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Abstract 

Inflammation is a major contributor to postmenopausal bone loss. Various long chain 

polyunsaturated fatty acids (LCPUFAs), particularly those of the n-3 family, are known 

to have anti-inflammatory activity and may have a role in minimising postmenopausal 

bone loss. The objectives of this thesis were to determine whether some LCPUF As have 

greater bone-protective effects than others; to identify some of the mechanisms of action 

of LCPUF As in bone and to explore the possibility that combined treatment with 

LCPUF As and phytoestrogens offers greater bone-protective effects than either 

treatment alone. Using the ovariectomised rat model for postmenopausal bone loss, the 

relative effectiveness of eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid 

(DHA, 22 :6n-3 ) and gamma-linolenic acid (GLA, 1 8 : 3n-6) in minimising bone loss 

post-ovariectomy was investigated. GLA exacerbated bone loss post ovariectomy m 

rats. In vitro, treatment of MC3T3-E 1 I4 osteoblast-like cells with GLA resulted m 

greater membrane-bound RANKL expression suggesting a possible stimulatory effect 

of GLA on osteoclastogenesis and osteoclast activity. EP A had no effect on overall 

bone mass in vivo. DHA significantly ameliorated ovariectomy-induced bone loss 

possibly by increasing plasma IGF -1 concentration, modulating vitamin D metabolism 

and, as observed in a second study, by increasing the concentration of gamma­

carboxylated osteocalcin. In vitro both EPA and DHA reduced the prostaglandin E2 

(PGE2)-induced increase in membrane-bound RANKL expression in MC3T3-E 1 I4 

osteoblast-like cells. However as RANKL-independent pathways are believed to be 

largely  responsible for the ovariectomy-induced increase in osteoclastogenesis in vivo, 

inhibition of RANKL expression may not significantly contribute to the prevention of 

ovariectomy-induced bone loss. In a second study in ovariectomised rats, combined 

treatment with DHA and 1 713-oestradiol was associated with significantly higher femur 

bone mineral content than either treatment alone. However, no beneficial effects of 

combined treatment with DHA and either of the phytoestrogens genistein or daidzein, 

on bone mass were apparent. In vitro, co-treatment of TNF-a - exposed MC3T3-E 1 I4 

cells with DHA and 1 713-oestradiol was associated with a higher cell number compared 

to either treatment alone indicating a protective effect of combined treatment against the 

cytotoxic and/or anti-proliferative effects of TNF-Q . In contrast, combined treatment of 

MC3T3 -E l /4 cells with DHA and genistein, but not daidzein, was associated with 

significantly  lower cell number than either treatment alone. As genistein, but not 
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daidzein, is a tyrosine kinase inhibitor, this may indicate that OHA requires tyrosine 

kinase activity for its protective effect on cell number in TNF-a - exposed osteoblasts. 

Whether DHA itself is bioactive in bone cells or whether lipid mediators formed from 

DHA are responsible for the observed bone-protective effects is unknown. Using l ipid 

mediator lipidomic analysis, the presence of DHA-derived lipid mediators in bone 

marrow In quantities known to be physiologically significant in other tissues was 

confirmed. Further research into the effects of these lipid mediators in bone and 

confirmation of the mechanisms of action of OHA in bone cel ls  is required. This thesis 

demonstrates that consumption of OHA provides some protection against ovariectomy­

induced bone loss in vivo and mitigates the effects of inflammation on RANKL 

signalling and osteoblast cell number in vitro. The bone-protective effects of DHA are 

complemented by co-treatment with 1 7�-oestradiol but may be inhibited by co­

treatment with the phytoestrogens daidzein or genistein. 
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Introduction 

The age-old cliche "you are what you eat" aptly describes the crucial role diet plays in 

overall health. In general, there are three possible "fates" for dietary components once 

ingested. Some are catabolised to provide energy; others are incorporated into structural 

elements of body tissues. A select few are "bioactive" and involved in the regulation of 

various metabolic processes. In healthy animals, hormones direct the activity of diet­

derived bioactive factors thus ensuring the regulation of metabol ic processes is not 

simply subject to the dietary whims of the individual . However, conditions leading to 

hormone deficiency, such as menopause, may result in loss of this buffering action and 

diet, for good or ill , may become an even more important determinant of overall health 

and well-being. 

Post-menopausal osteoporosis is a major cause of morbidity and mortality in developed 

countries. Although post-menopausal bone loss can be effectively prevented by the use 

of oestrogen/hormone replacement therapy (ERT or HRT), recent findings from the 

Women's Health Initiative study indicate such therapy is associated with an increased 

risk of breast cancer and heart disease. As a result, there is a need to develop low-risk 

alternative therapies to HRT. 

Long-chain polyunsaturated fatty acids (LCPUF As) and phytoestrogens are bioactive 

molecules present in the diet. Both epidemiological data and dietary intervention studies 

have highlighted the possible therapeutic potential of LCPUF As and phytoestrogens for 

the prevention or treatment of post-menopausal bone loss. Although the anti­

osteoporotic effects of phytoestrogens have received considerable research attention, 

much less is known about the role of LCPUF As in preventing postmenopausal bone 

loss. The main objectives of this thesis were to further knowledge about the role of 

LCPUF As in the regulation of bone metabolism. A second obj ective was to determine if 

combined treatment with LCPUF As and phytoestrogens would have greater bone­

protective effects than either treatment alone. Modulation of dietary intake of LCPUF As 

and phytoestrogens may be a low-risk means of reducing postmenopausal bone loss and 

consequently, lowering the risk of development of post-menopausal osteoporosis. 
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CHAPTER 1: Literature Review 

Long chain polyunsaturated fatty acids and their 
possible interaction with phytoestrogens: Impact on 

bone and bone cell function in vivo and in vitro 
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Part 1 
Bone Structure and Metabolism: 

An Overview 

Bone is a dynamic tissue. Throughout the lifecycle it is continually broken down and 

re-built allowing the skeleton to adapt to the changing stresses of life. Aside from its 

structural role, bone is also a reservoir for calcium, a crucial cell signalling ion, and the 

home for bone marrow which has critical roles in haematopoiesis and in the immune 

system. Bone metabolism is tightly regulated by hormones, cytokines and growth 

factors . Hormonal imbalance and/or chronic changes in cytokine or growth factor 

activity as a result of life-stage or life-style can drastically affect bone integrity 

ultimately leading to fracture. 

BONE STRUCTURE 

Bone is 75% solid and 25% fluid [ 1 ] .  The solid phase consists of an organic matrix 

comprised mainly of type- 1 col lagen on to which calcium, phosphate and trace amounts 

of other minerals are deposited. The maj ority of the calcium and phosphate in bone is in 

the fOlm of a crystal line product known as hydroxyapatite (Calo(OH)2(P04)6) [2] . 

Several non-col lagenous proteins are also present in the bone matrix such as osteonectin 

and osteocalcin. The function of these proteins is poorly understood however they may 

be involved in the process of mineralization. 

Bone is enclosed in a dense membrane of fibrous connective tissue known as the 

periosteum. The periosteum contains blood vessels and nerve endings and is an 

important means of communication between bone and the rest of the body [3] .  

Immediately beneath the periosteum lies cortical or compact bone. Cortical bone is  

highly calcified and provides structural rigidity to the skeleton. Within cortical bone, the 

bone matrix is arranged in concentric circles or lamellae to form osteons (also known as 

the Haversian system). Osteons contain haversian canals through which blood vessels 

flow. The inner surface of cortical bone is known as the endosteal surface [4] . Located 

within the core or "medullary cavity" of bone is a lattice- like network of bony tissue 

which is interspersed with hematopoietic bone marrow. This lattice-like bone is less 
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highly calcified than cortical bone and is referred to as trabecular (or cancel lous or 

"spongy" bone) (Figure 1 ) . Because of its lattice-like structure, trabecular bone has a 

large surface area and is more metabolically active than cortical bone [5] .  
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/ \ CANALICULI �6��GY PERIOSTEUM OSTEOCYTE FIBROUS LAYER } 
OSTEOGENIC LAYER PERIOSTEU�J 

COMPACT BONE (OSTEOBLASTS) ---- ---- ---------

Figure 1 The internal structure of long bones. Bone marrow is interspersed with 
trabecular bone. Cortical bone (containing the Haversian System) is separated from the 
rest of the body by the periosteal membrane.  Diagram reproduced from Tabers online 
Cyc10paedic Medical Dictionary, 2004 F.A. Davis Company 
http://www.tabers20.com/pdflbone.pdf. 
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BONE METABOLISM 

During childhood and adolescence, bone increases in length as well as density by a 

process known as bone modelling. Long bone growth ceases in adolescence however, 

small increases in bone density can occur during early adulthood. Bone density peaks in 

approximately the third decade of life [6] then begins to decline at an estimated rate of 

3 % per decade for cortical bone and 7- 1 1 % per decade for trabecular [7] . In women the 

rate of bone loss accelerates to an estimated 9- 1 2% per decade for cortical bone and 

1 3% per decade for trabecular at the time of menopause [8). 

Bone remodelling is the method by which bone is continually turned over or renewed. It 

occurs throughout the lifecycle and involves the sequential and coupled re sorption of a 

small area of bone tissue fol lowed by replacement of this tissue with new bone [9). In 

humans, an estimated 1 0% of bone is remodelled each year [ 1 0] ,  the vast majority of 

which is trabecular bone [ 1 1 ] . 

Bone remodelling takes place at discrete sites within the skeleton known as Bone 

Remodelling Units (BRU). Osteocytes, which are cells embedded within bone tissue 

identify the sites within bone which require remodelling and signal the need for 

establishment of a new BRU. In humans, bone resorption at a BRU takes approximately 

2-3 weeks and is carried out by specialised macrophage-like cell s  known as osteoclasts. 

The replacement of resorbed bone with newly synthesised bony tissue requires 3-6 

months and is accomplished by a third type of bone cell known as the osteoblast [ 1 2, 

1 3 ] . 

Although remodelling is generally regarded as the only process governing new bone 

formation in adults, one other process known as "adult bone modelling" has recently 

been documented. Adult bone modelling involves new bone formation without prior 

bone resorption [9). The quiescent osteoblastic bone-lining cells in the periosteum are 

directly activated by mechanical loading to secrete new bone matrix immediately on top 

of existing bone tissue [9). Adult bone modelling occurs in response to pathological 

conditions, such as fracture, but has also been shown to occur following bone loading 

within the normal physiological range [9). 
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Adult bone modelling results in an increase in bone mass and strengthening of bone 

tissue [9] . In contrast, bone remodelling results in no net change in bone mass, although 

localized strengthening of bone tissue may occur due to replacement of damaged or 

fatigued bone tissue [ 1 4] .  

Bone Cells 

There are three main types of bone cel l :  osteoclasts, osteoblasts and osteocytes. 

Osteoclasts 

Osteoclasts are multinucleated, hematopoietic cells derived from the monocyte­

macrophage lineage. They are responsible for breaking down calcified tissue [ 1 5 ] .  

Osteoclasts exhibit many activities characteristic of  macrophages including the ability 

to phagocytose cells. They are also activated by several of the same signals which 

activate macrophages. 

Upon exposure to the appropriate range of growth factors, hematopoietic stem cells 

differentiate into osteoclasts, macrophages or dendritic cells [ 1 6] .  There are four stages 

in the formation of active osteoclasts from progenitor cells :  commitment of progenitor 

cells to the osteoclast lineage, differentiation of these osteoclast precursors into 

mononuclear osteoclasts, fusion of mononuclear cells to form a quiescent 

multinucleated osteoclast and finally activation of the osteoclast (characterised by 

attachment to the bone surface) [ 1 7] .  Macrophage Colony-Stimulating Factor (M-CSF) 

(produced by osteocytes and osteoblasts) and the transcription factor PUl (derived 

from B lymphocytes and non-lymphoid bone marrow) are essential for the initial 

proliferation and commitment of progenitor cel l s  to the osteoclast lineage [ 1 7- 1 9] .  

Differentiation, fusion and final activation of osteoclasts i s  largely controlled by a triad 

of proteins consisting of two receptors: RANK (Receptor Activator of Nuclear Factor­

ill) and OPG (osteoprotegerin), and a ligand, RANKL [ 1 7] .  M-CSF induces expression 

of RANK in osteoclast precursors enabling differentiation and maturation into multi­

nucleated osteoclasts [ 1 7] .  

RANKL, (also known as TRANCE or ODF), i s  a member of the tumour necrosis factor 

(TNF)  family [20] . It is expressed by both osteoblasts and osteoclasts as well  as by 
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activated T cells and cells in the liver, spleen, muscle, brain and in the smooth muscle of 

the arteries [2 1 ] .  RANKL exists in both membrane-bound and soluble forms [22] .  Both 

the membrane-bound and soluble forms of RANKL interact with the receptors RANK 

and OPO which compete for RANKL binding. RANK is a membrane-bound receptor 

whereas OPO is a soluble protein. Both are present in a range of different cell types 

such as dendritic cells, endothelial cells, fibroblasts, B and T lymphocytes and 

osteoclasts [2 1 ] . Binding of RANKL to RANK and interaction of the cytoplasmic tail of 

RANK with a family of adaptor proteins known as TRAFs (TNF-associated factors) 

activates signalling cascades including NF-KB, and MAPK ultimately leading to 

expression of genes which are essential for osteoclast differentiation [ 1 9, 23 ] .  RANKL 

signalling also helps prevent osteoclast apoptosis [24] . 

Increased expression of OPO results in increased RANKLlOPO binding at the detriment 

of RANKL/RANK binding. Binding of RANKL to OPO does not trigger osteoclast 

differentiation and consequently OPO is often referred to as a decoy receptor [2 1 ] .  

Increased OPO expression leads to a rapid reduction in osteoclast number through both 

the prevention of new osteoclast differentiation as well as increased apoptosis of mature 

osteoclasts [2 1 ] . 

Aside from their role in regulating osteoclast differentiation, RANK, RANKL and OPO 

are also involved in the immune and vascular systems [2 1 ] . Mice deficient in OPO not 

only exhibit decreased bone density and increased risk of fracture but also increased 

renal and aortic calcification [2 1 ] .  The kidney and intestine also express high levels of 

OPO which has led to the suggestion that OPO may have a role in regulating calcium 

and phosphate balance [ 1 7] .  Both RANKL and RANK knockout mice fail to develop 

lymph nodes [2 1 ] . In the absence of osteoclasts, a functional bone marrow capable of 

haematopoiesis fails  to form [23 ] .  The immune system also has a role in the regulation 

of bone resorption as activated B-cells and T-cells express RANKL [ 1 8, 25] .  Activated 

T cells also produce several cytokines which upregulate osteoclastogenesis such as 

TNF-a (Tumour Necrosis Factor-a) and IL- l (interleukin- l )  [ 1 8] .  In addition, several 

cytokines such as IL-7 and IFN-y (interferon-y) which activate T-cells during the 

inflammatory response also promote osteoclast activity under certain conditions [ 1 8] .  

Although T -cell activation promotes osteoclastogenesis, when T cells are not exposed 

to strong activation signals, there is some evidence they may actually suppress bone 
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resorption [ 1 8 ] .  The interaction between the immune and bone regulatory systems has 

important consequences for human health. Infection, inflammation and auto-immune 

disorders which lead to activation of the immune system are associated with increased 

osteoclastic activity and a decline in bone density [ 1 8] .  

Hormones such as 1 ,25-dihydroxyvitamin D 3 ,  parathyroid hormone (PTH) and 

localised regulators such as TNF-a, prostaglandins (particular PGE2) and various 

interleukins (IL) influence osteoclastogenesis mainly by altering the balance between 

RANK and OPG expression and the availability of RANKL as shown in Figure 2 [ 1 5] .  

Factors influencing RANK, RANKL & OPG concentrations 

1,25 (OHh vitamin D3 
PGE2, PTH, IL-II, cAMP, 

gpl30 
IL-113 

Increased intracellular calcium 
concentration 

Reactive oxygen species (ROS) 
TNF-a 

1,25 (OH), vitamin D3 
IL-1 

IFN·y 
Histamine 

PGE2 
IL-6 

IGF-1 
Fibroblast Growth factor 

(FGF)-2 
Melatonin 

Nitric oxide 

RANKL 

Some bisphosphonates 
Some flavonoids 
COX-2 inhibitors 

Tensional force TNF·a, 
TGF.�, IFN·y 
1713·estradiol 
Bone morphogenic 
proteins 
Growth hormone 
Vitamin K 
Leptin 
Nitric Oxide 

PTH 
Glucocorticoids 
PGE2 
Fibroblast Growth 
Factor 
Aging 

Figure 2 Factors influencing the synthesis of RANK, RANKL and OPG. RANK is 
influential in the functioning of the immune system and consequently, known immune 
stimulators such as histamine and inflammatory cytokines, enhance RANK synthesis. 
Most hormones and localised regulators which are known to have an anabolic effect on 
bone promote OPG synthesis. Diagram created from information in Theoleyre et al 
(2004), Turner & Robling (2004,) Nishida et al (2005), Wang et al (2006) and 
Weitzmann & Pacifici (2005) [ 1 8 , 2 1 , 26-28] .  

Although the RANKLlRANK system is vital for osteoclastogenesis, it is not the sole 

means by which osteoclast differentiation is regulated. For instance, T-cell derived 

TNF -a is capable of stimulating osteoclastogenesis by increasing stromal cell 

- 8 -



production of RANKL [ 1 8] as well as by a mechanism independent of the 

RANKlRANKL pathway as il lustrated by the finding that osteoclast formation in 

RANK(-I-) mice is induced by TNF-a [25 ] .  Other signalling pathways such as Akt, c-Fos 

and Erk (extracellular signal-regulated kinase) may also be required in conjunction with 

RANKLIRANK to enable irreversible differentiation of precursors into fully active 

osteoclasts [ 1 9] .  

Figure 3 Coloured scanning electron micrograph (SEM) of an osteoclast (upper left) 
resorbing bone. Magnification: x 1 000 at 6 x 7 cm size. Photo courtesy of SPLlPhoto 
Researchers, Inc . 

Osteoclast activity 

Activation of the differentiated, multinucleated osteoclast occurs by its binding to the 

bone matrix [ 1 7] .  This leads to re-organisation of the actin cytoskeleton, polarisation of 

the cell and the formation of three specialised areas within the plasma membrane of the 

osteoclast known as the sealing zone, the ruffled border and the functional secretory 

zone [ 1 6, 1 7] .  

Microfilaments exuding from the osteoclast form a ring-shaped, "sealing zone" 

allowing tight adherence of the cell to the bone surface. Integrins (integral membrane 

proteins) are proteins located in the sealing zone [ 1 6] .  These interact with matrix 

metalloproteins (MMPs) (a family of proteins present in the organic bone matrix) and 
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affix the osteoclast to the bone surface [29] . Within this sealing zone lies the ruffled 

border which is  a convoluted membrane rich in vacuoles. It contains vacuolar H+­

ATPase which acidifies the sealed area dissolving the inorganic constituents of bone 

[25 ] .  The ruffled border also secretes acidic proteases such as TRAP (tartrate-resistant 

acid phosphatase) and cysteine proteases which degrade the organic bone matrix [ 30, 

3 1 ] .  The remnants of degraded bone matrix are absorbed by the osteoclast via 

endocytosis, transported through the cell and then secreted at the functional secretory 

domain in the basolateral membrane [16, 17] .  

Osteoblasts 

Osteoblasts are generally described as originating from mesenchymal stem cells [32]  

located in the bone marrow stroma and the periosteum [33 ] .  These same stem cells also 

give rise to adipocytes, fibroblasts and chondrocytes [33 ] .  The term "mesenchymal stem 

cell" however is ambiguous as there are no known markers which distinguish a stem 

cell as being mesenchymal . Over a decade ago, Chen and col leagues sought to 

characterise the population of stem cells which gave rise to osteoblasts. They, and since 

then others, found CD34+ stem cells located within bone marrow can give rise to both 

hematopoietic progenitor cel ls as well as osteoblasts [34, 35 ]  suggesting that both 

osteoclasts and osteoblasts may originate from the same cell source. 

In contrast to osteoclasts, the pathway leading to commitment of progenitor cells to the 

osteoblast lineage is less wel l  understood. Interestingly, there is a great deal of 

heterogeneity in the mature osteoblast phenotype and considerable variation has been 

noted in terms of expression of receptors for various cytokines, growth factors and 

hormones [32, 36] . 

Two transcription factors have been identified which have important roles in osteoblast 

differentiation. These are core binding factor- l (Cbfa- l also known as RUNX2) and 

Osterix (Osx). 

The essentiality of Cbfa- l for osteoblast differentiation and bone formation was 

unequivocally demonstrated in deletion studies in mice. The skeleton of cbfa-l-null 

mice is devoid of bone and comprised only of cartilage [32] . cbfa-l-null mice also 

completely lack both osteoblasts [32] and osteoclasts [3 7] . Cbfa- l has an integral role 

not only in the differentiation of mesenchymal progenitors into pre-osteoblasts and 
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hypertrophic chondrocytes but also in controlling the function of mature osteoblasts 

[37] . It regulates the expression of all major osteoblastic genes including OPO and 

"late-stage" genes such as osteocalcin and controls the rate of formation of new bone 

matrix [38] . 

Osx acts downstream of Cbfa- l to promote the differentiation of pre-osteoblasts into 

mature osteoblasts [37] . Transcription of osx is upregulated by Cbfa- l [39].  There is a 

complete absence of osteoblasts in the skeleton of osx-null mice however in contrast to 

cbfa- l -null mice, multinucleated osteoclasts are present [3 7] .  The absence of a 

functional osx gene appears to change the fate of pre-osteoblasts by switching them to 

the chondrocyte rather than osteoblast phenotype [37] . Several other transcription 

factors, such as members of the Fos family, operate downstream of Osx and are 

involved in regulating expression of genes characteristic of mature osteoblasts [ 1 2] .  

Regulation of Cbfa- l and Osx can occur at the transcriptional, translational and, at least 

for Cbfa- l ,  post-translational level [ 1 2, 32, 40] . 

Although the discovery of the activities of Cbfa- l and Osx has provided considerable 

insight into the process by which osteoblasts form, much remains unknown about the 

course of events which leads to initiation of Cbfa- l and Osx synthesis and activity. 

Several signalling pathways operate upstream of Cbfa- l and Osx . The bone 

morphogenic protein (BMP) and canonical Wnt (Wingless-type) signalling pathways 

have been identified as having major roles in osteogenesis and are receiving 

considerable attention at present. In addition, signalling via the three MAP kinase 

(MAPK) subunits, Erk, lun and p38, is also important in the regulation of osteoblast 

differentiation. 

BMPs are members of the transforming growth factor superfamily. Four of the more 

than 20 BMPs currently identified are known to have osteogenic effects. In addition, 

another member of the transforming growth factor superfamily, transforming growth 

factor B (TOF-�) also regulates osteoblastogenesis by a similar mechanism to BMPs 

[4 1 ] .  BMP-receptor binding activates the intracellular transcription factors known as 

smads ultimately leading to nuclear translocation of the BMP-smad complex and the 

initiation of both cbfa-l and osx gene expression [42-44] .  In addition, BMPs also 

stimulate osteoblastogenesis by smad-independent pathways such as by the activation of 
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MAPK [45] .  For instance signalling by B MP-2 and the jnk and p38 subunits of MAPK 

stimulates Osx expression in osteoblasts [44] . BMPs are also involved in post­

translational activation of Cbfa- 1 and have been shown to initiate phosphorylation of 

Cbfa- l via the MAPK pathway [40 ] .  

The Wnt family of  glycoproteins activate a number of pathways in different cell types. 

In bone, osteoblastogenesis is induced by the canonical pathway which involves 

stabilisation of p-catenin via interaction of Wnt with its receptor Frizzled and co­

receptors L RP-5/6 (low density lipoprotein receptor-related proteins 5 and 6). Once 

stabilised, p-catenin is translocated to the nucleus where it regulates transcription of a 

number of genes including cbfa-l [45 ]  and osteocalcin [46] . Wnt signalling also 

suppresses C/EBP-alpha (CAAT enhancer binding protein-alpha) and PPAR-gamma, 

two transcription factors involved in promoting mesenchymal progenitor cell 

differentiation into adipocytes [47] . The Wnt and BMP signalling pathways do not 

operate in isolation and there is considerable cross-talk between the two pathways [45 ] .  

I n  the case of Cbfa- l , phosphorylation i s  required for activation. PTH and growth 

factors such as fibroblast growth factor-2 (FGF-2) stimulate MAPK-phosphorylation, 

and therefore activation, of Cbfa- 1 [40] . Synthesis of proteins characteristic of the 

mature osteoblast phenotype such as type- 1 collagen, the major constituent in bone 

matrix and osteopontin, a protein involved in matrix mineralisation, is also triggered by 

MAPK signalling [48] .  

Many of the bone regulatory hormones as well  as various cytokines and growth factors 

such as IGF- 1 and nitric oxide act on the BMP, Wnt or MAPK signalling pathways as 

one of the means by which they control bone remodelling [49, 50] . 

Osteoblast Activity 

Osteoblasts attach to the organic bone matrix via interactions between integrins at 

special focal adhesion sites on the osteoblastic membrane and organic constituents of 

the bone matrix [26] . Under non-pathological conditions, osteoblasts accurately replace 

the volume of bone previously resorbed by osteoclasts and the overall effect of bone 

remodelling is no net change in actual bone mass. The mechanism triggering osteoblasts 

to stop synthesising new bone matrix once the lacuna is refil led is poorly understood. 
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Figure 4 Coloured scanning electron micrograph (SEM) of growing human osteoblasts 
exuding long strands of extracellular matrix. These strands are used to hold 
neighbouring osteoblasts together. Photographed at the Imperial College Center for 
Tissue Engineering, London, UK. Magnification: x 1 480 at 5 x 7 cm size . Photo 
courtesy of Ioanis Xynos / Photo Researchers, Inc. 

Osteoblast/Osteoclast Cross-talk 

Cross-talk between osteoclasts and osteoblasts is important for initiating both osteoblast 

and osteoclast formation, maturation and activity [5 1 ,  52] .  It is also important for 

ensuring the timely and sequential recruitment and activity of osteoclasts and 

osteoblasts at a BRU. 

Traditionally, "coupling agents" were believed to be involved in osteoclast/osteoblast 

cross-talk .  Members of the TGF superfamily, particularly TGF-�, as well as other 

growth factors such as IGF- l ,  IGF-2 and platelet-derived growth factor (PDGF), were 

proposed as candidate coupling agents [53 ] .  These growth factors are synthesised by 

osteoblasts and secreted into the bone matrix during new bone formation. They remain 

embedded in the bone matrix until they are released during osteoclast-mediated bone 

resorption. The release of these growth factors was thought to stimulate the proliferation 

of osteoblast precursors and the attachment of new osteoblasts to the remodelling site 

hence ensuring the lacuna created by the osteoclast was re-filled [53] .  However, 
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although the presence of these factors in bone matrix is indisputable; their role in 

stimulating osteoblastogenesis during bone resorption now appears to be minor. This is 

i l lustrated by the finding that differentiation of ostcoblasts from bone marrow stromal 

cells is actually enhanced with bisphosphonate therapy, a treatment which prevents 

osteoclastic bone resorption and therefore prevents the release of matrix-embedded 

growth factors [54] . 

There are several examples of cross-talk between osteoclasts and osteoblasts which do 

appear to have a tangible effect on differentiation or activation of either cell type. One 

of the best characterised examples is RANKL/OPG/RANK signalling which has a 

major impact on osteoclastogenesis. In human aortic valves, RANKL also increases 

Cbfa- 1 binding to DNA [55] .  Whether RANKL has a similar effect on Cbfa- l in bone is 

unknown. 

Recently, involvement of the ephrin family of cell surface proteins in controll ing both 

osteoblastogenesis and osteoclastogenesis has been observed [52] and it is possible that 

ephrins are involved in initiating the transition between bone resorption and formation 

in the remodell ing cycle. 

Osteoclasts express a range of ephrins but do not express Eph receptors. In contrast, 

osteoblasts constitutively express both ephrins and Eph receptors. EphrinB2 (expressed 

by osteoclasts) can bind to a range of Eph receptors however EphB4 (expressed by 

osteoblasts) solely interacts with ephrinB2 . Binding of ephrinB2 to EphB4 stimulates 

osteoblastogenesis by inducing cbfa-l and osx expression. Whether this transcriptional 

stimulation involves the Wnt or BMP signalling pathways is as yet unknown. Ephrin 

B2/EphB4 binding also inhibits osteoclastogenesis by a pathway independent of 

RANKLlOPG signalling [52] . Increased expression of ephrinB2 in either osteoblasts or 

osteoclasts, or over-expression of EphB4 in osteoblasts, promotes osteoblastogenesis 

and inhibits osteoclastogenesis. RANKL stimulates ephrin B2 expression however other 

factors regulating ephrin B2 and Eph B4 expression have yet to be identified [52] . 

Although artificial manipulation of ephrin B2/EphB4 signalling has been demonstrated 

to control bone formation and resorption in vivo and in vitro, whether ephrin signalling 

has similar effects on bone under normal physiological conditions remains to be 
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determined. The interaction between osteoblasts and osteoclasts through ephrin and 

RANKL signalling is i l lustrated in Figure 5 .  
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Figure 5 Cartoon representation of examples of osteoblast/osteoclast cross-talk. 

Promotion of osteoclast maturation is triggered by binding of RANK, on osteoclast 

progenitors, to RANKL, on osteoblasts. Increased OPG synthesis by osteoblasts results 

In competitive inhibition of RANKL-RANK binding and inhibition of 

osteoclastogenesis. In addition, interaction between Ephrin B2 on osteoclasts and the 

osteoblast EphB4 receptor may also lead to inhibition of osteoclastogenesis and 

promotion of osteoblastogenesis .  Diagram created from information in Zhao et al 

(2006) and Theoleyre et al (2004) [2 1 ,  52] . 

Osteocytes 

Following new bone formation, some osteoblasts are kil led by apoptosis whereas others 

become embedded within the lacunae in the bone tissue, subsequently transforming into 

osteocytes [56] (Figure 6). Matrix metalloproteinases (MMPs) are involved in 

preventing osteoblast apoptosis possibly by degrading pro-apoptotic extracellular 

signalling molecules as well  as by activating latent TGF -p enabling osteoblast 
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differentiation into osteocytes [57] . Part of the osteocyte transformation process 

involves the production of long, dendritic processes by transforming osteoblasts which 

extend through the canaliculi in bone and connect to the processes from existing 

osteocytes [56] . The end result is a 3-dimensional network, referred to as the osteocytic 

membrane or synctium, which not only connects bone cells but also defines a common 

fluid space [ 1 ] . This synctium also includes osteoblasts and to a lesser extent, 

osteoclasts, residing on the bone surface, allowing communication between osteocytes 

in different locations within bone as well as between the three cell types [ 1 ] . 

Osteocytes comprIse 90% of total bone cells [56] .  Young osteocytes are known as 

formative osteocytes. They retain many of the same cellular features as osteoblasts [58]  

and are also capable of bone formation [36] . Young osteocytes are approximately 30% 

smaller in mean volume than the original osteoblast. They continue to decrease in  size, 

mainly by decreases in the size of the cytoplasm, as the lacuna in which they reside 

becomes more extensively mineralised [36] . 

Formative osteocytes mature into resorptive osteocytes which share many features 

characteristic of osteoclasts such as tartrate-resistant acid phosphatase (TRAP) activity. 

Resorptive osteocytes can break down bone tissue [58 ] .  The bone resorptive capability 

of osteocytes is transient however and as the cells age further they lose this capability 

and are subsequently known as degenerative osteocytes [58] . 

During bone resorption, osteocytes are released from their lacunae. Some of these 

released osteocytes are engulfed by osteoclasts. Engulfed osteocytes do not show 

characteristic signs of necrosis or apoptosis and osteocytes have been detected on the 

bone surface near BRU. It is possible that osteoclasts engulf embedded osteocytes along 

with the bone tissue and exude them at the basolateral membrane with other 

components of the bone matrix [59] . Upon release, these osteocytes may revert to the 

osteoblast phenotype and synthesise new bone matrix or may become re-embedded in 

newly formed bone matrix [59] . Cell remnants have also been detected in osteoclasts 

during both bone model ling and remodel ling [59] therefore it appears that whereas 

some osteocytes "escape" during bone resorption, others are phagocytosed by 

osteoclasts [60] . 

- 1 6  -



Death of osteocytes within bone tissue is typically followed by resorption of the bone 

matrix in which the osteocyte resides [ 1 ] .  Although osteocytes are generally long-lived 

with an average half-life of 25 years [ 1 ] , various factors can initiate premature 

programmed cell death [56] . These include bone damage (even at a microscopic level),  

immobilisation of bone, exposure to cytokines such as tumour necrosis factors or Il- l 

and steroid hormone deficiency [56] . 

Figure 6 Coloured scanning electron micrograph (SEM) of a freeze-fractured osteocyte 
surrounded by bone. Magnification: x 4000 at 6 x 7 cm size. Photo courtesy of SPL / 
Photo Researchers, Inc. 

I nitiation of Bone Remodelling 

Mechanical Strain 

Skeletal loading causes localised bone deformation or strain. Osteocytes, as the resident 

bone cells, are uniquely situated to register the occurrence of strain and to signal the 

need for bone remodelling [26, 6 1 ] . Osteocytes respond to mechanical strain by 

invoking a biochemical cascade of events ultimately leading to induction of osteoclast 

activity and a new bone remodelling cycle [62] . In response to bone strain there is a 

rapid increase in both osteoclast [62] and osteoblast number and activity [63, 64] . The 
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mechanism by which osteocytes "sense" mechanical strain is poorly understood. As 

bone deformation results in a change in the flow of bone fluid, fluid shear stress is 

bel ieved to be one of the factors initiating bone remodelling [62, 63, 65] .  

Within seconds of bone loading, several locally-acting regulators of bone metabolism 

are released, primarily by osteocytes, but also by mature osteoblasts. These include 

nitric oxide (NO) and prostaglandins such as PGE2 [66] . Phospholipase-mediated 

membrane release of fatty acids, notably arachidonic acid (AA), the substrate for PGE2 

synthesis, is also increased in osteocytes as one of the initial responses to mechanical 

stimulation. Expression of the inducible form of COX, COX-2, which oxidises AA to 

form PGE2, is also upregulated as an early response to strain [62] .  PGE2 promotes 

cbfa-l gene expression [67, 68] and stimulates production of IGF- l and c-AMP. IGF- l 

up-regulates osx transcription [44] thereby promoting osteoblastogenesis. PGE2 also 

stimulates osteoclastogenesis by upregulating RANKL and RANK and down-regulating 

OPG synthesis [69] . Osteocytes subjected to strain synthesise and secrete M-CSF and 

RANKL [70] thereby enhancing osteoclastogenesis. 

The Wntlp-catenin signalling pathway is activated in both osteocytes and osteoblasts in 

response to mechanical strain [7 1 ]  and is bel ieved to have a maj or role in governing the 

behaviour of bone cel ls following skeletal loading [66] . PGE2 is  one of the activators of 

the Wnt signalling pathway [66] . Synthesis of sclerostin, an osteocyte-specific protein 

which inhibits Wnt signalling, is also decreased in osteocytes in response to mechanical 

loading [66] . Both BMP and MAPK signalling are activated in response to strain [72] .  

Bone experiences varying degrees of  strain at various times however bone remodelling 

is only initiated once the level of strain reaches a certain threshold. This threshold or 

"mechanostat" is determined by the relative levels of systemic hormones [65 ] .  

Oestrogen i s  particularly important for establishing the strain threshold set-point. High 

oestrogen levels reduce the degree of strain required in order to initiate endocortical 

bone remodelling and this effect appears to be predominately mediated through 

Oestrogen Receptor-a (ERa) [65, 73] .  In contrast, oestrogen inhibits the ability of 

mechanical strain to enhance periosteal bone formation, possibly by a mechanism 

involving ER-P [74] . Parathyroid hormone (PTH) and vitamin D also influence the 
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setpoint of the mechanical strain threshold [56, 75 ] .  The concentrations of these bone­

active hormones are influenced by the overall calcium balance within the body. 

Calcium Balance 

Dietary calcium intake has a major impact on bone mass as it i s  the main source of 

calcium for bone mineralisation. Factors influencing dietary calcium intake, intestinal 

calcium absorption and renal calcium resorption determine overall calcium balance in 

the body. 

Calcium is an important second messenger. Intracel lular calcium concentration can 

rapidly increase by up to l OO-fold as part of the calcium-signalling process [76] . Extra­

cellular calcium concentration however is maintained within a very narrow range ( 1 . 1 -

1 .3mM). A specialised, G protein-coupled calcium-sensing receptor (CaR) expressed on 

cell membranes "senses" extracel lular calcium concentration and modulates the 

synthesis and secretion of systemic hormones accordingly [77, 78] . 

Acute changes in calcium balance do not invoke bone remodelling. Such fluctuations 

are buffered by the "exchangeable calcium pool" present within bone fluid. 

Approximately 25% of bone is fluid and an estimated 1 % of total body calcium ("the 

exchangeable calcium pool") is contained within bone fluid [ 1 ] .  Bone fluid circulates 

within the canicular system and is separated from plasma and extracellular fluid by the 

synctium [ 1 ] . The exchangeable calcium pool present in bone fluid is the primary source 

for replenishing extracel lular calcium levels and the "sink" for excess extracellular 

calcium. The buffering effect of the exchangeable calcium pool means that small 

fluctuations in extracellular calcium concentration can be rectified without the need for 

inciting changes in bone cel l activity. Chronic changes in extracellular calcium balance 

however wil l  trigger a hormonal cascade ultimately leading to a shift in the set-point of 

the bone resorptionJformation balance [53 ] .  

The CaR is capable of modulating the secretion o f  PTH, calcitonin, growth hormone, 

gastrin and insulin as wel l  as several other peptides which also regulate intestinal 

calcium absorption, renal calcium reabsorption and/or bone cel l  genesis  and activity 

[78] . In response to elevated extracellular calcium concentration, the CaR also activates 
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phospholipase-C and stimulates the release of fatty acids from membranes [78] and 

induces MAPK signalling via the Jnk subunit thereby promoting osteoblast proliferation 

[79], 

Regulation of Bone Remodelling 

A neuro-endocrine pathway governing both total bone and fat mass through leptin 

binding to hypothalamic receptors has been identified [80] .  Other systemic regulators of 

bone metabolism include insulin, growth hormone and oestrogen which promote bone 

formation; thyroid hormone and glucocorticoids which stimulate bone resorption; 

calcitonin which inhibits bone resorption and PTH and 1 ,25 -(OH)2-vitamin D3 which 

stimulate both bone formation and resorption [8 1 ] . 

Whilst growth hormone has a major role in promoting bone growth during childhood, a 

triad of hormones, consi sting of oestrogen, parathyroid hormone and vitamin D, is 

largely responsible for responding to calcium-sensing and mechano-sensing signals in 

adulthood. 

In the gastrointestinal tract and in osteoblasts parathyroid hormone (PTH), in 

conjunction with 1 ,25-dihydroxyvitamin D enhance transcription of the 24-hydroxylase 

gene thereby stimulating further 1 ,25-dihydroxyvitamin D formation. In the kidney 

however, PTH and 1 ,25-dihydroxyvitamin D3 have opposing effects on 24-hydroxylase 

mRNA levels [82].  Oestrogen promotes 1 ,25-dihydroxyvitamin D activity by increasing 

vitamin D receptor (VDR) expression [83 , 84] . 1 ,25-dihydroxyvitamin D3 inhibits PTH 

synthesis thereby indirectly acting as a feedback inhibitor of its own synthesis [82] . 

Oestrogen reduces PTH receptor number in some cells consequently reducing cell 

responsiveness to PTH [85] but it also enhances PTH gene expression [86] . 

PTH, 1 ,25-dihydroxyvitamin D and oestrogen are not the sole systemic regulators of 

bone metabolism. A change in the levels of these three hormones also influences level s  

of other bone-active hormones. 1 ,25-dihydroxyvitamin D and possibly, oestrogen, may 

enhance calcitonin secretion particularly in postmenopausal women [87] . Calcitonin 

raises 1 ,25-dihydroxyvitamin D levels and inhibits bone resorption by suppressing 
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osteoclast activity. 1 ,25(OH)2 vitamin D in conjunction with serum calcium, may 

enhance pancreatic secretion of insulin [88] which is essential for bone mineralisation. 

Regulation of Calcium Balance 

Intestinal calcium absorption is promoted, and renal calcium reabsorption inhibited by 

1 ,25-dihydroxyvitamin D .  PTH increases overall calcium balance by promoting 

reabsorption of calcium from the kidneys rather than through any direct effect on 

intestinal calcium absorption. PTH also stimulates the release of calcium from the 

exchangeable calcium pool in bone fluid [ 53 ] .  Oestrogen indirectly enhances intestinal 

calcium absorption by increasing intestinal cell responsiveness to vitamin D [83,  84] . It 

is unknown whether oestrogen also directly enhances intestinal calcium absorption 

however in the kidneys, oestrogen increases PTH activity and reduces urinary calcium 

excretion [89] . 

Regulation of Bone Cell Formation and Function 

PTH, oestrogen and vitamin D act both synergistically and antagonistically to control 

the synthesis and activity of osteoblasts and osteoclasts. 

The effect of PTH on bone cells is complex. Low intermittent doses of PTH promote 

collagen synthesis and bone formation [53] whereas high, continuous PTH release 

inhibits collagen synthesis, stimulates collagen breakdown and promotes osteoclastic 

bone resorption [82] . In vitro, PTH has a biphasic effect on osteoclasts, first increasing 

activity of existing osteoclasts, then promoting new osteoclast differentiation [82]. It is 

somewhat unclear to what extent PTH acts directly on osteoclasts or how much of its 

effect is indirect and a consequence of its action on osteoblasts [ 82].  

The effects of PTH on osteoblasts are many and varied. PTH may disrupt osteoblast­

binding to the bone surface, therefore allowing the replacement of osteoblasts with 

osteoclasts. The anabolic effects of PTH on bone may at least partial ly be mediated via 

the Wnt and/or TGF-P/BMP signalling pathways [90] . PTH decreases the activity of 

mature osteoblasts, but is mitogenic to pre-osteoblasts and may promote new osteoblast 
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formation [82] .  PTH inhibits transcription of cbfa- 1 and osx [9 1 ]  but promotes 

phosphorylation and therefore activation of Cbfa- 1 protein [40] .  

The effect of  oestrogen on osteoclasts i s  species specific. Oestrogens directly affect 

avian osteoclast activity however their effects on rat osteoclasts appear to be largely 

indirect [89] . Human osteoclasts express both oestrogen receptors (ER-a and ER-�) [92] 

therefore it is possible that oestrogen acts directly on human osteoclasts. Oestrogen 

interferes with the catabolic effects of PTH in promoting bone re sorption but does not 

appear to hinder the anabolic activity of PTH [89] . Oestrogen also stimulates bone 

formation in trabecular bone [93 ] .  It enhances the activity of Cbfa- l by both an ER-a -

dependent and independent mechanism but does not appear to affect Cbfa- l expression 

[94] .  Conversely Cbfa- l suppresses oestrogen activity. ER-a dimerises with Cbfa- l and 

this dimerisation is perhaps involved in the mechanism by which oestrogen increases 

Cbfa- l activity [94] . ER-a also dimerises with �-catenin and this interaction is markedly 

increased by binding of oestrogen to ER-a. The relevance of this interaction to bone is 

unknown however studies in drosophila indicate synergistic promotion of �-catenin­

mediated gene expression by ligand-bound ER-a In osteoblasts, estrogens activate 

BMP-signalling by stimulating transcription of various BMPs including BMP-2 [95] .  

Whereas PTH and oestrogen work to change the balance between bone resorption and 

bone formation, the actions of 1 ,25-dihydroxyvitamin D are a little more indiscriminate. 

1 ,25-dihydroxyvitamin D promotes formation of both osteoblasts and osteoclasts [96, 

97] . 

Hormones can act directly on target cells to bring about change however the majority of 

the effects of hormones are brought about by the action of localised regulators. 

Hormone-receptor binding leads to an increase in gene expression or translation of 

specific localised regulators. Known localised regulators of bone metabolism include 

the eicosanoids, cytokines and growth factors which directly affect osteoclast or 

osteoblast proliferation, differentiation or activation [98, 99] . Figure 7 illustrates some 

of the interactions between the major regulatory pathways controll ing bone remodelling. 

- 22 -



1 . 25·dihydroxyvita min 0 

Osteoblast 

Figure 7 Summary diagram of some of the key regulatory mechanisms governing 
osteoblast and osteoclast formation and differentiation. The central role of PGE2 in this 
process is highlighted. Diagram created from information in Celil et ai, 2005; Celil & 
CampbeU,  2005 ; Tobimatsu et ai, 2006; van der Horst et ai, 2005; Franceschi et ai, 
2003;  Bonewald, 2006; Smith & Clark, 2005; Yoshida et ai, 2002 and Watkins et ai, 
2003 [44, 62, 66-68, 90, 1 00, 1 0 1 ]  
M-CSF = Macrophage colony stimulating factor, TRAP = Tartrate Resistant Acid Phosphatase, OPG = 

Osteoprotegerin, Cbfa- l = Core binding factor I ,  BMP = Bone Morphogen ic Protein, MAPK = M itogen 
Activated Protein Kinase, Wnt = Wingless type (canonical signall ing pathway), PPAR = Peroxisome 
Prol iferator-Activator Receptor, I GF- l = Insulin-l ike growth factor- I ,  RAN K = Receptor activator of 
nuclear factor kappa B, RAN KL = Receptor activator of nuclear factor kappa B ligand. 

Misregulation of Bone Remodelling: Osteoporosis 

Osteoporosis is defined as a disease characterized by decreased bone mass, 

microarchitectural deterioration of bone ti ssue and an increased risk of fracture [ 1 02] . 

More than 50% of New Zealand women and nearly one third of New Zealand men over 

the age of 60 years, have osteoporosis. The burden on the public health system is high. 

Osteoporosis frequently leads to hospitalization, usually as a result of hip fracture. 

Statistics from several European countries implicate osteoporosis as responsible for the 

highest number of hospital days in women aged over 45 years [ 1 03 ] .  
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The consequences of osteoporosis are greater than simply an increased risk of bone 

fracture. Approximately one third of hip fracture patients die within the next year, 

usually as a result of cardiovascular disease. There is a strong, inverse relationship 

between degree of aortic calcification and bone density [ 1 04] . Coincidentally, 

cardiovascular disease is  linked with increased calcification of the arteries whereas 

osteoporosis results in decreased calcification of bone tissue [ 1 05 ,  1 06] . 

Causes of Osteoporosis 

Osteoporosis i s  categorised into three types each stemming from a different primary 

causes :  

1 .  Senescence. Endocrine changes associated with agemg, m particular, decreased 

production of growth hormone and insulin-like growth factor-1 ( IGF- 1 ), lead to 

decreased bone formation and therefore a loss of bone mass [6] . 

2. Sex hormone deficiency. The most common cause of sex hormone deficiency IS 

menopause. For this reason, osteoporosis stemming from sex hormone deficiency IS 

usually a result of a lack of oestrogen and is termed postmenopausal osteoporosis. Sex 

hormone deficiency however can also result from surgical procedures such as castration 

in males and ovariectomy in females. 

3. Glucocorticoid excess. Glucocorticoids inhibit intestinal calcium absorption, 

promote PTH synthesis and inhibit oestrogen synthesis .  They also stimulate osteocytes 

to enlarge the lacunae within which they reside by resorbing bone mineral [3 1 ]  Whilst 

the endogenous glucocorticoid, cortisol, is essential for the formation and action of both 

osteoblasts and osteoclasts, high levels of glucocorticoids lead to a reduction in bone 

mass [ 1 07] . 

In many cases these three "causes" of osteoporosis do not occur in  isolation. For 

instance, although sex hormone deficiency as a result of natural menopause may be the 

primary cause of osteoporosis in an individual, age-related decreases in growth hormone 

production may also contribute to bone loss. Expression of RANKL by T cells also 

appears to increase with aging [23] which may result in increased osteoclastogenesis 

and contribute to bone mineral loss. In addition, feedback control of cortisol secretion 

declines with age. Although the amount of cortisol secreted in response to a stimulus is 
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unchanged with age, the return to baseline levels after a challenge is noticeably longer 

in older, compared to younger, animals as wel l  as people [ 1 08 ] .  Glucocorticoids are also 

used in pharmaceuticals commonly prescribed for arthritis sufferers . A side effect of 

treatment is accelerated bone re sorption [ 1 07] .  

Structural changes in bone associated with postmenopausal osteoporosis 

Osteoporosis is associated with a reduction in bone mineral density as wel l  as a change 

in internal bone structure. Changes in the structure and organization of collagen fibres 

within bone occur with both increasing age as wel l  as with osteoporosis. These changes 

also have important consequences in terms of the biomechanical properties of bone. To 

illustrate this, one study compared the risk of fracture in two groups of women, one 

"young" (average age 45 years) and one "older" (average age 75 years), with the same 

bone density. The risk of fracture was found to be 7% in the older women compared to 

j ust 1 % in the younger women [ 1 09] .  

In aVIan bones, increased lysine hydroxylation and changes in cross-links between 

collagen fibres is a characteristic of osteoporosis [ 1 1 0] .  Crosslinks between collagen 

fibres are formed by both enzymatic and non-enzymatic means. Whilst there is one 

report of age-related changes in the pyridinium cross-links (hydroxylysylpyridinoline 

and lysylpyridinoline) in humans, most studies have found no change in the occurrence 

of enzymatic cross-links with increasing age [ 1 1 1 ] .  In contrast, an age-related decrease 

in pentosidine crosslinks (non-enzymatic crosslinks formed via the Maillard reaction) 

has been reported in humans [ 1 1 1 ] .  

An increase in periosteal apposition occurs following oestrogen deficiency however the 

endosteum is continually eroded and endosteal bone formation is inhibited. This results 

in an increase in bone circumference but a decrease in cortical bone thickness. It is more 

marked with advancing age and in females rather than males [74] . Trabeculae become 

disconnected and more widely spaced as shown in the microtomograph in Figure 8. 
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Figure 8 Structure of the vertebrae of a healthy 50  year old (left) and an osteoporotic 
70 year old (right) as visualised by x-ray microtomography. Erosion of the trabecular 
bone has resulted in enlargement of the spaces between trabeculae. Photo courtesy of 
ESRF -CREA TIS / Photo Researchers, Inc. 

