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ABSTRACT

The KWIK algorithm is introduced, generalised and applied to the problem of
determining the Coulomb energy of N localised charge distributions. Coulomb
interactions are typical of N-body problems which require the exhaustive pairing of all
distributions, which leads to prohibitive computational cost scaling characteristics for

large N.

The KWIK algorithm for Coulomb interactions begins by optimally separating the
Coulomb operator into rapidly decaying real- and Fourier- space partitions yielding a
hybrid technique not dissimilar in concept to other approximations methods. KWIK’s
superiority lies is that its efficiency increases with distribution size, so that large

distributions become computationally advantageous for increasing accuracy.

Model calculations on a distribution consisting of one million particles using
KWIK afforded energies, to high accuracy, within minutes compared with days for
quadratic methods. The extension of such a feat to even larger distributions is now

limited by machine hardware configurations.

Particular emphasis is placed on the application of the algorithm to Molecular
Quantum Mechanics where it is illustrated that the algorithm may be applied to linearise
single-point self consistent field calculations. In particular, KWIK can be used to form
the Exchange matrix in linear computational cost. This has previously only been
achieved by crude approximation techniques and cannot be achieved using Coulomb

multipole based methods.
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INTRODUCTION

Seventy years ago, quantum theory reached a climax when Schrodinger postulated
the equations of quantum chemistry and solved them for the archetypal hydrogen atom.
Directly proceeding from Schrodinger’s postulates, a theoretical foundation was laid for
approximating the equations of quantum chemistry which are too difficult to solve for
other than the most trivial case of hydrogenic atoms. The theoretical foundation laid all
those years ago remains the comerstone from which all quantitative modem quantum
chemistry is based. (Modem quantum chemistry contrasts with classical quantum

mechanics which is purely descriptive and qualitative.)

The beginning of modern quantum mechanics is marked in a paper by Boys [1],
the first paper containing chemistry obtained from approximating solutions to
Schrodinger’s equation via a computer. In 1956, programs were written on ticker-tape
and had to be recalculated such was the unreliability of the ‘automatic machines’. Since

this beginning, (thankfully) much has changed.

Firstly, there have been major technological advancements in computer hardware
and secondly, major developments of faster and smarter algorithms for approximating
solutions to Schrédinger’s equation to obtain chemistry. The latter have been expressed
in an increasing number of commercial and non-commercial ‘black-box’ software
packages such as Q-CHEM, DISCO, TURBOMOL, GAUSSIAN, POLYATOM,
HONDO, SPARTAN, MOLPRO, CADPAC etc. The most important of these was
GAUSSIAN-70 [2] (released in 1970) because it is considered to be the first of the non-

expert programs.

The efficient development of non-expert programs, as well as the aforementioned
technological advances, has seen an upsurge in both their use and, the acceptance of
molecular quantum mechanics (MQM) by experimental chemical researchers,
particularly in the last two decades. In fact, MQM has become so popular that in 1996,
computational chemists were second only to weather forecasters in total use of central

processing unit (CPU) time worldwide.



With the development of the computer and black-box programs has been a split in
those chemists whose research interests lie in MQM. The first division is that of the
computational chemist who is interested in exploiting the technology to solve real
chemical problems. The second, is theoretical chemists, who (confusingly) could also
be referred to as computational scientists. A theoretician is interested in developing
algorithms to better approximate Schrodinger’s equation so that chemistry can be
obtained faster and more accurately. The problem for all MQM chemists is the time

requirement for the calculations.

Time or, as it is often termed, computational cost, is mainly measured in relative
terms by the nature of a methods cost scaling with molecule size. If, in the limit of large
molecules, the cost of a method doubles on first considering a monomer, then its dimer,
it is a linear or O(N) method. If the computational cost quadruples from monomer to
dimer calculation, it is quadratic or O(N?). If the cost sextuples it is O(N3 ), etc.
Obviously one must consider absolute costs when making comparisons between
methods for small to medium sized systems and also when contrasting methods with the

same cost scaling characteristics.

Cost scaling behaviour has been at the fore of quantum chemical research over the
last decade. The single biggest hindrance of the application of MQM to very large
molecules, perhaps even those of biological interest, is the horrific cost scaling
behaviour of many of the more accurate MQM methods. Even if current computing
speed was to increase an order of magnitude overnight, the increase in the size of
molecule that could be subject to accurate calculation, (that is, one yielding an accurate

approximation to Schrodinger’s equation) would be small.

Of all the methods, the self-consistent field (SCF) approaches have received the
most prominent attention, where the computational bottle-neck is in the evaluation of
electron repulsion integrals, scaling at a formal cost of O(N*). This thesis is concerned
with reducing the computational bottle-neck in SCF calculations by careful
consideration of the underlying cause of the problem, and developing an alternative
algorithm with a view to maximise its impact by taking into account current trends in

high performance computing during its development.



CHAPTER ONE

THEORETICAL MOTIVATION

1.0. Introduction

Many a molecular quantum mechanics research seminar, thesis and review has
begun by quoting a remark made by Dirac - “The underlying physical laws necessary for
the mathematical theory of a large part of physics and the whole of chemistry are thus
completely known, and the difficulty is only that the exact application of these laws

leads to equations much too complicated to be soluble” [3].

While this remark is as true today as it was then, that is, we are still unable to
afford exact solutions to the equations, the development of the digital computer has
enabled the solutions to be approximated to high accuracy. Presented in this Chapter
are, the equations of molecular quantum mechanics which explain the majority of
chemistry referred to by Dirac, the basis from which we approximate their solution, and
the ways in which we look to improve such approximations. In the context of this
thesis, emphasis is placed of the self-consistent field methods, and post-SCF treatments

are introduced for completeness and later discussion.

1.1. Classical Beginnings

In 1911, Rutherford [4] proposed that an atom must contain a small central region
called the nucleus. He believed the nucleus contained all the positive charge of the atom
and was surrounded by a cloud of electrons with equal and opposite charge. Later, Bohr
[5]) suggested that electrons moved in orbits around the nucleus and could not spiral
inwards out of these orbits emitting continuous radiation as they were only allowed to
emit quanta. This Rutherford-Bohr model mixes classical physics ideas of electrons as
particles in orbits with concepts of energy quanta from quantum theory, and while this
model successfully explains the emission spectrum of the hydrogen atom, it is incorrect.

This, however, was the introduction of quantum theory to chemistry.



In 1925 a Frenchman, Louis de Broglie [6] used Einstein’s equations for light 7]
and applied them to electrons, proposing that electrons behaved as waves. Almost
simultaneously, but independently, two American physicists, Davisson and Kunsman
had been studying the peculiar behaviour of electrons scattering from crystals. This

aided in establishing the existence of the effect [8] predicted by de Broglie.

1.2. Schriodinger’s Equation

In 1926 Schrodinger [9] combined the wave nature of the electron with the
statistical knowledge of the electron position viz. Heisenberg’s Uncertainty Principle
[10] to formulate the time independent, non-relativistic Schrodinger equation usually

written in terms of the Hamiltonian wave equation
HR,r)¥YR,r) = ERR)¥(R,r) (1.1)

where the coordinates R and r refer to nuclei and electron position vectors respectively

and H is the Hamiltonian operator (in atomic units)

lN " NMZA NN] HHZ;\ZB
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V2 is the Laplacian operator
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Vi= aﬁ

(1.3)
Z is the nuclear charge, 1/M, is the ratio of the mass of nucleus A to the mass of an
electfon, Rag = IR, - Ryl is the distance between the A" and B* nucleus, r;j = Ir; - rjl is
the distance between the i and jth electrons, ris = Ir; - Ryl is the distance between the i
electron and A" nucleus, M is the number of nuclei and N is the number of electrons. E
is an eigenvalue of H, equal to the total energy and the wave function ¥, is an

eigenfunction of H.

Since the rest mass of an electron is very much less than that of nuclei, the nuclei

move much more slowly than the electrons and we can separate the rotational and



vibrational motions from electronic motions. This separation was originally due to Born

and Oppenheimer [11] and yields the electronic Hamiltonian operator

N M Z N N 1
Hyp =~ ZV’ LEAFED) (1.4)
.l-] i=1 A=1 "j4 i=l j>i ij

The solution of the corresponding electronic Schrédinger equation

Ho W i BT (1.5)

elec ~ elec elec ~ elec

gives the electronic wave function ‘¥,,., which describes the motion of the electrons and

E.ic, the total electronic energy. The total energy is afforded by simply adding the

nuclear-nuclear repulsion energy (fifth term of (1.2)) to the total electronic energy

ETor — E -+ E (1.6)

elec nuc

For the sake of brevity, the ‘Hamiltonian’ and ‘energy’ referred to in the remainder of

this thesis, implies electronic, as in (1.5).

1.3. Solving Schridinger’s Equation

Partial differential equations in 3N unknowhs, such as (1.5), are totally intractable
to solve exactly for anything other than the case where N = 1. Therefore, Schrodinger’s
equation is never solved, but rather approximated. Typically, two important

approximations are made.

The first approximation is that electrons move independently within molecular
orbitals (MO’s) whereby each molecular orbital describes the probability distribution of
a single electron. Each MO is determined by considering the electron as moving within
an average field of all the other electrons, hence, the term independent particle
approximation. Such an approximation is perhaps the chemist’s view of electrons in

orbitals (Figure 1.1).



A
Figure 1.1. Molecular energy level diagram for H,.

The wave function for non-interacting particles is simply given by the product of

individual wave functions
Y=y MDy,2)..y,_ ,(n=1y, (n) (1.7)

where ¥ is the total wave function and ; is wave function of the i" particle. Wave
functions such as (1.7) are termed Hartree [12-14] products. A suitable wave function

for electrons based on the Hartree product is
¥=x0x,2).-2,..(n =D, (n) (1.8)

where each x; is termed a spin orbital and is a product of a spatial orbital y; and one of
two orthonormal spin functions, a(w) or B(w), i.e. spin up (T) or spin down (»L). Fock
[15] pointed out that since electrons are fermions, Hartree product wave functions
cannot be used, because the wave function must be anti-symmetric on electron
interchange [10]. A wave function based on the Hartree product model, but which

conveys the fermion property is a Slater [16,17] determinant

M) x.( - x,(0)
1 162 22(2) -+ x.(2)

Y=

(1.9)

Xi(n) x,(n) - x,(n)




1.4. The Variation Principle and Variation Method

When a system is in a state ¥, which may or may not satisfy (1.5), we can write
(using the concise Dirac notation [18]) the average of many measurements of the energy

as
E[¥) =(li'|m~i') (1.10)

where the W is considered to be normalised. The energy E, is said to be a functional of

¥. The approximate wave function ¥ can be written as an expansion in terms of the

exact eigenstates of H

¥=YcY¥, (1.11)

therefore, (1.10) can be written as

E=Y o[ E (1.12)
J

which implies that energy obtained from our approximate wave function ¥ is always

E>E, (1.13)

Full minimisation of the functional E[‘i’] (1.10) with respect to all allowed N-electron
wave functions will give the true ground state wave function and energy Eo. In this

sense, one could replace Schrodinger’s equation (1.5) with the variation principle
SE[¥]=0 (1.14)

In practice one chooses a trial wave function with variable parameters and varies these
so that (1.14) is true, i.e. the energy is minimised. The resulting energy satisfies (1.13)
and can be improved, along with the approximate wave function, by adding more

arbitrary parameters into the trial wave function.



It is both time-consuming and difficult to minimise the energy with respect to
parameters which occur non-linearly in the molecular orbitals, hence it usual to expand

the molecular orbitals as a linear combination of basis functions

T (1.15)

which is usually referred to as the Linear Combination of Atomic Orbitals (LCAO)
approximation. If the set of functions {¢,} were complete, (1.15) would be an exact
expansion. Unfortunately, for computational reasons, one is restricted to finite and
incomplete sets (basis sets). The introduction of a basis set is the second important
approximation made to aid the approximate solution of (1.5). The nature of the
functions which make up basis sets [19] is an important consideration for computation
and much effort has been put into developing, and consideration given when choosing

them.

1.5. The Hartree-Fock Approximation

In short, the Hartree-Fock (HF) approximation [18] is the method whereby spatial
molecular orbitals, typically of the form (1.15) are found that satisfy (1.14) with a wave
function which is of the determinantal form (1.9). That is, the HF approximation is the
method whereby electrons move independently within molecular orbitals. Typically
these MO’s are linear combinations bf atomic orbitals (basis functions), which is an

additional approximation.

The rigours of the mathematics in the derivation of the Hartree-Fock equations
and the elimination of spin have been omitted in the above summary for conciseness,
and can be found in suitable texts [18,20,21]. While computation necessitates the
elimination of the spin functions from the Hartree-Fock equations we still need to

consider the two basic types of spin orbitals used - restricted and unrestricted.

1.5.1. Restricted Closed-Shell Hartree-Fock (RHF)

Restricted spin orbitals are constrained to have the same spatial function for & and

B spin functions



2| |y, (ma(w)
x,-(r)}‘{w.-(rm(m) 4o

Such wave functions are the chemist’s view of electronic structure where electrons tend
to associate in pairs of opposite spin (Figure 1.1). The Hartree-Fock wave function for

the closed-shell restricted ground state becomes

vil) v v, () v, - v, L0
1 V.2 v,02) @ V() - v, V,,2
yim y,(n) y,(n) ¥,(n) - V.o () Y, (n)

where the bar denotes a beta spin orbital. Elimination of spin leads to the calculation of

molecular orbitals becoming equivalent to the problem of solving the spatial integro-

differential equation
fMy,(r) =gy (r) (1.18)

where f is the Fock operator and & are MO energies. Introducing a basis of the type
(1.15), substituting into (1.18), multiplying by ¢, and integrating, results in a matrix

equation

Y.Ci[8,(f g, Mdr =€,y C,[ 9,9, (Dd, (1.19)

which can be rewritten as
YF.C.=¢Y5,0C, (1.20)

or
FC=¢eSC (121)

(The latter commonly referred to as the Roothaan-Hall equations).
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1.5.2. Unrestricted Open-Shell Hartree-Fock (UHF)
The unrestricted Hartree-Fock approach, developed by Pople and Nesbet [22],

introduces separate spatial orbitals for & and S spin:

x (r)}= {w:’(r)a(w) (122)
;™) |yl

which sometimes leads to lower energy wave functions for many molecular systems,
which, by the variational principle, implies we have obtained a better wave function.
Adopting such wave functions leads to the generalised coupled matrix equations (Pople-

Nesbet equations)

FoC* =°SC*

128
FPCP = ePSCP D)

It is important to note that the unrestricted matrix equations above are coupled and must
be solved simultaneously.

In general, solutions to the restricted case are also solutions to the unrestricted
case when the number of alpha electrons is equal to the number of beta electrons, but

there are many exceptions [18] whereby a second unrestricted solutions exists.

1.6. Matrix Elements

C (1.21) is a square matrix of molecular orbital coefficients where C; corresponds
to u** coefficient of the i" molecular orbital, € is a diagonal matrix of the orbital energies

&, S is the overlap matrix with elements
S, = [0,(X),(@dr (1.24)

and F is the Fock matrix. Before considering the important components that make up
the Fock matrix, consider an electron described by the spatial wave function y,(r). The

probability distribution or the charge density for the electron is given by

p.(r) =y, @) (1.25)
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The total charge density of a molecule using a closed-shell wave function is the

summation of individual electron charge densities

NI/2

p(r) =23 |y, () (1.26)

with the multiplication by two reinforcing the restricted form of the wave function
having two electrons in each occupied MO. By substituting the MO expansion (1.15)
into (1.26) we obtain

p(r)=>Y P.o, (@9, (r) (1.27)
uv

where we have defined a density matrix

NI/2

P, = 22_; C..C. (1.28)

It is often useful to characterise the charge density by the density matrix.

The Fock matrix F, is the matrix representation of the Fock operator

NI2

f)y=h1)+Y 2J7,()-K, () (1.29)

in a LCAO MO (linear combination of atomic orbitals - molecular orbital) basis. The

Fock operator, and subsequently, the Fock matrix elements
F,, = [9,(5)f 19, (r,)dr, (1.30)

can be separated into several important pieces. The one electron operator
1 < Z
h()=——Vi-) =4 (1.31)
2 =114
which affords the core-Hamiltonian matrix consisting of kinetic energy integrals

T, = J%(r)[—%vz](ﬁv(r)d r (1.32)



and nuclear attraction integrals,

Z,
V#v = J¢p(r)|:'"; |R,\ " l"|:|¢v (l‘)dl‘

yielding
Hy =T,+V,
or
H=T+V
The Coulomb

1
J,(D)= Z CuCo 'l‘|:r_]¢l (1), (ry)dr,
Ao 12

and exchange operators

1
K1) = z CouCo _[ 9, (r, )I:r_i|¢ﬁ. ()P, dr,
P

12

12

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(where Py, is an operator that interchanges the coordinates of electron one and two)

yield the Coulomb and exchange matrix elements
T =2 P (uvido)
Ao

= %Z P, (uAlvo)
Ao

respectively. The two electron integrals are simply

1

(uvido) = I¢,;(rl)¢,(r,)[r—]%(rz)tpa(rz)drl dr,

12

Therefore, the Fock matrix elements can be written as

(1.38)

(1.39)

(1.40)
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F,=HS"+J,~K (1.41)

Hv

Thus, we may conveniently (by adopting the compact Dirac notation) write the total

restricted Hartree-Fock ground state electronic energy as

E,= ii&v(ﬂlhh’)"'iiii& [ pvllo)——(pllva)] (1.42)

v v

Note that the sum of individual orbital energies is not equal to the total energy.
Individual orbital energies are the sums of the kinetic and nuclei attraction energies of
an electron in its spin orbital plus the Coulomb and exchange interactions between all
other electrons. Summing these energies doubles the Coulomb and exchange

contribution, as each orbital adds in interactions with all other orbitals.

1.6.1. Unrestricted Hartree-Fock Matrix Elements
In the unrestricted case we firstly need to define both an alpha and beta density

matrix

= ZC“ G
=Y cact
a=1

(1.43)

where C ,‘fa is the u'h coefficient of the a” & molecular orbital. Thus, the total electron

density is
P"=P* +P’ (1.44)
The Fock matrix for unrestricted calculations varies only in the exchange piece
E, =Hg" v7,,

1.45
=H + ZZ[ (uviAo)- Pg (pAlvo)] (149

so that the total ground state energy can now be written as (again adopting the compact

Dirac notation)
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N N N N N
Y B, (uinlv) +2222{P[,P’ (uvirc)— [P";Pg,+1>,fiP£,](y/1wo)}
v n A o

v

u
(1.46)

In practice, to obtain a HF wave function (restricted or unrestricted) one uses a
guess for the initial density matrix and applies an iterative process until self consistency

is achieved. In such, the Hartree-Fock approximation is also a self-consistent field

method.

1.7. The Correlation Problem

While the HF approximation is surprisingly successful in its ability to approximate
some real world chemistry, HF calculations tend to give qualitative, rather than
quantitative chemistry and it is considered that in order to yield more quantitatively

satisfying results it is usual to incorporate correlation energy [23-25].

The correlation energy, is by definition, the difference between the exact HF
energy (that obtained when using the exact HF molecular orbitals, or in the limit,
commonly referred to as the Hartree-Fock-limit) and the corresponding eigenvalue of

the Electronic Schrodinger Equation (1.5)
E,, =E-E, (1.47)

This definition, by the nature of (1.5), excludes the zero-point vibrational energy, Bomn-
Oppenheimer and relativistic corrections. Note that the independent particle
approximation allows electrons to interact more closely than they would wish, which

leads to a negative value for E¢,,;.

It should also be noted that while the HF approximation is described as the
independent particle approximation, (which would imply that the probability of finding
electron j at a point in space and that of finding electron k at another point is
independent) confusingly the Hartree-Fock approach incorporates what is known as
exchange correlation. Exchange correlation between electrons of parallel spin means

that the probability of finding two electrons of the same spin at the same point in space,
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is zero. If the electrons of parallel spin were not correlated, the probability of finding
two at the same point in space would be the same as for opposite spin electrons, which
is, the probability of finding electron j multiplied by the probability of finding electron &
at that point. This technicality can be overlooked for purposes of clarity, and it is

re-emphasised that the correlation energy is defined by equation (1.47).

There are two general approaches for incorporating correlation into a MQM
calculation. Conventional methods, which base themselves on the so-called single-
configuration HF theory (multi-reference configurations have been excluded in this

discussion), and those which use the Density Functional Theory (DFT).

1.8. Conventional Methods

Conventional methods for determining the electronic correlation energy use the
general approach, where the correlation effects are introduced by choosing the wave
function to be a linear combination of many electron configurations. Configurations are
generated by replacing the occupied orbitals in the Hartree-Fock reference wave
function by virtual orbitals to yield single, double, triple ... (S,D,T ...) excitations. This
general approach can be subsequently split into several classes which are outlined

briefly in the following subsections.

Pople [26] has outlined a number of desirable features for evaluating a correlated
technique, each of which will be addressed for all methods considered below. The first
desirable is that the method must be well-defined, which simply means that the
technique is suitably unambiguous to ensure that the same energy will be obtained for
identical nuclear configurations. We will only consider well-defined methods here.
Secondly, size consistency must prevail, that is, the energy of two non-interacting
systems must be equal to the sum of the individual energies. It is also desirable for a
correlated method to be exact for two-electron systems and accurate c.f Full
Configuration Interaction (FCI) (see later), for systems with more than two electrons. In
addition, Pople suggested that it would be desirable if the method was also variational

and computationally inexpensive.
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1.8.1. Configuration Interaction

Configuration interaction (CI) [18] is perhaps the most simple and general of the
conventional techniques. CI uses a linear combination of configurations where the HF

wave function is mixed with single, double, triple ... “excited” configurations

E TN W4 SR Ik S WA 68 I (1.48)
ra a<b a<b<c
r<s r<s<t

where the symbol W,, - represents the configuration where the electrons in occupied

orbitals a, b, ... are placed into virtual orbitals r, s, ..., and the summations are over all
distinct determinants. The coefficients are obtained in a variational approach to afford a

better many-electron wave function.

Full configuration interaction refers to when the expansion (1.48) is extended to
include all possible determinants. Such calculations can only be considered for finite
basis and given that the number of FCI determinants grows exponentially with the

system size, the technique is only applicable to small molecules.

Truncated CI expansions, for example CISD (configuration interaction with
singles and doubles excitations), whereby only the singly and doubly excited
configurations are considered in the CI wave function, yields a technique which lacks
size-consistency (as opposed to FCI which is size consistent). For example, consider a
CISD calculation on two non-interacting H, molecules. The composite system does not
allow us to consider the case where both molecules are doubly excited, as this requires a
quadruple excitation. Thus, the energy of twice the monomer calculation cannot be

equal to that of the composite system.

1.8.2. Quadratic Configuration Interaction

Quadratic configuration interaction (QCI) [26] was developed for the purpose of
introducing size consistency exactly for CISD, yielding an acronym QCISD. QCI is best
considered as a special case of the more general coupled cluster technique - in fact,

QCID and CCD are identical methodologies.
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It has been shown [27] that the inclusion of up to and including triple excitations
are important for obtaining accurate molecular energies, thus, the QCI approach was
extended to incorporate triples excitations using a perturbative approach to yield
QCISD(T). The application of such a method with a suitably large basis has a very

expensive computational cost.

Pople constructed a series of methodologies [28-31] with the aim of evaluating
bond energies, heats of formation, ionisation energies and electron affinities of atoms
and molecules to within 1-2 kcal/mol. The resulting ‘G2’ theory is a sequence of well-
defined calculations which uses considerably less expensive methods to approximate a
high accuracy/large basis QCISD(T) calculation. While the G2 approach is less
expensive than the large calculation it is approximating, it still uses highly expensive
correlated techniques and thus can still only be applied to relatively small molecules.
Note also that when G2 theory was constructed there was surprisingly little experimental
data available to gauge its success, and while it appears to be generally very accurate, it

has been found to fail when applied to some quite simple problems [32].

1.8.3. Coupled Cluster
Coupled cluster (CC) theory [33] is a general size consistent technique and has
become the more prominent and generally accepted method for the effective and

accurate treatment of electron correlation. In particular, the approximation denoted

CCSD(T) has been shown to consistently yield predictive chemistry [33].

The approach used in Coupled Cluster theory is based on an exponential wave

function
Y .. = exp(T)Y, (1.49)
where T

T=YT=T+T,+T+.. (1.50)

is an operator that creates excitations from the independent particle HF reference. The

operator, for example 75,
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Tz‘l’o=zt3‘1’£ (1.51)

a>b
r>s

has coefficients, ¢/, , which are different from the CI coefficients ¢}, as the CCD wave

function exponential expansion

Y., = exp(T)¥, = 1+ T, + T2 [2+ T, [31+...)¥, (1.52)
yields
1 u rsiu
Yoop = Yo+ L1 ¥0 +5 2 D tata¥act. (1.53)
a>b a>bc>d

so that we have introduced quadruple, sextuple, etc. excitations into the wave function
until 7,"/n! vanishes for n/2 electrons. The higher excitation terms are not introduced

generally, as the coefficients are simply products of double excitation coefficients.

Unfortunately, cost scaling characteristics of highly accurate approaches, such as

CCSD(T), renders them unsuitable for anything other than small molecules.

1.8.4. Perturbation Theory

Many-body perturbation theory, or better known as Mgller-Plesset perturbation
theory from the authors of the original theoretical development [34], considers and
assumes electron correlation as a small perturbation from the Hartree-Fock
approximation. In obtaining the HF wave function and energy, ¥, and Ey, we have
obtained an approximate wave function and energy for the exact Hamiltonian
eigenvalue problem (1.5). The HF wave function and energy are exact eigenfunctions
and eigenvalues for the Hartree-Fock Hamiltonian Hy. The exact Hamiltonian operator

can thus be written as

H=H, +AV (1.54)
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In doing so we consider the perturbation, V, to be small, and have introduced the
parameter A for mathematical convenience which we will set to unity later. We expand

the exact wave function and energy (1.5) in terms of the HF wave function and energy
E=E® +2E® + 2E® + VE® +... (1.55)

W= + APO + 29D + Y+ (1.56)

Substituting the expansions (1.54-6) into (1.5), gathering terms in A and then
multiplying by Wy and integrating over all space yields equations for the n” order

energies E™. For example, the zero™ and first order energies are given by

B = (W, |H,|¥,) (1.57)
ES) ={%,|V|'¥) (1.58)
such that the HF energy is
E, = (‘I’0|H| \PO)
= (¥, |H, +V|¥,) (1.59)
=E®+EJ

which is the sum of the zero™ and first order energies. The correlation energy is thus
E, =EP+EP+E®+.. (1.60)

of which the first term (called the MP2 energy) is given by

=1y atlrs)’ (1.61)

4abusa+£b_€r_£s

where
(ab| rs) = (ab| rs)—(ab|sr) (1.62)

and
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12

(abled) = [y, (r)y.(q )[}]wb (5,)y, (5,)dr dr, (1.63)

which can be rewritten in terms of the two electron integrals

(ab|cd) = ZZZZC ' CanCaa(HVIAT) (1.64)

This perturbative approach yields non-variational but size consistent energies with
the energy expansion (1.55) tending to converge rapidly. The rate of convergence [35]
can be adversely affected when the HOMO-LUMO (highest occupied molecular orbital

- lowest unoccupied molecular orbital) gap is small or in systems with stretched bonds.

1.8.5. Other approaches

There have been many other approaches trialed and considered for obtaining
corrections to the HF energy, with none any more promising, or simple in concept, than
that used by Hylleraas [36-38]. The difficulty in solving the equation (1.5) is the inter-
electronic repulsion term which couples the electron motions - the HF approach is to use
an averaging of all other n-1 electrons. Hylleraas’ approach, unlike those mentioned
above, does not begin with the HF wave function and energy, but begins by
incorporating an r;; term into the wave function. Using this approach he was able to
obtain very accurate numerical energies for He, and others [39] have obtained similar
accuracies for H; dissociation. While the approach is simple in concept, like the use of
Slater-type orbitals (STO’s) in MQM, the resulting integrations are difficult and state-

of -the-art implementations remain numerical [40].

1.8.6 Additional Comments

The big drawback with all the above mentioned conventional correlated methods
is their computational expense (Table 1.1). The underlying reason that the application
of MQM has not grown as rapidly as perhaps anticipated one to two decades ago, is the
very unfavourable cost scaling characteristics of the conventional correlated techniques.
For example, if a computer manufacturer made a huge breakthrough in central

processing unit (CPU) design which saw an increase in the average speed of a
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workstation by an order of magnitude, the increase in the size of molecules which could

be subject to calculation using these correlated techniques would be minuscule.

The positive aspect of the conventional methods is that the quality of one’s
calculation can be systematically improved (Figure 1.2). e.g. The size of the basis can
be increased to obtain more flexibility in the modelling of MO’s and/or the CI (1.48) or
perturbation series can be expanded (1.56), which in the limit, tends towards the exact

energy and wavefunction.
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Figure 1.2. Pople diagram illustrating the conventional approach to improved quality of
calculation. The quality of a calculation can be improved either by an increase in the
size of the basis set or by considering a greater number of configurations.

Within Pople’s list of desirables the consideration of accuracy is typical of the
approach of the correlated techniques. Aiming to obtain as much of the correlation
energy as possible appears to have become an over-riding factor and this has been their
major downfall (with the present algorithms and computing facility). Chemists are
concermed mainly with differences in energy. The underlying success of quantum
chemistry is a reliance on cancellation of errors which makes systematic errors in total
energies tolerable. In fact, the level of accuracy afforded in energy differences is often

an order of magnitude or more than that of the total energies [41]. Similarly, the




22

variational requirement for total energies does not aid the accuracy of resulting

chemistry, as a difference of two variational energies is a non-variational energy.

Method Formal Cost
HF N

MPn N>+

QCISD N°©

QCISD(T) N’

CCSD N®

CCSD(T) N’

CCSDT N®

FCI N!

Table 1.1. Cost scaling behaviour of Conventional Correlated methods with the size (N) of the

molecular system.

1.9. Density Functional Theory

The correlated methods described above all have horrific cost scaling
characteristics (Table 1.1). They begin scaling at N°, become as large as N’ for highly
accurate methods, and exponential for full configuration interaction. Given that the HF
approximation captures the majority of the total energy, the down side to the
conventional approach is that the majority of the computational effort is spent on

calculating a small fraction of the total energy. This is highly undesirable.

The Density Functional Theory by Hohenberg, Kohn and Sham [42-44] provides
an alternative to the Hartree-Fock approximation. On the other hand, density
functionalists view the HF approximation as just another functional, rationalising DFT

as the superset of SCF methodologies.

The Density Functional Theory is based on work by Dirac [45], who found that
the exchange energy of a uniform electron gas may be calculated exactly knowing only
the charge density. This idea has been extended to correlation energies, and corrections
to Dirac’s exchange functional introduced to account for the fact that molecular charge
densities are poorly approximated by a uniform electron gas. This has culminated in an
increasingly growing number of density functionals (see [46] for examples). Gill [47]
has recently challenged the uniform electron gas origin and has developed a functional

based on an electron in a ball. But whatever the basis of the derivation of above
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mentioned approximate functionals, the important fact is an existence theorem [43] for a

functional which yields the exact ground state energy.

Within the Kohn-Sham formulation [42-44,48], the electronic energy can be

written as
E=E, +E,+E; +Ey (1.65)

where E7 is the kinetic energy, Ey is the electron-nuclear interaction energy, E; is the
Coulomb self interaction of the electron density p(r) and Exc is the exchange-correlation

energy. Using spin-unrestricted molecular orbitals we can write the alpha and beta

electron densities as

pur) = Sy
= (1.66)

’lﬂ 2
pp(r) = Zl‘/’ﬂ
i=1

where n, and n, are the number of alpha and beta electrons respectively, and the MO’s

are as given by (1.15). Thus the total electron density is

p(r)=po(r)+pg(r)
= ZPuTv%(r)d?v(r) (1.67)
nv

The components of (1.65) can now be written as

Ny iy
B =2 (vi]-5 V) + Xy |-5Vv?)

