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Abstract

Mercury oxide in its solid state crystallizes in a rather unusual structure and
at ambient pressure two equally intriguing vet different polymorphs are distin-
guished. Both the low-temperature so-called montroydite form and the high-
temperature cinnabar modification consist of planar O-Hg-O zigzag or spiral
chains. These sophisticated structures significantly differ from those found for
the lighter group 12 chalcogenides zince oxide and cadmium oxide. which under
ambient conditions are known to crystallize in rather simple hexagonal wurtzite
and cubic rocksalt or zine blende structures. Descending the chalcogenide group
in the periodic table. the cinnabar structure disappears as an equilibrium modi-
fication for mercury selenide and telluride but is still present as a high-pressure
modification. However, the deviations in the crystal airangement between the
mercury chalcogenides as opposed to the corresponding zinc and cadmium con-
geners are still obvious in terms of a different coordination.

Considering this curious behaviour of the mercury chalcogenides the question
arises: What causes the occurrence of the unusual structures in the mercury
chalcogenides? To this end relativistic as well as nonrelativistic density func-
tional calculations have been carried out to investigate this question with respect
to the influence of relativistic effects. Even though relativistic effects in atoms
and molecules are well-known and understood, little attention has been given to
their influence on the electronic structure and properties of the solid state yet.
The study at hand for the first time demonstrates that the structural differences
between the mercury chalcogenides and their lighter zine and cadmium congeners
are a result of relativistic effects. The montroydite and cinnabar modifications of
HgO and HgS disappear if relativity is neglected due to a substantial decrease of
the cohesive energies by up to 2.2 eV. This deviation becomes smaller for HgSe
and HgTe, vet a slight change in the coordination can be attributed to the in-
fluence of relativity. Furthermore, the electronic structure and density of states
of the mercury chalcogenides are discussed with respect to relativistic effects
including the consideration of spin-orbit effects. It was found that relativistic
effects have a major impact on the electronic structure. In mercury selenide
and telluride the neglect of relativity goes as far as changing the experimentally
observed semimetallic behaviour to the restoration of semiconducting properties.
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Chapter 1

Introduction

1.1 DMotivation

Mercury oxide, HgO, is a crystalline solid with a melting point of 773 IX (500°C).
Already in 1774 Joseph Priestley observed that by heating. mercury oxide easily
decomposes into mercury and oxyvgen. which led to the important discovery of
oxvgen. This decomposition reaction is still used in the production of mercury.
[t implies that the mercury-oxyvgen bond for HgO in the gas phase is quite weak.
which was confirmed by a recent analysis of Shepler and Peterson [1]. They
obtained a rather small dissociation energy of only 0.17 eV and compared their
result to various previous estimates [2]. More recent critical discussions can be
found in the articles by Filatov and Cremer [3] and Peterson et al. [4]. Having
this unusually low dissociation energy, mercury oxide in the gas phase is rather

uniqgue compared to its group 12 congeners.

In the solid state, however, HgO is even more intriguing. as it crystallizes in a
rather unique structure. Two different polymorphs of HgO exist under ambient
pressure. both equally unusual and interesting. At low temperatures HgO crys-
tallizes in an orthorhombic structure with the spacegroup Pnma [5]. This is, even
though scarcely found, in fact the naturally occurring mineral form of mercury
oxide, called montroydite (see fig. 1.1), and adapts a vellow or reddish-brown
colour depending on the grain size. Another polymorph exists and crystallizes
in a cinnabar-like structure (belonging to the trigonal crystal system) [6]. which
derives its name from the naturally occurring mercury sulfide mineral. This

hexagonal phase is stable above 220°C and has a yellow colour [7].

Both structures were thought to be unique to the mercury chalcogenides, and
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Figure 1.1: Crystals of mercury oxide in its mineral montroydite form [8].

it was not until 1993 that Nelmes et al. reported the cinnabar structure as an
intermediate high pressure phase in CdTe [9]. The only other compound apart
from the group 12 chalcogenides, that exists in this structure as well, even though

only under high pressure, is GaAs.

The crystal structure of the montroydite phase is built from planar O-Hg-O
zigzag chains, which are formed parallel to the r-axis in the a-c-plane, whereas
in the high-temperature form spiral chains are formed running parallel to the z-
axis [5, 6, 10]. This leads to the rather unique crystal structures shown in figs. 1.2
and 1.3. In both cases the O-Hg-O group building the chains is linear, having
a Hg-O bond distance of 2.028 and 2.030 A for the montroydite and cinnabar
form, respectively. The Hg-O-Hg group, however, is bent with an angle of 108.8°
in the case of the low-temperature phase and 107.9° in the cinnabar structure
(see table 1.1). More information regarding the structure including pictures of

the respective unit cells can be found in chapters 3.1 and 4.
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Figure 1.2: Two views of the montroydite structure (red: oxygen, cyan: mercury).
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The equilibrium phases of mercury oxide are, however, in stark contrast to the
lighter group 12 oxides, namely zine (Zn0O) and cadmium oxide (CdO). At room

temperature and low pressure they are known to crystallize in a rather simple
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Figure 1.3: Two views of the cinnabar structure (red: oxvgen, cyan: mercury).

Montroydite Cinnabar
spacegroup: 62 (Pnma) 152 (P3,21) / 154 (P3,21)
orthorhombic hexagonal
structure:
0O-Hg-O chains in ac-plane. spiral.
parallel to a-axis parallel to c-axis
O-Hg-O group linear linear
Hg-O bond 2.023 A 2.030 A
<(Hg-O-Hg) 108.8° (L0

Table 1.1: A comparison of the structures of the moutroydite and cinnabar phases
of HgO.

hexagonal wurtzite and a cubic rocksalt structure, respectively. For HgO those
less complicated structures are only accessible at higher pressures, where mercury
oxide undergoes a phase transition into a tetragonal distortion of the rocksalt
structure with the spacegroup I4/mmm first, and then finally into the common
rocksalt structure (NaCl) [11. 12].

Following the periodic table down to the group 12 sulfides, selenides and tel-
lurides, HgS crystallizes in the cinnabar structure. being the prototype for this
unusual structure. However, the cinnabar form is replaced as the equilibrium
phase for HgSe and HgTe, where the zinc blende structure is found to be the
preferred form. Even more interestingly, the transition to the cinnabar phase
occurs in a rather low pressure range of 0.74-1.5 GPa for HgSe and at 1.3 GPa
for HgTe [12]. Moreover, for ZnTe and CdTe the cinnabar phase also exists, even
though only as a high pressure phase and with a coordination strongly vary-
ing from the one found in HgO and HgS. Considering this unusual behaviour
within the mercury chalcogenide series of compounds, the unique montroydite

form of HgO and the very rare appearance of the cinnabar structure in general,
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the question naturally arises as to "what causes the occurrence of these unusual

structures in the mercury chalcogenides?”.

However, the understanding of bulk structures and their influence on the solid
state properties,! also in the context of the ongoing challenge of the design of
new materials for various applications, is a difficult task. The prediction of crys-
tal structures from simple bonding models is currently hard, if not impossible,
as discussed by Maddox and Cohen [13, 14]. Very often polymorphs are sep-
arated only by a small energy, which makes this task even more complicated.
In contrast, simple bonding models are rather successful for the prediction of
molecular structures [15]. The mercury chalcogenides with their extraordinary
low pressure modifications are prime examples of this plight. Investigating those
structures contributes to bringing us one step closer to the answer of one of the

major problems we currently face in solid-state chemistry.

Mercury has 80 electrons surrounding a heavy nucleus of 80 protons and 121
neutrons for its most stable isotope, hence making it one of the heavier elements
(atomic weight: 200.59 g-mol™!). Due to its large nuclear charge the electrons
close to the core reach velocities that demand for a relativistic treatment. In fact,
together with gold, mercury is one of the elements that proved to be influenced
exceptionally strong by relativistic effects, known as the relativistic maximum
within a period of elements [16, 17]. This raises the question, whether the highly
unorthodox structures found for the mercury chalcogenides are due to the rela-
tivistic influence on the electronic structure? Therefore and because of its size,
mercury and its compounds are complex systems that ask for a very accurate
(relativistic) treatment and hence grand computational effort. However, even
though relativistic effects are known to play an important role in the molecular
structure of compounds containing mercury [16, 18-25], it has not been investi-

gated in detail yet for the structure of the solid state [26, 27].

In addition, the thesis at hand deals not only with the crystal structures of the
mercury chalcogenides at equilibrium conditions, but under high pressure as well.
High pressure physics and chemistry are fields of increasing interest. This has
not always been like this due to the fact that life on earth is limited to a rather
small range of temperatures and pressures. In a for humans commonly acces-
sible world, more extreme conditions are only known of the interior of planets

and stars, and detonations of explosives. However, on a much smaller scale high

I'The atomic arrangement in a crystal is essential to understand the chemical and physical
properties of a solid, which are dependent on its crystal structure.
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pressure science leads to interesting effects and new properties of materials.
Already in 1888 Henry Le Chatelier made an observation that if administrating
a constraint on a chemical system in its equilibrium state by changing external
conditions, as a consequence, the system will adjust by descending into a new
equilibrium state, which will minimize the impact of the given constraint [28].
This is now known as Le Chatelier's principle or principle of least constraint.
Applied to high pressure chemistry this means increasing pressure will induce a
shift of the equilibrium state towards a negative change in volume.

The energy transferred through this pressure-induced volume contraction can
easily range into the for chemical bonds typical regions/magnitudes leading to
breaking and reforming of those bonds, hence changing the structure of con-
densed matter. This is usually accompanied by a change of electronic and mag-
netic properties. Therefore, materials chemistry under high pressure is a re-
search field. crucial for the development of new materials or peculiar structures

of renowned compounds.

Furthermore, it should be mentioned that the group 12 chalcogenides are not only
interesting from a fundamental point of view, but from a practical one as well.
Mercury oxide for instance is used as an anode material in mercury batteries as
well as in the synthesis of high-temperature mercury based superconductors [29]
to name but a few applications. Cinnabar-HgS is well-known as a red pigment
(vermilion) and is involved in the production of mercury metal [30]. Mercury
selenide on the other hand is formed as a product. when filtering mercury from
exhaust gases using selenium and is used as an ohmic contact when connecting
[I-VI semiconductors. e.g. zinc oxide or zinc selenide. Last but not least. HgTe
finds application in combination with other elements as doped semiconductors.
Theoretical studies can always shed light on and give new impulses for the ex-
perimental development of those applications. It should be mentioned that the
toxicity of most of the compounds often makes it hard to investigate them exper-
imentally and therefore it is often difficult to find experimental data to compare

with.

The objective of this study is to show that indeed the unusual structures of the
nmercury chalcogenides are a result of relativistic effects and to study their elec-
tronic structure in detail. Therefore, comparative relativistic and nonrelativistic
density functional studies of equilibrium and high pressure phases of ZnX, CdX

and HgX (X=0, S, Se, Te) are carried out to investigate these compounds.
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1.2 OQOutline

The thesis at hand is structured as follows. Chapter 2 gives an introduction
to the theoretical background that forms the basis of this study. This includes
the approximations necessary to carry out the calculations and the formalism to
obtain the actual solid-state properties.

This is followed by an overview of the group 12 chalcogenides in chapter 3. Here
the crystal structures commonly occurring in the group 12 chalcogenides are
described in detail. The computational parameters needed, as well as the pre-
liminary calculations for their optimization for the subsequent simulations, are
demonstrated.

The results for the group 12 oxides, sulfides, selenides and tellurides are presented
and discussed in chapters 4, 5, 6 and 7, respectively. Each chapter is organized
in the following manner: first a brief description of the crystal structures known
to exist in the respective group 12 chalcogenide by experimental as well as theo-
retical means is given, followed by the presentation of the results obtained. The
latter will be partitioned into a discussion of the equilibrium structures, the high
pressure phases and electronic structure. The influence of relativistic effects on
each of those matters will be emphasized. The short summary of the findings is
given at the end of each chapter.

Finally, conclusions will be drawn in chapter 8.



Chapter 2

Theoretical background and

numerical implementation

In the following chapter a short description of the theoretical quantum mechan-
ical methods that form the basis of this thesis will be given. Fer funrther infor-
mation on the applied methodology the reader is referred to standard gquantum
chemistry, e.g. refs. [31, 32]. electronic structure theory (ref. [33]) and solid-state

theory textbooks, c.g. refs. [34-36].

2.1 The many-electron problem

The thesis at hand is a computational study of several bulk systems consisting
of an infinite vet periodic amount of atoms. In general, electronic systems rang-
ing from just single atoms and molecules to small clusters consist of nuclei and
electrons and therefore exhibit typical length scales of a few Angstroms. This
means the theory by which to describe the interactions between those particles
in a correct manner, even for the solid-state, is quantum mechanics. At this
level, all mutual interactions like para- and ferromagnetic effects and transversal
electromagnetic interactions including electron correlation, as well as relativistic
corrections including spin-orbit-coupling have to be considered. As a fully rela-
tivistic treatment including electron correlation is not feasible for the solid state,
even for the simplest atoms and crystals, approximations need to he made which

are outlined in the following.
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2.1.1 The Hamiltonian for the n-electron system

The basis for performing ab-initio calculations for those real systems is supplied

by the non-relativistic time-independent Schrodinger equation

H|T) = E|D). (2.1)

This is a differential equation for the Hamilton operator H with the eigenvalue
E = (V|H|¥) describing the total energy of the system and the (normalized)
eigenfunction ¥ is referred to as the n-particle wavefunction of the physical
system. Here |¥|? characterizes the probability density. The full Hamiltonian is

of the form

H=T,+Tn+ Ven + Vee + Vn, (2.

(8]
(8]
~—

where the separate terms of the sum indicate the operator for the kinetic energy
of the electrons T, the kinetic energy of the nuclei Ty, the term for the Coulomb
attraction between electrons and nuclei V,y, the terms for the repulsion between

the electrons V., and the repulsion between the nuclei Viyy, respectively.

More precisely, for a system with N nuclei and n electrons this can be reformu-

lated as
n N n N n n N N
it %V’Z_ZQAIIAV?ZZ%+ZZ% ZZZ?AZBB (2.3)
i=1 A=1 i=1 A=1 " i=1 j>i Y A=1B>A °

using atomic units (e = m, = h=1) for the following. Here A/, denotes the mass
of nucleus A, Z4 the corresponding nuclear charge, and » the distance between
two considered objects, e.g. 7,4 = |r;4] = |r; — Ra|. Lower case letters indicate

electrons and capital letters the nuclei, respectively.

The starting point for all investigations in electronic structure theory is always
to solve the above equation as accurately as possible. Indeed, an exact analytical
solution is not feasible for problems other than one-electron systems. Therefore
several approximations need to be exploited and numerous formalisms have been
developed in theoretical chemistry and physics to simplify the problem, of which

some will be introduced below.
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2.1.2 The Born-Oppenheimer approximation

The first approximation required and. with very few exceptions, always applied
in solid-state physics is the Born-Oppenheimer approximation [37, 38|, which is
based on the fact that the nuclei in a system are by orders of magnitude heavier
than the electrons and as a consequence move considerably slower. Hence, we can
assume that the electrons will reach their equilibrium state to any configuration
of the nuclei in an instant. This means relatively speaking that the nuclei can

be considered at rest (clamped nucleus approximation),

Ty =0 (2.

o
e

(8]
<t
—

Vyy = constant. (2.

and the electrons move in an effective field of fixed nuclear point charges.

This adiabatic approach is crucial to electronic structure theory and allows for
the separate treatment of the nuclei and electrons, meaning that in first order

the wave function of the system can be factorized

U(ri;, Ra) = Ue(r;, R4)Un(R4), (2.6)

where W (r;, R4) is only depending parametrically on the position of the nuclei.

[t leads to a decoupling of the Schrodinger equation through an expansion of the
1

Hamiltonian in terms of (%) 4

This reduces the problem a priori to the motion of the electron. i.e. to solving

the electronic Schrodinger equation

H.|¥,.) = E,|T,) (2.7)

involving only the electronic Hamiltonian

He = Te &5 ‘/ee 1 VNe- (28)

Note again that the electronic wavefunction as well as the electronic energy only

depend parametrically on the nuclear coordinates.

If we add the nuclear repulsion as an effective potential, we get the total energy
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of the electronic problem for fixed nuclei

ZaZs
Ey = E. + Z Z (2.9)
A=1B>A A4
Solving those equations and averaging over the electronic wavefunction and co-
ordinates (due to their fast motion compared to the nuclei) then determines the

Hamiltonian for the motion of the nucleus

N 1 N o n N N 5.7
. 2 2 A ALlB
fz,l_-ZM[“v,4+< I W B ot >+ZZ
A=l ’ i=1 i=1 A=1"" i=1 j>i A=1B>4 &
(2.10)
N
:_Z]{)U‘v s+ Erot({Ra}) (2.11)

where Ei;({R 1}) generates the Born-Oppenheimer potential energy swface ac-
cording to the ground-state energy of the electronic system for the nuclei heing

fixed in the configuration {R 1}. The brackets indicate the averaging.

Solving the nuclear Schrodinger equation

Hy|¥y) = E|¥n) (2.12)

gives the full wavefunction ¥y = Wy ({R.}) and energy (including electronic,
vibrational, rotational and translational) leading to the Born-Oppenheimer ap-

proximation of the total wavefunction

U({ri},{Ra}) = Ye({ri} ,{Ra})¥n {Ra} (2.13)

as already stated in the factorization earlier on.

Furthermore ¥ will also depend on the spin of the electron, which is not written

down explicitly here.

Note that, whereas the nuclei can be treated with a classical approach as well,
solving the electronic equations is a many body problem. Since the electrons
interact with each other, no decoupling is possible and further approximations

are needed, some of which will be elaborated in the following.
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2.2 Approximations to solve the electronic

problem

In order to solve the electronic Schrodinger equation (2.7) the Hamiltonian H,

can be further separated into one- and two-particle components h; and g, ;

He:ihi“'"iigid- (2.14)
i=1 i=1 i<j

Here the one-particle term is simply the sum of the kinetic energy of an electron

and its potential energy in the field of the nuclei

"
los s=4£4
- _Ivy2 . 215
h; QV’ Z = (2.15)
A=1
and the two-particle term is given by

1
Gij = —- (216)

T'ij

which is equivalent to the potential energy of two moving electrons.

In order to solve the problem another approximation is needed which concerns
the chosen wavefunction. A successful approach is to express ¥ from a function
using a set of single electron wavefunctions ®; (see also chapter 2.4.1), called

orbitals

U=> afi(®. ., (2.17)
=1

Those approximate wavefunctions can then be trialed employving the Rayleigh-
Ritz variational principle, which optimizes the energy of the system giving an

upper limit by

W) (W)
E="mmy = (2.18)

to find the one closest resembling the exact wavefunction.
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2.2.1 The Hartree-Fock approximation

The Hartree-Fock method is the simplest approach to solve the many body elec-
tron problem. The fundamental concept is to describe the Coulomb interaction
between the electrons by an adequate effective potential leaving behind a system

of non-interacting particles (mean-field approach).

This means that the wave function W can be embodied by a set of single electron

orbitals ®;, more precisely the antisymmetric sum of a product of wavefunctions

(I)I(I‘],Ul) (I)Q(rl,al) (I)n(rl,m)
o — L (1)1(1‘2,02) (I)Q(I‘Q,Og) (I),,(I'Q,(IQ) (219)
vn!
(I)l(rnaan) (I)‘.!(rna Un) (I)n(rn7 Un)

This configuration was introduced by Fock and Slater [39, 40] and is known
as the Slater determinant and already accounts for Pauli’s exclusion principle,
where o; represents the spin coordinate. However, it does not specify which
electron occupies which orbital, as electrons are indistinguishable. In fact, the

Pauli principle follows directly from Fermi-Dirac statistics.

Applying the Rayleigh-Ritz variational principle to this trial function generates

the so-called Hartree-Fock equations

f1|(1)1> = Eil(I)i>~, (220)

This is an eigenvalue equation for the Fock-Operator

fi=hi+) (J;— Kj), (2.21)
j=1

where the eigenfunctions are given by the orbitals |®;) and the eigenvalues by
the orbital energies €;. The operator h; is characterized by (2.15). The sum
describes the electron-electron interaction at which J; is the Coulomb repulsion
operator (Hartree term) between two individual electrons and Aj is the exchange
operator (Fock term), which is necessary to describe the effect of interchanging

the coordinates of two respective electrons (antisymmetry):
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J31®:(2)) = (@;(1)|r,! [5(1))|9:(2)) (2.22)
K;|®,(2)) = <q)j(1)|,.1—21|(pl.(1))‘(pj(2)>, (2.23)

Note that the orbitals ;. with respect to which the energy is optimized in order
to obtain the Hartree-Fock wavefunction of the system. are in turn depending on
the Fock operator of the system. Since f; again is correlated to the orbitals. solv-
ing the Hartree-Fock equations demands for an iterative procedure. Therefore.

this approach introduced here is a self-consistent field (SCF) method.

Finally, the total energy of the electronic system is characterized by

Be= O, | fi|P;) — l o), — K| D, 2.24)
9 J J
i=1 Tig=1
= Zfz’ 5 Z((‘I’i\-]j\q’z) — (D, IR]®,)). (2.25)

i=1 ij=1

2.2.2 Electron correlation

Within the Hartree-Fock approach electrons are regarded as independent parti-
cles (as far as the Pauli exclusion principle allows for), expressed in the descrip-
tion of the electronic wavefunction with a single Slater determinant (2.19). By
means of this theory the electronic repulsion is only accounted for (in terms of
the exchange term) between electrons of the same spin. preventing them from
co-existing at the exact same point in space. However, this neglects the Coulomb
correlation between electrons of different spin, meaning that more than a single

determinant would be necessary to treat the system accurately.

This increases the repulsive interaction between electrons creating a so-called
exchange-correlation hole around an arbitrary electron at any position in space
and leads to an intrinsic total electronic energy difference between the so-called
Hartree-Fock limit and the exact solution of the electronic problem. This is
reflected in the so-called pair distribution function g(r,r’), which indicates the
probability of an electron to be found at the position r’ in space, if another
one is assumed to occupy position r. For a homogeneous electron gas g(r, r’) =

g(Jr—=r']), which is illustrated in fig. 2.1 for several numerical approaches. Despite
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yielding similar results for large inter-electron distances, the Hartree approxima-
tion does not account for the exchange operator A’; leading to g(r,r') = 1.
Hartree-Fock however, improves this result, since it already prevents electrons
of the same spin from occupying the same region in space in terms of the Pauli
principle (g(r,r’) = 0.5 for r = r’). Ideally, however, correlation needs to be
accounted for as well, creating a more localized and deeper 'exchange-correlation
hole’.

Generally speaking this energy loss relative to the Hartree-Fock results is referred

to as the correlation energy

Ecorr = LDegxact — EIIF (226)

according to P. O. Lowdin [41]. Yet, one has to be careful how to use the term, as
exchange is a part of electron correlation already and arguably already considered

in the Hartree-Fock energy of an electronic systen.
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Figure 2.1: Sketch of the pair distribution function g(r,r’) = g(|r — r’|) for the
homogeneous electron gas. The variable kp|r — r'| is given in arbitrary
units, Ar being the Fermi wave vector.

Induced by this inconsistency numerous wavefunction-based advanced methods
have been developed, treating electron correlation on top of Hartree-Fock. Some
of those are many-body perturbation theory (MBPT) [42], configuration inter-
action (CI) [43, 44], multi-reference (MR) methods and coupled-cluster (CC)
theory [45, 46]. However, they shall not be discussed here as in the solid-state
studies carried out for this thesis solely density-functional theory was used. It
is only mentioned that Hartree-Fock theory, as well as the many advancements

based upon, have proven very valuable in theoretical quantum chemistry, but are
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mainly used in atomic and molecular electronic structure calculations, although
more recently a localized version of second-order MIBPT has been developed for

solids with large band-gaps (local MP2 approach) [47].

2.2.3 Density functional theory

Most wavefunction-based theories have one major drawback. For their appli-
cation in solid-state physics. even if enhanced to include systems with periodic
boundary conditions. they turn out to be less feasible. This is primarily to be
blamed on the non-local character of the exchange operator A'; (2.23). making
calculations for periodic systems rather inefficient and therefore computer-time
expensive. Nevertheless, one program system called CRYSTAL has been devel-
oped which is based on the Hartree-Fock model using Gaussian type orbitals
(e.g. [48]. [49]). A more cost-effective alternative method is density functional
theory (DFT), which approaches the problem from a completely different direc-
tion using a functional of the one-particle density to describe the properties of a
svstem. DFT has two main advantages. First of all, the electron density is an
actual observable and secondly, it is only depending on three coordinates inde-
pendent of the size of the n-electron system. thus reducing the complexity of the

problem dramatically.

The Hohenberg-Kohn theorem and the Kohn-Sham equations

That this concept is indeed valid, was proven by the so-called Hohenberg-Kohn
theorem [50]. Here Hohenberg and Kohn state that the ground state of an elec-
tronic system is completely and uniquely defined as a functional of the electron

density of the ground state.

This is indeed plausible as the relation for the particle density of the ground

state of the n-electron system
n(r) :'n,/d37‘2/d3r3.../d3'rn\11*(r,r2.....rn)\ll(r,rg.....rn) (2.27)

can be reversed to determine the wavefunction as a functional of the electron

density, more precisely the ground-state wavefunction is then given by

\I/O = \I/[Tl()] (228)
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Hence, the ground-state expectation value of an observable is a functional of the

density, too. In particular, it is

Ey = E[ng) = (Vol|Te + Vee + Ven|Po) (2.29)

= Te[no] + Vie[no) + / rVon(r)ng(r) (2.30)

the ground-state energy of the system. T.[no] and V,.[no] are called universal
functionals, since they do not depend on the external potential defining the

problem.

Minimizing this functional of the energy by applying the variational principle
with respect to n(r) will yield the ground-state density ng and therefore all further
ground-state properties. This can be done using the method introduced by Kohn
and Sham [51]. where a fictitious system of non-interacting electrons, having the
same ground-state particle density as the real system of interacting electrons, is
introduced. The universal functionals T,[ng] and V,e[ng] of the interacting system
can then be expressed as the sum of the kinetic energy of the "non-interacting
system” and additional terms accounting for inter-particle contributions. Using
Kohn-Sham orbitals as an ansatz for the one-particle density, the density and

ground-state energy of the interacting system are then given by

n(r) = |(r|®:)[ (2.31)
i=1
- ‘ x
E=—p5 Z:; (®;| V2| ®;) + Eyln] + Exe[n] + ;«piwe,vyp,.y (2.32)

Hence, with the help of the variational principle under the constraint of the

conservation of the total particle number the so-called Kohn-Sham equations

Hgs|®;) = (—%Vz + Vi [n] + Vic[n] + Ven)|®:) = €| Ps) (2.33)

are obtained, where the Coulomb inter-electron interaction in terms of their den-
sity is described by the Hartree term Vg and the so-called exchange-correlation

functional V,,. summarizes all electron-electron interaction that is not accounted
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. 1
for vet',

(1) = :,f?f) = /d'gr'n(r’)|r - | (2.34)
V.. (r) = :f(r) (2.35)

This is again an eigenvalue equation for the IKohn-Sham operator /1y g. which
can be regarded as an effective Hamiltonian for the non-interacting system with
the effective Kohn-Sham potential Vg = V. + V.v including interparticle in-
teractions of the real system. Equation (2.33) has to be solved iteratively in a
self-consistency loop, since the obtained [Kohn-Sham orbitals |®;) in turn deter-
mine the operator /{yg. Finally the total energy of the system is determined

as

= ZE:‘ — Enn] + Epc[n] - /(i31‘L"IC(1‘)I)(1‘). (2.36)

It is worth mentioning that the obtained orbitals have no physical meaning due
to the fact that they are actually electronic orbitals of the non-interact ing system

and therefore merely the eigenstates of the used density matrix.

The major advantage of density functional theory is that solving those equa-
tions gives in principle the exact ground-state energyv. Be that as it mayv, un-
fortunately the exchange-correlation functional E',. is unknown, which means
sensible approximations have to be introduced to describe the interaction of the
electrons, some of which will be presented in the following section. The tvpes
of functionals available are generally categorized into local (LDA), semilocal or
gradient dependent (GGA), nonlocal (hybrids) and integral-dependent (ADA)

functionals.

Functionals for the approximation of exchange-correlation energy

A very widely used approximation for the exchange correlation energy is the

local density approximation (LDA). Here the density of an ensemble of electrons

I'This obviously includes all deviations between the fictitious non-interacting and the inter-
acting ensemble, e.g. corrections for the Coulomb and kinetic terms as well.
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in a system is locally compensated for with a density of the free homogeneous
electron gas. This is the most obvious approach and rather convenient, since the
exchange-correlation functional for the free electron gas is numerically known

exactly.

This means F,. depends on the density only at the coordinate where the func-

tional is evaluated, assuming that the density is a slowly varying function,

By = /d%n(r)eﬁf’"(n)ln(r) (2.37)

with the according exchange correlation potential

/ om () om ‘
Ve [)(x) = €2 (1)) +1(0) 522" () |ne)- (2.38)

Here €"9™(n) is the exchange-correlation energy density of the homogeneous elec-

tron gas, which consists of an exchange part ¢"°"(n) and a correlation part

¢"om(n). The exchange part of the density can be easily derived analytically [52]

and is given by

a /o 1/3
g IMp) = B <i> n'/3 (2.39)
4\

leading to the exchange energy as obtained within LDA?

LDA N EA N 4/3
E;""m] = Tk /(1 rn(r)*?. (2.40)

T

The above equation assumes a closed shell problem, meaning the number of spin
up and down electrons is equal. Where this is not the case, a straightforward
generalization of LDA is possible, the local spin-density approximation (LSDA),

to include spin-polarization as well.

More effort has to be made, however, to derive the correlation energy density
of the uniform electron gas. In that case rather complex many body techniques

have to be employed [53] or its calculation is limited to specific densities carrying

2Combining the term for the exchange energy obtained using this model with the expressions
for T, and V,, in the renowned Thomas-Fermi model leads to the so-called Thomas-Fermi-Dirac
approximation of the total energy of the system. Multiplication with an adjustable parameter o
on the other hand is known as the so-called X a approximation. However, these approximations
are rarely applied nowadays.
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out quantum Monte-Carlo simulations [54]. Further work was done by Vosko,
Wilk and Nusair [55] as well as Perdew and Zunger [56] again using quantum
Monte Carlo methods for different densities n. hence obtaining a suitable fit for

¢hom(n).

In general, LDA has proven to be a very useful tool in quantum chemistry and
solid-state physics, even though it uses a rather simple approach. Surprisingly so.
this is not only true for systems with a slowly varving density (such as metals and
intrinsic semiconductors), which can be partially explained by systematic® error
cancellation due to the combination of generally underestimated correlation en-
ergies and overestimated exchange energies. For nonhomogeneous bulk systems
(e.g. transition metals) and even for molecules one obtains very good results for
structure, total energy and bulk moduli er force constants, with deviations of
only few percents, especially for the ground state. However, this approximation
tends to underestimate bond lengths (in particular in molecules with a clearly
strong varying particle density), leading consequently to an overestimation of
dissociation energies of often more than 10%. However. the major shortcoming
of LDA is the severe underestimation of the band gap in semiconductors and

insulators of up to 100%.

To improve the performance of LDA. the self-evident measure is to not only rely
on the local density but further take into account the gradient of the spatially
varving density at the point of evaluation. The so-called "gradient-expansion
approximation’ aims at a systematic calculation of those gradient-corrections,
an example being the Weizsicker term for the description of T,[n]. However.
low-order corrections usually lead to worse results than LDA, whereas higher-

order corrections are extremely difficult to calculate.

Later it was discovered that this systematic expansion is not necessary and a
semi-empirical approach known as the so-called generalized gradient approx-
imations (GGA) gives a far better value for the exchange-correlation encrgy,

expressed as

E.?CGA[TI’] = /d3rn(r)el‘c(n7vn’)|n(r)- (241)

The most commonly used GGA functionals nowadays are the ones developed by
Perdew and Wang (PW91) [57, 58] and Perdew, Burke and Ermzerhof (PBE) [59].

3Systematic, since LDA satisfies the sum rule for the charge of the exchange correlation
hole to equal -1.
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Especially in quantum chemistry BLY P is very popular as well, combining Becke’s

exchange functional [60] with the correlation functional of Lee, Yang and Parr [61].

With this approach generally speaking structural properties are calculated with
improved accuracy and even bonding energies are significantly improved. This is
even true for most cases where LDA fails, e.g. some transitions metals and other
inhomogeneous systems.! However, it cannot account for interactions like van der
Waals forces and other many-body effects and still the band gaps are severely
underestimated. In addition, DFT has one major drawback. No systematic
improvement of the theory is currently possible in order to obtain better results,

as it is the case for wavefunction-based methods.

Further improvements therefore include the incorporation of exact exchange
(hybrid-functionals) and corrections for dispersive type of interactions (long-
range corrected functionals). For further reading on density functional theory
the reader is referred to [62].

However, DFT GGA, as chosen for this thesis, is a good compromise between
a realistic treatment and keeping the computational cost low. Explicitly, the
parametrization according to Perdew and Wang (PW91) [57, 58] is used in this
study, where the exchange and correlation contributions to the energy for equal

numbers of spin up and down electrons are given by

: . g . , 10052
EPWOI[] = — / (irn(r)(SkF 1 4+ 0.1965s sinh ™' (7.7965) + (0.274 — 0.151e 710057 )52

4rr 1 + 0.1964s sinh ™' (7.796s) + 0.004s*
(2.42)

EFWo[p) = /drn(r)(ec(rs) + H(t,r,)). (2.43)

Here A is the local Fermi vector, s the scaled density gradient and A, the local

screening wave vector as defined by

ke = (37°n)/3 = 1.9196/r, (2.44)
s = |Vn|/2kpn (2.45)
t = |Vn|/2ksn (2.46)

ke = (4he/m)'P2, (2:47)

1GGA correctly predicts the ferromagnetic ground state of bulk iron.
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For a generalization to an open-shell problem and a definition of the function H

the reader is referred to ref. [58].

2.2.4 Relativistic effects in quantum chemistry

In general, the term relativistic effect in quantum chemistry accounts for all
deviations of results obtained using methods either considering relativity or not.
This is mainly for historical reasons. since the theory of relativity, although
developed already in 1905 by Einstein, was not regarded to have a substantial

influence in quantum chemistry. In 1929 Dirac commented on the topic:

"The general theory of quantum mechanics s now almost complete. the imper-
fection that still remains being in connection with the exact fitting in the theory
with relativity ideas. These give rise to difficulties only when high-speed particles
are 1nvolved, and are therefore of no importance in the consideration of atomic
and molecular structure and ordinary chemical reactions, in which it 1s, indeed,
usually sufficiently accurate if one neglects relativity variation of mass with ve-
locity and assumes only Coulomb forces between the various electrons and atomic
nuclei. The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus completely known. and
the difficulty is only that the exact application of these laws leads to equations
much too complicated to be solvable. Therefore, it becomes desirable that ap-
proximate practical methods of applying quantum mechanics should be developed,
which can lead to an explanation of the main features of complex atomic systems

without too much computation.” [63]

However, Dirac (unknowingly at that time) was incorrect with this statement,
since especially close to the nucleus core electrons travel at a significant speed
compared to the velocity of light. For the inner 1s-orbital of heavy elements veloc-
ities of 0.5¢ and more can be reached [64]. Therefore, for the heavier atoms with
large nuclear charge a relativistic treatment is required, especially for s-electrons
which have considerable density close to the nucleus. Moreover, relativistic ef-
fects are important for higher angular momentum electrons as well despite the
fact that the density goes to zero close to the nucleus. It was not until the
seventies that attention was paid to relativistic effects in electronic structure
theory [16]. Even worse, in the solid-state community relativistic effects were
basically ignored for a long time with the exception of spin-orbit effects in band

structure calculations. However, Christiansen and Seraphin showed in 1976 that
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relativistic effects change the band structure in solid gold [65] considerably and
Takeuchi et al. showed in 1989 that the lattice constant, cohesive energy, and

bulk modulus for fee gold is greatly influenced by relativistic effects [66).

Basically, relativistic effects originate from the fact that light can only travel at a
finite speed c¢. For objects, moving with a velocity close to this, corrections have
to be made to physical variables such as mass, time and length being the most
prominent. On this note, a qualitative estimate of the impact of relativity in

quantum chemistry can be made, when including the relativistic mass increase

m=——10___ (2.48)

v1-—1v2/c?

on the effective Bohr radius

h

mea

Here myg describes the electron mass at rest and v, the electron velocity. Fur-
thermore, i and a denote the reduced Planck’s constant and the fine structure
constant, respectively. Hence, if considering the velocity of an electron in atomic

units v, = Z/n, a ratio of

% = \/1—1‘3/(’2: V1= (Z/nc)? (2.50)

is obtained for the relativistic and non-relativistic Bohr radius (see fig. 2.2), where
n is the principal quantum number. Therefore, it is obvious that this effect, being
most pronounced for electrons with a low quantum number and a nucleus with
a high charge, would lead to a contraction of all orbitals. Quantifying this effect
for e.g. mercury with a nuclear charge of Z = 80, means that the radius for an
1s-electron would be (.81 times its nonrelativistic value and therefore decreased

by 19%. The speed of light in atomic units amounts to ¢ = a~! = 137.

From this rather simple approach it is already apparent that relativistic per-
turbation operators will affect primarily the region close to the nucleus, which
exhibits a major part of the valence s electron density. Hence, major energy con-
tributions stem from the K-shell region in stark contrast to the nonrelativistic
case, where the valence shell region is responsible for 90% of the total orbital

energy [64].
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Figure 2.2: Ratio of relativistic and non-relativistic Bohr radius as a function of the
electron velocity. The dash-dotted line indicates the position of mercury.

One could now argue that this at least has little effect on the d- and f-electrons.
However, it turns out that the contraction of the s-electrons due to the above
discussed direct relativistic effect leads in turn to a more efficient shielding of the
core, resulting in a reduced effective nuclear charge Z.;; (relativistic shielding).
This on the other hand induces an expansion and energetic destabilization of all
orbitals as an indirect relativistic effect [67). Hence, whereas direct relativistic
effects are predominant for s-orbitals and almost cancel out the indirect effects
for p-electrons, these indirect effects are of utmost importance for electrons with
higher angular momentum. In addition, the destabilization and expansion of the
d and f-orbitals again triggers an indirect stabilization for all other orbitals due
to a relativistic deshielding going along with an increased effective charge of the
nucleus. This however brief summary shows the sophisticated vet very subtle
interplay caused by direct and indirect relativistic influences on the orbitals of

heavy atoms.

Equation (2.50) explains why this subtle interplay was first discovered for the
heavier elements of the periodic table. Most certainly thisis not the only achieve-
ment of relativistic quantum chemistry. Prime examples are the explanation of
the inert pair effect, the liquid state of mercury at room temperature and the
unusual reflectivity of gold explaining its golden colour [1G].

Especially in gold and mercury relativistic effects are exceptionally strong, known
as the relativistic maximum. This can partly be explained with the filled d-shells,
causing the increased indirect stabilization to overcompensate for the indirect

destabilization, which results in a significantly larger stabilization and contrac-
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tion than for other elements. From group 13 onwards with the filling of the next
p-orbitals this indirect stabilization starts to decrease again. For further reading

on relativistic effects see refs. [16, 17. 64, 68].