Metabolic changes associated with postmenopausal osteoporosis 

Ovariectomy in rats leads to a selective reduction in vitamin D receptor (VDR) number 

in j ejunal but not renal cells [ 1 1 2] .  A reduction in jejunal VDR number results in 

reduced responsiveness of intestinal cells to vitamin D signalling and therefore reduced 

intestinal calcium absorption. As no change in renal VDR number occurs, vitamin 0 

stimulation of renal calcium excretion is not impaired. A lack of VDRs may also 

influence levels of other osteogenic hormones as mice genetical ly modified to have a 

non-functioning VDR but with normal serum calcium and phosphorus levels were 

found to have impaired oral glucose tolerance and insulin secretion [ 1 1 3] .  

Through interaction with oestrogen receptors (ER), oestrogen controls the synthesis of a 

number of cytokines and growth factors. Two main types of ER have been identified : 

ERa and ER�, both of which are expressed by osteoblasts. Interaction of oestrogen with 

ER� results in decreased expression of various inflammatory cytokines particularly 

interleukin- l (IL- l ), IL-6 and tumour necrosis factor - a (TNF-a). In the case of IL-6, 

oestrogen inhibits expression by preventing binding of NF-KB to the IL-6 gene. There is 

some evidence that oestrogen deficiency not only leads to increased levels of 

inflammatory cytokines but also modulates IL-6 signaling pathways thereby leading to 

enhanced cell-responsiveness to IL-6 [ 1 14] .  
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Aside from direct effects on inflammatory cytokine synthesis resulting from oestrogen­

receptor binding, pro-inflammatory cytokine expression is also increased by free radical 

reactions normally inhibited by the antioxidant activity of oestrogen [ 1 1 4] .  Oestrogen 

deficiency is associated with a gain in adipose tissue [ 1 1 5] .  There is evidence that 

adipose tissue may be a major determinant of circulating I L-6 levels [ 1 1 4] .  

T-cell derived production o f  TNF-a i s  also increased with oestrogen deficiency due to 

both an increase in T -cell number and activation [ 1 8] 

Oestrogen deficiency is  therefore associated with an increase in the overall degree of 

inflammation. As a result, postmenopausal osteoporosis i s  considered to have a strong 

inflammatory component in its aetiology [ 1 1 6, 1 1 7] .  The series of events triggered by 

menopause which can lead to the development of osteoporosis are outlined in Figure 9. 
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Figure 9 Summary diagram showing the chain of events following menopause which 
ultimately can lead to increased bone fracture risk. Diagram created from information in 
Pfeilschifter et ai, 2002, Hui et ai, 1 988 and Saxon & Turner, 2005 [74, 1 09, 1 1 4] .  
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Part 2 :  

Long chain polyunsaturated fatty acids and the 

regulation of bone metabolism 

Published as a Mini-Review: Poulsen RC, Moughan PJ, Kruger MC Long chain polyunsaturated/atty 
acids and the regulation 0/ bone metabolism Experimental Biology and Medicine 2007 232:  1 275- 1288  

Although the importance of PGE2 in regulating bone remodelling is  well-established, 

the involvement of LCPUF As and other lipid mediators in the control of bone 

metabolism may be much more extensive than is currently recognised. The role of 

prostaglandins in bone biology has been comprehensively reviewed elsewhere [98, 

1 1 8] .  The present review focuses on the actions of LCPUF As themselves on bone as 

well  as the effects of their non-prostanoid bioactive metabolites. 

LONG CHAIN POLYUNSATURATED FATTY ACID 

METABOLI SM 

LCPUF As are fatty acids with a minimum chain length of 1 8  carbons containing at least 

two double bonds. LCPUFAs are classified into one of two families: n-3 and n-6. The n-

3 and n-6 nomenclature refers to the location of the first unsaturated carbon from the 

methyl ( 'n')  terminus of the fatty acid. The first double bond is located at carbon 3 for 

n-3 fatty acids and at carbon 6 for n-6 fatty acids. 

Alpha-linolenic acid (ALA) ( 1 8 :3 )  and linoleic acid (LA) ( 1 8 :2) are the parent 

compounds for the n-3 and n-6 series of LCPUF As respectively. As humans lack the 

ability to insert a double bond prior to carbon 9 in the fatty acid chain, ALA and LA 

cannot be synthesized endogenously and are therefore dietary essential fatty acids. The 

best dietary source of n-3 LCPUF As is fish oil although ALA is present in plant 

chloroplasts therefore green leafy vegetables are also a source of n-3 fatty acids. n-6 

LCPUF As are present in many edible plant oils such as corn and soybean [ 1 1 9] and are 

by far the most common LCPUF A in the typical Western diet. ALA and LA can be 

further elongated and desaturated by endogenous enzymes to form longer chain PUF As. 
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LCPUF As are precursors for a range of metabolites. The LCPUF A metabolites are 

oxidation products formed by the activities of cyclooxygenases (COX), lipoxygenases 

(LOX), cytochrome P450-like epoxygenases as well as non-enzymatic oxidation. There 

are two broad categories of LCPUF A metabolites, eicosanoids and docosanoids. The 

eicosanoids are derived from the 20-carbon n-3 and n-6 LCPUF As and include the 

prostaglandins, leukotrienes, thromboxanes, lipoxins and E-series resolvins. 

Docosanoids are derived from the 22-carbon LCPUF As. At present, only docosanoids 

stemming from the n-3 family have been identified. These are mono-, di- and tri­

hydroxylated derivatives of DHA and include the docosatrienes, protectins (also known 

as neuroprotectins) and the D-series resolvins [ 1 20] .  A schematic diagram of LCPUF A 

metabolism is shown in Figure 1 0. 

Cyclooxygenase 

COX converts dihomogammalinolenic acid (DGLA), arachidonic acid (AA) and 

eicosapentaenoic acid (EP A) into prostaglandins of the 1 -, 2- and 3-series respectively. 

COX also catalyses the conversion of AA to thromboxane A2 (TxA2) [ 1 2 1 ]  and in 

conjunction with aspirin, the mono-hydroxylation of DHA to form 1 3 R- and 1 7R­

hydroxylated DHA ( 1 3R- and 1 7R-HDHA) [ 1 22] . To date, two distinct cox genes have 

been identified encoding two isoforms of COX known as COX- l and COX-2 [ 1 23 ] . 

COX- l is constitutively expressed in most tissues whereas COX-2 is the inducible form 

of the enzyme. COX- l and 2 have greater specificity for AA than EPA therefore 

preferential ly  synthesise 2-series rather than 3-series prostaglandins [ 1 24] . Due to the 

smaller size of the substrate binding site of COX- I compared to COX-2, 22-carbon 

DHA can only be metabol ized by COX-2 [ 1 22] . 

Members of the n-6 fatty acid family upregulate COX-2 expreSSIOn and therefore 

promote 2-series prostaglandin formation. At least some members of the n-3 LCPUF A 

family inhibit COX-2 expression [ 1 25]  possibly by modulating toll-l ike receptor 

signalling pathways [ 1 26] .  

The existence of a third isoform of COX has been hypothesised [ 1 27] however although 

various alternative splice forms of both the cox-J and cox-2 genes have been described, 

a third active isoform of COX has yet to be identified in humans [ 1 28, 1 29] .  
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Figure 1 0  Metabolism of long-chain polyunsaturated fatty acids. LA and ALA are 
progressively desaturated and elongated by a shared desaturase/elongase enzyme system 
to form longer-chain and more highly unsaturated fatty acids. Diagram created from 
information in van Papendorp et al ( 1 995), Serhan et al (2002), Serhan (2005), Kuhn & 
O'Donnell  (2006) and Shen & Tai ( 1 998) [ 1 20- 1 22, 1 30, 1 3 1 ] .  

Lipoxygenase and Epoxygenase 

There are several isoforms of the LOX enzyme which exhibit differing substrate 

specificities. 1 21 1 5-LOX activity results in generation of hydroperoxy derivatives of 20-

carbon LCPUF As. These can be subjected to further LOX activity resulting in 

formation of leukotrienes, lipoxins and hepoxilins [ 1 3 1 ] .  DHA is  also a substrate for 

1 5-LOX resulting in generation of the mono- and dihydroxy DHA derivatives 1 7S­

HDHA, 7S, 1 7S-diHDHA, 1 0, 1 7S-diHDHA ((Neuro)protectin D l )  and 4S, 1 7S­

diHDHA. A combination of 1 5-LOX and 5-LOX epoxidase activity results in formation 

of further dihydroxy DHA metabolites including 4S, 1 7R-diHDHA and 7S, 1 7R­

diHDHA. [ 1 20, 1 22] . LCPUFAs may also serve as substrates for cytochrome P450-

catalysed reactions as trihydroxy DHA derivatives are generated by cytochrome P450-

like activity [ 1 20, 1 22] . 

- 3 1  -



Non-enzymatic Oxidation 

Non-enzymatic metabolism of LCPUF As also occurs. The isoprostanes are highly 

oxidized LCPUF A metabolites formed by free radical catalysed oxidation of usually 

membrane-bound AA, EPA and DHA [ 1 32] . 

Many of the LCPUF A metabolites generated either by enzymatic or non-enzymatic 

means have demonstrated bioactivity in mammalian systems. 

LONG CHAIN POL YUNSA TURA TED FATTY ACI DS AND 

BONE 

Dietary LCPUF As are incorporated into cell membranes within the body. The 

composition of LCPUF As in the diet is reflected in the fatty acid composition of a 

variety of body tissues and fluids including bone marrow, the periosteum (membrane 

surrounding long bones), bone [ 1 33 ] ,  red blood cell (RBC) membranes [ 1 34] serum 

[ 1 3 5 ]  and plasma [ 1 36] . 

Dietary LCPUF A deficiency in animals and humans results in decreased intestinal 

calcium absorption [ 1 37] , reduced synthesis of bone connective tissue matrix and loss 

of cartilage [ 1 37] ,  bone demineralisation [ 1 38] ,  increased renal and arterial calcification 

[ 1 39] ,  replacement of bone with adipose tissue [ 1 3 8] and severe osteoporosis [ 1 39] .  

People who habitually consume a high fish (high n-3 LCPUF A) diet, such as the 

Japanese and Greenland Eskimos, have a very low incidence of osteoporosis [ 1 38 ] .  

Although a negative association between total LCPUF A intake and bone mineral 

density (BMD) was observed in one study in post-menopausal women [ 1 40] , a more 

recent study that examined dietary intake of the two families of LCPUF As reported that 

post-menopausal women with a high dietary ratio of n-6 :n-3 fatty acids had the lowest 

bone mineral density [ 1 4 1 ] .  Therefore high n-6 LCPUF A intake rather than high total 

LCPUF A intake may be detrimental to bone mass. In a longitudinal study in adolescent 

males, concentration of n-3 LCPUF As in the phospholipid fraction of serum was 

positively correlated with change in total body and spine BMD [ 1 42] . The association 
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was greatest between serum phospholipid DHA concentration and BMD which may 

indicate that specific LCPUF As have anabolic effects on bone. 

Intervention Studies - Human 

Dietary intervention studies investigating the effect of LCPUF As on bone health in 

post-menopausal women have yielded mixed results. In elderly (mean age 80 years) 

osteoporotic women, daily supplementation with 4g of fish oil containing 1 6% EP A and 

1 1  % DHA or a mixture of fish and evening primrose oils containing 60% linoleic acid, 

8% GLA, 4% EPA, 3% DHA, for 1 6  weeks resulted in decreased serum alkaline 

phosphatase activity and increased serum concentration of procol lagen. The combined 

evening primrose oil/fish oil supplement was also associated with a higher serum 

osteocalcin concentration compared to supplementation with olive oil, evening primrose 

oil or fish oil alone [ 1 30] . Osteocalcin is a bone-specific protein which is released into 

blood during both new matrix formation and osteoclastic breakdown of existing matrix . 

Circulating osteocalcin concentration is therefore indicative of the rate of bone turnover. 

Bone-specific alkaline phosphatase and procollagen are generally only released into the 

blood upon formation of new collagenous material [ 1 43 ]  and are therefore biochemical 

markers of bone formation. The results from this study are therefore ambiguous as 

decreased serum alkaline phosphatase activity indicates a reduction in the rate of bone 

formation whereas increased procollagen concentration suggests the opposite. Serum 

calcium concentration was slightly increased and urinary calcium clearance 

significantly increased in the fish oil supplemented group compared to all other groups 

[ 1 30] .  This may indicate increased bone resorption in this group and therefore signify a 

negative effect of fish oil on calcium balance. However, increased intestinal calcium 

absorption has been reported in other studies following the ingestion of n-3 fatty acids 

or fish oil [ 1 44, 1 45]  therefore the increased urinary calcium excretion observed in 

elderly women fol lowing fish oil supplementation may be reflective of increased 

intestinal calcium absorption in the fish oil-supplemented group. Although these 

findings suggest that dietary supplementation with LCPUF As can alter calcium balance 

and the rate of bone metabolism, whether this results in increased bone formation is less 

clear. 
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More conclusive evidence for a beneficial effect of LCPUF A supplementation on bone 

mass is provided by a second study in which elderly, osteoporotic or osteopenic women 

(mean age 79.5 years) with habitually low dietary calcium intakes were supplemented 

with 6g of LCPUFA-rich oil (3 .6g LA, 480mg GLA, 240mg EPA and 1 80mg D HA) in 

conj unction with 600mg calcium carbonate per day for 1 8  months. Controls who 

received 600mg of calcium carbonate and 6g of coconut oil per day exhibited a 3 .2% 

decrease in lumbar spine BMD over the 1 8  month period however BMD was 

maintained in the LCPUF A-supplemented group. Continuation of the LCPUF A/calcium 

supplementation for a further 1 8  month period resulted in an increase of 3 . 1  % in lumbar 

spine BMD [ 1 37] .  

However two subsequent studies showed no effect of  LCPUF A supplementation on 

bone post-menopause. In one study, pre and post-menopausal women (age range 25-

40yrs and 50-65yrs respectively) were supplemented with Efacal®, a Scotia 

Pharmaceuticals product containing a combination of evening primrose oil (4.0g/day 

providing approximately 430mg GLAlday), fish oil (440mg/day providing 

approximately 70mg EPAlday) and calcium ( 1 .0g/day) for a period of 1 2  months. No 

additional benefit of LCPUF A supplementation on total body BMD over calcium 

supplementation alone was observed [ 1 46] .  However the changes in total body BMD 

over the 12 month study period were very small in both treatment groups (a decrease of 

0.7% in the Efacal group and 0.9% in the calcium supplemented group) . Measurement 

of total body BMD may l ack the sensitivity required for evaluating the effects of 

potential anti-osteoporotic agents on bone over the relatively short study period. 

Generally, effects of anti-osteoporotic treatments on bone mass are more apparent in 

sites rich in trabecular bone due to the higher rate of bone turnover in trabecular as 

opposed to cortical bone. Trabecular-rich bone sites such as the femoral neck and 

lumbar spine are also the most common sites of osteoporotic fracture [5] . 

In another study menopausal women (age range 45-65 years) receiving 40g of flaxseed 

oil supplement per day (a source of ALA but also of other bioactive components such as 

lignans) for 1 2  months showed no significant difference in BMD at the end of the 

treatment period compared to women supplemented with a wheat germ placebo [ 1 47] . 

The composition of LCPUF As in this supplement differed considerably from the 

supplements used in the previous studies in that it contained only the I 8-carbon n-3 
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LCPUF A rather than the longer-chain 20- and 22-carbon LCPUF As. Observations from 

epidemiological studies show consumption of foods that are rich in EPA and D HA, 

such as fatty fish, i s  linked with positive effects on bone mass [ 1 4 1 ] . Although ALA can 

be converted to EPA and DHA, this conversion is very inefficient. One study reported 

that only 6% of dietary ALA was converted to EPA and just 3 . 8% converted to DHA in 

humans consuming a high saturated fat diet [ 1 48] . Consumption of a n-6 LCPUF A-rich 

diet appears to inhibit ALA elongation and desaturation as conversion of ALA to EP A 

and DHA was reduced by 40-50% when a n-6 LCPUFA-rich diet was consumed [ 1 48 ] .  

Much higher concentrations of 20- and 22-carbon n-3 LCPUF A s  were provided i n  the 

study reporting a positive effect of LCPUF A supplementation on bone mass than in the 

two trials reporting no effect on bone mass which may mean that the very long chain n-

3 PUF As have a beneficial effect on bone post-menopause. 

Intervention Studies - Animal 

The vast maj ority of work in this field has been conducted in animals although a range 

of different models have been used including growing, growing-ovariectomised, 

mature-ovariectomised and diabetic animals. A variety of different supplementation 

regimens have also been employed, the majority involving the use of combinations of 

LCPUF As rather than individual fatty acids. 

Studies in growing animals 

Male rats fed a LCPUF A deficient diet during late gestation and lactation, followed by a 

LCPUF A-sufficient diet exhibited significantly higher body weight and cortical bone 

mineral content, area and thickness and significantly lower trabecular B MD compared 

to controls. Serum levels of IGF - 1  and leptin were significantly lower in rats whilst on 

the LCPUF A deficient diet, but returned to normal levels once a LCPUF A-adequate diet 

was fed [ 1 49] . Excess LCPUFA can also have a detrimental effect on bone mass. High 

dose supplementation of either n-6 or n-3 LCPUF As results in impaired bone formation 

during growth [8 1 ,  1 50] . In piglets, low levels (0.6g11 00g fat) of a supplement 

containing AA and DHA (5 : 1 )  increased bone mass; however higher doses ( 1 .2gI l 00g 

fat and 2.4g1 l 00g fat) were less beneficial [ 1 5 1 ] .  Similarly, both PGE2 injection or 

supplementation with AA (0.60% - 0 .75% total fat) and DHA (0. 1 % total fat) increased 

bone mineral content in male piglets [ 1 52, 1 53] however a combination of the two 
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treatments resulted in decreased femur BM C [ 1 53 ] .  This may be due to further elevation 

of PGE2 concentrations by synthesis from AA. PGE2 has a biphasic effect on bone. 

Low concentrations of PGE2 in conjunction with mechanical loading has an anabolic 

effect on bone mass [ 1 54] . At high concentrations, PGE2 promotes bone resorption 

[ 1 55] . In other studies, limiting PGE2 synthesis has been implicated as a means of 

optimising bone mass. For instance in one-month old Japanese quail n-3 LCPUF A 

supplementation reduced PGE2 synthesis and enhanced tibial BMC and collagen cross­

l ink formation but not total bone collagen. P GE2 concentration was positively 

correlated with total bone collagen and negatively correlated with tibial ash and 

collagen cross-link formation [ 1 56] . 

Not only is the total amount of LCPUF A in the diet important for optimising bone 

formation but the composition of dietary LCPUF As also appears to be important. Many 

studies have focussed on determining the optimal ratio of n-6:n-3 fats in the diet for 

maximising bone mass. Watkins et  al (2000) reported that a ratio of 1 .2 :  1 n-6:n-3 

LCPUF As resulted in a higher rate of bone formation during growth compared to ratios 

of 23 .8 : 1 ,  9 .8 : 1 and 2 .6 : 1  [ 1 57J .  Similarly Green et al (2004) reported greater BMD in 

male weanling rats fed a diet containing a 1 .4 :  1 ratio of n-6:n-3 compared to those 

receiving a 7 . 1 :  1 ratio [ 1 58 ] . Another study in weanling rats found a 3 :  1 ratio of 

GLA:EP A resulted in a lower rate of bone re sorption [ 1 59] and greater overall calcium 

balance and bone calcium content, compared to a 1 :3 ratio [ 1 45 ] .  

In  young animals, both n-3 and n-6 fats appear to  be required for bone growth. 

However much remains unknown about the effects on bone of individual LCPUF As 

within the two families. There is some indication that EPA and DHA may have 

differing bioactivities and/or potencies. In growing male rats, supplementation with 

tuna oil (high DHA) was more effective than supplementation with fish oi l  (high EPA) 

in maximising bone calcium content [ 1 34] . H igh plasma DHA concentration was also 

associated with lower bone resorption rate in growing piglets [ 1 60] . 

Studies in ovariectomised animals 

Supplementation of ovariectomised mice with flaxseed oil (a source of ALA) had no 

effect on bone mass or bone strength [ 1 6 1 ] .  However increased intake of the very long 

chain n-3 PUFAs, EPA and DHA, with [ 1 62] or without [ 1 33 ,  1 63 ]  the n-6 LCPUFA 
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GLA, has been shown to reduce bone resorption [ 1 33 ,  1 62], inhibit RANKL and 

inflammatory cytokine synthesis [ 1 63] and preserve BMC [ 1 33 ,  1 62 ,  1 63 ]  in 

ovariectomised rodents. In most cases the beneficial effect of these interventions on 

bone mass is attributed to inhibition of PGE2 synthesis and a resultant reduction in the 

synthesis of inflammatory mediators leading to inhibition of osteoclastogenesis [ 1 24 ] .  

Watkins e t  ai, 2006 observed that a ratio of 5 : 1  n-6:n-3 LCPUFAs was more beneficial 

than a 1 0 :  1 ratio in maintaining bone mass post-ovariectomy in rats regardless of the 

total dietary PUFA content [ 1 33 ] .  However lumbar spine BMC was preserved in 

ovariectomised mice fed a diet containing a n-6:n-3 LCPUF A ratio of approximately 

1 : 1 2  [ 1 63]  and Kruger et ai, 1 999 reported that a 1 : 3 but not a 3 : 1  ratio of n-6:n-3 

LCPUF As prevented the ovariectomy-induced decrease in femur BMD and femur 

calcium content in rats [ 1 64] .  The wide range of n-6 :n-3 ratios associated with 

beneficial effects on bone mass may in part be due to the different animal models used 

in the various studies. For instance a 2-month old, growing ovariectomised rat model 

was used by Watkins et aI, 2006, whereas Kruger et ai, 1 999 used 6-month old 

skeletally-mature ovariectomised rats. The LCPUF A requirement to optimise bone mass 

during bone model ling may differ from that required to optimise bone mass during bone 

remodelling. 

As with studies in non-ovariectomised, growing animals, there is some evidence that 

different LCPUF As within the two LCPUF A families may have differing effects on 

bone in ovariectomised animals. A positive correlation between EPA, DHA and DGLA 

concentrations in erythrocyte membranes and femur calcium content has been observed 

in one study. Erythrocyte membrane DGLA content but not EPA or DHA, was also 

negatively correlated with urinary DPyd excretion suggesting that DGLA may have an 

anti-resorptive effect [ 1 62] .  

Most studies have utilised supplements containing a mixture of LCPUF As, however 

two studies have examined the effects of EP A alone on bone in ovariectomised rats. 

Ovariectomy-induced bone loss was prevented by supplementation of ovariectomised 

rats receiving a low calcium diet (0.0 1 %  calcium) with 1 60mg of EPA/kg body 

weight/day. However, no effect of EPA was seen in rats receiving a calcium adequate 

diet [ 1 65 ] .  In a second study, 1 00mg EPA/kg body weight/day had no effect on bone 

mass whereas 1 000mg/kg body weight/day increased the rate of bone resorption and 
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had a detrimental effect on lumbar spme and femur BMC in ovariectomised rats 

receiving a calcium-adequate diet [ 1 36] .  Findings from these two studies suggest that 

EPA may only be beneficial for preserving bone mass post-ovariectomy when dietary 

calcium is  limiting. One study has reported that dietary supplementation using a high 

DHA oil was more effective than supplementation with a high EP A fish oil in 

maintaining bone mass post-ovariectomy [ 1 66] .  However a growing ovariectomised rat 

model was used in this study. Therefore, whether DHA would be more effective than 

EPA in maintaining BMC post-ovariectomy in skeletally mature animals is unknown. 

Mechanisms of Action 

Effect on Calcium Balance 

Findings from both in vitro and in vivo studies suggest that LCPUF As may promote 

intestinal calcium absorption thereby increasing overall calcium balance. Ca2+ ATPase is 

the enzyme responsible for active calcium absorption in the intestine. The activity of 

Ca2+ ATPase in basolateral membranes from duodenal enterocytes treated with DHA 

was increased compared to non-treated and EPA-treated membranes [ 1 44] .  The 

stimulatory effect of DHA was only evident in membranes from which calmodulin was 

removed suggesting that DHA may only have a physiological ly relevant effect on active 

calcium transport when dietary calcium intake is low. However dietary supplementation 

with either fish oil or evening primrose oil in rats receiving a calcium-adequate diet 

resulted in increased calcium transport across the basolateral membrane [ 1 67] and 

decreased faecal calcium excretion [ 1 59, 1 68] . It is possible that physiological changes 

brought about by increased membrane content of LCPUF As lead to increased passive as 

well as active calcium transport. The n-6 LC PUF As may be less effective than n-3 

LCPUF As in promoting calcium absorption as an increase in overall calcium balance 

has only been observed with fish oil supplementation [ 1 59, 1 68] . 

There is  some evidence that one of the means by which 1 ,25-dihydroxyvitamin D 

promotes intestinal calcium absorption involves increasing the concentration of highly 

unsaturated fatty acids in membrane phospholipids [ 1 68] .  Membrane LCPUFA content 

is known to affect the structure, fluidity and polarity of membranes as well as the 

relative proportion of membrane-bound proteins [ 1 69] . Structurally, membranes are 

composed of "l iquid disordered" phospholipid regions interspersed with tightly-packed, 
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more orderly "lipid rafts" which consist of sphingolipids and cholesterol. Cholesterol is 

essential for the formation of lipid rafts [ 1 70] . Highly unsaturated long-chain fats such 

as DHA have a strong aversion to cholesterol .  Incorporation of DHA into a membrane 

region results in complete expulsion of cholesterol, hence reducing the proportion of 

lipid rafts in the membrane [ 1 69] . However the DHA metabolite 1 O, 1 7S-docosatriene 

(protectin D l )  has been shown to promote lipid raft clustering in peripheral blood 

mononuclear cells [ 1 7 1 ] .  Therefore both the LCPUFA content as well as the oxidation 

state of membrane LCPUF As influences the physiological properties of the membrane. 

Altering the dispersion of lipid rafts within membranes modulates the activity of 

membrane proteins. Membrane proteins can be classified into three groups: those that 

associate with lipid rafts, those that associate with the liquid-disordered regions and 

those that can associate with either region depending on their state [ 1 70] .  Lipid rafts are 

small with few proteins associated with each. In order for l igand-receptor binding to 

occur, rafts must cluster together enabling proteins to move laterally within and between 

rafts [ 1 70] . Examples of lipid raft-associated proteins include Ca2+-ATPase [ 1 72] and 

components of the NF-Kl3 kinase complex [ 1 73 ] .  Recently an oestrogen receptor-like 

protein similar to ER-a has also been detected within lipid rafts on the plasma 

membrane of osteoblasts [ 1 74] .  Modulation of the lipid raft content of membranes may 

be a means by which LCPUF As alter cellular responses. 

Incorporation of unsaturated fats into cel lular membranes increases membrane fluidity 

[ 1 75 ] .  The greatest increase occurs with the addition of two and three double bonds with 

little change in fluidity occurring with more than three double bonds [ 1 69] . The 

presence of multiple double bonds allows considerable bending in a fatty acid chain. 

For instance oleic acid ( 1 8 : 1 )  has an average chain length at 4 1  QC of 1 4 .2A whereas 

DHA (22 :6) has an average chain length under the same conditions of just 8 .2A [ 1 69] .  

Membrane permeability and the speed of  membrane flip-flop (movement of  membrane 

constituents between layers in the membrane bilayer) is increased as the number of 

double bonds in the fatty acyl chains increases [ 1 76] . Increased membrane unsaturation 

may expedite cellular uptake of nutrients and other molecules particularly by passive 

transport. 
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Studies in marine-dwelling bacteria which have the ability to synthesise EP A and DHA 

under oxygen-limited or anaerobic conditions have shown that EPA or DHA­

enrichment of membranes supports proton bioenergetics allowing oxidative respiration 

and energy transduction [ 1 75 ] .  Whether this aspect of EPA and DHA activity has any 

relevance to the mechanism by which they regulate calcium balance or bone metabolism 

is unknown. 

Effect on Osteoblastogenesis and Osteoblast Activity 

LCPUF As and their metabolites regulate transcription of a number of genes via the 

action of peroxisome proliferator activator receptors (PPARs) [ 1 77] .  PPAR-dependent 

proteins include cytochrome P450, Acyl CoA synthase, fatty acid binding proteins and 

various enzymes involved in NADPH production and fatty acid oxidation in 

peroxisomes and mitochondria [ 1 77] . LCPUF As as well  as prostaglandins and various 

LOX-generated LCPUF A metabolites are natural PPAR l igands [ 1 3 1 ,  1 78, 1 79] .  To 

date three PPARs have been identified : PPAR-a, PPAR-y and PPAR- �/8 [ 1 78 ,  1 80] 

although at least two subforms of pp AR - y exist [ 1 8 1 ] . All three pp ARs are expressed 

by osteoblasts and activation of PPAR-a, pp AR-8 or pp AR- y l  in pre-osteoblasts can 

promote differentiation into mature osteoblasts [ 1 78 ] .  In  contrast, l igand-mediated 

activation of PPAR-y2, promotes differentiation of mesenchymal progenitors into 

adipocytes rather than osteoblasts [ 1 78, 1 82] .  Expression in osteoblasts of PPAR-y l and 

synthesis of at least one of its natural ligands, the AA metabolite �( 1 2)PGJ(2), is 

increased in response to mechanical loading [ 1 8 1 ] . DHA and AA are also believed to be 

pp AR-y ligands [ 1 79] although whether they activate one or both of the PPAR-y 

subforms is unknown. Culture of human primary osteoblasts and MG63 cells, a human 

osteosarcoma cell line, with DHA and AA inhibited cell proliferation as well as 

apoptosis and resulted in cell cycle withdrawal possibly as a result of pp AR activation 

[ 1 83] . This may indicate a positive effect of the two LCPUFAs on osteoblastogenesis as 

cessation of proliferation and cell cycle withdrawal are characteristic preparative steps 

for differentiation into the mature osteoblast phenotype [ 1 79] .  In support of this, an 

increase in alkaline phosphatase activity (a marker of the mature osteoblast phenotype) 

in MC3T3-E l osteoblast-like cells fol lowing treatment with n-3 fatty acids has been 

reported [68] . In hepatocytes, the LCPUFA metabolites HETE and PGJ(2) promote 

PPAR-a and PPAR-y expression [ 1 84] raising the possibility that these metabolites may 

also induce pp AR expression in osteoblast precursors. 
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F luid shear stress in osteocytes [ 1 85]  or exposure of osteoblasts to 1 7�-estradiol or 

1 ,25-dihydroxyvitamin 03 [ 1 86] results in  a rapid increase in intracellular calcium 

concentration. Phospholipase, which catalyses the release of AA and OHA from 

membrane phospholipids [ 1 87],  is essential for the rise in intracellular Ca2+ resulting 

from 1 7�-estradiol or 1 ,25-dihydroxyvitamin 03 stimulation [ 1 86] and may also be 

involved in increasing intracellular Ca2+ in response to fluid shear [ 1 85] .  

Prostaglandins and other oxidised LCPUF A derivatives are ionophores [ 1 88, 1 89] 

therefore LCPUF As may have a role in early-stage activation of osteoblast and 

osteocyte activity in response to hormonal or mechanical stimuli .  

Part of the mechanism by which n-3 LCPUFAs promote osteoblastogenesis appears to 

be via prevention of the formation of products which inhibit osteoblastogenesis. Some 

n-3 LCPUF As inhibit 5-LOX activity and non-enzymatic lipid peroxidation. Several 

members of the leukotriene family, fonned by 5-LOX activity, have been shown to 

inhibit the bone-forming capacity of osteoblasts in vitro [ 1 90]. The isoprostane 8-

isoprostaglandin E2, a product of non-enzymatic oxidation of AA, promotes 

osteoc1astogenesis [ 1 9 1 ]  and inhibits osteoblastogenesis in bone but induces 

osteoblastic differentiation of vascular cells hence promoting arterial calcification [ 1 92] .  

Supplementation with fish oil or EP A has been demonstrated to reduce deposition of 

calcium in kidneys and the aorta [ 1 39] which may be a result of n-3 LCPUF A-mediated 

inhibition of isoprostane formation. 

Feeding a high n-3 LCPUF A diet to larval European sea bass resulted in accelerated 

osteoblast differentiation due to upregulation of BMP-4 and retinoid X receptor-a 

(RXR-a) [ 1 93 ]  suggesting LCPUFAs may activate the BMP signalling pathway during 

skeletal development. In osteoblasts, AA promotes mRNA expression of inducible 

nitric oxide synthase (iNOS) and this effect is prevented by EPA, o leic acid ( 1 8 : 1 )  and 

tyrosine kinase inhibitors such as genistein but not by inhibition of COX suggesting it i s  

not a result of PGE2 activity [ 1 94] . Nitric oxide (NO) stimulates bone formation and 

suppresses bone resorption. At high concentrations however, NO inhibits both bone 

formation and re sorption [ 1 95 ] .  
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Effect on Osteoclastogenesis and Osteoclast Activity 

AA treatment of MC3T3-E 1  pre-osteoblast - like cell s  resulted in increased secretion of 

soluble RANKL and decreased secretion of OPG probably as a result of PGE2 activity 

[ 1 96] .  Compared to LA and AA, both DHA and EPA decreased osteoclastogenesis and 

osteoclast activation in bone marrow cell culture [ 1 63 ] .  The effects of n-3 LCPUFAs on 

bone are largely attributed to their inhibitory effect on COX-mediated synthesis of pro­

inflammatory prostaglandins (particularly PGE2). PGE3 derived from EPA has similar 

potency and bioactivity to PGE2 [ 1 97], however EP A is believed to be a less efficient 

substrate for COX and/or an inhibitor of COX activity [ 1 98 ] .  Synthesis of pro­

inflammatory prostaglandins from EP A is therefore less than from AA. 

Recent evidence suggests that the effects of EP A on osteoclasts may at least partially be 

due to activity of the E-series resolvins. Topical application of RvE 1  prevented 

osteoclast-mediated bone loss resulting from periodontitis in rabbits. The mechanism 

involved inhibition of pro-inflammatory cytokine and PGE2 secretion and osteoclast 

formation [ 1 99] .  Whether endogenous resolvins and resolvins of the D-series are 

capable of a simi lar inhibitory effect remains to be determined . 

Leukotrienes promote bone resorption by stimulating pro-inflammatory cytokine 

synthesis [200] and induce osteoclastogenesis by a RANKL-independent mechanism 

[20 1 , 202] . LtB4 (derived from AA) is general ly more potent than LtB5 [203 ] although 

the effects of LtB5 on bone cells have yet to be fully investigated.  Lipoxins are 

synthesised by bone marrow cells and have been shown to inhibit some of the actions of 

leukotrienes [204] .  In murine models of inflammation, l ipoxins are potent endogenous 

anti-inflammatory mediators [205 ] .  Their role in the regulation of bone remodell ing is 

largely unknown however topical application of LxA4 in rabbits reduced tissue 

inflammation and bone loss associated with periodontitis [206] suggesting an inhibitory 

role on osteoclast-mediated bone resorption. 

The docosanoids are a relatively recent discovery and as yet much remains unknown 

about their potential bioactivity. At least some members of the docosanoid family are 

bioactive and appear to have a role in the resolution of acute inflammation [ 1 22, 206, 

207] . Whether docosanoids also have a role in regulation of bone resorption or 

- 42 -



formation remams to be determined. The known effects of LCPUF As and their 

metabolites on calcium balance and bone are summarised in Table 1 .  

Table 1 Summary of known bioactivity of LCPUFAs and their metabolites on calcium 
balance and bone metabolism. 

Functions in bone 
Arachidonic Acid Increases intestinal calcium uptake [ 1 67] 

Promotes osteoblastogenesis possibly by activating PP AR-y [ 1 79, 
1 83 , 208] 
Increases inducible nitric oxide synthase ( iNOS) expression in 
osteoblasts [ 1 94] 

Prostaglandin E2 Biphasic effect - in low concentrations promotes osteoblastogenesi s, 
in high concentrations promotes bone resorption [ 1 54, 1 5 5] 
Increases RAN KL and decreases OPG secretion by osteoblasts [ 1 96] 

Leukotriene B4 Inhibits osteoblast activity [ 1 90, 200, 20 1 ]  
Promotes osteoclastogenesis and osteoclast activity [200-202] 

Isoprostanes Inhibits osteoblastogenesis & promotes osteoclastogenesis in bone 
[ 1 9 1 ,  1 92] 
Induces osteoblastic differentiation of vascular cel ls  [ 1 92] 

Lipoxin A4 Inhibits osteoc lastic bone resorption [206] 
Eicosapentaenoic Acid Increases intestinal calcium uptake [ 1 67] 

Decreases osteoclastogenesis and osteoclast activity [ 1 63]  
Prostaglandin E3 Simi lar effects and potency as PGE2 [ 1 97] 
Leukotriene B5 Generally less potent than LtB4 in other tissue systems [203 ] .  Effects 

in bone unclear. 
Resolvin E l  Decreases osteoclastogenesis [ 1 99] 
Resolvin E2 Bioactive effects in  bone are unknown 
Docosahexaenoic Acid Increases intestinal CaL+-ATPase activity [ 1 44] 

Increases intestinal calcium uptake [ 1 67] 
Promotes osteoblastogenesis possibly by activating PPAR-y [ 1 79, 
1 83 , 208] 
Decreases osteoclastogenesis and osteoclast activ ity [ 1 63] 

Protectin D 1 B ioactive effects in bone are unknown 
D-series Resolvins B ioactive effects in  bone are unknown 

An increased need for LCPUFAs post-menopause? 

Both lifestyle and life-stage influence LCPUF A metabolism. The activity of L1-6-

desaturase, the rate-limiting enzyme in LCPUF A metabolism, and L1-5-desaturase 

reduce with advancing age. LCPUF A desaturation is also inhibited by smoking, 

diabetes, high sodium intake, corticosteroid use and biotin deficiency [ 1 38,  1 39] . The 

fatty acid composition of adipose tissue changes with advancing age. A marked increase 

in the adipose tissue content of AA, DPA and DHA was evident in women, and to a 

much lesser extent in men, with increasing age, irrespective of diet [209] . Changes in 

serum phospholipid LCPUF A concentrations are also evident fol lowing menopause 

[2 1 0] and recent epidemiological evidence suggests that the fatty acid composition of 
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biological membranes alters following menopause [ 1 4 1 ] .  One study reported 

significantly lower red blood cell membrane content of saturated as well as n-3 and n-6 

polyunsaturated fat in postmenopausal, compared to premenopausal, breast cancer 

patients with the greatest differences being evident in membrane content of palmitic 

acid, oleic acid, LA and DHA [2 1 1 ] .  DHA concentrations in serum have been found to 

be higher in women compared to men [2 1 2] and both AA and DHA concentrations were 

higher in women treated with HRT or the selective oestrogen receptor modulator 

(SERM) raloxifene, compared to untreated women [2 1 3] .  Oestrogen may increase the 

synthesis of AA and D HA from their precursors [2 1 2, 2 1 3] .  Levels of LA and ALA also 

decline with age in women, and to a lesser extent, in men [209] . As a result, aging and 

menopause lead to a reduction in the ability of endogenous enzymes to convert ALA 

and LA into the longer chain, more highly unsaturated LCPUF As such as EP A and 

DHA. The combination of aging and menopause also results in a change in the 

physiological fate of dietary LCPUF As with apparent greater storage in adipose rather 

than incorporation into biological membranes.  Both decreased synthesis and increased 

storage of LCPUF As may result in decreased availabil ity of LCPUF As for biological 

processes. Increased intake of pre-formed, very-long-chain PUFAs may be necessary to 

compensate for the decrease in endogenous LCPUF A synthesis and availabil ity. 
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Part 3 

Phytoestrogens alone and in combination with long 

chain polyunsaturated fatty acids : 

Impact on the Regulation of Bone Metabolism 

Phytoestrogens are compounds produced by some plant species which exert similar, 

albeit weaker, effects to animal oestrogens. As shown in Figure 1 1 , phytoestrogens 

have steroid-like structures and are highly stable due to the presence of phenolic 

compounds at both ends of the molecule [2 1 4] .  The phenolic ring allows binding to the 

oestrogen receptor [2 1 5] .  

Several families of molecules are classified as phytoestrogens including lignans, 

isoflavones and some flavonoids. The most common dietary source of lignans is linseed 

(also known as flaxseed) whereas soy is a maj or source of isoflavones. The focus of this 

review is on two soy isoflavones :  genistein and daidzein. 
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Figure 1 1  Structure of daidzein, genistein and two mammalian oestrogens 

PHYTOESTROGEN METABOLISM 

Genistein and daidzein are usually present in food as conj ugated glycosides. In their 

glycoside-linked form, the two isoflavones are referred to as genistin and daidzin. 
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Unmetabolised genistein and daidzein are absorbed by passive transport from the small 

intestine [2 1 6, 2 1 7] .  Genistein is catabolised by endogenous mammalian enzymes in the 

stomach and small intestine and also by enzymes of the colonic microflora. The 

metabolic pathway for genistein as proposed by Coldham et ai in 2002 [2 1 8] is shown 

in Figure 12 .  
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Figure 12  Metabolism of genistein. Reproduced from Coldham et ai, 2002 [2 1 8] .  
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In contrast to genistein, mammals appear to be incapable of catabolising daidzein. 

Microflora resident in the colon and distal smal l intestine catabolise daidzein to the two 

metabolites equol and o-desmethylangolensin (O-DMA) [2 1 9] .  F igure 1 3  shows the 

metabolic pathway for daidzein. 
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Figure 13  Metabolism of daidzein. Reproduced from Heinonen et ai, 1 999 [220] .  

Differences in  isoflavone metabolism may exist between humans and other animals. For 

example rats may absorb isoflavone aglycones faster than glycosides [22 1 ]  however the 

glycosidic conjugates appear to be more bioavailable than the aglycones in humans 

[2 1 5 ] .  

In Western societies where soy consumption I S  limited, approximately 33% of  the 

population are equol producers [222] . On a global population basis, between 30% and 
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5 0% of all people may be capable of equol production. In contrast, all other mammals 

appear to produce equol [2 1 9, 223 ] .  The lack of equol-producing ability in humans has 

been linked to the composition of the gut microflora. Germ-free rats colonised with gut 

microbes from equol-producing humans were capable of producing equol whereas those 

colonised with the gut microflora of a non-equol producing human were incapable of 

equol production [224] .  Approximately 80-90% of humans are O-DMA producers 

[223] .  O-DMA production in animals has not been well  categorised however one study 

in non-human primates reported all were O-DMA producers [225] .  

Hereditary factors may contribute to isoflavone metabolising ability. Equol production 

appears to fol low an autosomal dominant pattern of inheritance [223 ] .  Racial 

differences in phytoestrogen metabolism may exist as O-DMA production has been 

reported to be less common in Asians than Caucasians [223] although the number of 

Asians, relative to Caucasians, tested in this study was small .  

Genetics only accounts for part o f  the variation I n  isoflavone metabolism and 

environmental factors also play an important role [223 ] .  O-DMA production in humans 

is inversely associated with age which may be due to changes in gut microflora over 

time [223] .  There is some indication that increased isoflavone consumption promotes 

growth of flavonoid-metabolising bacteria in the colon [226] . It may therefore be 

possible for non-equol producing humans to acquire equol-producing ability. One trial 

in which the effect of a probiotic on equol-producing status was examined found equol 

production was significantly enhanced in 2 of the 40 subjects suggesting equol-producer 

status may be inducible in at least some individuals [227] . 

Other dietary components may also influence phytoestrogen metabolism. A high 

carbohydrate diet facilitates intestinal fermentation and as a result, more extensive 

biotransformation of phytoestrogens [228] .  A positive relationship between total fat 

intake, total meat intake, the fatfibre ratio of the diet and equol excretion was found in 

men and women consuming a traditional, high-soy, Japanese diet [229] . Short chain 

fatty acids, such as those derived from fructo-oligosaccharides by the action of colonic 

microbes, may enhance the bioavailability of isoflavones [230, 23 1 ] . 
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Although one study has reported higher bioavailability of daidzein compared to 

genistein in women [232 ] ,  this observation was probably a result of the differing 

clearance rates of genistein and daidzein rather any real difference in bioavailabil ity. 

Other studies in which the half-lives of the two isoflavones in the blood has been 

accounted for have reported no difference in their relative bioavailability [233 ] .  

PHYTOESTROGENS AND BONE 

In Asian populations, isoflavone intake is generally l inked with higher BMD [234] . One 

large, epidemiological study found a positive association between total phytoestrogen 

intake and BMD in the lumbar spine and Ward' s  triangle in post-menopausal but not 

pre-menopausal Chinese women. Postmenopausal women in the highest tertile of 

phytoestrogen intake had significantly lower serum PTH, osteocalcin and urinary N­

telopeptide excretion compared to those in the lowest tertile. When phytoestrogen intake 

was categorised into intakes of the three famil ies of phytoestrogens namely flavonoids, 

coumesterol and lignans, no association was found between BMD and intakes of any of 

the phytoestrogen subfamilies [235 ] .  

In postmenopausal Japanese women, intake of  soy protein [236] and genistein and 

daidzein [237] has been positively correlated with lumbar spine BMD. However urinary 

genistein, daidzein and equol excretion were not significantly correlated with lumbar 

spine BMD in healthy, osteopenic or osteoporotic, postmenopausal Korean [23 8 ] .  

Intervention Studies - Human 

Whilst there is no evidence of an additive effect of daidzein and genistein on bone 

metabolism [239],  it is known that different isoflavones have different biological 

effects. Soy protein itself may have beneficial effects on bone metabolism, independent 

of those of soy isoflavones [240, 24 1 ] .  Although a considerable number of intervention 

studies have been carried out in both humans and animals, these studies have yielded 

mixed results. Interpretation of these studies is complicated in many cases by the 

omission of key information from published reports particularly in relation to disclosure 

of the composition and the amount of the isoflavone compound that was administered. 
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A summary of intervention studies examining the effects of soy isoflavones on bone in 

humans is provided in Appendix 1 .  

For the maj ority of human intervention studies which have been published in the 

scientific literature, the composition of individual isoflavones within the supplement 

used has not been divulged. It is known that different isoflavones have differing 

bioactivities. For instance genistein is a potent tyrosine kinase inhibitor whereas 

daidzein is not [242] .  It therefore cannot be assumed that all isoflavones have the same 

effect on bone and hence it is important that the exact composition of isoflavones in the 

supplement used in an intervention trial is detailed. 

A second major Issue confounding the interpretation of the results of human 

intervention trials centres around determining the dose of isoflavone provided in the 

trial . As isoflavones are usually present in food as conjugated glycosides and 

glycosylation may influence isoflavone bioavailability [243] ,  it i s  important that the 

form of isoflavone provided in intervention studies is  reported. The glycosylation 

pattern of the isoflavone also influences the dose i .e .  20mg of genistin is not equivalent 

to 20mg of genistein. In order to be able to interpret and compare results of different 

studies, when a glycosylated isoflavone is used the dose should also be expressed in 

terms of aglycone equivalents. 

The metabolism of isoflavones is complex. As there is considerable inter-individual 

variation in isoflavone metabolising-ability, the bioavailability of an isoflavone 

supplement within the study population needs to be assessed. Differences between 

study populations in terms of isoflavone-metabolising ability may impact considerably 

on trial outcome as in some instances an isoflavone metabolite may have greater 

bioactivity than the parent isoflavone. For example, equol has greater estrogenic and 

antioxidant activity than daidzein [2 1 9] and 4-ethylphenol, is more effective than 

genistein in modulating prostaglandin synthesis [244] . Few studies have sought to 

measure the bioavailability and extent of metabolite formation from the isoflavone 

supplement administered in the specific population studied. 

Finally, many studies failed to adequately control for the confounding effects of other 

variables on bone mass, notably, dietary calcium intake. In several studies, calcium 

- 50 -



intake was not reported [245-250] .  However in one of these trials the i soflavone source 

was soy milk [249] and in another, both tofu and soy milk were among the selection of 

foods participants in the isoflavone intervention group could choose to include in their 

diet [248] .  Soy milk and tofu are good sources of calcium and soy milk is often fortified 

with vitamin D therefore dietary calcium and/or vitamin D intake could also have been 

expected to increase in these studies again confounding the effects of the isoflavones. In 

several studies calcium intake was substantially altered during the trial period [24 1 ,  25 1 ,  

252] . The confounding effect of changing dietary calcium was not controlled for in 

these studies therefore the changes in biochemical markers or BMC/BMD reported may 

largely have resulted from changing calcium rather than isoflavone intake. 

One well-controlled intervention study reported isoflavone tablets providing 26mg 

biochanin A, 1 6mg formonectin, I mg genistein and 0 .5mg daidzein per day, 

ameliorated the decrease in lumbar spine (but not hip) BMC and BMD apparent in non­

supplemented controls over a 1 2  month period. Subjects included pre-, peri- and post­

menopausal women however the vast majority were post menopausal . Dietary calcium 

intake was relatively high at approximately 1 000mg/day and vitamin D intake was 

approximately 3llg/day. Although the extent of metabolite formation was not assessed, 

urinary excretion of total isoflavones was measured in this study [253 ]  therefore some 

measure of bioavailability could be determined. In a similar study, 1 2-month 

supplementation of early post-menopausal women with genistein tablets (providing 

54mg genisteinlday) resulted in significant increases in femoral neck and lumbar spine 

BMD. The increase in BMD was comparable to that seen in a second HRT-treated study 

group. In addition, biochemical markers of bone resorption were significantly reduced 

and markers of bone formation significantly increased in the genistein-supplemented 

group. Habitual calcium intake in the study population was approximately 900mg/day 

[254].  Decreased bone resorption marker excretion fol lowing isoflavone 

supplementation has been reported in a number of other studies involving soy 

isoflavone supplementation [245, 246, 252, 254] but not necessarily with non-soy 

isoflavone supplementation [253 ] .  Increased bone formation marker excretion is also 

common with isoflavone supplementation regardless of isoflavone source [253 ] .  

In general, isoflavone supplementation studies in  pre-menopausal women tend to report 

either no effect on bone mass [255] or a possible negative effect in terms of increased 
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circulating concentrations of biochemical markers usually associated with bone 

resorption [256, 257] . In postmenopausal women, general ly no or l ittle effect of 

isoflavone supplementation is observed when dietary calcium intake exceeds 

1 200mg/day [25 1 , 258, 259] but at lower levels of dietary calcium intake, isoflavones 

may aid in maintaining bone mass. 

