Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

VARIETY COMPARISON AND MODELLING FLOWERING OF *LIMONIUM PEREZII* (Stapf) Hubb. × *LIMONIUM SINUATUM* (L.) Mill. 'LSLP4'

A thesis presented in partial fulfilment of the requirements for

the degree of

Masters in Horticultural Science

Massey University

Palmerston North

New Zealand

Jianyu Chen

2005

Abstract

A series of new inter-specific hybrids have been derived between *L. perezii* and *L. sinuatum*. One of the selections 'LSLP4' offers potential as a cut flower. Precise knowledge on quality, yield and timing of these selections, as well as scheduling 'LSLP4' accurately in commercial production were required. To address these needs, this project comprised both a variety trial and an experiment to model the time to flower.

Plants of 'LSLP4', 'LSLP5' (a sibling of 'LSLP4'), *L. perezii* and *L. sinuatum* derived from tissue culture were grown in a temperature-controlled (daily mean temperature around 20°C) greenhouse and long-day photoperiod. With the exception of the inferior wing characteristic, the yield, timing, and quality as well as the consistency of yield and quality of 'LSLP4' were intermediate or superior to *L. sinuatum* and *L. perezii*. The potential of 'LSLP5' as a cut flower could not be assessed due to its failure to flower during the variety trial.

To develop a predictive model for time to flower of 'LSLP4', 7 sequential plantings were conducted from autumn through to late spring, utilizing one of two light regimes (50% shaded and no-shade). This resulted in 11 treatments of average daily light integral (DLI). Duration from transplanting to first visible flower bud (DTV) was correlated with average DLI, with the response being saturated above 15 mol·m⁻²·d⁻¹. This relationship between DTV and average DLI is the foundation of a 'pre-planting' predictive model for 'LSLP4'. DTV was also correlated with leaf number accumulation rate (LNAR) and ground cover index increase rate (GCIR). The

combination of average DLI and LNAR together as predictors of DTV improved the r^2 of the model over that using DLI alone from 88% to 92%, which subsequently formed the basis of a 'post-planting' predictive model. It was recommended that growers of 'LSLP4' for cut flowers use the 'pre-planting' model to schedule planting dates and predict flowering time according to historical DLI data. Once planting occurs, and actual DLI and LNAR are collected, the prediction of DTV can be refined by the post-planting model.

Acknowledgements

I sincerely thank my senior supervisor Dr. Keith Funnell for his excellent guidance, encouragement, infinite patience, and unconditional support throughout this study. Keith always enlightened and challenged my thoughts, and had an open-door policy for me. I would also like to express my appreciation of his dedication and time on reading and critically evaluating my thesis from very beginning pieces to final drafts.

My special gratitude also goes to my co-supervisor Mr Ed Morgan (Crop & Food Research Ltd.) for his invaluable advice and help whenever I needed it for my thesis. Ed spent lots of time discussing my results and his feedback on my thesis was also very important to complete this project.

I would like to thank the staff from Crop & Food Research Ltd., particularly Maaike Bendall, John Koolaard, and Duncan Hedderley for their invaluable statistical help in various stages of my thesis, and also Dr Ian Brooking for freely sharing his knowledge with us and thought provoking discussion. I also thank Crop & Food Research for the provision of plant materials for this research.

I am grateful to Prof. Ian Warrington for his helpful advice and discussion during different stages of this project. I thank all the staff members at the Institute of Natural Resources and the Plant Growth Unit, Massey University for their help in different ways, especially Prof. Qiao Wang for his moral support and guidance of my study and life in New Zealand. Massey Applied Science Scholarship Committee is very much thanked for providing various scholarships to me during these years.

My special appreciation is also extended to my lab mates and friends in New Zealand: Pyone for her kindness and care; Zhao for his help; Tuing for her friendship; Mya Mya for her warm hospitality and yummy foods, which satisfied my craving for my home cooking; Zheng, Ping, and Ming for the enjoyment of playing badminton; and Jenny and Graham Teahan family for their support and making me feel at home.

