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Abstract 

Mercury oxide in its solid state crystallizes in a rather unusual st ructure and 
at ambient pressure two equally intriguing yet different polymorphs are dist in­
guished. Both t he low-temperature so-called montroydite form and the high­
temperature cinnabar modificat ion consist of planar 0-Hg-0 zigzag or spiral 
chains. These sophist icated structures significantly differ from those found for 
the lighter group 12 chalcogenides zinc oxide and cadmium oxide, which under 
ambient condit ions are known to crystallize in rather simple hexagonal wurtzite 
and cubic rocksaJt or zinc blende structures . Descending the chalcogenide group 
in the periodic table, the cinnabar structure disappears as an equilibrium modi­
fication for mercury selenide and telluride but is st ill present as a high-pressure 
modificat ion . However , the deviations in the crystal arrangement between the 
mercury chalcogenides as opposed to the corresponding zinc and cadmium con­
geners are still obvious in terms of a different coordination. 
Considering this curious behaviour of the mercury chalcogenides the question 
arises: What causes the occurrence of the unusual structures in the mercury 
chalcogenides? To this end relativistic as well as nonrelativistic density func­
t ional calculations have been carried out to investigate this quest ion with respect 
to the influence of relativistic effects. Even t hough relativistic effects in atoms 
and molecules are well-known and understood , little attention has been given to 
their influence on the electronic st ructure and propert ies of the solid state yet .  
The study a t  hand for the first time demonstrates that the structural differences 
between the mercury chalcogenides and their l ighter zinc and cadmi urn congeners 
are a result of relativistic effects. The montroydite and cinnabar modificat ions of 
HgO and HgS disappear if relativity is neglected due to a substantial decrease of 
the cohesive energies by up to 2 . 2  eV. This deviat ion becomes smaller for HgSe 
and HgTe, yet a slight change in the coordination can be att ributed to the in­
fluence of relativity. Furthermore, the electronic structure and density of states 
of the mercury chalcogenides are discussed with respect to relativistic effects 
including the consideration of spin-orbit effects. It was found that relativistic 
effects have a major impact on the electronic structure. In mercury selenide 
and telluride the neglect of relativity goes as far as changing the experimentally 
observed semimetallic behaviour to the restoration of semiconducting properties. 
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Chapter 1 

Introduction 

1 . 1  Motivat ion 

Mercury oxide, HgO , is a crystalline solid with a melting point of 773 K ( 500°C). 

Already in 1774 Joseph Priestley observed that by heating, mercury oxide easily 

decomposes into mercury and oxygen, which led to the important discovery of 

oxygen . This decomposition reaction is till used in the production of mercury. 

It implies that the mercury-oxygen bond for HgO in the gas phase is quite weak. 

which was confirmed by a recent analysis of Shepler and Peterson [ 1 ] . They 

obtained a rather small dissociation energy of only 0. 17 e V and compared their 

result to various previous estimates [2] . More recent critical discussions can be 

found in the article by Filatov and Cremer [3] and Peterson et al. [4] . Having 

this unusually low dissociation energy, mercury oxide in the gas phase is rather 

unique compared to its group 12 congeners . 

In the solid state, however, HgO is even more intriguing, as it crystallizes in a 

rather unique structure .  Two different polymorphs of HgO exist under ambient 

pressure, both equally unusual and interesting .  At low temperatures HgO crys­

tallizes in an orthorhombic structure with the spacegroup Pnma [5] . This is ,  even 

though scarcely found , in fact the naturally occurring mineral form of mercury 

oxide, called montroydite (see fig. 1 . 1 ) ,  and adapts a. yellow or reddish-brown 

colour depending on the grain size. Another polymorph exists and crystal lizes 

in a cinnabar-like structure (belonging to the trigonal crystal system) [6] , which 

derives its name from the naturally occurring mercury sulfide mineral . This 

hexagonal phase is stable above 220°C and has a. yellow colour [7] . 