Intervention Studies - Animal 

A number of studies have examined the effects of isoflavones on bone in both growing 

and mature animals. These are summarised in Appendix 2. As with LCPUF A 

supplementation, isoflavones appear to have different effects on bone modelling 

compared to bone remodel ling. Studies in weanling rats have reported either no effect 

[260] or a slight reduction in bone density [26 1 ]  with soy isoflavone supplementation. 

(Although the latter study involved isoflavone supplementation of rats for four 

generations therefore the reduction in bone density may be due to the effects of chronic 

exposure .) In older, non-ovariectomised rats, dietary isoflavone intake of � 1 8mg 

aglycones/kg body weight/day has been associated with slight increases in BMD in the 

lumbar spine [262] however intakes of :SI Omg aglycones/kg body weight/day had no 

effect on BMD [262]. The composition of the isoflavone supplement used in this study 

was not disclosed. Increased tibial BMD and increased serum osteocalcin concentration 

has been reported in one study where 5mg genisteinlkg body weight was administered 

by subcutaneous injection to 2 month old, non-ovariectomised rats [263 ] .  It is not 

possible to determine whether the lower dose required to elicit an effect on bone in the 

latter study was a result of the different route of administration or a reflection of perhaps 

greater bioactivity of genistein compared to other isoflavones. 

The dose required to have a beneficial effect on B MD in ovariectomised animals may 

be higher than that required in sham animals as subcutaneous inj ection of 2-month old 

ovariectomised rats with 5 mg genisteinlkg body weight for 2 1  days was associated with 

increased serum osteocalcin concentration but had no effect on tibial BMD [263 ] .  

Studies in ovariectomised animals suggest isoflavones may have a biphasic effect on 

bone. In ovariectomised mice, subcutaneous inj ection with O .4mg isoflavones/day 

increased femoral BMD however a dose of O. 7mg/day had no effect on BMD [264] . 
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As with human studies, in many cases the isoflavone composition and dose have been 

incompletely reported for intervention studies in animals. This confounds interpretation 

of the varying effects on bone observed following isoflavone supplementation. A 

variety of different animal models have also been used ranging from weanling intact 

rats to 1 2-month old ovariectomised rats. The dose required to elicit a bone-protective 

effect may differ in growing compared to skeletaUy mature animals .  In growing, 

ovariectomised rats fed a low calcium diet, isoflavone doses as low as 4mg/kg body 

weight/day have been associated with beneficial effects on bone mass [265] .  A higher 

dose (>20mg/kg body weight/day) may be required to elicit an effect in growing, [266] 

and skeletally mature (6-month old) ovariectomised rats [267] fed a calcium-adequate 

diet. Lower doses [268] and supplementation regimens which do not commence 

immediately following ovariectomy [269] may be ineffective . Finally in aged ( 1 2-

month old) ovariectomised Wistar rats, doses as low as 1 0mg/kg body weight/day of 

daidzein or genistein have been associated with beneficial effects on BMD [270] . It is 

unclear whether genistein and daidzein are more potent than mixed isoflavone 

supplements or whether the aged rat is more sensitive to the effects of isoflavones on 

bone mass. 

Mechanisms of Action 

Phytoestrogens are best known for their ability to mimic oestrogen activity, however 

they can act as either oestrogen agonists or antagonists depending on biological 

conditions [2 1 5] .  In addition, they have a number of other effects, independent of those 

of oestrogen.  

Oestrogenic Effects 

Phytoestrogens bind to both known subtypes of the oestrogen receptor (ERa and ER�) 

however the isoflavones have a much greater affinity for ER� than ERa [27 1 ] .  The 

binding affinities of genistein and daidzein relative to 1 7�-estradiol for ERa are 0.7% 

and 0.2% respectively. In comparison, the binding affinities of genistein and daidzein 

for ER� are approximately 1 3% and 1 %  of that of 1 7�-estradiol [242] . Phytoestrogens 

interact with the oestrogen receptors in a different manner to endogenous oestrogens. 

Whereas 1 7�-estradiol has a lipophylic region which is thought to influence receptor­

binding, genistein and daidzein lack this region. Interaction of genistein rather than 
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mammalian oestrogens with ERP leads to changes at a different position of the 

transactivation helix resulting in lower oestrogenic activity [27 1 ] . Phytoestrogens also 

stimulate transcription of ERa and ERP [228] . Daidzein has been shown to selectively 

enhance nuclear ER-P levels .  This is in contrast to 1 7p-estradiol which enhances 

expression of both ER-a and ER-P [272] . 

Anti-Oestrogenic Effects 

Phytoestrogens act in a number of ways to oppose the action of mammalian oestrogens 

and other sex hormones. They stimulate the synthesis of Sex Hormone Binding 

Globulin (SHBG) resulting in an increase in the amount of protein-bound, and therefore 

unavailable, estrone and estradiol in the blood [228] .  Phytoestrogens also inhibit 

several enzymes involved in the metabolism of sex hormones. These include: 5a­

reductase (converts testosterone to dihydrotestosterone), 1 7P-hydroxysteroid 

dehydrogenase (regulates interconversion of testosterone and androstenedione as wel l  as 

1 7p-estradiol and estrone) and the human P450 aromatase system (involved in estrone 

metabolism) [228] .  High dietary flavonoid, but not isoflavonoid, concentration inhibits 

aromatase [273 ] .  Genistein, daidzein and equol compete with estradiol for Nuclear Type 

II Oestrogen-binding sites and as a result, regulate oestrogen-stimulated growth and 

proliferation [273 ] .  

Other Effects 

Both genistein and daidzein act as weak antioxidants and are inhibitors of angiogenesis 

[228] .  They are also known to inhibit thyroid peroxidase, a key enzyme involved in 

thyroid hormone synthesis [228] .  

Genistein inhibits tyrosine kinase activity and this may be one of the mechanisms by 

which it impedes cancer cell growth [228] .  Other enzymes known to be inhibited by 

genistein include topoisomerases I and I I  and protein histidine kinase [273 ] .  Genistein 

also inhibits leptin secretion by adipocytes which may impact on bone metabolism 

[274] .  

Effect on Calcium Balance 

The effects of genistein and daidzein on intestinal calcium absorption appear to be 

minimal . No effect of soy protein, with or without isoflavones, was evident on calcium 
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absorption, excretion or overall calcium balance in white, US, postmenopausal women 

[275] .  In vitro, genistein and daidzein reduced transepithelial calcium absorption in the 

human intestinal-like Caco-2 cell line when cells were grown in the presence of 

oestrogen but had no effect on calcium absorption in the absence of oestrogen [276] .  

Effect on Osteoblastogenesis and Osteoblast Activity 

Both genistein and daidzein stimulate osteoblast proliferation, differentiation and 

activation by an ER-dependent mechanism [272, 277, 278] . Both isoflavones also 

promote bone nodule formation in vitro. Whilst the effects of genistein on bone nodule 

formation appear to be ER-dependent, daidzein may act in an ER-independent manner 

[279] . ER activation by genistein has been shown to increase NOS (nitric oxide 

synthase) activity and increase NO and cGMP formation [278] . 

Aside from ER activation, genistein [280] and daidzein [28 1 ]  also activate pp ARs. 

Daidzein dose-dependently activates PPAR-a, PPAR-8 and PPAR-y [28 1 ]  although 

whether it activates one or both subforms of PPAR- y is unclear. pp AR activation can 

modulate ER activity and the balance between PPAR and ER activation may govern the 

balance between adipogenesis and osteoblastogenesis [28 1 ] . Daidzein has a biphasic 

effect on osteogenesis. At low concentrations it stimulates osteoblast differentiation 

however at high concentrations it promotes adipogenesis. Daidzein-induced activation 

of pp AR-y increases with increasing daidzein dose however the effects of daidzein on 

PPAR-8 are biphasic and PPAR-8 activation is minimal at high daidzein concentrations. 

PPAR-8 activation is believed to be a major contributor to the mechanism by which 

daidzein promotes osteogenesis. In one in vitro study, daidzein-mediated activation of 

pp AR-a had no effect on osteogenesis or adipogenesis but inhibited daidzein-induced 

ER-mediated transcriptional activity. Daidzein-mediated activation of PPAR-8 

stimulated osteogenesis, up-regulated ER-mediated transcriptional activity but had no 

effect on adipogenesis whereas activation of PPAR-y by daidzein inhibited osteogenesis 

and ER-mediated daidzein activity and stimulated adipogenesis [28 1 ] . 

Genistein also acts as a PPAR-y ligand and high concentrations of genistein result in 

PPAR-y-stimulated adipogenesis at the expense of osteogenesis [280] . Low 

concentrations of genistein promote osteogenesis [280] and in bone marrow stromal 

cells low concentrations of genistein decreased pp AR-y protein expression during 

adipogenesis thereby inhibiting adipocyte formation. The mechanism appeared to be 
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ER-mediated and involve upregulation of TGF-p l protein levels [282] . Similarly, 

genistein inhibited pp AR-y activity in human osteoblasts through activation of ER-a 

[283 ] .  The effect of genistein on PPAR-8 is unknown. Although genistein also activates 

PPAR-a [284] , no direct effect of genistein-mediated pp AR-a activation on bone cells 

has been documented. 

Treatment of MC3T3-E l pre-osteoblast-like cells with genistein or daidzein inhibited 

I L-6 formation through ER activation as well as by an ER-independent mechanism 

[285-287] . Both genistein and daidzein inhibited the rise in PGE2 production resulting 

from exposure of MC3T3-E l cells to TNF-a [287] . BMP-2 [288, 289] and Cbfa- l [272, 

278] protein synthesis are upregulated by daidzein and genistein. 

Soybean isoflavones in conjunction with saponins (a family of plant-derived triterpenes 

and steroids conjugated with either alkaloids or glycosides) increased serum y­

carboxylated osteocalcin concentrations in healthy men and women [290] . y­

carboxylation of osteocalcin is usually performed by vitamin K and is essential for 

enabling hydroxyapatite binding in the bone matrix [290] . However whether the 

increase in serum y-carboxylated osteocalcin concentration was due to the effects of 

isoflavones or of saponins is unknown. 

Effect on Osteoclastogenesis and Osteoclast Activity 

Both genistein and daidzein enhanced inducible nitric oxide synthase (iNOS) activity in 

RA W264. 7 cells possibly by an ERa-mediated effect involving increased production of 

TNF-a, a cytokine known to stimulate iNOS expression [29 1 ] .  Low dose genistein ( 1 0-

8M) decreased osteoclast number in bone marrow culture by decreasing osteoclast 

viability. Higher concentrations of genistein ( 1 0-sM) attenuated osteoclast formation 

[292] .  Serum concentrations of IL- l and TNF -a (but not IL-6) were significantly lower 

in postmenopausal women consuming a soy-supplemented diet [293 ] .  Similarly a 

significant reduction in serum IL- l P and TNF -a concentrations were observed in 

ovariectomised rats treated with genistein [294] .  In RA W264 .7  cells, RANKL reduces 

ERa expression (RA W264. 7 cells do not express ERP). Genistein, daidzein and 1 7P­

estradiol stimulate ERa expression and promote proliferation but inhibit multi­

nucleation of the RA W264.7 cells [295] .  
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In osteoblasts isolated from trabecular bone from young piglets, daidzein increased 

secretion of both OPG and soluble RANKL (sRANKL) and increased concentration of 

membrane-bound RANKL by an ER-mediated mechanism [272] . However, the ratio of 

sRANKL:OPG in serum from post-menopausal women supplemented with genistein for 

1 2  months was significantly lower than in non-supplemented controls [296] suggesting 

that genistein may have differing effects on OPG and sRANKL excretion in humans or 

when endogenous oestrogen concentrations are low. I n  the case of genistein, modulation 

of RANKL and OPG levels may be a result of inhibition of topoisimerase-I I  activity 

[297] . 

As wel l  as altering osteoblastic expression of factors controlling osteoclastogenesis, 

daidzein has also been shown to promote apoptosis of osteoclast progenitors by an ER­

mediated mechanism [298] .  

Genistein and daidzein but not genistin, also inhibit inward rectifier K + channels in  

osteoclasts. This leads to membrane depolarisation, intracellular influx of Ca2+ and 

inhibition of osteoclast-mediated bone re sorption [299] . Therefore phytoestrogens 

inhibit bone re sorption by inhibiting osteoclast differentiation as well as activity. 

A beneficial effect of combined supplementation with oestrogenic 

compounds and LCPUFAs on bone mass post-ovariectomy? 

Supplementation of ovariectomised rats with a diester of GLA and EPA in conj unction 

with 1 7�-estradiol treatment resulted in higher femur calcium content than diester 

supplementation or 1 7�-estradiol treatment alone however the difference was not 

statistically significant [300] . This may indicate a slight additive or synergistic 

interaction between 1 7�-estradiol and LCPUF As. Observations from this study gave 

rise to the hypothesis that LCPUF As and phytoestrogens may have additive or 

synergistic effects when administered in tandem. 

Watkins et ai, (2005) observed that ovariectomised rats supplemented with a 

combination of menhaden oil (rich in n-3 LCPUFAs) and soy protein containing 

isoflavones had significantly lower serum concentrations of the bone resorption marker 

Pyd compared to rats supplemented with n-6 LCPUF As in combination with isoflavone-
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containing soy protein. However, serum Pyd concentration was not significantly 

different between rats supplemented with n-3 LCPUF As and soy protein containing 

only trace levels of isoflavones and rats supplemented with n-3 LCPUF As and soy 

protein containing higher levels of isoflavones suggesting the effect was due to the 

presence of soy protein rather than the soy isoflavones. Serum concentration of DPyd, 

another bone resorption marker, did not differ significantly between groups. There were 

no significant effects of combined soy/LCPUF A supplementation on tibial or femoral 

BMC and BMD or serum concentrations of bone formation markers [30 1 ] .  Although 

this study concluded that in combination, soy isoflavones and n-3 LCPUF As had a 

complementary effect on reducing ovariectomy-induced BMC loss, this conclusion is 

not supported by the results of the study. Menhaden oil contains a milieu of different 

LCPUF As as well  as other bone-active nutrients such as vitamin D. S imilarly, the soy 

protein supplement used in this trial contained a variety of different isoflavones. As it 

seems likely that different LCPUF As and different isoflavones have different 

bioactivities, it is possible that a specific LCPUF A-isoflavone combination may have 

had a more pronounced effect. 

Another study which aimed to compare the effects of n-3 and n-6 LCPUF As in 

conjunction with animal or vegetable protein on bone mass following ovariectomy, 

reported combined supplementation of n-3 LCPUF As with soy protein had a slight 

beneficial effect on bone mass in the lumbar spine in mice. This was a factorial-design 

study in which both ovariectomised and sham-operated mice were fed diets 

supplemented with n-3 or n-6 LCPUF As in conjunction with either animal or soy 

protein. At trial completion there was no significant difference in femoral BMD 

between ovariectomised and sham-operated mice receiving the n-3 LCPUF Alsoy 

protein supplement. In contrast, in mice supplemented with n-6 LCPUF A and soy 

protein, femoral BMD was significantly lower in the ovariectomised group compared to 

shams receiving the same supplement as well  as both sham and ovariectomised mice 

supplemented with n-3 LCPUFAs and either soy or animal protein [302] . However 

femoral BMD was lower in sham-operated mice receiving either the n-3 LCPUF Alsoy 

protein supplement or the n-6 LCPUF Alsoy protein supplement compared to sham­

operated mice receiving either n-3 or n-6 LCPUF As with animal protein. Femoral BMD 

in ovariectomised mice receiving the soy proteinln-3 LCPUF A supplement was not 

significantly different from ovariectomised mice receiving the animal proteinln-6 
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LCPUF A supplement but was significantly lower than in ovariectomised mice receiving 

the animal proteinln-3 LCPUF A supplement [302] . Therefore although this study 

concluded that combined supplementation of n-3 LCPUF As with soy protein preserved 

bone mass post-ovariectomy, the results of this study demonstrate a protective effect of 

n-3 LCPUF As on bone but only when the LCPUF As are fed in combination with 

animal not soy protein. Neither the composition of the n-3 LCPUFA supplement nor the 

isoflavone content of the soy protein was reported in this study. 

Finally, reduced bone turnover fol lowing ovariohysterectomy in both rats and dogs has 

been reported as a result of consumption of a supplement containing vitamin K l ,  

vitamin D3 , n-3 LCPUF As and genistein [303] .  However as all four of these 

compounds have anabolic effects on bone it is not possible to discern whether combined 

n-3 LCPUF A and genistein supplementation has a co-operative effect in maintaining 

bone mass in these two animal models of postmenopausal osteoporosis. 

Although results from these studies indicate there may be an interaction between the 

activities of soy and LCPUF As, whether this interaction is due to the effects of soy 

isoflavones or soy protein or both and whether it results in a positive or negative effect 

on bone mass remains to be determined. 

Motivation and Objectives for the Thesis 

LCPUF As may form an integral part of the mechanism by which bone remodelling is 

normally regulated. The combination of aging, life-style choices and menopause may 

lead to a relative deficiency of very long-chain LCPUF As, particularly those of the n-3 

family. Increased intake of specific LCPUF As could therefore be a means of 

circumventing some of the deleterious effects of oestrogen deficiency and aging on 

bone mass. There is a lack of knowledge regarding the relative effectiveness of 

individual LCPUF As in preventing bone loss post-menopause or post-ovariectomy and 

of the mechanisms of action of LCPUF As in bone. 
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Consumption of phytoestrogens with their intrinsic oestrogenic activity may partially 

compensate for the lack of endogenous oestrogen synthesis fol lowing menopause. In 

addition, the anti-inflammatory activity exhibited by some phytoestrogens may also aid 

in minimising bone loss. Whether combined treatment with phytoestrogens and 

LCPUF As has greater therapeutic value than either treatment alone in preventing post­

menopausal bone loss remains to be determined. 

The major objectives of the present thesis were: 

1 .  To determine the relative effectiveness of GLA, EPA and DHA on bone mass in the 

ovariectomised rat model (Chapter 2).  

2 .  To provide further knowledge with regard to the mechanism of action of LCPUF As 

in bone and in bone cells (Chapters 2, 3, 5-7). 

3 .  T o  determine the effect o f  combined treatment with LCPUF A s  and either a 

mammalian oestrogen or phytoestrogens on bone mass post-ovariectomy in vivo, and on 

osteoblasts in vitro (Chapters 4, 5 and 7). 
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CHAPTER 2 

Specific effects of gamma-linolenic, eicosapentaenoic 

and docosahexaenoic ethyl esters on bone post­

ovariectomy in rats 

The objective of the s tudy presented in this chapter was to determine if different 

L(PUF As have different effects on bone mass in the ovariectomised rat. The effect of 

combined treatment with a specific ratio of three L(PUF As was also assessed. The ratio 

of L(PUF As used for this combined supplement was primarily based on a combination 

purported to preserve bone mass in ovariectomised animals and for which a patent 

application has been lodged by Roche Vitamins (DSM). 

Data published in: Poulsen RC, Firth E, Rogers C, Moughan P J, Kruger MC Specific effects of gamma­
linolenic, eicosapentaenoic and docosahexaenoic ethyl esters on bone post-ovariectomy in rats. Calcified 
Tissue International 2007 In press. 
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Abstract 

Long chain polyunsaturated fatty acids (LCPUFAs) and their metabolites are involved 

in the regulation of bone metabolism. Increased dietary consumption of n-3 LCPUF As, 

and possibly some n-6 LCPUFAs, may limit post-menopausal bone loss. The aim of this 

study was to determine the effects on bone of specific fatty acids within the n-3 and n-6 

LCPUF A families in ovariectomised rats. Six-month old rats were ovariectomised or 

SHAM-operated and fed either a control diet ("OVX" and "SHAM") or a diet 

supplemented with O.5g/kg body weight/day of gamma-linolenic ("GLA"), 

eicosapentaenoic ("EP A"), docosahexaenoic ("DHA") ethyl esters or a mixture of all 

three ("MIX") for 1 6  weeks. Bone mineral content (BMC), area (BA) and density 

(BMD) and plasma concentrations of IGF - 1 ,  vitamin D and parathyroid hormone (PTH) 

were determined. The ovariectomy-induced decrease in lumbar spine BMC was 

significantly attenuated by DHA. Periosteal and endosteal circumferences of the tibia 

were significantly greater in DHA and EPA compared to controls .  Plasma IGF- l 

concentration at trial completion tended to be higher in DHA than in SHAM, OVX and 

GLA. Plasma concentration of total 25-hydroxyvitamin D (D2 + D3) was higher, but 

plasma 25-hydroxyvitamin D3 concentration lower, in DHA compared to SHAM at the 

end of the supplementation period. Femur BMC decreased by a significantly greater 

amount over the duration of the study in GLA than in OVX. Plasma PTH concentrations 

at trial completion were significantly higher in GLA compared to all other groups.  In 

conclusion, DHA ameliorated ovariectomy-induced bone mineral loss. The bone­

preserving effect of D HA may have been due to e levation of I G F - 1  concentrations and 

modulation of vitamin D metabolism. GLA exacerbated post-ovariectomy bone mineral 

loss possibly as a result of PTH-induced bone catabolism. 

Introdu ction 

Although best known for their cardio-protective role, long-chain polyunsaturated fatty 

acids (LCPUF As) and their metabolites also regulate bone metabolism and 

consequently, may have potential in the prevention and/or treatment of osteoporosis [ 1 -

3 ] .  The integral role of prostaglandin E2 (PGE2), a cyclooxygenase metabolite of the n-

6 LCPUF A arachidonic acid (AA 20 :4n-6), in the regulation of osteoblast and osteoclast 

formation and function is well recognised. However a range of other LCPUF A 

metabolites, as well as various LCPUF As themselves, are also bioactive and the 
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involvement of LCPUF As in bone metabolism may be much more extensive than is 

currently recognised. For instance, resolvin E l  (RvE l ), a newly-described 

l ipoxygenase-generated lipid mediator derived from the n-3 LCPUF A eicosapentaenoic 

acid (EPA, 20:Sn-3) inhibits osteoclastic bone resorption [4] . Similarly, lipoxin A4 

(LXA4), a tri-hydroxylated lipoxygenase product of AA also inhibits osteoclast activity 

[S]  whereas mono-hydroxylated l ipoxygenase products of AA such as leukotriene B4 

and S-hydroxyeicosatetraenoic acid (S-HETE) inhibit bone formation [6] . 

Dietary manipulation of LCPUF A intake can influence bone metabolism and bone mass 

during bone growth [7- 1 2] as wel l  as at maturity [8, 9 ] .  Whereas a negative association 

between total dietary LCPUF A intake and bone mass has been reported in one 

longitudinal study in post -menopausal Western women [ 1 3 ] ,  both epidemiological and 

longitudinal studies have reported a positive relationship between intake of the n-3 

family of LCPUFAs and bone mineral density [ 1 ,  1 4] suggesting the n-3 LCPUFA 

family may have bone-protective effects . 

Intervention studies in animals supplemented with n-3 LCPUF As report increased 

calcium balance and bone formation rate during growth [ I S] as wel l  as preservation of 

bone mass post-ovariectomy in mature animals [8] . Combined supplementation of n-3 

LCPUFAs with the n-6 LCPUFA, gamma-linolenic acid (GLA, 1 8 :3n-6) has also been 

linked with anabolic effects on bone, post-menopause in women [9] and post­

ovariectomy in rodents [ 1 6] .  Few studies have investigated the effects of specific 

LCPUF As on bone mass. 

It i s  unclear if all LCPUF As are bone-active and if so, if they act by the same or 

different mechanisms to regulate bone metabolism. The aim of the present study was to 

determine the effects of GLA and the two n-3 LCPUF As eicosapentaenoic acid (EPA, 

20 :Sn-3) and docosahexaenoic  acid (DHA, 22:6n-3) on bone in the ovariectomised rat, a 

model used for study of postmenopausal bone loss [ 1 8] .  
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Methods 

Animals 

Sixty-eight female Sprague-Dawley rats aged 7 months, were randomly assigned to one 

of six groups and either ovariectomised (OVX) ( 1  group, n= 1 0; 4 groups, n= 1 2) or 

sham operated ( 1  group, n=1 0) under general anaesthetic (isofluorane). Sham operated 

animals were anaesthetised and an incision made in the peritoneal wall but the ovaries 

left intact. 

Animals were housed individually in shoebox cages at 22 (± 2) QC with a 1 2h light/dark 

cycle in a dedicated room.  The study was approved by the Massey University Animal 

Ethics Committee (Approval number 0311 02). 

Diets 

Animals were gIven a nutritionally balanced, semi-synthetic diet (comprising 1 4% 

casein, 5% cellulose, 4% corn oil, 0 .5% calcium, 59.7% starch, 6% sucrose with added 

vitamins and minerals as shown in Table 1 )  for four weeks prior to ovariectomy (week -

4 to week 0). The diet formulation was based on AIN93M [ 1 9] with added vitamins and 

minerals as necessary to compensate for the nutrient content of local ingredients [20] . 

The type of oil in the diet was also altered from soybean (as stipulated for AIN93M) to 

corn oil as soybean oil is a source of n-3 LCPUF As. The sham-operated ("SHAM", 

n= 1 0) and ovariectomised control ("OVX", n= 1 0) groups were maintained on this diet 

for the entire 1 6  week study period. Immediately following ovariectomy, the 

experimental groups (n= 1 2  per group) were fed diets in which some of the corn oil was 

replaced with ethyl esters of either EPA (90% purity, 0 1 1 77 A-E90 Sanmark LLC, 

USA), GLA (95% purity, Crossential GLA E95 Croda Chemicals Ltd, UK), DHA (80% 

purity, 0 1 1 77B-E80 Sanmark LLC, USA) or a mixture of EPA, GLA and DHA (ratio 

1 :2 :4) at a dose of 0.5g/kg body weight/day. All diets contained 4% total fat and at least 

2% corn oil, an amount in excess of the minimum amount required to prevent n-6 

LCPUFA deficiency ( 1  %). Diets were randomly sampled and analysed chemically  to 

confirm the formulated nutrient contents. Diet compositions are given in Table 1 .  
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� bl 1 1  a e ngre zent composztlOn (% . 
d I d o azr- ry wezgJ t 0 contro an experzmenta I d· zets. 

Treatment Group 
SHAM OVX GLA EPA DHA MIX 

Corn starch 59.7 59 .7 59.7 59.7 59.7 59.7 
Sodium Caseinate 1 4 1 4 1 4 1 4 1 4 1 4  
Sucrose 6 6 6 6 6 6 
Cel lulose 5 5 5 5 5 5 
Vitaminsa 5 5 5 5 5 5 
M inerals (excl . Ca)b 5 5 5 5 5 5 
Calcium Carbonate 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 
Corn Oilc,d 4 4 3 .3 - 3 . 1  3 .3 - 3 . 1  3 .3 - 3 . 1  3 . 3 - 3 . 1  
G LA ethyl esterC 0 0 0 .7 - 0.9 0 0 0.2 - 0.3 
EPA ethyl esterC 0 0 0 0.7 - 0.9 0 0. 1 
DHA ethyl esterC 0 0 0 0 0 .7 - 0.9 0.4 -0 .5  
a Supplymg (mg/kg diet) retmol acetate 5 .0, DL.a-tocopherol acetate 200.0, menadione 3 .0, thlamme 
hydrochloride 5 .0, riboflavin 7 .0, pyridoxine hydrochloride 8.0, D-pantothenic ac id 20.0, fol ic acid 2 .0, 
n icotinic acid 20.0, D-biotin 1 .0, myo-inositol 200.0, choline chloride 1 500; (Ilg/kg diet) ergocalciferol 
25 .0, cyanocobalamin 50.0. 
b Supplying (g/kg diet) chloride 7 .79, magnesium 1 .06, phosphate 4.86, potassium 5 .24, sodium 1 .97; 
(mg/kg diet) chromium 1 .97, copper 1 0.7, iron 424, manganese 78.0, zinc 48.2; (Ilg/kg diet) cobalt 29.0, 
iodine 1 05 .0, molybdenum 1 52 .0, Selenium 1 5 1 .0.  
C LCPUFA dose was 0.5g/kg rat body weight/day. Percentage of LCPUFA in diets increased and 
percentage of corn oil decreased as the body weight of an imals increased over the trial period. Values 
given are the minimum and maximum dietary proportions of corn oil or LCPUF A provided at trial 
commencement and trial completion. 
d Fatty acid composition of corn oil: 58% l inoleic acid, 28% oleic acid, 1 1  % palmitic acid and 2% stearic 
acid. 
GLA = Gamma-linolenic acid ( 1 8 :3n-6) 
EPA = Eicosapentaenoic acid (20:5n-3) 
DHA = Docosahexaenoic acid (22:6n-3) 

The LCPUF As and corn oil were blended into the experimental diet on a dai ly basis to 

prevent PUF A oxidation. Body weights of all animals were measured weekly, and the 

amount of LCPUF A and corn oil added to each test diet was adjusted according to the 

mean body weight of animals in each treatment group. The SHAM group was fed ad 

libitum. The food intake of the ovariectomised animals was limited to that of S HAM to 

reduce ovariectomy-induced weight gain. All animals had ad libitum access to 

deionised water throughout the study period. 

Dual Energy X-Ray A bsorptiometry (DEXA) Scans 

Femur (F) and lumbar spine (LS) (L1 -L4) bone mineral content (BMC), area (BA) and 

density (BMD) were determined with a Hologic QDR4000 pencil beam bone 

densitometer (Bedford, USA). Prior to scanning, animals were anaesthetised with a 

mixture of Acepromazine (ACP), Ketamine, Xylazine and sterile water (2 : 5 :  1 :2),  at a 
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dosage of 0.05mlll OOg body weight administered intra-peritoneally via a 25G x 5/8" 

needle. A suitable level of anaesthesia was attained after five to ten minutes and was 

maintained for up to 2 hours. Anaesthetised rats were placed in a supine, "frog-leg" 

position on an acrylic platform of uniform 1 .5" thickness with femurs at right angles to 

the long axis of the spine and to the tibia. Regional high-resolution scans of both femurs 

and the lumbar spine were performed using a 0 .06" diameter collimator with 0.0 1 2 "  

point resolution and 0.0254" line spacing. Scans were made at week -2 (baseline), week 

5 and week 1 6  (endpoint). A quality control (QC) scan was undertaken daily to ensure 

precision met with the required coefficient of variation (CV). All scan analyses were 

performed by one operator. Repeatabil ity of results was ascertained by scanning and 

analysing 2 femurs and 2 lumbar spines 1 0  times each. CV s for femur and lumbar spine 

bone areas were <1 % and for both bone mineral content and density, < 1 .3%. 

Blood Sampling 

Two weeks prior to ovariectomy or sham operation (week -2), rats were placed in a 

purpose-built restrainer on top of a heat pad under a heat lamp. A single blood sample 

of approximately I ml was withdrawn from the lateral tail vein, using a 23G x %" 

hypodermic needle and 1 ml syringe. Blood samples were collected into vacutainers 

containing heparin, then centrifuged at 2000 rpm for 1 0  minutes. The plasma was 

removed, snap-frozen with liquid nitrogen, and then stored at -80 QC for later analysis 

of biochemical markers. Following the same procedure, a second blood sample was 

taken 8 weeks fol lowing ovariectomy and subsequently analysed for 1 7�-oestradiol 

(RIA, Diasorin, Saluggia, Italy) to confirm the success of ovariectomy. 

Euthanasia and Dissection 

At the end of the 1 6-week study period, animals were weighed, deeply anaesthetized via 

intra-peritoneal inj ection using a 25G x 5/8" needle and I ml syringe with O. l mllkg body 

weight of a mixture consisting of acepromazine, ketamine, xylazine and sterile H20 

(2 : 5 :  1 :2)  and subsequently exsanguinated by cardiac puncture with a 1 9G x 1 Yz" needle 

and 5ml syringe. The uteri and adnexae were removed and their wet weight determined 

as a second quality control measure to confirm success of ovariectomy. The lumbar 

spine and both rear legs were removed, and stored in phosphate buffered saline at -20QC 

pending pQCT, biomechanical testing and bone marrow fatty acid composition analysis. 
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Bone Marrow Fatty A cid Composition 

Both epiphyses were removed from left femurs and bone marrow from the diaphysis 

was extracted into Kimax tubes under a stream of compressed air. Approximately 

I OOmg of marrow was obtained from each femur. Bone marrow fatty acid composition 

was determined by direct transmethylation followed by gas chromatography. To each 

sample, I ml of internal standard (2.5mglml tricosanoic acid methyl ester (C2 3 :0, 

Sigma-Aldrich Chemicals) dissolved in chloroform), 2ml of toluene and 5ml of 5% 

sulphuric acid in methanol was added. Tubes were sealed, shaken and fatty acid methyl 

esters (FAMEs) formed by heating at 80°C for 1 hour. Samples were then cooled and 

shaken with 5ml of saturated NaCl,  then centrifuged at 2000RCF for I Ominutes at I O°e. 

The upper toluene layer was collected and 1 ,.,d  with 1 :  1 00 split injected into an Agi lent 

6890 Gas Chromatograph with auto sampler and FID detector. A SGHE Sol Gel Wax 

column was used with a column length of 30 metres, internal diameter 0 .25mm and film 

thickness 0 .25flm. Hydrogen flow rate was 1 .5ml/min, constant flow. Average linear 

velocity was 50cmlsec .  The initial injection temperature was 1 70°C and temperature 

was ramped at 1 °C/minute to 225°C . Fatty acids in the samples were determined by 

comparison with known standards supplied by Sigma-Aldrich Chemicals (37-

component FAME mixture C4:0 - C24:0, PUF A 1 and PUF A 3) and Restek Bellefonte, 

PA, USA (NLEA FAME Mix, 28 components). 

BiomechanicaL Testing 

Right femurs were scraped free of adhering flesh and maintained in PBS at room 

temperature for I hour prior to testing. The length of each femur was measured with an 

electronic calliper and the midpoint marked. Both the anterior-posterior and latero­

medial diameter at the midpoint of the femur were similarly determined. 

The maximum load, breaking load, maximum deformity (stroke length), breaking stress, 

breaking strain, (the percent deformation of the femur just prior to the time of breaking) 

the breaking energy (the amount of energy required to break the femur) and elastic 

modulus (force required to bend the bone in the elastic phase of deformation) were 

determined using a Shimadzu Ezi-test (Shimadzu Corporation, Kyoto, Japan) materials 

testing machine. The femurs were subj ected to a three point bending test with the 

application point of the upper fulcrum positioned midway between the two supporting 
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rods of the testing jig; the supporting rods were 1 5mm apart. Load was applied at a 

constant deformation rate of 50mmlmin at the midpoint of the anterior surface of the 

femur. 

Tibial Microarchitecture 

Following completion of the trial, the opportunity arose to access a pQCT scanner. As 

both femurs had previously been subjected to destructive testing (biomechanical testing 

and bone marrow fatty acid analysis), the right tibia was used for pQCT analysis. After 

removal of skin and disarticulation, tibia length was determined manually with callipers, 

and the tibia was positioned for scanning on a plastic cradle. Scans were made with a 

XCT2000 pQCT scanner (Stratec, Pforzheim, Germany) 5mm from the proximal end of 

the tibia (at a constant site in the proximal metaphysis) and at 50% of the length of the 

tibia (mid-diaphysis). Voxel size was O . l mm and scan speed was 5mm per second. 

Scans were analysed using the manufacturer 's  software; the contour threshold was 

280mg/cm3 . Main outcome measures were trabecular BMC, BA and BMD (determined 

in the 5mm slice) and cortical BMC, BA and BMD, and endosteal and periosteal 

circumferences (determined at 50% of tibia length). 

Blood Parameters 

Plasma samples from baseline and endpoint were analysed for osteocalcin and c­

terminal telopeptides of type 1 col lagen (CTX) using Rat-MID Osteocalcin and 

"Ratlaps" ELISA kits (Osteometer Biotech, Herlev, Denmark). 

At trial completion, plasma 25-hydroxyvitamin D3, total 25-hydroxyvitamin 02 + 03, 

1 ,25-dihydroxyvitamin D2 + D3, intact parathyroid hormone (PTH) and insulin-like 

growth factor (IGF- l )  concentrations were determined by immunoassay usmg 

commercially available kits as follows: 25-hydroxyvitamin D3 RIA, BioSource Europe 

SA, Nivelles, Belgium; Octeia 25-hydroxyvitamin 02 + D3 EIA, Immunodiagnostic 

Systems Ltd, Boldon, Tyne & Wear, UK; 1 ,25-dihydroxyvitamin 03 RIA, 

Immunodiagnostic Systems Ltd, Boldon, Tyne & Wear, UK; Rat BioActive Intact PTH 

ELISA Kits Immutopics Inc, San Clemente, California, USA (Cat # 60-2700) and IGF-

1 RIA BioSource Europe SA, Nivelles Belgium. 
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Statistical Analysis 

Bone densitometry measurements, as obtained by DEXA, were analysed for treatment 

effects by repeated measures mixed model analysis (PROC MIX) with post-hoc Tukey­

Kramer testing using SAS 9 . 1 ®, SAS Institute, Carey, N.C. ,  USA. In all cases the 

Toeplitz model was the best fit for the data. Plasma concentrations of CTX were logw­

transformed to avoid heteroscadascity. All  other data conformed to the requirements of 

the general linear model .  Comparisons between groups were made by one-way 

ANOVA with post-hoc Tukey testing using Minitab® 1 4, Minitab Inc., Pennsylvania, 

USA. A p-value of :S0.05 was considered significant. 

Results 

Diets 

The formulated fatty acid composition of the three LCPUF As was confirmed by GC 

analysis (data not shown) and the proximate nutrient composition of the diets was 

confirmed by chemical analysis of randomly collected diet samples (data not shown). 

Animals 

There were no statistically significant between-group differences in body weight at 

baseline (mean weight 3 1 7 . 8  ± 3 . 1 g) .  At the end of the trial period, there were no 

significant differences in mean body weight between ovariectomised groups regardless 

of dietary fatty acid treatment but all ovariectomised groups were significantly heavier 

than SHAM controls (mean body weight ovariectomised 3 87.0 ± 4.8g, mean weight 

SHAM 322.6 ± 1 2 .0g). There were no significant differences among groups in the 

amount of food consumed ( I 8-20g/day) Mean plasma concentration of 1 7�-oestradiol 

was 9. 1 5  ± 0.65 pg/ml in SHAM but below the detectable limits of the assay in all 

ovariectomised animals, consistent with uterus weights at week 1 6  being significantly 

lower in ovariectomised rats compared to SHAM, indicating successful ovariectomy. 

Bone Marrow Fatty Acid Composition 

Dietary supplementation with each of the three LCPUFAs was reflected in bone marrow 

fatty acid composition (Table 2) .  
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EP A and DP A represented a significantly higher proportion of total bone marrow fatty 

acids in the EP A group compared to all other groups. However, percentage of DHA in 

bone marrow fat was not significantly higher in the EP A group compared to OVX or 

GLA. Percentage of DHA in bone marrow was significantly higher in the DHA group 

compared to all other groups. Percentages of GLA and AA in bone marrow fat were 

significantly higher in the GLA group compared to all other groups. The percentages of 

EPA, GLA and DHA in bone marrow fat were higher in the MIX group compared to 

OVX and SHAM controls. The proportion of polyunsaturated fat in bone marrow was 

significantly higher, and the proportion of mono unsaturated fat significantly lower in 

the GLA, EPA, MIX and DHA groups compared to SHAM and OVX. The proportion 

of saturated fat in bone marrow was significantly higher in all four treatment groups 

compared to OVX and in the EPA, DHA and MIX groups compared to SHAM. 

Although the relative proportions of the different n-3 fatty acids varied between the 

DHA and EPA groups, the ratio of total n-3 to total n-6 LCPUFAs in the EPA and DHA 

groups was identical and significantly higher than in all other groups. 
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Table 2 Fatty acid composition (%) o/bone marrow lipid 
Treatment Group 

SHAM OVX GLA EPA DHA MIX SEM p-
value 

Linoleic acid 1 4 . 8a 1 4 . 1 a,o 1 3 .50 1 4.2a,o 1 4 .9a 1 4.2a,o 0 .3 1 0 .03 

Gamma-l inolenic acid O.Oa 0.2b 2 . 0c 0. 1 a,b 0 . 1 a,b 0 .7d 0.03 <0.00 1 

Dihomogamma-l inolenic O.Oa 0 . 1 a,b 0 . 7c 0. 1 b 0.2b OS 0.03  <0 .00 1 
ac id 
Arachidonic ac id 2. 1 a l .4b 2 . 7c l .2b l .2b 1 .9a 0 .08 <0 .00 1 

Alpha- l inolenic acid 0.2a O .Sb O .4b O.4b O.4b O.4b 0.03 0 .03 

Eicosapentaenoic acid O.Oa O .Oa O . Oa 1 . 1  b 0.3 c 0 .3c 0 .03 <0 .00 1 

Docosapentaenoic acid O.Oa O. l a O .Oa I .Sb O.4c OS 0.05 <0 .00 1 
(n-3) 
Docosahexaenoic acid 0. 1 a 0.2a,b 0 .2a,b O.Sb 2 .Se 1 .7d 0.08 <0.00 1 

Total Saturated 32.6a,b 3 1 .6b 3 3 .7a,c 34S 34.9c 3 4 . 8  c 0 .48 <0 .00 1 

Total Monounsaturated 48.9 a 49.9a 44.7b 44.7b 42.Sb 42.8b 0 . 6 1  <0 .00 1 

n-3 Polyunsaturated 0.3 a 0 .7" 0 .6a 3 .4b,c 3 .6c 3 . 4b 0 . 1 5  <0.00 1 

n-6 Polyunsaturated 1 6 .9a,b I S . 7a 1 8 .9  c I S .6a 1 6 .4a,d 1 7 .2b,d 0 . 3 3  <0 .00 1 

Total Polyunsaturated 1 7.2 a 1 6.4a 1 9.4b 1 9.0b 20.0b 20.2b 0 .34 <0.00 1 

n-3 : n-6 ratio 0 .02a 0.04a 0 .03 a 0.22b 0.22b 0 . 1 7c 0 .0 1  <0.00 1 

Fat was extracted from left femurs fol lowmg ovarIectomy or sham operatIon and after 1 6  weeks of 
dietary supplementation with gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA), 
docosahexaenoic acid (DHA) or a mixture of all three. 
Different letters (a,b,c) denote significant differences among groups within the same row at p�O.05 .  

Bone Mineral Content, Area and Density 

At trial commencement there were no statistically significant differences between 

groups in lumbar spine BMC, BA and BMD (Table 3). On one-way ANOV A, a 

statistically significant difference between groups for baseline F BMC (p=0.0 1 )  and F 

BA (p=0.04) was apparent although no significant differences between any two groups 

were evident upon post-hoc testing (Table 5). For this reason, baseline BMC, BA and 

BMD for both LS and F were used as covariates in the statistical analysis. 
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Between-Group Comparisons a/Change in BMC, BA and BMD 

Ovariectomy resulted in a decrease from baseline in LS BMC of 1 8 . 1  % over the study 

period (Table 4). Neither of the EPA, MIX or GLA treatments prevented the 

ovariectomy-induced decline in LS BMC. In contrast, LS BMC decreased by only 6.3% 

in the DHA group over the treatment period. Final LS BMC in the DHA group was 

significantly higher than in the OVX group (p=0.03) and was not significantly different 

from that of the Sham group (p=0.77) (Table 3). Although the net change in LS BA 

over the 1 6-week period in the OVX control group was very small (-0.8%) (Table 4), 
LS BA increased in both the DHA group (+7. 1 %, p=0.0002 compared to OVX), and to 

a lesser extent the MIX group (+5 . 1  %, p=0.07 compared to OVX), over the treatment 

period. Final LS BA in both the DHA and MIX groups was significantly greater than 

OVX (p=0.002 and p=0.04 respectively). LS BMD decreased in both LCPUF A-treated 

and untreated ovariectomised rats over the study period (p<O.OOO l compared to 

SHAM). F inal LS BMD was not statistically significantly different among the 

ovariectomised groups (Table 3). 

F BMC decreased by 5 .6% in OVX controls over the study period (Table 4). The 

decrease in F BMC in the GLA group was significantly greater than in OVX controls 

(p=0.05) .  Final F BMC in the GLA group was lower than in the DHA group although 

this failed to reach statistical significance (p=0.07). Final F BMC in the DHA group 

was not significantly different from SHAM (p=0.27) or OVX (p= 1 .0) .  At trial 

completion, F BA was significantly higher in EPA and DHA compared to sham 

(p=0.0002 and p=0.0085 respectively) (Table 5). 
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Table 3 Lumbar spine bone mineral content, area and density 
Lumbar Spine Bone Mineral Within group difference 

Content p-values 
Baseline Wk S Wk 1 6  SE Wk 5 vs Wk 16 vs Wk 16 vs 

(Final) Baseline Wk 5 Baseline 
Sham O .SOa 0.49a O.SO" 0. 02 0. 45 0.22 0. 97  
OVX 0.47a 0.43a 0.39° 0.02 <0. 0001 <0. 0001 <0. 0001 
GLA O.SOa 0.47" 0.4 1 b,c 0.02 0. 003 0. 0013  0. 0005 
EPA 0.47a O .4Sa 0 .42°'c 0. 02 0. 15  0. 0002 0. 12 
DHA 0.49a 0.48a O.4Sa,c 0. 02 0. 36 0.23 0. 50 
MIX 0.48a 0.43a 0.43°'c 0. 02 <0. 0001 0. 0004 <0. 0001 
Between group 0.64 0. 06 <0. 0001 Repeated Measures ANO VA 

difference Time p<0. 0001 
p-values Treatment p=0. 0007 

Time x Treatment p<O. OOOI 

Lumbar Spine Bone Area Within group difference 
p-values 

Baseline Wk S Wk 1 6  SE Wk 5 vs Wk 16 vs Wk 16 vs 
(Final) Baseline Wk 5 Baseline 

Sham 1 .99a 1 .99a 2 .02a,0 0. 04 0. 9 7  0. 94 0. 97 
OVX 1 .94a 1 .96a 1 .9S" 0. 04 0. 29 0. 1 6  1 .00 
GLA 2.0 I a 2 .06a 2 .03a,0 0. 04 0. 009 0. 56 0. 96 
EPA 1 .9Sa 2.02a 2.038.0 0. 04 0.058 0. 8 1  0.04 
DHA 1 .97a 2.07" 2. 1 0° 0. 04 <0. 0001 0. 0 1  <0. 0001 
MIX 1 .94" 1 .96a 2 .06b 0. 04 0. 3 7  0. 001 <0. 0001 
Between group 0.47  0. 04 <0.0001 Repeated Measures ANO VA 

difference Time p=0. 004 
p-values Treatment p=O. IO  

Time x Treatment p=0. 02 

Lumbar Spine Bone Mineral Within group difference 
Density p-values 

Basel ine Wk S Wk 1 6  SE Wk 5 vs Wk 16 vs Wk 1 6  vs 
(Final) Baseline Wk 5 Baseline 

Sham O.2S" 0.24a 0.24" 0.003 1 .0 1 .0 1 .0 
OVX 0.24a 0.22° 0.20° 0.003 <0.000 1 0. 1 9  <0.000 1 
GLA 0.2Sa 0.22b 0.20b 0.003 <0.000 1 <0.000 1 <0.000 1 
EPA 0.24" 0.22° 0.20° 0.003 0.000 1 0.006 <0.000 1 
DHA 0.2S" 0.23a,b 0.2 1 b 0.003 <0.000 1 0.0 1 <0.000 1 
MIX 0.2Sa 0.22° 0.2 1 b  0.003 <0.000 1 <0.000 1 <0.000 1 
Between group 0.87  0. 0003 <0. 0001 Repeated Measures ANO VA 

difference Time p<O. OOOI 
p-values Treatment p<O. OOOI 

Time x Treatment p<O. OOOI 
Measurements were made In VIVO by DEXA at baselIne and S and 1 6  weeks fol lowing ovarIectomy or 
sham operation and 1 6  weeks of dietary supplementation with gamma-l inolenic acid (GLA), 
eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or a mixture of al l  three. Results are 
expressed as Least square with SE in ( ). Different letters (a,b,c) denote significant differences among 
groups within the same column at p:SO.OS .  
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Table 4 Percentage change in lumbar spine and femur bone mineral content, area and 
density 

Treatment Group 
SHAM OVX GLA EPA DHA MIX SE kvalue 

Lumbar Spine (Baseline-Week 5) 
BMC (g) _0.9a _9.3a _6.4a _S .Oa _2.2a -9.8a 1 . 1 9  0. 09 
BA (cm2) O.3a 1 .3a 2 .9a 3 .6a S .Oa l .4a 2 .3 7 0. 08 
B M D  _O.4a _2.Sb _2 .3b _2.0b - 1 .  7",b _2.7b 0 .32 0. 0002 

. (g/cm2) 
Lumbar Spine (Week 5-Week 1 6) 
BMC (g) 4.7a _8.4b _8.9b _8 .7b -4.0a,b -2 . 1  a,b 2. 49 0. 005 
BA (cm2) 2 . 8a,b _ 1 .3 a O.4a,b O .3a,b 2 . 1 a,b 4.0b 1 . 2 7  0. 05 
B M D  1 .9a _7.4b _9.Sb _9.0b _6. 1 b _S .9b 1 . 5 7  0. 0002 
(g/cm2) 
Lumbar Spine (Baseline-Week 1 6) 
BMC (g) 2 .Sa - 1 8 . 1  b - I S . I ab _ 1 3 .2b,c _6 .3C _ 1 1 . 8b,c 2. 63 <0. 0001 
BA (cm2) 3 . 1  a,b _0 . 8a 3 .2a,b 3 . 8a,b 7 . 1 b S . I b 1 .39  0. 01  
BMD _0 .7a - 1 8 . 1  b - 1 7 .9b - 1 6.7b - 1 2 .6b - 1 6 .3b 1 .59 <0. 0001 
(g/cm2) 
Femur (Baseline-Week 5) 
BMC (g) _0.8a _7 .3a,b _8 .0b _8 .2b -S .9a,b -8. 1 b 1 . 70 0. 04 
BA (cm2) O.4a 0 . 8a 3 .4a 4.2a 3 .7a 2.5a 1. 08 0. 06 
B M D  _ 1 .6a _6.2a,b _ I  1 .0b _ I  1 .8b _8 . 7b - 1 0. 1  b 1 .67  0. 0002 
(g/cm2) 
Fem ur (Week 5-Week 16) 
BMC (g) S .2a 1 .9 a,b _ 1 .9b 1 .2a,b 0 .8a,b 0 .8a,b 1. 19  0. 005 
BA (cm2) 2.7" S . I a 2.3a 3 .4a 4 .8a 3 .7a 0. 89 0. 14  
B M D  2.Sa _3 .0b _4. 1 b _2.0b _3 .9b _2 .8b 0. 80 <0. 0001 
(g/cm2) 
Femur (Baseline-Week 16) 
BMC (g) 4. 1 a _S .6b _9 . 8b _7.3b _4.6b _6.7b 1 .65 <0. 0001 
BA (cm2) 2.9a S .9a,b S .7",b 7.4b 8 .Sb 6 .Sb 0. 99 0. 001 
BMD 0.9a _8 .3b - 1 4.6c _ 1 3 . 7b,c _ 1 2 .3b,c 

_ 1 2 .Sb,c 1 .49 <0. 0001 
(g/cm2) 
Bone mineral content (BMC), bone mineral denSIty (BMD) and bone area (BA) were measured by DEXA 
at baseline and weeks 5 and 1 6  fol lowing ovariectomy or sham operation and dietary supplementation 
with gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or a 
mixture of a l l  three. Results are expressed as Least square with SE in ( ) . Different letters (a,b,c) denote 
significant differences among groups within the same row at pSO.05 . 
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Table 5 Femur b I one minera content, area an d d  ensity . .  
Fem u r  Bone Mineral Content Within group difference 

p-values 
Basel ine Wk 5 Wk 1 6  SE Wk 5 vs Wk 1 6  vs Wk 1 6  vs 

(Final) Baseline Wk 5 Baseline 

Sham 0.53 " 0.52" 0.538 0. 0/  0. 8 1  0. 30 0. 79 
OVX 0.498 0 .46" 0 .48" 0. 01  0. 0008 0. 47 0. 02 
GLA 0.538 0 .490 0 .460 0. 01  <0. 0001 0. 05 7 <0.000 1 
EPA 0.508 0 .46" 0 .48" 0. 01 <0. 0001 0. 9/ 0. 002 
DHA 0.538 0 .50a,0 0.49a,0 0. 01  0. 009 O. / 9  0. 004 
M I X  0.508 0 .46" 0.48" 0. 0/  <0. 000/ 0.85 0. 0002 

Between group 0. 01 0. 002 <0. 0001 Repeated Measures ANO VA 
difference Time p=0. 0002 

p-values Treatment p=O. Ol 
Time x Treatment p=0.04 

Femur Bone Area Within group difference 
p-values 

Baseline Wk 5 Wk 1 6  SE Wk 5 vs Wk 16 vs Wk 1 6  vs 
(Final) Baseline Wk 5 Baseline 

Sham 1 .5 88 1 . 598 1 .638 0. 02 0. 8 7  O. /3 0. 1 0  
OVX 1 . 5 8' 1 . 5 98.0 1 .678.0 0. 02 0. 69 0. 00/ 0. 002 
GLA 1 .62' 1 .66° 1 .67a,0 0. 02 <0. 000/ < 0. 000/ <0.000 1 
EPA 1 . 56' 1 .638.0 1 .70" 0. 02 0. 005 < 0. 000/ <0.000 1 
DHA 1 .6 1  ' 1 .66° 1 . 72° 0. 02 0. 0003 < 0. 000/ <0.000 1 
M I X  1 .5 78 1 .60a," 1 .68a,0 0. 02 0. 02 < 0. 000/ <0.000 1 

Between group 0.04 0.05 <0. 0001 Repeated Measures ANO VA 
difference Time p=0. 08 

p-values Treatment p<O. OOO/ 
Time x Treatment p=0. 4 9  

Femur Bone Mineral Density Within group difference 
p-values 

Baseline W k 5 Wk 1 6  SE Wk 5 vs Wk 16 vs Wk 1 6  vs 
(Final) Baseline Wk 5 Baseline 

Sham 0.33' 0.338 0 .33" 0.003 0 .88 0.0 1 1 .0 
OVX 0.328 0 .29° 0.29° 0.003 0.04 0 .74 0.02 
GLA 0.338 0 .290 0.280 0.003 <0.000 1 0 .009 <0.000 1 
EPA 0.32" 0 .28" 0.28" 0 .003 <0.00 0 1  0 .78 <0.000 1 
DHA 0.33' 0 .30° 0.29° 0.003 <0.000 1 <0.000 1 <0.000 1 
M I X  0.32' 0 .290 0 .280 0.003 <0. 000 1 0.60 <0.000 1 

Between group 0. 1 6  <0. 0001 <0. 0001 Repeated Measures ANO VA 
difference Time p<O. OOO/ 

p-values Treatment p<O. OOO/ 
Time x Treatment p<O. OOO/ 

Measurements were made m VIVO by DEXA at base lIne and 5 and 1 6  weeks fol lowmg ovarIectomy or 
sham operation 1 6  weeks of d ietary supplementation with gamma-l inolenic acid (GLA), eicosapentaenoic 
acid (EPA), docosahexaenoic acid (DHA) or a mixture of a l l  three. Results are expressed as Least square 
with SE in ( ). Different letters (a,b,c) denote significant differences among groups within the same 
column at p:S0 .05 . 

