Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

VLSI Design, Fabrication and Testing of an Ultra-Wideband Low Noise Amplifier Microchip using Nanometric CMOS Technology

Doctor of Philosophy

in

Engineering - Integrated Circuit Design

at

SCHOOL OF ENGINEERING AND TECHNOLOGY

of

MASSEY UNIVERISTY, ALBANY

Muhammad Khurram

November 2011

ABSTRACT

The wide operating bandwidth of the ultra-wideband (UWB) signal leads to new circuit design challenges and methodologies. Similar to any other RF system, the most critical component of the UWB receiver is the low noise amplifier (LNA). Contrary to the narrowband LNAs, the single-tone assumption is not valid for defining the SNR of an UWB LNA where the input signal encompasses several GHz. Defining the UWB LNA system's SNR as the matched filter bound (MFB) is an appropriate approach to deduce its noise figure (NF). Using this approach, a mathematical model is proposed to achieve optimal NF, employing the g_m -boosted common gate (CG) LNA topology along with a passive noise matching input network. Besides the low noise performance, the other challenges in the design of the UWB LNA include adequate input match and forward power gain with low power dissipation. Considering the superior performance of the g_m -boosted CG amplifier topology for UWB, a new single-ended (SE) gm-boosted CG UWB LNA architecture is proposed in this research. In the SE LNA architecture, the power dissipation is further minimized by sharing the bias current between the g_m -boosted CG and the active g_m boosting amplifier stages in a current-reuse fashion ("piggyback" g_m -boosting). The proposed *piggyback* g_m-boosted CG LNA, operating in 3-5 GHz range, is fabricated using 130nm RFCMOS process with adequate results. The noise optimization mathematical model proposed in this thesis is applied to the new piggyback gm-boosted CG LNA architecture by including an intervening noise matching passive network at the input of the LNA. The bandwidth of the noise matched *piggyback* g_m -boosted CG LNA is extended using series peaking technique to the complete UWB band from 3.1 to 10.6 GHz. The proposed full-band noise matched UWB LNA is fabricated in a differential manner using 130nm RFCMOS process and exhibited excellent performance improvements with figure of merit (FOM) of 2.86.

CONTENTS

Contents		ii
Lis	at of Figures	vi
Lis	at of Tables	ix
Ac	knowledgement	X
1	Introduction	1
	1.1 Motivation	1
	1.2 Research Goal	4
	1.3 Thesis Organization	4
2	Low Noise Amplifier Architectures	6
	2.1 Introduction	6
	2.2 UWB LNA Architectures	6
	2.2.1 Common Source UWB LNA	7
	2.2.2 Common Gate UWB LNA	10
	2.3 Conclusion	13
3	Analysis and Design of g_m -boosted CG UWB LNA	15
	3.1 Introduction	15
	3.2 Short-Channel g_m -boosted CG LNA and Preliminaries	18
	3.2.1 Short-channel MOS Device Model with Finite g_{ds} effect	18
	3.2.2 LNA Noise Analysis	20
	3.3 Modeling Noise Matched g_m -Boosted CG UWB LNA and Noise	
	Analysis using the MFB Definition	23
	3.3.1 Circuit Model of the LNA	23
	3.3.2 System Model of the LNA	24
	3.3.3 MFB and Noise Analysis	26
	3.4 Optimizing the Matching Network	27