Some of my fellow mates in China, Ying Gao, Xiaomeng Sun and Jinxiang Xu have always been there for me during these years despite the distance. Their support, humour, and fun from chatting through the internet made my life never boring.

Finally, I owe so much to my parents and brother for their love and support while I was far away from them. Ba and Ma, thanks for asking that classic question every week (now I can finally answer: yes, I finished my thesis). My boyfriend, Dominic Teahan, thanks for being such a nice close friend, for all of your kind help in my study, for being with me in the computer lab until early morning, for all of your distraction, which made my life more enjoyable.

Table of Contents

ABSTRACT	<u> </u>
ACKNOWLEDGEMENTS	111
TABLE OF CONTENTS	V
LIST OF TABLES	<u>X</u>
LIST OF FIGURES	XI
LIST OF ABBREVIATIONS AND UNITS OF MEASUREMENT	XIV
CHAPTER 1 GENERAL INTRODUCTION	1
1.1 OVERVIEW OF THE NEW ZEALAND CUT FLOWER INDUSTRY	1
1.2 LIMONIUM SPECIES GROWN AS CUT FLOWER CROPS	2
1.3 LIMONIUM 'LSLP4' AND 'LSLP5'	3
1.4 GOALS AND AIMS OF THIS STUDY	6
CHAPTER 2 EVALUATION OF NEW LIMONIUM SELECTIONS AS CUT	
FLOWERS	7
2.1 INTRODUCTION	7
2.1.1 VARIETY TRIAL FOR 'LSLP4' AND 'LSLP5'	7
2.1.1.1 Attribute Selection	8
2.1.1.2 Summary of the Selected Attributes in the Variety Trial	14
2.1.1.3 Reference Plants	14

2.1.1.4 Growing Conditions for 'LSLP4' and 'LSLP5'	15
2.2 OBJECTIVES	17
2.3 MATERIALS AND METHODS	18
2.3.1 EXPERIMENT 1: APPEARANCE QUALITY, YIELD AND TIMING	18
2.3.1.1 General	18
2.3.1.2 Treatments	19
2.3.1.3 Data collection	19
2.3.1.4 Data analysis	21
2.3.2 EXPERIMENT 2: POSTHARVEST QUALITY EVALUATION	21
2.3.2.1 General	21
2.3.2.2 Data collection	22
2.3.2.3 Data analysis	22
2.4 RESULTS AND DISCUSSION	23
2.4.1 ANOVA	23
2.4.2 YIELD	24
2.4.2.1 Yield distribution	24
2.4.3 TIMING	27
2.4.4 QUALITY	27
2.4.4.1 Appearance	27
2.4.4.2 Post harvest quality	32
2.5 CONCLUSION	35

vi

CHAPTER 3 MODELLING DURATION TO FLOWER OF LIMONIUM 'LSLP4' 36

3.1 I	NTRODUCTION	36
3.1.1	THERMAL ENERGY AND DURATION TO FLOWER	37
3.1.1.1	Effective temperatures	37
3.1.1.2	Growing degree days	38

