
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



i 
 

 

ANALYSIS OF A DYNAMICAL SYSTEM OF ANIMAL GROWTH 

AND COMPOSITION. 

 

 

A thesis submitted in partial fulfilment of the requirements for the degree of 

 

Master of Science 

in 

Mathematics. 

 

 

 

at Massey University, Albany, 

New Zealand. 

 

 

Nurul Syaza Abdul Latif 

 

2010  

 

 



i 
 

 

 

ABSTRACT 

 

 

This thesis investigates the analysis of the extended model of animal growth proposed by 

Oliviera et al (personal communication, July 2009).  This mechanistic model of animal 

growth based on a detailed representation of energy dynamics focussing on the interaction 

between four compartment of body composition; nutrient level, fat content, visceral protein 

and non-visceral protein.  The model is mathematically analysed and the behaviour of the 

model for different feeding level is examined.  The animal growth model exhibits 

thresholds typical of nonlinear systems and multiple stable steady states which have distinct 

basins of stability which depend on the value of the large number of physiologically-

determined parameters.  These have not been previously explored theoretically and these 

are done in this thesis. The model demonstrates richer behaviour where path-following 

techniques are used to explore the distribution in parameter space of the varying 

phenomenology.   
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CHAPTER 1 

 

INTRODUCTION 

 

 

In this chapter, we briefly discuss the background of this study.  Also, we mention the 

scope and objectives of the project. 

 

 

1.1  Background of the study 

 

For most discussions, growth may be defined as the progressive increase in the size 

(volume, length or height) or weight of an animal over time.  Hence, growth results from 

the accretion of nutrients over time.  Animal growth is best described by taking 

measurements of the physical characteristics of the animal (weight, height or length) or 

attributes of a tissue (back fat thickness and muscle depth) or even a portion of the animal, 

such as noting changes in the length of a limb as the animal progresses from neonate (a 

newborn animal) to maturity. 

 

 

The understanding of the biology of animal growth has lead to opportunities for 

improving the efficiency and quality of animal production.  Such opportunities depend on 
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the ability to control and predict the outcome in animal feeding and management.  This 

requires the development and use of mathematical models of growth.  The mathematical 

representation and prediction of growth has been a widespread endeavour in biology and a 

wide range of approaches have been proposed.  A number of equations have been used to 

represent growth of an animal and its body components.  These include the exponential, 

logistic, Brody, Gompertz and Richardson functions and many others (France and Kebreab, 

2008). 

 

 

Nutritional models for growing animals should enable accurate predictions of 

nutrient requirements, calculations of responses of defined animals to defined feeds and 

calculation of optimal nutritional strategies.  Feeding systems based upon these models 

typically handle the consumption of energy, protein and other nutrients separately.  

However, there is lack of information and some indications on the relationship between 

nutrition and reproduction.  A model that has been developed by Oliviera et al (personal 

communication, July 2009), proposed a closer investigation on the effect of energy and 

protein mobilization on days to first ovulation in early lactation dairy cows.  For this 

project, we expand and analyse this energetic model of growth that can trace the effects of 

alternate nutritional strategies on animal performance, energy and protein requirements 

through time. 
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1.2 Scope and Objectives of the Study 

 

 Over the last decade, there has been an increasing use of the models in animal 

growth research, both independently and in conjunction with experimental work.  The 

model presented here has been developed by Oliviera et al but not yet published (personal 

communication, July 2009).  We scope the proposed model as an autonomous dynamical 

system.  The animal model described here draws from a wide range of sources in the 

literature and the parameterisation has been done before by Oliviera et al. 

 

The following are the objectives of the study:- 

i. To expand the existing energetic model of growth in the dairy cow (Oliviera et al). 

ii. To explore the dynamics of the interacting pools (nutrient, protein, viscera, fat). 

iii. To analyse behaviour and determine the steady-state stability. 

iv. To demonstrate bifurcation diagrams and analyse the biological interpretation 

behind those diagrams. 
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CHAPTER 2 

 

MATHEMATICAL THEORY 

 

 

In this chapter, we discuss some mathematical theories that are related with this project. 

 

 

 

2.1 Animal Growth Model as a Dynamical System 

 

Traditionally, quantitative research into animal growth or animal nutrient, as in 

many other areas of biology, has been empirically based and has centred on statistical 

analysis of experimental work.  While this has provided much of the essential groundwork, 

more attention has been given in recent years to improving understanding of the underlying 

mechanisms that govern the process of digestion.  This requires an increased emphasis on 

theory and mathematical modelling.  

 

 

The term dynamic is self explanatory.  Dynamics models are based upon differential 

equations of the form  
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),,( λxfx t
dt
d

=
              (2.1)

 

  

The model consists of a number of state variables, ),...,,( 21 nxxx=x  , that represent the 

essential characteristics we are trying to examine under the model.  These equations, 

),,,( 21 nfff =f  , will include a number of parameters (e.g. λ) of the system that are 

arbitrary constant. 

 

 

 One or more of these parameters may define something that can be controlled.  In a 

system describing animal growth, for example, we can control the amount of feeding.  If we 

choose to do this, we then can identify the amount of feeding as a control parameter. We 

can investigate how the model changes when the control parameter is changed.  The choice 

of control parameter does not change the construction of the model.  It does, however, 

verify how we will analyse the model. 

 

 

 A solution to the model is a curve that satisfies the differential equation for all 

values of the independent variable.  These solutions may be found analytically and are 

integrated over time, usually using a numerical integration technique such as Runge-Kutta 

Methods.  A solution of a model represents the evolution of the animal as time progresses. 

 

 

Up to this point for this project, we only considered autonomous dynamical 

systems, that is, a system of differential equations which does not depend explicitly on the 

independent variable, t.   
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  ),( λxfx
=

dt
d                (2.2) 

However, a non-autonomous dynamical system, f is explicitly dependent on variable time t.  

Non-autonomous systems are much more difficult to characterise than autonomous ones 

unless it has a particularly simple structure. 

 

  

 

2.1.1 Structural Stability 

 

 In mathematics, structural stability is a fundamental property of a dynamical 

system, which means that the qualitative behaviour of the trajectories (or vector field) is 

unaffected by small perturbations. 

 

Definition:  The direction field or vector field gives the gradients 
dt
dx  and direction vectors 

of the trajectories in the phase plane. 

 

Structural stability of the system provides a justification for applying the qualitative theory 

of dynamical systems to analysis of concrete physical systems. 

  

 

If we try to model physical systems that demonstrate structural stability, then 

provided we put up a model that approximates the system closely enough, the result will be 

quantitatively the same.  Similarly, if the model is structurally stable, then a small variation 
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to the parameter values will not change the system qualitatively, nor will additional small, 

non-linear terms.  This is attention-grabbing when considering a model of a physical 

system, since if the model is not structurally stable, then it may be vulnerable to the 

changes in the parameter values.  These parameter values may have been obtained by 

experiment and thus have experimental error associated with them.  So if a system is not 

structurally stable, there would be no repeatable pattern to observe. 

 

 

 

2.1.2  Types of Steady State 

  

In general, a steady state is a point that does not change upon application of a map, 

system of differential equation, etc.  In particular, consider an autonomous system of 

ordinary differential equations (ODEs) at which the functions are continuously 

differentiable 













==

==

0),,(

0),,(

1

11
1

nn
n

n

xxf
dt

dx

xxf
dt
dx







 .            (2.3)

 

These points are known as steady state points. 

If a variable is slightly displaced from a steady state point, it may:- 

1. Move back to the steady state point– attractor ("asymptotically stable" or 

"superstable"),  

2. Move away  – repellor ("unstable"), 
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3. Move in a neighbourhood of the fixed point but not approach it ("stable" but not 

"asymptotically stable"). 

 

Steady state points are also known as critical points or equilibrium points.  If a variable 

starts at a point that is not a steady state point, it cannot reach a steady state point in a finite 

amount of time.  Also, a trajectory passing through at least one point that is not a steady 

state point cannot cross itself unless it is a closed curve, in which case it corresponds to a 

periodic solution.  

 

The following equations and table summarizes types of possible steady states for a two-

dimensional system (Tabor 1989).  

 

1. If 21 λλ ≠ , then 
tt ecec 21

2211
λλδ DDX +=   

2. If 21 λλ = , then ( )( ) tetcc λδ 21211 DDDX ++=  

 

 Steady state 

 stable node 

 unstable node 

 hyperbolic fixed point 

 stable spiral point 

 unstable spiral point 

 elliptic fixed point 

, if D1 is arbitrary and D2 is a null vector stable star 
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, if D1 is arbitrary and D2 is a null vector unstable star 

, if D1 is arbitrary and D2 is not a null vector stable improper node 

, if D1 is arbitrary and D2 is not a null vector unstable improper node 

 

 

Here Xδ  is the column vector, λ is eigenvalue, and D is eigenvector and ℜ∈ωβα ,, . 

 

In general, for the stability, the eigenvalues iλ  of a nn × matrix, A, are given by the 

characteristic equation 0)det( =− IA λ ; I is the identity matrix.  For a nonlinear system, A is 

the Jacobian matrix evaluated at the steady state point.  

1. For all 0)Re( <iλ , then the steady state is stable.  

2. If there exists an eigenvalue λ such that 0)Re( >λ , then the steady state is unstable. 

3. If there exists an eigenvalue λ with 0)Re( =λ and all other 0)Re( <λ , then the 

linearised system is neutrally stable and the stability of the nonlinear system is 

determined by the higher order terms. 

Table 2.1: Types of steady state. 
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Note that in the phase diagrams are for the linearised situation and the behaviour is as 

shown in the Figure 2.1 only in the neighbourhood of the origin.  The global behaviour is 

more complicated of course. 