Within-Group Pattern of Change with time in BMC and BA 

Following repeated measures analysis, there were significant interactions between 

treatment and time for LSBMC (p<O .OOO l ), LS BA (p=O .02), LS BMD (p<O.OOO l ), F 

BMC (p=O .04), F BMD (p<O .OOO l )  but not F BA. At week 5 post-surgery, LS BMC 
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was significantly lower in the OVX and MIX groups compared to baseline (p<O.OOO l )  

but LS BA was not significantly different from baseline in either group (p=O.29 OVX, 

p=O.37 MIX) (Table 3). In contrast, in the DHA and EPA groups, LS BMC at week 5 

was not significantly different from baseline (p=O.36 and p=O. 1 5  respectively). however 

LS BA at week 5 was higher than baseline (p<O .OOO l DHA and p=O.05 8 EPA). In the 

GLA group, LS BMC was significantly lower, but LS BA was significantly higher at 

week 5 compared to baseline (p=O.0034 and p=O.0092 respectively, Table 3) .  

At week 1 6, LS BMC was significantly lower than at week 5 in OVX (p<O.OOO I ), M IX 

(p=O .0004), EPA (p=O .0002) and GLA (p=O.00 1 3 ) but not in SHAM (p=0.22) or DHA 

(p=0.23). LS BA at week 1 6  was not significantly different from week 5 in the EPA 

(p=O.8 1 ), GLA (p=O .56) and OVX (p=O. 1 6) groups. However LS BA at week 1 6  was 

significantly greater than at week 5 in the DHA and MIX groups (p=O.0097 and 

p=O.O I I  respectively, Table 3). 

F BMC at week 5 was significantly lower in all ovariectomised groups compared to 

baseline (DHA p=O.0088, OVX p=O.0008, EPA, GLA and MIX p<O .OOO I ). F BA at 

week 5 was significantly higher than baseline in al l LCPUF A-supplemented groups 

(DHA p=O.0003, EPA p=O.0054, GLA p<O.OOO I ,  MIX p=O.024,) but not in un­

supplemented OVX (p=O .69) or SHAM controls (p=O.87). F BMC at week 1 6  tended to 

be lower than at week 5 in the GLA group (p=O.057), but was not significantly different 

from week 5 in any of the other groups (DHA p=0. 1 9, EPA p=O.9 1 ,  MIX p=O.85,  OVX 

p=0.47, SHAM p=O.30). F BA at week 1 6  was significantly higher than at week 5 in al l 

ovariectomised groups (DHA, EPA, MIX, GLA p<O.OOO l ,  OVX p=O.00 1 1 ,  Table 5). 

Tibial Microarchitecture 
At week 1 6, trabecular BMC in the OVX, EPA, MIX and GLA groups were lower than 

in SHAM controls (p=O.O 1 ,  p=O.0084, p=O.09 and p=O.02 respectively) but there was no 

significant difference in trabecular BMC between SHAM and DHA (p=O. 1 9) .  Cortical 

bone area was significantly greater in the DHA group compared to SHAM (p=O .04) and 

cortical BMC also tended to be greater in the DHA group compared to SHAM (p=O. I I ) 

(Table 6). Periosteal circumference was significantly greater in the DHA and EPA 

groups compared to SHAM contro ls (p=O .007 and p=O.02 respectively) . Endosteal 

circumference was also greater in these two groups compared to both OVX (DHA vs 
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OVX p=O.026 and EPA vs OVX, p=O.036) and SHAM (DHA vs SHAM p=O.034, EPA 

vs SHAM p=O.046) (Table 6). 

Table 6 Trabecular and cortical bone mineral content (BMC), area (BA) and density 
(BMD) and periosteal and endosteal circumferences of right tibiae. 

SHAM 

Trabecular BMC 4.9a 
(mg/mm) 
Trabecular BA (mmz) 9.5a,b 

Trabecular B MD 522.4a 
(mg/cm3) 
Cortical BMC 6 . 1 a 
(mg/mm) 
Cortical BA (mm

2) 4.6a 

Cortical BMD 1 33 2a 
(mg/cm3) 
Periosteal circ. (mm) 9 .6a 

Endosteal circ. (mm) 5 . 9a 

Treatment G roup 
OVX 

2.9b 

9.4a 

300 .2b 

6 .3a 

4 . 7a,b 

1 3 3 2a 

9 . 8a,b 

5 .9a 

GLA 

3 .4b 

1 1 .4b 

289 .9b 

6.6a 

5 .0a,b 

1 325a 

1 0. 1  a,b 

6 . 1 a,b 

EPA 

3 .0b 

1 0 . 1  a,b 

3 0 1 .5b 

6 .6a 

5 .0a,b 

1 326a 

1 0.2b 

6 .4b 

DHA 

3 . 8a,b 

1 1 . 1 a,b 

346.4b 

6 . 7a 

5 . 1 b 

1 3 1 9a 

1 0.3b 

6 .4b 

MIX 

3 .6a,t) 

1 O. 7a,b 

330 . 1 b 

6 . 5a 

4 . 8a,b 

1 3 3 9a 

1 0.0a,b 

6.2a,b 

SEM p-
value 

0.32 0.00 1 

0 .53 0.02 

22.30 <0.00 1 

0 . 1 6  0 . 1 2  

0 . 1 1  0.03 

8 .25 0.46 

0. 1 3  0 .004 

0. 1 2  0. 004 

Measurements were made ex vivo by pQCT fol lowing ovarIectomy or sham operation of female rats and 
after l 6  weeks of d ietary supplementation with gamma-linolenic acid  (GLA), eicosapentaenoic acid 
(EPA), docosahexaenoic acid (DHA) or a mixture of all three. Trabecular BMC, BA and BMD were 
measured 5mm from the proximal end of the tibia. Cortical BMC, BA and BMD and periosteal and 
endosteal circumferences were determined at a slice taken 50% along the length of the tibia. Results are 
expressed as least square mean with SE in ( ) . Different l etters (a,b,c) denote significant differences 
among groups within the same row at p:SO.05. 

Bone Biomechanics 

As shown in Table 7, break stress (the maximum load per area of bone at breakpoint) 

tended to be lower in GLA compared to OVX (p=O.058) and SHAM (p=O.095). Femurs 

from GLA were significantly weaker in terms of the amount of bone deformation prior 

to breaking and energy absorbed prior to breaking, compared to femurs of EP A 

(p=O.046 and p=O.044 respectively). There were no significant differences among 

groups in terms of elastic modulus or break load. 
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Table 7 Biomechanical properties of right femurs 

Treatment G roup 
SHAM OVX GLA EPA DHA MIX SEM p-

value 

Break load 1 90.0a 1 96 .6a 1 70 .4a 1 98 .3a 1 77 .8a 1 87.0a 9 .37 0.23 
(N) 
Max bone deformation 1 .7a.b 1 .7a.b I S  1 .7b 1 .6a.b 1 .6a.b 0 .06 0. 04 
(mm) 
Break stress

# 85 .5a,b 87 .3a 70 .0b 79.4a,b 74 .8a,b 78 .7a,b 3 .98 0. 05 
(N/mm2

) 
Elastic modulus 769. 5a 73 7 .8a 657 .7a 644.7a 677 .8a 690.0a 3 1 .69 0. 08 
(N/mm2

) 
Energy absorbed prior O.2a,b 0 .2a,b 0 . 1 a 0 .2b 0 .2a,b O .2a,b 0 .0 1 0. 04 
to breaking (J) 
Femurs were dIssected from euthanased an Imals 16 weeks followmg ovarIectomy or sham operatIon and 
after dietary supplementation with gamma-linoleni c  acid (GLA), eicosapentaenoic acid (EPA), 
docosahexaenoic acid (DHA) or a mixture of all three. Biomechanical properties of the femur were 
determined by three-point bending. Results are expressed as least square mean with SE in ( ). Different 
letters (a,b,c) denote significant differences among groups within the same row at p:SO.05. 
# Max load applied prior to breaking per area of bone at breakpoint. 

Biochemical Markers of Bone Metabolism 

There were no significant differences in plasma CTX concentration among study groups 

at baseline (data not shown). At trial completion however, plasma CTX concentration 

was greater in all ovariectomised groups compared to SHAM controls. The difference 

reached statistical significance compared to sham for the EPA, GLA and DHA groups 

(Table 8). 

There were no significant differences in plasma osteocalcin concentrations among 

groups at baseline (data not shown). However, at week 1 6  osteocalcin concentrations 

were significantly higher in EPA, DHA and MIX-supplemented ovariectomised groups 

compared to SHAM (Table 8). 

- 97 -



Table 8 Biochemical marker, growth/actor and hormone concentrations in plasma 
Treatment Group 

SHAM OVX GLA EPA DHA MIX SEM p-value 

Osteocalcin (ng/ml) 49.73 87.93,b 96.03,b 1 1 7.4b 1 1 0 . 8b 99.6b 1 1 .22 0.00 1 

CTX (ng/ml) 4.9 3 8 . 1 3,b 9 .7b 1 2 .3b 9 .0b 7 . 83,b 1 . 1 5  <0.000 1 

IGF-l (ng/ml) 9433 9523 9603 1 0 1 03 1 0653 9843 3 0.3 0 .07  

25(OH) vitamin 4 5 . 3a 5 5 .0a,b 60.93,b 67.83,b 77. l b 5 1 .03,b 6 .70 0 .02 
D2+D3 (nmol/l) 

25(OH)vitamin D3 1 8 .03 1 5 .73 1 2S 1 2 .23 1 0.73 1 1 .03 1 .86 0.04 
(nmol/l) 

1 ,25(OH)2 vitamin 1 7. 3 3  23 .93 1 6 .6a 23 .23 23 . 83 24 .9a 4.63 0.67 
D2+D3 (pmol/l) 

Bioactive intact PTH 2593 2 1 63 42 1 b 1 3 83 1 243 1 3 73 39 .3  0.000 1 
(pe/ml) 

Measurements were made by Immunoassay followmg ovanectomy or sham operatIon and after 1 6  weeks 
of dietary supplementation with gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA), 
docosahexaenoic acid (OHA) or a mixture of all three. Results are expressed as mean with SE in ( ). 
Different letters (a,b,c) denote significant differences among groups within the same row at pSO.05 . 

IGF-l 

Plasma IGF- l concentration was higher in the OHA group compared to SHAM, OVX 

and GLA, however this difference fai led to reach statistical significance (p=O.07 DHA 

vs SHAM and p=O. l OHA vs GLA or OVX) (Table 8). 

Vitamin D and Parathyroid Hormone 

Total 25-hydroxyvitamin D (02 + D3) concentration was significantly higher in the 

DHA group compared to SHAM. Concentration of 25-hydroxyvitamin 03 was lower in 

DHA than in sham however the difference failed to reach statistical significance 

(p=O.06). Concentration of 25-hydroxyvitamin 03 in the MIX group also tended to be 

lower than sham (p=O.07). Total concentration of 25-hydroxyvitamin 02 and D3 was 

not significantly different in the MIX group compared to all other groups. There was no 

statistically significant difference among groups for plasma concentration of 1 ,25-

dihydroxyvitamin 0 (D2 and 03) (Table 8). 

Plasma concentration of intact parathyroid hormone in the GLA group was significantly 

higher than in all other groups at week 1 6  (Table 8). 

- 98 -



Discussion 

Dietary DHA supplementation resulted in amelioration of ovariectomy-induced bone 

mineral loss. A beneficial effect of DHA on bone mass post-ovariectomy has been 

previously suggested after studies comparing the effects of fish oil supplements with 

differing DHA contents [2 1 ,  22] . In vitro, DHA inhibits RANKL-induced 

differentiation of osteoclasts from RAW 264.7 cells [2 1 ] . DHA also inhibits 

transcription of cathepsin K, calcitonin receptor and MMP-9 and formation of 

re sorption pits by RAW 264.7 cel ls  [2 1 ]  suggesting that at least part of the mechanism 

by which DHA preserves bone mass may be by inhibiting osteoclastogenesis. However 

the inhibitory effect of DHA on mature osteoclasts in vivo may be minimal or transient 

as no effect of DHA on bone resorption as measured by biochemical markers was 

observed by Kruger & Schollum (2005) in growing male rats [23 ] .  Similarly, in the 

present study no effect on plasma concentration of the bone resorption marker CTX was 

observed in ovariectomised female rats. Rather, the greater endosteal circumference in 

tibiae from the DHA group in the present study implies a higher rate of bone resorption 

in the DHA group. Results from the present study suggest DHA may promote bone 

formation, particularly periosteal apposition of new bone. Whether this is a primary 

effect of DHA or a compensatory response to the increased endosteal resorption in this 

group remains to be determined. Upregulation of IGF- l protein concentration due to 

either a change in rate of synthesis  or turnover and modulation of vitamin D metabolism 

may contribute to the mechanism by which DHA acts in bone IGF - l  is known to 

stimulate periosteal bone apposition and trabecular remodelling [24] and to regulate 

vitamin D metabolism by modulating hydroxylase activity [25J .  

EPA supplementation had no discernible effect on BMC at either the lumbar spine or 

femur, but periosteal and endosteal circumferences were greater in the EPA group than 

OVX controls at trial completion. This suggests that although EP A treatment did not 

protect against ovariectomy-induced bone mineral loss, it may have influenced the site 

of bone remodelling. However, as endogenous enzymes can elongate and further 

desaturate EP A to form DHA albeit inefficiently, whether the observed endosteal and 

periosteal expansion is due to the effects of EP A or DHA cannot be ascertained. Low 

dose EP A consumption has previously been found to have no effect on bone mineral 

homeostasis in ovariectomised rats fed a calcium-adequate diet [26, 27] however higher 
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dose EPA ( l .Og/kg body weight/day) supplementation has been shown to exacerbate 

bone mineral loss post-ovariectomy [26] . Although the effects of EP A on bone cells 

may be minimal, EP A may help to maintain calcium balance. Consumption of high 

EPA-containing fish oil has been associated with increased intestinal Ca2+-ATPase 

concentration [28], increased vitamin D receptor binding [28] and reduced faecal 

calcium excretion [ 1 0] in rats, suggesting EP A may promote intestinal calcium 

absorption. Sakaguchi et al ( 1 994) reported preservation of bone calcium content in 

EPA-supplemented ( 1 60mg/day/kg diet) ovariectomised rats fed a calcium-deficient, 

but not a calcium-adequate diet [27] .  Enhanced intestinal calcium absorption may have 

been the mechanism responsible for the bone mineral-preserving effect observed when 

dietary calcium intake was low. In the present study a calcium-adequate diet was fed 

and hence any beneficial effect of EP A in enhancing dietary calcium absorption is likely 

to have had minimal effect on bone. 

GLA supplementation exacerbated the ovariectomy-induced decl ine in bone mineral 

content and density in the femur. Biomechanical testing also indicated femurs of the 

GLA supplemented group tended to be weaker than those of other groups. In  the present 

study, the percentage of AA in bone marrow and the concentration of PTH in plasma 

were significantly higher in the GLA group compared to all other ovariectomised 

groups. GLA can be further metabolised by endogenous enzymes to DGLA and AA, 

substrates for cyclooxygenase-mediated synthesis of PGE 1 and PGE2 respectively. 

Both PGE 1 and PGE2 stimulate PTH expression and/or release resulting in an elevated 

plasma PTH concentration [29, 30] . Continual high PTH levels have a catabolic  effect 

on bone [3 1 ,  32] .  Therefore it is possible that the mechanism responsible for the 

reduction in F BMC and BMD observed in the GLA group was due to PTH and resulted 

from the actions of prostaglandin(s). 

Interestingly, although EPA, DHA and (to a lesser extent) GLA treatments were 

associated with greater endosteal and periosteal circumferences in the tibia than in the 

S HAM group, periosteal and endosteal circumferences in the MIX group were not 

greater than in the OVX or S HAM group, This suggests that different, and perhaps 

opposmg, mechanisms were employed by the three LCPUF As to bring about this 

change. 
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In conclusion, GLA, DHA and possibly EPA are bioactive in bone in vivo but they have 

divergent effects and appear to act by different mechanisms. Under the study 

conditions, DHA was the most effective of the LCPUF As tested at maintaining bone 

mineral content post-ovariectomy. Further work is required in order to clarify the 

mechanisms of action of DHA in bone. 
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CHAPTER 3 

Long chain polyunsaturated fatty acids alter 

membrane-bound RANKL expression and 

osteoprotegerin secretion by MC3T3-E l osteoblast-like 

cells 

Little is known about the mechanisms of action of long chain polyunsaturated fatty 

acids in bone. The aim of this s tudy was to determine the effect of long chain 

polyunsatu rated fatty acids on the RANKLlOPG signalling pathway, a well­

characterised pathway governing osteoclast formation and activity. 

Data published in: Poulsen RC, Wolber FM, Moughan PJ, Kruger MC Long chain polyunsaturated/atty 
acids alter membrane-bound RANKL expression and osteoprotegerin secretion by MC3T3-EI osteoblast­
like cells Prostaglandins and other Lipid Mediators. 2007 In Press 
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Abstract 

Inflammation triggers an Increase In osteoclast (bone resorbing cell )  number and 

activity. Osteoclastogenesis is largely controlled by a triad of proteins consisting of a 

receptor (RANK), a ligand (RANK-L) and a decoy receptor (osteoprotegerin, OPG). 

Whilst RANK is expressed by osteoclasts, RANK-L and OPG are expressed by 

osteoblasts. The long chain polyunsaturated fatty acid (LCPUF A) arachidonic acid (AA, 

20:4n-6) and its metabolite prostaglandin E2 (PGE2),  are pro-inflammatory and PGE2 

is a potent stimulator of RANKL expression. Various LCPUF As such as 

eicosapentaenoic acid (EPA, 20 :5n-3), docosahexaenoic acid (DHA, 22:6n-3 ) and 

gamma-linolenic acid (GLA, 1 8 : 3n-6) have anti-inflammatory activity. We aimed to 

determine if AA itself can stimulate RANKL expression and whether EP A, DHA and 

GLA inhibit RANKL expression in osteoblasts. MC3T3-E1 I4 osteoblast-like cells were 

cultured under standard conditions with each of the LCPUFAs (5f.!g/ml) for 48 hours. 

Membrane-bound RANKL expression was measured by flow cytometry and OPG 

secretion measured by ELISA. In a second experiment, RANKL expression in MC3T3-

E 1 I4 cells was stimulated by PGE2 treatment and the effect of EPA, DHA and GLA on 

membrane-bound RANKL expression and OPG secretion determined. The percentage 

of RANKL-positive cells was higher (p<O.05) than controls following treatment with 

AA or GLA but not after co-treatment with the cyclooxygenase inhibitor, indomethacin. 

DHA and EPA had no effect on membrane-bound RANKL expression under standard 

cel l culture conditions. Secretion of OPG was lower (p<O.05) in AA -treated cells but 

not significantly different from controls in GLA, EPA or DHA treated cells. Treatment 

with prostaglandin E2 (PGE2) resulted in an increase (p<O.05) in the percentage of 

RANK-L positive cells and a decrease (p<O.05) in mean OPG secretion. The percentage 

of RANKL positive cells was significantly lower following co-treatment with PGE2 and 

either DHA or EPA compared to treatment with PGE2 alone. Mean OPG secretion 

remained lower than controls in cells treated with PGE2 regardless of co-treatment with 

EP A or DHA. Results from this study suggest COX products of GLA and AA induce 

membrane-bound RANKL expression in MC3T3-E l /4 cells. EPA and DHA have no 

effect on membrane-bound RANKL expression in cells cultured under standard 

conditions however both EPA and DHA inhibit the PGE2-induced increase in RANKL 

expression in MC3T3-E 1 I4 cells. 
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Introduction 

Pro-inflammatory signalling has a fundamental role in the initiation of bone 

remodelling, triggering both osteoclastogenesis and osteoblastogenesis. Osteoclasts are 

large, multi-nucleated cells of the monocyte/macrophage l ineage which resorb fatigued 

bone. Osteoblasts are mononuclear cells of mesenchymal origin which synthesise new 

bone tissue and replace that which osteoclasts remove. Under normal conditions the 

processes of bone re sorption and formation are coupled and there is no net change in 

overall bone mass. However conditions leading to elevated levels of inflammatory 

mediators result in an imbalance between osteoclast and osteoblast formation and 

activity and consequently, an overall loss of bone mass [ 1 ] .  

Osteoclastogenesis i s  largely controlled by a triad of proteins consisting of two 

receptors, RANK (Receptor Activator of Nuclear factor KB) and OPG (osteoprotegerin), 

and a l igand, RANKL (Receptor Activator of Nuclear factor KB l igand) [2, 3 ] .  RANK is 

a membrane-bound receptor present on osteoclast precursors [4] . RANKL and OPG are 

expressed by osteoblasts [5 ,  6] as wel l  as various other cell types including activated T­

cells  [7] and fibroblasts [8] . OPG is a soluble protein whereas RANKL is largely 

expressed as a membrane-bound protein although small amounts of intact RANKL are 

also secreted by osteoblasts [9] . B inding of RANK to RANKL stimulates 

osteoclastogenesis and promotes mature osteoclast survival [ 1 0] .  However binding of 

RANKL to OPG leads to a rapid decline in osteoclast number due to prevention of 

osteoclastogenesis, increased apoptosis of mature osteoclasts [ 1 0, 1 1 ] ,  and a decrease in 

bone resorbing activity of existing osteoclasts [ 1 2] .  Inflammatory mediators are 

involved in the regulation of RANKL and OPG expression [ 1 3 ] .  The level of RANKL 

expression relative to OPG is a contributing factor to the regulation of 

osteoclastogenesis [ 14] . 

Prostaglandin E2 (PGE2), a pro-inflammatory lipid mediator derived from the n-6 long 

chain polyunsaturated fatty acid (LCPUF A) arachidonic acid (AA, 20:4n-6) by the 

activity of cyclooxygenase (COX), promotes osteoclastogenesis by stimulating RANKL 

expression and inhibiting OPG secretion by osteoblasts [ 1 5] .  S imilarly, treatment of 

osteoblasts with AA stimulates secretion of soluble RANKL and inhibits secretion of 

OPG, and both effects are largely blocked by COX inhibition [ 1 6] .  
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The n-3 family of LCPUF As, particularly eicosapentaenoic acid (EPA, 20:5n-3) and 

docosahexaenoic acid (DHA, 22:6n-3)  and another member of the n-6 LCPUFA family, 

gamma-l inolenic acid (GLA, 1 8 :3n-6), are generally regarded as anti-inflammatory 

l ipids [ 1 7- 1 9] .  Dietary consumption of oils rich in EP A, DHA and/or GLA has been 

l inked with anti-resorptive effects [20] or bone-protective effects [2 1 , 22] in animal and 

human studies. The potential effects of these three LCPUF As on membrane-bound 

RANKL expression in osteoblasts are unknown. 

The MC3T3-E 1 I4 cell l ine i s  a pre-osteoblast cell l ine derived from murme (Mus 

muscularis) calvarial cel ls .  Under appropriate growth conditions, MC3T3-E 1 I4 cell s  

differentiate into mature osteoblasts and are capable of  synthesising mineralised 

extracellular matrix [23 ] .  MC3T3-E 1 I4 cells have also been shown to increase TRAP+ 

cell number, ( indicative of osteoclast cell number) when co-cultured with bone marrow 

cells indicating they are capable of supporting osteoclastogenesis [24, 25] . They have 

also been shown to induce osteoclast activity in vitro [26] . 

We hypothesised that treatment of MC3T3-E 1 I4 cells with the anti-inflammatory 

LCPUF As, GLA, EPA and DHA, would reduce membrane-bound RANKL expression 

whereas treatment with the pro-inflammatory LCPUF A would increase membrane­

bound RANKL expression. To this end, the effect of AA, GLA, EP A and DHA on 

membrane-bound RANKL expression in cells under standard culture conditions was 

investigated. Secondly, the effect of GLA, EPA and DHA on membrane-bound 

RANKL expression in cells in which RANKL expression had been stimulated by PGE2 

was assessed. 

Methods 

Materials 

Gamma-linolenic acid, docosahexaenoic acid, arachidonic acid, eicosapentaenoic acid 

and prostaglandin E2 (P0409) were purchased from Sigma-Aldrich Co., New Zealand. 

Phenol red-free a-MEM (4 1 06 1 -029), foetal calf serum and RNase A (20mg/ml, 

1 209 1 -02 1 )  were purchased from Invitrogen New Zealand Ltd. Biotinylated anti-mouse 

TRANCE (RANKL, CD254) antibody was purchased from BioLegend, San Diego, 

USA (catalogue # 5 1 0004). Phycoerythrein-conj ugated streptavidin (streptavidin-PE) 
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was purchased from AbD Serotec, Oxford, UK. Phycoerythrein-conjugated CD6 1  

(553347) and CD8a (553033) were purchased from BD Pharrningen, New Jersey, USA. 

The MC3T3-E 1 I4 cell line was purchased from ATCC, Manassas, VA, USA (ATCC® 

number CRL-2593™). 

Culture conditions 

MC3T3-E 1 /4 pre-osteoblast cells were cultured in 6-well plates at a density of 3 x 1 05 

cells/ml with two replicate wel ls  per treatment within each experiment. Cells were 

cultured in phenol red-free a-MEM with 1 0% heat-inactivated foetal calf serum (FCS) 

and either carrier (ethanol ,  0.05%) or LCPUFA (5Ilg/ml) with and without 

indomethacin ( l IlM) or POE2 ( 1 O-8M) for 48 hours at 3TC in a humidified atmosphere 

of 95% air! 5% CO2. 

Measurement of OPG secretion 

Following incubation, cell supernatant was col lected, immediately frozen and stored at -

80°C until analysis. Concentration of OPO in cell supernatants was determined using an 

OPO ELISA kit supplied by R&D Systems, Minneapolis, USA (catalogue # MOPOO) . 

Intra-assay coefficient of variation was 6 .4%. Cell number was determined by crystal 

violet staining as previously described [27] .  In short, after removal of media, cells were 

washed with PBS, fixed with 1 % formaldehyde and incubated with 1 % crystal violet for 

60 minutes at 3 TC. Following thorough washing, stain was extracted from cells with 

0.2% Triton X- l OO and absorbance read at 550nm using an ELx808 Ultra microplate 

reader (Bio-Tek Instruments Inc . ,  Vermont, USA). Cell number in experimental wells  

was determined by normalising to the reading of a standard curve derived from a known 

number of cells per well .  OPO concentration was expressed as amount of OPO per cell .  

Experiments were independently replicated at least three times. 

Measurement of membrane-bound RANKL 

Cells were washed twice in PBS then removed from the culture plate by gentle scraping 

with a rubber cell scraper. Cells were re-suspended in phenol red-free a-MEMIl % FCS 

and stained for cell surface antigen as described previously [28 ] .  Approximately 

1 50 ,000 cells were incubated with either biotinylated anti-mouse RANKL or isotype­

matched irrelevant control (PE-CD8a) or positive control (PE-CD6 1 )  for 30 minutes at 

4°C. Cells were washed with PBS. Streptavidin-PE was added to anti-mouse RANKL-
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treated cells and cel ls were incubated for a further 30  minutes at 4°C. Cells were 

washed, fixed in 1 % formaldehyde and analysed by flow cytometry using a 

F ACSCalibur system and Cell  Quest software (BD Biosciences, San Jose, Ca, USA). 

Experiments were independently replicated at least three times. 

Determination of Cell Cycle Stage 

Cells were washed twice with PBS and trypsinised. Following resuspension in 50111 

PBS, cells were treated with 600111 of ice-cold 70% ethanol and incubated on ice with 

continuous mixing in the dark for 1 hour. Cells were washed twice with PBS,  

resuspended in DNase-free RNase A ( l mg/ml) and incubated in the dark for 15 minutes 

at room temperature. Propidium iodide (200111, l OOllg/ml) was added and cells 

incubated at 2°C for 2hrs. Cells were analysed by flow cytometry using a F ACSCalibur 

system and Cell Quest software (BD Biosciences, San Jose, Ca, USA) and cell cycle 

distribution determined by a previously described method [29] . Washed cells were also 

labelled with Annexin V -FITC (51111200,000 cells) to confirm detection of 

apoptotic/necrotic cells [29] . 

Statistical Analysis 

All data conformed to the requirements of the general linear model .  Results were 

analysed by one-way ANOV A with post-hoc Tukey-Kramer testing. A p-value of S 

0.05 was considered statistically significant. 

Results 

Membrane-bound RANKL expression in MC3 T3-E114 cells 

MC3T3-E 1 I4 cells are a heterogeneous mix in terms of cell size. As shown in Figure 1 ,  

two distinct sub-populations of MC3T3-E 1 I4 cells expressed RANKL. Visual 

examination of the cells at 1 00x microscopy revealed a single-cell suspension indicating 

that the two populations did not represent singlet and doublet cells .  Basal RANKL 

expression was the same in the two cell populations with approximately 25-35% of cells 

expressing RANKL. 
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Figure 1 Detection of membrane bound RANKL by flow cytometry A Dot plot of 
MC3T3-E 1 I4 cells showing two distinct sub-populations of cells .  Black cells are 
RANKL-positive cells, grey cells are RANKL-negative. FSC = forward scatter, SSC = 
side scatter. The greater the forward and side scatter, the larger the cell size . B Overlay 
of histogram showing PE (phycoerythrein) detection in MC3T3-E 1 I4 cells exposed to 
isotype-matched irrelevent control antibody (CD8a, dotted line) and RANKL (solid 
line) . 

Cell Cycle Stage of MC3 T3-ElI4 cells 

The population of cel ls with higher forward (FSC) and side scatter (SSC) characteristics 

("larger cells") were determined by propidiurn iodide staining to be viable cel ls  with 

approximately 80% in GO/G 1 (diploid), 5-6% in S-phase and 1 1  % undergoing mitosis 

(tetraploid). Less than 0.5% of large-sized cells were apoptotic or necrotic (defined as a 

sub-90 peak) (Figure 2) .  The smaller-sized cells were determined by propidiurn iodide 

to be apoptotic/necrotic (Figure 2). This was confirmed by localisation of Annexin V­

FITC label ling in the smaller-sized cell population (not shown). The smaller-sized 

apoptotic/necrotic cell sub-population comprised approximately 1 0% of total (large + 

small) cells. Cell cycle stage and the percentage of apoptotic/necrotic cells relative to 

viable cells were unchanged with LCPUF A treatment (data not shown). 
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Figure 2 Cell cycle stage of MC3T3-E 1 I4 cells as determined by flow cytometry (A) Dot plot of MC3T3-E 1 I4 cel ls '  scatter characteristics 
showing two distinct sub-populations of cells. (B) Cell cycle distribution of the total cell population (C) Back-gating to show cells in R i  
(apoptotic/necrotic cell s) and (D) Back-gating to show cells in R2+R3+R4 (00/0 1 ,  S ,  02/M stages o f  cell cycle respectively).FSC = forward 
scatter, SSC = side scatter. The greater the forward and side scatter, the larger the cell size. 
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Effect of LCPUFA treatment on membrane-bound RANKL expression in MC3T3-

E114 cells 

In the viable cells, EP A and DHA had no effect on basal RANKL expression. Both 
GLA and AA treatment were associated with a higher percentage of viable cel ls  
expressing RANKL (Figure 3). However, the percentage of RANKL-positive cel ls  
was not significantly different from controls fol lowing combined treatment with 
GLA or AA and the COX inhibitor indomethacin (Figure 4). The percentage of 
necrotic cells expressing RANKL was unchanged following 48hrs of treatment with 
AA or GLA. 
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Figure 3 Percentage of (A) viable and (B) apoptotic/necrotic MC3T3-E 1 I4 cells 
expressing membrane-bound RANKL. Cells were treated for 48hrs with LCPUF As 
(5Ilg/ml) and membrane-bound RANKL measured by flow cytometry. Groups 
marked with * were significantly different (p<O.05) from control .  Results are the 
mean and SE of three independent experiments. 
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Figure 4 Percentage of viable MC3T3-E 1 I4 cells expressing membrane-bound 
RANKL following treatment with arachidonic acid (AA) or gamma-linolenic acid 
(GLA) and the cyclooxygenase inhibitor indomethacin ( indo). Cells were treated for 
48hrs with LCPUF As (5Ilg/ml) with or without indomethacin ( l IlM). Membrane­
bound RANKL expression was measured by flow cytometry. Groups marked with * 

were significantly different (p<O.05) from control .  The percentage of viable cells 
expressing membrane-bound RANKL was significantly lower in GLA + Indo 
compared to GLA and in AA + Indo compared to AA. Results are the mean and SE 
of three independent experiments. 
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Next we examined the effect of EPA, DHA and GLA on RANKL expression and 

OPG secretion in cells in which RANKL expression had been stimulated by pro­

inflammatory PGE2. As expected, PGE2 treatment increased the percentage of cells 

expressing RANKL (Figure 5). However, the percentage of RANKL positive cell s  

was not significantly different from controls when cells were treated with PGE2 and 

either EPA or DHA. GLA had no discernible effect on RANKL expression in PGE2-

treated cells (Figure 5). 
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Figure 5 Percentage of (A) viable and (B) apoptotic/necrotic PGE2-exposed 
MC3T3-E 1 I4 cells ex�ressing membrane-bound RANKL. Cells were treated for 
48hrs with PGE2 ( 1 0- M) with or without LCPUFAs (5J.lg/ml). Membrane-bound 
RANKL expression was measured by flow cytometry. Groups marked with * were 
significantly different (p<0.05) from control .  Groups marked with # were 
significantly different (p<0.05) from PGE2. Differences between groups in graph B 
failed to reach statistical significance. Results are the mean and SE of three 
independent experiments 

Effect of LCPUF A treatment on OPG secretion by MC3T3-ElI4 cells 

Treatment with AA or PGE2 reduced mean OPG concentration per thousand cells by 

approximately 20%. Treatment with DHA, EPA or GLA alone had no statistically 

significant effect on mean OPG secretion per thousand cells. Similarly, treatment 

with DHA, EPA or GLA in conjunction with PGE2 treatment had no statistically 

significant effect on mean OPG secretion per thousand cells (Figure 6). 
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Figure 6 Osteoprotegerin (OPG) secretion (pg/thousand cells) by MC3T3-E 1 /4 cell s  
Cells were treated for 48hrs with LCPUFAs (5 Ilg/ml) with or  without PGE2 ( 1 O-8M).  
OPG concentration was measured in the cell supernatant by ELISA. Groups marked 
with * were significantly different (p<0.05) from control .  Results are the mean and 
SE of three independent experiments. 

Discussion 

Membrane-bound RANKL was detectable on both viable and apoptotic/necrotic 

MC3T3-E 1 /4 osteoblast-like cells. Both the percentage of cells expressing 

membrane-bound RANKL and the amount of OPG secretion relative to the size of 

the cell population were significantly influenced by LCPUF A treatment. 

Both AA and PGE2 treatments led to an increase in the proportion of cells 

expressing membrane-bound RANKL and a decrease in mean OPG secretion per 

cell .  Treatment with AA may have been slower acting than treatment with PGE2 as 

membrane-bound RANKL expression was elevated in the apoptotic/necrotic cell 

sub-population 48 hours after exposure to PGE2 but not AA. This suggests that 

PGE2 treatment was able to influence membrane-bound RANKL expression in cells 

that were nearing the end of their life-cycle at the time of treatment whereas AA 

treatment may have had little effect on RANKL expression in these cel ls .  Treatment 

with the COX inhibitor indomethacin resulted in loss of the stimulatory effect of AA 

on RANKL expression indicating that COX-derived products of AA rather than AA 

itself may be largely responsible for the increase in membrane-bound RANKL 

expression. Coetzee et al (2007) reported increased secretion of sRANKL and 

decreased secretion of OPG by MC3T3-E l /4 cells following treatment with either 

AA or PGE2 and the effects of AA were blocked by addition of indomethacin [ 1 6] .  
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Overall findings from the present study and that of Coetzee et al (2007) suggest that 

COX-derived products of AA, but not AA itself, increase both membrane-bound and 

soluble RANKL expression in osteoblasts and decrease OPG secretion in vitro. 

In the present study, GLA also increased the percentage of cell s  expressmg 

membrane-bound RANKL. This effect was possibly a result of the activity of COX­

derived products from GLA since the percentage of cells expressing membrane­

bound RANKL was not different from non-LCPUF A treated controls when cel ls  

were co-incubated with GLA and indomethacin. GLA treatment did not further 

increase membrane-bound RANKL expression in PGE2-treated cel ls  above that 

observed with PGE2 treatment alone. This may indicate that RANKL expression had 

been maximally stimulated in the PGE2-treated cell population or that PGE2 and 

GLA treatments interact such that one treatment can block the effect of the other on 

membrane-bound RANKL expression. In bone marrow culture, PGE 1 ,  which is a 

COX-derived product of di-hommogamma linolenic acid (DGLA), a reduction 

product of GLA, has been shown to have similar potency to PGE2 in promoting 

osteoclastogenesis [30] . Results from the present study suggest that the RANKL 

pathway may contribute to the induction of osteoclastogenesis by PGE l .  

Treatment of MC3T3-E l /4 cells cultured under standard conditions with either DHA 

or EP A had no effect on the percentage of RANKL-positive cells or mean OPG 

secretion/cel l .  However, in MC3T3-E 1 I4 cells stimulated with PGE2, both DHA and 

EPA prevented the PGE2-induced increase in the percentage of RANKL positive 

cells. Previously, increased dietary intake of fish oil (rich in EPA and DHA) has been 

shown to prevent the ovariectomy-induced increase in membrane-bound RANKL 

expression in murine T -cells [20] . Treatment with either DHA or EPA has been 

shown to inhibit osteoclastogenesis in bone marrow culture [20] . Several intervention 

studies have demonstrated that dietary consumption of n-3 LCPUF As, particularly 

the very-long chain n-3 PUF As such as EPA and/or DHA, provides some protection 

against bone loss post-ovariectomy in rodents [20, 2 1 , 3 1 -34] and post-menopause in 

women [22] .  Previously, the mechanism by which n-3 LCPUF As protected against 

bone loss was largely attributed to competitive inhibition of n-6 LCPUF A 

metabol ism, in particular the prevention of COX-mediated synthesis of PGE2 [35] .  

Results of the present study suggest that at least in vitro, EP A and DHA have 

- 1 1 5 -



specific effects on osteoblasts independent from those involving inhibition of AA 

metabolism. In vitro, EPA and DHA may inhibit PGE2 activity at least to some 

extent. The observation that EP A and DHA prevented the PGE2-induced increase in 

membrane-bound RANKL expression in osteoblasts in the present study, as well as 

the previous finding that fish oil supplementation prevented the ovariectomy-induced 

increase in T -cell RANKL expression in rats [20] suggests EP A and DHA may 

reduce RANKL-initiated osteoclastogenesis. This may have implications for the 

treatment of inflammation-induced bone loss. The effects of EP A and DHA on 

osteoclastogenesis and bone resorption in vivo remain to be determined. 
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CHAPTER 4 

Digestibility of daidzein and genistein and urinary 

excretion of the isoflavones and their metabolites in 

the ovariectomised rat 

Both long chain polyunsaturated fatty acids and phytoestrogens may mmzmzse 

ovariectomy-induced bone loss. It is of in terest to determine if combined dietary 

supplementation with DHA and phytoestrogens has a greater bone-protective effect 

than either treatment alone. The bioavailability of phytoestrogens varies considerably 

depending on a variety of factors including the chemical form of the phytoestrogen, 

the presence of other dietary factors and the phenotype of the individual consuming 

the supplement. As a preliminary step before examin ing the effects of combined 

phytoestrogen and DHA treatmen t on bone mass, the diges tibility of the 

phytoestrogen supplements to be used and the effect of DHA on phytoestrogen 

digestibility and metabolism in the ovariectomised rat were determined. 
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Abstract 

Consumption of the soyabean isoflavones, genistein and daidzein, may minimise the 

risk of developing postmenopausal osteoporosis. Similarly, consumption of the n-3 

fatty acid docosahexaenoic acid (DHA) may have therapeutic value in combating 

postmenopausal osteoporosis. The aim was to determine the bioavailability of dietary 

genistein and daidzein in ovariectomised rats, a model for postmenopausal 

osteoporosis. The effect of co-supplementation with DHA on isoflavone 

bioavailability and metabolite formation was also assessed. Twenty female rats were 

ovariectomised and randomised into four groups. Animals were fed a diet containing 

either genistein or daidzein (0 .026% of diet) with or without DHA (0.6% of diet) for 

four weeks. Urine and faeces were col lected quantitatively for 6-days in the final 

week of the study. Animals were euthanased and plasma and ileal digesta col lected. 

Genistein, its metabolite 4-ethylphenol; daidzein and its metabolite equol were 

present in plasma at concentrations of 24 nmollL, 67 nmollL, 1 7  nmol/L and 1 8  

nmollL respectively, indicating that the isoflavones were metabolised and that both 

the isoflavones and their metabolites were absorbed. The main mode of excretion of 

the isoflavones was via urine. The major excretory form of genistein was 4-

ethylphenol and of daidzein was equol. I leal digestibility of genistein was 93% 

compared to 3 1 .6% for daidzein. Faecal digestibility of genistein was also greater 

than that of daidzein (99.9% compared to 77.5%). Inclusion of DHA in the diet did 

not influence genistein or daidzein bioavailability or metabolite formation. 

Introd uction 

Epidemiological studies suggest that soyabean isoflavone consumption may aid in 

minimising post-menopausal bone loss in women, consequently reducing the 

incidence of osteoporosis [ 1 -3 ] .  However, intervention trials in both post-menopausal 

women and ovariectomised animals have yielded mixed results [4- 1 9] .  Interpretation 

of these results is confounded by the varying forms of isoflavone supplement used 

(aglycone or glycoside) as well as differences in other dietary constituents such as 

protein, fat or fibre, which may influence isoflavone uptake and/or metabolism [20l 

Isoflavone metabolism and absorption can vary substantially depending on the form 

in which it is consumed [2 1 ] .  There is a need to determine the bioavailability of 
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isoflavones and in some cases, of their more potent metabolites, in any supplement or 

food used in intervention trials, to determine the efficacy of isoflavone 

supplementation as a means of optimising health. 

The metabolism of isoflavones is complex and involves endogenous enzymes, the 

gut micro flora, as well as enterohepatic cycling. Recently, metabolic pathways for 

the two soya isoflavones genistein and daidzein have been proposed [22-24] and the 

resultant metabolites qualitatively identified in biological samples [23, 25] . 

Generally, studies reporting the bioavailability of these two isoflavones have focused 

solely on measuring uptake of the parent compounds and equol, a bioactive 

metabolite of daidzein. However at least one of the genistein metabolites, 4-

ethylphenol, is also bioactive [26] . Little is known about the uptake of this, and other 

metabolites of either genistein or daidzein. In the presently reported study we aimed 

to quantify the known and presumed genistein metabolites namely dihydrogenistein, 

4-ethylphenol, 4-hydroxyphenyl-2-propionic acid, 1 ,3 ,5-trihydroxybenzene and 

1 ,3,5-trihydroxybenzoic acid as well as the daidzein metabolites dihydrodaizdein, 

equol and o-desmethylangolensin (o-dma) in plasma, ileal digesta, urine and faeces 

in genistein- and daidzein-supplemented ovariectomised rats. The ovariectomised rat 

is a FDA-approved animal model for postmenopausal osteoporosis and uptake of the 

full range of isoflavone metabolites has not previously be quantified in this 

commonly used model .  The study also allowed us to determine quantitative 

input/output balances for genistein, daidzein and their metabolites. 

A second objective of the study was to determine if dietary inclusion of the n-3 fatty 

acid, docosahexaenoic acid (DHA), also a potential anti-osteoporotic agent [27, 28] ,  

would alter the uptake or metabolism of either isoflavone. Slavin et al ( 1 998) 

observed that equol production was significantly enhanced by increased dietary fatty 

acids [29] . Whether changing the degree of un-saturation of dietary fat influences 

isoflavone metabolism is unknown. As both isoflavones and DHA are potential 

therapeutics for osteoporosis prevention or treatment, and combination n-3 fatty acid 

and isoflavone therapies have been proposed [30] ,  there is interest in determining if 

there are antagonistic, additive or synergistic interactions between the two treatments 

and whether DHA influences isoflavone metabolism or bioavailability. 
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Methods 

Materials 

Docosahexaenoic acid ethyl ester (80% purity) was purchased from Sanmark LLC, 

USA (product number 01  1 77B-E80). Genistein (>95%) and daidzein (>96%) were 

purchased from LC Laboratories, USA. p-glucuronidase/arylsulfatase (G-70 1 7) and 

all standards used for GC/MS analysis (except for 4-hydroxyphenyl-2-propionic 

acid) were purchased from Sigma Aldrich, Munich, Germany. The standard for 4-

hydroxyphenyl-2-propionic acid (98%) was purchased from Acros Organics, Geel, 

Belgium (catalogue number 302680050). All other chemicals were of analytical 

grade and were purchased from Sigma-Aldrich, Munich, Germany. 

Animals 

The study was approved by The Massey University Animal Ethics Committee 

(Approval number 05/97) and was conducted in accordance with the principles of 

laboratory animal care [3 1 ] .  Twenty 7-month old female Sprague-Dawley rats were 

obtained from the Small Animal Production Unit, Massey University. All animals 

underwent bilateral ovariectomy performed under general anaesthetic (isofluorane). 