; (1.68)
=2 B {9.(0]-5 Ve, @)
__N, _P(D)
E, Z;ZA lr—RAIdr
(1.69)
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1 1
E,= —(P(rn)||—_—||P("z))
l

(1.70)
= XY BLE(uvido)
uv Ao
Eyc = [ f(p(r), Vp(r))dr (L.71)

Substituting these expressions into (1.65) and minimising with respect to the unknown

MO coefficients yields a set of matrix equations exactly analogous to the UHF case

F*C* =¢°SC” (1.23)
FPC? =efSCP
where the Fock matrix elements are now generalised to
Fo =He +J, — FX
7 I I u (1.72)

B _ XcB
F, = H;f," w=d,, 2y

where F“and FX? are the exchange-correlation parts of the Fock matrices

dependent on the exchange-correlation functional used. The Pople-Nesbet equations are

obtained simply by allowing
F* = K, (1.73)

and similarly for the beta electron piece. Thus, the density and energy is obtained as for
the Hartree-Fock approximation, where initial guesses are applied for the MO

coefficients and an iterative process applied until self consistency obtained.

The exciting feature of applying DFT methods to solve chemical problems is that
one can cheaply incorporate correlation into a calculation. The rate limiting step in
determining the total electronic energy (1.65) is determining the Coulomb energy - all
other energy contributions can be obtained in work that scales linearly with the size of
the system [46]. DFT does however, have a drawback. While DFT has been shown to
yield good chemistry (for example, see [49]), it can often, unexpectedly, yield quite
disastrous chemistry (for example see [50,51]) without the capacity to systematically

improve the quality of result as for the conventional correlated methods.
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1.10. Commentary

The main focus of this thesis, introduced in the preceding chapter, is to enhance
the means by which we may quickly obtain chemistry from approximations to
Schrodinger’s equation. Presented in this chapter are the common approximations to
the solution of this equation. How one may implement these approximations is
completely undefined, allows the possibility for alternative routes for the computing the
mathematics, and has been the focus of vigorous research for many hundreds of man-
years. During this time, a great deal of insight has been obtained, the most important

features are noted thus.

Firstly, that the potential exists to obtain exact answers to all chemical problems
through the solution of Schrédinger’s equation which we can approximate to any given
precision given unlimited resources. Since resources are very finite, a number of
important theoretical approximations have been developed of which the most exciting is
the existence theorem for an exact density functional which, if known, will yield the
exact energy and electron density. The second important observation, is that given the
exact functional (and an implementation similar to present state-of-the-art functionals)
the rate limiting step in obtaining the exact energy and density is the formation of the

two electron integrals used in constructing the J matrix.

While DFT accounts for approximately 90% of all quantum chemical calculations
being performed, the sometimes unpredictable nature of results and the inability to
systematically improve the quality of calculation may mean that a place for the
conventional correlated techniques remains in the quantum chemist’s tool kit. The basis
of the next tier of approximations (which will lead to a solution of any given precision
granted unlimited resources) is the HF wave function and energy. The rate limiting step
in obtaining the HF wave function and energy is exactly analogous to the DFT case - the
J matrix/Coulomb energy. The third and final important observation is that the post-
Hartree-Fock approximations presented above deal mainly with manipulations of
combinations of intermediates formed in a HF calculation, particularly the two electron

integrals. It seems that the key to obtaining approximate solutions is in the formation of
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two-electron integrals, hence the key to rapidly obtaining approximate solutions is in

swiftly forming the two-electron integrals.
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CHAPTER TWO

TECHNOLOGICAL MOTIVATION

2.0. Introduction

Computer technology has had a major role in the development of MQM.
Presented in this Chapter are a number of features of computing technology and a brief
history of the development of the computer, computer architectures, operating systems
and programming languages. A discussion on the development of algorithms and the
effect of modemn architectures/platforms, operating systems and programming languages
is made which ties in the two main factors which have contributed to the increasing
realisation of MQM, that is, the computer and the development of more efficient

algorithms.

2.1. High-Performance Computing

High-performance scientific computing, or computational science is the link
between computers and algorithms. High-performance scientific computing is solving
problems whose complexity renders an analytical solution impossible through the
exploitation of the technology produced by computer scientists. Problems requiring
numerical simulation, symbolic manipulation, visualisation or plain old number
crunching, once considered impossible or at best impractical can now be routinely

accomplished.

Computational science is the transformation and implementation of scientific
theory into efficient algorithms which requires both theoretical and experimental skill.
The transformation of a new theory into an efficient algorithm requires understanding of
programming concepts, mathematical and physical intuition and theoretical insight,
whereas the production of the computer code is much like experimentation, requiring

debugging, testing and organisation to yield a highly efficient product.
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2.2. Historical Prospective

2.2.1. Computing Facility

In the 1960’s computers were housed in buildings, used only by experts and were
somewhat error prone. Data input was provided through ticker-tape which led on to
punch cards, and user input mistakes found on the return of the printed output days after
submission, required correction of the mis-punched character and re-submission of the

job to the batch queue.

The 1970’s saw the advent of remote job entry stations where it became possible
to edit and submit jobs to the mainframe electronically. This kind of direct user access
resulted in overloading of computational resources and led to the development of the
mini-computer. Mini’s made computing resources affordable for groups or departments
and led to the development of personal or micro computers. These latter resources,
however, offered little for scientific computation due to their slowness and small size,
and as the supercomputer with its large scale storage, memory and speed began to
appear, Mini’s became redundant for scientists, even though access to the

supercomputer was limited.

The 1980’s were revolutionary as workstations, Unix and graphical interfaces
allowed individuals access to affordable computing resources on the desktop. Networks
then enabled sharing of printers, disks and CPU’s. Communication between computers
became communication amongst users and computers started to become a necessity

rather than a luxury.

The popularity of the workstation has continued into the 1990’s, with speed,
memory and storage configurations increasing dramatically in magnitude year by year.
Computer clusters and multi-processor servers have reduced the necessity of

supercomputing expense for serious computation.

2.2.2. Programming Languages
As computers, operating systems and the number and expertise of users have
developed, so too have programming languages. Programming is the art of transforming

the science and mathematics into a concise set of instructions so that the computer can
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perform the required task. Computers only understand machine code, and given that our
aim in writing a program is not only to obtain an answer but also to document the
algorithm and enable ease of modification, programs tend not to be written in machine
code. Instead, programming languages are used to construct a portable generic code

which is then usually compiled (translated into machine code) for the specific machine.

The FORTRAN programming language was one of the first compiled languages
developed and has stood the test of time, at least for science and engineering
applications. It has been well tested and optimised for most computer systems and it
still yields the fastest binaries for basic number crunching. Its big advantages are its

simplicity, portability and advanced optimisation within compilers.

BASIC contrasts to FORTRAN in that it is an interpreted language rather than
compiled. It is quite similar to FORTRAN in that a beginner can learn a few basics and
begin to write code with limited tuition, but being an interpreted language it is far too

slow for other than trivial applications.

The rise of the Unix operating system which is written in the C programming
language and the programming freedom the C language offers, has stunted the
continuation of FORTRAN as a mainstream language. However, the C language has
many pitfalls and it is especially easy to misuse. Visually, C is much less appealing and
difficult to follow for the beginner. This may seem pedantic, but if one considers that
the aim of developing code is to both express and document the algorithm for others to
modify at a later stage as well as obtaining information after compilation, this

visual/readable aspect is quite important.

More recently the object-oriented programming languages, such as C++, have
appeared and offer significant advantages over its procedural predecessors. C++ can be
considered as a superset of the C programming language and suffers similar pitfalls to C
in that it requires a more advanced understanding of the language to begin programming
effectively. Whilst for science and engineering applications the concept of merging the
rapid number crunching advantages of FORTRAN with the object-oriented C++ appears
to enable a large gain in programming freedom and ease of development, the successful

marriage [52] proves more difficult than it perhaps should be.
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FORTRAN, throughout all the programming language developments, has taken a
very conservative approach in its own development. Trying to maintain a simplicity
with semantics, and incorporating positive aspects from new languages while avoiding
their mistakes, has allowed compiler developers to concentrate on preserving the level
of optimisation of resulting binaries. FORTRAN 90, for example, has incorporated a
number of useful structures for parallel programming and it is likely that the next
generation FORTRAN language will also incorporate positive aspects of the object-

oriented developments.

2.3. Algorithm Development

An algorithm is a set of rules for obtaining the required mathematics. The
mathematics does not however, dictate how an algorithm is to be constructed as there
are many different ways of achieving the end. Within the various possibilities, one or a
few algorithms will be more efficient than the rest. Consider, for example, an arithmetic
or geometric series. A bad algorithm would involve summing all the terms, or until
convergence to within some predetermined accuracy was obtained. A good algorithm
would most likely use the well known summation formulae [53]. Both approaches

achieve the required mathematics, one approach is far superior to the other.

Developing an algorithm can be likened to an experiment. At each stage of
development one considers generalisations, makes observations and looks for ways to
improve performance. In developing an algorithm, one’s aim is to produce a program
for others to use, usually not on the particular machine or type of machine on which it

was developed. Such is the necessity for portability.

Portability requires that the algorithm has been written in a suitable language with
widespread availability. Portability also means that while the code may not be fully
optimised for all platforms/architectures, it has been constructed in such a way that it
will compile on most platforms and be expected to perform adequately. This has been
aided by the development of machine specific mathematical libraries [54]. Computer
vendors have developed highly optimised libraries of common subroutines, specific to
their machine. Thus, a program with calls to such a subroutine on platform A could be

expected to perform similarly on platform B, relative to peak performance on each
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individual machine. The archetypal example are the Basic Linear Algebra Subroutines
[55-57] (BLAS). Most modem platforms come with a BLAS library so that any
program with calls to such can consider that part of the code fully optimised. The
Linear Algebra Package [58] (LAPACK) library is an example of a suite of subroutines
that uses calls to the BLAS to afford almost total portability - amongst scalar and vector

platforms at least.

Developing a computer algorithm is not only about getting the right answer. It is
also about documentation, efficiency, portability and adaptability. While a piece of code
cannot be written to afford complete optimisation on all platforms, one can take suitable
steps in the choice of language and the use of libraries such as BLAS. Algorithm
development is mainly about translating new science and new theories into code.
Approximately 5% of the time is spent developing the new theory, and 95% of the time
writing, debugging and rewriting code to afford a well documented, efficient, portable

and adaptable algorithm.

For large scale computation, the desktop workstation has become the developer’s
workbench. Code is written and debugged on the workstation and then ported to the
supercomputer where performance is evaluated. The developer can then return to the
workstation, making changes to the original code, debugging and then returning to the
supercomputer for further evaluation. This reduces cost by developing code on a much
cheaper platform and frees up the supercomputer for the more serious tasks of large

scale computation.

A major consideration in the development process is the platform for which the
code is being developed. Scalar, vector and parallel architectures require specialist
knowledge and understanding of the machine and how the compiler will optimise the
code, although it is easier to afford optimal code on the scalar machines relative to their

vector and parallel contemporaries.

2.4. Modern-day Computer Architectures

Modem-day computers can be grouped into three main levels. The personal

computer, the workstation and the supercomputer. Presently, the speed (memory and
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storage size) of the computer dollar doubles every eighteen months such that yesterday’s
workstation becomes tomorrow’s PC and the prospect of outlaying many thousands of
dollars on computing facility is erred by the notion that in a short period of time it will
be rendered out of date and incapable of efficiently running the latest operating system

and software.

Within the three levels of computing there are several different architectures from
which to choose. This is more evident at the high end of the spectrum than at the PC
level, but none the less, as the high end of the market develops, the trickle down effect
creates a wider market for the high end PC user. Silicon Graphics, for example,
concentrates all its research and development budget at the high end. Low end users
receive the benefits in either a down sized version or as newer technology becomes

available at the high end, the older technology becomes more affordable.

2.4.1. Vector Machines

In the past, the term supercomputer has always referred to vector computing, but
nowadays refers to either vector or parallel computers. Vector computing or vector
processing tackles the most demanding task in scientific computation of matrix
operations more efficiently than its scalar counterpart. For example, to add two vectors
of length N to form a third vector requires N sequential additions. In a scalar machine
each addition requires the i* array element of the first vector to be obtained from its
location in memory followed by obtaining the i array element of the second vector
from its memory location, the addition of the two values in a CPU register and then the
storage of the resultant in the i location of the third array. Much time is wasted in this
scalar process telling the computer repetitiously where to fetch, add and store. A vector
machine is capable of performing operations on entire sections of an array. (To a
computer an n-dimensional matrix is simply another vector, so one shouldn’t confuse

the mathematical vector with the computational vector.)

Vector performance is restricted both by the nature of the algorithm (such is an
algorithm’s vectorisability) and by the limitations of the programmer. While an
algorithm may be in theory vectorisable, if the code has been written poorly the resulting

performance may be poor. The design of code for vector machines requires an
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understanding of what the compiler is going to do with the code and how the compiler

may or may not be tricked into increased optimisation by unrolling outer loops, for

example.

The rate of computer operations per unit time r, can be written as [59]
r=(to/n+1)" 2.1)

where n is the vector length, 7 is the clock period and 7y is the start-up time. The clock
speed is simply the time taken to execute the simplest instruction, and the start-up time
accounts for the time it takes to load up the vector pipe-line. Thus, for long vectors the
computational rate tends towards the clock speed. The size of vector required to

approach half peak performance can be shown to be
ny, == (2.2)
T

and is dependent on the hardware. Variations in hardware characteristics also result in
widely varying performance, so while it is often possible to write code that will run at or
near peak performance for scalar machines, this is often not the case for vector

machines.

Vector processing has been and is still associated with supercomputers because
the obvious success of such processing is reliant also on fast processors, large and fast
memory, and fast communication between the various units. Such expense is not

utilisable nor affordable for desktop machines at present.

2.4.2. CISC and RISC

Complex Instruction Set Computers (CISC) utilise the early CPU chip design
where hundreds of thousands of devices were placed on a single chip. As revolutionary
as this was in the early 1970’s, much of each chip was dedicated to a microcode of over
1000 machine language instructions. This code mimicked the higher level languages
and, as a result, was exceedingly slow - up to 10 computer cycles per instruction. As
compilers translating high level languages into machine code improved, many of the

1000 available instructions became redundant. As few as 10 low-level machine
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instructions accounted for 80% of executed instructions [60], and 30 accounted for 99%

of the use.

The philosophy behind the Reduced Instruction Set Computer (RISC) system was
to enable the production of a cheaper, more efficient and faster chip requiring compilers
to utilise fewer instructions within the chip. The aim was to reduce the number of
cycles required per instruction. So while on the one hand the CISC system was trying to
reduce the CPU time requirement by reducing the required number of instructions to
perform a given task, the RISC system on the other hand was aiming to reduce the
number of machine cycles (to one) for a given instruction, so that while the total number
of instructions required to perform a task may be larger than that of the CISC system,

the total number of machine cycles would be fewer.

An additional advantage of the RISC architecture is the freeing up of space as
using a reduced instruction set allows an increase in the number of internal registers.
This has resulted in RISC processors gaining a further edge in floating point arithmetic.
The classic example is the IBM RS/6000 [61] where a floating point multiply-add

(FMA) can be obtained in one clock cycle.

2.4.3. Parallel Computers

Given that a single processor’s speed is physically limited by the nature of the
material from which it is made, the next logical step in the move to obtain higher
performance is the use of multiple processors. In terms of the supercomputer this is in
the form of massively parallel machines which contain many hundreds, even thousands
of processors, and on the desktop, either a small number of processors in the one

machine or a cluster of single processor workstations linked together over a network.

To the casual observer, the prospect of splitting a job into two, three and even six
pieces to spread over such a number of processors to afford a similar factor of speed
increase would seem easily obtainable with a moderate level of due thought. However,
to afford such theoretical speed-ups on the Massively Parallel (MASPAR) machines

requires significant effort and often a major rethink into the layout of the algorithm.
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While the basic design of vector machines follows similar principles from vendor
to vendor, the same cannot be said for parallel machines, and in fact the variation is
much worse. Shared memory vs processors with individual memory not to mention the
differences in philosophy in parallel programming language libraries [62], yields an

extreme lack of uniformity in the parallel domain.

2.5. Summary

Computational science is the adaptation of new scientific theory into computer
code exploiting the advances in compiler, programming language and hardware
technology. The aim is to afford an algorithm to enable efficient computation,
portability of code, ease of adaptability and to document the science. To afford such an
algorithm requires an intuitive understanding of the science to be implemented, much
experimentation with optimisation and debugging of the developing code, a suitable
choice of programming language, as well as a basic overview of the nature of the

platforms for which the code is intended.
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CHAPTER THREE

HISTORY OF THE QUANTUM CHEMICAL COULOMB
PROBLEM

3.0. Introduction

A common misconception held by many chemists would suggest that the task of
modelling real chemistry is extremely difficult, perhaps unachievable, because of the
many different types of interactions and forces that must be considered. The
misconception is that they consider hydrogen bonds, dispersion forces, dipole-dipole
interactions etc., (many of which are used to explain protein folding and conformations,
entropies of vaporisation and boiling points of non-polar liquids, and commonplace in
many texts) to be quite different forces. There is in fact only one force determining

chemical phenomena, the Coulomb force.

The Coulomb force manifests itself in molecular quantum mechanics in the form
of two electron repulsion integrals (ERI’s), nuclear-nuclear repulsion and electron-
nuclear attraction integrals. Given that the Coulomb force determines all of chemistry
and that molecular quantum mechanics uses Bom-Oppenheimer separation of nuclei
from electrons, it is not surprising that the majority of the computational effort in a

MQM calculation goes into determining or manipulating the ERT’s.

In Chapter One, the theoretical foundation and motivation for MQM was
expressed and in Chapter Two the technological means by which Chapter One’s
potential may be realised was discussed. In this Chapter we seek to illustrate that new
algorithms have had a significant impact on the realisation of some of MQM potential,
in particular, within the SCF methods. Furthermore, significant hindrance to the more
widespread application of MQM incorporating very large molecules (for example, in
biological fields) is due to what has become known as, the Quantum Chemical Coulomb
Problem. It should also be noted that this problem is more general, is common to many
other areas of chemistry, physics and mathematics and that it has, and will continue to

receive much attention and research focus.
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This Chapter is divided into two main sections. The first section will present,
chronologically, the rapid realisation that the bottle-neck within SCF calculations is the
formation of the two electron repulsion integrals, a brief summary of the huge research
effort which has been put into optimising the formation of the integrals, and various
approximations imposed in an attempt to offset the extreme computational cost. The
apparent general nature of the Coulomb problem will then be highlighted, along with the
need for O(N) methods. The more recently implemented CFMM, the prospect of using
Fast Wavelet transforms and the concession of the Divide and Conquer method will be
summarised. The second section will discuss the N body Coulomb problem in general
and some of the sub-quadratic approximation techniques previously employed. A
critique of these methods will be left for Chapter Nine where the KWIK algorithm will

be contrasted with present state-of-the-art algorithms.

3.1. The Quantum Chemical Coulomb Problem

3.1.0. Introduction

Schrodinger solved his equation for the hydrogen atom approximately thirty years
before a computer was used to solve quantum chemical calculations, so it was possibly
thirty years before any detailed consideration had been given to the practical difficulties
of obtaining approximate solutions to Schrodinger’s equation using computers, MQM
being purely a descriptive science until the development of the digital computer. During
the descriptive era, molecular orbitals were expanded as a linear combination of Slater-
type orbitals (STO) - they being ‘natural’ basis functions and having the ‘correct’
behaviour at the origin and asymptotically. However, evaluation of the ERI’s using
STO’s were at best expensive and, at worst, intractable for molecules. Such were the
beginnings of the Coulomb problem - the task of evaluating the ERI’s in the first

instance, difficult by virtue of their intractability.

3.1.1. Gaussian Basis Functions

Boys [63] suggested that Gaussian-type orbitals (GTO’s) could be used on the
basis that all the integrals could be evaluated easily (analytically) and efficiently. Thus

overcoming laborious numerical integrations (for example, see [64]). The success of a
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Gaussian function is due to the product of two Gaussians, concentric or non-concentric,
being a third Gaussian, and the Fourier transform of a Gaussian again being a Gaussian

function.

As a Gaussian function has the ‘wrong’ behaviour both at the origin and
asymptotically (Figure 3.1), then clearly more GTO’s would be required to describe an
atomic orbital than if STO’s were used. However, as standard basis sets of GTO’s were
constructed [65] and the concept of theoretical model chemistries developed [66], this
‘incorrect’ behaviour became somewhat overshadowed by the success of the GTO’s in
obtaining good chemistry [23]. Furthermore, it later became apparent that STO’s do not

offer any significant advantage over GTO’s for obtaining correlation [41].
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Figure 3.1. Radial dependence of a Gaussian vs Slater basis function. Note that the Slater has a

cusp at the origin, whereas the Gaussian is flat and that the long-range behaviour of a
Gaussian is flatter than a Slater.

It is important to note that while the Gaussian basis function was a major step
forward in enabling routine calculations on non-linear molecules and large basis sets, we
need not limit ourselves to such functions when developing radically new algorithms for

the evaluation of ERI’s as other authors have [67].
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3.1.2. Electron Repulsion Integrals Over GTO’s

The evaluation of the electron repulsion integral using GTO’s is of fundamental
importance and is a major hindrance to the widespread application of quantum
chemistry. As such it has been the focus of hundreds of man-years of research. The
many algorithms developed for evaluating ERI’s have recently been reviewed [68] (the
reader is referred to this review for a more in depth account of ERI evaluation) and
further efficiencies continue to be achieved [69,70]. Our interest here is simply to

highlight a number of developments and the generality of the problem.

Historically, the evaluation of the ERI’s appeared to scale as the fourth power of
the number of basis functions. The ERI is based on two pairs of basis functions (1.40).
The first pair describing electron one and the second pair describing electron two.

Given there are N functions in the basis set means there are [68]
1
NTomI=§N(N+1)(N2+N+2) (3.1)

total ERI’s. However, many of these integrals are negligible and it is possible to screen

most of these in two steps.

The first screening occurs during the formation of shell-pair data. The basic ERI
is an interaction between two charge distributions, each of which are the products of two
basis functions. By considering all pairs of shells in the basis set, and discarding those
which are negligible on the basis of their overlap, it has been found that the number of
significant shell-pairs grows only linearly with the size of molecule for a given basis set.
In fact, in large molecules, most of the shell-pairs are insignificant. This can be easily
ratiohalised by considering the rapid decay of the Gaussian function and in the case of
Slater basis sets, exponential decay of shells. Thus, the total number of ERI’s scales

only quadratically with the size of the basis.

Discarding insignificant shell-pairs can be further refined by a least-squares fit of
the contracted shell-pair data by a fewer Gaussian functions. This economisation of the
shell-pairs [71] is carefully designed to ensure that the error imposed on ERI evaluation
remains below the required threshold. Others have taken this economisation further by

employing the Fast Gauss Transform [72,73] which uses an auxiliary set of basis
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functions to model the charge density. Computationally, the advantage arises due to the

reduction in the number auxiliary functions required c.f. significant shell-pairs.

The second step in screening negligible ERI’s is simply a refinement of the shell-
pair screening, achieved by employing bounds on the ERI’s [74]. What remains,
however, is still O(N?) ERI’s and is rate limiting for SCF calculations. What is required

is a sub-quadratic, preferably O(N) method for determining the ERI’s.

3.1.3. Linear Methods

In our discussions to date, we have indicated that the rate limiting step in
determining the total energy is determining the Coulomb energy. This is a completely
true statement given the MO coefficients. However, in order to determine the MO
coefficients, one must diagonalise the Fock matrix [18]. The cost of diagonalising the
Fock matrix scales as O(N°), but does not become significant until N becomes very large
[75]. However, for large N it may be possible to reduce the cost of the diagonalisation
step by exploiting the sparsity of the Fock matrix, although arguments to the contrary
suggest that the Fock matrix remains dense for large systems [76]. Whatever the case, N
must be very large before dense matrix diagonalisation becomes rate limiting using
linear Coulomb methods, and such limits have yet to be reached with current computing

technology.

Before tumning our attention purely to the Coulomb problem, we must also
consider the non-classical exchange terms. The computation of the HF exchange energy
is similar to the Coulomb energy in that it also formally scales as O(N*, and the
employment of cut-offs again reduces this to O(N?). Schwegler and Challacombe [76]
have recently implemented theoretical conjectures (see [76] for references) that the
continuous density matrix decays exponentially for insulators, thus affording
construction of the exchange matrix in O(N) work. Kohn [77] has recently extended the
possibility of O(N) determination of exchange to metals and is currently implementing
these ideas. Note that within the framework of DFT, exchange has been shown [46] to
be calculable in work that scales linearly with the system size. Thus, determining the

Coulomb energy is the rate limiting step.
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The first linear method available for MQM calculations was the Continuous Fast
Multipole Method by White ez al [78] which is a generalisation of the FMM for
classical point charges to arbitrary continuous charges. Their intention was to derive a
general method for continuous distributions of charge, then to apply the general method
to the more specific quantum chemical Coulomb problem. Prior to their O(N)
implementation [79] White et al had made significant improvements to the original
FMM [80] and upon implementation of the CFMM made further efficiencies [81,82].
Others [67,83-85] have followed White and implemented the CFMM, although their
implementations have not yet been optimised, and some [67] have resorted to
uncontracting shell-pairs, which severely impairs performance of ERI code required in
parts of the CFMM calculation and thus reduces the performance of their

implementation.

As mentioned, White et al have made numerous improvements to the original
FMM and subsequently the CFMM. It became clear however, that improving the
performance of the CFMM could also be achieved by improving the performance of ERI
code as this was still required to obtain the short-range contributions (see the section
below on the FMM for a more detailed account of FMM’s). This observation
culminated in a so-called J-Matrix engine [86] approach, whereby formal evaluation of
the ERI’s was avoided. Instead the desired J matrix elements are calculated directly,

which significantly reduces memory requirements and improves performance.

The Fast Wavelet transform [87,88] has recently been applied to electronic
structure theory [89-92], but to date has only been used as an alternative numerical
method to the use of more standard basis functions. That is, it has not been used in an

attempt to reduce the scaling behaviour of the Coulomb problem.

The ‘divide and conquer’ approach [93] has been claimed to be an O(N) DFT
method. The divide and conquer approach is a re-derivation of the standard Kohn-Sham
[42-44] equations eliminating the global representation of localised density by the
Kohn-Sham orbitals, with a set of localised partition functions. Thus, the whole system
is divided into small subsystems and the total energy and electron density is calculated
as a sum of thé contributions from individual subsystems. Others [94] have modified

the method, but the overall approach remains the same.
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Divide and conquer’s appeal is that its overall philosophy of partitioning a
molecules into small subsystems is a philosophy not dissimilar to that of an organic
chemist. Organic chemists tend to consider molecules as a ‘sum’ of interacting
functional groups, talking of the effects that neighbouring functional groups have on the
reactivity of other local functional groups. However, the problem with such a
philosophy is that it tends not to be quantitative and extremely difficult to generalise.
So while a number of workers have illustrated the success of divide and conquer in a
number of molecular energy calculations [95-97] and have further developed the
methodology for geometry optimisations [98], it has yet to be shown to be a general
method - a major problem being how to a priori partition the molecular system.
Furthermore, in implementations of the methodology to date, the Coulomb interactions
have all been evaluated using O(N?) algorithms. Thus, divide and conquer per se, is not

an O(N) technique.

We cannot dismiss the usefulness of divide and conquer, as it does away with the
O(N?) diagonalisation step. Such a bottle-neck exists within the framework of the semi-
empirical methods [99]. The semi-empirical methods differ from the so-called ab initio
methods in that they use experimentally determined parameters. Many of the semi-
empirical methods are based on the Pople Approximation [100] which neglects
differential overlap. That is, it is assumed that the Atomic Orbitals (AO’s) are
orthonormal under certain conditions. This has led to approximations such as CNDO,
NDDO, PNDO, INDO and MINDO, which are, respectively, complete neglect of,
neglect of diatomic, partial neglect of, intermediate neglect of, modified intermediate
neglect of differential overlap. Such approximations are inherently crude and perform
much better than one would anticipate as much of the error tends to be absorbed by the
empirical parameters. Interestingly, the ‘improvements’ made to the basic Pople
approximation tend to increase the number of Coulombic terms. As a final aside,
Hiickel theory, developed prior to the Pople approximation based methods, uses similar

neglect of differential overlap, but only considers 7t electrons.

There has also been significant work put into reducing the level of O(N?) work
required, either by cleverly modelling contracted shell pairs by another shell pair of

reduced contraction [71] such that the error introduced in the ERI’s remains below a
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given threshold, or by modelling the charge density using auxiliary basis sets [101,102].
However, the fitting procedures have yet to be optimised as either the cost of the fit

outweighs the savings or the error introduced by the fit is unacceptable.

As a final note, no O(N) Coulomb method has yet been devised to determine the
exchange energy in linear work. The linear method for non-classical exchange outlined
above, works on the basis that Exchange terms can be approximated so that it can be

calculated in O(N) work.

3.2. The Coulomb Problem

3.2.1. The N Body Problem

Many important problem in physics and chemistry can be treated by methods
based on the total interaction energy E between N localised matter distributions. In
many cases, the interaction potential follows an inverse-square force law, e.g. Coulomb
or gravitational potentials. Because such potentials are long-range, even widely
separated distributions interact significantly, thus the employment of straightforward
cut-off techniques introduces substantial errors and all pair-wise interactions must be
considered. The computational cost of an algorithm requiring the consideration of all
pair-wise interactions as a result of such slowly decaying potentials, scales quadratically
with V.

The interaction of well-localised matter distributions via slowly decaying inverse-
square law type potentials, requiring consideration of all pair-wise interactions, is
known as the N body problem. However, given a large system of well-localised matter
distributions the N body problem should now not be considered a problem that scales
quadratically with the system size - even though such problems are most compactly
expressed as a double sum which indicates such scaling. A number of algorithms have
been developed that treat all pair-wise interactions in an N-‘particle’ system whose
computational cost scales less than quadratically with N. A number of these will be

discussed in the following sections.

Emphasis must be placed on the well-localised nature of the matter distributions -

any distribution which contains totally delocalised matter cannot be treated in time that
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scales linearly with the distribution size by any of the so-called O(N) methods discussed
here. However, this localisation consideration need not concern us greatly as O(N)
algorithms are designed primarily for considering large systems, the majority of large
systems tend to be very well-localised, and smaller systems, in which one is more likely
to come across total delocalisation of matter, can still be easily treated by quadratic

methods.

3.2.2. The Ewald Summation Technique

In studying bulk properties of condensed matter systems, problems arise with
small sample (10<N<10,000) surface effects. Molecules at the surface experience quite
different forces from those in the bulk material. So, for example, a system comprising
of 1000 molecules in a 10x10x 10 cube which has 488 molecules appearing on the cube

face, is a very poor representation of bulk material.

Calculating the electrostatics of condensed matter systems, avoiding small sample
surface effects, can be accomplished via the employment of periodic boundary
conditions [103], and was first solved by Ewald [104]. Ewald splits the Coulomb

potential into two rapidly converging real and Fourier space lattice sums, where the

relative contributions of each sum is controlled by a parameter f3.

The Ewald summation technique splits the Coulomb potential of a periodic system

into a sum of two potentials
¢(r)=¢,(r)+¢.(r) (3.2)
where ¢(r) is written as a Fourier series typically of the form

1 < exp(—k*/(4B8%))
€V g{ g2

N
¢,(r)= Y gzexp(ik - (r—Ry)) (3.3)
B=1
where V is the volume of the simulation cell, g is the charge on the B particle, € is
the permittivity of free space and ¢.(r) is the ‘real space’ part of the Ewald potential

which can be shown to be [105]
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= — (3.4)
¢.(r) i Eosz:l,% |r—RB|

The ‘k-space’ potential is usually rewritten in terms of the total electrostatic potential

energy of the original point charges g, in the more compact double sum form

2

1 exp(—k2/(4B%))|& k- R 35
= 260V§ . ZA:q,_exp(l - (3.5)

The real space part can also be written similarly as an energy term.

In a simulation, if the length of the cubic system was doubled, then the number of
particles and the volume of the system will increase eight fold. In order to maintain the
same density of k-vectors, the k-space summation (3.5) would also need to increase
giving rise to O(N?%) scaling. By varying the 3 parameter, the scaling can be reduced to
N2 [105,106]). Typically however, in the study of condensed matter systems, short-
range dispersion/repulsion interactions are incorporated (such as Lennard-Jones). Thus,
it is usual to fix the f parameter such that only near neighbour interactions within the
parent simulation cell are significant, allowing the use of efficient short-range

techniques, but forces the k-space summation to scale as O(N?).

The Ewald technique is very general in that it may be applied to long-range
potentials [107] other than the Coulomb potential. The Ewald technique is also very
mature in that it has been highly obtimised [106,108,109] for a variety of applications
including a recent intriguing DFT application [110] which will be discussed in more

detail in Chapter Nine.