 

Definition: If x be the steady state points of the system (i.e. 0xfx
== ),( λ

dt
d ), then the 

basin of attraction is the set of initial conditions 0x  such that xx →)(t as ∞→t . 

  

Figure 2.1: Different types of steady state (in two-dimensions) at the origin. 
(a) a node, (b) a stable spiral and (c) a saddle. 
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A centre is neither stable nor unstable.  A system containing a centre is structurally 

unstable.  It is the change between a stable spiral and unstable spiral, and neither attracts 

nor repels.  It may be associated with an infinite number of periodic solutions nearby. 

 

 

2.1.3  Bifurcation Theory 

 

 Bifurcation theory is the mathematical study of changes in the qualitative or 

topological structure of the solution of a family of differential equations.  If the behaviour 

of a dynamical system changes suddenly as a parameter is varied, then it is said to have 

undergone bifurcation.  At a point of bifurcation, stability may be gained or lost.  

Bifurcations are important scientifically because they provide models of transitions and 

instabilities as some control parameter is varied.  It may be possible for a nonlinear system 

to have more than one steady state solution.  For example, different initial conditions can 

lead to different stable solutions.  A system of this form is said to be multiple stability. 

 

Definition: An autonomous dynamical system 

 ),( λxfx
=

dt
d  

is said to be multiple stability if there is more than one possible steady state solution for a 

fixed value of the parameter λ.  The steady state obtained depends on the initial conditions. 

 

 

The existence of multiple stability solutions allows for the possibility of bi-stability 

(hysteresis) as a parameter is varied.  The two essential ingredients for bi-stability 
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behaviour are nonlinearity and feedback.  To create a bi-stability region there must be some 

history in the system or depends on the initial conditions of the system. 

 

Definition:  An autonomous dynamical system 

  ),( λxfx
=

dt
d   

has a bi-stability solution if there are two stable steady states for a fixed but arbitrarily 

parameter λ and the steady state obtained depends on the initial conditions. 

 

Bifurcations come in two different categories:- 

1. Global bifurcations – which often occur when larger invariant sets of the system 

‘collide’ with each other or with steady states of the system. This type of bifurcation 

cannot be detected solely by a stability analysis of the steady state. 

 

2. Local bifurcations – which can be analysed entirely through changes in the local 

stability properties of steady state, periodic orbits or other invariant sets. 

 

 

Global bifurcations 

 

This kind of bifurcation occurs when ‘larger’ invariant sets, such as periodic orbits, 

collide with the fixed point.  This causes changes in the topology of the trajectories (the 

graphical behaviour) in the phase space which cannot be confined to a small 

neighbourhood, as is the case with local bifurcations.  Moreover, the changes in topology 

extend out to an arbitrarily larger distance.  Hence it is called global bifurcation. 
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Examples of global bifurcation:- 

 Homoclinic bifurcation – in which a limit cycle collides with a saddle point 

 Heteroclinic bifurcation – in which a limit cycle collides with two or more saddle 

points. 

 Infinite-period bifurcation – a stable node and saddle point occur simultaneously on 

a limit cycle. 

 Blue-sky catastrophe – in which a limit cycle collides with a non-hyperbolic cycle. 

 

Global bifurcation can also involve more complicated sets such as chaotic attractors. 

 

Local Bifurcations 

  

A local bifurcation is occurring when the stability of the steady state point is 

changed when the parameter value is varied.  In continuous systems, this corresponds to the 

real part of an eigenvalue of a steady state point passing through zero where the steady state 

is non-hyperbolic at the bifurcation point.  The topological changes in the phase portrait of 

the system can be limited to arbitrarily small neighbourhoods of the bifurcating steady state 

points by moving the bifurcation parameter close to the bifurcation point.  That is why it is 

called local bifurcation. 

 

More theoretically, consider a continuous dynamical system described by the autonomous 

ordinary differential equations (ODEs) 

 ),( λxfx
=

dt
d     ;      f nn ℜ→ℜ×ℜ: .            (2.4) 
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The necessary condition of a local bifurcation of steady state occurs at ),( 0λx  if the 

Jacobian matrix, 
),( 0λxx

f
d
d

 , has a zero eigenvalue. The sufficient condition is when the 

algebraic multiplicity of the zero eigenvalue is odd.  This is made clear in Temme (1978).  

If the (two) eigenvalues are purely imaginary, it can be a Hopf bifurcation, with the 

appearance of periodic solutions.  We have to note that the complex eigenvalues occur in 

the complex conjugate pairs.  

 

Illustrations of local bifurcations:- 

 Saddle-node bifurcation 

 Transcritical bifurcation 

 Pitchfork bifurcation 

 Hopf bifurcation 

 

Saddle-Node Bifurcation 

 

The saddle-node bifurcation occurs when the steady state points are formed and 

destroyed.  For example, as we varied a parameter, two steady state points moving towards 

each other collide and mutually annihilate.   

 

Example: 2x
dt
dx

+= λ
               (2.5) 
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The steady state point is defined by 0=
dt
dx  is λ−=2x .  The origin )0,0(),( =λx is the 

bifurcation point, where the stable and unstable branches adhere, resulting in an exchange 

of stability. 

 

Sometimes a saddle-node bifurcation is called a fold bifurcation or a turning-point 

bifurcation.  Abraham and Shaw (1988) wrote the most inventive terminology for saddle-

node bifurcation, which is blue sky bifurcation. 

 

 

Transcritical Bifurcation 

 

There are some certain scientific situations where a steady state point must exist for 

all values of a parameter and never be destroyed.  But if we vary the parameter values, the 

steady state point will change its stability.  The transcritical bifurcation is the standard 

mechanism for such changes in stability. 

Figure 2.2: An example of saddle-node bifurcation. 
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Example:   2xx
dt
dx

−= λ
               (2.6) 

 

 

The steady state points are λ,0=x  obtained by solving 0=
dt
dx .  The origin is the 

bifurcation point where two branches intersect and exchange stability at 01 =x for all 

values of λ with 0<λ stable and 0>λ unstable.  While, at λ=2x  branch, it is stable on 

the first quadrant and it is unstable on the third quadrant.  

 

 

Pitchfork Bifurcation 

 

This bifurcation is common in physical problem that has a symmetry.  There are 

problems that have a spatial symmetry between left and right.  In such cases, the steady 

state points tend to appear and disappear in symmetrical pairs.  There are two very different 

Figure 2.3: An example of transcritical bifurcation. 
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types of pitchfork bifurcation; supercritical pitchfork and subcritical pitchfork.  In the 

engineering literature, supercritical pitchfork bifurcations are sometimes called soft (or 

safe).  The amplitude of the limit cycle builds up gradually as the parameter is moved away 

from the bifurcation point.  In contrast, subcritical pitchfork bifurcations are hard (or 

dangerous).  A steady state, say, at the origin, could become unstable as a parameter varies 

and the nonzero solutions could tend to infinity. 

 

i) Supercritical Pitchfork Bifurcation 

The normal form of the supercritical pitchfork bifurcation is  

Example:    3xx
dt
dx

−= λ
               (2.7) 

 

 

When 0<λ , the steady state point at 0=x  is stable. When 0=λ , the steady state point is 

still stable.  When 0>λ , the steady state point becomes unstable. There exist two new 

stable steady states on either side of the origin, symmetrically located at λ± . 

 

Figure 2.4: An example of supercritical pitchfork bifurcation. 
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ii) Subcritical Pitchfork Bifurcation 

 

The normal form of the subcritical pitchfork bifurcation  

Example:     3xx
dt
dx

+= λ
               (2.8)

        

 

 

 

Compared to Figure 2.4, the pitchfork is inverted. The nonzero steady state points 

λ−±  are unstable and exist only below the bifurcation )0( <λ , which motivates the term 

“subcritical”.  When 0<λ , the steady state at the origin is stable and suddenly becomes 

unstable when 0>λ .   

 

Now, let us consider a more interesting subcritical pitchfork bifurcation.  

Figure 2.5: An example of subcritical pitchfork bifurcation. 
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Example: 53 xxx
dt
dx

++= λ                (2.9) 

To find the steady state points. Let the system equal to zero. 

053 =−+= xxx
dt
dx λ  

⇒  0)( 42 =−+ xxx λ  

⇒    01 =x                  (2.10)

     or    042 =−+ xxλ  

  

4
1;

2
411

2
411

2
1

3,2

2

−≥






 +±
±=

+±
=

λλ

λ

x

x

                     (2.11) 

 

  

 
Figure 2.6: The bifurcation diagram for 53 xxx

dt
dx

−+= λ . 
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This bifurcation diagram (Figure 2.6) shows a lot of remarkable points to note.  In 

the range of 0<< λλs  (where 25.0−=sλ ), two qualitatively different stable states coexist. 

The existence of different stable states allows for the possibility of jumps and hysteresis as 

λ is varied.  Suppose that we start the system in the state 01 =x , and then slowly we 

increase the value of λ.  Then the state remains the stability until it reached 0=λ , the 

steady state 01 =x  start losing its stability becomes unstable.  Now, the slightest push of 

the value x, will cause the steady state to jump to one of the branches.  As we increase λ, 

the steady state moves out along the large-amplitude branch.  But if we decreased λ, the 

steady state stays at the large-amplitude branch, even if we decreased the value of λ below 

than 0.  And if we lower the value of λ down past λs, only then the steady state jump back 

to 01 =x . This lack of reversibility as a parameter is varied is call hysteresis.  λs is the 

bifurcation point in which stable and unstable fixed points are born “out of the clear blue 

sky” as λ is increased. We can say that at point λs, it is a saddle-node bifurcation. 