For a comprehensive treatment of relativity in quantum chemistry the one-

particle Hamiltonian (2.15) has to be substituted by the Dirac operator

h,D = —icaV; + mBc® + Vaua(ria), (2.51)

where Vi, q(ri4) describes the electrostatic potential between the nucleus and
the ith electron. The components of the vector a = (a,, a,,a;) and [ are 4 x 4

matrices

12 02 02 (o™ 02 Oy 02 g,
J = e — Oy = ‘ o .
02 —12 Oy 02 O'y 02 g, Og

(2.52)

referred to as the Dirac matrices. [, stands for the 2 x 2 unit matrix and the

matrices g, 0, and o, are known as the 2 x 2 Pauli spin matrices

0 1 0 —i 10
i = aw={ = " |.o= . (2.53)
10 i 0 0 —1

Similar to the one-particle term, the two-particle term (2.16) can be extended

by a relativistic correction leading to the Coulomb-Breit operator

g,-c.']-B == (aiaj i w> ’ (2.54)

ri;

'up to second order. Terms of

although this only includes corrections of ~ ¢~
higher order can be derived using quantum electrodynamical considerations.

Ultimately, the Dirac equation can be written as

me? + Vipuer(Tia) —icaV, 5 B ( U, (2.55)

—icaV; —mc? + Voa(Tia) Uy Wy

This is a system of four differential equations being split into two systems of equa-

tions. In this case the wavefunction consists of four components, which can be
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separated into a so-called small Vg and large ¥, component. In general, positive

as well as negative energies are allowed, giving rise to 'positronic’ solutions.

Analogously to the nonrelativistic case the so-called Dirac-Hartree equations can

be set up, where operators and wavefunctions need to be four component spinors.

Exploiting this formalism is rather sophisticated. However. by applving various
sophisticated approximations to those four component equations. it is possible
to create a so-called pseudopotential, which already accounts for all those rel-
ativistic effects and simplifying further calculations drastically. The concept of

the relativistic pseudopotential is introduced and explained in chapter 2.4.2.

2.3 Periodic systems

In fact. every physical or chemical system inherits a certain symmetry that if
not determines at least crucially influences their properties. This is especially
true for the systems treated in this thesis, i.e. solids or more specifically crystals,
which due to their periodicity by definition possess a certain symmetry. Hence.
in the following chapter a brief summary of the basics and definitions of periodic
systems and their symmetries in the context of crystallography will be given.
The mathematical background to describe and quantify svmmetries is provided
by the theory of finite groups, by systematically classifving periodic systems

according to the irreducible representation of their point and space groups.

2.3.1 Crystal symmetries and Bravais lattices

Ideal crystals are solids which are defined by a periodic arrangement of the atoms
or molecules theyv consist of. This means they inherit a long-range order, where
the positions of the component atoms are pinpointed by an underlying infinite
array of discrete points, called Bravais lattice®. This lattice spans over the whole
crystal and is identical from whichever point in the array it is viewed. Hence, it

could be defined as a set of translations defined through all vectors

R= nia; + ngas + nsas, (256)

where the a; are linearly independent and n; is an integer. Although those so-

5Named after the French physicist Auguste Bravais (1811-1863), who listed all possible
Bravais lattices for the first time correctly.
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called primitive vectors a; are not unique, they generate the whole lattice as
indicated by fig. 2.3.1, meaning one can reach each point Y n;a; in the lattice

by translating a length a; in steps of n;.

aj

Figure 2.3: The primitive vectors of a unit cell in two dimensions.

The parallelepiped of the volume )y = (a; x ay) - ag spanned by the lattice
vectors a; is called wnit cell of the crystal. In the special case where this volume
of space, when translated through all vectors. fills the whole Bravais lattice space
without any overlapping or leaving gaps the term primitive unit cell is used. This
special unit cell contains exactly one lattice point (smallest volume), but again,
like for the primitive vectors this choice is not unique. Therefore, usually a
special primitive cell, the so-called Wigner-Seitz cell is used, which displays the
full symmetry of the Bravais lattice. It is confined by the median lines between
a lattice point and all its neighbours, meaning that no lattice point in this region
of space is closer to the lattice point contained in this unit cell than to any other
lattice point. The absolute values of the a; including the angles between them

are characteristic for each crystal and known as lattice parameters.

As mentioned earlier the Bravais lattice is only the underlying structure of a
crystal. It describes purely the translational symunetry of the crystal. In order
to describe a real crystal structure a physical unit of atoms, like a motif, needs
to be centred at each point of the Bravais lattice within a particular unit cell.
By doing this a point lattice is created as the set of all points in space where the
atomic basis atoms are placed. The position of the atoms within the basis are
then specified by placing the centre of reference, meaning a lattice point in the
centre of one particular basis atom, giving the coordinates of the other atoms as

fractions of the lattice constants.

Using this definition of a crystal a whole range of different crystal structure is
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possible. The purpose of crystallography is to achieve a full classification of
all possible structures by identifying their inherent symmetry. This means all
operations that leave the properties of the crystal unchanged. Looking just at the
Bravais lattices they can be characterized by a set of rigid operations under which
the lattice remains the same. known as the space or svmmetry group. Possible
svinetry operations are translation through the lattice vectors, inversion at the

origin®, rotation around symmetry axes and reflection in a plane.

All of those operations can be separated into a pure translation and one that
leaves at least one point of the lattice unchanged, a so-called point group, which
is a subset of the full symmetry group (without translation). Just considering
those point groups the Bravais lattices can be categorized into seven different
crystal svstems with specific ratios of their lattice vectors and different angles a.,
i3 and v between those vectors. Those are with increasing symmetry the triclinic,
monoclinic. orthorhombic, hexagonal, rhombohedral or trigonal. tetragonal and

cubic system.

Of course there are not only primitive lattices, but also nonprimitive ones with
more then one atom per unit cell. which adds up to a total of 14 different Bravais
lattices. Nost of the time it is possible to describe the non-primitive lattices using
a primitive cell, which might in turn not have the full svmmetry of the Bravais

lattice anyvmore.

Applying the same considerations to the crystal structure, the complete crystal
svstem will not have the maximum symmetry of the Bravais lattice anymore.
since the basis is not required to be symmetric. Therefore. one obtains 32 crvs-
tallographic point groups (crvstal class) analogous to the 7 crystal systems of

the Bravais lattice, which are summarized in table 2.1.

The corresponding point groups in Schonflies notation are characterized by rota-
tional operations and symmetry planes and defined as follows. (', describes an
n-fold rotation axis and Ss,, the mirror-rotation, where n is the order of rotation.
Both of them directly name the according point group. In the special case, where
no symmetry axis or planes can be found at all, leaving only a centre of inversion,
the class is denoted (;. Furthermore, a point group which possesses n two-fold
axes perpendicular to the principal (7, axis is called D,. However, in addition
to a rotation axis, a group might contain mirror (reflection) planes o, which can

either be vertical (a,) or horizontal (g;,) to the rotation axis or none of the two

8Inversion replaces all points with their coordinates r by their inverse —r with respect to
the origin.
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Crystal system  Unit cell Class Point group

HAI SF

Triclinic a#b#ec 1 1 @
aFpB#q 2 -1 Sp(C)
Monoclinic a#b#c 3 m G (Gin)

a=v5=90° #73 4 2 (@)

5 2/m 2h

Orthorhombic  a # b # ¢ 6] mimn You

a=p=v=90° 7 222 Dy

8 mmm Doy,

Tetragonal a="b#c 9 4 Cy

a=p03=+=90° 10 —4 Sy

11 4/m ih

12 dmm i,

13 —42m Doy

14 422 Dy

15  4/mmm Dy,

Rhombohedral a=b=—¢ 16 3 Cs
(trigonal) a=p=v<120°#90° 17 -3 Se(C'3:)

18 3m "3

19 32 D3

20 —3m D3y

Hexagonal Ww=hete 21 6 Cs

a=/3=90°~y =120° 22 -6 Cp,

23 6/m Cen

24 —6m?2 D3y,

25 omm Cey

20 622 Dg

27 6/mmm Dgn

Cubic =0 = e 28 23 T

a=p=v=90° 29 m—3 Ty

30 43m Ty

31 432 @)

32 m — 3m 0,

Table 2.1:

The seven Bravais lattices of a three-dimensional crystal with their ac-
cording classification into 32 point groups. It is @ = <(b,¢c), 8 = <(a,c)
and v = <(a,b), respectively. The point group is given according to the
international Hermann-Mauguin (HM) and the historical Schouflies (SF)
notation.
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(64). Those point groups are indicated as (", Cpp. Dnp and D, g, respectively.
They include (75 or ('}, standing for the point groups, in which only a single
symmetry plane can be found. The cubic point groups T, Ty, T, O and O
have more than one rotation axis of highest symunetry that is at least threefold.
Using Hermann-Mauguin notation 1 denotes the identity, —1 inversion. n the
n-fold rotation axis, —n the n-fold mirror-rotation axis and m the mirror plane.
[f the reflection plane is perpendicular to the n-fold rotation axis this is indicated

by n/m.

Compared to the 14 space groups of the Bravais lattices. there are 230 different
svimmetry groups a lattice with a basis can have. when the basis is required to be
completely symmetric. Those include more sophisticated symmetry operations

induced by screw axes and glide planes as well.

Furthermore. it should be noted that sometimes a different notation is used to
categorize different crystal lattice structures. The Pearson symbol designates a
structure by symmetry class, lattice type and the number of atoms per unit cell
(e.g. oP4, ¢F4). For instance, cinnabar has a hexagonal (h) primitive (P) unit
cell. which consists of 6 atoms and is therefore labelled as hI’G. It should he
mentioned that the Pearson symbol does not always specify a unique structure

(e.g. cF8, see chapter 3.1.1).

[t is worth mentioning that in the real world a crystal of course is not ideal. This
means the periodic arrangement can be disrupted by localized defects, that can

arise during crystal growth, and by the fact that real crystals are finite objects.

2.4 Numerical implementation

Almost all calculations forming the basis of this thesis were carried out using
the Vienna ab-initio simulation package (VASP) [69, 70]. This program uses
two basic concepts to reduce the computational cost considerably. First of all
plane waves are used as a basis set for the one-electron wavefunctions. This is
particularly advantageous for the treatment of periodic systems due to Bloch’s
theorem [71]. Secondly, the core electrons are accounted for by a pseudopotential,

hence only including the valence electrons explicitly in the computations.
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2.4.1 Plane-wave basis and Bloch’s Theorem

Since the Kohn-Sham equations (2.33) cannot be solved exactly an expansion
of the IKohn-Sham orbitals |®,) into a linear combination of basis functions is

necessary in order to solve them numerically:

(S}
(]
=1
=)

|®;) = Z("Ii|X1>~ (2.
7

where C); = (x| ®;).

Technically, those can be any suitable kind of function. However, the most intu-
itive ansatz for atomic and molecular calculations is to use a linear combination
of atomic orbitals (LCAOQ, see also equations (2.17) and (2.19)), which are of
the form of a single electron wavefunction derived from solving the Schrodinger
equation for the hydrogen atom. A popular approximation of those atomic or-
bitals are Slater type orbitals which were initially used and counsist of a set of
functions, exponentially decaying with the distance » from the nucleus. Those
have the advantage of correctly describing the cusp of the electronic wavefunc-
tion at the nucleus and the long-range decay, but can be further simplified by an
expansion into Gaussian type orbitals (GTOs), thus substantially reducing the

computational cost to solve overlap and exchange integrals.

For the investigation of the solid state and periodic systems in general, however,
the decomposition of the IXohn-Sham orbitals into plane waves is beneficial. One
of the reasons for this lies in the natwre of plane waves, being of the form x(r) x

e'kT with the wave vector k, to automatically fulfil Bloch’s Theorem [71]

Ur(r + R) = By (r) (2.58)

for every lattice vector R. This means, if in addition one exploits the periodicity
of the translational invariant system, it is sufficient to describe the investigated
system by just a unit cell and a respective atomic basis, which reduces the com-

putational cost tremendously.

Taking those considerations into account it is possible to expand the Kohn-Sham

orbitals into a Fourier-Series

(r|@;) = (r|®ak) = —= > _ca(k + G)e'+O)r (2.59)
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with G and (2 being the reciprocal lattice vector and unit cell volume respec-
tively. Here, the wavefunction is determined by just a band index i and a con-
tinuous wavevector k, which is limited to the first Brillouin zone. In general,
this means by taking advantage of the periodicity (Bloch's theorem), an initially
infinite spectrum with the continuous wavevector k is transformed into a discrete
basis set, which is numerically manageable. This means the basis will be infinite,
even though for a given k it is technically discrete. The transition from the real
space description |®;) to the k-space of plane waves |¢) = |k + G) is facilitated

by a Fourier transformation.

In contrast to many other basis set choices, plane-wave basis sets will due to
their completeness always converge very quickly to the exact wavefunction with
respect to the number of basis functions involved. This means. in practice, the
basis set can be truncated to a sphere in reciprocal space defined by the so-called

cutoff energy F.;

h2|Gma$|2

Ecuf Z 9
ZMe

(2.60)
determining a maximum G vector in the expansion and possibly truncating the
high spacial frequency parts as much as possible. since the number of bhasis
: . 3/2 . .

functions is x Emft . A typical number of a few hundred plane waves per atom is
usually needed.

Another advantage of plane-wave basis sets over atomic orbitals is the fact that
due to their orthogonality they do not inherit the so-called basis set superposition

error generated by the overlap of basis functions contributed by different atoms.

By utilization of plane waves the IKohn-Sham equations turn into a system of
linear equations for the coefficient ¢y, that need to be solved in momentum
space, hereby determining the matrix elements for the effective potential. It
appears that through this ansatz integrals, such as for the kinetic energy, which
need to be calculated, as well as derivatives, e.g. forces (due to the non-local
character) can be computed with far more efficiency in reciprocal space. However,
since the exchange-correlation potential is mostly calculated in real space, the
transformation of the matrix elements is carried out by a Fast-Fourier transform

(FFT).

In practise, the numerical integrations in the Brillouin zone are substituted by a

summation over a discrete mesh of A-points according to equation (2.59). Several
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schemes are available to generate this mesh i a systematic way. The approach
by Monkhorst and Pack [72] for instance respects the space group symmetry of
the investigated system. Especially for hexagonal systewms it is recommended to
include the I'-point as well for faster convergence of the energy.

To keep computational costs as low as possible it is desirable to reduce the
number of A-points as much as possible. Here the symmetry of the crystal is
of further assistance, decreasing the number of non-equivalent A-points to the

irreducible part of the Brillouin zone (IBZ).

In general, for the interatomic part of the wave function, where fluctuations
are small and hence the wavefunction at neighbouring A-points are usually very
similar, high accuracy can be reached using just a relatively small number of
k-points. However, the plane-wave approximation demands for a huge number
of basis functions (high cutoff energy) when it comes to the description of local-
ized states and the atomic core region, where the wavefunction inherits nodes
and strong fluctuations (high spacial frequencies) in order to maintain orthog-
onality to the core state wavefunctions. Therefore. as a further approximation

pseudopotentials are utilized (see chapter 2.4.2).

Based on the information given above it is sensible to preliminarily test calcu-
lations with respect to their convergence depending on the chosen energy cutoff
and k-mesh. For comparable computations it is important to keep the basis as
similar as possible, since e.g. with relaxation of the unit cell (varying the lattice
constant), G,,., changes, influencing the total energy even with a fixed energy

cutoff.

2.4.2 The frozen-core approximation and pseudopoten-

tials

As mentioned earlier, it is a challenge to describe the in the core region strongly
oscillating valence states using a sensible number of basis functions. However,
since fortunately most chemical and physical properties as well as chemical bond-
ing characteristics are mainly determined by the wavefunction of the valence
electrons outside the core region, it is rendered obvious to either just account for
those in an actual calculation or to modify both the wavefunction of the valence
electrons and ionic core potential in the core region accordingly to make those

strong fluctuations disappear.
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The first step to achieve this is the separation of the system into a core and
valence region known as the frozen-core approximation. In this concept, the
wavefunctions of the core electrons are assumed to be independent from the
chemical environment of the atom and therefore independent from the valence
particle density n,. The Kohn Sham equation can hereupon be solved for the
valence electrons only, where the kept fixed (frozen) wavefunction for the core

electrons is derived from an all-electron atomic calculation.

Even though this means a further reduction of the basis set size, it turns out that
this approach is only suitable for atoms with well separated (spatially and en-
ergetically) electronic states, deeming it unsuitable especially for elements with
partially filled  orbitals, e.g. transition metals. Here. the concept of pseudopo-
tentials has proven to be a valuable tool. At this, in addition to the frozen-core
approximation, it is assumed that the valence electron density of the core region

as well have little influence on the chemical bonding.

Therefore. a pseudopotential is created which aims to embody a pseudo-atom
substituting the actual atom by an effective core plus inner valence shell and is
supposed to lead to reasonably smooth pseudo-wavefunctions in the core region
(fig. 2.4 gives an idea). It is desirable that this pseudopotential describes not only
the core atoms but also their influence on the valence electrons. As mentioned
in chapter 2.2.4 this should include all interactions and therefore account for

relativistic effects also.

l- .IJ l >
v Tcut — Ypp(r)
srenees U 4 ()

Figure 2.4: The real (all-electron) wavefunction (dotted) compared to the pseu-
dopotential wavefunction (straight) as a function of the radius. Both
only match above a cutoff radius reyy = 7.

Naturally, a well constructed pseudopotential firstly leaves most physical and
chemical properties of the true atom unchanged and is secondly independent
from the set chemical environment ensuring its transferability. It has therefore
to meet the following conditions: the atomic all-electron eigenvalues do not differ

from those obtained with the help of the pseudopotential (¢4 = ePP), the
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wavefunctions of the actual and the pseudo-atom are equal beyond a certain
cutoff radius r; (for each angular momentum /) marking the spatial edge of the
pseudo-atom and the charge density of the real atom has to be the same as
the pseudo charge within the radius r; accounting for norm conservation of the

wavefunction.

Pseudopotentials of this kind for the solid state were first introduced by Hamann,
Schliiter and Chiang [73] and are known as so-called norm-conserving pseudopo-
tentials. They are usually derived by solving the inverse radial Schrodinger (2.1)
or (for the inclusion of relativistic effects) Dirac equation (2.55) for each angular
momentum /, at which a suitable initial fit of the wavefunction in close proximity

to the core is assumed. Hence, the pseudopotential will depend on I as well.

However, the condition for the norm-conservation can be relaxed creating softer
pseudopotentials. This allows for very accurate treatment of the first row ele-
ments as well as atoms that contain d-electrons (e.g. transition metal elements)
while reducing the number of necessary plane waves to a minimum. Examples are
the so-called ultrasoft pseudopotential (US) suggested by Vanderbuilt [74] and
pseudopotentials stemming from the application of the projector augmented-
wave scheme (PAW) [75, 76]. The latter are used in this thesis, since they are
generally more accurate due to a smaller radial cutoff and an exact reconstruc-
tion of the nodes of the valence function in the core region. However, those
approaches demand for a correction of the wrong pseudo charge by either in-
troducing a depletion ( for US) or augmentation charge (for PAW) utilizing a

non-local overlap operator to account for these charges.

2.5 Optimization and solid-state properties

The preceding sections introduced the basic concepts. However, so far only
methods to determine the electronic system were described. This chapter shall
therefore cover how to describe the dynamics of the nuclei as well and explain
the fundamental procedure of how to actually obtain the crystal properties of a

systemn.
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2.5.1 Optimization

Until now only the determination of the optimized electronic system was de-
scribed.  According to the Born-Oppenheimer approximation the ground-state
density of the electrons as well as the total energy are depending parametrically
on the positions of the atoms or ions. Looking at a periodic system a potential
energy surface Fio:({Rq,}) is spanned for the coordinates of the atoms in a unit

cell (Born-Oppenheimer surface, see chapter 2.1.2).

Therefore, as a first step to obtain the ground-state energy and properties of a
svstem the total energy Eyn({Rq}) is calculated for the electronic system opti-
mizing just the electronic degrees of freedom with respect to the position of the
ions or atoms of the investigated system. This can happen within the framework
of density functional theory solving the Kohn-Sham equation (2.33) to vield the

Born-Oppenheimer potential energy surface.

After this procedure however, one has to consider the dynamics of the ionic
svstem, which can be done by calculating the forces acting on the nuclei from

the potential energy surface

F,= -V Eit = F" + F. (2.61)

They vanish as soon as the system reaches its equilibrium state.

By introducing a fictitious time ¢ on which the trajectories R,(t) depend, it is
possible to calculate those interatomic forces in certain time intervals. This does
not only allow for rather simple techniques to optimize the geometry of crystals.
even with quite a few atoms in the unit cell, but can even be used to describe

solids at higher temperatures (melting) and to investigate phonons further.

R,(t) can be determined for instance by treating the nuclei as point particles,
applying classical mechanics in form of Newtons equation of motion for the ions

of the mass A/,

d2

Mo—-
dt?

R.(t) = F., (2.62)

where F, is given by (2.61).

Generally speaking, therefore having an initial guess for the atomic arrangement

R,(t), the Kohn-Sham equations are solved within the framework of DFT to
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calculate the ground-state energy E[n] and hence Ey;({R,}). This is used to

obtain the forces F,, which in turn using (2.62) gives the next time step

R, (t + At) = Ro(t) + va(t)At + %aa(t)Atz . (2.63)

representing an atomic configuration that is closer to the equilibrium ensemble.
Based on this, the equations (2.33) have to be solved again to find the adequate

electronic state.

The method is known as ab-initio molecular dynamics (AIND) and comprises
two interlocked iteration schemes. However, after each calculation of the new
atomic arrangement a new BO energy surface has to be calculated. To recduce
computational effort it is therefore feasible to estimate the direction and if pos-
sible even the velocity of how the energetic minimum will be approached using
the calculated forces. It is known as the method of steepest descent. Even faster
convergence is achieved using a conjugated gradient scheme, which is primarily

used for the calculations presented here.

2.5.2 Equilibrium properties of crystals

The successful calculation of the ground-state energy for a certain arrangement
of atoms is the starting point for the determination of various solid-state prop-
erties such as crystal structure, lattice constants, density of states and charge
densities, cohesive energy and bulk modulus. Furthermore, the coefficient of ther-
mal expansion, elastic constants and interatomic forces (and therefore phonon

frequencies) can easily be obtained.

Initially from an experimental point of view all material properties are derived
at a given pressure p and temperature T. Hence, the suitable thermodynamic

potential is the free enthalpy or Gibbs free energy (for constant particle number)

G(T,p)=U~-TS +pV (2.64)

and its optimization will lead to the thermodynamic equilibrium state. The
separate teris specify the internal energy U, the entropy S and the volume of
the crystal V. For the purpose of theoretical computations however, this full
thermodynamic treatment is challenging due to finite temperature effects and

determining the entropy of the system. Hence, several approximations are used.
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Firstly, the bulk is assumed to be stress-free, therefore showing little change of
volume for nearly constant pressure. This means that the equilibrium state is

mainly determined by the free energy

F(T.V)=U(T.V)-TS(T.V) (2.65)

depending on the temperature and volume, thereby giving a definition for the

dF - :
T

On the other hand, an approximation concerning the phonons is made by ide-

term stress-free as

alizing the entropy of the electrons to be small. Therefore, the temperature
dependency of the internal electronic energy should be neglegible. Hence, it is
possible to substitute U/ (T — 0,1") approximately by the total energy of the

system FE(V7). This quasi-harmonic approach yields the following expression

F(T.V)=E(V)+ U2 (V) + Fu(V.T). (2.67)

where (%, is the zero temperature vibrational energy and F, is the free energy
of the oscillators. According to Debye for temperatures smaller than the Debyve
temperature © both phonon contributions can be approximated to be 9/85kg0.
which usually amounts to only a few percent of the electronic contribution. If

those ters are therefore neglected, we obtain the equilibriuun volume from (2.66)

dE(V)
dVv

oty = 0. (2.68)

To determine the bulk modulus, experimentally given by

dp(V,T

Brv)=-v 2% (2.69)
dVv T

by means of quantum chemical methods a sensible equation of state for the solid

system has to be derived. It has been shown that in a pressure range of up to

10'° Pa the pressure derivative

"From this relation between volume and temperature the thermal expansion coefficient
a(T) = (dV/dT)/V can be derived.
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B = <£> (2.70)
dp J

varies little with pressure. The bulk modulus can therefore be assumed to be

linearly dependent on the pressure

B(T,p) = Bo(T) + Bo(T)p, (2.71)

where the zero indicates values at p = ().

Rearranging and integrating this equation while applying p = S~ aceord-

ing to the quasi-harmonic approximation one obtains the so-called Murnaghan
equation of state (EOS) [77]

BV )= Byt

BoV (»;,/L’)B(SH BV
B B It 2% =N

where the pressure is given by

Bo [ (Vo) %o
p= 7}—0 [(L—‘)) - 1} . (2.73)
0

This equation has proven to be a very valuable tool in the fitting of total energy
versus volume dependencies in order to obtain the properties in question. How-
ever, for a wider pressure range one is referred to either use the Birch-Murnaghan

equation [78] or the universal Vinet equation of state [79, 80).

Furthermore, the calculation of the total energy enables the determination of
binding and cohesion energies, defined as the work per unit cell that is neces-
sary to decompose a crystal of the volume V' into its atoms under isothermal

conditions

Een== [ Vo =0V) = ["dFlro= [ dUlreo.  (27)
Vv Vv |4

I[deally, U(T = 0,Vjy) is calculated as the sum of the electronic and vibrational
part. U(T = 0,V = oo) is determined by adding up the groundstate energies for
each isolated atom in the unit cell. In general, by means of the approximations
introduced above an overestimation of the cohesion energies is very common [31],

which mainly originates in the underestimation of the atomic energies in the
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framework of LDA.

2.5.3 Determination of the crystal structure and phase

transitions

So far only stress free solids have been discussed. However. equations (2.72) and
(2.73) now also provide a tool to discuss the crystal structure under hydrostatic
pressure and enable the determination of the solid-state structure of a system
at equilibrium conditions as well as at higher pressures if phonon contributions
are neglected. It is fuirthermore possible to determine the pressure at which
transitions between the different crystal structures occur. This is realized as

follows.

For simple structures, like cubic crystals. the total energy is calculated for dif-
ferent volumes and different structures in question. The equilibrium structure of
ground-state and high-pressure phases is given by the minima of the subsequent
graphs for ' = I(V7) as indicated by (2.68). which defines the minimum volume
Vo. For those simple structures this automatically yields the lattice constant a.

since the positions of the atoms are fixed.

However, more sophisticated structures are usually characterized by the whole
set of the lattice constants a. b and ¢ and several other parameters that define
the positions of the cat- and anions within the unit cell. Usually in that case. the
equilibrium volume is determined first and subsequently, the ratios ¢/a and b/a
plus the additional ionic degrees of freedom, have to be optimized separately for
the according volume. Therefore, when using VASP it is conunon procedure to
carry out a full geometry optimization. i.e. the cell-shape as well as the internal
parameters of the respective structure’s unit cell are optimized over a range of
fixed unit-cell volumes. This is to avoid complicated calculations to evaluate the
Pulay-stress corrections. Pulay stress occurs if a volume relaxation is carried out

using a constant basis set and leads to error in the stress tensor.

To predict possible high pressure phases of the investigated solids, the energy-
volume dependency can give a first estimate employing the common tangent
method. After the calculation of the energy-volume dependencies of two dif-
ferent crystal structures, a common tangent for the two curves in question is
coustructed. Hence, the transition pressure results from the negative slope of

the tangent, since p = —dFE/dV. Furthermore, a transition of two phases is
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characterized by the concordance of the Gibbs free energy of the modifications.
However, at the low (zero) temperature limit neglecting the entropy term, this
can be simplified and the relevant thermodynamic potential is then given by the
enthalpy H = E + pV', which is known if one considers an EOS like (2.73). This
method also allows for the prediction of second order transitions, where the two
respective enthalpy versus pressure curves meet and hence the transition is in-
dicated by the crossing of the curves of the pressure derivative. Usually a phase

transition goes along with a volume reduction.



Chapter 3

Structural and computational
details

This chapter will give some explanatory notes about the group 12 chalcogenides,
mainly the description of the different crystal structures investigated. as well as

a description of the computational method used to investigate the problem.

3.1 Structures

This section introduces the crystal structures commonly found in the group 12
chalcogenides. giving some guidance and information with respect to the crys-
tallographic classification, the construction of the corresponding unit cell and
structural parameters. Those structures are usually labelled in various ways. the
most common alternatives being by either historically evolved names (diamond,
zine blende, ...), by the chemical formula of the prototype (e.g. NaCl, CsCl, ...),
by the labels in a phase diagram (a-mercury. HgSe-III. ...), by space-group sym-
metry (like Cmem, Pmmn. ...), by the Pearson notation (e.g. oP4, cF4) or even,
if available, by the Strukturbericht designation. The latter characterizes the
structure of a crystal in a semi-systematic way by using a specific combination of
letters and numbers (Al, B3, ...), at which the letter A referres to monoatomic
structures and B to diatomic crystals with an equal numbers of atoms of each
type, whereas other letters are assigned to more complicated structures. The
numbers were added depending on the historical order, in which the lattices

were investigated and the designation is therefore not always consistent.

Here a mixture of notations will be used according to the terms most commonly

11
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Figure 3.1: The unit vectors and angles of a unit cell defined in the context of a
right-handed coordinate system giving the r, y and z axes of a crystal.

used in the literature. Italics are used for pointing out the symmetry of a system,
whereas standard text is employed to correspond to the actual name of a struc-
ture. A more detailed description of the structures can be found in refs. [12], [82]
or [83].

Only the specification of the atomic positions uniquely defines a crystal struc-
ture. The atomic positions are usually referred to as so-called Wyckoff positions
and are chosen in agreement with the Bilbao Crystallographic server or the In-
ternational Tables for Crystallography [84-86]. They are given as fractional
coordinates of the lattice constants of the unit cell. The lattice parameters are
always specified as a, b and ¢ and the angles as «, (8 and « in a right-handed

coordinate system (see fig. 3.1).

Table 3.1 gives an overview about which structures were considered for the inves-
tigated compounds. In general, an indication of which crystal structure will be
preferred by one or the other compound is the ratio of volumnes of the component

atoms.

3.1.1 Cubic lattices

As one of the seven crystal systems, the cubic crystal system is very common and
the simplest structure found amongst minerals. One distinguishes three Bravais
lattices: simple (sc), face-centred (fcc) and body-centred (bec) cubic. They are

the basis for many typical structures adopted by binary compounds.
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Deno- Lattice, basis, Lattice Chalcogenides
tations space group parameter investigated
CsCl sC a ZnX, CdX, HgX,
cc 2 atoms Zn0, CdO, HgO
B2 Pm3m
NaCl fee a ZnX, CdX, HgX,
RS 2 atoms Zn0, CdO, HgO
Bl Fm3m
ZnS fee a /nX, CdX. HgX,
7B 2 atoms Zn0, CdO, HgO
B3 F13m
SC16 sc a, /nX.CdX. HgX

16 atoms v

Pa3

Wurtzite h Gr 6, ZnX, CdX, HgX,
W 4 atoms u Zn0, CdO, HgO
B4 P63me
(a-)HgS h a. c. ZnX, CdX, HgX,
2 6 atoms u, v HgO
B9 P3,21/ P3,21
[4/mmm bet a, c HgO
bet 2 atoms
A, I1/mmm
€222 bco a, b, ¢, HgSe, HgTe

14 atoms L1, Yo

(222,
Cmem beco a, b, e, ZnX, CdX, HgX

4 atoms Y1, Yo

C'mem
Montrovdite 0 a, b. e, HgO
A 8 atoms Iy, 21, To. 23
Punma Pnma
Pmmn 0 a, b.c, CdS, HgS

4 atoms =2 =)

Pmmn

Table 3.1: Structures adopted by and investigated for the group 12 chalcogenides.

Listed are different denotations such as prototype, abbreviation and Struk-
turbericht designation as well as lattice type, number of atoms in the
atomic basis, space group in Hermann-Mauguin notation, the according
lattice parameters and the according chalcogenides for which this structure
was investigated. It is X = S, Se, Te. The abbreviations sc, fcc, h, bet,
bco and o stand for simple cubic, face-centred cubic, simple hexagonal,
body-centred tetragonal, base-centred orthogonal and simple orthogonal,
respectively.
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Figure 3.2: The units cells of the cesium chloride (left) and the rocksalt (right) struc-
ture.

Cesium chloride

Cesium chloride is a common cubic structure named after its prototype CsClL
However, it is found in several other alkali halides (e.g. CsBr, Csl, RbCl, AlCo,
AgZn, BeCu, MgCe, RuAl and SrTl) even though often formec under high pres-
sure. It has not vet been found in too many group 12 chalcogenides, but is
expected to emerge at very high pressures. In general, this structure is preferred
in binary compounds, where the ions of two elements are of approximately the
sane size.

The unit cell of the CsCl structure is based on two interpenetrating simple cubic
lattices, which form a bee structure, yet with two different atomic species. The
space group is 221 or Pm3m with the atomic sites 1(a) at (0, 0, 0) and 1(b) at
(1/2,1/2,1/2). The origin is the centre of inversion. Hence, the unit cell accom-
modates two atoms (Pearson symbol ¢I’2) with a perfect eight-fold coordination

as indicated by fig. 3.2. The Strukturbericht designation is B2.

Rocksalt

Another cubic formation named after its prototype is rocksalt or NaCl structure,
which is found in CdO at ambient pressure along with many alkali halides (IXBr,
LiCl, LiF, NaBr, NaF, RbF) and various metal oxides, sulfides, selenides, and
tellurides (BaS, CaO, CeSe, MgO, NiO, SrO, YbO, ZrO, ThTe). Other com-
pounds showing this structure are AgCl, DyAs, GdN, PrBi, PuC, ScN, UC and
YN. It occurs as a high pressure phase in AIN, GaN, InN, InP, ZnO, HgO, Zn X,
CdX and HgX (X =S, Se, Te).
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Figure 3.3: The units cells of the zinc blende (left) and the wurtzite (right) structure.

The space group is 225 or Fm3m with the atoms of one species sitting at 4(a)
(0. 0. 0) and the atoms of the other species at 4(b) (1/2. 1/2. 1/2). which means
that the lattice is built from two interpenetrating fcc lattices. The structwre is
centrosymmetric with the centre of inversion at the origin and usually preferred
if the cation is slightly smaller than the anion (cation/anion radius ratio of 0.414
to 0.732).

The coordination mumber of each atom is 6. where the anions are surrounded
by cations in the fashion of the corners of an octahedron and vice versa giving
rise to the Pearson notation cF8. The Strukturbericht designation is B1. The

conventional unit cell is shown in fig. 3.2.

Zinc blende

Zinc blende is a very common structure not only amongst the group 12 chalco-
genides., but is in general the dominant structure under ambient conditions for
a variety of III-V and [I-VI semiconductors and several binary compounds (e.g.
Agl, AlAs, AIP, AlISb, BAs, BN, BP, BeS, BeSe, BeTe, CdS, CuBr, CuCl, CuF,
Cul. GaAs, GaP, GaSh, HgS, HgSe, HgTe, INAs, InP. MnS, MnSe, SiC, ZnSe,
ZnTe). It derives its name from the zinc sulfide mineral zinc blende (or spha-
lerite).

It is classified by the space group F43m or 216, hence inheriting a cubic sym-
metry with one atomic species located at the 4(a) site (0, 0, 0) and the other
one at the 4(c) site (1/4, 1/4, 1/4). The structure could therefore be described
as two interpenetrating fcc lattices, shifted by one quarter along the cubic di-

agonal. Hence, each atom is tetrahedrally coordinated with four unlike nearest
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neighbours. The unit cell as can be seen in fig. 3.3 is therefore uniquely described
by just the lattice constant a. There are 8 atoms in the unit cell leading to the
Pearson symbol cF8. The Strukturbericht designation is B3.

[f all atoms are identical, the analog is the diamond structure. It is furthermore,
the cubic analog of the wurtzite lattice, similar to the analogy between the fcc
and hep close packed structures, where the only difference is the stacking of the
atoms or dimers, respectively, which is ABCABC along the [111]-direction in the

case of zinc blende (i.e. fcc) and ABAB for wurtzite (i.e. hep).

SC16

The SC16 structure characterizes a simple cubic structure that accommodates
16 atoms in the unit cell. Hence, the Pearson notation is cP16. The space group
is a3 or 205 with the centre of inversion at (1/4, 1/4.1/4). No Strukturbericht
designation is available.

After several theoretical predictions of a SC16 high-pressure phase in GaAs, GaP,
AISbH and InAs, this structure was first observed in CuCl and CuBr [87] and later
in GaAs by McMahon et al. [88]. who established the positions of the two atomic
species both at the 8(c) site with coordinates of (u, u, v) and (v. v, v), respec-
tively. In the case of GaAs it is u ~ 0.15 and v ~ (0.65.

Interestingly, this structure packs more efficiently than diamond making it prefer-
able at higher pressures. This, however, comes with a slight distortion from the
diamond bond length. leading to an almost tetragonally bonded structure with
a bond type A to the first-nearest neighbour and a bond type B for the three
second-nearest neighbours. Yet, it causes an optimized tetrahedral angle com-
pared to the diamond structure, which is different for the two atomic species if
w—uv#0.5[89].

Furthermore, the structure is linked to the BC8 structure (body-centred cubic
with 8 atoms in the unit cell) found in germanium and silicon by being its binary
analog. This means the two structures are related to each other in the same way

that zinc blende is related to the diamond structure.

3.1.2 Hexagonal structures

Another one of the seven crystal systems is the hexagonal lattice, but there is
actually only one Bravais lattice (hP). It it specified by the lattice constants a

and ¢, where the angle enclosed by the two in-plane lattice vectors is 60°. Several
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elements and compounds crystallize in this structure with graphite as one of the
more prominent examples.

Furthermore. the hexagonal close-packed structure should be mentioned, since
at least 30 elements are known to crystallize in this formation. It is based on
the simple hexagonal Bravais lattice with the positions of the atoms given by
(1/3.2/3,1/4) and (2/3.1/3, 3/4) both at a (2¢) site. This can also be described
by two simple hexagonal lattices shifted by a; /3 + ay/3 + a3/2. hence achieving
the highest space filling of n = V,/V, = 0.74. where V, is the volume of the

atoms in the unit cell with the volume V.

Wurtzite

The wurtzite structure is named after the zinc iron sulfide mineral (Zn.Fe)S and
is adopted by several binary compounds like Agl. InN, ZnO. ZnS, CdS, CdSe.
a-SiC. GaN and AIN at ambient conditions. For other semiconductors. where
the wurtzite structure is not the most stable phase it might be preferred in the
nano-crystal forms.

It is a hexagonal lattice with the space group PG3mc or 186 and is built up from
two interpenetrating hep lattices for each atomic species with the atoms located
at the 2(b) site at (1/3. 2/3, 0) and the 2(b) site at (1/3, 2/3. u). for the accord-
ing atomic species. Ideally u = 3/8. which is the case if a ¢/a ratio equivalent to
\/8/73 = 1.63 is reached, characterizing an ‘ideal” wwrtzite structure. Note that
the parameter u for the first atomic species is arbitrarily set to zero. which fixes
the actually arbitrary origin along z.

As mentioned earlier, wurtzite is the hexagonal analog to the zinc blende struc-
ture, where those two structures are related in the same way as is the hep lattice
to the fce. This is expressed in the stacking of the binears: a ABCABC-layering
is adopted along the (111)-axis for zinc blende, whereas in wurtzite a ABAB-
stacking is achieved. Given this structural similarity, it is to be expected that
for all group 12 chalcogenides the energy as well as the unit-cell volume differ-
ence between the two structures is rather small, which should induce very similar
properties, especially regarding the cohesive energy.

In the wurtzite structure each atom is tetralhedrally coordinated in a unit cell that
includes four atoms (Pearson symbol hP4) as can be seen in fig. 3.3. The Struk-
turbericht designation is B4. It is furthermore a non-centrosymmetric structure.
This lack of inversion symmetry generally implies properties such as piezoelec-

tricity and pyroelectricity.
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If the two atomic species are the same, the hexagonal diamond structure (so-

called lonsdaleite) is formed.