3.1.1.3 Potential effect of temperature on f	lowering of 'LSLP4'	39
3.1.2 DAILY LIGHT INTEGRAL AND DURAT	ION TO FLOWER	40
3.1.2.1 DLI		41
3.1.2.2 Cumulative DLI		42
3.1.3 PHOTOPERIOD AND DURATION TO FL	OWER	43
3.1.4 COMBINATION EFFECTS OF THERMAN	LENERGY, RADIANT ENERGY AND PHOTOPERIO	D
ON DURATION TO FLOWER		44
3.1.5 PLANT GROWTH PARAMETERS AS PR	EDICTORS OF DURATION TO FLOWER	45
3.1.5.1 Leaf number		46
3.1.5.2 Leaf area and rosette diameter		46
3.1.5.3 Application of plant growth param	eters as a flowering predictor	47
3.2 SUMMARY		48
3.3 MATERIALS AND METHODS		49
3.3.1 GENERAL		49
3.3.2 TREATMENTS		50
3.3.3 DATA COLLECTION		52
3.3.3.1 Environmental parameters		52
3.3.3.2 Plant growth parameters		54
3.3.4 EXPERIMENTAL DESIGN AND DATA A	NALYSIS	58
3.3.5 MODEL VALIDATION		59
3.4 RESULTS		59
3.4.1 ENVIRONMENTAL PARAMETERS		59
3.4.2 PLANT GROWTH PARAMETERS		62
3.4.2.1 Maximum leaf number below the f	ïrst visible flower bud	62
3.4.2.2 Leaf number accumulation rate and	d ground cover index increase rate	64
3.4.2.3 Rosette diameter		65
3.4.3 DURATION FROM TRANSPLANTING T	O FIRST VISIBLE FLOWER BUD	65
3.4.3.1 Environmental parameters as predi	ctors	65

vii

3.4.3.2	Plant parameters as predictors	68
3.4.3.3	Rate of progress to first visible flower bud	69
3.4.3.4	Multiple regression model predicting duration from transplanting to first visible	
flower	bud	71
3.4.3.5	Multiple regression model for predicting rate of progress to first visible flower bu	ıd
		72
3.4.3.6	Model validation	74
3.4.4	DURATION FROM FIRST VISIBLE FLOWER BUD TO HARVEST	75
3.5 I	DISCUSSION	77
3.5.1	DLI AS A PREDICTOR OF DURATION OR RATE OF PROGRESS TO FIRST VISIBLE FLOW	ER
BUD		77
3.5.2	INFLUENCE OF DLI ON PLANT VEGETATIVE GROWTH	78
3.5.3	EFFECT OF DLI VARIES IN DIFFERENT DEVELOPMENT STAGES.	79
3.5.4	CUMULATIVE DLI AS A POOR PREDICTOR OF DURATION FROM TRANSPLANTING TO	
FIRST	ISIBLE FLOWER BUD	80
3.5.5	EFFECT OF TEMPERATURE	81
3.5.6	COMBINATION EFFECT OF DLI AND TEMPERATURE ON DTV	82
3.5.7	IS A SPECIFIC LEAF NUMBER REQUIRED FOR FLOWER INITIATION OF 'LSLP4'?	83
3.5.8	CORRELATION BETWEEN RATES OF BOTH VEGETATIVE GROWTH AND VISIBLE FLOW	/ER
BUD		84
3.5.9	MODELS FOR PREDICTING DTV	85
3.5.9.1	Application of the pre-planting model	86
3.5.9.2	Application of the post-planting model	88
3.5.9.3	Limitation of the pre-planting and post-planting models	89
3.6 (CONCLUSION	90
REFE	RENCES	92

viii

APPENDIX 3 SUITABILITY OF 'BROKEN STICK MODEL' AND GOMPERTZ CURVE TO DESCRIBE CHANGES IN LEAF NUMBER OF *LIMONIUM* 'LSLP4' 108