Animals were initially individually housed in shoebox cages. For the final 1 4  days of 

the trial, animals were transferred to individual, stainless steel wire-bottomed 

metabolic cages to allow for the separation and collection of urine and faeces .  

Throughout the trial, animals were housed in a dedicated room maintained at 22°C (± 
2°C) and with a 1 2h11 2h light/dark cycle. 

Diets 

Animals were gradually introduced to a nutritionally-balanced semi-synthetic 

maintenance diet over a period of two weeks prior to undergoing ovariectomy (week 

-2 to week 0). The diet formulation was based on AIN93M [32] with vitamins and 

minerals added as necessary to compensate for the nutrient content of local 

ingredients [33] . The type of oil in the diet was also altered from soy bean oil (as 

stipulated for AIN93M) to corn oil as soybean oil is a source of n-3 fatty acids. 

Titanium dioxide was added to the diet (5g/kg diet) as an indigestible marker to 

allow quantification of digesta and faecal phytoestrogen and metabolite contents. 
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Following ovariectomy, animals were assigned at random to one of four 

experimental groups (n=5 per group) .  The maintenance diet was supplemented with 

0 .026% gerustein (2 groups) or daidzein (2 groups). To one gerustein-supplemented 

diet (GENF AT) and one daidzein-supplemented diet (DAIF AT), docosahexaenoic 

acid ethyl ester (DHA) was added at a dose of 0 .6% of diet and the amount of corn 

oil in the diet was reduced to 3 .4%. The remaining genistein (GEN) and daidzein 

(DAI) supplemented diets contained corn oil (4% of diet) as the sole source of fat. 

Total fat and energy content of all diets was the same. Samples of the diets were 

frozen (-20·C) and finely ground before chemical analysis. The ingredient 

compositions are given in Table 1 .  

Table 1 Ingredient composition (% air-dry weight) of the experimental diets 

Percentage of Diet 
GEN GENFA T DAl DAIFA T 

Cornstarch 59. 1 74 59. 1 74 59. 1 74 59. 1 74 
Sodium Caseinate 1 4  1 4  1 4  1 4  
Sucrose 6 6 6 6 
Cel lulose a 5 5 5 5 
V itamins b 5 5 5 5 
M inerals C (exc luding calcium) 5 5 5 5 
Calcium Carbonate 1 .3 1 .3 1 .3 1 .3 
Corn O i l  d 4 3 .4 4 3 .4 
Docosahexaenoic acid ethyl ester d 0 0.6 0 0 . 6  
Titanium Dioxide 0 . 5  0 .5 0 .5  0 .5  
Genistein 0 .026 0.026 0 0 
Daidzein 0 0 0.026 0 .026 
a Vltacel L600, SWift NZ Ltd 
b Supplying (mg/kg diet) retinol acetate 5 .0, DL.a-tocopherol acetate 200.0, menadione 3 .0, thiamine 
hydrochloride 5 .0, riboflavin 7 .0, pyridoxine hydrochloride 8 .0, D-pantothenic acid 20.0, fol ic acid 
2 .0, nicotinic acid 20.0, D-biotin 1 .0, myo-inositol 200.0, choline chloride 1 500; (Jlglkg diet) 
ergocalciferol 25 .0, cyanocobalamin 50.0. 
C Supplying (glkg diet) chloride 7 .79, magnesium 1 .06, phosphate 4 .86, potassium 5 .24, sodium 1 .97; 
(mglkg diet) chromium 1 .97, copper 1 0.7, iron 424, manganese 78 .0, zinc 48.2; (Jlglkg diet) cobalt 
29.0, iodine 1 05.0, molybdenum 1 52 .0, Selenium 1 5 1 .0 
d Total fat content of all diets was 4%. 

Feeding Regimen 

De-ionised water was freely available to the animals at all times. For the initial 1 0  

days fol lowing ovariectomy, animals had unrestricted access to their respective diets. 

After the post-surgery recovery period ( 1 0  days), animals were trained to consume 

one meal per day. During this period, animals had unrestricted access to their 

respective diets for 3 hours per day (0700- 1 000), after which time food was removed. 
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Two weeks following ovariectomy, animals were placed in metabolic cages for a 1 -

week acclimatisation period fol lowed by a 6-day period of faeces and urine 

col lection. The design of the metabol ic cages was such that coprophagy was 

prevented. 

Metabolic Balance and Sample Collection 

Rat body weight was recorded immediately prIor to and following the sample 

col lection period. All faeces and urine were collected separately on a daily basis and 

daily food intake was recorded. Hydrochloric acid ( l M) was added to the faeces and 

urine collection tubes ( 1  ml per tube) prior to sample collection to prevent continued 

microbial degradation of the isoflavones and metabolites in these samples post­

excretion. Excreta were frozen (-20°C) and faecal samples were subsequently freeze­

dried and stored frozen (-20°C) .  

Immediately following the meal on day 7 of the metabol ic balance period, animals 

were deeply anaesthetised via intra-peritoneal injection (25G x 5/8" needle and 1 ml 

syringe) of O . 1 ml/kg body weight of acepromazine, ketamine, xylazine and steri le 

H20 (2 : 5 : 1 : 2)  and were subsequently exsanguinated by cardiac puncture ( 1 9G x 

1 W' needle and 5ml syringe) .  Blood was col lected in EDTA-containing vacutainers 

and immediately centrifuged at 2000rpm for 1 0  minutes. Plasma was stored at -80°C 

for later analysis. Digesta from the terminal 20cm of the ileum immediately distal to 

the ileo-caecal valve were collected by flushing with 1 0ml of milli Q water using a 

l Oml syringe attached to a mouse gavage needle. Digesta were frozen at -20·C and 

subsequently freeze-dried prior to chemical analysis. 

Sample Extraction 

Urine 

For each animal, total urine col lected over the 6-day period was pooled and filtered 

through Whatman #4 filter paper to remove any contaminating particulate matter. 

Samples were mixed to ensure homogeneity and isoflavones were extracted as 

described earlier with slight modifications [34] . Urinary creatinine concentration was 

determined by the laffe method [35] .  Urine samples were buffered to pH5 with 1 ml 

of O . 1 25M sodium acetate. Tyrosol (25lJ.mollmg creatinine) was added as an internal 
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standard fol lowed by 1 25!!1 �-glucuronidase/arylsylfate and the samples were 

incubated overnight at 3TC. Samples were then acidified with 5 N HCI to a pH < 2.  

Samples were extracted twice, firstly with 6ml ethyl acetate and then with 3m1 

diethyl ether. An excess of anhydrous Na2S04 was added (approximately 2 mg) to 

remove any water that may have stil l  been present in the sample. This volume was 

vortexed for 30 seconds and centrifuged for 5 minutes. The solution was decanted 

from the pellet and dried under a nitrogen stream. The dry extract was derivatised at 

90 °C for 30 minutes with 22.6 !!L bis(trimethylsi lyl) trifloroacetamide 

(BSTF A)/flmol creatinine, 4 .5  flL pyridine/flmol creatinine and 4.5 flL 

trimethylchlorosilane (TMCS)/flmol creatinine. 

Ileal Digesta and Faeces 

Freeze-dried ileal digesta and faecal samples were finely ground using a Breville 

coffee bean grinder. Digesta (50mg) were mixed with I mL 0 . 1 25M sodium acetate 

buffer (PH 5). For faecal analysis, 250mg faeces and 2mL 0 . 1 2SM sodium acetate 

buffer (PH 5)  were used. In both cases 1 00ul of a 0.5mg/ml tyrosol solution was 

added as an internal standard. Samples were deconjugated, acidified, extracted and 

derivatised as for the method for urine samples. 

Plasma 

To 200!!1 of plasma, 1 00!!1 of 0.5mg/ml tyrosol solution was added. As isoflavones 

are present predominately as conj ugates rather than aglycones in blood [36] and are 

tightly bound to various blood proteins [37] , plasma samples were treated with 200fll 

1 00% acetonitri le to denature binding proteins, centrifuged at 3 000rpm for 5 minutes 

and the clear supernatant collected prior to enzymatic deconjugation. Deconjugation, 

acidification, extraction of isoflavone metabolites and derivatisation was conducted 

as described for urine. 

Ge/MS analysis of isoflavone metabolites 

An Agilent 6890N gas chromatograph system with an HP-5 capil lary column 

(0.25mm x 30m x 0.25flm) coupled to a 5973 mass spectrometer was used for the 

analysis. Injection volume was 1 .0fll with a split ratio of 1 0 : 1 and a helium flow rate 

of I mllmin. Injection inlet temperature was 250°C. Initial oven temperature was 
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1 20°C maintained for 2 minutes. Temperature was ramped at l OoC/minute to 320°C 

where it was maintained for a further 2 minutes. Total run time was 24 minutes. 

Quantification oj Titanium Dioxide in Faeces and Ileal Digesta 

Faecal concentration of the indigestible marker titanium dioxide was determined by 

colourimetry following sulphuric acid digestion as previously described [3 8] .  Due to 

the relatively small quantity of ileal digesta available for analysis, the concentration 

of titanium was determined in the digesta residue remaining after isoflavone 

extraction by ICP-MS fol lowing sulphuric acid digestion. Concentration of titanium 

dioxide in digesta was calculated based on the respective molecular weights of 

titanium and oxygen and corrected for the quantity of isoflavones extracted. 

Data Analysis 

Ileal and faecal genistein, daidzein and metabolite concentrations with respect to 

genistein and daidzein intake were determined as follows: 

Concentration of compound (mg/g DMI) = 

[Compound in digesta or faeces (mg/g DM) x Ti02 in diet (mg/g DM)] / Ti02 in 

digesta or faeces (mg/g DM) 

Where: 

Compound = genistein, daidzein or metabolite 

DMI = Dry matter Intake 

DM = Dry matter 

Ileal and faecal daidzein and genistein digestibility were determined by: 

I leal or faecal digestibility of compound (%) = 

( [Dietary genistein or daidzein (mol/g DMI)] - [ileal or faecal genistein or daidzein 

and their metabolites (mol/g DMI)]) / [Dietary genistein or daidzein (mol/g DMI)] x 

1 00% 
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Statistical Analysis 

Data were analysed using Minitab version 1 4  (Minitab Inc . ,  Pennsylvania, USA) . 

Results are reported as mean . standard error of mean (SEM). Analysis of variance 

using the general linear model with post-hoc Tukey testing was used for comparisons 

between groups. A p-value of � 0.05 was considered statistically significant. 

Results 

There were no statistically significant differences among the treatment groups in 

terms of mean daily food intakes. Average food intakes for the 6-day balance period 

(g/rat/day ± SE) were DAI 1 1 . 0 (± 0.7), DAIFAT 1 0. 1  (± 0.7), GEN 1 1 .0 (± 0 .7), 

GENFAT 1 0 .8 (± 0.7). Rats gained body weight over the 6-day balance period. 

There were no statistically significant differences among groups in weight gain or 

final body weight. Body weight gains (g/rat/6-days ± SE) were DAI 1 8 .0 (± 3 .3), 

DAIFAT 1 4.9 (± 3 .3), GEN 1 8 .2 (± 3 .3)  and GENFAT 20.0 (± 3 .3) .  Final rat body 

weights (g ± SE) were DAI 303.0 (± 8.5) , DAIFAT 297.4 (± 8.5) , GEN 29 1 . 1  (± 8 .5)  

and GENF AT 3 1 1 . 5 (± 8 .5) .  

The presence of DHA in the diet had no statistically significant effect on either the 

ileal or faecal digestibility or the plasma or urine concentrations of the unmetabolised 

isoflavones or isoflavone metabolites (data not shown). 

Isoflavones in ileal digesta, plasma, urine and faeces 

The daidzein metabolites analyzed for were equol, o-dma and dihydrodaidzein. The 

concentrations of daidzein and its metabol ites in ileal digesta, plasma, urine and 

faeces are given in Table 2. Equol was the main metabolite detected in all biological 

samples measured from daidzein-fed animals although small amounts of o-dma and 

2-dehydro - o-dma were present in ileal digesta and urine respectively. 

Dihydrodaidzein, an intermediate product in daidzein metabolism, was also detected 

in ileal digesta and urine. 

The metabolites of genistein which have been previously proposed [24] and which 

were analysed for in this study were: 4-ethylphenol ,  4-hydroxyphenyl-2-propionic 

acid, dihydrogenistein, 1 ,3,5 -trihydroxybenzene and 1 ,3 ,5-trihydroxybenzoic acid. 
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The latter two metabol ites were not detected in any sample. The main genistein 

metabolite present in i leal digesta, plasma and urine was 4-ethylphenol. The latter 

metabolite was not detected in faeces. The only genistein metabolite detected in 

faeces was 4-hydroxyphenyl-2-propionic acid. This was also present in low 

concentrations in ileal digesta and urine. 

Table 2 Concentrations of genistein and known genistein metabolites, and daidzein 
and known daidzein metabolites in ileal digesta, plasma, urine and faeces 
DIET DIGESTA PLASMA URINE FAECES 

(Jlmollkg (nmoIIL) (IlmoIIL) (Jlmollkg 
DMI) DMI) 

Genistein Genistein 6 5 . 2  2 4  8 9  Trace 
( 1 1  ) ( 1 5) (29) 

Oihydrogenistein NO N O  4 . 8 1  x 1 0.3 NO 
(4 .44 x 1 0.3) 

4-ethylphenol 1 .83 67 3 40 N O  
(0 . 5 6) ( 1 9) (93) 

4-hydroxyphenyl-2- 0 .265 N O  3 .9 1 .05  
propionic acid (0 .25)  ( 1 .6) (0 .69) 

Daidzein Oaidzein 260 1 7  93 7 .3 
( 25 ) ( 1 3 )  (2 1  ) (3 .6) 

Oihydrodaidzein trace N O  5 .94 x 1 0-2 N O  
(keto + enol) (2.24 x 1 0-2) 
o-dma 4.54 x 1 0-4 N O  N O  N O  

4.54 x 1 0-4 
2-dehydro - o-dma N O  N O  6.27 x 1 0-2 NO 

( 1 .86 x l O-2) 
Equol 440 1 8  280 230 

( 59) (4 .9) (56) (66) 
Ovanectom lsed rats consumed a dIet supplemented wIth eIther gemstem or daldzem (O.26mglg OMI) 
for 4 weeks. Following euthanasea, genistein, daidzein and their known metabol ites were measured in 
i leal digesta, plasma, urine and faeces by GC/MS. Results are expressed as mean with SE in ( ) .  
NO = Not detectable 

OMI  = Dry matter intake 
o-dma = o-desmethylangolensin 

Daidzein and Genistein Digestibility 

The apparent ileal digestibility of daidzein was significantly lower than that of 

genistein (p<O.OOO l )  (Table 3). Likewise, the faecal digestibility of daidzein was 

also significantly lower than that of genistein (p<O.OOO l ). 
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Table 3 Ileal and faecal digestibility of daidzein and genistein 

Daidzein Genistein SiJZni/icance 
Ileal digestibility (%) 32.0 93 .0 * * *  

(7 .9) ( Ll )  
Faecal digestibility (%) 77 .5  99.9 * *  

(6 .5)  (0.06) 
Ovanectomlsed rats consumed a diet supplemented with e ither genlstem or daldzem (O.26mglg DMI) 
for 4 weeks. Following euthanasea, genistein, daidzein and their known metabol ites were measured in 
i leal digesta, and faeces by GelMs. * *  p:SO.O I * * *  p:SO.OOO l 
OMl = Dry matter intake 

The percentage disappearances of dietary genistein and daidzein from the digestive 

tract are shown in Figure 1 .  

Input/Output Balances 

By averaging genistein and daidzein intakes and excretions over a 24hr period it is 

possible to estimate the extent to which determined excretion accounted for dietary 

isoflavone intake. To this end, average 24-hour input/output balances were calculated 

for genistein and daidzein (Table 4a). It should be noted that this study was not 

designed to assess the pharmacokinetics of genistein or daidzein uptake and 

excretion, therefore the input/output balances do not provide information with regard 

to the timing of excretion of the isoflavones relative to isoflavone consumption 

during the 6-day balance period. 

"Input" was calculated as the average dai ly dietary intake of genistein or daidzein 

(moles) during the 6-day balance. Total faecal and urinary excretions of genistein, 

daidzein and their respective metabolites during the 6-day balance were calculated 

based on the molar concentrations of the compounds in urine and faeces and the total 

volume/mass of urine or faeces excreted over the period. Mean faecal and urinary 

isoflavone and metabolite excretions (moles) per 24hr period, "urinary and faecal 

outputs," were subsequently calculated. For all metabolites, metabolite formation 

from the parent isoflavone is on a mole per mole basis (i .e. 1 mole of parent 

isoflavone yields one mole of metabolite). 

An estimate of the total blood volume of each animal was derived from published 

values [39] based on average rat body weight. Assuming that plasma constitutes 40-
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50% of whole blood, an estimated total plasma volume of 9. 75ml per animal was 

used. Average 24-hour plasma isoflavone and metabolite content was determined by 

multiplying the concentration of each compound detected in plasma by the estimated 

total plasma volume. 
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Figure 1 Diet, ileal digesta and faecal contents of unmetabol ized daidzein (A) and 
genistein (B) and their known metabolites following dietary supplementation of 
ovariectomised rats. o-dma and trace amounts of dihydrodaidzein were detected in 
digesta from daidzein supplemented animals. The metabolite 2-dehydro-o-dma was 
also present in very low concentrations in urine from daidzein-supplemented animals 
(refer table 2) .  The genistein metabolite 4-hydroxyphenyl-2-propionic acid was 
detected in low concentrations in digesta from genistein-supplemented animals (refer 
table 2). 
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On a mol/mol basis, 24hr urinary plus faecal excretion of genistein and its known 

metabolites represented 43 .9% of average 24-hour dietary genistein intake. Similarly, 

24hr excretion of daidzein and its known metabolites represented 53 .8% of average 

24-hour dietary daidzein intake. Excretion of both genistein and daidzein was 

largely by way of urine (Table 4a). 

Table 4a Input/Output balance (24hr) for genistein and daidzein in ovariectomised 
rats 
I N PUT (Diet) OUTPUT (Excretion) 

Quantity Excretion E xcretion i n  Excretion Excretion in 
(�moll in urine u rine as a 0/0 in faeces faeces as a 0/0 
24hr) (flmoll of genistein (flmoll of genistein 

24h r) inta ke 24hr) intake 
(MoI/Mol%) (MoIfMol%) 

Genistein 1 0. 1 3 1  Genistein 1 .086 1 0. 1 4  Trace 
(0.390) (0.335) (3.0 I )  

4-ethyl- 4 . 1 8  40.2 N O  
phenol ( 1 . 1 6) ( I l . l  ) 
4-hydroxy 0.0487 0.455 0.000646 0.00683 
phenyl-2- (0.0 1 88) (0 . 1 72) (0.000434) (0.00446) 
propionic 
acid 
Oihydro- 0.0545 0.463 NO 
genistein (0.0498) (0.4 1 7) 
TOTAL 5 .37 5 1 .2 0.000646 0.00683 

TOTAL I NPUT TOTAL OUTPUT (URI N E  + FAECES) 
1 0. 1 3 1  flMol 5.37 �Mol, 5 1 .2% of mean 24hr genistein intake 

l N PUT ( Diet) OUTPUT (Excretion) 
Oaidzein 1 0.833 Oaidzein 0.928 8.86 0.057 0.53 

(0.3 85) (0. 1 86) (2.03) (0.0282) (0.264) 
Equol 3 .0 1 5  27.47 1 .564 1 4.59 

(0. 820) (7.36) (0.430) (4 .02) 
Oihydro- 0.555 5.4 1 NO 
daidzein (0.209) (2.08) 
o-dma N O  NO 

2-dehydro- 0.647 5 .85 NO 
o-dma (0.20 1 )  ( 1 .82) 
TOTAL 5 . 1 5  47.59 1 .62 1 5 . 1 2  

TOTAL I NPUT TOTA L OUTPUT (URI N E  + FAEC ES) 
1 0.833J.lMol 6.77 J.lMol, 62.7% of mean 24hr daidzein intake 

Ovanectomlsed rats consumed a dIet supplemented WIth eIther gel11stem or daldzem (2.74mg/24 hrs) 
for 4 weeks. Fol lowing euthanasea, genistein, daidzein and their known metabol ites were measured in 
urine and faeces by GC/MS and mean 24 hr intake (input) and excretion (output) were calculated. 
Results are expressed as mean with SE in ( ) . 
Note: The difference between average 24-hour input and average 24-hour output (excretion) is 
4.76 1 flmol (49% of intake) for genistein and 4 .063f.lMol (37% of intake) for daidzein and represents 
the amount of intake unaccounted for. 
NO = Not detectable 

At a given point in time, circulating levels of genistein and its known metabolites in 

plasma represented 0.08% of average 24hr genistein intake whereas circulating levels 
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of daidzein and its known metabolites represented 0.03% of average 24-hour 

daidzein intake (Table 4b). 

]', bI 4b E . a e stlmate d I if p asma quantltles 0 gemstem an d d  ·d . az zem an d h · b l" t elr meta 0 lfes 
Diet Quantity (nmol)" Quantity in 

plasma a s  a % of 
genistein intake 

(MoIlMol%) 
Genistein Genistein 0.227 0.02 

(0. 1 42) (0.00 1 )  
4-ethylphenol  0 .634 0.06 

(0. 1 83) (0.002) 
4-hydroxyphenyl-2-propionic acid ND 

Oihydrogenistein NO 

TOT AL IN PLASMA 
0.860 n Mol, 0.08% of mean 24hr ge nistein inta ke 

Oaidzein Oaidzein 0. 1 42 0.02 
(0 . 1 09) (0.00 1 )  

Equol 0. 1 52 0.02 
(0.044) (0.005 )  

Oihydrodaidzein ND 

o-dma ND 

2-dehydro-o-dma ND 

TOT AL I N  PLASMA 
0. 1 03 n Mol, 0.03% of mean 24hr daidzein inta ke 

Ovariectomised rats consumed a diet supplemented with either gemstem or daldzem (2. 74mg/24 hrs) 
for 4 weeks. Following euthanasea, genistein, daidzein and their known metabol ites were measured in 
plasma by GC/M S. Results are expressed as mean with SE in ( ). 
/\ Based on an estimated total plasma volume of 9.75ml.  

N D  = Not detectable 
o-dma = o-desmethylangolensin 

Discussion 

The study had two primary objectives. Firstly to determine the amounts of daidzein, 

genistein and their metabolites in digesta, faeces, plasma and urine to demonstrate 

the degree of bioavailability in the ovariectomised rat model and secondly to 

determine if the inclusion of DHA in the diet affects the uptake or metabolism of 

daidzein or genistein in the ovariectomised rat model . 

Endogenous mammalian enzymes are believed to be incapable of catabolising 

daidzein and consequently the formation of equol and o-dma (via the intermediate 

dihydrodaidzein) occurs due to metabolism by the gut microflora [40] . Although an 
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estimated 50-70% of humans are incapable of producing equol [4 1 ] , presumably due 

to a lack of daidzein-metabolising gut bacteria [42] ,  all rats are believed to be equol­

producers [43 ] .  In the present study, equol production was observed in all daidzein­

fed rats and equol was present in relatively high amounts in ileal digesta, plasma, 

urine and faeces. Small amounts of o-dma or 2-dehydro - o-dma were also detected 

in ileal digesta and urine. 

In contrast to daidzein, endogenous mammalian enzymes appear to be capable of 

metabol ising genistein. Coldham et ai, (2002) proposed two pathways for the 

biotransformation of genistein. The end-products of one pathway being 4-

ethylphenol and 1 ,3 ,5 -trihydroxybenzoic acid and of the other being 4-

hydroxyphenyl-2-propionic acid and 1 ,3 ,5-trihydroxybenzene . In the present study, 

4-ethylphenol was the main metabolite of genistein detected in plasma, urine and 

ileal digesta although small amounts of 4-hydroxyphenyl-2-propionic acid were also 

detected in both digesta and urine. Studies in sheep have also identified 4-

ethylphenol as the main genistein metabolite in urine [44] .  The major genistein 

metabolite excreted in faeces in the present study was 4-hydroxyphenyl-2-propionic 

acid which has previously been identified as the end-product of faecal and caecal 

microflora-mediated genistein metabolism [24] . We did not detect 4-ethylphenol in 

faeces and similarly Coldham et ai, (2002) found no evidence of 4-ethylphenol 

production by either human or rat caecal microflora [24] . This suggests that 

endogenous enzymes in the stomach and/or small intestine favour conversion of 

genistein to 4-ethylphenol whereas genistein metabolism by the gut microflora 

largely results in 4-hydroxyphenyl-2-propionic acid production. Although 4-

ethylphenol has no oestrogenic activity, it is bioactive and has been shown to 

stimulate prostaglandin F2a synthase-like 2 (PGFSL2) gene expression in bovine 

endometrium [26] . As prostaglandins are important mediators in many inflammatory 

diseases including osteoporosis [45] ,  the extent of metabolism of genistein to 4-

ethylphenol may be clinically relevant. 

We did not detect 1 ,3 ,5 -trihydroxybenzoic acid or 1 ,3 ,5 -trihydroxybenzene in any 

biological sample. Coldham et al (2002) also fai led to detect either of these 

theoretically possible genistein metabolites following gut microfloral metabolism of 
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genistein [24] . It is therefore l ikely that these proposed genistein metabolites either 

do not form in vivo or are rapidly subjected to further metabolism. 

The extent of disappearance of genistein from the digestive tract prior to the terminal 

i leum was considerably greater than that of daidzein. This  may be a result of 

differences in the sites of metabolism and absorption of the two isoflavones in  the 

intestine. Both genistein and daidzein are absorbed to some degree directly from the 

stomach in rats [46], however differences exist in the sites of intestinal absorption of 

the two isoflavones. Previous studies which attempted to examine isoflavone 

absorption by measuring uptake by cell lines derived from various regions of the 

intestine have perhaps been misleading. Although genistein uptake has been 

demonstrated in the colonic Caco-2 cell line [47] , genistein absorption does not occur 

in intact colon tissue [48] . Although genistein is metabolised throughout the small 

and large intestines, absorption of unmetabolised genistein is l imited to the jej unum 

and i leum [48] .  The intestinal sites at which absorption of genistein metabolites 

occurs are unknown. Daidzein metabolism appears to be limited to sites in which gut 

microflora reside, namely the distal small intestine and colon. Absorption of 

unmetabolised daidzein occurs by passive transport and is  greatest in the distal rather 

than the proximal or medial small intestine [49] however whether daidzein or its 

metabolites are also absorbed from the colon remains to be clarified. In the present 

study very little dietary genistein was detected at the terminal ileum, however a 

relatively large proportion of dietary daidzein was present in i leal digesta and 

therefore entered the colon. Whether or not daidzein and/or its metabolites, 

particularly equol, are absorbed from the colon needs to be determined as a lack of 

colonic absorption of daidzein or equol would impact considerably on estimates of 

daidzein bioavailability. In the present study considerable post-ileal disappearance of 

daidzein was observed, however it is not possible to ascertain if this disappearance 

was a result of absorption of daidzein and equol or further metabolism of daidzein 

and equol to other, as yet unknown, molecules. 

For both genistein and daidzein, mean 24-hour genistein or daidzein input (dietary 

intake) exceeded mean 24-hour output (excretion of the isoflavone and its 

metabolites) by a substantial amount. This result indicates that either substantial 

amounts of the isoflavones or their metabolites accumulate in body tissues, as yet 
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unidentified metabolites of both daidzein and genistein exist which are excreted in 

urine and faeces or that the known genistein and daidzein metabolites are further 

catabolised. Isoflavones do not appear to accumulate substantially in body tissues, as 

a study using radio-labelled genistein found that only 0.6% of ingested genistein was 

incorporated into body tissues in female rats [50] .  It is therefore likely that the 

apparent imbalance between isoflavone intake and excretion in the present study was 

due to the existence of unidentified daidzein and genistein metabolites and/or that the 

known daidzein and genistein metabolites are further broken down by either 

endogenous mammalian or gut microflora enzymes. 

Phytoestrogens such as genistein and daidzein are best known for their abi l ity to 

mimic the action of mammalian oestrogens. Plasma concentrations of genistein, 

daidzein and equol in the present study were simi lar to those reported in other studies 

[5 1 ,  52] .  At a point in time following 4-weeks of genistein or daidzein 

supplementation, estimated total plasma quantities of isoflavone-derived oestrogenic 

compounds, (daidzein, equol and genistein) were approximately O .2nM. In 

comparison, the total plasma quantity of 1 7�-estradiol in non-ovariectomised female 

rats is approximately one hundred times lower [53 ] .  Although oestrogenic activity of 

phytoestrogens is less than that of mammalian oestrogens [54], the quantities of the 

oestrogenic isoflavones in plasma observed in the present study could be expected to 

be of physiological significance. In addition to their oestrogenic activity, isoflavones 

also have non-oestrogenic bioactivity [55-57] . As previously mentioned, 4-

ethylphenol is bioactive [26] and the presence of this metabolite in plasma may also 

contribute to the physiological effects of genistein. 

There was no evidence that inclusion of DHA in the diet altered daidzein or genistein 

metabolism, flow through the digestive tract or concentration in either plasma or 

urine. As many factors influence isoflavone metabolism and bioavailability it is 

important to quantify isoflavone absorption and the extent of metabolite formation in 

epidemiological and intervention studies aimed at determining a health benefit of 

isoflavones. 

Overall ,  the present study has demonstrated that there is a very substantial 

disappearance of genistein in the upper digestive tract of the ovariectomised rat given 
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a genistein-supplemented diet. This observation coupled with the detection of 

genistein and its metabolites in plasma and urine demonstrates that the genistein 

given to the animals was bioavailable, although the extent of the bioavailability was 

unable to be determined with accuracy. Plasma and urinary contents suggest that 

quantitatively significant amounts of genistein or its metabolites are absorbed in the 

ovariectomised rat. The disappearance of daidzein to the end of the small intestine 

and over the total digestive tract was much lower than for genistein, though a 

considerable amount of daidzein plus its metabolites did disappear in passage 

through the tract. The detection of daidzein and equol in plasma and urine in 

significant quantities also indicates that this bioactive was absorbed but to an 

unknown degree. 
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CHAPTER S 

Interaction between docosahexaenoic acid and 

oestrogens : Impact on bone mass post-ovariectomy in 

rats 

In Chapter 2, DHA was found to have a greater protective effect than EF A or GLA 

on bone mass post-ovariectomy. As a possible beneficial effect of combined 

oestrogen ic compound and long chain polyunsaturated fatty acid treatment has 

previously been reported, the aim of the study presented in this chapter was to 

determine if combined DHA and oestrogenic compound treatment wou ld have an 

additive or synergistic effect on bone mass post-ovariectomy. 

Submitted to "Experimental Biology and Medicine " 
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Abstract 

A possible synergistic effect of 1 7[3-oestradiol treatment and dietary supplementation 

with long chain polyunsaturated fatty acids (LCPUF As) in minimising post­

ovariectomy bone loss in rats has previously been reported. Similarly, a beneficial 

effect of dietary supplementation with both n-3 LCPUF As and phytoestrogens on 

bone mass post-ovariectomy has also been proposed. With the recent finding that the 

specific n-3 LCPUF A docosahexaenoic acid (DHA, 22 :6n-3) is particularly bone­

protective we sought to determine whether there was an additive or synergistic effect 

of treatment with DHA and oestrogenic compounds ( 1 7[3-oestradiol or either of the 

phytoestrogens, genistein or daidzein) on bone mass in ovariectomised (OVX) rats. 

One hundred and four, six-month old Sprague-Dawley rats were randomised into 9 

groups and either ovariectomised (8 groups) or sham operated ( 1  group, n=1 0) .  

Using a 2x4  factorial design approach, OVX animals received DHA (O.Sg/kg body 

weight/day) or no DHA and either no oestrogenic compound, genistein (20mglkg 

body weight/day), daidzein, (20mg/kg body weight/day) or 1 7[3-oestradiol ( 1  f.!g/day) .  

Sham-operated animals received no  DHA and no  oestrogenic compound. Study 

duration was 1 8  weeks . Main outcome measures were bone mineral content (BMC), 

bone area (BA) and bone mineral density (BMD) measured by DEXA and pQCT. 

P lasma concentration of carboxylated and under-carboxylated osteocalcin, IL-6 and 

red blood cell (RBC) fatty acid composition were determined at study completion. 

Femur (F) BMC was significantly higher in animals treated with DHA or 1 7[3-

oestradiol compared to untreated ovariectomised controls.  DHA treatment was 

associated with significantly higher plasma concentration of carboxylated osteocalcin 

compared to untreated ovariectomised controls (p=0.02).  P lasma concentration of 

total osteocalcin was significantly lower in 1 7[3-oestradiol treated animals compared 

to untreated ovariectomised controls (p=0.0 1 ). There were significant interactions 

between oestrogenic compound and DHA treatment for F BMC (p=0.02), plasma IL-

6 concentration (p=0.03 ) and the percentages of various fatty acids within RBCs. The 

Final F BMC was significantly greater in animals treated with DHA and 1 7[3-

oestradiol compared to either treatment alone (p=0.0 1 ) . No beneficial effect of 

combined DHA and genistein or daidzein treatment on bone mass was apparent. 

Plasma 11-6 concentration was significantly lower in animals treated with 1 7[3-

oestradiol and DHA compared to 1 7[3-oestradiol alone (p=0.0 1 ) . The percentage of 
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n-3 LCPUF As in RBCs was significantly greater in animals treated with 1 7�­

oestradiol and DHA compared to either treatment alone. In contrast the ratio of n-

3 :n-6 LCPUF As in RBCs was significantly lower in animals treated with daidzein 

and DHA compared to DHA treatment alone. 

I ntrodu ction 

Oestrogen decline due to natural or surgical menopause results in loss of bone mass 

and can lead to the development of osteoporosis. One of the consequences of 

oestrogen deficiency is disruption of long chain polyunsaturated fatty acid 

(LCPUF A) metabolism such that tissue and blood concentrations of very long chain 

PUFAs decline [ 1 , 2 ] .  Dietary supplementation with n-3 LCPUFAs increases tissue 

and blood levels of n-3 LCPUF As and assists in maintaining bone mass post­

ovariectomy in rodents [3] and post-menopause in women [4] . Oestrogen 

Replacement Therapy (ERT or HRT) also increases plasma concentrations of the 

very long chain n-3 PUF As, eicosapentaenoic acid (EPA, 20 :5n-3) and 

docosahexaenoic acid (DHA, 22 :6n-3) in post-menopausal women and this IS 

believed to contribute to the observed anti-atherosclerotic effects of ERT [5] .  In 

1 999, Schlemmer et al reported a possible synergistic effect of 1 7p-oestradiol 

therapy in conjunction with dietary supplementation with gamma-linolenic acid 

(OLA, 1 8  :3n-6) and EP A in ameliorating ovariectomy-induced bone mineral loss in  

rats [6] . One other study has reported a possible reduction in rate of bone resorption 

in ovariectomised rats receiving a soy-containing diet supplemented with menhaden 

oil (rich in EP A and DHA) [7] . Since this time, the relative effectiveness of OLA, 

EPA and DHA in preventing ovariectomy-induced bone mineral loss in rats has been 

examined and DHA has been identified as having the strongest bone-sparing effect 

[Chapter 2 ] .  The aim of the present study was to compare the effect on bone mass of 

dietary DHA supplementation with and without 1 7p-oestradiol treatment or 

phytoestrogen supplementation in the ovariectomised rat. 

Method 

Animals 

One hundred and four female Sprague-Dawley rats were obtained from the Small 

Animal Production Unit, Massey University. At age 7 months (week 0 of the study), 
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animals were randomly assigned to one of nine groups and either ovariectomised 

(OYX) ( 1  group, n= 1 0; 7 groups,  n=1 2) or sham operated ( 1  group, n=1 0) .  The 

operations were performed under general anaesthetic (isofluorane) .  Sham operated 

animals were anaesthetised and an incision made but the ovaries left intact. The 

ovaries were removed from the OVX animals. The ovariectomised animals were 

allocated to one of 8 treatment groups based on a 4 x 2 factorial design. Treatments 

consisted of an oestrogenic compound (genistein (GEN), daidzein (DAI), 1 7�­

oestradiol (OES) or none) with or without DHA as shown in Table 1 .  

Table 1 Allocation of treatments to study groups 

Group Name Operation Oestrogen ic Compound DHA 

SHAM Sham N one No 

OYX Ovariectomy None No 

OHA Ovariectomy None Yes 

GEN Ovariectomy Geni stein No 

GENOHA Ovariectomy Genistein Yes 

OAI Ovariectomy Oaidzein No 

OAIDHA Ovariectomy Oaidzein Yes 

OES Ovariectomy 1 7�-oestradiol No 

OESOHA Ovariectomy 1 7�-oestradiol Yes 

At time of surgery, a 90-day slow-release 1 7�-oestradiol pellet (providing 1 �g l 7�­

oestradiol/day, NE- l 2 1  Innovative Research of America, USA) was inserted under 

the skin at the nape of the neck in two groups of ovariectomised animals ("OES" and 

"OESDHA", n=1 2) .  All other animals received a placebo pellet (Ne- I l l  Innovative 

Research of America, USA) inserted in the same way. Sixty-day release pellets were 

inserted in the OES and OESDHA animals at study week 1 2  to ensure continual 

oestradiol/placebo dosing throughout the remainder of the trial . 

All animals were maintained in individual shoebox cages at 22°C (± 2°C) with a 

l 2h1 l 2h light/dark cycle in a dedicated room in the Small Animal Production Unit at 

Massey University. All animals had ad libitum access to deionised water. The study 

was approved by the Massey University Animal Ethics Committee (Approval 

number 0311 02). 

- 1 44 -



Diets 

Animals were acclimated to a nutritionally balanced, semi-synthetic diet containing 

1 4% caseinate, 5% cellulose, 4% corn oil, 1 .25% calcium carbonate (providing 0 .5% 

calcium), 60% starch with added vitamins and minerals formulated based on 

AIN93 M, for four weeks prior to ovariectomy (week -4 to week 0). The sham 

operated "SHAM", (n = 1 0) ,  ovariectomised control "OVX" (no oestrogenic 

compound, no DHA n= 1 0) and the oestrogen control "OES" ( 1 7�-oestradiol, no 

DHA, n= 1 2) groups were maintained on this diet for the 1 8  week study period. Of 

the remaining six ovariectomised experimental groups two groups were fed the base 

diet with added genistein (20mglkg body weight/day) "GEN" (genistein, no DHA 

n=1 2) and "GENDHA" (genistein +DHA, n- 1 2) and two with added daidzein 

(20mglkg body weight/day) "DAI" (daidzein, no D HA, n=1 2) and "DAIDHA" 

(daidzein + DHA, n= 1 2) .  The GENDHA, DAIDHA and the remaining two 

ovariectomised experimental groups: "DHA" (no oestrogenic compound + DHA, 

n= 1 2) and "OESDHA" ( l 7�-oestradiol + D HA, n=1 2) received 0 .5g  

docosahexaenoic acid ethyl ester/kg mean body weight/day. Genistein (95%) and 

daidzein (96%) were supplied by LC Laboratories, PKC Pharmaceuticals, Inc, 

Wobum MA, USA. DHA ethyl ester (80%, 0 1 1 77B-E80 was supplied by Sanmark 

LLC, USA. Diet compositions are shown in Table 2 .  

The animals were weighed weekly, and the amount of phytoestrogen and DHA 

added to each test diet was adjusted according to the mean body weight of animals in 

each treatment group. In groups receiving DHA, the amount of corn oil in the diet 

was reduced so the oil content of all diets totalled 4%. All diets contained at least 2% 

corn oil, an amount in excess of the minimum amount required to prevent n-6 EF A 

deficiency ( 1 %). Diets were randomly sampled and analysed in order to confirm 

nutrient quantity. 

Sham operated animals were fed ad libitum. The food intake of ovariectomised 

animals  was limited to that of the sham controls  in order to reduce ovariectomy­

induced weight gain. 
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1', hl 2 1  a e ngre d' lent composltlOn (% . 
d o alr- ry welgJ t 0 contro I d an expenmenta I d' lets. 

SHAM OVX Oai Gen Oes OHA Oai+ Gen+ Oes+ 
ORA ORA ORA 

Cornstarch 59.7 59.7 59.674 59.674 59.7 59.7 59.674 59.674 59.7 

Sodium 1 4  1 4  1 4  1 4  1 4  1 4  1 4  1 4  1 4  
Caseinate 
Sucrose 6 6 6 6 6 6 6 6 6 

Cel lulose 5 5 5 5 5 5 5 5 5 

Vitamins' 5 5 5 5 5 5 5 5 5 

Minerals 5 5 5 5 5 5 5 5 5 
(excl. Cab) 
Calcium 1 .3 1 .3 1 . 3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 
Carbonate 
Corn Oilc,d 4 4 4 4 4 3 .3  3 .3 3 .3  3 .3  

DHA ethyl 0 0 0 0 0 0.7 0.7 0.7 0.7 
esterC 
Genistein 0 0 0 0 .026 0 0 0 0.026 0 

Daidzein 0 0 0.026 0 0 0 0.026 0 0 

• Supplymg (mglkg diet) retinol acetate 5 .0, DL_u-tocopherol acetate 200.0, menadione 3.0, thiamine 
hydrochloride 5 .0, riboflavin 7.0, pyridoxine hydrochloride 8 .0, D-pantothenic acid 20 .0, fol ic  acid 
2.0, nicotinic acid 20.0, D-biotin 1 .0, myo-inositol 200.0, chol ine chloride 1 500; (flglkg diet) 
ergocalciferol 25.0, cyanocobalamin 50.0. 
b Supplying (g/kg diet) chloride 7.79, magnesium 1 .06, phosphate 4 .86, potassium 5.24, sodium 1 .97; 
(mg/kg diet) chromium 1 .97, copper 1 0.7, iron 424, manganese 78.0, zinc 48.2;  (flglkg diet) cobalt 
29.0, iodine 1 05 .0, molybdenum 1 52.0, Selenium 1 5 1 .0 
c DHA dose was 0 .5g/kg mean rat body weight/day. The percentages of DHA and corn oi l  in the diet 
shown in this table are the percentages at trial commencement. The percentage of DHA in diets 
increased and percentage of corn oil decreased as the body weight of animals increased over the trial 
period. At trial completion the percentage of DHA in the diet was 0.9% and the percentage of corn oil 
was 3 . 1 %. 
d Fatty acid composition of corn oi l :  58% l inoleic acid, 28% oleic acid, I I  % palmitic acid and 2% 
stearic acid. 
DHA = Docosahexaenoic Acid (22 :6n-3) 

Dual Energy X-Ray Ahsorptiometry (DEXA) Scans 

Bone mineral contents and densities were determined with a Hologic QDR4000 bone 

densitometer using a pencil beam unit (Bedford, USA). Prior to scanning animals 

were anaesthetised with a mixture of O.2ml Acepromazine (ACP) + 0.5ml Ketamine 

+ O. l mL Xylazine + 0 .2ml sterile water, at a dosage of 0.05mll l �Og body weight 

administered intra-peritoneally via a 25G x 1 5 .875 mm needle. A suitable level of 

anaesthesia was attained after five to ten minutes and was maintained for up to 2 

hours. Anaesthetised rats were placed in a supine position on an acrylic platform of 

uniform 38 . l mm thickness so that the femur was at right angles to the long axis of 

the spine and similarly, at right angles to the tibia ("frog-leg" position). Regional 

high-resolution scans of both femurs and the lumbar spine were performed using a 

1 . 524 mm diameter collimator with 0 .305 1 6  mm point resolution and 0.645 1 6  mm 
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line spacing. Scans were made at weeks -2 (baseline), 5 and 1 8 . A dai ly quality 

control (QC) scan was made to ensure precision met with the required coefficient of 

variation. 

Blood Sampling 

At week 8,  rats were placed in a purpose-built restrainer, which was then placed on 

top of a heat pad under a heat lamp. A single blood sample of approximately 1 ml was 

withdrawn from the lateral tail vein, using a 230 x 1 5 . 875 mm hypodermic needle 

and 1 ml syringe. Blood samples were collected into vacutainers containing heparin 

and centrifuged at 3000 rpm for 1 0  minutes. The plasma was removed, snap-frozen 

with l iquid nitrogen, and stored at -80 QC for later analysis of 1 7p-oestradiol. 

Euthanasia and Dissection 

At week 1 8  after final DEXA scans, animals were anaesthetized. The animals were 

subsequently exsanguinated by cardiac puncture with a 1 90 x 38 . 1 mm needle and 

5ml syringe. Two blood samples were col lected from each animal, one into a 

vacutainer containing heparin and one into a vacutainer containing EDT A. Samples 

were centrifuged at 3000 rpm at 4·C for 1 0  minutes. Plasma was col lected from 

heparinised samples and stored at -80 QC for later analysis. Plasma was discarded 

from samples in EDT A and the remaining red blood cells washed with isotonic saline 

and stored at -80 QC pending analysis of fatty acid composition. 

The uteri and adnexae were removed and their wet weight determined as a quality 

control measure to confirm success of ovariectomy. Both rear legs and the spine 

were removed, and stored in phosphate buffered saline at -20QC pending 

biomechanical testing and CT analysis. 

Red Blood Cell Fatty Acid Composition 

Red blood cell fatty acid composition was determined by direct transmethylation 

followed by gas chromatography. To each sample, 1 ml of internal standard 

(2.5mglml tricosanoic acid methyl ester (C23 :0, Sigma-Aldrich Chemicals) dissolved 

in chloroform), 2ml of toluene and 5ml of 5% sulphuric acid in methanol was added. 

Tubes were sealed, shaken and fatty acid methyl esters (FAMEs) formed by heating 
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at 80°C for 1 hour. Samples were then cooled and shaken with 5ml of saturated 

NaCI,  then centrifuged at 2000RCF for 1 0  minutes at l O°e . The upper toluene layer 

was collected and l !-LI (with 1 :  1 00 split) injected into an Agilent 6890 Gas 

Chromatograph with auto sampler and FID detector. A SGHE Sol Gel Wax column 

was used with a column length of 30 metres, internal diameter 0.25mm and film 

thickness 0.25!-Lm. Hydrogen flow rate was 1 .5 mVmin, constant flow and average 

linear velocity was 50crn/sec. The initial injection temperature was 1 70°C and 

temperature was ramped at 1 °C/minute to 225°C . Fatty acids in the samples were 

determined by comparison with known standards supplied by Sigma-Aldrich 

Chemicals (37-component FAME mixture C4:0 - C24 :0, PUFA I and PUFA 3 )  and 

Restek Bellefonte, PA, USA (NLEA FAME Mix, 28  components). 

Plasma concentrations of 1 7fi-oestradiol, IL-6 and osteocalcin 

Concentration of 1 7p-oestradiol in rat plasma was determined at week 8 post­

ovariectomy using a commercially available RIA kit purchased from Diasorin, 

Saluggia, Italy. Plasma concentrations of IL-6, osteocalcin and under-carboxylated 

osteocalcin were determined at trial completion using commercially available ELISA 

kits as fol lows: Quantikine Rat IL-6 Immunoassay ELISA kit (Cat.# SR6000B, R&D 

Systems, Minneapolis, USA), Rat GIu-Qc (Cat.# MK1 22) and Rat Gla-Oc (Cat.# 

MK1 2 1 )  competitive EIA Kits (Takara Bio Inc. ,  Otsu, Shiga, Japan). 

Computed Tomography (CT) 

Following completion of the trial, the opportunity arose to access a pQCT scanner. 

As both femurs had previously been subjected to destructive testing (biomechanical 

testing and bone marrow fatty acid analysis), the right tibia was used for pQCT 

analysis. After removal of skin and disarticulation, tibia length was determined 

manually with callipers, and the tibia was positioned for scanning on a plastic cradle. 

Scans were made with a XCT2000 pQCT scanner (Stratec, Pforzheim, Germany) 

5mm from the proximal end of the tibia (at a constant site in the proximal 

metaphysis) and at 50% of the length of the tibia (mid-diaphysis). Voxel size was 

O. 1 mm and scan speed was 5mm per second. Scans were analysed using the 

manufacturer' s  software; the contour threshold was 280mg/cm3 and SSI threshold 

was 540mglcm3 . Main outcome measures were trabecular BMC and BMD 
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(determined in the 5mm slice) and cortical BMC, BA and BMD, and endosteal and 

periosteal circumferences (determined at 50% of tibia length) . 

Biomechanical Testing 

Right femurs were scraped free of adhering flesh and maintained in PBS at room 

temperature for 1 hour prior to testing. The length of each femur was measured with 

an electronic calliper and the midpoint marked. Both the anterior-posterior and 

latero-medial diameter at the midpoint of the femur were similarly determined. 

The maximum load, breaking load, maximum deformity (stroke length), breaking 

stress, breaking strain, (the percent deformation of the femur j ust prior to the time of 

breaking) the breaking energy (the amount of energy required to break the femur) 

and elastic modulus (force required to bend the bone in the elastic phase of 

deformation) were determined using a Shimadzu Ezi-test (Kyoto, Japan) materials 

testing machine. The femurs were subjected to a three point bending test with the 

application point of the upper fulcrum positioned midway between the two 

supporting rods of the testing j ig; the supporting rods were 1 5mm apart. Load was 

applied at a constant deformation rate of 50mmJmin at the midpoint of the anterior 

surface of the femur. 

Statistical Analysis 

Bone densitometry data were analysed by repeated measures mixed model analysis 

(Proc Mixed) using SAS 9. 1 ®  (SAS Institute Incorporated, Cary, UC, USA). In all 

cases the Toeplitz model was found to give the best fit to the data. All other data 

conformed to the requirements of the general l inear model and were analysed by 

two-way ANOVA (Proc GLM) with factorial-design analysis using SAS 9. 1 ® (SAS 

Institute Incorporated, Cary, UC, USA). For the overall ANOV A, p<0.05 was 

considered statistically significant. 

Selected contrasts of interest were included in the original ANOVA in keeping with 

the available degrees of freedom. Main effects, (i .e. the effects of treatment with 

daidzein, genistein, 1 7p-oestradiol and DHA) were contrasted with untreated 

ovariectomy. The effects of combined treatment with DHA and each oestrogenic 

compound were contrasted with the effect of treatment with either compound alone 

(ie contrasts were made as follows: OESDHA vs DHA, OESDHA vs OES, 
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GENDHA vs DHA, GENDHA vs GEN, DAIDHA vs DHA, DAIDHA vs DAI.) A 

Bonferroni correction was made to protect the overall error rate and as a result 

p<O.O 1 was considered statistically significant for all contrasts. 

