classifier 3, even though it was also

trained with frontal occluded faces only. The random occlusion had an indirect effect of

extending the range of the classifier.

The hit rates are shown in table 4.3. Classifier 1 and 2 are not as generic as the Sample

Classifier, so the hit rates are about 44%. Classifier 3 shows an improved hit rate (74%),

showing that the approach was successful.
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Figure 4.4: Hits in several occluded faces.

One problem that was faced by classifier 3 was the increase in the number of false

positive detections. The reason was likely to be that the random part of the occlusions

of the training examples caused Adaboost to choose features and weights that could be

found in the background sub-windows.

Another possible cause for the high false positive detection rate in classifier 3 was that

the number of the negative examples, kept at 1134 frames due to time and computational

resources constrains, was too small. Despite the fact that the false detection was higher,

when running it in real-time the problem would not be so critical because random false

detection can be eliminated via a simple statistical method. The false detection tended to

be randomly spread on the image. It was observed that even for two very similar frames,

typical in video sequences, the classifier 3 yielded false detections in different locations of

the images, while genuine hits were located on the region of the detected object. In a video

sequence, the detections that reoccur in the vicinity of the previous one is more likely to

be a hit, while detections that occurred once are more likely to be false detections. Figure

4.4 shows several occluded faces successfully found by Classifier 3.

A ROC curve was plotted to compare classifiers 2 and 3 (figure 4.5). The data for

plotting the curve was obtained using the test set 2, which contained the partially occluded

images. The ROC curve clearly shows that classifier 3, trained with the random patches

over the image, has a better chance of finding the occluded faces.
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Figure 4.5: ROC curve comparing Classifiers 2 and 3.

4.5 Summary

In this chapter it was demonstrated that the classifier created by Adaboost using the

OpenCV implementation could be robust to partial occlusions and shadow effects. The

problem of getting good training sets was minimised using randomly generated patches

to cover parts of the positive examples. The classifier created using this method yielded

better hit rates when occlusions were present.

The positive example set can be increased via an automated process of adding random

patches on selected areas. The training tends to concentrate on different parts of the

kernel, producing a more generic classifier. The same method could be used to increase

the number of positive samples by adding random background, as long as the training

images can be easily segmented.
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Chapter 5

Hand Detection

The recognition of hands is an important step towards gesture recognition and other

applications related to human-computer interaction. This chapter presents experiments

carried out with hand detection using Viola-Jones method. The experiments compared

the performance of hand classifiers trained at different angles. The results showed that

the Viola-Jones Method has the potential to be used for more sophisticated gesture and

hand recognition.

The experiments carried out in this chapter shows the limitations for hand detection

using the Viola-Jones method. Firstly, hand detection is more sensitive to rotation than

faces. Secondly, square kernels are inadequate for hands due to the elongated shape of the

hands (especially with certain gestures). Thirdly, multiple classifiers could be trained to

deal with particular angles, but it costs both extra time to train and extra time to detect.

Despite the limitations of the experiments described in this chapter, they point to one

important advantage of the method. All the classifiers, independent of angle or gesture to

which they were trained, share the same SATs. Most of the classifiers looking at different

angles do not need to compute the final layers of the cascade. This is an ideal situation

to explore parallelism, which is discussed in chapter 9.

5.1 Related work

Many of the existing hand detector and gesture recognition systems rely on colour segmen-

tation before further analysis (see for example Lockton and Fitzgibbon (2002)). Among

the disadvantages of such methods is the fact they often are misled by other objects

with similar colours (hands in front of the face is a typical situation that causes failure).

The works of Ng and Ranganath (2002) and Stenger (2004) are good examples of hand

detection based on colour segmentation.

Ng and Ranganath (2002) developed a system that could recognise the user’s gestures

and manipulate applications through a GUI. They have achieved more then 90% accuracy
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processing up to 22 frames per second. The method used colour segmentation of the hand,

extracting a “blob” from each image. The shape of the blobs were represented by Fourier

descriptors and they were then input to a classification system. They investigated Hidden

Markov models and recurrent neural networks as methods to achieve the final steps of

gesture recognition.

Stenger (2004) developed a system to track hands based on a hierarchical Bayesian

filter, integrating the information obtained from an initial single image. He successfully

implemented a system with good accuracy, although it did not run in real-time. Other

limitations were related to the use of Canny edge detection and colour segmentation,

which caused problems when illumination conditions changed.

The use of Viola-Jones method for hand detection would potentially overcome the

problem related to the use of colour segmentation. However, there are specific challenges

in achieving good classifiers using the Viola-Jones method. A small rotation on the hand

images cause a major change in the patterns. Training a single classifier for many angles

did not seem to be a reliable option. Jones and Viola (2003) commented on the training

of a single classifier to detect all poses of a face:“It appears that a monolithic approach,

where a single classifier is trained to detect all poses of a face, is unlearnable with existing

classifiers”. For hand detection this problem becomes more acute. Moreover, because

many of the regions that contain the hand image would be oblong rather than square,

using a single square kernel for training would include large portions of the background

on training.

Ong and Bowden (2004) trained a tree classifier to detect hand shapes. They grouped

similar hand shapes (gestures) via unsupervised clustering. Firstly, they trained a separate

cascade for finding hands of any shape. Separate cascades were trained for the clustered

sets. All the cascades were reunited in a tree like classifier. A total of about 2500 hand

images was used to train the final classifier (composed by the various cascades). Another

2500 images were used in the test set. The detection errors were 0.2% for the hand detector

and 2.6% (average) for the shape detector, surprisingly small for this type of detection.

No ROC curve was plotted and no separate analysis was carried out for their experiments.

Kolsch and Turk (2004a,b,c) experimented with a modified version of Viola-Jones

method for hand detection. They used extra Haar-like features, some with disjointed

regions, arguing that the original feature set from Viola and Jones (2001a) was not dis-

criminating enough for all hand appearances. In their experiments, they used their own

test set collected from students images. A total of 2300 images were split in half for the

training set and the test set. The ROC curves showed accuracies a little worse than what

Viola and Jones found for face detection, which gives an indication about the generalisa-

tion of the method for other objects. They proceeded to show that the in-plane rotational

sensitivity for hands was much more critical than that with face detectors. Hands rotated
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Figure 5.1: The basic hand images used on the training process.

by as little as 4o were very difficult to detect by classifiers trained at fixed angles. They

then trained classifiers with examples rotated between 0o and 15o. They concluded that

for examples within 5o of in-plane rotation, there was no significant loss of accuracy for

their test set (Kolsch and Turk, 2004a).

The results of the work described above were limited in two aspects. Firstly, no

separate analysis of the different angles of rotation was carried out. Secondly, they used

square kernels, which includes a large portion of the background in the training, making

it unclear how the background influenced the training process. The training and the test

images presented similar background patterns, as the images for both sets were acquired

directly from the same video sequences. An analysis of the choice of features during the

training phase would be important in order to find out if parts of the backgrounds were

being used.

5.2 Experiments with Haar-like features to recognise hu-

man hands

Every gesture made by a hand produces a different 2D pattern. Although there are

hand image databases in the literature, (for example Athitsos and Sclaroff (2001) used

a 3D model to create images for indexing and estimating pose), our own collection of

images is used to have the flexibility and control of the samples. In order to analyse the

performance and accuracy of classifiers created using Viola-Jones method, a simple gesture

(shown in figure 5.1) was adopted. The hand images used by the training algorithm

were acquired from 5 different individuals. The images were acquired under different

illumination through artificial light, with a dark background. After a simple skin colour

segmentation, the raw segmented images were used to prepare the positive set. The process

of collecting examples is discussed in more details in Dadgostar and Barczak (2005).

5.2.1 Preparing the Positive Set

Based on the intensity and hue factor of the pixels with skin colour, an automated process

segmented the hand in each image. Segmented hands were then added to a random
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Figure 5.2: Creating the positive set.

background to facilitate the training procedure. Creating positive examples with varied

background patterns was an important step, as this avoided the selection of Haar-like

features located over the background. The creation process is shown in figure 5.2. An

automated process was used to rotate the original set of images to angles from -90 to

90 degrees and introduce random backgrounds for each of the images. Each segmented

image was reused 30 times for each angle. A total of 149 segmented images generated

4470 images with random backgrounds for each angle. A total of 19 orientations were

used, at 12o intervals (from -84o to 84o) plus the angles 30o, -30o, 90o,and -90o.

5.2.2 Training

The cascades using algorithm 2, presented in section 2.2, were trained. Each cascade was

capable of detecting hands (with the particular gesture of the samples) within a certain

in-plane angle of rotation (figure 5.3). Some rotation tolerance was desirable because it

was difficult to align the positive examples perfectly. The tolerance of the base examples

were within 2o.

Instead of using an approach of converting cascades to produce another cascade at 90o

(as done by Jones and Viola (2003)), training separately all the necessary cascades was

the option adopted. The justification for that is based on the fact that different features

might be chosen. It is not trivial to convert cascades from one angle to another when

using tilted features, as well as oblong kernels, and the effects on the feature selection

should be observed.

A modified version of Viola-Jones algorithm using the OpenCV (Bradski, 2000) library

was used on training. 4470 images used to train each cascade, so a total of 84930 images

were used (4470 images for 19 different angles). Different kernel sizes for each angle were

used, in such a way that most of the area of the input was part of the hand. The kernel
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Table 5.1: The kernel sizes for each cascade.

Angle Kernel width Kernel height
(pixels) (pixels)

0o 24 42

12o and -12o 26 42

24o and -24o 30 42

30o and -30o 32 42

36o and -36o 36 42

48o and -48o 42 40

60o and -60o 42 32

72o and -72o 42 28

84o and -84o 42 24

90o and -90o 42 24

size for angle 0o was 24x42 pixels. The size was adjusted for each angle to keep the hands

proportional until an angle of 90o, in which the kernel was 42x24 pixels. Table 5.1 shows

a list of the kernel sizes for each angle.

5.2.3 Detection

Detection was carried out using a test set that was created with the same camera used

to acquire the training set images. No colour segmentation was used for the test set.

The images were converted to greyscale and had a resolution of 640x480 pixels. The

cascades run concurrently and benefited from the fact that the same SATs were used for

all cascades at any angle (figure 5.3). A modified version of the OpenCV detector was

used to accommodate more than one cascade running concurrently.
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Figure 5.3: Using several cascades to recognise and determine rotation of hands
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5.3 Results and Discussion

5.3.1 Accuracy

Two different test sets were used to individually measure the accuracy of the classifiers.

Images for both were acquired by a web camera. The first test set was built by changing

the hands position and than sorting the images by the approximation with the angle of the

classifier (test set A, see image examples in figure 5.6). The second test set used similar

images, but instead of sorting the images they were rotated to the appropriate angle.

Images with similar illumination conditions were made available to assess the classifiers

separately (test set B, see image examples in figure 5.7).

After analysing the choice of features, it was observed that selected features were

adequately located on top of the hand region rather than on the background. Due to the

discrete nature of the images, the rotation could not keep exactly the same patterns. The

features were not always equivalent when training at different angles. Figure 5.4 shows

the Haar-like features chosen by AdaBoost for the first layer of three cascades (angles 0o,

15o and 90o, respectively). A comparison of the cascades for these three angles showed

that each training achieved different Haar-like feature targets (for each weak classifier).

Table 5.2 shows some of the results for the detection, considering that the minimum

false detection was reached. The results showed an average hit rate of 62.7% hits, with

a maximum of 84% and minimum of 34% detection. For some of the angles, the results

were very poor, indicating the base images were not rich enough in lighting variation. The

false positive rate on average was around 7.7%. The hit rates were lower and the false

detection ratios higher than the ones reported in Kolsch and Turk (2004a) (for 95% hit

about 0.001% of false detections) and Ong and Bowden (2004) (99.8% hit and 2.6% false

detection). Both groups used images acquired under fixed conditions and split their image

database into training set and test set. In these experiments, one could not do that, as

the original images used to generate the training set had a constant background. Instead,

images for the test set were acquired directly from a web camera.

Figure 5.5 shows the ROC curve for the seven classifiers of table 5.2. This curve was

created by taking layers from each cascade (Viola and Jones (2004)). The scaling factor

was 1.2 and the translation factor was 2 pixels. The tolerance for the detection rectangle

position and size was set to 20%.

To assess and compare different cascades, a second performance measurement was

created as follows. Images from the initial test set (780 images) were rotated back to

an angle of 0o (see example in figure 5.7). The images were initially assessed using the

cascade 0o. A set of 100 images was selected in such a way that the cascade 0o yielded

100% of hits and 0% of false detections. The images were then rotated again at the angle

specified by each cascade. Table 5.3 shows the hit rate and the false positive for each
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Figure 5.4: The Haar-like features chosen for the first step of each cascade.

cascade. The hit rate shows that the cascades are not completely equivalent, even though

they were created using the same basic positive set. This happens due to the rounding

process, both at the rotation and the computation of each Haar-like feature.

5.3.2 Performance

A set of cascades were used to estimate the maximum possible frame rate, and its re-

lationship to the number of cascades being used concurrently. As expected, the speed

of classification slowed down due to the extra computation, but the rate drop was not

linear (Figure 5.8). Considering that the same SATs were used for all cascades, the reason

behind this phenomenon has to be explained.

The rate was measured 10 times during a period of 5 minutes using a web camera

on the desktop 1 (Pentium 2.4 GHz machine with 500MB memory running Linux 2.4).

The results are shown in figure 5.8. The frame rate dropped significantly until about

8 cascades were used. Beyond this point the frame rate dropped more slowly. This
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Table 5.2: Hit ratios and false positives for the first test set (test set A).

Angle Number of Hits(%) False
Samples Positives

-90 109 34 7

-60 104 62 9

-30 117 78 10

0 100 72 10

30 121 70 17

60 100 84 4

90 129 49 3

Total 780 63 60

Table 5.3: Comparing the cascades for different angles using a rotated test set (test set
B).

Angle Hits(%) False
Positives

-90 36 19

-84 85 21

-72 68 11

-60 79 47

-48 91 21

-36 91 16

-30 87 16

-24 77 54

-12 46 73

0 100 0

12 44 16

24 76 31

30 79 33

36 69 32

48 71 31

60 78 43

72 61 62

84 38 31

90 71 88
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Figure 5.5: ROC curves comparing the classifiers trained at different angles for test set A.

somewhat unexpected behaviour has an explanation. As the sub-windows are tested by

an increasing number of cascades, only a few cascades need to compute their last stages.

Most cascades only compute the first few layers before eliminating all sub-windows. This

shows a potential for exploring parallelism. Cascades that are not “active”, i.e., are not

detecting any object in the early stages, use fewer processing resources than the ones that

reach the final layers.

It is clear that a more efficient rotation approach would be necessary to cover a generic

gesture recognition. For example, in order to recognise all ASL (American Signal Lan-

guage) signs many different cascades at different angles would be needed. Apart from the

problem of the long training time, the final set of cascades would run too slowly to be

useful in real-time applications.

Figure 5.6 illustrates the application of the method. Notice that because the angle of

detection was returned by the system, rectangles with appropriate sizes that encompassed

the hand could be drawn.

5.4 Summary

In this chapter, several experiments with hand detection have been presented. The collec-

tion of positive examples was made efficient by generating random backgrounds. Experi-

ments showed similar results for angular tolerance as in Kolsch and Turk (2004a). Aligned

positive examples yielded better accuracy for a particular angle of rotation. Classifiers

for different angles presented different accuracy despite using the same base hand images.

The set of Haar-like features chosen by AdaBoost during training were different for each

angle. Multiple cascades are more efficient at detection time than initially thought. Most
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Figure 5.6: Examples of detection at different angles (from test set A).

of the cascades that classify hands at an angle use only a limited number of layers when

compared to the cascade that finds the hand. Potentially, this strategy can be used for

different gestures giving real-time performance.

The results presented in this chapter posed two more question. Was it possible to

convert an existing classifier to any angle? Jones and Viola (2003) suggested that this

was the case for multiple of 90o in relation to the training samples’ angle, but to other

angles, no simple solution was presented. Detailed experiments regarding Haar-like feature

extraction considering rotation are presented in chapter 6. The second question was: given

the behaviour of multiple cascades, what would be the best parallelisation strategy for the

detection stage? This question, as well as other related parallelisation issues, are discussed

in chapter 9.
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Figure 5.7: Examples of images in test set B
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Chapter 6

A Rotational-invariant Approach

for Haar-like Features

This chapter proposes a new approach to detect rotated objects at distinct angles using

the Viola-Jones detector. In this approach, the use of additional SATs makes an approxi-

mation of the Haar-like features for any given angle. The proposed approach uses different

types of Haar-like features, including features that compute areas at 45o, 26.5o and 63.5o

of rotation. Given a trained classifier (using upright features), a conversion is made using

a pair of features. As a result, an equivalent feature value can be computed for any angle.

This approach is called PEF (pair of equivalent features). The classifier’s conversion is

only an approximation and, therefore, one needs to know how the errors would affect the

final accuracy of the classifier. The sources of errors in the computation of the Haar-like

features are discussed, showing that for angles that are multiple of 45o the errors are often

negligible. The main objective in this chapter is to use a single classifier (trained at a

fixed angle) to achieve rotation invariance in such a way that the detection performance

impact can be minimised. The questions that this chapter addresses are: is it accurate to

convert classifiers for other angles? How to build SATs for angles different to 0o and 45o?

In section 6.1, a background is presented, discussing four possible methods for Haar-like

feature extraction under rotation. In section 6.2, the error sources for Haar-like features

under rotation are discussed. In section 6.3, the proposed method for detection at generic

angles is explained. Section 6.4 presents the results of four different experiments. The first

two experiments assess the error of the feature extraction using the proposed approach.

The last two experiments measure the accuracy of converted classifiers. Finally, section

6.5 summarises the limitations and possible improvements on a generic rotation invariant

detector using Haar-like features.
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6.1 Background

Due to the non-invariant nature of the Haar-like features, classifiers trained with this

method are often incapable of finding rotated objects. It would be possible to use rotated

positive examples during training, but such a monolithic approach often results in inac-

curate classifiers (Jones and Viola, 2003). Besides, such a classifier would not be able to

detect at which angle the object is found.

Jones and Viola (2003) experimented with rotated images for face tracking by training

extra classifiers for various angles. Due to the angle tolerance yielded by face classifiers

(about 15 degrees), they only needed to train 3 classifiers for 0, 30 and 60 degrees. The

remaining classifiers for angles that are multiple of 30 could be created by either mirroring

or rotating each feature by 90 degrees.

In practice, it is only possible to compute Haar-like features accurately at a fixed angle.

The angle is determined by the way the SAT is created. Using the normal SAT, Jones and

Viola (2003) suggested that if the feature type was converted, it would be also possible to

compute features at other quadrants (90o, -90o and 180o from the original) using the same

SAT. Therefore, one could compute features at eight different angles using two SATs. For

certain applications, that would be enough. However, hands are an example of object

that is much more sensitive to rotation, as seen in chapter 5. If one could convert existing

classifiers to 45o using the tilted SAT (Lienhart and Maydt, 2002), an extra 8 angles would

be added to the detection application without further training.

There are several possibilities to detect rotated objects, varying from brute force meth-

ods to parallel classifiers trained separately for a certain angle. Four possible methods are

discussed next.

• Method 1: brute force

In a brute force method the entire image would be rotated at many angles. A single

classifier would be applied to each resulting image. The implementation would be

very simple and only one classifier per object would have to be trained. However,

Rowley et al. (1998a) discussed this possibility and argued that the cost of rotating

and repeating the classification process for each rotated image is computationally

expensive. For example, Zhu et al. (2004) used a brute force approach by rotating

the images at many angles before using a single cascade to detect faces. He found

the method to be very simple, but slow. In the case of Haar-like features, there is a

strong disadvantage in such an approach, as new SATs for every angle would have

to be computed.

• Method 2: Rowley’s approach

Rowley et al. (1998a) have proposed an algorithm for detecting rotated faces which

he called “rotation invariant” face detection. They achieved good results using
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a special algorithm to rotate face images before trying to recognise them. This

approach required two classifiers based on NN. The first classifier yields an angle

independent of the object contained in the sub-window. The second classifier is a

normal face classifier, trained with aligned vertical face images. At the detection

phase, the sub-window is rotated according to the angle given by the first classifier.

The second classifier assesses the rotated sub-window. This approach worked better

than a brute force approach, due to the fact that only the sub-windows that pass

the first classifier have to be rotated.

The problem of using this idea for Haar-like features is that an angle finder would

have to be trained specifically for several angles. In this case, training an angle

finder would be as costly as training a standard classifier. A more critical issue is

that the upright image SATs could not be used to compute the sub-window’s Haar-

like features. A new SAT would have to be computed for every sub-window, making

the feature extraction process too slow.

• Method 3: train all angles

This method is slightly better than the brute force approach. This approach does

not need explicit rotation of the image and the SATs can be computed only once

for each frame. Training becomes an issue though, as many classifiers have to be

trained independently. This method was used in chapter 5.

Li and Zhang (2004) used a mixed approach for face detection. Instead of training

separate classifiers, they built a detector pyramid in which all the angles were exam-

ined at the top of the pyramid. At the second level of the face pyramid, the training

set was split into three groups considering a limited range of angles. Finally, a third

level split the training set into 9 groups. The final system has the capability of

tracking in-plane rotated faces. Using the symmetry of the Haar-like features they

would still need to train 8 separate classifiers.

