Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A NOPALINE-TYPE *OVERDRIVE* ELEMENT, AND ITS INFLUENCE UPON *AGROBACTERIUM*-MEDIATED TRANSFORMATION FREQUENCY AND T-DNA COPY NUMBER IN *NICOTIANA TABACUM*

A Thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Molecular Genetics at Massey University, Palmerston North, New Zealand/Aotearoa

ANDREW GILBERT GRIFFITHS
1996

Dedication

This Thesis is dedicated to my parents

Juliet, Merv and Pauline

and to Tina

ABSTRACT

Overdrive is an enhancer element located outside and adjacent to the right border of the T-DNA in *Agrobacterium tumefaciens* octopine-type tumour-inducing (Ti) plasmids. This element is necessary for maximal enhancement of T-strand production and subsequent *A. tumefaciens*-mediated plant transformation frequency, and only the octopine-type *overdrive* had been characterised in any detail. A putative *overdrive* has been identified in the nopaline-type Ti-plasmid pTiT37 on the basis of its homology with known octopine-type *overdrive* sequences, particularly the eight base-pair so-called *overdrive* consensus core. The putative nopaline-type *overdrive* core, however, is only 75% homologous to that of all known *overdrive* core regions. Furthermore, as there are other sequences throughout the nopaline-type T-region that share 75% homology with the *overdrive* consensus core, the precise location of the nopaline-type *overdrive*-like activity contained the putative *overdrive* core adjacent to the right border. The role of this particular putative core in T-DNA transfer has never been established.

Deletions were made in the putative nopaline-type *overdrive* consensus core adjacent to the right border of a binary plant transformation vector derived from pTiT37. This was to establish whether this putative *overdrive* core does have a role as a transmission enhancer as proposed (Peralta *et al.*, 1986; Van Haaren *et al.*, 1988; Culianez-Macia and Hepburn, 1988). Two deletions were selected for the full study. The first encompassed the putative nopaline-type *overdrive* core flanked by 3 bp (5') upstream, and 4 bp (3') downstream, and was located in pANDY9. The other, located in pANDY10, encompassed the putative consensus core plus the entire region sharing homology with the octopine-type *overdrive*. This second deletion was to determine whether the core alone could account for *overdrive*-like activity, or whether further sequences are necessary to produce the effect. The vector with no deletions in the putative nopaline-type *overdrive* region was pANDY8.

As determined by quantitative *Nicotiana tabacum* transformation assays, both deletions of the putative nopaline-type *overdrive* core (pANDY9, pANDY10) equally decreased the rate at which calli appeared, and equally decreased transformation frequency by 47% compared with that of pANDY8. That deletion of the putative core influenced plant transformation frequency provided strong evidence that it was indeed an *overdrive*-like core. Furthermore, in a *virC2* mutant environment, the plant transformation frequency was reduced markedly for all three plasmids (approximately

iii

90% reduction compared to when in the wild-type vir environment). However, there was no difference in the plant transformation frequencies of the pANDY8-10 series in a virC2 environment. This indicated that the mechanism by which the deletions influenced plant transformation frequency did not act independently of the virC operon, which is further evidence of overdrive-like activity.

The type of *vir* regulon influenced the effect of the deletions in the putative *overdrive*. The transformation frequency of the plasmid with the intact putative *overdrive* region (pANDY8) was very similar in both an octopine-type *vir* environment (21.7 organogenic calli per 10 leaf discs in LBA4404) and a nopaline-type *vir* environment (18.7 organogenic calli per 10 leaf discs). However, in an octopine-type *vir* environment, deletions in the putative core resulted in a 47% decrease in transformation frequency, whereas in a nopaline-type *vir* environment the deletions had no effect upon transformation frequency. This may be due to a higher level of *vir* gene products (a feature associated with nopaline-type *vir* regulons), particularly VirD1 and VirD2 compensating for the lack of a fully active putative *overdrive*.

Southern analysis of plants arising from the transformation experiments (in an octopine-type *vir* environment) revealed that removal of the putative nopaline-type *overdrive* core halved the incidence of multiple T-DNA insertion events from 34.7% (pANDY8, intact nopaline-type *overdrive*) to 12.2% (pANDY9) and 14.3% (pANDY10). Deletion of the nopaline-type *overdrive* core also restricted the insert number to a maximum of two, rather than four or more. This is the first time that deletions in the regions outside the T-DNA have been shown to influence T-DNA copy number.

