Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Concentration of Dairy Flavours using Pervaporation

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Auckland, New Zealand

> Amy Rachael Overington 2008

Abstract

The food industry could potentially benefit from using pervaporation, a membrane process, to concentrate flavours. This research aimed to investigate its application for concentrating flavours in dairy process streams. Pervaporation experiments were carried out at a range of operating conditions, using hydrophobic membranes. The feed mixtures were either aqueous model solutions of dairy flavour compounds (acids, esters and ketones), complex model mixtures containing flavour compounds plus non-volatile dairy components, or real dairy products.

Flavour compound enrichment factors ranged from below one to above 30, with esters and ketones being concentrated more effectively than acids. Thus, the flavours could be partially fractionated based on their chemical structure. The permeation of acids was reduced by approximately 50% when the feed pH was increased to near their pK_a values.

For flavour compounds with lower molecular weights than approximately 120 g mol⁻¹, permeation was controlled mainly by sorption in the membrane; for larger compounds it was controlled mainly by diffusion through the membrane. The mass transfer of each flavour compound increased with temperature, following an Arrhenius-like relationship. The activation energy was a function of each compound's heat of sorption, its molecular weight, and the elastic modulus of the membrane. The activation energy was also related to the Arrhenius pre-exponential factor. Thus, fluxes could be estimated through empirical correlations.

The non-volatile feed composition was an important factor influencing the pervaporation performance. Milk protein isolate (4% w/v) or lactose (6% or 12% w/v) bound with the flavour compounds in the feed, thus lowering the enrichment of sorption-controlled compounds. Milk fat (up to 38% w/v, in the form of cream) reduced the enrichment of all the flavour compounds tested. Esters and ketones became unavailable for pervaporation as they partitioned into the fat phase; acids remained mainly in the aqueous phase, but their permeation was reduced because the added cream increased the feed pH.

Experiments with real dairy products showed that pervaporation could be used to concentrate diacetyl in starter distillate, and to selectively recover short-chain esters from ester cream. Of these two products, starter distillate is the more promising for use as a pervaporation feed stream.

I would like to thank my supervisor, Dr Marie Wong, and co-supervisors Dr John Harrison and Dr Lílian Ferreira, for all their help and encouragement during my PhD. Each of them provided valuable support, and helped me to become a better researcher. I would recommend any of them to future students as examples of excellent supervisors.

Thanks also to the other Fonterra staff who provided useful suggestions and discussion: Dr Vaughan Crow, Dr Ross Holland and Dr Paul Andrewes. I would also like to thank the laboratory staff at Massey and Fonterra, Helen Matthews and Andrew Broome, for helping my laboratory work to go smoothly.

Many long hours were spent in the chemistry laboratory at Massey University, and I thank the various staff, postgraduate students and fourth year students who provided company during that time. I am also grateful for the friendship of other PhD students who understood the ups and downs of the PhD process, particularly Christine Flynn, with whom I shared an office throughout most of my PhD.

Finally I must thank my parents for putting up with me living at home much longer than I should have.

This work was funded by Fonterra Co-operative Group Ltd and the Foundation for Research, Science and Technology (Technology Industry Fellowship programme; contract number FCGL0403). Pervaporation membranes were kindly supplied by GKSS-Forschungszentrum Geesthacht GmbH.

List of publications and presentations

Peer-reviewed publications

- Overington, A., Wong, M., Harrison, J., & Ferreira, L. (2008). Concentration of dairy flavour compounds using pervaporation. *International Dairy Journal*, 18(8), 835–848.
- Overington, A.R., Wong, M., Harrison, J.A. & Ferreira, L.B. (2009). Estimation of mass transfer rates through hydrophobic pervaporation membranes. *Separation Science and Technology*, *44*(4), 787–816.