Results 

Diets 

The formulated nutrient compositions of the diets were confirmed by the conduct o f  

proximate analysis on random diet samples (data not shown). The digestibility, 

metabolism and bioavailability of the genistein and daidzein supplements used were 

assessed in a separate study [Chapter 4] involving ovariectomised rats of the same 

age as used in the present study. In brief, mean plasma concentrations of genistein, 

daidzein and equol for the same dosage rate as used in the present study were 24 

nrnol/L, 1 7  nrnol/L and 1 8  nrnollL respectively. Inclusion of DHA in the diet did not 

affect genistein or daidzein metabolism, digestibi lity or bioavailability [Chapter 4] . 

Animal body weights and food intake 

Baseline animal body weights were not significantly different between groups (mean 

weight 3 1 3 .5  ± 2.93g). Final rat body weight was significantly higher in 

ovariectomised compared to sham-operated animals (p=0.0003) (Table 3). Dietary 

DHA supplementation had no statistical ly significant effect on either average daily 

food intake or final rat body weight. There was no statistically significant effect of 

any oestrogenic compound on mean daily food intake. However, treatment with 1 7�­

oestradiol or daidzein was associated with significantly lower final rat body weight 

compared to no oestrogenic treatment or treatment with genistein (p=0.0005 and 

p=O.OO 1 5  respectively). There was no statistically significant effect of combined 

treatment with DHA and any of the three oestrogenic compounds on mean daily food 

intake or final animal body weight. 
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T, hI 3 M a e ean d '/ fi d '  I k ji / ( m y  00 m a e, ma wee k 18) b d ' hI d / o y welgl an p asma concen tr t '  if 1 7fJ a IOn 0 I d'  / -oes ra 10 measure d t a wee k 8  
Sham Ovariectomised P-values 

No Oest. No Oest. Oest. Cmpd No Combined treatment Effect of Effect oftreatmellt 
No DHA No DHA Oest. ovx 

Sham OVX Dai Gen Oes DHA Dai+ Gen+ Oes+ SE Ovx Oest, DHA Oest, Cmpd 
DHA DHA DHA Cmpd x DHA 

Mean daily food 1 8 .3 1 8 .4 1 8 .0 1 8 .8 1 7.4 1 8 .9 1 8.0 1 8 .9 1 8 .2 0.52 0. 92 0. 18 0. 35 0. 81  
intake# (g) 

Final rat body 34 1 .9 408.0 363.3 4 1 0.5 363.9 4 1 2.4 378.3 399.8 369.8 1 2 .8  0. 002 0.0009 0. 69 0.80 
weight (g) 

1 7p-oestradiol 77.5 BD BD BD 40.3 BD BD BD 42.3 6.7 <0. 0001 <0. 0001 0. 55 0. 93 
(pmoIlL) 

Female rats were ovanectomlsed (ovx) or sham operated and treated wIth eIther daldzetn (OAI, 20mglkg body weIght/day), gentstetn (GEN, 20mglkg body weIght/day), 1 7P­
oestradiol (OES, I �lglday) or docosahexaenoic acid (OHA, 0.5g1kg body weight/day) or a combination of oestrogenic compound and DHA for 1 8  weeks. 
BD Below detectable l imits of assay 
# Food intake of ovariectomised animals was l imited to that of sham controls to minimise ovariectomy-induced weight gain. 

Main Effects COlltrasts: The effect of each of the three oestrogenic compounds was contrasted with the effect of untreated ovariectomy (0 VX). The effect of DHA treatment 
was contrasted with the effect of untreated ovariectomy. 
.. 

Significantly differentfram O VX at p<O. OI (Contrast made for main effects only) 

Combined Treatmellt COlltrasts: Contrasts were constructedfor each combined treatment of oestrogenic compound +DHA compared to treatment with the oestrogenic 
compound alone and DHA alone. Differences between combined treatments and the component treatments alone were not statistically significant at p<O. OI .  
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T, hi 4 P a e ifl ercentage 0 h 
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I ong c am po yunsaturate dfi 'd I d bl d il l '  'd alty act s in lola re 00 ce tpt s 
Sham Ovariectomised P-values 

No Oest. No Oest. Oest. cmpd No Com bined treatment Effect of Effect of treatmellt 
No D H A  No D H A  Oest. ovx 

Sham OVX Dai Gen Oes DHA Dai+ Gen+ Oes+ S E  Ovx Oest. DHA Oest. Cmpd 

DHA DHA DHA Cmpd x DHA 
AA 2 1 .3 1 9.8 20.7 20.4 2 1 .6 1 6.4 1 8 .3A,tl 1 6.4 tl 1 8.4A,tl 0.39 0. 06 0. 03 <0. 0001 0. 05 

EPA 0.49 0.54 0.45 0.44 0.67 1 .04 0.9 1tl 0.90tl 1 .36A,tl 0.04 0. 99 0. 0008 <0. 0001 0. 0009 
DHA 5 .S  5 .5  5 .4 5.4 6. 1 7 .7 7.5'0 7.5

'0 S .3A,'d 0.22 0. 02 0. 0001 <0. 0001 0. 70 
AA: DHA 6.2 6.4 7. 1 7 .7 6.5 2. 1 2.4tl 2 . l tl 2 . l tl 0.24 0. 001 0. 0006 0. 001 0. 002 
EPA:AA 0.03 0.03 0.03 0.03 0.04 0.06 0.05A,'d 0.06'0 O.OSA,'d 0.004 0. 66 0. 02 <0. 0001 0.03 

EPA : DHA 0.06 0.07 0.06 0.06 O.OS 0. 1 3  0. 1 2tl 0. 1 2tl 0. 1 6A,tl 0.007 0. 66 0. 03 <0. 0001 0. 02 
Total n-3 6.S 6.6 6.3 6.3 7.4 9.6 9.2tl 9 . l tl 1 0.6A,1l 0.30 0. 13 <0. 0001 <0. 0001 0. 09 
Total n-6 2 1 .7 20.3 2 1 . 1  20.9 22.0 1 7.9  1 8.9A,'d 1 6.9tl I S .9A,tl 0.3S 0. 56 <0. 0001 0. 009 0.04 

Ratio n-3 :n-6 0.35 0.35 0.32 0.35 0.37 0.56 0.50A•tl 0.57tl 0.58tl 0.02 0. 46 0. 006 <0. 0001 0.08 

Female rats were ovanectoll1lsed (ovx) or sham- operated and treated with either daidzein (DAI,  20mg/kg body weight/day), genlstern (GEN, 20mg/kg body weight/day), 
1 7p-oestradiol (OES, l /lg/day) or docosahexaenoic acid ( DHA, 0.5g/kg body weight/day) or a combination of oestrogenic compound and DHA for I S  weeks. Results are 
expressed as the mean percentage for each study group. 

Maill Effects COlltrasts: The effect of each of the three oestrogenic compounds was contrasted with the effect of untreated ovariectomy (0 VX). The effect of DHA treatment 
was contrasted with the effect of untreated ovariectomy. 
• Significantly different from 0 V X at p<O. 01 (Contrast made for main effects only) 

Combilled Treatmellt COlltrasts: Contrasts were constructed for each combined treatment of oestrogenic compound + DHA compared to treatment with the oestrogenic 
compound alone and DHA alone. 
A Significantly different from DHA alone at p<O. O I  (Contrast made for combined treatment only) 
B Significantly different from oestrogenic compound alone at p<O.OI  (Contrast madefOf' combined treatment only) 
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Red Blood Cell Fatty Acid Composition 

The ratio of AA relative to DHA in RBC s  was significantly higher in ovariectomised 

animals compared to sham controls (p=O.OO I ,  Table 4). Treatment with genistein or 

daidzein was associated with a significantly higher ratio of AA relative to D HA in 

RBCs compared to untreated ovariectomy (p<O.OOO I ) . In contrast, DHA 

supplementation was associated with a significantly lower ratio of AA relative to 

DHA in RBCs compared to untreated ovariectomy (p<O.OOO I ). The proportion of 

EPA in RBCs was also significantly influenced by DHA and oestrogenic treatment 

and there was a statistically significant interaction between the two treatments for the 

percentage of EPA in RBCs (p=O.0009) .  In the absence of oestrogenic compounds, 

DHA treatment was associated with a significantly higher percentage of E P  A in 

RBCs compared to untreated ovariectomy (p<O.OOO l ) . The proportion of EPA in 

RBCs was greater in animals treated with 1 7�-oestradiol and DHA compared to 

either DHA or 1 7�-oestradiol treatment alone (p<O.OOO I ) .  Similarly, the proportion 

of DHA in RBCs was also significantly higher in animals treated with both 1 7�­

oestradiol and DHA compared to either treatment alone (p<O.OOO I ) . Overal l, the 

percentage of both n-3 and n-6 LCPUF As was significantly higher, and the ratio of 

AA relative to DHA significantly lower, in animals treated with both 1 7�-oestradiol 

and DHA compared to animals receiving DHA alone (p<O .OOO I ). In contrast, the 

percentage of n-6 LCPUF As in RBCs was significantly higher in animals treated 

with a combination of daidzein and DHA compared to DHA alone (p=O.O I ) . 

Bone Densitometry - Lumbar Spine & Femur 

Ovariectomy resulted in significantly lower LS BMC and BMD at week 1 8  (Table 

5), and F BMC and BMD at weeks 5 and 1 8, compared to sham (Table 6). 

Over time, LS BMC was significantly influenced by treatment with oestrogenic 

compounds and DHA (p<O.OOO I and p=O.04 respectively) and there was a significant 

interaction between the two treatments (p=O.04). Final LS BMC was significantly 

higher in animals treated with 1 7�-oestradiol than untreated ovariectomy (p=O.0002). 

However final LS BMC in animals treated with DHA was not significantly greater 

than untreated ovariectomy (p=O.07). Similarly, final LS BMC in animals treated 

with both 1 7�-oestradiol and DHA was not significantly different from animals 

treated with 1 7�-oestradiol alone (p=O.07) .  Final LS BMC in animals treated with 
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both daidzein and DHA was lower than in animals treated with DHA alone (p=O.04) 

although the difference failed to reach the level of significance required (p<O.O I )  for 

the contrast foHowing Bonferroni correction. There was a significant interaction 

between oestrogenic compound and DHA on LS BA (p=O.004). Final LS BA in 

animals treated with both daidzein and DHA was significantly lower than for animals 

treated with DHA alone (p=O.O I ). LS BMD was significantly greater in animals 

treated with 1 7p-oestradiol compared to untreated ovariectomy at both week 5 

(p=O.007) and week 1 8  post-surgery (p<O.OOO I )  (Table 5). 

At week 5,  F BMC in animals treated with genistein, 1 7�-oestradiol or DHA was 

significantly greater than in untreated ovariectomised animals (p=O.O I ,  p=O.0006 and 

p=O .O I  respectively). However at week 1 8, F BMC was greater than untreated 

ovariectomised animals only for animals receiving the 1 7�-oestradiol or DHA 

treatments (p<O .OOO l and p=O.O l  respectively). There was a statistical ly significant 

interaction between treatment with oestrogenic compounds and DHA (p=O.02) and 

week 1 8  F BMC was significantly greater in animals treated with 1 7�-oestradiol and 

DHA compared to either 1 7�-oestradiol (p<O.OOO I )  or DHA alone (p=O.O I ). Final F 

BMD was significantly greater in animals treated with 1 7�-oestradiol compared to 

untreated ovariectomy (p<O.OOO l )  (Table 6). 
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T, hi 5 L b a e um ar spme b I one mmera content (BMC) b , one area (BA) d b  an one mmera I d  enslty (BMD) as measure d b  DEXA y 
BMC (g) Sham Ovariectomised Repeated Measu res ANOV A 

No Oest. No Oest. Oest. Cmpd No Oest. Combined treatment 
No DHA No DHA No DHA Factor p-value Factor p-value 

Time Sham OVX Dai Gen Oes DHA Dai+ Gen+ Oes+ SE Time <0.000 1 Oest. x DHA 0.04 
DHA DHA DHA Ovx 0.000 1 TimexOvx 0. 04 

Week 0 0.53 0.5 1 0 .5 1 0 .5 1 0.54 0.5 1 0.50 0.50 0.52 0.02 Oest. <0.000 1 TimexOest 0.2 /  
Week S 0.56 0.48 0.5 1 0.50 0.57 0.52 0.50 0.49 0.58 0.02 DHA 0.04 Timex DHA 0. /8  

Week 1 8  0.56 0.47 0.49 0.50 0.56 0.52 0 .48 0.50 0.59A 0.02 TimexOest. x DHA 0.85 

BA (cm2) Sham Ovariectomised Repeated Measures A NOV A 
No Oest. No Oest. Oest. Cmpd No Oest. Combined treatment 
No DHA No DHA No DHA Factor p-value Factor p-value 

Time Sham OVX Dai Gen Oes DHA Dai+ Gen+ Oes+ SE Time <0. 000/ Oest. xDHA 0. 004 
DHA DHA DHA Ovx 0. /0  TimexOvx 0. 85 

Week 0 2 .02 2 .00 2 .00 2 .00 2.04 2 .00 1 .99 1 .98 2 .02 0.04 Oest. 0. 07 TimexOest. 0.23 
Week S 2 .06 2 .02 2 .04 2 .04 2 .05 2 .04 2 .02 2 .02 2 .07 0.03 DHA 0 .07 Timex DHA 0.28 

Week 1 8  2.08 2 .06 2 .03 2.08 2 .09 2 .09 2 .03A 2 .07 2 . 1 2  0.04 TimexOest. x DHA 0. 93 

B M D  Sham Ovariectomised Repeated Measures ANOV A 

(g/cm2) No Oest. No Oest. Oest. Cmpd No Oest. Combined treatment 
No DHA No DHA No DHA Factor p-value Factor p-value 

Time Sham OVX Dai Gen Oes DHA Dai+ Gen+ Oes+ SE Time <0.000 1 Oest. x DHA 0. 25 
DHA DHA DHA Ovx <0.000 1 TimexOvx 0. 000/ 

Week 0 0.26 0.25 0 .26 0.26 0.26 0.26 0.25 0.25 0.26 0.006 Oest. <0.000 1 TimexOest. 0. 02 
Week S 0.27 0.24 0.25 0.24 0.28 0.26 0.25 0.24 0.28A 0.006 DHA 0.07 TimexDHA 0.25 

Week 1 8  0.27 0.23 0 .24 0.24 0.27 0.25 0.24 0.24 0.28A 0.007 TimexOest. x DHA 0.84 
Female rats were ovanectomlsed (ovx) or sham- operated and treated with daldzem (DAI ,  20mglkg body weight/day), genIstem (GEN, 20mg/kg body weight/day), 1 7P­
oestradiol (OES, I flglday) or docosahexaenoic acid (DHA, 0.5g1kg body weight/day) or a combination of oestrogenic compound and DHA for 1 8  weeks. Results are 
expressed as the mean for each study group. 
Mai" Effects COlltrasts: The effect of each of the three oestrogenic compounds was contrasted with the effect of untreated ovariectomy (0 VX). The effect of DHA treatment 
was contrasted with the effect of untreated ovariectomy. 
• Significantly different from OVX at p<O. 0/ (Contrast made for main effects and ovariectomy vs sham only) 
Combilled Treatmellt COlltrasts: Contrasts were constructed for each combined treatment of oestrogenic compound + DHA compared to treatment with the oestrogenic 
compound alone and DHA alone. 
A Significantly different from DHA alone at p<O. 0 /  (Contrast made for combined treatment only) 
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Table 6 Femur bone mineral content (BMC), bone area (BA) and bone mineral density (BMD) as measured by DEXA 
BMC (g) Sham Ovariectomised Repeated Measu res ANOV A 

No Oest. No Oest. Oest. Cmpd No Oest. Com bined treatment 
No OHA No OHA No OHA Factor p-vallle Factor p-value 

Time Sham OVX Oai Gen Oes OHA Oai+ Gen+ Oes+ SE Time 0.02 Oest. x OHA 0. 02 
OHA OHA DHA Ovx 0.000 1 TimexOvx 0.21  

Week 0 0.55 0.54 0.54 0.54 0.55 0.55 0.54 0.54 0.56 0.0 1 Oest. <0.000 1 TimexOest 0. 1 7  
Week 5 0.6 1 0 .5 \ 0.54 0.55 0.6 \ 0 .56 0.54 0.53 0 .62A 0.009 DHA 0.0 1 TimexDHA 0. 79 

Week 1 8  0.58 0.49 0.48 0.50 0.55 0.5 1 0.50 0.50 0.58A,o 0.0 1 TimexOest. x OHA 0.93 
B A  Sham Ovariectomised Repeated Measures ANOV A 

(cm
2
) No Oest. No Oest. Oest. Cmpd No Oest. Combined treatment 

No OHA No OHA No OHA Factor p-value Factor p-value 
Time Sham OVX Oai Gen Oes OHA Oai+ Gen+ Oes+ SE Time <0.000 1 Oest. x OHA 0. 0 7  

OHA OHA OHA Ovx 0.45 TimexOvx 0. 42 
Week 0 1 .60 1 . 57 1 .59 1 .60 1 .56 1 .58  \ .59 1 .58 1 .52 0.02 Oest. 0.07 TimexOest. 0. 10  
Week 5 1 .65 1 .6 1  1 .62 1 .64 1 .63 1 .63 1 .62 1 .6 1  1 .64 0.02 OHA 0.20 TimexOHA 0. 94 

Week 1 8  1 .68 1 .68 1 .67 1 .68 1 .70 1 .69 1 .68 1 .69 1 .72 0.02 TimexOest. x OHA 0.82 
BMD Sham Ovariectomised Repeated Measures ANOV A 

(g/cm2) No Oest. No Oest. Oest. Cmpd No Oest. Combined treatment 
No DHA N o DHA No DHA Factor p-vallle Factor p-value 

Time Sham OVX Oai Gen Oes OHA Oai+ Gen+ Oes+ SE Time <0.000 1 Oest. xDHA 0. 34 
OHA OHA OHA Ovx <0.000 1 TimexOvx 0. 05 

Week 0 0.34 0.34 0.34 0.34 0.35 0.34 0.34 0 .34 0.35 0.006 Oest. <0.000 1 TimexOest. 0. 1 1  
Week 5 0.37 0 .32 0 .33 0 .33 0 .37 0.34 0.33 0.33 0 .38A 0.005 DHA 0.02 Timex OHA 0. 78 

Week 1 8  0.37 0.30 0.33 0.33 0.37 0.34 0.33 0 .33 O.38A 0.004 TimexOest. x OHA 0.98 
Female rats were ovariectomised (ovx) or sham- operated and treated with daldzem (OAl, 20mglkg body weight/day), gemstem (GEN, 20mg/kg body weight/day), 1 7P­
oestradiol (OES, I J.lglday) or docosahexaenoic acid (DHA, 0.5g1kg body weight/day) or a combination of oestrogenic compound and DHA for \ 8  weeks. Results are 
expressed as the mean for each study group. 
Main Effects COlltrasts: The effect of each of the three oestrogenic compounds was contrasted with the effect of untreated ovariectomy (0 VX). The effect of DHA treatment 
was contrasted with the effect of untreated ovariectomy. 
• Significantly different from 0 VX at p<O. 01 (Contrast made for main effects and ovariectomy vs sham only) 
Combil1ed Treatmellt COlltrasts: Contrasts were constructed for each combined treatment of oestrogenic compound + DHA compared to treatment with the oestrogenic 
compound alone and DHA alone. 
A Significantly different from DHA alone at p<O. Ol B Significantly different from oestrogenic compound alone at p<O.O l  (Contrasts madefor combined treatment only) 
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Trabecular and Cortical Bone Mineral Content, Area and Density 

Ovariectomy was associated with significantly lower trabecular BMC and BMD 

compared to sham-operation (p<O.OOO I )  (Table 7). Final trabecular BMC was 

significantly higher in DHA and 1 7�-oestradiol treated animals compared to 

untreated ovariectomised controls (p=O.008 and p<O.OOO I respectively). Neither 

genistein nor daidzein treatment were associated with any significant effect on 

trabecular or cortical BMC, BMD or BA. 

There was no evidence of an interaction between DHA supplementation and 

treatment with oestrogenic compounds on trabecular BMC, BMD or BA. Cortical 

BMC and BA tended to be higher in the group supplemented with 1 7�-oestradiol and 

DHA than the group receiving 1 7�-oestradiol alone (p=O.05 and p=O.02 respectively) 

however the difference fai led to reach the level of significance required for the 

contrast following Bonferroni correction (p<O.O l ) . Periosteal circumference was 

significantly greater in the group receiving 1 7�-oestradiol and DHA than in the 

group receiving 1 7�-oestradiol alone (p=O.O I )  (Table 7). 

Biomechanics 

Femurs from ovariectomised animals were significantly less elastic but not 

significantly weaker upon loading in the anterior-posterior direction than femurs of 

sham-operated animals (p=O .O l )  (Table 8). Treatment with 1 7�-oestradiol had no 

statistically significant effect on elastic modulus but was associated with increased 

femur strength in terms of the amount of energy able to be absorbed prior to breaking 

(p=O.O l )  and the maximum load able to be withstood prior to breaking (p=O.005). 

The increased femur strength observed in 1 7�-oestradiol -treated animals was also 

apparent in animals treated with 1 7�-oestradiol and DHA. 

Osteocalcin 

Ovariectomy had no statistically significant effect on plasma concentrations of total, 

carboxylated or undercarboxylated osteocalcin (Table 9). However, dietary DHA 

supplementation was associated with a higher plasma concentration of carboxylated 

osteocalcin and a lower plasma concentration of undercarboxylated osteocalcin 

compared to untreated ovariectomy (p=O.02). Treatment with 1 7�-oestradiol was 
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associated with lower total plasma osteocalcin concentration compared to untreated 

ovariectomy (p=O.O I ) . 

Interleukin-6 

There was a significant interaction between treatment with oestrogenic compounds 

and DHA supplementation on plasma IL-6 concentrations (p=O.03) .  Treatment with 

1 7p-oestradiol in conjunction with DHA supplementation resulted in significantly 

lower plasma IL-6 concentrations compared to 1 7p-oestradiol treatment without 

DHA supplementation (p=O.O I )  (Table 9, Figure 1 ) . 
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Figure 1 Plasma concentration of IL-6 (pg/m 1) in ovariectomised female rats. Rats 
were treated with DHA (O.5g/kg body weight/day) or oestrogenic compound 
(genistein or daidzein 20mg/kg body weight/day, 1 7p-estradiol I llg/day) or a 
combination of oestrogenic compounds and DHA for 1 8-weeks. Plasma IL-6 
concentration was measured by ELISA. Results are expressed as the mean ± SE for 
each study group. Difference between groups marked with * was statistically 
significant at p<O.O l .  
Note: The difference in plasma IL6 concentration between animals treated with 
daidzein without DHA compared to daidzein with DHA failed to reach statistical 
significance (p=O.07). 
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Table 7 Trabecular and cortical bone mineral content (BMC), area (BA) and density (BMD and periosteal and endosteal circumferences of 
right tibia 

Sham Ovariectom ised P-values 

No Oest. No Oest. Oest. cmpd No Com bined treatment Effect of Effect of treatmellt 
No DHA N o DHA Oest. ovx 

Sham OVX Dai Gen Oes DHA Dai+ Gen+ Oes+ SE Ovx Oest. DHA Oest. Cmpd 
DHA DHA DHA Cmpd x DHA 

Trab B MC 5.69 3 .47 4 . 1 1  4. 1 6  5 .80 4 .84 4 .58 4.34 6 . 1 3  0. 1 3  <0. 0001 <0. 0001 0. 008 0.45 

Trab BA 9.5 1 0.2 9.8 9.5 1 0.2 1 0. 1  1 0.3 9.4 1 0.5 0. 1 5  0. 09 0. 44 0. 1 7  0. 63 
Trab BMD 593 338 42 1 437 570 482 453 459 586 1 1 .4 <0. 0001 <0. 001  0. 02 0.29 

Cort BMC 6.9 6.8 6.7 6.9 7.0 6.9 6.7 6.8 7 .2 0.06 0.82 0. 3 7  0. 14  0.23 
Cort BA 5 .07 5 . 1 2  5 .00 5 . 1 0  5 .08 5 . 1 5  5 .00 5 .07 5 .28 0.04 0.85 0.42 0. 20 0. 27 

Cort BMD 1 322 1 33 1  1 3 1 4 1 322 1 34 1  1 326 1 320 1 3 1 5  1 337 3 .6  0.38 0. 09 0. 99 0. 61 
Periosteal c irc. 1 0.05 1 0. 1 3  1 0.05 1 0. 1 1 1 0.0 1 1 0. 1 6  1 0.08 1 0.05 1 0.2 1t! 0.04 0.95 0. 49 0.06 0. 15  

Endosteal circ. 5 .99 6.24 6 . 1 4  6 . 1 2  5 .96 6. 1 3  6. 1 2  6.05 6.08 0.04 0. 1 1  0. /3 0. 6/ 0.42 

Female rats were ovanectomlsed (ovx) or sham- operated and treated wIth daldzem (DAI, 20mg/kg body weIght/day), genlstem (GEN, 20mglkg body weIght/day), 1 7P­
oestradiol (OES, I �glday) or docosahexaenoic acid (DHA, 0.5g1kg body weight/day) or a combination of oestrogenic compound and DHA for 1 8  weeks. Tibiae were 
d issected from euthanased animals fol lowing the I 8-week treatment period. Measurements were made by pQCT. Trabecular BMC, BA and BMD were measured 5mm from 
the proximal end of the tibia. Cortical BMC, BA and BMD and periosteal and endosteal c ircumferences were determined at a sl ice taken 50% along the length of the tibia. 
Results are expressed as the mean for each study group. 

Main Effects COlltrasts: The effect of each of the three oestrogenic compounds was contrasted with the effect of untreated ovariectomy (0 VX). The effect of DHA treatment 
was contrasted with the effect of untreated ovariectomy. 
• Significantly different from 0 VX at p<O. 0/ (Contrast made for main effects only) 

Combilled Treatmellt COlltrasts: Contrasts were constructedfor each combined treatment of oestrogenic compound +DHA compared to treatment with the oestrogenic 
compound alone and DHA alone. 
A Significantly different from DHA alone at p<O. 0 I (Contrast made for combined treatment only) 
B Significantly different from oestrogenic compound alone at p<O. 0 I (Contrast made for combined treatment only) 

- 1 59 -



Table 8 Biomechanical properties of right femurs 
Sham Ovariectomised P-values 

No Oest. No Oest. Oest. Cmpd No Combined treatment Effect Effect of treatment 
No DHA No DHA Oest. of ovx 

Sham OVX Dai Gen Oes DHA Dai+ Gen+ Oes+ SE Ovx Oest. DHA Oest. 
DHA DHA D H A  Cmpd Cmpd x 

DHA 
Max load (N) 1 99.5 1 96.9 1 88 . 1 1 98 .2  2 1 2 .3 1 92 .5  1 83 .6 1 95 .6 2 1 2 .2A 2 .72 0. 1 9  0. 008 0. 06 0. 30 
Elastic modulus (N/mm2) 39 1 693 490 506 549 465 4 1 4  486 457 1 3 1  0. 01 0. 37  0. 04 0. 93 
Energy (1) 0. 1 8  0. 1 7  0. 1 6  0. 1 7  0. 1 8  0. 1 6  0. 1 6  0. 1 6  0. 1 8A 0.003 0.44 0. 03 0. 02 0. 56 
Female rats were ovarIectomised (ovx) or sham- operated and treated with daidzein (DAI, 20mg/kg body weight/day), gemstem (GEN, 20mg/kg body weIght/day), 17(3-
oestradiol (OES, l /lg/day) or docosahexaenoic acid (DHA, 0.5g/kg body weight/day) or a combination of oestrogenic compound and DHA for 1 8  weeks. Femurs were 
dissected from euthanased animals fol lowing the 1 8-week treatment period and biomechanical properties of the femurs were determined by three-point bending. Results are 
expressed as the mean for each study group. 

Main Effects Contrasts: The effect of each of the three oestrogenic compounds was contrasted with the effect of untreated ovariectomy (0 VX). The effect of DHA treatment 
was contrasted with the effect of untreated ovariectomy. 
* Significantly different from O VX at p<O. 01 (Contrast made for main effects only) 

Combined Treatment Contrasts: Contrasts were constructedfor each combined treatment of oestrogenic compound +DHA compared to treatment with the oestrogenic 
compound alone and DHA alone. 

A Significantly different from DHA alone at p<O. 01  (Contrast made for combined treatment only) 
B Significantly different from oestrogenic compound alone at p<O. 01 (Contrast madefor combined treatment only) 
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Table 9 Final plasma concentrations of lL-6 and osteocalcin 
Sham Ovariectomised P-values 

No Oest. No Oest. Oest. C m pd No Combined treatment Effect Effect of treatment 
No DHA No DHA Oest. ofovx 

Sham OVX Dai Gen Oes DHA Dai+ Gen+ Oes+ SE Ovx Oest. DHA Oest. Cmpd 
DHA DHA DHA Cmpd x DHA 

I L-6 (pg/ml) 1 9.6 24.4 1 9.9 22. 1 26.7 2 1 .3 25 .7 23 .7 1 9.6" 0.9 0. 13 0. 99 0.45 0.03 
Carboxylated osteoca1cin 1 762 1 765 1 767 1 766 1 754 1 773 1 787 1 780 1 762 1 6.8  0. 1 9  0. 16  0. 02 0.88 

(nglml) 
Undercarboxylated 478 475 473 474 485 467 453 460 478 1 6.7 0. 1 9  0. 1 6  0. 02 0.88 
osteoca1cin (ng/ml) 

Total osteoca1cin (nglml) 23 1 3  2285 2309 23 1 1  2246 23 1 0  2279 2293 2283 44.8  0.20 0.08 0. 38 0.21  
% undercarboxylated of total 2 1 .4 2 1 .8 2 1 .2 2 1 .2 2 1 .8 20.9 20.3 20.6 2 1 .4 0 .35 0.21  0. 14 0. 02 0.89 

osteoca1cin (%) 
Female rats were ovanectomlsed (ovx) or sham- operated and treated with daldzem (OAI ,  20mg/kg body weight/day), gemstem (GEN, 20mg/kg body weight/day), 1 7P­
oestradiol (OES, 1 11g/day) or docosahexaenoic acid (OHA, 0.5g/kg body weight/day) or a combination of oestrogenic compound and OHA for 1 8  weeks. Plasma 
concentrations of I L-6 and osteoca1cin were determined by ELISA in  blood samples taken at the end of the 1 8-week treatment period. Results are expressed as the mean for 
each study group. 

Main Effects Contrasts: The effect of each of the three oestrogenic compounds was contrasted with the effect of untreated ovariectomy (OVX). The effect of DHA treatment 
was contrasted with the effect of untreated ovariectomy. 
• Significantly different from OVX at p<O. Ol (Contrast madefor main effects only) 

Combined Treatment Contrasts: Contrasts were constructedfor each combined treatment of oestrogenic compound +DHA compared to treatment with the oestrogenic 
compound alone and DHA alone. 
A Significantly different from DHA alone at p<O. 01 (Contrast made for combined treatment only) 
B Significantly different from oestrogenic compound alone at p<O.Ol  (Contrast made for combined treatment only) 
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Discussion 

Ovariectomy resulted in decreased BMC and BMD in both the lumbar spine and 

femur. The effects of ovariectomy were particularly apparent in trabecular bone. 

Treatment with 1 7�-oestradiol and to a lesser extent, DHA, provided some protection 

against the ovariectomy-induced decline in BMC. 

Structurally, femurs of 1 7�-oestradiol-treated animals were stronger and had greater 

BMC than those of untreated ovariectomised controls. Treatment with 1 7�-oestradiol 

was associated with lower total plasma osteocalcin concentration compared to 

ovariectomised controls.  Osteocalcin is a bone matrix protein produced by 

osteoblasts, odontoblasts and hypertrophic chondrocytes [8] .  It is released into the 

bloodstream during new bone formation [9] and fragments of osteocalcin are 

released during osteoclastic bone resorption [ 1 0] .  Total circulating osteocalcin 

concentration serves as a marker of bone remodell ing rate with a lower concentration 

indicative of a lower rate of bone turnover [ 1 0] .  The lower circulating concentration 

of total osteocalcin observed with 1 7�-oestradiol treatment both in the present study 

in ovariectomised rats and previously in post-menopausal women [ 1 1 ]  suggests 1 7�­

oestradiol treatment may reduce bone turnover. 

In women, circulating 11-6 concentration increases post-menopause and decreases 

following oestrogen replacement therapy [ 1 2] .  In the present study, plasma IL-6 

concentration was not significantly different in ovariectomised rats compared to 

sham, or in 1 7�-oestradiol -treated animals compared to untreated ovariectomy. In 

rats, responsiveness of 11-6 to oestrogen is tissue specific .  For instance, in vascular 

smooth muscle cells from rats, 11-6 gene expression is constitutive and not induced 

by oestrogen [ 1 3] .  Similarly, treatment of rats with the oestrogenic compound, 

diethylstilbesterol resulted in an increase in 11-6 mRNA levels in the uterus but not in 

bone [ 1 4] .  This may indicate that large changes in 11-6 expression need to occur 

before the change is reflected in circulating 11-6 concentration. 

Both 1 7�-oestradiol and DHA treatments were associated with significantly higher 

trabecular BMC and femur BMC and BMD at week 1 8  compared to untreated 

ovariectomy. Unlike, 1 7�-oestradiol however, femurs from DHA-treated animals 
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were not significantly stronger than those from untreated ovariectomised animals. As 

neither endosteal circumference nor total plasma osteoca1cin concentration were 

significantly different in DHA-treated animals compared to ovariectomised controls, 

DHA may have maintained bone mass by a different mechanism than that of 1 7�­

oestradiol. Although total plasma osteocalcin was unchanged with DHA treatment, 

mean plasma concentration of carboxylated osteocalcin was greater, and mean 

plasma concentration of undercarboxylated osteocalcin was lower, in DHA-treated 

compared to untreated ovariectomised controls .  Gamma-carboxylation of osteocalcin 

is essential for hydroxyapatite binding to bone matrix and hence mineralisation of 

bone. Gamma-carboxylase requires both vitamin K and phospholipids for its activity 

[ 1 5] .  A higher plasma concentration of carboxylated osteoca1cin suggests that DHA 

treatment may have promoted new bone formation. 

Combined treatment with 1 7p-oestradiol and DHA resulted in greater F BMC at 

week 1 8  compared to either treatment alone. There was a statistically significant 

interaction between oestrogenic compound and DHA treatments for F BMC . This 

may indicate DHA and 1 7p-oestradiol acted synergistically to promote greater BMC . 

Alternatively, it may reflect a divergent effect of co-treatment with DHA and 

phytoestrogens as opposed to 1 7p-oestradiol as combined treatment with DHA and 

either daidzein or genistein resulted in slightly, but not significantly, lower BMC 

than DHA treatment alone. There was also evidence of possible interactions between 

oestrogenic compounds and DHA on both plasma IL-6 concentration and the 

percentage of n-3 LCPUF As in RBCs which again may be a result of divergent 

effects of phytoestrogens compared to 1 7[3-oestradiol when co-administered with 

DHA. As co-treatment with 1 7�-oestradiol and DHA was associated with a lower 

plasma IL-6 concentration and a higher percentage of n-3 LCPUF A in RBC,  

combined treatment with 1 713-oestradiol and DHA may have a beneficial effect in  

reducing inflammatory status. This may have implications for the prevention of other 

inflammatory diseases. 

The effect of phytoestrogens on bone post-ovariectomy is controversial . Although 

many studies have been published in this field, considerable heterogeneity in terms 

of the composition and dose of phytoestrogen supplements that have been 

administered and the type of animal model used have likely contributed to the 
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considerable inconsistency in results obtained. In  the present study, genistein 

supplementation had a weak protective effect against ovariectomy-induced loss o f  

LS B M C  i n  the first 5 weeks following ovariectomy. However, the effect was 

transient and no beneficial effect of genistein on bone mass was evident at week 1 8  

fol lowing ovariectomy. Three short-term studies have reported bone mass-preserving 

effects of genistein and equol (the main metabolite of daidzein) in the first 2-3 weeks 

following ovariectomy [ 1 6- 1 8] .  Beneficial effects on bone mass of daidzein and/or 

genistein administered in similar doses to those i n  the present study have been 

reported up to 22 weeks post-ovariectomy in animals fed a low calcium diet [ 1 9-2 1 ] .  

It is possible that when a calcium-adequate diet is fed, such as in the present study, 

the effects of genistein and daidzein on bone mass are minimal in the longer term. 

Daidzein supplementation was associated with reduced body weight gain post­

ovariectomy. A similar result has previously been shown following soy isoflavone 

consumption and is believed to be a result of a reduction in food util isation rate [22] . 

In the present study combined supplementation with genistein or daidzein and DHA 

had no beneficial effect on BMC above that of DHA treatment alone. Watkins et. al. 

(2005) observed a reduction in serum concentrations of pyridinoline, a marker of 

bone resorption, in  growing ovariectomised rats fed a low calcium diet (0. 1 1  % of 

diet) supplemented with menhaden oil (a source of n-3 LCPUFAs) and a soy 

isoflavone-containing protein supplement. Although treatment with n-3 LCPUF As 

alone had a beneficial effect on bone mass in the Watkins et. al. (2005) study, 

combined soy isoflavone/n-3 LCPUF A supplementation fai led to further augment 

bone mass [7] . 

In  conclusion, although combined treatment with DHA and 1 7�-oestradiol was more 

efficacious than either treatment alone in ameliorating the effects of ovariectomy on 

BMC, there was no evidence of a beneficial effect of combined DHA and daidzein or 

genistein treatment on BMC post-ovariectomy. Further work is required in order to 

determine the mechanism of action of DHA on bone and to clarify the interaction 

between the bioactivities of 1 7�-oestradiol and DHA. 
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CHAPTER 6 

Ovariectomy and omega-3 fatty acid 

supplementation alter the profiles of inflammatory 

and pro-resolving lipid mediators in murine bone 

m arrow 

Both EPA and DHA are further metabolised to a range of lipid mediators which have 

demonstrated bioactivity in a variety of tissues. Whether these lipid mediators have a 

role in the normal regulation of bone remodelling is unknown. The objective of the 

study presented in this chapter was to determine whether these lipid mediators are 

present in bone marrow. 

Submitted to "American Journal of Hematology" 
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Abstract 

Newly-described l ipoxygenase (LOX)-generated lipid mediators namely resolvins, 

lipoxins, protectins and other docosanoids have anti-inflammatory and pro-resolving 

activities. We aimed to determine if these LOX-generated l ipid mediators are present 

in rat bone marrow and whether the profile of LOX l ipid mediators alters fol lowing 

ovariectomy or dietary supplementation with eicosapentaenoic ethyl ester (EP A, 

20 :5n-3) or docosahexaenoic ethyl ester (DHA, 22:6n-3) .  Six-month old Sprague 

Dawley rats were either ovariectomised or sham-operated.  Shams and one 

ovariectomised group were fed a diet devoid of n-3 LCPUF As. The remaining two 

ovariectomised groups were fed a diet supplemented with O .5g EPA or DHA ethyl 

ester/kg body weight/day for four months. Following euthanasia, bone marrow from 

tibia and femurs was collected and analysed using LC/MSIMS for the presence of 

LOX-pathway lipid mediators derived from arachidonic acid (AA, 20:4n-6), EPA 

and DHA. LOX-derived l ipid mediators including l ipoxins, resolvin E l  and protectin 

D 1 were identified in bone marrow by the presence of diagnostic  ions in their 

corresponding MS-MS spectra. A higher proportion of AA-derived relative to DHA­

derived mediators were present in bone marrow of ovariectomised compared to 

sham-operated rats . Dietary DHA or EPA ethyl ester supplementation increased the 

proportion of LOX mediators in bone marrow generated from DHA or EP A 

respectively .  This is the first report documenting the presence of pro-resolving lipid 

mediators in murine bone marrow. Given the known bioactivities of LOX-derived 

l ipid mediators, the change in the profile of LOX family products post-ovariectomy 

and following EP A and DHA ethyl ester supplementation may be of physiological 

relevance. 

Introduction 

Lipid mediators, such as prostaglandins and other eicosanoids derived from n-6 long 

chain polyunsaturated fatty acids (LCPUF As) by the action of cyclooxygenases 

(COX) and l ipoxygenases (LOX), have a major role in initiating the inflammatory 

process [ 1 -3 ] .  The recent discovery of several new famil ies of LOX-generated 

eicosanoid and docosanoid l ipid mediators derived from both n-6 and n-3 LCPUF As 

[4, 5] which have potent anti-inflammatory and pro-resolving activities [6, 7],  has 
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considerably advanced our understanding of how the inflammatory process IS 

naturally resolved. 

Eicosapentaenoic acid (EPA, 20 :5n-3), docosahexaenoic acid (DHA, 22:6n-3) and 

arachidonic acid (AA, 20:4n-6) are converted to lipid hydroperoxides by LOX­

initiated reactions. These hydroperoxides are further transformed, via epoxide 

intermediates, to potent bioactive lipid mediators known as resolvins, lipoxins, and 

protectins. LOX-derived lipid mediators inhibit the inflammatory process and 

promote the resolution of inflammation and the return to normal homeostasis [8] . 

Chronic inflammation is a major cause of morbidity and mortality in Western 

countries. Susceptibility to chronic inflammatory disease is influenced by lifestyle 

and life-stage. In women, the risk of developing many chronic inflammatory diseases 

such as Alzheimer's disease, osteoporosis and possibly heart disease increases post­

menopause [9- 1 2] .  LCPUF A metabolism is disrupted following menopause. This 

results in decreased tissue and blood concentrations of very long chain PUF As [ 1 3 ,  

1 4] ,  the precursors for resolvin, protectin and lipoxin biosynthesis. As resolvins and 

docosanoids are potent vasodilators [ 1 5] ,  protectin 0 1  promotes neural cell survival 

[ 1 6] and both resolvins and lipoxins strongly inhibit inflammation-induced bone 

resorption [ 1 7, 1 8] ,  this may have consequences for the pathogenesis of heart 

disease, Alzheimer' s D isease and osteoporosis post-menopause. 

Ovariectomy in rodents and menopause in women not only results in reduced 

oestrogen levels but also leads to changes in the glucocorticoid response to stress 

[ 1 9-2 1 ] .  Oestrogens and glucocorticoids regulate the biosynthesis of COX-derived 

and LOX-derived eicosanoids [22-27] . Eicosanoids regulate the proliferation of stem 

cells and progenitors as well as the differentiation of these progenitors into neural, 

immune and bone cells  [28-33 ] .  Changes in progenitor cell number and fate occur 

following surgical menopause [34-36] and altered eicosanoid synthesis is likely to 

contribute to these changes. As the docosanoid protectin 0 1  promotes neural cell 

survival [ 1 6] and lipoxins regulate neural stem cell proliferation and differentiation 

[33 ] ,  i t  i s  of interest to determine whether the profile of these newly-described LOX­

generated lipid mediators also changes post-ovariectomy. 
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Bone marrow is  a lipid-rich medium containing stem cells and progenitors for a 

diverse range of cell types including bone cells and cel ls  of the immune system; all 

of which respond to pro-inflammatory signalling. A change in the regulatory 

environment within bone marrow has the potential to influence a wide range of 

tissues and systems within the body. The objectives of the present study were to 

establish whether resolvin pathway l ipid mediators are present in rat bone marrow, to 

determine whether the profile of LOX products in rat bone marrow alters fol lowing 

ovariectomy and to ascertain whether dietary intake of the precursor LCPUF As 

impacts the profile of LOX-derived lipid mediators in rat bone marrow.  Here we 

report that a higher proportion of AA-derived lipid mediators relative to DHA 

derived lipid mediators were present in bone marrow in ovariectomised animals 

compared to sham-operated controls.  Increased dietary intake of ethyl esters of DHA 

or EPA were associated with an increased proportion of LOX-derived lipid mediators 

generated from DHA or EPA respectively in bone marrow. 

Method 

Animals 

Female Sprague-Dawley rats aged 7 months, were randomly assigned to one of four 

groups and either ovariectomised (OVX) ( 1  group, n= 1 0; 2 groups, n= 1 2) or sham 

operated ( 1  group, n= 1 0) under general anaesthetic (isofluorane) .  Sham operated 

animals were anaesthetised and an incision made in the peritoneal wall but the 

ovaries left intact. 

All animals were maintained in individual shoebox cages at 22°C (± 2°C) with a 

1 2h! 1 2h l ight/dark cycle in a dedicated room. The study was approved by Massey 

University Animal Ethics Committee. 

Diets 

Animals were acclimated to a nutritional ly balanced, semi-synthetic diet comprising 

1 4% caseinate, 5% cellulose, 4% corn oil, 0.5% calcium, 60% starch with added 

vitamins and minerals for four weeks prior to ovariectomy (week -4 to week 0). The 

diet formulation was based on AIN93M [37] with added vitamins and minerals as 

necessary to compensate for the nutrient content of local ingredients [38 ] .  The type 
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of oil in the diet was also altered from soybean (as stipulated for AIN93M) to corn 

oil as soybean oil is a source of n-3 LCPUF As. The sham-operated ("SHAM", n= 1 0) 

and ovariectomised control ("OVX", n=1 0) groups were maintained on this diet for 

the 4-month study period. Immediately following ovariectomy, the experimental 

groups (n= 1 2  per group) were fed diets in which some of the corn oil was replaced 

with ethyl esters of either EPA (90% purity, 0 1 1 77A-E90 Sanmark LLC, USA), or 

DHA (80% purity, 0 1 1 77B-E80 Sanmark LLC, USA) at a dose of 0 .5  g/kg body 

weight/day. All diets contained 4% total fat and at least 2% corn oil, an amount in 

excess of the minimum required to prevent n-6 LCPUFA deficiency ( 1  %). Diets 

were randomly sampled and analysed in order to confirm nutrient content. Diet 

compositions are outlined in Table 1 .  

Table 1 Ingredient composition (% air-dry weight) of control and experimental diets 
Percentage of Diet 

SHAM OVX E PA DHA 
Cornstarch 59.7 59 .7 59 .7 59 .7 
Sodium Caseinate 1 4  1 4  1 4  1 4  
Sucrose 6 6 6 6 
Cellulose 5 5 5 5 
V itaminsa 5 5 5 5 
M inerals (excI Ca)b 5 5 5 5 
Calcium Carbonate 1 .3 1 .3 1 .3 1 .3 
Corn Oil C 4 4 3 .3 - 3 . 1  3 . 3  - 3 . 1  
E icosapentaenoic ° ° 0.7 - 0.9 ° 
acid ethyl ester C 
Docosahexaenoic ° ° ° 0.7 - 0.9 
aci d  ethyl ester C 

a Supplymg (mg/kg diet) retmol acetate 5 .0, DL.u-tocopherol acetate 200 .0, menadIOne 3 .0, thJamme 
hydrochloride 5 .0, riboflavin 7.0, pyridoxine hydrochloride 8 .0, D-pantothen ic acid 20.0, fol ic acid 
2 .0, n icotinic acid 20.0, D-biotin 1 .0, myo-inositol 200.0, choline chloride 1 500; (Ilg!kg diet) 
ergocalciferol 25 .0, cyanocobalamin 50.0. 
b Supplying (g/kg diet) chloride 7 .79, magnesium 1 .06, phosphate 4 .86, potassium 5.24, sodium 1 .97; 
(mg/kg diet) chromium 1 .97, copper 1 0.7, iron 424, manganese 78 .0, zinc 48 .2 ;  (Ilg/kg diet) cobalt 
29.0, iodine 1 05 .0, molybdenum 1 52.0, Selenium 1 5 1 .0 
C LCPUFA ethyl ester dose was 0.5g/kg rat body weight/day. Percentage of LCPUFA ethyl ester in 
diets increased and percentage of corn oil decreased as the body weight of animals increased over the 
trial period. Values given are the m inimum and maximum amounts of LCPUFA ethyl ester provided 
at trial commencement and trial completion. 

LCPUF As and corn oil were blended into the experimental diet on a daily basis in 

order to prevent PUF A oxidation. Body weights of all animals were measured 

weekly, and the amount of LCPUF A and corn oil added to each test diet was 

adjusted according to the mean body weight of animals in each treatment group. The 

SHAM group was fed ad libitum. The food intake of ovariectomised animals was 

l imited to that of SHAM in order to reduce ovariectomy-induced weight gain. All 
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animals had ad libitum access to deionised water throughout the study period. Daily 

food intake was recorded. 

Sample collection 

Marrow from the tibia and femur was extracted by removing the distal and proximal 

epiphyses to expose the marrow-filled diaphysis, centrifuging at 3000 rpm for 5 mins 

at 4°C and removing the marrow-free bone with forceps. Marrow was immediately 

frozen and stored at -80°C. 

Extraction of LOX products from bone marrow 

Methanol ( 1  ml) was added to the bone marrow immediately upon removal from 

frozen storage. Marrow was thawed and ground with a tissue grinder and a further 2 

ml of methanol added. Samples were mixed by vortex and proteins were precipitated 

by allowing tostand at -20°C overnight. Cellular material was removed by 

centrifuging at 2000 rpm for 20 mins at 2°C.  Milli-Q water (30 ml) was added and 

samples were acidified to pH 3 .5 with I N  HC!.  

C 1 8  SPE columns (Alltech, Deerfield, IL  Cat # 405250 Extract-Clean# Ev SPE 500 

mg) were primed with methanol then washed with 20ml methanol, fol lowed by 20 

ml of Milli-Q water. Samples were loaded and washed with 20 ml water, 8 ml  of 

hexane eluted with 8 ml of methyl formate. The methyl formate fraction was 

collected and dried under vacuum to remove water. Samples were re suspended in 

methanol and stored -80DC prior to  analysis .  

Lipid Mediator Lipidomics: Identification and analysis of LOX products 

Liquid chromatography-tandem mass spectrometer (LC/MS/MS) identification was 

acquired with a LCQ (ThermoFinnigan, San Jose, CA) quadrupole ion trap 

spectrometer system equipped with an electrospray ionization probe. Samples were 

suspended in mobile phase and injected into the HPLC component, which consisted 

of a SpectraSYSTEMS P4000 (ThermoFinnigan, San Jose CA) quaternary gradient 

pump, with a Thermo Electron BDS Hypersil C 1 8  ( l OO x 2 mm, 5 f.lm) column 
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(ThermoFisher Scientific, Waltham, MA). The column was eluted at a flow rate of 

0.2 mllmin with methanollwater/acetic acid (6S :34.99 :0 .0 1 ,  v/v/v) from 0 to 8 min, 

and then a gradient increasing to 1 00 percent methanol from 8 . 0 1  to 30 min. 