ACKNOWLEDGEMENTS

I wish to thank my supervisors, Dr Derek White and Professor Barry Scott for encouragement and guidance through the course of this project. I would particularly like to thank Dr Derek White for the use of facilities and resources in the Plant Molecular Genetics Laboratory at AgResearch Grasslands, as well as financial assistance for the preparation of this thesis. I am also grateful for the financial assistance provided by a University Grants Committee post-graduate scholarship, and a William Georghetti scholarship, during the course of this study.

I would like to thank Professor Paul Hooykaas for the gift of *Agrobacterium tumefaciens* strains, MOG1010 and MOG1010-C, and Paul Sanders for the gift of *Arabidopsis thaliana* ecotype, No-0, and particularly Donald Kerr for the generous gift of his promoter-tagging vector, pBIN19/GTG.

Thanks to Nick Ellison for brilliant Mac support, and Helen Dick for the generous loan of a computer, and both Helen and Bob Fletcher for statistical guidance. And to Steven, Ann, Sarah and Barbara of the CRI Campus Library-thanks for your efforts and humour-they don't pay you enough!!

A special thanks to Peter Spring, as well as Derek Charlton for photographic work.

And to all those past and present comprising the Plant Molecular Genetics Laboratory: Derek, Jacqui, Donald, Roy, Thomas, Marg (Xena), Feri, Brigi, Shashi, Erika, Nick, Dale, Alicia, Kez, Dorothy, Don and Trish, and especially Fran, Anya and Blackie, Lorelle, Bron and Andrew, Wendy and Sarah (honourary members). I wish to thank you all for your knowledge, friendship and encouragement, and for helping make science a fun place to be.

A special thank you to Mum, Dad, Pauline, Gran, Dean, Nils, John and Kaisu, just for being there.

Thanks too to the Voisey clan: Hilly, Peter, Jane, Pole, Lindy, Susie and Graham, (and Oscar!!) for the generous welcome, and for bravely leaving a daughter/sister/aunt on this side of the planet.

And I am especially grateful to my partner in crime and in life, Dr Christine Voisey, not only for her excellent proofing skills, but for her support, encouragement and love.

ABBREVIATIONS

А	ampere
A260	absorbance $\left[\log(I_0/I)\right]$ in a 1 cm light path at 260 nm
Ap	ampicillin
ATP	adenosine 5'-triphosphate
BAP	6-benzylaminopurine
bla	gene encoding B-lactamase which confers resistance to amnicillin and
014	carbonicillin
hn	base pair
BSA	basic-pan
DSA	
°C	degree Coloius
Ch	
Cb	carbenicillin $(2.7, 10^{10})$ is the time that $(2.7, 10^{10})$
Ci	curie $(3.7 \times 10^{10} \text{ nuclear disintegrations s}^{-1}; 37 \text{ GBq})$
cpm	counts per minute
СГАВ	hexadecyltrimethylammonium bromide
2.1.5	
2,4-D	2,4-dichlorophenoxyacetic acid
dATP	2'-deoxyadenosine 5'-triphosphate
dCTP	2'-deoxycytidine 5'-triphosphate
DEAE	diethylaminoethyl
DMF	dimethyl formamide
dGTP	2'-deoxyguanosine 5'-triphosphate
DMSO	dimethyl sulphoxide
DNA	deoxyribonucleic acid
DNase	deoxyribonuclease
DTT	dithiothreitol
dTTP	2'-deoxythymidine 5'-triphosphate
EDTA	ethylenediaminetetraacetic acid
EDTA(Fe)	ethylenediaminetetraacetic acid ferric-sodium salt
$EDTA(N_2)$	ethylenediaminetetraacetic acid disodium salt
EOTA	ethylenebis(ovyethylenepitrilo)tetraacetic acid
LUIA	entyteneois(oxyentyteneninino)tetraacene aeta
σ	gram
a	acceleration due to gravity (9.81 m s ⁻²)
6 GUS	ß gluguronidase
	p-grucuronidase
gusA	gene encouning p-gluculoindase (syn. <i>uldA</i>)
h	hour
HEDES	4-(2-hydroxyethyl)-1-ninerazineethanesulnhonic acid
Hoechst 33258	2'-[4-hydroxynhenyl]-5-[4-methyl-1-ninerazinyl]-2 5'-his-1H-
10001131 33230	benzimidazole: hishenzimide
ΙΔΔ	indole-3-acetic acid
IRA	indole-3 butyric acid
	filuoic-5-outyric aciu
21p	incompany of the palastaneous and the
UTIU	Isopi opyi-p-D-unogalactopyranoside

