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I 

ABSTRACT 

The use of constructed wetlands represents an innovative approach to wastewater 

treatment. However, the treatment performance of constructed wetlands has been 

variable due to an incomplete knowledge of the hydraulic characteristics. Current design 

methods idealise constructed wetlands as plug flow reactors ignoring the existence of 

longitudinal dispersion, short-circuiting and stagnant regions. The overall effect will be a 

reduction of treatment efficiency at the outlet. 

This thesis investigates the hydraulic characteristics of a subsurface flow wetland using a 

fluorescence dye tracer so as to determine the difference between theoretical and actual 

retention times and their effect on treatment efficiency. 

A thorough review of the literature is undertaken, firstly examining wetland systems and 

their treatment mechanisms, it then reviews their hydraulic characteristics and design 

considerations while finally discussing dye tracing studies. 

A series of dye tracing trials were undertaken on a pilot scale gravel bed wetland with a 

theoretical retention time of four days. The results from this research are presented as 

plots of dye concentration versus time at the outlet. These results are analysed in terms 

of chemical reactor theory and their implications on performance of various treatment 

mechanisms is discussed. 
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CHAPTER 1 

INTRODUCTION 

Natural wetlands have been used for many decades as a discharge site for wastewater. In 

recent years, their natural treatment processes has been recognised. Today there are 

numerous wetlands in use for waste treatment with a strong trend towards artificial 

wetlands specially designed for this application. The use of constructed wetlands which 

mimic natural marshlands, represents an innovative approach to wastewater treatment 

(Bharridimarri et al., 1991 ). Constructed wetlands have potential to provide low-cost 

and low-maintenance biological treatment of wastewater (Fisher, 1990). However, the 

treatment performance of constructed wetlands has been variable. This variability is due 

to an inadequate understanding of how to optimise the physical, chemical and biological 

processes providing treatment and an incomplete knowledge of the hydraulic 

characteristics that typify constructed wetlands (Fisher, 1990). 

The efficiency of wastewater treatment in constructed wetlands is largely dependent on 

the effective duration of contact between the pollutants and the microbial populations. 

This concept is common to any reactor system. The degree of treatment being directly 

related to the residence time and efficiency of contact. To obtain maximum treatment 

efficiency, it is necessary to maximise contact between the wastewater contaminants, the 

wetland media and the plant roots/stems and minimise short circuiting (Steiner & 

Freeman, 1989 ). Current design methods idealise the constructed wetland as a plug 

flow reactor and use a "residence time" based solely on the volume of the wetland cell 

and the flow-rate (Stairs, 1993). 
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This idealisation ignores the existence of longitudinal dispersion, short-circuiting and 

stagnant regions within the wetland cells. The result of these phenomena is that the fluid 

elements are not retained in the wetland cell for the theoretical retention time, rather 

there is a distribution of residence time. If a system is designed as plug-flow ignoring the 

of distribution of residence time, the overall effect will be a reduction of treatment 

efficiency at the outlet. 

An insufficiently understood aspect of constructed wetlands design is the hydraulic 

regime. Currently used hydraulic design criteria in the field of constructed wetlands are 

largely theoretical. An appreciation of the hydraulic regime and actual detention time in 

a wetland system is a prerequisite to the understanding of the treatment mechanisms and 

the effectiveness of the purification provided by such systems (Fisher, 1990). By 

injecting a fluorescent tracer into the system, an assessment of the hydraulic regime can 

be obtained. Tracer methods have been used extensively in chemical reactor analysis and 

have been employed frequently in more conventional wastewater treatment technologies, 

such as stabilisation ponds (Slade, 1992; Stairs, 1993). 

This thesis investigates the hydraulic characteristics of a subsurface flow wetland using 

Rhodamine WT (fluorescent dye tracer) so as to firstly, determine the difference between 

theoretical and actual retention times and their effects on treatment efficiency. Secondly, 

to show through the calculation of the treatment efficiency that the current assumption of 

wetland being an ideal plug-flow reactor is not valid. 