	3.4.1 Noise Factor of the LNA for Narrowband Assumption	29
	3.4.2 Effect of UWB Bandwidth on Noise Factor	29
	3.4.3 Trade-off between Power Match and Noise Match	30
	3.5 Practical Matching Network Implementation	31
	3.6 Analytical and Circuit Simulation Results	33
	3.7 Conclusion	40
4	Design, Fabrication and Testing of Current-Reuse g_m -Boosted CG	
	UWB LNA for 3-5 GHz Band	42
	4.1 Introduction	42
	4.2 Current-Reuse g_m -Boosted CG UWB LNA	45
	4.2.1 Current-Reuse Technique	45
	4.2.2 Circuit Topology	46
	4.3 LNA Architectural Analysis and Design Methodology	48
	4.3.1 Noise Analysis of UWB LNA	50
	4.3.2 Input Matching and Noise	52
	4.4 UWB LNA Circuit Design and Simulation	54
	4.5 Fabrication and Experimental Results	55
	4.6 Conclusion	62
5	Design, Fabrication and Testing of Noise-Matched UWB LNA for 3.1-	
	10.6 GHz	64
	5.1 Introduction	64
	5.2 Proposed g_m -boosted CG UWB LNA	67
	5.2.1 Small Signal Model of the Proposed LNA	68
	5.2.2 System Model of the LNA and Noise Analysis	70
	5.2.3 Optimal Noise Matching Network Design	73
	5.3 Differential UWB LNA Design and Simulation	75
	5.3.1 Half Circuit of the Differential UWB LNA	75
	5.3.2 Noise Match and SNR Degradation due to g_m -Boosting Amplifier	77
	5.4 Noise Optimization of the Proposed UWB LNA	78
	5.4.1 Realizing Matching Network Components	79
	5.5 Fabrication and Experimental Results	81

6	Discussion	88
7	Conclusion	92
	7.1 Summary	92
	7.2 Future Work	93
	7.2.1 Noise Optimization of the CS g_m -Boosting Amplifier	93
	7.2.2 Modeling a Noisy Matching Network at the UWB LNA Input.	93
	7.2.3 System Integration	94
Bib	liography	95
	References	95
Арр	pendices	105
	Appendix – A	106
	Appendix - B	100

LIST OF FIGURES

1.1	FCC spectral mask for indoor UWB communications	2
1.2	WiMedia frequency plan	4
2.1	UWB LNA architectures, (a) common source LNA and (b) common gate	
2.2	LNA CS feedback UWB LNAs, (a) resistive feedback, (b) inductive feedback and	7
	(c) resistive feedback with unity-gain buffer	9
2.3	(a) Current resuse CS UWB LNA and (b) inductorless inverter amplifier	10
2.4	The g_m -boosted CG UWB LNA	12
2.5	The g_m -boosted CG UWB LNA with pMOS g_m -boosting amplifier	13
3 1	LIWB I NA architectures (a) common source I NA and (b) common gate	
5.1	I NA	17
3 2	Small signal model of the short channel a boosted CG INA	10
3.2	General model of the g -boosted CG LNA for LWB (a) block diagram of	17
5.5	the LNA and (b) the circuit Model of the LNA	24
3 /	Suscentance looking into the source terminal	24
3.5	Equivalent system model of the α -boosted CG I NA for UWB	2 4 26
3.6	Ontimal I NA matching network implementation	32
3.7	Practical CMOS a -boosted CG LNA implementation circuit with noise	52
5.1	m_{m} ontimization matching circuit	36
38	Ontimal inductance for the matching network	36
3.0	Ontimal parallel suscentance B_{i} , with varying σ -boosting gain A (when	50
5.7	C = 6.25 F and a = 8.215 mS	37
3 10	Ontimal reactance Y_{a} for noise matching with varying g -boosting gain A	57
5.10	(when $C = 6.25$ fF and $\alpha = 8.215$ ms)	37
3 1 1	(when $C_{gs} = 0.2511$ and $g_m = 0.2151113$)	57
5.11	C = 6.25 fF and a = 8.215 mS	28
3.12	Optimal voltage power gain with varying g_m -boosting gain, A (when	50