• Method 4: train a single classifier and convert it to other angles

In this method, detection is guaranteed to be as fast as method 3, with the advantage

that no extra training would be necessary. This would be the best compromise

for both training and detection performances. The question is how to convert the

classifiers appropriately. Jones and Viola (2003) suggested that for upright Haar-

like features (types 0 to 7 of figure 6.1), it suffices to change the type for each weak

classifier. For example, to convert a classifier to a 90o angle, a weak classifier with

type 0 would be converted to type 1, type 4 would be converted to type 5 and so on

(figure 6.1).
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6.2 Error sources in the computation of Haar-like features

Because Haar-like features are scale invariant, computing a scaled version of the same

image with scaled Haar-like features should yield the same value. The same can be said

about rotating the image and computing the equivalent rotated features. In practice, when

computing the Haar-like features in digital images, one can expect differences between the

two computations. Although the features are a simple subtraction between areas, there

are three main sources of errors:

• the approximations of the feature sizes due to scale changes.

• the approximations of the feature positions in relation to a fixed point in the image.

• the approximations of the pixel values due to scaling and/or rotating the image.
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Figure 6.1: Classifiers using the Normal features can be converted to the other types.

The first error source can be partially compensated by a correction factor that ensures

that the areas are proportional to the theoretical definition of that particular feature.

Lienhart, Kuranov and Pisarevsky (2003) suggested a correction to this problem. A
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correction factor is computed, so that the weights of the different rectangles of a feature

keep the original area ratio between them. A simple test that verifies the correctness of

the implementation is to find the value of the features over an image with constant pixel

values. By definition (see equation 2.1), all features at any size and scale should yield zero

for a constant image.

The second error source cannot be compensated without a more complicated approach

such as computing sub-pixel values for the areas. This is not usually a good approach

because the advantage of computing areas very rapidly with the assistance of the SATs

would be lost.

The third error occurs after a processing operation such as scaling and rotation, when

comparing features extracted from the original image with features extracted from its

counterpart . Anti-aliasing techniques applied when scaling images can cause variations

even if the features can fit the position and the sizes perfectly. Although this error is

not directly related to the features’ definition or their implementation, it is an important

source of errors during the detection phase after classifiers are trained with a fixed scale.
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Figure 6.2: Comparison between a normal and a tilted feature (45o Haar-like feature).

6.2.1 Computing Haar-like features at 45o

Tilted Haar-like features were proposed by Lienhart and Maydt (2002) to test the hy-

potheses that a more robust classifier could be built if 45o features were included in the

set. The normal features and the tilted features are not geometrically equivalent in digital

processing, because the SAT used for the tilted features needs slightly distorted rectangles

to correctly compute a similar sized area. With small resolutions, which is usually the

case for the kernels used in Viola-Jones method, errors become more critical. Figure 6.2

shows an example for two equivalent features, one computed at 0o, the other computed

at 45o. Notice the double pixel on two vertices of the tilted feature. This is necessary in
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Figure 6.3: Comparison between a 0o, a 26.5o and a 63.5o Haar-like feature.

order to get the correct alignment of the pixels that belong to the feature (Lienhart and

Maydt, 2002). Another approximation has to be made when computing the width and

the height of the tilted feature, as this calculation often yields sub-pixel values.

6.2.2 Computing Haar-like features at 26.5o and 63.5o

Additional SATs would be able to compute other angles. Unfortunately, for most angles

the solution is not trivial due to the pixelation caused by the rotation of a SAT. However,

there is a special case where the ratio is 1:2 or 2:1. These two proportions are approx-

imately equivalent to the angles 26.5o and 63.5o, which are near the angle that bisects

the sectors between normal and tilted angles (exact angles would be 22.5o and 67.5o). As

these angles also allow the computation on the other quadrants, four SATs would suffice

to divide 360o in 16 regions (only approximately symmetric). Figure 6.3 shows an example

for equivalent features computed at 0o, 26.5o and 63.5o.

Next, the calculation of the SAT for the angle of 26.5o is formalised. The angle of 63.5o

is analogous. Each element of the SAT covers different areas of the image. The covered

area depends on the parity of the coordinates ( (even,even), (even,odd), (odd,even) and

(odd,odd) coordinates), shown in figure 6.4. The SAT can be computed recursively using

the following equations:

I1(x,y) = I(x−1,y) + I(x,y−1) − I(x−1,y−1) + im(x, y) (6.1)

I2(x,y) = I(x+1,y−1) + I(x−1,y−1) − I(x−1,y−2) + im(x, y) (6.2)

I3(x,y) = I(x−1,y) + I(x+1,y−1) − I(x,y−2) + im(x, y) (6.3)

I4(x,y) = I(x−1,y−1) + I(x+1,y−2) − I(x,y−2) + im(x, y) + im(x, y − 1) (6.4)
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Figure 6.4: Computing the SAT for 26.56o recursively

Where: I1 has an (even,even) coordinate, I2 has (odd,odd), I3 has (even,odd) and I4 has

(odd,even).

The computation of the Haar-like features at 26.5o also demands that the alignment

of the 4 points of the feature are coherent with the creation of the SAT. Extra operations

to analyse the parity of the coordinates are necessary. There are 64 possible combination

of the parities of 4 points. Most cases do not need any correction. About 30 cases need a

displacement of one position on one or two points, so the alignment is respected. 1

For example, in figure 6.5, an area is computed from a 26.5o SAT. Given an initial

point p1 = (7, 7), a width w = 6 and a height h = 3, the other three points are:

p2 = (xp1 + w , yp1 + int(w2 )) = (13, 10)

p3 = (xp1 − int(h2 ) , yp1 + h) = (6, 10)

p4 = (xp1 + w − int(h2 ) , yp1 + h+ int(w2 )) = (12, 13)

Point p4 is positioned in such a way that the area extracted from the SAT does not

align with the area extracted for point p2. Equation 2.3 computes an area that adds a

whole line of pixels, which should not be part of the feature’s computation. By displacing

point p4 one pixel to the left, the alignment is correct.

This implementation used a unit SAT that counts the number of pixels included in a

Haar-like feature. Although this requires extra lookups, it allows us to rapidly compute

1Details of the implementation are described in the Appendix
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Figure 6.5: Corrections for SATs at 26.5o. a) the disalignment of point p4 adds a line of
pixels. b) By displacing point p4 the alignment is correct.

the correction factors. One advantage of this approach is that the unit SAT does not

change when new frames are being assessed. The unit SAT is only necessary for 26.5o

and 63.5o rotated features. For the normal and tilted SATs, the number of pixels can be

calculated directly using the width and height of the features (Lienhart and Maydt, 2002).

6.3 Converting features to generic angles

The extra SATs only allow Haar-like features at certain angles to be computed. In this

section, it is proposed to use a function of the values of two features to approximate the

value for a feature rotated at a generic angle. This approach is called pair of equivalent

features (PEF). This is achieved using a weighted sum of the two equivalent features and

a conversion of feature positions, feature sizes and feature types. Figure 6.6 shows how

this conversion is done for the case where normal and 45o features are used. For an angle

α, the new feature has to be positioned on a new kernel, larger in size to accommodate

the rotation of the second feature.

For example, for angles between 0o and 45o, formula 6.5 applies. For angles larger

than 45o there is also a feature type change to be made. For example, the PEF of a type

0 feature, for angles between 0o and 45o, is composed by a normal feature of type 0 and a

tilted feature of type 10. If the angle is between 45o and 90o, the PEF is composed by a

normal feature of type 1 and a tilted feature of type 10 (figure 6.7). For other angles, the

PEF may be computed from other pairs, in some cases involving a change of sign.

The value of the PEF can be approximate by the following equation:

V = Vnormal.(45o − α)/45o + Vtilted.α/45o (6.5)
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Figure 6.6: a) The original feature positioned in the original kernel. b) The new kernel size
and the rotation angle are shown. c) The position for the new normal feature is computed.
d) The size and the position is computed for the tilted feature. e) The resulting Pair of
Equivalent Features (PEF).

Where: Vnormal is the Value for the normal feature, Vtilted is the value for the tilted

feature and V is the weighted average that depends on the angle α (between 0o and 45o).

Analogous to the case where the PEF is computed with a normal and a tilted SAT,

one can approximate the feature value for any angle between 0o and 26.5o:

V = Vnormal.(26.5o − α)/26.5o + V26.5.α/26.5o (6.6)

Where: Vnormal is the Value for the normal feature, V26 is the value for the feature at

26.5o and V is the weighted average that depends on the angle α (between 0o and 26.5o).

6.3.1 Error Analysis for Pair of Equivalent Features (PEF)

A Haar-like feature value depends on the distribution of the pixels in the area where it is

applied. The maximum value for many types of Haar-like features occurs when an edge
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Figure 6.7: An example of PEF for a type 0 feature considering a number of angle ranges.

is located in the middle of the feature. In order to maximise the absolute value of the

feature, it is also necessary that all the values of the pixels on one side of the edge are

zeros and all the other pixel values are maximum (for example, 255 in a grey scale image).

From this point, the maximum value of a feature, at a generic scale, is referred to

as MAX. Any feature value can vary from -MAX to MAX. Suppose that a type 0 Haar-

like feature needs to be computed at an angle of 22.5o, over an edge presented by the

image. The ratio width/height in this example is assumed to be approximately 2:5. The

theoretical value for the figure 6.8-a is MAX. The PEF value is abs(MAX/2) (figure 6.8-

b), as both the normal feature and the tilted feature yield the same value MAX/2. For

figure 6.9-a the value of the feature would be zero. For the normal features it is MAX/8

and for the tilted features it is -MAX/8 (figure 6.9-b). Therefore, the PEF value is zero,

which is the required result. In the extreme cases an error of about 50% in relation to

MAX is expected. Variations on these errors might be expected for different width/height

ratios.

6.4 Experimental Results and Discussion

6.4.1 Experiment 1: error analysis for PEFs using 0o and 45o

In order to assess the impact of the approximation, an experiment was carried out using

several natural images as well as binary images where the edges would call for the maxi-

mum value of the features. The images were rotated to angle α. Features at all possible



6.4. Experimental Results and Discussion 87

b)a)

ofeature 22.5

value = MAX

normal = MAX/2
twisted = MAX/2

Figure 6.8: Case where the value of the 22.5o feature should be MAX.

feature 22.5
o

a) b)value = 0

normal = MAX/8
twisted = −MAX/8

Figure 6.9: Case where the value of the 22.5o feature should be zero.

scales and positions where computed in the original image (figure 6.10). The PEFs for

each of those features were also computed. Figure 6.11 shows the error measurement ap-

proach for the first frame of the Akiyo sequence at 45o. For each angle of rotation several

thousand PEFs were computed this way.

The errors were calculated as a percentage of the maximum possible value (MAX ) for

that feature type at that scale (F is the original feature value and V is the PEF value for

that angle):

error =
| F − V |
MAX

(6.7)

The results for two sample images are presented: the first frame of the Akiyo sequence

and a Chessboard (figure 6.12). The first image is significant because it contains a face, a

common object used in detection algorithms. The second image yields large errors because

it contains well defined vertical and horizontal edges. A small deviation on the position

of the converted features may cause relatively large errors.

The original feature size used in the experiment was 20x20 pixels. The kernel size for

the PEF was 34x34 pixels. Figures 6.13, 6.14, 6.15 and 6.16 show the maximum errors

for both images using different type of Haar-like features. As expected, the largest errors

were around the region of 22.5o. The errors at the angle of 45o decreased almost to the
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image at 22º
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Figure 6.10: Scanning the images at various angles and comparing them to the PEF value.

Figure 6.11: Measuring errors for PEFs. a) the original normal feature b) the converted
normal feature c) the converted 45o feature.

Figure 6.12: First frame of Akiyo sequence and the chessboard images.
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Figure 6.13: Maximum error vs angle for Akiyo (normal+45o PEFs).

same levels of those at 1o. This indicated that the tilted features could be used to convert

normal features to 45o with good accuracy.

The maximum error for Akiyo was 17% for type 6 feature (figure 6.13). For the

chessboard image the maximum error was 47% for type 7 features(figure 6.15). The

maximum error in this case almost reached the theoretical value of 50%. The average

errors, based on the absolute value of the PEFs, indicate that for most features the PEF

values are actually very close to the original feature. For Akiyo, the maximum average

error was around 1.1% for feature type 2 (figure 6.14). For the chessboard the maximum

average error was 6% for type 7 features (figure 6.16).

6.4.2 Experiment 2: error analysis for PEFs using 0o and 26.5o

In this experiment, the third group of features on figure 6.1 was implemented. Figures 6.17

and 6.18 show the maximum errors obtained for Akiyo and for Chessboard. Figures 6.19

and 6.20 show the average errors.

The maximum error for Akiyo was 12% for type 3 feature (figure 6.17). For the

chessboard image the maximum error was 34% for type 3 features (figure 6.18). The

maximum errors were close to those obtained in experiment 1. For Akiyo, the maximum

average error was around 1.4% for feature type 1 (figure 6.19). For the chessboard the

maximum average error was 6% for type 7 features (figure 6.20).

It is clear that the errors at angles around 26o should be much smaller. The origin

of these errors are related to the position calculations during the feature conversion. The

positioning of the equivalent features at these angles are much more sensitive than the ones
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Figure 6.14: Average error vs angle for Akiyo (normal+45o PEFs).
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Figure 6.16: Average error vs angle for Chessboard (normal+45o PEFs).
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Figure 6.17: Maximum error vs angle for Akiyo (normal+26.5o PEFs).
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Figure 6.18: Maximum error vs angle for Chessboard (normal+26.5o PEFs).
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Figure 6.19: Average error vs angle for Akiyo (normal+26.5o PEFs).
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Figure 6.20: Average error vs angle for Chessboard (normal+26.5o PEFs).

in experiment 1. Any small deviation on one of the points in the SAT result in larger errors.

The solution for this problem consists in improving the rounding algorithm to consider

the best point depending on the parameters of the area being computed (position, scaling

and parity of the coordinates).

6.4.3 Experiment 3: using PEFs to compute features in classifiers

Several classifiers were trained using 1000 frontal faces from FERET and reserving the

other 500 frontal faces for the test set. These classifiers were tested and their results were

compared at different angles. The procedure was to rotate the test set and try to detect

the faces at that angle using PEF (normal+45o). The classifiers use kernels of different

sizes (20x20, 24x24, 30x30 and 36x36), each with 16 layers.

Figure 6.21 shows the hit ratio for several angles. Notice that for the 45o the results are

comparable to those at 0o, indicating that at these angles, the equivalence of the features

are accurate. However, for angles at the vicinity of 22.5o the hit rates were very poor,

specially for the small kernels.

More details on the 36x36 kernel, which presented results good enough to be used in

practice, are shown. Figure 6.22 and figure 6.23 show the variation of the hit rate and

false detection rates for this kernel size. A hit is considered when it is within a 10%

tolerance area around the face. The false detection was computed conservatively as the

total number of hits outside the tolerance area. On the worst part of the curve (at 22.5o),

the 16 layers yielded 55% and the 12 layers 75% hit rate. The false detection was much

higher for angles close to 0o or 45o than it was for 22.5o region. This indicates that a
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Figure 6.21: Hit ratio vs angle using 16 layers.

correction factor could be applied to force the classifier to work under similar conditions

for all angles (same hit rates and false detection rates).
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Figure 6.22: Hit ratio vs angle, kernel 36x36.

A correction factor can be applied in two ways. One option is to apply a correction

factor directly to the computation of each PEF, because the value of a PEF is typically

lower than the true value of the equivalent rotated feature. However, this implies finding

different correction factors for each feature type. The second option is to apply a correction

factor for the final threshold of each layer. If the correction factor is a function of the

angle, the false detection levels can be adjusted properly. Based on the shape of the hit
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Figure 6.23: False detection rate vs angle, kernel 36x36.

rate curve, it was empirically found that the following formula is suitable:

factor(α) =
(1 − fc)

2
.cos(8.α) +

(1 + fc)

2
factor(α) =

(1 − fc)cos(8α) + (1 + fc)

2
(6.8)

Where: fc is a constant between 0.3 and 0.9. Notice that at 0o or 45o the correction factor

is 1 for any fc.

The results of the application of the correction factor can be seen in figure 6.24. Notice

that an fc of 0.5 lowered the threshold by too much, compromising the false detection rate.

To achieve a balance between the false detections and hit rates an fc of 0.65 was the best

value. An alternative to a correction factor would be to use a different number of layers

for each angle.

According to figures 6.8 and 6.9, longer features makes their PEFs prone to larger

errors. In order to test this hypothesis, classifiers using only shorter Haar-like features

were trained. The same set of features (figure 6.1) were used, but the ratios width/height

and height/width were limited to 20:8. The results can be seen in figure 6.25. Comparing

with figure 6.22, the results were very similar, indicating that even at that ratio the errors

are too large at angles in the vicinity of 22.5o.

Using a web camera, the detection with PEFs was slower than using a single cascade

with the original OpenCV version. This was expected because more Haar-like features

need to be computed when using the PEF. An average of 3 frames per second was achieved,

with a 640x480 pixels frame and a scaling factor of 1.2 and a translation factor of 2.

Figure 6.26 shows a few frames with their hit rectangles and a few false detections. This

application uses a simple criteria to choose the best hit. Each stage passes with a certain
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Figure 6.24: The classifier 36x36 with various correction factors.

sum of weak classifiers. The hit with the largest sum is chosen as the best choice.

The performance of the detector at a particular angle was impacted by the fact that

twice as many features as the original classifier have to be computed. One could argue

in favour of keeping the first few layers in memory, so the computation could be shared

among several classifiers to minimise the impact in performance. On the final layers, there

should be very few candidate sub-windows that are classified, so this form of buffering

would not be necessary.

6.4.4 Experiment 4: converting the original face classifier using tilted

features

In order to try to improve the Haar-like feature computation errors, one last experiment

has been done. Rather than convert the classifier to 45o using a kernel of a limited size as

before, a larger kernel was used (compare figures 6.2 and 6.27). This allowed for a more

accurate conversion process. The size of the new converted kernel was large enough to

accommodate all Haar-like features used by the classifier, keeping the same proportion

without rounding (in both sizes and distances of the features). The standard frontal

face classifier available in OpenCV was used for this experiment. The original OpenCV

classifier was trained with a kernel size of 24x24 pixels. The converted tilted classifiers

were converted to a kernel size of 48x48 pixels. The cascades converted directly from the

upright cascade were used to assess the hit rates and false detection rates. In order to keep

the same conditions and use the lighting contrast correction used in OpenCV, an extra

SAT had to be implemented to return values for squared pixels of the tilted Haar-like

features.
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Figure 6.26: Detecting rotated faces using PEFs. The white rectangle indicates the best
match. The green rectangle is the kernel for the best match. The red rectangles represent
other detections (including false detection).

The accuracy comparison was made using a modified CMU-MIT database. Each image

of the CMU database was rotated by 45o or -45o. Because many of the faces presented

in the database are smaller than the kernel size for the tilted cascades (48x48 pixels),

some of the images had to be scaled up. Figure 6.28 shows the ROC curve comparing the

upright cascade and the converted tilted cascades. The results show that the converted

cascades were slightly less accurate than the upright cascade for the CMU-MIT database.

The results where collected with a scale factor of 1.2 and a translation factor of 2 pixels.

The fact that the images were scaled up made the occurrence of false detections more

common for the tilted classifiers.

Despite the drop in accuracy for the CMU-MIT database, the detection was very good

when using the web camera with real faces. Figure 6.29 shows an example of the system

working with three concurrent cascades, at 0o, 45o and -45o using the web camera.

The performance of the system using more than one cascade was expected to be

slower. Table 6.1 shows the results for various combinations of cascades. The rates were
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Table 6.1: Performance of tilted cascades.

Cascades rate (frames/second)

normal 10.1
tilted 9.0

2x tilted 6.8
normal + 1 tilted 7.9
normal + 2 tilted 5.7

measured for one minute in a Dual Core AMD Opteron(tm) Processor 170 2.0 GHz desktop

computer. The performance drop was similar to the results collected for figure 5.8 when

using three concurrent hand detection cascades.

The main advantage of using the scaled tilted features was that the features kept the

same proportions and positions in relation to the kernel. Long features did not have the

drawback of the PEF approach. The only disadvantage of making the kernel larger is that

the classifier is not able to detect sub-windows as small as the up-right classifier.

6.5 Summary

In this chapter, a new approach for a rotational invariant Viola-Jones detector was devel-

oped. The proposed method converts a previously trained classifier to work at any angle,

so rotated objects are detected without specifically training the classifier for that angle.

In order to establish the accuracy of the converting method, the errors associated with

each feature type and with rotation were analysed.

The first experiment showed that tilted features can successfully convert a normal

feature to angles of 45o. The PEFs suffer from large errors that affects the accuracy of

the classifier for angles in the vicinity of 22.5o.
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Figure 6.29: Some results for the tilted cascade converted from OpenCV.

The second experiment showed that the implementation of the SAT for angles of 26.5o

needs improvements to successfully compute equivalent features at angles of 26.5o. The

errors are too large for this approach to be practical.

The third experiment, based on classifiers using the PEF approach for two angles (0o

and 45o), showed accuracy limitations when working at angles in the vicinity of 22.5o. A

correction factor is used to improve the hit rates. Also, this experiment showed that the

errors of the conversion are minimised when using larger kernels.

The fourth experiment showed that by using a large kernel for the 45o cascade, better

results for converting classifiers can be achieved. The OpenCV sample classifier for frontal

faces was successfully converted to angles multiples of 45o. The accuracy assessed with the

CMU-MIT test set is acceptable and comparable to the original upright OpenCV sample

cascade. Moreover, tests with a web camera shows a very robust classification at angles

45o and -45o.

