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ABSTRACT

In this thesis the origin of soil parent materials in the North
Island of New Zealand was investigated. The parent materials varied
from basaltic, andesitic and rhyolitic volcanics to quartzose beach sands
and quartzofeldspathic sedimentary rocks. Oxygen isotope and grain size
analysis show that quartz from global aerosolic dust (represented by the
5 - 2 um size fraction), interregional loess (represented by the 63 -

20 um size fraction) and intraregional sand (represented by the >63 um

size fractions) can be identified in soils formed from these materials.

In addition, high temperature quartz from Central North Island rhyolitic
tephras is identified in basaltic soils in Northland.

The presence of locally derived quartz in the aerosolic dust fraction
is demonstrated in the basaltic Kiripaka soil from Northland. In this

18

soil a low temperature quartz component with a § 0 value of circa 26 0/oo

180 value of 12 - 13 °/00) was

(in contrast to the aerosolic quartz §
derived from nearby Tertiary marine shales by erosion and wind transport.

In all of the soils examined, no evidence of pedogenic a-quartz was
obtained. In particular, quartz from the highly siliceous albic horizon
of a Wharekohe soil, a "kauri podzol", is of detrital rather than authigenic
origin.

Aerosolic quartz accumulation in soils developed on a series of
surfaces of known age in southern North Island shows a correlation between
age and the amount of quartz accumulated. Thus within a region, relative
ages of surfaces can be estimated from quartz accumulation.

In an Egmont soil from Taranaki, an increased rate of quartz

accumulation is noted in the lower part of the soil profile. This is
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correlated with a late glacial climate prior to the circa 11,000 year

B.P. post-glacial rise in sea-level. During this time tephric loess

with a substantial (30%) detrital quartzofeldspathic component accumulated.
After the sea-level rise cut off the source of the tephric loess, only
tephra accumulated to form the upper part of the soil profile, in which

the detrital quartzofeldspathic component is small.

The chronosequence concept could not be directly applied to a
development sequence of basaltic soils in Northland. Only one soil, the
Kiripaka, accumulated fast enough for the glacial/post-glacial change in
quartz accumulation to be detected. The remaining basaltic soils,
Whatitiri, Waiotu, Kerikeri, Ruatangata and Okaihau, accumulated slowly on
old surfaces and in some cases were subject to erosion.

In a mineralogical examination of the sand and silt fractions of the

basaltic soils, four distinct components are recognised:

1. Basaltic component - comprising minerals inherited from primary
basalt tephra or lava. These include calcic plagioclase,
magnetite, augite and, rarely, olivine.

2. Secondary component - glaebules of gibbsite, goethite and lesser
amounts of clay minerals and hematite.

3. Rhyolitic component - abundant in the surface horizons of all six
soils and comprising rhyolitic glass shards and pumice, sodic
plagioclase, hypersthene, hornblende, augite, biotite,
titanomagnetite, quartz, zircon and rare sanidine.

4. Detrital component - comprising predominantly quartz < 125 um
in size and largely derived as loess and aeroéﬁic dust.  Other
minerals occurring are muscovite, plagioclase and rarely

microcline and tourmaline.

Through the soil development sequence the basaltic component rapidly



becomes unimportant while the secondary component increases in significance
to a lTevel where the soil grain size characteristics are largely controlled
by the distribution of gibbsite and goethite glaebules.
In a further study of quartz accumulation with time, a core of marine
sediment from off the east coast of the southern North Island is examined.
Rerewhakaailu Ash

Core P69 contains five tephras, Whakatane Ash, Rotoma Ash, Waiohau Ash{fnd
Kawakawa Tephra, which have been radiocarbon dated from terrestrial
sequences. Interpolation and extrapolation of sedimentation rates in
core P69 allowed estimates of the ages of four further rhyolitic tephras
from the Central North Island, for which no reliable radiocarbon dates are
available:

Okareka Ash 17,100 years B.P.

Te Rere Ash 19,100 years B.P.

Poihipi Tephra 20,300 years B.P.

Okaia Tephra 21,200 years B.P.

Quartz accumulation decreases abruptly from a high Otiran (glacial)
to a Tow Aranuian (post-glacial) rate at circa 14,700 years B.P.  This is
matched by a similar abrupt change in both biogenic silica and carbonate
accumulation. The changes are interpreted as reflecting a southward shift
of a strong westerly wind system at the end of the Otiran. The decreased
wind intensity, coupled with forest expansion led to a reduction in erosion
and reduced transport of quartz. The biological components also decreased
at this time, probably due to changes in ocean currents and upwelling of
cold, nutrient-rich water, as a result of the decreased wind intensity.

Compared with aerosolic dust accumulation in the southern North
Island chronosequence, far greater amounts of aerosolic quartz accumulated
in core P69 over a similar time period. This indicates that Tocal

contributions to the 5 - 2 um size fraction can cause much larger variations
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in quartz accumulation than those caused by rainfall variations reported

in the Titerature.

The following late Otiran - Aranuian chronology is suggested, based

on the evidence in core P69:
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