3.1.3 Trigonal structures
Cinnabar

The cinnabar structure is named after the naturally occurring mineral of HgS.
Under ambient conditions it is furthermore found in HgO as a metastable phase
and in HgSe, HgTe, CdTe, ZnTe and GaAs as a high-pressure phase.

The structure is trigonal and non-centrosymmetric with the space group /°3,21
or 152 as first found by Auvray et al. in HgS [90]. However, a description of
the structures is also possible employing the enantiomorphic space group /23,21
(154), which is usually utilized, since one cannot distinguish between the enan-
tiomorphic structures using powder data. Furthermore, a hexagonal unit cell can
be used to describe the structure. If the latter space group is used, the atoms
are positioned at the 3(a) site at (u, 0, 1/3) and the 3(b) site at (v, 0, 5/6), for
the two species respectively. The unit cell can be viewed in fig. 3.4, showing six
atoms, which gives the Pearson symbol hPG. The Strukturbericht designation is
B9.

Comparing the illustrations (a), (¢) and (e) in fig. 3.5, it becomes obvious that
cinnabar is merely a distortion of the rocksalt structure and therefore a sub-
group of this structure. Both formations are identical if ¢/a = v = 2.449 and
tm=-t-= 2.

How strong the distortion from the rocksalt structure is, can be estimated by
the change in the coordination number, where the transition from a six-fold co-
ordination to a 24+4 coordination means that the two nearest neighbours in the
cinnabar structure are much closer than the next four nearest neighbours. For
instance for HgS, where u(Hg) = 0.7199 and v(S) = 0.4889 [90], this means a
nearest-neighbour distance of 2.368 A, and second nearest-neighbour distances
of 3.094 and 3.237 A.

As a consequence, the two closest nearest neighbours lead to a build-up of S-Hg-
S spiral chains running parallel to the z-axis (see fig. 1.3), in which the S-Hg-S
groups are linear. In the cinnabar structure the interactions of atoms within a
chain are usually much stronger than those between the chains. Therefore, they
are thought to be of Van der Waals character in trigonal HgSe and HgTe [91].

However, the coordination number is strongly dependent on the parameters u
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Figure 3.4: The unit cell of the cinnabar structure.

and v. Except for the case of HgO and HgS they are quite similar (and a little
less than 2/3), inducing a 24242 coordination in HgSe and a 4+2 coordination
in HgTe and CdTe [92]. The intra-chain distances then become comparable to
the inter-chain distances. Looking at e.g. ZnTe u and v are almost the same
(around 0.5) and an approximately four-fold coordination is reached. Character-
izing those chalcogenide structures by the prototype cinnabar is often ¢uestioned
due to the strong structural deviation.

Still, HgO and HgS have a true 244 coordination meaning two close bond dis-
tance neighbours within the chain and 4 neighbours in adjacent chains. The

transition in coordination from cinnabar to rocksalt can be viewed in fig. 3.5 [91].

3.1.4 Orthorhombic structures
C222,

The (222, structure belonging to the space group indicated by its name (al-
ternatively space group 20) is a non-centrosymmetric structure appearing as an
intermediate phase between zinc blende and cinnabar in HgSe and HgTe.

The atoms are positioned at the 4(a) and 4(b) sites at (x, 0, 0) and (0, y, 1/4),
respectively. This means there are 8 atoms in the unit cell, hence the Pearson
symbol oP8. A Strukturbericht designation does not exist.

The structure is regarded as an orthorhombic distortion of the zinc blende forma-
tion. The two structures are identical if a = b = cand x = 0.25 = y. In HgSe and
HgTe the distortion is minimal, therefore maintaining the fourfold coordination

of the atoms. However, the bond angles are distorted considerably.
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Figure 3.5: The structural transition of the group 12 chalcogenides starting from a
244 coordination in HgO and HgS ((a) and (b)), changing to a 4+2
coordination in e.g. CdTe ((c¢) and (d)) towards the rocksalt structure
of HgS with its typical sixfold coordination ((e) and (f)). The pictures
(a), (c) and (e) show the plane perpendicular to the c-axis, while (b),
(d) and (f) are views taken parallel to the c-axis. Dark atoms and open
circlesindicate the transition metals and chalcogenides, respectively. The
z-coordinate for each atom is represented by the nwumbers next to the
atoms. The picture is taken from ref. [91].

Cmecem

The Cmem structure is named after its space group and found in various binary
structures, such as ZnSe, ZnTe, CdS, CdSe, CdTe, HgSe, HgTe, AISh, GaP,

GaAs, InP and InAs. The space group number is 63 with the Pearson notation
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Figure 3.6: The unit cell of the montrovdite structure.

o(C8. Here. the atoms in the units cell are both sitting at the 4(c) sites at
(0. y1. 1/4) and (0. y,. 1/4). respectively.

The structure is an orthorhombic distortion of the NaCl structure and identical
ifa=0=c y = 3/4and y» = 1/4. This distortion is characterized by a
displacement along +y leading to w-y planes different from rocksalt. A further
distortion however appears if y; —y» # 0.5. which can be seen in the appearance
of zigzag chains along the r-axis. meaning the shortest cation-cation distance is
either less or more than the shortest anion-anion distance if y; — y» < 0.5 or
> ().5. respectively.

Accordingly. the coordination number strongly depends on the values of the
lattice parameters as well as the coordinates y; and y,. A 5+ 3 coordination can
be observed if y; — y» < 0.5, like in ZnTe and CdTe, although it hecomes less

pronounced in HgTe.

Pnma

Pnma is an orthorhombic structure with the space group 62 or Pnma. An
example is the Montroydite phase of HgO, where both the Hg and O atoms can
be found at the 4(c) site at (r, 1/4, z). This means the structural degrees of
freedom are a, b, ¢, x(Hg), z2(Hg), £(O) and 2(0). The unit cell can be viewed
in fig. 3.6, which shows a total of 8 atoms in the unit cell.

For HgO, where x(Hg) = 0.115, 2(Hg) = 0.245, x(0O) = 0.36 and 2(O) = 0.58,
this results in a built-up of the crystal from planar -O-Hg-O-Hg- zigzag chains
running parallel to the xr-axis in the ac-plane showing a twofold coordination.
The O-Hg-O group is linear, whereas the Hg-O-Hg group is bent with an angle
of 108.8 © and a Hg-O bond distance of 2.028 A. For the full structure see fig. 1.2.
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The Pearson symbol is oP8.

Pmmn

Pmmn is an orthorhombic structure named after its space group (alternatively
number 59). The atoms are sitting at the 2(b) and 2(a) sites at (0, 1/2, z;) and
(0, 0, z3), respectively.

It can be viewed as an orthorhombic distortion of the rocksalt structure, Both
structures are identical if @ = ¢ = b/v/2 and the atomic positions are (0, 1/2,1/4)
and (0, 0, 1/4), respectively. A centre of inversion is found at (1/4, 1/4, 0) and

the Pearson symbol is oP4.

3.1.5 Tetragonal structures
[4/mmm

The I4/mmm structure has the space group 139 with the Hg and O atoms being
at the 2(a) and 2(b) at (0, 0, 0) and (0, 0, 1/2). respectively. It has a body-
centred unit cell, hence the Pearson symbol is t12 and the Strukturbericht symbol
is A,.

This structure can be viewed as a rather small distortion of the rocksalt structure,
where the crystal is compressed along the z-axis. The two are identical if ¢/a =
V2 = 1.414. For a picture of the unit cell refer to the picture on the right-hand

side of fig. 3.2, but slightly shortened along the z-axis.

3.2 Computational detalils

Generally, all calculations in the course of this thesis were carried out using den-
sity functional theory within a periodic boundary framework as implemented in
the Vienna Ab-initio Simulation Package VASP [70).

Here, the electron-electron interaction is treated within the generalized gradi-
ent approach (GGA) [58] for the exchange-correlation energy according to the
parametrization by Perdew and Wang (PW91) [93] and a plane wave basis set
i1s employed as explained in chapter 2.4.1. Furthermore, the atomic core region
is described by meaus of the projector augmented-wave (PAW) method [75, 76],

which allows to reduce the number of plane waves per atom for transition metals
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as well as first row elements to a minimum. Here only the outermost (n-1) d- plus
n s-electrons are used in the valence space. The integration over the Brillouin
zone was carried out by summing over a uniform A-point mesh including the
I'-point, where the number of A-points was chosen to obtain a converged total
energy.

Relativistic effects were allowed by including them within the pseudopotential
approximation, which only accounts for scalar-relativistic (mass-velocity) contri-
butions. Yet. comparable nomrelativistic calculations were only carried out for
the mercury chalcogenides. This is justified as the relativistic impact on the zinc
as well as cadmium chalcogenides is much smaller and therefore negligible within
the accuracy of the density functional treatment chosen here.

Even though the study at hand discusses the relativistic influences on the mer-
cury chalcogenides only, both structural and electronic properties were calculated
for the zinc and cadmium chalcogenides as well, which primarily enables a di-
rect comparison of the nonrelativistically treated mercury chalcogenides to those
compounds. It furthermore has the positive side effect of providing a tool to test
the quality of the computational specifications used, by comparing the results to

previously published work.

3.2.1 Cutoff energy and k-point mesh

In order to obtain reliable results, their convergence with respect to the num-
ber of plane waves as well as the size of the A-point mesh needs to be assured
prior to the actual calculations (see also chapter 2.4.1). Tests were carried out
for every counsidered crystal structure of each chalcogenide system both at the
experimental equilibrium lattice constant and at a volume expected to be well
below the transition into the next phase. If no experimental data was available
short benchmarking calculations were performed beforehand. It was aimed to
keep the deviation in the total energy with respect to the tested parameters be-
low 1 meV.

In general, the plane-wave expansion could be restricted to a maximum kinetic
energy of 450 eV, except for the relativistic HgO montroydite structure where a
085 eV cutoff was necessary. Even if the required energy was below those values,
it was increased to 450 eV in order to provide for optimum comparability.

Even more critical is the number of A-points necessary for a calculation, since the
integration over the Brillouin zone is substituted by a summation over a uniform

k-point mesh. The errors due to this problem are not transferable, meaning the
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Transition metals  Zn Cd Hg  Hg (nownrel.)

E (eV) 0.002  0.005 -0.014 0.013
Chalcogenides 0) S Se Te
E (eV) -1.748  -0.928 -0.773 -0.641

Table 3.2: Atowmic total energies ineV. The values for the chalcogenides were calcu-
lated including spin polarization.

same A-point mesh leads to completely different errors for different investigated
structures. Hence, several bulk calculations were executed using the previously
determined plane wave cutoff, to check for the total energy convergence with

respect to the dimension of the needed k-point mesh.

3.2.2 Ground-state properties and transition pressures

To obtain the equilibrium crystal properties a full geometry optimization was
carried out for different crystal structures of the group 12 chalcogenides allowing
the program VASP to optimize the positions of the ions by minimizing the forces
on those ions as mentioned in chapter 2.5.2. Nlorve specifically. the cell shape
as well as the internal Wyckoff parameters of the respective crystal structures
were allowed to relax while the cell volume was kept constant, hence calculating
the total energy for different cell volumes. This method allows for independent
optimization of the lattice parameters, where more than one structural variable
characterizes the structure of the according polymorph.

The energy-volume relationships generated by those means, were employed to de-
termine the structural properties by fitting them to the Murnaghan EOS. From
this, one immediately obtains the pressure as p = —dFE/dV, the equilibrium vol-
ume Vp, the total energy per cation-anion pair Fy, the bulk modulus B and the
pressure coefficient B’ (see also chapter 2.5.2).

Furthermore, from the total energy per cation-anion pair the cohesive energy was
calculated by subtracting the respective atomic total energies. This means that
experimental data for comparison is identical to the so-called heat of vapouriza-
tion or atomization energy. The atomic total energies were obtained by carrying
out single atom calculations for the according atoms in a well-defined box size
using a plane-wave cutoff equivalent to the one used in the bulk calculations.
Usually, a reference state inheriting spherical symmetry is chosen to create the
pseudopotential for the atoms, which is subsequently set to zero energy. This

works well for most atoms in their ground state. However, in contrast to the tran-
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sition metals, the ground state for the chalcogenides is spin polarized according
to Hund’s law. Therefore, spin polarization was included in the treatment of O,
S, Se and Te. Table 3.2 shows the respective energies for the atoms.

Unless otherwise stated, the transition pressure was estimated for the low tem-
perature limit only, i.e. instead of the Gibbs free energy G = U + pV" = TS
defining the crystal stability for a given temperature and pressure the enthalpy
H = FE + pV is used, where U(V) = E'(V"). The zero-point energy is neglected.
The transition pressure then is received from the enthalpy-vs-pressure plot as

the crossing of two curves of different crystal structures (see also chapter 2.5.3).

3.2.3 Determination of the electronic structure

Figure 3.7: The Brillouin zone of the fcc lattice along with important k-points and
paths within the Brillouin zone [84, 85].

Concerning the electronic structure calculations of the various crystals investi-
gated, the corresponding band structures are derived directly from the eigen-
values of the Kohn-Sham equation [51]. Due to the density functional being
chosen within the single-particle picture, this method implies an underestima-
tion of the band gap and interband-transmission energies due to the neglect of
excitations [94, 95]. However, it usually leads to surprisingly reasonable results

for the dispersion and orbital character of the valence and conduction bands.
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Figure 3.8: The Brillouin zone of the hexagonal primitive lattice along with impor-
tant k-points and paths within the Brillouin zone [34, 85] .

Figure 3.9: The Brillouin zone of the orthorhombic side-face centred lattice along
with important k-points and paths within the Brillouin zone [84, 85] .
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Hence, this method also allows for the calculation of the electronic density of
states (DOS).

The path for the calculations of the band structure was chosen according to the
Bilbao Crystallographic Server [84, 85]. For the picture of the Brillouin zone
along with the respective k-vectors see fig. 3.7 for the fce structures (rocksalt
and zinc blende), fig. 3.8 for all primitive hexagonal lattices including cinnabar
(due to the chosen hexagonal description) and fig. 3.9 for the orthorhombic side-
face centred montroydite structure.

To calculate the electronic DOS, the tetrahedron method [96] is employed to in-
tegrate over the Brillouin zone while increasing the A-point mesh to 25 x 25 x 25
for the fce structures, 22 x 22 x 9 for the primitive hexagonal lattices and to
15 x 15 x 23 for the montrovdite structure.

Note that the respective computations were only carried out for the ambient
pressure structures of each group 12 chalcogenide. Furthermore, it is mentioned
that the electronic gap depends considerably on the lattice constant. Hence, this
limits the accuracy of the calculated gap energies and makes them very much

dependent on the accuracy of the calculated lattice constant.
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Chapter 4

The group 12 oxides

4.1 Occurring crystal structures

4.1.1 Zinc oxide

At room conditions zinc oxide exists in a wurtzite-type structuwre (a = 3.2495 A
and ¢ = 5.2069 A [12]) and can usually be found as a white powder. The natu-
rally occurring mineral ranges in colour depending on defects and is called zincite.
Bates et al. first described a transition upon appliance of pressure (p; = 10 GPa)
into a site-ordered rocksalt structure and furthermore established that this phase
can be stable at ambient conditions as well (by quenching from the transition
pressure) [97]. Others however. report the transition to be fully reversible [98]
despite a (uite large hysteresis [99, 100]. which made this transition very well in-
vestigated [99-106]. The transition is accompanied by a volume change (Al7/1g)
of 16.6 % [102] and the new phase has a lattice constant of a = 4.280 A [105].
Several theoretical studies confirm the properties of the ZnO phases and transi-
tion pressures are usually in good agreement. Qteish predicted RS-ZnO to he a
wide band gap indirect semiconductor [107]. Another theoretical study by Azzaz
et al., who extended their investigation to the cinnabar, Cmecm, [(-tin, NiAs,
Immm and Imm?2 structures as well, proved none of them to be stable compared
to the wurtzite and rocksalt structure [1038].

In chapters 4.2.1 and 4.3.1 the results for the zinc oxide equilibrium and high-
pressure modifications are listed. There, the tables 4.1 and 4.4 will include the
structural parameters and transition pressures determined by previous investiga-

tors (experimentally as well as theoretically) of the various structures as discussed

59
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here as well.

4.1.2 Cadmium oxide

Cadmium oxide under ambient conditions adopts the rocksalt structure with a
lattice constant of @ = 4.6942 A [12]. It occurs naturally, yet rarely, as the
mineral monteponite, which appears in the form of brown to red crystals.

For a long time, very little work had been done investigating the high-pressure
behaviour of cadmium oxide. Even fron a theoretical point of view only few data
is available. Here the work of Majewski and Vogl should be mentioned, predicting
a transition into the cesium chloride structure at 118.3 GPa [109]. Finally in
2004 Liu et al. confirmed the stability of the rocksalt phase experimentally up to
90 GPa, followed by a transition into the cesium chloride structure [110]. This
is an excellent example of the importance of theoretical calculations stimulating
experimental investigations.

Furthermore, the structures NiAs, Cmcm, cinnabar were ruled out as stable
phases for CdO in the course of a comprehensive FP-LAPW DFT-GGA study
by Guerrero-Moreno et al. [111].

Later (see chapters 4.2.2 and 4.3.2), the structural parameters and transition
pressures of the cadmium oxide polymorphs obtained in the course of this thesis
are summarized in tables 4.2 and 4.5. Those will also list the results of previous

theoretical as well as experimental work for comparison.

4.1.3 Mercury oxide

At ambient pressure mercury oxide adopts two different structures. The low-
temperature form has an orthorhombic structure with the space group Pnma,
referred to as the montroydite phase after its naturally (but rarely) occurring
mineral, which is known to have a yellow to reddish brown colour, depending on
the grain size of the crystals. On the other hand there is the cinnabar form of
HgO, stable at temperatures above 220°C' and orange in colour.

Both forms are described by Aurivillus et al., who found the structural param-
eters of the montroydite phase to be a = 6.612 A, b = 5.520 A and ¢ = 3.521 A
with x(Hg) = 0.115, 2(Hg) = 0.245, £(O) = 0.36 and 2(O) = 0.58 [5]. The

lattice constants of the cinnabar structure are a = 3.577 A and ¢ = 8.681 A,
where u(Hg) = 0.745 and v(O) = 0.46, accordingly [6].
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[f the two structures are compared, the montroydite crystal consists of planar
0O-Hg-O-Hg zigzag chains lying in the a-c-plane and running parallel to the -
axis, while the cinnabar form consists of spiral chains running parallel to the
z-axis. In both cases the O-Hg-O group is linear. but the Hg-O-Hg group is
bent with the angle being 108.8° and 107.9° for montroydite and cinnabar, re-
spectively. The Hg-O bond is 2.028 A for the Pnma phase and 2.030 A for the
cinnabar form.

According to studies based on measuring the resistivity the cinnabar phase trans-
forms into a metallic state at 10 GPa, possibly to the NaCl structure [112].
The orthorhombic montroydite form however, is first reported to transform into
a tetragonal phase under compression of up to 20 GPa [10]. Zhou et al. support
this observation in a combined Raman/ADX study (p; = 14 GPa) and reported
the structure to be site-ordered with the space group I4/mmm and the lattice
constants a = 3.370 A and ¢ = 1.651 A at 19.3 GPa [11] (for atomic position
see chapter 3.1). Despite the structure being incompatible with their Raman
data. due to no other better suitable option I4/mmm was regarded as the suit-
able description of the average structure. which was confirmed by Nelmes et al.
(pr = 11.6 GPa) later on [12].

Further pressure increase reveals vet another transition at 26-28 GPa (Raman
and ADX measurements, respectively) to a metallic rocksalt phase [11, 12].
Tables 4.3 and 4.6 in chapters 4.2.3 and 4.3.3 will conclude the results for the
structural parameters and transition pressures of the different mercury oxides
phases. A summary of the parameters obtained in preceding experimental and

theoretical investigations as discussed above will be included as well.

4.2 Equilibrium structures

4.2.1 Zinc oxide

Fig. 4.1 concludes the calculated energy-volume curves for the different crystal
structures of ZnO, which confirm that zince oxide at ambient conditions crystal-
lizes in a wurtzite structure (Fe, = 7.294 eV /pair). With a ground-state volume
of 24.70 A3/pair the two lattice constants are determined to be a = 3.279 A and
c = 5.304 A, and the internal Wyckoff parameter is u = 0.3785. Those struc-
tural parameters are in very good agreement with experimental (a = 3.258 A,

¢ = 5220 A and u = 0.382 [117]) and other published theoretical work (a =
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Property This work Other theoretical Experiments
Wurtzite

a 3.279 3.2837, 3.292¢, 3.198¢ 3.258¢, 3.250/
c 5.304 5.3092, 5.292¢, 5.167¢ 5.220¢, 5.204/
c/a 1.618 1.6177, 1.608¢, 1.616¢ 1.602¢, 1.601/
u 0.3785 0.37867, 0.3802¢, 0.379¢ 0.382¢

Vo 24.70 24.787, 24.83¢, 22.88¢ 23.99¢ 23.80/
Bg 131.1 131533578 W5 181¢, 183/
B’ 4.4 129 3.8¢ 4.57 de 4f
Foeon 7.294 7.207, 7.69¢ 7.58p

pe to RS 13.31 11.87,13.39, 6.6 (9.3)" 8.7/, 10%, 9.8/
Zinc blende

a 4.622 4.627°, 1.633¢, 4.504¢ -

Vo 24.68 24.77%, 24.86°¢, 22.844 -

By 130.9 131.67, 135.3¢, 160.8¢ -

B 1.6 BeadmanremouE’ -

Eeon 7.282 7.197, 7.08¢ -

PAW-GGA from ref. [113], ®from ref. [114], “from ref. [115], “from ref. [116],
¢from ref. [117], ffrom ref. [102], 9from ref. [107], "LDA (GGA) from ref. [104],
from ref. [97], /from ref. [99, 100)

Table 4.1: Ground-state properties of the equilibrium phases of ZnQ. Presented are
the lattice constants a and ¢ (A), internal parameter u, axial ratio c/a,
ground-state volume Vy (A3/pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E,, (eV/pair) and the
transition pressure p; (GPa) where applicable.

3.283 A, ¢ = 5309 A, u = 0.3786 [113]). For further properties see also ta-
ble 4.1. The bulk modulus obtained amounts to 131.1 GPa (experimental value:
131 GPa [117]), whereas its pressure derivative is 4.4. The deviations in the bulk
modulus are recorded in other theoretical investigations as well [113], and are
most likely a finite temperature effect.

The zinc blende structure of ZnO was investigated as well, and we obtain a
lattice constant of a = 4.622 A (Vo = 24.68 A%/pair) and a cohesive energy
of E,n = 7.282 eV/pair. Hence, this crystal arrangement is very close to the
wurtzite structure [113]. Yet, the energy difference of 12 meV /pair is big enough
to confirm that the zinc blende structure is not accessible as an equilibrium phase.
The bulk modulus is calculated to be 130.9 GPa and B’ equals 4.6. Again, those
results are in excellent agreement with previous theoretical studies (table 4.1),

but there is no experimental data available.
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Figure 4.1: The total energy versus volume per cation-anion pair for different crystal
structures of ZnO (upper panel) and CdO (lower panel).
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Property This work Other theoretical Experiments
Rocksalt

a 4.779 4.779%, 4.770° 4.6969, 4.694¢
Vo 27.29 27.29%, 27.13¢ 25.89 25.86¢
2l 130.1 130.57, 130¢ 1487,

i 4.0 BB il 8 4d

Econ 6.091 6.00%, 5.30°¢ 6.40°

Py o GG 84.24 857, 894 90/
Wurtzite

a 3.641 3.678%, 3.660° -

& 5.946 5.8257, 5.856¢ -

c/a 1.633 1.584, 1.600¢° -

u 0.3767 0.38497, 0.3500¢ -

Vo 34.14 34.127, 33.97¢ -

&N 93.9 92.7%, 86 -

B 4.1 4.77, 4.5¢ -

B 6.067 5.97%, 5.30° -

Zinc blende

a 5.149 5.1487, 5.150° -

Vo 34.13 34.117, 34.15¢ -

By 94.3 93.97, 82¢ -

B’ 4.4 5.0, 3.0¢ -

Eral, 6.046 5.96%, 5.18° -

IPAW-GGA from ref. [113], ®from ref. [114], “from ref. [111], “from ref. [118],
“from ref. [12], /from ref. [110]

Table 4.2: Ground-state properties of the equilibrium phases of CdO. Presented are
the lattice constants a and ¢ (A), internal parameter u, axial ratio c/a,
ground-state volume Vy (A3/pair), bulk modulus By (GPa), its pressure
derivative B’ as well as the cohesive energy E,,, (eV/pair) and the tran-
sition pressure p; (GPa) where applicable.

4.2.2 Cadmium oxide

The results presented here, correctly predict the equilibrium structure of C'dS to
be rocksalt with a cohesion energy of 6.091 eV, as can be derived from fig. 4.1.
A lattice parameter of a = 4.779 A is obtained along with a ground-state volume
of 27.20 A3 /pair in good agreement with experimental values (a = 4.696 A [113]).
Other theoretical calculations yield very similar results (@ = 4.779 A [113]).
The determined cohesion energy, the bulk modulus and its pressure derivative
(Bo = 130.1 GPa, B" = 4.0) also compare rather well to previously published
data. For details see table 4.2.

Furthermore, the investigation of the energy-volume curves for the wurtzite and
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zinc blende phase were included in the calculations. The property values are
listed in table 4.2 as well and are in excellent agreement with other theoretical
studies. Again, the cohesive energies of both phases are fairly alike with a dif-
ference of 21 meV /pair, indicating their structural similarity.

The coliesive energies are also rather similar to the one obtained for rocksalt.
The difference in energy is 25 meV/pair. However. from the energy differences
obtained between for instance the wwrtzite and zinc blende structure concern-
ing the discussion of the group 12 chalcogenides in general and comparing it to
what is experimentally observed. it is safe to say that the energy difference is
large enougl to rule out the zinc blende as well as the wurtzite structure as an

equilibrium phase in CdO.

4.2.3 Mercury oxide

As explained above HgO exists under normal conditions in a so-called montroy-
dite as well as a cinnabar form. This is confirmed by figure 1.2, which shows two
very close lying energy curves for the two modifications with cohesive energies of
4.036 and 4.029 eV /pair. respectively. The energy difference is verv small with
only 7 meV/pair.

For the montrovdite phase lattice constants of a= 6.747 A, b= 5.779 A, and =
3.697 A are obtained with the parameters x(Hg)= 0.112, z(Hg)= 0.243, x(O)=
0.360. z(O)= 0.571 for the orthorhombic structure. This compares very well
to experiments, where the following structural parameters are determined: a=
6.612 A, b= 5.520 A. c= 3.521 A. Wyckoff positions r(Hg)= 0.112, z(Hg)= 0.243.
2(0)= 0.358 and z(O)= 0.587 [10]. It is also in good agreement with another
theoretical PBE study attaining lattice constants of a= 6.74 A, b= 5.68 A and
c=3.68 A [7]. However, in this work no other parameters and properties are given.
For the bulk modulus and its pressure derivative the values By = 20.7 GPa and
B’ = 9.7 are obtained, compared to 13y = 44 GPa and B’ = 7 in an experimental
reference [11]. However, in the experiment the same Murnaghan fit was used for
the montroydite modification as well as for the high-pressure phase.

Turning now to the cinnabar phase, the calculations presented here, find the lat-
tice parameters a= 3.745 A and c= 8.968 A along with the Wyckoff parameters
u(Hg)= 0.745, and v(O)= 0.414, all in reasonable agreement with the experi-
mental results [6].

In general, the discrepancies in the values are acceptable considering the very

shallow potential curve (see fig. 4.2) expressed by the very small bulk moduli.
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Property This work Other theoretical Experiments
Montroydite

a 6.747 6.74¢ 6.612°
b 5.784 5.068° 5.520°
¢ 3.693 3.68° 3.521°
b/a 0.857 0.843¢ 0.835°
c/a 0.547 0.546¢ 0.533°
(Hg) 0.1120 0.112°
z(Hg) 0.2430 0.243
2(0) 0.3595 0.358"
2(0) 0.5707 0.587
Vo 36.04 R 50 =t
By 20.7 44¢
B 9.7 7°
B, 4.036

pe to I4/mmnn 25 10°. 14¢, 11.64
Cinnabar

a 3.745 3.577¢
c 8.968 8.681¢
c/a 2.395 2.427¢
u(Hg) 0.7450 0.745¢
v(0) 0.4141 0.460¢
1o 36.39 32, Oize
By 20.5

B’ 5.9

B 14.029

Zinc blende

a 5.309 5.437
Lo 37.41 10.03/
By 82.1

B’ 5.5

[ o 3.825

®PAW-PBE from ref. [7], ®from ref. [10], from vef. [11], from ref. [12],
“from ref. [6], /from ref. [119]

Table 4.3: Ground-state properties of the equilibrium phases of HgO. Presented
are the lattice constants a, b and ¢ (A), respective internal parameters,
ground-state volume Vg (A3/pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E.,, (eV/pair) and the
transition pressure p; (GPa) where applicable.

Nevertheless, we accurately predict these two crystal structures as low pressure
modifications. Further details can be viewed in table 4.3.

Mercury oxide in a zinc blende structure was also calculated in the course of this



68 CHAPTER 4. THE GROUP 12 OXIDES

study. The lattice constant obtained is a = 5.309 A along with By = 82.1 GPa
and B’ = 5.5. Proposed as a metastable sphalerite phase in shock-compression
experiments on HgO by Ovsyannikova et al. (a = 543 A) [119], the calculated
bond distances are overestimated. This is most likely due to the difficulties in
examining metastable phases in general, or to the density functional approxima-
tion used. Compared to the cinnabar and montroydite form its colesive energy

of 3.825 eV /pair is too high to find this modification as an equilibrium phase.

4.3 High-pressure phases

4.3.1 Zinc oxide

Property This work Other theoretical Experiments
Rocksalt

a 4.334 (4.225) ol J8e1cs, oL 355 B2 716 O™ a0 §°
Vo 20.35 (18.85) 20859, 20851° 19.48¢, 18.677, 19.53¢
Bo 168.5 167.82, 172.7° 228¢, 194¢

3 5.5 580 87 4c, 99, 4.8¢
Biezg 6.997 6.919, 7.46°

i o' CG 261.25 2617, 256°, 265/

Cesium chloride

a 2.690 (2.350) 2.6907, 2.705°

Vo 19.46 (12.98) 19.462, 19.79°

1o 161.9 162.4%, 156.9°

B’ 1.6 4.79 3.8

J 5.838 5.763; 6.83°

APAW-GGA from ref. [113], *from ref. [115], “from ref. [102], 9at 10 GPa from ref.
[105], € from ref. [103), /FP-LAPW LDA from ref. [108)].

Table 4.4: Ground-state properties of the high-pressure phases of ZnO. Presented
are the lattice constant a (A), ground-state volume V; (A3/pair), bulk
modulus By (GPa) and its pressure derivative B’ as well as the cohesive
energy E.,, (eV/pair) and the transition pressure p; (GPa) where appli-
cable. Values in brackets indicate higher pressure.

Looking at the energy-volume relationship shown in fig. 4.1 it already becomes
obvious that the equilibrium wurtzite plhase undergoes a transition to the cubic
rocksalt structure with increasing pressure. The enthalpy-pressure dependencies
derived from those results confirm this and predict the pressure for this transition

to be 13.31 GPa, which is in reasonable agreement with previous theoretically
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and experimentally obtained transition pressures (see table 4.1).

The structural ground-state properties for this high-pressure modification are:
a = 4334 A, By = 168.5 GPa and B’ = 5.5. whereas the coliesive energy is
6.997 eV in accordance with other theoretical work (e.g. a = 4.334 A, By =
167.8 GPa, B' = 5.3, E ., = 6.91 eV using the PW9I functional as well [113]).
The deviations from experimental values are slightly higher, see table 4.4. How-
ever, if the lattice constant is determined at 15.98 GPa (a = 4.225 A). the agree-
ment improves. Furthermore. the pressure derivative B’ is not in agreement
with the findings by Gerward and Staun Olsen, but the unusually high value
of 9 reported by them for the wurtzite and rocksalt polymorphs'. was partially
blamed on experimental difficulties in measuring the pressure in the transition
region [105].

At 261.25 GPa, the results presented lere predict another pressure-induced tran-
sition, which is in excellent concordance with earlier published calculations [103,
113].  The crystallographic arrangement changes towards the cesium chloride
structure with a lattice constant of 2.690 A at zero pressure and 2.235 A at
162.67 GPa. This and other properties again compare very well to other theoret-
ical work. For details see table 4.4. However. due to the extremely high pressure

predicted no experimental data is available vet.

4.3.2 Cadmium oxide

Property This work Other theoretical Experiments
Cesium chloride

a 2.938 (2.650) & e 2.86°

w 25.37 (18.61) 25 e 23.390
By 130.5 114 169°

B 4.4 4.66° 4.66°
B 5.291 4.47°

?GGA from ref. [111], bfrom ref. [110].

Table 4.5: Ground-state properties of the high-pressure phases of CdO. Presented
are the lattice constant a (A), ground-state volume Vy (A3 /pair), bulk
modulus By (GPa) and its pressure derivative B’ as well as the cohesive
energy E.,, (eV/pair). Values in brackets indicate higher pressure.

With increasing pressure CdO undergoes a phase transition from the equilibrium

rocksalt phase to the cesium chloride structure, see fig. 4.1. Concluded from

LA typical value for materials like ZnO is 4.
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Property This work Experiments
I4/mmm

a 3.517 3.370°
¢ 4.854 4.651¢
c/a 1.380 1.380
V 30.02 32 157
By 110.6 44
3 5.9 7
o 3.754

Rocksalt

a 4.937

V 30.08

By 112.3

B 3.8

FEeon 3.742

Cesium chloride

a 3.028

V 27.77

13y 120.8

B 5.3

e 3.116

Raman/ADX from ref. [11] at 19.3 GPa.

Table 4.6: Ground-state properties of the high-pressure phases of HgO. Presented
are the lattice constants a and ¢ (A), axial ratio ¢/a, bulk modulus By
(GPa) and its pressure derivative B’ together with the transition pressure
p; (GPa). No other theoretical data is available.

the enthalpy versus pressure curves, tle transition occurs at 84.24 GPa, which
supports the experiment carried out by Liu et al. [110], who obtained 90 GPa.

The structural parameters (a = 2.938 A, By = 130.5 GPa, B’ = 4.4) as well as
the transition pressure are in excellent agreement with a theoretical investigation
by Guerrero-Moreno et al. [111], but show the general underestimation of the
bulk modulus compared to the experiment. At a higher pressure of 83.70 GPa
the lattice constant is a = 2.650 A. For a listing of all parameters the reader is
referred to table 4.5. Hence, there is nothing surprising for CdO. It is however

less stable than ZnO.

4.3.3 Mercury oxide

Compared to ZnO and CdO a completely different picture is found for the high-

pressure phases of mercury oxide, just like for the equilibrium phases. Here, a
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transition at 25 GPa from the orthorhombic montroydite form into the tetrago-
nal [4/mmm structure is determined.

The lattice constants are a = 3.517 and ¢ = 4.854 A, which confirms that the
c/a ratio in this structure differs only slightly from the optimum value of V2.
Those values are furthermore in good agreement with experiment (a=3.370 A.
c=4.651 A, ¢/a=1.380 at 19.3 GPa: p;=14 GPa [11]).The agreement of the ex-
perimentally obtained bulk modulus and B, where the calculations presented
here derive values of 110.6 GPa and 5.9, respectively, is not as good. However,
this can be attributed to the use of the same fit for both the montroydite and
[4/mmm phase in the experiment. To the best of our knowledge no theoretical
references are available.

Another pressure induced transition is predicted to happen around 28 GPa into
the metallic rocksalt structure with an according ground-state lattice constant
of 4.937 A.

Subsequently, the rocksalt structure undergoes a transition into the cesium chlo-
ride structure with a lattice constant of @ = 3.028 A at zero pressure. This
transition predicted at 57 GI’a has not been found or predicted vet, but fits per-
fectly into the lineup of those semiconductors. However. another transition into
an interniediate phase following the rocksalt modification cannot be ruled out.
Otlier structural parameters for the high-pressure phases rocksalt and cesium

chloride can be obtained from table 4.0.

4.4 Electronic structure

4.4.1 Zinc oxide

The band structure and DOS calculated for the wurtzite structure using the
scalar-relativistic approach is shown in the upper panel of fig. 4.3.

According to this graph this equilibrium phase of ZnO needs to be catego-
rized as a typical semiconductor, which exhibits a direct gap with an energy
of 0.75 eV at the I'-point of the Brillouin zone. However, further local valence-
band maxima (VBM) at A (-0.37 eV) and I/ (-1.19 eV) are found as well as other
conduction-band minima (CBM), which appear at A (3.37 eV) and between L
and M (5.38 eV), making the next direct transition possible at the A-point with
a significantly higher gap energy.

The band structure calculated is in very good agreement with other theoretical
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Figure 4.3: Band structure and density of states (normalized per pair) at zero pres-
sure for the ZnO polymorph wurtzite (upper panel) and the CdO poly-
morph rocksalt (lower panel) calculated within the scalar-relativistic
DFT-GGA framework. The valence-band maximum is set to zero en-
ergy. The black solid lines indicate the valence and the red dashed lines
the conducting bands, respectively.
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findings, e.g. Schleife et al. with E,(I') = 0.73 eV [113]. Yet, the method used
largely underestimates the band gap, which is measured to be about 3.44 eV
in a two-photon absorption experiment at 6 IX [120]. This value is confirmed
by Vogel et al., who emploved the more sophisticated self-interaction-corrected

scheme [120].

4.4.2 Cadmium oxide

The electronic structure as depicted in the lower panel of fig. 4.3 shows the
equilibrium rocksalt modification of CdO at the scalar-relativistic level as a half-
metal.

A direct gap of 0.66 eV is found at the centre of the Brillouin zone in excellent
agreement with another calculated result using DFT-GGA (0.66 eV [113]). The
VBAI are located at the L-point (set to 0 eV) and along the 3-line between I’
and ' (-0.07 eV). Both of those maxima however, lie above the CBN causing
negative indirect band-gaps of -0.49 and -0.42 eV. respectively. The CBM is
found at the I'-point. Those values are in accordance with another GGA study,
where 0.51 and 0.43 eV are obtained [113].

In contrast. experiments suggest a semiconductor. which has positive direct as
well as indirect gaps (Eg“'(l“) =228¢eV. E;"d(L —I)=0.84¢eV. E;”"(Z -T)=
1.09 eV [120]). Self-interaction corrected calculations determine F'"(L —T') =

9
1.7 eV, hence predicting the correct electronic behaviour. The deviations to the
present study are due to the severe underestimation of band gaps in the DFT
formalism. Furthermore, a DFT study by Boettger shows that, while relativis-
tic corrections have little impact on the bulk properties, they do influence the
electronic structure. Using a nonrelativistic description, CdO is predicted to
have a small band gap, whereas the scalar-relativistic picture incorrectly sug-
gests a semi-metallic state. The effect of spin-orbit splitting was proven to be

negligible [121].

4.4.3 Mercury oxide

HgO in its ground-state montroydite form through photoconductivity measure-
ments is established to be a n-type II-VI semiconductor [11] with a band gap of
approximately 2.19 [122] to 2.80 eV [123]. Even though this result is qualita-

tively confirmed by a theoretical LDA study by means of the scalar-relativistic
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Figure 4.4: Band structure and density of states (normalized per pair) at zero pres-
sure for the HgO montroydite polymorph calculated within the scalar-
relativistic DFT-GGA framework (upper panel) as well as upon inclusion
of spin-orbit effects (lower panel). The valence-band maximum is set to
zero energy. The black solid lines indicate the valence and the red dashed
lines the conducting bands, respectively.
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and d site-projected DOS, respectively.
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tight-binding linear muffin-tin orbital atomic sphere approximation as cited in
ref. [11], it nevertheless features the underestimation of the band gap, commonly
occurring for the applied DFT methods. Hence, they vield an indirect band gap
of 1.33 eV only.