3.2.3. Particle-Particle-Particle-Mesh

The particle-particle-particle-mesh (PPPM) method, developed from the particle-
in-cell methods [111], is based on a separation of the total interaction potential between
particles into a sum of short-range interactions and long-range interactions. The former
are calculated directly and the latter by solving Poisson’s equation using periodic, and
more recently [112], non-periodic boundary conditions. The overlap between the Ewald

summation technique and the PPPM method is significant and the difference lies in the
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evaluation of the long-range function. Ewald evaluates this analytically, whilst in the
PPPM the grid based Fast Fourier Transform (FFT) is used. A comparison of the two
methods with respect to relative computational efficiency [105] is best considered for
larger systems, where the PPPM method’s employment of the FFT, resulting in cost

scaling of N log,(N), gains considerable advantage over the Ewald method.

3.2.4. The Fast Multipole Method

The FMM was a culmination of the seminal work in tree codes of Barnes and Hut
[113], and Rokhlin [114]. Tree codes are based on the observation that although
gravitational or Coulombic fields have a complex local structure, the far field is smooth.
In tree codes a cluster of charge is replaced by some simpler representation which is
used to compute the influence of that cluster at large distances [115]. The simulation
box is subdivided logg(N) times and interactions are calculated downward recursively
for all well-separated boxes, (where well-separatedness refers to non-near-neighbour
boxes) until the lowest level, where it remains only to compute interactions between
near neighbours. The FMM can also be considered as a tree code, but in the FMM
multipole expansions are calculated only at the lowest level and are passed upwards to
parent boxes via ingenious transformations and the localisation of the potential field

using a Taylor’s expansion.

The Fast Multipole Method was the first O(N) method developed for evaluating
Coulomb fields of particle distributions and has been applied to problems in
astrophysics, plasma physics, molecular dynamics, fluid dynamics, partial differential
equations and numerical complex analysis [116]. The method reduces the
computational expense and improves the accuracy of simulations where crude
approximation techniques were previously required to overcome prohibitive
computational cost. Note also that both the tree codes and the FMM have strict error

bounds which allows a priori fixing of error tolerance.

The maturity of the FMM, having been implemented in many different
applications and correspondingly optimised [117], re-derived [80] and generalised
[78,118] for those specific applications, would suggest that the scope for significant

increases in efficiency and applicability is minimal, implying the algorithm is reaching a
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peak in its level of performance. The maturity of the FMM should be taken into account

when comparing and contrasting a new algorithm (such as KWIK) with the FMM.

In summary, the FMM splits the total interaction into short- and long-range
contributions which are defined by the ‘well-separatedness’ of low level boxes. At the
lowest level, particles within boxes which are near neighbours, are interacted directly,
particles in well-separated boxes are interacted through a combination of multipole
expansions and localised representations with well defined error bounds. Both the near
and far field contributions can be afforded in linear work yielding an O(N) algorithm for

Coulomb interactions.

3.2.5. The Fast Wavelet Transform

The Fast Wavelet transform is a recent and exciting mathematical advancement
that can be considered as a generalisation of the Fourier transform. Wavelets have
received most attention in the fields of image analysis [119] and data reduction, where
the algorithm’s linearity and efficiency are far superior to those techniques previously

employed, such as the O(Nlog(N)) scaling FFT.

Its advantage is that the ‘mother’ wavelet can be shifted (translated) and scaled
(dilated) so that, for example in the case of image' analysis, parts of the image which are
more detailed can be represented by a greater number of finer wavelets and those parts
less detailed, by fewer and coarser wavelets. There is also a greater flexibility, in that
Fourier based techniques which perform well for repetitive signals, require adjustment

for analysing transient signals - wavelets on the other hand can handle both [120].

While wavelet theory is maturing and applications becoming more widespread and
efficient [87-92,119-125], the theory remains general and coupled with the flexibility of
the mother wavelet [121] it is not yet fully understood how the technique may be

applied to the N-body problem.

3.3. Summary

Self consistent field molecular quantum mechanical calculations are rate limited

by the evaluation of the total Coulomb energy, in particular, the electron-electron
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repulsion energy. The interactions considered in the calculations are typical of the so-
called N body problem type interactions. Thus, the Coulomb problem in SCF
calculations need only be considered as a part of the more general problem. Such
thinking has led to the recent development and implementation of the O(N) CFMM.
This has led to further rethinks in the way intermediate quantities are evaluated,

especially the J matrix.

The implementation and development of the CFMM, and the success of DFT is
enabling much larger molecules to be subject to accurate calculation than previously
possible. However, the linear cost of the CFMM is still high and the extent of size
applicability is not as great as initially anticipated. While an efficient implementation of
the Fast Wavelet transform appears that it may lead to a still faster O(N) method, such

an implementation has yet to be reported.

Regardless of the relative speeds of these linear methods, and indeed those
currently under development, O(N) methods are dramatically reducing the total time
requirement for calculations on large molecules. It is likely that while new O(N)
algorithms may or may not be faster than current ones, no single algorithm is likely to be
ideal for all cases and each may have deficiencies and fail where others don’t. Thus, we

must look to find still faster, more general, and preferably simpler linear methods.
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CHAPTER FOUR

PARTITIONING THE COULOMB OPERATOR

4.0. Introduction

The common theme amongst Coulomb field approximation techniques is that of
partitioning of the Coulomb operator. Separating the singularity from the smooth long-
range behaviour and then treating each piece in a specialised fashion is commonly
practiced in many research areas where Coulomb force calculations are undertaken. For
example, the Ewald summation technique partitions the potential to allow for
exploitation of periodic boundary conditions. The FMM and its variants [78,80,116]
separate the Coulomb operator using a grid technique. Near-field interactions are
calculated directly, far-field using multipole expansions. In each of these examples the
near-field partition is calculated directly and the far-field is calculated by exploiting the
smoothness of the Coulomb operator’s long-range behaviour and, in the case of Ewald,

further taking advantage of periodic boundary conditions.

The KWIK algorithm for Coulomb energies is no exception in that it is an
approximation technique which requires a separation of the Coulomb operator.
However, the way separation is obtained is quite different to other approximation
techniques and the resulting methodology is much simpler and does not require special
boundary conditions. Furthermore, it appears that the size of system considered

becomes an asset in obtaining higher accuracy, rather than a hindrance.

Surprisingly, KWIK’s origin stems from finite-population theory in statistics and
it is firstly considered how KWIK solved the statistics problem, why it was successful
and then contemplate why it may be applicable to the Coulomb problem. Before
application of KWIK to the Coulomb problem a few necessary generalisations will be

considered, the most important being the partitioning of the Coulomb operator.
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4.1. The KWIK Algorithm

Recently, Gill [126] developed a technique for solving a class of combinatorial
problems extremely efficiently. The problem addressed was, if we are given a set X of
known real numbers {xi, x2, ..., Xa}, and we let A be the sum of a random sample of size
m < n numbers drawn without replacement from X, what is the probability p = Pr(A > 0)
+ Pr(A =0)/2 ? This could be solved by exhaustive sampling. However, when 1 << m
<< n the number of possible samples "Cy, is extremely large and prohibits the use of this

method.

Gill’s approach is to recast the problem by writing the probability as
1 N
p= LHA) (4.1)
i=l

where N is the total number of possible samples and H is the Heaviside function
(defined by H(x) =0, 1/2 or 1 if x <0, x = 0 or x > O, respectively). By replacing H by

its Fourier representation [53]

o= sin((2k — 1x
H(x) = Z ( ) (42)
mio (2k-1)
and inverting the summations, a convergent infinite series is obtained for p
=2 ii Zsm((2k -DA) (4.3)
2 N & )

valid for (-t < A; < ®). Gill then defines two functions which enables the use of

elementary trigonometric identities to recursively determine the inner sum. This is more
compactly presented (and for reasons which will become apparent) by adopting the

complex form. Thus, by defining

N
E,(m,n) = exp(ilA;) (4.4)

j=1

which enables the use of the recursion formula
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E,(u,v) = E*(u,v—1)+E,‘(u—l,v-—1)exp(ikxv) 4.5)

the inner sum can be obtained in work that scales linearly with n, the size of the set X,

for fixed m. i.e.

i sin((2k - 1)A,) = Im(E,,_, (m,n)) (4.6)

i=1
The success of the method relies not upon the rapid convergence of the Fourier series, as
the series converges slowly, but on the rapid decay of the inner sums (4.6) with k. Gill
did not rationalise this behaviour and indicated that a systematic study was required to
obtain a better understanding. However, it was observed that the new algorithm was
most successful when the total number of possible samples was large and, whereas a
larger total number of possibilities was unfavourable for the exhaustive approach, the

larger number aided the convergence of the series in the KWIK approach.

The underlying success of the method can be attributed to the fact that although
the total number of possible A;’s grows as O(n™), they are highly dependent as they have
been generated from only n independent values. The Coulomb interaction can be
likened to this. One could consider the Coulomb interaction as an exhaustive sampling
of all pairs of particles. Although there are O(n?) interactions, they arise from only n
independent charge distributions. Thus, it was anticipated that the methodology applied
successfully in the combinatorial problem could also be successfully applied to the

Coulomb problem.

4.2. Adapting KWIK for Coulomb Interactions

In one of the key steps of Gill’s combinatorial KWIK algorithm the Heaviside
function is replaced with its Fourier series representation. This series approximation is
slowly convergent, which has little effect on the success of the algorithm due to the
rapid convergence of the inner sum, even for small populations. The total number of
interactions appeared to be the key to the rapid convergence of the inner sum and for
small populations a moderate sample size (m) still leads to a very large number of
interactions. The series does, however, fall victim to the Gibbs phenomenon due to the

discontinuities of the Heaviside function requiring scaling of the A;’s to within the
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boundaries of the periodic function in order to avoid serious error, but this appeared not

to hinder convergence to any significant degree.

The first consideration when adapting the KWIK algorithm is that the total
number of ‘possibilities’ in a Coulomb KWIK algorithm of distribution size n, is omd),
which is significantly less than those encountered in Gill’s combinatorial problem.
Hence, there is a greater likelihood of a more slowly convergent inner sum than those
seen in the statistics problem. Furthermore, the Fourier Transform of the Coulomb
operator (c.f. the Heaviside function in the statistics problem) decays only as k2. Thus it
yields both a slowly convergent inner sum and a slowly convergent Fourier series and a
larger number of Fourier terms would need to be considered before truncation in order

to obtain the accuracy necessary for quantum chemical calculations. i.e. 10%, 10;Y.

To alleviate this problem, it was considered that introducing a ‘separator function’

to separate the singularity from the long-range behaviour may be essential.

4.3. Separating the operator

The Coulomb operator, r' where r is the inter-particle/distribution separation, is
difficult to approximate because it has a singularity at the origin and exhibits very
slowly decaying long-range behaviour. By introducing a smooth and rapidly decaying

function f, henceforth the ‘separator’, with f(0) = 1 the identity
f(r) 1-1(r)

—+
r r

b 4.7)
-
then separates the Coulomb operator into a singular, rapidly decaying piece and a non-

singular, slowly decaying piece (Figure 4.1).

The rapidly decaying short-range operator will reduce the number of significant
interactions in a system of charged particles to O(n), based purely on a proximity
argument. The FT of the long-range operator will be a rapidly decaying function whose
interactions can be evaluated by a factorisation, leading to summations over Fourier
coefficients and a single sum over particles/distributions - achievable in O(n) work

assuming that the number of Fourier coefficients required is O(1). To re-emphasise the
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importance of separation, recall that the long-range behaviour of the FT of a function is
governed mainly by that function’s short-range behaviour. The Coulomb operator has a
singularity at the origin giving unfavourable long-range behaviour. On separation (4.7)

however, the long-range partition has more favourable short-range behaviour leading to

arapidly decaying FT.

Key

Coulomb

— — Short-Range

Long-Range

Figure 4.1. Graphical representation of the short and long range characteristics of the Coulomb,
short- and long- range operators.

What then is the most effective separator? Given the arbitrary requirements of our
function f above, there are no less than an infinite number of candidates! However, the
aim is to afford a separation such that a long-range operator is obtained whose FT

decays rapidly and so that the short range operator also decays rapidly.

The first approach in obtaining a separator was trial-and-error where ‘common’
functions exhibiting the required separator behaviour mentioned above were considered,

and at each stage evaluating a list of necessary features. Initial investigations centred on
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the functions exp(-ar), exp(—axz), tanh(awr) and erfc(ar). (A decay parameter, @, was
inserted as it seemed that it may be necessary to be able to tune the separator - larger
distributions may require a different partitioning of long- and short-range operators
compared to smaller or polarised distributions.) All these trial-and-error functions
exhibit similar qualitative features. That is, when substituted into (4.7) they yield a
rapidly decaying short-range operator, and a long-range operator whose FT also decays

rapidly. However, quantitatively and practically they are somewhat different.

To illustrate the findings of the trial-and-error approach, consider the problem in
parallel in both one- and three- dimensions. The respective Fourier transforms of an

even/spherically symmetric function f(r) is defined [127]:

f(r) = Jf(k)exp(ikr)dk & f(k) = %J‘f(r)cos(kr)dr 4.8.1)
0
f(r) = [ ) expik - ) dk & f(l) =~ 1‘ ri(r) sin(kr)d r 4.8.3)

The exponential function has a short-range operator that decays exponentially whilst the

Fourier transform of the long-range operator

o = { 2
S{M} il 12
r 2r \ &k

(4.9.1)
[ 1\o? o o°
=|— - +—-...
2 ) k*  2k*  3k®
l—exp(—cor)} »’
S{ = 493
r 2x2k2(k2 +w2) (4.93)

decays only as k2, for large k. On the other hand the Gaussian function has a more
rapid Gaussianly decaying short-range operator but the FT of the long-range operator
leads to a combination of a hypergeometric and logarithmic functions in 1-D and
Laguerre and Gaussian functions for 3-D, both of which have slow decay characteristics.
The FT of the long-range operator obtained from a Gaussian separator is represented

only as a power series. While in a final implementation of the algorithm in quantum



55

chemical code, the separator would, for the sake of maximising speed, most likely be
evaluated using an interpolation scheme [128], implying that the form of the separator
matters little other than being able to evaluate it once, accurately, for forming the
interpolation tables, prior to commencing calculations. However, for development
purposes, it was hoped a more easily handled function could be obtained. Thus, the
Gaussian functions’ improved short-range characteristics were noted, but noted too was

that the separator required a few important practical features.

Separators involving tanh(r) and erf(r) functions were next considered. Both led
to short-range operators that decayed Gaussianly however, the long-range operators lead

to FT’s which decay exponentially and Gaussianly, respectively.

S{M} = %ln[coth[%n (4.10.1)
S{ ta"hr(w’)} = S;k cosech(—%) (4.10.3)

S{erf(rw’)} = —% Ei(— 4’22) @.11.1)
o { erf(rwr)} _ (27t1k)2 exp( 4’;2) (4.11.3)

The latter considered erfc separator function exhibits a Gaussianly decaying short-range
operator and a Gaussianly decaying FT of the long-range operator and it seemed that our

trial-and-error approach to determine the ‘ultimate’ separator was converging.

4.4. The Ultimate Separator

It is well known that the Gaussian function, whose FT is another Gaussian, is the
function which has the most rapidly decaying real and k space functions. While it is
possible to devise a more rapidly decaying real space function, the consequence will be
a more slowly decaying k space function and vice versa. The calculus of variations

[129] provides a convenient means to prove this. Consider the sum of the second
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moments [53] of the squares of our unknown function and its FT, again in one- and

three- dimensions:

jr2|f(r)[2dr+Jk2|f(k)|2dk (4.12.1)

[Ixf e ar+ [ o dk (4.12.3)

where the integration is over all space and we use the symmetric definition [130] of the
FT rather than that described above. The aim is to minimise this sum to obtain a

function with maximum real and k space decay. Using the definition of the FT of a

derivative
S{df(r)}= ik f(k) (4.13.1)
dr
S{ df(r)} = ik, f(k) (4.133)
s
and Parseval’s Theorem[127]
j f(x)g (x)dx = j f(k)g" (k)dk (4.14.1)
[fr)g mdr = [f) g (k) dk (4.14.3)

(where * denotes complex conjugate) lets us rewrite (4.12) as
[PEn) +E ™) dr (4.15.1)
[Ief* ) +|V ) dr (4.15.3)
The extremals of this functional subject to the constraint

[y dr=1 (4.16.1)
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[l dr =1 (4.16.3)

are obtained on solving the Euler-Lagrange equation

rrf(r)—f'(r) = Af(r) 4.17.1)
rrf(r) - f'(r) —zf(r) = Af(r) (4.17.3)
r

A solution to this Differential Equation (DE) which results in a function that minimises

(4.15) is a normalised Gaussian function:

f(r) = %exp[—%} A=1 (4.18.1)
2
f(r) = -\/.%exp(—%} A=3 (4.18.3)

Applying this same logic to our separator problem yields the sum to minimise:

2
Irz(l—g(r)] dr+ [K*gk) dk (4.19.1)
!

2
dr + [[k[2ck)[* dk (4.19.3)

fief

.
H— g(r)

where for simplicity, we have modified the definition of the separator given in (4.7) so

that

1-1(r)

g(r) = (4.20)

Applying the definition of the FT of the derivative and applying Parseval’s Theorem to
this problem yields

1 2
Jeg]= | r’(;- g(r)] +(gm)dr 9L
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2

Jem)] =[x’ +|Vg(r) dr (421.3)

1
——&(r)
I
The associated Euler-Lagrange equation leads to the DE

rgrn-g'rn=r (422.1)
2 " 2,
reg(r)-g'(ry)—=g'(r=r (4.22.3)
r

which, while appearing simple, initially leads only to a series solution [130]

3 r4 rS r7 r8
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=C 4 Cr—~—wC—t —= +C, (4.23.1)
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During these investigations, it was suspected and subsequently concluded that, if
not solely for development purposes, the ultimate separator must not only lead to a
short-range operator and FT of a long-range operator that decayed at least Gaussianly,
but must also satisfy practical criteria. Firstly, to aid the rapid development of the
algorithm the separator must lead to operators and FT’s that were easily calculable.
This first criterion is in line with the general goal of developing not only a fast linear

scaling algorithm, but also a conceptually simple one.

Secondly, the ERI’s that are to be encountered in a quantum chemical calculation
involving the short-range operator must be calculable analytically - preferably so that
present integral technology need only be perturbed, rather than rewritten. While these
criteria may appear to be convenient and more indicative of our failure to determine the
best separator (4.22), the convenience of the second criterion cannot be understated.
Boys [63] introduced the Gaussian basis function in the early 1950’s to replace the
generally more accepted and natural Slater functions, purely on the basis that the ERI’s
could be evaluated analytically. It would be a significant backward step in MQM if
alternative numerical integration techniques had to be reverted to, especially given the

~highly optimised nature of present ERI technology.
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Recently, an analytic solution has been found to (4.22) [131] resulting in an
optimal separator (the ultimate separator) which can be expressed in terms of modified
Bessel, Hermite or parabolic cylindrical functions [53]. In terms of the latter, this is

written as
1-1£(r) = U(0,r2) /U (0,0) (4.24)

which has an asymptotic decay which is slightly faster than a Gaussian. The resulting
long-range partition has a somewhat flatter origin than that obtained with the error
function, the overall improvement gained by the analytic solution can be gauged by
evaluating equation (4.21.3) (Table 4.1). It is apparent that the difference between the
analytic solution and the erfc separator is limited. However, an important benchmark

will be the comparison between the implemented separator and the analytic solution.

Separator, f(r)  Optimal @ J[g(r)]
ref [131] - 8.4946
erf(or) 0.6366 8.5102
tanh(ar) 0.7723 8.6272
1-exp(-ar) 1.1067 9.2713
1-exp(-or’) 0.9400 9.7711
Table 4.1. Value of the functional J[g(r)] (4.21.3) for various separators with their respective

optimal decay parameters, @. The difference in the value of the functional between
that of the optimal separator and error function is minimal.

4.5. The Error Function Separator

The error function [53], erf(x) and the complementary error function

erfc(x) = 1-erf(x), are two of many functions which are defined by an integral
erf(x) = -2—Iexp(—t2)dt (4.25)
Jr o,

The error function can be expanded in both a power series

n_2n+l
erf(x) = Z( i x (4.26)

,,_0 n'(2n+1)

and asymptotically,
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Jr. xexp(x?)erfc(x) ~ 1+2( 1)“(—2-(% 4.27)
and is easily differentiated
——l erf(x) = (-1)" —Z—H,, (x)exp(—x”) (4.28)

7r

where Hq(x) is the n™ Hermite polynomial. Most importantly, substitution of erf(r) into

(4.7) with the addition of the decay parameter ®, leads to both a long-range operator

erf(wr)

r

(4.29)

whose FT can be found analytically in one (4.30.1), two (4.30.2) and three (4.30.3)

dimensions,
. {erf(a)r)} _1 ( ] (430.1)
r
" {erf(a)r)} ( ) ) (4302)
; 20
3 {crf(ra)r) 2k2 [ ] (4.30.3)
and a short-range operator
erfc(wr) (431)

r

that will enable ease of implementation into existing MQM programmes. On a practical
note the error function has widespread availability in mathematical libraries on many
computer platforms. Furthermore, on substitution of the trial-and-error separators into
equation (4.21.3) it is clear that the error function gives the lowest value for this sum,
and the observed ‘convergence’ of the considered separators discussed in the previous

section (4.3) is also confirmed (Table 4.1).
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Based on these considerations, the immediate unavailability of an analytic solution
to the DE (4.22) and the short-range decay similarities of the series solution (4.23) the
error function, erf(wr), was chosen as the separator for development of KWIK for

Coulomb interactions.

4.6. Summary

Partitioning or separating the short- and long- range characteristics of the
Coulomb operator, that is, the singularity and the slow, long-range decay, and
subsequently treating each entity in a specialised fashion is commonplace in Coulomb
field approximation techniques. The KWIK methodology for Coulomb energies is no
exception in that the short-range partition is calculated directly and the long-range

partition is calculated using an approximation technique.

It has been postulated that the optimal function to obtain the best separation can be
determined using the calculus of variations to yield a functional that minimises the sums
of the second moments of the short-range operator and the FT of the long-range
operator, thus affording a least-squares minimisation of the extents of the short-range

operator and FT of the long-range operator.

On determining the so-called ultimate separator it was found that it would very
likely lead to a short-range operator and a FT of the long-range operator that decay
Gaussianly. Considered were a number of important features of the separator necessary
to aid ease of development, implementation and generalisation. Those of the decay
parameter - to enable fine tuning of our separation, a separator that leads to an analytic
function for the FT of the long-range operator - for ease of algorithm development - and
a separator that leads to a short-range operator such that the ERI’s in MQM calculations

can be evaluated analytically. The error function satisfies all these criteria.

The recent solution of the ultimate separator problem indicates that the choice of
the error function as a separator is close to optimal. It is likely that practical
considerations and the ease of adjusting ERI evaluation for MQM implementation will

far outweigh the minor theoretical improvement in the efficiency of KWIK likely using
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the ultimate separator, although the ultimate separator would provide a suitable

benchmark to gauge these practicalities.
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CHAPTER FIVE

SHORT-RANGE INTERACTIONS

5.0. Introduction

The aim of maximising the overall efficiency of the KWIK algorithm requires
careful consideration of the individual components of the algorithm as the total
efficiency will be no less than the sum of the efficiencies of the components. The first
of the two major components of the KWIK algorithm is that of the short-range partition.
While the short-range potential in the KWIK algorithm may (or may not) be unique, the
problem encountered in trying to evaluate these specific short-range interactions is part

of a more general problem which has received considerable attention.

Short-range potentials have widespread application in many areas of physics and
chemistry, such as astronomy, molecular dynamics, plasma modeling and quantum
chemistry [103,111,132]. Short-range interactions are typified by a rapidly decaying
function of inter-particle separation such that beyond some radial distance Rc, the
interaction has a negligible contribution to the total energy/force. This means that cut-
offs can be introduced to reduce the computational effort to afford the energy/forces
within some predetermined accuracy. The most significant aspect of a short-range
potential is that the number of significant (relative to some predetermined accuracy, €)
interactions, M, per particle, is O(1) where M << N, and N is the size of the system
(number of particles/atoms/distributions). Thus, the total number of significant short-

range interactions scales linearly with N.

We emphasise here the proximity basis of the short-range interaction, that beyond
the critical cut-off parameter Rc, the interactions are insignificant and contribute
negligibly to the total energy. Contrasting with the proximity based short-ranged
interactions are those methods that use a discontinuous separation of a long-range
potential, such as the FMM and the more general CFMM. In methods such as these, the
total interaction potential is separated into a near-field partition and a far-field partition.

The near-field is evaluated directly and the cut-off is defined by the extremities of the
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near-field cell geometry - in general a cube. That is to say, the short-range interaction is

defined to the extremities of the nearest neighbour cells (or boxes).

In this Chapter we outline and discuss the methods currently employed to rapidly
evaluate the proximity based short-range potentials, identify weaknesses in these

methodologies and hypothesise and investigate how one may improve on them.

5.1. Computational Methods

5.1.0. Introduction

As is the case for many problems in computational science, there are a number of
methods available to afford a solution - each having realms of application where a given
method delivers the answer faster and with greater precision than the alternatives. The
objective of the KWIK algorithm is to enable application to very large systems - thus
efficiency, memory requirements, cost scaling behaviour and speed are all of paramount

importance.

Primarily, as the short-range potential requires only O(N) work to be carried out,
the foremost requirement of a short-range algorithm is that it scale linearly. With the
rate at which computer technology is developing, yesterday’s simulation size limit
becomes routine today, and even methods with a very small O(N*) coefficient will
eventually reach the cross-over point, and this may arrive sooner than expected given

this rapidly advancing technology.

Further important considerations come from the theme of Chapter Two, which are
the platforms on which we are to run our short-range code. As program developers tend
to develop mainly on the more affordable scalar machines, the awareness of a new

method’s parallelisability and vectorisability are most important.

The two methods usually discussed when considering efficient methods of
evaluating short-range interaction are the Verlet neighbour list method and the link-cell
method. In this section we firstly consider the zero™ order code optimisation, that of
efficiently computing the potential, and then briefly outline the two methods for

determining significant particle pairs.
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5.1.1. Computing the Interaction
Often the form of the potential, that is the function that defines the level of

interaction for a given inter-particle separation, is computationally expensive to
calculate. Even simply determining the inter-particle distance is computationally

expensive (relative to multiplies or additions) as a square root is required

e =(4-B.) +(4 B, +(4,-B)’ (5.1)

The computational expense of evaluating the potential can be significantly reduced via
interpolation tables (for example see [59,128]) and polynomial expansions [103].
However, the performance of intrinsic functions varies from machine to machine and
while significant speed may be obtained on one platform, no improvement may be
observed on an other. Computer vendors are well aware of the limitations imposed by
slow intrinsic functions and significant effort [133] has, and will, continue to be made
by manufacturers to improve such limitations. This means that most of the more

common functions are relatively highly optimised.

5.1.2. Verlet Neighbour Lists

The Verlet neighbour list method [134] keeps a list of the identities of near-
neighbours, that is those within the cut-off radius R¢, for each individual
particle/molecule. The neighbours are stored in a large array, say called LIST of length
MN, and a second array POINT of length N, indexes the neighbours. That is,
POINT(I), points to the first neighbour of particle/molecule I in LIST and
POINT (I+1) - 1 points to the last neighbour of molecule I, thus we can easily

identify the part of the large array LIST containing the neighbours of I.

The Verlet neighbour list method is particularly useful in areas where the
computer modelling will result in the displacement of molecules/particles and a
recalculation of the energy/forces is then required. The neighbour list can then simply
be updated for the next cycle. However, the method does have many disadvantages.
Firstly, recent descriptions and implementations [103] of the Verlet method use nested
loops over all particles to determine the neighbour list for each particle/molecule

(Scheme 5.1). This implies a cost that scales as O(N?). Secondly, the size of the array
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LIST may be significantly large, and coupled with the O(N?) scaling characteristic

prohibits the use of the method for large systems.

INTEGER POINT(N),LIST(MAXLIST)
REAL*8 X(4,N)

RCUTSQ = RCUT**2
NLIST = 0
DO i=1,N-1
POINT (i) = NLIST + 1
DO j=i+l1,N
RXIJ = X(1,i) - X(1,3)
RYIJ = X(2,i) - X(2,3)
RZIJ = X(3,1i) - X(3,3)
RIJ = RXIJ**2 + RYIJ**2 + RZIJ**2

IF (RIJ.LT.RCUTSQ) THEN
NLIST = NLIST + 1
LIST(NLIST) = J

ENDIF

ENDDO
ENDDO

POINT(N) = NLIST + 1

END

Scheme 5.1. Sorting particles into Verlet neighbour lists requires work that scales with the square
of the number of particles which can be seen by the nested loop over particles above.

Note also that the memory requirements for storing lists of neighbours for each
particle is significant.

5.1.3. Linked-Cell Method

The linked-cell method [111] contrasts with the Verlet neighbour list in two
respects. Firstly, its cost scales linearly with the size of the system, and secondly, while
simple updates can be applied in applications where particles/molecules are displaced,
the ease and speed of the sorting process means that the complete sort can just as easily

be reapplied.

The method begins by dividing the simulation system into a set of cells
(cubes/squares/lines depending on the dimension of the system) of length Rc and then
determining which cell each particle resides in. For cache considerations, it is best if the
coordinate array is then re-ordered so that particles within the same cell are listed
consecutively. This division and reordering is easily afforded in linear work (Scheme
5.2). Note also that the total memory requirements are significantly less than that of the

Verlet neighbour list approach and the method is similarly simple.
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INTEGER Nx, Ny, Nz, INBOX (N)
INTEGER ICOUNT (Nx*Ny*Nz), IPOINT (Nx*Ny*Nz)
REAL X(4,N),XORD(N, 4),Rc

DO i=1,N
Kx INT(X(1,i)/Rc) + 1
Ky INT(X(2,i)/Rc) + 1
Kz INT (X(3,i)/Rc) + 1
NBOX = Kx + (Ky - 1) * Nx + (Kz - 1) * Nx * Ny
INBOX (i) = NBOX
ICOUNT (NBOX) = ICOUNT(NBOX) + 1

ENDDO

IPOINT(1l) =1
DO j=2,Nx*Ny*Nz
IPOINT(j) = IPOINT(j-1) + ICOUNT(j-1)

ENDDO
DO j=1,N

NBOX = INBOX(3)

IPT = IPOINT (NBOX)

XORD(IPT,1) = X(1,3)

XORD (IPT,2) = X(2,3)

XORD (IPT,3) = X(3,3)

XORD (IPT,4) = X(4,3)

IPOINT (NBOX) = IPOINT(NBOX) + 1
ENDDO

DO i=1,ICOUNT(1)
INBOX (i) =1
ENDDO
ICT = ICOUNT (1)
IPOINT(1l) =1
DO 20 i=2,Nx*Ny*Nz
IPOINT (i) = IPOINT(i-1) + ICOUNT(i-1)
DO 10 j=ICT+1,ICT + ICOUNT (i)
INBOX(j) = i
10 CONTINUE
ICT = ICT + ICOUNT(i)
20 CONTINUE

END

Scheme 5.2. Sorting particles/molecules into cells in linear work using integers. ICOUNT (I)
indicates the number of particles in cell I, and IPOINT (I) points to the first particle
in cell I in a cell-ordered coordinate array XORD. The first three elements of X are
particle coordinates, and the final entry is the charge.

This linked-cell method is the approach adopted by the discontinuous separation
techniques, i.e. FMM, CFMM. Near-field interactions are determined by interacting all
particles within the target cell with both themselves and all the particles in near-
neighbour cells. While one is unlikely to see the FMM mentioned in the context of
efficient short-range algorithms, in the context of this thesis it is important to re-

emphasise the distinctions.
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5.2. Improvements to the Linked-Cell Method

5.2.0. Introduction

Short-range potentials such as the Lennard-Jones potential, and more recently
those which are found in the KWIK and CASE approximations, are being applied to
larger and larger systems and it is becoming increasingly evident that present
methodologies (notably the most widely adopted linked-cell method), which are used to
screen insignificant short-range interactions, are very inefficient. Inefficient to the
extent that most of the computational effort goes into evaluating interactions which need

not be considered.

When applying the linked cell method to cases such as particle-particle-particle-
mesh, KWIK and CASE, we begin by dividing the simulation box into cubes or squares,
(depending on the dimension of the problem) where the width of the cells is equal to the
distance where the short-range interaction becomes insignificant, Rc. Target cells then
need only interact with nearest neighbours to ensure that all significant interactions are
calculated. Thus, the average number of interactions per particle is 9M for planar and
27M for non-planar systems as the number of near neighbour cells is 9 and 27 for planar
and non-planar systems respectively, and M being the average number of particles per
cell. While this method ensures that each particle interacts with all significant particles,

each particle also interacts with many particles it need not. (Figure 5.1).

