Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Design of Analogue CMOS VLSI MEMS Sensor

A dissertation presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Engineering - Integrated Circuit Design

at

School of Engineering and Advanced Technology, Massey University, Albany campus

by

Ananiah Durai Sundararajan

May 2015

Abstract

There is an increasing demand of a highly sensitive and reliable pressure micro-sensor system, for implantable and non-implantable medical applications. The prerequisite of a miniaturized device for minimally invasive procedures, posed greater challenges in the complex integrated design of micro-system. Micro-sensor system designs in the recent advanced CMOS technologies are explored in this work for effective system miniaturization and improved performance. The material choices and geometry designs, which significantly influence the sensitivity and dynamic range of the micro-scale sensor devices, are well addressed. Co-integrations of MEMS devices with signal conditioning circuits that effectively reduce the parasitic effect are also performed for enhancing the overall system performance. In addition, system reliability is also improved with on-chip metal interconnections. The employed process technologies to a greater extent contributed to the high yield for these low cost micro-sensor systems.

This research focuses on the design of integrated CMOS MEMS capacitive pressure sensors for diverse bio-medical applications. Two monolithically integrated capacitive pressure microsensor systems are designed, fabricated and experimentally verified. A novel micro-electromechanical capacitive pressure sensor in SiGeMEMS process, vertically integrated on top of a 0.18 µm TSMC CMOS processed die is proposed. The perforated elliptic diaphragm, which is edge clamped at the semi-major axis is developed using poly-SiGe material. High performance on-chip CMOS conditioning circuits are also designed to achieve better overall sensitivity. Experimental results indicate a high sensitivity of around 0.12 mV/hPa along with a nonlinearity of around 1% for the full scale range of applied pressure load. The L-clamp spring anchored diaphragm provided a wide dynamic range of around 900 hPa. Another integrated capacitive pressure micro-system, developed using the advanced standard IBM CMOS process in two geometrical designs is also proposed. A step-sided elliptic diaphragm that overcomes the CMOS process limitations is fabricated to achieve regulated membrane deflections and improved sensitivity. A foundry compatible post-process technique, for a lateral release length of 125 µm is also performed successfully on the 130 nm CMOS platform. A current cross mirroring technique is utilized to enhance the transconductance of an on-chip operational amplifier to achieve a high single stage gain. Sensitivities of the fluorosilicate sealed absolute pressure sensors were measured to be 0.07 mV/Pa and 0.05 mV/Pa for the elliptic and rectangular element, respectively. In addition, the linear capacitive transduction dynamic range was found to be 0.32 pF and 0.23 pF, respectively, for the elliptic and rectangular element.

Acknowledgements

I would like to profoundly thank my supervisor Dr. Rezaul Hasan for his endless support, encouragement, guidance and advice throughout my doctoral studies. There were many difficulties during the theoretical and experimental aspects of the work, but Rezaul's direction and timely advice has helped me to accomplish the research objective. Rezaul's deep knowledge of VLSI and integrated circuit design along with his research insights facilitated me to achieve the research goals. In addition, his effort through long days and long hours of authorship work has helped in several high standard international journal publications during the course of this research. Thanks are also due to the staff and students at the School of Engineering and Advanced Technology (SEAT) for their friendship and continuous cooperation during my studies. The support of the MOSIS academic research program is also gratefully acknowledged for covering the cost of my prototype fabrication.

I candidly acknowledge my parents who invested a large amount of their resources in helping me to accomplish my goal. I extend my earnest thanks to my wife and son, who through this whole process gave me their full support through their prayers, love and encouragement, to make this research a great success.