Using the scalar-relativistic approach, the semiconductor character as well as the
indirect band gap are confirmed with the VBN and CBM occurring at the /f
line between T and } and at the A line between [' and Z, respectively. Con-
sequently, a fundamental gap of 1.18 eV is calculated in good agreement with
ref. [11]. Several other indirect as well as direct transitions are possible at slightly
higher energies, the first possible direct transition at the A line between Y and
[ at an energy of 1.49 eV. To view the scalar-relativistic electronic structure of
HgO in its montrovdite phase as well as the site-projected DOS see the upper
panels of figs. 4.4 and 4.5.

Even though this is in concordance with the theoretical findings mentioned above,
it neglects spin-orbit coupling. The relativistic expansion of the 5ds/,-band in
mercury is expected to lead to a substantial mixing with the Gs-band and one
has to consider the spin-orbit splitting in the empty 6p bands as well. Looking at
the band structure and DOS calculated with the inclusion of spin-orbit coupling
(cf. lower panel of fig. 4.4) the VBN and CBM are still located at the [{ line
between T and Y and the A line between I' and Z. However, the band gap is
marginally decreased to 1.17 eV. This also holds for a possible direct transition
(at the A line between Y and I' with a gap energy of 1.50 eV), meaning the
values develop even furthier away from the experimental values.

This result deviates from the statement in a publication [124], where as a first-
order approximation the charge density relaxed within the scalar-relativistic ap-
proach was used leading to the false conclusion that the method used charac-
terizes Hg() as a metal if spin-orbit coupling is included. This false description
of GGA in terms of an underestimation of the band gap, is actually well-known
in Mett-insulators in transition metal oxides [125] and for the d-phase of solid
plutonium [126] as discussed in detail in ref. [125]. Rather strong correlation
effects in these transition metal oxides are to be blamed and make further in-
vestigations using methods like LDA+U desirable [127]. Yet, it does not explain
the strong deviation in the band structure calculation if the scalar-relativistic
charge density is used as a starting point for the spin-orbit coupling calculations.
Further investigations are under way to explain this behaviour.

Turning now to the cinnabar modification of HgO, an indirect semiconductor is

found as the result of both the calculations excluding and including spin-orbit
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effects as indicated by fig. 4.6. In both cases the VBMI is situated between the
A- and L-point, followed by two very close lying maxima between A and H at
(-0.01 and -0.009 eV with and without spin-orbit coupling, respectively) and A
and ' (-0.03 and -0.009 eV with and without spin-orbit coupling, respectively).
The CBMI is located close to the centre of the Brillouin zone (to he more spe-
cific towards the A -direction) leading to a fundamental gap energy of 1.29 and
1.32 eV considering and neglecting spin-orbit coupling, respectively. The first
possible direct transition is extremely close in energy (1.38 and 1.39 eV with and
without spin-orbit coupling. respectively).

[n general. the electronic structure looks rather similar to the one obtained for
the montroydite phase, which can be explained by the structural similarity of
the chain-like constitution, confirmed in the close lyving energy-volume curves
(see fig. 4.2). Seemingly. no other data of the band structure of cinnabar-HgO
could be found to compare with.

From the display of the Hg site-projected DOS in figs. 4.5 and 4.7 it becomes
obvious that for both the montrovdite and the cinnabar modification the elec-
tronic structure upon inclusion of spin-orbit coupling hecomes far more complex.
However, since the spin-orbit splitting mainly occurs in the lower lving d-bands.
the semiconducting character as well as the gap energy arc not significantly al-
tered. A prominent splitting of the Hg core-5d band into the 5d3/» and 5ds
contributions is evident. where the energy difference is about 2 eV. This agrees
nicely with the atomic level splitting of 1.86 eV in the Hg™ atom [128]. However.
an additional superposition with the crystal-field splitting can be seen. This
should be investigated further by spectroscopic methods. The Fermi edge has

dominantly O 2p and Hg 5d character.

4.5 Relativistic influences

4.5.1 Equilibrium structure

If relativistic effects for mercury oxide are neglected we find a completely differ-
ent structural behaviour. Figure 4.2 shows that in this case, the structure found
under ambient conditions is the rocksalt arrangement.

Here the obtained lattice constant a is 4.996 A, which is in fact by 15% and by 4%
larger than the lattice constant for the respective modification in ZnO and CdO,

indicating the suppression of the typical relativistic contraction by the crystal
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Figure 4.6: Band structure and density of states (normalized per pair) at zero
pressure for the HgO cinnabar polymorph calculated within the scalar-
relativistic DFT-GGA framework (upper panel) as well as upon inclusion
of spin-orbit effects (lower panel). The valence-band maximum is set to
zero energy. The black solid lines indicate the valence and the red dashed
lines the conducting bands, respectively.
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Figure 4.7: Site-projected density of states at zero pressure for the HgO cinnabar
polymorph calculated within the scalar-relativistic DFT-GGA framework
(upper panel) as well as upon inclusion of spin-orbit effects (lower panel).
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System Zn0 Cdo HgO nonrel. HgO

dyo  dune dyo  dan daro duar dao daag

Wurtzite 2.00 326 223 3.61 2.330 389
exp. 1.98 3.2 - - - - - -

Zine blende 2.00 3.27 2.23 3.64 2.30 SHTD 2.34 3.82
exp. - - - - 2.35  3.84 - -

Rocksalt 2.17 307 239 338 247 349 250  3.53
exp. 204 3.02 235 332 - - - -
Montroydite - - - - 206  3.38 - -
exp. - - - - 203 331 - -
Cinnabar = - = - 2.07  3.33 - -
exp. - - - - 2.03  3.30 - -

Table 4.7: Closest metal-oxygen bond distance d ;o and closest metal-metal distance
darar in A of the respective equilibrium structures of the group 12 oxides.

field. In addition. the nonrelativistic cohesive energy of 6.20 eV/pair exceeds the
relativistic value by more than 2 eV/pair. This is especially interesting, since
this rather large relativistic lattice destabilization goes along with a huge rela-
tivistic contraction of 0.343 A in the intra-chain Hg-O bond distance compared
to the montroydite equilibrium structure of relativistic HgO (see table 4.7 for
nmetal-oxygen and metal-metal distances). For the purpose of comparison, this
fact causes the bond distance in HgO to be actually just as small as the ZnO
bond distance for the wurtzite structure.

However, it should be mentioned that this intra-chain contraction evokes an
inter-chain expansion in b-direction, increasing the inter-chain Hg-O distance to
2.964 A. Thus, the overall volume is actually expanded from 31.2 to 36.0 A3
due to the change in crystal symmetry, leading to a consequent density decrease
from 11.54 to 9.98 g em™3 upon inclusion of relativistic effects. To compare
with, this only just exceeds the densities of ZnO and CdO with values of 5.6 and
8.15 g em ™3 [114], respectively. The experimental value found for the density of
HgO in its equilibrium structure is 11.14 g em™3 [114].

Even more suprising is the fact that both the montroydite as well as the cinnabar
phases relax into the rocksalt structure upon structure optimization utilizing the
nonrelativistic description. Therefore, those two modifications clearly become
~ unstable at the nonrelativistic level, meaning that the existence of the montroy-
dite and cinnabar structure in HgO can be credited to relativistic effects.

An explanation for this behaviour originates in the decrease of ionicity in HgO

due to relativistic effects and a consequent significant increase of the covalent
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bonding in the solid state. Calculations shiow a substantial reduction of the HgO
dipole in the diatomic molecule from 8.0 to 5.6 Debye due to relativistic effects.
This is calculated at the Hartree-Fock level. where electron correlation is treated
within a second-order many-body perturbation theory. Indeed, the calculations
carried out reveal that the Mulliken charge for the mercury atom in solid HgO
decreases from 1.10 to 0.90 going from the nowrelativistic level (rocksalt phase)
to the relativistic description (montroyvdite structure). This in turn. causes typ-
ical ionic structures like rocksalt to become less favourable.

Furthermore, it should be noted that the large relativistic destabilization of solid
HgO mentioned above (decrease in cohesive energy from 6.2 to 4 eV upon inclu-
sion of relativity) is also substantially increased compared to the HgO molecule.
Here the change in dissociation energy is 1.0 eV at the nonrelativistic level as
compared to only 0.17 eV at the relativistic level [1] and gives rise also to the
easy decomposition of HgO in the gas phase. which was mentioned in chapter 1
already.

Since spin-orbit coupling is suppressed in the ionic lattice field. the structural
change is assumed to originate almost exclusively from scalar-relativistic (mass-
velocity) effects. However. spin-orbit effects are important to determine the exact
band gap in HgO (see discussion in chapter 4.5.3). Note also that the sublima-
tion energies of group 12 chalcogenides have recently been discussed i detail by
Szentpaly [129].

4.5.2 High-pressure structure

System a c u By B’ Econ Vo

Rocksalt 1.996 - - 113.6 5.5 6.198 31.17
Wurtzite 3.851  6.112  0.3850 79.4 3.5 6.056 39.28
Zinc blende 5.400 - - 81.5 54 6.033 39.36
Cesium chloride  3.066 - - 1174 48 5479  28.83

Table 4.8: Ground-state properties of equilibrium and high-pressure phases of HgO
within the nonrelativistic approach. Presented are the lattice constants a
and ¢ (A), internal parameter u, ground-state volume V; (A3/pair), bulk
modulus By (GPa) and its pressure derivative B’ as well as the cohesive
energy E.,, (eV/pair).

Turning now to the high-pressure phases, the tetragonal I4/mmm phase found
in HgO is not stable anywhere in the nonrelativistic regime studied here. Tlere-

fore, a direct transition into the cesium chloride phase is observed at 62 GPa with
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Figure 4.8: Band structure and density of states (normalized per pair) at zero pres-
sure for the HgO polymorph rocksalt calculated within the nonrelativistic
DFT-GGA framework. The valence-band maximun is set to zero energy.
The black solid lines indicate the valence and the red dashed lines the
conducting bands, respectively.

an according ground-state lattice constant of 3.066 A. Hence, the nonrelativistic
structural transition path closely resembles that of CdO.

In addition, the structural parameters for the zine blende and wurtzite phase
were calculated for nonrelativistic HgO as well. see table 4.8. In general a slight
increase in the lattice constants compared to the respective phases at the rela-

tivistic level can be observed due to the omission of relativistic contraction.

4.5.3 Electronic structure

Looking at the electronic behaviour of the nonrelativistic equilibrium state of
HgO, the rocksalt structure, the differences to the relativistic picture are quite
significant.

The VBM is now located at the ¥ line between I" and K and at the L point, and
the CBM occurs at the T' point as indicated by fig. 4.8. The results presented
suggests a half metal at the nonrelativistic level, since the VBMI lie above the

CBM inducing negative indirect band gaps of -0.56 and -0.64 eV, respectively.
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Figure 4.9: Site-projected density of states at zero pressure for the HgO polymorph
cinnabar calculated within the nonrelativistic DFT-GGA framework.
The black solid, red dashed and blue dash-dotted line indicate the s.
p and d site-projected DOS. respectively.

The smallest direct gap occurs at the I' point with an energyv of 0.52 eV.

This behaviour is rather similar to the characteristics found for CdO (see chap-
ter 4.4.2) and in stark contrast to the semiconducting nature of the cinnabar and
montroydite structure when using the relativistic approach.

The Hg site-projected DOS for nonrelativistic HgO depicted in fig. 1.9 shows a
well-defined crystal-field splitting for the d-bands of approximately 0.8 eV, which
is typical for an octahedral arrangement like in the rocksalt structure. In con-
trast, the Hg site-projected DOS upon inclusion of spin-orbit coupling for the
montroydite as well as the cinnabar structure becomes far more complex (see
figs. 4.5 and 4.7). Here, the spin-orbit splitting dominates over the crystal-field

splitting.

4.6 Summary

The lattice properties and transition pressures obtained for the group 12 oxides

in the course of this thesis are in excellent agreement with other theoretical and
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experimental studies available. The only exception are the bulk moduli where
the discrepancies are slightly larger. Yet other theoretical work suggest similar
deviations. Concerning the transition pressure, only the value for the montroy-
dite to I4/mmm transition is overestimated which is to be blamed on the minute
energy and structural difference between the rocksalt and tetragonal structure
in the transition region. Hence, the transition pressure is pushed towards the
theoretical NI — RS transition value. Fuwrthermore, the electronic structure
1s qualitatively in good agreement with experiments, with the usual DFT-like
underestimation of the band gaps. In the case of CdO it is so severe that a
half-metal is predicted instead of the experimentally observed semiconducting
behaviour.

To the best of our knowledge the high-pressure behaviour of mercury oxide has
been investigated by theoretical means in this thesis for the first time and no
other theoretical studies could be found to compare with. In addition, a new
cesium chloride phase of HgO 1is predicted following the rocksalt modifications.
The transition pressure is rather low with 57 GPa in order to be confirmed ex-
perimentally. Yet, intermediate phases will have to be excluded by theoretical
or experimental means.

The influence of relativistic effects on the structure of HgO is rather dramatic
for the equilibrium as well as the high-pressure behaviour. First and foremost,
the montroydite and cinnabar equilibrium phases become unstable if relativity
is neglected. Instead the rocksalt structure is predicted similar to CdO. This
is due to the large relativistic lattice destabilization of 2.2 eV and a relativistic
decrease in ionicity, suppressing the typical ionic rocksalt structure. Considering
the high-pressure behaviour, the I4/nmmm phase is not stable anymore causing

a transition path that is very similar to CdO.



Chapter 5

The group 12 sulfides

5.1 Occurring crystal structures

5.1.1 Zinc sulfide

Zinc sulfide i1s known to adopt two different crvstalline structures at ambient
conditions. This is on the one hand the stable zinc blende structure. where ZnS
itself delivers the prototype. with a lattice constant of a = 5.4102 A [12]. On the
other hand it crvstallizes in a metastable wurtzite structure. where the lattice
parameters are a = 3.8226 A and ¢ = 6.2605 A [12]. This structure was observed
to transform into the zine blende structure at appliance of pressure [130]. Many
itermediate polyvtypes have been found.

Various studies concerning the high-pressure behaviour of the zine blende struc-
ture were conducted. Minomura et al. [131] for the first time observed a transition
at higher pressures to a structure, which was later identified in ref. [132] to have
a rocksalt arrangement. Using different diffraction and optical techniques the
value for the transition pressure is reported to be between 11.7 and 15.4 GPa
(see table 5.1). Even though Minomura et al. reported the NaCl phase to be
metallic, it is an indirect-gap semiconductor with a gap of about 2 eV {133, 134].
The lattice constant is 4.839 A at 17.1 GPa [134].

However, the situation is not absolutely clear from a theoretical point of view,
where Nazzal et al. using a PP-PW approach in conjunction with DFT-LDA
predicted a transition from the zinc blende to the cinnabar structure (11.4 GPa)
first and only then the passage into the rocksalt structure (14.5 GPa) [135]. But

two X-ray diffraction studies [12, 130] rule out the intermediate cinnabar phase

85
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for ZnS, as does a later theoretical study by Qteish et al. [136].

Nelmes and McMalion [12] did, however, observe a transition at 69 GPa into a
most likely Cmecm-like structure, but could not resolve the structural parameters.
No further transition was found up to 84 GPa. Desgreniers et al. [130] support
those findings experimentally, as well as Lopez-Solano et al. theoretically [137].
Furthermore, Qteish and Parinello predicted a new plase intermediate between
zine blende and rocksalt [138]. This ZnS form has the SC16 structwre and was
confirmed by another calculation of ref. [139]. However, the transition might he
hindered by energy barriers, since this new arrangement of ZnS lhas not been
found experimentally vet.

In chapters 5.2.1 and 5.3.1, the structwral parameters and transition pressures
obtained for the zinc sulfide phases in the course of this thesis will be presented
in tables 5.1, 5.4 and 5.5. Those will also list the results of previous theoretical

as well as experimental work for comparison.

5.1.2 Cadmium sulfide

Polytypism also applies to cadmium sulfide, where again two stable phases are
found at room conditions. Equivalent to zinc sulfide, those two structures are
wiwrtzite (stable and semiconducting) with lattice constants a = 4.1362 A and
¢ =6.714 A and metastable zinc blende (a = 5.818 A) [12].

Detailed studies under high pressure are, however, only available for the wurtzite
phase, where a transition at 2.75 GPa was first observed by Edwards and Drick-
amer [140] (optical measurements). This new phase was later identified to have
a rocksalt structure (a = 5.42 A [141]). The transition goes along with a sudden
decrease in resistivity [142] and an over all volume decrease (AV/V;) of 16% is
noted [143]. The rocksalt structure was found to be semiconducting with an
indirect band gap of 1.6 eV [144].

A further transformation into CdS-1II was observed at 50-58 GPa by Suzuki et al.
(combining EDX and ADX), which characterized the new phase as an orthorhom-
bic (low-pressure KCN-type) structure with the space group Pmmn [145] which
is stable at least up to 68 GPa. However, no atomic positions were reported.
A reinvestigation of the structure [12] confirmed findings in general, but the ab-
sence of the NaCl(111)-peak splitting was criticized. Therefore, in analogy of the
Cmem phase in CdTe and ZnSe, the data was fitted to that structure as well,
which however led to a poorer fit. For lattice parameters see table 5.6.

The stability of the Pmmn or Cimem phase was investigated theoretically as well,
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with, however, differing outcomes [146, 147]. No post-Cmem high-pressure be-
haviour is reported vet, neither experimentally nor theoretically.

The chapters 5.2.2 and 5.3.2, where the results for the cadmium sulfide equilib-
rium and high-pressure modifications are summarized in tables 5.2, 5.6 and 5.7,
will include the structural parameters and transition pressures determined by
previous investigators (by experimental and theoretical means) of those struc-

tures as well.

5.1.3 Mercury sulfide

At ambient conditions mercury sulfide can be found in its stable mineral form,
which delivers the prototype for the so-called cinnabar structure. This is a red
crystal with the lattice parameters a = 4.145 A and ¢ = 9.496 A and internal pa-
rameters u(Hg) = 0.7198 and v(S) = 0.4889 [90]. However, a second metastable
low-pressure black coloured form exists which adopts a zince blende structure
with @ = 5.851 A. It transforms into the cinnabar phase at 5 GPa. The cinnabar
structure is again built from S-Hg-S spiral chains lying parallel to the z-axis,
implying a 2+4 coordination equivalent to the situation found in cinnabar-HgO.
At higher pressures a transformation to the rocksalt structure (@ = 5.070 A)
occurs, which was first described by Huang et al. and Werner et al. [148, 149)].
The pressure range of the structure change created a debate between the two
groups, but was confirmed by Nelmes and McMahon to take place at 20.5 GPa
(high-resolution ADX) [12]. During the course of those studies a further transi-
tion was observed at around 52 GPa into HgS-III, where a Cimecm-structure was
proposed in accordance with the knowledge about HgSe and HgTe.

Later, the structural parameters and transition pressures of the different mer-
cury sulfide phases calculated in this study are concluded in tables 5.3 and 5.8
(see chapters 5.2.3 and 5.3.3). Those results will be compared to the param-
eters obtained in preceding experimental and theoretical investigations as just

discussed.
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Figure 5.1: The total energy versus volume per cation-anion pair for different crystal

structures of ZnS (upper panel) and CdS (lower panel).
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Property This work Other theoretical Experiments
Zinc blende
a 5.446 5.4499, 5.404°, 5.58¢ 5104, 513/
Vo 10.38 40.452, 39.45°, 13.44° 39.594, 39.63/
By 70.4 69.87. 71.22%, 75.9¢ 76.99, 795 ¢
B’ 1.6 LB L e =90 e
O 5.971 1.66¢. 5.88" 6.339. 6.36"
pt to SC16 16.73 1387 7. 25F
P to RS 16.97 18.50%, 15.1=17.5, 1784, 11.79, 12"

16.1¢, 14.35% 14.5-15.¥
pi to C2 18.53 11.4%, 17.8°
Wurtzite
a 3.848 3.852%, 3.8407, 3.982™ 3.8234, 3.811*
c 6.308 6.3137. 6.267/, 6.500™ 622617, 6,287
c/a 1.639 1.639, 1.6327, 1.632™ 1.638, 1.636%
u 0.3747 0.3759, 0.3757, 0.377™ 0.3748!, 0.375¢
Vo 10.44 40.56%, 40.017, 44.63™ 39.629, 39.21*
By 69.7 68.57, 68.96 76.27, 80.1". 75.8°
FE 1.4 4.19, 439 sh ) TRE
E i 5.963
pe to RS 16.61 14.849,17.27 14.1-14.6", 16°

PAW-GGA from ref. [150] and refs. therein; °PP-GGA from ref. [151]; “HF-
LCAO from ref. [152]: 9from ref[153]: ¢from ref. [130]: /from ref. [143]: 9from ref.
(132]; M from ref. [130]; ‘from ref. [12]; /PW-GGA from ref. [154): 'from ref. [155]:
Ffrom ref. [143]: ™from ref. [156): "PP-PW-LDA from ref. [135]; °PP-PW from
ref. [136]: PPP-PW from ref. [138]: 9TB-LMTO [139]: "semi-empirical TB calc.

from ref. [157] and refs. therein.

Table 5.1: Ground-state properties of the equilibrium phases of ZnS. Presented are
the lattice constants a and ¢ (A). internal parameter u. axial ratio c¢/a.
ground-state volume Vy (A3 /pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E. (eV /pair) and the

transition pressure p; (GPa) where applicable.

5.2 Equilibrium structures

5.2.1 Zinc sulfide

Figure 5.1 shows the total energies per ZnS pair plotted against the volume of

the unit cell per pair. The graph clearly confirms the polytypism found in zinc

sulfide, as the curves for the zinc blende as well as the wurtzite structure are in

very close proximity with a colesive energy of 5.971 eV/pair and 5.963 eV /pair,

respectively. This means that the B3 structure is slightly more stable having the
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lower energy. At the same time, the difference in energy (8 meV/pair) agrees
with the calculations by Yeh et al., who obtained 3.1 meV/atom [158].

The calculations presented here give a ground-state lattice constant of a =
5.446 A (corresponding to a volume Vy = 40.38 A3/pair) for the prototype zinc
blende structure, which is in accordance with other experimental and theoretical
investigations (see table 5.1). Compared to very recent theoretical investigations
using similar methods (PAW-GGA) the agreement is excellent (see refs. [150]
and [151] in table 5.1). The corresponding bulk modulus and its pressure deriva-
tive are 70.4 GPa and 4.6. Those values again match other results.

For the metastable wurtzite phase the derived lattice constants are a = 3.848 A
and ¢ = 6.308 A, whereas the internal Wyckoff parameter was calculated to be
w = 0.3747 and the ground-state unit-cell volume is Vg = 40.44 A3 /pair, accord-
ingly. Compared to zinc blende, the ground-state unit-cell volume is very similar.
The ratio ¢/a=1.639 is therefore very close to the ideal value of 1.633. The bulk
modulus for the wurtzite structure is determined to be 67.8 GPa with a pressure
derivative of 3.9. Looking at table 5.1 the determined properties agree very well

with other work.

5.2.2 Cadmium sulfide

Similar to zinc sulfide, the calculations presented here confirm that as mentioned
before under normal conditions cadmium sulfide exists in two forms, the cubic
zine blende and the hexagonal wurtzite form. Again, the minute difference in
coliesive energy of 3 meV/pair (EZ8 = 5.266 eV/pair, E!, = 5.269 eV/pair)
indicates that both crystal arrangements are very similar. This very small en-
ergy difference lies within the methodical uncertainty of DFT, making it very
difficult to predict, which phase is energetically most stable. This can also be
gathered from the energy-volume dependencies of fig. 5.1. However, rather few
experimental data are available for the investigation of the zinc blende form at
normal conditions as well as at higher pressure, which might indicate that it is
slightly less stable or common than the wurtzite form. This is confirmed by the
results presented here. Furthermore, the energy difference of only 3 meV /pair
compares well to investigations of Yeh et al. where AE" ~48 = —1.1 meV/atom
and Wei et al. who obtained AEY =48 = —2 meV/pair [158, 161].

For the zinc blende phase a zero pressure volume of 52.29 A3 /pair is calculated,
going along with a lattice constant of 5.936 A. A bulk modulus of By = 53.9 GPa

together with a B’ of 4.7 are obtained. Those results compare well to previous
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Property This work Other theoretical Experiments
Wurtzite
a 4.199 4.1087, 4.19°, 4.101° 4.1369, 4.14¢
¢ 6.853 6.66°, 6.687¢ 6.7144, 6.72¢
c/a 1.632 1.589°, 1.631¢ 178837, 1623°
u 0.3758 0.3757¢ 0.3777/

Vo 52 811 50.71%, 48.69¢ 49.734, 49.89¢
By SR 68.8%, 66.4°, 46.79 629, 62.8°
B’ 1.7 4.5¢
Eecon 5.269
p to RS 4.15 2 2.89 2.34¢. 3, 2.3/
Zine blende
a 5.936 5.808%. 5.87%, 5.83F 5.813%

1o 52.29 48.98% . 50.55%, 49.54F 49.234
By 53.9 69.44¢, 65.5°, 62.3¢ B4 8% 66.0°
B’ 1.7 1.6%, 5.4
Eecon 5.266 1.874!, 5.78™ 5.68™
pe to RS 4.11 3.2k, 448"

AFP-LMTO-LDA from ref. [159]; *interatomic potentials from ref. [160]; CLAPW-
LDA from ref. [161); “from ref. [153]: *from ref. [143]; /from ref. [120]; 9ab-initio
GDSP/DFT from ref. [162]: "FP-LMTO-LDA from ref. [146]: {X-ray diffraction
from ref. [145]: JADX from ref. [12]: *PP-LDA from ref. [147]: NID from ref.
(163]: "semi-empirical TB cale. from ref. [157] and refs. therein: "ab-initio PP
calculation from ref. [164].

Table 5.2: Ground-state properties of the equilibriuun phases of CdS. Presented are
the lattice constants a and ¢ (A), internal parameter u, axial ratio c/a,
ground-state volume Vy (A3/pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E.yp (eV/pair) and the
transition pressure p; (GPa) where applicable.

experimental data (a = 5.818 A, Vj, = 49.23 A3 /pair, By = 64.4 GPa [153. 157])
and are in good agreement with other theoretical investigations (see table 5.2).
However, the deviation from experimental data for the bulk modulus of at least
19% is rather big.

In the case of the wurtzite structure the determined lattice properties are a =
4.199 A, ¢ = 6.853 A and u = 0.3758, in good agreement with other results. The
lattice constants vary within a few percent as is to be expected within the frame-
work of DFT. The ¢/a ratio is again very close to the optimal value of \/% In
addition, the bulk modulus and its pressure derivative (By = 53.7 GPa, B’ = 4.7)
are within limits compared to other calculations as well as experimental investi-

gations (see table 5.2).
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Property This work Otler theoretical Experiments
Cinnabar

a 4.395 4.294¢° 4.119°, 4.074¢, 41454
€ 9.729 9.885° 9.495°, 9.395¢, 9.4964
c/a 2.214 2.302° 2.289%, 2.306°, 2.2914
u 0.7515 0.7192° 0.71894, 0.720¢

v 0.4633 0.4960° 0.48894, 0.480¢

Vo 55.16 51.329 47.18%, 45.02¢, 47.10¢
Bo 8.8 (17.3) 22.48¢ 19.4% 18-37¢

B’ 8.9 (5.4) 1.8° 110 5

B 3.657 3.64/

pt to RS 28.7 26.57° 24, 139, 20.5%, 29
Zinc blende

a 6.009 5.9757, 5.83-6.03% 5.851/

Vo 54.67 53.337, 49.5-54.8% 50.087

Bo 50.4 55.3/, 64.9-67.0 ¥ 68.6/

B 4.9

B 3.680 3.47/

pe to C2 1.38 5

pr to RS 5.60 0.36™

TAPW+LO-GGA at zero pressure from ref. [91]: ®X-ray diffraction at zero pres-
sure from ref. [149]; *X-ray diffraction at 0.4 GPa from ref. [165]; “from ref. [90];
¢from ref. [166): /from ref. [120]; 9 X-ray diffraction from ref. [148]; "ADX from
ref. [12]; iconductivity measurements from ref. [167]; /ab-initio GDSP/DFT from
ref. [162]; KEP-LMTO LDA and GGA from ref. (168]: from ref. [169]: ™ab-initio
pseudo-potential calculations from ref. [164].

Table 5.3: Ground-state properties of the equilibrium phases of HgS. Presented are
the lattice constants a and ¢ (A), internal parameters u and v, axial ratio
c/a, ground-state volume Vy (A3/pair), bulk modulus By (GPa) and its
pressure derivative B’ as well as the cohesive energy E.o, (eV/pair), and
the trausition pressure p; (GPa) where applicable.

The energy-volume curves for the different crystal structures of mercury sulfide

can be viewed in fig. 5.10. As mentioned above, under ambient conditions mer-

cury sulfide crystallizes in both a cinnabar as well as a zinc blende form. This

1s confirmed by our calculations considering that those two structures lead to

the lowest energies with coliesive energies of 3.657 eV /pair and 3.680 eV /pair,

respectively.

Hence, the zinc blende structure seems to be energetically more favourable by

23 meV /pair, which is significantly higher than the energy deviation between
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wurtzite and zinc blende in e.g. ZnS and CdS. However, the picture changes
quickly with pressure increase and we find a transition into the cinnabar modifi-
cation at a rather low pressure of 1.4 GPa, in concordance with the experimental
transition pressure of 5 GPa [169]. Since the cinnabar structure is observed to
be the stable equilibrium form of HgS. the differences are most likelv due to
temperature effects.

Yet, the wurtzite structure is in close proximity (F.o, = 3.673 eV/pair) to those
two structures, but up to at least 100 GPa zinc blende is always more stable. A
possible wurtzite phase would undergo the transition into cinnabar at even lower
pressures of just 1.0 GPa.

The lattice parameters obtained for the cinnabar phase are a = 1.395 A and
¢ = 9729 A with u(Hg) = 0.7515 and v(S) = 0.4633. The minimum volume is
reached at 51.23 A% per HgS pair. The bulk modulus and its pressure derivative
are determined to be 8.8 GPa and 8.9, respectively. Whereas the structural prop-
erties are in reasonable agreement with other work, the bulk modulus seems to
be extremely low compared to other calculations and the experimental value (see
table 5.3). However, if more data points are included into the fit the obtained
bulk modulus quickly rises to 17.3 GPa (B’ = 5.4), showing how much the com-
pressibility depends on the pressure. This in turn means that the Murnaghan
and Vinet EOS might not be the optimal choice for the fit. Comparability of
the lattice and internal parameters can be improved if one looks at a pressure
of 1.27 GPa, which is just below the transition pressure of the ZB--C2 transi-
tion, where the following parameters are obtained: a = 4.207 A, ¢ = 9.569 A.
c/a = 2274 u = 0.7150, v = 0.4962 and V" = 48.91 A3/pair. Those values are
i excellent agreement with the other theoretical and experimental results which
again shows how sensitive the internal parameters are to pressure.

On the other hand. for the zinc blende form a lattice constant of @ = 6.009 A
(Vo = 54.23 A3 /pair) is found. which is in good agreement with experimental and
theoretical investigations. This is, within the limitations of the applied method-
ology, true for the bulk modulus as well (13p = 50.4 GPa), where other groups
obtained values of 68.6 GPa (experimentally) and 55.3-67.0 GPa (theoretically).
The pressure derivative B’ was determined to be 4.9. See table 5.3 for details.
For the non-existent wurtzite phase the following properties are obtained: Vg =
54.28 A3/pair a = 4.256 A, ¢ = 6.923 A, u = 0.3777, By = 50.0 GPa and
B’ = 5.0. Almost no difference is observed for the three different ground-state

volumes.
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5.3 High-pressure phases

5.3.1 Zinc sulfide

The thesis at hand predicts that the zinc blende form of ZnS undergoes a phase
transition into the SC16 structure at approximately 16.73 GPa. This is at a
significantly higher pressure than determined by Gangadharan et al. and Qteish
et al. (12.25 and 12.8 GPa), who investigated this phase as well. The transfor-
mation from SC16 into the rocksalt structure takes place at 17.23 GPa. This
leaves a stability range of only 0.5 GPa as compared to 3.4 GPa obtained by
Qteish et al., who calculated the pressure for the SC16—RS transformation to
be 16.2 GPa.

In contrast, the lattice properties of @ = 6.688 A, u(Zn) = 0.1560, v(S) = 0.6442
compare quite well to the other theoretical studies (see table 5.4 for details). This
is also true for the bulk modulus and its pressure derivative (3, = 65.1 GPa,

B’ = 5.4), if the difference in methodology is considered.

However, according to the study at hand, at 16.97 GPa the zinc blende form
of ZnS transforms into the rocksalt structure. The estimated pressure is in
good agreement with other theoretical (15.4-18.5 GPa) as well as experimental
(11.7-17.4 GPa) work. This means that the pressure derived for the ZB--»SC16
transition is in very close proximity to the one obtained for ZB--»RS transition.
Hence, it is difficult to estimate whether SC16 would actually exist as an inter-
mediate phase, especially since it has not been observed experimentally yet. The

transition might also be kinetically hindered.

For the rocksalt structure the following solid-state properties are derived: a =
5.108 A, Vy = 33.32 A3/pair, By = 86.8 GPa and B’ = 4.8 along with a co-
hesion energy of 5.336 eV/pair. The agreement in particular with other theo-
retical investigations is excellent with deviations of only a few percent. Having
a look at the obtained parameters at a pressure above the transition pressure
(p = 19.44 GPa), the lattice contant is 4.850 A with a unit-cell volume of
V" = 28.52 A3/pair.

On the basis of the calculations presented here, the rocksalt phase of ZnS is
predicted to undergo a transition into the Cmem structure at approximately

59.5 GPa. This transition was investigated by only two groups so far! and the

Desgreniers et al., who used x-ray diffraction and Lépez-Solano et al, who employed a
plane wave pseudo-potential approach in combination with DF'I'-LDA.
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Property This work Other theoretical Experiments
St

a 6.688 6.5557, 6.586°

u(Zn) 0.1560 0.1541°

v(S) 0.6442 0.6431°

v 37.40 35.219, 35.709°

By 65.1 78.49, 89.53°

B’ 5.4 47

e 5.672

pe to RS 17.23 16.2°

Rocksalt

a 5.108 SIS IBXO7 I5e21i 5.060%. 5.2177, 5.13/4
V S ted 33.30¢. 32.587, 35.36¢ 32.38', 35.36/1, 33.7574
By 86.8 85.11¢, 89.54%, 83.1¢ 103.6%, 47.5/F, 85.0/+#
B 4.8 1 5E G, 1010¢ 41 6.207, p
25 5.336

pr to Cmcem 59.5 65" 697, 659
Cmem

a (4.482) (AL i (4.459)

b (4.537) (4.49") (4.499)

¢ (4.429) (4.40M) (4.439)
b/a (1.012) (101%) (1.019)
c/a (0.988) (0.99M) (1.009)
y(Zn) (0.7020) (0.71M)

y(S) (0.2099) (0.22")

V (22.51) (21.98") (22.139)
Vo 33.43 30.99"

By 104.6 115.3"

B’ R, 8.51

Econ 5.314

e to CsCl 215

APP-PW from ref. [138]; "TB-LMTO [139]: CPAW-GGA from ref. [150]: “PP-GGA
from ref. [151]: *HF-LCAO from ref. [152]; /from ref. [12]; 9at 90 GPa from ref.
(130]: "PW-PP-LDA at 77.7 GPa from ref. [137]; ‘from ref. [133] (B’ kept fixed);
Jfrom ref. [134]; where B’ kept fixed using the Vinet fit () and B’ relaxed using a
3rd order Birch-Murnaghan fit (1).

Table 5.4: Ground-state properties of the high-pressure phases of ZnS. Presented
are the lattice constants a, b and c¢ (A), respective internal parameters,
ground-state volume Vg (A?/pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E,, (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate
higher pressure.
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Property This work Other theoretical
Cesium chloride

a 8 202

V 32.82

Bo 74.5

B 4.4

Econ 4.018

Cinnabar

a 3.807 3.765%, 3.784%, 3.761¢
c 8.745 8.786°¢

c/a 2 297 2.336°¢
u(Zn) 0.5016 0.455¢

v(S) 0.5004 0.480¢

V 36.57

Bo 76.5 803* .81.02°, 93¢
B’ 4.3 4.5%, 3.1¢
B 5.595

p: to RS 15.31 Y5

PP-PW from ref. [138]; *TB-LMTO [139): ‘PP-PW-LDA from ref. [135].

Table 5.5: Ground-state properties of the high-pressure phases of ZnS. Presented
are the lattice constants a, b and ¢ (A), respective internal parameters,
ground-state volume Vg (A3 /pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E.,, (eV/pair) and the
trausition pressure p; (GPa) where applicable. Experimental data are not
available.

transitions pressure is in good agreement with their results of p; = 65 — 69 GPa
(see also table 5.4).

Since the Cmecm structure is a distortion of the rocksalt arrangement, it re-
laxes directly into this structure for lower pressures, and a listing of the crystal
properties at zero pressure is not possible. A seamless transition of the struc-
tural parameters towards rocksalt occurs, meaning all three lattice constants
become equal and the values for y(Zn) and y(S) are developing towards 0.75
and 0.25, respectively. Therefore, the structural parameters are evaluated at a
pressure well above the transition: at 80.7 GPa equivalent to a unit-cell volume
of 22.51 A3 /pair the lattice constants are a = 4.482 A b = 4.537 A c = 4429 A
(hence, b/a = 1.012 and ¢/a = 0.988) with y(Zn) = 0.7020 and y(S) = 0.2099.
Even with increasing pressure the orthorhombic distortion is rather small. It
should also be noted that the volume difference hetween the rocksalt and Cmem
phases is rather small (see fig. 5.1), which is not surprising due to the similarity

of the two structures.
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Comparison of the lattice constants and structural parameters with previous
results is rather difficult, since refs. [130] as well as [137] contain figures only.
The data presented in table 5.4 are therefore estimated from those graphs and
rather approximate. Furthermore. Desgreniers et al. mention that, due to the
very small orthorliombic distortion, the data points are quite scattered. making
an accurate determination of the lattice constants very hard (and possible only
above 78 GPa) and an estimate of the internal parameters impossible. Bearing
in mind these problewms. the agreement between the values presented lere and
other experimental and theoretical results is reasonable (see table 5.4). Lopez-
Solano et al. already mention that the deviations are due to the limits of DFT
and non-zero temperature effects. Turning now to the bulk modulus and its
pressure derivative, the agreement with a PW-PP-LDA study by Lopez-Solano
et al. is good (table 5.4) and deviations can be blamed on the use of the different

functionals.

At an extremely high pressure of 215 GPa a transition from Cmecm into the
cesium chloride structure occurs. This 1s also in concordance with the stud-
les mentioned above. who rule out a further transition only up to pressures of
120 GPa [137]. The lattice parameters obtained for this phase are a = 3.202 A
representing an equilibrium volume of 32.82 A3/pair. The calculated bulk mod-
ulus is 74.5 GPa along with a pressure derivative of 4.4.

However. no other reference data are available vet. Since a distortion of the CsCl
phase would be possible as well. as it is the case for HgTe. the existence as well
as stability of the cesium chloride structure at high pressures for ZnS will have to
be investigated further theoretically as well as experimentally. The latter would

be very challenging due to the high pressure required.

After initially converse statements of an intermediate phase between zinc blende
and rocksalt. now the consensus is reached that the cinnabar phase is not stable
for zine sulfide. It was included in the calculations carried out and the discussion
presented liere due to the general importance of this structure within the group
12 chalcogenides. Furthermore, in GaAs cinnabar is found as a metastable phase
only [138]. This could he the case here as well.