Figure 5.1. The particle denoted P need only interact with particles within the cut-off radius Re.
Using the linked-cell method, particle P interacts with all the particles within the
region depicted by the bold square, which is significantly more than necessary.
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While it appears that the linked cell method is screening the majority of
insignificant interactions, (and by comparison to considering all possible ON%

interactions, it is) if we consider the efficiency of a method to be:

fre No. of significant interactions (52)
No. of interactions computed

it can be easily shown (Table 5.1) that the majority of the computational effort is still
spent calculating insignificant interactions. Furthermore, while significant effort has
been made to optimise the implementation of the linked-cell method for vector [59] and
parallel [135] processing, little mention has been made of the inherent inefficiency in

the primary algorithm, such as that illustrated (Figure 5.1) and tabulated (Table 5.1).

Dimension One Two Three
Efficiency 0.6667 0.3491 0.1551
Table 5.1. Efficiencies of the linked cell method in all three dimensions. Note in 2-D and 3-D the

majority of the computational effort is put into calculating insignificant interactions.

The efficiencies detailed in Table 5.1 are obtained by dividing the minimum
‘amount’ of interaction required by the ‘amount’ (distance, area or volume) of
interaction a test particle (e.g. P in Figure 5.1) is subjected to using the given scheme.
Consider Figure 5.1. The test particle P will be interacted with 9 near neighbour squares
using the linked cell method. The total ‘amount’ of interaction will be 9 times the area
of a single square, which is 9Rc2. However, the test particle needs only interact with
those within a radius R¢c which is an area of chz. This is also the case for the 1-D and
3-D systems, where distance along the line and volume of interactions are the ‘amounts’

considered.

5.2.1. Ordering an Ordinate

The first way a significant improvement can be made to the linked cell method is
if particles within a cell are ordered in, for example, increasing x coordinate [111].
Once particle-particle inter-cell Ax becomes greater than Rc, the calculation can be
terminated for that target cell particle. Alternatively, a binary search may be performed

to predetermine the extremity particle in the neighbour box. This removes the
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requirement to compare Ax with R¢ for each interaction and will aid in maintaining

vectorisability.

The extra work required to order the particles within cells is minimal, given that
we already rearrange the coordinates of the particles/molecules into that of cells. This
work is illustrated in Scheme 5.3 and it should be made clear that this sorting does not
alter the linear scaling property of the algorithm. All cells are looped over (O(N) work)
and then all particles within a cell are sorted and ordered. While it is well known that
sorting routines scale as much as O(N?) [136], when the number of particles within each
cell is M, which is O(1) we can, for collinear particles, obtain a completed ordered array
in O(N) work and, for higher dimensions, obtain an array with an ordered ordinate in the

same amount of work.

The effect of ordering an ordinate on the basic algorithm for calculating short-
range particle-particle interactions remains reasonably simple, and this is depicted in a
compact form in Scheme 5.4. To illustrate the effect of ordering an ordinate on
theoretical efficiencies, Figure 5.1 has been reconstructed to indicate the new

computation regions (Figure 5.2).

If we incorrectly (see later) consider binary searches as not computing interactions
then the theoretical efficiencies can be easily calculated following the methodology used
for Table 5.1 by subtracting off the total interaction ‘amount’, that ‘amount’ ignored by

the binary search (Table 5.2).

Dimension One Two Three
Efficiency 1.0000 0.5236 0.2327
Table 5.2. Efficiencies of the linked cell method with x-direction ordinate ordering for all three

dimensions. Note in 3-D the majority of the computational effort is still put into
calculating insignificant interactions and that 2-D efficiency is still unacceptable.

Considering binary searches as not computing interactions is incorrect because a
binary search does require us to consider a small proportion of the outlying particles.
The significance of the binary search and its effect on efficiencies is small, when the

total number of interactions avoided by using this approach is large.
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INTEGER Nx,Ny, Nz, INBOX(N)
INTEGER ICOUNT (Nx*Ny*Nz) , IPOINT (Nx*Ny*Nz)
REAL X(4,N) ,XORD(N,4) ,Rc

DO i=1,N
Kx
Ky

INT(X(1,i)/Rc) + 1

INT(X(2,1)/Rc) + 1

INT(X(3,1i)/Rc) + 1
NBOX = Kx + (Ky - 1) * Nx + (Kz - 1) * Nx * Ny
INBOX (i) = NBOX
ICOUNT (NBOX) = ICOUNT(NBOX) + 1

ENDDO

X
N
|

IPOINT (1) =1
DO j=2,Nx*Ny*Nz
IPOINT(j) = IPOINT(j-1) + ICOUNT(j-1)

ENDDO
DO j=1,N
NBOX = INBOX(3)
IPT = IPOINT (NBOX)
XORD(IPT,1) = X(1,3)
XORD (IPT,2) = X(2,3)
XORD (IPT,3) = X(3,3)
XORD(IPT,4) = X(4,3)

IPOINT (NBOX)
ENDDO

IPOINT(NBOX) + 1

DO i=1,ICOUNT (1)
INBOX(i) =1
ENDDO
ICT = ICOUNT (1)
IPOINT(1) = 1
DO 20 i=2,Nx*Ny*Nz
IPOINT (i) = IPOINT(i-1) + ICOUNT(i-1)
DO 10 j=ICT+1,ICT + ICOUNT (i)
INBOX(j) = i
10 CONTINUE
ICT = ICT + ICOUNT (i)
20 CONTINUE

DO i=1,Nx*Ny*Nz
IF(ICOUNT(i) .GT.1l) THEN
CALL XSORT (XORD(IPOINT(i),2),XORD(IPOINT(i),1),

$ XORD(IPOINT(i),3),XORD(IPOINT(i),4),ICOUNT(1),4)
ENDIF
ENDDO
END
Scheme 5.3. The sorting of an ordinate to improve efficiency is achieved similarly to that without

the sort and simply requires an extra loop over all Cells and a call to the sorting
routine XSORT. This routine sorts the x ordinate into increasing value maintaining
the integrity of the other coordinates and associated charge.
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{loop over all boxes}
{loop over particles within box}
{complete intra-box interactions}
{loop over neighbouring boxes)
{determine farthest significant particle in
neighbour box via binary search})
{loop over significant neighbour box particles}

{calculate inter-particle interactions}

{end loop}
{end loop}
{end loop}
{end loop}
Scheme 5.4. Algorithm structure for short-range interactions with an ordered ordinate.
Figure 5.2. As for Figure 5.1, the particle denoted P need only interact with particles within the

cut-off radius Rc. Using the ordinate ordered linked-cell method, particle P interacts

only with those particles within the unshaded region. This is somewhat less than the
previous requirement.
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5.2.2. Changing the Cell Geometry

While the extra work in ordering an ordinate and perfortning binary searches is
minimal, the 2-D and 3-D efficiencies remain unacceptable, and so further
improvements to the linked-cell method have been investigated by reconsidering the
basic geometry of our parent cell. This has been done in two ways. Firstly, by an
integer reduction in the cell size and secondly by reconsidering the basic geometry of the
cell. Both ideas are attempting to produce an interaction region, that is the target cell
and its neighbours, that are better approximations to a circle or sphere of radius Rc. As

outlined above, a square (oversized) is a poor approximation of a circle.

While it would appear that a reduction in cell size, with subsequent reduction in
cell occupancy will result in reduced vector lengths for algorithms of the type depicted
in Scheme 5.4, therefore decreased performance on vector machines, by carefully
reconstructing the algorithm [59] the increased number of cells can be used as an
advantage to maintain (increase) vectorisability. While emphasising the importance of
maintaining vectorisability for implementation on large machines, it should also be

noted that scalar architectures also perform poorly with very short vector lengths.

5.3. Approximating Spheres

5.3.0. Introduction

The underlying reason for the inefficiency of the linked-cell method is that a
square/cube is a poor approximation of a circle/sphere, especially when the square/cube
is an oversized one, as is the case here (Figure 5.1). It is hypothesised that to improve
the efficiency of linked-cell method and the key to greater efficiency, is the basic
structure of our cell. While it has been suggested that alternate geometries may be used
[103], implementations have not been illustrated and it was not suggested that this may

lead to an improved algorithm.

5.3.1. New Basic Cell Structure
In 1-D there is no choice as to the nature of the basic cell structure, but as is

outlined in the previous section, assuming the cost of binary searches and ordinate
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ordering is minimal and linear, maximum efficiency can be afforded. For higher
dimensions the question is: “What is the optimal polyhedron with which to divide space

to obtain the most efficient evaluation of short range interactions?”

Area R 2 RC 1 3RC—2\/§

g =l 2

<> =R:

Figure 5.3. Dimensions of the squares, triangles and hexagons used in our investigations of
alternative two dimensional cell geometries. One arrow length is equal to the cut-off
distance Rc.

A basic requirement of a new basic cell structure for two and three dimensional
systems is that it tessellate all n-space. Socrates had assumed regular tetrahedra
tessellated three-space but it is now well known that this is fallacious [137]. Two
dimensions is much easier to visualise and investigate than three dimensions. Squares,
triangles and hexagons (Figure 5.3) have been considered in some detail for two
dimensions, and the use of multiple cell structures has been dismissed for simplicity.
e.g. a combination of regular tetrahedra and octahedra tessellate three space at a ratio of
2:1. The efficiencies (5.2) of using the alternative 2-D geometries are presented in
Table 5.3. These efficiencies were again obtained by considering the area (‘amount’) of
interaction a test particle would be subjected to using the linked-cell method for each of
the alternative geometries. This is simply the number of significant near-neighbour cells
(relative to the cell in which the test particle resides) multiplied by the area of a single
cell. This area is then compared to the minimum area of interaction (a circle) to obtain

the efficiency.
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Geometry Square Hexagon Triangle
Efficiency 0.3491 0.1727 0.4186
Rel. No. Cells 1 2/3VJ3 3
Table 5.3. Efficiencies of alternative cell geometries in two dimensions.

As a result of the findings in two dimensions in the next section, three
dimensional alternatives are not considered in any detail. Suffice it to say, that
alternative structures have previously been suggested for three space [103], for example
the rhombic dodecahedron and truncated octahedron, but the cube has always

maintained favour due to its geometric simplicity.

It has recently been suggested [118] that the FMM, as applied to periodic
assemblies, may be improved in the 2-D case by adjusting the geometry of the base cell
to that of a hexagon. The reasoning given is that the hexagon is a better approximation
to a circle than a square. This may or may not lead to improved efficiency of the FMM
in 2-D, but again, it must be emphasised that the FMM uses a discontinuous separation

and that KWIK uses a proximity based short-range interaction.

5.3.2. Cell Size Reduction

In 1-D systems where the assumption of cheap ordinate ordering and binary
searches does not hold, the total time to evaluate the short-range interactions will
become more expensive than the case where they are not ordered and such situations
should be avoided. Furthermore, the cell geometries introduced above, increase
efficiencies, but not to a satisfactory level. Thus, we need to consider an alternative

approach. (All discussions herein apply equally to all three dimensions considered).

The basic idea for the new approach is to reduce the intrinsic cell dimension R¢ by
a factor of k, where k is an integer. A target cell will then interact with k shells of cells,
rather than simply nearest neighbours. In terms of approximating spheres, we are
simply using a smaller sub-cell which in the limit of infinitely small sub-cell
approximates the sphere exactly. This is illustrated in Table 5.4 for the case of 1-D

systems.
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k  Near Neighbours  Efficiency Rel*

1 3 0.6667 1
2 5 0.8000 2
3 7 0.8571 3
k 2k+1 2k/(2k+1) k
Table 5.4. The efficiency of cell size reduction. * denotes the total number of cells required

relative to the k=1 case.

The efficiencies in Table 5.4 are evaluated by considering the total distance
(‘amount’) a test particle will be subjected to using the k-divided linked-cell approach.
This will be (2k+1)*Rc. The efficiency is afforded by dividing the distance of
significant interaction which is 2k*Rc, (a length Rc either side of the test particle) by

this number.

Determining efficiencies to construct a table such as Table 5.4 for arbitrary cell
geometry and dimension, is slightly more difficult as complete cells become
insignificant and are not necessary to consider for large k and d>1, where d is the system
dimension. Note also, that for higher dimensions and cell size reduction, the overall

effect of ordering an ordinate is also reduced (Table 5.5).

d Two Three

k | Efficiency Efficiency* % Imp. Efficiency Efficiency* % Imp.

1 0.3491 0.5236 S50 ~0.1551 0.2327 50

2 0.5027 0.5585 11 0.2681 0.2979 11

3 0.5770 0.6059 5.0 0.3637* 0.3787* 4.1

4t 0.6528 0.6680 2.8 0.4373 0.4455 19
Table 5.5. Effectiveness of ordinate ordering is reduced on increased dimension and cell size

reduction. * ordinate ordering has been applied, * some outlying cells become
completely insignificant and are neglected as the simulation cell becomes more
representative of a sphere/circle.

There are two important observations to be made at this point. The first is that on
reducing the cell size, using the integer reduction outlined above, the total number of
cells increases resulting in reduced occupancy number and therefore reduced inner loop
lengths (Scheme 5.4). The second observation is that changing the cell geometry also
alters occupancy (see Table 5.3 for relative total numbers of cells). Both approaches can

improve efficiencies and simultaneously reduce occupancy. Notwithstanding the

general problem of reduced occupancy (addressed in section 5.4), an important question
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is, what combination of geometry and cell reduction affords maximum efficiency with
minimal occupancy reduction? To answer this we need to consider the relationship
between theoretical efficiency and the relative total number of cells. The greater the
efficiency for fewer total cells means greater occupancy and a reduced loop length over

all cells.

The total numbers of significant near-neighbours, efficiencies and total numbers
of cells relative to the k=1 square case for 2-D systems using squares, triangles and
hexagons as the basic cell geometry are tabulated in Appendix A Tables A.1, A.2 and
A.3. These data are plotted in Figures 5.4 and 5.5 to illustrate the relative effectiveness

of each parent cell geomenry.

Figure 5.4 illustrates that in the limit of large subdivisions, the efficiency is not
dependent on the shape of the parent cell. It also indicates that above about 0.75 the rate

of gains in efficiency diminish with increasing cell division.

In determining the efficiencies in Figure 5.4 and 5.5, the total number of near
neighbours for larger k values are reduced significantly from simply considering k-shells
of interaction cells. This is because some distant cells contain particles which are all
outside the radius of significance and thus the whole cell can be disregarded. e.g.
consider the case of square cells for k=4. The cells at the (+3,+3) positions (relative to
the home cell of our test particle) are all greater than Rc¢ from both the test particle and

the test particle home cell, thus can be ignored.

To better compare the merits of hexagons, squares and triangles, Figure 5.4 has

been re-plotted over a more sensible range of cell-reduction (Figure 5.5).
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system.




79

0.8

0.7 |

iciency

Eff

0.1

Figure S.5.

0.6

0.5 f
0.4
0.3

02 [

)
Key
—— Squares
— - — Triangles
----- Hexagons
N Y,
10 20 30 40 50 60 70 80
Total Cells

A closer view of efficiency vs relative total number of cells contrasting the use of
squares, triangles and hexagons over a practical range of relative total number of cells.
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Figure 5.5 indicates that hexagons are inferior to triangles and squares and that
triangles hold a very slight advantage over squares, but the difference is much less than
Table 5.3 may have indicated. On this basis of theoretical efficiency, we could conclude
that triangles are a better shape of parent cell, albeit only slightly better. However,
while for smaller k triangles have a slight edge, in the limit, the advantage disappears -
all shapes are equal. More significantly, when using a square as a parent cell it is easy
to determine the significant near-neighbours by the use of integers. The conclusion is
that the combined net effect of considering both theoretical efficiency and near-
neighbour identification leads to no gain in the use of triangles over squares, and thus

we suggest squares should be used because of their simpler shape.

Given this finding for 2-D, the more difficult case of 3-D was not investigated in
any detail - as while it may be likely that a small theoretical advantage could be obtained
by considering an alternative, determining near neighbours will be even more
complicated. Presented in Table 5.6 are theoretical efficiencies and numbers of near-
neighbours for case of cubes in 3-D, which on the basis of 2-D findings is likely to be
optimal, or at least very close to it. This data is plotted in an analogous manner to the

2-D data, in Figure 5.6.

k  Near Cells Efficiency Rel.
1 27 0.1551 1
2 125 0.2681

3 311 0.3637 27
4 613 0.4373 64
) 1015 0.5159 125
6 1689 0.5357 216
7 2399 0.5989 343

Table 5.6. Theoretical efficiencies and numbers of significant near neighbour cells for subdivided

cubes.

Figures 5.5 and 5.6 best illustrate the effect of changes in geometry and cell
division. It appears that changing the cell geometry is not advantageous in the
endeavour of improving overall algorithm efficiencies and a boxing schemes efficiency

is best improved by dividing the cell into as many boxes as possible.
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Figure 5.6. Efficiency vs relative total number of cells for the case of using cubes and the division

of cells method in 3-D.

5.4. Maintaining Vectorisability

While it has been suggested here that a reduction in the basic cell size reduces
vectorisability and to maximise the effectiveness of code based on Scheme 5.4 this
should be avoided, the aim in constructing a short-range algorithm should be to
minimise the amount this small number M is subdivided, i.e. minimise the reduction of
inner loop lengths. However, the sheer nature of short-range interactions, whereby a
target particle needs only to interact with a small number of neighbouring particles, does
not lend itself well to vectorisation. The largest average particle loop length will only
be M, which is extremely unfavourable for very short-range interactions. This inherently
limited vectorisability potential of short-range interactions is not affected as greatly by

cell reduction as one would initially anticipate, especially if the particles are reordered in
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the mega-array by box, as suggested earlier. This organisation is illustrated in

Figure 5.7.

MMMMM
X
<—(9—|—|—I<HIII<F-H=I

Figure 5.7. Illustration of the organisation of particles into boxes in the mega-array. The square
represents the simulation cell divided into squares. Particles are organised into the
mega-array (the tall column) by row with each square representing a list of particles.

In Figure 5.8 it can be seen how the use of re-ordering of particles increases loop
lengths, if adopting a strategy of the type depicted in Scheme 5.4. Figure 5.8 illustrates
the case where particles within cells up to k=2 are significant, i.e. cell reduction is R¢/2.
The shaded box represents the target cell and we wish to loop over all neighbouring
boxes and particles within them. The darkened rectangle within the simulation square
holds a large subset of near neighbour cells for the shaded box. Since the mega-array
holds the particles ordered by box, we do not have to loop over each individual box
within the darkened square, but need only determine the pointer in the mega-array to the
left most particle of left-most cell in the darkened square (A) and the pointer to the
right-most particle of the right-most cell in the darkened square (B). Effectively this has

increased loop lengths by a factor of five.

Unfortunately, as k increases so do the number of rows, and while the box
ordering assists in maintaining vectorisability, loop lengths are quickly reduced - even
more rapidly in 3-D. An altemnative is to adopt the layer method proposed by Rapaport

[59]. Rapaport discusses a number of important considerations for the computation of
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short-range interactions and is primarily concerned with efficient implementations on to
vector and parallel architectures. He also suggested the layer algorithm as a solution to
the problem where interactions are very short-ranged and where much of the
computational time could be spent screening insignificant interactions as calculating the

interactions themselves.

-

A

) |

Figure 5.8. Scheme illustrating the importance of ordering the particles into their respective boxes.

The layer method begins by considering the occupancy of the cells. The identities
of all first-listed particles within each cell are stored in an array which has one element
assigned to each cell. This is referred to as the first layer. The second particles of the
multiply occupied cells are assigned to a second layer and so on, until all particles have
been recorded in a layer. The total number of layers will be equal to highest cell
occupancy number, and it is best if this number is small. Low maximum occupancy
numbers are encountered for very short-range interactions and in instances where large

cell-division has been applied.

In Scheme 5.4 the outer loop is over cell pairs and the inner loop over particle
pairs belonging to the cells. This inner loop is very short for weak interactions or when
large cell-division has been applied and in these cases is not well suited to vectorisation.

The layer approach, on the other hand, has an outer loop over pairs of layers and an
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inner loop over cells. A large number of cells is thus required for optimal vectorisation

which is also a consequence of increased cell-division.

Rapaport presents a detailed discussion for optimised vector and parallel
processing implementations of the layer method. It is envisaged that cubes/squares be
reduced to afford an average occupancy of one to achieve maximum efficiency of the

type (5.2) and increase the effectiveness of an implemented vectorised layer method.

5.5. Conclusions

The primary conclusion from the investigations presented here is that efficiencies
must be compared for alterative boxing schemes with similar total numbers of cells.
The second conclusion is that when theoretical efficiencies are similar other factors need
to be reconsidered, such as the ease by which only the significant near-neighbour cells
may be determined. From this, it has been concluded that the square, and subsequently
the cube, are the most effective cells with which to divide a simulation box. This is
based on the fact that no other parent cell geometry offers any significant advantage over
squares and most likely cubes. Increased efficiencies can be obtained by reduction of
the parent cell size using cell reduction and while occupancies of cells are reduced
vectorisation can be maintained via the use of the ‘layer’ approach to short-range

interactions.
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CHAPTER SIX

LONG RANGE KWIK

6.0. Introduction

In the statistical origins of KWIK and in the discussions on determining the
optimal separator in Chapter Four, the emphasis was on the replacement of the operator
(in the statistics problem the Heaviside function, in the Coulomb problem the long-
range operator) by its Fourier series representation. However, while the Fourier series
representation of the Heaviside function is well known [53], it became clear that Fourier
series representations of the types of operators to be encountered in the Coulomb case
were less so. Thus, the decay characteristics of the long-range Fourier series were
discussed in terms of the Fourier transform and, given the connection of the Fourier
series with the Fourier transform, it is postulated that recasting the long-range KWIK
Coulomb partition in terms of its Fourier transform rather than Fourier series, would
have little effect on the underlying success of the algorithm, perhaps even enabling the

development of a more efficient method of determining the long-range partition.

In discussions presented thus far, generality has attempted to be maintained in the
derivations and while the separator of choice has been stipulated and implemented in
calculations presented in Chapter Seven, generality will be maintained in this chapter as
the techniques used apply to any suitable long-range operator. In the development of the
algorithm the simplest possible cases have been considered, optimised and then the
complexity of the problem increased until a general procedure is obtained. This is
achieved by first considering collinear unit point charges, that is, points on a line. This
is then expanded to three dimensions, where randomly placed particles and continuous

distributions of charge are considered.

6.1. Fourier Transform of the Long-Range Partition

The total long-range KWIK energy for a system of N charge distributions Q;(r,R;),

where R; is the centre of the distribution, is given by
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*ong ;iiIIQI( 1=R )(l f(rlz)]Qj(rz’Rj)drldrz (6.1)

=1 j=1
Substituting the long-range operator by its Fourier transform yields

N N ~
- 1ZZIIQ-‘(ri’R')If(k)exP(ik-(rl -rz))dej(I'z,R_I)dl'ldl'2 (6.2)

Iong ~
2 =1 j:l

where f(k) is the FT of the long-range operator. Inverting the integration and

factorising the exponential yields

Ejong = jf(k)Zij(rl, ) exp(ik - r,)drIZJQ(rz, yexp(-ik-r,)dr, dk

(6.3)
This can be rewritten more concisely as
Eppng = j I(k) f(k)d k (6.4)
where the auxiliary function is defined
N 2
Ik) = Z j Q,(r,R;)exp(ik- r)dr{ (6.5)
j=1

which is the Fourier intensity of the charge distribution.

In order to determine (6.4) in linear work and therefore the long-range energy
partition in linear work, it must be evaluated numerically, as if (6.5) was to be

expanded, O(N?) terms would be obtained.

To illustrate the development of the algorithm, consider the special case when the

charges are positive unit point charges
Qj(rij)=6(r_Rj) (66)

such that the Fourier intensity after integration becomes
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2

I(k) = (6.7)

N
Zexp(ik ‘Ry)

j=1

Consider now the case where the point charges are collinear which yields the long-range

energy in the form

1 A
E,. = -2—JI(k)f(k)dk (6.8)

on,

and with

2

N
I(k) =|) exp(ikR,) (6.9)

J=1

This simplification enables the close study of the important characteristics of integrals

of the type (6.4).

6.2. Numerical Quadrature

6.2.0. Introduction
In order to evaluate (6.8) and later (6.4) as efficiently as possible, in a general
fashion and in O(N) work, we must first re-emphasise the assumption that our charge

diswcibution is finite and that we must evaluate this numerically.

Consider the following integral
b
I=[fx)wx)dx (6.10)

and let us assume that both f and w are smooth functions and the integral converges over
the region (a,b). To evaluate this integral to some predetermined accuracy, any one of

four basic approaches can be adopted.

1. Use a general quadrature technique, assuming nothing about the nature of the two
functions f and w (other than those outlined above regarding convergence, etc.).

Such an assumption yields a scheme
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b M
I=[fxywx)dx = Y a, f(x,)w(x,) (6.11a)
a k=1

2. Use approximations of both f and w to afford a quadrature scheme which is exact for
a n™ order approximation of f and m™ order approximation of w. This will often

lead to a more efficient quadrature than (6.11a) (but looks essentially the same)
b M
I=[fx)wx)dx =Y a, f(x,)w(x,) (6.11b)
a k=1

3. Develop a quadrature scheme that approximates w to some degree m, and is exact

for f, affording a scheme
b M
I=[fxrywxdx =Y f, w(x,) (6.11c)
a k=1

4. Develop a quadrature scheme that approximates f to some degree n, and is exact for

w, affording a scheme exactly analogous to (6.11c)
b M
I=[fywx)dx = Y, w, f(x,) (6.11d)
a k=1

(Assuming that the length of the expansion M, and the roots {x;} and weights {a, fi,

w; }are specific to the individual case.)

Clearly, the more information about f and w that can be incorporated into a
quadrature scheme the more likely a more efficient method of evaluating (6.10) will be

obtained.

6.2.1. Simple Quadrature

The simplest and most general approach to quadrature of the type depicted in the
scheme illustrated in (6.11a), assuming little about the integral /, are those using equally
spaced roots. Two such examples are the Trapezoidal rule and Simpson’s rule
[53,138,139].
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The Trapezoidal rule approximates the integral by an interpolatory scheme up to
first order (thus affording an error term involving the second derivative of the function),

or more physically, by approximating the area by a sum of trapezoids

I=Ig(x)dx=h[&—.fzg—”+ggkj|-%g"(§) (6.12)
where
g; = 8(x;) (6.13)
and
P 1\_4a (6.14)
and
& ela,b] (6.15)

Thus, such a formula is exact for polynomials of degree one and can be easily applied to
(6.10) by substituting the product of f and w for g. Improved accuracy is obtained by
increasing the number of trapezoids (reducing 4), which has the effect of reducing the

error by the inverse square of that number.

Simpson’s rule

b
h
I= _[g(x)dx = —[got+ 4(g1+ 83+ -+ Boy-1) + 2(8o+ 8o+ 8m-2)]
b 3 (6.16)

Mh

s
_ (4)
50 5 (3]

can be considered an extension of the Trapezoidal rule, by using an interpolatory
scheme up to second order. While this would then seem to afford a rule exact only up to
degree two, it can be shown [138] that Simpson’s rule is exact up to degree three thus,

the error term incorporating the fourth derivative of g.
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6.2.2. Gauss Type Quadrature Rules
Gauss type quadrature [139] work on the principle that either the integrand, or part

of, can be approximated to high accuracy by a polynomial of low order.

In general, the Gauss type rules are of the form
b M
I=[feyw(x)dx =Y w, f(x,) (6.17)
a k=1

where w is a fixed weight function defined on the interval [a,b] which may be finite or

infinite. Thus, the Gauss type quadrature can be applied as (6.11b-d).

Gauss type quadrature rules are derived from the possibility of constructing sets of
polynomials which are orthogonal with respect to the weight function w. Normalisation

lends to polynomials
b
fp;(x) p.(x)w(x)dx =4, (6.18)

that satisfy a three term recurrence relationship
p.(x)=(a,x+b)p,,(x)=c,P._,(x), n=123,... (6.19)

where a,, ¢, # 0 and

p,(x)=0 (6.20)
and
b 12
po(x) = [J w(x)dx] (6.21)

The roots of the polynomials x;, lie within the region (a,b) and by careful selection of
the corresponding weights wy, yield a quadrature scheme (6.17) exact for polynomials
up to degree 2M-1. That is, an M point Gauss type quadrature scheme (6.17) using the
weight function w, will give exact answers for functions f of polynomials up to degree

2M-1.
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6.2.3. Basis Spanning

The success of the use of Gauss type quadrature rules is dependent on how well

the monomials
IR G - A (6.22)

represent the function f. Often such a basis is a poor representation of the function f in
that the basis functions (6.22) do not span f, or simply, such an expansion of f converges
very slowly. It is possible to construct alternative quadrature schemes using an

incomplete set of basis functions {¢;} that converge to f more quickly than those of type

(6.22).

6.3. Integration of FT Long-Range KWIK

6.3.0. Introduction

The most efficient quadrature scheme is likely to be the one that incorporates as
much information about the integrand as possible. In this section the individual
components of the special case long-range KWIK integrand (6.8) are considered. That
is, the Fourier transform of the long-range operator and the Fourier intensity of the
charge distribution, I(k) (6.9). This is followed by discussions as to how this
information may be used to afford an accurate quadrature scheme by considering each of

the approaches outlined in the previous section.

6.3.1. The Separator Transform

The Fourier transform of all the separators considered in Chapter Four have a
logarithmic singularity at the origin and decay rapidly away from the origin (For
example, see Figure 6.1). This behaviour arises from the short-range behaviour of the
operator dictating long-range behaviour of the FT, and the long-range behaviour of the
operator dictating the short-range characteristics of the FT. The operator was
constructed to be as flat as possible - flat operator origin gives rapid long-range decay,

and a slow operator long-range decay gives a FT singularity.

A discussion as to the nature of the Fourier intensity will be presented later, but it

is suffice to say at this point that I(k) is both highly oscillatory and aperiodic.
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Figure 6.1. Fourier transform of the long-range operator obtained from using the error function
separator. The logarithmic singularity and rapid long-range decay typify the behaviour
of all the trialed separator functions.

6.3.2. Simple Quadrature

The rapid decay feature aids our task in both simple quadrature schemes and
Gauss type quadrature schemes. For simple quadrature schemes we can truncate the
right hand bound of the integration region on the basis of magnitude of the FT at that
bound. A more rapidly decaying function allows us to truncate much earlier meaning
the width of the integration ‘strips’ h, is smaller for similar numbers of points, giving a
reduced error term. In the case of Gauss type quadrature schemes where the FT is
treated exactly, then if a more rapidly decaying FT is used the polynomial

approximation of the Fourier intensity need not be so accurate for larger k.

The singularity is particularly significant when using simple quadrature rules, and
significant problems were initially encountered trying to deal with this. Determining the
right hand bound in order to minimise the number of roots was reasonably simple, given

some predetermined accuracy €, one simply determined the position at which the value

of the FT was less than €. However, the left hand bound was a little more difficult given
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that the first and last roots are at each bound, and the origin contained a singularity,

which is formally the left hand bound.

Initially, the left hand bound was approximated as
a=a+6 (6.23)

where 8 is a small positive number. In the case of the integral (6.8) the right hand
bound simply became 8. Unfortunately, the optimal & was dependent on both the
accuracy and the size of the distribution, implying that a greater number of quadrature
points would be necessary for larger systems, which would appear to increase the cost
scaling characteristics above O(N). The singularity problem was alleviated by the
addition, and subsequent subtraction, of a Gaussian function from the Fourier intensity.
If chosen carefully, the integrand containing the term from which the Gaussian was
subtracted contains no singularities, and problems determining the left hand bound are
revoked. The new term, the addition of the Gaussian to counter the subtraction, can be

evaluated analytically.

Such an exercise bought into question the amount of work required to afford
higher accuracy. The analytic termn captured most of the long-range energy, and the
numeric term most of the computation. Could additional Gaussian functions be added
and subtracted to improve the amount of total energy afforded in the analytic piece to
the extent that the remainder requiring quadrature could be disregarded? In short the
answer is no. Effectively the Fourier intensity is approximated by a sum of Gaussian
functions, and while a single Gaussian function captures a significant part of the total
long-range energy, a sum of Gaussians does not span the Fourier intensity. This
observation effectively ended the investigations of simple quadrature rules - that is, that
it is possible to approximate I(k) by a single function and to obtain a significant part of
the long-range energy, remembering that the remainder term required most of the
computational effort and simple quadrature schemes are notable for their inefficient

placement of roots.