103

List of Tables

TABLE 2-1. LIST OF ATTRIBUTES MEASURED IN THE VARIETY TRIALS OF SELECTED-
PUBLISHED ARTICLES
TABLE 2-2. SUMMARY OF ANOVA FOR ALL ATTRIBUTES OF 'LSLP4', L. SINUATUM, AND
L. PEREZII GROWN AT PALMERSTON NORTH, NEW ZEALAND FROM NOV. 2003 TO
MAY 2004
TABLE 2-3. STEM YIELD, STEM LENGTH, VISUAL IMPACT AREA, AND DURATION FROM
TRANSPLANTING TO THE FIRST HARVEST (DTFH) OF 'LSLP4', L. SINUATUM, AND L.
PEREZII GROWN IN PALMERSTON NORTH, NEW ZEALAND BETWEEN NOV. 2003 TO
MAY 2004
TABLE 3-1. INITIAL LEAF NUMBER, LEAF AREA, AND PLANT DRY WEIGHT OF 5 PLANTS
SAMPLED FROM PLANTING DATES BETWEEN MAY AND OCTOBER 200349
TABLE 3-2. EXPERIMENTAL TREATMENTS SHOWING AVERAGE DLI AND AIR
TEMPERATURE OF EACH TREATMENT AND REPLICATE FROM TRANSPLANTING
TO THE FIRST VISIBLE FLOWER BUD (PHASE 1) AND FROM THE FIRST VISIBLE
FLOWER BUD TO HARVEST (PHASE 2)
TABLE 3-3. MAXIMUM LEAF NUMBER BELOW THE FIRST VISIBLE FLOWER BUD (MLN)
OF 'LSLP4' FOR ALL TREATMENTS63
TABLE 3-4. REGRESSION MODELS PREDICTING DURATION FROM TRANSPLANTING TO
THE FIRST VISIBLE BUD (DTV) USING DAILY LIGHT INTEGRAL (DLI), LEAF
NUMBER ACCUMULATION RATE (LNAR), AND/OR GROUND COVER INDEX
INCREASE RATE (GCIR) AS PREDICTORS
TABLE 3-5. REGRESSION MODELS PREDICTING RATE OF PROGRESS TO THE FIRST
VISIBLE BUD (1/DTV) USING DAILY LIGHT INTEGRAL (DLI), LEAF NUMBER
ACCUMULATION RATE (LNAR), AND/OR GROUND COVER INDEX INCREASE RATE
(GCIR) AS PREDICTORS 73

List of Figures

FIG. 1-1. INFLORESCENCE OF LIMONIUM 'LSLP4' SHOWING STEM LENGTH, LEAF, AND
PANICLE (LEFT) AS WELL AS CLOSE-UP OF FLOWERS (RIGHT)
FIG. 2-1. NUMBER OF STEMS PER PLOT (8 PLANTS) HARVESTED WEEKLY (WEEK 1
BEGAN AT 5 JAN. 2004) OF L. SINUATUM, 'LSLP4', AND L. PEREZII
FIG. 2-2. AVERAGE STEM LENGTH HARVESTED WEEKLY (WEEK 1 BEGAN AT 5 JAN. 2004)
OF 'LSLP4', L. SINUATUM, AND L. PEREZII. VERTICAL BARS ARE THE SE OF THE
STEMS HARVESTED IN THE SAME WEEK
FIG. 2-3. VISUAL IMPACT AREA (LOG-TRANSFORMED) OF STEMS OF 'LSLP4', L.
SINUATUM, AND L. PEREZII, HARVESTED WEEKLY (WEEK 1 BEGAN AT 5 JAN. 2004).
VERTICAL BARS ARE THE SE OF THE STEMS HARVESTED IN THE SAME WEEK 30
FIG. 2-4. THE PRODUCT OF WING CATEGORY VALUES (EQUAL TO NUMBER OF STEMS
HARVESTED WEEKLY MULTIPLIED BY WING CATEGORY, I.E., '1', '2' AND '3') OF
'LSLP4', L. SINUATUM, AND L. PEREZII (WEEK 1 BEGAN AT 5 JAN. 2004)
FIG. 2-5. CHROMATICITY A*/B* RATIO OF 'LSLP4', L. PEREZII AND L. SINUATUM DURING
24 DAYS OF VASE LIFE EVALUATION. BARS ARE LSD 5% (D.F.=23) ON DAYS WITH
A SIGNIFICANT DIFFERENCE ($P < 0.05$) BETWEEN TREATMENTS
FIG. 2-6. INFLORESCENCE OF LIMONIUM 'LSLP4' (A AND B), L. PEREZII (C AND D), L.
SINUATUM (E), SHOWING DIFFERENCES BETWEEN STEMS AT HARVEST AND 9
DAYS LATER. INSERTED IMAGES ARE MAGNIFIED REGIONS OF STEMS
CONTAINED WITHIN THE ELLIPSE. ↑ INDICATES WING EXTENSION AND
INDICATES WING
FIG. 3-1. EXPERIMENTAL GREENHOUSE AFTER INITIAL PLANTINGS ILLUSTRATING
BASIC LAYOUT OF BLOCKS (DEFINED BY EACH METAL FRAME AREA), PLANT
SPACING, AND 'SHADED' VS. 'NO-SHADE' TREATMENTS
FIG. 3-2. EXAMPLE OF DIGITAL IMAGES CONTAINING 6 SAMPLE PLANTS OF LIMONIUM
'LSLP4' FROM ONE PLOT BEFORE IMAGE PROCESSING (A); HIGHLIGHTING LEAF
AREA AND 1 CM ² SCALE CONVERTED TO BLACK COLOUR (B)

