Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

UTILISING MEASURABLE UNCONTROLLABLE FACTORS IN PARAMETER DESIGN TO OPTIMISE THE RESPONSE

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Statistics at Massey University

> Megan J. Pledger September 1998

Abstract

This thesis looks at issues in Industrial Experimental Design and Quality Control. The first part is a review of Parameter Design and its evolution into methods of modelling the mean and variance as one system.

The second part introduces the concepts of observable and unobservable factors as an extension to the ideas of controllable and uncontrollable factors of Parameter Design. Methods will be devised to show how to choose the best settings of the controllable factors and how to move to those settings once chosen. In the last section estimates for tracking the unobservable uncontrollable factors will be devised. These will be examined to see whether they can be used to improve the monitoring of the system via control charts.

2/128 Sandringham Road, Kingsland, Auckland, New Zealand.

To Whom It May Concern.

This is to state that the research work carried out for my Ph.D. thesis entitled 'Utilising Measurable Uncontrollable Factors in Parameter Design to Optimise the Response' in the Statistics Department at Massey University is all my own work.

The review work in Chapter 1 was originally submitted for my Masters Degree and has been revised and updated for this thesis. Details can be found in Appendix A.

I certify that the remaining material in the thesis has not been used for any other degree.

M J P, ledger 8/9/98

Acknowledgements

Much thanks to my supervisor, Associate Professor Hugh Morton.

Thanks to Massey University for the use of their facilities.

Thanks also to Peace Computers for the use of their computers, printers and modem.

Contents

A	Acknowledgements			iv
Ta	able o	of Con	tents	v
Li	st of	Figure	es	viii
Li	st of	Table	S	xii
1	Rev	iew		1
	1.1	Paran	neter Design	1
	1.2	The D	esign of a Product or Process	2
	1.3	Paran	neter Design Methodology	2
	1.4	The M	lethod	4
		1.4.1	An Example	4
	1.5	The A	nalysis	6
		1.5.1	Example Continued	6
		1.5.2	Confirmation Trials	8
		1.5.3	Rationale Behind The Experimental Designs	9
	1.6	Critis	n of the Method	9
	1.7	A Sim	pler View	13
	1.8	The P	ositive Aspects of Parameter Design	16
	1.9	Altern	atives	18
		1.9.1	Union-Intersection Method	18
		1.9.2	Transformations and a Data Analytic Approach	28
		1.9.3	Response Surface Methods	37
		1.9.4	Split-Plot Methods.	45
		1.9.5	Generalised Linear Models	54
		1.9.6	Restricted Generalised Linear Models	66

		1.9.7	Comments	73
2	Opt	imisat	ion Under Changing Conditions	74
	2.1	A Firs	st Order Model	75
		2.1.1	Model One	75
		2.1.2	Model Two	77
	2.2	Simula	ation Example	82
	2.3	Comp	lications	88
	2.4	Implic	eit Introduction of Uncontrollable Factors	94
		2.4.1	Example	96
	2.5	Allowi	ing For Bias	97
		2.5.1	Simulation Example Continued	99
		2.5.2	Simulation Example Continued	104
	2.6	Bias a	and the Implicit Introduction of Uncontrollable Factors	106
	2.7	A Not	e on Notation	108
3	Mal	king O	ptimal Changes	110
	3.1	Non-Ii	nstantaneous Adjustment	110
		3.1.1	Explicit Introduction of Unobervable Uncontrollable Factors	111
		3.1.2	The Two Variable Case	115
		3.1.3	Line Integrals	116
		3.1.4	Line Integrals For the Greedy and Linear Paths	117
		3.1.5	Numerical Comparisons	122
	3.2	On Fi	nding A Minimal Path With Calculus of Variations	125
		3.2.1	Placing Restrictions on the Solution	130
		3.2.2	The Finite Difference Algorithm	132
		3.2.3	Finding an Approximaion	134
		3.2.4	Paths to Non-Minimal Points	136
	3.3	Optim	al Paths with More than Two Variables	139
	3.4	Movin	g One Factor at a Time	142
		3.4.1	Two Factor Case	143
		3.4.2	Two or More Factors Case	148
	3.5	Movin	g Two Factors at a Time	149

4	On-Line Quality Control	155	
	4.1 The Distributions of Z and ϵ Given Y	156	
	4.2 $\epsilon Y = y$	160	
	4.3 Highest Probability Estimates	165	
	4.4 Evaluating the Performance of the Estimators	174	
	4.5 Sensitivity to Changes in the Process	180	
	4.5.1 Example	181	
	4.5.2 Comments	188	
5	Concluding Remarks	189	
A	Review Details	190	
В	A Publication From This Thesis.	191	
С	Source Files For The Quadratic Program	202	
D	Maple And Splus Commands	208	
E	Approximation Data	214	
F	Finite Difference Algorithm:1	217	
G	Finite Difference Algorithm:2	228	
H	Design Matrix for the Split Plot Data	239	
Ι	Determining Minimal Transitions:1	242	
J	Determining Minimal Transitions:2	248	
Bi	Bibliography 26		