Both structures were thought to be unique to the mercury cha.lcogenides ,  and 

1 



2 CHAPTER 1 .  INTRODUCTION 

Figure 1 . 1 : Crystals of mercury oxide in its mineral montroyclite  form [8]. 

it was not until 1993 that lelmes et al. reported the cinnabar structure as an 

intermediate high pressure phase in CdTe [9] . The only other compound apart 

from the group 12 chalcogenides, that exists  in this structure a. · well ,  even though 

only under high pres ure , is GaAs. 

The crystal structure of the montroydite phase is built from planar 0-Hg-0 

zigzag chains , which are formed parallel t o  the x-axis in the a-c-plane, whereas 

in the high-temperature form spiral chains are formed running parallel to the z­

axi [5 ,  6, 1 0] .  This leads to the rather unique crystal structures shown in figs . 1 .2 

and 1 .3 .  In both cases the 0-Hg-0 group building the chains is linear, having 

a Hg-0 bond distance of 2 .028 and 2 .030 A for the montroydite and cinnabar 

form, respect ively. The Hg-0-Hg group, however, is bent with an angle of 108. 0 

in the case of the low-temperature phase and 107.9° in the cinnabar structure 

(see table 1 . 1 ) . M or information regarding the structure including pictures of 

the respective unit cells can be found in chapters 3. 1 and 4 .  

Figure 1 . 2 :  Two views of the montroyclite structure (reel: oxygen, cyan: mercury) . 

The equilibrium phases of mercury oxide are , however , in stark contrast to the 

lighter group 1 2  oxides, namely zinc (ZnO ) and cadmium oxide (CdO ) . At room 

temperature and low pressure they are known to crystallize in a rather simple 



1 . 1 .  MOTIVATION 3 

Figure 1 .3 :  Two views of the cinnabar structure (red: oxygen,  cyan: mercury) . 

Montroydite Cinnabar 

spacegroup: 62 (Pnma) 152 (P312 1 )  1 154 ( P322 1 )  
orthorhombic hexagonal 

structure: 
0-Hg-0 chains in ac-plane , spiral. 

parallel to a-axis parallel to c-axis 
0-Hg-0 group linear linear 
Hg-0 bond 2 .028 A 2 .030 A 
<r (Hg-0-Hg) 108 .8° 107.9° 

Table 1 . 1 :  A comparison o f  the structures of the montroydite and cinnabar phases 
of HgO . 

hexagonal wurtzite and a cubic rocksalt structure , respectively. For HgO those 

less complicated structures are only accessible at higher pressures, where mercury 

oxide undergoes a phase t ransit ion into a tetragonal distort ion of the rocksalt 

s tructure with the spa.cegroup 14/mmm first ,  and then finally into the common 

rocksalt st ructure (NaCl ) [ 1 1 ,  1 2] .  

Following the periodic table down t o  t he group 1 2  sulfides, selenides and tel­

lurides, HgS crystallizes in the cinnabar structure , being the prototype for this 

unusual structure. However, the cinnabar form is replaced as the equilibrium 

phase for HgSe and HgTe, where the zinc blende structure is found to be the 

preferred form. Even more interestingly, the transition to the cinnabar phase 

occurs in a. rather low pressure range of 0 .74- 1 . 5 GPa for HgSe and at 1 .3 GPa. 

for HgTe [ 12] .  Moreover, for ZnTe and CdTe the cinnabar phase also exists , even 

though only as a. high pressure phase and with  a. coordination strongly vary­

ing from the one found in HgO and HgS. Considering this unusual behaviour 

within the mercury chalcogenide series of compounds, the unique montroydite 

form of HgO and the very rare appearance of the cinnabar structure in general ,  
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the quest ion naturally arises as to "what causes the occurrence of these unusual 

structures in the mercury chalcogenides?". 

H owever, the understanding of bulk st ructures and their influence on the solid 

. tate prop rties , 1 also in the context of the ongoing challenge of the design of 

new materials for various applicat ions, is a difficult task. The predict ion of crys­

tal st ructures from imple bonding models is currently hard , if not impossible, 

as discussed by Maddox and Cohen [ 13 ,  14] . Very often polymorphs are sep­

m·ated only by a small energy, which makes this task even more complicated. 