The limitations of Haar-like features pose the following question: is it possible to use
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rotational invariant features to train cascades with AdaBoost? Features such as moment

invariants are rotation invariant, but their accuracy, performance and discrimination pow-

ers need to be tested. These issues are discussed in the next chapter.
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Chapter 7

A Real-time Approach for

Moment Invariants

In this chapter, a new feature extraction method is proposed. The new method combines

two well known methods, SAT (Crow, 1984) and moment invariants (Hu, 1962), and

incorporates the knowledge about independence of moments studied by Flusser (2000a).

The method allows the use of geometric moment invariants in real-time applications, as

it can compute features very rapidly.

In section 7.2 the computation of moments using SATs is discussed. The method

of feature extraction is extended to include contrast stretching, based on what Lienhart

and Maydt (2002) did for Haar-like features. The rapid extraction method with contrast

stretching minimises the effects of changeable lighting conditions.

In section 7.3 an original feature extraction method is discussed. A new feature extrac-

tion method that uses moments computed over several concentric discs (called CDMI) is

proposed, extending the limited number of independent moment invariants. An approx-

imation of discs allows the generation of geometric moments over circular areas rather

than rectangular ones (see figure 7.6). The accuracy of the feature set produced by this

method is analysed under rotation and scaling.

Finally, in section 7.4 the new proposed feature extraction method is used to train

classifiers for face detection. The first experiment used rectangular areas and 11 moments

per sub-window and shows that classifiers are limited in accuracy. The second experiment

used concentric discs to compute 66 moments per sub-window. CDMIs worked success-

fully in face detection with images acquired by a web camera, despite the limitations in

the training process due to the weak discriminative powers of moment invariants. The

third experiment used concentric discs to compute different numbers of moments per sub-

window, showing that the use of concentric discs improved the training process in both

speed and accuracy.

Based on an extensive literature review, we can state that this is the first time that
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the moments invariant and the SATs are combined to compute moments of concentric

discs, as proposed in this work.

7.1 Related work

Hu’s moment invariants were first proposed in 1962 (Hu, 1962) and are still widely used to-

day for computer vision algorithms, although other invariant features have been proposed

since. Reiss (1991) found some minor errors in Hu’s theory regarding the invariant prop-

erties to general linear transformations and proposed corrections to deduce three other

moments that are also invariant to illumination. Hu’s original equations are invariant to

translation, mirroring, scaling and most importantly for this work, to rotation.

It is interesting that it took almost 40 years between the publication of the moments

by Hu and the realisation that some of Hu’s moments were dependent. In the last few

years, there has been a renewed interest in the moment invariants theory proposed by Hu

(1962). Flusser (2000a) discussed the independence and completeness of the original Hu’s

set (see also Flusser (2002)). Two of the seven moments proposed by Hu were dependent

on the others, leaving only five to effectively be used for classification of images. Moreover,

Flusser developed a method to find out the best sets of moments for higher orders. Flusser

proposed six independent moments (of 2nd and 3rd orders), of which five were equivalent

to the original Hu’s moments and one was new. Flusser and Suk (1993) studied invariants

based on moments when they proposed a set of four affine moment invariants (2nd and

3rd order). Suk and Flusser (2003) extended the theory to incorporate blurring and affine

invariance.

Fast algorithms for the computation of moments can be grouped into two classes

(Flusser, 2000b). One group proposed algorithms based on the decomposition of images

into row segments (e.g. Flusser (1998)). The other group of methods is based on Green’s

theorem (see Yang and Albregtsen (1996) for a review), which uses the object’s boundary

to compute the moments. Spiliotis and Mertzios (1998) proposed a real-time algorithm

to compute moments on binary images using image block representation. Their idea

was to use rectangular areas parallel to the image axis to represent the whole image and

achieve faster computation of the moments. Flusser proposed a refinement of their method

(Flusser (2000b)). In addition to using special data structures for blocks of the image,

Flusser and Suk (1999) used precalculated repetitive tasks to speedup the calculations for

video sequences. Although these methods were efficient for binary images, they are not

easily extended for grey-scale images. The algorithms that need to follow the boundary

of the objects are not suitable for the multiresolution analysis described in section 2.2.5.

Terrillon et al. (1998) used moment invariants to detect faces. They used skin colour

segmentation to get blobs that were then split into sub-windows and their moments com-

puted using the standard method. They used eleven moments, the original seven Hu’s
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set, plus four moments of 4th order, and used Neural Networks to train a simple classi-

fier. There was no detailed analysis of the performance or accuracy. They extended their

work to use other invariants (e.g. Fourier-Mellin moments in Terrillon et al. (2000)) as

well as using the SVM (support vector machine) algorithm for training (Terrillon et al.,

2004). Their work was limited to colour images, as the method was dependent on the

segmentation of blobs to be able to work in real-time.

Only two references regarding the use of SATs and geometric moments were found.

Schweitzer et al. (2002) used SATs with geometric moments and applied it to template

matching. They used central moments (not Hu’s set or any of the invariants) up to the

3rd order and used a match measure to compare different sub-windows to a single pattern

(given by an image template). The other reference was the work carried out by Chen

et al. (2005). They also used SATs up to the 3rd order to compute moment invariants.

They applied their method to track the tip of a finger, achieving about 10000 moment

computations per second. There was no attempt to train complex classifiers based on a

set of images in any of the previous work.

The accuracy of the computation when detecting objects that rotate, scale or have

different lighting conditions is another issue with feature extraction based on moment

invariants. It has been known that noise affects high order moments (Teh and Chin, 1988),

but even the accuracy of low order moments is also influenced by the transformations of

the image itself. A good review on accuracy problems for various moment invariants is

found in Rodtook and Makhanov (2005).

7.2 Geometric Moment Invariants

The proposed method uses several SATs to compute moment invariants. After extracting

the moments, the values are trained with AdaBoost to produce cascade classifiers. Figure

7.1 shows an overview of the method.

Apply Contrast?

Output Image
Cascade

Classifier

Draw

Detection

SATs

...

yes Moment

Invariants

with Contrast

Moment

Invariants

no

Input Image

Pre−computed unit SATs

Figure 7.1: Method overview.
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In this section, the equations for computing Hu’s moment invariants using SATs are

deduced. The approach allows rapid computation of moment invariants for any position

and scale within an image. For clarity, the equations are presented in the form that they

are usually presented in text books for image processing such as Gonzalez and Woods

(2002) or Jain (1989). However, the focus of this section is the set proposed by Flusser

(2000a). Higher order moments are known to be very sensitive to noise (Teh and Chin,

1988), and for that reason this work is limited to extract moments up to the 4th order.

There are only eleven independent moment invariants up to the 4th order (Flusser, 2000a).

7.2.1 Hu’s equations

Given a digital image i(x, y), the 2D moment of order (p+ q) is:

mpq =
∑

x

∑

y

xpyqi(x, y) (7.1)

For any order (p+q), each element can be precomputed by multiplying the pixel value

by its position. It is trivial to create SATs for 2D moments of any order. 2D moments are

non-invariant, but they are the basis for Hu’s equations. The values x̄ and ȳ are given by:

x̄ =
m10

m00

(7.2)

and

ȳ =
m01

m00

(7.3)

The central moment µpq is defined by:

µpq =
∑

x

∑

y

(x− x̄)p(y − ȳ)q i(x, y) (7.4)

And the normalised central moment ηpq is given by:

ηpq =
µpq
µ00

γ
(7.5)

Where γ = p+q+2
2

The following equations are for the seven 2-D moment invariants proposed by Hu,
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from now on referred to as φn. They are invariant to translation, scaling, rotation, and

mirroring:

φ1 = η20 + η02

(7.6)

φ2 = (η20 − η02)
2 + 4η2

11

(7.7)

φ3 = (η30 − 3η12)
2 + (η03 − 3η21)

2

(7.8)

φ4 = (η30 + η12)
2 + (η03 + η21)

2

(7.9)

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3((η21 + η03)

2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (7.10)

φ6 = (η20 − η02)[(η30 + η12)
2 − ((η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03)

(7.11)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3((η21 + η03)

2]

+ (3η12 − η30)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (7.12)

Flusser (2000a) recommended that Hu’s moments φ2 and φ3 should not be used in

2-D object recognition, as they are dependent on the others. An extra independent 3rd

order moment is given by:

φ8 = η11((η30 + η12)
2 − (η03 + η21)

2) − (η20 − η02)(η30 + η12)(η03 + η21)

(7.13)
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The invariant set proposed by Flusser (2000a) was adopted in this work, limited to

moments of 4th order. The expression to compute them directly from the normalised

central moments ηpq is deduced, so they can easily be implemented with SATs1. In the

complete set used in this work, five of the moments are part of the original Hu’s set, a

new 3rd order moment and five 4th order moments from Flusser (2000a) as follows:

ψ1 = η20 + η02

(7.14)

ψ2 = (η30 + η12)
2 + (η03 + η21)

2

(7.15)

ψ3 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3((η21 + η03)

2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (7.16)

ψ4 = (η20 − η02)[(η30 + η12)
2 − ((η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03)

(7.17)

ψ5 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3((η21 + η03)

2]

+ (3η12 − η30)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (7.18)

ψ6 = η11((η30 + η12)
2 − (η03 + η21)

2) − (η20 − η02)(η30 + η12)(η03 + η21)

(7.19)

ψ7 = η40 + η04 + 2η22

(7.20)

ψ8 = (η40 − η04)[(η30 + η12)
2 − (η03 + η21)

2] + 4(η31 − η13)(η30 − η12)(η03 − η21)

(7.21)

1The complete derivation of the equations 7.14 to 7.24 are included in the Appendix
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ψ9 = 2(η31 + η13)[(η21 + η03)
2 − (η30 + η12)

2] + 2(η30 − η12)(η21 − η03)(η40 − η04)

(7.22)

ψ10 = (η40 − 6η22 + η04){[(η30 + η12)
2 − (η21 + η03)

2]
2 − 4(η30 + η12)

2(η03 + η21)
2}

+ 16(η31 − η13)(η30 + η12)(η03 + η21)[(η30 + η12)
2 − (η03 + η21)

2]

(7.23)

ψ11 = 4(η40 − 6η22 + η04)(η30 + η12)(η03 + η21)[(η30 + η12)
2 − (η03 + η21)

2]

− 4(η31 − η13){[(η30 + η12)
2 − (η03 + η21)

2]
2 − 4(η30 + η12)

2(η03 + η21)
2}

(7.24)

These moments are invariant to translation, scaling, rotation and mirroring. They are

from now on referred to as ψn.

7.2.2 Computing Moment Invariants from SATs

The similarity between equations 2.2 and 7.1 shows that one can compute 2-D geometric

moments directly from the SATs. In order to create the SATs, equation 2.4 is modified:

mpq(x, y) = mpq(x− 1, y) +mpq(x, y − 1) −mpq(x− 1, y − 1) + i(x, y)xpyq (7.25)

One can find generically the 2-D moment mp,q(x
′, y′, s) of a sub-window at (x′, y′) with

scaling factor s. Let us consider two identical sub-windows that are located in different

places in the image. The sub-windows have different 2-D moments for orders p ≥ 0 and

q ≥ 0. However, their values are equivalent to computing the moments based on the

same sub-windows padded by pixels of value zero. As the moment invariants, ψn, are

translation independent, their values are the same for both sub-windows.

Equations 7.14 to 7.24 depend only on the twelve normalised central moments η11,

η20, η02, η12, η21, η30, η03, η22, η31, η13, η40 and η04. These, on the other hand, depend on

µpq, which can be computed using a number of 2-D moments mpq and, therefore, using

SATs directly. The zeroth order µ00 corresponds to the simplest SAT, i.e., the equivalent

to the Integral Image used by (Viola and Jones, 2001a):

µ00 =
∑

x

∑

y

(x̄− x)0(ȳ − y)0i(x, y) =
∑

x

∑

y

i(x, y) = m00 (7.26)
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For order 1,1 µ11 can be derived as follows:

µ11 =
∑

x

∑

y

(x− x̄)1(y − ȳ)1 i(x, y)

=
∑

x

∑

y

(xy − xȳ − x̄y + x̄ȳ) i(x, y)

=
∑

x

∑

y

xy i(x, y) −
∑

x

∑

y

xȳ i(x, y) −
∑

x

∑

y

x̄y i(x, y) +
∑

x

∑

y

x̄ȳ i(x, y)

Both x̄ and ȳ are constant for a sub-window. Also each of the four factors can be expressed

as a function of the corresponding SAT:

µ11 = m11 − ȳ m10 − x̄ m01 + x̄ȳ m00 (7.27)

The central moment of order 1,1 for any sub-window based on the SAT computed over

the entire image can now be computed. Analogous derivation can be made for the other

µpq, for which only the final equations (as a function of mpq, x̄ and ȳ) are presented here2:

µ20 = m20 − x̄ m10 (7.28)

µ02 = m02 − ȳ m01 (7.29)

µ30 = m30 − 3x̄ m20 + 2x̄2 m10 (7.30)

µ03 = m03 − 3ȳ m02 + 2ȳ2 m01 (7.31)

µ12 = m12 − 2ȳm11 − x̄m02 + 2ȳ2m10 (7.32)

µ21 = m21 − 2x̄m11 − ȳm20 + 2x̄2m01 (7.33)

µ22 = m22 − 2ȳm21 + ȳ2m20 − 2x̄m12 + 4x̄ȳm11−

2x̄ȳ2m10 + x̄2m02 − 2x̄2ȳm01 + x̄2ȳ2m00 (7.34)

µ31 = m31 − ȳm30 + 3x̄ȳ(m20 −m21) + 3x̄2(m11 − ȳm10) + x̄3(ȳm00 −m01) (7.35)

2The complete derivation is found in Appendix C.
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µ13 = m13 − x̄m03 + 3x̄ȳ(m02 −m12) + 3ȳ2(m11 − x̄m01) + ȳ3(x̄m00 −m10) (7.36)

µ40 = m40 − 4x̄m30 + 6x̄2m20 − 4x̄3m10 + x̄4m00 (7.37)

µ04 = m04 − 4ȳm03 + 6ȳ2m02 − 4ȳ3m01 + ȳ4m00 (7.38)

The central moments needed for the 11 independent moment invariants φn can be

computed from the following 15 SATs: m00, m10, m01, m11, m20, m02, m12, m21, m30,

m03, m04, m40, m22, m31, m13.

Flusser (1998) proposed a method that considers that parts of the moment calculation

are independent of the object. These parts can be pre-computed and the pixel values

added to the calculation later. In a similar way, when the frame size is fixed, which is

typical for video sequence processing, all the SAT calculations related to the positions of

the pixels for the various orders can be computed only once at the initialisation. This can

be especially useful for higher order moments.

7.2.3 Preliminary numerical experiments: rectangular areas

Experiment 1: performance computing moment invariants over rectangular

areas

In this experiment, the first 6 independent moments (equations 7.14 to 7.19) were used

to assess the potential of the performance for real-time systems. A grey-scale image was

used to obtain the moments for sub-windows at different scales and positions. The time

was measured to compare the direct method (computing the moments directly from the

pixels of each sub-window) with the method using SATs. Table 7.1 shows results for a

machine running Linux (kernel 2.4) with 512MB memory and a 2.4GHz processor. The

image size was 176x144 pixels. The runtime values in table 7.1 reflect the mean of 10

measurements.

The speedups were of the order of 1000 times. It must be stressed that the speedup

only occurs when using the method to compute more than one sub-window per frame. The

method avoids the repetition of calculations over the same frame in order to obtain sums

of values of a particular sub-window and results are encouraging in terms of performance.

A second experiment was carried out to test the accuracy of simple cascade classifiers

using moments, described in the next section.

Experiment 2: detecting a numerical hand-written character

This experiment has the objective of testing the detection of a simple pattern to assess

the behaviour of the method in practice using a web camera.

A classifier was trained to find hand written 9s (and because the technique is rotation

invariant, it should also find 6s). The classifier was trained using AdaBoost (algorithm
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Table 7.1: Runtimes for moment invariants computation.

Translation Scale number of time for the time for the
factor factor sub-windows normal method (sec) proposed method (sec)

2 1.1 175538 381.72 0.27
1.2 161285 283.01 0.24
1.3 148881 265.09 0.23
1.4 138247 247.94 0.22
1.5 129880 229.64 0.20

5 1.1 29035 40.98 0.05
1.2 26640 39.85 0.04
1.3 24628 38.90 0.03
1.4 22900 37.19 0.03
1.5 21372 34.01 0.03

Figure 7.2: Grey scale samples of digit 9. The algorithm was trained with 9s, but it also
detects 6s due to the rotation invariant characteristics.

3). The main difference is that, in our implementation, floating point numbers are used

to store the feature values. A cascade was built using several rounds of AdaBoost, where

new negative examples are presented for every new round. The final classifier was built

using 500 positive examples (every round also had 500 negative examples) and 25 layers.

The positive examples came from MNIST database (LeCun et al. (1998)). The characters

in the examples occupied approximately 20x20 pixels on a 28x28 pixels square image (see

figure 7.2). The negative examples were gathered randomly from the same images used in

the previous chapters, making sure that no images presented the characters in the positive

set. Both positive and negative sets are greyscale images.

Figure 7.3 shows a scene where several characters are randomly presented to a web

camera. The rate varied from 1.2 to 3.0 frames per second (for a scaling factor of 1.5 and
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Figure 7.3: A sample of the working algorithm, showing the recognition of characters by
images acquired by a simple web camera.

a translation factor of 5). The classifier used was not optimised to maximise positive hits

and minimise false detections, but results in experiment 2 showed that it is possible to

compute moment invariants in real-time using this method. Notice that there were several

hits, some false and some regarding the same character in slightly different positions that

should be merged.

7.2.4 Limitations of this method

During the training process, the feature values for the positive and negative sets are

very close, indicating that the six 2nd and 3rd order moments might be insufficient to

discriminate against random backgrounds.

In Viola and Jones (2001a), the features were not translation invariant and it was

possible to train objects to be found in specific parts of the kernel. Using moments,

however, it might happen that the object is located over a black background and that any

of the sub-windows that contain the object is marked. A partial solution to this problem

is to merge the positive hits that intersect each other.

Figure 7.4 shows a hypothetical situation that illustrates the problem. The three

rectangular areas yield the same moments and, if within the margins of the classifiers,

they are marked as hits.

7.2.5 Lighting Contrast Stretching

Contrast stretching is not applied to the entire image, but rather has to be applied to

individual sub-windows. An update of all the SATs is required for every sub-window
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Figure 7.4: Merging positive hits with Moments Invariants over the same object demand
a more sophisticate approach than the one adopted when using Haar-like features.

and the method becomes too slow. Ideally, the contrast stretching should be part of the

feature extraction. An approximate method based on what Lienhart and Maydt (2002)

did for Haar-like features is proposed. One needs extra SATs for a rapid implementation

of the contrast stretching using moments due to the fact that there are different orders

for the moments invariants. However, these extra SATs can be pre-computed as they are

independent of the images. The basic equation used for the lighting contrast stretching

in this chapter differs slightly from that used by Lienhart and Maydt (2002).

Lienhart and Maydt (2002) created an extra SAT using the squares of the pixel values

(I2(x, y)), so they could obtain the sum of the squares of any rectangular area of the

frame. This SAT is used to compute the variance in rectangular areas of the image. With

the mean and variance of a particular sub-windows computed straight from two SATs,

they implemented a fast contrast stretching method. They used equation 2.8, adequate

to the properties of the Haar-like features. Rather than using that equation, preliminary

experiments showed that equation 7.39 is more convenient, as its form makes it easier to

generalise the fast contrast stretching calculation:

ī(x, y) =
255(i(x, y) − µ+ cσ)

2cσ
, c ∈ ℜ+, and 0 ≤ Ī(x, y) ≤ 255 (7.39)

Where ī(x, y) is the image after contrast stretching, µ is the mean,σ is the variance,

and c is a constant. This equation is similar to the one commonly used for contrast

stretch (e.g. see Gonzalez and Woods (2002)). Rather than explicitly choose a value for

the transform’s constants (the slope and the crossing point of the straight line), these are

based on the local mean and variance.
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Each component xpyq of a moment mpq can be written as:

mpq =
∑

n

i(x, y)Cn (7.40)

Where: Cn is xpyq.

The resulting moment after the contrast stretching is:

m̄pq =
∑

n

255(i(x, y) + cσ − µ)

2cσ
Cn =

∑

n

255i(x, y)Cn
2cσ

+
∑

n

255Cn(cσ − µ)

2cσ
(7.41)

m̄pq =
255

2cσ

∑

n

i(x, y)Cn +
∑

n

Cn(cσ − µ) (7.42)

m̄pq =
255

2cσ
(mpq + (cσ − µ)

∑

n

Cn) (7.43)

As Cn is a function of the position (x, y) only, the expression
∑

nCn can be pre-

computed at the beginning using SATs with unit images (all pixels values set to 1) and

do not need to be repeated for the duration of the sequence of images. Values between

1.5 to 2.0 are typical for the constant c. In our experiments, c = 1.8. The approach is not

linear due to the cut off that needs to be done in order to limit the pixel values between

0 and 255. In practice, however, there are few pixels to be cut, so the final values for m̄pq

given by equation 7.43 and 7.39 are equivalent.

Experiment 3: contrast stretching

Stretching

Contrast

Before

After

Contrast

Stretching

B C D E F GA

Figure 7.5: An example of contrast stretching. The images after applying the contrast
stretching are actually slightly different to each other, yielding different moments.

