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Abstract

The food industry could potentially benefit from using pervaporation, a membrane
process, to concentrate flavours. This research aimed to investigate its application
for concentrating flavours in dairy process streams. Pervaporation experiments
were carried out at a range of operating conditions, using hydrophobic
membranes. The feed mixtures were either aqueous model solutions of dairy
flavour compounds (acids, esters and ketones), complex model mixtures
containing flavour compounds plus non-volatile dairy components, or real dairy

products.

Flavour compound enrichment factors ranged from below one to above 30, with
esters and ketones being concentrated more effectively than acids. Thus, the
flavours could be partially fractionated based on their chemical structure. The
permeation of acids was reduced by approximately 50% when the feed pH was

increased to near their pK, values.

For flavour compounds with lower molecular weights than approximately
120 g mol ™', permeation was controlled mainly by sorption in the membrane; for
larger compounds it was controlled mainly by diffusion through the membrane.
The mass transfer of each flavour compound increased with temperature,
following an Arrhenius-like relationship. The activation energy was a function of
each compound’s heat of sorption, its molecular weight, and the elastic modulus
of the membrane. The activation energy was also related to the Arrhenius pre-

exponential factor. Thus, fluxes could be estimated through empirical correlations.

The non-volatile feed composition was an important factor influencing the
pervaporation performance. Milk protein isolate (4% w/v) or lactose (6% or 12%
w/v) bound with the flavour compounds in the feed, thus lowering the enrichment
of sorption-controlled compounds. Milk fat (up to 38% w/v, in the form of cream)
reduced the enrichment of all the flavour compounds tested. Esters and ketones
became unavailable for pervaporation as they partitioned into the fat phase; acids
remained mainly in the aqueous phase, but their permeation was reduced because

the added cream increased the feed pH.

Experiments with real dairy products showed that pervaporation could be used to
concentrate diacetyl in starter distillate, and to selectively recover short-chain
esters from ester cream. Of these two products, starter distillate is the more

promising for use as a pervaporation feed stream.
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