Two new ideas became the focus of investigations. What function or set of

functions would best approximate I(k)? Can a new quadrature scheme be developed as
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a basis for the latest ideas for evaluating the integrals (6.8)? Let us consider the latter

first.

6.3.3. Gauss Type Rules

The most common and widely used of the Gauss type quadrature rules are those
resulting from the Legendre polynomials [53,139,140]. The Legendre polynomials are
orthogonal with respect to a unit weight function with the resulting quadrature rule
being the most efficient for approximating an integrand by a simple polynomial. They
are tabulated widely [53,139,140] and can also be readily calculated (for example,
GRULE in [139]) to extremely high order. The use of Legendre roots and weights for
integrating the long range term gives rise to an approximation technique of the type

depicted in (6.11b).

As described in section 6.2.2., it is possible to construct a set of orthogonal
polynomials over an appropriate weight function, and thence determnine a quadrature
scheme which will be exact for polynomials up degree 2M-1 for an M terin quadrature
scheme. Taking our long-range energy integral (6.8) and substituting for the erfc

separator yields the specific integral for the 1-D long range energy

1%
Epn, =2—£ I(k)E, [ Jdk (6.24)
where E; is the exponential integral [53]. By making a substitution, it is possible to
determine Gauss type quadrature rules for the exponential integral function which are
independent of the decay parameter, hence need only be determined once for all

systems. Such an approach is analogous to the following

erf(awn,)

h2

= icx jcos(@pB;n,) (6.25)

where the @;’s and the f;’s for a truncated summation are determined via matching

derivatives at the origin, i.e.
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dar [crf((m;z)} _ 1"7 [iajcos(a,ﬁj,u)] (6.26)
r,=0

n
dr, ha dr, =

rz=0

and both the roots and weights are real. Tables of roots and weights for such a scheme

are tabulated in the Appendix.

It is well known that the equations whose solutions yield the roots of Gauss type
quadrature schemes are numerically ill-conditioned, and even in quadruple precision it
is difficult to obtain quadrature rules above about the 15-point region. Higher order
rules are obtained by using the Newton iteration scheme [139] and such an approach is

utilised in the GRULE subroutine.

The approach of modelling the long-range operator in the form (6.25-6) was
discarded for three reasons. Firstly, it was not possible to construct a three term
recurrence relation for the polynomials orthogonal with respect to the exponential
integral weight function, as encountered in the long-range energy integrals. Secondly, it
is difficult to produce sufficiently high order quadrature schemes - the basic approach
for determining quadrature schemes is numerically unstable, and without a three term
recurrence relation it is not possible to exploit the methodology used in the GRULE
subroutine to construct an analogous quadrature rule engine. Thirdly, the ultimate goal
is to consider three dimensional systems. The underlying theory for orthogonal
polynomials and relationships with quadrature schemes is very poorly developed for

higher dimensions c.f. one dimensional orthogonal polynomials.

The ‘tail’ of the modelled operator (6.25) was also of concern. The true long-
range operator is smooth, whereas the modelled operator has an oscillating tail. The
nature of this oscillation is dependent on whether the quadrature scheme stems from an
odd or an even orthogonal polynomial. If the polynomial is even, the tail oscillates with
unit amplitude about the horizontal axis and decreasing frequency with increasing order
(Figure 6.2). On the other hand if the quadrature scheme stems from an odd
polynomial, the tail oscillates with increasing amplitude (at least initially) above the
horizontal axis and decreasing frequency with increasing order (Figure 6.3). Being
unable to obtain high order quadrature schemes, it could not be determined if this

behaviour would be problematic.
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Plots of the ‘even’ series representation of the erfc long-range operator. The true
operator is the smooth line, whereas the series approximations are the oscillating lines.
Note the changing frequency and amplitude of the ‘tail’ with increasing M.

From findings in later CASE (Coulomb Attenuated Schrodinger Equation) and

CAP (Coulomb Attenuated Potential’s) studies, where the long-range partition was

completely neglected, or modelled only crudely, it was found that for neutral systems,

the long-range contribution can be successfully treated in a very approximate manner.

Thus, concerns regarding the oscillating tail may be without substance.

As a final note, the problem with Gauss type quadrature is that if one wishes to

increase the accuracy of the integration, the information obtained in the previous

quadrature can be extended with the addition of another set of roots (see [139]) to

produce higher, but not optimally higher, accuracy. Further increases in accuracy tend

to require that the calculation be re-computed with a complete new set of roots and

weights.
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Figure 6.3. Plots of the ‘odd’ series representation of the erfc long-range operator. The true
operator is the smooth line, whereas the series approximations are the oscillating lines.
Note the changing amplitude and frequency of the ‘tail’ with increasing M.

6.3.4. COP’s and ROP’s
Coulomb Orthonormal Polynomials and Repulsive Orthonormal Polynomials
[141] are a set of functions {¢;} which are used to model the charge density, p(r). The

functions are constructed such that they are orthonormal with respect to a binary

operator (the long-range operator)
(6.27)

[6.(0)L(r)8,(5)drydr, = 6,
Q

Thus, the charge density is represented as
p(r) =Y co,(r) (6.28)

and the coefficients obtained by using the orthonormality condition
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¢ = [ p(r)L(5,)9,;(x,)dr dr, (6.29)
Q

The total long-range energy can then be written as (adopting the Einstein summation

convention and Dirac notation)

Fue = 30e] )0l 630
where

v(r) = [ L(5,)9,(r,)dr, (6.31)
Q

Thus, COP’s and ROP’s are a scheme as depicted in (6.11c) and (6.11d). While the
COP/ROP approach suffers severe numerical instability problems they offer a more

systematic and perhaps efficient approach to determining the long-range energy.

6.3.5. The Fourier Intensity I(k) and the Random Walk Advantage
For large k, the Fourier intensity I(k) (6.9) can be considered as the square of the

progress of a Pearson [142] random walk in the complex plane. That is, if we assume
that each kR; is a random phase, then [I(k )]V2 can be interpreted as the net progress of a

drunkard who takes N unit steps, each in a random direction, on the complex plane.

Consider a series of steps starting from the origin with length L, but with random

direction. i.e. Zy = a + ib, Z, = ¢ + id. The sum after N steps is then
Sy =2, +2Z,+..+2, (6.32)

What will be the nature of the sum after a large number of walks? The average position

of the end points must be at the origin. Given that a large number of steps are
performed where Z, is selected randomly implies that the position on the unit circle is

random, therefore the expectation position of each step is the origin. i.e.
(z)=(z,)=..=0 (6.33)

hence the average net displacement vanishes
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(Sy)=(Z, +2Z,+..4Z,)=0 (6.34)

The mean square of the deviations from the average net displacement after a large

number of walks of N steps is
(D) = (82) = ((Z + Zy+.. 42y )2, + Ty .. +Z,,) (6.35)

and only the square terms remain on the RHS, as all of the others, such as (lez) vanish

because Z; and Z, are not correlated, i.e. for any selected value of Z, there are as many

positive as negative values of Z,. Thus,
(D?)=(Z} +Z}+..+Z}) (6.36)

which is N terms of the step length squared. Therefore the mean square of the net

displacement is simply
(D*)=NE (6.37)

Thus, the expectation value of the Fourier intensity
(Ik))=N (6.38)

It can be shown [143] that for large ‘N, the probability density function for the mean
square of the net displacement of the random walk above (I(k)), is an exponential

variable and that in the limit of large N, of mean and standard deviation N.

Thus, for the special case of collinear, positive unit point charges, the Fourier

intensity I(k), begins at the origin with a value of N?, or more correctly

N 2
100) = {2 q ,.J (6.39)

(N?* = (6.39) in the special case of unit point charges.) Initially the random phases are
limited to the half plane but tend towards a random deviate on the unit circle with

increasing k, thus I(k) rapidly decreases from N?to a value of N with standard deviation
N.
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If, on the other hand, we have a neutral system, the sum of the charges (6.39) is
zero and while the phases remain limited to the half plane, tending towards a random
deviate on the unit circle, negative charges amount to ‘backward stepping’. The effect is

that the random walk is applicable for all values of k.

We now revisit the statistics problem investigated by Gill [126]. In this case we
have a similar situation to the positive unit point charge case, but in the statistics

problem the number of steps in the random walk is
N="C, (6.40)

where m was the size of the sample drawn from the set of » numbers. Again the
assumption of random phases does not apply at =0 and the first term of the Fourier sum
is N2, which by (6.40) is a very large number. As the assumption of random phase
becomes valid for large (relatively, quite small) k, the Fourier terms reduce to N. This is

how such rapid convergence is obtained for the probability.

6.3.6. Discussion

The major problem with devising appropriate quadrature schemes to evaluate
integrals of the type (6.10), particularly integrals that vary moderately from system to
system, is that it is always possible to construct a system where the chosen scheme
performs extremely badly, and the possibility exists that another more efficient scheme
may be available but was not considered. There are several very important questions
that must be considered when devising a quadrature scheme. What exactly defines a
better, more efficient quadrature scheme? Is it one that uses fewer quadrature points?
For example, while the equally spaced quadrature schemes suffer from inefficient
placing of quadrature roots, massive efficiencies can be applied when implementing
such schemes in a computer algorithm. Also, if one wished to increase the accuracy of
one’s numerical integration, can the correct answer be improved simply by the addition
of more terms? Similarly, can that answer be improved with similar ease, or must one

start from scratch with a higher order scheme to obtain improved accuracy?

Density Functional Theory has been plagued by the requirement that the

exchange-correlation energy must be evaluated using quadrature [144]). Rotational
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invariance and differences in opinion regarding the efficiency vs flexibility argument are
typical of the problems encountered, and have only recently been silenced with the

development of the first gridless functional [145].

While it is possible to obtain a gridless long-range KWIK energy by expansion of
(6.5), an O(Nz) algorithm results. Furthermore, while the Gauss quadrature techniques
are likely to afford an efficient scheme, multiple integrals like those encountered when
KWIK is generalised to higher dimensions, pose a greater problem. Gauss quadrature
schemes for multiple integrals are either inefficient for product type rules, or not well-
defined in terms of the orthogonal polynomials in higher dimensions. Also, unless
significant understanding is available, the equations formulated which must be solved to
obtain the roots and weights of 1-D quadrature rules of Gauss type (whether it be the
more traditional or those using more arbitrary basis functions) become extremely ill-
conditioned [136] very quickly. It was found that even using quadruple precision,

numerical stability was lost by about M=15.

None of the quadrature schemes investigated appeared to show significant promise
to warrant further investigation. Difficulties were encountered in both the rate of
convergence of the trialed schemes, and more particularly, it was difficult to obtain
sufficiently large expansions so that direct comparisons with the lesser considered

schemes could be made, for sufficient levels of accuracy.

6.4. Fourier Series

6.4.0. Introduction

In section 6.3 a discussion was presented on the numerical integration of the
Fourier transform of the long-range partition of KWIK, which appears to have been less
than fruitful. Given the origins of KWIK in the combinatorial problem [126], it may
seem that investigating an approach alternative to the use of a Fourier series was
premature. However, the use of the Fourier series can be likened to using Simpson’s
rule for quadrature. While it is well known that it is less than efficient in its choice of
quadrature roots, that is, a much more accurate rule can be obtained using fewer points

(for example, Gauss type quadrature), a great number of efficiencies can be incorporated
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due to the equidistant nature of the roots. Furthermore, unlike the Gauss type
quadrature, a Fourier series in higher dimensions is well defined. In hindsight, the
investigations in section 6.3 helped highlight a number of important features of the long-
range partition - none more important than the majority of the long-range energy

partition being easily captured and the remaining detail requiring significant effort.

In this section the Fourier series approach to the long-range partition is
considered. A Fourier series representation of a periodic function f(x) is a unique
representation of a linear combination of all cosine and sine functions which have the

same period, say 2/. In order to represent a function by a Fourier series the theorem

(6.1) [130] must hold.

Theorem 6.1. If a periodic function f(x) with period 2l is piece-wise continuous in the interval -/ < x
< | and has a left-hand derivative and right-hand derivative at each point of that
interval, then the Fourier series representation of f(x) is convergent. Its sum is f(x),
except at a point xo at which f(x) is discontinuous and the sum of the series is the
average of the left- and right-hand limits of f(x) at x,.

6.4.1. Fourier Coefficients

Given that the function wished to be represented as a Fourier series satisfies
Theorem 6.1, it is possible to determine Fourier series coefficients by using the
orthogonality of the trigonometric function over the interval of their periods or multiples

of their periods. Two functions are said to be orthogonal if and only if

¢ 0,f(x) # g(x)
f dx = 6.41
:[[ (x) g(x) {c’ 2 = g(x) (6.41)

and thus given

)
j{co{%} sin(f-lrz]}dx =0,Vmnel (6.42)

and
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1} mmx nimx d
7 J co ! co 7 X O.m#n
-1 ={ (6.43)

Fourier coefficients for the Fourier series representation of a function

f(x) = a, + i[a cos(%) +b, sin(i’lﬁ)] (6.44)

n=1

can be obtained by multiplication of (6.44) by the appropriate trigonometric function

and integrating over the period 2/ obtaining

1 !
a% =5 J, f(x)d x (6.45)
1 nmx
1 R 6.46
a == Jlf(x) cos(—-)dx (6.46)
!
b, = %Jf(x) sin(%)dx (6.47)

It is more convenient to recast the Fourier series in its complex form

oo

fx)y= Y ¢, exp(iTnx) (6.48)

n==—oo
where the coefficients are obtained using similar orthogonality conditions

—in

l"")dx (6.49)

1 [}
c, = az[lf(x) exp(

where i is the complex number VE-1).

Similar arguments can be applied for complex Fourier series in higher dimensions,

assuming a periodic n-dimensional cube of length /, to yield
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=Y exp[-ilzk-x) (650)
k

where the summation is over all k vectors. Thus, the corresponding Fourier coefficients

are given by

Cx =

(-l—k x)d (6.51)

(21)

6.4.2. Recasting KWIK using a Fourier Series
Reconsider the total long-range KWIK energy of N charge distributions Qy(r,R;)

ZZJJQ;( r.R, )[1 f(r")]Q( r,,R;)drdr, (6.1)

J'—l Jj=1 2

Substituting the complex Fourier series representation of the long-range operator for a

period 7 yields

(ﬂJ =Y A(k)exp(ik-(r; - 1,)) (6.52)
k

ha

where A(k) are the Fourier coefficients. Inverting the summations and again factorising

the exponential yields
Epg'= EA(k)EIQ,(r,, exp(ik-r,)d r1 jQ (r;,R;)exp(—ik-r,)dr,

(6.53)

which again can be rewritten more concisely
ZA(k)I(k) (6.54)

and the Fourier intensity remains as was defined in (6.5).
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Note that the region over which the series is valid must be defined which will only

allow us to use the equation (6.52) if

|max(R,)| < 7 (6.55)

6.4.3. Evaluating Fourier Coefficients in KWIK
In the next Chapter, the application of KWIK will be illustrated by considering the

special cases of charged particles randomly scattered on a line and in three space. These
special cases are examples of the more general KWIK algorithm in one and three
dimensions which will be further specialised by using our chosen separator, the error
function. Thus, the associated Fourier coefficients will be required. Once found, they
can be applied to any problem in one or three dimensions, irrespective of the nature of

charges.

6.4.3.1. Fourier Coefficients in One Dimension

The one dimensional Fourier series representation of the long-range operator using

the error function separator is given by

erf(wr)

3 = i Ak ,a))exp(kar) (6.56)

where the Fourier coefficients are given by

1 {erf(or) —imtkr
- | exp( )ydr (6.57)

Ak,w) = -

-1

For simplicity, consider the special case where the period 2/ is 2w whose Fourier

coefficients are given by

erf(ar)

A (ko) = —— | exp(—ikr)d r (6.58)
2r

-

To obtain Fourier coefficients for the general case (6.57), make the substitution

r=—x (6.59)
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such that

[ erf( 22

4 (k,0) = J x” exp(—ikx)d x (6.60)

-n

and the general Fourier coefficients can be obtained from the special case via
/1 wl
A (k@) =7A"(k’?) (6.61)

Thus, in order to obtain Fourier coefficients valid over a region /, we need only be able

to determine those for the special case when [ =T.

Consider the Fourier coefficients given by the integral

erf(awr)
r

A (k) = — | exp(—ikr)dr (6.58)
27 -

T

Because the long-range operator is an even function

erf(wr) [
r

A (k,w)+ A, (k)= % I exp(ikr) + exp(=ikr)|d r (6.62)

T

which becomes

erf(wr)

A, (tk,0) = zj cos(kr)d r (6.63)
T

0

and which can now be split into two parts

T
A (ko) = 2] j-[ cos(kr) _ erfc(ar) cos(kr)) m (6.64)
T 0 r r
Assuming that erfc(wr) is negligible, (6.64) can be approximated by
27 k I k
A,,(ik,w):—Jcos( r)dr_zj‘erfc(cor)cos( r)dr (6.65)

7[0 r 7!,'0 r
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which can be found in an analytical form

1 k? )
oY 6.66
A, (k) ﬁ]tEt[4m2]+ 20(7;&)] (6.66)

where E; and Ci are the exponential and cosine integrals [53] respectively. The special

case of k=0 has a Fourier coefficient
1 Y
A, (0,w) = —| In(2rw) +E (6.67)
T

where 7y is Euler’s constant. Thus, to afford a Fourier coefficient given k and w, the

exponential and cosine integrals must be accurately determined. The latter integral was
obtained using the function CISI from numerical recipes [136], and the former by
using the well known power series [53] representation and then assuming insignificance

for values greater than the radius of the convergence.

For small k, A(k,w) are positive and like the exponential error function decay

approximately exponentially. However, using asymptotic expansions for E; and Ci it

can be shown that beyond

k.., =2wm/In2r’w?) (6.68)

the cosine integral becomes the dominant term and the Fourier coefficients oscillate and
decay only as K=, Figure 6.4 illustrates this for @=10. The rate of decay of the Fourier
coefficients follows a similar trend for larger w illustrated by considering @=100

(Figure 6.5).
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Figure 6.4. Log of the absolute value of the 1-D Fourier coefficients vs k for w=10. Note that

A (k,10) decreases by approximately 5 orders of magnitude between k=0 and k=60. It
is not until k=10,000 that a second such reduction is achieved.
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Figure 6.5. Log of the absolute value of the 1-D Fourier coefficients vs k for =100.

6.4.3.2. Fourier Coefficients in Three Dimensions
Fourier coefficients in three dimensions require the same orthogonality conditions

as for one dimension. Thus a region is required over which the Fourier series
representation-will be an exact expansion and over which the trigonometric components
are also orthogonal. The most obvious region is that of a cube with sides of length 2/,

centred at the origin. Thus, the Fourier representation of the long-range operator in

three dimensions is

crf(w}rb i 3 ¥ Ak, a))cxp(—k r) (6.69)

ky=—eo ky=—oo k, =0

where the Fourier coefficients are given by

I W1
Ak,0) = (21), [1] erf(wlrl) exp( Tk -rydxdydz (6.70)
-l-1-1
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Fourier coefficients for any cube of sides with length 2/ may be obtained from those of

the cube 2. Thus, it is only necessary to consider the coefficients for the cube of sides

with length 2%

Tz "erf(a)r) )
A, (k (2 )3 III I I exp(-ik-r)dxdydz (6.71)

-T-T—T

To obtain these, we begin in a similar fashion to the 1-D case and rewrite (6.71) as

Ale) = “j{m erfc(“’lr }exp(—ik r)dxdydz  (672)
where the approximation
jﬂerfcl(fcl‘"rb exp(-ik -r)dxd ydz = I Tf%exp(-zk r)dxdydz
- (6.73)
can be used when @ is sufficiently large, yielding the analytical approximation
} jf jerfc(wlrl) exp(—ik -r)d xd yd% ~ ;(—T;exp(—|k|2 [40?) (6.74)
and the focus now turns to evaluating the following integral
I Ie"p( K0 xd ydz (6.75)

—-T-n-7

Unlike 1-D, this integral is not representative of a well known function and
initially proved to be something of an obstacle. It is important to note that this integral
is completely independent of the decay parameter @, that only positive components of k
need to be considered and it is independent of the Fourier series region of validity due to

the arguments previously outlined.

Determining (6.75) must be done numerically. Initially, this was done via the use

of Gauss type quadrature product rules using the Legendre roots and weights. The
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integrals were evaluated once for k components up to order 120 to give a total of
302,620 distinct integrals. These were stored in a file which was read into an array at
the beginning of a calculation. Memory requirements were not stretched as a result of
such an approach, but the extra overhead of storing such integrals in a formatted asci file
was significant, and although this could have been reduced by creating an analogous
binary file, the requirement of a large data file for KWIK calculations is not desirable

and thus a method to obtain such integrals quickly, and as required, was necessary.

A derivation of how to evaluate these difficult integrals (6.75) numerically [146]

is presented in the Appendix.

6.4.4. Gibbs Phenomenon
The KWIK algorithm used in the statistics problem (Chapter Four) required the

scaling of the sums (A;) so that they were well within the region over which the Fourier
series was defined. The scaling was required because the Fourier series gives a poor
representation of the function close to discontinuities, which is known as the Gibbs

phenomenon. This is illustrated in Figure 6.6 for the unit step function.

Given the rapid convergence of the series for the probability, it was important to
make sure that the scaling was sufficient as the extent of the Gibbs phenomenon is
greater for smaller expansions. The extent of the Gibbs phenomenon decreases with
increasing Fourier expansion, its amplitude however, does not decrease with increasing

the degree of expansion.

The Fourier representation of the KWIK long-range operator does not contain
discontinuities and therefore does not exhibit the Gibbs phenomenon and thus scaling is
not required. There is, however, a discontinuity in the first derivative of the Fourier
series representation of the long-range operator which may cause problems in
applications other than determining total energies. These features are illustrated in the

Fourier Series representation of the erfc long-range operator in Figure 6.7.
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Figure 6.6. Illustrating the Gibbs phenomenon for the unit step function. Note that near the

discontinuities the Fourier series approximation overshoots the true function
significantly more than in the centre of the steps.
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Figure 6.7. 1-D Fourier series representation of the erfc long-range operator superimposed upon a
plot of the true function.

6.5. Summary

The long-range operator partition of the KWIK algorithm has been cast into two
major forms - that of its Fourier transform and that of a Fourier series. The Fourier
transform approach may lead to a more efficient methodology for accurately
determining the long-range partition, but efforts in this work and in related approaches
such as COP’s and ROP’s, have yet to indicate this potential. It is possible that crude
approximations of the long-range energy may suffice in some applications and thus the

Fourier transform may be a better starting point for such treatments.

The Fourier series representation of the long-range partition has been successfully

implemented and offers the simple advantages of being both a well-defined approach in
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all dimensions and having coefficients (weights) which are easily calculable.
Computational advantages of the equi-spaced ‘roots’ of such an approach are significant

and will be discussed in the next section.
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CHAPTER SEVEN

APPLICATION OF KWIK TO DISTRIBUTIONS OF
PARTICLES

7.0. Introduction

While the intention of the work undertaken for this thesis was to develop a new
method for evaluating the inverse-square-law terms in self-consistent field calculations,
the development of such a method can benefit greatly by considering the simplest
possible generalisation. In doing so, the complexities of the final application are
removed and one can concentrate solely on optimising the important characteristics of
the algorithm. Hence, in the first instance, we consider the case of points charges rather

than diffuse distributions of charge.

In Greengard’s thesis [116], the Fast Multipole Method is developed by
considering particles in a two dimensional world. The development of KWIK has
begun at an even simpler level, by considering that of collinear unit point charges. In
this Chapter, the equations for the application of KWIK to collinear point charges are
derived followed by consideration of the linearity of the method for charged and neutral
systems, and the effect of non-uniform distributions on the algorithm. This Chapter also

aims to practically illustrate a number of theoretical concepts previously introduced.

7.1. Particles in One Dimension

The simplest generalisation of Coulomb interactions between charged
distributions is that of collinear point charges. In contrast to Greengard’s [116]
derivation of the FMM, where he used the approach of a 2-D universe as a first
generalisation, the 3-D Coulomb interaction in the special case where the charge
distributions are collinear and points, has been chosen. Greengard’s justification of his
special case system was that “Many physical processes are adequately described by two-
dimensional models ...”. The justification here is that the interest lies with learning how

the algorithm works so to obtain the best MQM implementation. It was considered
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likely that this could be best achieved by first considering the case where we have linear

molecules.

7.1.1. Derivation

The Coulomb energy of a system of N charged particles is given by

E=Y ¥ 2% (.1)

I=1 j<i j

where Q; is the charge on the e particle and ry; is the inter-particle separation. Applying

the Coulomb operator separation

E=E,, +E,, (7.2)
N fc(or,) & rf(or,)
g=3y G4 erclar;) ZZQ’QC (e (7.3)
=1 I<j n; =1 I<j ;i
which for convenience can be rewritten
N -erfc(ar, o erf(ar,
p=3y QQere@y) | 13,5 00 erfwn) o
=1 I<j i 2934 r
where the last term is the self interaction correction which, as written, is exactly
Ey = (7.5)
By substituting the long-range operator by its Fourier series representation
erf(or, =
e > A(k,w)exp(ik(r,— 1)) (7.6)
Ij k=—o

where A(k,w) are the associated Fourier coefficients, yielding

E,. -%ZZ iA(k a))Q,Q cxp(:k(r -r )) . (7.7

=1 j: k=—e
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Inverting the sums and factorising the exponential function

k=—co

1 ¢ - RS < .
E,. = 5 2 A(k ,a))z O exp(:krj)z Q, exp(—ikn) = Egc (7.8)
Jj=1 =1
implies that Ej,n, can be approximated to a required accuracy by
1 M
Eurg =7 2 Ak,@) 1K) (7.9)
k=0

where the Fourier coefficients have been adjusted for symmetry, M and  are carefully

chosen and

2

I(k) = (7.10)

zN: Q; exp(ikr;)

is the Fourier intensity of the total charge distribution. The self interaction correction

now becomes
N M
Ege =Y 07 A(k,0) (7.11)
j=1 k=0

whose value is a poor approximation of (7.5) due to the relatively slow convergence of
the Fourier series. With optimistic reference to the final four letters in (7.9) the

algorithm is referred to as a KWIK algorithm.

7.1.2. Short-Range

7.1.2.0. Introduction
The evaluation of short-range interactions has been covered in detail in Chapter

Five. Presented here are the practical aspects of the implementation. The first practical
issue addressed is that of computing the inter-particle potential efficiently. This is
followed by discussions on the determination of the point at which interactions become
insignificant, memory requirements of 1-D short-range procedures, and a final note on

distribution dependence.
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7.1.2.1. Interpolation
The difference in determining the interaction potential for collinear particles and

3-D scattered particles lies only in a determination of the inter-particle separation. In 3-
D, extra multiply-adds (MA’s) and a square root are required. Otherwise the

interpolation arguments presented here apply equally to both 1-D and 3-D.

The basic interaction to be calculated, once an inter-particle distance has been

determined, is simply

erfc(ar,)

h,

(7.12)

which requires a divide, a multiply and an erfc. Unfortunately, divides [133] are
computationally expensive and are avoided, where possible when devising new efficient
algorithms. The divide cannot be avoided in this case. Multiplies and adds have a

(floating point operation) FLOP cost of one and an independent MA i.e..
y=a*x+b (7.13)

can also be evaluated in one cycle on RISC architectures [61]. The erfc function,
however, was found, not surprisingly, to be computationally expensive relative to the

more optimised trigonometric functions in the standard mathematical libraries.

In MQM, the basic integral from which higher integrals and derivatives are
formed is a function involving an exponential function. Gill [128] uses a highly
efficient interpolation scheme to evaluate the exponential. This approach has been
adopted for evaluating erfc. The interpolation scheme described by Gill, and that

implemented for purposes here, uses a cubic Chebychev interpolating polynomial
f(x) = a,I,(¢) +a,T, (1) + a,T, (1) + a,T;(1) (7.14)

where Ti(r) is the k™ Chebychev polynomial,

(7.15)
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is a normalised variable and A is the greatest range of interpolation for some

predetermined accuracy &, given by

. 1/(n+1)
Ao| ZtDle e
maxl f"'“’(X)|

where the interpolation interval is (X - A, X + A). The Chebychev polynomial is

obtained as a least squares polynomial [128] from the Taylor expansion of the
interpolating function at the nodes of interpolation X; whereby the coefficients are

expressed as

A Ki oo A mf(k+2m)(X)
_ s (Al (A L0 7.17
% =2 6"°)(2) 2(2) mi(k + m)! =)

m=0

which is a function of A and derivatives of the interpolated function. The derivatives of

the error function can be conveniently determined using the Hermite polynomials [53].

The advantage in using the Chebychev polynomial is that the error is ‘spread’ over
the whole region c.f. the Taylor polynomial, ‘which is very accurate at the nodes and
becomes poorer near the end-points. In computing erfc(x), the same interpolation grid

as used by Gill was chosen
X;=@2j+hAa (7.18)

which allows the index j to be identified easily

-
j= 2A) (7.19)

so that the function can be evaluated to the predetermined accuracy in 3 FMA’s via

Gill’s formula
x X X
F() =¥, +£[f| +ﬂ[fz +£f3]] (7.20)

This is illustrated in the partial FORTRAN code in Scheme 7.1.
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R2DLTA = OMEGA/ (TWO*DELTA)

SUME

= ZERO
DO J=1,L
RIJ = SQRT((R(1,i)-R(1,3))**2 +
(R(2,1)-R(2,3))**2 +
(R(3,1)-R(3,3))**2)
Y = RIJ*R2DI1TA
K = INT(Y)
ERFCWR = T(1,k) + Y*(T(2,k) + Y*(T(3,k) + Y*T(4,k)))
SUME = SUME + Q(Jj)*ERFCWR
ENDDO

E = E + Q(i)*SUME

Scheme 7.1. Partial FORTRAN code illustrating the use of interpolating the erfc function in a 3-D
simulation. The array T contains the interpolating constants f; which are a function of
the polynomial coefficients.

The effectiveness of this scheme is presented in Table 7.1 which illustrates the
efficiency of using interpolation to evaluate the erfc function in three important
situations. Note that interpolation is considerably faster than the standard mathematical
libraries where savings of 77% are made. In cases encountered in evaluating the short-
range energy partition in KWIK calculations, considerable savings all also obtained.

Note the reduction in improved timings is due to the divides, and the square root, in the

3-D case.
Standard Interpolation % Improve
Function 1.38 0.32 77
1-D 1.63 0.54 67
3-D 2.12 1.02 52
Table 7.1. CPU times (seconds) for evaluating 400,000 interactions in the interval (0,4) involving

the erfc function. Key: Function - denotes evaluating the erfc function itself; 1-D - the
one-dimensional interaction potential; 3-D - the three-dimensional interaction
including a square root; Standard - is the time for evaluating the same potential using
the standard mathematical library.

7.1.2.2. Cut-offs

In order to obtain a short-range energy to within an error of some given &, in work
that scales O(N), we must determine the minimum cut-off radius, Rc, so that the sum of

all interactions outside Rc, is less than & for all distributions. Thus we require
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Imdx T (7.21)

B+

While the primary interaction becomes insignificant, i.e.

erfc(@Rc) .
R,

(7.22)

before the cut-off satisfying (7.21), and was found to be satisfactory in preliminary

investigations, (7.21) is a more rigorous upper bound than that satisfying (7.22).

7.1.2.3. Memory Requirements
Implemented were two generic short-range codes for collinear particles. The first

used an ordering of particles within boxes so that binary searches can be employed, thus
reducing the number of insignificant interactions evaluated. The second does not. In
each case particles are sorted into respective boxes, irrespective of whether the particles

are sorted within the boxes themselves.

The sorting routine is the most memory intensive of the short-range code. This is
depicted in Scheme 7.2. The double precision R (2, N) array contains the charge and
particle position, where N is the number of particles. ORD (N, 2) is a scratch array in
which the particles are temporarily ordered into boxes (Scheme 5.2). The change in the
way the scratch array is dimensioned is also necessary for the sorting within boxes, if
required. The INBOX array is another scratch array used to hold data for describing
which box the j® particle is in. TCOUNT indicates the number of particles in the k™ box
and IPOINT is a pointer into the ORD (and a reordered R) array, to indicate the first
particle in the k™ box. The variable NBOZX, refers to the total number of boxes. Thus,

the total memory requirements are roughly SN-6N double precision words.

