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ABSTRACT 

The effects of non-standard conditions on the application of the 

Gauss-Markov Theorem are discussed and methods proposed in the 

literature for dealing with these effects are reviewed. The 

multicollinearity problem, which is typified by imprecise 

least squares estimation of parameters in a multiple linear 

regression and which arises when the vectors of the input or 

predictor variables are nearly linearly dependent, is focussed 

upon and a class of alternative biased estimators examined. 

In particular several members of the class of biased linear 

estimators or linear transformations of the Gauss-Markov least 

squares estimator are reviewed. A particular generalized 

ridge estimator is introduced and its relation to other techniques 

already existing in the literature is noted. The use of this 

estimator and the simple ridge regression estimator is illustrated 

on a small data set. Further comparisonsof the estimator, the 

ridge estimator and other generalized ridge estimators are 

suggested. 
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1. INTRODUCTION 

The solution of a system of overdetermined or overidentified 

linear equations requires s ome kind of approximation method. The 

most common method of arriving at a solution for Bin the 

overdetermined system of linear equations, 

XB = Y 

1. 

where Xis an nXp matrix of full column rank p, Bis an unknown px1 

vector of parameters and y is an nx1 vector, and in which n > p, 

is the method of least squares. The least squares solution identifies 

the pX1 vector which minimizes the Euclidean norm of Y-XB. 

The source of the overdetermination or inconsistency in the system 

of linear equations is usually attributed to the presence of some 

kind of error component in then realizations of the p+1 variables 

which form X and Y. Statisticians often make very specific 

assumptions about the error content of then realizations. Errors 

are usually assumed, in the lack of any knowledge concerning their 

origin, to be generated by some sort of random device which may be 

represented by a probability density. The realizations of the p 

variables which make up the matrix X and which are often controllable 

are usually assumed to be measurable without error whereas the 

vector variable Y is usually assumed to contain the randomly generated 

errors. Thus statisticians have concerned themselves with the 

linear model, 

y = Xfl + e 

wheie e is an nx1 vector of stochastic errors which are independent 

of the measurements of the p variables which make up the matrix S, 

and, have used the method of least squares to extract an approximation 

to, or an estimate of, the unknown vector of parameters, fl. Under 

various assumptions about X,y and e, and under various restrictions 

on possible methods of approximation, the method of least squares has 

other optimal features besides the norm minimization property 



mentioned above. If, however, these assumptions are not met in 

practice the other optimal features may disappear. 

2. 

The purpose of this thesis is to review some of the work which has 

been completed or is currently in progress, concerning the effect 

of the relaxation of these assumptions and restrictions on the 

optimality properties of least squares and to review some of the 

alternatives to least squares which have been developed in response 

to these effects. The conditions of the Gauss-Markov Theorem, 

which are presented in Chapter 2, form the framework for the review 

and it is the effect of the relaxation of these conditions on the 

least squares procedure which is presented in Chapter 3. In 

Chapter 3 it is established that multicollinearity in the matrix X 

is one non-standard condition which can have serious effects on 

least squares estimation of the parameter vector. A class of 

alternatives to the least squares estimator, namely biased estimators, 

is focussed upon in Chapter 4. These estimators were designed 

originally to tackle the multicollinearity problem but many variants 

of these biased estimation procedures have been constructed with 

different goals in mind. A particular member of a subclass of 

these biased estimators, a doubly ridged estimator, is introduced 

in Chapter 5. The doubly ridged estimator, which is a generalized 

ridge estimator, displays many of the advantages and disadvantages 

of the well known ridge estimator. The application of the ridge 

and doubly ridged estimators to a small but well known test problem -

the Longley data - is undertaken in Chapter 6. A summary, Chapter 7, 

which also includes suggestions for further investigations in the 

search for alternatives to least squares, completes the thesis. 




