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Abstract 
 
The aim of this investigation was the creation of a high precision volume 
measurement device using the Helmholtz resonator principle, the purpose of which 
was to measure, without interference, liquids, solids and particulate samples. A 
previous study by Nishizu et al. (2001) suggested they achieved an accuracy of about 
+1% of full scale, where full scale is 100% fill of the resonator chamber. Theory 
suggested that with careful design and measurement accuracy of approximately 
+0.1% should be achievable. 
 
A high precision resonator was designed using acoustic theory and drawn using 
SolidWorksTM computer aided design software. This was then built using a 
computerised numerical controlled milling machine. The resulting resonator was 
coupled to a 16-bit high-speed data acquisition system driven by purpose-made 
LabVIEWTM software. Using a resonant hunting method, repeatability was within 
+1mL for a 3L chamber and the accuracy was better than +3mL, which is +0.1% of 
full scale for liquid and solid samples. 
 
Testing of particulate material gave results indicating complex behaviour occurring 
within the resonator. Accuracy of sub-millimetre granular samples was restricted to 
approximately +1%, and fill factors to about 50%. This reduction in accuracy was 
caused by a combination of energy absorption and resonant peak broadening. Medium 
sized particles, between 1mm and 15mm allowed measurement accuracies of 
approximately +0.5%. Larger samples, greater than 15mm in diameter, gave results 
with comparable accuracy to water and solids tested.  
 
It was found that most materials required a post measurement curve fit to align 
predictive volume calculations. All samples were observed to have a predictive 
deviation curve with coefficients dependent on the material or general shape. This 
curve appeared to be a function of sample regularity and/or whether the sample has 
interstitial spaces. To achieve high measurement accuracy temperature compensation 
was required to negate drifts in sample measurement. 
 
Chamber mapping was conducted using a spherical solid moved to precise locations, 
then making a three-dimensional frequency map of the inside of a dual port resonator. 
This showed the length extension term for the moving mass of air in the port 
penetrates roughly three times further than theory suggests. However, the influence of 
this extra ‘tail’ was found to be negligible when calculating sample volumes. 
 
A new method of measuring volume was developed using Q profile shifting and 
ambient temperature information. Accuracies for this method were comparable to 
those found using the resonant hunting method. A significant advantage of the new 
method is a 2-3 second measurement time compared to approximately 40 seconds for 
the resonant hunting method. The Q profile shifting method allowed volume 
measurements on samples moving through a dual port resonator at speeds of up to 
100mm/s. 
 
Free fall measurements proved unsuccessful using existing methods, but variations in 
signal data for different sample sizes suggest the need for future investigation. 
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Follow-up studies may provide new interpretation models and methods for high-speed 
acquisition and analysis required to solve freefall measurements. 
 
Precise temperature (speed of sound) and flange factor (responsible for port length 
extension) relationships were evaluated. The correction factor for the speed of sound 
with temperature was found to be marginally different to established theory using the 
Helmholtz equation due to temperature secondary effects in the port length extension 
factor. The flange factor, which determines port length extension, for the 
configurations used in this investigation was experimentally found to be 
approximately 5% less than theoretical values. 
 
It was established that the sample to be measured must be within a certain region of 
the chamber for accurate volume measurements to be made. If the sample were larger 
than the bounded region the resonant frequency would no longer obey the Helmholtz 
relationship. This would thereby reduce the accuracy of the measurement. All samples 
irrespective of cross sectional area were found to alter the resonant frequency when 
they were over 85% of the chamber height. 
 
An equalisation method termed environmental normalisation curve was developed to 
prevent environmental and loudspeaker deficiencies from colouring Q profiles used in 
Q profile shifting procedures. This was undertaken as Q profile shifting relies on 
consistency in the Q profile. The environmental normalisation curve was able to 
equalise external factors to within +0.4dB. The environmental normalisation method 
could be used to post-process data or applied in real time to frequency generation. 
 
The controlled decent Q profile shifting technique was refined further to be used in 
continuous measurements in a single port resonator. Samples could theoretically be 
measured up to 15% of full-scale fill before resonant peak predictability would 
compromise accuracy. Measurement times were from one to three seconds, depending 
on environmental temperature stability. 
 
An alternative Helmholtz resonator was developed and investigated using an inverted 
port. This variant has potential applications for a seal-less chamber and port with 
rapid non-interference chamber access. Q factors for the inverted port resonator were 
found to be significantly less than tradition Helmholtz resonators. It is believed this is 
due to a larger boundary layer acoustic resistance occurring in the inverted port. 
 