Conference presentations

- Overington, A., Wong, M., Harrison, J. & Ferreira, L.. Concentration of dairy flavour compounds using pervaporation. 5th NIZO Dairy Conference: Prospects for flavour formation and perception. Papendal, The Netherlands, 13–15 June 2007. (Poster and oral presentation).
- Overington, A., Wong, M., Harrison, J. & Ferreira, L.. Modelling of pervaporation for concentration of flavour compounds. IMSTEC 07: The 6th International Membrane Science and Technology Conference. Sydney, Australia, 5–9 November 2007. (Oral presentation).
- Overington, A.. Flavour concentration by pervaporation: Effect of feed solution characteristics. Fonterra Science and Technology Seminar Series. Palmerston North, New Zealand, 12 June 2008. (Oral presentation).
- Overington, A., Wong, M., Harrison, J. & Ferreira, L.. Effect of feed solution characteristics on flavour concentration by pervaporation. NZIFST Conference 2008: Food Sustainability. Rotorua, New Zealand, 24–26 June 2008. (Oral presentation).
- Overington, A., Wong, M., Harrison, J. & Ferreira, L. Effect of dairy fat on pervaporative flavour compound concentration. NZIFST Conference 2008: Food Sustainability. Rotorua, New Zealand, 24–26 June 2008. (Poster presentation).
- Overington, A., Wong, M., Harrison, J. & Ferreira, L.. Effect of feed solution characteristics on flavour concentration by pervaporation. ICOM 2008: International Congress on Membranes and Membrane Processes. Honolulu, Hawaii, USA, 12–18 July 2008. (Oral presentation).

Table of contents

List List List	t of figures t of tables t of symbols and abbreviations	ix . xvi xviii
Cha Intr	apter 1 oduction	1
Cha	apter 2	
Lite	rature review	4
2.1	Chemistry of dairy flavours	4
2.2	Recovery and concentration of dairy flavours	8
	2.2.1 Flavour concentration by removing water	9
	2.2.2 Recovery of flavour compounds	11
2.3	Fundamental aspects of pervaporation	18
2.4	Factors that determine pervaporation performance	23
	2.4.1 Influence of membrane type	24
	2.4.2 Influence of feed solution	34
	2.4.3 Influence of operating conditions	43
	2.4.4 Influence of module design	51
2.5	Models to describe pervaporation	54
	2.5.1 Resistance-in-series model	54
	2.5.2 Mass transfer on the feed side	57
	2.5.3 Mass transfer in the membrane	59
2.6	Literature review conclusions	70
Cha	anter 3	
Ger	aprel 5 Deral methods	72
31	Feed solutions	
2.11	3.1.1 Standard multicomponent feed	72
	3.1.2 Model feed solutions with additional flavour compounds	73
	3.1.3 Model feed solutions with different volatile compositions	73
	3.1.4 Model feed mixtures containing non-volatile dairy	
	ingredients	74
	3.1.5 Real dairy products	75
3.2	Pervaporation apparatus	76
3.3	Pervaporation experiments	78
3.4	Calculation of fluxes and enrichment factors	79
	3.4.1 Enrichment factors and uncorrected fluxes	79
	3.4.2 Monitoring of membrane performance	80
3.5	Analysis of retentate and permeate samples	81
	3.5.1 Extraction of aqueous samples	81
	3.5.2 Extraction of samples containing non-volatile components	81
	3.5.3 Gas chromatography	82
	3.5.4 Analysis of real dairy products	82
3.6	Error reporting	84

Chapter 4Flux variation over time854.1Flux decline with volatile feed components4.2Flux decline with non-volatile feed components884.3Flux variation between membrane pieces894.4Validation of flux correction factors90

Chapter 5

Effec	ct of ope	erating conditions and compound type on	
perv	aporatic	on	92
5.1	Introduc	tion	.92
5.2	Experim	ental	.92
5.3	Results a	and discussion	.93
	5.3.1	Effect of operating conditions on flux	.93
	5.3.2	Effect of membrane type on total flux and flavour compound	
		fluxes	.95
	5.3.3	Influence of membrane type on permeate composition	.97
	5.3.4	Influence of compound type and operating conditions on	
		enrichment	. 99
	5.3.5	Effect of compound type and molecular weight on flux	101
	5.3.6	Effect of feed pH on pervaporation	12
5.4	General	discussion	114