kΩ	kiloohm
kb	kilobase-pairs
Kinetin	6-fufurylaminopurine
Km	kanamycin
kV	kilovolt
LB l	left border from T-DNA of Agrobacterium tumefaciens litre
M mcs mcs-P _{35S} -nptII MES	Molar, moles per litre multiple cloning site an NPTII-encoding gene under the control of a P_{35S} promoter with a pUC18 mcs located 5' of the P_{35S} 2-[N-morpholino]ethanesulphonic acid microFarad (capacitance) (A s V^{-1})
μη μm mg min MilliO water	microgram micrometre milligram minute
mM	column
mm	millimolar
mol	mole
M_r	relative molecular mass (g mol ⁻¹)
ms	millisecond
ng	nanogram
<i>nptII</i>	gene from Tn5 coding for neomycin phosphotransferase
NPTII	neomycin phosphotransferase which confers resistance to kanamycin
OD	overdrive
OD ₆₀₀	optical density at 600 nm in a 1 cm light path
Ω	ohm (electrical resistance) (V A^{-1})
ocs3'	transcription-termination sequence of the octopine synthase gene
oriV	origin of replication
P_{35S} P_{35S} -nptII P_{nos} P_{nos} -nptII PEG PVP	the promoter of the Cauliflower Mosaic Virus 35S RNA subunit an NPTII coding gene under the control of the P_{35S} promoter the promoter of the plant-expressed nopaline synthase gene from <i>Agrobacterium tumefaciens</i> an NPTII coding gene under the control of the P_{nos} promoter poly(ethylene glycol) polyvinylpyrrolidone
RB	right border from T-DNA of <i>Agrobacterium tumefaciens</i>
Rf	rifampicin
RNA	ribonucleic acid
RNase	ribonuclease
rpm	revolutions per minute

s	second (time)
SDS	sodium dodecyl sulphate
Sm	streptomycin
Sp	spectinomycin
SSPE	saline, sodium phosphate, and EDTA buffer
Tc	tetracycline
TE	Tris (10.0 mM), EDTA (1.0 mM) pH 8.0
TEMED	N,N,N',N'-tetramethylethylenediamine
Tm	timentin
Tris	tris(hydroxymethyl)aminomethane
Triton X-100	octylphenoxy polyethoxyethanol
U	units
UV	ultraviolet light
UV-A	near UV (315-400 nm)
V	volt (m ² kg s ⁻³ A ⁻¹)
v/v	volume per volume
vol	volume
W	watt (m ² kg s ⁻³) or (V A)
w/v	weight per volume
X-gal	5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside
X-gluc	5-bromo-4-chloro-3-indolyl- β -D-glucuronide
Zeatin	6-(4-hydroxy-3-methyl-but-2-enylamino)purine

TABLE OF CONTENTS

			Page	
ABST	RACT		iii	
ACK	NOWLE	DGEMENTS	. v	
ABBF	ABBREVIATIONS			
TABL	LE OF C	ONTENTS	ix	
LIST	OF TAE	BLES	xvi	
LIST	OF FIG	URES	xvii	
CHA	PTER 1	INTRODUCTION	. 1	
OVE	RVIEW		. 1	
1.1	AGRO	BACTERIUM TUMEFACIENS: GENETIC COLONISER	, 4	
1.2	A. TUN	MEFACIENS: PLANT GENETIC ENGINEER	. 7	
1.3	A. TUN	MEFACIENS-MEDIATED PLANT TRANSFORMATION	8	
	1.3.1	Ti-plasmid Structure	. 8	
	1.3.2	Induction of vir Genes	11	
	1.3.3	T-DNA Generation	17	
	1.3.4	T-complex Transfer	19	
	1.3.5	Nuclear Localisation	20	
	1.3.6	Integration into Plant Nuclear DNA	22	
1.4	THE C	VERDRIVE T-DNA TRANSMISSION ENHANCER	23	
	1.4.1	Discovery of Overdrive	23	
	1.4.3	Characterising Overdrive	26	
	1.4.4	Role of Overdrive	28	
	1.4.5	Overdrive and the virC Operon	29	
	1.4.6	Is There a Nopaline-type Overdrive?	31	
1.5	OVER	DRIVE AND MULTIPLE T-DNA COPIES IN		
	TRANS	SGENIC PLANTS	35	
1.6	AIMS		36	