The results of the computation of moments, with and without contrast, demonstrate

that equation 7.43 works for a reasonably large variation in lighting conditions. Figure 7.5

shows some face images with different contrasts. The moments computed from these raw
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images have large variances. Each image was pre-processed by equation 7.39, shown in the

second row of images in figure 7.5. The moments computed from these stretched images

are compared to the approximation given by equation 7.43 (computed directly from the

raw images). Table 7.2 shows the mean and variance of the moment invariants obtained

from the images of figure 7.5. The results show that the variances among the moments

of the raw images are large, while the variances for both contrast stretching methods are

much smaller. Moreover, the values for the moments computed from the stretched images

from equation 7.39 are very similar to those computed directly from the raw images using

equation 7.43.

Table 7.2: Variances for contrast stretching.

raw images equation 7.39 equation 7.43
(slow method) (fast method)

µ σ µ σ µ σ

ψ1 6.56 0.7273 6.76 0.0048 6.73 0.0040
ψ2 28.40 4.2471 26.28 0.3421 26.13 0.4193
ψ3 57.02 7.0751 52.81 0.1389 52.33 0.1973
ψ4 40.96 5.5388 39.43 1.7405 37.46 0.6608
ψ5 56.03 8.5864 51.54 0.5968 51.28 0.7381
ψ6 39.83 5.9100 36.61 0.4489 36.25 0.4529
ψ7 12.82 1.4578 13.21 0.0118 13.15 0.0045
ψ8 46.57 6.7813 43.91 0.9761 43.70 1.4094
ψ9 44.98 6.5260 42.05 0.3995 41.66 0.3631
ψ10 73.45 9.2288 70.60 1.5961 69.35 1.1996
ψ11 73.13 10.4276 68.50 0.7519 68.14 0.8600

The results of this simple experiment showed that it is possible to overcome the prob-

lem of lighting variation when computing moments from SATs. The advantage of using

equation 7.43 is the fact that the contrast stretching was incorporated into the moments

computation, making it still possible to extract feature in real-time. The cost of the im-

provement is limited to additional lookups into the Cn SATs (fifteen SATs if computing

the eleven moment invariants used before), which can be created at the start to be shared

by any frame.

7.3 Concentric Discs

In this section, a new feature extraction method is proposed, using moment invariants

(ψn) extracted from concentric discs of the area of interest. This method is called CDMI

(Concentric Discs Moment Invariants). By computing moment invariants from concentric

discs, 11 independent moments can be extracted from each different disc. This method

increases the dimensionality of the training sets without losing its rotation invariance
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properties.

The idea of extracting features from circular areas of the images is not new. To cite a

few examples, Arof and Deravi (1998) used a circular neighbourhood to classify texture.

Torres-Mendez et al. (2000) proposed a feature extraction method based on the number of

intensity changes in pixels located at concentric discs. The centre of the circle was located

on the centroid of the object, obtained via the moment of inertia of the image. Kazhdan

et al. (2003) used concentric circles to compute symmetry descriptors for 2D images.

Mukundan (2005) proposed the use of Radial Tchebichef Invariants (which are inherently

computed over circular areas) for feature extraction and investigated their representation

capabilities and their invariant properties. Another set of moments that are rotation

invariant are the Zernike moments (for a comparative analysis see Chong et al. (2003)).

However, the method proposed here is different from any of the work surveyed in the

literature because it uses the special properties of the moments to achieve rapid feature

extraction.

The number of independent moments up to the 4th order is limited to 11 (Flusser,

2000a). In order to improve the discrimination powers of the set, while keeping the rotation

invariance property, a concentric circles approach is used in this section. This approach

can improve upon the method described earlier on two fronts. Firstly, the dimension

of the feature space is increased. Secondly, the scanning process does not suffer from

the problem of translation invariance, making it easier to detect specific objects. This is

especially important if the object is over a dark background, because dark patterns may

easily make the classifier hit too many sub-windows. This can be achieved using the same

pre-computed fifteen SATs used before, only requiring additional lookups. The resulting

set of features is invariant to rotation and scaling, but not to translation.

7.3.1 Circular Area (Discs)

Normally, each rectangular sub-window requires only 4 table lookups per SAT (a total of 60

lookups if using the 15 SATs proposed here). In order to compute a circular sub-window,

an approximation requires that small square areas are subtracted from the originally

square sub-window (figure 7.6). The number of lookups can be minimised because there

are common points among the smaller square areas. Some of the points are not at all

necessary because they cancel each other out. The sum of the pixels in the area defined

by the points 1,2,3 and 4, is given by:

Asquare = pt1 − pt2 − pt3 + pt4 (7.44)

If the 12 squares (a, b, ... and l squares indicated in figure 7.6) are to be subtracted
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from the large square that defines the sub-window, then Adisc:

Adisc = pt1 − pt2 − pt3 + pt4

− (pta1 − pta2 − pta3 + pta4) − (ptb1 − ptb2 − ptb3 + ptb4)

...− (ptk1 − ptk2 − ptk3 + ptk4) − (ptl1 − ptl2 − ptl3 + ptl4)

(7.45)

But there are common points among the square areas that cancel each other. Rewriting

the equation 7.45:

Adisc = −pta4 + ptb3 + ptc2 − ptd1 + pte2 + pte3 − pte4

− ptf1 + ptf3 − ptf4 + ptg2 + ptg3 − ptg4 − pth1

+ pth3 − pth4 − pti1 + pti2 − pti4 − ptj1 + ptj2

+ ptj3 − ptk1 + ptk2 − ptk4 − ptl1 + ptl2 + ptl3 (7.46)

And therefore, it suffices that 28 points are defined to compute the sum of pixels using

all the 12 square areas (from a to l) in figure 7.6. Considering that eleven moments are

computed using fifteen SATs, the total number of lookups per sub-window for the eleven

moments is 420.

A classifier produced using Viola and Jones (2004) method for face recognition im-

plemented in OpenCV (Bradski, 2000) had a total of 2913 Haar-like features distributed

in 24 layers (cascades), requiring 17478 lookups. However, not all sub-windows reach the

last layer, being eliminated by the classifier at an earlier stage. If a sub-window reached

the 9th layer it would have used around 500 lookups, comparable to the method proposed

in this work.

7.3.2 Concentric Discs computation

Figure 7.7 shows an example where a total of 66 moments (CDMI) can be computed. Each

disc produces its own pattern, as it contains different pixels of the image. The method

has the potential to improve the discrimination powers of the feature set.

The complete set of CDMI is not translation invariant. If the centre of the concentric

discs is moved, the values for the internal discs differ from the ones computed previously.

This property can be used to locate the exact position of an object, in the case of detection

algorithms that use a moving kernel. This approach solves the problem shown in figure

7.4 for square or rectangular kernels.
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Figure 7.6: Computing the moments for an approximation of a circular area: the 12 square
areas (in dark) are subtracted from each sub-window.

Figure 7.7: The concentric discs approach (CDMI): more features are extracted, as the
areas within the inner circles get different patterns, enriching the feature set.
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Experiment 4: accuracy under scaling and rotation

This experiment was carried out to verify the rotation and scaling invariance of the features

extracted by this method. Firstly, the image in figure 7.8 (which can be found in Gonzalez

and Woods (2002)) was used to compute the first 5 moments of Hu’s set and the extra 6

moments from Flusser’s set. The first 5 values might differ slightly from Gonzalez and

Woods (2002) due to the precision of the variables used to create the integral images and

used to compute the set. For comparison, the absolute values of the logarithm of the

moments are computed. The results of simple scaling, rotation, and mirroring are shown

in table 7.3.

Figure 7.8: Test image from Gonzalez and Woods (2002).

The same 5 images were used to compute the moments using the concentric discs

approach. The discs’ diameters are computed as a function of the width of the images

(e.g., here 0.9 means that a circle with a diameter of 90% of the width was used). Table

7.4 shows the results for the disc with a diameter of 50% of the width. Table 7.5 shows

the variance of the results for discs of various diameters (as per figure 7.7).

The results show that the approximation of the circular area works successfully, as

the variance is small for most moments. The set of features can be used for recognition

tasks where the rotation invariance property important. Scaling invariance is maintained

because the approximation of the disc is equivalent at different scales.

Figure 7.9 shows the actual approximations used to compute the discs for 50% diam-

eter. The extra areas outside the circle create some variation on the moments values. A

better approximation can be easily implemented by subtracting more areas. However, any

improvement comes with the extra cost of more lookups in the SATs.
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Table 7.3: 11 moments computed over a square area for image in figure 7.8.

images
orig. half mir. 2◦ 45◦ σ

ψ1 6.600 6.600 6.600 6.596 6.595 0.0000
ψ2 23.888 23.888 23.888 23.866 23.868 0.0001
ψ3 49.200 49.201 49.200 49.152 49.134 0.0010
ψ4 32.102 32.102 32.102 32.073 32.074 0.0002
ψ5 47.850 47.850 47.850 47.807 47.810 0.0005
ψ6 34.765 34.766 34.765 34.739 34.718 0.0005
ψ7 12.838 12.838 12.838 12.830 12.829 0.0000
ψ8 38.158 38.158 38.158 38.124 38.126 0.0003
ψ9 40.248 40.250 40.248 40.220 40.197 0.0006
ψ10 61.701 61.701 61.701 61.649 61.649 0.0008
ψ11 61.978 61.978 61.978 61.930 61.924 0.0007

As expected, the larger variances in table 7.5 are associated with the high order mo-

ments. To compare the variances obtained with the approximation of a circular area,

discs were cut (these are only as accurate as the scale permits) from the original images

and measured the variance (see table 7.6). That would be the result if several additional

smaller square areas were being subtracted from the image in such a way that the same

pixels were involved in the computation of the moments. In other words, table 7.6 reflects

the best case scenario for this set of images in the case of the concentric discs features.

As an indication of performance, 66 moments were computed from sub-windows of

the image in figure 7.8. Using one processor of a dualcore AMD 2GHz, close to 20000

complete moment sets per second were computed (66 moments per sub-window at various

scales and positions). This is much slower than the numbers shown in table 7.1, due to

the fact that 66 moments from circular areas were computed, opposed to 11 moments

from square areas. Also, circular areas required 28 lookups per CDMI, rather than just 4

lookups per moment. However, the code is not optimised and there is certainly room for

improvement. Likewise in Viola-Jones method, the feature extraction can be fast enough

to allow real-time detection applications to use this method. Training should also be

easier due to the reduced number of dimensions when compared to the more than 100,000

features in a Haar-like feature set.
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Table 7.4: 11 CDMI using an approximation of 12 square areas (with a diameter of 50%
of the width) for image in figure 7.8.

images
orig. half mirr. 2◦ 45◦ σ

ψ1 6.615 6.615 6.615 6.611 6.613 0.0000
ψ2 25.225 25.243 25.225 25.201 25.192 0.0004
ψ3 50.889 50.948 50.889 50.857 51.702 0.1311
ψ4 34.151 34.179 34.151 34.110 34.143 0.0006
ψ5 50.352 50.390 50.352 50.293 50.454 0.0035
ψ6 35.362 35.364 35.362 35.363 35.376 0.0001
ψ7 12.943 12.942 12.943 12.934 12.938 0.0000
ψ8 40.352 40.379 40.352 40.305 40.344 0.0007
ψ9 40.910 40.909 40.910 40.918 40.945 0.0002
ψ10 66.087 66.270 66.087 66.052 66.161 0.0077
ψ11 67.417 67.407 67.417 67.811 67.425 0.0311

Table 7.5: Variances for the approximation of concentric disc features from 1 to 0.5 in
diameter.

diameter
1 0.9 0.8 0.7 0.6 0.5

σψ1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

σψ2
0.0001 0.0001 0.0002 0.0001 0.0001 0.0004

σψ3
0.0010 0.0003 0.0047 0.0015 0.0112 0.1311

σψ4
0.0002 0.0004 0.0012 0.0007 0.0047 0.0006

σψ5
0.0005 0.0007 0.0016 0.0026 0.0089 0.0035

σψ6
0.0005 0.0000 0.0047 0.4099 0.2052 0.0001

σψ7
0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

σψ8
0.0003 0.0007 0.0021 0.0010 0.0078 0.0007

σψ9
0.0006 0.0007 0.0346 0.2224 1.6947 0.0002

σψ10
0.0008 0.0034 0.0221 0.2331 0.1935 0.0077

σψ11
0.0007 0.0014 0.0176 1.1691 0.0192 0.0311
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Figure 7.9: A 50% concentric disc area approximation for the original image and the 45◦

rotated image.

Table 7.6: Variances for the actual concentric disc areas (best case scenario, with the
pixels cut directly from the images) from 1 to 0.5 in diameter.

diameter
1 0.9 0.8 0.7 0.6 0.5

σψ1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

σψ2
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

σψ3
0.0010 0.0007 0.0008 0.0007 0.0011 0.0004

σψ4
0.0002 0.0002 0.0003 0.0003 0.0003 0.0003

σψ5
0.0005 0.0006 0.0006 0.0006 0.0006 0.0007

σψ6
0.0005 0.0001 0.0002 0.0002 0.0003 0.0002

σψ7
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

σψ8
0.0003 0.0003 0.0004 0.0004 0.0004 0.0003

σψ9
0.0006 0.0001 0.0001 0.0005 0.0005 0.0003

σψ10
0.0008 0.0007 0.0009 0.0010 0.0008 0.0010

σψ11
0.0007 0.0007 0.0007 0.0005 0.0004 0.0011
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7.4 Face Detection

Using the methods developed in this chapter, classifiers were trained using AdaBoost for

face detection. Two experiments were carried out. The first experiment used rectangular

areas and 11 moments per sub-window. In this experiment, AdaBoost failed to produce

good classifiers with low false detection, indicating that the set of features do not have

enough discrimination powers to distinguish between the faces and backgrounds. The

second experiment used concentric discs to compute 66 moments per sub-window. This

experiment showed that the extension of the feature set is helpful, producing classifiers

that can detect faces using a web camera.

7.4.1 Estimating angles using Hu’s moments

Hu (1962) derived a method called The Method of Principal Axes where it is possible to

estimate an angle based on some of the 2nd order moments:

θ =
arctan

(

2µ11

µ20−µ02

)

2
(7.47)

There are restrictions that create a few problems for practical purposes. Firstly, µ11 > 0

as well as µ02 6= µ20 for equation 7.47. If the object is completely free to appear at any

angle, only an indication of 4 possible angles results. Depending on the shape of the

object, the signals of µ02, µ20 and µ11 may be used as an additional clues, but still would

not tell angles that are 180 degrees apart. Secondly, the corner of the images plays an

important role. When comparing two similar images taken in different angles, it is likely

that the difference in the angle θ does not match the actual rotation. The problem can

be appreciated in figure 7.10, where it shows faces extracted from the sequence Akiyo and

rotated at various angles.

The resulting angle for the upright face is close to zero because this image has a strong

symmetry along the y axis. For other objects there is a particular angle offset, depending

on the distribution of the pixels. If the object has (as in the case of faces) a strong

symmetry along one axis and a strong asymmetry along the other axis, it is possible to

find the direction of the resulting axis and determine the angle. For example, the upright

face yields an angle of 1.5o, while the upside down face yields an angle of 1.9o. The

asymmetry (darker regions of the eyes) can be used to find the correct direction of the

image.
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Figure 7.10: Angles estimated for faces extracted from the first frame of the Akiyo se-
quence.

7.4.2 Classifiers for Face Detection using Moments

Experiment 5: face detection using 11 Moments

In this experiment, a classifier using 11 moment invariants (computed over square areas)

was trained with AdaBoost. The positive images were taken from FERET and the negative

images from the same source that was used in chapter 3. The training algorithm failed to

get classifiers with low false detection rates, when using a large number of positive images.

The fact that the images are too ambiguous for classification indicates that the 11

moments, extracted from square sub-windows, are not enough to discriminate the positive

and negative sets. The only reference to successful face detectors using moments relied

on colour segmentation (Terrillon et al., 1998), making it easier to differentiate from the

background. Even when using colour segmentation, Terrillon et al. (1998) found that

there were a number of false detections that could not be overcome.

The experiment showed that the 11 moment invariants have a relatively poor discrim-

ination characteristic for face detection applications.



124 Chapter 7. Real-time Moment Invariants

Experiment 6: face detection using the CDMI approach

In order to show the potential of the method of concentric discs, real-time face detection

was tested using two simple classifiers. A positive set with 250 face images acquired

using a web camera was used. The negative set contained the same room’s background to

guarantee a low false detection rate. Figure 7.11 shows some samples of the application

using a classifier produced with 250 positive examples.

Figure 7.11: Examples of successful detection with low false detection using 66 CDMI.

The face classifier produced with moment invariants is rotation invariant, as the exam-

ples in figure 7.11 shows. The performance is somewhat slower compared to the original

Viola-Jones method. An average of 1 frame per second was achieved using resolutions of

480x640 pixels, with a kernel size of 128x128 pixels, a scaling factor of 1.1 and a translation

factor of 3 pixels.

The experiment presented a number of interesting characteristics of the CDMI method.

Firstly, the rotation invariance property holds well, as several rotated faces (at random)

are correctly detected. Secondly, the scaling invariance property allows for some variation

in the kernel size. Even though the original kernel size of the trained classifier is 128x128

pixels, detection with smaller kernels is achieved using the same classifier. In comparison,

the Haar-like features only allow the use of kernels that are of equal or larger size than
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the original size used during training. Thirdly, the training process is faster due to the

limited dimension of the training sets.

Experiment 7: Measuring Accuracy with Small Negative Sets

The two previous experiments showed that the moment invariants do not have discrimina-

tion powers as strong as the Haar-like features. The attempt to train using the Viola-Jones

version of AdaBoost did not yield good classifiers when using more than 500 faces samples

from FERET.

In this final experiment, the number of negative sample images was limited to 20000

and trained the classifiers using algorithm 3 (chapter 3). The classifiers used in this

experiment yielded too many false detections to be used in a real environment with random

backgrounds, but they allow us to examine the issues regarding the accuracy for different

dimensions of the training set.

The training process used up to 2000 face samples from FERET. The negative set was

composed of 20000 images, randomly acquired from various images with no faces. Each

classifier was tuned to keep the hit rates at 100% and trained up to 50 layers. Each layer

was limited to 400 weak classifiers.

Figures 7.12 and 7.13 show the false detection ratio plotted against the number of

weak classifiers used by the AdaBoost classifier. The figures show that training converges

faster when using a larger number of CDMIs. Also, when more CDMI features are used

in the training process, a smaller number of weak classifiers is needed in order to achieve

the same level of false detections.
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Figure 7.12: The false detection rate as a function of the number of weak classifiers. The
positive set contains 1000 FERET faces and the negative set contains 20000 background
images.
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Figure 7.13: The false detection rate as a function of the number of weak classifiers. The
positive set contains 2000 FERET faces and the negative set contains 20000 background
images.

7.5 Summary

A new feature extraction method combining moment invariants (Hu, 1962; Flusser, 2000a)

with SATs (Crow, 1984) has been presented. The method speeds up the computation of

moment invariants over sub-windows acquired from a larger image and has the poten-

tial to be used in real-time computer vision algorithms. It is possible to implement the

Viola-Jones method using Hu’s features instead of Haar-like features. Besides the advan-

tage of dealing with rotation invariant features, moment invariant features also limit the

dimension of the feature set for the training sets.

Advantages of this method compared to Haar-like features:

• Rotation invariance (smooth detection when objects rotate in front of the camera).

• Faster training due to the limited feature space dimension.

• Flexible kernel size: due to the scaling invariance classifiers trained with a large

kernel can be used with a proportional smaller kernel with a similar accuracy.

Some of the face classifiers trained for section 7.4.2 were accurate enough to be used

in practice with a web camera, even though a generic face detection for the CMU-MIT

dataset was not possible. The results are encouraging, but a question remained: is it

possible to produce good classifiers for generic recognition of shapes? In chapter 8 the

method is applied to a hand-written digit recognition problem, a very difficult problem

due to the similarity among the images.
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Chapter 8

Digits Recognition Using the

Rapid Moment Extraction

Method

This chapter presents the results of experiments with digit recognition using two different

types of features. The first type used the normalised central moments (ηn), which are scale

invariant but not rotation invariant. The second type used the method of the concentric

discs (CDMI) developed in chapter 7 (based on Flusser’s set of moment invariants ψn),

which are both scale and rotation invariant. The experiments were constrained to hand-

written digits, but the concepts seen here can also be applied to general OCR problems.

The main question addressed in this chapter is whether the proposed set of features are

discriminative enough to cope with handwritten characters. The scope of the study is

limited to handwritten digits using a standard set of images collected by NIST.

Classifiers were trained using a modified version of AdaBoost. The classification prob-

lem presented in this chapter is of a different nature from the face detection problem.

In face detection, the training is carried out considering a set of positive images against

“the universe” of images. In practice, in each AdaBoost’s round new negative samples

are added, making the next stage training more difficult. The opposite is true in digit

recognition, i.e., a number of negative samples are eliminated as new stages are added to

the classifiers, until no negative samples are left.

The results showed that the discriminative powers of feature based on moments were

not strong enough to create classifiers as reliable as the ones described in the literature.

The best results achieved by these experiments were just below 10% test error (based

on the MNIST database). Considering that the method is scale invariant, very fast and

simple to implement, there is a potential use as a first stage in recognition problems.

This chapter is organised as follows. Firstly, a brief literature review shows the state-

of-the-art in handwritten digit recognition and points to the difficulties faced by most
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methods in terms of accuracy and performance. The next section describes the methods

used to extract the features and to train the classifiers for the experiments in this chapter.

Next, the results for training experiments are shown and an analysis of the accuracy of

classifiers is discussed. In the final section, a detailed analysis of the errors for individual

classifiers is presented.