In this study lattice constants of a = 3.807 A and ¢ = 8.745 A are obtained
(Vo = 36.6 A®/pair), leading to a ratio of ¢/a = 2.297, which is in good agreement
with the previous theoretical results (see table 5.5). The bulk modulus (By =
76.5 GPa) and its pressure derivative (B'=4.3) compare equally good (By =
81.0 GPa [139], B’ = 4.5 [138]). In contrast, the internal parameters u = 0.5016
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and v = 0.5004 deviate from the values obtained by Nazzal et al. with u = 0.455
and v = 0.480 [135]. The reason for this remains unclear. However, it means
that the coordination in cinnabar-ZnS is four-fold like in zine blende, unlike HgS,
which Qteish et al. found as well.

However, the results also confirm the non-stability of the cinnabar structure with
respect to SC16: The transition pressure of 15.31 GPa into the rocksalt form,
consistent with the results obtained by Nazzal et al (p; = 14.5 GPa) [135], is

well below the pressure for the transition ZB—RS (p; = 17 GPa).

5.3.2 Cadmium sulfide

The results presented here show that both the wurtzite and the zinc blende
structure become thermodynamically unstable with respect to the rocksalt form
of CdS. The transition pressure for the ZB—RS transition is 4.11 GPa, as op-
posed to 4.15 GPa for the W--RS transition. A recent DFT-LDA study by
Benkhettou et al. found a transition pressure of 3.2 GPa in both cases while
experimental results are available for the \WW—RS transition only and range from
2.3-3 GPa.

For the rocksalt structure a lattice constant of 5.503 A is determined along with
a volume of 41.66 A3 /pair, whereas the bulk modulus and its pressure derivative
are 73.3 GPa and 4.9, respectively. At a slightly elevated pressure of 4.02 GPa
we obtain the following parameters: a = 5.414 AV, = 39.67 A%/pair. Those
values compare very nicely to the lattice parameters obtained in experimental

investigations.

For the post-rocksalt behaviour of CdS two different orthorhombic distortions
of rocksalt have been discussed, that is either a Pmmmn or Cmcm structure (see
chapter 5.1). The calculations presented here support a transition into the Cimem
structure at approximately 43.99 GPa first, followed by a structure change to-
wards Pmmn at 61.56 GPa. This transition pressure is in excellent agreement
with Kirin et al., who obtain 47 GPa for the RS—Cmem transition [147].

However, considering that both structures are very close in energy in the range
where a transition would be possible and keeping in mind the deviations to
experimental results due to non-zero temperature effects, the results presented
here cannot with absolute certainty state the existence of the Cmem phase in
CdS. Hence both structures could be possible. Assuming the non-existence of

the Cmem phase, the RS—Pmmn transition would occur at 56.35 GPa, which
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Property This work Other theoretical Experiments
Rocksalt

a 5.503 (5.414) (5.3539, 5.353°) (5.42¢9)

Vo 41.67 (39.67) (38.359), (38.34%) (39.81°)

Bo 73.3 97.3%, 99.68° 86.7¢

B 49 4. 5% 0P 4 .44

et 5.010

P to Cmem 43.99 47.0¢ 514

p; to Pmmn 56.35 58.6° 567, 51/
Cmem

a (4.8906) (4.8837)

) (4.940) (4.8817)

c (4.845) (4.8757)

bh/a (1.009) (1.0007)

c/a (0.990) (0.9987)
y(Cd) (0.7036) (0.6997)

y(S) (0.2076) (0.1747)

v (29.30) (29.057)

By 89.8

B 38

E.n 5.008

pr to Pmmn 61.56

Pmmn

a (3.560) 3.480° (3.471%), (3.4937)
) (4.758) 5.138° (4.873%), (4.8777)
c (3.369) 3.550° (3.3999), (3.4127)
h/a (1.337) 1.476° (1.4044), (1.3967)
c/a (0.946) 1.020° (0.979%), (0.977/)
z(Cd) (0.3439) 0. 3555b (0.3197)

2(S) (0.1664) 0.1615° (0.1487)

V (28.54) 63.47° (57.069), (58.127)
By 55.8 107.0°

B’ 3.4 S

B, 5.248

py dist. CsCl 129

pr CsCl 361

YFP-LMTO-LDA from ref. [159]; PFP-LMTO-LDA from ref. [146]; “at 4 GPa from
ref. [141): “X-ray diffraction at 61 GPa from ref. [145]; *PP-LDA from ref. [147];
JADX at 60 GPa from ref. [12].

Table 5.6: Ground-state properties of the high-pressure phases of CdS. Presented
are the lattice constants a, b and ¢ (A), respective internal parameters,
ground-state volume Vy (A3 /pair), bulk modulus By (GPa) and its pres-

sure derivative B’ as well as the cohesive energy E.., (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate
higher pressure.
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Property Cesium chloride Cinnabar SC16
a 3.415 4.092 7.246
c - 9.598 -
c/a - 2.346 -
u(Cd) - 0.5081 0.1542
v(S) - 0.5035 0.6428
Vo 39.83 46.41 47.55
By 70.5 60.1 51.4
B’ 4.8 4.6 4.6
Econ 3.988 5.041 5.068
pt to RS - 0.89 1.56

Table 5.7: Ground-state properties of the high-pressure phases of CdS. Presented are
the lattice constants a and ¢ (A). internal parameters u and v, ground-state
volume Vg (A3 /pair), bulk modulus By (GPa) and its pressure derivative
B’ as well as the cohesive energy E,,; (eV/pair) and the transition pressure
pt (GPa) where applicable. No previous data are available.

compares very well to the X-ray diffraction data of Suzuki et al. (56 GPa) [145]
and other theoretical results [146].

In contrast, McMalon et al. [12] in the course of their ADX studies observe only
one transition at 51 GPa which would suit both of the pressures calculated here
for either the RS to Cmem or Pmmn transition. Unfortunately, Kirin et al. do
not investigate the stability of the Pmmn structure and the only other compar-
ative theoretical study claims Cmem to he unstable [146]. The presence of the
Cmcem structure as an intermediate phase hetween rocksalt and Pmmn therefore
remains an open question and should be investigated further experimentally.
Concerning the Cmem structure of CdS the following lattice parameters are de-
rived at 57.30 GPa: a = 4.896, b = 4.940, ¢ = 4.845 A (V" = 29.30 A3/pair,
b/a = 1.009, c¢/a = 0.990) along with y(Cd) = 0.7036 and y(S) = 0.2076. Those
values compare rather well to the ones fitted by McNalon et al. (a = 4.883,
b = 4881, ¢ = 4875 A, V' = 29.05 A3/pair, b/a = 1.000, c/a = 0.998,
y(Cd) = 0.699 and y(S) = 0.174 at 60 GPa [12]). The bulk modulus estimated
from the data points available is 89.8 GPa and its pressure derivative 3.3 from
the Murnaghan fit.

The solid-state properties for the Pmmn phase obtained are 3.560, 4.748 and
3.369 A for the lattice constants a, b and c, respectively, together with the in-
ternal parameters z(Cd) = 0.3439 and z(S) = 0.1664 at a pressure of 61.02 GPa
and an estimate of 55.8 GPa for the bulk modulus at 0 GPa (B’ = 3.4) is taken

from the Murnaghan fit using the data points available. Those values are in good
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agreement with experimental and theoretical data. \While the lattice constants
seem to compare better to the experimental results, the internal parameters are
closer to data obtained in other theoretical work (for further details see table 5.6).
In contrast. the bulk modulus deviates extremely, which is easily justified con-
sidering that no data points are available around 0 GPa (where the Murnaghan
fit is most reliable) and due to the unreliability of LDA when it comes to bulk

moduli.

Interestingly enough at even higler pressures a seamless transition from Pmmn
into a distorted C'sCl structure is observed. This is indicated by fig. 5.2, where the
development of the lattice constants calculated for the Pmmn phase is depicted
depending on the pressure. Here one can see the pressure range in which the
Pmmn form of CdS is actually stable, and that at 129 GPa the lattice constants
a and b become equal. At this pressure the parameters are a = 3.997, b = 4.002,
c=2978 A (V},, = 23.82 A3/pair) with 2(Cd) = 0.4993 and z(S) = 0.0740, which
means a lattice constant ratio of b/a = 1.001 and c¢/a = 0.745. The ideal cesium
chloride structure would be reached if « = b and ¢/a = 1/v/2 = 0.707. with the
atoms being positioned at z(Cd) = 0.5 and z(S) = 0.0. Therefore. it is concluded
that a small distortion along the z-axis remains. where the lattice constants «
and b given above would be equal to a CsCl lattice constant of 2.83 A.

However, a further transition into the exact cesium chloride structure is pre-
dicted at extremely high pressures of around 361 GPa (V,, = 18.04 A3/pair)
with a lattice constant of 2.623 A. To the best of our knowledge neither the
distorted nor the exact cesium chloride phase have been detected vet. neither ex-
perimentally nor theoretically, but fit very well within the line-up of other group

12 chalcogenides.

There is no evidence for a cinnabar phase in cadmium sulfide. But cue to reports
claiming its existence in zine sulfide and for reasons of consistency it was included
in this study. The lattice parameters obtained are 4.092 and 9.598 A for a and c,
respectively, whereas the internal parameters are calculated to be u(Cd) = 0.5081
and v(S) = 0.5035. Furthermore, the bulk modulus, its pressure derivative and
the cohesive energy are By = 60.1 GPa, B’ = 4.6 and E.,) = 5.041 eV (at zero
pressure). To the best of our knowledge no theoretical investigations have been
carried out to compare with.

However, as expected the cinnabar phase is not a stable phase in C'dS according
to the study presented here, as the pressure for the wurtzite to cinnabar transition

with 6.75 GPa as well as for the zinc blende to cinnabar transition with 6.69 GPa
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Figure 5.2: Lattice parameters depending on the pressure calculated for the Pimmn
structure of CdS.

is well above the pressures for the respective transitions into the rocksalt structure

with 4.15 and 4.11 GPa, respectively.

In addition the SC16 structure was investigated as well due to the lack of its
study in CdS. However, the ZB—SC16 and W—SC16 transition occurs at 6.97
and 7.03 GPa and would therefore happen after the transition to RS. Yet, it
should be mentioned that the structure would be extremely close in energy to
the cinnabar structure. The lattice parameters obtained for the SC16 structure

are listed in table 5.7.

5.3.3 Mercury sulfide

The first transition under high pressure in HgS according to the study at hand
takes place at 28.7 GPa, which is in excellent concordance with e.g. the GGA
results of Sun et al. (26.57 GPa) [91] and shows good resemblance with var-
ious experimental investigations (13-29 GPa, see table 5.3), too. It should be
mentioned that the transition is rather smooth, with a corresponding change of

the internal parameters towards the trigonal description of rocksalt, meaning the
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Property This work Other theoretical Experiments
Rocksalt

a 5.582 (5.150) (5.052 (5.180%), (5.070°)
Vo 43.47 (34.15) (32.23 (34.74%) (32.58°)
By 67.3 67.3¢

B 5.2 4.6¢

o Y %o 0

py to Cmem 51.55 5F
pt to Pmmn 63.51

Cmem

a (4.895)

b (4.898)

¢ (4.907)

b/a (1.001)

c/a (1.003)

y(Hg) (0.7356)

y(S) (0.2365)

V (29.41)

By 113.2

B’ 29

Eoa 3.294

p¢ to Pmmn 57.85

Pmimn

a (3.633)

b (1.930)

c (3.312)

b/a (1.357)

c/a (0.912)

2(Hg) (0.3150)

A5 (0.1903)

V (29.66)

By 89.5

B’ 3.2

Econ 3.343

Py CsCl 210.87

IAPW+L®-GGA from ref. [91]; ®X-ray diffraction at 23.4 GPa from ref. [165]:
¢X-ray diffraction at 30 GPa from ref. [148]; TADX from ref. [12].

Table 5.8: Ground-state properties of the high-pressure phases of HgS. Presented
are the lattice constants a, b and ¢ (A), respective internal parameters,
ground-state volume Vj (A3/pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E.,, (eV/pair) and the

transition pressure p; (GPa) where applicable.
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E-V curves superpose at this point. This was also observed by Sun et al. and
indicates a second order transition.

The ground-state properties obtained for the rocksalt modification of HgS are
a = 5582 A, Vy = 44.03 A3/pair, By = 67.3 GPa and B’ = 5.2. The cohesive
energy is 3.337 eV /pair. Comparing with the theoretical and experimental values
of other work listed in table 5.8, the lattice constant is strongly overestimated.
Bulk modulus and B’ are in excellent concordance with the GGA study of Sun
et al. They give a ground-state volume of 32.23 A3/pair, which would go along
with a lattice constant of 5.052 A. This deviates from the value calculated here
by quite a few percent. However, this value is for the rocksalt structure treated
as the cinnabar structure using u = v = 2/3, hence avoiding the error due to
change of symmetry. At a pressure of 30.24 GPa the calculations presented in
this work give a lattice constant of 5.150 A, which certainly agrees with the ex-
perimental values. A recent publication also mentions that the authors observed
the rocksalt and cinnabar phase to coexist between 15-23 GPa. This gives rise
to relatively large errors for the unit-cell parameters, explaining the deviation

between experiments and the results presented here [165].

Since in the case of CdS, both Cmem and Pmmn were suggested as high-pressure
structures and not much is known of the post-RS behaviour of HgS, calculations
were carried out determining both of those structures for HgS as well. The
stability of the Cmcm phase over the Pmmn modification is supported by the
results presented here. The transition from rocksalt into the Cmem phase ac-
tually takes place at 54.55 GPa compared to 63.51 GPa for the Pmmn form.
The Cmem-—Pmmn transition is predicted at 57.85 GPa. Both structures are,
however, close in energy. Yet, the pressure predicted for the first transition
agrees very well with the one measured by Nelmes and McMahon, who obtained
52 GPa. But too little is known vet, as they did not resolve the structure, but
merely suggested 'a distortion of the NaCl structure, possibly Cimem’ [12].

Calculating the lattice parameters for the Cmem structure gives a = 4.895 A,
b =4.898 A ¢ =4.907 A (b/a = 1.001, c/a = 1.003) and V = 29.41 A3/pair
as well as y(Hg) = 0.7356 and y(S) = 0.2365 at 67.77 GPa. Bulk modulus and
pressure derivative are estimated from the data points available (see table 5.8).
The lattice constants obtained for the possible Pmmn phase are a = 3.633 A,
b=4.930 A, c =3.312 A along with the following internal parameters: z(Hg) =
0.3150 and 2(S) = 0.1903. All those values are determined at a pressure of

63.54 GPa. Unfortunately, no data to compare with is available and further
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Figure 5.3: Lattice parameters depending on the pressure calculated for the Pmmn
structure of HgS.

investigations by theoretical means would be strongly recommended.

Finally, we predict the transition into the CsCl structure at about 210 GPa.
However, subjective to the few structures investigated we cannot rule out the
transition into intermediate phases between Pmmn and CsCl that vet have to
be discovered either experimentally or theoretically. In addition, the pressure
necessary is extremely high making it difficult for experimentalists to obtain this
structure. No evidence is found in HgS for the distorted CsCl structure occurring

intermediate between Pmmn and CsCl in CdS (see fig. 5.3).

Furthermore, the SC16 structure was calculated for HgS as well, which has not
been done before. However, it is always at least 0.1 eV higher in enthalpy
compared to the cinnabar phase and therefore unlikely to appear in HgS. The
ground-state properties were obtained anyway and are Vy = 48.81 A3/pair, a =
7.309 A, ©v = 0.1471 and v = 0.6462, By = 45.67 GPa, B’ = 6.0 and E., =
3.500 eV.
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5.4 Electronic structure

5.4.1 Zinc sulfide

Looking at the electronic structure of the ZnS equilibrium phases while using the
discussed scalar-relativistic approach, the band structures and density of states
depicted in fig. 5.4 indicate a wide-gap semiconductor with a direct fundamental
gap for both polymorphs.

[t occurs at the ['-point in the Brillouin zone and is 2.00 and 2.06 eV for zinc
blende and wurtzite, respectively, showing a rather similar electronic structure
despite the different structure and coordination. It should be mentioned that
further local minima of the conduction bands are located at the L-; X- and K-
points and at the A-point as well as between L and A/ for the cubic and hexagonal
modification, respectively. Additional local valence-hand maxima (VBM) can be
found at the L-point for the zinc blende form and at A. A/ and f/ for the wurtzite
phase of ZnS.

As expected those results underestimate the experimental gap of 3.8 and 3.9 eV
severely [153]. but agree very well with other theoretical DFT work, where the
hand gap is calculated to he 1.82 (LDA) [170] and 2.0 eV (GGA) [150] for ZB-ZnS
and 1.97eV (LDA) [171] for the hexagonal structure. Furthermore, comparability
with experiments can be improved using the GW approximation, where Fleszar

et al. obtained fundamental gaps of 3.38-3.99 GPa for the zinc blende form [170).

5.4.2 Cadmium sulfide

Concerning the equilibrium structures of CdS, the method employed here gives
a band gap of 1.08 and 1.00 eV for the wurtzite and zinc blende form, respec-
tively. Like for ZnS, the valence-band maximum as well as the conduction-band
minimum are at the centre of the Brillouin zone, thus making hoth polymorphs
direct wide-gap semiconductors (see fig. 5.5).

However, for the cubic form further local minima of the first conduction band
are located at the L-, X- and K-points. Another local maximum of the last
filled valence-band can be found at the L-point. In the case of the wurtzite form
more conduction-band minima are found at the A-point and between L and M,
whereas another local valence-band maximum is located at A, Al and H.
Again, values estimated by experimental means with a gap of E¢(I') = 2.58 eV
(at 1.8 K) for hexagonal and E,(I') = 2.48 eV (at 1.6 K) [120] for cubic CdS
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Figure 5.4: Band structure and density of states (normalized per pair) at zero pres-
sure for the ZnS polymorphs zinc blende (upper panel) and wurtzite
(lower panel) calculated within the scalar-relativistic DFT-GGA frame-
work. The valence-band maximum is set to zero energy. The black solid
lines indicate the valence and the red dashed lines the conducting bands,
respectively.
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Figure 5.5: Band structure and density of states (normalized per pair) at zero pres-
sure for the CdS polymorphs wurtzite (upper panel) and zinc blende
(lower panel) calculated within the scalar-relativistic DFT-GGA frame-
work. The valence-band maximum is set to zero energy. The black solid
lines indicate the valence and the red dashed lines the conducting bands,
respectively.
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at zero pressure are very much underestimated, but the electronic structure is
in good qualitative agreement. Anotler theoretical LDA calculation by Fleszar
et al. finds a direct handgap of E4(I') = 0.80 eV for the zinc blende modifica-
tion similar to the value obtained here, but the authors refine their result using
different GW approximation approaches (F,(I') = 2.11 — 2.63 eV) [170]. Cal-
culations using so-called self-interaction-corrected pseudopotentials approximate

the band-gap value for the hexagonal polymorph to Ey (') = 2.5 eV [120].

5.4.3 Mercury sulfide

Like for mercury oxide. again the band structure and density of states was calcu-
lated at different levels of theory, employving a pure scalar-relativistic approach
as well as including the effects of spin-orbit coupling. The results can he found
in figs. 5.6 and 5.8 for the cinnabar and zinc blende modification. respectively.
HgS in its prototype cinnabar modification has according to various lumines-
cence experiments a band gap of 2.275 eV, which is most likely direct [120]. It
is therefore classified as a large-gap semiconductor [172].

Wlhen facilitating a scalar-relativistic approach. the trigonal modification of mer-
cury sulfide is technically an indirect band gap semiconductor (see upper panel of
fig. 5.6). The CBM occurs at the ['-point at 1.60 e\ with other local minima to
follow at A/ (2.17eV) and L (2.27 eV). The VBM can be found along the A-line
between I' and A along with further local maxima hetween 4 and 1. (-0.005 eV)
and between A and f{ (-0.005 eV) as well as at ' (-0.020 eV).

However. this means that the smallest direct fundamental gap occurs at the I'-
point with Ey(I') = 1.62 eV. This is extremely close in energy to the indirect
gap. which explains why experiments classifv it as direct.

Furthermore, those results (including the DOS) are in excellent qualitative agree-
ment with the GGA calculations of Sun et al. using a APW+lo plane-wave basis
set [173]. According to their graphs the band gap is around 1.6 eV as well (hard
to estimate from just pictures).

Taking into account spin-orbit splitting, the picture does not change dramati-
cally, as can be seen in the lower panel of fig. 5.6. However, the CBM is now
slightly shifted and two minima open up extremely close to I' at an energy of
1.585 eV. They are located at the A-line between I' and A and between A and T'.
Further minima can be found around Al (2.124 e V) and shortly before L between

A and L (2.243 eV). Concerning the VBAI, the local maximum A and H in the

scalar-relativistic calculations becomes more prominent, but a further maxima
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Figure 5.6: Band structure and density of states (normalized per pair) at zero
pressure for the HgS cinnabar polymorph calculated within the scalar-
relativistic DFT-GGA framework (upper panel) as well as upon inclusion
of spin-orbit effects (lower panel). The valence-band maximum is set to
zero energy. The black solid lines indicate the valence and the red dashed
lines the conducting bands, respectively.



5.4. ELECTRONIC STRUCTURE

>

-1

e n

w

9

3

Hg DOS (eV pair)

=]

-1

w

)

S DOS (eV pair)

=]

=)}

Hg DOS (eV pair)’

s~ o

1

)

2is ] T l T
;
T e

<

S

<

o

-

\s

7

o) | L L

L]

S DOS (eV pair)

o

Figure 5.7:

[ I T l T I ”‘“‘ T ] T I T T T i
- A — 5|
r Al == P -
S i‘!”' --d| 4
B 4! ]
I B ]
- z g i ]
L i H {7 il
- o L | -
TS
L v \ _
L | . | L Lol . N e S| i P
r ) [ T l T ‘ T l T | T | T I T
| | _
I
L o _
‘J’w (YA
L ! L [N 0 i
J ' y y Y LN
) [ S — /‘g.;ﬁum r/l"_i\’/ T SRR ol .
12 -10 8 -6 -4 2 0 2 4
Energy (eV)
S T A ;i T T A A B
= H i ==
; TR 1] e B
0 byt I = d]
i . i I ]I' 4
= ‘ ' | 5 JIil —
- : - -
Voh s
= Lo i i
_ TR :
B AL ]
>AA& gt
4 P T | P
I T T T T T T o 1 L
- 4

)
e a1
I
‘ wt vy
a\n i
[Fy 27|

T S

-12 -10 -8

-6 4 E
Energy (eV)

2 0 2 4

111

Site-projected density of states at zero pressure for the HgS cinnabar
polymorph calculated within the scalar-relativistic DEFT-GGA framework
(upper panel) as well as upon inclusion of spin-orbit effects (lower panel).
The black solid, red dashed and blue dash-dotted line indicate the s, p

and d site-projected DOS, respectively.
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between A and L occurs almost at the same energy. More follow between I' and
A and between A and I still very close in energy. The first direct transition is
possible around I' with a gap energy of 1.614 eV. Further theoretical results on
this level of theory would be desirable to compare with.

The site-projected DOS are depicted as well using both the scalar-relativistic
approach and upon inclusion of spin-orbit coupling (see fig. 5.7). The scalar-
relativistic DOS agrees well with the results of Sun and Dong [173]. The d-bands
feature the typical crystal field splitting pattern of the trigonal bonded struc-
tures, where the three peaks are separated by approximately 0.1 and 0.4 eV
respectively in accordance with experimental values (0.10 and 0.39 eV calcu-
lated from 1), = 0.05 eV [120]). The most prominent feature of the spin-orbit
corrected site-projected DOS is again the spin-orbit splitting in the d-bands of
the Hg atom of about 2 eV resembling the one found for the atomic splitting
(1.86 eV [128)).

Turning now to the zinc blende modification of mercury sulfide, it is particularly
interesting because of its rather unique electronic structure. It was first described
as a zero-gap semiconductor, i.e. semimetal, evoked by a band degeneracy due
to symmetry [120]. However, a band gap of 0.54 eV is measured through absorp-
tion at 300 K [120]. Other measurements through plasma edge reflectivity and
interband absorption conclude an inverted band structure along with a negative
band gap -0.110 to -0.150 eV [172]. The inverted structure can be explained by
the large effective positive charge of the Hg core. which causes the bands of the
['¢ svmmetry to be shifted below the I'g level. Therefore, only two of the four
['s bands are occupied, while the other two contribute to the conduction hand.
The hence induced degeneracy with the highest valence band gives rise to a zero
gap [168].

Interestingly enough, the scalar-relativistic calculations carried out (see upper
panel of fig. 5.8) confirm the non-existence of the fundamental gap. However,
if one looks at the electronic structure determined by the inclusion of spin-orbit
coupling, depicted in the lower panel of fig. 5.8, counting bands a small band-gap
opens up close to the I'-point. The VBM occurs at the ¥-line between K and
I'. But two more local VBM, which are almost as high appear along the A-line
between ' and L and at the A-line between I and X, all of which are very close
to the centre of the Brillouin zone. The CBM can be found at the I'-point at
0.028eV. Hence, this HgS phase at ambient conditions has an indirect energy gap

of Ej(I' — £) = 0.028 eV, whereas the smallest direct gap can be found at the
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Figure 5.8: Band structure and density of states (normalized per pair) at zero pres-
sure for the HgS zinc blende polymorph calculated within the scalar-
relativistic DFT-GGA framework (upper panel) as well as upon inclusion
of spin-orbit effects (lower panel). The valence-band maximum is set to
zero energy. The black solid lines indicate the valence and the red dashed
lines the conducting bands, respectively.
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Y-line and is determined to be E (I')=0.090 eV. This agrees very well with the
result of Cardona et al. (Ef"e = 0.091 eV [174], VASP-GGA) and Delin et al.
(Edireet < 0.1 eV [168]. FP-LMTO LDA). According to the authors those values
also match the experimental results of Zallen and Slade (0.25 eV) reasonably
well.

However. the negative spin-orbit splitting needs to be accounted for, which in-
verts the band structure. This means the energy gap is found between I'g and
I's. In that case, according to the calculation presented here. the direct energy
gap obtained is -0.57 eV, which is in excellent agreement with the reference cited
above (Eg""“"("("“ = —0.483 eV. E;“’“'*LDA = —0.573 eV). Interestingly enough
Cardona et al. also point out that, according to the GW calculations of e.g.
Fleszar and Hanke [170]. the I’} state of HgX compounds calculated within LDA
needs to be corrected by 0.75 eV. If one adds this value to the obtained gap
energy. the fundamental gap of zinc blende HgS actually becomes positive. This
means it has to be characterized as a semiconductor. The site-projected DOS
are shown in fig. 5.9.

Comparing the scalar-relativistic calculations presented here with other theoreti-
cal reports [162. 168]. the resemblance is good. In general like for HgO. a further
investigation of those band structures using LDA+U or the G\V approximation

would be recommended.

5.5 Relativistic influences

5.5.1 Equilibrium structure

System a c u /v By B E. 1o

Wurtzite 1398 7.091 0.3792 / - 48.1 4.5 5.383 59.37
Zinc blende 6.192 - -/ - 479 47 5377 59.35
Rocksalt 5.711 - -/ - 674 4.7 5302 46.57
Cesium chloride  3.523 - -/ - 674 48 4432 43.73
Cinnabar 4.233 10.085 0.5060 / 0.5032 53.8 4.6 5.213 52.17
SC16 7.537 - 0.1539 / 0.6417 46.3 5.1 5.215 53.52

Table 5.9: Ground-state properties of equilibrium and high-pressure phases of HgS
within the nonrelativistic approach. Presented are the lattice constants
a and ¢ (A), respective internal parameters, ground-state volume Vj
(A3 /pair), bulk modulus By (GPa) and its pressure derivative B’ as well
as the cohesive energy E ., (eV /pair).
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Looking at the nonrelativistic energy-volume curves for HgS, depicted in the
lower panel of fig. 5.10, the equilibrium behaviour changes dramatically. The
cinnabar structure disappears not only as the equilibrium phase, but completely.
In summary a similar behaviour as in ZnS and CdS is found, meaning the struc-
tures lying lowest in total energy are wurtzite and zinc blende. Yet, the wurtzite
structure is slightly preferred with an energy difference of only 6 meV/pair. This
means, assuming the non-relativistic description of HgS. the relative stability
of the wurtzite form compared to zinc blende structure actually increases going
from ZnS via C'dS to HgS, whereas the relativistic influences change that picture
favouring the cinnabar structure over wurtzite instead.

The lattice properties determined for the wurtzite structure are @ = 4.393 A,
c=7.091 A and 1y = 59.37 A3/pair (see table 5.9). Hence, the lattice constant
is 14% and 5% larger than for the respective structure in ZnS and CdS. This
is opposed to a value of 4.256 A in relativistic wurtzite-HgS. making the lattice
constant almost comparable to the one in C'dS and therefore showing the tyvpical
relativistic contraction.

This effect becomes even more obvious, if one looks at the bond distances (see
table 5.10): Induced by the structure change due to relativistic effects. the metal-
sulphur bond distance of cinnabar-HgS (2.40 A) is comparable to the one oh-
tained for the equilibrium structure of ZnS (2.35 A). This means a huge rela-
tivistic contraction in the intra-chain Hg-S distances of 0.28 A, if one compares
the relativistic to the nonrelativistic value (2.68 A). However, this comes at the
cost of increasing the inter-chain Hg-S bond distance to 3.36 A. Hence, the over-
all volume expands from 55.16 (relativistic) to 59.37 A3/pair (nonrelativistic)

decreasing the density from 7.19 to 7.00 g cin 3.

The experimental value for
cinnabar-HgS is 8.2 g em =3 as compared to 4.0 g cim™? in ZB-ZnS and 4.8 ci—3
in W-CdS [114].

Looking at the cohesive energies. a deviation of over 1.73 eV /pair is determined

changing from the relativistic (F.;, = 3.657 eV/pair) to the nonrelativistic
(Feon = 5.383 eV/pair) picture, hence indicating a strong lattice destabiliza-

tion due to relativistic influences.

Furthermore, the extreme contraction in bond length is even applicable if one
compares the metal-sulphur distances of HgS with the hypothetical cinnabar
forms of ZnS and CdS. Even then the value is almost comparable to the 2.39 A
obtained in cinnabar-ZnS and significantly lower than in nonrelativistic cinnabar-
HgS (dygs = 2.70 A). This is due to a significant change in the internal parame-

ters u and v, leading to a fouwrfold coordination instead of the 2+4 coordination
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found in relativistic HgS (see fig 3.5 for visualization).

CHAPTER 5. THE GROUP 12 SULFIDES

The solid-state properties of the possible equilibrium phases of nonrelativistic

HgS as well as the cohesive energies are summarized in table 5.9.

System ZnS Cds HgS nonrel. HgS
dys  dyy o dys dan dus duyae dys dan
Wurtzite 2.35 3.84 2.57 4.20 2.60 4.24 2.68 4.36
exp. 2.34 3.82 2.53 4.12 - - - -
Zinc blende 2.36 3.85 2.56 4.19 2.60 4.25 2.68 4.38
exp. 2.34 3.82 2.52 4.11 2.53 4.14 - -
Cinnabar 2.39 3.48 2.99 3.79 2.40 4.39 2.70 3.97
- - - = 2.41 4.20 - -
exp. - - E - 2.37 4.14 - -

Table 5.10: Closest metal-sulphur bond distance darg and closest metal-metal dis-
tance dayas in A of the respective equilibrium structures of the group 12

sulfides.

5.5.2 High-pressure structure
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Figure 5.11: Lattice parameters depending on the pressure calculated for the Pimmn
structure of nonrelativistic HgS.
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While the change in the equilibrium structure accompanying the neglect of rel-
ativistic effects is rather dramatic, nothing special can be said about the high-
pressure phases of HgS in those circumstances.

A transition to the rocksalt structure is predicted to happen at 1.07 GPa ending
the stability range for the wurtzite form (p; = 0.97 GPa for zinc blende). The
ground-state lattice constant of this phase is calculated to be 5.711 A, which
is significantly larger than the respective values for the wurtzite form of ZnS
(5.108 A), CdS (5.503 A) and relativistic HgS (5.582 A). The bulk moduli de-
crease in the same order. but are almost identical for relativistic and nonrela-
tivistic HgS.

Subsequently. a transition to the Cimcm structure takes place at 37.97 GPa. The
Pmmn structure is unstable in the presence of Cimem and the respective transi-
tion (RS-—»Pmmn) would only occur at 43.80 GPa. However, in the transition
region the three structures are less than 2 meV apart from each other in enthalpy.
making it difficult to make predictions due to the precision of the calculations.
The solid-state properties for the Cincm structure are V' = 34.59 A3 /pair. a =
5172 A, b =5.175 A. ¢ = 5.169 A (hence b/a = 1.000 and c/a = 0.999) as well as
y(Hg) = 0.7388 and y(S) = 0.2393 at 40.70 GPa. For the Pmmn modification the
following values are obtained at 44.86 GPa: 1" = 33.36 A*/pair. a« = 3.848 A.
b= 4985 A ¢ = 3478 A, b/a = 1.295, ¢/a = 0.904, z(Hg) = 0.3590 and
z(S) = 0.1508. The transition from Cimem to Pmmn takes place at 43.94 GPa.
Finally. at 73.6 GPa the lattice constants a and b become equal and the ¢/a
ratio indicates a transition towards distorted CsCl (see fig. 5.11) having an
approximate lattice constant of 2.972 A at 108 GPa. with a further transi-
tion to CsCl at 280.25 GPa. where a lattice constant of 2.767 A is calculated
(V' =21.18 A3 /pair).

[t should be mentioned that neither the cinnabar nor the SC16 structure are

stable in nonrelativistic HgS. All properties are summarized in table 5.9.

5.5.3 Electronic structure

Considering the small energy difference and following the trend from ZnS and
C'dS it is likely that both the zinc blende and the wurtzite phase would exist
as an equilibrium phase for nonrelativistic HgS. Therefore, electronic structure
calculations for both of those potential nonrelativistic equilibrium states of HgS
were carried out. Fig. 5.12 indicates that the band structure and DOS for non-

relativistic HgS are rather similar to the ones obtained for CdS.
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work. The valence-band maximum is set to zero energy. The black
solid lines indicate the valence and the red dashed lines the conducting
bands, respectively.
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The wurtzite modification of HgS would have a semiconducting character with a
direct band gap of 0.97 eV at the centre of the Brillouin zone. Additional local
VBM and CBM can be found. This means compared to the stable relativistic
equilibrium form (cinnabar) the band gap is significantly reduced, imitating the
behaviour in wwrtzite-CdS. However, the semiconducting properties are main-
tained.

For the zinc blende structure the changes due to relativistic effects are even more
severe. The inverted band structure is now abolished, leaving nonrelativistic cu-
bic HgS as a rather ordinary small-gap semiconductor. The VBM as well as the
CBMI, similarly to CdS, can be found at T', hence giving rise to a direct band-gap
with £y(I') = 0.89 eV, again similar to ZB-CdS. Other local CBMI, however much
higher in energy, can be found at X and A’

The site-projected DOS of both possible equilibrium forms of nonrelativistic HgS
are shown in fig. 5.13. For both polymorphs the site-projected DOS is rather
simplified compared to the relativistic equivalents. The crystal field splitting can
be clearly seen, which is around 0.23 eV for W-HgS as well as for ZB-HgS and is
typical for the tetrahedral honding in those structures. In both cases the Fermi

edge is characterized mainly by the Hg-5d and S-2p orbitals.

5.6 Summary

In general, the properties for the group 12 sulfides are in good agreement with
experimental and other theoretical work, where available. This is true for the
equilibrium as well as high pressure phases. Concerning the electronic structure,
the band gap is generally drastically underestimated due to the known short-
comings of DFT in this context, yet qualitative agreement is ensured.

The predicted transitions paths are mostly in concordance with experiments.
However, for ZnS the stability of the SC16 structure as an intermediate phase
between the zinc blende and rocksalt form is supported in accordance with other
theoretical work. Furthermore, a transition from the Cmem to a cesiun chloride
structure has been newly predicted. However, the new structure still needs to be
confirmed experimentally, especially with respect to possible intermediate phases.
Furthermore, the previously discussed Cmem and Pmmn structures of CdS are
for the first time investigated together with the same method and compared. In
addition, the Cmem and Pmmn structures found in CdS are investigated theo-

retically for HgS and are calculated to be stable in HgS under higher pressure as
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well, which has not been done before. Since in both cases the two structures are
rather close in energy, it is likely that both phases might exist in a mixed form
in experiments. This would explain why both structures only partially explain
the diffraction pattern found experimentally in CdS. Furthermore, a possibly
new phase following the Pmmn structure in C'dS is predicted and identified as a
distorted CsC1 form stretched along the c-axis. A high-pressure cesium chloride
form in HgS has been predicted as well, which should be confirmed experimen-
tally as well as theoretically to rule out intermediate phases.

Concerning the influence of relativistic effects, it is found that especially the
equilibrium structwre of HgS is significantly altered if a nonrelativistic treatment
is chosen. In this case the cinnabar phase, similar to what was observed in HgO.
becomes unstable and even disappears not only as an equilibrium phase, but as
a possible high-pressure phase as well. Hence, this modification suppresses the
wwrtzite form, which nonrelativistically would increase in stability going from
ZnS via CdS to HgS. Yet. a relativistic lattice destabilization of 1.73 eV/pair is
already less than in HgO, where the difference amounts to more than 2 eV/pair.
This shows for instance in the fact that the relative stability of the cinnabar form
compared to the zinc blende form is already less. i.e. the zinc blende structure
is found as a high-temperature equilibrium phase in HgS.

The high-pressure behaviour for HgS as well as the electronic structure hecome
more similar to C'dS, which is indicated by a similar transition path and smaller

band gaps.
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Chapter 6

The group 12 selenides

6.1 Occurring crystal structures

6.1.1 Zinc selenide

Zinc selenide crystallizes in a zine blende structure with a lattice constant of
a = 5.668 A under ambient conditions. It can be found as a grey microscopic
mineral known as stilleite. Depending on the preparation conditions it may. how-
ever. also adopt its high-temperature (metastable) wurtzite structure with the
lattice constants @ = 4.003 A and ¢ = 6.540 A [120).

A transition under pressure was observed at around 13 GPa by means of op-
tical [175. 176] as well as resistivity [177. 178] measurements. and the new
phase was reported to have a (site-ordered) rocksalt structure (a = 5.110 A
at 13.6 GPa) with a reproted volume change (AV/15) of 13% [12. 102].

It should also be noted that. after Raman studies by Lin ef al. and Greene et
al.. the issue was raised. whether the NaCl phase is actually an approximately
equal mixture of rocksalt and a simple hexagonal phase based on diffraction data
anomalies at around 5 GPa or whether it transforms completely into this phase
at 48 GPa. However, Raman studies of Arora et al. and ADX studies of Nelmes
and McMahon show no such evidence [12].

At 30.5 GPa a very slow Cmcm-type distortion of the rocksalt structure is de-
scribed by McMahon and Nelmes with the final transition at about 48 GPa [179)].
The lattice parameters for ZnSe-III at 60 GPa are a = 4.728 A, b = 4.800 A,
c = 4703 A, y(Zn) = 0.704 and y(Se) = 0.196. Nelmes and McMahon also

report a very weak further distortion somewhere above 48 GPa.

125
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Fuwrthermore, a potentially stable but fourfold coordinated cinnabar phase is
suggested by a theoretical pseudopotential study of Coté et al. i1 a region of
10.2-13.4 GPa [180], which however is close to the resolution of the calculations.
It is also supported by a theoretical investigation of Qteish and Murioz [181] and
experimental findings of Pellicer-Porres et al. [182]. The latter, however, observe
the cinnabar phase in a region of 10.1-10.9 GPa only.