In contrast, simple bonding models are rather successful for the prediction of 

molecular structures [ 15] . The mercury chalcogenides with their extraordinary 

low pressure modifications are prime examples of this plight. Investigating those 

t ructures contributes to bringing us one step closer to t he answer of one of the 

major problems we current ly face in solid-state chemistry. 

Mercury has 80 electrons surrounding a heavy nucleus of 80 protons and 1 2 1  

neutrons for its most stable i otope, hence making it one of the heavier elements 

( atomic weight: 200 .59 g·mol-1 ) .  Due to its large nuclear charge the electrons 

close to th core reach velocit ies that demand for a relativist ic t reatment . In fact ,  

together with gold , mercury is one of the elements that proved to be influenced 

exceptionally strong by relativistic effects ,  known as the relat ivist ic maximum 

within a p riod of lements [ 1 6 ,  1 7] .  This raises the question, whether the highly 

unorthodox structures found for the mercury chalcogenides are due to the rela­

t ivistic influence on the electronic structure? Therefore and because of its size, 

mercury and its compounds are complex systems that ask for a very accurate 

( relat ivistic) t reatment and hence grand computat ional effort . However, even 

though relativistic effects ar known to play an important role in the molecular 

structure of compounds containing mercury [ 16 ,  1 8-25] ,  it has not been invest i­

gated in detail yet for the structure of the solid state [26 , 27] . 

In  addition, the thesis at hand deals not only with the crystal structures of the 

mercury chalcogenides at equilibrium conditions , but under high pressure as well .  

H igh pressure physics and chemistry are fields of  increasing interest. This has 

not always been like this due to  the fact that life on earth is limited to a rather 

small range of temperatures and pressures. In a for humans commonly acces­

sible world, more extreme conditions are only known of the interior of planets 

and stars, and detonations of explosives. However , on a much smaller scale high 

1The atomic arrangement in  a crystal is essential to understand the chemical and physical 
properties of a solid, which are dependent on its crystal structure. 
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pressure science leads to interest ing effects and new properties of materials. 

Already in 1 888 Henry Le Chatelier made an observation that if administrating 

a constraint on a chemical system in its equilibrium state by changing external 

conditions, as a consequence, t he system will adjust by descending into a new 

equilibrium state, which will minimize the impact of the given constraint [28] . 

This is now known as Le Chatelier 's principle or principle of least constraint . 

Applied to high pressure chemistry this means increasing pressure will induce a 

. hift of the equilibrium state towards a negative change in volume. 

The energy t ransferred through this pressure-induced volume contraction can 

easily range into the for chemical bonds typical regions/magnitudes leading to  

breaking and reforming of  those bonds, hence changing t he structure of  con­

densed matter. This is usually accompanied by a change of electronic and mag­

netic propert ies . Therefore, materials chemistry under high pressure is a re­

search field , crucial for the development of new materials or peculiar st ruct ures 

of renowned compounds. 

Furthermore, it should be mentioned that the group 12 chalcogenides are not only 

interest ing from a fundamental point of view, but from a practical one as well .  

f\Iercury oxide for instance is used as an anode material in  mercury batteries as 

well as in the synthesis of high-temperature mercury based superconductors [29] 

to name but a few applicat ions . Cinnabar-HgS is well-known as a red pigment 

(vermilion) and is involved in the production of mercury metal [30] . Mercury 

selenide on the other hand is formed as a product , when filtering mercury from 

exhaust gases using selenium and is used as an ohmic contact when connect ing 

I I-VI semiconductors . e .g .  zinc oxide or zinc selenide. Last but not least , HgTe 

finds applicat ion in combination with other elements as doped semiconductors. 