 

 

Hopf Bifurcation 

 

Another bifurcation often encountered is the Hopf bifurcation.  It arises when a 

spiral change its stability from stable to unstable and thus generates a branch of periodic 

solutions (i.e. limit cycles).  The periodic solutions will have stability opposite to that of the 

spiral, but this will depend on which side of the bifurcation the periodic solutions are 

generated.  There are two types of Hopf bifurcation.  One in which stable limit cycles are 

created about an unstable steady state point called supercritical Hopf bifurcation. While, the 

other in which an unstable limit cycle is created about a stable steady state point, called the 

subcritical Hopf bifurcation.   
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2.1.4 Phase Portrait 

 

A phase portrait is a geometric representation of the trajectories in a dynamical 

system in a phase plane.  Each set of initial conditions is represented by a different curve or 

point. 

 

Phase portraits are very useful tool in studying dynamical systems. They consist of 

a plot of typical trajectories in the state space. They reveal information such as whether an 

attractor, a repellor or limit cycle is present for the chosen parameter value.  The concept of 

topological equivalence is important in classifying the behaviour of the systems by 

specifying when two different phase portraits represent the same qualitative dynamic 

behaviour. 

 

A phase portrait of a dynamical system gives a picture of the system’s trajectories, stable 

steady states and unstable steady states in a state space.  

 

 

2.2 Example : Holling-Tanner Model 
 

 

In this section, we will demonstrate those topics that we have covered previously.  

The Holling-Tanner Model has been studied both for its mathematical properties and its 

efficiency for describing real ecological systems such as mite / spider mite, lynx / hare, 

sparrow / sparrow hawk, etc.   
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Let us consider a specific Holling-Tanner Model (Braza, 2003) as the following:- 

  






 −=









+
−






 −=

x
Nyy

dt
dy

x
xyxx

dt
dx

12.0

77
6

7
1

           (2.12) 

 

where N is a constant with 0)( ≠tx  and )(ty representing the populations of prey and 

predator, respectively.   

 

The term in the right-hand sides of the equations (2.12), have a physical meaning as 

follows:- 

 The term 





 −

7
1 xx represents the usual logistic growth in the absence of predators. 

 The term 
x

xy
77

6
+

− represents the effect of predators subject to a maximum 

predation rate. 

 The term 





 −

x
Nyy 12.0 denotes the predator growth rate when a maximum of N

x  

predators is supported by x prey. 
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To construct a phase plane diagram, here are the steps that we need to take:- 

 

 
 

Suppose we want to sketch a phase portrait for this system when 5.0=N .  

 

The steady state points are found by solving the equations 0==
dt
dy

dt
dx . 

 

  
012.0

0
77

6
7

1

=





 −=

=







+
−






 −=

x
Nyy

dt
dy

x
xyxx

dt
dx

          (2.13) 

 

There are three steady state points in the first quadrant, namely, )2,1(=A , )0,7(=B  ,and 

this includes the origin. But we are only interested in steady states of A and B. Then, the 

Jacobian matrices are given by; 

 

Find the steady 
state points

Linearize around 
each one

Determine the 
isoclines

Plot a phase 
plane portrait
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           (2.14)

 

 

 

and  

   
















−

−
=

5
1

5
2

7
3

7
2

BJ            (2.15) 

     

  

The eigenvalues and eigenvectors of JA are given by ( )T0,1,11 −=λ  and 
T







−= 1,

8
5,

5
1

2λ .  

Therefore, this steady state point is a saddle point with stable manifold lying along the x-

axis and the unstable manifold tangent to the line with slope 
5
8

−  near to the steady state 

point.  The eigenvalues of JB are given by i335.0043.0 ±≈λ .  Therefore, we can say that 

the steady state point at )0,7(=B is an unstable spiral. 

  

  

All trajectories lying in the first quadrant are drawn to the closed periodic cycle shown in 

the Figure 2.7 as the following: 
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 Therefore, no matter what the initial values of x(t) and y(t) are, the populations 

eventually rise and fall periodically.  This isolated periodic trajectory is known as a limit 

cycle.  In the long term, all trajectories in the first quadrant are drawn to this periodic 

cycle, and once there, will remain forever. 

  

 

 We try to do the same task but change the value of N. It shows that the system is 

structurally stable (or robust) since small perturbations do not affect the qualitative 

behaviour.  The limit cycle will arise as a Hopf bifurcation on the steady states when N is a 

bifurcation parameter.  To do this would require use of the path following method 

(XPPAUT) described in Chapter 5 which we do not do here.  This predator-prey model 

oscillates in a similar manner to the Lotka-Volterra model with another major exception.  

The final steady state solution for the Holling-Tanner Model is independent of the initial 

conditions.  This model appears to match very well with what happens for many predator-

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

x(t)

y
(t

)

Figure 2.7: The phase plane diagram for Holling-Tanner Model where the 

trajectories are moving towards the limit cycle.  
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prey species in the natural world – for example, house sparrows and sparrow hawks in 

Europe, muskrat and mink in Central North America, and white-tailed deer and wolf in 

Ontario.  
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CHAPTER 3 

 

BIOLOGICAL BACKGROUND 

 

 

In this chapter, we introduce a simple example on animal growth model that has 

been developed and some background of the previous models that being used in this 

project. 

 

 

3.1  Simple Model for Animal Growth 

 

Growth functions have an important role in animal nutrition partly, if not largely, 

because some growth functions are analytically soluble equations.  Analytical models can 

be of great heuristic value.  However, there are some quite simple models which do not 

permit analytical solutions, but are yet rather instructive and some of the simple models, the 

solutions are easy to obtain. Here is an example of a simple growth model as a dynamical 

system (Thornley and France, 2007). 

 

‘Open’ Logistic Growth 

 

The two-parameter logistic growth equation may be written: 
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









−=

fW
WW

dt
dW 1µ

                           (3.1)

 

where:  W : weight (state variable),  

µ : a specific growth rate parameter, 

fW : final weight. 

Given that 2.0=µ day-1, 100=fW kg, 1)0( 0 === WtW kg. 

The solution for (3.1) is 

 t
f

f

eWWW
WW

tW µ−−+
=

)(
)(

00

0

.
 

 

Growth is targeted on given final weight.  For many animals, the final weight depends on 

conditions during the growth.  It is easy to adjust parameter µ according to nutrition or 

temperature.  However, this merely causes the animals to approach the final weight slower 

or faster.  In the paper by Thornley and France (2005), they questioned the modification of 

fW  during growth according to actual growth conditions.  Early limiting conditions 

produced a greater effect than late limitation. The degree of limitation is also important.  A 

simple way to do the modification was proposed.  

 

Equation (3.1) is replaced by two differential equations, with now three parameters: 

( )( )WWfD
dt

dW

W
WWf

dt
dW

f
f

f

−−−=











−=

lim

lim

1

1µ

                        (3.2)
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fW  is now a state variable whose initial value assumes that there is no growth limitation.  

D is a development or differentiation rate.  limf is a fraction, which reflects a possible 

growth limitation.  The 
dt

dW f  equation causes final weight fW to move towards actual 

weight W at a rate depending on D times the degree to which growth is limited ( )lim1 f− .  If

1lim =f , there is no growth limitation and fW  does not change from its initial value.  If 

0lim =f , there is no growth at all.  Here, it is assumed, for simplicity, that the same growth-

limiting factor limf  occurs in the first and second of equation (3.2), affecting specific 

growth rate and change of asymptote. 

 

 

While it is possible to eliminate fW  between these two differential equations and obtain a 

higher-order equation, this is not very helpful.  Instead, we divide the two differential 

equations to eliminate dt and integrate (given constant parameters) to give: 

 

( )[ ]limlim 1

0

0

fDf

f

f

W
W

W
W

−











=

µ

                                  (3.3) 

Here Wf0 is the initial condition for Wf. 

At the steady state, i.e. ∞→t , W is equal to Wf.  Let it be Wmax. 

( )[ ]limlim 1

0

0

fDf

f

ff

W
W

W
W

−











=

µ

                                (3.4)
 

( )[ ]limlim
lim

lim 1
00)1(

1 fDf
ffD

f

f WWW −
−

+ = µµ

                         (3.5) 
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00
fD

ffD
f

ff WWW −
+−











=

µ
µ

                    (3.6)
 

)lim1(
lim1

1
)lim1(

lim

00max
fD

ffD
f

fWWW −
+−











=

µ
µ

                    (3.7) 

 

Note that, with constant parameters, the asymptotic value of the animal weight depends on 

D
µ . 

 

Now, to illustrate the behaviour for the system (3.2), consider the following parameter 

values: 

2.0=µ day-1, 1.0=D day-1, 10 lim ≤≤ f , 

1)0( 0 === WtW kg, 100)0( 0 === ff WtW kg. 
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Figure 3.1 illustrates the behaviour of the open logistic equation when D is varied and the 

fixed value of limf  at 5.0lim =f .  Solid lines indicate weight, W and the dashed lines indicate 

the variable fW .  Both of which tend to the same asymptotic value.  This figure shows that 

there is a change in final weight when we increased the value of D.  This is due to the 

limitation, whereas if the development (D) is more comparable with growth (µ), then final 

weight can be much depressed.   
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Figure 3.1: Solution of equation (3.2) with D is varied. 
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Figure 3.2 illustrate the behaviour of the open logistic equation when µ and D are varied 

with 4=
D
µ .  Solid lines indicate weight, W and the dashed lines indicate the variable fW .  