A variable chamber resonator was designed and built as a further development of the 
Helmholtz resonator volume measurement system, as the uncertainty of measurement 
is a function of resonant chamber size. Therefore, using the variable chamber 
resonator the chamber size could be customised to the sample size. In this way the 
uncertainty of measurement could be minimised. The variable chamber resonator was 
used with both the resonant hunting method and the Q profile shifting method. 
 
Volume measurements on produce and minerals using the variable chamber resonator 
yielded results of similar accuracy to measurements on calibration samples. Each 
sample type displayed characteristics that would make specific calibration necessary. 
Both techniques were able to detect hidden void spaces, larger than 2% of the sample 
volume, and in punctured samples. Therefore, both methods may be viable for rapid 
sorting of produce and minerals. 
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Nomenclature 
a Primary radius , polynomial coefficient (with subscript) (m) 
BL Boundary layer      (m) 
c Speed of sound      (m/s) 
cp Specific heat, constant pressure    (J/kg.K) 
cv Specific heat, constant volume    (J/kg.K)  
c0 Speed of sound (STP)      (m/s) 
d Diameter       (m) 
D Energy density      (W.s/m3) 
f Force        (N) 
freq Frequency       (Hz) 
i Complex notation      - 
I Intensity       (W/m2) 
k Wave number       (k =ω/c) 
L Length        (m) 
lp Port length       (m) 
lp’  Total port length      (m) 
Lmfp Mean free path length      (m) 
∆l Port length extension      (m) 
m Mass        (kg) 
M Mean molecular weight     (kg) 
Mmol Molar mass       (kg) 
n Number of moles      - 
N Number of molecules      - 
p Particular pressure      (Pa) 
p0 Pressure at STP      (Pa) 
P0 Primary pressure      (Pa) 
δp Excess pressure      (Pa) 
Pr Prandtl number      - 
Q Quality factor       - 
Qs Strength of source      - 
r Primary distance from source     (m) 
R Secondary distance from source, Reflection ()  (m) 
Ra Acoustic resistance      (N.m/s5) 
Rm Mechanical resistance      (N.m/s) 
Rr Radiation resistance      (N.m/s) 
Reflect  Reflective coefficient      - 
Rc Gas constant       (8.31 J/mol.K) 
RN Reynolds number      - 
S Surface       (m2) 
s Cross sectional area      (m2) 
ST Sweep time       (s)  
t Time        (s) 
T Wave period       (s) 
Temp Temperature       (K) 
Transmit  Transmission coefficient 
U0 Primary velocity      (m/s) 
Us Specific velocity      (m/s) 
Uv Volume velocity      (m3/s) 
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V Volume       (m3) 
w Sample volume      (m3) 
Xa Acoustic reactance      (N.m/s5) 
Xm Mechanical reactance      (N.m/s) 
Xr Radiation reactance      (N.m/s) 
Y Thermal conductivity      (W/m.K) 
Z Characteristic impedance     (N.m/s3) 
Za Acoustic impedance      (N.m/s5) 
Zm Mechanical impedance     (N.m/s) 
Zr Radiation impedance      (N.m/s) 
Zs Specific impedance      (N.m/s3) 
 
Greek symbols 
 
α Helmholtz equation constant     (Hz/K) 
β Temperature gradient compensation    - 
δ Length extension factor     (m) 
γ Adiabatic gas ratio      (cp/cv) 
θ Primary angle       (radians) 
λ Wavelength       (m) 
µ Viscosity       (N.s/m2) 
ρ Particular air density      (kg/m3) 
ρ0 Density at STP      (kg/m3) 
δρ Excess density       (kg/m3) 
ς Power reflective coefficient     - 
σ Secondary radius      (m) 
τ Power transmission coefficient    - 
v Kinematic viscosity      (m2/s) 
vrms Root mean squared velocity     (m/s)  
φ  Secondary Angle      (radians) 
ψ Tertiary angle       (radians) 
ω Angular frequency      (radians/s) 
Ω Approximation function     - 
 
Subscripts 
 
+ Incident    - Reflected 
0 Initial value    1,2 Later values, coefficient number 
c Chamber    e Extension 
H High     i inner 
n Value in    inst Instantaneous 
L Low     max Maximum 
min Minimum    o outer 
Out Value out    p Port 
t Transmitted    T Temperature 
Therm Thermal    Visc Viscous 
 