CHAP	TER 2	MATERIALS AND METHODS	37
2.1	BACTI	ERIAL PROCEDURES	37
	2.1.1	Growth of Bacteria	37
	2.1.2	Bacterial Strains and Plasmids	37
	2.1.3	Transformation of A. tumefaciens: Tri-parental Mating	37
	2.1.4	Transformation of A. tumefaciens: Electroporation	40
	2.1.5	Preparation of Electrocompetent A. tumefaciens Cells	41
	2.1.6	Transformation of <i>E.coli</i> : CaCl ₂ Method	41
	2.1.7	Preparation of Competent E. coli Cells with CaCl ₂	41
	2.1.8	Transformation of <i>E. coli</i> : Electroporation	42
	2.1.9	Preparation of Electrocompetent E. coli Cells	43
2.2	DNA P	ROCEDURES	43
	2.2.1	Plasmid Isolation from A. tumefaciens: Alkaline Lysis	43
	2.2.2	Plasmid Isolation from E. coli: STET Method	44
	2.2.3	Plasmid Isolation from <i>E. coli</i> : Large Scale Alkaline Lysis	44
	2.2.4	Precipitation of DNA	45
	2.2.5	DNA Quantification by Spectrophotometry	45
	2.2.6	DNA Quantification by Serial Dilution on Agarose Gels	45
	2.2.7	DNA Quantification by Fluorometry	46
	2.2.8	Determining DNA Fragment Size	46
	2.2.9	Agarose Gel Electrophoresis of DNA	46
	2.2.10	DNA Recovery from Agarose Gels: DEAE-Cellulose Method .	47
	2.2.11	DNA Recovery from Agarose: Silica Powder Method	48
	2.2.12	DNA Recovery from Agarose: Spin-Column Method	48
	2.2.13	Restriction Digestion of Plasmid DNA	49
	2.2.14	Partial EcoRI Digestion of HindIII-linearised Plasmid DNA	49
	2.2.15	Exonuclease BAL 31 Deletions in pANDY6	49
	2.2.16	End-filling 5' Overhangs	50
	2.2.17	Recessing 3' Overhangs	51
	2.2.18	CAP-Treatment of Vector DNA	51
	2.2.19	DNA Ligation	51
	2.2.20	Screening Recombinant Plasmids: β -Galactosidase Method	52
	2.2.21	Screening Recombinant Plasmids: Rapid Colony Lysis	52
	2.2.22	DNA Sequence Analysis: Sequencing Reactions	52
	2.2.23	DNA Sequence Analysis: Sequencing Gels	53

