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Abstract 

Forced-air cooling is a widely used pre-cooling process that enables the New Zealand horticultural 

industry, valued at over NZD $8B in 2016, to maintain the quality of perishable exports. In the typical 

systems used in New Zealand’s horticultural industry, forced-air cooling involves stacking fruit boxes 

into pallets, which are stacked together in a refrigerated room, and a fan is used to create a pressure 

drop through the pallets. This forces cold air through the packaging ventilation and over the fruit, 

facilitating heat transfer and rapidly cooling the product from the field heat (~20 °C) to the storage 

temperature (0-2 °C), thus prolonging shelf life and preserving fruit quality.   

Package design is linked with cooling performance, as the specifics of the ventilation (i.e. placement 

and size of vents in the boxes) results in different airflow patterns. Unfortunately, it is not well 

understood how to predict the performance of a hypothetical design, which is partly why in industry 

and academia there has been a focus on package design testing – where through experimental or 

computational means, the performance of a given design is thoroughly tested. Trial-and-error 

experimental work represents a steep materials cost, and construction and validation of detailed 

mathematical models can be a highly arduous and specialised task. It would therefore be beneficial to 

the New Zealand horticulture industry and academia to have a suite of methodologies that can simply 

and rapidly predict performance of a hypothetical package design. It was proposed that such methods 

are based upon mathematical modelling, with a focus on flexibility, computational efficiency, and 

automation. The goal is that such a model can be used to rapidly develop mathematical descriptions of 

a wide variety of products and cooling scenarios, and if integrated with optimisation routines, will allow 

swift iteration toward an optimised design.  

To meet this goal a new interpretation of the zonal modelling approach was developed and validated at 

the single box scale for the forced-air cooling of modular bulk packages of polylined kiwifruit – 

kiwifruit representing the largest horticultural crop in New Zealand (worth NZD $1.7B in 2016). The 

model focused on developing a simplified heat transfer model, with airflow considerations being a 

separate research project. The model is fast – with heat transfer solution times on the order of 1-2 
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seconds; flexible – as the model will solve for any input geometry; and automated – as the model was 

capable of algorithmically generating the zonal network, requiring no manual input beyond initial 

configuration settings.  

A random stacking model was also developed to complement the heat transfer model. This is capable 

of automatically generating a realistic bulk fruit geometry inside of any package size or shape in only 

150 seconds, relying on only a shape equation for kiwifruit and a weight distribution index as inputs. 

The stacking model can also simulate the presence of a polyliner wrapping, which is used in many 

horticultural packaging systems, including for many kiwifruit systems. The model was validated against 

empirically measured bulk fruit shapes, collected via CT scanning. The random stacking model 

increased the flexibility of the methodology and opened up the design space considerably for building 

models of a wide variety of package designs and products, without requiring physical prototypes or 

requiring “idealised” packaging configurations. The stacking model has an added functionality of 

predicting the volumetric efficiency of different package types.  

Cooling uniformity was identified as a key performance metric for the forced-air cooling process. The 

airflow pattern imposes a range of rates of cooling for different fruit positions throughout the same 

pallet. This can have large impacts on the quality and shelf-life of individual fruit, which causes 

significant logistical problems for pack-house/product managers. A new quantitative heterogeneity 

index was developed, capable of condensing total process heterogeneity into one dimensionless number, 

the Overall Heterogeneity Index, or 𝑂𝐻𝐼.  

This suite of tools can be used for a variety of tasks. Although the modelling work was only applied to 

the forced-air cooling of polylined kiwifruit inside of modular bulk packages, building models for other 

crops, package designs and cooling scenarios is trivial to implement. The speed of the zonal heat transfer 

model makes it ideal for integration with an iterative optimisation routine, so that many hundreds or 

thousands of designs can be investigated in a short period of time. The heat transfer model could also 

be combined with a machine learning algorithm (such as a genetic algorithm) to iteratively approach an 

optimised design. However, such an implementation requires an equally fast and flexible pallet scale 

airflow model, which remains a task for further work.  
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Nomenclature 

English Symbols 

𝐴 – area, m2 

𝑎 – translational acceleration (m·s-2) 

