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ABSTRACT 
 
 

The differential expression of members of the Trifolium repens ACC oxidase (TR-ACO) 

gene family and accumulation of TR-ACO proteins in white clover roots, and the 

temporal TR-ACO gene expression and TR-ACO protein accumulation in response to 

phosphate (Pi) stress has been investigated. Four-node stolon cuttings of wild type and 

transgenic white clover (designated TR-ACOp::GUS and TR-ACO1p::mGFP5-ER) 

plants were rooted and acclimatised in Hoagland’s solution, and then subjected to either 

a Pi sufficiency (1 mM Pi) treatment or a Pi depletion (10 μM Pi) treatment over a 

designated time course.  

 
Using semi quantitative Reverse Transcriptase-Polymerase Chain Reaction (sqRT-PCR) 

and gene-specific primers it has been determined that the TR-ACO genes are 

differentially expressed in the roots of white clover. The TR-ACO1 transcript abundance 

was greater in the lateral roots when compared to the main roots. By immunodetection 

analysis using antibodies raised against TR-ACO1, recognition of a protein of expected 

size (ca. 36 kDa) was also greater in the lateral roots. The tissue-specific localisation of 

TR-ACO1 promoter activity was investigated first by light microscopy using a single 

genetic line of white clover transformed with a TR-ACO1p::GUS gene construct, and 

results then confirmed by confocal microscopy using several genetically independent 

lines of transgenic plants transformed with a TR-ACO1p::mGFP5 ER gene construct. In 

these lines, the TR-ACO1 promoter activity was primarily located in the meristem of the 

main and lateral roots, lateral root primordia as well as in the pericycle of the root with 

nodes of expression in the emerging lateral roots, suggesting a role for ethylene in the 

development of young tissues where cells are actively dividing.   
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In terms of TR-ACO2, greater transcript abundance and protein accumulation of TR-

ACO2 were also observed in the lateral roots when compared to the main roots. 

Histochemical GUS staining of roots of a single genetically-independent line 

transformed with a TR-ACO2p::GUS construct showed predominant promoter activity 

in the mature tissues of both the main and lateral roots but not in the meristematic 

tissues. In contrast, TR-ACO3 showed greater transcript abundance in the main roots 

relative to the lateral roots, and the promoter activity, as determined using a single 

genetically- independent line of TR-ACO3p::GUS transformed plants was 

predominantly in the mature tissues of the main roots  

 
In response to Pi depletion, the members of TR-ACO gene family were temporally 

expressed in the white clover roots. Using sqRT-PCR, the TR-ACO1 transcript 

abundance was greater in Pi depleted roots at 12 h and 24 h after Pi depletion in both 

wild type plants and in the one genetically-independent line of white clover transformed 

with the TR-ACO1p::mGFP5-ER construct examined. Similarly, by western analysis 

using both α-TR-ACO1 and commercially available α-GFP antibodies (for the 

transformed line), a greater accumulation of proteins was consistently observed in Pi 

depleted roots from the first up to the seventh day after Pi depletion. By confocal 

microscopy, it was determined for several genetically-independent line of white clover 

transformed with TR-ACO1p::mGFP5-ER that under Pi depletion more intense GFP 

fluorescence over a time course of 1 d, 4 d, and 7 d was observed, when compared to 

plants grown under Pi sufficiency. 

 
For TR-ACO2, there was no significant difference in transcript accumulation and 

protein accumulation in response to short term Pi depletion of up to seven days. 

However, at 15 d and 21 d after Pi depletion there was a greater protein accumulation in 
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the roots of Pi depleted plants relative to the Pi sufficient roots. Further, when main and 

lateral roots were compared, a greater protein accumulation occurred in the lateral roots.  

For TR-ACO3, there was no consistent trend of transcript accumulation in response to Pi 

depletion over a 24 h period. While a marked reduction in transcript accumulation  was 

noted in Pi depleted roots at 1h, 12 h, 24 h, there was an increase in transcript 

accumulation at 6 h and 18 h after Pi depletion, indicating that factors other than Pi 

supply may be affecting gene regulation. 

  
Root morphological studies revealed an increase in the main root length and lateral root 

production in white clover in response to Pi depletion with a greatest growth rate noted 

between the sixth and ninth day after Pi depletion, and this period overlapped with 

accumulation of TR-ACO1 protein suggesting a role for ethylene in the Pi stress 

induced lateral root production in white clover.  The differential regulation of the three 

TR-ACO genes in white clover roots in response to Pi depletion further suggests the 

divergence in terms of regulation of the ethylene biosynthetic pathway, which may play 

an important role in fine tuning the responses of plants to particular environmental cues. 
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Chapter 1 
Introduction 

1.1 Overview  

Ethylene is a gaseous plant hormone produced in different parts of the plant and is 

involved in the regulation of various plant developmental processes including seed 

germination, root elongation, leaf senescence and abscission, as well as fruit ripening.  

Ethylene is also produced in response to various forms of stress Abeles et al., (1992). 

These multi-faceted roles indicate the complexity of the mechanisms involved in the 

synthesis and action of ethylene.  

 
Briefly, ethylene biosynthesis starts from the amino acid methionine which is converted 

to S-adenosyl methionine (SAM) then to 1-aminocyclopropane-1-carboxylic acid 

(ACC) and finally to ethylene (Adams and Yang, 1979). Within each step, intricate 

mechanisms are involved which regulate biosynthesis particularly the last two steps 

involving the two key enzymes, the ACC synthase (ACS) (E.C.4.4.1.14) which is 

involved in the conversion of SAM to ACC, and the ACC oxidase (ACO) (E.C.1.4.3) 

which mediates the conversion of ACC to ethylene. Evidence has accumulated that, in 

many plants, expression of members of the ACS and ACO gene families are spatially 

and temporally regulated. For instance, in white clover, both the ACS and ACO gene 

families are differentially regulated during leaf developmental stages and in response to 

environmental cues (Hunter et al., 1999; Gong and McManus, 2000; Murray and 

McManus, 2005; Chen and McManus, 2006).  

 
The involvement of ethylene in plant responses to changes in phosphorus availability, 

specifically in the plant roots, has also been investigated in a number of plants (Lynch 

and Brown, 1997; Borch et al., 1999; Ma et al., 2003; Zhang et al., 2003; Franco-