REAL*8 ORD(N,2),R(2,N)
INTEGER ICOUNT (NBOX) , IPOINT (NBOX) , INBOX (N)

Scheme 7.2. Illustration of memory requirements for the one dimensional sorting process.

The code for determining the short-range interactions requires the interpolation

table, the ordered particle coordinates and charge (R), the pointer (IPOINT) into the
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coordinate array and the counter arrays (ICOUNT). Total memory requirements are thus

roughly 3N double precision words.

7.1.2.4. Distribution Dependence

In calculations using the generic codes described in section 7.1.2.3, the code using
the binary search without box division, and thus affording theoretical efficiencies of 1.0,
was always faster than codes with box division and/or without the binary search in the
case of uniform distributions of charge. However, this was not the case for normally
distributed particles. Table 7.2 contains illustrative timings for a KWIK short-range
interaction calculation using the respective generic codes for a normally distributed set

of particles and a uniformly distributed set of particles.

Distribution Uniform Normal
Division Ordered Non-Ordered Ordered Non-Ordered
1 74.56 93.60 260.23 270.17
2 75.41 91.42 239.87 264.49
3 74.24 92.47 232.55 264.15
4 75.45 92.22 230.69 266.24
5 76.40 93.56 226.56 265.16
Table 7.2. CPU times (seconds) for a short-range KWIK calculation (w=0.008) on distributions

of 100,000 unit point charges. Ordered implies a binary search has been used and
division indicates the level of cell reduction.

In Table 7.2 it can be seen that when the normally distributed particles (obtained
from using the gaudev [136] routine and scaled so that 10 standard deviations were
within the region (O,N)) are investigated, considerable improvements in total time can
be achieved by division of boxes and employing the binary search. Note that in other

cases the division of boxes does not overly improve performance.

7.1.3. Long-Range

7.1.3.0. Introduction
The underlying theory has been developed in some detail in Chapter Six.

However, unlike the short-range chapter, Chapter Six was concerned more with devising
a generic scheme so that the required accuracy could be achieved by a sufficient
expansion, as well as being extendable to higher dimensions. This contrasts somewhat

with the short-range chapter which was concermed with maximising efficiency.
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7.1.3.1. MOP’s vs FLOP’s
The true measure of the performance of an algorithm is best measured in CPU

time, but is dependent on comparatively efficient implementations. Hence, a theoretical
measure is often more useful. A theoretical measure requires not only consideration of
the numbers of floating point operations (FLOP’s) but also of memory operations
(MOP’s) [147]. FLOP’s are multiplies, adds etc (usually one considers divides as a
single FLOP also). A MOP is a retrieval or placement to and from memory. In our
implementation of long-range KWIK (on the scalar machine) we have obtained
decreased FLOP and MOP counts by the use of recursion and unrolling loops (Scheme

7.3). The recursion formula is simply

exp(i(k + l)rj) = exp(ir;) * exp(ikr;) (7.23)

Thus only the first term on the RHS of equation (7.23) need be evaluated, and all
subsequent k terms can be obtained simply as a complex multiply (2 Multiply-Add’s
and 2 Multiply’s) - significantly cheaper than evaluating a complex exponential. RISC
technology currently allows an MA to be evaluated in a single machine cycle, the latest
technology will perform 2 Multiply’s and an Add in a single machine cycle. As an
aside, care should be taken in determining the complex exponentials as some compilers
don’t recognise the pure imaginary status of the argument and evaluate an additional
real exponential. In this case the complex exponential is best computed as its

trigonometric components.

7.1.3.2. Memory Requirements
Memory requirements of 1-D long-range KWIK are 6N double precision words.

2N for particle charges and coordinates, 2N for the base complex exponential array (F)
for recursion and a final 2N for the recursion update array (G). These are reasonable,
given the gains in speed to be presented (c.f. with quadratic methods), and could be
reduced to 2N, by removal of recursion. The effect would be a loss in speed which
would be relative to the efficiency of the platforms trigonometric functions, but would

not effect the scaling of the algorithm.
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REAL*8 R(2,N)
COMPLEX*16 A,TP,FC,F(N),G(N),S(5)

DO i=1,N

A DCMPLX (ZERO,R(2,1))

F(i) = EXP(A)
G(i) = DCMPLX(ONE, ZERO)
ENDDO

DO k=1,M-4,5

S(1) = DCMPLX(ZERO, ZERO)
DO i=1,N
FC = F(1i)
CG = R(2,1)
TE = G(i) *FC
S(1) = CG*TP + S(1)
TP, = TP*FC
S(2) = CG*TP + S(2)
TP = I'PHEC
S(3) = CG*TP + S(3)
TP = TP*FC
S(4) = CG*TP + S(4)
G(i) = TP*FC
S(5) = CH*G(i) + s(5)
ENDDO
ENDDO
Scheme 7.3. Illustrating the use of recursion to save FLLOP’s and unrolling the k loop to save on

MOP’s. Unrolling beyond 5 gave little improvement in speed-up on the IBM.

7.1.3.3. Cut-offs
As the extent of the total distribution increases with N, the density of k vectors

decreases. Thus, to maintain accuracy the number of k vectors must also increase with
N, i.e. for maintaining a constant @ for increasing N. This would imply cost scaling as
O(N*). However, if we adjust @ to increase the short-range work, cost scaling is
reduced to our empirically found value of ON'%), x~1-4. Similar cost scaling
behaviour has been identified for the Ewald and PPPM methods [105,112]. However, if

the required accuracy ¢, and the size of the charged distribution N are related by
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N >> 1 (7.24)

£

then error estimates are aided significantly by the random walk previously described.

This will be elaborated further in section 7.1.4.2.

7.1.4. Charged Systems

7.1.4.0. Introduction
A charged system of particles, that is, a system of charged particles of the same

sign interacting Coulombically, is analogous to any particle system interacting via an
inverse-square-law, gravitational forces, for example. The energy of such an interaction
will converge for infinite systems if and only if the interaction of the type P, has a p>1.

The charged systems considered in these calculations are all finite.

7.1.4.1. Illustrative Timings
The KWIK algorithm has been used to compute the Coulomb energies of a

number of uniformly distributed collinear unit point charges over a variety of
predetermined accuracies. Presented here are those timings previously reported [148],
and a more recent study over a smaller range of system sizes. The latter serves to
illustrate the recent improvements, such as, the use of interpolation and better screening

techniques.

Uniform random deviates for the interval (O,N) were generated by utilising the
FORTRAN 77 subroutine ranl [136] and multiplying the resulting uniform random
deviate by N to yield a distribution of particles with a mean separation of unity (Figure
7.4). Timings were optimised by determining the decay parameter, w, and degree of
Fourier expansion M, such that the times for determining the short and long-range
components of the KWIK Coulomb energy were approximately the same. This was

found empirically to be the optimal split. Timings are tabulated in Table 7.3.
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N 107 10* 10° 10°% 107°
100,000 1.59 15.35 55.57 108.15 135.26
200,000 3.24 37.05 165.26 295.64 374.75
300,000 4.99 57.00 295.35 532.74 655.78
400,000 6.79 84.89 396.31 723.45 982.05
500,000 8.35 110.08 488.01 1069.07 1389.17

Table 7.3. CPU times (seconds) for determining the Coulomb energy using KWIK for collinear,
uniformly distributed, positive unit point charges for various predetermined
accuracies.

Energy contributions and other details of the calculations for the timings in Table

7.3 are tabulated in the Appendix.
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Figure 7.1. CPU time vs N (the number of particles) for determining the Coulomb energy using

the KWIK algorithm for increasing accuracy. Note the circled data point indicating a
higher efficiency than expected obtained due to statistical fluctuations. Actual timings
are tabulated in Table 7.3.

Figure 7.1 illustrates several important features of KWIK. Firstly, for sufficiently

large N, where N >> 1/g, the algorithm scales linearly as is illustrated by the £=10? and
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£=10* curves. Secondly, as N increases the algorithm tends towards linearity - for
=10 we see at N=300,000 the slope of the line decreases. Finally, for increasing
accuracy, it is apparent that the amount of extra work required is dependenton N. If N <
1/g;, then the extra effort required is moderate (consider moving vertically from the x-
axis at N=200,000). If 1/&; > N > 1/¢ then the extra effort is large (consider an increase
inaccuracy from 10 to 10°® for N=500,000). The extra effort required where N >> 1/&,

> 1/g, is small - consider an increase in accuracy from 10 to 10™* for N=500,000

N 10 10° (0 10 10"°

1,000 0.5 0.5 0.6 0.7 0.8

5,000 1.8 2.8 3.1 3.7 4.2

10,000 3.6 5.2 6.5 8.7 L7

50,000 18.5 46.2 48.3 69.7 85.2
100,000 37.2 92.8 121.6 179.1 219.6
500,000 199.1 560.9 778.3 1784.7 2488.6

1,000,000 414.2 958.1 1847.4 4763.3 E
Table 7.4. CPU times (seconds) for determining the Coulomb energy using KWIK for collinear,

uniformly distributed, positive unit point charges for various predetermined
accuracies. (As reported in [148]).

The timings in Table 7.4 should be compared (where possible) with Table 7.3 to
illustrate the effect of incorporating interpolation, binary searches and numerical
stabilisation in short-range code, and FLOP and MOP savings in long-range code. Note
that for an accuracy of 10'° and N=1,000,000 KWIK, had problems with numerical
instability. KWIK is not a numerically unstable algorithm, the instability here was

purely as a result of a poor implementation which has since been dramatically improved.

Quadratic timings are presented in Table 7.5. For other than the most trivial
calculations with timings of a few seconds all the KWIK times are significantly (orders
of magnitude) faster than their quadratic counterparts, offering a significant advantage
for obtaining Coulomb energies without necessarily having to consider comparative cost

scaling characteristics.

7.1.4.2. The Random Walk and I(k)
As described in Chapter Six, the function I(k) can be likened to a drunkard taking

unit steps on the complex plane. It was found that for large N, I(k) is an exponential
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variable with mean of N and standard deviation N. This is illustrated by considering I(k)
for large and small uniform distributions. The effect of polarised distributions on the

Random Walk Advantage and the assumption of the random phase is also demonstrated.

N Time (s)
1,000 0.15
5,000 4.15

10,000 18.00

50,000 750.00

100,000 3,000.00
200,000  12,000.00
300,000  27,000.00
400,000  48,000.00
500,000  75,000.00
1,000,000 260,000.00

Table 7.5. CPU times (seconds) for determining the Coulomb energy for various system sizes (N)
using the classical double sum quadratic method.

1.00E+12 <
1.00E+11 +
1.00E+10 -

3
1.00E+9 1 %
L )

1.00E+8 A
%e o
S VT

=
T 1.00E+7 | : :
. ™2, e 4" e0% 0, o
:‘; ‘e % o “. '.; ?“. ....* :’:..:: ..*-t“'b. ot
e %e 0, © o oo D)
1.OOE+6 %) %e%® o2 % 0 :..t . . o é '-h-"‘ "'::..‘I;.\'
) ... .o.. .. .’ . 00... oog....'
HT) P R R EEDC IS
1.00E+4 - . S
1.00E+3 : L . L )
0 100 200 300 400 500
k
Figure 7.2. I(k) vs k for discrete values of k for 1,000,000 collinear uniformly distributed,

positive, unit point charges.
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Figure 7.2 begins at the origin at 10’2 (V) and decays extremely rapidly (note the
logarithmic scale of the y-axis) to a noisy value of 10° (N). This can be rationalised in
terms of the random walk, where the initial assumption of kr; being a random phase is
invalid (refer Chapter Six, section 6.3.5). But as k increases, the assumption becomes

valid and the random walk can be seen to be a mean of N with standard deviation of N.
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Figure 7.3. I(k) vs k for discrete values of k for 100,000 collinear uniformly distributed, positive,

unit point charges.

Figure 7.3 is analogous to Figure 7.2, but with fewer unit point charges. It is clear
from these two plots that the rapid decay of I(k) will aid significantly in cases where N
>> 1/e. For example, a calculation requiring an accuracy of 10 in both cases can be
obtained for the long-range partition simply by increasing the Fourier series to around
k=20. The distribution of particles used to form the data for Figure 7.3 is plotted in
Figure 7.4.
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Figure 7.4.
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Figure 7.5. I(k) vs k for discrete values of k for 100,000 collinear exponentially distributed,

positive, unit point charges.

Figure 7.5 shows that the effect of a highly polarised distribution on the random
phase assumption is to reduce the rate of relaxation to the expectation value. Thus,
much larger k¥ must be considered before the random walk begins to apply. The
exponentially distributed random deviates were generated by utilising the FORTRAN 77
subroutine expdev [136] and scaling the resultant exponential random deviate to yield
a distribution of maximum range N. A histogram is given in Figure 7.6 to illustrate the

extent of the polarisation.
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Figure 7.6.
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I(k)

Figure 7.7.
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I(k) vs k for discrete values of k for 100,000 collinear normally distributed, positive,
unit point charges.

While Figure 7.5 illustrated a negative effect from an exponential distribution in

terms of the random walk feature, Figure 7.7 shows that a normally distributed (Figure

7.8) set of particles (derived as outlined in section 7.1.2.4.) yields an I(k) where the

random phase assumption applies earlier than for the uniform distribution. Clearly the

validity of the random phase for relaxation to a random walk is an extremely important

aspect when considering non-uniform distributions and highlights the statistical nature

of the long-range part of the algorithm.
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Figure 7.8. Histogram of the normally distributed particles used in Figure 7.7.

7.1.5. Neutral Systems

7.1.5.0. Introduction
Neutral systems of charge, in particular, infinite periodic systems, have received

much attention by the PPPM and Ewald summation techniques where the aim has been
to study forces and bulk properties. Isolated molecules, that is a gas phase molecule in
its own universe, receive a great deal of attention in molecular quantum mechanics -
which is where we eventually wish to apply our new algorithm. Isolated molecules tend
to either have a net neutral charge, or a small charge relative to the total number of
electrons, and while the investigations to date have focused on charged systems,
electron-electron repulsion and forming the J matrix, consistency with the treatment of
the Coulomb operator within the Hamiltonian for MQM calculations must be

maintained. That is, it will be necessary to consider the replacement of the Coulomb
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operator with the split operator throughout the Hamiltonian, not only for electron-
electron interactions, but also electron-nuclei and nuclei-nuclei. Presented in this
section are timings for net-neutral 1-D collinear particles using two alternative
approaches. The random walk phenomenon is also considered, but a detailed discussion
on this and scaling characteristics is left until Chapter Eight where the CASE

approximation is introduced.

7.1.5.1. A Random Walk Advantage?
Figures 7.9 and 7.10 illustrate the random walk nature of the I(k) function for

neutral systems. Unlike charged systems, the random walk holds for all values of k#0.

This is not due to the random phase assumption of krj, but the effect of having a mixture

of positive and negative charges corrects for the initial non-random phases.
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Figure 7.9. I(k) vs k for a uniform, net neutral distribution of 1,000,000 unit point charges.
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Figure 7.9 shows that the random walk holds for all values of k#0, having an

initial value of zero at k=0. The question which must be addressed is what advantage is

this random walk behaviour for neutral systems?
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I(k) vs k for a uniform, net-neutral distribution of 100,000 unit point charges.

Figure 7.10 is analogous to Figure 7.9 where we have an I(k) which is a ‘noisy’

value of N, where the noise is approximately 10N. The random walk appears to be valid

for all k.
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Figure 7.11. I(k) vs k for 100,000 exponentially distributed, net-neutral system of unit point
charges.

While for charged systems the effect of polarising the distribution had a
catastrophic effect on the rapid relaxation of I(k) to the random walk value, for a net

neutral system no such effect is observed, as can be seen in Figure 7.11.

7.1.5.2. Nlustrative Timings
The first of the two approaches taken for determining the Coulomb energy of net-

neutral systems of charge was exactly analogous to the charged case. Uniform deviates
were obtained in the same manner, with each deviate assigned a positive or negative
charge to afford a net-neutral system. The decay parameter and degree of the Fourier
expansion were varied to afford the desired accuracy, maintaining the even split of work
between short- and long- range partitions - exactly the approach taken for the charged

systems. The timings are tabulated in Table 7.6.
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N 10 10* 10° 10°® 10
100,000 - 59.05 98.56 127.90 148.77
200,000 1.22 100.72 263.98 336.80 432.68
300,000 1.95 126.93 412.06 652.38 783.63
400,000 2.58 119.28 707.12 901.37 1158.69
500,000 3.73 269.08 994.70 1312.94 1632.99

Table 7.6. CPU times (seconds) for determining the Coulomb energy using KWIK for collinear,

uniformly distributed, net-neutral systems of unit point charges for various
predetermined accuracies. Decay parameter and degree of Fourier expansion
determined as for charged systems.

Energy contributions and other details of the calculations for the timings in Table

7.6 are tabulated in the Appendix. To illustrate the scaling of net-neutral systems, the

times tabulated in Table 7.6 have been plotted in Figure 7.12. Note the similar scaling

behaviour of net-neutral distributions to that of charged distributions.
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Figure 7.12.
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CPU time (seconds) vs N (number of particles) for determining the total Coulomb
energy using KWIK for a net-neutral, uniformly distributed system of unit point
charges. The circled data point indicates a higher accuracy than expected was
determined due to statistical fluctuations. Times are tabulated in Table 7.6.
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The second approach considered was to fix @ and vary M to obtain the required

accuracy. Timings obtained by fixing @ at 0.01 and 0.005 and are tabulated in Tables
7.7 and 7.8.

N 10 10 10° 10°® Jog’°
100,000 21.35 60.37 96.14 128.64 150.63
200,000 4225 134.02 273.17 384.33 454.77
300,000 63.56 126.34 449.77 747.26 968.46
400,000 84.18 198.88 762.32 1314.66 1634.33
500,000 105.10 629.34 1336.75 1928.45 2445.92

Table 7.7. Total KWIK timings for various predetermined accuracies for net-neutral, uniformly

distributed particles using a fixed decay parameter of @ = 0.01.

The timings presented in Table 7.7 show a similar, if not less linear scaling
behaviour than those tabulated in Table 7.6 and plotted in Figure 7.12, i.e. the scaling
appears non-linear in Table 7.6 and quadratic in Table 7.7. The same quadratic scaling

is observed in Table 7.8.

N 10” 10 [0k 10° 10
100,000 40.53 82.11 115.94 140.71 175.17
200,000 83.40 176.91 274.93 347.16 414.84
300,000 124.79 251.79 463.10 607.83 748.61
400,000 167.85 317.22 720.23 945.53 1151.48
500,000 206.87 496.31 961.96 1355.56 1680.45

Table 7.8. Total KWIK timings for various predetermined accuracies for net-neutral, uniformly

distributed particles using a fixed decay parameter of @ = 0.005.

The concept of holding the decay parameter constant was based on the observation
that the short-range partition of a KWIK calculation on a net-neutral distribution of
charge captured the majority of the energy, as opposed to charged systems where the
energy was more evenly split between the partitions. The comparison between charged

and net-neutral systems can be seen in Table 7.9 for a fixed decay parameter.
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Neutral Charged
N w=0 ®w=0.01  %Error w=0 ®w=0.01 %Error
1000 -4314.8 4311.7 7.2E-02 18712 16337 12.7
10000 -36144.2 -36144.6 9.1E-04 206651 160798 222
100,000 14368.1 14393.7 1.8E-01 | 2108919 1419757 327
1,000,000 | -108906.9 -109004.5 9.0E-02 20988938 11795926 43.8
Table 7.9. Short-range KWIK energies for net-neutral and charged uniformly distributed unit

point charges. A zero decay parameter corresponds to the total coulomb energy. The
decay parameter of @=0.01 corresponds to a real space cut-off of = 302 for £= 10,

The question was posed - could the desired accuracy for net-neutral systems be
obtained by increasing the cut-off radius? That is, decreasing @ in such a way that more
time is spent on calculating short-range interactions than long range, to better reflect the

contributions of each partition to the total energy.

N w=0 o= 0.01 oError w=0.005  %Error
100,000 14368.1 14393.7 1.8E-01 14377.5 6.5E-02
200,000 -46810.3 -46731.1 1.7E-01 -46747.2 1.3E-01
300,000 -78086.2 -78044.0 5.4E-02 -78046.4 5.1E-02
400,000 -163722 -163686 2.2E-02 -163690 2.0E-02
500,000 -126458 -126361 7.7E-02 -126393 5.1E-02
Table 7.10. Short-range KWIK energies for net-neutral, uniformly distributed unit point charges.

The decay parameters of @ = 0.01 and 0.005 have real space cut-offs of = 302 and 603
respectively for £= 10,

In Table 7.10 the cut-off radius is doubled to determine the effect on relative
contributions to the total Coulomb energy. The effect of doubling the short-range work
does not result in any significant increase in the relative contribution of the short-range
partition to the total energy. Thus, long-range work must be considered for

improvement of accuracy.

For a fixed @, doubling the size of the system requires double the amount of short-
range work. However, doubling the system size also doubles the range of the
distribution, reducing the density of k vectors, and thus an increase in k must be required
to afford similar accuracy. This would imply scaling of O(N?). This is apparent in
Tables 7.7 to 7.8. By adjusting the decay parameter and simultaneously adjusting the

degree of the Fourier expansion this scaling can be reduced to that of a high accuracy
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relative-to-N-charged-system scenario, with an empirical scaling of O(N'¥), which is

similar to that described by Luty [105,112].

7.2. Particles in Three dimensions

7.2.0. Introduction

While Greengard began his development in 2-D then progressed to 3-D, the
development of the KWIK algorithm began in 1-D. The aim was to simplify the
approach, to learn as much as possible about the algorithm before generalising to higher
dimensions. Preliminary investigations into 2-D and 3-D algorithms were made
initially, but it was found that considering both would not add greatly to the
understanding of the algorithm, and 2-D investigations were discontinued. This section
illustrates that KWIK in 3-D is a simple extension of the 1-D analogue and presents the
slight modifications required on increased dimension, 3-D KWIK timings previously
reported, and discussions regarding cut-offs in the long-range partition. In the latter

preliminary findings from the 2-D investigations are referred to for clarity.

7.2.1. Derivation

The derivation of the KWIK equations for 3-D point charges follows equations
(7.1) to (7.5) and differs only where the long-range operator substituted by its Fourier
series representation '

o). > A(k,0)exp(ik - (r, - 1)) (7.25)

Ty

where the summation is over 3-D k-space and A(K,w) are the associated Fourier

coefficients. Thus the new long-range energy expression is

Fu =323 S AGQQ oxpli- 0 -1))-Ege (129

I=1 j=1

Inverting the sums and factorising the exponential allows Ej,,e to be approximated to the

required accuracy by
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E,., =% I A(k®)I(K) (7.27)

|k|<M

and

2

Ik) = (7.28)

N
Y 0, exp(ik )
Jj=1

is again the Fourier intensity of the total charge distribution. The self interaction

correction is

N
Ege = 2,0 Y AKk,0) (7.29)

Jj=1 |k|<M
Equation (7.27) still contains the letters of the algorithm and note the little has changed

from 1-D to 3-D.

7.2.2. Short-Range

7.2.2.1. Interpolation
The use of interpolation tables have been employed for evaluating the erfc

function as for 1-D systems. However, not only is a divide still required but there is also
an extra requirement of a square root for determining inter-particle distance. The
expense of the square root reduces the impact of applying interpolation techniques
(Table 7.1). It has been suggested [103] that the square root function can be calculated
more efficiently if the system is appropriately scaled, but this introduced efficiency
requires r,-,-2 to lie in the range (0.1,1.0) which for very large systems does not lead to a

more efficient algorithm.

7.2.2.2. Cut-offs
The distance at which the primary interaction becomes insignificant (7.22) was

initially used as the cut-off radius. However, the more rigorous upper bound of

an j rerfc(wr)dr < € (7.30)

Re
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which is
1 ] N3

nerfc(a)Rc)[ZRC2 +—5 |[+==Rcexp(-R0’) <€ (7.31)
0] ()}

and can be determined easily using a Newton-Rhapson procedure was implemented for

consistency.

7.2.2.3. Memory Storage

Memory storage in 3-D has a total requirement of roughly 11N, which is an
increase from 1-D only by the extra requirements for storing the extra coordinates. This
storage is depicted in a similar manner to the 1-D case (Scheme 7.2) in Scheme 7.4.

(The sorting methodology was presented in Chapter Five.)

REAL*8 ORD(N,4),R(4,N)
INTEGER ICOUNT (NBOX) , IPOINT (NBOX) , INBOX (N)

Scheme 7.4. Illustration of memory requirements for the three dimensional sorting process.

7.2.3. Long-Range

7.2.3.0. Introduction
The 3-D long range energy partition is handled in a manner analogous to 1-D. As

before, FLOP and MOP savings are made using recurrence relations and loop unrolling.
Also there is a random walk in the complex plane where the phases, k°r;j relax towards
the random phase assumption rapidly. However, during our investigations into 2-D
KWIK we observed an exciting trend in the decay of the Fourier coefficients to enable

further improvements to the computation of the long-range energy.

7.2.3.1. Memory Requirements

A semi-memory-intensive long-range code was implemented for the purposes of
maximising speed. The memory requirements are depicted in Scheme 7.5. The R array
holds particle position and charge, the F array holds the base complex exponential
values of two of the coordinates, and G holds the corresponding coordinate recursion

updates. It was rationalised that the z-coordinate should not be evaluated in a recursive
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manner for two reasons. Firstly, the Fourier sum is over half of k-space due to the even
nature of the long -range operator, and it was arbitrarily chosen to consider only positive
z-components of the k sum. Therefore, fewer z-coordinate complex exponentials need
be evaluated. Secondly, the cost of the non-recursive complex exponential for the
z-coordinate can be evaluated such that it is done only once for the xy plane of that
z-component of the k sum. The extra 4N double precision words required for recursive
evaluation of this component was deemed excessive, given the small speed up that may

be achieved.

REAL*8 R(4,N)
COMPLEX*16 A,F(N,2),G(N,2),S(5)

Scheme 7.5. Array storage for long-range KWIK.

From Scheme 7.5 it can be seen that the memory requirements of 3-D long-range

KWIK are 12N double precision words.

7.2.3.2. 2-D Fourier Coefficients
The exciting feature of the 2-D Fourier coefficients is that the near-diagonal

elements converge faster than the off-diagonal elements, which results in near diagonal
Fourier coefficients significantly smaller than off-diagonals. A small number of these

are presented in Tables 7.11 and 7.12 for two decay parameter values.

ky/ky 0 1 2 3 4
0 | 0471306

1 0.0920439  0.0399114

2 0.00715780  0.00715930  0.00261430

3 0.00424720 000175870  0.00044460  0.00012310

4 | -0.00121160 -0.00014550  0.0000717  0.00000090  0.00000840

Table 7.11. Two dimensional KWIK Fourier coefficients for @ = 1. k; and k, correspond to the x
and y components of the k-space sum.

The near-diagonal elements of Tables 7.11 and 7.12 are significantly smaller than
the off-diagonal counterparts of the same row. This was an important discovery to aid

in determining Fourier space cut-offs.
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0 1 2 3 4

0.0157290 0.0042100
-0.00535970  -0.00094930  0.00005400
0.00244910  0.00048300 -0.00003150  0.00002180

ki/ky
0 | -0.0336836
1

2

3

4 | -000139770 -0.00028250  0.00001600  -0.00001210  0.0000065

Table 7.12. Two dimensional KWIK Fourier coefficients for @ =0.1. k, and k, correspond to the
x and y components of the k-space sum.

The significance of this near-diagonal convergence is best observed by comparing
with the @w=0 decay parameter coefficients tabulated in Table 7.13. This table also
highlights the importance of splitting the Coulomb operator to obtain rapidly decaying
Fourier coefficients. The Fourier coefficients for the Coulomb operator, as opposed to

the long-range operator, decay very slowly.

kx/ky 0 1 2 3 4
0 0.561100
1 0.174884 0.116741
2 0.0742178 0.0702324 0.0563238
3 0.0555007 0.0508122 0.0441101 0.0375350
4 0.0383910 0.0383182 0.0356041 0.0318189 0.0281415

Table 7.13. Two dimensional KWIK Fourier coefficients for @ = 0. k. and k, correspond to the x
and y components of the k-space sum.

The trend depicted in Tables 7.11 and 7.12 is observed in an analogous fashion for
3-D Fourier coefficients. On this basis a check could be implemented for near diagonal
Fourier coefficients below a required threshold. A crude cut-off technique based on this
idea was implemented for the 3-D timings presented in Table 7.15, and significantly

sped up the overall KWIK algorithm.

This cut-off technique needs to be investigated further as some problems were
encountered when initial k-space cut-offs were too lean and the Fourier expansion
required extension to reach the desired accuracy. Furthermore, as the long-range energy
is the sum of the Fourier intensity, I(k), multiplied by a Fourier coefficient in which the
Fourier intensity is an exponential deviate, cut-offs based on the magnitude of the

Fourier coefficient, maybe problematic when ‘outlying’ over-large I(k)’s, are
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correspondingly not computed. i.e. the product may not be insignificant when
statistically unlikely, over-large values of the Fourier intensity are encountered.
7.2.4. Charged Systems

7.2.4.0. Introduction
KWIK must be able to solve applications where three dimensionally distributed

point charges interact via Coulombs law. This type of interaction is analogous to
gravitational systems, is found in MQM calculations of the nuclear repulsion energy and
is a generalised form of the electron-electron repulsion energy, the true electron-electron
repulsion being between diffuse distributions of charge. The aim in the previous
sections was to illustrate features of KWIK and some theoretical features discussed in
previous chapters by considering collinear point charges. And while it is true that an
algorithm’s speed can be improved by allowing for the collinear assumption, the
purpose was to illustrate fundamental features of how the KWIK algorithm worked. In
section 7.2.4.1 timings are presented to show that the scaling behaviour persists exactly

analogously to one dimension.

7.2.4.1. Tllustrative Timings
Timings for 3-D unit point charges presently previously [148] are presented in

Table 7.14, with the effect of interpolation and crude long-range cut-offs with

significantly improved timings illustrated in Table 7.15.

N 10 10* 10° Exact
500 0.8 1.2 22 0.3
1,000 17 aq 9.0 1.4
5,000 7.1 11.4 473 27.8
10,000 12.3 23.1 148.7 105.1
50,000 64.8 125.1 628.6 2532.1
100,000 139.5 361.2 1500.2 10145.7
500,000  769.4 2065.5 13515.2 252170.6
Table 7.14. KWIK timings for charged systems of three dimensional, uniformly distributed unit

point charges as previously reported [148].

Initial investigations yielded similar qualitative scaling characteristics for the 3-D
systems as for the 1-D analogues. The earlier reported timings (Table 7.14) have since

been improved dramatically with refinements to the algorithm components. This is
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evident by comparing the times for the N=100,000 case, which for the higher accuracies
has improved the total time by a factor of two. The greater improvement for the lower

accuracy was due to improved timing optimisation and I/O time neglect.

N 10° 10* 10 Exact
500 0.12 0.27 0.46 0.24
1,000 0.29 0.75 2.81 1.00
5,000 1.43 3.20 26.00 25.10
10,000 2.95 9.63 74.39 100.00
50,000 14.56 64.31 357.20 2510.00
100,000 29.58 151.38 817.84 10145.70
500,000 167.69 657.61 885.80 252170.60
Table 7.15. KWIK timings for charged systems of three dimensional, uniformly distributed unit

point charges with incorporation of interpolation and a crude implementation of long-
range cut-offs.

Unlike the FMM [114,116] which is considerably more expensive in 3-D than in
1-D, the cost of KWIK increases moderately with system dimensionality. This is

illustrated for two predetermined levels of accuracy in Figure 7.13.

There are several important points to note from Figure 7.13. Firstly, the increase
in cost from 1-D to 3-D is not excessive and is approximately an order of magnitude
cheaper than the FMM [116]. Secondly, the data used to plot this graph used the earlier
unoptimised timings - the effect of the recent refinements will simply be a downward
shift in the lines. Finally, the scaling characteristics are the same in 1-D and 3-D. The
two 107 relative accuracy lines are unit slope and obviously parallel. The higher

accuracy lines are also parallel following the trend discussed in section 7.1.4.1.
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Figure 7.13. CPU Time (seconds) vs N (the number of particles). The filled symbols correspond to

the computationally cheaper 1-D systems, while the open symbols the slightly more
expensive 3-D systems. Like symbols represent similar accuracies.