	C_{gs} =6.25fF and g_m =8.215mS)	38
3.13	Variations in the input impedance $Z_{in}(\omega)$ and the noise figure (NF) of the	
	g_m -boosted CG UWB LNA, with $L_{2,opt}$ =27.8nH, and, A varying between	
	1.6 and 2.0 in 0.1 steps	39
3.14	Comparison between the optimal (analytical) and the simulated overall gain	
	of the LNA, and, curves showing the optimal NF_{CG-opt} , the simulated	
	NF_{CG-sim} (ignoring noise contribution by the CS stage), and, the overall	
	(total) simulated NF_{t-sim} (including the noise contribution by the CS stage).	39
3.15	Values and variations in the input impedance $Z_{in}(\omega)$ and the NF of the UWB	
	g_m -boosted CG LNA for process related variation of A by ± 0.1 in the	
	vicinity of A=2.88 for input power match (with sub-optimal noise match)	
	using $L_{2,opt}$ =20.1nH	40
4.1	Frequency plan of WiMedia multiband orthogonal frequency multiplexing	
	for UWB	44
4.2	UWB LNAs, (a) common source LNA, (b) common gate LNA	44
4.3	Schematic of the proposed g_m -boosted current-reuse CG LNA operating in	
	band group#1 of UWB	47
4.4	Small signal equivalent representation of the proposed UWB LNA with	
	relevant noise sources	49
4.5	Composite circuit topology of the RF signal input interconnect path	
	showing a cascaded network of the input impedance of the UWB LNA,	
	wire-bond, package and the external band-pass filter	56
4.6	A smith chart trace depicting the variation of the impedance looking into	
	the RF signal input interconnect path, indicating a match with 50 $\boldsymbol{\Omega}$ source	
	resistance at 4.1 GHz and the amount of mismatch (radial distance from the	
	origin to the trace) at the corner frequencies (3.1GHz at the bottom terminus	
	of the trace and 4.8GHz at the top terminus of the trace)	56
4.7	Microphotograph of proposed LNA with labels showing all the active and	
	passive components	57
4.8	The input reflection coefficient (S_{11})	59
4.9	The forward gain (S ₂₁)	59

4.10	The noise figure (NF)	60
4.11	The reverse isolation (S ₁₂)	60
4.12	The output reflection coefficient (S ₂₂)	61
4.13	The IIP3 and 1dB compression point for the UWB LNA at 3.9 GHz	61
5.1	(a) CG UWB LNA and (b) CG UWB LNA with g_m -boosting	66
5.2	(a) Conceptual circuit diagram of the proposed noise matched searies-	
	peaked g_m -boosted CG UWB LNA, and (b) the CS g_m -boosting amplifier	68
5.3	Small signal model of the proposed g_m -boosted CG UWB LNA with the	
	passive noise matching network	69
5.4	System model of the proposed UWB LNA	71
5.5	Fully-differential series peaked CG UWB LNA with current-reuse g_m -	
	boosting CS amplifier and 2 nd order noise matching network	76
5.6	Half circuit of the proposed noise matched g_m -boosted CG UWB LNA	77
5.7	Equivalent RF interconnect path at the input of the proposed UWB LNA	79
5.8	Smith chart trace depicting the variation in the input impedance of the	
	proposed UWB LNA within the operating band	81
5.9	Chip micrograph of the fabricated differential UWB g_m -boosted CG LNA	
	showing the RF test probe touched down onto the probe pads	82
5.10	Measured and simulated forward power gain in dB of the fabricated UWB	
	LNA	84
5.11	Measured and simulated NF of the fabricated UWB LNA	84
5.12	Measured and simulated input reflection coefficient of the fabricated LNA.	85
5.13	Measured and simulated reverse power gain of the fabricated UWB LNA	85
5.14	Measured ICP _{1dB} and IIP3 of the fabricated UWB LNA at 6.85GHz	86

LIST OF TABLES

I.	Summary of the power matched g_m -boosted CG UWB LNA performance, and	
	comparison with previous recently published designs	62
II.	Summary of the noise matched series-peacked g_m -boosted noise matched	
	CG UWB LNA performance, and comparison with previous recently	
	published designs	87
III.	Summary of the measured results for the two fabricated CG UWB LNAs	91
	and recently reported state-of-the-art CMOS UWB LNAs	

ACKNOWLEDGEMENTS

The work done during the last four years for the doctoral studies could have not been brought about without the support of others. Firstly, I would like to thank my supervisor, Dr. Rezaul Hasan. His encouragement and advice facilitated me to achieve the research goals. I would also like to thank the staff at the School of Engineering and Technology for their continuous cooperation in dealing with the issues arising during my studies. I can not overlook the support of my fellow students and friends at the University. Specially, I wish to thank Jack Li for his sincere and timely suggestions when I needed them.

I am indebted to my parents for their love for me and continuous prayers for my success. My success belongs to them as much as it belongs to me. Many thanks to my lovely wife Ayesha and delightful daughters Asma and Hafsa for their tremendous patience, understanding and support.

I would also like to acknowledge the support from the MOSIS Service for fabrication.