8.1 Related Work

There is a number of handwritten digits databases such as MNIST, USPS, NIST and

others. MNIST has been used recently as a benchmark for OCR methods. The MNIST

database was based on the NIST SD-3 and SD-1 databases. The training set contains

60000 digits and the test set contains 10000 digits and is publicly available (LeCun et al.,

1998). The digits were normalised to fit a 20x20 pixels image and were centred in a final

28x28 pixels image.

The task of recognising handwritten characters in real-time is a very difficult one. One

of the critical steps involves feature extraction. Usually, one has to choose a compromise

among certain characteristics such as invariance, discriminative powers, dimensionality,

and computational complexity of the feature set. However, the classification process needs

features that contains enough information about the class, and that is where moment

invariants have problems.

Wong et al. (1995) proposed a new set of invariants based on Hu (1962) that achieved

good correct recognition rates for a simple OCR problem using printed characters. Mo-

ments were limited to lower order due to numerical instabilities and to noise sensitivity.

Trier et al. (1996) did a survey of feature extraction methods for OCR applications. They

concluded that while the printed characters recognition problem is relatively simple, the

handwritten character recognition needs more sophisticated methods and it is much more

difficult to train accurate classifiers. They reminded that most successful OCR systems

needed at least 10-15 features. However, a larger number of features was needed to achieve

better accuracies with handwritten digits. Liao et al. (1997) used moment invariants to

build a Chinese character recognition system, where he noticed that characters that were

too similar had to be grouped together in order to make a strong system.

Baluja (1999) has studied the problem of recognising rotated digits. He used three

different methods to cope with rotated digits. The first method used an exhaustive ap-

proach and was not accurate. The second used a two step approach where a de-rotation

neural networks was trained to return an angle for unknown digits, followed by a single

neural networks that classified the de-rotated images. The third approach used the same

de-rotation approach, but individual classifiers were trained for each digit. The last ap-

proach was the most accurate, achieving 93% recognition, although the method itself does

not provide scale invariance.
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Table 8.1: Results reported on the MNIST database.

Method Authors Reported Test Error

linear classifier (1-layer NN) LeCun et al. (1998) 12.0%
2-layer NN, 1000 hidden units LeCun et al. (1998) 4.5%
Euclidean nearest neighbour Simard et al. (1992) 3.5%

Haar-like features and AdaBoost Casagrande (2005) 1.3%
3-Stage NN-NN-SVM Gorgevik and Cakmakov (2004) 0.83%

LeNet4 with distortions LeCun et al. (1998) 0.7%
BoostMap and BoostMap-C Athistos et al. (2005) 0.58%
Combination of the methods Keysers (2006) 0.35%

When analysing the errors made by various methods in the task of digits recognition

Suen and Tan (2005) found that some of the characters were so ambiguous that hardly

any of the available methods could correctly classify them. They presented a list of 127

handwritten digits from MNIST as being very difficult (which already represents an error

of 1.27%). They divided the most common errors into three categories:

• Category 1: geometric similarity (such as 4s and 9s, 0s and 6s etc). The errors

in this category are very difficult to overcome because there is usually an undefined

boundary between such digits in any feature space.

• Category 2: noisy images. The errors in this category are due to degraded images.

Common problems include writing habits, thick pens or pens that fail to write part

of the digit.

• Category 3: images easily recognisable by humans. Usually errors in this

category are due to the feature extraction process or due to the training process. If

the feature set is not discriminative enough, further training is unlikely to improve

the results.

There are a number of reports using the MNIST database with a variety of meth-

ods. It is beyond the scope of this work to discuss them all in detail. A good review

of various methods (about 30 methods) was presented by Keysers (2006). LeCun et al.

(1998) discusses implementations of convolutional neural networks method (including his

‘LeNet’ method). Examples of overall results are shown in table 8.1. The errors varied be-

tween 12.0% and 0.35%. The methods that presented very low errors added geometrically

transformed samples to the training set.

Summing up, moment invariants were used before in OCR with limitations in accu-

racy. Moment invariants of higher order are sensitive to noise, limiting the dimensionality

of moment based feature sets. There are many feature extraction methods that were
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successfully used in OCR, but most of the features are not invariant to scale or rotation,

with the exception of Haar-like features that are invariant to scale. Most of the feature

extraction methods surveyed were developed specially for OCR applications and it would

be difficult to apply to different recognition problems. It is useful to extend the feature

set based on moments, as these features are invariant to scale and rotation, fast and easy

to implement.

8.2 Feature Extraction

8.2.1 The Concentric Discs Method (CDMI)

The CDMI approach, detailed in section 7.3, can potentially help on the recognition of

digits in texts. The method is rotation invariant, scale invariant and mirror invariant.

The set as a whole is not translation invariant. The areas from which the moments ψn are

extracted are approximated to a disc (figure 8.1). One would not expect this set to train

very well when facing pairs of digits such as 6-9 or 2-5, although the experiments showed

some surprising results.

Outer disc

Inner discConcentric discs

Figure 8.1: The CDMI approach: more features are extracted, as the inner discs may get
different moments, enriching the feature set.

8.2.2 An Extended Feature Set for Normalised Central Moments

The normalised central moments ηpq (equation 7.5) are limited to 12 features per area, if

using moments up to the 4th order. Computing moments from concentric square areas of

the image produces a more complex set. In these experiments, a maximum of 7 square

areas were used due to the limitation in the scale of the MNIST database, giving 84

independent features. This set is invariant to scaling, but not to translation (due to

the concentricity constraints) or to rotation. Figure 8.2 shows the areas from where the
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moments ηpq are extracted. All features are rapidly extracted based on the 15 SATs used

before in chapter 7.

Concentric squares

Inner square

Outer square

Figure 8.2: Computing 12 ηs per square area.

8.3 Training Methods

Two different training approaches were used in this chapter, Convex Hull classifiers and

AdaBoost. Early experiments using classifiers based on convex hulls (CH) showed the pos-

sibility to rapidly train using only positive examples (see section 3.1.2). If the feature space

can form clusters out of the 10 digits, one can train a classifier almost instantaneously.

The results of the CH experiments showed that, for handwritten digits, CH based classi-

fiers are not accurate. They can, however, be used for pre-classification, leaving the more

complicated job for other classifiers based on AdaBoost.

8.3.1 Convex Hull Classifiers

Convex hulls can be computed very fast for two dimensions (chapter 3). The training

used a simple approach of combining all dimensions in such a way that it guarantees that

all the positive examples are within the boundaries of all convex hulls. In practice, this

means memorising only the vertices (a limited number of positive feature values) that

composes the CH, which is much faster than AdaBoost.

During detection, an unknown digit belongs to the class if its features are contained

by all CHs. In these experiments, a simple binary decision was used. It is also possible

to use a more sophisticated approach considering the distance from the boundaries of the

CHs. If the feature set is separable and there are enough samples, any negative sample

eventually finds itself outside the boundary of one of the CHs and is eliminated in the

process.



132 Chapter 8. Digits Recognition and Invariant Features

8.3.2 AdaBoost

A special version of AdaBoost was developed to achieve the highest possible hit rate and

keep the false detection as small as possible. Due to the fact that both the positive and

negative sets are limited, the AdaBoost version described in section 3.1.1, referred as

algorithm 3, was used for these experiments. Figure 8.3 illustrates the modification. If a

certain stage (of the cascade) does not achieve the specified hit and false detection rates,

negative elements are discarded (and later re-added for further training). This process

splits the negative set in more feasible portions, facilitating the training. In practice, two

or more stages might intersect, as long as the resulting cascade classifier splits the samples

correctly.

feature 1

fe
at

u
re

 2 positive samples

negative samples

layer4
layer3

layer1

layer2

Figure 8.3: AdaBoost: working with sub-sets of the negative set, classifiers are specialised
in certain areas of the feature space.

8.3.3 Confidence Value for Multiple Classifiers

All the classifiers trained with both methods are binary classifiers. An unknown digit can

get a positive response by more than one classifier.

For the CHs, a simple Bayesian approach was used to choose between two or more

positive results. The criteria used is the average of the distance of the point to the borders

of the convex hull, multiplied by a confidence value found in the training error. Given the

false detection P (D|Hf ) (probability that the classifier is positive, given that the digit is

not d), using the classifier Dd on the training subset, the probability that the classifier is
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correct is:

P (Hp|D) =
P (Hp).P (D|Hp)

P (Hp).P (D|Hp) + P (Hf ).P (D|Hf )
(8.1)

where P (Hp|D) is the probability that the classification is correct for a certain digit

d, if the classifier result is positive. The probability that the classifier results positive

if the digit is in fact d is approximately 1, as the training process makes sure that no

positives are missed (P (D|Hp)=1). The probability that a digit is d is P (Hp)=0.1 (one

every 10 characters) and the probability that a digit is not D is P (Hf )=0.9 (nine of every

10 characters).

The likelihood for the CH can be associated with the distances from the point in the

feature space to the borders of the CHs. If the average of the distances µclass of a point

to the borders of the CH is the same for two given classifiers, the classifier with the best

confidence value wins.

Max(µ0.Co0, µ1.Co1, ..., µ9.Co9) (8.2)

For the AdaBoost classifiers there is no measurable distance. Also, the confidence

value for the case where all the classifiers reached zero training error is the same for all

the binary classifiers. When faced with a situation where an unknown digit is positive for

more than one classifier, the sum of the α coefficients for each weak classifier is used as a

criteria to choose between positive results. When a certain image passes all the stages of

a cascade classifier and yields a positive response, then the sum of the αs is bigger than

every stage’s threshold. These factors are linked to the confidence of the individual weak

classifiers themselves (see Freund and Schapire (1999)). Considering that the larger the
∑

αn for a given stage, the better the confidence:

Max(

∑

α0

total(α0)
,

∑

α1

total(α1)
, ...,

∑

α9

total(α9)
) (8.3)

8.4 Experimental results

Three experiments were carried out for this chapter. The first experiment shows the

difference in accuracy between four types of classifiers, using two different training methods

and feature numbers, all for the feature type ψn. The second experiment used the best

classifiers of the first experiment to carry out further training, until the training error was

virtually zero. This determined the limitations of the accuracy of the classifiers produced

by CDMI (feature type ψn). In experiment 3, feature type ηpq with AdaBoost was used.

The training conditions used for feature type ψn in the two first experiments was repeated.
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8.4.1 experiment 1: four types of classifiers

This experiment used four different types of classifiers, described next:

• CH-11-ψ: 11 moments per digit were computed and the set was used to train using

CHs. The number of CHs are determined by the possible combinations of the 11

moments, 2 by 2 (therefore a total of 55 CHs).

• CH-88-ψ: 88 CDMI were computed and trained using CHs. Due to the large

number of combinations, each set of 11 moments per disc is combined into 55 CHs

independently, rendering a total of 605 CHs.

• Ada-11-ψ-50: 11 moments were computed and trained with AdaBoost. The Ad-

aBoost was modified according to section 3.1.1 to guarantee that all positive exam-

ples are classified correctly.

• Ada-88-ψ-50: 88 CDMI were computed and trained with AdaBoost (with the same

conditions Ada-11-ψ-50 training).

The training produced a single CH classifier per class (digit). Each classifier was tuned

to find 100% of its class, with the penalty of high false detection rates. As the training

only used positive samples, the training error measurement was carried out with each pair

to compare to the AdaBoost classifiers. 1

The AdaBoost training produced one classifier for every pair, amounting to 90 clas-

sifiers for Ada-11-ψ-50 and 90 classifiers for Ada-88-ψ-50. Each classifier was trained up

to a maximum of 50 stages (or less if the training error converged to zero before reaching

this number of stages), each stage with a limit of 100 weak classifiers. Each classifier was

tuned to find 100% of its trained class. The training error against each individual class is

shown in table 8.2. Overall test errors for the AdaBoost classifiers are presented in table

8.4. False detection rates for the two groups of CH classifiers are reported in appendix C,

tables C.1 and C.2. Overall confusion matrices for the two groups of AdaBoost classifiers

are presented in appendix C, tables C.3 and C.4.

1The training error was assessed against each class separately, so there were 9 results per class per
classifier. In the case of CHs the same classifier was repeatedly used to assess the training error against
each class
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Table 8.2: Training errors for four feature sets.

classes
Classifiers

0 1 2 3 4 5 6 7 8 9

CH-11-ψ - 20.2 66.0 71.5 56.8 68.7 15.0 9.9 91.9 35.6

CH-88-ψ - 2.4 52.0 57.2 44.2 55.1 12.6 7.9 78.5 30.4
0

Ada-11-ψ - 0.4 44.8 43.9 24.5 61.0 5.7 4.5 71.5 17.0

Ada-88-ψ - 0 26.4 6.4 4.7 23.6 0 0 11.5 0.9

CH-11-ψ 11.0 - 70.8 81.9 81.0 78.6 26.2 40.9 82.9 62.6

CH-88-ψ 1.5 - 29.2 40.3 35.4 42.4 11.1 10.3 59.8 22.9
1

Ada-11-ψ 6.4 - 30.6 47.8 29.6 64.4 7.3 13.9 54.0 27.6

Ada-88-ψ 0 - 5.5 5.7 1.5 14.4 0 0 13.8 0

CH-11-ψ 43.4 71.1 - 97.8 96.9 96.5 75.0 90.5 97.3 89.7

CH-88-ψ 33.5 34.1 - 82.9 86.9 84.6 68.0 78.8 82.6 75.9
2

Ada-11-ψs 58.5 18.7 - 90.5 88.2 90.6 62.1 76.5 82.0 72.4

Ada-88-ψ 20.6 0.1 - 55.1 66.7 74.8 38.6 46.3 48.2 36.4

CH-11-ψ 40.0 77.5 94.6 - 90.6 95.7 70.1 85.0 95.5 87.1

CH-88-ψ 17.3 41.8 77.2 - 75.2 81.8 57.4 58.0 82.9 67.4
3

Ada-11-ψ 44.2 26.6 87.4 - 66.3 89.8 54.3 58.8 82.1 68.2

Ada-88-ψ 2.6 0 63.9 - 48.7 71.5 29.7 24.1 62.5 29.2

CH-11-ψ 47.5 42.0 94.6 94.0 - 92.7 67.5 79.4 94.7 90.2

CH-88-ψc 20.5 16.6 63.8 64.1 - 67.3 54.4 51.3 82.7 78.9
4

Ada-11-ψ 24.1 21.5 85.4 76.4 - 81.9 60.0 57.9 74.1 85.4

Ada-88-ψ 1.3 0 63.9 38.5 - 62.8 29.2 34.0 37.8 51.2

CH-11-ψ 50.1 75.8 97.7 98.6 96.2 - 77.9 88.0 96.9 92.4

CH-88-ψ 17.1 53.6 82.0 83.3 75.6 - 63.4 65.9 80.0 66.0
5

Ada-11-ψ 61.5 41.0 88.0 90.1 77.3 - 52.7 64.9 87.0 70.6

Ada-88-ψ 9.2 1.3 73.7 60.2 57.1 - 33.2 40.0 50.0 35.2

CH-11-ψ 31.8 8.6 83.6 91.0 76.0 77.8 - 84.5 65.8 94.5

CH-88-ψ 16.9 3.9 63.2 66.7 62.6 59.8 - 68.2 53.5 76.7
6

Ada-11-ψ 12.5 3.5 70.6 66.0 63.0 59.7 - 75.7 34.1 87.9

Ada-88-ψ 0 0 39.0 24.9 38.5 30.6 - 52.9 12.1 49.8

CH-11-ψ 36.9 48.1 94.1 96.3 90.8 93.7 83.9 - 84.2 92.1

CH-88-ψ 20.0 16.3 74.2 69.9 70.0 74.6 72.5 - 60.2 66.0
7

Ada-11-ψ 21.3 14.0 81.9 76.3 75.3 79.9 79.6 - 51.6 87.4

Ada-88-ψ 0 0 54.1 29.0 53.9 52.1 49.2 - 15.5 48.4

CH-11-ψ 39.4 70.8 91.6 93.2 93.4 89.5 57.9 55.9 - 82.6

CH-88-ψ 15.0 39.0 47.4 56.2 74.0 56.4 36.5 23.4 - 64.6
8

Ada-11-ψ 58.9 44.9 77.5 90.4 80.4 83.7 31.8 26.6 - 60.3

Ada-88-ψ 3.9 1.1 35.1 48.9 58.0 55.4 12.9 8.1 - 23.1

CH-11-ψ 51.0 40.6 94.9 95.4 94.9 92.6 95.2 85.8 92.3 -

CH-88-ψc 29.6 13.9 65.5 67.2 38.8 67.0 83.4 59.6 81.4 -
9

Ada-11-ψ 43.6 10.9 83.3 75.2 88.0 80.9 88.4 72.0 66.8 -

Ada-88-ψ 12.6 0 40.2 33.9 68.8 49.8 58.5 33.3 39.4 -

Considering the high false detection rates, the CHs produced relatively inaccurate

classifiers. Between the AdaBoost classifiers, clearly the one with higher dimensionality

was easier to train. Some of the classes even yielded 0% training error before reaching

the 50 stages. In the next experiment, the results of further training for Ada-88-ψ-50 are

shown.

8.4.2 experiment 2: Ada-88-ψ with low training error

The Ada-88-ψ-50 classifiers were trained further until the training error converged to zero.

This set of classifiers was called Ada-88-ψ-N. The confusion matrix is presented in table

8.3. The individual hit rates and false detection rates for each classifier are listed in

appendix C, tables C.5 and C.6.

The hit rates (in italics) were below 50% for digits 2,3 and 5. The larger false detections

(in bold) can, in many cases, be attributed to the fact that the feature set is invariant to

mirroring and it is rotation invariant. For example, there is a large error associated with

the pair 2-5. The error is smaller than it would be with printed characters because there

are handwritten styles for digit 2 that presents at least two different patterns (a curled 2

opposed to a straight 2).

The overall results for the three sets of classifiers trained using AdaBoost (including
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Table 8.3: Overall Confusion Matrix for Ada-88-ψ-N.

predicted

A
ct

u
a
l
cl

a
ss

0 1 2 3 4 5 6 7 8 9

0 87.76 0 3.57 0.82 0.31 2.35 0.71 0.41 2.24 1.84
1 0 92.6 0.18 2.2 0.09 1.5 0 0.35 3 0.09
2 5.41 1.5 50.5 5.61 7.72 10.62 3.21 6.81 6.01 2.61
3 0.59 0.69 10.00 59.5 1.68 8.51 3.47 2.48 10.89 2.18
4 0.61 0.31 12.93 2.14 47.86 5.09 3.46 5.7 11.91 9.98
5 3.36 1.23 18.83 8.63 3.14 39.35 2.47 10.09 8.3 4.6
6 1.04 0.21 5.74 2.61 1.77 1.04 67.12 9.39 1.88 9.19
7 0.39 1.17 6.32 2.14 3.02 3.11 9.44 67.7 0.58 6.13
8 1.33 0.82 4.00 9.03 4.00 5.13 1.23 0.92 69.82 3.7
9 1.88 0.30 2.18 1.88 4.96 2.87 9.32 3.67 2.48 70.47

Table 8.4: Test errors for feature type ψn (90 concurrent classifiers) for the 10000 digits
MNIST test set.

Ada-11-ψ-50 Ada-88-ψ-50 Ada-88-ψ-N
Class Ada 11 feat Ada 88 feat Ada 88 feat. N stag

90 classif. 90 classif. 90 classif.

0 489 169 120
1 435 105 84
2 786 498 494
3 645 463 409
4 717 541 512
5 715 565 541
6 528 408 315
7 339 332 332
8 373 288 294
9 582 333 298

Total(%) 56.09 37.02 33.99

two from experiment 1) are presented in table 8.4. Comparing the three sets, there is a

huge improvement in accuracy for the sets using a larger number of features. Training

beyond the 50 stages improved the error only slightly, from 37% to 34%. The digits that

achieved the best results were 0 and 1. The other digits did not get good accuracy, with

digits 6,7,8 and 9 achieving average hit rates. The worst results were associated with

digits 2,3,4 and 5.

For the best set of classifiers using type ψ features (Ada-88-ψ-N), a ROC curve for

each class is presented (figure 8.4). The ROC curves were based on the joint results of the

9 classifiers per class. If all the 9 classifiers are hits, then that result is plotted as a hit. If

any of the 9 classifiers for that class results in a false detection, then that result is plotted

as a false detection. Because the negative sample sets are finite, the false detections are
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Figure 8.4: ROC curves for each classifier group, Ada-88-ψ-N.

8.4.3 Experiment 3: η features with AdaBoost

In this experiment, three sets of 90 binary classifiers were trained using ηpq feature type,

with 12 and 84 features in the feature set. As per experiment 1 and 2, the first set was

trained with 12 features and up to 50 stages (η-12-50). The second set was trained with 84

features, up to 50 stages (η-84-50). The third set also used 84 features but it was trained

until the training error was virtually zero (η-84-N).

Table 8.5 shows the test results for η with 84 features N stages. The results collected for

this table reflects the system as a whole, choosing the class with the best confidence value

in the case of a draw between two or more classes. The classifiers worked well individually.

The classifiers for the pair 0-1 achieved the best accuracy, with class0−1 false detection at

0.4% and hit rate at 100.0%, and class1−0 false detection at 0.0% and hit rate at 99.9%.

The classifiers for the pair 4-9 achieved the poorest accuracy, with class4−9 false detection

15.1% and hit rate 97.2%, and with class9−4 false detection 13.0% and hit rate 97.0% (the

individual results are presented in tables C.7 and C.8 in the appendix B).