Theoretical studies can always shed light on and give new impulses for the ex­

perimental development of those applications . It should be mentioned that the 

toxicity of most of the compounds often makes i t  hard to invest igate them exper­

imentally and therefore it is often difficult to find experimental dat a to compare 

with. 

The objective of this study is t o  show that indeed the unusual structures of the 

mercury chalcogenides are a result of relativistic effects and to study their elec­

tronic structure in detail. Therefore, comparative relativistic and nonrelativistic 

density functional studies of equilibrium and high pressure phases of ZnX , CdX 

and HgX (X =0,  S, Se, Te) are carried out to investigate these compounds. 
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1 . 2  Outline 

The thesis at hand i s  structured as follows. Chapter 2 gives an introduction 

to the theoretical background that forms the basis of this study. This includes 

the approximations necessary to carry out the calculations and the formalism to 

obtain the actual solid-state properties. 

This is followed by an overview of the group 1 2  chalcogenides in chapter 3. Here 

the crystal structures commonly occurring in t he group 12 chalcogenides are 

described in detail .  The computat ional parameters needed, as well as the pre­

liminary calculat ions for their optimizat ion for the subsequent simulations , are 

demonstrated . 

The results for the group 12  oxides , sulfides , selenides and tellurides are presented 

and discussed in chapters 4, 5, 6 and 7, respectively. Each chapter is organized 

in the following manner: fir t a brief de cription of the crystal structures known 

to exist in the respective group 12 chalcogenid by experimental as well as theo­

retical means is given, followed by the presentat ion of the results obtained . The 

latter will be part it ioned into a discussion of the equilibrium st ructures , the high 

pre sure phases and elect ronic structure. The influence of relat ivistic effects on 

each of those matters will be emphasized. The short summary of the findings is 

given at th end of each chapter. 

Finally, conclusions will be drawn in chapter 8 .  



Chapter 2 

Theoretical background and 

numerical implementation 

In the following chapter a short descript ion of t he theoretical quantum mechan­

ical methods that form the basis of this t hesis will be given. For further infor­

mation on the applied methodology the reader is referred to standard quantum 

chemistry, e.g. refs . [3 1 ,  32] , electronic structure theory (ref. [33] ) and solid-state 

theory textbooks , e .g. refs .  [34-36] . 

2 . 1  The many-electron problem 

The thesis at hand is a computational study of several bulk systems consist ing 

of an infinite yet periodic amount of atoms. In general, electronic systems rang­

ing from just single atoms and molecules to small clusters consist of nuclei and 

electrons and therefore exhibit typical length scales of a few Angstroms. This 

means the theory by which to describe the interactions between those part icles 

in a correct manner, even for the solid-state , is quantum mechanics. At this 

level , all mutual interactions like para- and ferromagnetic effects and transversal 

electromagnetic interactions including electron correlation, as well as relativistic 

corrections including spin-orbit-coupling have to  be considered. As a fully rela­

tivistic t reatment including electron correlation is  not feasible for the solid state, 

even for the simplest atoms and crystals , approximations need to be made which 

are outlined in t he following. 

7 
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2 . 1 . 1  The Hamiltonian for the n-electron system 

The basis for performing ab-initio calculat ions for those real systems is supplied 

by the non-relativistic time-independent Schrodinger equation 

H l w) = E l w) . ( 2 . 1 ) 

This is a different ial equation for the Hamilton operator H with the eigenvalue 

E = (w i H i w) describing the total energy of the system and the (normalized ) 
eigenfunction W is referred to  as t he n-particle wavefunction of the physical 

system. Here l w l 2 characterize the probability density. The ful l  Hamiltonian is 

of the form 

( 2 . 2) 

where the separate terms of the sum indicate the operator for t he kinetic energy 

of the electrons Te , the kinetic energy of the nuclei TN , the term for the Coulomb 

attraction between electrons and nuclei VeN ,  the t erms for the repulsion between 

the electrons Vee and the repulsion between the nuclei VNN ,  resp ctively. 