Table of Contents

Abstract	ii	
Acknowledgements	iii	
Table of Contentsiv		
List of Tables	viii	
List of Figures	ix	
List of Acronyms and Abbreviations	xiv	
List of Symbols	xvi	
1. Introduction	1	
1.1 Introduction to MEMS	1	
1.2 Motivation	2	
1.3 Overview of the proposed research	4	
1.4 Thesis organization	6	
	_	
2. System overview and Literature review	8	
2.1 Introduction to micro-sensor system	8	
2.2 Sensing elements	9	
2.3 Pressure micro-sensor pick-off techniques	10	
2.3.1 Capacitive detection	10	
2.3.2 Resistive detection	11	
2.4 Pressure micro-sensor system requirements and types	11	
2.4.1 Types of pressure measurements	13	
2.4.2 Readout circuit requirement	14	
2.5 A brief literature review	15	
2.5.1 MEMS capacitive pressure sensor	16	
2.5.1.1 Dynamic range improvement	17	
2.5.1.2 Contact and touch mode capacitive pressure sensor		
2.5.1.3 Enhancement of sensitivity and linearity		
2.5.2 Readout circuit review	20	
2.5.2.1 Opamp basic topologies	22	
2.5.2.2 Folded cascode topology	23	
2.5.2.3 Low pass filter stage	25	

2.5.2.4 Buffer stage	26
2.6 Conclusion	27
	20
3. SIGEMEMS Capacitive Pressure Sensor	
3.1 Introduction	
3.2 Post-CMOS process	
3.5 Design process now	
3.4 Design and model characterization of sensor device	
3.4.2 Design of perforeted alliptic disphrogm	
3.4.2 Design of performed empties and layout design	
3.5 Model analysis	41 47
3.6 Post process sealing	
3.7 Conclusion	
5.7 Conclusion	
4. SiGeMEMS Sensor Readout Frontend	55
4.1 Introduction	55
4.2 Design aspect	56
4.2.1 CMOS folded cascode operational amplifier imperfection	56
4.2.2 Noise reduction technique in folded cascode operational Amplifier.	58
4.2.3 Design of folded cascode operational amplifier	59
4.2.4 Pre-conditioning interface circuit	67
4.2.5 Biasing circuit for the proposed FC opamp	70
4.2.6 Sensor bias and start-up circuitry	72
4.3 Simulation results and discussion	75
4.4 Conclusion	82
5 Stormen Street Destant Store	02
5. SIGEMENTS Sensor Readout Output Stage	ð3
5.2 Introduction to low page filter	
5.2 Introduction to low pass little	04
5.5 Design of transconductance (OTA) cen	
5.3.1 Common mode recuback	
5.3.2 Supply independent bias circuit	
5.4 Finer design	
5.4.2 Eilter topology	
3.4.2 Filter topology	

	5.4.3 Simulation result of low pass filter	
5.:	5 Self biased differential buffer	
	5.5.1 Design of self biased buffer	
	5.5.2 Simulation results for self biased buffer	
5.0	6 Result analysis for the integrated sensor readout	
5.	7 Conclusion	
6. In	tegrated MEMS pressure sensor with CMOS readout	
in	Standard CMOS process	
6.	1 Introduction	
6.2	2 Features of IBM CMOS8RF technology	
6.	3 CMOS-MEMS design process flow	
6.4	4 CMOS amplifier design	
	6.4.1 Transconductance enhanced RFC	
	6.4.2 Circuit design and analysis	
	6.4.3 Implementation and results	
6.:	5 Design of sensor devices	
6.	6 Fabricated CMOS-MEMS device	
6.'	7 Conclusion	
7. Pc	ost-processing of IBM CMOS MEMS Device	
7.	1 Introduction	
7.	2 Etching lithography	
7.	3 Passivation etch process	
	7.3.1 Polyimide etch	146
	7.3.2 Nitride and Oxide etch	
	7.3.3 Photoresist stripping	
7.4	4 Release etch process	
	7.4.1 Trench formation	
	7.4.2 Wet under etch	
	7.4.3 Dry lateral etch	
	7.4.4 Post-release etch	
	7.4.5 Post-release sealing	
7.	5 Brief summary of the post-process	
7.	6 Characterization	161
	7.6.1 Discussion of mechanical characterization	

7.6.2 Discussion of electrical characterization	168
7.7 Conclusion	171
8. Experimental Analysis and Comparison	172
8.1 Introduction	172
8.2 SiGeMEMS capacitive sensor experimental analysis	173
8.3 Experimental test on standard IBM CMOS integrated MEMS devices	176
8.3.1 Preliminary test on sensor readout	177
8.3.1.1 Chopping signal generator circuitry	177
8.3.1.2 System test circuitry	179
8.3.1.3 Preliminary test results	184
8.3.2 Comprehensive experimental analysis	
8.4 Comparison of CMOS MEMS sensor micro-systems	189
8.4.1 Comparison of SiGeMEMS and	
standard CMOS MEMS sensor micro-systems	190
8.4.2 Comparison of various reported	
CMOS MEMS sensor micro-systems	191
8.5 Conclusion	193
9. Conclusion and Future work	194
9.1 Conclusion	194
9.2 Future work	197
Bibliography	198
Appendix I	209
Appendix II	215
Appendix III	223