𝑎, 𝑏, 𝑐 – empirical constants 

𝐵𝑋, 𝐵𝑌, 𝐵𝑍 – planar cut positions for zones 

𝐶 – specific heat capacity, J·kg-1·°C -1 

𝑐 – index 

𝐶𝑖𝑗 – Connectivity Matrix 

𝐶𝑃 – cumulative proximity 

𝐶𝑇𝑁𝑢𝑚𝑏𝑒𝑟 – CT number 

𝐶𝑋𝑌𝑍 – Coordinate Matrix 

𝑑𝑠 – equivalent mean particle diameter, m  

𝐷 – permeance, m·s-1 

𝑑 – diameter, m 

𝑑𝑐 – characteristic distance, m 

𝑑𝑚𝑖𝑛
̅̅ ̅̅ ̅̅  – average voxel distance, m 

𝑑𝑛𝑚 ⃡      – distance between a voxel and a surface voxel, m 

𝐷𝑋, 𝐷𝑌, 𝐿𝑘 – dimensions of a kiwifruit, m 

𝑑𝑋, 𝑑𝑌, 𝑑𝑍 – dimensions of zones 

𝑑𝑥, 𝑑𝑦, 𝑑𝑧 – dimensions of voxels, m 
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𝑒 – coefficient of restitution 

𝑒 – experiment index 

𝐸𝑡𝑜𝑡𝑎𝑙 – residual between experiment and model, °C·h 

𝐹 – force, kg·m·s-2 

𝐹 – Forchheimer coefficient, m-1 

𝐹 – volume force, N·m-3 

𝐹𝑁.𝐶. – natural convection correction factor 

𝐺 – gravity force, kg·m·s-2 

𝑔 – acceleration due to gravity, m·s-2 

Gr – Grashof number, dimensionless 

𝐻 – moment of force, kg·m2·s-2 

ℎ - heat transfer coefficient, W·m-2·°C-1 

𝐻1, 𝐻2, 𝐻3 – height of package ventilation, m 

𝐻𝐼 – heterogeneity index, °C or K 

𝐼 – identity matrix 

𝐼 – inertia, kg 

𝐼 – number of elliptical disks 

𝐾𝜀 – intrinsic permeability, m2 

𝐾 – permeability, m2·s-1 

𝐿𝑣𝑎𝑝 – latent heat of vaporisation, 2260 kJ·kg-1 

𝐿 – characteristic length, m 
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𝐿1, 𝐿2, 𝐿3 – length of package ventilation, m 

𝑚̇ – moisture flux, kg water·s-1 

𝑀 – mass, kg 

𝑚 – index 

𝑛 – index 

𝒏 – normal vector 

𝑁𝑆 – number of kiwifruit in a box 

𝑁𝑡𝑜𝑡𝑎𝑙 – number of zones 

Nu – Nusselt number, dimensionless  

𝑁𝑋, 𝑁𝑌, 𝑁𝑍 – number of zones in the X, Y and Z directions 

𝑜 – index  

𝑂𝐻𝐼 – overall heterogeneity index, dimensionless 

𝑝𝑐 – contact point 

P – pressure, Pa 

𝑝 – position index 

𝑃1, 𝑃2, 𝑃3 – position of package ventilation, m 

Pr – Prandtl number, dimensionless 

𝑃𝑋, 𝑃𝑌, 𝑃𝑍 – polyliner dimensions, m 

𝑄̇ – volumetric flowrate, m3·s-1 

𝑟 – random number 

𝑅 – resistance, m2·°C·W-1 
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Ra – Rayleigh number, dimensionless 

𝑅𝐶𝑂2
 – rate of CO2 production, mol·kg-1·s-1 

Re – Reynolds number, dimensionless 

𝑆 – fruit shoulder coefficient 

Sc – Schmidt number, dimensionless 

Sh – Sherwood number, dimensionless 

𝑇 – temperature, °C 

𝑡 – time, h 

𝑇𝐾𝐸 – turbulent kinetic energy, m2·s-2 

𝑇𝑂𝑤𝑒𝑛 – Owen’s T function 

𝑇𝑢 – turbulence intensity, dimensionless 

𝑢 - velocity, m·s-1 

𝑉 – volume, m3 

𝑊 – weight, kg 

𝑋, 𝑌, 𝑍 – Cartesian coordinates, m 

𝑌 – Fractional Unaccomplished Temperature Change, dimensionless 

Greek Symbols 

𝛼 – rotational acceleration (rad·s-2) 