Samples were scanned for the presence of S-hydroxyeicosatetraenoic acid (S-HETE), 

12 -HETE, l S-HETE, leukotriene B4 (LTB4), l ipoxins A4 and B4 (LXA4 and 

LXB4), 1 4-hydroxdocosahexaenoic acid ( l 4-HDHA), 1 7-HDHA, resolvin D 1  

(RvD 1 ), protectin D 1  (PD 1 ), S-hydroxyeicosapentaenoic acid (S-HEPE), l S-HEPE, 

1 8-HEPE, RvE 1  and RvE2. Criteria for identification were: LC retention time and 

UV chromaphore matched with reference standard, and a minimum of 4 to 6 

fragment diagnostic ions on the MSIMS spectrum matched that of reference  

standard. 

Statistical Analysis 

Comparisons between groups were made by one-way ANOV A with post-hoc Tukey 

testing using Minitab® 1 4, Minitab Inc. ,  Pennsylvania, USA. A p-value of ::SO.OS was 

considered significant. 

Results 

Dietary intake 

In the LCPUF A-supplemented animals, daily intake of EPA or DHA ethyl ester was 

1 60 - 1 80 mg per animal per day. There were no significant differences among 

groups in terms of the amount of food consumed per day with all animals consuming 

1 8-20 g per day. 

Identification of LOX products in bone marrow 

Lipoxygenase products from AA, EPA and DHA were identified in bone marrow 

samples from all groups. In the SHAM, OVX and DHA groups the AA derived 

products LTB4, LXA4 and LXB4, and the monohydroxy S-, 1 2- and l S-HETE were 

identified. LC/MS/MS spectra are provided in Figure 1 .  Although all three HETEs 

and L TB4 were also identified in the EP A supplemented group, neither LXA4 nor 

LXB4 were clearly identified in any sample from this group (Figure 2) .  
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Figure 1 Arachidonic Acid 
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Figure 1 Lipoxygenase-catalysed lipid mediator formation from arachidonic acid 
and Le-MS/MS spectra for lipoxin pathway products. 
1 5-HETE MS/MS fragmentation-mlz 3 1 9 :  [M-H];  mlz 30 1 :  [M-H] - H20; mlz 275 :  [M-H] - CO2; 
mlz 257: [M-H] - H20, - CO2; mlz 248; mlz 2 1 9 ; mlz 205 : mlz 248 - CO2; mlz 1 75 :  mlz 2 1 9  - CO2. 
LXA4 M S/MS fragmentation-mlz 35 1 :  [M-H];  mlz 333 :  [M-H] - H20; mlz 3 1 5 : [M-H] - 2H20; mlz 
307:  [M-H] - CO2; mlz 289: [M-H] - H20, - CO2; mlz 27 1 :  [M-H] - 2H20, - CO2; mlz 25 1 ;  mlz 235 ;  
m/z 233 :  mlz 25 1 - H20; mlz 2 1 5 : mlz 25 1 - 2H20; mlz 207: mlz 25 1 - CO2; mJz 1 89: mlz 25 1 - H20, 
- CO2; mlz 1 1 5. 
LXB4 M S/MS fragmentation-mlz 35 1 :  [M-H] ;  mlz 333 :  [M-H] - H20; mlz 3 1 5 :  [M-H] - 2H20; mlz 
307:  [M-H] - CO2; mlz 289: [M-H] - H20, - CO2; mlz 27 1 :  [M-H] - 2H20, - CO2; mlz 25 1 ;  mlz 233 : 
mlz 25 1 - H20; mlz 22 1 ;  mlz 2 1 5 : mlz 25 1 - 2 H20; mlz 207: mlz 25 1 - CO2; mlz 1 89: mlz 25 1 - H20, 
- CO2; mlz 1 63 ;  mlz 1 29; mlz 1 1 5. 
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SHAM OVX [)HA EPA 

Figure 2 Levels of LOX-generated lipid mediators derived from arachidonic, 
docosahexaenoic and eicosapentaenoic acids in bone marrow from female rats. A 
Total concentrations of lipoxygenase-generated lipid mediators derived from 
arachidonic, docosahexaenoic and eicosapentaenoic acids and concentrations of 
specific products of B arachidonic acid, C docosahexaenoic acid and D 
eicosapentaenoic acid in  bone marrow from female rats fol lowing sham-operation or 
ovariectomy and 4 months of consumption of either a diet devoid of n-3 LCPUF As 
or a diet supplemented with eicosapentaenoic ethyl ester or docosahexaenoic ethyl 
ester (0.5 g/kg body weight/day). Bone marrow was obtained from femurs and tibiae 
at trial completion and lipid mediator lipidomic analysis conducted by LC-MS/MS. 

The DHA derived lipid mediators 1 4-HDHA and 1 7-HDHA were present in  samples 

from all groups. PD l was identified in 4 out of the 5 samples from the DHA group 

and 2 out of the 3 samples each from the OVX and SHAM groups. PDl was not 

identified in any sample from the EP A group. Several i somers of 1 0, 1 7  -dihydroxy­

docosatriene which did not match the retention time of P D  1 were present in all 

samples. RvD l was present in some, but not all samples from all four treatment 

groups (2 out of 3 samples OVX, l out of 3 samples SHAM, 4 out of 5 samples 

DHA and 3 out of 6 samples EPA). LC/MS/MS spectra for D HA-derived lipid 

mediators are provided in Figure 3. 
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Figure 3 Lipoxygenase-catalysed lipid mediator formation from docosahexaenoic 
acid and LC-MS/MS spectra for resolvin pathway products .  
1 7-HOHA MS/MS fragmentation-mlz 3 4 3 :  [M-H ] ;  mlz 3 2 5 :  [M-H] - H20; mlz 299: [M-H] - CO2; 
mlz 28 1 :  [M-H] - H20, - CO2; mlz 273 ; mlz 255 :  mlz 273 - H20; mlz 245 ; mlz 229: mlz 273 - CO2; 
mlz 2 1 1 :  mlz 273 - H20, - CO2; mlz 20 1 : mlz 245 - CO2• 
P0 1 MS/MS fragmentation-mlz 359:  [M-H];  mlz 34 1 :  [ M-H] - H20; mlz 323:  [M-H] - 2 H20; mlz 
3 1 5 : [M-H] - CO2; mlz 297: [M-H] - H20, - CO2; m/z 289; mlz 277: [M-H] - 2 H20, - CO2 - 2 H ;  mlz 
26 1 ;  mlz 245 : mlz 289 - CO2; mlz 2 1 7 : mlz 26 1 - CO2; m/z 205 : mlz 207 - 2 H ;  mlz 1 89 :  mlz 207-
H20; mlz 1 8 1 ;  mlz 1 63 :  mlz 1 8 1  - H20; mlz 1 53. 
RvO I MS/MS fragmentation-mlz 375: [ M -H ] ;  mlz 357: [ M -H] - H20; mlz 339: [M-H] - 2H20; mlz 
33 1 :  [M-H] - CO2; mlz 3 1 3 : [M-H] - H20, - CO2; m/z 295 : [M-H] - 2 H20, - CO2; mlz 277; mlz 259: 
m/z 277 - H20; mlz 235:  mlz 233 + 2H; mlz 233;  
mlz 2 1 5 :  mlz 233 - H20; mlz 1 4 1 .  

Of the LOX pathway products derived from EPA, 1 5-HEPE and 1 8-HEPE were 

identified in all samples analysed, however 5-HEPE was only present in samples 

from the EPA group and in 1 sample from the DHA group. Interestingly in all 6 EPA 

samples as well as the one DHA sample in which 5-HEPE was identified, neither 

LXA4 nor LXB4 were identified. RvE 1 was present in 3 of the 6 samples from the 

EP A group and in one sample each from the SHAM and DHA groups but was not 

identified in any sample from the OYX group. RvE2 was not identified in any of 
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these samples (Figure 2). LC/MS/MS spectra for 1 8-HEPE and RvE l are provided 

in Figure 4. 
Figure 4 
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Figure 4 Lipoxygenase-catalysed lipid mediator formation from eicosapentaenoic 
acid and LC-MS/MS spectra for resolvin pathway products. 
1 8-HEPE M S/MS fragmentation-m/z 3 1 7 :  [ M-H] ;  mlz 299: [M-H] - HP; mlz 273;  m/z 259; mlz 
255 : [M-H] - H20, - CO2, 
RvEl MSIMS Fragmentation-mlz 349: [M-H];  mlz 33 1 :  [M-H] - H20; mlz 3 1 3 :  [M-H] - 2H20; mlz 
305 :  [M-H] - CO2; mlz 295 [M-H] - 3 H20; mlz 29 1 ;  mlz 287:  [M-H] - H20, - CO2; mlz 273 : mlz 29 1 
- H20; mlz 269: [ M-H] - 2H20, - CO2; mlz 259:  mlz 32 1 - H20, - CO2; mlz 24 1 :  mlz 32 1 - 2 H20, -
CO2; mlz 205:  mlz 223 - H20; mlz 1 95 ;  mlz 1 6 1 : mlz 223 - H20, - CO2, 

There was considerable inter-individual variation III terms of the levels of LOX 

pathway products in bone marrow (Table 2) however within each treatment group 

the relative proportion of EP A, DHA and AA families of bioactive mediators in bone 

marrow was much more consistent (Table 3). For this reason, comparisons were 

made between groups based on the level s  of each product identified as well as on the 

percentage of total LOX product profiles accounted for by each individual product. 
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Table 2 Quantity (pmo//g bone marrow) of LOX mediators in bone marrow 

Metabolite SHAM OVX EPA OHA p-value 
LXA4 3 1 40 a 4049 a ND b 2875 a 0. 023 

(930) ( 1 62 1  ) ( 1 04 1 )  
LXB4 1 1 5 .6 a 1 42 .5 a N O b 75 .7  a 0. 001 

( 1 8 .5)  (37.7) (25 .3)  
LtB4 1 1 66 a 1 05 1  a 448 a 590 a 0. 140 

(407) (346) ( 1 2 1 )  ( 1 94) 
5-HETE 4583 a 1 844 a,b 69 1 b 1 1 60 b 0. 014 

( 1 83 0) (753)  ( 1 3 0) (39 1 )  
1 2-HETE 8249 a 4889 a 1 344 a 1 502 a 0. 070 

(4557) (2656) (22 1 )  (53 1 ) 
1 5-HETE 98 1 7 a 5 946 a,b 293 5 b 2666 b 0. 046 

(4086) (2488) (277) (683) 
Total AA-derived mediators 27070 a 1 7922 a,b 54 1 8 b 8 869 a,b 0. 03 7 

( 1 1 8 1 6) ( 7 1 48) (699) (2066) 
1 4-H DHA 1 1 93 a 98 1 a 5 83 a 2453 a 0. 701 

(798) (957) (5 1 1  ) ( 1 9 1 8) 
1 7-H DHA 3 875 a 1 207 a 865 a 3 627 a 0. 066 

( 1 602) (685) (33 3 )  ( 1 097) 
RvO l 3 8 .2 a 89.8 a Trace a 203 a 0. 452 

(38 .2) (89. 8) ( 1 5 8) 
PO l 3 1 .2 a Trace a N O a Trace a 0. 200 

(3 1 .2) 
Other 1 0, 1 7  diH OHA 326 a 1 86 a 1 1 1 5 a 1 283 a 0. 059 
(NPO I /PO I isomers) (2 1 1 ) ( 80. 1 ) ( 1 63 )  (42 7) 
Total Resolvin-pathway DHA- 3944 a 1 297 a 865 a 3 83 0 a 0. 072 
derived mediators ( 1 6 1 5 ) (774) (33 3 )  ( 1 20 I )  
Total OHA-derived mediators 5463 a 2464 a 2564 a 7566 a 0. 230 

(2609) ( 1 804) (57 1 ) (2777) 
5-HEPE N D a NO a 246.3 a 1 9 . 1  a 0. 044 

(93 .2) ( 1 9. 1  ) 
1 5-H EPE 240 a 79.2 a 53 . 7 a 5 5 . 1 a 0. 094 

( 1 1 8) (27.0) (2 1 .5 )  (40 .7) 
1 8-H EPE 1 3 5 .9 a 1 29.2 a 2580 b 778 a <0. 0001 

(3 1 .5 )  (77.5 )  (247) (339) 
RvE l Trace a N O a 45 .6 a Trace a 0. 650 

(45 .6) 
Total Resolvin-pathway EPA- 1 3 5 .9 a 1 29.2 a 2625 b 778 a <0. 0001 
derived mediators (3 1 . 5 )  (77 .5)  (240) (339) 
Total EPA-derived mediators 3 76 a 208 a 2925 b 852 a <0. 0001 

( 1 47)  ( 1 04 )  (266) (348) 
Female rats were sham-operated or ovanectomlsed and fed a dIet devoId of n-3 LCPUF As or a diet 
supplemented with eicosapentaenoic ethyl ester or docosahexaenoic ethyl ester (0.5 glkg body 
weight/day) for 4 months. Bone marrow was obtained from femurs and tibiae at trial completion and 
l ipid mediator l ipidomic analysis conducted by LC-MS/M S .  Results are expressed as the mean with 
SE in ( ). Different letters denote significant differences between groups within the same row at 
p<0.05 
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1', hi 3 P a e ifLOX ercentage 0 -generate lpl 
. 

b me lators In one marrow 
Percent 

SHAM OVX EPA DHA p-value 
% LXA4 1 0 .7  a,b 20.9 a O b 2 1 .2 a 0.006 

( 5 . 04) ( 5 .04) ( 3 .5 7) ( 3 . 9 1 ) 
% LXB4 0.4 a,b 0 . 8  a O b 0 .6  a 0 .0 1 0  

(0. 1 9) (0 . 1 9) (0. 1 3) (0 . 1 4) 
% LtB4 3 .8 a 6 .8  a 4 .6 a 2 .9 a 0 .3 79 

( 1 .72) ( 1 .72) ( 1 .2 1  ) ( 1 .3 3 )  
% 5 -H ETE 1 4 .4 a 9 .3  b 6.2 c 6.3 c <0.000 1 

(0 .78) (0 .78) (0 . 5 5 )  (0 .60) 
% 1 2-HETE 22.7 a 22.3 a 1 2 .07 b 8 .7  b <0.000 1 

(2.04) (2.04) ( 1 .44) ( 1 . 5 8) 
% 1 5-H ETE 3 0 . 5  a 29.5 a 26.9 a 1 6.2 b <0.000 1 

( 1 .80) ( 1 . 80) ( 1 .27) ( 1 .3 9) 
% AA-derived mediators 82 . 7 a 89.6 a 49.8 b 5 5 .9 b <0.000 1 

( 5 . 1 3 ) (5 . 1 3) (3 .63) (3 . 9 8) 
% 1 4-HDHA 3 .0 a 2 .9 a 3 .8 " I I .  I a 0 .5 6 1  

(5 .78) (5 .78) (4.09) (4.48) 
% 1 7-HDHA 1 2 . 1  a,b 5 .3 " 7.9 " 1 9 .3  b 0.005 

(2 .80) (2 .80) ( 1 .98) (2. 1 7) 
% 1 0, 1 7  d i HDHA (NPD l fP D I  0 . 8  a 1 . 1  a 1 0 .8 b 7.8 a,b 0 .002 
isomers) ( 1 .97) ( 1 .97) ( 1 .39) ( 1 . 5 3 )  
% DHA-derived mediators 1 6 . 1  " 9 .5  a 22 .5 " 39 .0  b 0.006 

(5 .73)  (5 .73 ) (4.05) (4.44) 
% 5-HEPE O a O a 2 . 0 b 0 . 1 a 0. 0 1 1 

(0 . 5 5 )  (0 .55)  (0.39) (0 .43)  
% 1 5-HEPE 0.7 a O .4 a 0 .4 " 0.2 a 0 . 1 68 

(0. 1 5) (0. 1 5) (0 . 1 0) (0. 1 1 )  
% 1 8-H E P E  0.5 a 0 .5 a 2 5 .0 b 4 .8  a <0.000 1 

(3.20) (3 .20) (2.26) (2.48) 
% E PA -derived mediators 1 .2 a 1 .0 a 27 .8  b 5 . 1  a <0.000 1 

(2.75 )  (2 .75 )  ( 1 .94) (2. 1 3 ) 
% LtB4 of total LXA4 and LtB4 25 .83 26. l a 1 00 b 27 .84a <0.000 1 

( 1 3 .6 1  ) ( 1 3 .6 1 )  (9.62) ( 1 0 .54)  
Ratio AA:EPA-derived 69 .8  a 93 . 7  " 1 .9 b 2 5 .4 b <0.000 1 
mediators ( 1 1 .22) ( 1 1 .22) (7 .94) (8.69) 
Ratio AA: DHA-derived 5.2 a 1 2 . 6 b 2 . 6  " 1 .6 a 0.002 
mediators ( 1 .8 1  ) ( 1 .8 1  ) ( 1 .28) ( 1 .40) 
Ratio DHA : EPA-derived 1 3 .6 " 9 .3  a,b 0 .88 c 5 .9  b <0.000 1 
mediators ( 1 .46) ( 1 .46) ( 1 .03) ( 1 .26) 
Female rats were sham-operated or ovanectomlsed and fed a diet devoid of n-3 LCPUF As or a diet 
supplemented with eicosapentaenoic ethyl ester or docosahexaenoic ethyl ester (0.5 glkg body 
weight/day) for 4 months. Bone marrow was obtained from femurs and tibiae at trial completion and 
l ipid mediator l ipidomic analysis conducted by LC-MS/MS. Results are expressed as the mean with 
SE in ( ) .  Different letters denote sign ificant d ifferences between groups within the same row at 
p<O.OS .  

Impact of Ovariectomy 

There were no significant differences between the OVX and SHAM groups in the 

amounts of any of the AA, DHA or EP A lipoxygenase product profiles or in terms of 
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total amounts of all AA, DHA or EPA l ipoxygenase products (Table 2).  The EPA 

derived products accounted for � 1 % of total LOX profiles in both the SHAM and 

OVX groups (Table 3). The ratio of AA pathway relative to EP A LOX pathway 

products in the OVX group was not significantly different from SHAM. In contrast, 

the ratio of AA products relative to DHA products was significantly greater in OVX 

compared to SHAM (p=0.05) (Table 3).  The percentage of 5-HETE of total 

identified LOX pathways was significantly lower in OVX compared to SHAM 

(p=0.002). 

Impact of Dietary LCPUF A Supplementation 

Total levels  of all EP A LOX products identified as well as the percentage of total 

LOX products derived from EP A were significantly higher compared to all other 

groups in the EPA-supplemented group (EPA vs S HAM p= 0.0002, EPA vs OVX 

p=O.OOO 1 ,  EPA vs DHA p=0.0004) (Table 2) .  The percentage of total LOX pathway 

products accounted for by 1 8-HEPE and 5-HEPE, but not l 5-HEPE, was 

significantly higher in  the EPA group compared to all other groups ( I 8-HEPE: 

p=0.0002 for all ;  5 -HEPE: EPA vs OVX or SHAM p=0.047, EPA vs DHA 

p=0.024). The percentage of isomers of 1 0, 1 7  dihydroxy-docosatrienes in bone 

marrow was significantly higher in EPA compared to SHAM (p=0.0006) and OVX 

(p=0.007) (Table 3). 

Percentages of 5-HETE and 1 2-HETE in bone marrow were significantly lower in 

the EPA and DHA groups compared to OVX and SHAM (5-HETE: DHA vs OVX 

p=0.042, EPA vs OVX p=0.029, EPA and DHA vs SHAM p<O.OOO l ;  l 2-HETE: 

DHA vs OVX p=0.0007, EPA vs OVX p=0.0059, DHA vs SHAM p=0.0006, EPA 

vs SHAM p=0.0043) (Table 3). 

Total amounts of all l ipoxygenase-generated l ipid mediators derived from DHA in 

bone marrow was not significantly different among groups. However the percentage 

of DHA pathway products ( I 4-HDHA, 1 7-HDHA and 1 0 , 1 7-diHDHA NPD l IP D 1  

isomers) o f  the total bioactive LOX profile of products i n  bone marrow was 

significantly higher in the DHA supplemented group compared to SHAM (p=0.03) 

and OVX (p=0.0063) and tended to be higher than in the EPA group (p=0.069). The 

resolvin pathway marker, namely 1 7-HDHA, accounted for a significantly greater 

- 1 8 1  -



proportion of total LOX product profiles in the DHA group than in the OVX 

(p=0.008) and EPA (p=O.009) groups. Conversely, the amounts of 1 5-HETE as a 

percentage of total LOX pathway products was significantly lower in the DHA group 

than in OVX (p=O.003), SHAM (p=O.002) and EPA groups (p=O.004) (Table 3). 

Discussion 

LOX families of bioactive mediators derived from AA, D HA and EPA namely 

lipoxins, resolvins and protectins, were present in rat bone marrow as identified by 

the presence of diagnostic ions in their corresponding MS-MS spectra. Ovariectomy 

resulted in a relative decrease in the proportion of LOX products derived from DHA 

compared to those from AA in bone marrow. Dietary supplementation with the ethyl 

ester of either DHA or EPA led to a decrease in the proportion of AA-derived LOX 

pathway products and an increase in the proportion of DHA or EPA-derived LOX 

products. 

A relative deficiency of DHA in brain tissue has been suggested as a possible 

contributing factor to the pathogenesis of Alzheimer's  disease [39] . Increased dietary 

intake of DHA substantially reduced amyloid production in a mouse model of 

Alzheimer' s disease [39] and LOX-generated bioactive mediators derived from DHA 

have potent neuroprotective activity [40] . Dietary supplementation with DHA has 

also been shown to significantly reduce ovariectomy-induced bone mineral loss in 

rats, an animal model for postmenopausal osteoporosis [4 1 ] . That a relative 

deficiency in DHA-derived l ipid mediators occurs post-ovariectomy and that this can 

be rectified by D HA supplementation may be of relevance to the observed bone- and 

brain- protective effects of DHA. 

EP A ethyl ester supplementation resulted in only slight increases in the levels of 

LOX products obtained from DHA and conversely DHA ethyl ester supplementation 

resulted in only small increases in LOX pathway products of EP A in bone marrow. 

Although EP A can be further elongated and desaturated to form DHA and DHA can 

be retro-converted to EP A by endogenous enzymes, both processes are inefficient 

[42] . Earlier studies have reported only slight increases in tissue or blood levels of 
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EPA following DHA supplementation and of DHA following EPA supplementation 

[43, 44] .  

In the present study, ovariectomised animals were supplemented with EPA and DHA 

ethyl esters which clearly had an impact on increasing EP A and DHA LOX product 

profiles from our results. However, the requirement for cytoconversion of these 

esters to the free fatty acids to enable LOX-mediated generation of lipid mediators 

may have had an impact on the resultant profile of resolvin and non-resolvin pathway 

lipid mediators present in bone marrow. Both DHA and EPA ethyl ester 

supplementation significantly reduced the percentage of pro-inflammatory mediators 

present in bone marrow. Specifically, the proportion of HETES which are 

monohydroxy products of AA, was lower in bone marrow from DHA and EP A 

supplemented animals compared to ovariectomised controls. HETEs are implicated 

in a range of inflammatory disease processes including asthma [45 ] and psoriasis 

[46] and have been shown to inhibit the bone-forming ability of osteoblasts in vitro 

[47] . Possible therapeutic roles of n-3 LCPUF As in the treatment of psoriasis, asthma 

and post-menopausal osteoporosis have previously been highlighted [4 1 , 48-53] .  

As neither LXA4 nor LXB4 were present in any sample from the EP A group, EP A 

may inhibit the formation of 4-series lipoxins in bone marrow. Similarly, Ashton et 

at ( 1 994) observed a significant reduction in the percentage of LXA4 produced by 

head kidney leucocytes of rainbow trout fed a n-3 LCPUF A-supplemented diet 

compared to trout fed a diet containing sunflower oil (devoid of n-3 LCPUFAs) [54] . 

L TB4 has been shown to promote neural stem cell proliferation and differentiation 

whereas LXA4 inhibits stem cell growth [33 ] .  The lack of LXA4 in the EPA ethyl 

ester-supplemented group in the present study may have implications for the fate of 

stem cells within bone marrow. 

The percentage of 1 8-HEPE, the precursor for E-series reso\vins, of total LOX 

pathway products in bone marrow was significantly increased by EP A ethyl ester 

supplementation (Table 3) .  Likewise the percentage of 1 7-HDHA, an anti­

inflammatory mediator [55] and a marker for D-series resolvins and protectins, was 

significantly increased by DHA ethyl ester supplementation. RvE l ,  RvD l and P D 1  

were identified i n  some but not al l bone marrow samples. This may be reflective o f  
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their possible short half-life within marrow tissue and susceptibility to metabolic 

inactivation or could indicate that their biosynthesis in bone marrow is largely 

inducive rather than constitutive. 

As resolvins and protectins exhibit potent bioactivity at nanomolar concentrations 

[56] in a range of cell types and tissues [ 1 5- 1 7, 57-6 1 ] , the presence of resolvins and 

protectins in bone marrow in the quantities observed in the present study is likely to 

be of physiological significance. 
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CHAPTER 7 

Mechanisms of action of DHA alone and in 

combination with oestrogenic compounds in MC3T3-

E l/4 osteoblast-like cells 

In Chapter 2 a beneficial effect of dietary supplementation with DHA on bone mass 

in ovariectomised rats was observed and in Chapter 5, a possible interaction between 

DHA and oestrogenic compou nds was identified in vivo. The objective of the study 

described in this chapter was to elucidate the possible mechanism of action of DHA 

and to determine if an interaction between DHA and oestrogenic compounds occurs 

at the cellular level. As this is a large and complex field, the data presented in this 

chapter represent preliminary findings. It is intended that the results of the studies 

described herein be used to identify areas for future, more in-depth research. 
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Abstract 

I n  the ovariectomised rat model for postmenopausal bone loss, dietary 

supplementation with DHA has been shown to significantly ameliorate ovariectomy­

induced bone loss. Combined treatment with DHA and 1 713-oestradiol has been 

associated with significantly greater bone-protective effects post-ovariectomy 

compared to either treatment alone. However no beneficial effect on bone mass was 

observed following combined treatment with DHA and either of the phytoestrogens 

genistein or daidzein post-ovariectomy in rats. The primary aim of the present study 

was to identify mechanisms of action of DHA in osteoblasts using the MC3T3-E 1 14 

cell l ine. Secondly, the possible interaction between DHA and oestrogenic 

compounds was explored and the effect of co-treatment with DHA and oestrogenic 

compounds on osteoblasts determined. Under conditions optimal for cell growth, 

DHA in concentrations of 2 .5- 1  O).tg/ml had no observable effect on cell proliferation 

or differentiation. However, in MC3T3-E 1 /4 cells exposed to the pro-inflammatory 

cytokine TNF-a, DHA treatment was associated with a significantly higher cell 

number compared to non-DHA - treated TNF-Q exposed cells .  Cell number was 

significantly greater following combined treatment with 1 713-oestradiol and DHA 

compared to either treatment alone. The mechanism did not involve altered PGE2 or 

TGF-�1 secretion as measured by ELISA or a change in nuclear membrane-bound 

levels of either oestrogen receptor (ER-a or ER-�) as measured by flow cytometry. 

Cell number was significantly lower in TNF-a exposed cells treated with DHA and 

genistein, but not daidzein, compared to TNF -a exposed controls.  Mean PGE2 and 

TGF -� 1 secretion per 1 05 cells were significantly higher than controls following 

treatment with genistein and DHA. As genistein is a tyrosine kinase inhibitor, results 

from the present study may indicate that DHA requires tyrosine kinase activity for its 

cytoprotective effects on osteoblasts following TNF-a exposure. 

Introdu ction 

Dietary intake of long chain polyunsaturated fatty acids (LCPUF As) has been linked 

with a number of beneficial health effects in humans including a possible protective 

effect against postmenopausal bone loss. Various intervention studies in animal 

models for post-menopausal osteoporosis have demonstrated bone-sparing effects of 

n-3 LCPUFAs [ 1 -3 ] .  Specifically, docosahexaenoic acid  (DHA, 22:6n-3) has been 
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shown to be particularly bone-protective (Chapter 2) .  Co-treatment with DHA and 

1 7p-oestradiol has been shown to result in significantly higher bone mass in  

ovariectomised rats compared to either treatment alone (refer Chapter 5) .  However, 

co-treatment with DHA and either of the phytoestrogens daidzein and genistein may 

inhibit some of the effects of DHA on bone as bone mineral content (BMC) was 

found to be consistently, although not statistically significantly, lower in animals 

receiving both phytoestrogens and DHA compared to DHA alone. Determining how 

phytoestrogens and 1 7�-oestradiol interact with DHA may aid in elucidating the 

mechanism by which DHA acts on bone. 

In the ovariectomised rat, DHA supplementation has been linked with increased 

periosteal circumference and greater overall bone area (Chapters 2 and 5) ;  two 

observations which suggest DHA may promote new bone formation. However, the 

effects of DHA on osteoblasts are largely unknown. In the two studies which have 

explored the effects of DHA on osteoblast proliferation [4, 5 ] ,  low concentrations of 

DHA appear to have no effect whereas high, and assumedly tox ic, concentrations (>3 

x 1 0-sM) inhibit cell growth [4, 5 ] .  

The objectives of  the present study were to  determine whether DHA treatment 

affects osteoblast growth in vitro and to provide insight into the mechanism by which 

phytoestrogens and 1 7�-oestradiol interact with D HA in bone. 

Methods 

Materials 

Gamma-linolenic acid, docosahexaenoic acid, arachidonic acid, eicosapentaenoic 

acid, prostaglandin E2 (P0409) and ,B-Glycerophosphate (G-989 1 )  were purchased 

from Sigma-Aldrich Co., New Zealand. Phenol red-free a-MEM (4 1 06 1 -029) and 

foetal calf serum were purchased from I nvitrogen New Zealand Ltd. Ascorbic acid 

(Cat# 1 83 1 )  was purchased from Merck Chemicals, Darmstadt, Germany. TNF-a 

(4 1 0-MT TNF-a/TNFSFIA) was purchased from R & D Systems, Minneapolis, 

USA. Axell Rabbit anti-bovine IgG, IgM and IgA was purchased from Accurate 

Chemical and Scientific Corp, New York, USA (catalogue number YMPS0 1 1 3) .  

Mouse IgG2a Y i sotype standard (HOPC-1 )  was purchased from Pharmingen ( B D  
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Biosciences), San Jose, California, USA (catalogue number 0303 1 D) .  Mouse anti ­

mouse Estrogen Receptor (ER)-a monoclonal antibody (catalogue number MA 1 -

3 1 0) and rabbit anti-mouse ER-P polyclonal antibody (catalogue number PA1 -3 1 1 )  

were purchased from Affinity Bioreagents, Golden, Colorado, USA. Fluorescein 

(FITC)-conj ugated AffiniPure F9ab 'h Fragment Goat anti-mouse IgG Fcy fragment 

specific and R-phycoerythrein (PE-conjugated Affinipure F(ab'h fragment goat anti­

rabbit IgG (H+L) secondary antibodies were purchased from Jackson 

ImmunoResearch Laboratories Inc. (West Grove, Pennsylvania, USA). 

Cell Culture Conditions 

The MC3T3-E l /4 cell line is a pre-osteoblast cel l  line derived from murine (Mus 

muscularis) calvarial cells. Under appropriate growth conditions, MC3T3-E 1 I4 cell s  

differentiate into mature osteoblasts and are capable of  synthesising mineralised 

extracellular matrix [6] . As phenol red, a commonly used indicator in cell culture 

media, may have oestrogenic activity [7] and MC3T3-E1 /4 cells are oestrogen­

responsive [8 ] ,  phenol red-free growth media was used for all experiments. MC3T3-

E 1 I4 cells were plated in phenol red-free a-MEM with 1 0% foetal calf serum with 

and without treatments as indicated and incubated at 3TC in a humidified 

atmosphere of 95% air/ 5% CO2. Cell density, number of replicate wel ls/treatment 

and specific culture conditions are as stated for each experiment. All experiments 

were independently repl icated a minimum of three times. 

Concentration 0/ DHA to be used/or in vitro experiments 

As previous studies have shown little effect of DHA on osteoblast proliferation, 

EPA, GLA and AA treatments were included in order to provide additional 

information about the dose response of osteoblasts to LCPUF A treatment. MC3T3-

E l /4 cells were plated at a density of 0 .75 x 1 05 cells/ml in  96-well plates with 8 

repl icate wel ls  per treatment. Cells were grown for 48hrs in phenol red-free a-MEM 

with 1 0% foetal calf serum and carrier (ethanol) or LCPUFA (EPA, GLA, AA or 

DHA) at concentrations of 2 .5 ,  5 .0, 1 0 .0 or 20f..lg/ml . Concentration of ethanol in the 

cell culture media increased in both control and LCPUF A-treated cells as 

concentration of LCPUF A increased. Final ethanol concentration in cell culture 

media ranged from 0.0025% to 0 .02%. For determination of cell differentiation, cells  

were seeded in 24-well plates at a concentration of 5 .5  x 1 04 cells/m!. Cel ls  were 
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cultured in phenol red-free a-MEM with 1 0% foetal calf serum, l OmM �­

glycerophosphate and 50�g/ml ascorbic acid and carrier (ethanol) or LCPUF A (EP A, 

GLA, AA or DHA) at concentrations of 2 . 5 , 5 .0, 1 0.0 or 20�g/ml for 1 0  days. Media 

was changed every 2-3 days. Measurement of cell number and alkaline phosphatase 

activity were as described below. 

Effect of DHA with and without genistein, daidzein or 1 7p-oestradiol on cell 

n umber in TNF-a exposed cells 

MC3T3 -E 1 I4 pre-osteoblast cells were cultured at a density of 7 .5  x 1 0
4 

cells/ml in 

24-well plates with 4 replicate wells per treatment. Culture medium was phenol red­

free a-MEM with 1 0% heat-inactivated foetal calf serum (FCS) and either no TNF-a 

(positive control), TNF-a (5ng/ml)  alone or TNF-a (5ng/ml) with treatment. 

Treatments were DHA, genistein, daidzein, 1 7�-oestradiol ,  DHA + genistein, DHA + 

daidzein and DHA + 1 7�-oestradiol .  Treatments were administered in the fol lowing 

concentrations : DHA 5�g/ml ,  genistein 1 0-6M, daidzein 1 0-6M and 1 7�-oestradiol 1 0-

8M.  The carrier for DHA and 1 7�-oestradiol was ethanol and for genistein and 

daidzein, dimethylsulphoxide (DMSO). Final concentration of ethanol in cell culture 

media did not exceed 0.05% and concentration of DMSO in cell culture media was 

0 .0 1  %. Cells were incubated for 6 days at 3TC in a humidified atmosphere of 95% 

air/ 5% CO2. Media were changed fol lowing 48 hours of culture, to osteogenic media 

(phenol red-free a-MEM with 1 0% heat-inactivated FCS, 1 0mM �-glycerophosphate 

and 50�g/ml ascorbic acid) with and without TNF-a and treatments . Media were not 

subsequently changed during the remaining 4 days of culture to ensure that the 

concentrations of secreted proteins reached detectable levels .  Each experiment was 

independently replicated at least three times. 

Determination of cell number 

Cell number was determined by crystal violet staining as previously described [9] . In 

short, after removal of media, cells were washed with PBS, fixed with 1 % 

formaldehyde and incubated with 1 %  crystal violet for 60 minutes at 3TC.  

Following thorough washing, stain was extracted from cells with 0 .2% Triton X- l OO 

and absorbance read at 550nm using an ELx808 Ultra microplate reader (Bio-Tek 

Instruments Inc . ,  Vermont, USA). Cell number was determined by normalising to the 

reading of a standard curve derived from a known number of cells per wel l .  
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Measurement of Alkaline Phosphatase Activity 

Cells were washed with PBS, fixed with 1 % formaldehyde and incubated with 3 00111 

of alkaline phosphatase test reagent (O.OSM p-nitrophenyl phosphate in TBS pH 9 .S)  

for 1 hr at 3 TC .  Two samples ( 1 00111) of test reagent from each well were transferred 

to a 96-well plate and absorbance read at 40Snm using an E Lx808 Ultra microplate 

reader (Bio-Tek Instruments Inc . ,  Vermont, USA). 

Determination of TGF-pl and PGE2 in cell culture supernatant 

Following the 6-day culture period, cell culture supernatant was removed and 

immediately frozen at -20°C until later analysis .  Prior to analysis, supernatant was 

thawed and centrifuged at 2000rpm for S minutes to sediment any contaminating 

cells .  Concentrations of TGF-� l and PGE2 were determined by ELISA using 

commercially available ELISA kits as follows: Mouse/Rat/Porcine/Canine TGF beta-

1 Quantikine ELISA kit (MB 1 OOB) and Prostaglandin E2 Parameter ™ Assay kit 

(KGE004) supplied by R&D Systems, Minneapolis, USA. 

Determination ofnuclear membrane oestrogen receptor expression 

Oestrogen receptor expression under a range of culture conditions was examined at 

culture day 8 .  All experiments were conducted using non-osteogenic media (phenol­

red free a-MEM with 1 0% heat-inactivated FCS) and repeated using osteogenic 

media (phenol red-free a-MEM with 1 0% heat-inactivated FCS, 1 0mM �­

glycerophosphate and S Ollg/ml ascorbic acid) . Cells (7 .S x 1 04 cells/ml) were 

incubated for 7 days with non-osteogenic or osteogenic media and either carrier 

(ethanol) or DHA (in concentrations of S and 1 0  Ilg/ml).  In one set of experiments 

media were not changed for the 7-day incubation period. I n  a second set of 

experiments, media were changed every 3 days and in a third set the media was not 

changed throughout the culture period but DHA (S or l Ollg/ml) was added every 3 

days. Following incubation, cells were washed five times with PBS, trypsinised and 

re-suspended in nuclear buffer (consisting of Sml 1 % sodium citrate, SOlll Triton-X 

1 00 made up to a volume of SOmL with ddH20) at a concentration of SOO,OOO 

cells/2001l1 buffer. To 200111 of nuclei suspension, S ill of primary antibody 

(O .Smg/ml) (either anti-ER-a, anti-ER-� or irrelevant control :  Mouse IgG2a y isotype 

standard (HOPC -1 )  or Rabbit anti-bovine IgG, IgM and IgA) was added and nuclei 

incubated for 2 hours at 4 °C .  Nuclei were washed with PBS and 1 00fll of secondary 
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antibody (0 .5- 1 .0mg/ml, FITC-conjugated Goat anti-mouse IgG or PE-conj ugated 

goat anti-rabbit IgG) added. Nuclei were incubated for a further 2 hours at 4°C, 

washed with PBS and fixed with 400�1 of 1 % formaldehyde. Nuclei were analysed 

by flow cytometry using a F ACSCalibur system and Cell Quest software (BD 

Biosciences, San Jose, Ca, USA). 

Statistical Analysis 

Concentrations of PGE2 In cell culture media were 10g lO-transformed to avoid 

heteroscadascity. All other data conformed to the requirements of the general linear 

model. Data were analysed by one-way ANOVA with post-hoc Tukey testing. A p­

value of SO.05 was considered significant. Results are expressed as the mean ± SE of 

three independent experiments. 

Results 

Determination of DHA concentration for cell culture experiments 

Cell number following treatment with EPA, DHA or GLA at concentrations of 2 .5 ,  5 ,  

10  or  20�g/ml was not significantly different from controls. Cell number was 

significantly higher than controls in cells treated with e ither 5 or 1 O�g/ml of AA 

(p<O.OOO l ) . Cell number was significantly lower in cells  treated with 20�g/ml AA 

compared to cells treated with 1 O�g/ml AA (p<O.OOO l )  (Figure 1 ) .  There was no 

significant effect of any LCPUF A treatment on mean alkaline phosphatase activity 

expressed on a per cell basis (data not shown). Unless otherwise stated, a 

concentration of 5�g/ml DHA was thus used in all subsequent experiments. 
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Figure 1 Effect of long chain polyunsaturated fatty acids (LCPUF A) on cell 
proliferation in MC3T3-E 1 /4 osteoblast-like cells. Cell number ( x 1 05) was 
determined following 48 hours of growth in 1 0% FCS/phenol-red free a-MEM with 
either the approproate amount of carrier (control cells) or GLA, AA, EPA or D HA at 
concentrations of 2.S ,  S .O ,  1 0.0 or 20.0 jlg/ml . Carrier was ethanol .  Final 
concentration of ethanol in cell culture media ranged from 0.002S% for the 2 .Sjlg/ml 
dose of LCPUF A to 0 .02% for 20Jlg/ml of LCPUF A. Cells were plated in 96-well 
plates at a density of 7 .S x 1 04 cells/ml with 8 replicate wells per treatment. Results 
shown are the mean and SE of three independent experiments. Cell count In 
treatments marked with * were significantly different from control at p<O.OS .  

Effect of DHA on cell number following exposure to TNF-a 

Following 48 hours of culture, cell number was significantly lower in TNF-a-treated 

cells compared to non TNF-a treated controls (p<O.OOO l ) . Treatment with DHA had 

no significant effect on cell number after 48 hours of culture (data not shown). 

Following 6 days of culture, cell number was significantly lower in TNF-a -treated 

cells compared to non-TNF-a-treated controls (p<O.OOO l ). Cell number was 

significantly higher in cells treated with both DHA and TNF-a compared to cells 

treated with TNF-a alone (p=O.O l )  (Figure 2).  Next we sought to determine the 

effect of 1 7�-oestradiol ( 1 O-8M), genistein or daidzein ( 1 0-6M) alone, or in 

combination with DHA, on cell number in TNF-a exposed cells .  Cell number was 

significantly lower in cells treated with both TNF-a and genistein than in cells 

treated with TNF-a alone (p<O.OOO l ). Combined treatment with D HA, genistein and 

TNF -a was associated with significantly lower cell number than treatment with TNF­

a + genistein (p=O.OOO l )  or TNF-a + DHA (p<O.OOO l ). Treatment of cells with TNF­

a and daidzein had no statistically significant effect on cell number compared to 
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treatment with TNF-a alone. Cell number following treatment with TNF-a, daidzein 

and DHA was not significantly different from cells treated with TNF-a alone or 

DHA and TNF -a. In the absence of DHA, 1 7p-oestradiol  had no statistically 

significant effect on cell number in TNF-a-exposed cells .  However, cell number was 

significantly higher in cel ls  treated with TNF-a, DHA and 1 7p-oestradiol compared 

to cells treated with TNF-a and DHA (p=O.02) (Figure 2) .  
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Figure 2 Effect of treatment with DHA and/or oestrogenic compounds on cell 
number in TNF-a - exposed MC3T3-E 1 I4 osteoblast-like cells. Cell number was 
measured by crystal violet staining (refer Methods) fol lowing 6-days of culture 
without TNF-a (positive control) or with TNF-a alone (negative control), or in 
conj unction with DHA (5Ilg/ml), daidzein ( 1 O-6M), daidzein ( 1 O-6M) + DHA 
(5Ilg/ml), genistein ( 1 O-6M), genistein ( 1 O-6M) + DHA (5Ilg/ml), 1 7p-oestradiol ( 1 0-
8M) or 1 7p-oestradiol ( 1 0-8M) + DHA (5Ilg/ml). Results shown are the mean and SE 
of three independent experiments. 

Effect of DHA and oestrogenic compounds on TGF-pl secretion by TNF-a -

exposed cells 

Treatment of MC3T3-E 1 I4 cells with TNF-a had no statistically significant effect on 

mean TGF -p 1 secretion per 1 05 cells compared to non-TNF -a treated controls 

(Figure 3) .  

A significant interaction between oestrogenic compounds and DHA treatment on 

mean TGF-p l secretion per 1 05 cells was apparent (p=O . O l ) .  In the absence of 

oestrogenic compounds, treatment of cells with TNF-a and DHA had no significant 
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effect on mean TGF-p 1 secretion per 1 05 cells .  In the absence of D HA, treatment 

with genistein and TNF-a was associated with significantly higher mean TGF-p I 

secretion per 1 05 cells (p=O.OOO l ) . Mean TGF-p I secretion per 1 05 cells was 

significantly higher in cell s  treated with genistein, DHA and TNF-a compared to 

cells treated with DHA and TNF-a (p<O.OOO I )  or genistein and TNF-a (p=0.0004). 

However, mean TGF -P 1 secretion per 1 05 cells was not significantly different in cells 

treated with DHA and TNF-a compared to cells treated with TNF-a and either 

daidzein or 1 7p-oestradiol ,  with or without DHA (Figure 3). 
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Figure 3 Effect of  treatment with DHA and/or oestrogenic compounds on  mean 
TGF-p I secretion by TNF-a - exposed MC3T3-E 1 I4 osteoblast-l ike cells .  TGF-pI 
(pg / 1 05 cells) was measured by ELISA in cell supematants fol lowing 6-days of 
culture without TNF-a (positive control) or with TNF-a alone (negative control) or 
in conj unction with DHA (5)lg/ml), daidzein ( l O-6M), daidzein ( l 0-6M) + DHA 
(5f.lg/ml),  genistein ( 1 O-6M), genistein ( 1 0-6M) + DHA (5f.lg/ml), l 7p-oestradiol ( 1 0-
8M) or I 7p-oestradiol ( l 0-8M) + DHA (5f.lg/ml). Results shown are the mean and SE 
of three independent experiments. 

Effect of DHA and oestrogenic compounds on PGE2 secretion by TNF-a -

exposed cells 

Treatment with TNF-a was associated with significantly greater mean PGE2 

secretion per 1 05 cells compared to non-TNF-a treated cel ls  (p<O.OOO l )  (Figure 4). 

Again there was a significant interaction between treatment with oestrogenic 

compounds and DHA treatment on mean PGE2 secretion per 1 05 cells (p=0.006). In  

the absence of oestrogenic compounds, treatment with TNF-a and DHA had no 

significant effect on PGE2 secretion per 1 05 cells. In the absence of DHA, treatment 
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with TNF-a and daidzein was associated with a significant reduction in PGE2 

secretion per 1 05 cells compared to TNF-a treatment alone (p=0.002). Conversely ,  

treatment with TNF-a and genistein was associated with significantly higher PGE2 

secretion per 1 05 cell s  than in TNF-a treated controls (p=0.008). Mean PGE2 

secretion per 1 05 cells was not significantly different in cells treated with TNF-a and 

daidzein compared to cells treated with TNF-a, daidzein and D HA. Mean PGE2 

secretion per 1 05 cells was significantly lower in cells treated with TNF -a, daidzein 

and DHA compared to cells treated with TNF-a and DHA (p=O .O I ) . I n  contrast, 

mean PGE2 secretion per 1 05 cells  was s ignificantly higher in cells  treated with 

TNF-a, genistein and DHA compared to cells treated with TNF-a and genistein 

(p=0.003) or TNF-a and DHA (p=0.0003) .  Mean PGE2 secretion per 1 05 cells was 

not significantly different in cells treated with TNF-a and 1 7p-oestradiol compared 

to treatment with TNF-a alone. Similarly, mean PGE2 secretion per 1 05 cells was not 

significantly different in cells treated with TNF-a, 1 7p-oestradiol and DHA 

compared to cells treated with TNF-a and DHA or TNF-a and 1 7p-oestradiol 

(Figure 4). 
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Figure 4 Effect of treatment with DHA and/or oestrogenic compounds on mean 
PGE2 secretion by TNF-a � exposed MC3T3-E 1 I4 osteoblast-l ike cel ls .  PGE2 (pg I 
1 05 cells) was measured by ELISA in cell supernatants fol lowing 6-days of culture 
without TNF-a (positive control) or with TNF-a alone or in conj unction with with 
DHA (5Ilg/ml), daidzein ( 1 0-6M), daidzein ( l 0-6M)+DHA (5Ilg/ml), genistein ( 1 0-
6M), genistein ( l 0-6M)+DHA (5Ilg/ml), 1 7p-oestradiol ( l 0-8M) or 1 7p-oestradiol 
( 1 0-8M)+DHA (5Ilg/ml) .  Results shown are the mean and SE of three independent 
experiments. 
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Effect of DHA on nuclear membrane oestrogen receptor expression 

At culture day 8 both ER-a and ER-� were detectable on MC3T3-E 1 /4 cell nuclei. 

There was considerable non-specific background binding of both secondary 

antibodies. DHA, at concentrations of 5 /lg/ml or 1 0/lg/ml had no observable effect 

on ER-a or ER-� membrane expression whether added as a single dose with no 

media change, with media changes every 3 days, with DHA added but no media 

change every 3 days, using osteogenic media (a-MEMIl O% FCS with ascorbic acid 

and �-glycerophosphate) or non-osteogenic media (a-MEMIl O% FCS) with or 

without TNF-a (data not shown). 

Discussion 

Under conditions considered optimal for cell growth, DHA at concentrations of 2.5 -

1 0/lg/ml appeared to have no effect on MC3T3-E 1 I4 cell proliferation or 

differentiation. In contrast, treatment with AA at concentrations of 5 or 1 0/lg/ml 

increased MC3T3-E 1 I4 cell number but not mean alkaline phosphatase activity per 

cell .  This suggests AA promoted proliferation but not differentiation of MC3T3-El /4 

cells .  A growth-stimulatory effect of AA as well as of P GE2, a cyclooxygenase 

product of AA, has previously been demonstrated [ 1 0, 1 1 ] .  In the present study, a 

concentration of 20/lg/ml of DHA, EPA or AA was associated with reduced cell 

number. A 5- 1 0/lg/ml concentration range was thus chosen for assessing the effects 

of DHA on MC3T3-E 1 I4 cells. 