List of Tables

Table 2.1: Target specifications of the design	
Table 4.1: Aspect ratios of M-Chopper FC opamp Stage	
Table 4.2: Aspect ratios of trans-impedance stage, pre-amp	& CMFB79
Table 4.3: Aspect ratios of sensor bias and start-up circuit	
Table 4.4: Aspect ratios of FC opamp biasing network	
Table 4.5: Features of proposed FC opamp	
Table 5.1: LPF simulation results	
Table 5.2: Aspect ratios of the Gm-C filter and component v	values98
Table 5.3: Comparison of different filter designs	
Table 5.4: Simulation output of the buffer	
Table 5.5: Aspect ratio of the buffer circuit and component	values105
Table 6.1: Performance comparison of different RFC circuit	s132
Table 6.2: Aspect ratios for the proposed amplifier	
Table 7.1: Process details for dry Etch	
Table 7.2: Feature comparison of various reported CMOS-M	IEMS Devices154
Table 7.3: Dimension Icon System setup – DIM 4000	
Table 7.4: AFM analysis results	

List of Figures

Fig. 1.1:	Cross section of, (a) CMOS + SiGeMEMS integrated	
	pressure micro-sensor system, (b) Standard CMOS MEMS	
	integrated pressure micro-sensor system	4
Fig. 2.1:	Types of pressure measurement	.13
Fig. 2.2:	Diaphragm pressure sensor	.16
Fig. 3.1:	pre-CMOS process	.29
Fig. 3.2:	Interleaved process	.29
Fig. 3.3:	post-CMOS process	.29
Fig. 3.4:	Cross section of IMEC SiGeMEMS process	.30
Fig. 3.5:	Process flow of SiGeMEMS	.32
Fig. 3.6:	System block diagram of the integrated MEMS capacitive	
	pressure sensor with CMOS readout	.32
Fig. 3.7:	Perforated elliptic diaphragm, clamped at the	
	semi-major axis using clamp springs	.39
Fig. 3.8:	Stress-Strain relationship curve	.41
Fig. 3.9:	Cross-section of the target CMOS integrated SiGeMEMS process	
	for integrated MEMS pressure sensor	.43
Fig. 3.10:	Layout design of the elliptic diaphragm	.45
Fig. 3.11:	A portion of the elliptic diaphragm showing the layout design methodology	.46
Fig. 3.12:	Package layout of CMOS+MEMS design	.48
Fig. 3.13:	COMSOL model analysis procedure	.49
Fig. 3.14:	Displacement analysis of the elliptic diaphragm	.50
Fig. 3.15:	Standalone SiGeMEMS processed top wafer	.52
Fig. 3.16:	Backside etched top wafer	.52
Fig. 3.17:	Cross-section of integrated SiGe CMOS+MEMS sensor (bottom wafer)	.53
Fig. 3.18:	Cross section of MEMS integrated sealed absolute pressure sensor	.53
Fig. 4.1:	Block diagram of sensor readout frontend	.55
Fig. 4.2:	Folded cascode operational amplifier	.57
Fig. 4.3:	Proposed FC opamp with conventional chopper stabilization	.61
Fig. 4.4:	Conventional chopper stabilization circuit	.62
Fig. 4.5:	Modified chopper stabilized g_m boosted FC opamp with pre-conditioning circuit	.64
Fig. 4.6:	Pole - Zero plots	.65
Fig. 4.7:	Transmission gate chopper	.66