Theoretical reports have furthermore suggested the SC16 structure as an interme-
diate phase between the zinc blende and the rocksalt modification [139, 181, 183].
Later, the results for both structural parameter data as well as transition pres-
sures of the different zinc selenide phases are summarized in tables 6.1, 6.4 and 6.5
(see chapters 6.2.1 and 6.3.1). For comparison the above discussed theoretical

and experimental reference data is listed in those tables as well.

6.1.2 Cadmium selenide

Like cadmium sulfide, cadmium selenide at room conditions exists in a stable
wurtzite as well as a metastable zine blende structure. The lattice parameters
are a = 4.300 A and ¢ = 7.010 A and a = 6.052 A, respectively [12]. The
naturally occurring mineral of cadmium selenide is known as cadmoselite, which
is a black to pale grey opaque yet very rare crystal.

The wurtzite form of C'dSe was first reported to transform at 2.7 GPa (optical
study) [140]. which later turned out to he a nonmetallic (site-ordered) rocksalt
structure [184, 185] with a lattice constant of @ = 5.08 A at 10 GPa and an
indirect band gap of 0.65 eV at 3 GPa ([120, 180]). The transition is indicated
by a drastic decrease in electrical resistivity [187] as well as a volume change
(AV/Vy) of 16.4 % [143].

Not many high pressure studies of C'dSe are available, but a pseudopotential
calculation [188] predicts a transition into a cesium chloride structure at about
94 GPa. However, a transition into an intermediate phase between NaCl and
CsCl is possible and later studies suggest the cinnabar as well as the Cmcm
structure. A transition from rocksalt to Cmem was predicted by first-principles
calculations at 29 GPa [180] and subsequently confirmed by ADX studies of
Nelmes and McMahon (p; = 27.0 GPa). The refined (site-ordered) structure
at 34.4 GPa has the following lattice parameters: a = 5200 A, b = 5.222 A,
c¢=5.159 A y(Cd) = 0.703 and y(Se) = 0.214 [12].

They further observed a possible transition into a distorted Cmem structure

at approximately 36 GPa, which seems to be stable up to the highest pressure
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measured (85 GPa), but the structure could not be resolved.

In chapters 6.2.2 and 6.3.2 the structural parameters and transition pressures
obtained in this study for the cadmium selenide phases will be discussed. The
according tables 6.2, 6.6 and 6.7 can also used as a summary for the parameters
determined in the previously discussed theoretical and experimental reference

data .

6.1.3 Mercury selenide

Under ambient conditions mercury selenide adopts a semimetallic zine blende
structure [189]. which is naturally found as a dull grey (to reddish brown or
black) mineral called ticmannite in hydrothermal veins in association with other
selenides and calcite. It has a lattice constant of @ = 6.084 A. This is signalling
a change in the structural behaviour of the mercury chalcogenide to favouring
less complicated lattices.

However, a (site-ordered) cinnabar structure is still existent in HgSe, where
Bridgeman first observed a transition at a rather low pressure of 0.74 GPa [169).
The transition goes along with a strong increase in resistivity. indicating the
changeover into a semiconducting behaviour with a gap of 0.5-0.9 eV [189-192].
and a volume change (AV7/Vg) of 9.0 % [193]. In the course of their ADX stud-
ies Nelmes and McMahon report the lattice parameters to be a = 4.120 A.
¢ =9.560 A. u(Hg) = 0.662 and v(Se) = 0.550 at 4.0 GPa [194]. Therefore, the
coordination is 2+2+2 with 3 pairs of unlike neighbours, at which the bond dis-
tances are 2.541, 2.891 and 3.240 A. respectively. Hence, the cinnabar structure
in HgSe differs significantly from the one obtained in HgO and HgS.

In addition, McNahon et al. discovered another transition of the zinc blende
HgSe phase, which they identified as a (site-ordered) orthorhombic distortion of
zinc blende with the space group (222,. It appears due to pressure increase
during a very slow ZB to cinnabar transition, is stable in only a small pressure
range (2.1-2.25 GPa) and therefore labelled as a "hidden’ intermediate phase
between zinc blende and cinnabar [195]. The following lattice parameters were
determined at 2.25 GPa: a = 5.992 A, h = 5.879 A, ¢ = 6.045 A, x(Hg) = 0.302
and y(Se) = 0.207.

Upon further increase of pressure the cinnabar form was found to adopt a (site-
ordered) rocksalt structure at 15.5 GPa with a = 5.360 A at 21 GPa (191, 192,
196]. The volume change is 0.2 % at 15.7 GPa [12].

Possibly a further high temperature phase exists in a pressure regime of 15-
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17 GPa, which is however unidentified {191, 192].

At 28 GPa another phase (HgSe-IV) was observed [196]. After a discussion
of possible structures (including orthorhombic, body-centred (3-tin) or hexag-
onal), it has been characterized as (site-ordered) orthorhombic Cimem by ADX
studies, at which the lattice parameters and atomic positions are & = 5.153 A,
b =15559 A, ¢ =4.972 A, y(Hg) = 0.644 and y(Se) = 0.141 at 35.6 GPa [194].
The transition is accompanied by a 0.9 % volume change.

No further transition has been found up to 50 GPa. The different phases of mer-
cury sulfide calculated within the scope of this thesis including structural param-
eters and the transition pressures are summarized in chapters 6.2.3 and 6.3.3. In
those chapters tables 6.3, 6.8 and 6.9 will also list the according data of previous

work as introduced above.

6.2 Equilibrium structures

6.2.1 Zinc selenide

The energy-volume relationships of the various ZnSe modifications are displayed
in the upper panel of fig. 6.1. They clearly show that zinc blende is the preferred
structure under normal conditions with a cohesive energy of 5.310 eV /pair. How-
ever, the wwtzite modification is separated in energy by only 9 meV/pair, which
fits nicely with an ab-initio LAPW calculation by Yeh et al., who noted a differ-
ence of 5.3m eV/atom [158]. The properties derived for the equilibrium phases
of ZnSe are summarized in table 6.1.

Using the Murnaghan EOS a lattice constant of 5.734 A is derived, which is
overall in good agreement with other theoretical work and overestimates the ex-
perimental value (5.668 A) by only 1 %. Good comparability is also given for the
bulk modulus, where a value of By = 57.3 GPa is obtained (sce table 6.1). For
the pressure derivative the calculated value of B’ = 4.7 lies within the relatively
wide range of experimental and theoretical results.

For the metastable wurtzite modification lattice constants of a = 4.049 A and
¢ = 6.646 A are calculated, which means that the ground-state volume of V{ =
47.20 A3/pair barely differs from the one obtained for ZB-ZnSe (47.13 A3/pair).
Those values are in excellent agreement with both experimental and other com-
putational work. However, the bulk modulus By = 57.1 GPa and its pressure

derivative B’ = 4.6 for unknown reasons deviate rather strongly from the ex-
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Figure 6.1: The total energy versus volume per cation-anion pair for different crystal
structures of ZnSe (upper panel) and CdSe (lower panel).
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Property

This work

Other theoretical Experiments

Zinc blende

a 5.734 5.606%, 5.669°. 5.820¢ 5.668, 5.667¢f
17 47.13 44.05 2, 45.55° 49.28¢ 45.524 . 45.5049
By 573 70.5%, 63.07t, 52.92¢ 64.7¢, 69.3/, 58 "
B’ 4.7 3.9%, 4.059, 4.88¢ 4.77¢, 5.5
Eon 5.310 4.574J, 5.20* 4.384 5.16%
i to RS 13.76 11%, 15-21¢, 12.6# 12, 10-16:5"
pr to C2 13.96 10.2¢ ;1371

pi to SC16 12.50 o I i

Wurtzite

a 4.049 3.974p 4.003"

c 6.646 6.5067 6.540"

c/a 1.641 1.6377 1.634"

u 0.3743 0.375P

Vi 47.20 44.49P 45.38"

By 571 80"

24 4.6 R

Eeon 5.801

P to 28 2 20

pe to RS 12.94 4.49 13.09

pr to C2 12.51

*PW-PP LDA from ref. [180]; "PW-PP GGA from ref. [183]: “FP-LAPW and
NAO+GC from ref. [197]; dfrom ref. (153); ¢from ref. [198]; / from ref. [88], 9from
ref. [102]: "X-ray diffraction from ref. [182]; *FP-APW+lo LDA from ref. [199];
JMD calculations from ref. [163]; *semi-empirical TB calculations from ref. [157]
and refs. therein; ‘PP Kohn-Sham LDA from ref. [181]; ™ from ref. [200]: "from
ref. [120]; °TB-LMTO from ref. [139]; PLAPW-LDA from ref. [158].

Table 6.1:

Ground-state properties of the equilibriumn phases of ZuSe. Presented

are the lattice constants a and ¢ (A), internal parameter u, axial ratio
c¢/a, ground-state volume V5 (A3 /pair), bulk modulus By (GPa) and its
pressure derivative B’ as well as the cohesive energy E.., (eV/pair) and
the transition pressure p; (GPa) where applicable.

perimental values (see table 6.1), but only one study is available to compare

with.

6.2.2 Cadmium selenide

The equilibrium phases of CdSe are known to be the zinc blende and wurtzite

structures as well. This again is confirmed by the calculations presented here, as

can be seen in the lower panel of fig. 6.1. The energy difference of 4 meV /pair
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Property This work Other theoretical Experiments
Zinc blende

a 6.202 6.050%. 6.055°, 6.035¢ 6.0529, 6.077¢
o 59.64 55.369. 55.50°, 54.95¢ 55.369, 56.11¢
By 15.0 57.2%, 54.6° 66.5° 55.0¢

B 15 5.57°

E o 1.778 1.448b, 1787 3.334¢ (Eq)
pr to RS 1.01 2.5%, 2.33¢ 2.629 2.8%

pe to €2 5.70

pr to SC16 5.53

Wurtzite

a 1.386 4.293', 1.27% 1.291-4.309¢
¢ 7.168 7.038'. 6.97Y 7.007-7.03¢
c/a 1.634 1.639'. 1.634 1.630-1.638¢
u 0.3753 0.374', 0.3756/ 0.3760¢
Yo 59.70 56.17", 55.157 56.05-56.47¢
By 15.0 53.6'. 57.9/ W84

B’ 1.8 4.6° 3.17¢
Egd 4.774

pi to RS 1.03 2.09 287

pr to €2 5.68

pr to SC16 5.51

PW-PP LDA from ref. [180]: °\ID from ref. [163]: €ab-initio GDSP/DFT from ref.
[162): ¥from ref. [12]: ®from ref. [120]: fsemi-empirical TB calc. from ref. [157] and
refs. therein: YFP-LMTO from ref. [146]: " from ref. [193]: 'FP-LMTO DFT-LDA
from ref. [201): J/LAPW-LDA from ref. [161]: *from ref. [140).

Table 6.2: Ground-state properties of the equilibriun phases of CdSe. Presented
are the lattice constants a and ¢ (A). internal parameter wu. axial ratio
c/a. ground-state volume V5 (A% /pair). bulk modulus By (GPa) and its
pressure derivative B’ as well as the cohesive energy E.,, (eV/pair) and
the transition pressure p; (GPa) where applicable.

between the two phases is very small, but according to the results presented here
the zinc blende structure seems to be slightly favoured (E48 = 1.778 eV /pair
= 1.774 eV/pair). A LAPW-LDA study by Yeh et al. also finds

the zine blende structure to be lower in energy by 1.4 meV/atom [158]. whereas

versus EX,
ref. [161] gives AEW~-28 = 2 meV /pair. Yet, this prediction is in contrast to
experiments, where the zinc blende phase is only metastable. It can most likely
be blamed on temperature effects and it should also be noted that the calculated
energy difference between the two phases is definitely smaller than for ZnSe and
HgSe, where zinc blende is the stable form.

The determined lattice constant of 6.202 A for the zinc blende polymorph com-
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pares well to other theoretical and experimental (a = 6.052 A) results, yet again
is by a few percent too large. This is a consequence of the method used. Values of
45.0 GPa and 4.5 for the bulk modulus and its pressure derivative, respectively,
are in reasonable agreement with other work (see table 6.2 for details).

For the wurtzite modification the lattice parameters are a = 4.386 A, ¢ = 7.168 A
and u = 0.3753, whereas the bulk modulus and its pressure derivative are calcu-
lated to be 45.0 GPa and 4.8. Within the limits of the method employed, those
values conmpare well to experimental as well as other theoretical results (see again
table 6.2) despite the overestimation of the lattice contants.

Note that wurtzite is the high temperature phase of C'dSe with the transition

occurring at 95 °C [120]. Table 6.2 summarizes the results.

6.2.3 Mercury selenide

The upper panel of fig. 6.6 shows the energy-volume dependencies for HgSe within
the scalar-relativistic treatment. The zinc blende structure vields the lowest total
energy and with a cohesive energy of 3.373 eV /pair is proven to be the preferred
polymorph under normal conditions.

The lattice constant of 6.272 A (V, = 61.68 A3/pair) is in excellent concordance
with other DFT calculations, but shows the typical overestimation in comparison
with experimental data (a = 6.085 A [120]). The opposite effect is achieved
for the bulk modulus, where a value of 43.0 GPa is determined compared to
57.6 GPa found in ultrasound velocity experiments [120]. Bigger discrepancies
are noted for the pressure derivative of the bulk modulus, where a value of 4.8
is obtained (/3' = 2.6 by ultrasound measurements). However, agreement with
other theoretical work is good.

Looking at the wurtzite structure with E.,, = 3.359 eV/pair, it is energetically
close. This means an energy difference of 14 meV /pair, which fits nicely with the
results of Yeh et al., who obtained a difference of 6.9 meV/atom [158]. The bulk
properties are a = 4.433 A, ¢ = 7.263 A, Vp = 61.81 A3/pair, By = 42.3 GPa and
B’ = 5.0. Similar values for the ground-state volume and the bulk modulus as
well as its pressure derivative indicate the structural similarity to the zinc blende
form. However, very few data are available to compare with (see table 6.3), and
even though it is occasionally claimed in literature that HgSe crystallizes in both
the zinc blende and the wurtzite form, no experimental structural parameters
could be found.

The results are concluded along with some previous work in table 6.3.
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Property This work Other theoretical Experiments

Zinc blende

a 6.272 6.077-6.303%, 6.194%, 6.255¢ 6.0857, 6.08-4¢

Vo 61.68 56.1-62.6%. 59.41°, 61.18¢ 56.33%; 56.30¢

By 43.0 58.1-59.22, 41.8b 51.667

B 1.8 2.6

By 343 3.856¢ (Egub)

p to C2 1.96 0.74-1.5°.
1.15-2.204

pr to €222, 1.35-3.00 2.1¢

Wurtzite

a 4.433 4.3109

c 7.263 7.0649

c/a 1.638 1.639¢

u 0.3747 0.3759

1o 61.81 56.829

By 12.3

B 5.0

Book 3.359

YFP-LMTO LDA and GGA from ref. [168]: *ab-initio GDSP/DFT from ref. [162]:
PW-PP GGA from ref. [174]: from ref. [120]: ¢from ref. [12]: /from ref. [200]
(€222, mixed with ZB between 2.1 and 2.25 GPa): ILAPW-LDA from ref. [158|.

Table 6.3: Ground-state properties of the equilibrium phases of HgSe. Presented
are the lattice constants a and ¢ (A). internal parameter u. axial ratio
c/a. ground-state volume Vj (A3 /pair). bulk modulus By (GPa) and its
pressure derivative B’ as well as the cohesive energy E.,, (eV/pair) and
the transition pressure p; (GPa) where applicable.

6.3 High-pressure phases

6.3.1 Zinc selenide

The high-pressure transition of ZnSe in its zinc blende form was investigated and
a change into the rocksalt structure is predicted to happen at 13.76 GPa. This
1s in excellent agreement with both experimental and theoretical investigations
(see table 6.1).

The ground-state lattice constant obtained for this new phase is 5.372 A, which
compares rather well to the literature values (e.g. a®*? = 5.292 A at 0 GPa [102]).
This is true for the bulk modulus By = 71.7 GPa and B’ = 4.7, too, if compared
to other theoretical results. Comparison with experimental values is difficult,

since the bulk moduli were fitted with a fixed B’. However, the bulk modulus
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Property This work Other theoretical Experiments
SC16

a 7.041 6.903%, 6.881°, (.987¢

u 0.1568 0.1563%, 0.1453¢

v 0.6432 0.6421°, 0.6473¢

Vo 43.64 41.12°, 40.73%, 42.64¢

Bo 54.27 63.55%, 63.9%, 53.78¢

3 4.6 5.5%, 4.1¢

j O 5.049

p; to RS 15.16 l6ge, 19°

Rocksalt

a 5.372 5.304%, 5.319¢ 5.087, 5.292¢
Vo 38.76 37.30°, 37.62¢ 32,774, 37.01¢
By 71.7 77.84¢, 74-91/ 104¢, 549
g 4.7 3.75¢, 3.5-4.9/ 4.0¢, 5.59
Feok 4.697

pt to Cmem 29.602 29.8¢ | 36.5" 30°
Cmem

a (4.735) 5.276¢ 4.728

) (4.965) 4.800"

c (4.533) 4.703"
b/a (1.049) 1.015°
c/a (0.957) 0.995¢
y(Zn) (0.6607) 0.704
y(Se) (0.1850) 0.196°

% (26.64) 26.68!
By 79.56 70.0¢

3 3.4 4.32¢

Ecoy 4.709

pr to CC 234.96

CTB-LMTO from ref. [139]: *PP Kohn-Sham LDA from ref. [181] at 0 GPa: ‘PW-
PP GGA from ref. [183]; Yfrom ref. [120] at 10 GPa; from ref. [102] (B’ fixed);
JFLAPW from ref. [197]; 9X-ray diffraction from ref. [182] (B’ fixed); "PW-PP
LDA from ref. [180]; *tADX from ref. [179] at 60 GPa.

Table 6.4: Ground-state properties of the high-pressure phases of ZuSe. Presented
are the lattice constants a, b and ¢ (A), respective internal parameters,
ground-state volume V5 (A3/pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E..; (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate
higher pressure.

1s within the experimental range of 54-104 GPa. Looking at the bulk properties
at a post-transition pressure of 10.4 GPa results in the following parameters:

a = 5175 A and By = 120.24 GPa, meaning agreement with experiments is
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Property This work Other theoretical Experiments
Cesium chloride

a 3.356

Vo 37.81

By 64.1

B 1.8

FEeon 3.604

Cinnabar

a 3.803 3.987%, 3.932% 3.971° 3.7897, 3.785¢
¢ 8.819 8.992° 8.8441
c/a 2.316 3E87° 2 D(e P B8
u(Zn) 0.4966 0.5¢ 0.63 (0.5)4
v(Se) 0.4979 0.5¢ 0.55 (0.5)¢
lo 36.91 40.13% 36.58¢

By 62.4 69.039. 72.6°. 68.33¢ 65.7¢

3 3.4 s LG

®.zn 1.777

p: to RS 13.50 13ure

ATB-LMTO from ref. [139]: °PP Kohn-Sham LDA from ref. [181]: CPW-PP GGA
from ref. [183]: IX-ray diffraction from ref. [182]: *PW-PP LDA from ref. [180].

Table 6.5: Ground-state properties of the high-pressure phases of ZnSe. Presented
are the lattice constants a. b and ¢ (A). respective internal parameters.
ground-state volume 1y (A?/pair). bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E,, (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate
higher pressure.

good for higher pressures as well (see table 6.4). Yet, the calculated lattice
constant is somewhat overestimated.

For the wurtzite to rocksalt transition the pressure estimated is 12.94 GPa which
compares well to the experimental result (p; = 13.0 GPa [102]). However. this
transition is not well investigated since wurtzite is known to transform into the
zinc blende structure at 3 GPa. The transition pressure is determined to be

2.25 GPa matching other theoretical results.

However, in addition, the simple cubic SC16 structure introduced as a possible
high-pressure phase by theoretical means [181] has been taken into consideration
as well and indeed is found to be an intermediate structure between the transition
from zinc blende to rocksalt. The ZB—SC16 transition occurs at 12.50 GPa,
which is in excellent agreement with other theoretical work, where the transition
pressure ranges from 8.7-13 GPa [139, 181, 183].

The bulk properties found are a = 7.041 A, V5 = 43.64 A3/pair, u = 0.1568,
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v = 0.6432, By = 54.27 GPa and B’ = 4.6 at ambient conditions along with
a cohesive energy of 5.049 eV/pair. Looking at the data obtained by Cui et
al. agreement is extremely good, but unfortunately this ZnSe modification will
still have to be discovered experimentally. Yet, the possibility of energy barriers
hindering the transition needs to be considered. The lattice parameters at the
transition pressure are given as well: a = 6.675 A, V; = 37.18 A%/pair, u =
0.1486, v = 0.6437.

Eventually, SC16-ZnSe changes over into the rocksalt structure at 15.16 GPa,
again in concordance with other theoretical work. Hence, the range of stability
(2.66 GPa) is on the lower end of the scale of previous predictions (4-7.2 GPa)
(see table 6.4) but close to the range found for SC16-ZnS (3.4 GPa) [138].

Looking at even higher pressures, a rocksalt to Cmecm transition is observed at
29.60 GPa. Since this is a second order transition the structure slowly relaxes
towards the rocksalt parameters for lower pressure, meaning that no ground-
state properties can be obtained. Instead, the bulk properties are determined
at 59.90 GPa, where lattice constants of a = 4.735, b = 4.965 and ¢ = 4.533 A
are determined along with y(Zn) = 0.6607 and y(Se) = 0.1850. In particular
the lattice constants agree very well with an experiment (@ = 4.728, b = 4.800
and ¢ = 1703 A at 60 GPa) as do derived properties such as the ¢/a- and b/a-
ratios as well as the unit-cell volume [179]. The bulk modulus and its pressure
derivative are 79.56 GPa and 3.4 in accordance with theoretical investigations

(for details refer to table 6.4).

At an extremely high pressure of 235 GPa a transition into the cesium chloride
structure would be possible according to the calculations discussed here with
the ground-state properties listed in table 6.5. At 235 GPa the following values
would be observed: 1" = 18.61 A3/pair and a = 2.650 A. The ground-state
bulk modulus and B’ are 64.1 GPa and 4.8. However, whether this transition is
genuine should be subject to further investigations to make sure no intermediate

structure change occurs between the Cmem and cesium chloride phase.

In addition, the cinnabar phase was investigated, which was claimed by Coté
et al. to be stable between 10.2 and 13.4 GPa. However, according to the cal-
culations presented here, this is not the case. Over the whole volume range
investigated the SC16 structure is lower in enthalpy, making it the preferred
structure. But even in the absence of the SC16 phase, the transition from zinc
blende to cinnabar would happen at 13.96 GPa, at which pressure transition

from zinc blende to rocksalt would have already occurred (p; = 13.76 GPa).
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Also, the transition from cinnabar to rocksalt is predicted to start at 13.5 GPa
already. For this possible cinnabar modification properties of @ = 3.808 A and
c = 8.819 A along with the Wyckoff parameters u =~ 0.5 ~ v are derived at
12.3 GPa. The properties at zero pressure can be viewed in table 6.5. They are
very consistent with the pseudopotential study of Coté et al. [180] as well as the
X-ray diffraction data of Pellicer-Porres et al., for whom the cinnabar phase is
only accessible in downstroke experiments [182]. Their experimental data lead to
better results using the Wyckoff parameters derived by Caté et al.. However, it
is mentioned that at 14.7 GPa the calculations presented here result in values of
u = 0.5616 and v = 0.5386, similar to the ones measured by ref. [182] and deviat-
ing from 0.5 at an increased c¢/a ratio of 2.337. The ground-state bulk modulus
and its pressure derivative are By = 62.4 GPa and 3’ = 3.4. Another study
shows calculations of the ground-state properties as well. but find the cinnabar
phase not to be stable [183] (see also table 6.5).

The fact that the cinnabar phase is experimentally only observed in down-
stroke measurements, reinforces the possibility of the structure being in fact
a metastable phase [180]. This might be an explanation that despite experimen-
tal observation. the cinnabar modification is not stable in ZnSe according to the

results presented here.

6.3.2 Cadmium selenide

CdSe is very similar to ZnSe in its high-pressure behaviour. Again first of all.
both the zinc blende and the wwrtzite phase become unstable towards the rocksalt
structwre at 4.01 GPa and 4.03 GPa in reasonable accordance with previous work
(see table 6.2). The cohesive energy at ambient conditions is 4.493 eV /pair.

For this modification a lattice constant of 5.743 A at 0 GPa and 5.625 A at
4.33 GPa along with a ground-state volume of 47.35 A3/pair at 0 GPa and
44.49 A3 /pair at 4.33 GPa is determined. The ground-state bulk modulus and the
pressure derivative are 60.9 GPa and 4.9 respectively. This matches experimental

and theoretical values where available as listed in detail in table 6.0.

With increasing pressure a transition into the Cmem structure is predicted at
26.17 GPa according to the calculations presented here. This pressure is in good
agreement with experimental as well as theoretical results. This also holds for
the lattice properties, where values of a = 5.250 A, b = 5.317 A, ¢ = 5.178 A with
y(Cd) = 0.6999 and y(Se) = 0.2064 are determined at a pressure of 30.5 GPa.



138 CHAPTER 6. THE GROUP 12 SELENIDES

Property This work Other theoretical Experiments
Rocksalt

a 5.743 (5.625) 5.576%, 5.72° (5719)8, [(55)4 5718
V 47.35 (44.49) 43.34%, 46.79° (41.4)°, (41.59)9, 46.54°
By 60.9 85.07, 57.7°

B’ 4.9 4.0?

B.p 4.493

pt to Cmem 26.17 29.0¢ 27.07
Cmem

a (5.250) 5.195° (5.200)7

) (5.317) 5.916° (5.222)7

c (5.178) P (5.159)7
c/a (0.936) 0.707° (0.992)7
h/a (1.013) 0.211° (1.004)/
y(Cd) (0.6999) (0.703)/
y(Se) (0.2064) (0.214)7
% (36.14) 42.60° (35.02)7
By 54.1 80.6¢

1 87 4.6°

) 4.576

pr to? S

pt to CC 108.22

Cesium chloride

a 3.562 (2.975) 3.443°

Vo 45.19 (26.33) 40.82¢

By 58.6 81.6°

B 4.8 4.6°

Feon 3.571

IFP-LMTO from ref. [146]: ®from ref. [202]; “X-ray at 3.2 GPa from ref. [185]:
X-ray at 2 GPa from ref. [184]: “PW-PP LDA from ref. [180]: /from ref. [12]
at 34.4 GPa; 9X-ray scattering from ref. [179].

Table 6.6: Ground-state properties of the high-pressure phases of CdSe. Presented
are the lattice constants a, b and ¢ (A), respective internal parameters,
ground-state volume Vy (A3/pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy F.,, (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate
higher pressure.

However, the ground-state volume could not be obtained, since for lower pressure
in general a relaxation into the rocksalt form is experienced. The parameters are
evaluated at a slightly lower value than in the experiment, but comparability
with experimental as well as theoretical data is very good. The bulk modulus

By = 54.1 GPa and its pressure derivative B’ = 3.7 are estimated from the
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Property This work Other theoretical
Cinnabar

a 4.281/4.282

c 9.9307/9.927

c/a 2.319/2.318 2.29°
u 0.4983/0.5501 0.57¢
v 0.4993/0.5229 0.54¢°
Vo 53.00/52.74

Bo 50.4/35.96

34 4.3/-4.7

Eecon 4.565/4.564

SC16

a 7.569

u 0.1561

v 0.6411

1o 04.21

Bo 42.9

-4 5.8

Bl & 4.601

“PW-PP LDA from ref. [180] (estimated from graph).

Table 6.7: Ground-state properties of the high-pressure phases of CdSe. Presented
are the lattice constants a, b and ¢ (A). respective internal parameters,
ground-state volume 15 (A3/pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy F.,, (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate
higher pressure. No experimental data are available.

Murnaghan fit only over the volume range accessible for the calculations carried

out. They therefore deviate from the values derived by Benkhettou et al.

The cesium chloride structure was also included in our calculations being a
promising candidate for a high-pressure phase of II-VI semiconductors. The
transition from Cmem-CdSe is calculated at 108.2 GPa and the ground-state
properties are given in table 6.6. A previous calculation was done by Benkhettou
et al., but the authors do not give a pressure for which the results are obtained.
However, the lattice parameters are not in agreement especially if compared to
values calculated at a post-transition pressure of 117 GPa, where according to
the results presented here, the following parameters are valid: a = 2.975 A and
Vo = 26.33 A3/pair. If one uses the values obtained off the graph in ref. [140]
it becomes obvious, that a factor of two is missing in the ground-state volume
determined by the authors. Using the corrected values, agreement is good (see
table 6.6).
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Since the cinnabar phase and SC16 structure have been discussed for the zinc and
cadmium selenides before, they have been included in the calculation presented
here. Both phases are found to be very close lying in enthalpy at the transition
pressure from ZB to NaCl, which is in excellent agreement with the findings of
Coté et al. [180].

However, the pressures for the ZB--C2, W--(C2, ZB--SC16 and W--SC16 tran-
sitions are calculated to be 4.19, 4.21, 5.53 and 5.51 GPa and therefore slightly
above the respective pressure for the transition from zinc blende and wurtzite to
rocksalt. Therefore, and since no experimental observations are recorded, these
calculations suggest that neither cinnabar nor SC16 are stable phases for CdSe.
Yet, it should be kept in mind that the energy differences are small and similar
to ZnSe. Thus, the possibility of a metastable phase (i.e. only accessible in
downstroke experiments) should be admitted for.

The ground-state properties for both structures are listed in table 6.7. As pointed
out by Coté et al. generally for the cinnabar structure, there is always a minimum
if u =0.5 = v [180]. This is for instance the only minimum that can be found in
ZnSe. In addition to that, in some cases a second energetic minimum is found
for u # v # 0.5, like in HgSe (see next chapter). Interestingly enough for CdSe,
both minima are very close, so that for higher volumes, the internal parameters
slowly converge towards a value of 0.5. This induces a negative value for 3’, most
likely due to a change in structure (and coordination) between the two minimum

structures. Hence, two different sets of values are given in table G.7.

A comprehensive study of supposed other crystal structures would be desirable to
rule out or confirm possible intermediate phases between the Cimem and the ce-
sium chloride structure, especially since Nelmes and McMahon observed a struc-
ture change around 37 GPa. This however goes heyond the scope of this thesis,
where mainly the relativistic influence is discussed with the focus on the cinnabar

and montroydite structure.

6.3.3 Mercury selenide

Unfortunately, HgSe seems to have been studied theoretically mainly in its zinc
blende form. Hence, the comparison of the results obtained for the behaviour at

higher pressure will be limited to experimental data.

The calculations presented here predict that the equilibrium zine blende structure

of HgSe undergoes a transition into the cinnabar form at about 1.96 GPa. The
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Property This work Experiments
Cinnabar

a 4.481 (4.179) 4.120°%, 4.32°, 4.174¢
c 9.949 (9.708) 9.560%. 9.68°, 9.626¢
c/a 2.220 (2.323) 2.320%, 2.24b 2.306¢
u 0.7118 (0.6624) 0.6627, 0.666¢

v 0.4966 (0.5491) 0.5507, 0.540°¢

v 57.69 (48.95) 46.8452, 52.15°, 48.41°
By 10.1 (24.01)

B’ 12.1 (4.4)

I 3.300

p: to RS 13.56 14.6-15.57, 164
G228,

a (6.1149) 5.992¢

b (5.980) 0.879¢

¢ (6.185) 6.045¢

h/a (0.973) 0.981°¢

c/a (1.0006) 1.009°¢

r(Hg) (0.3100) 0.302¢

y(Se) (0.2082) 0.207¢

v (56.806) 03.24¢

By 6.9

B’ A7

B (3.319)

Rocksalt

a 5.808 (5.275) 5.3607

V 18.98 (36.70) 38.507

By 57.9

B’ 5.2

EL.; 3.066

p¢ to Cimcm 35.70 23°¢

TADX at 4 GPa from ref. [12]: *from ref. [185] at 1.5 GPa: “X-ray
diffraction from ref. [179. 195] at 2.25 GPa; “from ref. [203] at
21 GPa: “from ref [196].

Table 6.8: Ground-state properties of the high-pressure phases of HgSe. Presented
are the lattice constants a, b and ¢ (A), respective internal parameters,
ground-state volume Vg (A3 /pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E.o, (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate
higher pressure. No other theoretical data are available.

ground-state properties obtained and summarized in table 6.8 are in accordance
with experimental data, but again show the for DFT typical overestimation of

the lattice constants.
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Property This work Experiments
Cmem

a (5.215) 5.1563°
b (5.680) 5.559°
¢ (4.801) 4.972°
b/a (1.089) 1.079¢
c/a (0.921) 0.965°
y(Hg) (0.6383) 0.644°
y(Se) (0.1531) 0.141°
V (35.6) 35.601¢
By 76.6

B’ 3.8

Eecon 2.842

pe to CC 107.67

Cesium. chloride

a 3.609 (3.025)

Vo 47.01 (27.68)

By 53.2

B SR

Ecoh 2.263

*ADX at 35.6 GPa from ref. [194].

Table 6.9: Ground-state properties of the high-pressure phases of HgSe. Presented
are the lattice constants a, b and ¢ (A), respective internal parameters,
ground-state volume Vy (A3/pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E.,, (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate
higher pressure. No other theoretical data are available.

At 4.7 GPa, a pressure close to the experimental reference data, lattice constants
of a = 4.179 A and ¢ = 9.708 A are determined along with u = 0.6624 and
v = 0.5491 as the Wyckoff positions. This improves comparability with the
experiment even more and yields excellent results for the ¢/a-ratio and unit-cell
volume (see table 6.8).

Which also stands out, is the anomalously small bulk modulus of just 10.1 GPa
in combination with an extremely high pressure derivative (B’ = 12.1), which
indicates that the bulk material rapidly stiffens with pressure. This is similar to
the values obtained for HgO and HgS and is caused by the chain-like structure.
However, if more data points are included a bulk modulus of 24.01 GPa with a
pressure derivative of 4.4 is determined, meaning a physically more sensible value
for B’. This might suggest that the Murnaghan fit is not suitable to describe

cinnabar-HgSe. Unfortunately, no data could be found to compare with.
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More recent reports however, describe the appearance of a ‘hidden’ intermediate
phase of HgSe, which therefore was taken as encouragement to investigate the
transition to this distorted zine blende structure (C222,) theoretically. This
structure is found to be energetically very close in the traunsition range hetween
zine blende and cinnabar. However, using the Murnaghan fit in the first place to
determine the enthalpy-pressure curve. it turns out to describe the energy-volume
relationship for €222, rather poorly. Hence, the transition pressure obtained
for the ZB — (222) structure change is calculated to be 3.06 GPa while the
(222, — (2 transition is predicted to occur at 1.75 GPa. This leaves no stability
window for the C222; phase. However, if a simple spline is used as a first estimate
to describe the energy-volume curve the transition pressures change to 1.35 and
1.94 GPa. In that case. this phase would be accessible. Yet. it shows how
delicate this system is and that by no means the accuracy of the used method is
good enough to make an accurate prediction. It should also be noted that the
transition from ZB to (222, in the experiments also occurs outside the actual
stability range of ZB with respect to cinnabar, pointing out the special status
this phase has as a hidden form. Other experimental groups even just measure
a mixed state [200] .

The bulk properties at 2.85 GPa are determined to be a = 6.149 A. b = 5.980 A.
¢ = 6.185 A, x(Hg) = 0.3100 and x(Se) = 0.2032, with further details listed
in table 6.8. The values are in good agreement with experimental data [195].
but no ground-state properties can be given since for lower pressures only the
relaxation into the zinc blende structure can be observed. The bulk modulus
is therefore evaluated using the few data points available. It is again very low.

More theoretical work is necessary to solve this structure.

No matter how the structure change to the cinnabar phase is achieved. according
to the calculations carried out in the course of this study there is no doubt
that upon pressure increase a transition into the rocksalt structure happens at
13.56 GPa. This matches previous experimental work. In the ground state a
lattice constant of 5.808 A is obtained for this structure with a respective unit-
cell volume of 48.98 A3 /pair and at 22.4 GPa values of a = 5400 A and V' =
39.37 A3 /pair are determined. This is in good agreement with the experimental
data available (e.g. a = 5.360 at 21 GPa [203]). The bulk modulus and its
pressure derivative in the ground state have also been calculated and are By =

57.9 GPa and 5.2, respectively.

At an even higher pressure a transition to the orthorhombic Cimem structure is
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predicted, which is found to be stable from 35.70 GPa onwards, in accordance
with 28 GPa measured by Huang and Ruoff for the mistakenly denoted het-
phase.

Again no ground-state values can be given due to the tendency of the structure
to directly relax into the rocksalt structure for lower pressure. However, at a
pressure of 37.5 GPa, shortly after the transition, lattice parameters of a« =
5215 A, b = 5.680 A, ¢ = 4.801 A, y(Hg) = 0.6383 and y(Se) = 0.1531 are
obtained. Those values are in excellent concordance with the experimental data
by Nelmes and McMahon (see table 6.9). The unit-cell volume is almost identical.
The bulk modulus and pressure derivative were fitted using the available data
and therefore will most likely underestimate the true value. A bulk modulus of

By = 76.6 GPa and a pressure derivative of 3.8 are determined.

Furthermore, at 107.67 GPa a transition to the cesium chloride structure is
suggested. Ground-state properties for this phase are a = 3.609 A, Vj =
47.01 A3/pair, By = 532 GPa, B' = 5.7 and F, = 2.263 eV/pair. At a
pressure of 115 GPa the lattice constant has decreased to 3.025 A. However,
other possible structures should be investigated to exclude phases intermediate

between Cmcm and cesium chloride.

6.4 Electronic structure

6.4.1 Zinc selenide

According to the results presented liere, ZnSe at ambient pressures in its zinc
blende modification proves to be a direct-gap semiconductor. The smallest band
gap appears at the centre of the Brillouin zone with a fundamental gap of 1.14 eV
as can be viewed in fig. 6.2 (upper panel). However, further CBM are located at
the L- (2.5 eV), X- (3.1 eV) and K-point (3.6 eV).

Experimentalists find a gap energy of 2.82 eV [204], which is as to be expected
significantly bigger than the calculated result. Highly accurate calculations using
different GW-approximation approaches confirm the measurements (E,(I') =
2.24—2.68 eV [204]). Yet, the band structure presented here compares very well
to calculations at a similar level of theory, e.g. E4(I') = 0.88 eV according to
Kolin-Sham LDA by Fleszar and Hanke [170].

Similar to ZB-ZnSe, for the wurtzite modification the results presented here

reveal a direct band gap semiconductor as well. The gap energy is 1.18 eV. This
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Figure 6.2: Band structure and deunsity of states (normalized per pair) at zero pres-
sure for the ZnSe polymorphs zinc blende (upper panel) and wurtzite
(lower panel) calculated within the scalar-relativistic DEFT-GGA frame-
work. The valence-band maximum is set to zero energy. The black solid
lines indicate the valence and the red dashed lines the conducting bands,
respectively.
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can be read from the lower panel of fig. 6.2. Both the VBM as well as the CBM
appear at the centre of the Brillouin zone, even though other local maxima and
minima can be found. However, agreement with the experimentally measured
band gap of Fy(I") = 2.87 eV [120] is again diminished by the general shortcoming
of DFT for band structure calculations. Yet, the difference in the energy of the
fundamental gaps between the zinc blende and wurtzite form compare very well

to experimental data.

6.4.2 Cadmium selenide

The bandstructure and DOS for the zinc blende as well as the wurtzite structure
of C'dSe are depicted in fig. 6.3. Both clearly confirm that CdSe at normal pres-
sure is a direct-gap semiconductor and in both cases the smallest gap occurs at
the I'-point of the Brillion zone in the style of the behaviour in ZnSe.