Chapter 6

Coup	oling be	tween model solution compounds117
6.1	Introduc	tion
6.2	Experim	ental 118
6.3	Results a	and discussion
	6.3.1	Total flux with binary and multicomponent feed solutions118
	6.3.2	Coupling interactions between different flavour compounds121
	6.3.3	Effect of ethanol on water flux
	6.3.4	Coupling interactions between ethanol and flavour
		compounds132
6.4	General	discussion

Chapter 7

Effe	ct of no	n-volatile dairy components on pervaporation13	38
7.1	Introduc	tion1	38
7.2	Experim	ental 1	39
	7.2.1	Partitioning of flavour compounds between fat and water1	39
	7.2.2	Effect of non-volatile dairy components on flavour	
		compound vapour pressures14	40
	7.2.3	Effect of non-volatile components on pervaporation	
		performance1	41
	7.2.4	Effect of operating conditions on pervaporation with fat14	41
7.3	Results a	and discussion14	42
	7.3.1	Effect of fat on pervaporation14	42
	7.3.2	Effect of milk protein on pervaporation 10	60
	7.3.3	Effect of lactose on pervaporation10	67
7.4	General	discussion1	72

Chapter 8

Perv	aporatio	on of real dairy products	. 178
8.1	Introduc	tion	178
8.2	2 Experimental		180
	8.2.1	Pervaporation experiments	180
	8.2.2	Extent of fat separation in ester cream	180
8.3 Results and discussion		and discussion	181
	8.3.1	Pervaporation of starter distillate	181
	8.3.2	Pervaporation of ester cream	. 190
8.4 Implication		ions and commercial aspects	. 198
	8.4.1	Commercial aspects of starter distillate pervaporation	198
	8.4.2	Commercial aspects of ester cream pervaporation	. 199
	8.4.3	Conclusions	. 200

Chapter 9

Emp	pirical m	odelling of mass transfer coefficients	202
9.1	Introduc	tion	. 202
9.2	Theory.		202
9.3	Determi	nation of model parameters	204
9.4	Results	and discussion	205
	9.4.1	Effect of temperature on mass transfer	205
	9.4.2	Effect of compound and membrane type on activation energy	209
	9.4.3	Relationship between activation energy and pre-exponential factor	216
	9.4.4	Estimation of effective mass transfer coefficients using correlations	220
	9.4.5	Extension of model to predict results with different feed	220
9.5	Conclus	ions	229

Chapter 10

Perv and	aporation recomm	on of dairy flavours: Overall discussion, conclusions	230	
10.1	Overall	discussion: Using pervaporation to concentrate dairy flavours	. 230	
	10.1.1	Comparison of dairy flavour compounds with respect to their pervaporation behaviour	. 230	
	10.1.2	Effect of operating conditions on pervaporation of flavour compounds	. 232	
	10.1.3	Influence of the feed mixture on pervaporation of flavour compounds	. 234	
	10.1.4	Application to real dairy process streams	. 237	
	10.1.5	Prediction of pervaporation fluxes	. 238	
10.2	Conclus	ions	. 239	
10.3	Recomm	nendations for future research	240	
Refe	rences.		242	
Appo Extra	endix A action e	fficiencies of flavour compounds	264	
Appe Calc	Appendix B Calculation of driving forces and mass transfer coefficients			

Appendix C Mass balance for flavour compounds in standard multicomponent feed286
Appendix D Flavour compound enrichment factors at various operating conditions
Appendix E Flavour compound enrichment factors at two concentrations301
Appendix F Feed partial pressures of diacetyl and water
Appendix G Mass balance for concentration of diacetyl in starter distillate303
Appendix H Arrhenius plots of mass transfer coefficients
Appendix I Calculation of heat of sorption for diacetyl in PDMS