List of Figures

1.1	Interpretation of Factors	3
1.2	QQPlot of coefficients for a) the analysis of the means and b) the	
	analysis of the signal to noise ratio.	7
1.3	Plot of means for each level of the factors a) for the analysis of the	
	mean shrinkage and b) for the analysis of the signal to noise ratio. $\ .$	8
1.4	The Responses for Four Replicates of a F2 ² Experiment	10
1.5	No Interaction Between A and B	14
1.6	No interaction Between A and B	14
1.7	An Interaction Between A and B	15
1.8	An Interaction Between A and B	15
1.9	The Special Areas of a Cross Plot	30
1.10	a) Boxplot and b) Mean-Variance Plot of the Response Data	32
1.11	Lambda Plots of a) Mean Effects and b) Log S.D. Effects after trans-	
	formation	33
1.12	a) Boxplot and b) Mean-Variance Plot of the Transformed Response	
	Data	34
1.13	QQPlots of a) Mean Effects and b) Log S.D. Effects after transfor-	
	mation	35
1.14	Cross Plot of Transformed Data	36
1.15	a) Contour Plot and b) Perspective Plot of the Mean Response Surface.	43
1.16	a) Contour Plot and b) Perspective Plot of the Variance Response	
	Surface	43
1.17	Joint Contour Plot of the Mean Response Surface and Variance Re-	
	sponse Surface.	44
1.18	QQPlot of a) Whole Plot Effects and b) Split Plot Effects \ldots	49
1.19	Interaction Plot of Tar and Temp	52
1.20	a) Contour Plot and b) Perspective Plot.	53

1.21	A Graph of E.Q.D. for different values of α for the variance function	
	$V(\mu) = \mu^{\alpha}$	59
1.22	QQplots of coefficients for a) Inverse link and b) Identity link c)	
	Square root link and d) Log link.	60
1.23	QQplots of coefficients for a) Inverse link and b) Identity link c) Log	
	link and d)Square Root link	62
1.24	Lambda plot of the mean effects using a GLM model and variance	
	function $V(\mu) = \mu$	63
1.25	QQPlot of Dispersion Effects.	70
1.26	QQPlot of Mean Effects.	72
2.1	Responses collected from simulation 1.1 and simulation 1.2. They	
	show how accounting for the values of the observable uncontrollable	
	factors has reduced the variance of the response	86
2.2	A contour plot of $\hat{E}(y_i \boldsymbol{x_i^{**}}, \boldsymbol{t_i} - T)^2 - \hat{E}(y_i \boldsymbol{x_i^{*}}, \boldsymbol{t_i} - T)^2 = 0$. Inside	
	the two smaller regions \hat{x}_i^{**} gives the smaller $\hat{E}(y_i x_i, t_i - T)^2$ value.	87
2.3	A half-normal plot of the main effects and interactions for the injec-	
	tion moulding experiment	91
2.4	A plot of the observable uncontrollable factor, ${\cal N}$ versus the control-	
	lable factors, A, C, D, E, G	92
2.5	A plot of the response to the regression equation using the solutions	
	in Table 2.7 for the factors and 100,000 random variates for M and	
	<i>N</i>	94
2.6	Responses collected in histograms for Y when T=100 for \boldsymbol{x}_i^* and	
	x_i^{***} respectively	100
2.7	Responses collected in histograms for Y when T=125 for \hat{x}_i^* and	
	\hat{x}_i^{***} respectively	101
2.8	Responses collected in histograms for Y when T=125 for \hat{x}_i^{****} when	
	$\lambda_1 = 1$ and $\lambda_2 = 1, 2, 5$ and 10 respectively.	105
2.9	The Solution for C and D for Different Values of A	108
3.1	A comparison of the directions of the greedy and straight paths \ldots	114
3.2	A comparison of the value of L for the two paths $\ldots \ldots \ldots$	115
3.3	The graph of the g's versus the estimates of g	136