However, unlike the ZnSe polymorphs the fundamental gap is rather small with
an energy of Fy(I') = 0.48 eV and Fy(I') = 0.52 eV for the zinc blende and
the wurtzite case, respectively. But other prominent CBM can be found at
(2.31 eV), X (323 eV) and I (3.69 eV) in the zinc blende phase. Further
CBM for the wurtzite structure show up at A and between [, (2.25 eV) and A/
(2.67 eV). Lower lying VBM are located at L, A" and X for the ZB modification
and at A, A/ and /] for the wurtzite polymorpli, leaving room for energetically
higher transitions.

The data for zinc blende predicts the quantitative electronic structure correctly,
yet underestimates the measured band gap (Fy(I') = 1.70 eV [204]) by over 100%,
not surprisingly within the DFT Kolin-Sham approach. However, the results are
in accordance with other similar calculations, where DFT-LDA predicts an en-
ergy of Fy(I') = 0.17 eV [170]. But Fleszar and Hanke also show that additional
computational effort can improve the result (E4(I') = 1.25 — 1.70 eV).

In the case of CdSe-wurtzite structure, experimentalists found an energy gap
of 1.71 eV by means of photomodulated transmission spectroscopy [204]. A
semi-empirical tight-binding calculation by Kobayashi et al. yields 2.0 eV, while
a theoretical investigation at similar level of theory as presented here gives
E ) = 0.43 eV (FP-LMTO DFT-LDA and GGA) [201] in good agreement

with the results presented here.
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Figure 6.3: Band structure and density of states (normalized per pair) at zero pres-
sure for the CdSe polymorphs zinc blende (upper panel) and wurtzite
(lower panel) calculated within the scalar-relativistic DFT-GGA frame-
work. The valence-band maximum is set to zero energy. The black solid
lines indicate the valence and the red dashed lines the conducting bands,
respectively.
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Figure 6.4:

Band structure and density of states (normalized per pair) at zero pres-
sure for the HgSe zinc blende polymorph calculated within the scalar-
relativistic DFT-GGA framework (upper panel) as well as upon inclusion
of spin-orbit effects (lower panel). The valence-band maximum is set to
zero energy. The black solid lines indicate the valence and the red dashed
lines the conducting bands, respectively.



6.4. ELECTRONIC STRUCTURE

—I— [ } T I T T I['1 T T ] l T | T ]
= s 1A — 5|
< i 8 -=p &
&, -

4 Y =& d|
2t i ik -
~ 3 1 I.‘I |
8.L - -
ot Lo ]
[ R | l -
T ot . AL A

0 I . - = P i, 2| 2

=7 0 ¢ == ] T
= | ]
< 3 —
a
>
L2l _
w ™ -
O [
D 1= " - —
(] i g g’
v I l‘\ I\ I n 8

0 S RATTH AT by el

12 410 8 -6 4 2 0 2 4
Energy (eV)

- 6 . BTN TR R T
=t g =% 4
& A = b

s P i =- 4| ~
> i
&, . ]
n |
Q2 i i
Qa |
= i |

0 )

4 I i I ? I ! T g | T | | L I k
./‘_-\ - ~
< 3 2
=
>
QL2 .
7 |
)

Q- : B -
] ,l 1 1 P
v T h i B : A0 ]
" TN . .| D R P il
-12 -10 =8 -6 -4 2 0 2 4
Energy (eV)

=

Figure 6.5: Site-projected density of states at zero pressure for the HgSe zinc blende
polymorph calculated within the scalar-relativistic DFT-GGA framework
(upper panel) as well as upon inclusion of spin-orbit effects (lower panel).
The black solid, red dashed and blue dash-dotted line indicate the s, p
and d site-projected DOS, respectively.
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6.4.3 Mercury selenide

According to ref. [120] HgSe in its zinc blende equilibrium form is a zero-gap
material or semimetal, which is caused by the lowest conduction band and the
highest occupied valence band being degenerate at the I'-point of the Brillouin
zone. However, ZB-HgSe exhibits a so-called inverted band structure, which
means that the for most cubic semiconductors first conduction band, I'g, is found
below the ['g-state. Hence, a negative energy gap is created and at 4.2 K a gap
energy of -0.27 eV is measured [120].

This is confirmed by tlie investigations concluded in this thesis and in both, the
scalar-relativistic and the spin-orbit corrected description, a zero-gap material is
found. The CBAI as well as the VBN are calculated to be at the centre of the
Brillouin zone evoking a disappearing energy gap. Yet. other local VBN and
CBM exist at the L-, A- and X-points in the reciprocal space. Other theoretical
investigations of the bandstructure [162. 168. 174] agree rather well with the
results obtained. The band structure and DOS in the scalar-relativistic model as
well as upon inclusion of spin-orbit effects is shown in fig. 6.4. The site-projected
DOS at both levels of theory can be found in fig. 6.5.

By comparing the respective parts of these graphs it can be concluded that,
while the lowest lying band with a 4s-Se character is not influenced by spin-
orbit effects, the following set of 5d-Hg bands is split. To begin witl, the scalar
relativistic calculations show a crystal field splitting of approximately 0.45 eV
for the d-bands, which is caused by the tetrahedral arrangement in ZB-HgS.
However, improving those results by the inclusion of spin-orbit effects, the lower
lying set of 5d-Hg bands is split again. The splitting of approximately 1.87 eV
is again in good agreement with the level splitting of 1.86 eV found for the
atom [128].

For the Fy(I's, —ec)-gap values of -1.04 and -1.12 eV are measured in the scalar-
relativistic picture and upon inclusion of spin-orbit effects, respectively. This
overestimates the experimental result (see above), but is in excellent agreement
with values listed in ref. [174] (-1.07 eV for VASP-GGA). Furthermore, Fleszar
and Hanke [170] pointed out that gap energies of HgX compounds calculated
within LDA need to be corrected by 0.75 eV. If this value is added, the agreement
with the experimental result is good.

Looking at the band structure calculated upon inclusion of spin-orbit effects
(see lower panel of fig. 6.4), the splitting of the highest lying valence band is

determined to be 0.25 eV. This again agrees very well the results of Cardona et
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al. [174], who obtain the same value at the same level of theory.

6.5 Relativistic influences

6.5.1 Equilibrium structure

Svstem a & u /v By B B 1o
Wurzite 1.569 7.426 0.3767/ - 409 15 1925 67.11
Zinc blende 6.450 - -/ - 108 45 4.922 (67.08
Rocksalt 5.941 - -/ - 574 48 4811 52,41
Cinnabar 1437 10.429 0.5/0.5 45.34 42 1759 59.07
Cesium chloride  3.669 - -/ - o7.3 47 3974 49.39
SC16

Table 6.10: Ground-state properties of equilibrivun and high-pressure phases of HgSe
within the nonrelativistic approach. Presented are the lattice constants
a and ¢ (A). respective internal parameters, ground-state volume Vj
(A%/pair), bulk modulus By (GPa) and its pressure derivative B’ as
well as the cohesive energy F., (eV /pair).

Looking at HgSe within a nonrelativistic approach leads to the energy-volume
curves in the lower panel of fig. 6.6. The changes in the equilibrium structure
are less dramatic than in HgO and HgS due to the absence of an equilibrium
cinnabar phase in HgSe. However, the summary of the solid-state properties
in table 6.10, shows that the wurtzite structure has a minutely higher cohe-
sive energy than the zine blende structure. Even though the difference is only
3 meV/pair. it indicates that, similarly to the trend in HgS (in the absence of
the cinnabar structure). in a nonrelativistic picture the wwrtzite modification is
preferred in HgSe as well. This means that tle relative stability of the wurtzite
structure compared to zinc blende increases going from ZnSe via CdSe to HgSe,
if relativistic effects are neglected (AEY =45 = —9 | -4 and 3 meV /pair for ZnSe,
CdSe and nonrelativistic HgSe, respectively as compared to -13.97 meV /pair in
relativistic HgSe). Considering the small energetic deviation it is likely that both
the zine blende and the wurtzite form would be found as equilibrium structures
in a nonrelativistic world.

The lattice constants for the nonrelativistic wurtzite phase of HgSe are a =
4.569 A and ¢ = 7.426 A going along with ground-state volume of 67.11 A3 /pair
(for further properties see table 6.10). This implies considerably larger lattice
constants than in ZnSe (@ = 4.049 A) and CdSe (a = 4.386 A) as well as rela-
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tivistic W-HgSe (a = 4.433 A), showing the effects of a relativistic contraction.
This can also be concluded from the bond distances itemized in table 6.11. This
relativistic contraction can also be observed in the overall volume of the unit cell.
in stark contrast to the behaviour in HgO and HgS. For those compounds, due
to the change in structure (allowing a dramatic contraction in the intra-chain
HgO-distances) overall a relativistic volume expansion has been observed, even
though the effect of the relativistic contraction in lattice constants and bond
distances is even more dramatic than in HgSe.

On the other hand the cohesive energy is increased by 1.55 eV, which means that.,
even though smaller than in HgO and HgS, still a considerable lattice destabi-

lization by 50% is found when including relativistic effects.

System ZnSe CdSe HgSe nonrel. HgSe

dajse dary dajse daga darse darag darse daray

Wurtzite 2.49 1.05 2.68 1.38 2.71 1.43 2.79 4.55
exp. 2.45 1.00 2.64 1.30 - - - -

Zinc blende 2.48 4.05 2.68 4.38 2.72 1.43 2.79 4.56
exp. 2.45 4.01 2.64 4.29 2.63 4.30 - -

Cinnabar 2.40 3.50 2.6 3.96 2.55 1.00 2.79 4.138
at py - - - - 2.58 1.03 - -
exp. - - - - 2.54 1.00 - -

Table 6.11: Closest metal-selenium bond distance di;ge and closest metal-metal dis-
tance dyay in A of the respective equilibrimn structures (unless indicated
otherwise) of the group 12 selenides.

6.5.2 High-pressure structure

The high-pressure behaviour of HgSe treated nonrelativistically is comparable to
CdSe leading to the following transition path: ZB/\W — RS — Cmem - CC.
The transition from the wurtzite to the zinc blende structure is bound to happen
at 3.38 GPa, whereas both structures undergo a transition to the rocksalt phase
at 1.31 and 1.24 GPa for the wurtzite and zinc blende modification, respectively.
For the nonrelativistic RS-HgSe modification a ground-state lattice constant of
5.941 A is obtained, larger than for all relativistically treated group 12 selenides
with lattice constants ranging from 5.372 A in ZnSe to 5.808 A in HgSe.

At a higher pressure of 22.80 GPa a transition into the Cmem structure takes

place and at 25.00 GPa the following properties are obtained: V5 = 40.99 A3 /pair,
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a= 5476 A, b = 5490 A, c = 5454 A, y(Hg) = 0.7235 and y(Se) = 0.2256.
Subsequently, the transition to the cesium chloride structure is predicted at
66.59 GPa.

The enthalpies of the cinnabar as well as the SC16 structure are always above
the one for the rocksalt modification, hence excluding those structures as high-
pressure modifications. Furthermore, the C222; structure becomes unstable in
the nonrelativistic picture as well. The properties are summarized in table 6.10.
This means, even though the cinnabar structure does not appear as an equilib-
rium phase in HgSe, its absence as a high-pressure modification in the nonrela-
tivistic picture in opposition to the relativistic case, demonstrates that relativistic
effects indeed play a crucial role to explain the occurrence of the cinnabar struc-
ture as such.

Furthermore, if one has a closer look at the Hg-Se bond lengths in the cinnabar
structure for the various selenides (see table 6.11), relativistic effects significantly
shorten the Hg-Se hond. This is coherent with a very different coordination. In
ZuSe for instance, a definite fourfold coordination is found, at which the Zn-
Se bond distance is 2.40 A (Zn-Zn bond distances equals 3.50 A). For CdSe at
the minimum of its E-V-curve, the closest hond Cd-Se distances are 2.67, 2.76
and 3.82 A with two bonds each. whereas the closest Cd-Cd distance is 3.96 A.
This means that a 24242 coordination is found. This 24242 coordination is
also obtained for HgSe, but only if ones looks at a pressure shortly after the
ZB — (2 transition. The Hg-Se hond distances at this pressure (4.7 GPa) are
258, 2.94 and 3.29 A (closest Hg-Hg bond distances equals 4.03 A), which is
in excellent accordance with the experimentally observed structure, where the
bond distances are determined to be 2.54, 2.89 and 3.24 A [12]. However, if
relativistic cinnabar-HgSe is studied at 0 GPa to enable comparison with ZnSe
and CdTe, the chain-like arrangement typical for HgS and HgO is still existent.
The closest Hg-Se distances at this pressure are 2.55, 3.29 and 3.53 A, which
means that a 2+4 coordination is still present. This however, is in stark contrast
to the coordination obtained if cinnabar-HgSe is treated nonrelativistically. In
that case, the Hg-Se bond distances are 2.79, 2.93 and 3.79 A indicating that the
24242 coordination obtained for CdSe is restored. This change from a 2+4 to

a more or less fourfold coordination is depicted in fig. 3.5.
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6.5.3 Electronic properties

[f one looks at the electronic structure of the HgSe equilibrium structure nonrela-
tivistically, dramatic changes happen. From the band structure shown in fig. 6.7
it becomes immediately obvious that the wurtzite as well as the zinc blende
modification have semiconducting properties. Specifically for nonrelativistic ZB-
HgSe. the 6s states of Hg now become degenerate with the higher lving bands
close to the Fermi edge at the I'-point. hence abolishing the inverted band struc-
ture. This in turn means that compared to the semimetallic behaviour in the
relativistic description the semiconducting properties are now restored.

The band structures and DOS for both the wurtzite and the zinc blende struc-
ture look qualitatively very similar to the ones calculated for ZnSe and CdSe.
Likewise. the VBAI as well as the CBM are located at ' leading to a direct-gap
of 0.48 eV and 0.53 ¢V for zinc blende and wurtzite, respectively. Those val-
ues are quantitatively very close to the gap energies in CdSe. indicating that
the electronic structure of HgSe would follow the trend of CdSe if relativistic
effects are neglected. Details concerning this trend can also be taken from the

site-projected DOS for both possible modifications shown in fig. 6.8.

6.6 Summary

Overall, the structural properties obtained for the equilibrium as well as high-
pressure phases of the group 12 selenides compare well to experimental and other
theoretical studies, as far as the method used allows for. This applies for the
qualitative behaviour in the electronic structure calculations as well. However.
as pointed out before, the band gaps determined are strongly underestimated.
The predicted transition paths are in good concordance with other previous work,
where available. In addition, a cesium chloride high pressure phase for ZnSe and
HgSe is predicted for the first time. However, further work should be carried
out to test for phase transitions intermediate between the according Cmem and
cesium chloride modifications. Furthermore, no theoretical work has been car-
ried out to investigate the high-pressure behaviour of HgSe. Hence the results
presented here, for the first time confirm the transition path under high pressure
observed experimentally for this compound.

Under the neglect of relativistic influences, it is found that the equilibrium struc-

tures are not as significantly altered as in HgS and HgO. Yet, a general trend
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towards the stability of the wurtzite phase is observed, if one follows the se-
quence ZnSe, CdSe to nonrelativistic HgSe, which is interestingly enough totally
absent in relativistic HgSe. Furthermore, a relativistic lattice destabilization of
1.55 eV /pair is found.

In addition, it is discovered that even though the cinnabar structure is not found
as an equilibrium structure anymore in HgSe, it still appears as an high-pressure
phase in stark contrast to ZnSe, CdSe and nonrelativistic HgSe. Furthermore,
its coordination changes in HgSe. if one switches off relativistic effects, from a
24242 to an almost fourfold coordination.

While the relativistic influence on the structural properties and the transition
path of HgSe are less pronounced than in HgO and HgS, the electronic structure
of HgSe in the relativistic and nonrelativistic picture differ significantly changing

its semimetallic behaviour as far as to restoration of semiconducting properties.



Chapter 7

The group 12 tellurides

7.1 Occurring crystal structures

7.1.1 Zinc tellurides

Zinc telluride is known to crystallize in the zine blende structure at normal con-
ditions (a = 6.1037 A) [12] and is a semiconductor with a band gap of 2.39 eV
(at 0 K) [120].

[t transforms to ZnTe-II at about 8.5-9.4 GPa which goes along with a sharp
discontinuity in the conductivity [132, 142, 205-207]. Resistivity as well as op-
tical studies have characterized this phase to be a transparent semiconductor
with a 2.5 eV band gap [205. 207]. The structure of ZnTe-II has been resolved
by means of ADX [208, 209]. EDX [210, 211] and combined EDX/EXAFS [212]
experiments and appears to have a (site-ordered) cinnabar structure with the
following structural parameters: a = 4.105 A, ¢ = 9.397 A, u(Zn) = 0.540 and
v(Te) = 0.504 (at 8.9 GPa) [209]. In contrast to cinnabar-HgO and cinnabar-
HgS, it shows a more or less fourfold coordination (indicated by the values of u
and v being very close to 0.5, see chapter 3.1) with two unequal nearest neigh-
bours at 2.528 A and 2.646 A and the next two nearest neighbours both at
3.743 A. The transition from zinc blende to cinnabar was confirmed in calcula-
tions carried out by Lee and Ihm as well as Coté et al. [180, 213].

A further high-pressure phase can be detected above 11 GPa (ZnTe-III), first
proposed in ref. [132]. Upon subsequent investigation this phase is found to be
metallic [205, 206]. Even though the structure proved difficult to solve by diffrac-
tion and EXAFS measurements, ADX studies by Nelmes et al. [214] finally pin-

159
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pointed it to be a distorted-RS arrangement inheriting the space group C'mem?.
At 15.7 GPa the authors determined the lattice constants to be a = 5.379 A,
b = 5971 A and ¢ = 5.010 A and the atomic position y(Zn) = 0.640 and
y(Te) = 0.190, respectively. Interestingly, this structure has a surprising fivefold
coordination, where the five unlike nearest neighbours have a distance of about
2.7 A. Again, theoretical studies support this transformation and predict the
Cmem phase to be stable up to 100 GPa [180, 213].

Another change in structure is indicated by new diffraction peaks at 85 GPa,
which is supposedly stable up to 93 GPa, the higlest investigated pressure by
respective authors [12]. However the structure has not been solved so far and
is in disagreement with the above theoretical findings. Furthermore, a Raman
study by Camacho ef al. predicts an intermediate phase between cinnabar and
Cmem, which has a SC16 structure [215]. This is however not confirmed by the
calculations in ref. [139]. No reports on post-Cmcmn high-pressure phases have
been found.

It is noteworthy to emphasize the absence of the in II-VI semiconductors very
common rocksalt structure as a low temperature phase in ZnTe. This is most
likely due to the fact that ZnTe has the lowest ionicity in its family [83]. However,
diffraction studies (EDX) show a transition to ZnTe-IV with a rocksalt structure
for high pressures as well as high temperatures, at which the triple point for the
cinnabar, Cimem and RS phases was determined to be at 13 GPa and 453 K [216].
Later on tables 7.1, 7.4 and 7.5 will summarize the structural parameters and
transition pressures for the zinc telluride phases obtained as the outcome of this
thesis (see chapters 7.2.1 and 7.3.1). This will include the results of previous

experimental and theoretical investigations introduced above.

7.1.2 Cadmium tellurides

At ambient pressure cadmium telluride has a zinc blende structure with a lat-
tice constant of @ = 6.482 A [12] and is widely used as a solar cell material.
A transition into CdTe-II was first observed at about 3.5 GPa by Edwards and
Drickamer (optical measurements) [140] and a second phase transition was dis-
covered at 10 GPa by subsequent conductivity measurements [142].

Upon further investigation by diffraction techniques to identify the structure,
CdTe-II was found to have a rocksalt structure [141, 185, 217], with a = 5.930 A

U'T'his introduced a proper description of the Cmcm structure into the community explaining
unresolved structures of various IIla-Va compounds and GaAs.
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(at 3.9 GPa). Gonzalez et al. later identified the NaCl phase as a semiconduc-
tor with a band gap of 0.08 eV at 6.8 GPa [218]. However, the transition was
questioned by ADX measurements of ref. [219], who proposed an actual double
transition of zinc blende to cinnabar at 3.4 GPa closely followed by a rocksalt-
cinnabar passage at 3.9 GPa introducing an intermediate semiconducting site-
ordered cinnabar phase?. This double transition is confirmed by calculations of
Aluja et al., who however find a different transition pressure of 10 GPa for the
second transition [220].

The volume changes for the two transitions are determined to be 3.4 and 12.2 %.
respectively. A mapping of the phase diagram [221] pinpointed the triple point
of the zinc blende. cinnabar. rocksalt phase transition at 2.6 GPa and 735 K.
showing that a direct ZB to RS passage is possible above this temperature.
The lattice parameters obtained for the cinnabar phase are a = 4.319 A and
¢ = 10.265 A. whereas u(Cd) and v(Te) are 0.622 and 0.565, respectively at
3.2 GPa [222]. Similar to HgTe, and indicated by u and v being so close to 0.5,
the cinnabar form has a 442 coordination (again very different from HgO and
HgS). getting closer to the sixfold NaCl coordination upon pressure increase.
The other transition reported at 10 GPa has shown to be to a phase with a site-
ordered Cmem structure, distorting NaCl orthorhombically [223]. The lattice
parameters are determined to be @ = 5.573 A, b = 5.960 A and ¢ = 5.284 A with
y(Cd) = 0.650 and y(Te) = 0.180 (at 18.6 GPa), changing the sixfold NaCl-
coordination to a 543 coordination. The transition is supported theoretically.
but vet again with a different transition pressure (p; = 15 GPa) [220].

Nelmes et al. furthermore report another phase transition at 42 GPa, but could
not solve the structure [12] and find no further transition up to 55 GPa.

The theoretical study of Ahuja et al. predicts a transition to the CsCl struc-
ture at 28 GPa [220]. Another theoretical study by Coété et al. confirms the
order of transitions but slightly overestimates the pressure for the RS-Cmcm
passage [180].

Chapters 7.2.2 and 7.3.2, where the results for the cadmium tellurides are pre-
sented, will directly compare the structural parameters and the transition pres-
sures of the different phases as determined by previous studies to the values

obtained in the thesis at hand (see tables 7.2, 7.6 and 7.7).

?Historically, this was the first time the cinnabar phase was found in a compound apart
from the mercury chalcogenides.
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7.1.3 Mercury tellurides

The low pressure plase of mercury telluride las the zinc blende structure, where
a = 6.4603 A, and was found to be semimetallic [189]. The naturally occurring
mineral, called coloradoite, is very soft and has an iron-black metallic luster.

In general mercury telluride shows a behaviour very similar to HgSe, meaning
it has an analog transition sequence of structures from zine blende to cinnabar
to rocksalt to Cmem with a ‘hidden’ intermediate C222, phase between the zinc
blende and cinnabar modification.

The first transition occurs at 1.3 GPa [169] changing the electronic properties to
a semiconducting behaviowr as indicated by a steep increase in resistivity [224]
with an energy gap of 0.7 eV at 2 GPa (0 eV at 6.5 GPa) [191, 192]. The (site-
ordered) cinnabar structure for this phase was first proposed by Mariano and
Warekois and has the following structural parameters at 3.6 GPa: a = 4.383 A,
¢ =10.022 A, u(Hg) = 0.641 and v(Te) = 0.562 [92, 185]. With those parameters
HgTe shows a 442 coordination witl eaclhi atom having three pairs of unlike
neighbours at 2.732, 2.995 and 3.460 A. The transition to cinnabar-HgTe goes
along with a volume change of 11 % [225].

Upon compression the structure becomes more similar to NaCl, but significant
discontinuities in the transition for the structural parameters are observed [225].
At 8 GPa the transition to a metallic rocksalt phase occurs as pointed out by
resistivity as well as diffraction studies [191, 192]. The structure was identified
in refs. [92, 226]. The new phase is site-ordered with @ = 5.843 A at 8.9 GPa
and the volume change for the transition is determined to be 3 % [225].

Like for HgSe however, later on an orthorhombic C222; structure was found by
McMahon et al. as a 'hidden’ intermediate phase [195]. It is supposed to occur
at 2.25 GPa along with a volume change of 1.2 % and the structural parameters
at 2.55 GPa are a = 6.295 A, b = 6.241 A, ¢ = 6.364 A, x(Hg) = 0.315 and
y(Te) = 0.205 [195]. This means that the distortion is less than in HgSe, therefore
making it hard to be certain of the site-ordered nature of the structure. This
structure transforms into the cinnabar form at 2.6 GPa, where AV/V, = 8.7 %.
At 12 GPa a transition to HgTe-IV occurs [191, 192] which was, like in HgSe,
mistaken to be a transition to beta-tin or orthorhombic structure [149, 220],
but eventually identified to be site-ordered Cmecm by McMahon et al. using
ADX techniques [227]. The structure was solved at 18.5 GPa leading to lattice
constants of a = 5.5626 A, b = 6.1516 A and ¢ = 5.1050 A with the Hg and Te
atoms at y(Hg) = 0.624 and y(Te) = 0.152, respectively. This leads to a five-
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fold coordination, which is however less pronounced than in CdTe. The volume
change for the transition is 1.2 % at 11 GPa.

Furthermore, McNahon et al. could explain the data with another slightly better
fit of another Cmecm structure. The Hg and Te sites are interchanged resulting
in two nearest neighbours. However, it has been eliminated by X-ray absorption
investigations of Briois et al. [228].

In addition, Huang and Ruoff observed vet another transition at 38.1 GPa to
HgTe-V inheriting a distorted-CsCl structure [203]. Nelmes et al. confirmed this
at a however lower pressure of 28 GPa (50 GPa for a complete transformation)
with a volume change of 3.0 % and obtained a lattice constant of a = 3.299 A
(at 51 GPa) [209] for a disordered CsCl (bee) structure.

Later. in chapters 7.2.3 and 7.3.2, the tables 7.3. 7.8 and 7.9 will give an overview
of the different cadmium telluride phases including their structural parameters
and the transition pressures. For comparison those include the results of previous

experimental investigations and calculations as discussed above.

7.2 Equilibrium structures

7.2.1 Zinc telluride

Looking at the volume-energy relationships for the different modifications of
ZnTe in the upper panel of fig. 7.1. the zinc blende structure is obviously the
most stable one with a cohesive energy of 1.592 eV. This is consistent with
previous experimental as well as theoretical results, as is the obtained lattice
constant of « = 6.179 A, especially within the accuracy of the used methodology.
For bulk modulus and the according pressure derivative values of 139 = 143.6 GPa
and 1.9 are calculated. They compare rather well with other theoretical data. but
again underestimate the experimental value (/5 = 50.9 GPa. B’ = 5.04 [153])
by a few percent.

The wurtzite structure of ZnTe was calculated as well and has a cohesive energy
of 4.580 eV /pair, which is 12 meV /pair below the one obtained for the zinc blende
phase. This difference is slightly bigger than for the selenides and sulfides, which
supports that zinc blende is the only equilibrium structure found in ZnTe. This
result also matches the energy deviation of 6.4 meV/atom determined in ab-initio
LAPW calculations by Yeh et al. [158]. The equilibrium parameters obtained for

wurtzite are a = 4.358 A, ¢ = 7.178 A and u = 0.3733 and compare well to the
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Property This work Other theoretical Experiments
Zinc blende

G 6.179 6.013%, 6.020°, 6.174¢ 6.089°%, 6.103¢
Vo 58.98 54.35%, 54.54°, 58.84¢ 56.44°, 56.83¢
B5 43.6 54.7%, 49.2b, 55.21¢ 50.9¢

B 1.9 4.88¢, 4.67 5.04¢
E. 1.592 4,40/ 4.567

pe to SC16 9.33 e

pe to C2 9.80 5.9, 8.067, 11.9! 9.69, 8.5-9.4!
Wurtzite

a 4.358 4.273 -

c 7.178 6.989* -

c/a 1.647 1.636* -

u 0.3733 .55 -

Lo 59.04 55.26F -

By 13.6 -

B’ 1.6 -

E o 4.580 -

aPW-PP LDA from ref. [180]: Pab-initio GDSP/DFT from ref. [162]: *SSCR-LMTO
from ref. [229]: 9FP-APW +lo LDA from ref. [199]: ¢from ref. [153]: /semi-empiri-
cal TB calculation from ref. [157] and refs. therein: 9Raman study from ref [215]:
ATB-LMTO from ref. [139]: from ref. [12]: /from ref. [213): "LAPW-LDA from
ref. [158]: IDFT from ref. [230].

Table 7.1: Ground-state properties of the equilibrium phases of ZnTe. Presented
are the lattice constants a and ¢ (A), internal parameter u. axial ratio
c¢/a. ground-state volume V4 (A3/pair). bulk modulus By (GPa) and its
pressure derivative B’ as well as the cohesive energy E..; (eV/pair) and
the transition pressure p; (GPa) where applicable.

results of Yeh et al. Furthermore. values of 43.6 GPa and 4.6 are calculated for
the bulk modulus and its pressure derivative.
For details and to compare the results presented here with previous experimental

and theoretical work in detail see table 7.1.

7.2.2 Cadmium telluride

For CdTe, according to the calculations presented here, the zinc blende struc-
ture again is the equilibrium phase in accordance with experiments. This can
already be deduced from the energy-volume curves in the lower panel of fig. 7.1.
The cohesive energy of 4.217 eV /pair matches the experimentally obtained value
(Eeon = 4.12 eV /pair [157]) very well.



166 CHAPTER 7. THE GROUP 12 TELLURIDES

Property This work Other theoretical Experiments

Zinc blende

a 6.620 6.4307%, 6.487¢, 6.486-6.573¢ 6.481¢

Vo 72.529 66.46° 68.25¢, 68.21-71.00¢ 68.06°

Bo 35.6 46.0%; 29.5°, 41.9¢ U219 1

B’ 4.8 4.29¢, 3.6-4.36°¢ 6.4¢
Eeon 4.217 4.136¢, 3.74¢ 4,124

pe to RS 4.11 3.79"

p: to C2 4.16 3.39 3.4/

pe to SC16 4.138

Wurtzite

a 4.674 4.550¢ -

& 7.664 7.451°¢ -

c/a 1.640 1.638¢ -

u 0.3740 0.3754¢ -

Vo 72.51 66.79¢ -

By 35.5 45.4¢ -

B’ 5.2 -

Bk 4.209 -
“PW-PP LDA from ref. [180); *ab-initio GDSP/DFT from ref. [162]; °MD from

ref. [231] and refs. therein; “semi-empirical TB calculation from ref. [157] and refs.

therein: “CLAPW-LDA from ref. [161]; /from ref. [219]: IFP-LMTO from ref. [220):
hPP-GGA from ref. [232].

Table 7.2: Ground-state properties of the equilibrium phases of CdTe. Presented
are the lattice constants a and ¢ (A), internal parameter u, axial ratio
c/a, ground-state volume Vy (A3/pair), bulk modulus By (GPa) and its
pressure derivative B’ as well as the cohesive energy E.,, (eV/pair) and
the transition pressure p; (GPa) where applicable.

The lattice properties obtained are a = 6.620 A, By = 35.6 GPa and B’ = 4.8,
all of which are in good agreement with previous experimental and theoretical
data listed in table 7.2. Again, the variations of a few percent compared to ex-
periments is to be blamed on the method used.

The wurtzite structure was considered as well even though no experimental data
1s available due to the absence of this structure in CdTe. With the obtained
lattice constants of a = 4.674 A and ¢ = 7.664 A and the internal parame-
ter u = 0.3740 agreement is reasonable with a LAPW-LDA study by ref. [161]
(a = 4550 A, ¢ = 7.451 A, v = 0.3754). The cohesive energy obtained is
4.209 eV/pair. This means the energy difference to the zinc blende structure
is 8 meV/pair, which matches another theoretical value extremely well, i.e.
9 meV /pair using LAPW-LDA in ref. [161].
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7.2.3 Mercury telluride

Property This work Other theoretical Experiments
Zinc blende

a 6.660 6.451-6.7187, 6.530°. 6.633¢ 6.4537, 6.461¢
Vo 73.85 67.1-75.8%, 69.61%, 72.96¢ 67.187
Bo 34.4 1647 701 © 47.6%. 42.3/
B’ 5.2 2.14
Econ 3.059 9.48f 2.176° (Esub)
pr to C222, 3.04 2.559

p to C2 2.30 1.5" 1.3
Wurtzite

a 4.703 -

G 7.723 -

c/a 1.642 -

u 0.3741 -

1o 73.95 -

By 34.1 -

B’ 5.2 -

Beoh 3.044 -

AFP-LMTO LDA and GGA from ref. [168]: Yab-initio GDSP/DFT from ref. [162]:
‘PW-PP GGA from ref. [174]; “X-ray diffraction from ref. [149]: ¢from ref. [120]:
semi-empirical TB calculation from ref. [157] and refs. therein: 9X-ray diffraction
from ref. [195]: » PW-US from ref. LDA [233]; ‘from ref. [169].

Table 7.3: Ground-state properties of the equilibrium phases of HgTe. Presented
are the lattice constants a and ¢ (A), internal parameter u, axial ratio
c/a, ground-state volume V5 (A3/pair), bulk modulus By (GPa) and its
pressure derivative B’ as well as the cohesive energy E.,;, (eV/pair) and
the transition pressure p; (GPa) where applicable.

The equilibrium state for HgTe is again the zinc blende structure, which is sup-
ported by the energy-volune curves presented in the upper panel of fig. 7.5. The
cohesive energy obtained is 3.059 eV/pair, lower than any other investigated
structure.

A lattice constant of 6.660 A is determined along with a ground-state volume
of 73.85 A3/pair, a zero-pressure bulk modulus of By = 34.4 GPa and a pres-
sure derivative of 5.2. All properties agree, within the expected accuracy of the
method used, with available experimental and theoretical data (see table 7.3 for
details), but again overestimate the ground-state volume while underestimating
the bulk modulus.

The wurtzite structure, which was investigated as well, is found to be 15 meV /pair

higher in energy than the zince blende phase, which justifies that this modification
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does not occur under normal conditions in HgTe. The calculated properties are
very similar to the ones obtained for the zinc blende modification. but unfortu-

nately no other studies could be found to compare with.

7.3 High-pressure phases

7.3.1 Zinc telluride

As a result of the calculations presented here, first a transition from the zinc
blende structure to the SC16 or the cinnabar structure is obtained. The pressure
at which this happens is 9.33 and 9.80 GPa, respectively. Both structures are
close in energy. For the cinnabar arrangement a ground-state cohesive energy of
4.290 eV /pair is found. which is about 70 meV lower than the one for the SC16
form. This deviation narrows down for higher pressure. This means that with
the methods available at the moment, no statement can be made as to which
structure is more stable. In addition, both calculated transition pressures are
in very good agreement with other theoretical as well as experimental results as
can be concluded from table 7.1. Furthermore, the transition between the SC16
and cinnabar structure is calculated to be possible at 15.50 GPa.

Even though Qteish and Munoz already mention the likelihood of a stable SC16
phase in ZnTe [181], the experimental investigations by Camacho et al. [215] as
well as the TB-LMTO calculation by ref. [139] conclude the cinnabar phase is
preferred over the SC16 phase. However, Camacho et al. at least observe the
SC16 structure following cinnabar in a narrow pressure range of 12-13.8 GPa,
which is extremely close to the stability range of approximately 2.01 GPa ob-
tained here. Refer to table 7.4 for details.

If the SC16—C2 transition is not considered, the results presented here predict
that both structures become unstable with respect to the Cmem symmetry (skip-
ping the rocksalt structure in contrast to all other group 12 chalcogenides). This
can already be deduced from the upper panel of fig. 7.1. The transition pressures
are 11.34 and 9.73 GPa for the SC16 and cinnabar form, respectively, in good
agreement with other theoretical and experimental results.

The lattice constant for the SC16 modification under ambient conditions is cal-
culated to be 7.578 A, which means a ground-state volume of 54.40 A3/pair.
The Wyckoff parameters are u = 0.1570 for the Hg atoms and v = 0.6423 for

the Te atoms, while the bulk modulus and its pressure derivative are 41.5 GPa
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Property This work Other theoretical Experiments
SC16
a 7.578 (7.200) 7.292¢°
Vo 54.40 (46.66)

u 0.1570 (0.1484)

v 0.6423 (0.64306)

By 11.5 102.35°

B 1.5

B 1.363

pr to Cmem 11.34

Cmem

a 424 (5.360) 5.655° 5.379¢
b 852 (6.009) 6.277° 5.971¢
¢ 5. ()()1 (4.913) 5.267° 5.010¢
b/a 1.263 (1.121) 1.110° 1.110¢

c/a 1.033 (0.917) 0.931° 0.931¢
y(Zn) 0.6395 (0.6260) 0.640¢
y(Te) 0.2445 (0.1848) 0.190°
Lo 52.00 (39.50) 46.74° 10.23¢
By 49.2 82.2 W3y
B 3.8 4.75 Dl
Econ 4.062
%y o GC 130.35

Cesium chloride
a

3.596 (2.925)

W 16.51 (25.03)
1o 50.8

B 19

Eoon 3.235

aTB-LMTO from ref. [139]: °DFT from ref. [230]: “from ref. [214] at 15.7 GPa:
IX-ray diffraction from ref. [234].

Table 7.4: Ground-state properties of the high-pressure phases of ZuTe. Presented
are the lattice constants a, b and ¢ (A), respective internal parameters,
ground-state volume Vy (A3/pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E.,, (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate

higher pressure.

and 4.5. The cohesive energy in the ground state is 4.363 eV /pair. If one looks
at the lattice constant at a higher pressure close to the transition (9.20 GPa),
a value of 7.200 A (V = 46.66 A3/pair) is obtained. This means that the re-
sults presented here bracket the lattice constant indicated by Gangadharan et al.

(a = 7.292 A) [139], who unfortunately do not give the pressure at which their
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Property This work Other theoretical Experiments
Cinnabar

a 4.351 (4.101) 4.158%, 4.305° 4.105¢
c 9.783 (9.373) 9.899° 9.397°
c/a 2.248 (2.2806) 2.299° 2.289°¢
u 0.4991 (0.5175) 0.540¢
v 0.4996 (0.5112) 0.504¢
Vo 53.29 (45.51) 52.96° 45.71¢
Bo 47.7 6214, 51:4% SNy
B’ 4.9 4.5 0.8¢
Bon 4.290

pe to SC16 - 12.9%
py to Cmem 9.73 13.9°, 10.24-11.1 11-137
Rocksalt

a 5.775 (5.500) 5.749° 5.5029
1o 48.14 (41.59) 47.51° 41.649
By 54.3 57.0° 1459
B 4.9 5.4b o9
Feon 3.999

*TB-LMTO from ref. [139]: °DFT from ref. [230]: “from ref. [209] at 8.9 GPa:
IX-ray diffraction from ref. [234]; *“Raman study from ref [215]: /from ref. [12]:
9X-ray diffraction at 11.6 GPa from ref. [212].

Table 7.5: Ground-state properties of the high-pressure phases of ZnTe. Presented
are the lattice constants a and ¢ (A), respective internal parameters,
ground-state volume Vg (A3 /pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E.,, (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate
higher pressure.

data is taken. However, the bulk modulus is not in accordance with their results.
This might be due to the different method used. No further data is available to
compare with.

On the other hand, the lattice parameters for the cinnabar modification are
a=4101 A c¢=9373 A, v = 0.5175 and v =0.5112 (V = 45.51 A3/pair) at
10.92 GPa. The corresponding ground-state values are given in table 7.5 and
agree considerably well with the results of existing investigations by Nelmes et
al. and Gangadharan and co-workers [139, 209]. Comparability with ref. [230]
is reasonable, considering that the authors fixed the internal parameters with

respect to the experimental values.