2.3	PLAN	Γ PROCEDURES	54
	2.3.1	Growth of Arabidopsis thaliana	54
	2.3.2	A. thaliana: Bulk Seed Production	54
	2.3.3	A. thaliana: Seed Sterilisation and Germination	54
	2.3.4	A. thaliana: Producing Root Explants	55
	2.3.5	Growth of Nicotiana tabacum	55
	2.3.6	N. tabacum: Producing Leaf Disc Explants	55
	2.3.7	Plant Transformation	55
	2.3.8	Plant Transformation: Arabidopsis thaliana	56
	2.3.9	Plant Transformation: Nicotiana tabacum	57
2.4	SOUTI	HERN ANALYSIS	58
	2.4.1	Isolation of N. tabacum Genomic DNA	58
	2.4.2	Restriction Digestion and Electrophoresis of Genomic DNA	58
	2.4.3	Southern Blotting: Conventional Alkaline Transfer	59
	2.4.4	Southern Blotting: Downward Alkaline Transfer	59
	2.4.5	Preparing [³² P]-Labelled Probe DNA	60
	2.4.6	Purifying [³² P]-Labelled Probe DNA	61
	2.4.7	Hybridisation: SSPE Method	61
	2.4.8	Hybridisation: SDS Method	62
	2.4.9	Stripping Blots	62
CHAP	TER 3	RESULTS	63
PART	Ι	VECTOR CONSTRUCTION	63
3.1	DELET	TING THE PUTATIVE OVERDRIVE CORE	63
	3.1.1	Overview	63
	3.1.2	Optimising Partial EcoRI Digestion of pBIN19/GTG	63
	3.1.3	Removal of <i>P_{nos}-nptII</i> fusion to create pANDY6	68
	3.1.4	Optimising BAL 31 Reaction Conditions	68
	3.1.5	Identifying Clones with Putative Deletions in Overdrive	73
	3.1.6	Sequencing Deletions in the Putative overdrive Region	73
3.2	MODI	FYING P ₃₅₅ -nptII PLANT SELECTABLE MARKER	78
	3.2.1	Overview	78
	3.2.2	Preparing P _{35S} -nptII Fusion for Attachment of an mcs	78
	3.2.3	Attaching pUC18 mcs to P ₃₅₈ -nptII Fusion	82

	3.2.4	Preparing $mcs-P_{35S}$ - <i>nptII</i> for Insertion into pANDY6,	
		pANDYOD ⁻ Vector Series	85
	3.2.5	Sequencing Junctions of mcs- P_{35S} - <i>nptII</i> in pANDY4	87
3.3	COMP	PLETION OF PANDY VECTOR SERIES	92
	3.3.1	Overview	92
	3.3.2	Construction of pANDY8, pANDY9, and pANDY10	92
	3.3.3	Sequencing Junctions of mcs-P ₃₅₅ -nptII in pANDY8 to	
		pANDY10	92
	3.3.4	Transferring pANDY8-10 Series to A. tumefaciens	97
3.6	SUMM	IARY OF VECTOR MODIFICATIONS	100
PART	II	PLANT TRANSFORMATION EXPERIMENTS	101
3.7	OVERI	DRIVE AND PLANT TRANSFORMATION	101
	3.7.1	N. tabacum Transformation Experimental Design	101
	3.7.2	Overdrive and Callus Production in N. tabacum: a Time-	
		Course	101
	3.7.3	The overdrive and Production of Callus, Green Callus, and	
		Organogenic Callus in N. tabacum	103
	3.7.4	Overdrive and Other Strains of A. tumefaciens	106
	3.7.5	Overdrive and vir Environment	106
	3.7.6	Overdrive and the virC Operon	111
	3.7.7	Overdrive and Arabidopsis thaliana	111
3.8	DETEI	RMINING T-DNA COPY NUMBER IN N. TABACUM	114
	3.8.1	Determining T-DNA Copy Number	114
	3.8.2	T-DNA Copy Number	123
	3.8.3	Spread of T-DNA Copy Number	123
СНАР	TER 4	DISCUSSION	126
4.1	ANAI	LYSING THE PUTATIVE NOPALINE-TYPE	
	OVERI	DRIVE	126
	4.1.1	Identification of Regions Necessary for Function of the Putative	
		Nopaline-type Overdrive	127
	4.1.2	The Putative Nopaline-type Overdrive does not Influence	
		Processes after T-DNA Transfer	128
	4.1.3	Nopaline vs Octopine-type vir Environment	129

	4.1.4	Was Putative Nopaline-type Overdrive Activity Abolished? .	130
	4.1.5	Importance of Sequences between the Right Border and the	
		Overdrive Region	133
	4.1.6	Importance of the Overdrive Consensus Core	136
	4.1.7	Is the Putative Nopaline-Type Overdrive Core an Overdrve	
		Core?	136
	4.1.8	Biological Significance of Overdrive	138a
	4.1.9	Overdrive in other DNA Transfer Systems	138a
4.2	INFLU	JENCE OF OVERDRIVE ON T-DNA COPY NUMBER	139
4.3	IMPLI	CATIONS OF T-DNA COPY NUMBER	142
	4.3.1	T-DNA Copy Number and Transformation Frequency in Plant	
		Transformation Systems	142
	4.3.2	T-DNA Copy Number and Transformation Frequency in Gene-	
		Tagging	143
4.4	FUTU	RE DIRECTIONS	145
4.5	SUMM	1ARY	145
REFE	RENCE	S	146
APPE	NDICES	5	163
APPE	ENDIX 1	I: BACTERIAL MEDIA	163
	A1.1	AB Minimal Medium	163
	A1.2	LB (Luria-Bertani) Medium	163
	A1.3	SOB Medium	163
	A1.4	SOC Medium	163
	A1.5	TY Medium	164
	A1.6	YEB Medium	164
	A1.7	YM Medium	164
APPE	ENDIX 2	2: PLANT MEDIA	165
	A2.1	GM Medium	165
	A2.2	ARM Media Base	165
	A2.3	ARM I Medium	165
	A2.4	ARM II Medium	165