Fig. 4.8:	Differential difference amplifier used as CMFB Circuit	.66
Fig. 4.9:	Pre-conditioning interface circuit	.67
Fig. 4.10:	Trans-impedance amplifier	.68
Fig. 4.11:	Pre-amp Buffer	.69
Fig. 4.12:	Current mirror biasing circuitry	.71
Fig. 4.13:	Sensor bias and start-up circuitry	.72
Fig. 4.14:	Cascode current mirror for sensor biasing and startup	.73
Fig. 4.15:	Sensor readout frontend layout design	.76
Fig. 4.16:	Layout design of bias circuitry for start-up, pre-amp buffer	
	and trans-impedance amplifier	.77
Fig. 4.17:	Layout design of start-up, pre-amp buffer	
	and trans-impedance amplifier	.77
Fig. 4.18:	Input transistors layout design	.78
Fig. 4.19:	Comparison of chopper outputs	.78
Fig. 4.20:	AC analysis of M-Chopper stabilized FC opamp	
	& conventional two stage FC opamp	.80
Fig. 4.21: I	Harmonic distortion of M-Chopper stabilized FC opamp	.81
Fig. 4.22: N	Noise in the proposed FC opamp	.81
Fig. 4.23: S	Single ended transient responses of proposed FC opamp	.81
Fig. 5.1: I	Block diagram of sensor readout output stage	.83
Fig. 5.2: 7	Fransconductance cell schematic	.86
Fig. 5.3: 5	Small signal model of single stage OTA with negative resistive load	.88
Fig. 5.4: I	Block diagram of common mode control	.89
Fig. 5.5: I	Biasing circuit for OTA and CMFB circuits	.91
Fig. 5.6: I	Floating capacitor balanced differential integrator	.93
Fig. 5.7: I	Fourth order elliptic filter topology	.95
Fig. 5.8: A	AC response & harmonic distortion of LPF with separate excitation	.97
Fig. 5.9: I	Layout design of LPF	.99
Fig. 5.10: I	Block diagram description of signal flow in sensor readout	101
Fig. 5.11: N	Negative feedback in buffered opamp	101
Fig. 5.12: S	Self biased differential buffer	103
Fig. 5.13: I	Layout design of self biased differential buffer	104
Fig. 5.14: ((a) Gain response of the sensor readout,	
(b) Phase response of the sensor readout	106
Fig. 5.15: 7	Fransient analysis of the sensor readout	107

Fig. 5.16:	: Layout design of the entire sensor readout showing frontend and output stages	108
Fig. 6.1:	Cross section of IBM CMRF8SF DM process	111
Fig. 6.2:	Standard CMOS-MEMS process flowchart	114
Fig. 6.3:	Proposed transconductance doubling RFC	118
Fig. 6.4:	One half of the proposed g_m doubling RFC with large	
	and small signal current directions	120
Fig. 6.5:	Node currents at node N1	120
Fig. 6.6:	(a) Small signal equivalent of one half of proposed	
	transconductance doubling RFC	123
Fig. 6.6:	(b) Current sources are merged for small signal analysis	124
Fig. 6.6:	(c) Output impedances are combined for further simplification	
	for small signal analysis	125
Fig. 6.6:	(d) Simplified small signal equivalent of one half of the proposed	
	transconductance doubling RFC	125
Fig. 6.6:	(e) Simplified equivalent circuit for small signal gain analysis	125
Fig. 6.7:	Pulse response of the proposed amplifier	129
Fig. 6.8:	AC response of single stage gm enhanced RFC	130
Fig. 6.9:	Transient analysis of the proposed two stage g_m doubling RFC	131
Fig. 6.10:	AC analysis of the proposed two stage g_m doubling RFC	131
Fig. 6.11:	THD analysis for the proposed enhanced gm RFC	132
Fig. 6.12:	Elliptic geometry with step edge	135
Fig. 6.13:	Rectangular geometry with bottom electrode	136
Fig. 6.14:	Elliptic diaphragm defromation analysis	137
Fig. 6.15:	Rectangular diaphragm defromation analysis	137
Fig. 6.16:	Pyxis layout window (a) Amplifier circuit layout	
	(b) CMOS integrated design snapshot	138
Fig. 6.17:	Integrated CMOS MEMS devices in 130 nm IBM CMOS process	139
Fig. 6.18:	Fabricated step edged elliptic diaphragm complying	
	with the standard CMOS process	139
Fig. 7.1:	Process steps for sensor release etch	142
Fig. 7.2:	DWW Mask writing system and setup	144
Fig. 7.3:	Resist developed sensor capacitances, (a) Elliptic diaphragm,	
	(b) Rectangular diaphragm	145
Fig. 7.4:	Photo of RIE chamber during CHF ₃ plasma etch	148
Fig. 7.5:	Diaphragms after polyimide etch	148