List of figures

Figure 2-1:	Main pathways for flavour production in dairy products	6
Figure 2-2:	Constant-pressure phase diagram for a two-component system	12
Figure 2-3:	Diagram of Flavourtech spinning cone column	14
Figure 2-4:	Graphs reproduced from Sampranpiboon et al. (2000b) showing how ethyl butanoate and water fluxes increased, but the separation factor decreased, as the temperature was raised. Likewise, the PDMS (polydimethylsiloxane) membrane allowed a higher total flux (water plus ethyl butanoate) but a lower separation factor than the POMS (polyoctylmethylsiloxane) membrane.	21
Figure 2-5:	Operating conditions and feed solution aspects that may affect pervaporation. In many cases each factor is not independent	23
Figure 2-6:	Structure of a PDMS monomer unit.	25
Figure 2-7:	Silicalite pores viewed from above, showing two molecules adsorbed inside.	26
Figure 2-8:	Structure of a POMS monomer unit.	29
Figure 2-9:	Cross-sectional schematic view of a composite membrane	32
Figure 2-10:	Arrhenius plot showing how the logarithm of the rate constant (usually defined as the flux rate in pervaporation literature) is linearly related to the inverse temperature	44
Figure 2-11:	Illustrations of various membrane module configurations: (a) spiral wound, (b) monolithic ceramic, (c) vibrating disc stack, (d) hollow fibre, (e) plate and frame	52
Figure 2-12:	Types of sorption isotherm encountered in pervaporation	62
Figure 3-1:	Schematic diagram of the pervaporation unit.	76
Figure 3-2:	Cutaway diagram of membrane module	77
Figure 4-1:	Decrease in uncorrected total fluxes between runs, for (a) PDMS Type 1 membrane (30°C feed temperature; 1.5 kPa permeate pressure), (b) PDMS Type 2 membrane (20°C feed temperature; 0.5 kPa permeate pressure) and (c) POMS membrane (30°C feed temperature; 0.3 kPa permeate pressure). Standard multicomponent feed solution used for all runs shown.	86
Figure 4-2:	Decrease in uncorrected total fluxes between runs, when the membrane had been used with feed solutions containing non-volatile compounds (standard multicomponent feed; standard operating conditions: PDMS Type 1 membrane, 30°C feed temperature, 1.5 kPa permeate pressure).	89
Figure 4-3:	Scanning electron microscope images $(320 \times \text{magnification of cross-sectional slice})$ of two samples of the PDMS Type 2	

membrane, showing how the active layer thickness varied Total fluxes at standard operating conditions (PDMS Type 1 Figure 4-4: membrane: 30°C feed temperature, 1.5 kPa permeate pressure; PDMS Type 2 membrane: 20°C feed temperature, 0.5 kPa permeate pressure; POMS membrane: 30°C feed temperature, 0.3 kPa permeate pressure), after applying correction factors Effect of operating conditions on total flux of the model feed Figure 5-1: solution through PDMS Type 1, PDMS Type 2 and POMS membranes. Each point is the mean (± standard error) of at Enrichment factors (mean \pm standard error) of each model Figure 5-2: solution compound at a feed temperature of 40°C and a permeate pressure of 2 kPa......97 Effect of molecular weight on flux of esters (normalised for Figure 5-3: feed mole fraction) through (a) PDMS Type 1, (b) PDMS Type 2, (c) POMS. Data points are the mean (± standard error) Figure 5-4: Effect of molecular weight on flux of ketones (normalised for feed mole fraction) through (a) PDMS Type 1, (b) PDMS Type 2, (c) POMS. Data points are the mean (± standard error) Figure 5-5: Effect of molecular weight on flux of acids (normalised for feed mole fraction) through (a) PDMS Type 1, (b) PDMS Type 2, (c) POMS. Data points are the mean (± standard error) Figure 5-6: Mole fraction-normalised fluxes of esters, including ethyl decanoate (mean ± standard error of three replicates). Operating conditions: PDMS Type 1 membrane, 2 kPa permeate pressure......110 Mole fraction-normalised fluxes of acids, including three acids Figure 5-7: additional to those in the standard multicomponent feed solution (mean \pm standard error of three replicates). Operating conditions: PDMS Type 1 membrane, 2 kPa permeate pressure......111 Figure 5-8: Effect of feed pH on enrichment factor (mean ± standard error) of each flavour compound. Operating conditions: PDMS Type 1 membrane; feed temperature 30°C; permeate pressure Individual fluxes (mean \pm standard error) of acids in feed Figure 5-9: solutions at different pH, plotted against the concentration of each acid in its undissociated form. Operating conditions: PDMS Type 1 membrane; feed temperature 30°C; permeate pressure 1.5 kPa.....114 Comparison between total fluxes of pure water, binary feed Figure 6-1: solutions (one flavour compound plus water) and multicomponent feed solutions (nine flavour compounds plus water). Operating conditions: PDMS Type 1 membrane, 20°C