A2.5	ARM III Medium	166
A2.6	¹ /2MS Medium	166
A2.7	Nic I Medium	166
A2.8	Nic II Medium	166
A2.9	Nic III Medium	166
APPENDIX 3	MEDIA STOCK SOLUTIONS	167
A3.1	Antibiotics	167
A3.2	Phytohormones	167
A3.3	MS Stock Solutions	167
A3.4	Acetosyringone	168
APPENDIX 4	SOLUTIONS AND BUFFERS FOR DNA	169
A4.1	1 M Tris-HCl, pH 8.0	169
A4.2	0.5 M EDTA(Na ₂), pH 8.0	169
A4.3	TE Buffer	169
A4.4	DNase-Free RNase-A	169
A4.5	Cell Resuspension Buffer	169
A4.6	Cell Lysis Solution	169
A4.7	STET Lysis Buffer	169
A4.8	Equilibrated Phenol	170
A4.9	TNE Fluorometry Buffer	170
A4.10	DNA Fragment Size Standards	170
A4.11	TAE Buffer	170
A4.12	SUDS	170
A4.13	GLB	171
A4.14	DEAE Elution Buffer	171
A4.15	Restriction Endonuclease Dilution Buffer	171
A4.16	5× Blunt End Ligation Buffer	171
A4.17	2× Cracking Buffer	171
A4.18	TBE Buffer for Sequencing Gels	171
A4.19	40% Acrylamide Solution	171
A4.20	Nucleotide TLC Phosphate Buffer	172
A4.21	TE-Equilibrated Sepharose CL-6B Resin	172
A4.22	20× SSPE	172
A4.23	100× Denhardt's Solution	172
A4.24	SSPE Hybridisation Solution	172
A4.25	Fragmented Herring Testes DNA	172

A4.26	2× SSPE Wash
A4.27	1× SSPE Wash
A4.28	0.1× SSPE Wash
A4.29	1 M Disodium Phosphate Buffer, pH 7.2
A4.30	SDS Hybridisation Solution
A4.31	SDS Wash Solution
A4.32	Genomic Extraction Buffer
APPENDIX	5: SEQUENCE DATA FROM pANDY4
A5.1	Sequence data from the junction of pMTL25P through the
	pUC18 mcs to the $P_{mas2'}$ promoter of the mcs- P_{35S} -nptII
	fusion
A5.2	Sequence data from the junction of pMTL25P through to the
	$ocs3'$ terminator of the mcs- P_{35S} - <i>npt11</i> fusion
	$ocs3'$ terminator of the mcs- P_{35S} - <i>npt11</i> fusion
APPENDIX	6: PLASMID MAPS
APPENDIX A6.1	6: PLASMID MAPS
APPENDIX A6.1 A6.2	ocs3' terminator of the mcs-P _{35S} -npt11 fusion 6: PLASMID MAPS pBIN19/GTG pANDY6
APPENDIX A6.1 A6.2 A6.3	6: PLASMID MAPS pBIN19/GTG
APPENDIX A6.1 A6.2 A6.3 A6.4	6: PLASMID MAPS pBIN19/GTG pANDY6 pANDY0D ⁻ 2 and pANDYOD ⁻ 3 pSLJ491
APPENDIX A6.1 A6.2 A6.3 A6.4 A6.5	6: PLASMID MAPS pBIN19/GTG pANDY6 pANDYOD ⁻ 2 and pANDYOD ⁻ 3 pSLJ491 pMTL22P
APPENDIX A6.1 A6.2 A6.3 A6.4 A6.5 A6.6	6: PLASMID MAPS pBIN19/GTG
APPENDIX A6.1 A6.2 A6.3 A6.4 A6.5 A6.6 A6.7	6: PLASMID MAPS pBIN19/GTG
APPENDIX A6.1 A6.2 A6.3 A6.4 A6.5 A6.6 A6.7 A6.8	6: PLASMID MAPS pBIN19/GTG pANDY6 pANDY0D ⁻ 2 and pANDY0D ⁻ 3 pSLJ491 pMTL22P pMTL25P pUC18 pANDY1
APPENDIX A6.1 A6.2 A6.3 A6.4 A6.5 A6.6 A6.7 A6.8 A6.9	6: PLASMID MAPS pBIN19/GTG pANDY6 pANDY0D ⁻ 2 and pANDYOD ⁻ 3 pSLJ491 pMTL22P pMTL25P pUC18 pANDY1 pANDY2
APPENDIX A6.1 A6.2 A6.3 A6.4 A6.5 A6.6 A6.7 A6.8 A6.9 A6.10	ocs3 ^r terminator of the mcs-P _{35S} -nptII fusion 6: PLASMID MAPS pBIN19/GTG
APPENDIX A6.1 A6.2 A6.3 A6.4 A6.5 A6.6 A6.7 A6.8 A6.9 A6.10 A6.11	ocs3' terminator of the mcs-P _{35S} -npt11 fusion 6: PLASMID MAPS pBIN19/GTG
APPENDIX A6.1 A6.2 A6.3 A6.4 A6.5 A6.6 A6.7 A6.8 A6.9 A6.10 A6.11 A6.12	ocs3' terminator of the mcs-P _{35S} -npt11 fusion 6: PLASMID MAPS pBIN19/GTG