It simply gives a picture of a changing timescale as we varying µ and D but maintaining the 

same ratio. 
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Figure 3.2: Solution of equation (3.2) with µ and D are varied. 
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3.2  Review of Models in the Literature 

  

For years, most studies in the field of animal nutrition have only focussed on the 

empirical models to developed animal growth models.  It allows an animal’s weight gain to 

be expressed as a relatively simple function and is often a curve-fitting exercise.  However, 

it cannot give a real understanding of the system and may lack generality since it does not 

address the underlying mechanism.  Numerous studies have attempted to explain the animal 

growth by mechanistic models (e.g. Oltjen and Sainz (1995); Freetly (1995)). 

 

 

From the literature review, to more accurately predict growth on diets with extremes 

of energy, more complex models which can account for variable maintenance requirements 

or differing efficiencies of absorbed energy use are needed.  To date, various methods have 

been developed and introduced to predict or measure the animal growth. 

 

 

Vetharaniam et al (2001a, 2001b) have developed a mechanistic model of growth 

and pregnancy which is based on representation of a mammal, either for inclusion into a 

larger systems framework, or for modelling a single animal in its own right.  In this study, 

they assume that the same principles of growth are used through fetal until post-natal stages 

and are similar among species.  In spite of this, in dairy cows, not many studies have been 

done on the multiple protein pools in the animal growth model.  But from current literature, 

there are few works done by Oltjen et al (2000, 2006) that described the multiple protein 

pools in the animal growth model. But Vetharaniam’s paper might have been far more 

interesting if the authors had considered the body protein mobilization to accommodate 

changes in body composition specifically for dairy cows.   
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Furthermore, not many studies have been done on the mathematical analysis of the 

growth models and prediction of the response of an animal to various feeding strategies.  In 

a Masters thesis by Wickham (1997), he investigated the construction and analysis of a 

number of models of animal growth, focusing on the protein pool and the interaction 

between muscular and visceral components.  He also looked at how the behaviour of 

viscera and muscle were altered by changes in the model’s parameters.  Although, in the 

model by Vetharaniam et al (2001a, 2001b), the authors does mentioned on the growth 

rates at different feeding levels but they does not point out the behaviour of the dynamical 

system for different feeding level.  
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CHAPTER 4 

 

 

A MODEL OF COMPOSITION AND GROWTH 

 FOR MAMMALS 

 

 

This chapter describes a model developed by Oliviera, Bywater and Vetharaniam (personal 

communication, July 2009) which was analysed in this project to identify the dynamical 

properties of the equations. 

 

 

 

4.1  Model Description 

 

This Masters thesis project investigates the model of Oliviera et al (personal 

communication, July 2009) to identify its stability and bifurcation structure.  A model on a 

composition model of growth, pregnancy and lactation by Vetharaniam et al (2001a, 

2001b), has been the basic foundation of the development of this model.  The extension of 

the model is to accommodate the changes in body composition.   
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In most of the literature, they proposed the growth model as three compartments 

such as nutrient, fat and protein.  But protein can be divided into two different types.  One 

is slow turnover protein and the other one is fast turnover protein (viscera).  From the 

model by Vetharaniam et al (2001a, 2001b), the animal laws were represented as two 

interacting pools, N (MJ), which is the energy available as a result of the energy flux 

through the blood and liver, plus free cellular energy and second, a pool of bound energy, 

M (kg), which identifies with the animal’s empty body.  Oliviera et al proposed that the 

animal be represented as four interacting pools.  The tissue pool (M), will now be divided 

into lean body tissue or protein (P), viscera pool (V), and fat pool (F).  This model attempts 

to describe the relationship between the protein, viscera and fat in growing farm animals, 

specifically dairy cows. A schema of the model is shown in Figure 4.1  
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Figure 4.1: Model representation of animal’s energetic (Oliviera et al model). 
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The animal eats and the food expressed as Gross Energy (GE) intake, J, is 

partitioned into Absorbed Energy (AE), II and wastes, IW.  Then, II flows into Energy Pool 

(N) and interacting with tissue pools such as protein (P), viscera (V) and fat (F).  Anabolic 

currents flow from N to those tissue pools and provide the energy deposited as tissue in the 

tissue building process.  At the same time, catabolic currents remove the energy from 

protein, viscera and fat pools back to N.  Besides that, N also produced energy such as 

excretion energy (IE) and production energy (IP).  Excretion energy, IE, accounts for energy 

used for activity and to maintain body heat and for energy lost as urine.  While production 

energy, IP, accounts for energy used for lactation, conceptual supply and follicle growth. 

 

 

The percentage of protein and fat in the body (and thus the energy content of the 

body) changes over time, and thus models of animal growth that represent the body as one 

pool need to take this into account when predicting growth. The model by Vetharaniam et 

al (2001a and 2001b) thus needed to evaluate the change in energy density over time in 

order to predict growth from a forage intake (specified in terms of energy consumed). This 

is not needed in the Oliviera et al model since the fat and protein pools are specified 

separately. The term 
t
M

∂
∂ρ

 (in Vetharaniam et al model) was there to accommodate a 

change in composition of the body as the animal matures.  This is due to different water and 

ash content in the different pools. They also assumed the densities, FVP ρρρ ,, , to be 

constant over time.  In this project, we are interested in the long-term behaviour of the 

system.  For simplicity, we consider this animal growth model as an autonomous system 

since non-autonomous dynamical systems are much more difficult and complex to 

characterise than autonomous ones unless they have a particularly simple structure.  

Besides that, the model assumes the animal is not pregnant or lactating, and it does not 

expend energy to keep warm.  Additionally, the energy cost of hair growth is ignored.  
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4.2  The Energy Dynamics 

  

As in the paper by Vetharaniam et al (2001), the Absorbed Energy (AE) pool, N, 

acts as an intermediary for the flow of energy.  The upper limit for N, Nu, is limited by the 

carrying capacity of the blood and intra cellular fluids.  Nu is expressed in terms of free-

energy with respect to protein, viscera and fat; 

 





 +

+=
c

VPFNu uρ
 

)constant(23.0; =c
                       (4.1) 

where uρ  [ 1MJkg − ] is the maximum energy pool density and is assumed constant. 

 

If we refer to the previous figure on the animal’s energetic (Figure 4.1), we can say 

that the dynamics of the absorbed energy pool, N, is the energy fluxes as:- 

 

EAAAKKKI IIIIIIII
dt
dN

FVPFVP
−−−−+++=

.         (4.2) 

 

where N [MJ] and t [days]. So, the units of the right-hand side functions are MJday-1.  II is 

the energy intake. IKP, IKV, IKF are the catabolism currents and IAP, IAV, IAF are the anabolism 

currents from protein, viscera and fat pools, respectively.  

 

 

IE is the excretion current (the energy needed to get rid of materials such as solid 

waste or urine from the body).  This includes the heat from inefficiencies )( εI  and the 

energy in urine )( UI  ; 
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UE III += ε .               (4.3) 

Inefficiencies in tissue )( εI incur the anabolic energy (energy that causes muscle 

and bone growth) to be proportional to IAP, IAV, IAF by AFAVAP εεε ,,  respectively.  At the 

same time, the heat from the catabolism (the process in an animal by which living tissue is 

changed into energy and waste products of a simpler chemical composition) is

KFKFKVKVKPKP III εεε ,,  and the heat from the urea synthesis is UU Iε .  All the ε  factors are 

dimensionless. 

 

So, we can say that the )( εI  has a form as; 

UUKKKKKKAAAAAA IIIIIIII
FFVVPPFFVVPP

εεεεεεεε ++++++=
.        (4.4) 

 

AFAVAP εεε ,,  are the relative costs of anabolism due to protein, viscera and fat pool 

synthesis, respectively.  KFKVKP εεε ,, are the relative costs of catabolism due to protein, 

viscera and fat pool degradation, respectively. Uε  is the urine synthesis. 

 

 

Urinary energy is disintegrated into exogenous (external) and endogenous (internal) 

components.  Exogenous urinary energy (from the deamination of dietary protein) is 

expressed as rII and the endogenous urinary energy are expressed as KPIη  and KVIη  ; 

 VP KVKPIU IIrII ηη ++=
                        (4.5) 

here r is exogenous urine and r will vary with food source. While VP ηη ,   are endogenous 

nitrogen excretion from protein and viscera, respectively. They are all dimensionless. 
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Metabolic Potentials for Protein, Viscera and Fat Pools 

 

Each anabolic current from the protein, viscera and fat pools is associated with a 

“metabolic potential” or, the maximum rate of energy use, which is determined by degree 

of maturity and physiological state and a dimensionless “elasticity of supply” parameter 

which, together with N, govern the actual energy flow.  Anabolic currents have a potential 

of QAP(protein), QAV (viscera) and QAF (fat).  These have an elasticity of one and are met if 

NuN = . The units of these potential currents are in MJday-1. 

 

So,  IAP, IAV and IAF have the form of: 

PP AA Q
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Note that in each anabolic current, there are logistic effects, where MP, MV and MF are the 

carrying capacities.  MP, MV, MF [kg] are the maximum mass in protein, viscera and fat 

pools, respectively. aFaVaP www ,,  [MJkg-1day-1] reflects the age dependence of anabolism.

FVP κκκ ,,  [MJkg-1day-1] are the relative basal catabolism of protein, viscera and fat 

respectively and these terms are regard as constants.  AFAVAP κκκ ,,  are the catabolism 
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related to anabolism of protein, viscera and fat respectively and they are dimensionless 

constants.  

 

 

Catabolism Energy for Protein, Viscera and Fat Pools 

 

There are three types of catabolism:- 

1. Body turnover 

2. Catabolism that associated with anabolism 

3. Catabolism from the mobilisation of body tissue as an energy supply when the 

animal’s absorbed energy (AE) intake is lower than its demand. 