or 30°C feed temperature, 1.5 kPa permeate pressure; flavour compound concentrations were either the same as, or 50% of, those in the standard multicomponent feed. Data are means (\pm standard error) of at least two replicates, except for octanoic acid at 20°C, for which only one run was carried out......119

- pressure 2 kPa)......142

Figure 7-3:	Percentage reduction in total flux after two hours, for various fat levels at 30° C and 2 kPa. Data points are the mean (± standard error) of three replicates
Figure 7-4:	Fat/water partition coefficients for (a) ketones, (b) esters and (c) acids, in solutions with various amounts of fat. Data points are the mean (± standard error) of three replicates
Figure 7-5:	Available concentrations (concentration of each compound not associated with fat) of (a) ketones, (b) esters and (c) acids, in feed solutions with various levels of fat. Data are means (\pm standard error) of three replicates, except for 0% fat, in which the available concentration is the actual amount added to the solution
Figure 7-6:	Partial pressures of (a) ketones, (b) esters and (c) acids (mean ± standard error of two replicates, measured at 20°C), above feed solutions with various levels of fat
Figure 7-7:	Effect of fat on fluxes of (a) ketones, (b) esters and (c) acids (feed temperature 30°C; permeate pressure 2 kPa). Data points are the mean (± standard error) of three replicates
Figure 7-8:	Effect of fat on enrichment factors of (a) ketones, (b) esters and (c) acids (feed temperature 30°C; permeate pressure 2 kPa). Data points are the mean (± standard error) of three replicates
Figure 7-9:	Individual compound fluxes (mean \pm standard error) of (a) ketones, (b) esters and (c) acids, adjusted by dividing by partial vapour pressures from Figure 7-6. Operating conditions: 30°C feed temperature, 2 kPa permeate pressure. Values could not be calculated for 2-nonanone or ethyl octanoate in feed solutions above 10% fat, because their partial pressures were too low to measure
Figure 7-10:	Correlation between measured (mean \pm standard error) and predicted fluxes (Equation (7-1)) for (a) ketones ($R^2 = 0.67$), (b) esters ($R^2 = 0.99$), and (c) acids ($R^2 = 0.78$). The diagonal line represents an ideal 1:1 relationship
Figure 7-11:	Effect of feed temperature on individual fluxes (mean ± standard error) of (a) ketones, (b) esters and (c) acids (2 kPa permeate pressure). Black lines: no fat; red lines: 20% fat
Figure 7-12:	Comparison of individual fluxes at with and without fat at two permeate pressures (feed temperature 20° C). Data are means (± standard error) of three replicates
Figure 7-13:	Effect of added protein on partial vapour pressures of flavour compounds (measured at 20°C; mean ± standard error of two replicates)
Figure 7-14:	Effect of 4% milk protein isolate on fluxes of (a) ketones, (b) esters and (c) acids, in the presence or absence of 20% fat. Data are means (± standard error) of three replicates. Operating conditions: 30°C feed temperature, 2 kPa permeate pressure 162
Figure 7-15:	Effect of 4% milk protein isolate on enrichment factors of (a) ketones, (b) esters and (c) acids, in the presence or absence of