LIST OF TABLES

		Page
Table 1.	Bacterial strains and plasmids used in this study	38
Table 2.	Southern analysis using a [³² P]-labelled <i>npt11</i> left border probe with <i>Hin</i> dIII and <i>Eco</i> RI-digested genomic DNA from plants transformed with pANDY8	189
Table 3.	Southern analysis using a [³² P]-labelled <i>nptII</i> left border probe with <i>Hin</i> dIII and <i>Eco</i> RI-digested genomic DNA from plants transformed with pANDY9.	192
Table 4.	Southern analysis using a [³² P]-labelled <i>nptII</i> left border probe with <i>Hin</i> dIII and <i>Eco</i> RI-digested genomic DNA from plants transformed with pANDY10	194
Table 5.	Southern analysis using a [³² P]-labelled <i>gusA</i> right border probe with <i>Hin</i> dIII and <i>Eco</i> RI-digested genomic DNA from plants transformed with pANDY8.	195
Table 6.	Southern analysis using a [³² P]-labelled <i>gusA</i> right border probe with <i>Hin</i> dIII and <i>Eco</i> RI-digested genomic DNA from plants transformed with pANDY9.	196
Table 7.	Southern analysis using a [³² P]-labelled <i>gusA</i> right border probe with <i>Hin</i> dIII and <i>Eco</i> RI-digested genomic DNA from plants transformed with pANDY10.	197

LIST OF FIGURES

		Page
Figure 1A-B.	Comparison of the octopine and nopaline-type Ti-plasmids	. 9
Figure 2.	Overview of the molecular processes involved in <i>Agrobacterium tumefaciens</i> -mediated plant transformation	13
Figure 3.	Comparison of <i>overdrive</i> -like sequences in right border regions of the octopine-type pTiA6NC T_L - and T_R -DNA, the nopaline-type pTiT37, and the <i>Agrobacterium rhizogenes</i> pRiA6 T_L -DNA.	24
Figure 4.	Characterising the octopine-type overdrive	27
Figure 5.	Comparison of <i>overdrive</i> -like sequences in right border regions of a range of Ti- and Ri-plasmids	32
Figure 6.	Summary of construction of pANDY6, pANDYOD ⁻² , and pANDYOD ⁻³ .	64
Figure 7.	Fragments generated by a partial <i>Eco</i> RI digestion of <i>Hin</i> dIII- linearised pBIN19/GTG.	65
Figure 8.	Establishing the optimal <i>Eco</i> RI concentration for production of partially <i>Eco</i> RI-digested fragments of <i>Hin</i> dIII-linearised pBIN19/GTG.	67
Figure 9A-B.	Identification of pANDY6.	69
Figure 10A-C.	Optimising BAL 31 reaction conditions.	71
Figure 11.	Identification of clones with deletions in the putative nopaline-type <i>overdrive</i> core	74
Figure 12A-B.	Sequence data detailing various deletions centred upon the putative nopaline-type <i>overdrive</i> core of the pANDYOD ⁻ series.	76