One of the consequences of oestrogen deficiency is  increased production of 

inflammatory cytokines such as tumour necrosis factor - a (TNF -a) [ 1 2] and this is 

believed to contribute to the pathogenesis of post-menopausal bone loss [ 1 3] .  TNF-a 

exerts both cytotoxic and anti-proliferative effects in cells by inducing 

phosphorylation and dephosphorylation of specific proteins [ 1 4] .  We sought to 

determine the effect of DHA on cell survival in osteoblasts exposed to pro­

inflammatory TNF-a. As expected, in the present study cell number was significantly 

lower in TNF-a exposed cells compared to non-TNF-a exposed cells. Treatment of 

cells with DHA at the time of TNF-a challenge had no effect on cell survival in the 

first 48 hours of culture. However, by culture day 6, cell number was significantly 

higher in DHA-treated compared to non-DHA treated TNF-a exposed cells. DHA 
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has previously been shown to inhibit TNF-a activity and this  is believed to contribute 

to the anti-atherogenic and anti-inflammatory effects of DHA in vascular cells [ 1 5 , 

1 6] .  Whether DHA prevents apoptosis or promotes proliferation of TNF-a exposed 

osteoblasts remains to be determined. 

As a significant interaction between DHA and oestrogenic compounds (genistein 

daidzein or 1 7�-oestradiol) has been observed when the compounds are administered 

to ovariectomised rats (Chapter 5), we investigated the effect of co-treatment with 

DHA and phytoestrogens or 1 7�-oestradiol on cell number fol lowing TNF-a 

exposure. In the absence of DHA, treatment with daidzein or 1 7�-oestradiol had no 

effect on cell number however treatment with genistein resulted in a significantly 

lower cell number compared to treatment with TNF-a alone. In fibroblasts, a cell 

morphological ly similar to osteoblasts, genistein has been shown to synergistically 

potentiate the cytotoxic and anti-proliferative effects of TNF-a. This is believed to 

contribute to the anti-carcinogenic activity of genistein and the mechanism has been 

attributed to the tyrosine kinase inhibiting activity of genistein [ 1 4] .  

The protective effect o f  DHA o n  cell number was blocked by co-treatment with 

genistein but not daidzein. In a human kidney epithelial cell line DHA at 

concentrations of <1  OflM has been shown to stimulate cell proliferation under pro­

tumourigenic conditions. Co-treatment with either of the tyrosine kinase inhibitors 

genistein or tyrphostin-47, prevented the growth stimulatory effect of DHA [ 1 7] .  

Although genistein i s  a tyrosine kinase inhibitor, daidzein lacks this ability. It i s  

therefore possible that tyrosine kinase activity is required for the protective effect of 

DHA on cell number following TNF-a exposure in MC3T3-E 1 I4 cells. 

TGF-� 1 and PGE2 are two autacoids which potential ly can mitigate TNF-a activity. 

TGF-�1  is a growth factor which inhibits the apoptotic effects of TNF-a [ 1 8] .  PGE2 

is an eicosanoid formed from AA by the action of cyclooxygenase (COX). PGE2 

promotes proliferation of osteoblasts in vivo [ 1 9] and, to a lesser extent, in vitro [20] 

by activation of the MAP kinase signalling pathway [2 1 ] .  Synthesis of PGE2 is 

increased in response to TNF-a [ 1 8] .  
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In the present study DHA alone had no significant effect on mean TGF -� 1 or PGE2 

secretion by TNF-a-exposed MC3T3-E 1 I4 cells. Genistein significantly increased 

TGF-� l and PGE2 secretion per 1 05 cells and the combination of genistein and DHA 

resulted in further enhancement of both TGF -� 1 and PGE2 secretion. A stimulatory 

effect of genistein on TGF -� 1 protein expression has previously been reported [22, 

23] .  As exogenous TGF- � l  promotes PGE2 synthesis in MC3T3-E 1 I4 cells [24, 25]  

and inhibition of endogenous TGF-� l formation by serum deprivation is associated 

with reduced PGE2 synthesis [26] , it is likely that the increased TGF-� l secretion 

observed following genistein treatment in the present study contributed to the 

increased PGE2 secretion. Interestingly, treatment of serum-starved TNF-a exposed 

MC3T3-E 1 I4 cells with genistein, daidzein or 1 7�-oestradiol has been associated 

with reduced PGE2 secretion and increased cell number compared to cells treated 

with TNF-a alone [26] .  Taken together, the results of the study involving serum­

deprived cells and the results of the present study in which cells were provided with 

ample serum for growth may indicate that the three oestrogenic compounds can 

protect cel ls  against some of the deleterious effects on cell number of serum 

deprivation but not of TNF-a. 

The greater mean PGE2 secretion per 1 05 cells  observed with genistein treatment 

could be expected to have led to increased cell number. However, tyrosine kinase 

activity is required for the growth stimulatory effect of PGE2 [ 1 8] .  Therefore 

although PGE2 secretion was elevated with genistein treatment, the previously 

reported growth stimulatory effects of PGE2 [ 1 9] were possibly blocked by the 

tyrosine kinase inhibiting activity of genistein. This may partial ly explain the 

reduced cell number evident with genistein and genistein + DHA treatments in the 

present study. However as mean PGE2 secretion per 1 05 cells was significantly 

lower in daidzein-treated compared to DHA-treated or control cells, yet cell number 

was not significantly lower in daidzein treated cells, the influence of PGE2 on 

MC3T3-E 1 I4 cell number under these culture conditions may be relatively slight. 

Combined treatment of MC3T3-E l /4 cells with 1 7�-oestradiol and DHA resulted in 

significantly higher cell number than treatment with 1 7�-oestradiol or DHA alone. 

Observations from the present study indicate the mechanism did not involve 

modulation of TGF-� l or PGE2 secretion. As incorporation of DHA into cell 
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membranes can influence the expreSSIOn of membrane-bound proteins, we 

investigated whether treatment of MC3T3-E1 I4 cells with DHA alters nuclear 

membrane expression of the two types of oestrogen receptor, ER-a and ER-�. 

However under the range of culture conditions examined in the present study, there 

was no observable effect of D HA treatment on nuclear membrane expression of 

either oestrogen receptor. 

In  conclusion, DHA may mitigate the effect of TNF-a on cell number in MC3T3-

E 1 14 cells though the mechanism of action remains unclear. It appears that tyrosine 

kinase activity may be required for DHA activity. Co-treatment with 1 7�-oestradiol 

and DHA is  more effective than either treatment alone in preserving cell number 

fol lowing TNF -a exposure. It is possible that preservation of osteoblast cell number 

fol lowing ovariectomy may have contributed to the observed beneficial effect of 

combined DHA and 1 7�-oestradiol treatment on bone mass post-ovariectomy in rats.  

Further work is required in order to determine the effect of DHA treatment, with and 

without 1 7p-oestradiol treatment, on osteoblast number following ovariectomy in 

vivo. There is  a need to determine the signalling pathways which are influenced by 

D HA. Results from the present study suggest that tyrosine kinase receptor initiated 

pathways are likely candidates as DHA-responsive pathways. 
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Discussion and Conclusions 

Although a number of intervention studies have reported a beneficial effect of n-3 

LCPUFAs on bone mass in ovariectomised animal models [ 1 -3 ] ,  only one 

intervention study has described a favourable effect of n-3 LCPUF A 

supplementation on bone mass in post-menopausal women [4] . Due to the limited 

evidence accrued to date, the bone-protective activity of n-3 LCPUFAs has yet to 

gain widespread acceptance in the medical community. National Health bodies in the 

US, Canada, Australia and New Zealand currently do not endorse a role for n-3 

LCPUF As in osteoporosis prevention [5-8 ] .  More research is required in order to 

determine the type and dose of LCPUF A required for a bone protective effect and the 

mechanism involved. 

The first objective of this thesis was to determine whether different LCPUF As have 

differing bio-activities in bone . In Chapter 2, a direct comparison was made between 

the effects of GLA, DHA and EPA, the so-called "anti-inflammatory" lipids, on bone 

mass post-ovariectomy in rats. At the dose employed (0.5g LCPUF Alkg rat body 

weight/day), DHA alone exhibited significant bone-protective effects. 

Previously, the bone-protective effect of n-3 LCPUF As was attributed to their anti­

inflammatory activity [9] . The finding that DHA, but not E PA, ameliorated 

ovariectomy-induced bone loss (reported in Chapter 2) suggests however that the 

mechanism of action is much more complex than simply an inhibition of 

inflammation. In vitro both EP A and DHA inhibited the PGE2-induced increase in 

membrane-bound RANKL expression in MC3T3-E 1 I4 cel ls  (Chapter 3) .  However, 

there was no evidence of an anti-resorptive effect of either treatment in vivo as 

indicated by the lack of effect of DHA on reducing plasma CTX concentration and 

endosteal circumference compared to ovariectomised controls (Chapter 2).  This may 

indicate that RANKL signall ing is not the predominant pathway leading to the 

increased osteoclast number and activity which occurs post-ovariectomy. This is 

supported by a previous report which has shown that only small increases in RANKL 

are required to maximally stimulate osteoclast formation [ 1 0] .  As a result i t  has been 
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suggested that RANKL-independent pathways have a major role in the increase in 

osteoclast formation evident post-menopause in women [ 1 0] .  

The greater bone area, larger periosteal circumference and increased plasma 

concentration of gamma-carboxylated osteocalcin in D HA-supplemented animals 

compared to ovariectomised controls reported in Chapters 2 and 5 suggest DHA may 

promote bone formation. The mechanism may involve the actions of vitamin D and 

IGF- l .  The results presented in Chapter 2 showed elevated total 25-hydroxyvitamin 

D, but lowered 25-hydroxyvitamin D3 concentration and increased IGF- l 

concentration in the plasma of DHA-supplemented rats. Whether these changes in  

plasma concentrations are a result of a change in the rate of synthesis or  a change in 

the rate of turnover of IGF- l and 25-hydroxyvitamin D remains to be determined. 

Although DHA has also been shown to regulate gene expreSSIOn of vanous 

cytochrome P450-dependent hydroxylases [ 1 1 ]  such as cyp26 which is involved in 

retinoic acid metabolism [ 1 2] ,  the possible effect of DHA on cytochrome P450 

hydroxylases responsible for vitamin D metabolism has yet to be explored. As 

different 25-hydroxylases have differing specificities for vitamin D2 and D3 [ 1 3] ,  

modulation o f  the activity o f  the various hydroxylases may result in a change in the 

relative balance of hydroxylated metabolites of vitamin D2 and D3 such that vitamin 

D2 predominates. Other studies have reported that vitamin D2 is less potent than 

vitamin D3 in promoting calcium release from bone [ 1 4] and inducing 

hypocalcaemia [ 1 5] but more effective at promoting bone collagen synthesis [ 1 4] .  

The ultimate effect o f  DHA treatment on the activity o f  the various hydroxylases 

involved in vitamin D metabolism requires further research. Interestingly, specific 

metabolites of both vitamin D and retinoids have been shown to modify gamma­

carboxylation of osteocalcin in human osteoblasts [ 1 6] and to int1uence gamma­

carboxylase activity in rats, independent of the actions of vitamin K [ 1 7] .  DHA­

mediated modification of vitamin D and/or retinoid metabolism may have 

contributed to the increased plasma concentration of gamma-carboxylated 

osteocalcin reported in Chapter 5 .  

IGF- 1 i s  produced by a range of cell types including osteoblasts. Its expression i s  

induced b y  various hormones and cytokines such a s  PTH, leptin PGE2, TGF -�, and 

FGF2 (Fibroblast Growth Factor 2) [ 1 8, 1 9] .  In vivo we found no evidence of an 
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Increase in PTH level fol lowing DHA supplementation (Chapter 2) and in vitro, 

osteoblast secretion of TGF-� l and PGE2 were not increased fol lowing DHA 

treatment in TNF-a-exposed cells (Chapter 7) .  The n-3 LCPUFAs have previously 

been shown to inhibit leptin expression [20] however the effect of DHA on FGF2 

expression has yet to be determined and this warrants further investigation. IGF- l 

promotes proliferation and differentiation of osteoblasts by binding to its membrane­

bound receptor. The cytoplasmic domain of the IGF- l receptor has tyrosine kinase 

activity and this activity is essential for IGF- l signalling [2 1 ] .  In Chapter 7, the 

tyrosine kinase inhibiting activity of genistein was proposed as a possible contributor 

to the mechanism by which genistein prevented the DHA-induced promotion of cell 

number fol lowing TNF-a exposure in MC3T3-E 1 I4 osteoblast-like cells .  Inhibition 

of IGF- l signalling may have contributed to the reduced cell number evident In 

osteoblasts treated with genistein and DHA compared to DHA alone. 

In the study presented in Chapter 5, an interaction between DHA and oestrogenic 

compounds was observed such that RBC fatty acid composition, plasma IL-6 

concentration and BMC differed depending on the type of oestrogenic compound 

administered in conjunction with DHA. Although there was an additive or 

synergistic effect of DHA and 1 7�-oestradiol on BMC, there was no beneficial effect 

of combined phytoestrogen and DHA treatment on bone mass (Chapter 5) .  

Incorporation of DHA into membranes alters the amount and type of membrane­

bound proteins [22, 23] .  As phytoestrogens predominately interact with oestrogen 

receptor 13 (ER�) whereas 1 7�-oestradiol interacts with both ERa and ER�, we 

sought to determine whether DHA alters the relative levels of the two oestrogen 

receptors, ERa and ER�, in the nuclear membrane of osteoblasts (Chapter 7) .  Under 

the study conditions employed in Chapter 7, we observed no effect of DHA on ERa 

or ER� expression in the nuclear membrane. It would be of interest to determine if 

DHA alters oestrogen receptor activation (particularly activation of ERa) and/or 

interacts with ERa signalling. 

A major question stil l  remaining is why DHA fails to exert any observable effect on 

osteoblasts under conditions optimal for cell growth (Chapter 7).  Although there is 

little published literature on the effects of DHA in bone cel ls, there is currently 

considerable research interest into the involvement of DHA and EPA in soft tissue 
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repair. I n  many ways the process of bone remodelling, which is initiated in response 

to micro-damage to bone tissue, mimics the process of soft tissue repair which is  

instigated in response to inj ury or infection. Pro-inflammatory mediators are 

released as an early response to damage in soft and mineralised tissue. It is now 

known that other lipid mediators, such as the lipoxins, are endogenous "stop" signals 

which prevent further pro-inflammatory mediator production within soft tissue. A 

third set of lipid mediators consisting of the resolvins and docosatrienes inhibit the 

effects of pro-inflammatory mediators and trigger the resolution of inflammation and 

ultimate completion of the soft tissue repair process. Whereas pro-inflammatory 

mediators and Iipoxins are derived from n-6 LCPUF As, resolvins and docosatrienes 

are derived from EPA and DHA. Resolvins and docosatrienes are present in bone 

marrow in relatively high concentrations (Chapter 6).  As seen in Chapter 6,  

ovariectomy alters the balance between pro-inflammatory AA-derived and pro­

resolving D HA-derived lipid mediators in bone marrow and this balance is somewhat 

restored by DHA supplementation. Given the parallels between the regulatory 

processes governing soft tissue repair and mineralised tissue remodelling, it i s  

possible that resolvins and docosatrienes derived from DHA, rather than DHA itself, 

are responsible for at least some of the bone-protective effects of DHA. The 

mechanism by which resolvin and docosatriene synthesis is induced is currently 

unknown however biosynthesis is known to be initiated as an early response to 

infection or inj ury. If resolvins and docosatrienes ,  rather than D HA, are bioactive in 

osteoblasts, DHA treatment would have no effect on osteoblasts except under pro­

inflammatory conditions. This may explain why D HA treatment only elicited a 

response in  osteoblasts when co-administered with the pro-inflammatory cytokine 

TNF-a, a known stimulator of lipoxygenase activity [24] . The role of lipid mediators 

derived from DHA on bone cell function remains to be explored. 

Recommendations for Future Research 

'Y Determining the signal transduction pathway(s) employed by DHA in bone 

cells is a critical next step to understanding the mechanism by which D HA 

acts in  bone. Observations from the present thesis suggest that the following 

two pathways are possible candidates as D HA-responsive pathways :  

• the Ras/Raf- l /MAPK pathway, a pathway initiated by IGF- l .  
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• the cAMP pathway. This is a pathway activated by PGE2 which 

ultimately leads to up-regulation of RANKL expression. DHA has 

previously been shown to reduce cAMP signalling in non-bone cells 

[25, 26] . 

� The role of docosatrienes and resolvins derived from both DHA and EP A, 

both on bone cell formation and activity in vitro and on bone mass in growing 

and ovariectomised animals, requires investigation. 

� Whether DHA (or lipid mediators formed from DHA) are bioactive when 

present within membranes in bone cells or whether their release from bone 

cell membranes is required for bioactivity needs to be determined. 

� Further in vivo studies to establish the optimal dose of DHA for bone mass 

preservation post-ovariectomy in animal models are required. It would also 

be of interest to determine whether the type or amount of other lipids in the 

diet (eg n-6 LCPUF As) influences DHA bioactivity. 

� The effectiveness of DHA supplementation in the prevention of post­

menopausal osteoporosis in women needs to be evaluated. If proven 

efficacious, a recommended dietary intake of DHA to aid in osteoporosis 

prevention needs to be established. 
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Appendix 1 

Phytoestrogens and Bone - Summary of Studies in H u mans 

Epidemiological Studies 
Phytoestrogen Model M ean soy intake M ean Outcome Ref 

calcium 
intake 

Positive NiVNegative 

Total soy Chinese women 25 .4mg isoflavones/day 657mg/day BMD LS & Wards triangle No effect BMD femur [ 1 ]  
Lower PTH, Osteocalcin & urinary 
NTX 

Genistein, Post-menopausal Not reported 574- N/S LS, femoral neck, [2] 
daidzein, Equol Korean women Urinary excretion in Ilmol/day 650mg/day Ward's triangle BMD 

was genistein 1 .09, daidzein 
2.59 & equol 0.93 

Enterolactone Post-menopausal Not reported. 574- BMD - LS, Fern Neck, Ward's [2] 
Korean women Urinary excretion was 650mg/day triangle 

1 .46llmol/day 
Soy protein Post-menopausal 1 2 .6g soy proteinlday LSBMD [3 ] 

Japanese women Lower DPYD excretion 
Genistein & Post -menopausal 1 8 .4g/day 623mg/day LS and femoral neck BMD.  Both [4] 
daidzein Japanese women were significantly higher in h ighest 

Highest tertile 22.5g/day terti le of gen & dai intake. 
Genistein & Pre & Post- 8 .8mglday 677mg/day No association LS and [4] 
daidzein menopausal Chinese femoral neck BMD 

women 
Soy protein Early postmenopausal Highest quarti le:  1 9 .4g soy Not reported Increased BMD in women > 4 No effect of soy intake on [5] 

Chinese women protein Iday years post-menopause with BMD in women <4 yrs post-
Range 9.6-79.6g/day increasing quartile of soy intake menopause 

Total genistein Postmenopausal Highest terti le > 1 OOOllg Not reported Lower urinary NTX excretion i n  No effect BAP, PYR, BMD [6] 
intake women genisteinlday those with highest intakes (femoral neck, trochanter, 

compared to those with no total hip, total spine.) 
isoflavone intake 
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Intervention Studies 
Phytoestrogen Study population Study Mode Soy Calcium Outcome Ref 

duration Protein 
present? 

Positive NiVNegative 

50mg Adolescent males 6 weeks Tablet Not Not reported No effect on BAP, PYR [7] 
isoflavones/day reported 
52mg Premenopausal (24yrs One Food Yes I I 68mglday Increased ratio of [8] 
isoflavones/day old) caucasian women menstrual CTX:osteoca1cin 

cyc le 
64mg isoflavone Premenopausal Approx 93 Food Yes Baseline: Increased IGF I  & IGFBP3 No effect CTX or BAP [9] 
aglycones/day women days 848mglday at certain stages of Increased Dpyd excretion 

Trial :  1 494mglday menstrual cycle 
90mg soy Premenopausal 1 2  months Food Yes Basel ine: No effect on BMC or BMD [ 1 0] 
isoflavones/day women 2 1 -25 yrs old I I 0mglday at lumbar spine, greater 

Trial : 830mg trochanter (femur) or Wards 
Ca/day triangle (femur) 

l 28mg isoflavone Premenopausal Approx 93 Food Yes Basel ine: No effect CTX, IGF I ,  [9] 
aglycones/day women days 848mglday IGFBP3 or BAP 

Trial: 592mg/day Lncreased Dpyd excretion at 
certain stages of menstrual 
cyc le 

Low isoflavone Early post-menopausal 9 months Food Yes Not reported BMD trochanter [ 1 1 ] 
« 4mg/day) women 
4.4mg soy Early postmenopausal 24 weeks Food Yes Basel ine: No effect on NTX or BAP [ 1 2 ]  
isoflavones women 450mglday No effect on LSBMD or 

Trial :  8 1  Omg Ca/ LSBMC once covariates 
accounted for 

Soy isoflavones Early postmenopausal 4 weeks Tablet Yes Not reported Decreased PYD & DPYD No effect osteocalcin [ 1 3  ] 
30.9mg excretion cf basel ine 
37 .3mglday soy Early post-menopausal 1 0  weeks Food Yes Not reported Decreased PYD & DPYD N/S bone sti ffness [ 1 4 ]  
isoflavones Japanese l iving in excretion 

Brazil  
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Intervention Studies 
Phytoestrogen Study population 

40mg soy Chinese early 
isoflavones/day postmenopausal 

women 

4 1 .9mg soy Early postmenopausal 
isoflavones/day women 
47mg Early postmenopausal 
isoflavones/day women 

Genistein Early postmenopausal 
S4mgiday women 

H igh isoflavone Early post-menopausal 
(S4 or 90mgiday) women 
80mg soy Chinese early 
isoflavones/day postmenopausal 

women 

Study 
duration 

I year 

1 6  weeks 

6 months 

I year 

9 months 

I year 

Mode 

Tablet 

Food 

Food 

Tablet 

Food 

Tablet 

Soy 
Protein 
present? 

Not 
reported 

Yes 

Yes 

No 

Yes 

Not 
reported 

Calcium Outcome Ref 

Positive Ni llNegative 

Basel ine : not No effect on BMC or B MD [ I S ] 
reported 
Trial :  I I 96mgiday 
SOOmg Ca & 
1 2S IU  vit D 
provided as 
supplement 
Not reported No effect BAP or DPYD [ 1 6] 

Not reported Trend for osteoca\cin to No effect forearm BMD or [ 1 7] 
increase NTX or hydroxyprol ine 

excretion 
Baseline: 889- Reduced PYR & DPYR [ 1 8] 
920mgiday excretion 
Trial: not stated Increased osteocalcin & B-
but those with ALP 
initial intakes I ncreased BMD femoral 
below SOOmgiday neck & lumbar spine 
were advised to 
increase intake 
Not reported No effect BMD [ 1 1 ] 

Basel ine: not Increased BMC at total hip [ I S ]  
reported & trochanter in women 
Trial :  I I 27mglday with low initial BMC 
SOOmg Ca & 
1 2S I U  vit D 
provided as 
supplement 
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Intervention Studies 
Phytoestrogen Study population Study Mode Soy Calcium Outcome Ref 

duration Protein 
present? 

Positive NiI/Ne2ative 

80Amg soy Early postmenopausal 24 weeks Food Yes Basel ine: Prevented LSBMC and No effect on NTX or BAP [ 1 2] 
isotlavones women 450mg/day BMD loss 

Trial :  8 1  Omg/day 
provided in 
supplements & 
soy foods. 

90mg pure Early postmenopausal 6 weeks Tablet No Not reported N/S effect on osteoca1cin or [ 1 9] 
genistein/day women CTX 
Omg/day White, US I month Food Yes Ca approx No effect Ca balance or [20] 

postmenopausal (4 weeks) 1 000mg/day biochemical markers of 
women bone metabolism 

22Amg soy Postmenopausal 1 2  weeks Food Yes Soy food BAP increased No change metacarpal BMD [2 1 ] 
isotlavones/day women - Japanese? contained 5 1 .6mg TRAP decreased 

Ca/day 
33 .5mg soy Postmenopausal 1 2  weeks Food Yes Soy food Increased metacarpal No effect BAP or TRAP [2 1 ] 
isotlavones/day women - Japanese? contained 60.4mg BMD 

Ca /day 
40mg Postmenopausal, 8 weeks Food Not Not reported Decreased Dpyd excretion No effect BMD or [22] 
isotlavones/day c l imacteric Japanese reported osteocalcin 

women 
43 .5mg totaUday Pre-, peri- and post- 1 2  months Tablet No 1 007- 1 0 1 3mg/day Trend for increased PINP No significant effect on hip [23 ] 
consisting of: menopausal women (52 weeks) Vitamin D 3 . 1 9- (N/S) BMC or BMD 
26mg biochanin (68-69% post- 3 .37�g/day Reduced BMC and BMD 
A, 1 6mg menopausal) loss at LS 
formonectin, I mg 
genistein and 
0.5mg daidzein 
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Intervention Studies 
Phytoestrogen Study population Study Mode Soy Calciu m Outcome Ref 

du ration Protein 
present? 

Positive N il/Negative 

56mg soy Hypercholesterolemic 26 weeks Food Yes Not reported No effect BMC or BMD - [24] 
isoflavones/day postmenopausal any site 

women 
57mg soy Postmenopausal 7 weeks Food Yes 746mglday No effect urinary [25] 
isoflavones women hydroxyprol ine or N-
(aglycones)/day telopeptide. 

No effect serum B-ALP, 
osteocalcin. 
No effect calcium retention 

60mglday Postmenopausal 1 2  weeks Food Yes Not reported increased serum [26] 
women osteocalcin 

Decreased NTX excretion 
65mg isoflavone Postmenopausal 93 days Food Yes Basel ine: Decreased BAP No effect CTX, Dpyd, IGF I [9] 
aglycones/day women ( 1 3  weeks) 945mglday or IGFBP3 

Trial : 1 047mglday 
Vit D intake also 
increased 
signi ticantly 

65mglday soy White, US I month Food Yes Ca approx No effect Ca balance or [20] 
isoflavones postmenopausal (4 weeks) 1 000mglday biochemical markers of 

women bone metabol ism 
76mg soy Postmenopausal 2 years Food Yes Not reported LSBMC & BMD No change femoral neck [27] 
isoflavones/day Caucasian (Danish) ( 1 04 weeks) increased BMC or BMD 

N/S changes in  serum PINP 
and ICTP 

84mg Postmenopausal 24 weeks Tablet Not Not reported Decreased Dpyd excretion N/S BMD LS, femur neck, [28] 
isoflavones/day Chinese women reported Ward's triangle 

No effect osteocalcin or 
BAP 
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Intervention Studies 
Phytoestrogen Study population Study Mode Soy Calciu m Outcome Ref 

duration Protein 
present? 

Positive Ni l/Negative 

90mg soy Hypercholesterolemic 26 weeks Food Yes Not reported Increased LSBMC & No effect on BMC/BMD at [24] 
isoflavones/day postmenopausal LSBMD other skeletal sites 

women 
99mg soy Postmenopausal 1 2  months Food Yes Basel ine: No effect BMD -femur & [29] 
isoflavones/day women Netherlands (52 weeks) I 623mg/day LS 

Trial :  1 2 1 2mg/day 
1 00mg Postmenopausal 2 years Food Yes 1 200- 1 500mg Maintained BMC & BMD [30] 
isoflavones/day women ( 1 04 weeks) Ca/day at LS 
I I 0mg soy Postmenopausal 6 months Tablet Not Baseline :  Decreased type I col lagen N/S total spine & hip BMC [3 1 ]  
isoflavone/day women (26 weeks) reported 825mg/day Ul chain helical peptide & BMD 

Trial :  1 200mg/day excretion 
Greater BMD L2 & L3 . 

1 1 4mg Postmenopausal 3 months Tablet Not 300- 1 000mg/day Reduced Pyr & Dpyr No effect BAP, PINP, P[CP [32] 
isoflavonoids/day women with a history ( 1 3  weeks) reported excretion 

of breast cancer 
1 1 8mg Postmenopausal 3 months Food Yes Baseline: 1 358- No effect PYD & DPYD [33] 
isoflavones/day women ( 1 3  weeks) I 379mg/day 

Trial: not reported 
but soy mi lk 
supplement & 
placebo also 
contained Ca 

1 26mg Postmenopausal 24 weeks Tablet Not Not reported Decreased Dpyd excretion No effect osteocalcin or [28] 
isoflavones/day Chinese women reported Trend for BMD to be BAP 

higher with high dose 
(N/S) 
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Intervention Studies 
Phytoestrogen Study population Study Mode Soy Calcium Outcome Ref 

duration Protein 
present? 

Positive NiVNegative 

1 32mg isotlavone Postmenopausal 93 days Food Yes Basel ine: Decreased BAP No effect CTX [9] 
aglycones/day women ( 1 3  weeks) 94Smg/day 

Trial: 1 094mg/day 
Vit D intake also 
increased 
signi ficantly 

l S00mg nij iru Adult men & women 60 days Food Not Not reported Reduction in serum [34] 
(soybean consuming a low reported calcium in women (but not 
extract)/day vitamin K diet during men). 
(tablet) Isotlavone study period Reduction in serum 
content not inorganic phosphorus & 
reported No control group increase in y-carboxylated 

consuming a vitamin osteocalcin in both men & 
K adequate diet women. 
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Appendix 2 
Phytoestrogens and Bone - Sum m a ry of Studies in Animals 

Phyto Dose Mode Model Study length Soy Dietary Outcome Ref 

source protein calciu m  
Calcium Biochemical B MC/ Other 

present? content 
Balance Markers BMD 

G rowing OVX rat 

Soy protein Approx 0 .84mglday Diet OVX rat 35  days Yes 0.4% of No effect No effect No effect [ I ]  
isolate (gen + dai) Sprague (5 weeks) diet serum ALP, femoral calcitriol or 
Ethanol Dawley 95 urinary BMD calcidiol 
extraction Equivalent to 4mg/kg days (3mo) hydroxyprol ine 
of body wt at trial 
isoflavones commencement & 

3mg/kg body weight at 
trial completion 

Soy protein Approx 8.39mg/day Diet OVX rat 35  days Yes 0.4% of No effect Greater No effect [ I ]  
isolate (gen + dai) Sprague (5 weeks) diet serum ALP, femoral calcitriol or 

Dawley 95 urinary BMD calcidiol 
Equivalent to days (3mo) hydroxyprol ine 
39.8mglkg body wt at 
trial commencement & 
28.4mglkg body weight 
at trial completion 

Soy protein Approx 8.39mglday Diet OVX rat 65 days Yes Not No effect ALP, No effect No effect [2] 
isolate (gen + dai) Sprague (supplementation reported acid femoral or calcidiol or 

Dawley 95 commenced 35  phosphatase 4th lumbar calcitriol 
Animal body weight not days (3mo) days fol lowing vertebrae 
reported OVX) BMD 
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Phyto Dose Mode Model Study length Soy Dietary Outcome Ref 

source protein calcium 
Calcium Biochemical BMC/ Other 

present? content 
Balance Markers BMD 

Soy protein Approx 0 .84mglday Diet OYX rat 65 days Yes Not No effect ALP, No effect No effect [2] 
isolate. (gen + dai) Sprague (supplementation reported acid femoral or calcidiol or 
Ethanol Dawley 95 commenced 35  phosphatase 4th lumbar calcitriol 
extraction Animal body weight not days (3mo) days following vertebrae 
of reported OYX) BMD 
isoflavones 
Isoflavones Approx 0.96mg per rat Diet OYX rat 40 days Not 0.4% of No effect No effect No effect on [3]  

per day Sprague reported diet urinary serum ALP or 4th lumbar 
Source & Dawley 90 Ca or Mg TRAP vertebral, 
composition Equivalent to 3.5mglkg days (3mo) excretion tibial or 
not reported body weight per day femoral 

BMD 
Isoflavones Approx 1 .92mg per rat Diet OYX rat 40 days Not 0.4% of No effect No effect No effect on [3] 

per day Sprague reported diet urinary serum ALP or 4th lumbar 
Source & Dawley 90 Ca or Mg TRAP vertebral, 
composition Equivalent to 7mglkg days (3mo) excretion tibial or 
not reported body weight per day femoral 

BMD 
Soy protein Not reported Diet OYX rat 35  days Yes 0.4% of Prevented No effect [4] 
isolate Sprague diet OYX- IOF- I ,  

Oawley 90 induced calcidiol or 
days (3mo) reduction calcitriol 

in Ca 
transport 
in 
duodenal 
& colonic 
cells 
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Phyto Dose Mode Model Study length Soy Dietary Outcome Ref 

source protein calcium 
Calcium Biochemical BMC/ Other 

present? content 
Balance Markers BMD 

Soy protein Not reported Diet OVX rat 35  days Yes 0.4% of No effect No effect [4] 
isolate Sprague diet intestinal calcidiol, 

Dawley 90 Ca calcitriol, 
days (3 mo) transport IGF- I 

Genistein I Ilg/g body weight s.c. OVX rat 2 1  days No 0.6% of No effect [5 ]  
Sprague diet tibial B MD 

( I  mg/kg body weight) Dawley 60 
days (2mo) 

Genistein 51lg/g body weight s.c. OVX rat 2 1  days No 0.6% of No effect No effect [5] 
Sprague diet DPYD tibial BMD 

(5mg/kg body weight) Dawley 60 Increased 
days (2mo) serum 

osteocalcin 
I soflavones 6.25g/kg diet Diet OVX rat 1 6  weeks No 0.4% of No change No change [6] 

Sprague diet ALP or TRAP. tibia BMD 
Approx 50mg/kg body Dawley 1 2  No change 
weight/day weeks bone Ca 

(3mo) content -
femur & 
tibia 
I ncreased 
femoral & 
LS vertebral 
BMD 
Higher bone 
ash content 
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Phyto Dose Mode Model Study length Soy Dietary Outcome Ref 

source protein calcium 
Calcium Biochemical BMCI Other 

present? content 
Balance Markers BMD 

G rowing OVX rat LOW CALC I U M  D I ET 
Isoflavones 80ppm in d iet Diet OVX rat 6 weeks No O. I % of No change Increased No effect [7] 

Sprague diet serum ALP, Ca content femur 
0.08g1kg diet Dawley TRAP, urinary of femur & breaking 
Approx intake: 4mg/kg 9weeks hydroxyprol ine LS. force. 
body weight/day (2mo) Increased 

LS dry 
weight 

Isoflavones 1 60ppm in diet Diet OVX rat 6 weeks No O. I % of No change Increased No effect [7] 
Sprague diet serum ALP, LS dry femur 

0. 1 6g/kg diet Dawley TRAP, urinary weight breaking 
Approx intake: 8mg/kg 9weeks hydroxyprol ine, No effect force, 
body weight/day (2mo) Ca content 

of femur or 
LS 

G rowing OVX mice 
Genistein O.4mg/day s.c OVX mice 4 weeks No 0.4% of Increased [8]  

ddy 8weeks diet femoral 
(2mo) BMD 

Genistein 0.7mg/day s.c. OVX mice 4 weeks No 0.4% of Femoral [8] 
ddy 8weeks diet BMD N/S 
(2mo) compared to 

sham 
Daidzein 200mglkg diet Diet OVX mice 3 weeks No Not No effect No effect [9] 

CS7, C3H, reported LS or femur peak load 
Approx: 22mg/kg body CD- I & BMC, 
weight/day Swiss BMD 

Webster 
8 weeks 
(2mo) 
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Phyto Dose Mode Model Study length Soy Dietary Outcome Ref 
source protein calcium 

Calcium Biochemical BMC/ Other 
present? content 

Balance Markers BMD 

Isoflavones 1 60mg isoflavone Diet OVX mice 6 weeks Not Not Increased [ 1 0] 
conj ugates/kg body C57, C3H, reported reported whole body, 
weight/day CD-\ & femoral & 

Swiss LS BMD 
Webster 
8 weeks 
(2mo) 

Mature OVX rat 
Isoflavone- OAmg isoflavones/g Diet OVX rat 8 weeks Yes 0.54% Lower No effect on [ ! 1 ]  
enriched diet Sprague urinary femoral or 
soy protein Dawley Ca whole body 
isolate 6mo excretion BMD 

Isoflavone- 0.2mg isoflavones/g Diet OVX rat 8 weeks Yes 0.54% of Lower No effect on [ 1 1 ] 
enriched diet Sprague diet urinary femoral or 
soy protein Dawley Ca whole body 
isolate 6mo excretion BMD 

Soy protein Negligible Diet OVX rat 8 weeks Yes 0.54% of Lower No effect on [ 1 1 ] 
isolate Sprague diet urinary femoral or 

Dawley Ca whole body 
6mo excretion BMD 

Isoflavone 0.3mg isoflavones/g Diet OVX rat 8 weeks No 0.54% of Lower No effect on [ 1 1 ] 
extract diet Sprague diet urinary femoral or 

Dawley Ca whole body 
6mo excretion BMD 
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Phyto Dose Mode 

source 

Iso flavone 0 .8mg isotlavones/g Diet 
extract diet 

Isoflavones 20mg/kg body Diet 
weight/day 

Isoflavones 40mg/kg body Diet 
weight/day 

Isoflavones 80mg/kg body Diet 
weight/day 

Isoflavones 20mg/kg body Diet 
weight/day 

Isotlavones 40mg!kg body Diet 
weight/day 

Model 

OVX rat 
Sprague 
Dawley 
6mo 

OVX rat 
Wistar 
1 95 day 
(6.5mo) 
OVX rat 
Wistar 
1 95 day 
(6.5mo) 
OVX rat 
Wistar 
1 95 day 
(6.5mo) 
OVX rat 
Wistar 
1 95 day 
(6 .5mo) 

OVX rat 
Wistar 
1 95 day 
(6.5mo) 

Study length 

8 weeks 

84 days starting 
80 days post-
OVX 

84 days starting 
80 days post-
OVX 

84 days starting 
80 days post-
OVX 

9 1  days 

9 1  days 

Soy 
protein 

present? 

No 

No 

No 

No 

No 

No 
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Dietary Outcome Ref 

calcium 
Calcium Biochemical BMC/ Other 

content 
Balance Markers BMD 

0.54% of Lower No effect on [ I  I ]  
diet urinary femoral or 

Ca whole body 
excretion BMD 

0.24% of No effect [ 1 2 ]  
diet BMD or 

cancellous 
BA 

0.24% of Reduced No effect [ 1 2] 
diet plasma BMD or 

osteocalcin & cancellous 
urinary DPYDs BA 

0.24% of No effect [ 1 2 ]  
diet BMD or 

cancellous 
BA 

0.24% of Prevention of No effect Increased [ 1 3 ]  
diet initial OVX- metaphyseal femoral 

induced BMD strength 
increase in Higher total 
plasma femoral & 
osteocalcin diaphyseal 

BMD 
0.24% of Prevention of H igher total Increased [ 1 3 ] 
diet initial OVX- femoral, femoral 

induced metaphyseal strength 
increase in & 
plasma diaphyseal 
osteocalcin BMD 



Phyto Dose Mode Model Study length Soy Dietary Outcome Ref 

source protein calcium 
Calcium Biochemical BMC/ Other 

present? content 
Balance Markers BMD 

Isoflavones 80mglkg body Diet OVX rat 9 1  days No. 0.24% of Prevention of Higher total Increased [ 1 3 ] 
weight/day Wistar diet initial OVX- femoral & uterine 

1 95 day induced metaphyseal weight 
(6.5mo) increase in BMD Increased 

plasma femoral 
osteocalcin strength 

Aged OVX rat 
Isolated soy 1 40glkg diet isolated Diet OVX rat 3 months Yes Not Greater [ 1 4 ]  
protein soy protein Sprague reported femoral 

Dawley BMD 
Isoflavone content not I l mo 
reported (retired 

breeders) 
Genistein 1 0mglkg body Diet OVX rat 90 days No 0.23% of No effect [ 1 5 ] 

weight/day Wistar diet LS, total 
l 2mo femur & 

metaphyseal 
BMD 
Increased 
diaphyseal 
BMD 

Daidzein 1 0mglkg body Diet OVX rat 90 days No 0.23% of Increased [ 1 5] 
weight/day Wistar diet LS, total 

1 2mo femur, 
diaphyseal 
& 
metaphyseal 
BMD 
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Phyto Dose Mode Model Study length Soy Dietary Outcome Ref 

source protein calcium 
Calcium Biochemical BMC/ Other 

present? content 
Balance Markers BMD 

G rowing sham-operated rat 
Genistein 5Jlglg body weight s.c. Sham rat 2 1  days No 0.6% of No effect I ncreased [5 ]  

Sprague diet DPYD tibial BMD. 
(5mglkg body weight) Dawley 60 Increased 

days (2mo) serum 
osteocalcin 

G rowing intact rat 
Isoflavones 0.046% of diet Diet Intact 60 days Yes 0.5% of No effect No effect ALP [ 1 6]  

growing diet calcium activity, PYD 
female rats balance or DPYDs 
Sprague 
Dawley 
3wo 

Isoflavones 0.046% of diet Diet Intact 60 days No 0.5% of No effect No effect ALP [ 1 6] 
growing diet calcium activity, PYD 
female rats balance or DPYDs 
Sprague 
Dawley 
3wo 

Genistein 5ppm Diet Intact male 2 years No 1 . 1 5% of Reduced [ 1 7] 
& female diet caudal 
growing vertebrae 
rats BMC & BA 
Sprague 
Dawley (4 
generations) 
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Phyto Dose Mode Model Study length Soy Dietary Outcome Ref 

source protein calcium 
Calcium Biochemical BMC/ Other 

present? content 
Balance Markers BMD 

Genistein 1 00ppm Diet Intact male 2 years No 1 . 1 5% Increased Reduced [ 1 7] 
& female urinary PYD caudal 
growing excretion. vertebrae 
rats BMC & BA 
Sprague 
Dawley (4 
generations) 

Genistein 500ppm Diet Intact male 2 years No 1 . 1 5% Increased Reduced LS [ 1 7] 
& female urinary PYD & caudal 
growing excretion vertebrae 
rats B MC & BA 
Sprague Reduced 
Dawley (4 cross-
generations) sectional 

area of 
femur 

Isoflavone 8 .9mg aglycones/kg Diet Intact 1 4  weeks No 0.85% of No effect No effect [ 1 8] 
extract body weight/day female diet DPYD femur BMD 

F344 rat 
3mo 

Isoflavone 1 8 . 1  mg aglycones/kg Diet Intact 1 4  weeks No 0.85% of No effect Sl ight , [ 1 8] 
extract body weight/day female diet DPYD increase LS 

F344 rat BMD 
3mo No effect 

femur BMD 
Soy protein 1 0. 1  mg aglycones/kg Diet Intact 1 4  weeks Yes 0.85% of No effect I ncreased [ 1 8] 

body weight/day female diet DPYD LS BMD 
F344 rat No effect 
3mo femur BMD 
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Phyto Dose Mode Model Study length Soy Dietary Outcome Ref 

source protein calcium 
Calcium Biochemical BMC/ Other 

present? content 
Balance Markers BMD 

Soy protein 20.2mg aglycones/kg Diet Intact 14 weeks Yes 0.85% of Decreased No effect Increased [ 1 8] 
body weight/day female diet urinary DPYD. femur BMD uterine 

F344 rat Sl ight weight 
3mo increase LS 

BMD. 

Aged sham-operated rat 
Isolated soy 1 40glkg diet isolated Diet Sham rat 3 months Yes Not No effect [ 1 4] 
protein soy protein Sprague reported femoral 

Dawley BMD 
Iso flavone content not I l mo 
reported (retired 

breeders) 
Non-rodent OVX 
Soy protein 20g soy protein/ l OOg Diet OVX 7 months Yes Not No effect [ 1 9] 
isolate diet macaques reported periosteal, 

(age osteonal or 
unknown) total bone 

formation 
rates 
Increased 
endocortical 
bone 
turnover 

Soy protein 35-40mg Diet OVX 3 years Yes 830mg/day Sl ight reduction No effect [20] 
isolate with isoflavones/monkey/day monkeys in serum CTX whole body 
isotlavones & ALP at 3 or LS BMC 

Equivalent to 1 0- months but not or BMD 
I I mg/kg body at other 
weight/day timepoints 
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Appendix 3 :  

The ovariectomised rat model for post-menopausal bone loss 

The ovariectomised rat is a widely used model for postmenopausal bone loss. 

Various studies have reported similarities between ovariectomy-induced bone loss i n  

rats and postmenopausal bone loss i n  humans [ 1 , 2] . Shared characteristics include: 

increased bone turnover rate with rate of resorption exceeding that 

of formation [2, 3 ]  

initial rapid bone loss fol lowed b y  a much slower rate o f  bone loss 

greater loss of trabecular compared to cortical bone [4] 

decreased intestinal calcium absorption [3] 

protective effect of obesity [3]  

similar responses to treatment with oestrogen, bisphosphonates ,  

parathyroid hormone, calcitonin and tamoxifen [3 ]  

protective effect of  exercise [3 ] .  

Bone loss as  a result of ovariectomy in  rats or  menopause in  women occurs in  two 

phases. Phase 1 is an acute phase characterized by a rapid decline in bone mineral 

content [5 ,  6] . Bone loss continues in phase 2 but occurs at a much slower rate than 

in phase 1 .  The aetiology of bone loss in phase 1 differs from that in phase 2 [6-8] .  

In both humans and rats the acute phase of bone loss is characterized by increased 

urinary calcium excretion [6, 7] . In rats this phase lasts for approximately 4-6 weeks 

post-ovariectomy [7] whereas is women, this rapid phase of bone loss continues for 

approximately 5- 1 0  years from the initial onset of natural menopause or following 

surgical menopause [3 , 9] .  By week six post-ovariectomy in rats, faecal calcium loss 

appears to be of much greater importance than urinary loss in terms of its association 

with the decline in bone calcium [7, 8 ] .  However there is no evidence of impaired 

intestinal calcium absorption until nine weeks post-ovariectomy [7] indicating the 

initial increase in faecal and urinary calcium excretion is a result of endogenous 

calcium loss. In women, a similar increase in bone turnover leading to endogenous 

calcium loss occurs in the acute phase post-menopause. Reduced intestinal calcium 
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absorption also occurs in women and is believed to contribute to post-menopausal 

bone loss [9] . 

Limitations of the ovariectomised rat model 

At the endocrine level, there are key differences between the pathogenesis of 

postmenopausal bone loss in women and ovariectomy-induced bone loss in rats. In 

women, decreased parathyroid hormone (PTH) secretion, increased calcitonin 

secretion and impaired 1 ,25-dihydroxyvitamin D3 synthesis contribute to post­

menopausal bone loss [9] . In rats, a negative correlation between calcitonin, but not 

PTH, secretion and bone resorption post-ovariectomy has been reported [ 1 0] .  

Synthesis o f  1 ,25-dihydroxyvitamin D 3  i s  unaltered i n  rats post-ovariectomy 

however expression of the vitamin D receptor is reduced which leads to disrupted 

vitamin D signaling post-ovariectomy [ 1 1 ] .  Both ovariectomy in rats and menopause 

in women are associated with an increase in inflammatory cytokine secretion [9, 1 2] 

and inflammation is believed to play a maj or role in the aetiology of bone loss [ 1 2] .  

Long bones i n  rats continue to grow well past the attainment of maturity. In female 

rats, long bone growth ceases at approximately 6 months of age [3,  1 3] .  In 

comparison to humans, the skeletal mass of a rat remains constant for a longer period 

of time therefore rats are susceptible to age-related changes in bone metabolism at a 

later stage of their life cycle than humans [3 ] .  As a consequence, the ovariectomised 

rat principally exhibits the effects of oestrogen deficiency whereas postmenopausal 

women are likely to exhibit the effects of oestrogen deficiency as well as age-related 

metabolic changes. In addition, bone loss post-ovariectomy in rats seldom leads to 

increased fracture risk whereas an increase in fracture risk is one of the primary 

features of post-menopausal osteoporosis [3 ] .  There is evidence that ovariectomy­

induced changes in bone metabolic rates in rats mimic those of postmenopausal 

trabecular bone for a relatively short period of time. By 1 2  months post-ovariectomy 

indices of trabecular bone turnover in rats return to those of sham controls [4, 1 4] 

and bone strength reverts to that of sham animals at age 1 year [4] . 
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The impact of these differences in bone metabolism and bone loss following 

ovariectomy in rats and menopause in women can be minimized by the use of rats 

with a minimum age of 6 months at the time of ovariectomy and by limiting the 

study to < 1 year in duration. 
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Appendix 4 :  

The M C3T3-E l /4 cell line as a model for osteoblasts in vivo 

Prior to establishment of the MC3T3-E l cell l ine, only one mammalian cel l  system 

capable of mineral deposition existed [ 1 ] .  

In 1 98 1 ,  Yamamoto et. al. established eight clonal cell lines from newborn mouse 

(Mus musculis) calvaria [ 1 ] . Based on its high alkaline phosphatase activity in the 

resting state, the cell line named MC3T3-E l was identified as having the greatest 

osteogenic capability [ 1 ] . 

MC3T3-E l cells have typical fibroblast morphology whilst in the logarithmic growth 

phase. During proliferation, cells express low alkaline phosphatase activity and do 

not produce an extracellular collagen matrix [2] . Once confluent, cells become 

cuboidal in shape and begin to synthesise and exude collagen and deposit mineral [ 1 ,  

2] . There is  considerable heterogeneity in terms of cell phenotype [3] and 

mineralisation potential [4] within the MC3T3-E l cell l ine. 

In 1 999, researchers at the University of Michigan sub-cloned the MC3T3-E l cel l  

l ine and separated sub-clones based on their ability to differentiate into mature 

osteoblasts capable of matrix mineralisation [3] .  Sub-clones 4 and 1 4  were 

determined to have the greatest differentiation and mineralisation potential [ 3 ] .  Since 

this time, the MC3T3-E 1 I4 cell l ine has been uti lised extensively for assessing the 

activity of osteoblasts in vivo. 

MC3T3-E 1 I4 cells  exhibit many of the characteristics and capabilities of osteoblasts. 

In vitro, MC3T3-E 1 I4 cells wil l  proliferate when grown in minimum essential media 

in the presence of 5- 1 0% FCS. Ascorbic acid is required for production of a 

collagenous extracellular matrix and �-glycerophosphate is needed for mineralisation 

of this matrix [4] .  The role of �-glycerophosphate in mineralisation is not fully 

understood. It is a substrate for alkaline phosphatase however and there is some 

suggestion that �-glycerophosphate alters the phosphorylation state of casein kinase 

1 1 ,  one of the enzymes thought to be involved in mineralisation. However even with 
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the use of the sub-clone, considerable heterogeneity exists in cell phenotype and this 

heterogeneity increases with repeated passage [3 ] .  This is a limitation which must be 

considered when using MC3T3 -E 1 /4 cells. In the present thesis, studies were 

conducted using MC3T3-E 1 I4 cells between passage 2 and 1 5 . 
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