Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Quantum description of dark solitons in one-dimensional quantum gases

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Physics

at Massey University, Albany, New Zealand.

Sophie S. Shamailov

2017

Abstract

The main objective of this thesis is to explain, from the quantum-mechanical point of view, the nature of dark solitons in one-dimensional cold-atom systems. Models of bosons and fermions with contact interactions on a ring are exactly solvable via the Bethe ansatz, and support so-called type-II elementary excitations. These have long been associated with dark solitons of the Gross-Pitaevskii equation due to the similarity of the dispersion relation, despite the completely different physical properties of the states. Fully understanding this connection is our primary aim.

We begin by reviewing the Gross-Pitaevskii equation and its dark soliton solutions. Next, we solve the mean-field problem of two coupled one-dimensional Bose-Einstein condensates, with special emphasis on Josephson vortices and their dispersion relation. Predictions are given for possible experimental detection. Then we give a derivation that justifies a method for the extraction of the so-called *missing particle number* from the dispersion relation of solitonic excitations.

A derivation of the finite Bethe ansatz equations for the Lieb-Liniger and Yang-Gaudin models follows. These describe a single species of bosons and two component fermions, respectively. We review the elementary excitations of the Lieb-Linger model, and carry out a comprehensive study of the (much richer) excitations of the Yang-Gaudin model. The thermodynamic limit Bethe ansatz equations for all states of interest in both models are derived, and the missing particle number and the closely-related *phase-step* are extracted from the dispersion relations. Next, we develop a method for approximating the finite-system dispersion relation of solitonic excitations from the thermodynamic limit results.

Finally, we show that the single particle density and phase profiles of appropriatelyformed superpositions of type-II states with different momenta exhibit solitonic features. Through this idea, the missing particle number and phase step extracted from the dispersion relation gain physical meaning. Moreover, we use a convolution model to extract the fundamental quantum dark soliton length scale across the range of interactions and momenta. The insight gained in the bosonic case is used to make inferences about dark solitons in the fermionic case. Furthermore, we study the Hess-Fairbank effect in the repulsive Yang-Gaudin model and the fermionic super Tonks-Girardeau regime.

Acknowledgements

I would very much like to thank my supervisor, Prof. Joachim Brand, for taking me on as a student and putting up with me ever since =) Quite honestly, you have been the best advisor one could ever hope for. I've greatly enjoyed working with you and found our research truly exciting and fascinating. Thanks for all the wonderful ideas, advice and constant help with everything =) It's been great fun – THANKS!

I'd also like to thank all the profs, post-docs and students at the CTCP and NZIAS – and Vesna, of course! – for making our little department such a warm and pleasant place. I've rarely seen a group of people who are, without exception, so lovely and friendly. Thank-you and all the best to everyone! :)

A huge thank-you to my examiners (especially Josh!!), who invested an enormous amount of time and effort into reading this beastie and providing feedback. I am sincerely grateful for your input, and am forever in your debt :-)

Contents

1	Introduction					
	1.1	Thesis Overview	6			
2	Gro	ss-Pitaevskii Dark Solitons	12			
	2.1	Bose-Einstein Condensation	12			
		2.1.1 No Condensation in One Dimension	14			
	2.2	Hartree-Fock in One Dimension	16			
		2.2.1 Dark Soliton Solutions	18			
		2.2.1.1 Local Density Approximation	22			
\mathbf{A}	ppen	dices	25			
	2.A	Exact Dark Solitons on Finite Rings	25			
3	The	Coupled Bose-Einstein Condensates System	28			
	3.1	Introduction	28			
	3.2	The Model	31			
	3.3	Analytical Solutions	32			
		3.3.1 The Manakov Case	32			
	3.4	Useful Observables	33			
		3.4.1 Analytical Expressions for Dark Solitons	35			
		3.4.2 Analytical Expressions for Manakov Solutions	35			
		3.4.3 Variational Calculation for Josephson Vortices	36			
	3.5	Numerical Methods	37			
	3.6	Visual Inspection of Numerical Solutions	38			
	3.7	Dispersion Relation and Other Observables				
	3.8	Parameter Regimes, Types of Excitations and Their Stability	43			
	3.9	Inertial Mass and Missing Particle Number				
	3.10	The Sine-Gordon Equation				
	3.11	Relativistic Behaviour	52			
	3.12	Discussion and Conclusions				
\mathbf{A}	ppen	dices	57			
	3.A	Stability Calculation	57			
		3.A.1 Analytical Stability Calculation for Dark Solitons	59			
	3.B	Derivation of the Sine-Gordon Equation	61			

4	Det	tecting Josephson Vortices					
	4.1	Introduction	64				
	4.2	The Model					
	4.3	The Fringe Pattern	66				
	4.4	Trajectory in a Trap	68				
	4.5	Local Density Approximation	70				
5	Mis	sing Particle Number	73				
	5.1	Introduction	73				
	5.2	The SGR Formula	75				
	5.3	Main Derivation	76				
		5.3.1 Canonical Ensemble	80				
	5.4	SDPS-SGR Equivalence	81				
		5.4.1 Analytical Examples	82				
		5.4.2 Numerical Examples	85				
	5.5	Discussion and Conclusions	88				
Δ	nnon	dices	01				
A	5 A	Hellmann-Feynman Theorem	91				
	0.11		51				
6	The	Bethe Ansatz	92				
	6.1	The Bethe Ansatz Wavefunction	92				
	6.2	Spatial Part of the Bethe Ansatz	95				
	6.3	Spin Part of the Bethe Ansatz	99				
		6.3.1 Statement of Results	100				
		6.3.2 Outline of Proof	102				
	6.4	Exponential to Logarithmic Form	103				
		6.4.1 Final Remarks	104				
\mathbf{A}	open	dices	106				
	6.A	M=1	106				
	6.B	M=2	110				
F	т:.1		100				
1		-Liniger Model	120				
	(.1	Introduction	120				
	7.2	1 ne Model	121				
	7.3	Ground State	122				
	7.4	Elementary Excitations	122				
		7.4.1 Comparison to Dark Solitons	126				
	7.5	Attractive Regime	127				