FIG. 3-3. THE FIRST VISIBLE FLOWER BUD (HIGHLIGHTED BY ELLIPSE) APPEARED AT
THE APEX OF THE MAIN STEM OF 'LSLP4'
FIG. 3-4. DAILY LIGHT INTEGRALS OF SHADED AND NO-SHADE TREATMENTS FROM 7
MAY 2003 TO 24 FEB. 2004 IN THE GREENHOUSE AT THE PLANT GROWTH UNIT,
MASSEY UNIVERSITY, PALMERSTON NORTH, N.Z
FIG. 3-5. DAILY MEAN TEMPERATURE (T _A) OF SHADED AND NO-SHADE TREATMENTS
FROM 7 MAY 2003 TO 24 FEB. 2004 IN THE GREENHOUSE AT THE PLANT GROWTH
UNIT, MASSEY UNIVERSITY, PALMERSTON NORTH, N.Z61
FIG. 3-6. INFLUENCE OF DAILY LIGHT INTEGRAL ON MAXIMUM LEAF NUMBER (A) AND
NEW LEAF NUMBER BELOW THE FIRST VISIBLE FLOWER BUD (B), LEAF NUMBER
ACCUMULATION RATE (C), AND GROUND COVER INDEX INCREASE RATE OVER
TIME (D). EACH DATA POINT IS THE AVERAGE VALUE FOR 10 PLANTS IN A PLOT
EXCEPT FOR 8 PLANTS IN A PLOT FOR THE NOV_HL TREATMENT63
FIG. 3-7. EXAMPLE CURVES DESCRIBING THE CHANGE IN GROUND COVER INDEX OVER
TIME FOR MAY_LL, AUG_LL AND OCT_HL TREATMENTS. ACROSS ALL
TREATMENTS MSE VALUES FOR THE FITTED CURVES RANGED BETWEEN 0.0001
AND 0.0004 WITH R ² VALUES RANGING BETWEEN 99.7% AND 99.9%64
FIG. 3-8. DURATION FROM TRANSPLANTING TO THE FIRST VISIBLE BUD OF 'LSLP4' AS
A FUNCTION OF AVERAGE DAILY LIGHT INTEGRAL (A), CUMULATIVE DAILY
LIGHT INTEGRAL (B), AVERAGE DAILY TEMPERATURE (C), GROWING DEGREE
DAYS (D), AVERAGE PHOTOTHERMAL RATIO (E) AND CUMULATIVE
PHOTOTHERMAL RATIO (F). EACH DATA POINT IS THE AVERAGE VALUE FOR 10
PLANTS IN A PLOT EXCEPT FOR 8 PLANTS IN A PLOT FOR THE NOV_HL
TREATMENT
FIG. 3-9. DURATION FROM TRANSPLANTING TO THE FIRST VISIBLE BUD OF 'LSLP4' AS
A FUNCTION OF LEAF NUMBER ACCUMULATION RATE (A), GROUND COVER
INDEX INCREASE RATE (B), MAXIMUM LEAF NUMBER (C), AND NEW LEAF
NUMBER BELOW THE FIRST VISIBLE BUD (D). EACH DATA POINT IS THE AVERAGE
VALUE FOR 10 PLANTS IN A PLOT EXCEPT FOR 8 PLANTS IN A PLOT OF NOV_HL
TREATMENT