 

The rate of energy flow into N from the catabolism in the protein, viscera and fat pools are:- 

 

PPP AAPK IPI κκ +=
               (4.9) 

VVV AAVK IVI κκ +=
             (4.10) 

( )71 Nu
N

NAAFK FIFI
FFFF

−++= κκκ
           (4.11) 

 

Schaefer and Krishnamurti (1984) indicate that KFKVKP III ,,  are significant during active 

growth. 



43 
 

The first term in KFKVKP III ,,  (i.e. FVP FVP κκκ ,, , respectively) are correspond to 

the body turnover since catabolism involved with body turnover can be expected to exhibit 

mass dependence.  

 

 

The second terms AFAFAVAVAPAP III κκκ ,,  are correspond to the catabolism that 

associated with anabolism.  Oddy et al (1997) noted that degradation of protein increased 

with increased synthesis.  It is assumed that constant AFAVAP κκκ ,,  of tissue being 

anabolised is then catabolised. 

 

 

The term 
7

1 





 −

Nu
NFNFκ  in IKF is here because when an animal’s supply of AE is 

lower than its demand, it must increase catabolism to maintain body processes and 

production demands.  A decreased in AE will result in a lowering of the energy pool, N. 

The ratio of N to Nu is used as a replacement for the difference between energy demand 

and energy intake. NFκ [MJkg-1day-1] is the catabolism due to energy deficit of fat pool.  

There is nothing particular significant about number seven in the exponent of the last 

logistic term.  It is just to reflect the equivalence of turnover in each pool because the 

protein turnover will be more dominant than the turnover of body fat and to ensure that the 

term is significant only when N is much smaller than Nu. 
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Metabolic Potential for Energy Intake 

 

The model specifies that the animal has an internal demand for absorbed energy of  

)1(1
)1()1()1(

U

AAAAAA
I r

QQQ
Q FFVVPP

ε
κεεε

+−

−+++++
=

      (4.12) 

where ; 

FFVVPP KKKUVKKUPK III )1()]1(1[)]1(1[ εεηεεηεκ −++−−++−−=
 

 

QI [MJday-1] is the maximum absorbed energy intake of the animal will results in 

maximal rates for all its current flows. This means that the animal’s energy demand, QI, is 

the sum of the metabolic potential for anabolism minus the catabolism energy from each of 

the protein, viscera and fat pools.  We can say that QI is the metabolic potential for the 

energy intake II.   Writing II as a fraction of QI is a convenient way to avoid modelling 

foraging and digestion.   

II QI γ=              (4.13) 

Here, γ is the driver for the feed intake. By letting ]1,0[∈γ indicate feeding level as ratio of 

the absorbed energy intake versus demand.  In this project, we tried to analyse this animal 

growth model by controlling the value of γ.   

 

 

κ  is a catabolic offset of demand.  κ  is a “potential” which subtracts from the 

animal’s energy demand because catabolism of tissue releases bound energy back into N, 

making it available for the animal’s metabolic needs. Catabolism as an energy source can 

reduce the animal’s need for energy from external sources. κ  can be derived by requiring 
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NuN =  which means let equation (4.2) equal to zero (i.e. 0=
dt
dN

) and substitute equation 

(4.3), (4.4) and (4.5) into this. 

 

 

 

Growth  

 

The rate of change of energy in the animal’s empty body weight is the difference of 

the energy flows in minus the energy flows out. 

( )
PP KA

P

II
dt
dP

−=
ρ
1

             (4.14)
 

( )
VV KA

V

II
dt
dV

−=
ρ
1

             (4.15) 

( )
FF KA

F

II
dt
dF

−=
ρ
1

             (4.16)
 

 

 

When the animal is at energetic static (the rate of the growth in each mass pools), we can 

say that anabolic current is equal to catabolic current.  
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i.e.    

KFAF

KVAV

KPAP

II
II
II

=
=
=

            (4.17)

   

 

since we  know that 0,, ≠FVP ρρρ . 
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CHAPTER 5 

 

METHODOLOGY: XPPAUT APPROACH 

 

 

In this chapter, we will provide a primer of the basic ideas and jargon of XPPAUT as a 

method of analysing the animal growth model.   

 

 

 

5.1  Introduction  

 

XPPAUT is a tool for simulating, animating and analysing dynamical systems.  

Most issues that we might want to do that related to dynamics either discrete or continuous 

can almost certainly be done with XPPAUT if we know how it works. 

 

 

They are plenty of packages that will integrate differential equations.  Software 

packages such as MATLAB, MAPLE and MATHEMATICA are recommended to study 

and analyse dynamical system.  But these packages are slow when it comes to numerically 

solving differential equations and they do not offer much flexibility in the choice of 

integration methods and the integration is not done interactively.  In XPPAUT, we can see 
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the progress of the solution until it is computed.  Although MATLAB has great flexibility 

and can even integrate differential equations with discontinuities.  However, the numerical 

integration is generally slower than can be achieved with XPPAUT.  Moreover, the syntax 

of XPPAUT for setting differential equations is pretty simple compared to the other 

programs.  What is more interesting about XPPAUT is that it is free and XPPAUT can be 

downloaded in the internet.   In addition, in XPPAUT there are tools for analysing the 

system such as the plotting of Poincare sections, delayed embeddings, stability analysis, 

computation of one-dimensional invariant manifolds, nullclines and vector fields. Unlike 

the other software packages, they do not offer standard qualitative tools such as direction 

field and nullclines or they require additional packages or we need to write the code 

directly.  XPPAUT also includes a frontend to AUTO, a continuation and bifurcation 

package.  There is no packages offer an interface to AUTO.  This self-contained version of 

AUTO communicates seamlessly with XPP making it easy to continue the solution to 

boundary value problems, as well as equilibria, fixed points and limit cycles. 

 

 

5.2  How does XPPAUT work? 

 

1. Creating ODE file 

 

To analyse a differential equations using XPPAUT, we must create an input file that 

tells the program the names of the variables, parameters and equations.  By 

convention, these files have the file extension ode (abbreviation for ordinary 

differential equations). 

 

To create an ode file, these are the steps that should be taken:- 

 

1) Use an editor to open up a text line. 

2) Write the differential equations in the file; one per line. 
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3) Use the par statement to declare all the parameters in the system.  We can 

define the initial conditions for the system with the init statement. 

4) End the file with statement done. 

5) Save the file with  filename.ode  and close the file. 

 

XPPAUT is case sensitive.  Therefore, one should not ever put spaces between the 

variables and the “=” sign and the number. 

Every .ode file consists of declarations of the equations that we want to solve, the 

parameters involved and any user-defined functions that we will need.  Note that in 

XPPAUT, the name of anything that is user-defined must be fewer than 10 

characters. 

 

 

2. Running the program  

 

To run the program that we already saved, we need to start up XPPAUT with the 

filename (e.g. animalgrowth.ode).  Then, a main window will appear which consists 

of a large region for graphics, menus and various other gadgets.  To solve the ODE 

that we created, we just need to click on InitialConds Go in the main 

window.  In XPPAUT, there are few numerical choices that we can choose to solve 

the ODE (such as Runge-Kutta, Stiff etc.).  A solution will be drawn followed a 

beep.  If we already computed a solution and we do not have any clue about the 

bounds of the graph, XPPAUT will resized it to a perfect fit by click on 

Window/zoom Fit.  Not only that, we can just change the parameters and initial 

data values from the main window and we do not have to alter the program that we 

created in .ode file.  In addition to the graphs that XPPAUT produces, it also gives 

us access to the actual numerical values from the simulation.  Moreover, we can 

save the current state of XPPAUT that we are working on.   
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3. Quit the program 

 

To quit the program that we are running, it is easy. Just click File Quit Yes to 

exit XPPAUT. 

 

 

 

 

5.3  Using AUTO: Bifurcation and Continuation 

 

For many people, the main motive to use XPPAUT is because it provides a fairly 

simple interface to the continuation package, AUTO.  AUTO has a graphical user interface 

in the distributed version, but still requires that we write in FORTRAN code to drive it.  

XPPAUT allows us to use most common feature of AUTO such as following fixed points, 

periodic orbits, homoclinic orbits and two-parameter continuations.   

 

 

Many physical and biological systems include free parameters.  One of the goals of 

applied mathematics is to understand how the behaviour of these systems varies as the 

parameters change.  This is a numerically challenging task and there is generally no way to 

systematically explore a system as a function of all its parameters.  What one should do is 

reduce the number of parameters either by fixing those which are best known or make the 

problem dimensionless.  Assuming that we can reduce free parameters to a convenient 

number, there are some useful tools for exploring how a dynamical system changes as these 

parameters vary such as continuation technique (or also known as path following 

technique) in which a particular solution (such as a steady state point or limit cycle) is 

followed as the parameter changes.  AUTO provides some very powerful algorithms for the 

continuation of steady state points and periodic solutions to differential equations.  The 
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stability of the particular branch of solutions is readily obtained by analysing the 

linearization which is automatically accomplished by AUTO.  If a steady state point or 

limit cycle exhibits a change in its stability, this is often a sign that new qualitatively 

different behaviour could occur.  These qualitative changes in the local and global 

behaviour are called bifurcations and their detection during continuation is the subject of 

much mathematical research.  AUTO provides a number of tools for the automatic 

detection of bifurcations of fixed points and limit cycles.  

 

 

In the next section, we show how to use XPPAUT and AUTO together on a simple 

example of Morris-Lecar equations. 

 

 

 

5.4  Illustration of XPPAUT 

 

In this section, we are going to analyse an example of Morris-Lecar equations using 

XPPAUT.  Morris-Lecar equations (Ermentrout, 2002) are a model for the membrane 

potential of a barnacle muscle, defined by the following equations: 
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where;  
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Given that the parameter values as: 

0=I ,  333.0=φ , 

5.0=lg ,  2=kg   ,  1=
acg , 

7.0−=kE ,  1=
acE   ,  5.0−=lE , 

1.01 −=V ,  15.02 =V   ,  1.03 =V   ,  145.04 =V . 