- Figure 8-5: Comparison of enrichment factors between ester cream and model solution (20% fat). Operating conditions: PDMS Type 1 membrane, permeate pressure 2 kPa, feed temperatures (a) 20°C and (b) 40°C. Data are means (± standard error) of three

	runs for model solutions, or four measurements within one run for ester cream
Figure 9-1:	Arrhenius plots of (a) ketone, (b) acid and (c) ester mass transfer coefficients (PDMS Type 1 membrane). Data points are means (± standard errors) of 3–17 measurements at each temperature
Figure 9-2:	Relationships between activation energy for permeation (mean ± standard error) and molecular weight, for (a) ketones, (b) acids and (c) esters. Activation energies were calculated from Arrhenius plots with 27–35 data points
Figure 9-3:	Activation energy versus estimated elastic modulus: (a) compounds with molecular weights less than 120 g mol^{-1} ; (b) compounds with molecular weights greater than 120 g mol^{-1} 213
Figure 9-4:	Heat of sorption (mean \pm standard error of the intercept of Figure 9-3) versus molecular weight, for water, acids, esters and ketones
Figure 9-5:	Compensation effect between activation energy and pre- exponential factor. Error bars show standard errors of the slope and intercept of Arrhenius plots
Figure 9-6:	Variation of compensation effect between compounds (mean ± standard error of the y-intercept of Figure 9-5; three data points per compound)
Figure 9-7:	Mass transfer coefficients for water. Symbols are experimental values (mean ± standard error of at least three replicates) and lines show model predictions. 221
Figure 9-8:	Mass transfer coefficients for ketones. Symbols are experimental values (mean ± standard error of at least three replicates) and lines show model predictions
Figure 9-9:	Mass transfer coefficients for acids. Symbols are experimental values (mean \pm standard error of at least three replicates) and lines show model predictions. 222
Figure 9-10:	Mass transfer coefficients for esters. Symbols are experimental values (mean ± standard error of at least three replicates) and lines show model predictions
Figure 9-11:	Predicted versus experimental fluxes for (a) water (total flux; $R^2 = 0.97$) and (b) flavour compounds ($R^2 = 0.85$). The diagonal line shows an ideal 1:1 relationship between the two 225
Figure 9-12:	Predicted and actual fluxes for flavour compounds and water in a feed solution containing 20% fat. The diagonal line shows an ideal 1:1 relationship between the two. Operating conditions: PDMS Type 1 membrane; 20°C, 30°C or 40°C feed temperature; 2 kPa permeate pressure. Graph excludes negative predicted fluxes for octanoic acid at 20°C and 30°C 225
Figure G-1:	Mass balance for concentration of diacetyl using pervaporation, with a total permeate flow rate of 0.05 L h^{-1} and an enrichment factor of 6.3 for diacetyl
Figure G-2:	Calculated change in retentate and cumulative permeate volumes over time (total volume of starter distillate = 10 L)

Figure G-3:	Calculated mass of diacetyl in retentate and cumulative permeate over time (total mass of diacetyl in system = 22 000 mg).	.306
Figure G-4:	Calculated change in diacetyl concentration over time, in retentate and cumulative permeate (initial feed concentration = 2200 mg L^{-1})	.307
Figure H-1:	Arrhenius plots of (a) ketone, (b) acid and (c) ester mass transfer coefficients, using the PDMS Type 2 membrane. Data points are means (± standard errors) of 3–12 measurements at each temperature.	.308
Figure H-2:	Arrhenius plots of (a) ketone, (b) acid and (c) ester mass transfer coefficients, using the POMS membrane. Data points are means (\pm standard errors) of 9–18 measurements at each temperature.	.309