Vector quantities are represented by either a cap or in bold.
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Basic equations 
 
Particular pressure:   00cUp ρ=      (1) 

 
Volume velocity:   sv SUU =      (2) 

 
Acoustic impedance:   psva sZUpZ // ==     (3) 

 
Specific impedance:   ss UpZ /=      (4) 

 
Mechanical impedance:  sm UfZ /=      (5) 

 

Radiation impedance:   pspar sZsZZ == 2     (6) 

 
Characteristic impedance:  cZ 0ρ=      (7) 

 
Acoustic intensity for a sphere: cpI 0

2 2/ ρ=      (8) 

 
Acoustic power for a sphere:  IaW 24π=      (9) 
 
Sound energy density:   0

22
0

2 // ppcpD γρ ==              (10) 

 

Acoustic intensity level (dB): 
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Acoustic power level (dB): 
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Specific resistance derivation: 
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Sound pressure level (dB): 




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
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
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refp

p
power 10log20              (131) 

 
Excess pressure:  0ppp −=δ                 (14) 

 

                                                 
1 Pref is a predefined reference pressure of 2x10-5Pa for hearing and liquids or 0.1Pa for transducer 
calibration. 
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Excess density:   0ρρδρ −=                 (15) 

 
The specific velocity:  ti

s eUU ω
0=                 (16) 

 
The specific pressure:  tiePp ω

0=                 (17) 

 
Strength of spherical Source: 0

24 UaQs π=                 (18) 

 
Forward travelling wave: sZUp =                 (19) 

 
Backward travelling wave: sZUp −=                 (20) 

 
 
Standard Helmholtz equation 
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p
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Sample volume Helmholtz equation 
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Temperature correction for speed of sound 

M

TRp
c empcγ

ρ
γ ==

0

0
0               (23) 

 

Measured Q factor equation 
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ω
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Theoretical Q factor for a Helmholtz resonator 
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Glossary 
 
Attenuation   Difference in sound pressure level between two points 
BL     Boundary Layer 
BEM     Boundary Element Model 
Chamber Main body of resonator in which sample volume is 

measured 
Characteristic impedance Measure of acoustic resistance in the far field 
Chirp     A narrow frequency sweep 
CSA    Cross Sectional Area 
dB    Decibels, measure of relative sound level 
ENC    Environmental Normalisation Curve 
Excess pressure  Differential pressure to the density at STP 
Excess density  Differential density to the density at STP 
Far field    Distance at which sound level is uniform 
Flange factor   Multiplying factor for determining port length extension 
FFT    Fast Fourier Transform 
FEM      Finite Element Model  
Helmholtz resonator  Resonator consisting of chamber and port 
Interstitial space  Space between adjacent particles in a granular bed 
IIR     Infinite Impulse Response (Digital filter) 
Length extension Extra distance the air in port moves beyond physical 

port length 
Mechanical impedance Combined mechanical resistance and reactance 
Mechanical resistance Sum of all real resistive components in the resonant 

system 
Mechanical reactance Sum of all imaginary force components in the resonant 

system 
Near field Distance where localised effects make sound levels 

non-uniform 
Neck    Alternative name for port 
Particular pressure The instantaneous pressure of an oscillatory pressure 

wave 
Pink noise Random frequencies having equal power 
Port Tube of smaller CSA than chamber connecting chamber 

to a secondary impedance region (usually an open 
environment) 

Primary pressure The maximum pressure in an oscillatory pressure wave 
Primary velocity The maximum velocity in an oscillatory wave 
Q factor   Quality factor, quality of resonance 
QPS    Q Profile Shifting 
Radiation impedance Combined radiation resistance and reactance 
Radiation resistance  Measure of the real resistive losses from the port 
Radiation reactance  Measure of the imaginary forces in the port 
Reflective coefficient Reflected component based on the ratio change of two 

impedance mediums  
RMS    Root Mean Squared (geometric average) 
RTD    Resistive Temperature Device 
Specific velocity  The instantaneous velocity of an oscillatory wave 
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SPL    Sound Pressure Level (dB) 
STP    Standard Temperature and Pressure (15ºC, 1.01x105Pa) 
SWR Standing Wave Ratio (maximum over minimum 

pressure) 
Transmission coefficient Transmitted component based on the ratio change of 

two impedance mediums 
VCR    Variable Chamber Resonator 
White noise   Random frequencies having random power 
 


