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Abstract

This research investigates the development of an automated packing machine for a New
Zealand Industrial Company (NZIC). NZIC is a leading international manufacturer
that produces automated equipment for a labour intensive industry. The proposed
system aims to solve the complex packing of near spherical objects (OB]) which is

currently the most labour intensive task.

A review of the existing full or partially autonomous systems has identified multiple
units that have attempted to remove human labour from relevant or simplified versions
of the task. Three areas are identified as requiring in-depth investigation and this

research sets out to investigate these issues and propose possible solutions.

One failing aspect of the existing systems is the apparent lack of prior analysis on how
such a machine would deliver on commercial requirements. This research made an in-
depth motion analysis on possible automated solutions and laid the foundation for
engineering development. The overall system topology was considered with various
abstract layouts and this identified a sequential modular layout was best suited to the
commercial interests. Physical consideration began with identifying the fundamental
kinematic analysis of various end effector arrangements. The kinematics demonstrated
the need to make the system tolerant to extended dwell periods and this means the
system must pack a multiple of OB]Js per cycle. Three robotic concepts where evaluated
by simulations to investigate various means of practical implementation. A robotic
gantry layout was chosen as the design that would best meet the requirements of the
application. The gantry design is then further developed to make more efficient use of
actuators and other beneficial attributes for development. The proposed design has
been presented and the businesses case could be viable once the market for NZIC's

industry recovers.

A second problem that all the existing systems have suffered from is the lack of fault

correction or avoidance. A central component to the proposed design is the
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introduction of grasp feedback for the control system. A low cost piezoelectric pressure
sensor and means of measuring vertical load have been developed for a simple vacuum
grasping unit. This grasp feedback unit has been integrated into a modular end effector
(EE) unit that is intended to solve the specific OBJ] handling requirements of the
application. The EE unit development covers more than just the OBJ grasp by also
considering OBJ manipulation and solutions for handling the industries uncontrolled
environments. Low cost means of servo actuation are integrated into the EE as means
of rotating the OBJ and translating its location along the robot's knuckle. A novel
pneumatic system provides a solution capable of handling the working environment in
addition to the main focus of intelligent grasp control. Where possible, without a full
OBJ packing system being built, the grasp feedback has been simulated and subjected to
limited testing. Various control system layouts have been developed for throughout the
product life-cycle of the EE. The proposed EE unit demonstrates promise of solving
all the OB]J handling issues identified during the review of existing commercial packing
systems. The EE now needs to be prototyped to a standard capable of field trialling for

the commercial application.

The third requirement is a means to manipulate all three rotational axis of the OBJs.
No existing system can successfully complete this function with an acceptable
production rate. Several concepts of such devices were prototyped, with one variant
demonstrating a potential means of inducing variable and predictable rotation. This
design was a mechatronic system that intends to manipulate the OB]J's three rotational
degrees of freedom using an ultra low cost layout. The orientation system has been
developed across all the mechatronic components including software, and takes into
consideration several different designs for throughout the system's life cycle. A position
based visual servo control system has been developed to provide a control feedback
loop that traces the six degrees of freedom of OB]Js. Explained is both the hardware
layout for the inspection, plus the algorithms developed for motion tracking. The
algorithms developed for motion tracking produce a series of inter-frame references 3D
reconstructed from the captured images. A blob tracking search algorithm then matches

the references across multiple images. Lastly an intersection of planes algorithm
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estimates the OBJ motion. The completion of all elements for the manipulation unit
has allowed motion studies of the proposed device. The motion study of the
orientation device demonstrated predictable behaviour for steady motion, however the
behaviour during transient motion proved too unstable to allow position control of the
OBJs. It is concluded that the orientation unit was too low cost for the purpose and a

direct acting servo unit should be further investigated.

The outcome of this research is an overall system proposal that should allow the
successful commercial application of an automated organised packing of near spherical
objects. The proposed end effector arrangement demonstrates promise of reliable OBJ
grasping and should be field trialled in order to verify commercial use. The low cost
orientation unit should not be progressed further as it seems unlikely to offer reliable
positional control. Instead a means of direct rotational manipulation should be

investigated.
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Glossary

BDC Brushed DC motor

BLDC Brushless DC motor

COG Centre of gravity

EE End Effector

FRST Foundation for research, science and
technology

GRDP Grasp or release dwell period

LVDT Linear variable differential transformer

NZIC The name given to the New Zealand
industrial company

OB]J The objects handled by NZIC systems

OPM OB]Js per minute

PCB Printed circuit board

SCADA Selective compliance articulated robot arm

SCARA Supervisory control and data acquisition

RTP Rapid tray packer

ROI Return on investment

SMA Second moment of area

SROI Special region of interest

VTR Vacuum test rig
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