Table 3-1:	Composition of the standard multicomponent feed solution72
Table 3-2:	Proximate composition of cream, milk protein isolate and edible grade lactose
Table 3-3:	Properties of pervaporation membranes used in this study (all supplied by GKSS-Forschungszentrum)77
Table 5-1:	Fluxes (mean ± standard error) and feed partial pressures of flavour compounds at different temperatures (all at 2 kPa permeate pressure)
Table 5-2:	Enrichment factors (mean ± standard error) of flavour compounds at different operating conditions (PDMS Type 1 membrane)
Table 5-3:	pK_a values of acids used in the model solution, at 25°C, and proportions of each acid in the undissociated form (calculated using the Henderson-Hasselbach equation)
Table 5-4:	Odour descriptors of flavour compounds used in the feed solution
Table 6-1:	Coupling factors (mean ± standard error) in feed solutions containing either two ketones or two esters. Operating conditions: 30°C feed temperature, 1.5 kPa permeate pressure, standard concentrations
Table 6-2:	Water flux and ethanol flux (mean ± standard error), for feed solutions with and without ethanol
Table 7-1:	Viscosities (at 40°C) of cream/milk mixtures with various levels of fat, estimated from a nomogram by Phipps (1969) 143
Table 7-2:	Concentrations of model solution compounds in permeate from 100% cream (38% w/v fat). Pervaporation conditions: 30° C feed temperature; 2 kPa permeate pressure. Data are means (± standard error) of three replicates, using different batches of cream. 144
Table 7-3:	pH values of model feed solutions containing flavour compounds and various amounts of cream
Table 7-4:	Percentage reduction in enrichment factors caused by various levels of fat (mean of three measurements at 30°C feed temperature and 2 kPa permeate pressure)
Table 8-1:	Comparison of total fluxes between starter distillate and the standard multicomponent feed solution
Table 8-2:	Comparison of diacetyl enrichment factor with model solution ketones
Table 8-3:	Comparison of diacetyl mass transfer coefficient with model solution ketones

Table 8-4:	Comparison of ester cream total flux with model solution (20% fat) at the same operating conditions (PDMS Type I	
	membrane; 2 kPa permeate pressure).	.191
Table 9-1:	Heats of sorption calculated from literature data (Equation (9-10)) and from Figure 9-4.	.215
Table 9-2:	Activation energies of permeation (mean ± standard error) for flavour compounds and water, in feed solutions with and without fat. Membrane: PDMS Type 1.	.227
Table 9-3:	Comparison of experimental and predicted fluxes for starter distillate	.229
Table A-1:	Apparent extraction efficiencies of flavour compounds in the standard multicomponent feed	.264
Table A-2:	Apparent extraction efficiencies of flavour compounds additional to those in the standard multicomponent feed	.264
Table A-3:	Apparent extraction efficiencies of flavour compounds with an SPE extraction method, for mixtures with various levels of fat	.265
Table B-1:	Activities and mass transfer coefficients of permeant compounds under various operating conditions.	.274
Table C-1:	Mass balance of flavour compounds during pervaporation runs with the standard multicomponent feed (95% confidence intervals).	.287
Table D-1:	Enrichment factors (mean ± standard error) of flavour compounds at various operating conditions (POMS membrane; standard multicomponent feed).	.299
Table D-2:	Enrichment factors (mean \pm standard error) of flavour compounds at various operating conditions (PDMS Type 2 membrane; standard multicomponent feed).	.300
Table E-1:	Enrichment factors of flavour compounds at two feed concentrations. Operating conditions: 30°C feed temperature, 1.5 kPa permeate pressure, PDMS Type 1 membrane	.301
Table F-1:	Calculation of feed partial pressures of diacetyl and water in starter distillate.	.302