FIG. 3-10. RATE OF PROGRESS TO THE FIRST VISIBLE BUD OF 'LSLP4' AS A FUNCTION
OF AVERAGE DAILY LIGHT INTEGRAL (A), AVERAGE DAILY MEAN
TEMPERATURE (B), LEAF NUMBER ACCUMULATION RATE (C), AND GROUND
COVER INDEX INCREASE RATE (D). EACH DATA POINT IS THE AVERAGE VALUE
FOR 10 PLANTS IN A PLOT EXCEPT FOR 8 PLANTS IN A PLOT OF NOV_HL
TREATMENT
FIG. 3-11. THE RELATIONSHIP BETWEEN DAILY LIGHT INTEGRAL, LEAF NUMBER
ACCUMULATION RATE, AND DURATION FROM TRANSPLANTING TO THE FIRST
VISIBLE FLOWER BUD OF LIMONIUM 'LSLP4'. THE RESPONSE SURFACE WAS
FITTED BY REGRESSION ANALYSIS; DTV=59.01+6578*EXP(-0.1891*DLI-19.82*LNAR),
R ² =92.5%
FIG. 3-12. THE RELATIONSHIP BETWEEN DAILY LIGHT INTEGRAL, LEAF NUMBER
ACCUMULATION RATE, AND RATE OF PROGRESS TO THE FIRST VISIBLE FLOWER
BUD OF LIMONIUM 'LSLP4'. THE RESPONSE SURFACE WAS FITTED BY
REGRESSION ANALYSIS; 1/DTV=0.0192-0.0528*EXP(-0.1007*DLI-5.84*LNAR),
R ² =82.6%
FIG. 3-13. DURATION FROM THE FIRST VISIBLE FLOWER BUD TO HARVEST OF
LIMONIUM 'LSLP4' AS A FUNCTION OF AVERAGE DAILY LIGHT INTEGRAL (A),
CUMULATIVE DAILY LIGHT INTEGRAL (B), AVERAGE DAILY MEAN
TEMPERATURE (C), AND GROWING DEGREE DAYS (D). EACH DATA POINT IS THE
AVERAGE VALUE FOR 10 PLANTS IN A PLOT EXCEPT FOR 8 PLANTS IN A PLOT OF
NOV_HL TREATMENT
FIG. 3-14. MONTHLY AVERAGE OF DAILY LIGHT INTEGRAL INSIDE A GREENHOUSE AT
OHAKEA, GISBORNE OR, CHRISTCHURCH (NEW ZEALAND) FROM 1969 TO 1980
(NEW ZEALAND METEOROLOGICAL SERVICE, 1983)

List of Abbreviations and Units of Measurement

CDLI	cumulative daily light integral	mol·m ⁻²
DLI	daily light integral	$mol \cdot m^{-2} \cdot d^{-1}$
DTFH	duration from transplanting to first harvest	days
DTH	duration from first visible flower bud to harvest	days
DTV	duration from transplanting to first visible flower bud	days
GCI	ground cover index	$cm^2 \cdot cm^{-2}$
GCIR	ground cover index increase rate	$cm^2 \cdot cm^{-2} \cdot d^{-1}$
GDD	growing degree days	°C·d
LNAR	leaf number accumulation rate	leaves·d ⁻¹
MLN	number of leaves below the first visible flower bud	leaves
NLN	number of leaves presented between transplanting and	leaves
	first visible flower bud	
PRSS	predictive residual sum of squares	
PTR	photothermal ratio	$mol \cdot m^{-2} \cdot \circ C^{-1} \cdot d^{-1}$
RD	rosette diameter	cm
SE	Standard error	
T _a	daily mean temperature	°C
VIA	visual impact area	cm ²