The overall results for the three sets of classifiers are presented in table 8.6. There

was a huge improvement in accuracy from the set of classifiers using 12 features to the

one using 84 features, both using up to 50 stages. Further training the classifiers with
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Table 8.5: Overall Confusion Matrix for η with 84 features (η-84-N).

predicted

A
ct

u
a
l
cl

a
ss

0 1 2 3 4 5 6 7 8 9

0 98.47 0.00 0.00 0.10 0.00 0.31 0.71 0.10 0.31 0.00
1 0.00 98.94 0.18 0.35 0.00 0.18 0.09 0.00 0.18 0.09
2 1.55 1.45 85.76 2.52 1.74 0.48 2.52 1.94 1.74 0.29
3 0.20 0.20 1.68 90.30 0.20 2.48 0.00 2.57 1.19 1.19
4 0.31 0.00 0.81 0.31 89.51 0.61 2.24 1.93 1.02 3.26
5 1.91 0.90 0.56 3.36 0.34 86.88 1.46 1.46 2.80 0.34
6 1.15 0.31 0.84 0.10 0.10 0.73 96.56 0.00 0.21 0.00
7 0.39 0.88 1.07 0.78 0.58 0.10 0.10 94.55 0.19 1.36
8 1.23 1.03 0.41 3.29 3.70 4.62 1.03 1.64 81.93 1.13
9 0.00 0.59 0.30 0.79 10.01 0.89 0.20 5.15 1.68 80.38

84 features improved the accuracy only slightly, from 10.3% to 9.5%. The best results

were achieved with the digits 0, 1, 6 and 7 (all with hit rates larger than 90%). The most

difficult digits were 8 and 9.

Table 8.6: Test errors for feature type ηpq (90 concurrent classifiers) for the 10000 digits
MNIST test set.

η-12-50 η-84-50 η-84-N
Class 50 stages 50 stages N stages

12 features 84 features 84 features

0 114 15 15
1 45 12 12
2 572 144 147
3 258 101 98
4 421 101 103
5 623 119 117
6 35 33 33
7 89 57 56
8 553 179 176
9 424 269 198

Total(%) 31.3 10.3 9.5

For the best set of η classifiers a ROC curve for each class is presented (figure 8.5).

The ROC curves were based on the joint results of the 9 classifiers per class. If all the 9

classifiers are hits, then that result is plotted as a hit. If any of the 9 classifiers for that

class results in a false detection, then that result is plotted as a false detection. The false

detections are plotted as percentages because the negative sample sets are finite.

An interesting observation is that, in many cases during the detection phase, there is

a choice to be made between classifiers. About half of the errors were caused by choosing
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Figure 8.5: ROC curves for each classifier group, η-84-N.

the wrong digit out of two options available. Figure 8.6 shows the number of incorrect

results per class when there was a draw between two or more classifiers. For example, the

error caused by choosing the wrong class from a draw using η-84-N classifiers amounted

to 5.46%, of the total error of 9.5%.

8.5 Discussion

For rotation/scale invariant features (ψs), one would expect that the 6s and the 9s should

be almost indistinguishable for this set of features, as the features are rotation invariant.

The same for 2s and 5s, as the features are also mirroring invariant (a 2 may look like a 5

if it is upside down and mirrored). What the experiment demonstrates is that there are

different patterns for these numbers for handwritten digits. One can hypothesise that the

hand creates different patterns when writing these digits (for example the bottom strike

of the 9s tend to be longer than the upper strike of the 6s).

For feature type ηs the results were much better, mainly due to the fact that without

the rotation invariance, these features present a better discrimination power than feature

type ψ. The best result was just below 10% error rate. The results for the two types of

feature are summarised in figure 8.7, where the accuracy per class can be compared.

One question raised during the experiments was: are there features that are being
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chosen by AdaBoost more often than others? If a group of features were not being chosen

at all, that would indicate that the set was over-representing the samples. The distribution

of the usage of features for both ηpq and ψn is presented in figures 8.8 and 8.9. These figure

were produced by counting the number of weak classifiers that use a certain feature in each

of the 90 classifiers. The figures show that the features were all used by AdaBoost and were

distributed, with few exceptions. For the ηpq features, feature number 7 (corresponding

to η03 for the larger square area of the image) was the most used feature. For the ψn

features, feature number 1 (corresponding to ψ1 for the larger disc of the image) was the

most used feature. There is also a visible cycle in the figures, indicating that for ηpq,

features of orders 2 and 3 were used more often. For the feature type ψn, features of lower

orders were used more often than higher orders.

One important aspect about the nature of images is illustrated in figure 8.10. Samples

from the MNIST test set that can make a smooth transition between two digits were

collected. For instance, a well handwritten 9 is very different than a 4. But when writing

them quickly, one might fail to join the upper part of the digits 9 and straighten the

bottom part in such a way that it looks like a digit 4. In practice, there is no defined

boundary between some of the pairs of the handwritten digits, which explains part of the

misclassifications. In the experiments, the sets were used rigorously according to the stan-

dard training approach, i.e., no additional training samples were created by distortion and
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no changes were made to the original MNIST images. Our training had a very low error

rate (effectively 0%), and yet the test achieved poor results compared to the literature.

However, no overfitting seems to have happened, as the test errors keep improving with

the use of more stages in the classifiers.

A system based on moment invariants as described in this chapter is useful as a rapid

first stage of handwritten digit recognition system. The first stage can identify the easier

cases, and where there is a draw, a second stage of the system is put to work. Notice that,

by limiting the number of stages in each cascade used at detection, most of the classifiers

find the digit they are trained on, with the penalty of more false detections.

The experiments showed that there are intersections between competing classifiers that

were not well defined due to a lack of samples. For example, the fact that classifiers 9-4

and 4-9 2 were both positive for an unknown character shows that there were areas of

uncertainty that could not be trained (figure 8.11). With more samples, these areas can

be minimised, but it is difficult to eliminate them completely. The intersection between

classifiers indicates that the ambiguity between certain characters cannot be completely

overcome with moment invariants.

Heuristics can play an important role in helping to eliminate misclassifications. In

many cases, it was observed that, by adding another criteria to the set of moment invari-

ants, it is possible to solve some of the ambiguities. It is possible to estimate the angle of

2Digit 9 trained with negative samples of digit 4 and vice-versa
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Figure 8.8: Distribution of the feature type usage per class for Ada-88-ψ-N.
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Figure 8.9: Distribution of the feature type usage per class for η-84-N.

the digit by using the approach described in Hu (1962). It is also possible to determine

which part of the image contains more pixels. While keeping the rotation invariance, it is

possible to align the digit and improve the chances of a correct classification.

Despite the performance in comparison with other methods’ results, the moment in-

variants extraction method used here still has its merits. The η features are scaling

invariant. The ψs are scaling and rotation invariant. Both features can be computed

from the same set of SATs, which makes it possible to run real-time applications. A

combination of the two features can potentially make a stronger method.
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8.6 Summary

Two feature extraction methods for handwritten digits based on moment invariants were

experimentally tested against MNIST. The η feature type (scale invariant but rotation

non-invariant), achieved better results than the ψ type (scale and rotation invariant).

The experiments showed that, for handwritten digits, the CHs can only be used as a

rough classifier.

The discrimination power of the moment invariants set up to the 4th order is not

enough to train classifiers that can work reliably on their own, as all the methods tested

are limited in accuracy. The best results, achieved with η feature types and 84 dimensions,

was just below 10% error rate. Due to the computational characteristics and low training

error, the methods can potentially be used as a first stage on a slower, more sophisticated

and accurate application.

The main advantages of these feature extraction methods are speed and invariance to

scaling. A promising future development is the combination of the two types of feature,

as they are extracted from the same SATs.

Intriguingly, the training errors are very small for two groups of classifiers. There

is no indication of overfitting, as the more training is carried out, the better the test

error. Other training methods that do not yield such a small training error can be used

to compare the accuracy with the AdaBoost algorithm. It would also be useful to train

the same set of features with multiclass AdaBoost algorithms, recently discussed in the

literature (Sun et al., 2006; Zhu et al., 2006).

Figure 8.12: Hypothetical handwritten digits showing a gradual transition between certain
digits.
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Chapter 9

A Model for a Mobile Cluster

Using Parallel Cascade Classifiers

This chapter describes the use of parallel machines to achieve better performance in ob-

ject detection. Since the training algorithms were discussed before, this chapter limits the

scope to the parallelisation of the detection phase using multiple cascades. Parallelisation

can help to solve problems such as the need to run multiple separate classifiers. Multi-

ple classifiers may be necessary, either because one wants to detect completely different

objects simultaneously, or because an object needs different classifiers due to rotation or

articulation.

Based on preliminary results, gathered from the deployment of two Beowulf clusters

described in section 3.4, a mobile platform built with off-the-shelf components (hardware

and software) is proposed. This platform can be fitted in a robot, car, backpack etc.

A model of the performance of the platform using the Viola-Jones detector is presented.

Simulation results are presented based on preliminary measurements using existing (static)

clusters running Viola-Jones detectors.

In chapter 5, the efficiency of the Viola-Jones method using multiple classifiers for a

simple gesture at various angles of rotation has been analysed. It has been observed that

the use of concurrent cascade classifiers is very efficient because only sub-windows that

are more likely to contain the detectable object are tested by all the cascades.

Standard parallel platforms are not necessarily suitable for real-time applications be-

cause of the limitations in bandwidth, the load balancing among the jobs, and their non-

mobile characteristic. A mobile platform for object detection that can overcome these

limitations is proposed. The platform should have the following characteristics:

• Cheap to build using commodity components.

• Easy to deploy and maintain.

• Low power consumption.
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• Fast communication infra-structure among the processors.

• Allow a camera to be directly attached to the system.

This chapter discusses how these characteristics can be achieved and presents a model for

the efficiency and performance of the proposed platform.

The relevant work discussed in the literature, as well as some preliminary tests with

clusters, have been presented in section 2.3 and 3.3, respectively. This chapter is organ-

ised as follows. Firstly, a discussion about the proposed platform and its limitations is

presented. The next section presents a model for the performance by making specific as-

sumptions about the communication pattern. In the last section, this model is compared

to empirical data obtained by running Viola-Jones detectors on existing clusters.

9.1 A Generic Platform for a Mobile Cluster

Since the first Beowulf cluster has been built (Sterling et al., 1995b), this approach has

been the favourite among engineers and academics due to its flexibility, cost effectiveness,

and performance. The platform proposed in this section follows this trend. However,

good performance can only be achieved if the application’s communication is minimised

(Barbosa et al., 2001; Wilkinson and Allen, 1999). The hardware and software that

compose the platform of the mobile cluster is briefly described next.

The hardware is composed of n processors, an Ethernet switch and a camera (fig-

ure 9.1). The processors are low power consumption boards with built in USB ports and

Ethernet adapters. There are many alternatives to the traditional embedded boards that

include dual fast Ethernet and even Gigabit Ethernet. Mini Ethernet Switches and USB

cameras are nowadays standard devices, easily found in the market.

This cluster can be packed in a relatively small volume and powered by rechargeable

batteries. Given the commercial alternatives available, a cluster with 8 nodes would

occupy a volume of approximately 18000 cm3 (or 18 litres), small enough to fit in a

backpack or to be fitted into a car.

9.2 A Performance Model

9.2.1 Single Cascade

The performance of a single cascade depends on two parameters. The first parameter

is the frame size, which affects mainly the SAT runtime. The second parameter is the

total number of features computed by a set of cascades. These parameters depend on

the cascade structure, as well as on the number of sub-windows being examined by the

detector.
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Figure 9.1: The proposed hardware platform.

The total number of sub-windows is a function of the frame size and two factors, the

scaling factor and the translation factor. The following equation, combining equations 2.6

and 2.7, expresses the number of sub-windows to be examined by a single cascade:

Sub =

n
∑

i=0

(W −M.si)(H −N.si)

t
(9.1)

where: W ,H are the width and the height of the image, respectively. M ,N are the width

and the height of the kernel, respectively. t is the translation factor. s is the scaling

factor. n is the maximum number of times the scaling is computed so that: M.fn < W

and N.fn < H

Each layer in a cascade eliminates a large portion of sub-windows that do not contain

any object, so only a few sub-windows ever reach the last layer. The first few layers of

the cascades only contain a few features. The last layers may contain several hundred

features. To model the performance of each cascade, it is assumed that the growth of

the number of features per layer is linear (the growth actually depends on the training

constraints). Assuming that the number of sub-windows is fixed for an application (i.e.,
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adopt an adequate value for the scaling and the translation factors), no more than S(x)

sub-windows have to be tested for each layer x of the cascade :

S(x) = 100 ∗ (1 − F )x (9.2)

Where: F is the false elimination rate, a ratio of false sub-windows eliminated by layer

x.

Actual figures can vary greatly depending on the image’s nature, as well as on the

training process. Figure 9.2 shows typical curves considering different average false elim-

ination rates.
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Figure 9.2: Percentage of sub-windows per layer.

Despite the fact that each layer has less sub-windows to test, the number of total

feature computations can increase, as each sub-window needs a certain amount of fea-

tures up to layer x. Many classifiers created by AdaBoost using Viola-Jones modified

algorithm tend to increase the number of features per layer. The total number of feature

computations at each layer is plotted in figure 9.3. The total number of features per layer

is:

f(x) = Sub.(1 − F )x.(f0 + C.x) (9.3)

Where: f0 is the initial number of features in layer 0, Sub is the total number of sub-

windows for a given frame (for a fixed translation and scaling factors) and C is a constant.

Finally, the sum of the features computed up to a certain layer is given by equation 9.4

and plotted in figure 9.4. Of the total number of feature computations at the end of a
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Figure 9.3: Features per layer for Sub = 1000000, f0 = 3 and C = 10.

frame’s detection, a large portion is done in the early stages. However, as seen in figure 9.2,

the total number of computations decrease if the classifier is eliminating false sub-windows

very aggressively.

St(x) =
x

∑

l=1

Sub.(1 − F )l.(f0 + C.l) (9.4)

9.2.2 Concurrent Cascades

A simple geometric decomposition (or data decomposition as presented in section 2.3.4,

see figure 2.8) for the parallel classifiers would not work well in this model. Once a SAT is

computed, the classifier has to be used in a number of scales and positions. Some of these

scales would have to overlap the geometric decomposition, so part of the computation

would have to be reorganised. From this point on, it is assumed that the master node has

to broadcast the whole frame (or broadcast a similar structure with information about

the image) to the slaves. It is faster to send the frame rather than sending SATs, even

if that means a repetition of the computation of SATs in the slaves, because the frame

is smaller than its corresponding SAT. The frame can be converted to a 8 bit grey scale

image. Each element in the SAT has to be larger than the elements in the frame to avoid

overflow (greyscale frames uses 1 byte per pixel and SATs use 8 bytes per element).

A single processor is limited to run only a few classifiers with real-time constraints. It

can be shown that Viola-Jones detector is suitable for parallelisation because it is possible

to minimise the communication among the nodes. Cascades can share the same SATs

when running concurrently over the same frame. Figure 9.5 shows that the detector only
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Figure 9.4: % of the features computed up to layer x.

examine the frame’s sub-windows after computing the SAT. The combined runtime (SAT

+ Cascades) determines the frame rates.

. . .
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Figure 9.5: The detector using multiple cascades in one slave node.

Figure 9.6 shows three hypothetical runtime distributions, where the SAT runtime is

constant and is smaller than the runtime of all cascades combined. The frame rate slows

down logarithmically, as shown in figure 9.7. It must be stressed that figure 9.7 shows the

performance of a single processor running concurrent cascades. Looking at the results of

figure 9.7, one can determine what frame rate to expect, given the number of cascades

and the runtime ratio. The figure also shows that for a reasonable frame rate, say between

5 to 10 frames per second, up to 5 cascades can run concurrently in the same node.

In order to show the effects of the computation of weak classifiers in a trained cascade,

the results are plotted in figure 9.8. In this figure, a cascade trained for face detection

was used in images with and without faces (5 frames chosen at random). The cascade
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Figure 9.6: Time distribution for concurrent cascades running on one processor.
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Figure 9.7: Frame rate for concurrent classifiers running on one processor.

has 20 layers, it is trained with a kernel of 24x24 pixels. The figure shows that, in the

first layers, a large number of sub-windows are processed with a small number of weak

classifiers. In the last layers, a small number of sub-windows are processed by a large

number of weak-classifiers. The results fit those presented before in figure 9.4.

A single processor is used to measure the effect of adding cascades to the detector,

shown in figure 9.9. The theoretical curve was plotted for the 1:1 ratio for comparison

with the theoretical figure 9.7. The frame rate depends only on the ratio of the runtimes

for the SAT and the cascades. As the runtime of the cascades are determined by the

total number of features computed, the scaling factor Sf and the translation factor Tf

can be adjusted to achieve a certain frame rate. However, since both factors influence the

accuracy of the cascade a compromise has to be met.
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9.2.3 Communication

This section briefly discusses the communication issues that arise from using a Beowulf

cluster.

The time to send one frame over Ethernet is at least:

Tsend =
8.H.W.ε

R
(seconds) (9.5)

where: H and W are the height and width of the frame in pixels, R is the Ethernet

bandwidth in bps and ε is the efficiency of the communication.

In practice, there is a latency time (Wilkinson and Allen, 1999) associated with every

data transmission, making every frame broadcast longer than the theoretical limit for a

given Ethernet infrastructure. The network protocols themselves can impose an overhead

(error correction, layering etc) and the MPI implementation of the broadcast command

can vary from platform to platform.

Once a frame is received, each slave node can proceed to compute the SAT. In the case

of the original Viola-Jones method, one SAT suffices, as long as only upright Haar-like

features are used. However, using other SATs to achieve contrast stretching, to extract

tilted Haar-like features or to compute moment invariants, several SATs are necessary (as

discussed in chapters 2, 6 and 7). The time to compute nSAT SATs is:

Tcompute =
H.W.nSAT

P
.fSAT (seconds) (9.6)

where: P is the processor speed inHz and fSAT is a correction factor to convert Tcompute to

seconds. The factor fSAT is dependent on the architecture and it estimates the equivalent

number of operations needed for the computation of the SATs considering all overheads

(such as copying the image to a memory buffer, converting it to grey-scale, and correction

factors for the features). The factor fSAT can be estimated by taking the time to compute

a SAT using a particular architecture.

Measurements were carried out on two existing Beowulf type clusters at Massey Uni-

versity. The first one is called Sisters and is composed of 8 dual processors connected via a

single Gigabit Ethernet switch. The second one is called Helix and is composed of 64 dual

processors (most nodes are similar to the Sisters’ nodes), but each node has two Gigabit

Ethernet adapters. The internal LAN is structured with 7 Gigabit Ethernet switches. A

thorough description of the topology and performance of these clusters can be found in

section 3.4.

The broadcasting times to send frames to up to 16 nodes from the master node us-

ing MPICH1 were measured. Measurements were repeated three times, regarding the

broadcasting of 1000 frames and took the average time to send one frame. Two typical

1MPICH is an open source implementation of MPI
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frame sizes were used: 640x480 and 320x240 pixels. The results are plotted in figure 9.10.

The results show that the times vary for different number of slave nodes. The MPICH

broadcast is not a true broadcast and it is a blocking call. The broadcast times on Sisters

are longer than on Helix because the better quality switches used on Helix makes the la-

tency shorter. Also Helix’s nodes have two adapters each, speeding up the communication

among a larger number of nodes.
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Figure 9.10: Time to broadcast a frame.

9.3 Implementing a mobile cluster using mini-ITX boards

A cluster with four nodes was built based on the proposed platform presented in section

9.1 (figure 9.11). The boards are relatively small (17x17 cm) and have a low power

consumption (around 25 watts at full speed). The boards have dual fast Ethernet (100

Mbps), which allows them to use two different communication channels, and each board

has 1 CPU (VIA C3/Eden 1000 MHz) with 512 MB RAM. The operating system is a

modified Linux (kernel 2.6) with OpenCV library installed.

The communication between the nodes used simple sockets due to the high latency

of MPICH shown in figure 9.10. Instead of using the MPI broadcast, a simple protocol

based on UDP was used. This allows the implemention of a true broadcast, as opposed

to the structured broadcast implemented in MPICH (Gropp, Lusk and Skjellum (1999)).

The time to transfer images is always faster than transferring their SATs (SATs have

the same image resolution, but they need more bytes per pixel). If the images are broad-

cast, the computation of the SATs needs to be repeated in every slave node. Two scenarios

may be considered:
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Figure 9.11: A mobile cluster.

Table 9.1: Results for the broadcasting times and SAT runtimes.

Image Size Image Transfer SAT Transfer SAT
Time (ms) Time (ms) Runtime (ms)

320x240 11.1 88.7 0.83
640x480 27.4 219.2 3.35
800x600 43.3 346.4 5.26

• Scenario 1: Images are broadcast by the master node. The slave nodes compute

both the SAT and the cascades.

• Scenario 2: The master node computes a SAT and broadcast it to the slave nodes.

The slave nodes only run cascades.

A comparison between the image transfer times and the SATs computation times is

presented in table 9.1. The results confirm the assumptions made in section 9.2 that it is

faster to send images and compute SATs locally, even if that means repeating the SATs

computation in each node. Scenario 1 is more suitable to be used by Beowulf clusters.

With the development of faster networks, scenario 2 may become more attractive.

However, such communication speeds are not likely to occur without a corresponding

improvement in the CPU speed, in which case, scenario 1 is still better suited to the

Viola-Jones method. In order to make scenario 2 work for the described mini-cluster, the

network has to work at bandwidth rates of at least 10Gbps (about 100 times faster than

fast Ethernet). For example, assuming that the frame size is 320x240 pixels, sending a
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SAT takes approximately 89 ms. The computation of one SAT for the same size takes

only 0.83 ms.