8	Yan	ang-Gaudin Model 1					
	8.1	1 Introduction					
	8.2	8.2 The Model					
		8.2.1	Free Case				
		8.2.2	Interacting Case				
	8.3	Ground State					
		8.3.1	Exact				
		8.3.2	String Hypothesis for $\gamma < 0$				
		8.3.3	Overview				
	8.4	Single	Fermion Holes				
		8.4.1	Exact				
		8.4.2	String Hypothesis for $\gamma < 0$				
		8.4.3	String Hypothesis for $\gamma > 0$				
		8.4.4	Overview				
	8.5	Doubl	e Fermion Holes				
		8.5.1	Exact				
			8.5.1.1 Compliment				
		8.5.2	String Hypothesis for $\gamma < 0$				
			8.5.2.1 Compliment				
		8.5.3	Overview				
	8.6	Spin-F	lip Excitations				
		8.6.1	Exact				
		8.6.2	String Hypothesis for $\gamma < 0$				
		8.6.3	Overview				
		8.6.4	$c \to \infty$ limit				
	8.7	Discus	sion and Conclusions				
٨٦	nnon	dicos	160				
A J	8 A	Techn ⁱ	ical Details 160				
	0.11	100m					
9	The	rmody	vnamic Limit 163				
	9.1	Introd	uction				
	9.2	Therm	nodynamic Limit Equations				
		9.2.1	Repulsive Lieb-Liniger				
			9.2.1.1 Ground State				
			9.2.1.2 Single Boson Holes $\ldots \ldots 167$				
		9.2.2	Attractive Yang-Gaudin				
			9.2.2.1 Ground State				
			9.2.2.2 Single and Double Fermion Holes				
			9.2.2.3 Spin-Flip Excitations				

9.2.3	Repulsiv	ve Yang-Gaudin	175
	9.2.3.1	Ground State	176
	9.2.3.2	Single Fermion Holes	178
	9.2.3.3	Double Fermion Holes	179
	9.2.3.4	Spin-Flip Excitations	181
Appendices		1	83
9.A Therr	nodvnami	c Limit Equations: Outline of Derivation	183
	a 1		
10 Extractin	g Soliton	ic Properties from the Bethe Ansatz 1	.87 188
10.1 Introc	ng Porticl	a Number and Phase Step	190
10.2 Milssii 10.2 1		ve Lieb Liniger	109 101
10.2.1	10.2.1.1	Single Reson Holes	101
10.2.2	10.2.1.1	nigle Doson noies	102
10.2.2	10.2.21	Single Fermion Holes (Attractive)	195
	10.2.2.1 10.2.2.1	Double Fermion Holes (Attractive)	197
	10.2.2.2	Spin-Flip Excitations (Attractive)	197
	10.2.2.4	Single Fermion Holes (Repulsive)	199
	10.2.2.5	Double Fermion Holes (Repulsive)	201
	10.2.2.6	Spin-Flip Excitations (Repulsive)	201
10.3 Physi	cal and In	$\begin{array}{c} \text{rertial Masses} \\ \end{array} $	201
10.4 Discu	ssion and	Conclusions	204
Appendices		2	209
10. A Appro	oximate A	nalytical Solutions	209
10.A.	1 Repulsiv	ve Lieb-Liniger Model	209
10.A.:	2 Attracti	ve Yang-Gaudin Model	212
10.A.:	3 Repulsiv	ve Yang-Gaudin Model	214
11 Finite-Sv	stem Ap	proximation 2	215
11 1 Introd	luction		215
11.2 The I	Derivation		216
11.3 Gross	-Pitaevski	ii Dark Solitons	221
11.4 Lieb-l	Liniger Ty	pe-II Excitations	224
11.5 Discu	ssion and	Conclusions	230
12 Quantum	Dark So	plitons 2	232
12.1 Introd	luction .		232
12.2 Lieb-l	Liniger Mo	odel	235
12.3 Supe	rpositions	of Type-II States	236

12.3.1 Algebraic Bethe Ansatz	. 238						
12.3.2 Gaussian Momentum Distribution	. 239						
12.3.2.1 Tonks-Girardeau Limit	. 240						
12.3.3~ Momentum Distribution of Gross-Pitaevskii Dark Solitons $~$.	. 241						
12.4 Physical Properties of Superposition States	. 245						
12.5 Length Scale of the Quantum Dark Soliton	. 257						
12.6 Discussion and Conclusions	. 263						
13 Physics of the Yang-Gaudin Model							
13.1 Dark Solitons	. 266						
13.1.1 Dimer Super Tonks-Girardeau	. 269						
13.2 Spin Waves	. 269						
13.3 Hess-Fairbank Effect	. 272						
13.3.1 Introduction \ldots	. 272						
13.3.2 The Model \ldots	. 273						
13.3.3 Results \ldots	. 274						
13.4 Fermionic Super Tonks-Girardeau	. 279						
13.5 Conclusion	. 280						
Appendices	281						
13.A Finite-System Approximate Dispersion Relations	. 281						
13.B Repulsive Two-Component Bose Gas	. 285						
13.C Box Boundary Conditions	. 286						
14 Summary, Conclusions & Outlook	289						
14.1 Future Work	. 292						