 

The variables are the membrane potential V and a gating variable w that represents 

activation of a potassium current.  Let just assume that we are now referring to a 

dimensionless version of the Morris-Lecar equation and we will continue to do the analysis 

from here.  In this example, we are trying to vary the value of current, I and the potassium 

current, φ .  We want to analyse the behaviour of the system if we change the value of these 

parameters. 

 

 

Firstly, we need to create the .ode file and let say we name it as morrislecar.ode.  

Then, start up XPPAUT and integrate this equation using InitialConds Go followed 

by InitialConds Last.  By doing this, we are trying to tell XPPAUT to eliminate all the 

transients. 
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The solution and the phase plane for this system are (here T is time, t): 

 

 

 

 Figure 5.2: The solution graph for w. 

Figure 5.1: The solution graph for V. 
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After that, click on File Auto to bring up AUTO.  An AUTO window will appear as 

shown as below.  From here on in, the rest of the commands will be in the AUTO window. 

 

Figure 5.3: The phase plane diagram for Morris-Lecar equations, 
where w is plotted vertical and V on the horizontal with initial 

condition (0,0). 
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Click on Axes Hi-Lo to set up the graphics axes. We will set the axes as follows:- 

Figure 5.4: AUTO window in XPPAUT. 
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Next, click the Numerics and a dialog box will open.  Change as follows:- 
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Par Min tells AUTO how far to continue the solution.  While Dsmax set AUTO 

the maximum step to go to the direction of the solution.  Then click Ok.  To run the 

bifurcation, click on Run Steady State.   

 

 

 

We should see a cubic curve with a few special points on it (see Figure 5.5) labelled 

as 1, 2, 3, 4 and 5 where the thick line corresponds to stable steady state and the thin line 

corresponds to unstable one.  In this diagram, it shows that when the value of I is in the line 

between 1 and 2, the value of steady state V is stable.  Whereas, as it reach point 2, it 

changed its stability (it becomes unstable).  Again, it changes to be a stable steady state at 

point 4.  Click on Grab and move through the diagram by tapping Tab on the keyboard.  

In the bottom of the AUTO window, there is a box shows the details of the points.  One 

will see limit points (labelled LP) at 08326.0=I  and 02072.0−=I  as well as an 

interesting Hopf bifurcation point (labelled HB) at 20415.0=I .  We know that there is a 

periodic solution will occur at a Hopf bifurcation point.  So, we press Enter at this point 

Figure 5.5: The bifurcation diagram with current, I is the parameter 
control. This diagram shows the stability of the steady state V as I is 

varied. 
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(i.e. point 4) to grab it.  By doing this, we try to compute the periodic orbit comes from this 

point.  Click on Run and choose Periodic.  One should see something as in Figure 5.6.   

 

 

 

 

 

This diagram shows a number of interesting features that are quite important in 

bifurcation theory.  Note that, the branch of periodic solutions that comes out of the Hopf 

point is unstable (open circles) and then it turns around at a limit point of oscillations at 

242.0=I  (point labelled 7) where a stable and unstable limit cycle join together here.  

Therefore, if we perturbed a small range of currents, I (i.e. )20415.0,15.0(∈I ), there is a 

multiple stability between upper steady state and the limit cycle.   

 

Figure 5.6: The Hopf bifurcation and the periodic solutions. 
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Now, let say we want to look at the two-parameter diagram for this model.  Click on 

Axes Two Par and fill in the dialog box as below: 

 

Figure 5.7: The frequency of the periodic solutions. 
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This will creates graph with I along x-axis and φ  along y-axis.  Click on Grab and press 

Tab key until reach the first limit point (LP) which should be labelled 2 and press Enter 

to grab it.  Click on Run. 

 

 

A vertical line will appear (see Figure 5.8).  This is because the limit point is 

independent of the parameter φ which has no effect on the value of steady state but can 

affect the stability of the system.  Again click on Grab and Tab to the second limit point 

labelled 3.  Click on Run and one should get another vertical line corresponding to the left 

most limit point.  Next click on Grab and Tab to the Hopf bifurcation point (HB) labelled 

4.  Click on Run Two Par and one will see a curve going down and to the right.  This is 

the curve of Hopf bifurcation points.  Finally, we want to extend the curve of Hopf 

bifurcation points again.  Click on Numerics and change Ds to Ds=-0.02.  This means 

that we tell AUTO to go to the reverse direction.  Finally, click on Run Two Par.  One 

will see the curve go up and to the left.  It crosses the right vertical line of folds points and 

stop at the left vertical line. 

 

Figure 5.8: Two-parameter bifurcation diagram between I andφ . 
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What we can tell from this diagram is that the right line represents the loss of the 

lower branch of the steady state.  The termination of the curve of Hopf points on the left 

vertical line denotes a new higher-order bifurcation point. 

 

 

For φ  below the Hopf point curve and between the two vertical lines, the upper 

branch of steady state is unstable.  On the right, it is stable above the Hopf curve and 

unstable below.  On the left, the steady state is always stable.  We can verify this by 

looking at the bifurcation diagram (Figure 5.6).   

 

 

We will use this powerful tool to analyse the stability of the animal growth model (Oliviera 

et al model) in Chapter 6. 
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CHAPTER 6 

 

 

ANALYSIS 

 

 

In this chapter, we are about to illustrate the animal growth that have been developed by 

Oliviera et al and has been discussed in Chapter 4. 

 

 

 

6.1  Analysis Part I 

 

For this part, we try to do some analysis of the model proposed by Oliviera et al as 

we have been discussed in Chapter 4.  At first, the animal growth model has a few numbers 

of free parameters.  It is interesting to analyse how the behaviour of the system varies as the 

parameters change.  This is a numerically difficult task to do the exploration of the system 

as a function of all its parameters.  We did a sensible assessment of this animal growth 

model.  We tried to reduce the free parameters to a convenient number.  What we did was 

we take the system to be an autonomous system by ignoring the seasonal effects that were 

included by Oliviera et al, and by letting the time, t tend to infinity as we are interested in 

the long-term behaviour of the system.  These seasonal effects are linked to day length and 

would cause the animal’s mass to oscillate as it approached a maximum.  Basically, what is 
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meant by that is, we only consider the growth of the animal in an aseasonal case.  

Aseasonal is an artificial situation where the animal experiences consistently long days and 

thus increased growth rates (Suttie and Webster, 1995; Tucker 1996). 

 

 

 Next, we try to run the model by setting different values of γ.  It shows that 

something is missing here in the model because when 5.0=γ (Figure 6.1(b)) and 75.0=γ

(Figure 6.1(c)), the growth for mass pools (P, V, F) and energy pool (N) of this animal 

tends to zero in less than 1000 days.  When the model was developed, the biologist 

developing it did not have much data available and it only correspond to 1=γ  (Figure 

6.1(a)).  So, the parameterisation was not particularly robust as these results show (refer to 

Table 6.1). 
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Symbol Description Value Units 

uρ  Maximum energy pool density 0.04100 MJkg-1 

PAε  
Relative cost of anabolism due to protein synthesis 0.25000  

VAε  
Relative cost of anabolism due to viscera synthesis 0.25000  

Figure 6.1: The graphs before parameterisation. (a) correspond to 1=γ , 
(b) correspond to 5.0=γ and (c) correspond to 75.0=γ . 
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FAε  
Relative cost of anabolism due to fat synthesis 0.33000  

PKε  
Relative cost of catabolism due to protein 

degradation 

0.20000  

VKε  
Relative cost of catabolism due to viscera 

degradation 

0.20000  

FKε  Relative cost of catabolism due to fat degradation 0.15000  

Uε  Urine synthesis 0.35000  

Pη  Endogenous nitrogen excretion from protein pool 0.04200  

Vη  Endogenous nitrogen excretion from viscera pool 0.04200  

r Exogenous urine (AE) 0.07800  

Pρ  Protein density pool 23.1000 MJkg-1 

Vρ  Viscera density pool of protein, viscera (protein +fat) 

and fat 

23.1000 MJkg-1 

Fρ  Fat density pool 38.5000 MJkg-1 

Pκ  Relative basal catabolism of protein 1.80000 MJkg-1day-1 

Vκ  Relative basal catabolism of viscera 1.80000 MJkg-1day-1 

Fκ  Relative basal catabolism of fat 0.80000 MJkg-1day-1 

PAκ  
Catabolism related to anabolism of protein pool 0.15000  

VAκ  
Catabolism related to anabolism of viscera pool 0.55384  
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FAκ  
Catabolism related to anabolism of fat pool 0.10000  

FNκ  
Catabolism due to energy deficit of fat pool 0.03180 MJkg-1day-1 

paw  Parameter that related to growth in protein pool 0.17000 MJkg-1day-1 

vaw  Parameter that related to growth in viscera pool 0.75000 MJkg-1day-1 

Faw  Parameter that related to growth in fat pool 1.45000 MJkg-1day-1 

PM  Maximum mass in protein pool 55 kg 

VM  Maximum mass in viscera pool 30 kg 

FM  Maximum mass in fat pool 250 kg 

 

Table 6.1: The values for the parameters in the model determined from data. 

 

 

So, we did re-parameterised the model and change one of the equations.  Firstly, we change 

the equation (4.8).   

From this,  
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to this form, 
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Here, we have re-examined the physiological formulation of the equation to better reflect 

the physical relationships in the model.  Specifically, we changed the effectively “carrying 

capacity” in the logistic term to include the changing ratio
PM

P . 

