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Abstract

The aim of this investigation was the creation ofhmh precision volume
measurement device using the Helmholtz resonataciple, the purpose of which
was to measure, without interference, liquids, dsoland particulate samples. A
previous study by Nishizat al. (2001) suggested they achieved an accuracy oftabou
+1% of full scale, where full scale is 100% fill tdie resonator chamber. Theory
suggested that with careful design and measureraectiracy of approximately
+0.1% should be achievable.

A high precision resonator was designed using dwoulseory and drawn using
SolidWorks™ computer aided design software. This was thent busing a
computerised numerical controlled milling machirihe resulting resonator was
coupled to a 16-bit high-speed data acquisitiontesysdriven by purpose-made
LabVIEW™ software. Using a resonant hunting method, repéiyawas within
+1mL for a 3L chamber and the accuracy was bettan #8mL, which is_0.1% of
full scale for liquid and solid samples.

Testing of particulate material gave results intinga complex behaviour occurring
within the resonator. Accuracy of sub-millimetreagular samples was restricted to
approximately 1%, and fill factors to about 50%. This reductionaccuracy was
caused by a combination of energy absorption asmhant peak broadening. Medium
sized particles, between 1mm and 15mm allowed meamnt accuracies of
approximately 8.5%. Larger samples, greater than 15mm in diamgtare results
with comparable accuracy to water and solids tested

It was found that most materials required a posasueement curve fit to align

predictive volume calculations. All samples wereseived to have a predictive
deviation curve with coefficients dependent on thaterial or general shape. This
curve appeared to be a function of sample regulantd/or whether the sample has
interstitial spaces. To achieve high measuremeniracy temperature compensation
was required to negate drifts in sample measurement

Chamber mapping was conducted using a spheriddl saved to precise locations,

then making a three-dimensional frequency map @irikide of a dual port resonator.
This showed the length extension term for the ngpwvnass of air in the port

penetrates roughly three times further than theaggests. However, the influence of
this extra ‘tail’ was found to be negligible whesdaulating sample volumes.

A new method of measuring volume was developedgu§nprofile shifting and
ambient temperature information. Accuracies fos tmethod were comparable to
those found using the resonant hunting method.gAifstant advantage of the new
method is a 2-3 second measurement time compargaptoximately 40 seconds for
the resonant hunting method. The Q profile shiftimgthod allowed volume
measurements on samples moving through a dualr@sohator at speeds of up to
100mm/s.

Free fall measurements proved unsuccessful usiisgjrexmethods, but variations in
signal data for different sample sizes suggest rteed for future investigation.



Follow-up studies may provide new interpretationdels and methods for high-speed
acquisition and analysis required to solve freefa@asurements.

Precise temperature (speed of sound) and flanderf@esponsible for port length
extension) relationships were evaluated. The cbored¢actor for the speed of sound
with temperature was found to be marginally différe established theory using the
Helmholtz equation due to temperature secondagcesffin the port length extension
factor. The flange factor, which determines porngth extension, for the
configurations used in this investigation was ekpentally found to be
approximately 5% less than theoretical values.

It was established that the sample to be measuusd Ibe within a certain region of
the chamber for accurate volume measurements hodoe. If the sample were larger
than the bounded region the resonant frequencydvoaillonger obey the Helmholtz
relationship. This would thereby reduce the acgucdthe measurement. All samples
irrespective of cross sectional area were foundlter the resonant frequency when
they were over 85% of the chamber height.

An equalisation method termed environmental norsaéibn curve was developed to
prevent environmental and loudspeaker deficierfeaaa colouring Q profiles used in
Q profile shifting procedures. This was undertalkesnQ profile shifting relies on
consistency in the Q profile. The environmental nmalisation curve was able to
equalise external factors to withi4dB. The environmental normalisation method
could be used to post-process data or appliedhirtiree to frequency generation.

The controlled decent Q profile shifting techniquas refined further to be used in
continuous measurements in a single port reson&amples could theoretically be
measured up to 15% of full-scale fill before resdnpeak predictability would
compromise accuracy. Measurement times were froan@ithree seconds, depending
on environmental temperature stability.

An alternative Helmholtz resonator was developedi iamestigated using an inverted
port. This variant has potential applications foseal-less chamber and port with
rapid non-interference chamber access. Q factorthéinverted port resonator were
found to be significantly less than tradition Helith resonators. It is believed this is
due to a larger boundary layer acoustic resistancarring in the inverted port.

A variable chamber resonator was designed and &sliét further development of the
Helmholtz resonator volume measurement systenheaaricertainty of measurement
is a function of resonant chamber size. Therefagng the variable chamber
resonator the chamber size could be customisetetsample size. In this way the
uncertainty of measurement could be minimised. Vdreable chamber resonator was
used with both the resonant hunting method an®tpeofile shifting method.

Volume measurements on produce and minerals usengariable chamber resonator
yielded results of similar accuracy to measurememiscalibration samples. Each
sample type displayed characteristics that woul@arspecific calibration necessary.
Both techniques were able to detect hidden voidespdarger than 2% of the sample
volume, and in punctured samples. Therefore, batthads may be viable for rapid
sorting of produce and minerals.
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Primary radius, polynomial coefficient (with sehgt)
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Speed of sound
Specific heat, constant pressure
Specific heat, constant volume
Speed of sound (STP)
Diameter

Energy density

Force

Frequency

Complex notation
Intensity
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Port length

Total port length

Mean free path length
Port length extension
Mass

Mean molecular weight
Molar mass

Number of moles
Number of molecules
Particular pressure
Pressure at STP
Primary pressure
Excess pressure
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Strength of source
Primary distance from source
Secondary distance from source, Reflection ()
Acoustic resistance
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Radiation resistance
Reflective coefficient
Gas constant
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Surface
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Sweep time