The cascade can demand a lot of the available cputime. Using the face detection

from OpenCV, frames with 320x240 pixels can take up to 500 ms, if the scaling factor

is 1.1. If larger scaling factors are used, the time can drop. For example, for a scaling

factor of 1.6 the cascades runtime drop to about 100 ms . That gives an indication of the

limited number of cascades that can run in each node (the 1GHz CPUs are relatively slow

compared to CPUs used in desktop computers).

Finally, the position of the detected object has to be sent back to the master. Usually,

only a few sub-windows present positive results. The amount of data is so small that

the time to send this information is almost the same as the latency. The latency for this

mini-cluster was measured at around 6ms 2 , negligible in relation to the cascade runtimes

or the broadcasting times.

9.3.1 Speedup

Speedup can be analysed taking into consideration the serial and the parallel parts of the

application. If the number of nodes and the percentage of the serial part of an application

are known, it is possible to estimate the maximum speedup with Amdahl’s Law and with

Gustafson’s Law (equations 2.10 and 2.11, respectively (Wilkinson and Allen, 1999)).
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Figure 9.12: Parallelisation scenario: runtime and communication times.

Using the parallelisation model discussed above, the detection task is divided in four

2The mobile cluster uses UDP, rather than MPICH
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main parts: broadcasting, SATs, cascades and return of the position of the objects (figure

9.12). The master is assumed to be dedicated to acquire frames via a web camera. The

runtimes of each individual part may vary considerably and they can be estimated using

the approach presented in the previous section. As an example, suppose that a detection

applications needs 32 cascades on a single processor with an image size of 320x240 pixels.

Assuming the times discussed in the previous section, the SAT takes 0.83 ms and each

cascade takes on average 100 ms (a fair estimate considering that some cascades are faster

than others). The total runtime takes 0.83 + 100 * 32 = 3200.83 ms in one processor.

In order to divide the cascades among two or more nodes, the extra time to make

the broadcast and the return of the results needs to be considered. Assuming that the

communication times are approximately the ones gathered in the previous section, the

image broadcast takes 11.1 ms and the return of results about 6 ms per node. Therefore,

the proportion between the serial and the parallel parts are:

serial portion: 0.83 + 11.1 + 6 = 17.93 ms

parallelisable portion: 100 * 32 = 3200 ms

According to Amdahl’s law (Wilkinson and Allen, 1999), the maximum speedup MA

for 32 nodes is: MA =
32

1 + (32 − 1) ∗ (17.93/3217.93)
= 27.31

And according to Gustafson’s law (Wilkinson and Allen, 1999), the maximum speedup

MG for 32 nodes is:

MG =
17.93

3217.93
+ (1 − 17.93

3217.93
)32 = 31.83

This difference in maximum speedup is explained by the fact that the problem size is

not very big in relation to the communication times. As the number of cascades increases,

the maximum speedup given by Amdahl’s law gets closer to the one given by Gustafson’s

law because the serial portion is fixed for a certain image size.

A minimum of one cascade must run on a given node. Figure 9.13 shows examples

with 32, 16, 8 and 4 cascades. The speedup is almost linear, reaching 3.5 for a 4 processors

cluster running 4 cascades.

The cascade runtimes are assumed to be evenly distributed among the nodes. However,

as seen in figure 9.7, if the cascades are detecting the same objects at different angles,

the runtime does not increase linearly. This suggests that the distribution of the cascades

among the nodes should be based on specific information about the cascades behaviour

or that dynamic load balancing is used.

9.4 Summary

A simple model for the performance of a mobile platform was discussed, based on Beowulf

clusters running parallel Viola-Jones detectors. The model predicts the number of nodes
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Figure 9.13: Speedups with different number of cascades and processors. The ratio be-
tween the parallel and serial parts are derived from the numbers gathered in section 9.3

.

needed for detection based on Viola-Jones method, based on parameters such as the

number of cascades, the number of weak classifiers, the frame size (and scaling factors),

and the processing capacity of each node.

The preliminary results fit well with the model. For example, the model explains the

performance of running concurrent cascades, each detecting the same object at different

angles, on one processor.

The parallelisation strategy for a cluster has to ensure that the communication times

are minimised. Function decomposition can be easily implemented, based on the fact that

each cascade can work independently, but cascades share one or more SATs. The results

showed that if fast Ethernet (100 Mbps) is used, it is faster to broadcast the frames and

recompute SATs in each node.

An interesting extension of this work involves dynamic load balancing. It has been

shown that the cascades that are not detecting objects tend to run faster than those that

are detecting one or more objects. After a few frames, it is possible to determine which

cascades are spending more CPU time. Slower cascades can be relocated to nodes that

are less occupied, optimising the maximum speedup and achieving a higher frame rate.
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Chapter 10

Final Conclusions

10.1 Summary

The main contribution of this thesis is the development of a new approach for real-time de-

tection using Moment Invariants and SATs. The feature extraction method, called CDMI,

computes moments from concentric discs of the image. This increases the dimensionality

of the moment invariants feature set, without the use of high order moments (this work

used low order moments up to the 4th order). This approach allows to enrich the feature

set without the usual noise problems related to high order moment invariants. The feature

set holds the rotation invariance and scaling invariance properties and the use of SATs

allows to extract features from reasonably sized frames very rapidly.

Other original contributions include:

Assessment of the Viola-Jones method for object detection with partial occlusions has

been carried out. The experiments showed that random patches on the training images

can successfully simulate partial occlusions, extending the range of detection classifiers.

Hand detection using the Viola-Jones method has been analysed. In the training

process, modified samples of hand images forced the training to concentrate on the hand’s

region. The performance of multiple cascades focusing on different angles of rotation was

also assessed.

A new rotation approach for Haar-like features, called PEF, has been proposed. In

this approach classifiers can be converted to certain angles, with the assistance of special

SATs. The values of two features are combined to detect objects at arbitrary angles,

without specifically training for those angles. Tilted SATs were used to measure the

errors of conversions to 45o. The experiments showed that cascades converted using tilted

SATs are accurate enough to yield reliable cascades at angles multiple of 45o, without any

extra training. A new SAT computing Haar-like features at angles of 26.5o (and 63.5o)

has also been evaluated.

Real-time handwritten digit recognition has been tackled using the new feature extrac-
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tion method (CDMI) and its variant (η features using concentric squares). The results,

assessed with the help of the MNIST database, were encouraging. The new feature ex-

traction methods allow for fast training, as the dimensionality of the feature set is limited

to less than a hundred. Other advantages of the method include fast detection, scaling

invariance, and in the case of the CDMI, rotation invariance.

The parallelisation of detection algorithms based on cascade classifiers has been dis-

cussed, showing that good speedups can be achieved using a simple frame broadcast to

the slave nodes. The fact that SATs can be shared by more than one cascade within

the same node makes the parallelisation efficient. A model for a mobile cluster has been

proposed in order to estimate the performance, given the number of cascades, the number

of nodes, scale factor, translation factor, and the frame resolution. Concurrency can be

made efficient for cascades that are classifying the same type of object being detected at

different angles, because usually only one cascade has to complete the computation of all

its layers.

10.2 Limitations

The training was limited by the simplicity of the implementations of AdaBoost, using

thresholds as weak classifiers. The concepts discussed here can be extended by using

other variants of the AdaBoost algorithm proposed by Freund and Schapire (1996). For

example, the accuracy of the digits classification was, in part, limited by the approach used

to combine 90 binary classifiers, instead of using a more sophisticate multiclass approach.

The face classifiers were limited to frontal faces and to the negative samples collected

from the web and from other sources (such as the CorelDraw dataset). In the case of

the PEF approach, training was limited by the large number of Haar-like features in the

training set. The CMU-MIT database was only used to assess the performance of the

OpenCV sample cascade converted to angles of 45o. In the case of the CDMI approach,

the discrimination powers of the feature set limited the accuracy of the classifiers, so they

were not assessed using the CMU-MIT database.

Colour segmentation was not included in the scope of this thesis. However, colour

segmentation can improve the accuracy of the hand detection and the face detection by

limiting the region where the features are extracted from.

Although we have demonstrated that both the PEF and the CDMI approaches can

run in real-time, computational optimisation was not the focus of this work. In the

case of CDMI used for face detection, frame rates of less than 1 frame per second were

achieved. The implementation of the Haar-like extraction used for the PEFs involves extra

operations and therefore is slower than the implementation in OpenCV. These include

counting the pixels in the Haar-like features (using lookups to a unit SAT) and verifying

the parity of the position of the vertices of the features.
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10.3 Future Work

Parts of this work can be extended and used in a number of real-time applications, in-

cluding gesture recognition, multiple object detection and some special OCR applications.

Also, the accuracy of the classifiers shown in this work can be improved by pre-processing

the frames in order to speedup the classification. An example is the case of hand detection

and face detection, where colour segmentation can be used.

The CDMI method can benefit from further research using other machine learning

methods. The modified AdaBoost used in the experiments proved to be robust and

converged to low training errors, but it is important to test other methods to improve

results. Other forms of AdaBoost (such as parallel and tree cascades (Lienhart, Liang and

Kuranov, 2003)) can further examine the accuracy issues related to the CDMI approach.

The clusterisation of the samples can make the training process run faster and produce

more accurate results. NNs can be used to compare to the ones presented in this thesis.

Finally, a study in multi-class training method for the handwritten digit recognition can

compare the results obtained with the multiple binary approach adopted in this thesis.

Another area of interest is the use of recently proposed moments such as Chebyshev

Moments. The properties of these moments allowed the reconstruction of images to be

quite accurate (see for example Mukundan et al. (2001) and Mukundan (2005)), showing

that the discrimination powers can be better than Hu’s moments for detection applications.

At the time of writing, there was not any known method for rapidly computing the

Chebyshev moments in the multiresolution approach (scanning sub-windows). A fast

method using FPGAs was proposed by Kotoulas and Andreadis (2006), but there is not

any known solution similar to SATs, in which the extraction process can gain performance

from a pre-computed structure.
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Appendices
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Appendix A

Implementation of SATs at 26.5o

Computing features for 26.5o

The computation of the features using a special SAT for angles multiple of 26.5o requires

a number of cases to be examined. The position of the fourth point needs to be aligned

with the other two points, in order to find the correct value for the area. While in the

case of the normal and the tilted integral images the solution is trivial, in the 26.5o SATs

the position may depend on the parity of the positions of the initial three points (figure

A.1).
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Figure A.1: SAT for 26.5o.

Given four points of the SAT in figure A.1, either the point 4 needs displacement, or

both point 4 and point 3 need displacement. If these corrections are not applied, an entire

line of pixels could be mistakenly added or subtracted from the intended area. Of the

64 cases, 34 cases do not need any correction, while the remaining 30 cases do. Separate

areas need to be treated separately, depending on the feature type.
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Given pt1, pt2, pt3, pt4 and the width and height of the feature, the 34 cases that do

not need displacements are:

(odd, odd)(odd, odd)(odd, odd)

(odd, odd)(odd, odd)(odd, even)

(odd, odd)(odd, odd)(even, odd)

(odd, odd)(odd, odd)(even, even)

(odd, odd)(odd, even)(odd, odd)

(odd, odd)(odd, even)(even, odd)

(odd, odd)(even, odd)(odd, odd)

(odd, odd)(even, odd)(odd, even)

(odd, odd)(even, even)(odd, odd)

(odd, even)(odd, odd)(odd, even)

(odd, even)(odd, odd)(even, even)

(odd, even)(odd, even)(odd, odd)

(odd, even)(odd, even)(odd, even)

(odd, even)(odd, even)(even, odd)

(odd, even)(odd, even)(even, even)

(odd, even)(even, odd)(odd, even)

(odd, even)(even, even)(odd, odd)

(odd, even)(even, even)(odd, even)

(even, odd)(odd, odd)(even, odd)

(even, odd)(odd, odd)(even, even)

(even, odd)(even, odd)(odd, odd)

(even, odd)(even, odd)(odd, even)

(even, odd)(even, odd)(even, odd)

(even, odd)(even, odd)(even, even)

(even, odd)(even, even)(even, odd)

(even, even)(odd, odd)(even, even)

(even, even)(odd, even)(even, odd)

(even, even)(odd, even)(even, even)

(even, even)(even, odd)(odd, even)

(even, even)(even, odd)(even, even)

(even, even)(even, even)(odd, odd)

(even, even)(even, even)(odd, even)

(even, even)(even, even)(even, odd)

(even, even)(even, even)(even, even)

For these 34 cases, point 4 is:
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pt4x = pt3x+ width

pt4y = pt2y + heigh

The other 30 cases are:

(odd, odd)(odd, even)(odd, even)

pt3y = pt3y − 1;

pt4x = pt3x+ width;

pt4y = pt2y + height− 1;

(odd, odd)(odd, even)(even, even)

pt4x = pt3x+ width− 1;

pt4y = pt2y + height;

(odd, odd)(even, odd)(even, odd)

pt4x = pt3x+ width;

pt4y = pt2y + height+ 1;

(odd, odd)(even, odd)(even, even)

pt3y = pt3y − 1;

pt4x = pt3x+ width;

pt4y = pt2y + height;

(odd, odd)(even, even)(odd, even)

pt4x = pt3x+ width− 1;

pt4y = pt2y + height;

(odd, odd)(even, even)(even, odd)

pt2x = pt2x− 1;

pt4x = pt3x+ width− 1;

pt4y = pt2y + height;

(odd, odd)(even, even)(even, even)

pt4x = pt3x+ width− 1;

pt4y = pt2y + height;

(odd, even)(odd, odd)(odd, odd)

pt4x = pt3x+ width+ 1;

pt4y = pt2y + height;
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(odd, even)(odd, odd)(even, odd)

pt3y = pt3y + 1;

pt4x = pt3x+ width;

pt4y = pt2y + height+ 1;

(odd, even)(even, odd)(odd, odd)

pt3y = pt3y + 1;

pt4x = pt3x+ width;

pt4y = pt2y + height+ 1;

(odd, even)(even, odd)(even, odd)

pt4x = pt3x+ width;

pt4y = pt2y + height+ 1;

(odd, even)(even, odd)(even, even)

pt4x = pt3x+ width;

pt4y = pt2y + height+ 1;

(odd, even)(even, even)(even, odd)

pt4x = pt3x+ width;

pt4y = pt2y + height+ 1;

(odd, even)(even, even)(even, even)

pt3y = pt3y − 1;

pt4x = pt3x+ width;

pt4y = pt2y + height;

(even, odd)(odd, odd)(odd, odd)

pt3y = pt3y + 1;

pt4x = pt3x+ width;

pt4y = pt2y + height;

(even, odd)(odd, odd)(odd, even)

pt4x = pt3x+ width;

pt4y = pt2y + height− 1;

(even, odd)(odd, even)(odd, odd)
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pt4x = pt3x+ width;

pt4y = pt2y + height− 1;

(even, odd)(odd, even)(odd, even)

pt4x = pt3x+ width;

pt4y = pt2y + height− 1;

(even, odd)(odd, even)(even, odd)

pt4x = pt3x+ width;

pt4y = pt2y + height;

(even, odd)(odd, even)(even, even)

pt3y = pt3y − 1;

pt4x = pt3x+ width;

pt4y = pt2y + height− 1;

(even, odd)(even, even)(odd, even)

pt3y = pt3y − 1;

pt4x = pt3x+ width;

pt4y = pt2y + height− 1;

(even, odd)(even, even)(even, even)

pt4x = pt3x+ width− 1;

pt4y = pt2y + height;

(even, even)(odd, odd)(odd, odd)

pt4x = pt3x+ width+ 1;

pt4y = pt2y + height;

(even, even)(odd, odd)(odd, even)

pt3y = pt3y − 1;

pt4x = pt3x+ width+ 1;

pt4y = pt2y + height− 1;

(even, even)(odd, odd)(even, odd)

pt4x = pt3x+ width+ 1;

pt4y = pt2y + height;
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(even, even)(odd, even)(odd, odd)

pt3y = pt3y + 1;

pt4x = pt3x+ width;

pt4y = pt2y + height;

(even, even)(odd, even)(odd, even)

pt4x = pt3x+ width;

pt4y = pt2y + height− 1;

(even, even)(even, odd)(odd, odd)

pt4x = pt3x+ width+ 1;

pt4y = pt2y + height;

(even, even)(even, odd)(even, odd)

pt3y = pt3y + 1;

pt4x = pt3x+ width;

pt4y = pt2y + height+ 1;
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Appendix B

Moments with SATs

B.1 Deriving The Equations For µpq From SATs (mpq)

For order 1,1 µ11 can be derived as follows:

µ11 =
∑

x

∑

y

(x− x̄)1(y − ȳ)1f(x, y)

=
∑

x

∑

y

(xy − xȳ − x̄y + x̄ȳ)f(x, y)

=
∑

x

∑

y

xyf(x, y) −
∑

x

∑

y

xȳf(x, y) −
∑

x

∑

y

x̄yf(x, y) +
∑

x

∑

y

x̄ȳf(x, y)

Both x̄ and ȳ are constant for a sub-window. Also each of the four factors can be

expressed as a function of the corresponding Summed-area Table:

µ11 = m11 − ȳm10 − x̄m01 + x̄ȳm00

= m11 −
m01m10

m00
− m10m01

m00
+
m01m10m00

m2
00

= m11 −
m01m10

m00

(B.1)

Analogously, the other µpq are derived:
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For µ30 and µ03:

µ30 =
∑

x

∑

y

(x− x̄)3(y − ȳ)0f(x, y)

=
∑

x

∑

y

(x3 − x̄x2 + x̄2x− x̄3 − 2x2x̄+ 2xx̄2)f(x, y)

=
∑

x

∑

y

(x3 − 3x̄x2 + 3x̄2x− x̄3)f(x, y)

= m30 − 3x̄m20 + 3x̄2m10 − x̄3m00

= m30 −
3m10m20

m00
+

3m2
10m10

m2
00

− m3
10

m2
00

µ30 = m30 −
3m10m20

m00
+

2m3
10

m2
00

(B.2)

and by symmetry, the equation for µ03 is:

µ03 = m03 −
3m01m02

m00
+

2m3
01

m2
00

(B.3)

For µ31 and µ13:

µ31 =
∑

x

∑

y

(x− x̄)3(y − ȳ)1f(x, y)

µ31 =
∑

x

∑

y

(x2 − 2xx̄+ x̄2)(xy − xȳ − x̄y + x̄ȳ)f(x, y)

µ31 =
∑

x

∑

y

(x2 − 2xx̄+ x̄2)(xy − xȳ − x̄y + x̄ȳ)f(x, y)

µ31 =
∑

x

∑

y

(x3y − x3ȳ − x2yx̄+ x2x̄ȳ − 2x2yx̄+ 2x2x̄ȳ + 2xyx̄2

− 2xx̄2ȳ + xyx̄2 − xx̄2 − yx̄3 + x̄3ȳ)f(x, y)

µ31 = m31 −m30ȳ −m21x̄+m20x̄ȳ − 2m21x̄+ 2m20x̄ȳ

+ 2m11x̄
2 − 2m10x̄2ȳ +m11x̄

2 −m10x̄
2ȳ −m01x̄

3 + x̄3ȳ
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µ31 = m31 − ȳm30 + 3x̄ȳ(m20 −m21) + 3x̄2(m11 − ȳm10) + x̄3(ȳm00 −m01)

(B.4)

and by symmetry, µ13 is:

µ13 = m13 − x̄m03 + 3x̄ȳ(m02 −m12) + 3ȳ2(m11 − x̄m01) + ȳ3(x̄m00 −m10)

(B.5)

For µ40 and µ04:

µ40 =
∑

x

∑

y

(x− x̄)4(y − ȳ)0f(x, y)

µ40 =
∑

x

∑

y

(x2 − 2xx̄+ x̄2)2f(x, y)

µ40 =
∑

x

∑

y

(x4 − 4x3x̄+ 6x2x̄2 − 4xx̄3 + x̄4)f(x, y)

µ40 = m40 − 4x̄m30 + 6x̄2m20 − 4x̄3m10 + x̄4m00

(B.6)

and by symmetry, µ04 is:

µ04 = m04 − 4ȳm03 + 6ȳ2m02 − 4ȳ3m01 + ȳ4m00

(B.7)
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B.2 4th Order Moment Invariants Derivation

The formulae used to compute 3rd and 4th order moment invariants were not explicitly

derived in Flusser (2000a). Using the notation developed by Flusser, the independent set

of moment invariants up to the 4th order is:

2rd order:

ψ1 = c11 = φ1

3rd order:

ψ2 = c21c12 = φ4

ψ3 = Re(c20c
2
12) = φ6

ψ4 = Im(c20c
2
12)

ψ5 = Re(c30c
3
12) = φ5

ψ6 = Im(c30c
3
12) = φ7

4th order:

ψ7 = c22

ψ8 = Re(c31c
2
12)

ψ9 = Im(c31c
2
12)

ψ10 = Re(c40c
4
12)

ψ11 = Im(c40c
4
12)

Where ψn are Flusser’s moments, φn are Hu’s moments, and

cpq = (x+ yi)p(x− yi)qf(x, y) with i =
√
−1.

The moments ψ1,ψ2,ψ3,ψ5 and ψ6 correspond to 5 independent Hu’s moments (Hu,

1962). Flusser (2000a) wrote ψ4 explicitly in terms of ηpq. The remaining five 4th order

moments’ are derived next.