The next thing we did was changed some of the parameter values so that the model is 

realistic when the value of γ is decreasing (see Table 6.2). 

 

Symbol Description Value Units 

uρ  Maximum energy pool density 0.04100 MJkg-1 

PAε  
Relative cost of anabolism due to protein synthesis 0.25000  

VAε  
Relative cost of anabolism due to viscera synthesis 0.25000  

FAε  
Relative cost of anabolism due to fat synthesis 0.33000  

PKε  
Relative cost of catabolism due to protein degradation 0.20000  

VKε  
Relative cost of catabolism due to viscera degradation 0.20000  

FKε  Relative cost of catabolism due to fat degradation 0.15000  
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Uε  Urine synthesis 0.35000  

Pη  Endogenous nitrogen excretion from protein pool 0.04200  

Vη  Endogenous nitrogen excretion from viscera pool 0.04200  

r Exogenous urine (AE) 0.07800  

Pρ  Protein density pool 23.1000 MJkg-1 

Vρ  Viscera density pool of protein, viscera (protein +fat) 

and fat 

23.1000 MJkg-1 

Fρ  Fat density pool 38.5000 MJkg-1 

Pκ  Relative basal catabolism of protein 0.50000 MJkg-1day-1 

Vκ  Relative basal catabolism of viscera 0.50000 MJkg-1day-1 

Fκ  Relative basal catabolism of fat 0.20000 MJkg-1day-1 

PAκ  
Catabolism related to anabolism of protein pool 0.10000  

VAκ  
Catabolism related to anabolism of viscera pool 0.35000  

FAκ  
Catabolism related to anabolism of fat pool 0.03000  

FNκ  
Catabolism due to energy deficit of fat pool 0.03180 MJkg-1day-1 

paw  Parameter that related to growth in protein pool 0.50000 MJkg-1day-1 

vaw  Parameter that related to growth in viscera pool 1.00000 MJkg-1day-1 
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Faw  Parameter that related to growth in fat pool 2.00000 MJkg-1day-1 

PM  Maximum mass in protein pool 55 kg 

VM  Maximum mass in viscera pool 30 kg 

FM  Maximum mass in fat pool 250 kg 

Table 2: The values of the parameters after parameterisation. 

 

 

6. 2 Analysis Part II 

 

6.2.1  Solution Graphs 

 

So, the animal growth model is simply a set of autonomous ODEs.  Recall that the 

equations are; 
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This animal growth model equation is amenable to solution by a variety of methods.  Since 

the system is stiff, all integration is done by using Stiff Method.  Some of the values of the 
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parameters for this model were taken from other authors’ experimental work which was 

given in Table 6.2. 

 

 

The values for these parameters are to be seen as a starting point for an exploration 

of the surrounding parameter space rather than a fixed set of values.  As mentioned in the 

previously chapter, we are interested in how this animal growth system behave when we try 

to vary the value of the feeding level, γ.   

 

 

Here, we tried to find the solution graphs for nutrient (N), protein (P), viscera (V) 

and fat (F).  We set the initial values as:- 

6)0( =P ;  6.0)0( =V ; 3)0( =F  

And the initial value of N is given as; 

 
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In particular, we consider for various values of feeding level to determine the steady state 

and plot the trajectories. 
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Figure 6.2: Solution graph for nutrient (N) at the different values of γ. 
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Figure 6.3: Solution graph for protein (P) at the different values of γ. 
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Figure 6.4: Solution graph for viscera (V) at the different values of γ. 



74 
 

 

 

 

 

 

 

 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

t, time (days)

f
a
t
 
g
r
o
w

t
h
 
[
k
g
]

 

 
gamma=1
gamma=0.75
gamma=0.5
gamma=0.25

Figure 6.5: Solution graph for fat (F) at the different values of γ. 
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 Figures (6.2, 6.3, 6.4 and 6.5) show the results of integrating the system with 

respect to time until 3650 days.  It shows the growth of an animal for nutrient (N), protein 

(P), viscera (V) and fat (F) pools with a number of different feeding levels.  When 1=γ , it 

corresponds to the maximal feeding ( II QI γ= ).  But when 25.0,5.0,75.0 === γγγ , they 

correspond to intakes of 75%, 50% and 25% of maximal feeding, respectively.  It means 

that the animal is limited by its potential to utilise energy.  The growth is from birth to 

maturity of an animal with no exercise or production requirements. 

 

 

 From the figures, in general, it shows that the graphs are to increase for a certain 

amount of time before it reaches a steady state.  The model predicts that nutrient, protein, 

viscera and fat in the animal are at its highest when 1=γ  and it decreases as the value of γ 

decreases.  Moreover, note that when γ is very small (let us consider 25.0=γ ), the energy 

and the mass pools did not increase all but decreases as animal tends to maturity.  In other 

words, the animal is dying.  Besides that, the model predicts the higher value of γ, the faster 

the system reaches the steady state as can be seen on the graphs.  Not only that, for a higher 

level of γ, the smaller change in the steady state between levels.  The difference between 

the amount of nutrient and the mass pools when 1=γ  and when 75.0=γ  is smaller than 

the difference between 75.0=γ and 5.0=γ . 
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This graph (Figure 6.6) plots the growth rate of protein against time.  It shows that the 

maximum peak in growth rates is slightly delayed by decreased feeding level.  So, when

1=γ , we can see that the rate of change in protein in the first 100 days after birth is 

increasing at an incredibly rapid rate before reaching a maximum peak after which it 

decreases to zero.  A growth rate of zero means that there is constant rate of protein growth 

in the animal.  We can see that when 75.0=γ , it reaches its maximum a little later than 

when 1=γ  and it is not as high.  However, we can also note that it takes longer for the 

protein growth rate to reach the steady state when we decreasing the value of γ (i.e. growth 

rate is equal to zero).  There is also a significant change in growth rate for protein between 
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Figure 6.6: The growth rate for protein, 
dt
dP . 
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5.0=γ  and 1=γ  (or even 75.0=γ ).  The growth rate is at its highest at the initial time and 

decreased from there.  This means that the amount of protein in the animal’s body receives, 

get less over time. It is interesting to note that when 25.0=γ , the curve of the graph is 

below x-axis (in the negative value) and then it starts to increase again.  This indicates a 

warning sign to the animal that the animal is losing the protein and it should maintenance 

the protein in its body to survive.   Eventually, the graph reaches a steady state at zero at 

which stage the change in growth rate for protein is constant.  We can say that the model 

predicts that on high level of feeding ( 1=γ ), the peak growth occur from 12 to 16 weeks of 

age (with weight of 20- 30 kg) with an average empty-body gain in that time of 266.5g per 

day.   
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Figure 6.7: The growth rate for viscera, 
dt
dV . 
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For viscera (Figure 6.7), the peak growth occur from 17 to 20 weeks of age (with weight 10 

– 15 kg)  with average empty-body gain in that time of 210.3g per day. 

 

 

  

 

 

Meanwhile, the growth rate for fat (Figure 6.8) in the animal’s body, the peak growth 

occurs from 50 to 52 weeks from birth (with 125 – 130 kg) with an average empty-body 

gain in that time of 1563g per day.   
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Figure 6.8: The growth rate for fat, 
dt
dF . 
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6.2.2  Structural Stability 

 

A structural stability analysis is essential to establish the credibility of any model.  It 

is rare for any model of physical situation to be exact; usually approximations have been 

made and often the values of the physical parameters are not exactly known.  A structural 

stability analysis can throw a light on these issues by examining the effects of small 

changes in parameter values, establishing the generic behaviour predicted by the model and 

in particular, looking for any bifurcational change that may occur, implying qualitative 

changes in the behaviour of the real system. 

 

 

As we can see from the previously section, the behaviour of this system is changing 

as we varied the feeding level, γ.  We can say that this animal growth model has undergone 

bifurcation.  These bifurcations are important as they provide models of transitions and 

instabilities as some control parameter is varied.  We already provide a primer of the basic 

ideas and jargon of the bifurcation theory in Chapter 2.  Our intent is to characterise the 

kinds of qualitative changes that may occur in this animal growth model as feeding level is 

changes.  This includes the biochemical parameters changed after the re-parameterisation.  

 

 

The analysis is carried out using path-following techniques that can reveal both 

stable and unstable solutions as a parameter is varied.  To this end we construct a one-

parameter bifurcation diagram, taking out the protein (P), viscera (V), fat (F) and nutrient 

(N) activities to represent the behaviour of the system and γ, the feeding level, as a 

particularly important, experimentally adjustable parameter. However, other continuation 

parameters could be chosen.  The diagrams are created by software XPPAUT that has an 

interface of a powerful computer program AUTO. 
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These figures (Figure 6.9) show the entire solution curve as the feeding level, γ is 

varied.  The y-axis shows the steady state for each pool (N, P, V and F).  These bifurcation 
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Figure 6.9: The steady state solutions (for nutrient (N), protein 
(P), viscera (V) and fat (F) ) versus γ. 
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diagrams show a lot of remarkable points to note.  The sold lines represent the stable steady 

states and the dashed lines represent unstable steady states.   

  

 

 This tells us how the animal’s composition growth evolves in this model and which 

steady state they will tend towards.  In the Figure (6.9a), we can see that the system for 

nutrient has two distinct (sometimes coexisting) stable solutions: a low and a high branch.  

For a small (high) γ, only the low (high) branch exists.  Note that, in the range

3573.0312.0 << γ , two qualitatively different stable states coexist.  The existence of 

different stable states allows for the possibility of jumps and hysteresis as γ is varied.  