Chapter 1 General Introduction

1.1 Overview of the New Zealand Cut Flower Industry

The New Zealand cut flower industry has developed well in the last two decades. Exports of cut flowers have increased from \$8 million in 1985 to \$48 million in 2002 (Kerr et al., 2002). Combined domestic and export earnings from cut flowers currently contribute approximately \$125 million to the New Zealand economy, with "new" cut flower selections representing 22% of this value.

The floriculture industry in New Zealand has been successful in developing novel cut flowers for export, from species and cultivars of *Cymbidium* Swartz., *Zantedeschia* Spreng and *Sandersonia* Hook. These successes have encouraged the New Zealand cut flower industry to focus on developing new cut flower varieties so as to ensure survival in the international cut flower market.

Crop & Food Research Ltd. is one of New Zealand's Crown Research Institutes and has a programme that specializes in introducing and breeding novel cut flowers. They have successfully developed a series of inter-specific hybrids within the genus *Limonium*. One of the hybrids has been commercialized as 'Chorus Magenta', and exported from New Zealand as both planting material and flowers. With ongoing breeding, more new *Limonium* selections have been identified with potential as cut flower crops.

1

1.2 Limonium Species Grown as Cut Flower Crops

Limonium is a well-known genus in the international cut flower market, and was ranked 19th in cut flower sales through Dutch auctions in 1999 (VBN, 1999). The popularity of *Limonium* is not only because of their wide range of adaptation within tropical and temperate zones, but also their attractive florets and long lasting calyces. The flowers of most *Limonium* species can be air-dried, which further extends their use and marketing opportunities.

Several *Limonium* species are grown as cut flowers. The best known species are *L. sinuatum* and the free-flowering statice hybrids between *L. latifolium* (Sm.) Kuntze. and *L. bellidifolium* (Gouan) Dumort. (Armitage, 2003). As *Limonium* became popular in the international flower market, more species were selected as cut flowers, such as *L. perezii*, *L. tetragonum* (Thunb.) Bullock., *L. suworowii* (Reg.) Kuntze. and *L. perigrinum* (Bergius) R.A.

There are more than 150 species in the *Limonium* genus (Baker, 1948). These display a range of morphological characteristics, which provides many opportunities to develop new selections through inter-specific hybridisation (Burge et al., 1995). Breeding to incorporate desirable traits (e.g. long flower stem) from different *Limonium* species into new selections has been demonstrated. For example, 'Chorus Magenta' is a selection from crosses between *L. perigrinum* and *L. purpuratum* L. (Morgan et al., 2001). The long stem characteristic is an attribute from *L. purpuratum*, which is not grown commercially due to its less attractive inflorescence.

1.3 Limonium 'LSLP4' and 'LSLP5'

A series of inter-specific hybrids have been developed between *L. perezii* and *L. sinuatum* using embryo rescue techniques (Morgan et al., 2001; Morgan et al., 1998). The objective of this breeding was to produce new forms of *Limonium* which retain inflorescence characteristics from *L. perezii*, e.g. long and smooth stem (i.e. no wings or wing extensions) and a large panicle, but include the range of flower colours evident in *L. sinuatum*.