ZnTe-III has according to the result discussed here a Cmcem structure (Fop =
4.062 eV/pair) with lattice constants of a = 5.424 A, b = 6.852 A and ¢ = 5.601 A
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along with y(Zn) = 0.6395 and y(Te) = 0.2445 as internal parameters. The
lattice constants are in reasonable agreement with the calculations of ref. [230].
who have fixed the internal parameters (as well as the lattice constant ratios) to
the experimental ones measured by Nelmes et al. [214]. This procedure explains
the deviations in the bulk modulus as well (see table 7.4). The results are
fuirthermore in concordance with experiments. especially if one looks at the lattice
constant at a post-transition pressure: At 16.53 GDPa lattice constants of a =
5.360 A. b= 6.009 A and ¢ = 4.913 A and internal parameters of y(Zn) = 0.6260
and y(Te) = 0.1848 are derived (experimental data: a = 5379 A, b = 5971 A,
c = 5.010 A. y(Zn) = 0.640. y(Te) = 0.190 at 15.7 GPa). However. the bulk
modulus seems to be severely underestimated compared to the experiment values.

For further details concerning the bulk properties of Cmcm-ZnTe see table 7.4.

Furthermore. the present results predict a transition of the Cimcm phase to a
CsCl-like structure at 130.35 GPa. The ground-state properties can be gathered
from table 7.4. At a post-transition pressure of 138.08 GPa, the calculated lattice
constant is 2.925 A. Further work has to be done, to establish whether the CsCl
structure becomes unstable in the presence of another intermediate phase. This
is very likely. since Nelmes and McMahon observed a phase transition around
85 GPa [12]. Here. especially a distorted CsCl or bee structure would be worth
Investigating.

The calculations presented here agree with the interesting fact that the stan-
dard transition path for ZnTe does not involve the rocksalt structure in stark
contrast to the other zince chalcogenides. The ground-state colhesive energy of
Eecon = 3.999 eV /pair is considerably higher than the one obtained for the Cimcm
structure. But since there is evidence of this modification at high temperatures
(at 11.5 GPa and 400°C) [212]. the bulk properties are included here as well. The
ground-state values obtained are: a = 5.775 A, By = 54.3 GPa and 3/ = 4.9.
At an increased pressure of 11.3 GPa the lattice constant decreases to 5.500 A
(V = 41.59 A3 /pair). This is in excellent concordance with the results in ref. [212]
(a = 5.502 A at 11.6 GPa). However, the bulk modulus is severely underesti-
mated, which is to be blamed on the fixed value for 3’ used in the experimental
fit and the fact that the authors of ref. [212] give their bulk modulus at higher
pressure. Furthermore, the ground-state values are in excellent agreement with

previous theoretical work (see table 7.5).
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7.3.2 Cadmium telluride

Strictly speaking the transition path calculated for CdTe would go from the zinc
blende via the rocksalt to the distorted rocksalt (Cicm) structure and finally to
a caesium cliloride arrangement. The according transitions pressures are 4.11,
12.4 and 69.5 GPa.

However, the situation is rather complicated with the cinnabar and SC16 struc-
tures being energetically in close proximity, especially in the transition region.
The transition pressures are very closely spaced with values of 4.11, 1.16 and
4.18 GPa for the ZB--RS, ZB--»cinnabar and ZB—SC16 transition, respectively.
Therefore, in a pressure range of 4.11 to 4.18 GPa several transitions are possible
from a theoretical point of view and the method used is not accurate enough to
make a definite statement.

Yet, it is very likely that those structures can be found experimentally, at least
as metastable or hidden intermediate phases. The case found here is similar
to the situation for the C222; phase in HgSe and HgTe. Outside the stability
range of ZB with respect to RS (0-4.11 GPa), two possible transitions are found
to either the cinnabar or the SC16 structure at 4.16 and 4.18 GPa respectively.
But like for C222,-HgSe an actual stability range cannot be determined, since
the C2—RS and SC16--RS transitions are calculated to happen at 3.96 and
4.05 GPa, respectively.

It is mentioned again that only slight energy deviations due to the methodology
would change this picture completely, let alone the consideration of differences
due to temperature effects. It should also be mentioned that for the cinnabar
structure, even though found upon pressure increase as well as decrease, a sin-
gle phase sample could only be obtained in downstroke experiments [12]. This

supports the fact that all structures are energetically very similar.

Concerning the structural properties a ground-state volume of 57.52 A?/pair is
obtained for the rocksalt structure, leading to a lattice constant of 6.128 A. It
decreases to 5.875 A (V = 50.69 A3/pair) at a pressure of 8.3 GPa in excellent
agreement with available experimental data (5.843 A at 8.9 GPa [2206]). The
lattice constant is furthermore in good concordance with other theoretical results
(see table 7.6). The calculated bulk modulus (By = 47.5 GPa) underestimates
the experimental value, but is acceptable at the lower end of the theoretical

results, as is its pressure derivative (B’ = 5.3).

The bulk properties determined for the CdTe-I'V phase (Cmcm) also match pre-
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Property This work Other theoretical Experiments
Rocksalt

a 6.128 (5.875) 5.787-5.8107, 5.924° 5.930¢, 5.8437
Vo 57.52 (50.69) 48.45-49.032, 51.97° 52.13¢, 49.877
Bo 47.5 74 876:29,/66.45, 55.3¢ 69/

B’ 58 42941672, 220 5.2¢ 5.1/

Beoh 3.868

pi to Cmem 12.141 15¢ 10.19, 10"
Cmem

a (5.648) 5.568° 5.5739

b (6.084) 6.392° 5.9609

c (5.227) 5.501° 5.2849
b/a (1.077) 1.148° 1.0699
c/a (0.926) 0.988° 0.948¢9

Y1 (0.63906) 0.6532° 0.650¢

Yo (0.1732) 0.1770° 0.180¢

1o 56.90 (44.91) 48.95° 43.99

By 49.02 67.0°

B 3.9 45

oo 3.816

py to CC 69.53 2%¢ 289, 42
Cesium chloride

a (3.225) 3.788 4.609%. 2.936¢

1o (33.54) 54.35 25.31¢

By 15.9 66.9°. 108.0¢

34 5.0 N7t B3¢

By 3.135

LDA and LDA-GGA from ref. [232]: ’FP-LMTO from ref. [146]: “X-ray ditfrac-
tion at 3.9 GPa from ref. [219]: “X-ray diffraction at 8.9 GPa from ref. [226];
¢FP-LMTO from vef. [220]: /X-ray diffraction from ref. [222]; 9from ref. [223] at
18.6 GPa; "from ref. [142]; ‘from ref. [12].

Table 7.6: Ground-state properties of the high-pressure phases of CdTe. Presented
are the lattice coustants a, b and ¢ (A). respective internal parameters,
ground-state volume Vy (A3/pair). bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E o, (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate
higher pressure.

vious data satisfactorily. At 18.99 GPa the lattice constants are 5.648 A, 6.084 A
and 5.227 A with a corresponding unit-cell volume of 44.91 A?/pair. Those val-
ues as well as the Wyckoff positions y(Cd) = 0.6396 and y(Te) = 0.1732 are in
very good agreement with the experimental data by Nelmes et al. (a = 5.573 A,
b =5960 A, c = 5284 A, y(Cd) = 0,650, y(Te) = 0.180 at 18.6 GPa). The
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Property This work Otler theoretical Experiments
Cinnabar

a 4.618 (4.364) 4.326¢ 4.338°, 4.292¢
c 10.512 (10.285) 10.322° 10.273%, 10.235¢
c/a 2.276 (2.357) 2.386° 2.368°. 2.385¢
u 0.5193 (0.6209) 0.6540° 0.612%, 0.641¢
v 0.5082 (0. 0742) 0.675 0.566°, 0.564¢
1% 64.64 (56.55) BDNI68 55.81%, 54.43¢
By 35.1 51.7¢ 32

B 0.18 4.9

Eeon 1.005

pi to SC16 4.13

pe to RS 3.96 104 3.9¢
SC16

a 8.078 (7.800)

u 0.1576 (0.1514)

v 0.6395 (0.6404)

Vo 65.90 (59.32)

Bo 34.1

B 5.3

Breok 4.054

pi to RS 4.05

AFP-LMTO from ref. [146]: ®X-ray diffraction at 2.87 GPa from ref. [222]: “X-ray
diffraction at 3.6 GPa from ref. [219]: “FP-LMTO from ref. [220].

Table 7.7: Ground-state properties of the high-pressure phases of CdTe. Presented
are the lattice constants a and ¢ (A), respective internal parameters,
ground-state volume Vy (A3/pair), bulk modulus By (GPa) and its pres-
swre derivative B’ as well as the cohesive energy F ., (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate
higher pressure.

ground-state values according to the NMurnaghan fit are listed in table 7.6 in
brackets, but should be regarded with suspicion, since only values up to a vol-
ume of 50.54 A3/pair could be used. This means the minimum is not actually
included, therefore the ground-state volume will be over- and the bulk modulus
underestimated, since the Murnaghan fit is most reliable for lower pressures. To

compare with theoretical data see table 7.0.

For the cesium chloride phase at 73.72 GPa a unit-cell volume of 33.54 A3/pair
along with a lattice constant of 3.225 A is calculated. However, at this pres-
sure the solid would only be just stable with a very low cohesive energy of

0.154 eV /pair. The ground-state properties were evaluated as well and can be
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found in table 7.6. Except for the pressure derivative of the bulk modulus agree-
ment with ref. [220] for unknown reasons is not very good. But the authors also
get a very low transition pressure of only 28 GPa, while Nelmes and McMahon
reported the Cmem phase to be stable up to 40 GPa [12]. Comparing this to
the transition pressure calculated here (69.3 GPa) it is very likely that another
intermediate phase between Cmem and caesium chloride exists. This should

encourage further investigations. but is not the intention of this thesis.

The ground-state properties for the cinnabar structure are listed in table 7.7.
At a pressure of 4.13 GPa in the transition region the following properties are
determined: V" = 56.55 A?/pair. a = 4.364 A. ¢ = 10.285 A, u = 0.6209 and ¢ =
0.5742. The values are in excellent agreement with the respective experimental
and theoretical data in table 7.7. The bulk modulus of 35.1 GPa differs from
the other computational reference data. but is in excellent concordance with the
experimental value (32 GPa [222]). However, the pressure derivative is extremely

low with a value of just 0.18.

The structural parameters calculated for the ground state of the SC16 structure
in CdTe are: F., = 4.054 eV /pair. a = 8.078 A, V5 = 65.90 A?/pair, u = 0.1576.
v = 0.6395. By = 34.1 GPa and B’ = 5.3. At a higher pressure of 4.52 GPa the
new lattice parameters are: a = 7.800 A, V" = 59.319 A3/pair. v = 0.1514
and v = 0.6404. This phase however. is a pure prediction and no experimental
imvestigations have been reported vet. No other theoretical work could be found
either. However, following the predictions for ZnTe, a SC16-CdTe phase is very

likely, if not hindered by energy barriers.

7.3.3 Mercury telluride

For the high-pressure behaviour of HgTe a very similar picture to HgSe is found.
Similarly, the transition of the equilibrium phase (zinc blende) to the cinnabar
phase is predicted at 2.30 GPa, while the method used here fails to predict
the intermediate €222, phase observed by McMahon et al. [195]. The pres-
sure values obtained for the transition are p;(ZB — (€222;) = 3.04 GPa and
pi(C222) — (C2) = 2.20 GPa (experimental values: p;(ZB — (222,) = 2.55 GPa
and p(C222, — C2) = 2.6 GPa [195]). However, again the C222; structure
seems to be very sensitive and it is hard to find a Murnaghan fit, since only
values over a small volume range are obtained (due to relaxation into other

structures). Furthermore, the pressure range for this phase is extremely narrow
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Property This work Otler theoretical Experiments
Cinnabar

a 4.695 (4.452) 4.382¢ (4.383)%, (4.45)°
¢ 10.417 (10.186) 10.028¢ (10.022)%, (9.89)¢
c/a 2.219 (2.288) 2.288¢ (2.278)° (2.22)°
u 0.6639 (0.64%89) (0.641)°

v 0.5219 (0.5590) (0.562)°

V 66.28 (58.28) 55.586¢ (55.58)%, (56.53)°
By 21.31 95.7¢ 16.0¢, 32-417
B bal T8, 1832554
Bon 2.941

m to RS 5.67 8¢

222

a (6.531) (6.295)¢

b (6.342) (6.241)¢

¢ (6.490) (6.364)¢

b/a (0.971) (0.991)¢

c/a (0.994) (1.011)e
x(Hg) (0.3107) (0.315)¢
y(Te) (0.2053) (0.205)¢

Vv (67.21)

By

B’

B (2.992)

pe to C2 2.20 2.6¢
Rocksalt

a 6.150 (5.875) (5.83/5.80)¢, (5.843)f
V 58.15 (50.69) (49.54/48.78)¢, (49.87)/
Bo 47.0

B’ 5.4

FEeon 2.772

P to Cmem 12.99 10.29, 12"

APW-US LDA from ref. [233]; *X-ray diffraction at 3.6 GPa from ref. [92]; ¢X-
ray diffraction at 2.6 GPa for the cinnabar and at 8.2/10.5 GPa for the RS form
from ref. [149]: /X-ray diffraction from ref. [225]; ¢X-ray diffraction at 2.55 GPa
from ref. [195]; /X-ray diffraction at 8.9 GPa from ref. [226]; 9from ref. [227];
"from refs. [191, 192].

Table 7.8: Ground-state properties of the high-pressure phases of HgTe. Presented
are the lattice constants a, b and ¢ (A), respective internal parameters,
ground-state volume Vg (A3/pair), bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy E.,, (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate
higher pressure.
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Property This work Other theoretical Experiments
Cmem

a (5.674) 5.612¢ (5.563)°

b (6.251) 6.194¢ (6.152)°

c (5.163) 5.102° (5.105)®
b/a (1.102)

c/a (0.910)

y(Hg) (0.6260) (0.624)°
y(Te) (0.1546) (0.152)
v 57.28 (45.78)

By 49.7 124.7°

1B’ 1.2

S 2.705

p to CC 56.74 44.7° (38.1¢. 28-507)*
Cesium chloride

a 3.800 (3.325) 3.302° (3.299)¢
W 54.87 (36.76) 36.00° (35.90)4
By 51.8 247 2°

B 4.1

E ok 2236

aPW-US from ref. LDA [233]; ®X-ray diffraction at 18.5 GPa from ref. [227]:
“X-ray diffraction from ref. [203): “X-ray diffraction at 51 GPa from ref. [209].
*The structure is believed to be distorted CsCl or disordered bee.

Table 7.9: Ground-state properties of the high-pressure phases of HgTe. Presented
are the lattice constants a. b and ¢ (A). respective internal parameters.
ground-state volume Vy (A3 /pair). bulk modulus By (GPa) and its pres-
sure derivative B’ as well as the cohesive energy Eco, (eV/pair) and the
transition pressure p; (GPa) where applicable. Values in brackets indicate
higher pressure.

(0.05 GPa) and it is actually observed outside the pressure range. where zinc
blende is stable with respect to cinnabar. Hence. this phase is not accessible to
theoretical calculations.

The structural properties derived for the cinnabar phase of HgTe are a = 4.695 A,
c = 10417 A, u = 0.6639, v = 0.5219 at zero pressure and a = 4.452 A,
¢ = 10186 A, u = 0.6489. v = 0.5590 at 3.69 GPa. Hence, the results are in
excellent agreement with the experimental data (see table 7.8). Experiments also
measured the bulk modulus for cinnabar-HgTe to be between 16.0 and 41 GPa
using different fits, while tle pressure dependence is estimated to be in the range
of 3.3-7.3. The values determined here, By = 21.31 GPa and B’ = 5.1, are

very well within those brackets. Typical for the cinnabar structure among the
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mercury chalcogenides is the rather low bulk modulus. The colesive energy is
2.941 eV/pair, approximately 0.1 eV/pair lower than in zinc blende, meaning
that the two structures are very well separated.

Similarly, good results are obtained for the lattice parameters of the €222,
structure, where a = 6.531 A, b = 6.342 A, ¢ = 6.490 A, x(Hg) = 0.3107,
y(Te) = 0.2053 at 2.78 GPa. This means that at a similar pressure to exper-
iments, the Wyckoff positions fit nicely, while the lattice parameters show the
typical overestimation due to DFT. No structural details are obtained for the
ground state due to the direct relaxation into the zinc blende structure for lower

pressures. For further details see table 7.8.

Furthermore, at 5.67 GPa a definite structure change from the cinnabar to the
rocksalt arrangement is observed. At 5.9 GPa RS-HgTe has the following pa-
rameters: a = 5.875 A and V = 50.69 A3/pair. The ground-state properties can
be found in table 7.8. They agree well with the experimental data within the
limitations of the method used. No other theoretical investigations have heen

carried out vet. The bulk modulus and pressure derivative are 47.0 GPa and 5.4.

The orthorhombic Cmem structure is found above pressures of 12.99 GPa and is
stable up to 56.74 GPa with respect to the cesium chloride structure. Again no
ground-state properties can be given for the Cmcm structure due to relaxation
into rocksalt for lower pressures. However, at 18.36 GPa the lattice constants
of a = 5.674 A, b = 6.251 A and ¢ = 5.163 A are in good agreement with
experimental as well as theoretical work, although no pressure is given for the
calculated reference data. The Wyckoff parameters y(Hg) = 0.6260 and y(Te) =
0.1546 match the X-ray diffraction values even better. The few ground-state
values given in table 7.9 are estimated from the data points available using the

Murnaghan fit and hence will most likely underestimate By.

At still higher pressures of 56.74 GPa a transition to the CsCl structure is pre-
dicted with an according lattice constant of 3.325 A (V = 36.76 A3/pair) at
55.56 GPa. The cohesive energy at this pressure is very low (0.116 eV /pair) and
the structure therefore only just stable. However, having said that, one has to
bear temperature effects in mind as well. The respective ground-state properties
can be found in table 7.9 along with another theoretical study. The results show
good comparability to other theoretical work.

Comparison with experimental data is diffcult, since the structure of HgTe’s post-
Cmem phase is still debated. Huang and Ruoff observed a transition at 38.1 GPa,

which they believe to be to a distorted CsCl arrangement. However, Nelmes et
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al. find a transition at 28 GPa. which could be explained by a disordered CsCl or
bee structure (no long-range order). Yet, a single-phase probe is only obtained
at 50 GPa and the lattice constant is @ = 3.299 A (at 51 GPa) [209]. This is
in excellent concordance with the lattice constant presented for the site-ordered

CsCl structure.

Analogous to HgSe, the SC16 structure is too high in energy to be considered a
stable phase in HgTe (F.,, = 2.908 eV /pair). However, the ground-state lattice
constant obtained is 8.120 A along with internal parameters of u = 0.1623 and
v = 0.6340. Hence, the ground-state volume is V5 = 66.93 A3/pair. Furthermore,
the values calculated for the bulk modulus and its pressure dependency are By =
32.9 GPa and 6.4 respectively.

7.4 Electronic structure

7.4.1 Zinc telluride

The electronic structure and density of states of ZnTe in its equilibrium state
is depicted in fig. 7.2. The VBAI and CBM appear both at the centre of the
Brillouin zone, and further VBN as well as CBM are located at L. A" and X.
Hence. it is concluded that the zinc blende form of ZnTe under ambient pressure
1s a direct-gap semiconducting material with a fundamental gap of 1.07 eV.
Compared to this the experimentally observed energy of 2.39 eV (at 0 IX) [120]
is significantly higher showing the inadequacy of DFT for the calculation of
absolute gap energies. Yet, the qualitative picture compares very well to other
ivestigations. In addition, the values presented agree with calculations at the
same level. e.g a LDA calculation discussed in ref. [170] obtaining a value of
E4(I') = 0.74 eV at a lattice constant of a = 6.088 A. A significant improvement
of the value could be achieved by using various improved approaches within the
computationally extremely expensive GW approximation, leading to values of
1.97 to 2.27 eV [170).

7.4.2 Cadmium telluride

According to the study at hand and in concordance with experimental and other
theoretical investigations, CdTe is classified as a small-gap semiconductor, and a

direct gap of 0.58 eV is found at the I'-point in the Brillouin zone. Similarly to
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Figure 7.2: Band structure and density of states (normalized per pair) at zero pres-
sure for the ZuTe (upper panel) and CdTe (lower panel) zinc blende poly-
morph calculated within the scalar-relativistic DFT-GGA framework.
The valence-band maximum is set to zero energy. The black solid lines
indicate the valence and the red dashed lines the conducting bands, re-
spectively.
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ZnTe, other local CBM and VBAI are situated at the L, K and X-points. For
an illustration of the band structure and DOS the reader is referred to the lower
panel of fig. 7.2.

Again the method used here, despite producing qualitatively correct results,
severely underestimates the band gap, as a gap energy of 1.59 eV was mea-
sured at 1.6 K [120]. Those values can only be obtained computationally, if one
employs very expensive methods such as the GW-approximation. In that case
ref. [170] calculates an energy of E,(I') = 1.22 — 1.51 eV. However, compara-
bility with an according LDA calculation is acceptable considering the slightly
different lattice constants used as well (Ey(I') = 0.21 eV at a lattice constant of
a=0.480 A) [170].

7.4.3 Mercury telluride

Experimentally, HgTe was found to be a zero-gap material. 1.e. a semimetal, with
the smallest gap at the I'-point. Here an inverted band structure is observed since
the I'g-level. being the CBM for most cubic semiconductors has a lower energy
than the I's-state (VBM) [120]. Hence, a small negative band gap of —0.301 eV
(at 0 K) is measured [120].

This is confirmed by the study at hand, where the results are depicted in figs. 7.3
and 7.4. For both approaches. the scalar-relativistic methedology as well as
upon inclusion of spin-orbit coupling. the Hg-6s hand are located helow the O-
5p bands, as can be concluded from the site-projected density of states. Just by
counting. the bands should he occupied up to the first O-5p, making HgTe a zero-
gap material. Hence, the inverted band structure as well as the semiconducting
character of ZB-HgTe are correctly reproduced.

Due to the spin-orbit splitting the pictuwre changes slightly and the situation
is similar to HgSe, where spin-orbit splitting of the p-states is large enough
and hence the 'y levels are higher in energy than the ['; levels. For the direct
E,(I's — I's)-gap an energy of —1.154 eV is calculated. This compares well to
other theoretical investigations. For example, Cardona et al. [174] obtain a value
of £, = —1.025/ — 1.113 eV using Vasp LDA and GGA, respectively. The
discrepancy can be explained by the slightly different lattice constant used (a =
6.433/6.633 A for LDA and GGA, respectively).

Looking at the plot of the relativistic Hg site-projected DOS, a complex picture
emerges. Here, a splitting of about 2 eV is found, again indicating the splitting

of the 5d band into 5d3/, and 5d5/, as it was the case for previously described Hg
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Figure 7.3: Band structure and density of states (normalized per pair) at zero pres-
sure for the HgTe zinc blende polymorph calculated within the scalar-
relativistic DFT-GGA framework (upper panel) as well as upon inclusion
of spin-orbit effects (lower panel). The valence-band maximum is set to
zero energy. The black solid lines indicate the valence and the red dashed
lines the conducting bands, respectively.
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Site-projected density of states at zero pressure for the HgTe zinc blende
polymorph calculated within the scalar-relativistic DFT-GGA framework
(upper panel) as well as upon inclusion of spin-orbit effects (lower panel).
The black solid, red dashed and blue dash-dotted line indicate the s, p
and d site-projected DOS, respectively.
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chalcogenides. An additional influence of the crystal-field splitting can be seen.

7.5 Relativistic influences

7.5.1 Equilibrium structure

System a ¢ w /v By 54 Eeok Vo

Zinc blende 6.860 E - /- 326 49 4390 80.71
Wurtzite 4.850 7.926 0.3749 / - 326 49 4.385 80.74
SC16 8.353 - 0.1576 / 0.6386 32.1 4.8 4.250 72.85
Cinnabar 1.742 10927 0.5397 / 0.5210 22.6 -10.3 4.214 70.95
Rocksalt 6.320 - -/- 449 5.0 4.171 063.12
Cesium chloride 3.897 - -/ - 442 4.8 3.422 59.17

Table 7.10: Ground-state properties of equilibrium and high-pressure phases of HgTe
within the nonrelativistic approach. Presented are the lattice constants
a and ¢ (A), respective internal parameters, ground-state volume Vj
(A3/pair), bulk modulus By (GPa) and its pressure derivative B’ as
well as the cohesive energy FE.., (eV /pair).

The volume-energy dependencies of nonrelativistically treated HgTe can be viewed
in the lower panel of fig. 7.5. It shows that, similar to what has already been
described for HgSe, the zinc blende and wurtzite structure yield the lowest ener-
gies. Table 7.10 shows, however, that for the first time within the nonrelativistic
Hg chalcogenides thie zinc blende structure actually reaches a higher colesive
energy than the wurtzite structure, indicating that this is the preferred equi-
librium phase. Yet, the energy difference of just 5 meV/pair is very small and
resembles approximately the energy deviation in CdSe, in which case still both
structures occur at ambient pressures. Also, looking at the sequence of energy
differences between the zinc blende and the wurtzite structure within the group
12 tellurides (12 meV/pair, 8 meV/pair and 15 meV/pair for ZnTe, CdTe and
HgTe respectively), it becomes obvious that relativistic influences at least desta-
bilize the wurtzite structure.

The bulk properties obtained for the zinc blende form are a = 6.860 A, 1y =
80.71 A3, By = 32.6 GPa and B’ = 4.9. This means that yet again the scalar-
relativistic calculations for HgTe lead to a typically relativistically contracted
lattice constant compared to the nonrelativistic value. This can also be deduced
from the bond distances in table 7.11, where relativity causes ZB-HgTe as well

as W-HgTe to adopt almost the same values as obtained for CdTe.
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Furthermore, an energetic lattice destabilization is observed lowering the colhesive
energy relativistically from 4.390 to 3.059 eV/pair. The difference of 1.33 eV /pair

is even less than in HgSe.

System ZnTe CdTe HgTe nonrel. HgTe

dyre  daar dayre  dan dyre  daar dare dagng

Wurtzite 2.67 4.38 2.86 4.68 2.88 4.72 2.97 1.85

Zinc blende 2.67 4.37 2.87 4.08 2.88 4.71 2.97 1.85
exp. 2.64 4.32 2.81 4.58 2.80 4.57 - -

Cinnabar 2.72 3.92 2.88 4.20 2.76 4.40 2.96 4.36

at p; 2.57 1.10 2.79 4.17 2.76 4.34 2.94 4.38
exp. - - 2.77 4.14 273 1413 - -

Table 7.11: Closest metal-tellurium bond distance d;7. and closest metal-metal dis-
tance dasas in A of the respective equilibrium structures (unless indicated
otherwise) of the group 12 tellurides.

7.5.2 High-pressure structure

The order of structural transitions at higher pressures for the nonrelativistically
treated HgTe is calculated to be ZB-->RS—Cmem--»CsCl. The transition pres-
sures obtained are 2.12, 13.30 and 53.71 GPa, respectively.

A transition from the zinc blende structure to a cinnabar form of nonrela-
tivistic HgTe is not achieved until the cinnabar structure already converts into
the rocksalt arrangement. However, it is hard to make a prediction since the
structures are close in energy and the deviations in the transition pressures
(pe(ZB - C2) = 2.33 GPa and p;(C2 — RS) = 1.67 GPa) smaller than the
precision of the method used. Furthermore, for the cinnabar structure again
(like in nonrelativistic HgSe) the problem occurs that the structural minimum
characterized by u =~ 0.5 = v splits up for higher pressures. The energy-volume
curve, for which the Wyckoff positions deviate from 0.5, is lower in energy. But
since this curve for lower pressures immediately relaxes into the other curve, a
negative pressure derivative of the bulk modulus is calculated for nonrelativistic
HgTe, making it hard to calculate the correct transition pressure.

This behaviour is similar to CdTe and immediately shows the different nature of
the cinnabar phase in nonrelativistic HgTe compared to the relativistic charac-
teristics. In contrast, for the relativistic calculations of cinnabar-HgTe, a strong
energy-volume minimum is found, with v and v deviating from 0.5 over the

whole pressure range investigated. This leads to a 442 coordination almost all
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the way through with nearest Hg-Te bond distances of 2.76, 3.07 and 3.50 A
at 3.69 GPa (in good agreement with the experimental distances of 2.73, 3.00
and 3.46 A [12]), whereas the closest Hg-Hg bond distance is 4.34 A. The bond
distances change only slightly for lower pressures, where values of 2.76. 3.28 and
3.75 A are obtained, indicating a segue into the 24+2+2 coordination observed
in HgSe. In nonrelativistic cinnabar-HgTe however. the nearest Hg-Te bond dis-
tances are 2.96. 3.04 and 4.27 A around the minimum and 2.94, 3.09 and 3.66 A
at a slightly higher pressure (1.87 GPa). This means that even though for higher
pressures all group 12 tellwides inherit the 442 coordination, the zero pressure
structure still varies with a fourfold coordination equivalent to cinnabar-ZnTe
and CdTe. but different from relativistically treated cinnabar-HgTe. Yet. this
effect is a lot less pronounced than in HgSe. HgS and HgO. All bond distances
are listed in table 7.11. For a more visual idea of the transition from a fourfold to
the 442 coordination in the cinnabar structure the reader is referred to fig. 3.5.
In addition, the €222, structure found in HgTe, becomes significantly less stable
due to the neglect of relativistic effects. Furthermore, it should he noted that the
SC16 structure is again too high in enthalpy to be considered in the transition
path.

The structural parameters and other ground-state properties of the HgTe high-
pressure phases in the nonrelativistic picture are summarized in table 7.10. In
general. due to the effect of relativistic contraction, the lattice constants are

slightly bigger than in their relativistically treated counterparts.

7.5.3 Electronic properties

The zero pressure electronic structure of nonrelativistic ZB-HgTe including the
site-projected DOS is shown in figs. 7.6 and 7.7. Compared to figs. 7.3 and 7.4
the striking differences between the relativistic and nonrelativistic picture be-
come immediately obvious: If relativistic effects are neglected, the semi-metallic
character of HgTe disappears and a small band-gap semiconductor with a gap
energy of 0.63 eV similar to ZB-CdTe occurs instead. Analogously, the CBM
and VBM are located at the centre of the Brillouin zone and funrther maxima
and minima are equally located at L, K and X.

The site-projected DOS clarifies the described behaviour, as one can clearly see
that the Hg-6s band is now shifted and superposes with the Te-5p band. This
leads to a degeneracy at the I'-point overturning the inverted band structure.

Furthermore, the crystal-field splitting in the d-bands is clearly visible in the
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Figure 7.6: Band structure and density of states (normalized per pair) at zero pres-
sure for the HgTe polymorphs zinc blende calculated within the nonrela-
tivistic DFT-GGA framework. The valence-band maximun is set to zero
energy. The black solid lines indicate the valence and the red dashed lines
the conducting bands, respectively.

Hg-spectrum. The separation energy is about 0.15 eV due to the tetralhedral

arrangement characteristic for the zine blende structure.

7.6 Summary

In general, the bulk properties calculated in this study are in good agreement
with other theoretical and experimental work. Yet, the bulk moduli are usually
somewhat underestimated if compared to experimental results, but are consis-
tent with other computational investigations. The same holds for the qualitative
characterization of the electronic structure, even though the gap energies are
severely underestimated, which is to be expected using DFT.

Furthermore, the order of the high-pressure phases and the according transition
pressures are predicted correctly. Yet, due to the fact that the transitions in-
volving the cinnabar phases are very closely spaced, the method used here might

not be accurate enough to make a definite statement. For ZnTe the results
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Figure 7.7: Site-projected density of states at zero pressure for the HgTe polvmorph
zinc blende calculated within the nonrelativistic DFT-GGA nonrelativis-
tic framework. The black solid. red dashed and blue dash-dotted line
indicate the s. p and d site-projected DOS. respectively.

presented here confirm its special role in terms of the high-pressure behaviour
predicting the absence of the RS structure. This can most likely be explained by
the low ionicity of ZnTe compared to similar compounds. However, in contrast
to other reports, the SC16 structure is most likely more stable than the cinnabar
structure. In addition, a new transition from the Cmecm to the cesium chlo-
ride structure is predicted. Whether any intermediate phases between those two
modifications are possible should encourage further investigations by theoretical
as well as experimental means.

Even though, the stability of the cinnabar phase seems to be slightly underesti-
mated in this investigation, the differences between the relativistic and nonrel-
ativistic treatment of HgTe become obvious. However, the deviations are less
obvious than in the other mercury chalcogenides, since the cinnabar phase is
observed as a high pressure modification in all three group 12 tellurides. Con-
cerning the structural properties, a difference in coordination is found: For the
relativistically treated HgTe a non-fourfold coordination is obtained over the
wlole range investigated, in contrast to nonrelativistic HgTe.

For the equilibrium phases the relativistic lattice destabilization is calculated to
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be 1.33 eV/pair, which is less that in HgO, HgS and HgSe due to the absence
of structure change. In addition, it is again determined that the stability of the
wurtzite phase is decreased with respect to the zinc blende structure if relativis-
tic effects are included.

Even though the structural difference between nonrelativistic and relativistic
HgTe are less pronounced than in HgO and HgS, a significant change in the
electronic structure behaviour is observed, where the characteristics change from
semimetallic properties in relativistic HgTe to a semiconducting behaviour in

nonrelativistic HgTe.



Chapter 8
Conclusion and outlook

In the thesis at hand, for the first time the influence of relativistic effects on the
solid-state structure of the mercury chalcogenides has been investigated. To this
end, relativistic as well as nonrelativistic density functional theory calculations
have been carried out for a considerable range of equilibrium and high-pressure
modifications of the group 12 chalcogenides. By those means structural proper-
ties of the various chalcogenide phases were obtained, their stabilities calculated
and compared.

It was shown, that relativistic effects play indeed a crucial role in the explanation
and understanding of the sophisticated chain-like structures, namely cinnabar
and montroydite, so typical for the mercury chalcogenides in contrast to the

lighter group 12 chalcogenides.

First and foremost, all mercury chalcogenides investigated show relativistic con-
tractions in the bond-distances (for equilibrium as well as high-pressure phases)
and a large relativistic lattice destabilization for the equilibrium structure. This
destabilization decreases when going from the oxides to the tellurides (AE equals
2.15, 1.73, 1.55 and 1.33 eV for HgO, HgS, HgSe and HgTe respectively). An
explanation for this behaviour is given by the reduction of the effective charge
of the mercury atom due to relativity, i.e. in bulk HgO the Mullikan charge
of the mercury atom changes from +0.90 at the relativistic level to +1.10 at
the nonrelativistic level. This effect however is balanced out by the decreasing
electronegativity descending the 12th group, favouring a more covalent bonding
already for the relativistically treated mercury chalcogenides.

Interestingly enough, for the cinnabar phases of HgO and HgS, the above men-

tioned relativistic contraction is only valid for the inter-chain Hg-chalcogenide

191
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distances. As a big trade-off this contraction is linked to an increase in the intra-
chain distances, which in turn leads to a surprising overall volume expansion and
a subsequent density decrease upon inclusion of relativistic effects. For relativis-
tically treated HgO, densities as small as the ones found for ZnO and CdO are
obtained. This behaviour is in stark contrast to all previous knowledge about the
influence of relativistic effects in solids, but is to be blamed on the suppression of
the relativistic contraction by the crystal field. However, this effect is not appar-
ent in HgSe and HgTe due to the absence of the pronounced structural change
induced by a nonrelativistic treatment (i.e the absence of the cinnabar structure
as an equilibrium form). Hence, the relativistic contraction can be identified in

the unit-cell volume as well.

Even more suprising is the fact that the montroydite and cinnabar structures
found as equilibrium phases in HgO and HgS are solely attributed to relativistic
effects and disappear, not only as the ambient pressure phases, but completely,
if relativity is neglected. It is found that this can be explained by the decrease
in ionicity induced by relativistic effects as well. Hence, typically more ionic
bonded structures are favoured in the nonrelativistic picture.

However, this dramatic change in the equilibrium structure becomes less pro-
nounced for mercury selenide and telluride due to the absence of the cinnabar
structure as a zero-pressure phase. Yet, significant changes in the coordination of
the respective cinnabar modifications are calculated. This trend starts to appear
already in HgS where relativity changes a simple fourfold coordination (in non-
relativistic HgS) to the unique 2+4 coordination of HgS. The structural change
in the Wyckoff parameters u and v here is so large that it has already been
challenged whether this arrangement should still be attributed to the prototype
cinnabar structure.

Furthermore, it is determined that relativistic effects destabilize the wurtzite
structure with respect to the zinc blende structure. This effect is present for all
mercury chalcogenides, yet the energetic difference lessens going from HgO via
HgS and HgSe to HgTe. It has already been stated in a study that the difference
in energy AF(WZ — ZB) increases if the anion atomic number increase from
S and Se to Te. As the atomic number decreases, the structures become more
ionic, since the Madelung constant for wurtzite (a'yZ = 1.6413) is larger than
for zinc blende (a%f = 1.6381) [161]. Hence, the less covalent wurtzite phase
is preferred in the nonrelativistic picture due to the increase in ionicity upon

neglect of relativity.
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In general the transition paths of nonrelativistically treated mercury chalco-
genides seems to resemble the ones found for the cadmium chalcogenides rather

closely.

All structural changes observed due to relativistic effects are expected to orig-
inate mainly from scalar-relativistic effects, since spin-orbit coupling is usually
suppressed in the ionic lattice field. Yet, spin-orbit effects play an important role
to determine an accurate band structure and band gap for the mercury chalco-
genides.

It is found that relativistic effects have a major impact on the electronic struc-
ture of the mercury chalcogenides as well. For HgO and HgS, the differences
between a relativistic and nonrelativistic treatment mainly alter the size of the
band gap, which will most likely also be the reason for the red colour found in
HgO cinnabar. However, the electronic properties are left unchanged. This is in
contrast to HgSe and HgTe, where the neglect of relativistic effects goes as far as
changing the experimentally observed semimetallic behaviour to the restoration

of semiconducting properties.

Last but not least, the thesis at hand not only exploits the influence of relativistic
effects extensively, but also represents a very systematic study of the group 12
chalcogenides in general due to the rather thourough comparative approach. The
calculated properties such as lattice constants, internal parameters, bulk moduli,
their pressure derivatives and the cohesive energies were calculated and are over
all in very good agreement with experimental and other theoretical investigations.
Only the bulk moduli at times vary strongly from experimental values. Yet, those
deviations are reported in other theoretical studies as well [113] and can most

likely be blamed on temperature effects.

With regard to the predicted phase transitions, often several phases are very close
in energy in the regions of possible phase transitions. This is particularly true
for modifications with many degrees of freedom, e.g. the cinnabar structure.
Often the deviations in the total energy are just of the order of typical DFT
errors and can easily result in a change of the transition order, therefore making
reliable predictions difficult. Yet, it was necessary to rely on DFT as more
sophisticated methods are not as well developed for the treatment of solids or
rather expensive in computer time. Here, the incremental method developed by
Stoll and Fulde [235] should be mentioned as a possible improvement.

Furthermore, it is mentioned that the results presented here are based on a mere

thermodynamical treatment and in addition are carried out at zero temperature
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only. Hence, an evaluation of phonon dispersions and the inclusion of electron
excitations would be desirable, but are beyond the scope of this thesis where
the focus lies on the influence of relativistic effects. However, the calculation of
exact phase diagrams including temperature induced transitions is very hard and

ntricate.

The shortcomings of a density functional approach become especially obvious in
the severe underestimation of band gaps compared to the available experimen-
tal data. However, the results obtained are in very good qualitative agreement
and compare excellently to other work at the same level of theory. In order to
obtain results comparable to experiments, an improvement of the method such
as the GW approximation in conjunction with the random-phase approxima-
tion is necessary. However, due to its computational cost and the actual aim of
this thesis to estimate the influence of relativistic effects, it was not used here.
Major advancement can be achieved, if one goes away from the single particle
picture. Here, a more thorough investigation of the electronic structure using
highly sophisticated methods such as the Bethe-Salpeter or self-interaction cor-

rected schemes are suggested.
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