ψ7 = c22 =
∑

x

∑

y

(x+ iy)2(x− iy)2f(x, y)

=
∑

x

∑

y

(x2 + y2i2 + 2xyi)(x2 + y2i2 − 2xyi)f(x, y)

=
∑

x

∑

y

(x4 − x2y2i2 − 2x3yi− x2y2 + y4 + 2xy3i+ 2x3yi− 2xy3i+ 4x2y2)f(x, y)
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=
∑

x

∑

y

(x4 + y4 + 2x2y2)f(x, y)

=
∑

x

∑

y

x4f(x, y) +
∑

x

∑

y

y4f(x, y) +
∑

x

∑

y

2x2y2f(x, y)

ψ7 = η40 + η04 + 2η22

(B.8)

For ψ8 and ψ9, one needs to compute c31c
2
12 and split the real and imaginary parts:

c31 =
∑

x

∑

y

(x+ yi)3(x− yi)f(x, y)

c31 =
∑

x

∑

y

(x2 + y2i2 + 2xyi)(x+ yi)(x− yi)f(x, y)

c31 =
∑

x

∑

y

(x2 + y2i2 + 2xyi)(x2 − y2i2)f(x, y)

c31 =
∑

x

∑

y

(x4 − x2y2i2 + x2y2i2 − y4i4 + 2x3yi− 2xy3i3)f(x, y)

c31 =
∑

x

∑

y

(x4 − y4 + 2x3yi+ 2xy3i)f(x, y)

c31 = η40 − η04 + 2(η31 + η13)i

c12 =
∑

x

∑

y

(x+ yi)(x− yi)2f(x, y)

c12 =
∑

x

∑

y

(x+ yi)(x2 + y2i2 − 2xyi)f(x, y)

c12 =
∑

x

∑

y

(x3 + xy2i2 − 2x2yi+ x2yi+ y3i3 − 2xy2i2)f(x, y)

c12 =
∑

x

∑

y

(x3 − xy2 − x2yi+ y3i3 + 2xy2)f(x, y)

c12 =
∑

x

∑

y

(x3 + xy2 − x2yi− y3i)f(x, y)

c12 = η30 + η12 − (η21 + η03)i
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The expression c31c
2
12 can be written as:

c31c
2
12 = [η40 − η04 + 2(η31 + η13)i][η30 + η12 − (η21 + η03)i]

2

c31c
2
12 = [η40 − η04 + 2(η31 + η13)i][(η30 + η12)

2 − (η21 + η03)
2 − 2(η30 + η12)(η21 + η03)i]

c31c
2
12 = (η40 − η04)[(η30 + η12)

2 − (η03 + η21)
2] − 4(η31 + η13)(η30 + η12)(η03 + η21)i

2+

2(η31 + η13)[(η30 + η12)
2 − (η03 + η21)

2]i− 2(η40 − η04)(η30 + η12)(η03 + η21)i

Splitting the real and imaginary components, ψ8 and ψ9 can be expressed as:

ψ8 = (η40 − η04)[(η30 + η12)
2 − (η03 + η21)

2] + 4(η31 + η13)(η30 + η12)(η03 + η21) (B.9)

ψ9 = 2(η31 + η13)[(η30 + η12)
2 − (η03 + η21)

2] − 2(η40 − η04)(η30 + η12)(η21 + η03) (B.10)

The two final moments, ψ10 and ψ11, need c40 and c412:

c40 =
∑

x

∑

y

(x+ yi)4f(x, y) =
∑

x

∑

y

(x2 + y2i2 + 2xyi)2f(x, y)

c40 =
∑

x

∑

y

(x4+x2y2i2+2x3yi+x2y2i2+y4i4+2xy3i3+2x3yi+2xy3i3+4x2y2i2f(x, y)

c40 =
∑

x

∑

y

(x4 + y4 − 6x2y2 + 4x3yi− 4xy3i)f(x, y)

c40 = (η40 + η04 − 6η22) + 4(η31 − η13)i

c12 =
∑

x

∑

y

(x+ yi)(x− yi)2f(x, y) =
∑

x

∑

y

(x+ yi)(x2 + y2i2 − 2xyi)2f(x, y)

c12 =
∑

x

∑

y

[(x3 + xy2) − (x2y + y3)i]f(x, y)

c12 = (η30 + η12) − (η21 + η03)i
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c412 = [(η30 + η12)
2 + (η21 + η03)

2i2 − 2(η30 + η12)(η21 + η03)]
2

c412 = (η30 + η12)
4 + (η21 + η03)

4i4 − 6(η30 + η12)
2(η21 + η03)

2

− 4(η30 + η12)
3(η03 + η21)i+ 4(η30 + η12)(η03 + η21)

3i

c412 = (η30 + η12)
4 + (η21 + η03)

4i4 − 6(η30 + η12)
2(η21 + η03)

2

− 4[(η30 + η12)
3(η03 + η21)i− (η30 + η12)(η03 + η21)

3i]

Re(c40c
4
12) (ψ10) is:

ψ10 = (η40 − 6η22 + η04){[(η30 + η12)
2 − (η21 + η03)

2]
2 − 4(η30 + η12)

2(η03 + η21)
2}

+ 16(η31 − η13)(η30 + η12)(η03 + η21)[(η30 + η12)
2 − (η03 + η21)

2]

(B.11)

And Im(c40c
4
12) (ψ11) is:

ψ11 = 4(η40 − 6η22 + η04)(η30 + η12)(η03 + η21)[(η30 + η12)
2 − (η03 + η21)

2]

− 4(η31 − η13){[(η30 + η12)
2 − (η03 + η21)

2]
2 − 4(η30 + η12)

2(η03 + η21)
2}

(B.12)
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Appendix C

Additional Results for Digits

Recognition

This appendix includes tables that, due to space constraints, could not be presented in

chapter 8. The test errors were carried out based on the 10000 MNIST dataset.

C.1 Experiment 1: additional Tables

The false detection results for CH-11-ψ are shown in table C.1. This table was created

running each CH-11-ψ classifier against all the other classes.

Table C.1: CH-11-ψ: false detection rate (%) per classifier.
Negative class

Classifier
0 1 2 3 4 5 6 7 8 9

0 - 7.0 52.7 25.8 15.3 34.6 16.4 15.1 28.2 28.0
1 1.4 - 26.5 27.5 19.3 56.5 9.5 19.9 26.7 21.8
2 42.1 32.7 - 81.7 78.7 86.8 79.7 77.8 79.7 84.2
3 49.0 50.5 92.1 - 77.8 91.0 83.9 81.1 82.0 89.6
4 16.6 28.9 78.0 70.1 - 75.7 75.3 65.9 77.7 83.8
5 50.3 52.9 88.6 82.7 70.6 - 72.0 73.3 79.5 82.3
6 6.2 7.5 51.9 57.0 54.0 48.4 - 64.1 38.9 85.3
7 5.1 13.8 75.0 64.3 56.3 73.3 80.7 - 38.8 73.9
8 66.5 55.5 90.2 85.0 80.5 87.7 63.9 61.9 - 82.2
9 20.3 31.4 71.0 76.5 83.1 72.1 91.3 75.6 71.6 -

The false detection results for CH-88-ψ are shown in table C.2. This table was created

running each CH-88-ψ classifier against all the other classes.

The overall confusion matrix for Ada-11-ψ-50 is shown in table C.3.

The overall confusion matrix for Ada-88-ψ-50 is shown in table C.4.
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Table C.2: CH-88-ψ: false detection rate (%) per classifier.
Negative class

Classifier
0 1 2 3 4 5 6 7 8 9

0 - 0.1 15.9 14.0 7.9 18.7 3.1 2.7 23.2 10.4
1 0.1 - 2.5 2.6 1.2 4.5 0.4 0.7 12.3 0.7
2 13.8 4.4 - 51.1 51.4 56.1 32.2 40.5 50.8 38.0
3 4.2 9.9 40.8 - 33.2 46.0 29.2 25.2 49.8 26.6
4 3.7 0.6 22.4 18.6 - 22.9 23.1 15.6 37.9 45.6
5 6.7 10.8 47.6 43.7 41.8 - 26.0 35.4 48.2 32.0
6 4.9 1.1 33.9 34.1 42.1 32.1 - 45.2 29.2 44.2
7 4.0 2.3 39.0 30.8 32.9 36.5 41.0 - 23.9 29.5
8 1.9 1.5 15.2 22.4 31.2 21.0 11.1 5.2 - 29.9
9 5.8 2.2 24.7 29.1 52.5 28.9 49.7 25.6 47.1 -

Table C.3: Overall Confusion Matrix for Ada-11-ψ-50.

predicted

A
ct

u
al

cl
as

s

0 1 2 3 4 5 6 7 8 9

0 50.1 0.51 4.69 6.53 0.71 11.12 0 0.51 24.9 0.92
1 0.18 61.67 0.18 2.2 0.35 11.54 0 1.85 20.44 1.59
2 2.03 0.48 23.84 13.28 8.62 7.66 3.49 14.92 17.64 8.04
3 0.5 0.5 11.49 36.14 1.09 8.91 3.66 14.46 17.03 6.24
4 1.22 0.41 8.55 2.04 26.99 3.67 1.63 9.27 26.17 20.06
5 3.03 1.68 8.86 14.69 2.35 19.84 0.9 18.5 23.32 6.84
6 0.31 0 4.91 3.03 3.03 0.73 44.89 20.15 3.55 19.42
7 0.19 0.1 4.38 4.09 1.56 1.17 8.17 67.02 2.33 10.99
8 5.24 0.51 6.78 8.73 2.98 7.6 0.41 2.05 61.7 4
9 0.89 0.1 6.34 2.58 5.65 3.07 14.77 11.4 12.88 42.32

Table C.4: Overall Confusion Matrix for Ada-88-ψ-50.

predicted

A
ct

u
al

cl
as

s

0 1 2 3 4 5 6 7 8 9

0 82.76 0 5.92 0.92 0.51 4.08 0.61 0.41 2.35 2.45
1 0 90.75 0.35 2.38 0.09 2.38 0 0.26 3.7 0.09
2 3.39 0.87 51.74 5.62 7.46 11.34 2.42 7.66 7.07 2.42
3 0.3 0.1 11.78 54.16 2.08 10.3 2.57 3.27 13.07 2.38
4 0.31 0.1 12.32 1.73 44.91 6.62 2.95 6.11 14.46 10.49
5 2.13 0.45 20.52 7.51 3.59 36.66 1.79 12.11 10.09 5.16
6 0.73 0.1 6.26 3.24 2.71 1.04 57.41 14.82 2.09 11.59
7 0.29 0.68 6.03 2.53 2.53 2.92 10.31 67.7 0.78 6.23
8 0.51 0.51 3.59 9.14 3.7 6.26 0.62 0.82 70.43 4.41
9 1.68 0.2 2.08 1.39 5.85 3.67 10.01 4.86 3.27 67
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C.2 Experiment 2: additional Tables

These results were collected by running the classifiers individually, using positive and neg-

ative images for which the classifier was trained. The hit rates for ψ-Ada-88-N classifiers

are shown in table C.5. The false detection rates for ψ-Ada-88-N classifiers are shown in

table C.6.

Table C.5: ψ-Ada-88-N: hit rate (%) per classifier.
Negative class

Classifier
0 1 2 3 4 5 6 7 8 9

0 - 99.6 95.7 98.6 98.2 97.4 98.9 98.7 98.7 98.2
1 99.7 - 99.0 98.7 99.0 98.5 99.5 99.1 98.7 99.4
2 96.2 98.2 - 90.5 89.1 87.5 95.3 92.0 91.6 94.7
3 98.5 98.8 90.9 - 93.5 89.2 95.5 95.6 90.5 95.8
4 97.6 99.1 87.9 93.7 - 93.2 92.6 91.4 89.9 89.5
5 95.4 98.2 81.5 85.0 87.0 - 93.7 90.6 88.7 94.0
6 98.1 99.3 93.5 94.9 94.7 94.9 - 91.6 97.3 93.8
7 99.0 98.7 91.5 94.4 93.8 93.1 91.3 - 97.2 92.8
8 96.9 98.7 93.1 89.0 92.2 91.6 96.1 97.0 - 95.9
9 98.2 99.1 94.9 95.5 92.1 95.1 93.1 93.2 97.2 -

Table C.6: ψ-Ada-88-N: false detection rate (%).
Negative class

Classifier
0 1 2 3 4 5 6 7 8 9

0 - 1.2 18.2 8.9 11.3 22.8 5.6 3.7 15.6 8.0
1 1.5 - 9.3 9.4 7.3 13.2 3.5 4.8 9.3 4.9
2 14.7 4.0 - 35.2 39.4 51.2 24.4 26.4 29.4 22.4
3 6.3 4.6 33.4 - 29.4 46.0 20.5 17.1 35.5 18.2
4 7.2 4.3 34.1 22.5 - 37.1 17.6 19.4 28.5 30.6
5 11.3 04.9 43.5 35.5 33.9 - 18.7 23.6 27.3 20.3
6 4.5 2.4 22.6 19.0 27.0 24.6 - 27.9 16.0 28.4
7 5.1 2.9 29.2 20.4 31.7 31.7 26.5 - 16.3 24.4
8 6.7 5.9 21.9 28.6 34.8 29.2 10.8 10.1 - 18.7
9 10.5 2.7 22.5 18.1 36.4 28.0 28.0 22.6 25.3 -
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C.3 Experiment 3: additional Tables

These results were collected by running the classifiers individually, using positive and

negative images for which the classifier was trained. The hit rates for η−84−N classifiers

are shown in table C.7. The false detection rates for η − 84 −N classifiers are shown in

table C.8. When two or more get a hit with a certain image, a choice has been made

using the criteria explained in chapter 8. Table C.9 presents the errors caused by wrong

classifications when faced with a choice.

Table C.7: η − 84 −N : hit rate (%) per classifier.
Negative class

Classifier
0 1 2 3 4 5 6 7 8 9

0 - 100.0 99.5 99.5 99.8 99.1 99.5 99.5 99.5 99.7
1 99.9 - 99.6 99.6 99.9 99.6 100.0 99.9 99.8 99.9
2 98.6 99.8 - 97.6 99.3 98.8 98.9 99.0 98.2 99.2
3 99.8 99.7 98.9 - 99.3 98.9 99.8 98.9 98.6 98.1
4 99.6 100.0 98.9 99.3 - 98.6 98.4 99.3 98.8 97.2
5 98.8 99.5 99.3 96.7 98.5 - 99.3 99.1 96.8 99.1
6 98.6 99.3 98.6 98.9 98.7 98.6 - 99.3 99.1 99.5
7 99.3 99.3 98.4 98.5 98.8 99.2 99.4 - 99.3 97.3
8 99.5 99.9 99.3 98.3 98.0 97.8 99.8 99.2 - 98.6
9 99.7 99.2 99.3 98.8 97.0 99.0 99.7 98.3 98.4 -

Table C.8: η − 84 −N : false detection rate (%).
Negative class

Classifier
0 1 2 3 4 5 6 7 8 9

0 - 0.44 2.71 0.69 1.73 2.91 1.98 0.87 1.74 0.89
1 0.00 - 2.51 0.89 0.91 1.23 0.73 1.65 1.23 0.89
2 1.02 1.93 - 4.45 4.37 2.91 4.59 4.37 4.62 3.07
3 0.91 1.76 6.87 - 2.64 7.95 1.56 5.44 9.24 4.06
4 1.32 0.17 4.65 2.27 - 3.81 3.65 4.47 7.39 15.06
5 2.24 0.79 3.19 4.65 3.46 - 3.75 1.07 7.28 2.77
6 1.53 0.52 4.06 0.99 3.25 3.13 - 1.07 3.18 0.59
7 0.91 0.88 3.77 3.06 4.07 2.57 0.20 - 2.87 6.73
8 1.02 1.85 4.94 4.75 5.29 8.74 2.19 2.82 - 5.25
9 0.81 0.35 3.48 3.56 13.03 2.80 0.41 8.46 5.54 -
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Table C.9: Number of errors caused by wrong choices between classifiers for η feature
type, 84 features, N stages

wrong choice between two classifiers

A
ct

u
al

cl
as

s

0 1 2 3 4 5 6 7 8 9 Total

0 - 0 0 0 0 0 1 0 0 0 1
1 0 - 0 0 0 0 0 0 0 0 0
2 3 13 - 19 16 2 24 13 9 3 102
3 1 1 11 - 1 17 0 16 9 6 62
4 1 0 3 0 - 6 12 13 4 12 51
5 11 5 1 14 1 - 8 8 10 1 59
6 4 2 0 0 0 0 - 0 0 0 6
7 2 4 0 0 0 0 0 - 0 0 6
8 8 10 1 22 24 25 8 9 - 7 114
9 0 2 0 4 88 1 0 41 9 - 145

Total 546
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Glossary

Accuracy of a classifier Indicates the hit rate and false detection rate of a classifier 11

AdaBoost Training algorithm that produces classifiers based on weak classifiers. 18

Bandwidth Average data transmission rate (in bits/second or in Bytes/second). 30

Beowulf Clusters Cluster of computers built from off-the-shelf components. Usually

the communication between the nodes is done via a dedicated network. 29

Binary Classifiers A classifier that distinguishes all the elements of a set into two

classes. 10

CDMI Concentric Discs Moment Invariants refer to both the method and the feature

values. The moment invariant features are extracted from discs of the image using

a number of SATs. 115

Cascade A classifier that is formed by several layers or stages, each layer being a classifier

itself. Each layer only analyses the sub-windows that passed all the previous layers.

20

Central Moments Simple form of geometric moments that are translation invariant.

104

Cluster Topology Network topology that links the nodes that composes a Beowulf clus-

ter. 29

Concurrent Cascades Classifiers based on cascades that run on the same processor and

share one or more SATs. 149

Contrast Stretching Operation that spread the pixel values of an image or a sub-

window over the range limited by the size of the representation. Similar to a his-

togram equalisation. 26

Convex Hull The smallest set of points that contains a set of points P and is a sub-set

of P. 42
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Data Decomposition The division of the work among the nodes of a cluster is done

based on the data, so that usually the nodes repeat the same functions with different

data. 28

FERET Facial Image Database produced at the National Institute of Standards and

Technology (NIST). 58

False Detection Rate % of sets incorrectly classified as positive elements of the test

set. 11

Function Decomposition The division of the work among the nodes of a cluster is done

based on function, so the nodes usually share the same data. 28

Haar-like features Feature set based on functions similar to the Haar basis functions.

15

Helix A 128 processors Beowulf cluster built in 2003 at Massey University. 49

Hit Rate % of correctly classified elements of the test set. 11

Integral Image A data structure that allows fast computation of sum of pixels at dif-

ferent scales and positions. 16

Invariant Features Features that present the same values when faced with geometric

transformations. 8

Kernel The basic sub-window for multiresolution analysis, kernel is also the window size

of the samples with which the classifiers were trained. 24

Latency The time delay to start to transmit a message (in seconds or msec). 30

Layer See stage.20

Linpack An accepted standard benchmark to compare the performance among parallel

machines. 49

MNIST MNIST or Mini-NIST refer to a sub-set of the image database produced by

NIST. The MNIST contains only hand-written digits and is composed of 60000

training images and 10000 test images. 110

Message Passing A programming paradigm that facilitates the communication between

the nodes of a cluster. The two most common libraries that implement such a

paradigm are MPI and PVM. 32

Mobile Cluster A mini Beowulf cluster based on mini-ITX boards and fed by batteries.

146



197

Moment Invariants order Indicates the exponent used to each coordinate when com-

puting 2D moments (p for the x and q for the y axis. 103

Moment Invariants Features extracted from 2D images based on the moments given

by the value and coordinates of each pixel. 103

Negative examples, negative set, negative samples A set of values obtained by fea-

ture extraction from images that are not to be detected, such as sub-windows that

are part of the background or that represent other objects. 18

Non-invariant Features Features that change values when faced with geometric trans-

formations. 8

Normalised Central Moments Simple form of geometric moments that are translation

and scaling invariant. 104

Object Detection Locate generic classes of objects in the image (such as faces). 10

Object Recognition Classify specific objects in the image, such as a face that belongs

to one individual, or a certain printed character etc. 10

Object Tracking dynamically locates objects by determining its position in each frame.

10

OpenCV An open-source computer vision library developed at Intel (see Bradski (2000)).

12

PEF Pair of Equivalent Features, a pair of Haar-like features that makes an approxima-

tion to an arbitrary angle. 84

Partial Occlusion The object to be detected or recognised is partially covered by an-

other object. 57

Performance of a classifier Indicates the speed of a classifier. Can be measure in

seconds per image or in frames per second. 11

Positive examples, positive set, positive samples A set of values obtained by fea-

ture extraction from images that are to be detected or recognised. 18

ROC curves Receiver operating characteristic curves draws a function of the Hit rate x

False Detection rate. 11

Rotation Geometric rotation of the kernel within the constraints of a digital image. 25

SAT Summed-area Tables, also known as Integral Images. A data structure that allows

fast computation of sum of pixels at different scales and positions. 16
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Scaling factor The multiplicative factor that defines the sub-window size in relation to

the the kernel size. 24

Scaling The resolution of the kernel is the scale of the sub-window that is being analysed.

24

Sisters A 16 processor Beowulf cluster built in 2000 for the Institute of Information and

Mathematical Sciences at Massey University. 49

Speedup Indicates the gain in performance when a job is shared across two or more

nodes (in speed or runtime). 31

Stage A set of weak classifier that together composes a strong classifier. Several stages

in serial forms a cascade of classifiers. Also called “layer”. 39

Tilted Haar-like features Haar-like features computed at 45o. 16

Translation factor The displacement between sub-windows during the detection pro-

cess, measure in pixels. 24

Translation The displacement of the kernel over the image.24

Viola-Jones Method A feature-based object detection method that uses Haar-like fea-

tures and AdaBoost. 15

Weak Classifiers A binary classifier based in simple rules that performs slightly better

than 50%. 18