𝛼 – shape factor 

𝛽 – thermal expansion coefficient, K-1 

𝛿 – collision margin, m 
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𝜀 – porosity, m3·m-3 

𝜃𝑓𝑟𝑢𝑖𝑡 – pixel/voxel threshold  

𝜃𝑠𝑒𝑎𝑟𝑐ℎ – search radius  

𝜃 – angle, ° 

𝜅 – thermal diffusivity, m2·s-1 

𝜆𝑏 – effective thermal conductivity of the packed bed, W·m-1·°C -1 

𝜆 – thermal conductivity, W·m-1·°C -1 

𝜇𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 – X-ray absorption coefficient for the material 

𝜇𝑠𝑢𝑟𝑓 – coefficient of friction 

𝜇𝑤𝑎𝑡𝑒𝑟 – X-ray absorption coefficient for water 

𝜇 – fluid viscosity, Pa·s 

𝜉 – location factor 

𝜌 – density, kg·m-3 

𝜎𝑟𝑎𝑑 – Stefan–Boltzmann constant (5.67×10-8 W·m-2·K-4 

𝜎 – standard deviation 

𝜏 – characteristic index of process progression, s·s-1 

𝜐 – kinematic viscosity, m2·s-1 

𝜔 – scale factor 

𝜖 – emissivity, dimensionless 

𝜙 – heat flux, W or J·s-1 
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Miscellaneous Symbols 

←, →, ↑, ↓, ⊗, ⊙ – zonal adjacency  

𝔹𝐶 – height of chute, m 

𝔹𝑋, 𝔹𝑌, 𝔹𝑍 – inner dimensions of a package, m 

𝕂 – kiwifruit  

𝒫𝑋, 𝒫𝑌, 𝒫𝑍 – polyliner dimensions, m 

ℙ - zonal properties 

𝕡 – pixel 

𝕧 – voxel  

Subscripts 

A 𝐴 – air phase 

cond  𝑐𝑜𝑛𝑑 – conduction 

conv 𝑐𝑜𝑛𝑣 – convection 

diff  𝑑𝑖𝑓𝑓 – diffusion 

eff 𝑒𝑓𝑓 – effective 

evap  𝑒𝑣𝑎𝑝 – evaporation 

Exp 𝐸𝑥𝑝 – experimental 

ext 𝑒𝑥𝑡 – external  

f 𝑓 – final  

i 𝑖 – initial 

i 𝑖 – zone i, index 
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ii 𝑖𝑖 – intra-zonal 

ij 𝑖𝑗 – inter-zonal 

int 𝑖𝑛𝑡 – internal 

j 𝑗 – zone j, index 

Mod 𝑀𝑜𝑑 – Model  

O 𝑂 – bulk air phase 

P 𝑃 – packaging phase 

p 𝑝 – product (fruit) 

rad 𝑟𝑎𝑑 – radiation  

ref 𝑟𝑒𝑓 – refrigerated fluid (in context, air) 

S 𝑆 – solid, or fruit, phase 

surf 𝑠𝑢𝑟𝑓 – surface 

t 𝑡 – time 

tot 𝑡𝑜𝑡 – total 

Z 𝑍 – phase 

Za 𝑍𝛼 – primary phase 

Zb 𝑍𝛽  – secondary phase 

Mathematical Operators  

Φ𝑠 – standard normal cumulative distribution 

𝜙𝑠 – standard normal distribution 

∆ - difference 
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∇ - partial derivative with respect to all directions in Cartesian space 

𝑑 – total derivative 

𝛀 – surface (robin boundary conditions) 

𝜕 – partial derivative  

Abbreviations 

AVDC – Average Voxel Distance Calculator 

CFD – Computational Fluid Dynamics 

CPRR – Centre for Postharvest and Refrigeration Research 

CT – Computed Tomography 

DEM – Discrete Element Modelling 

DNS – Direct Numerical Simulation 

FUTC – Fractional Unaccomplished Temperature Change 

HCT – Half-Cooling Time, h 

OECT – One Eighths Cooling Time, h 

SECT – Seven Eighths Cooling Time, h 

SN – Skew-Normal 

VSD – Variable Speed Drive 

 

 