Fig. 7.6:	Release etch, (a) partial release of elliptic diaphragm, (b) complete	
	sacrificial Oxide and Nitride etch and release of elliptic diaphragm, and,	
	(c) Fully released rectangular diaphragm	155
Fig. 7.7:	Cross-section diagrams of the step-by-step MEMS release process,	
	(a) Initial CMOS chip with circuitry and unreleased MEMS capacitors,	
	(b) Lithography with thick resist (DWW patterning mask 1),	
	(c) After passivation etch, (d) Lithography with thin resist (DWW pattering	
	mask 2), (e) After dry trench etch, (f) Lithography with thin resist	
	(DWW pattering mask 2 repeat with sidewall protection), (g) After wet etch	
	and following dry etch (composite etch), (h) after post release etch.	
	(i) After post release fluorosilicate sealing	158
Fig. 7.8:	Flowchart of the sensor release process sequence	159
Fig. 7.9:	Fluorosilicate glass sealed rectangular diaphragm	160
Fig. 7.10	Bruker Dimension Icon AFM system loaded with the specimen	162
Fig. 7.11	: The complete AFM analysis system	163
Fig. 7.12	2: Atomic Force Microscope step-height analysis,	
	(a) Chip image from AFM microscope after partial polyimide etch,	
	(b) Step height in 3D after partial polyimide etch, (c) Top-view	
	of polyimide etch and step height analysis plot after partial polyimide etch	
	and (d) Top view (white patches indicating resist remnants after resist	
	strip-off) and step height analysis plot after complete passivation etch	165
Fig. 7.13	B: DC probe station: Agilent device analyzer B1500A	
	with 5 MHz pulsed source	167
Fig. 7.14	Electrical contact analysis, (a) Before polyimide etch	
	(with full passivation intact), (b) After Nitride etch	
	(with Oxide layer still present)	169
Fig. 7.15	: Electrical contact analysis of exposed diaphragm after etching	
	the oxide layer of passivation, (a) Resistance variation,	
	(b) Current variation	170
Fig. 7.16	: Electrical contact analysis between MA (top electrode)	
	and LY (bottom electrode)	170
Fig. 8.1:	Overview of the experimental setup	172
Fig. 8.2:	Microscopic photograph of the integrated SiGeMEMS sensor die	174
Fig. 8.3:	Packaged SiGeMEMS micro-system with option of ESD taped lid	174
Fig. 8.4:	SiGeMEMS chip experimental test setup	175
Fig. 8.5:	Capacitance variation with applied pressure load	175

Fig. 8.6:	Voltage output of the sensor micro-system with applied pressure	176
Fig. 8.7:	Oscillator diagram of HEF4060B	178
Fig. 8.8:	Logic diagram of HEF4060B	178
Fig. 8.9:	Crystal oscillator circuit diagram using HEF4060B	178
Fig. 8.10:	(a) Bottom view of PGA 108M package	
	(b) Top view of the packaged IC	179
Fig. 8.11:	Drawing equivalent of PGA 108M package	180
Fig. 8.12:	Bonding diagram showing bondpads to bondpins connections	181
Fig. 8.13:	IC in ZIF socket	182
Fig. 8.14:	Bottom view of ZIF socket showing the soldered pins	182
Fig. 8.15:	System testing setup	183
Fig. 8.16:	Part of the test circuit connections	183
Fig. 8.17:	Input signal to the opamp	184
Fig. 8.18:	Modulated signal at the output of opamp	184
Fig. 8.19:	Experimental test setup for sensor	
	transduction performance measurement	187
Fig. 8.20:	Post-processed CMOS MEMS naked die	
	being wire-bonded on to the PCB	187
Fig. 8.21:	Performance of the elliptic and rectangular devices	188
Fig. 8.22:	Sensing circuit response with applied pressure	188
Fig. 8.23:	Temperature dependencies of (a) Elliptic element,	
	(b) Rectangular element	189