3.4	The optimal paths for $L(x,y) = 5x^2 + y^2$ and $L(x,y) = x^2 + 5y^2$	
	from $(3,1)$ to $(1,1)$.	138
3.5	The optimal path on $L = 5x^2 + y^2$ from (3,3) to (4,1).	138
3.6	The generation of paths that converge to the optimal path on $L =$	
	$x^2 + 5y^2$ from (3,3) to (1,4)	139
3.7	The optimal path on $L = 5x^2 + y^2$ from (3,3) to (4,1)	139
3.8	A comparison of the three paths: straight, greedy and mixture	142
3.9	A comparison of the two possible transitions and the two paths that	
	make up each transition	143
4.1	The graph of the value of z_1 and the predictions of z_1 when the	
	covariance (and correlation) between z_1 and z_2 is 0.75	171
4.2	The graph of the value of z_2 and the predictions of z_2 when the	
	covariance (and correlation) between z_1 and z_2 is 0.75	171
4.3	The graph of the value of ϵ and the predictions of ϵ when the covari-	
	ance (and correlation) between z_1 and z_2 is 0.75	72
4.4	The graph of the value of z_1 and the predictions of z_1 when the	
	covariance (and correlation) between z_1 and z_2 is -0.75	173
4.5	The graph of the value of z_2 and the predictions of z_2 when the	
	covariance (and correlation) between z_1 and z_2 is -0.75	73
4.6	The graph of the value of ϵ and the predictions of ϵ when the covari-	
	ance (and correlation) between z_1 and z_2 is -0.75.	74
4.7	The graph of the Mean Square Error for \hat{z}_1 , the estimate of z_1 , versus	
	the Correlation Coefficient of z_1 and z_2	179
4.8	The graph of the Mean Square Error for \hat{z}_2 , the estimate of z_2 , versus	
	the Correlation Coefficient of z_1 and z_2	179
4.9	The graph of the Mean Square Error for $\hat{\epsilon}$, the estimate of ϵ , versus	
	the Correlation Coefficient of z_1 and z_2	80
4.10	Counts of z1 and its estimate for being inside and outside the control	
	limits	82
4.11	Counts of z2 and its estimate for being inside and outside the control	
	limits.	83
4.12	Counts of epsilon and its estimate for being inside and outside the	
	control limits.	.84
4.13	An X-Chart of the First 50 values of Y for $\rho = 0$.85

4.14	An X-Chart of the First 50 values of \hat{z}_1 for $\rho = 0$	185
4.15	An X-Chart of the First 50 values of z_2 and \hat{z}_2 for $\rho = 0$	186
4.16	An X-Chart of the First 50 values of ϵ and $\hat{\epsilon}$ for $\rho = 0$	186
F.1	The graph of the path found by transformout.f	227
G.1	The optimal path on $L = x^2 + y^2 - xy$ from (3,1) to (1,1).	238

List of Tables

1.1	Factors in the Experiment.	4
1.2	The Inner Array.	5
1.3	The Outer Array.	5
1.4	The Complete Array.	5
1.5	Design and Results for Constructed Example	10
1.6	The Design Array and Data	24
1.7	\hat{D}_f and \hat{D}_f^{-1} Estimates.	25
1.8	$\hat{D}_{f,g}$ and $\hat{D}_{f,g}^{-1}$ Estimates.	25
1.9	The $S^2(u, v)$ values for factors A and H, B and G, C and F and D	
	and E	26
1.10	$F2_4^{8-4}$ Design plus the Response Data	31
1.11	RSM Design and Data	39
1.12	Table of Coefficients for RSM Design.	40
1.13	ANOVA for RSM Design.	41
1.14	ANOVA Table for Split Plot Design.	47
1.15	The Effects for the Split Plot Example	50
1.16	Analysis of Variance Table	51
1.17	Extended quasi deviances for different $V(\mu)$	58
1.18	EQD's for the Dispersion Model	61
1.19	EQD's for the Mean Model taking into account the Dispersion	
	Model	65
2.1	The experimental design and the responses for a 2^{6-1} factorial design	
	in x_1, x_2, t_1, t_2, z_1 and $z_1, \ldots, \ldots, \ldots, \ldots, \ldots$	83
2.2	The Maple output giving the relationship between the controllable	
	factors, $\boldsymbol{x_i}$, and the observable uncontrollable factors, t_i , that min-	
	imises the variance and keeps the mean on target.	84

2.3	A summary of the simulation results	88
2.4	The factors in the injection moulding experiment.	89
2.5	The design and the responses in the injection moulding experiment.	89
2.6	The rewritten design of the injection moulding experiment	90
2.7	The solution giving the relationship between the controllable factors	
	A, B, C, D, E, F, G and the observable uncontrollable factor, N , that	
	minimises the variance and keeps the mean on target	93
2.8	The equation giving the relationship between \hat{x}^{***} and t_i found using	
	maple	99
2.9	Responses collected in histograms for Y when T=100 for \boldsymbol{x}_i^* and	
	x_i^{***} respectively	100
2.10	A summary of the simulation results of the mean, variance and	
	$MSE(T=125) \text{ for } Y. \dots $	102
2.11	A summary of the simulation results of the mean, variance and	
	MSE(T=125) for Y for different values of $\lambda_{\mathbf{z}}$	106
4 1	This table gives the sample Mean Square Error for each estimate of	
1.1	z_1 z_2 and ϵ for different Variance-Covariance matrices of the joint	
	distribution of z_1 , z_2 and ϵ	170
42	This table gives the sample Mean Square Error and theoretical Mean	110
1.2	Square Error for each estimate of z_1 , z_2 and ϵ for different Variance-	
		170
	Covariance matrices of the joint distribution of z_1, z_2 and ϵ .	1/8