L. sinuatum is one of the most common *Limonium* species in the international cut flower market. It is usually grown as an annual. The inflorescence is particularly valued for the dense and bright colours from long lasting calyces. Breeding of *L. sinuatum* has provided numerous hybrids of various colours, ranging from the pure white 'Iceberg' through the clear pink 'Pacific Twilight' and the aptly named 'Sunset' mixtures, to deep blues and violets (Huxley et al., 1992). There are however some characteristics of *L. sinuatum* that reduce the ornamental value of cut stems. *L. sinuatum* has angular stems with 0.5-0.6 cm wings and 2-3 cm wing extensions. The wings and wing extensions easily become yellow in the vase shortening the vase life (Steinitz and Cohen, 1982). The stem length (40 cm) is shorter than some other species, e.g. *L. perezii* (60 to 90 cm), and the panicle is small (Armitage, 2003; Huxley et al., 1992). Thus, breeding aims for *L. sinuatum* are to increase stem length, reduce wings and wing extensions, and enlarge the panicle (Ed Morgan, per. comm.).

L. perezii is also grown as a commercial cut flower though only a few cultivars are available. 'Violet' was selected for its deep colour, earliness to flower

and high production (Harada, 1992). 'Atlantis' has dark blue flowers and 60 to 90 cm stems (Armitage, 2003). This species is considered attractive with its long stem length, large panicle, and smooth stem without any wings and wing extensions, but the colour range in this species is limited. It is mainly blue. Therefore, one of the breeding aims for this species is to broaden the colour range (Ed Morgan, per. comm.).

The initial inter-specific hybrids between *L. perezii* and *L. sinuatum* were sterile and the fertility was restored by doubling chromosome numbers of the hybrids (Morgan et al., 2001). A blue tetraploid was back-crossed to *L perezii* to produce a range of back-cross selections designated as 'LSLP1' to 'LSLP7'. 'LSLP4' was the first of these selections to produce flowers. 'LSLP5' was the last (Ed Morgan, per. comm.).

Preliminary visual observation by the breeder has identified that these selections, in particular 'LSLP4' (Fig. 1-1), included some improved characteristics from its parents and might have potential as a commercial cut flower. For example, the inflorescence of 'LSLP4' retained the form of *L. perezii*, i.e. larger panicle and longer stem length, while the wings and wing extensions were considered less frequent than in *L. sinuatum* (Ed Morgan, per. comm.). When the flowers within the inflorescence of 'LSLP4' reach maturity, the funnel-like calyces open acropetally and expose a white corolla. The corolla abscises 2-3 days after anthesis while the calyces remain open, a feature that also occurs in both *L. sinuatum* and *L. perezii*. The calyx colour of 'LSLP4' is deep purple-blue, and was different to the blue of *L. perezii* (Ed Morgan, per. comm.). The preceding information was only based on visual observation. Therefore, a more detailed and accurate study was required to further

quantify the morphological characteristics of 'LSLP4' through variety trials. Furthermore, to replace or supplement existing species or cultivars for horticultural use, new selections should display a number of features including: early flowering after planting, compactness of flowering over time, high flower yield, and consistent quality of product (Funnell et al., 2003). To date no evaluation of the selections of *L*. *sinuatum* and *L. perezii* through variety trials has been carried out and, therefore, this forms the basis of the research reported in Chapter 2.

Fig. 1-1. Inflorescence of *Limonium* 'LSLP4' showing stem length, leaf, and panicle (left) as well as close-up of flowers (right).

The commercial introduction of any new cultivars of cut flowers not only requires the validation from variety trials that their quality, yield and timing are similar or superior to that of the industry standard cultivars, but also need to provide growers with the knowledge that allows growing and scheduling of the new cultivars accurately. No research has been published investigating the response of 'LSLP4' to light intensity, temperature, and photoperiod. Hence no data was available to develop a model for flowering prediction and scheduling plantings. This therefore forms the foundation of the research reported in Chapter 3.

1.4 Goals and aims of this study

The goals of this research were to provide horticulturists with some useful information for selecting *Limonium* selections, and also some crop scheduling strategies of 'LSLP4'. Within these goals the aims were:

- 1. To compare the quality, yield and timing of 'LSLP4' and 'LSLP5' to the industry standards of *L. sinuatum* and *L. perezii* through a variety trial
- 2. To develop and validate a model to predict time to flower of 'LSLP4'