List of Acronyms and Abbreviations

AFM	Atomic Force Microscope
APM	Ammonia hydroxide-hydrogen Peroxide
ADC	Analog to Digital Converter
BEOL	Back End Of Line
BSIM	Berkeley Short-channel IGFET Model
CAD	Computer Aided Design
CHS	Chopper Stabilization
CMFB	Common Mode Feed Back
CMRR	Common Mode Rejection Ratio
CMOS	Complementary Metal Oxide Semiconductor
DRC	Design Rule Check
DRIE	Deep Reactive Ion Etching
DIP	Dual line in package
DUT	Device Under Test
DWW	Direct on wafer writing
EDA	Electronic Design Automation
ESD	Electrostatic Discharge
FC opamp	Folded Cascode Operational Amplifier
FC out+	Positive going output voltage of folded cascode opamp
FC out-	Negative going output voltage of folded cascode opamp
FC_out _{diff}	Differential output voltage of folded cascode opamp
FEA	Finite Element Analysis
FEOL	Front End Of Line
GBW	Gain Bandwidth Product
GUI	Graphical User Interface
HPM	Hydrochloric acid-hydrogen peroxide
IC	Integrated Circuit
ICMR	Input Common Mode Range
ICP	Inductively Coupled Plasma
IEEE	Institute of Electrical and Electronics Engineers Inc.
LPF	Low Pass Filter
LPCVD	Low Pressure Chemical Vapor Deposition

Lp_OUT+	Positive going output voltage of LPF
Lp_OUT-	Negative going output voltage of LPF
M-Chopper	Modified Chopper Stabilization
MEMS	Micro Electromechanical System
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
MST	Minimum Settling Time
MUMPS	Multi-User MEMS Processes
OTA	Operational Transconductance Amplifier
PMMA	Poly methyl methacrylatel
PDMS	Polydimethylsiloxane
PGA	Pin Grid Array
PSRR	Power Supply Rejection Ratio
RF	Radio Frequency
RFC	Recycled Folded Cascode opamp
RIE	Reactive Ion Etching
Sensor _{out+}	Positive going output voltage of the sensor
Sensor _{out+}	Negative going output voltage of the sensor
SNR	Signal to Noise ratio
SDL	Schematic Driven Layout
SIP	System in package
THD	Total Harmonic Distortion
UGB	Unity Gain Bandwidth
VL_OUT _{diff}	Differential Output voltage of OTA
VM	Virtual Metrology
ZIF	Zero Insertion Force

List of Symbols

С	Capacitance	Farad
ε _r	Relative Permittivity	Farad per meter
ε _o	Permittivity of free space	Farad per meter
А	Area of the capacitor plate	Meter Square
λ	Channel length modulation	Micrometer
μ_n	Electron mobility	Meter square/Volts seconds
μm	Micrometer	
E _{xx}	Normal strain in x direction	
ϵ_{yy}	Normal strain in y direction	
ε _{xy}	Shear strain	
W	Deflection of the plate	Micrometer
σ _{xx}	Normal stress in x direction	Newton/meter square
σ_{yy}	Normal stress in y direction	Newton/meter square
$ au_{xy}$	Shear stress	Pascal
E	Young's Modulus	Newton/meter square
υ	Poisson's ratio	
Po	Applied Pressure	Hecto-Pascal
D	Flexural rigidity	Newton meter square
M _x	Bending moments in x direction	Newton Meters
M_y	Bending moments in y direction	Newton Meters
M_{xy}	Shear moments in x direction	Newton Meters
Pa	Pascal	Newton/meter square
g _m	Transconductance	Ampere/microvolt
k	Boltzmann's constant	Joules/Kelvin
Т	Absolute temperature	Kelvin
R	Resistance	Ohms
В	Noise bandwidth	Hertz
W	Channel width of the MOSFET	Micrometer
L	Channel length of the MOSFET	Micrometer
ID	DC Drain current of MOSFET	Amperes
i _d	Small signal drain current of MOSFE	Γ Amperes
Cox	Gate oxide capacitance	Farad
V _{cm}	Common mode voltage	Volts
A _{FC}	Open loop gain	Decibels
Q	Quality factor	