Time
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Temperature
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Primary velocity
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Z
Zs

Volume

Sample volume
Acoustic reactance
Mechanical reactance
Radiation reactance
Thermal conductivity
Characteristic impedance
Acoustic impedance
Mechanical impedance
Radiation impedance
Specific impedance

Greek symbols

PN
{Oeﬁe§<<ﬂq=ﬂ%ﬁ§‘b‘: TN ™R
(%2}

Subscripts

+ Incident -

0 Initial value 1,2
C Chamber e

H High i

n Value in inst
L Low max
min  Minimum 0]
Out  Value out p

t Transmitted T
Therm Thermal

Helmholtz equation constant
Temperature gradient compensation
Length extension factor
Adiabatic gas ratio

Primary angle

Wavelength

Viscosity

Particular air density

Density at STP

Excess density

Power reflective coefficient
Secondary radius

Power transmission coefficient
Kinematic viscosity

Root mean squared velocity
Secondary Angle

Tertiary angle

Angular frequency
Approximation function

(m)

(n
(N.mys
(N.m/s)
(N.m/s)

(W/m.K)
(N.R/s
(N.nJs
(N.m/s)
(N.m/s)
(N.nJs

(Hz/K)
(m)
()

(radians)

(fts)

(m/s)
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(radians)
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Reflected

Later values, coefficient number
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inner

Instantaneous
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Port

Temperature
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Vector quantities are represented by either a caplmld.
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Basic equations

Particular pressure: p = p,cY, (1)
Volume velocity: U, =SU, (2)
Acoustic impedance: Z,=plU,=2ZIs, (3)
Specific impedance: Z, = plU, (4)
Mechanical impedance: Z. =flUg (5)
. . . . _ 2 _
Radiation impedance: Z, =25,"=L7gs, (6)
Characteristic impedance: Z=p,C (7
Acoustic intensity for a sphere: | = p*/2p,c (8)
Acoustic power for a sphere: W = 478°] 9)
Sound energy density: D = p?/ p,c* = p*/ )P, (10)
Acoustic intensity level (dB)Intensity= 10Iogm( I°”‘j (11)
2
Acoustic power level (dB): power=10log,, VV"—”"O—OE (12)
pc W,
W 2 RSin
Specific resistance derivatiopower=10log out (12a)
10 RSout W 2
power= 20Iogm(WOUt J +10Ioglo(%j
in Rs
Sound pressure level (dB): power= 20|0910[L] (1%
ref
Excess pressure: P=p-p, (14)

! p.is a predefined reference pressure of Z¥0for hearing and liquids or 0.1Pa for transducer
calibration.
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Excess density: O =p- Py
The specific velocity: U,=U,.e“
The specific pressure: p=PRe*

Strength of spherical Sourc€, = 4a°U,
Forward travelling wave: p=2ZU

S

Backward travelling wave: p=-ZU

S

Standard Helmholtz equation

W, = 27freq=c \/

Sample volume Helmholtz equation

w=V -

vV —w)(l, +Al)

(Ip+AI)(

Temperature correction for speed of sound

C, = y&=
\" 2%

Measured Q factor equatiorQ = w

Theoretical Q factor for a Helmholtz resonator

(wH - wL)

_an _ {IPSV
Q= R =2IT sp3

XX

(15)
(16)
(17)
(18)
(19)

(20)

(21)

(22)

(23)

(24)

(25)



Attenuation
BL

BEM
Chamber

Characteristic impedance

Chirp

CSA

dB

ENC

Excess pressure
Excess density
Far field

Flange factor
FFT

FEM

Helmholtz resonator
Interstitial space
IR

Length extension

Mechanical impedance

Mechanical resistance
Mechanical reactance
Near field

Neck
Particular pressure

Pink noise
Port

Primary pressure
Primary velocity

Q factor

QPS

Radiation impedance
Radiation resistance
Radiation reactance
Reflective coefficient

RMS
RTD
Specific velocity

Glossary

Difference in sound pressure level between toiotp
Boundary Layer

Boundary Element Model

Main body of resonator in which sample volume is
measured

Measure of acoustic resistance in the far field

A narrow frequency sweep

Cross Sectional Area

Decibels, measure of relative sound level
Environmental Normalisation Curve

Differential pressure to the density at STP
Differential density to the density at STP

Distance at which sound level is uniform
Multiplying factor for determining port lengtixtension
Fast Fourier Transform

Finite Element Model

Resonator consisting of chamber and port

Space between adjacent particles in a granuthr be
Infinite Impulse Response (Digital filter)

Extra distance the air in port moves beyond playsic
port length

Combined mechanical resistance and reactance
Sum of all real resistive components in the resbna
system

Sum of all imaginary force components in the resmn
system

Distance where localised effects make sound levels
non-uniform

Alternative name for port

The instantaneous pressure of an oscillatory press
wave

Random frequencies having equal power

Tube of smalleCSAthan chamber connecting chamber

to a secondary impedance region (usually an open
environment)

The maximum pressure in an oscillatory pressureewav
The maximum velocity in an oscillatory wave
Quality factor, quality of resonance

Q Profile Shifting

Combined radiation resistance and reactance
Measure of the real resistive losses from thé por
Measure of the imaginary forces in the port
Reflected component based on the ratio changeof t
impedance mediums

Root Mean Squared (geometric average)

Resistive Temperature Device

The instantaneous velocity of an oscillatory wave

XXi



SPL Sound Pressure Level (dB)

STP Standard Temperature and Pressure (15°C, 10tRa)l
SWR Standing Wave Ratio (maximum over minimum
pressure)

Transmission coefficient Transmitted component based on the ratio change of
two impedance mediums

VCR Variable Chamber Resonator

White noise Random frequencies having random power
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