Suppose that we start the system in the state 0=N .  There are two branches as we can see 

from the diagram, but we are interested in the stable one.  Then, slowly we increase the 

value of γ.  Then the state remains stable until 3573.0=γ , the steady state start losing its 

stability.  Now, the slightest push of the value of N will cause the steady state to jump to the 

other stable branch.  Same thing will happen if we start from the steady state at 1=γ  and 

decreasing the value of γ to get the state to jump back to the steady state 0=N .  This lack 

of reversibility as a parameter is varied is call hysteresis.   

 

 

In Figure (6.9b) it shows that when 2439.0=γ , the steady state 0=P is stable and 

remain its stability until it reached 3573.0=γ .  At that point of γ, the steady state becomes 

unstable.  And just like in nutrient, there is a possibility of hysteresis and a delayed return 

to the normal state when γ is varied.  The same situation happened in fat (see Figure 6.9d). 
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There is something interesting and different diagram for state variable viscera (V) 

(Figure 6.9c).  It shows that there are two different branches which did not intersect but this 

happened because four variables (i.e. P, V, F and N) collapsed onto two variables.  If we 

start the 2439.0=γ , the steady state for viscera is stable until it reach 3108.0=γ , it 

change the stability.  In other branch, the lower γ is unstable but it changes to become 

stable until 3108.0=γ  and change the stability to unstable at 3573.0=γ . If we start from a 

higher value of γ, the steady state is stable until it reach the limit point at 312.0=γ  become 

unstable.  Between the range 3573.0312.0 << γ  , there is a possibility of jump and 

hysteresis to happen.  Figures 6.9(a) and 6.9(c), it seems to be there is a bifurcation point in 

the diagram but actual it is not.  If we try to plot the bifurcation diagram in N, P, V, F, γ – 

space (i.e. in five-dimensional), the two branches will eventually join.   

 

 

From the bifurcation diagram for protein (P) (Figure 6.9b), we can see that if we 

take the value of γ between range 3573.0312.0 << γ , there is a multiple stability of the 

steady state solutions.  There is a “watershed region” within that range.  Watershed implies 

an important boundary for the basin of stability of the two stable steady states.  That is, the 

initial condition determines which steady state the transient solution approaches in large 

time.  For multidimensional system, this watershed is not simply the intermediate unstable 

steady state.   

 

 

Now, let us give a simple example in one-dimensional that illustrate the unstable 

intermediate steady state which is the watershed region.  
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Consider, 

 





 −−−=

2
1)1( xxx

dt
dx

               (6.3)

 
 

 32

2
1

2
3 xxx

dt
dx

−+−= . 

Then, the steady state points are 2,1,0=x . 

To determine the stability of this steady state points, find the derivatives of the equation by 

letting
dt
dxxf =)( . 
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2
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Figure 6.10: The phase portrait for 





 −−−=

2
1)1( xxx

dt
dx . 

Table 6.3: The stability of the steady state points 
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It shows that if we take the initial value less than 1, the solution will shift down and 

tends to the nearest stable steady state which is at 0=sx .  Same if we take the initial value 

larger than 1, it will move towards the nearest steady state at 2=sx .   

 

 

Now, we try to illustrate this example in this animal growth model.  Let say we take 

the intermediate value of γ at 3337.0=γ .  So, there are three different values of steady 

state protein which two of them are stable (P1and P3) and another one is unstable (P2).  We 

tried to plot the solution trajectories for steady state P at 3337.0=γ . 

 

Ps Value Stability 

P1 1.134 Stable 

P2 13.42 Unstable 

P3 34.35 Stable 

 

Table 6.4: The values of the steady state of protein at 3337.0=γ . 

 



86 
 

Figure 6.11: The multiple steady states of protein at 3337.0=γ  where the solid lines are 

stable and the dashed line is unstable.  The arrow line is the projection when the initial 

value is less than the P2 (unstable steady state). 

 

 

 It shows that in Figure 6.11, when the initial value of 2)0( PP < , the growth in 

protein decreases with time and asymptotically approaches the nearest stable steady state 

P1.  We can say that if the initial values of P is disturbed slightly before P2, the disturbance 

will decay monotonically and 1)( PtP →  as ∞→t .  But it is an interesting and different 

case when the initial value of 2)0( PP > , it crosses the intermediate unstable steady state P2 

as time increases (Figure 6.12).  It must be remembered that we have here fixed the initial 

value of 2~)0( VV  and 2~)0( FF  (where V2 and F2 are the unstable steady state values at 

3337.0=γ ).  This is not the same in the one-dimensional case that we have just illustrated 

where we expect that the trajectory should be move towards the nearest stable steady state 

P3 .  In the Figure 6.12, it shows that at some points of P(0), it does not crosses the unstable 
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P2 line.  On the contrary, when we set the initial values of V(0) and F(0) as 2)0( VV <<  and 

2)0( FF >>  , respectively, the trajectories move up towards the stable steady state P3 

(Figure 6.13).  We can conclude that the basin of the stability is not uniquely determined by 

the intermediate unstable steady state.  The steady state response diagrams (Figure 6.9) 

does not easily show what the watershed value of P(0) actually is.  Also the initial values of 

the other state variables (i.e. N, V and F) will affect the long-term outcome.  These reveal 

that the implications on the initial conditions at birth of the body composition will 

determine which steady state the animal will approach as it matures.  The watershed for this 

system is complicated as the system is in five-dimensional space (i.e. (N, P, V, F, γ)- space) 

rather than the simple one that we already seen in just one-dimensional. Also, we can say 

that the intermediate unstable steady state for all the variables (i.e.  N2, P2, V2 and F2) is not 

the true boundary for the watershed. 

 

 

Figure 6.12: The projection of protein when initial values of protein, P(0), is varied but 

fixed the value of 2~)0( VV  and 2~)0( FF . 
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Figure 6.13: The projection of protein near the intermediate value of P2 (the dashed line). 

 

 

 

6.2.3  Phase Space 

 

A phase-space diagrams are useful tool in studying dynamical system.  They consist 

of a plot of the solution trajectories in the one state space.  Consequently, we are able to 

draw some general conclusion about the model and to verify the observations which have 

been made. 

 

Recall that the equations for this animal growth model are:- 
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We can say that the solutions have trajectories in a 4-dimensional space where in 

the phase space { }0:))(),(),(),(( >ttFtVtPtN .  Obviously, it is a difficult task to draw a 4-

diemnsional phase space.  Therefore, we tried to plot the planar projections of the phase 

space for this animal growth model.  

 

 

Figure 6.14: The phase space diagram for nutrient and protein. 
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Figure 6.15: The phase space diagram for nutrient and viscera. 

 

Figure 6.16: The phase space diagram for nutrient and fat. 
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6.3  Biological Interpretation 

 

Many relationships are available to predict feeding level by ruminant.  These are 

generally deterministic in which the feeding level will be a function of the animal’s 

hormonal and neural responses to its energy status or demand.  For this animal growth 

model proposed by Oliviera et al, the feeding level will be a function of the body 

composition (i.e. nutrient, protein, viscera and fat). 

 

 

During evolution of this animal growth model, it was apparent that rates of change 

in body composition were predicted when changes in feeding level occurred (refer to the 

figures in Section 6.2.1).  If given at the highest level of γ, the animal’s growth is increases.  

In contrast, the animal fed at lower γ, lose weight rapidly as body composition (i.e. protein, 

viscera and fat) is catabolised.  The animal’s growth continues to increase for the remainder 

of the time; over the same period, the animal that is fed a restricted ration loses weight 

continuously, but a declining rate.  

 

 

The feeding level is subject to deterministic control, but if it is non-linear, the 

process could be chaotic.  This of course means that the feeding level could be modelled 

within certain bounds, as the trajectory would be sensitively dependent on initial conditions 

of the body composition.  This can be proved by the bifurcation diagrams shown in Figure 

6.9.  For low or high values of γ the system has one stable steady state.  However, the 

intermediate values of γ the system have three steady states namely two stable steady states 

and one unstable.  There are possibilities of jump and hysteresis at certain range of feeding 

level, γ.  This was determined by the initial conditions of the body composition in the 
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animal at birth.  From this knowledge, it will tell us to which steady state the animal will 

approach when it tends to maturity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

 

CHAPTER 7 

 

 

CONCLUSIONS AND FURTHER WORK 

 

 

This animal growth model proposed by Oliviera et al provides a description of 

animal growth which is derived from dynamic principle of growth based on the energy 

fluxes.  The main objective of this project was the investigation in growth response to 

controlled feeding level.  Feeding level, γ, is the ratio of the absorbed energy intake versus 

demand.   The model performed well in describing the dynamics and energetic of growth, 

from conception and maturity, both qualitatively and quantitatively.  It shows that there is a 

transient growth when the level of food intake is varied.  This will give useful information 

e.g. for planning feed supply and strategies or in forecasting average animal performance. 

 

 

Mathematically, this animal growth model has a multiple steady state at the 

intermediate range of the value γ.  When we tried to plot the one-parameter bifurcation 

diagram, it produced an interesting subcritical pitchfork bifurcation.  Where there exists a 

possibility of jump and hysteresis at certain range of feeding level, γ.  This is because the 

trajectory is sensitively dependent on the initial conditions of the animal’s body 

composition such as protein, viscera and fat.  Moreover, the watershed for this animal 

growth system is complicated as they were in the five-dimensional space. 
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This project is a ‘stepping-stone’ to explore the stability of the model proposed by 

Oliviera et al.  This model has been specifically formulated the necessary criteria of the 

animal growth specifically for dairy cows.  We consider here how to continue from the 

work laid out in this thesis.  One should use other parameters that can be control and do the 

analysis of the two or more-parameter bifurcation diagram.  At the same time change some 

of the other parameter values.  Besides that, the analysis will be interesting if one can 

connect the model’s behaviour before and after parameterization by using the theory of 

homotopy-variations. 
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