7.3. Summary and Discussion

Ilustrative timings have been presented for a number of theoretical developments
presented in previous chapters. The effect of the theoretical developments was
simplified by considering collinear distributions of charge, thus the fundamental features
of the KWIK algorithm could be easily illustrated, in particular, the distribution
dependence of the long-range partition. KWIK has been found empirically to scale
linearly with the system’s size for sufficiently large N, in the case of charged systems.
Neutral systems however, appear to scale slightly less favourably than linearly, although
the total time requirements for calculations on very large systems (N=1,000,000) has
still been reduced significantly by utilising this algorithm. It was also indicated that for

a neutral system the short-range energy contributes significantly more to the total energy
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than charged counterparts. The validity of our emphasis on describing features of
simpler 1-D systems has been justified by the similar scaling characteristics of 3-D
charged systems, and the small increase in cost on increasing dimensionality from 1-D

to 3-D.

The decay parameter, @ and the degree of the Fourier expansion have been

determined through an optimisation procedure for the timings presented. It is apparent
from these timings that the KWIK algorithm has a statistical probabilistic base, which
stems from the random walk property of the Fourier intensity of the charge distribution,
I(k). This has led to cases where a higher accuracy was achieved at a computational cost
which contrasted with the observed trend. Predetermining the optimal decay parameter
and degree of Fourier expansion is likely to be linked to statistical properties of the
distribution. The amount of work the short-range partition will require will be
dependent on the density of the particles. The study of uniformly distributed net-neutral
distributions with fixed decay parameter indicates that the range of the distribution is
important for convergence of the long-range sum, with the plots of I(k) for various
charged distributions indicating that higher order distribution moments may be

significant and indicate features of I(k).
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CHAPTER EIGHT

KWIK APPLIED TO QUANTUM CHEMISTRY

8.0. Introduction

The results of the previous chapters equip us with a toolbox of algorithms for
computing Coulomb interactions using the KWIK method. With this established, it is
of great interest to speculate on the possible future uses of such a toolbox. In this
chapter, KWIK will be applied to arbitrary continuous charge distributions to illustrate
the generality of the algorithm. Given a number of assumptions, KWIK will then be
used to redefine the time dependent, non-relativistic Schrodinger equation, and
subsequently KWIK formulae for self-consistent field calculations will be obtained.

Emphasis will be placed on the formation of Coulomb (J) and exchange (K) matrices.

Two further sections have been added to indicate the usefulness of the algorithm.
The first is the use of Slater functions in quantum chemistry and how KWIK may aid in
an implementation and the second is a brief discussion on the possibilities KWIK has in

correlated techniques.

The main aim of this thesis has been “to enable the rapid evaluation of the
Coulomb field in Molecular Quantum Mechanical calculations.” If by ‘rapid’ we imply
linear cost or O(N) work we firstly require that the distribution is localised. No linear
method will be applicable to systems that are significantly delocalised. While MO’s are
often significantly delocalised, they consist of a sum of localised AO’s. In turm, the
electron density is written as a product of a density matrix element and basis function

pair (1.27), which is a localised representation.

8.1. KWIK for O(N) Fock Matrix Formation

8.1.0. Introduction
In order to afford O(N) SCF calculations, it is necessary to assume the localised

nature of the molecular electron density. Given this assumption it can be illustrated how
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the KWIK algorithm can be used to construct a Fock matrix in linear work. Individual
elements of the Fock matrix will be considered, firstly the one electron core
Hamiltonian matrix, then the Coulomb and Exchange matrices. To more clearly
illustrate the Quantum Chemical KWIK, KWIK is firstly re-derived using the compact

Dirac notation

8.1.1. KWIK in Dirac’s Notation

Reconsider the general separation of the Coulomb operator into a short-range

singular piece and a long-range piece

@_{_l—f(r)
r r

1
— (8.1)
7

The KWIK approach is to then replace the long-range operator with its Fourier series

representation (incorporating the @ decay parameter)

1-f(ar,)

ha

=Y A(k,w)exp(ik - (r, - 1,)) (8.2)

which can be recast concisely adopting Dirac’s notation and the Einstein summation

convention [149]

= i(:"':z = |e; (ro)e; (x2)| (8.3)
where
|, (r)) = VA(k, @) exp(ik; - T) (8.4)

and the A(k,w) are the Fourier coefficients. The necessary KWIK matrix elements can

now easily be determined by substituting the Coulomb operator with the following

1 _ Karmy)

N ha

+|e;(r))e;(ry)| 8.5)
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8.1.2. Core Hamiltonian Matrix

The core Hamiltonian matrix consists of the one electron kinetic energy integrals
and nuclear attraction integrals. The kinetic energy matrix T, consisting of kinetic
energy integrals, formally scales as O(N?), and can be afforded in linear work in a
similar fashion to the overlap integral matrix S. The nuclear attraction matrix V on the
other hand, formally scales as O(N*) which is reduced to O(N?) again by virtue of
overlap as discussed in Chapter Three. While the latter ‘formally’ scales quadratically,
the O(Nz) coefficient is significantly smaller than that of the electron-electron Coulomb
interaction as it is the interaction of the electrons, which are represented by a very large
O(N) number of small pieces of charge (the basis function pairs), with nuclei, whose
O(N) number is significantly less than that of electronic representation. Thus, the total
time required to evaluate the V matrix is significantly less than the J or K matrices. Not
withstanding, for significantly large systems with an O(N) J and K matrix algorithm, V

will become rate limiting.

KWIK can readily be used to evaluate the V matrix components. Consider the

nuclear attraction matrix elements

Vi = | ¢p(r){—;|§2—f_q}¢v(r)dr (8.6)

As a simplification let us represent the basis function pair as
$,(¢,(r)=0,,(r) 8.7

and to enable the use of Dirac’s notation, rewrite the integral as the double integral

using
(R, -1)=0,(r) (8.8)

and by adopting the Einstein summation convention the nuclear attraction matrix

elements can be written as

Z
Vo = H Q,,(r ){—-’_—‘}J(R A —T)dr dr, (8.9)

12
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and adopting Dirac’s notation

—Z;
O, ——|QA) (8.10)
N2

uv
now replacing the Coulomb operator with the KWIK operator (8.5) yields
1%

o =

(om

-Z,
Q#V _]QA>

Z f(ar,)

]QA) A(qu ej><ej|QA> (8.11)

n

n,

‘IQ‘W(r)['R _r|:|dr Q;,Z QA

The first term of the last line is obtained by integrating the delta function term from the
previous line. While the sum over A in the final line appears to make the V matrix
formation remain quadratic, this A summation need only be determined once for all

elements and is thus O(1). The first term is O(1) from proximity arguments.

8.1.3. Coulomb and Exchange Matrices

The Coulomb, J, and Exchange, K, matrix elements are given by, respectively

Ty =Y P (uvido) (8.12)
Ao
Ky =iz (nAlvo) (8.13)
2%
where
(uvido) = J ¢,.(r)9,(x;) [ }Pa(rz)%(rz)drldrz (8.14)

P is the density matrix and {¢} is the basis. Using the simplification of the

representation of the basis function pair the Coulomb matrix elements can now be

written (adopting the Einstein summation convention) as
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Juv =5 Aa(.uVI AO')

1 (8.15)
= PM(Q#V r_-|QM>
12
where on replacement of the Coulomb operator with the KWIK operator (8.5)
1
J#V = Pw<qu r_|Qw>
12
f
= P (0 [ T2 0, )+ Poo (e, Y, 01 516
12

=P, (ulio), + P, 0,0},

Similarly for the Exchange matrix elements, firstly adopting the Einstein summation

convention

K}lV = PVO' (ﬂvl A'O-)

1 (8.17)
= on<qu r_l Q).a)
12
and replacing the Coulomb operator with the KWIK representation
1
K, = PW<Q#V _|Q‘-°>
Yt
f
= P (00 |22 0, )+ P, (0 e, Ye, | 0 (8.18)

h,

P, (uviAo), + P,,0;,01,

where the quantities (UVIAo)s are the two electron integrals over the short-range

operator and the Q,’W are the Fourier transforms of the charge distribution Q,, evaluated

at kj.

Note again, while the KWIK equations for Coulomb and Exchange matrices

contain terms with O(N) summations
J . =Py (uvido), + P, 01,00 (8.19)

K,, =P, (ulAo), +P,.0.,04, (8.20)
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they are simple matrix multiply’s [56,57] which need only be computed once. Thus,
KWIK can construct the Exchange matrix almost as easily (the summations in (8.20) are
somewhat more difficult than for the Coulomb case) as the Coulomb matrix. This is not
true for the CFMM and its variants, which can only be used to linearise density

functional theory calculations (the DFT exchange term calculable in linear work).

8.2. Evaluating Short-Range KWIK

8.2.0. Introduction

During investigations into the optimal separator, the aim was to obtain a separator
that would also allow the exploitation of current ERI technology for evaluating the
short-range ERI’s. In this section the use of the erfc separator in two electron integrals,
how the integrals are best evaluated through exploitation of current integral technology,

and how one may screen out the ONY insignificant integrals in O(N) work is illustrated.

8.2.1. Integrals Over Gaussian S Type Functions
The Coulomb repulsion energy between two normalised Gaussian charge

distributions is given by

2
[i—ﬁ) JJ exp(-onr? )&}exp(_—ﬁlrz -B[)dr, dr, =ﬁerf(|3|/ o+ %)

(8.21)

From this basic integral recurrence relations can be applied to yield integrals of higher
angular momentum [128]. In order to compute the short-range KWIK energy, we
replace the Coulomb operator in (8.21) with the short-range KWIK operator. It can be
easily shown that the short-range KWIK (erfc) energy, between two normalised

Gaussians is given by

3p
(,‘;_‘3) .[ I exp(-ar;’ )[M] exp(-fr, - Blz )dr, dr,
r

AT 3

(8.22)
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which is very similar to the Coulomb term (8.21).

8.2.2. Screening Insignificant Integrals in O(N) Work

The screening of insignificant integrals follows closely from the techniques
outlined in Chapter Five, in which the significance of an interaction between a pair of
charges is based purely upon proximity. However, the continuous and diffuse nature of
basis function pairs requires more care in how such techniques are implemented. The
CFMM,, for example, while not being a proximity based method, uses a well-separated
(WS) index to handle diffuse basis function pairs that overlap a number of low level
boxes. It is likely that such an approach should not be adopted for short-range proximity
based techniques, such as KWIK and CASE. The short-range interaction between a
small number of boxes already limits vectorisability, WS indices serve only to further
decrease loop lengths and integral batch sizes. It is also likely that the mother cell
dimension, Rc, should be chosen such that the most diffuse basis function pair need

only interact with near neighbours.

While non-concentric shell-pairs may ‘spill’ over the sides of a cell, that is the
centres of original shells reside in separate cells, the amplitude and diffuseness of such a
pair will always be significantly less than that of the corresponding concentric shell-
pairs from the same functions. Therefore, their interaction need only be with near

neighbour boxes.

Alternatively, the methodology adopted in the CFMM case could be maintained if
the approach of Rapaport is adopted. This will also aid in maintaining vectorisation. If
cell division is applied, the WS indices will be altered and further increase efficiency.
For example, if a shell-pair was only slightly over-diffuse and thus necessarily assigned
a WS of 2, it would interact with many shell-pairs it need not. However, if cell size is
reduced using the division of boxes approach, the WS indices become less coarse. So

for a cell reduction of say k=3 (WS=1 = WS;.3=3) our slightly over-diffuse shell-pair
would be assigned a new index of WSy_3=4 c.f. WS_3=6 = WS=2.
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8.3. Evaluating Long-Range KWIK

8.3.1. CASE and CAP’s

The most basic way to approximate the long-range partition is not to evaluate it,

i.e. assume it to be zero. Thus, we have

L_Euclar), (8.23)
r r
This approximation has become known as the CASE (Coulomb Attenuated Schrodinger
Equation) approximation [150]. The rationale behind such an apparently crude
approximation is that it is well known that molecules are essentially non-polar except on
small distance scales. We should expect the attractive and repulsive Coulomb
interactions between widely separated regions of a molecule to approximately cancel, or,

in the words [151] of Clementi, “the electrons on the nose of Professor Karplus do not

interact with the electrons on the nose of Professor Eyring”.

Consider the potential due to a hydrogen atom nucleus at a distance x from its

position at the origin

o(r)

dr

V(0=
B8 (8.24)

1
x
and that of the potential due to the exact electron probability charge distribution

V)=~ ml#(;lmd r
: (8.25)

= —%(1 — exp(—2x) — xexp(—2x ))

The potential due to a hydrogen atom thus decays exponentially but individual
contributions as 1/x (the latter requiring us to consider all interactions). This kind of
reasoning can explain the success of CASE for determining the energetics of chemistry
but the observation that wavefunctions are little affected by neglect of the long-range

term requires deeper consideration.
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Consider the average total energy E, of a system in state ‘¥, which can be written

concisely as

(YIHI'P)

(8.26)
(¥]'Y)

E[¥]=

Now, the variation principle says that the best wavefunction is that which minimises the

total energy, viz.
OE[¥]=0 (8.27)

so that if we add (or subtract) a flat potential, c, to the Hamiltonian we yield a total

energy term augmented by that constant

_(YIH+d'P)

="y
_(HIHY) (¥1d¥)
C(YY)  (PlY)
_(PIHIY)
(YY)

(8.28)

However, the function that minimises the total energy (8.27) is completely unaffected by
the addition of this constant, flat term as the wavefunction ¥ does not appear with ¢ in
the energy term. In our construction of the separator we aimed to afford the flattest
possible long-range operator, thus the selection of the smooth, rapidly decaying CASE

operator was far from arbitrary.

While CASE was reasonably successful, there are simple chemical problems in
which the so-called background (the long-range partition) plays an important role.
CASE also yields very poor total energies. While it is generally accepted that quantum
chemistry relies heavily on cancellation of errors [41], total energies are not meaningless
and CASE is best considered the zero™ order approximation which we perturb to
improve its realm of applicability and accuracy. Higher order improvements could be
KWIK or as recently reported, CAP’s. The Coulomb Attenuated Potentials [152] model
the long-range operator by a sum of Gaussian functions which yield ERI’s easily

handled by slight modifications to current integral code.
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Gill [153] has recently indicated that the crude neglect of the long-range partition
by CASE also neglected significant short-range character which causes the large errors
in total energies (the long-range operator containing short-range character). He has
suggested that a better zero order CASE would be that of the CAP(1/2) approximation,
which is still short-ranged and is evaluated in closed form. The result is dramatically

improved total energies and ionisation energies for no increase in computational cost.

8.3.2. Approximating the Coulomb Operator

Firstly, it is necessary to define what is meant by “Approximating the Coulomb
Operator”. By approximate we mean that the total Coulomb energy is determined to
within some predetermined level of accuracy, €. That is, if the total Coulomb energy
was determined using the Coulomb operator as written, the same total energy would be
obtained using the alternative method, to within some level of tolerance. It is important
to emphasise here that a computer has limited finite accuracy, and no real number is

‘exactly’ (to infinite precision) represented by a computer.

While we can guarantee that the total Coulomb energy will be accurate to some
predetermined level of accuracy, no guarantee is placed on the accuracy of the
derivatives, i.e. the Coulomb matrix elements. Therefore, this section is concerned with
determining the total long-range KWIK energy to within some predetermined level of
accuracy. The long-range KWIK energy between two Gaussians can be written as

follows (adopting the Einstein summation convention and Dirac notation)

32
[%g) ] exp(—anz)[@)ew(‘ﬁlrz ~B[)dr,dr,

12

32
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which can be expressed more concisely as

32
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as we have written for the matrix elements is section 8.1. The latter are simply the
products of the Fourier transforms of the two Gaussians evaluated over the Fourier sum.

For a single term this is

0} = exp(-[k | J4B)exeik, B) (831)

8.4. Self Consistent Field Calculations

KWIK offers many possibilities for further improving the speed of SCF
calculations far beyond the reduction from O(N*) — O(N) cost. The Q-Chem program
[154], for example, increases the error tolerance in early SCF cycles and reduces it as
the density reaches self consistency. KWIK could further reduce the computation time
for early cycles by use of CASE or CAP’s. Given the quality of MO’s obtained using
the CASE approximation [150], higher order corrections may not be required until the
last few cycles, at which time the long-range partition could then be slowly built up. For
example, say at a DIIS [155-157] error of 1.0e-4 the discrete FT’s of basis function pairs
could be formed, saved to disk and incorporated into the J matrix for (say) up to
Ikl=0.5kmaxl. While this would be 50% of the long-range intermediates formed, from
the random walk argument of Chapter Six and the slow convergence of the Fourier
Series, the quality of the resulting J matrix would be significantly improved from the
CASE approximation, and it is likely that the addition of a single extra cycle on
reaching DIIS convergence of 108, incorporating the remaining long-range

intermediates would acquire the total energy to within the required accuracy.

8.5. Quantum Chemistry Using Slater Functions

8.5.1.STO’s

Slater Type Orbitals have long been considered as the more favoured basis in
which to expand MO’s displaying the features of exact SCF MO’s with cusps at the
nuclei and exponential decay far from the nuclei. In addition, many fewer STO’s are
needed [19] than GTO’s to achieve a given accuracy. While contracted GTO’s[158] are
able to remedy much of the functional deficiencies of primitive GTO’s, they present a

new computational problem. Furthermore, while GTO’s have been shown to be capable
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of yielding satisfactory molecular geometries and relative molecular energies, certain

molecular properties, such as those involving the core electrons are significantly less

effectively modelled by GTO’s than STO’s.

As discussed in Chapter Three, STO’s have effectively been discarded as basis
functions due to the intractability of the ERI’s in non-linear molecules. The nature of
the function, however, has always maintained prominence and directly led on to the
STO-KG basis functions. However, to model a single Slater AO to 1010 accuracy

requires a sum of 27 Gaussians [159].

More recently, Adams et al [160] considered the approach of modelling the STO

products
p(r)=9,0, (8.32)
by a sum of Gaussians
p) =3 Bexp(-0,r") (8.33)
i=l
in a least-squares sense
Z, = [[e(r)0(r,)e(x,) dr,dr, + A e(r)dr (8.34)
where
e=p-p (8.39)

the second term is a Lagrange multiplier to ensure conservation of charge and the 6(r,)
determines the sense in which least-squares is minimised. Minimisation of (8.34) with
respect to the f3;’s and ¢;’s will yield models (8.33) which are minimal with respect to
the residual density, electric field and potential of (8.35) for 6(r)2)’s corresponding to
the delta, Coulomb and anti-Coulomb operators [68] respectively. It was found that the

minimisation with respect to the potential of (8.35) led to the superior models where a
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sum of just 12 Gaussians modelled the STO product (8.32) to afford an error of less than
10" in the ER], significantly less than 27* for the density modelling of the AO’s.

How does KWIK aid in this matter? Firstly, the use of STO’s would still exhibit
an O(Nz) Coulomb problem in SCF calculations. If KWIK was used to overcome this,
the short-range integrals over the Slater products will remain intractable, thus requiring
the models outlined above. The long-range piece however, would not require this
modelling as only the Fourier transform of the Slater product is required. The decay
parameter could be adjusted so that the work rate of the short-range partition was
decreased, as the integrals over 12 contracted Gaussian functions require more work

than that of evaluating the FT of a single Slater product.

8.5.2. Slater Function Density

The advocates of Density Functional Theory claim that the ground state energy

can be obtained as the minimum of the energy functional
Elp) = [ pou(r)dr + Fp] (8:36)

where v is the external potential and
Flpl=TIp]+V,[p] (8.37)

where T[p] is the kinetic energy. However, the kinetic energy term has proven a
difficulty in that models such as the Thomas-Fermi one are crude approximations. The
solution to this problem was the introduction of an orbital basis, as suggested by Kohn
and Sham [42]. This remains the basis of DFT methodology at present, but given a
more suitable kinetic energy functional it is likely that nuclear centred Slater-type
densities will be adopted as a basis for the molecular density and the Kohn-Sham
formalism will disappear. Remaining however, will be the O(N*) Coulomb bottle-neck

to which KWIK will still be applicable.

If the density is constructed as a linear combination of Slater densities

M
p(r) = 2 P,.(aj3/87r)exp(—a,.|r = Al|) (8.38)

Jj=
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then the density self repulsion energy can be written
1
E, = (p(r1)|;_| p(r,)) (8.39)
12
substituting the KWIK operator (8.5) into (8.39)

= (p(x )le’fc(“””)lp(rz) )+ (o), (5 e, (x| ()

na (8.40)
= (p(r)|p(r))s + P,B;

where

p; = —ET,‘!—'::xp(ikj -AI) (8.41)

is the FT of the Slater density at k;.

If an appropriate kinetic energy functional is obtained, the CFMM will also be
able to aid in rapidly determining the Coulomb energy. Unfortunately the GVFMM has

been limited to Gaussian functions and will require re-working.

8.5.3. Stewart-Slater Atoms

A problem frequently encountered by MQM is the chemist’s desire to consider
molecules in terms of their constituent atoms. Schrodinger’s equation makes no
reference to these atoms and it has been generally accepted that it is not possible to
extract atoms out of molecules via the basic postulates of quantum mechanics.
Recently, Gill [161] has devised a method of extracting nuclear centred spherical
functions (Stewart atoms) whose sum best fits a molecular density in a least-squares
sense. Due to difficulties encountered in extracting the exact Stewart atoms,
approximate Stewart-Slater atoms are employed such that the density is represented as a

sum of Slater functions.

The possibility arises of replacing the true electron density by the Stewart-Slater

density for purposes of calculating the Coulomb energy. If the Stewart-Slater Coulomb
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energy is a good approximation to the true Coulomb energy, the work required to
calculate this will be significantly reduced and KWIK will also be able to be used to

further reduce computational cost.

8.6. KWIK in Correlated methods

The initial CASE investigations [150] not only considered Coulomb attenuation in
HF calculations, but also that in determining MP2 correlation energies. The MP2

correlation energy is given by

2

(\Po |2rij-l| W;)

i<j

(8.42)

1

2) _

Ef ——E
45 €, +E, —€, ~E,

and the approach adopted was to use the true HF MO’s, the MP2 energy was obtained
by replacement of the Coulomb operator in (8.42) by the short-range KWIK operator,
affording correlation energies in good, but systematically lower, agreement with the true
MP2 energies. However, as for the HF CASE energies, no computational advantage
had been implemented. A computational advantage is readily obtained for the HF case
via the employment of boxing techniques. The matter of how to apply the short-range
cut-off to improve the scaling of the attenuated MP2 energy calculation is a little more
difficult due to the energy denominators. Laplace transform techniques have been
proposed [162,163] as a method -of removing this denominator, but a numerical

integration is then required.

The attenuation of the Coulomb operator is an exciting prospect for perturbation
theory and for localised treatments in general [164,165] especially considering the small
absolute error invoked. However, the computational advantage is somewhat more

difficult to implement and will require significant effort.

In terms of the KWIK algorithm, disregarding the long-range term in the
attenuated approaches, such as CASE and CAP’s, is moving away from where the
KWIK algorithm holds its computational advantage - the relaxation of functions like

I(k) to its random walk expectation value. And in the case of correlation energy it is
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likely this advantage holds, as although the molecule remains net-neutral, all the

interactions are purely electron-electron.

Does KWIK have a place in correlated techniques? Th first response would be to
answer no, because it appears that correlation is a localised phenomenon and in the
Coulomb energy application KWIK was used to handle the long-range piece. However,

13

let us return to the statistics problem described in Chapter Four. “... the underlying
success of the method can be attributed to the fact that although the total number of
possible A;’s grows as O(n™), they are highly dependent as they have been generated
from only n independent values.” A split was applied for Coulomb energies because the
Fourier series for the Coulomb operator decayed slowly and the “... total number of
interactions ... generated from the independent values” was nowhere near as great as in

the statistics problem, where this number was enormous. Therefore, convergence was

necessarily aided by a more rapidly decaying long-range separator.

We should now recall that the conventional approach to correlation is to obtain the
HF wavefunction and consider electron excitations in a configuration interaction
approach, coupled cluster approach or perturbatively. All methods consider a large
number of contributions, but derived from a much smaller number of independent
quantities. Given that there are likely to be a very large number of contributions, the
decay of the associated Fourier series (whatever that may be) will be much less
important. Exactly how the KWIK philosophy may be applied to correlation is yet to be
addressed.
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CHAPTER NINE

CRITICAL ANALYSIS

9.0. Introduction

The KWIK algorithm has been derived for Coulomb energies for arbitrary
distributions, applied to one and three dimensionally distributed point charges and to
bottle-necks in self-consistent field calculations, and implemented for one and three
dimensional point charges. In this final Chapter, the aim is to give a critical account of
the algorithm, note deficiencies and how it may be improved, as well as comparing and
contrasting KWIK with its peers. Particular emphasis is placed on its application to

quantum chemistry.

9.1. Scaling

The KWIK algorithm originates from a combinatorial statistical problem [126]
(see also Chapter Four) in which the desired probability was written as a Fourier series.
Whilst the Fourier series coefficients decay slowly, the inner sum was found to decay
extremely rapidly. Initially, the inner sum begins at ("C)’, but as the Fourier series is
expanded this inner sum rapidly decreases to a noisy value of "C,, obtaining the
required probability to high accuracy for small expansions of the Fourier series, thus in
rapid time. The phenomenon of this rapid convergence observed by Gill has, in this

thesis, been linked to a random walk in the complex plane.

In the application of the methodology of Gill to the Coulomb problem for charged
systems, it has been found empirically for relatively large distributions, the algorithm
scales linearly with system size else, for smaller systems, it scales super-linearly.
Whatever the size of the system, total Coulomb energies can be afforded significantly
more rapidly using KWIK than with the classical quadratic method for other than the
most trivial system size. No formal proof for the scaling observation (i.e. that it is
rigorously linear) has been presented with the linearity argument based upon decay

characteristics of the Fourier intensity I(k). However, it may be possible that the rate of
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relaxation from N? to the noisy random walk value of N is dependent on the size of the

system, which may lead to ‘formal’ super linear scaling such as O(Nlog(N)).

The argument of formal cost scaling has also been directed towards the FMM
[166], where it is explicitly stated in the title that “Greengard’s N-body algorithm is not
order N.” Whatever the case may be for KWIK and FMM, the difference between an
O(N) algorithm and an O(Nlog(N)) algorithm is difficult to judge empirically at present
(see Figure 9.1), where the range of application is ‘limited’ to perhaps millions of
particles due to machine hardware restraints, rather than time constraints, which is the

case for quadratic methods.
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Figure 9.1. A plot of linear and xlog(x) functions to illustrate that the scaling behaviour of the two
are remarkably similar.

The concern with respect to cost scaling behaviour for the sub-quadratic
approaches (FMM, KWIK) should be the magnitude of the coefficient. The plot in
Figure 9.1 has been carefully constructed to imply O(Nlog(N)) is similar, if not superior

to an O(N) function by careful choice of coefficients. Equally, the plot could have
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assigned a large coefficient to the O(Nlog(N)) slope to indicate that an algorithm with
this scaling is completely undesirable. Conversely, O(N*) ERI code may maintain
superiority over O(N) code over a suitable range of applicability. That is, the coefficient
of the linear method is so large that the linear method is computationally more

expensive than the quadratic method for all suitably sized molecules.

To summarise this argument, cost scaling must be held in context. KWIK is
undoubtedly faster than the classical quadratic approach to Coulomb energies, as is the
FMM. The aim of both the algorithms is to rapidly evaluate the Coulomb field of large
systems of charged particles. If they do formally scale non-linearly, the success of these

algorithms has not been affected by this apparent unfavourable formal scaling.

In the case of net-neutral systems, the auxiliary function I(k) is not a rapidly
decaying inner sum. For these systems we have found that the KWIK algorithm scales
in a similar fashion to that of moderately sized charged systems and the PPPM
algorithm. The Ewald summation technique scales weakly as O(N?) as the ‘split’ is
applied so that the real space work considers only particles within a single simulation
cell and not its images. That is, the decay parameter is fixed. Similar O(N?) scaling was
noted for KWIK when the decay parameter was fixed for neutral systems rather than
optimised with the degree of Fourier expansion. While KWIK’s empirical scaling is
worse for net-neutral systems than for charged systems, its total cost remains

substantially cheaper than the quadratic alternative.

9.2. Significant Findings
KWIK has been shown to be an excellent method for rapidly obtaining the

Coulomb energy of large systems of particles exhibiting orders of magnitude speed
improvement over the classical quadratic method. High accuracy calculations can now
be conducted routinely for systems upwards of millions of particles. The swift
evaluation of energies of such systems is attributable to the rapid decay of the Fourier
intensity of the charge distribution which is linked to a random walk in the complex

plane. This is irrespective of the lack of a rigorous proof of linear cost scaling.
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On application of KWIK to quantum chemistry it has been clearly illustrated that
KWIK can be used to rapidly determine the Coulomb and Exchange matrices. The
Exchange matrix has not previously been calculable by non-approximate sub-quadratic
methods. (An approximate sub-quadratic method would be one which makes an
assumption about some feature of the exchange reducing its scaling behaviour. A non-
approximate method would calculate the matrix elements to within some predetermined

accuracy.)

The results of the application of the CASE approximation is one of the most
significant findings in quantum chemistry in recent times. Disregarding such a large
part of the Coulomb operator with massive errors induced in total energies to afford

chemistry to such high accuracy, is in the least, surprising.

CASE is clearly linear.

9.3. KWIK vs The Rest

9.3.1. KWIK vs Ewald

KWIK is not a competitor of the Ewald summation technique. Ewald is designed
for net-neutral, periodic systems. KWIK is not designed for periodic systems and can be
used to consider charged systems (infinite systems cannot be charged - they have infinite
energy). Furthermore, the success of KWIK is based on the relaxation to a random walk
expectation value, not the random walk expectation value itself. This relaxation

phenomenon is not observed for neutral systems.

The major difference between KWIK and the Ewald summation technique is that
KWIK uses a Fourier series to model the long-range operator, Ewald on the other hand
uses a Fourier Series to model the long-range potential. Ewald then exploits the
periodicity of the Fourier series to aid in overcoming surface effect problems. KWIK

makes no use of the Fourier series periodicity and, in fact, avoids it.

Delley [110] has indicated that the Ewald k-space cut-off is aided by the random
walk feature (the k-space partitions of KWIK and Ewald have similar features - I(k)).

This is not true for non-regular arrangements as has been shown for neutral systems in
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Chapter Seven. As a final remark on Delley’s paper, Luty [105,112]) has shown for
electrostatics on a grid within Ewald summation applications, the scaling is not linear

(mildly sub-quadratic) which contrasts with Delley’s claim of linearity.

9.3.2. KWIK vs FMM
The most important comparison to be made is that of KWIK with the FMM as

both have been directed towards solving similar problems. To date, a direct timing
comparison has not been made, but as mentioned in Chapter Three, it is important to
consider realms of applicability and prospects of complementary behaviour.
Complementafy behaviour has often been found for O(N?) ERI evaluation which has led
directly to the PRISM [167] algorithm. For example, some methods are better for high
degrees of contraction, others large angular momentum. No single approach is superior

for all cases.

All short-range interactions are significant for the FMM. The separation is
discontinuous and with the recent advances by White [81], this separation can be made
close to optimal. KWIK on the other hand, uses a proximity based short-range
separation, which (see Chapter Five) leads to large inefficiencies. That is, all FMM
short-range computations are significant and contribute significantly to the total energy,
KWIK wastes time computing quantities which do not contribute significantly to the

total energy.

In terms of the long-range partition, FMM is truly long-ranged with all
contributions arising from distant particles, on the other hand, the long-range KWIK
operator is named solely due to its slow decay, and contains short-range character.
KWIK’s long-range efficiency is dependent on the range of the distribution, so if an
outlier particle is added the overall efficiency will be reduced, by virtue of reduced k-
vector density [105,112]). The FMM, on the other hand, can easily add in outliers

without significant adverse effects on efficiency [116].

Factors which favour KWIK are memory requirements and simplicity. The
memory requirements for the long-range FMM requires the storage of high degree

multipole expansions, which is memory intensive. Long-range KWIK, if so desired, can
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have its memory requirements reduced to that of only the particle coordinates. The

disadvantage is a reduction in speed.

KWIK is a very simple algorithm in concept. It requires particle interactions via a
short-range interaction potential, and long-range contributions requiring only Fourier
coefficients with the remaining long-range components constructed from trigonometric
functions and built up using simple recursion relations. The FMM requires multipole
expansions, conversions to a localised Taylor expansion with complicated (but
ingenious) passes and translations. In summary, a crude KWIK algorithm could be

coded up significantly faster and more efficiently than a crude version of the FMM.

FMM also has the advantage of being a more mature algorithm - at least ten years
senior. Thus, many aspects of the algorithm have been refined and re-refined by a
number of workers to increase the efficiency and accuracy of the algorithm. However,
Chapter Seven has indicated that KWIK has already gone through a number
improvements since its inception - a direct comparison of the methods two years ago
were far less favourable than at present (factors of two for 3-D systems) - and further

improvements will come.