Figure 13.	Summary of modification of the P_{35S} - <i>nptII</i> fusion prior to its insertion	79
Figure 14A-C.	Determining orientation of the P_{35S} - <i>nptII</i> insert with regard to the pUC18 mcs during construction of pANDY2	83
Figure 15.	Restoration of the <i>Eco</i> RI site during the construction of pANDY4.	88
Figure 16A-C.	Nucleotide sequence of the junctions of the mcs- P_{35S} - $nptII$ fusion with pMTL25P in pANDY4.	90
Figure 17.	Summary of construction of pANDY8, pANDY9, and pANDY10	93
Figure 18A-D.	Identification of plasmids pANDY8, pANDY9, and pANDY10.	95
Figure 19A-D.	Identification of <i>A. tumefaciens</i> strain LBA4404 colonies harbouring either pANDY8, pANDY9, or pANDY10	98
Figure 20.	Deletions in the putative nopaline-type <i>overdrive</i> region of plant transformation vectors, and their influence upon mean cumulative callus production (calli per 10 leaf discs) plotted against time (days after cocultivation).	102
Figure 21.	Deletions in the putative nopaline-type <i>overdrive</i> , and their influence upon the production of callus, green callus, and organogenic callus (transformation frequency), after a 60 day cultivation period on a selective medium.	104
Figure 22.	Deletions in the putative nopaline-type <i>overdrive</i> , and their influence upon the proportion (%) of <i>N. tabacum</i> calli that became green, and the proportion (%) of green calli that became organogenic, after a 60 day cultivation period on a selective medium.	104

Figure 23A-C.	Deletions in the putative nopaline-type <i>overdrive</i> region of the plant transformation vectors (pANDY8-10), and their influence upon callus production in <i>N. tabacum</i> , when	
	harboured by LBA4404.	107
Figure 24A-C.	Deletions in the putative nopaline-type <i>overdrive</i> region of the plant transformation vectors (pANDY8-10), and their influence upon callus production in <i>N. tabacum</i> , when harboured by MOG1010	109
Figure 24D-F.	Deletions in the putative nopaline-type <i>overdrive</i> region of the plant transformation vectors (pANDY8-10), and their influence upon callus production in <i>N. tabacum</i> , when harboured by LBA4404, MOG1010, GV3101, and MOG1010-C.	110a
Figure 25A-C.	Deletions in the putative nopaline-type <i>overdrive</i> region of the plant transformation vectors (pANDY8-10), and their influence upon callus production in <i>Arabidopsis thaliana</i> , when harboured by LBA4404.	113
Figure 26A-C.	Determining T-DNA copy number with <i>Hin</i> dIII digested plant genomic DNA	115
Figure 27.	Representative <i>Hin</i> dIII digest of <i>N. tabacum</i> genomic DNA.	117
Figure 28.	Representative autoradiograph of <i>Hin</i> dIII-digested <i>N. tabacum</i> genomic DNA hybridised with [³² P]-labelled <i>nptII</i> probe.	118
Figure 29A-C.	Determining completeness of genomic digestion using <i>Eco</i> RI	120
Figure 30.	Representative autoradiograph of Eco RI-digested <i>N. tabacum</i> genomic DNA hybridised with [³² P]-labelled <i>nptII</i> probe	122

Figure 31.	The effect of deletions in the <i>overdrive</i> region upon the incidence of multiple T-DNA insertion events in transgenic	
	N. tabacum.	124
Figure 32.	The effect of deletions in the <i>overdrive</i> region upon the range of T-DNA copy number in transgenic <i>N. tabacum.</i>	125
Figure 33.	The top and bottom strand sequence of the T _L -DNA right border and <i>overdrive</i> region of the octopine-type Ti-plasmid pTiA6 that is protected by VirC1 in DNase I footprint analysis.	135