List of symbols and abbreviations

а	Activity (dimensionless)
a,b,c,d	Empirical constants (Equations (2-22) and (B-10))
Α	Membrane area (m ²)
В	Plasticising coefficient
С	Concentration (mol m ⁻³)
С	Flux correction factor (dimensionless)
C_i	Coupling factor (dimensionless)
D	Diffusion coefficient $(m^2 s^{-1})$
df	Driving force (dimensionless)
d_h	Hydraulic diameter (m)
E_a	Activation energy (kJ mol ⁻¹)
E_D	Activation energy of diffusion (kJ mol ⁻¹)
f	Frictional force (N)
ΔH	Enthalpy change (kJ mol ⁻¹)
ΔH_S	Heat of sorption (kJ mol ⁻¹)
J	Flux (mg $m^{-2} s^{-1}$ or mol $m^{-2} s^{-1}$)
k	Mass transfer coefficient (mol $m^{-2} s^{-1}$)
k'	Mass transfer coefficient (mol $m^{-2} s^{-1} Pa^{-1}$)
k_0	Pre-exponential factor (mol $m^{-2} s^{-1}$)
<i>k</i> _D	Darcy's law coefficient (mol $m^{-1} s^{-1} Pa^{-1}$)
1	Membrane thickness (m)
L	Phenomenological coefficient
L_c	Length of membrane cell (m)
т	Mass (kg)
М	Molecular weight (g mol ⁻¹)
M_0	Elastic modulus extrapolated to a reference temperature (Pa)
n	Number of runs with one membrane piece
Ν	Number of carbon atoms
р	Partial pressure (Pa)
Р	Permeability (mol $m^{-1} s^{-1} Pa^{-1}$)
Pe	Peclet number (dimensionless)
PI	Production index (mol $m^{-2} s^{-1}$)
PSI	Pervaporation separation index (mol $m^{-2} s^{-1}$)
<i>q</i>	Surface parameter (dimensionless)
r	Volume parameter (dimensionless)
R	Gas constant $(8.314 \text{ J mol}^{-1} \text{ K}^{-1})$
Re	Reynolds number (dimensionless)
S	Sorption coefficient (dimensionless)
S_0	Pre-exponential factor for sorption (dimensionless)
ΔS	Entropy change (kJ mol ⁻¹ K ⁻¹)
Sc	Schmidt number (dimensionless)
Sh	Sherwood number (dimensionless)
SI	Slope of J_i versus $n (\text{mg m}^{-2} \text{ s}^{-1})$
t	Time (s)
Т	Temperature (K)

и	Velocity (m s^{-1})
V	Molar volume $(m^3 mol^{-1})$
W	Mass fraction (dimensionless)
X	Mole fraction (dimensionless)
<u>y</u>	Number of molecules
Vintercept	y-Intercept of Figure 9-5
Z	UNIQUAC coordination number (= 10)

Greek letters

α	Separation factor (dimensionless)
α_{dist}	Relative volatility (dimensionless)
β	Enrichment factor (dimensionless)
γ	Activity coefficient (dimensionless)
δ	Boundary layer thickness (m)
ε	Strain (dimensionless)
ϵ	Empirical constant
η	Viscosity (Pa s)
θ	Empirical constant
Θ	Surface fraction (dimensionless)
λ	Empirical constant
μ	Chemical potential (J mol ⁻¹)
ρ	Density (kg m ^{-3})
σ	Shape factor
5	Empirical constant
au (with subscript)	Binary interaction parameter
au (no subscript)	Defined by Equation (B-11) (dimensionless)
φ	Volume fraction of particles (dimensionless)
Φ	Volume fraction of mixture component (dimensionless)
χ	Flory-Huggins interaction parameter (dimensionless)
ω	Empirical constant

Superscripts

UUIIus)

Subscripts

0	Initial or pre-exponential
av	Average for membrane pieces of the same type
avail	Available
between	Between separate membrane pieces of the same type

bl	In feed boundary layer
С	Critical
f	On feed side of membrane
i	Component <i>i</i> or membrane piece <i>i</i>
int	Intrinsic
j	Component j
k	Component k
1	Liquid phase
т	In membrane, or referring to membrane polymer
max	Maximum
ov	Overall
р	On permeate side of membrane
S	Solvent
tot	Total
uncorrected	Without applying flux correction factors
ν	Vapour phase
W	Water
within	Within one membrane piece

Abbreviations

EPDM	Ethylene-propylene-diene terpolymer
GC	Gas chromatography
GCMS	Gas chromatography-mass spectrometry
PAN	Polyacrylonitrile
PDMS	Polydimethylsiloxane
PEI	Polyetherimide
PEBA	Polyether-block-amide
POMS	Polyoctylmethylsiloxane
PTMSP	Poly(1-trimethylsilyl-1-propyne)
SPE	Solid phase extraction
SPME	Solid phase micro-extraction
UNIQUAC	Universal quasi-chemical