9.3.3. KWIK vs CFMM

The CASE approximation has shown virtue as a method in its own right and, as
discussed in Chapter Eight, a means to reducing the cost of early SCF cycles. The
CASE approximation is successful because the KWIK separation is continuous.
Applying a similar neglect of long-range contributions from the CFMM (or FMM) will
lead to massive errors which would imply that the CFMM would be more difficult to
use to build up accuracy in the early iterations of SCF calculations in manner that

KWIK can be.

KWIK can also be used to rapidly evaluate the Exchange matrix which cannot be
done using the CFMM. In defence of the CFMM, it can and, unlike KWIK, has been
used in DFT calculations which have the added advantage of having correlation
incorporated into the calculation. While KWIK can also be used in such calculations, it

may or may not add any significant speed-up.
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Molecules have a (near) net-neutral charge, which from our particle studies
indicate that KWIK will lack the ‘linearity’ for relatively large systems. However, the
bottle-neck lies heavily towards evaluating the Coulomb and Exchange matrices, both of
which involve interactions of species of a single charge sign. That is the number of
O(N?) terms and the coefficient for evaluating Coulomb and Exchange terms is much
greater than that of nuclear attraction and nuclear repulsion contributions. So, like the
Hamiltonian diagonalisation, where the asymptotic cost scaling will be greater for these
terms if constructed classically, the cost of evaluating Coulomb and Exchange terms
using KWIK will still remain substantial for molecules that we wish to subject to

calculation. CFMM on the other hand scales similarly for neutral and charged systems.

On the introduction of new algorithms for calculating Coulomb interactions, linear
or non-linear, comparisons should be made in an attempt to identify the areas where the
new algorithm can be used to strengthen weaknesses of current algorithms, so that new
and old may be used to complement, rather than compete. For example, CASE could be
used in early SCF cycles to get the MO’s converging to self-consistency, followed by
CFMM for converging the energetics if CFMM is found to be superior to KWIK.
Whether KWIK is or is not faster than CFMM, given the statistical basis of KWIK, it
ought to be possible to fabricate a molecule whereby the CFMM is significantly faster
than the KWIK algorithm and vice-versa.

9.4. Further Work Directions

Since Greengard’s thesis, the FMM has been applied in many areas previously
restricted by an N-body bottle-neck and the algorithm has been through many radical
changes which have improved its efficiency and generalisation. KWIK, on the other
hand, is a young algorithm which has shown great potential and has areas where

significant improvements could be made.

® A more detailed investigation into the relaxation of the I(k) to its random walk
expectation value needs to be considered. KWIK’s advantage lies in the rapid decay

of I(k), and as we have seen for highly polarised distributions, this advantage is lost.
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Relationships need to be developed between the statistical distribution of a system

and this relaxation phenomenon.

The decay parameter and degree of Fourier expansion need to be predetermined. It
was found empirically (similar to the PPPM methodology) that the total time was
minimised by an approximate 50/50 split of CPU time between the short- and long-
range partitions. However, if the relaxation of I(k) is slow, this mix will require
significantly different (optimal) parameters for similar sized distributions.
Furthermore, the nature of the platform will also have a part to play. It was noted in
a brief trial, that on an IBM RS/6000 model 43P, which has specifications implying
that it is approximately 2.5 times faster than the IBM RS/6000 model 355, the short-
range code was 2.5 times faster but the long-range code ran at similar times.
Similarly, vectorisation of the KWIK algorithm will see that the long-range code is
highly vectorisable, with long inner loops over N, whereas the short-range code will
require careful tuning. The advantage with KWIK is that the short/long split is
continuous so that the decay parameter, and degree of Fourier expansion can be
carefully adjusted for differing platforms and architectures to minimise total time

requirements.

The formal scaling of the algorithm needs to be elucidated. Does the relaxation
phenomenon have an N dependence for similarly distributed systems? In
investigations undertaken, it was sought to illustrate for relatively low accuracies
that the formal cost scaling was linear and from an empirical standpoint this is
correct. However, the short-range code became ‘choked’ on the scalar machine,
where increases in the decay parameter (reduced cut-offs) saw increased CPU times
for short-range work. This would indicate very short inner loops and it is possible
that the implementation of Rapaport’s layer algorithm may improve matters. On the
other hand, for relatively low accuracy, KWIK calculated total energies extremely
rapidly. That is, the O(N") coefficient is small, emphasising the context of algorithm

scaling.
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® The erfc function has been implemented as the separator, previously not having
determined the ultimate separator. The improved efficiency on the use of the

ultimate separator should be addressed and will serve as a useful benchmark.

® It is clear from Chapter Five how best to evaluate short-range interactions with
interpolation of the potential and suitable boxing schemes. The long-range partition
remains more open. The use of the Fourier series has been maintained after
significant investigations presented in Chapter Six where the Fourier series was
likened to a Simpson type quadrature rule. While this has allowed the
implementation of efficiencies based on the even placement of roots, it is well
known that such placement is inherently inefficient in terms of the number of roots

required.

® It has been found with the CASE approximation and in KWIK calculations on net-
neutral particle systems that the long-range contribution to chemistry (and total
energy) is minimal. However, in the KWIK operator split, computational time
requirements were apportioned equally for evaluating both the long- and short-range
partitions. Either the manner in which relative contributions are measured in terms
of their magnitude is incorrect or, the way energy contributions are separated is
inefficient. My belief is that the former is incorrect. Consider, for example the
correlation energy. Calculating the correlation energy more precisely in a
conventional sense requires enormous computational effort for approximately 1% of
the total energy. However, this energy has been found to be extremely important in
many areas of chemistry. On the other hand, it has been found that neglect (HF
calculations) or partial neglect (MP2) of correlation, introduces an acceptable error
in the chemistry. Can the long-range partition be treated in a similar fashion?
Already in the CASE and CAP approximations realms of applicability have been
illustrated. £ CASE yielding acceptable chemistry for molecule energies, poor
chemistry for ionisation potentials. The latter corrected acceptably by the addition

of a constant.

e The long-range partition needs to be improved upon for the purposes of determining

accurate Coulomb energies. It is possible that methods which encompass the
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observations from the CASE approximation may lead to such improvements. The
fact that the KWIK long-range partition has short-range character needs to be
addressed - thus the first order approximations to the long-range operator should be
short-range in character. Then look towards identifying a long range approach that
on increasing complexity captures the parts of the long-range contribution which are
chemically important. It may be that the cosine modelling of the long-range

operator by matching derivatives is a suitable contender.

e The nature of the long-range partition, whether it be a Fourier series or Fourier
transform with some ingenious quadrature scheme, requires evaluating I(k) at some
given value of k. This requires looping over all particles repeatedly which is
particularly vectorisable as mentioned, but is also amenable to parallelism.
Effectively, very similar jobs are required to be completed, simultaneously, each
with identical computational cost. This is a perfect contender for use on a parallel
machine. For small numbers of processors, each processor could be assigned a
certain root or number of roots at which to evaluate the I(k) function or altemnatively,
for massively parallel machines, each processor assigned a particle, of which the FT

need be evaluated for all roots.

9.5. Summary

The KWIK algorithm for Coulomb interactions has been presented with a number
of applications. KWIK has been shown to be a useful tool for the rapid evaluation of
the Coulomb field of large systems of charged matter, the nature of the method
indicating that very large systems become an advantage for obtaining increased
accuracy. The underlying success of the method is related to the relaxation of the
Fourier intensity of the charge distribution to a random walk expectation value. This
indicates a statistical quality which may allow an optimal short-long split to be tailor-

made by exploitation of simple distribution properties of the charge density.

KWIK was found to be superior to alternative methods, such as the (C)FMM, in a

number of ways. For example:
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® The increase in work with increasing dimension is approximately an order of

magnitude less than the FMM.

® Memory requirements of KWIK are moderate, whereas the FMM storage

requirements are large and are dependent on the accuracy required.

e KWIK can be used to determine the non-classical exchange matrix elements in a HF

calculation, which is not possible with the CFMM.

A number of important applications in quantum chemistry have been illustrated,
including the ease of which matrix elements can be derived by employing the compact
Dirac notation. In addition, the immaturity of the KWIK algorithm has been highlighted
by indicating the scope for improvement in specific areas. In particular, linear scaling
relying on the relaxation of the Fourier intensity to a random walk expectation value is

not yet fully understood.
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APPENDIX A

DATA FOR THE SHORT-RANGE INVESTIGATIONS

Presented in Table A.1 to A.3 are the efficiency data for Figures 5.4 and 5.5 as

well as the number of significant near-neighbour cells.

k  Near Cells Efficiency Rel.

1 7 0.1727 0.38
2 19 0.2546 1.54
3 31 0.3511 3.46
4 37 0.5229 6.16
5 55 0.5496 9.62
6 . 0.5963 13.86
7 91 0.6511 18.86
8 121 0.6396 24.63
9 15 0.6486 31.18
10 163 0.7418 38.49
11 199 0.7352 46.57
12 285 0.7410 55.43
13 265 0.7711 65.05
14 301 0.7874 75.44
15 361 0.7537 86.60
16 879 0.8168 98.53
17 433 0.8071 111.24
18 475 0.8248 124.71
19 511 0.8542 138.95
20 583 0.8296 153.96
21 649 0.8217 169.74
22 685 0.8544 186.29
23 745 0.8586 203.61
24 817 0.8525 221.70
25 859 0.8798 240.56
Table A.1. Theoretical efficiencies and number of near neighbour cells for the use of Hexagons as

the parent cell in 2-D short-range calculations.
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k  Near Cells Efficiency Rel.

1 9 0.3491 1
2 25 0.5027 4
3 49 0.5770 9
4 71 0.6528 16
5 109 0.7205 25
6 157 0.7204 36
L, 201 0.7659 49
8 265 0.7587 64
9 321 0.7927 81
10 385 0.8160 100
' 461 0.8246 121
12 533 0.8488 144
13 621 0.8550 169
14 713 0.8636 196
15 817 0.8652 225
Table A.2. Theoretical efficiencies and number of near neighbour cells for the use of Squares as

the parent cell in 2-D short-range calculations.

k  Near Cells Efficiency Rel.

1 13 0.4186 1.73
2 37 0.5883 6.93
3 73 0.6709 15.59
4 121 0.7195 27.71
) 181 0.7516 43.30
6 253 0.7743 62.35
7 337 0.7912 84.87
8 421 0.8272 110.85
9 529 0.8332 140.30
10 649 0.8384 173.21
Table A.3. Theoretical efficiencies and number of near neighbour cells for the use of Triangles as

the parent cell in 2-D short-range calculations.
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APPENDIX B

DERIVATION OF NUMERICAL APPROXIMATION FOR
DETERMINING THREE DIMENSIONAL FOURIER
COEFFICIENTS

From Chapter Six, we have the problem of not being able to obtain an analytic

solution to the integral (6.75)

jﬁe"p(’k b e 6.2 (B.1)

—-T-T-7

which we call I and rewrite as

_ P rexplitkx+ky+k 2))
_JJJ‘ 1 rz 3

dxdydz (B.2)

-n-n-T

What is required is a highly accurate numerical approximation, which can be evaluated
quickly. To do this [146] we begin by considering the double tetrahedron 77 with
vertices (-1,-1,1), (-1,1,1), (1,1,1), (1,-1,-1), (0,0,0) for the upper part, and (-1,-1,-1),
(-1,1,-1), (1,1,-1), (1,-1,-1), (0,0,0) for the lower part. We now define

Iz - J-U Cxp(f(klx+k2y+k3Z))dxdydz (B.3)

r

Similarly, if we consider the tetrahedra Tx and Ty aligned with the x and y axes with

analogously defined Iy and Iy. Then
L= gt ety (B.4)
therefore
I (k,,k,,ky) = 1,(k;,k,,k,) (B.S)
and

1,(k, ky,k3) = I, (k; Ky, ky) (B.6)



thus we need only focus on Iz.

It can be easily shown that our focus integral can be written as

j_ I T exp(i(k,x +k,y +k,2))

I, = dxdydz
“x -l 4
=]'. J. jexp(i(k,x+k2y+k3z))dxdydz
X -z -2 F

By letting x =Xz and y = Yz yields

—exp(iz(k,X +k,Y +k;))dYd X dz

x 1 1
—‘[r 1[ Z[\II +X*+Y?
and by reordering the integration and a change in notation

11 =

=eX iz(k,x+k,y+k,))dzd ydx
_IZE ‘[-\fl+x + ¥ plizth ’ 3)

We can then integrate over z to yield

—j J [27rsin(jr(ktx+kzy+k3))+
\/1+x +y° B Higy sl

-1 =1

2(cos(m(kyx + kyy + k5)) - 1)

> dydx
(kx +k,y + k)

It is then convenient to write

(ky,k;,ks) = k(cos x siny,sin y cosy,siny)

so that

[—sinx% + cosx%]f(k,x +k,y)=0

where f is arbitrary. Note also that
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(B.7)

(B.8)

(B.9)

(B.10)

B.11)

(B.12)
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[— sin xi + cos x%] arcsinh[ Ry e A ]

o .,/1+(xcos;(+ysinx)2 (B.13)
_ 1
Y1+ +y°
therefore
I, = H [—sinx—(?—+cos;(—a—:,arcsinh B s ¥
R ox dy JT+ (xcosy + ysin )’ B
2msin(m(kyx +kyy +ks) | 2(cos(m(k,x + kyy + k3)) - 1) dxdy
kx+k,y+k, (kx+k,y+k;)°

where R is the unit square. Applying Green’s theorem in the plane reduces the double

integral in (B.14) to two single integrals

1 .
w= J —sin x| arcsinh LY B ¢ *
b \/1-i-(xcos;g+ysinx)2

x=1
2rsin(m(kx+k,y+k,)) 2(005(7£(k1x +kyy+ky)) - 1) 3
kx+kytk,  (kxtkytk) R
e (B.15)
1 2
+ J cos x| arcsinh XS+ ycosx ®
e \/1+(xcos;(+ysin;()2
=1
2msin(m(k,x + k,y +k3)) ., 2(cos(m(kyx + kyy + k3)) - 1) y )
X
kx+k,y+k, (kx +k,y + k;)?

y=-1

The second of these integrals can be written as



-xk, + k,
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J(k‘,kz,k)-_[ arcsin = *
JEE ek +k2 JkZ(1+x%) + 2k x + 2k,

2 sin(m(kyx +ky +ky)) | 2cos(m(kx +k, +ky))=1))
kx+k,+k, (kx+k, +k,;)°

(B.16)

arcsinh( =

*
ka(1+x2)—2k,k2x+2k§]

( 2nsin(n(lx—ky +ky)) | 2(cos(m(kyx — k, + k;)) - 1)

kx—k, +k, (kyx =k, +k;)’
and the first integral is simply J(k2,k;,k3). Hence we have
I, = J(k, .k, k) + J(k, ,k, ,k5)

and

I = J(ky ky Je3) + T(ky Ky ) + T (Ky ok ky)
+ T (ks ke ) + T (g oy k) + T (K Ky k)

-

(B.17)

(B.18)

For our numerical approximation method it is best if we introduce an alternative

to the function J which is

k.x+2k,
Z(k,,k,,k;) = gr(kx+k, +ky))+
(ks s) = -[J +x k2 +k)} +(kx+k)[((I 2+ k) (B.19)
g(m(kx+k, —ky))|dx
where the function g is defined as
0x=0
={1-
g(x) cos(x)’x s (B.20)
X
The integral (B.2) is then obtained as for the J function
I = Z(k, ,k,,ky) + Z(k, ,k, ,k3) + Z(k, ,k5,k;) B21)

+Z(ky Ky k) + Z(ky kg k) + Z(Ky Ky k)
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The key to evaluating (B.19) is replacement of the radical 1/ v2+x* by a rational

function in x* valid for the interval [-1,1]. This is done by approximating 1/ v2+t bya

rational function in ¢ over the interval [0,1]. Thus, the original radical can be

approximated as follows

1 3
= ao <+ LRI
2 + xz " Jj=1 bj,m + xz

The integral (B.19) can then be evaluated analytically to yield

Z(kysky k) = 2Rc{id,—,m Al(k,ky,ky,b; )11 (K, Ky K3, ) +
j=1

Zaj_mA2(k,,kz,k,,bj'm,d)IZ(k,,kz,@,bj_m)+
j=1

(B.22)

{ao_m Bl(k,,k,,d) + zm:aj'm A3(k1,k2,k3bj'm,d)}I3(k,,k2,k3,d) i (B.23)
j=1

{ao'm B2(k,,k,,d) +iai-m A4(k,,k2,k3bj'm,d)}I4(k,,k2,k3,d) +

ky. 2k

I=-k3

where

d =k +k;’

and the functions are defined as follows:

> {aO.m B3(k,,l,d) + iam AS(kl,kz,l,bj.m,d)}IS(k[,kQ,l)]

22k, — ik,a)(k, — ik,a)

Al(k, ky ks, a,d) =

(<2ia)(d* + (k, - ik,a)* ((k, — ik,a)* — k")

2(2k, +ik,a)(k, + ik,a)

A2(k,,k,,k;,a,d) =

o g2
AB(kl’k2$k3,a,d)= _(kl_ld)kl

(2ia)(d® + (k, + ik,a)*((k, + ik,a)* —k;")

((ky +id)* +a*k)(ky +d*)

(B.24)

(B.25)

(B.26)

(B.27)



—(k, +id)k?

Ad(k, .k, k.,a,d) =
(ksoky ks,a,d) ((k, —id)* +a*k,*)(k, +d?)

(kz i k3)k12
((k, +k,)* + @’k )(k,* +d?)

A5k, .k, ,k;,a,d) =

—k, +id

Bi(ky ks,d) =77 7

—k, —id

B2(k,,k,,d) = il
k -k
B3y i

11(k, &y ky,a) = 1og[’_“ +:)—cxp(7£(k,a +i(k, +ky)))*
a-

0,k >0}

2{1111(- (w(a=D)) - {:k:SD

12(k, K, ky,a) = 1c;>g('_“z ;:)—exp(n(—k,a +i(k, + ky))) *
ia

0,k <o]

21{]111(— m’c(a+z)) { ,kl 0

1 k,+k,+id
13(k, .k, .k, d) =—]|log] ——=2— |- ik, +d))*
(ky .k, ,k5,d) k;[og[—kl-!-kzﬂdj exp(n'(:3 ))

{E\(n(d +i(k, ~ k,))) ~ E,(n(d — i(k, + k, )))}]

1 k,+k,—id g
I4(kl !kz ,k3,d) = k—‘[log(m) e exp(fc(:k3 = d)) *

2mik, k 0
{E,(—x(d+i(kl+k2))) { n(z)k +k :0
-

2mi,k, -k, >0
Ei(-zr(d-l-i(—k. +k2)))_{ n-(; :2 -k ZOH
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(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)



I5(k; ,k; . k3) =

al

{log(i(-—kl +k, +ky))+ El(

—log(m)—7v.,k, +k, +k;=0

log(i(k, + k, + ky))+ EN(=iz(k, + k, + k) K, + Kk, +k; # 0

—log(m)—v,~k +k,+k;=0

—in(—k, +ky + k3))—k, + ky + ks # 0
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(B.37)

Within (B.24-37) i is the imaginary number and 7y is the Euler-Gamma constant.

Coefficients in (B.22) and (B.23) are tabulated in Table B.] for various minimum errors.

Table B.1.

2

j,m Am bim Error
0,1 0.21279948857675

1,1 1.38968592022695 2.81161655043445  4.1*107
0,2 0.12759217738641

1,2 0.69059184081206 2.25699934453100

2,2 1.81578702500711 6.63818399576723  2.7*10°
0,3 0.09111050578366

1,3 0.46925779209278 2.12683144521070

2,3 0.73237516225917 3.55372210183254

35 2.38111230961923 12.5803427170724  1.7*10°!

Table of approximation coefficients for equation (B.22) as obtained using
Mathematica [168].
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QUADRATURE RULES AND POLYNOMIALS FOR THE

EXPONENTIAL INTEGRAL WEIGHT FUNCTION

Presented in Table C.1. are the first set of 16 roots and weights over the

exponential integral weight function for approximating integrals of the type

1 o M
Z—J—E-lf(x)E, (x*/4)dx = ij f(x,)

(C.1)

where the x; and wj; are the roots and weights respectively. The quadrature (C.1) is exact

for polynomials f(x), up to degree 2M-1.

M Roots Weights
1 0.00000000E+00 1.00000000E+00
2 + 0.81649658E+00 0.50000000E+00
3 0.00000000E+0 0.81481481E+00
+ 1.89736660E+00 0.925925923E-01
4 +0.61901463E+00 0.48026319E+00
+ 2.75043139E+00 0.19736817E-01
5 0.00000000E+00 0.72794476E+00
+ 1.47338538E+00 0.13235395E+00
+ 3.53899365E+00 0.36736750E-02
6 + 0.52562035E+00 0.45934097E+00
+2.20250313E+00 0.39949092E-01
+4.21854877E+00 0.70994320E-03
7 0.00000000E+00 0.67258100E+00
+ 1.25634926E+00 0.15305082E+00
+2.90309801E+00 0.10531594E-01
+4.85530078E+00 0.12708 160E-03
8 + 0.46765442E+00 0.44152700E+00
+ 1.90283824E+00 0.55673325E-01
+ 3.52528890E+00 0.27764449E-02
+ 5.42906631E+00 0.23232486E-04




N Roots Weights
9 0.00000000E+00 0.63251186E+00
+ 1.11755679E+00 0.16511843E+00
+ 2.53756008E+00 0.17950771E-01
+4.11850982E+00 0.67083737E-03
+5.97431298E+00 0.40290865E-05
10 + 0.42690048E+00 0.42643715E+00
+ 1.70451624E+00 0.67674755E-01
+3.11226962E+00 0.57261575E-02
+4.66081281E+00 0.16123457E-03
+ 6.47794625E+00 0.70951775E-06
11 + 0.00000000E+00 0.60139972E+00
+ 1.01859480E+00 0.17263576E+00
+2.28864417E+00 0.24951366E-01
+ 3.66689410E+00 0.16765164E-02
+ 5.18097036E+00 0.36383422E-04
+6.96120116E+00 0.12008017E-06
12 + 0.39609730E+00 0.41347132E+00
+ 1.56012909E+00 0.76957335E-01
+ 2.82465860E+00 0.90801655E-02
+ 4.17947860E+00 0.48297931E-03
+5.66534585E+00 0.81773835E-05
+ 7.41455027E+00 0.20575626E-07
13 0.00000000E+00 0.57613576E+00
+ 0.94325209E+00 0.17749703E+00
+ 2.10403206E+00 0.31255608E-01
+ 3.34651894E+00 0.30473839E-02
+4.67472250E+00 0.13035029E-03
+ 6.13274621E+00 0.17508224E-05
+ 7.85250785E+00 0.34160150E-08
14 + 0.37168398E+00 0.40215984E+00
+ 1.44866731E+00 0.84264765E-01
+2.60802363E+00 0.12538550E-01
+ 3.83287640E+00 0.10017689E-02
+ 5.13904051E+00 0.34704537E-04
+ 6.57345258E+00 0.37398577E-06

+ 8.26772200E+00

0.57315195E-09
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N Roots Weights

15 0.00000000E+00 0.55497276E+00
+ 0.88330966E+00 0.18069442E+00
+ 1.95965707E+00 0.36837108E-01
+ 3.10198960E+00 0.46644345E-02
+ 4.30549209E+00 0.30880973E-03
+ 5.58921937E+00 0.87741475E-05
+ 7.00078174E+00 0.76832601E-07
+ 8.67082039E+00 0.93692566E-10

16 + 0.35167460E+00 0.39215887E+00
+ 1.35911522E+00 0.90112950E-01
+2.43667316E+00 0.15935537E-01
+ 3.56539142E+00 0.16969892E-02
+ 4.75106905E+00 0.93441500E-04
+ 6.01562508E+00 0.21950778E-05
+ 7.40730175E+00 0.15768352E-07
+ 9.05590925E+00 0.15458650E-10
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Roots and weights for the Gauss type quadrature scheme over the weight function

E\(k¥/4).

Equation (C.1) contains the weight function, over which the polynomials whose

roots are those tabulated above, are orthogonal, i.e.

w(x) = ﬁE, (x*/4) (C2)

These orthogonal polynomials satisfy the three term recurrence relation
P(x)=xP_,(x)= AP _,(x),n=234... (C3)
where
P,(x)=0,B(x)=1and B(x) =x (C4)

of which the constant A, was unable to be determined in closed form during our
investigations. By multiplying (C.3) by x“w(x) and integrating over the region of

orthogonality we yield



Ix”*zf}{l (x)w(x)dx = Tx"”‘”’ P_ (x)w(x)dx—A, Ix'””ﬂ-z(x) w(x)dx

If we define
d = Jx"’“”P,l (x)w(x)dx
then we can compactly write (C.4) as

dﬂ.j = dn-—l.j+1 i Andn-z,jﬂ

Now from ref. [140] we can show that

An - jﬂ—l,o
n-2.0
which allows us to rewrite (C.7) as
dn-l,O
d'lvi i dn—lvj+l _d—n:—z':dn—z.jﬂ

Since

2j+2 l
dy; = 2 I“(j+—)
T2j+1 2

and

2j+4
g e r(j+3)
e T G

189

(C.5)

(C.6)

(C.7)

(C.8)

(C9)

(C.10)

(C.11)

are easily afforded, we can use the recursion formula in (C.9) to build up elements

necessary for determining A, and thus recursively determine our polynomials via (C.3).
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APPENDIX D
DETAILS OF KWIK TIMINGS PRESENTED IN CHAPTER
SEVEN
N/E Feature 107 10* 10° 10° 10
100,000 NBOX 21387 1648 486 259 202
2,108,918 M 10 145 605 1250 1555
(0] 0.3007 0.03770  0.01463 0.009373  0.008424
Rec 4.676 60.69 206.2 387.4 495.1
RLONG 48.2% 39.0% 34.5% 32.4% 31.9%
200,000 NBOX 40228 2997 762 388 288
4,136,409 M 10 200 1080 1785 2090
w 0.2791 0.03348 0.01148 0.007033  0.005997
Re 4.972 68.34 262.7 516.29 695.5
RLoONG 52.1% 42.5% 37.3% 35.0% 34.2%
300,000 NBOX 9287 4260 819 449 377
6,304,164 M 10 205 1090 1965 2550
(0] 0.2631 0.03249 0.008230 0.005434  0.005240
Rec 5.236 70.43 366.5 668.2 795.9
RLONG 52.9% 43.6% 37.1% 35.1% 34.9%
400,000 NBOX 73813 5070 1113 892 447
8,387,886 M 10 230 1135 2030 2775
w 0.2542 0.02901 0.008388 0.005367  0.004653
Rc 5419 - 78.90 359.6 676.6 896.5
RLONG 54.2% 44.5% 38.6% 36.5% 35.8%
500,000 NBOX 90902 6092 1420 643 502
10,498,905 M 10 210 1140 2500 3155
(0] 0.2505 0.02788 0.008562 0.004667 0.004187
Rc 5.500 82.08 352.3 778.1 996.1
RLONG 55.1% 45.4% 39.7% 36.9% 36.3%
Table D.1. Details for KWIK calculations conducted on collinear charged uniformly distributed

systems as presented in Table 7.3. Key: NBOX - the number of cells in the short-
range calculation; M - the degree of the Fourier expansion; @ - the decay parameter;
Rc - the real space cut-off radius; RLONG - the relative contribution of the long range
energy to the total energy; E - the total Coulomb energy; N - the size (and range) of the

distribution.
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N/E Feature 10 10* 10° 10°8 10°'°
100,000 NBOX - 449 285 214 183
14,368.1 M - 655 1155 1470 1690
w - 0.01025 0.008579 0.007761 0.007616
Rc - 223.2 351.6 467.9 547.7
RLoNG - 0.176% 0.140% 0.112% 0.116%
200,000 NBOX 131564 1052 452 327 250
-46,810.3 M 0 55 1645 1935 2405
(0] 1.129 0.01203 0.006811 0.005930 0.005197
Rec 1.520 190.2 442.8 612.3 802.6
RLoNG 0.0142% 0.172% 0.149% 0.143% 0.136%
300,000 NBOX 181328 2154 597 374 317
-78,086.2 M 0 535 1565 2470 2960
[0} 1.024 0.01643 0.005999 0.004520 0.004405
Rc 1.654 139.3 502.8 803.3 946.8
Rrong  0.00872%  0.0579%  0.0511% 0.0508%  0.0508%
400,000 NBOX 251817 3666 648 495 387
-163,722 M 0 335 2135 2660 3315
() 1.074 0.02097 0.004883 0.004485 0.004028
Rc 1.588 109.1 617.7 809.5 1035
RLong  0.00426%  0.0296% 0.0193% 0.0193% 0.0191%
500,000 NBOX 224195 2615 688 515 441
-126,458 M 0 635 2310 3015 3910
0] 0.7245 0.01197 0.004148 0.003737 0.003677
Rec 2.230 191.2 727.1 971.7 1134
RLong  0.00545%  0.0781%  0.0482%  0.0469%  0.0466%
Table D.2. Details for KWIK calculations conducted on collinear, net-neutral uniformly

distributed systems as presented in Table 7.6. Key: NBOX - the number of cells in the
short-range calculation; M - the degree of the Fourier expansion; @ - the decay
parameter; Rc - the real space cut-off radius; RLONG - the relative contribution of the
long range energy to the total energy; E - the total Coulomb energy; N - the size (and
range) of the distribution.
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N Feature 107 10°* 10°® 10°® 10"
Rc 137.8 228.8 301.6 363.1 417.1
100,000 M 5 660 1290 1910 2250
RTiME 2.30% 43.1% 53.4% 58.6% 59.1%
Riong  0.00854% 0.171% 0.178% 0.178% 0.178%
200,000 M 0 830 2325 3D 4215
RTiME 1.40% 48.9% 67.1% 72.3% 73.0%
Riong  0.00917% 0.177% 0.169% 0.169% 0.169%
300,000 M 0 190 2655 4960 6585
RTiME 1.42% 18.5% 70.0% 78.6% 80.9%
Riong  0.00576%  0.0627%  0.0540% 0.0540%  0.0540%
400,000 M 0 390 3695 7025 8830
RTiME 1.40% 31.2% 76.3% 83.8% 84.9%
Rrong  0.00283% 0.0291% 0.0217% 0.0217% 0.0217%
500,000 M 0 2835 5650 8460 10900
RTiME 1.40% 72.8% 83.1% 86.2% 87.4%
Rrong  0.00376%  0.0680% 0.0773% 0.0772% 0.0772%
Table D.3. Details for KWIK calculations conducted on collinear, net-neutral unifortnly

distributed systems for fixed decay parameter @ = 0.01, as presented in Table 7.7.
Key: Rc - the real space cut-off radius; M - the degree of the Fourier expansion; RTIME
- the relative contribution of the long-range time to the total time; RLONG - the relative
contribution of the long range energy to the total energy; N - the size (and range) of
the distribution.
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N Feature 107 10* 10°® 10°® 10"
Rc 275.5 457.7 603.2 726.2 834.2
100,000 M 0 355 670 855 1255
RTME 0.765% 16.6% 23.2% 24.3% 28.4%
RLoNG 0.0250% 0.0562% 0.0656% 0.0656% 0.0656%
200,000 M 0 500 1210 1700 2065
RTME 0.719% 22.7% 34.9% 38.9% 39.5%
Rrong  0.00843% 0.128% 0.135% 0.135% 0.135%
300,000 M 0 390 1635 2450 3170
R1iME 0.729% 18.7% 42.0% 47.6% 50.1%
Rwong  0.00531% 0.0606% 0.0511% 0.0510% 0.0510%
400,000 M 0 260 2270 3250 4105
RTIME 0.733% 13.3% 50.1% 54.6% 56.6%
Riong  0.00262% 0.0124% 0.0193% 0.0194% 0.0194%
500,000 M 0 785 2625 4210 5400
RTIME 0.696% 31.3% 53.6% 61.0% 63.0%
Riong  0.00348%  0.0587% 0.0519% 0.0518% 0.0518%
Table D.4. Details for KWIK calculations conducted on collinear, net-neutral uniformly

distributed systems for fixed decay parameter @ = 0.005, as presented in Table 7.8.
Key: Rc - the real space cut-off radius; M - the degree of the Fourier expansion; RTIME
- the relative contribution of the long-range time to the total time; RLONG - the relative
contribution of the long range energy to the total energy; N - the size (and range) of
the distribution.
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