More precisely, for a system with N nuclei and n electrons this can be reformu­

lated as 

using atomic units (e = me = li= l )  for the following. Here MA denotes the mass 

of nucleus A ,  ZA the corresponding nuclear charge, and r the distance between 

two considered objects, e .g .  riA = l riA I = l r i - RA I · Lower case letters indicate 

electrons and capital letters the nuclei ,  respectively. 

The starting point for all investigations in electronic structure theory is always 

to solve the above equation as accurately as possible. Indeed , an exact analytical 

solution is not feasible for problems other than one-electron systems. Therefore 

several approximations need to be exploited and numerous formalisms have been 

developed in theoretical chemistry and physics to simplify the problem, of which 

some will be introduced below. 
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2. 1 .2 The Born-Oppenheimer approximation 

The first approximation required and , with very few exceptions, always applied 

in solid-state physics is t he Born-Oppenheimer approximation [37, 38] , which is 

based on the fact that the nuclei in a system are by orders of magnitude heavier 

than the electrons and as a consequence move considerably slower. Hence, we can 

assume that the electrons will reach their equilibrium state to any configuration 

of the nuclei in an instant . This means relatively speaking that the nuclei can 

be considered at rest (clamped nucleus approximation ) ,  

VNN = const ant . 

and the electrons move in a.n effective field of fixed nuclear point charges. 

( 2 .4) 

( 2 . 5 ) 

This adiabat ic approach is crucial to electronic structure theory and allows for 

the separate t reatment of the nuclei and electrons , meaning that in first order 

the wave function of the system can be factorized 

( 2 . 6 )  

where We (ri ,  RA ) i s  only depending para.metrically on  t he posit ion of the nuclei. 

I t  leads to a. decoupling of the Schrodinger equation through an expansion of the 
1 

Hamiltonian in terms of ( �� )  4 .  

This reduces the problem a priori to  the motion of the electron , i .e .  to solving 

t he electronic Schrodinger equation 

( 2 . 7) 

involving only the electronic Hamiltonian 

( 2 . 8) 

ote again that the electronic wa.vefunction as well as the electronic energy only 

depend para.metrically on the nuclear coordinates . 

I f  we add the nuclear repulsion as an effective potential , we get the total energy 
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of the electronic problem for fixed nuclei 

(2 . 9 ) 

Solving those equations and averaging over the electronic wavefunction and co­

ordinates (due to their fast mot ion compared to the nuclei ) then determines the 

Hamiltonian for the motion of the nucleus 

N 1 2 \ n 1 2 n N ZA n n 
1 ) N N ZAZB H

n = -
"

-
VA + -

"
-

V
i -

" "
- + " "

-. + " " -L 2J\IA 
L 2 L L r A 

L L
r · ·  

L L  
TAB A= l i = l  i= l  A= l t i= l  j>i tJ A=l  B>A 

( 2 . 10) 

(2 . 1 1 ) 

where Etat ( {RA } ) generates the Born-Oppenheimer potential energy surface ac­

cording to  the ground-state energy of the electronic system for the nuclei being 

fixed in the configuration {RA} . The brackets indicate the averaging. 

Solving the nuclear Schrodinger equation 

(2 . 1 2 ) 

gives the full wavefunction W 
N = W 

N
( {RA } )  and energy ( including electronic, 

vibrational, rotat ional and translat ional ) leading to the Born-Oppenheimer ap­

proximation of the total wavefunction 

( 2 . 13) 

as already stated in the factorization earlier on . 

Furthermore W will also depend on the spin of the electron, which is not written 

down explicitly here. 

Note that , whereas the nuclei can be treated with a classical approach as well, 

solving the electronic equations is a many body problem. Since the electrons 

interact with each other , no decoupling is possible and further approximations 

are needed, some of which will be elaborated in the following. 
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2 . 2  Approximations t o  solve t he electronic 

problem 

1 1  

In order t o  solve the electronic Schrodinger equation ( 2 .7) t he Hamiltonian He 
can be furt her separated into one- and two-particle components h; and 9i .j 

n n n 

He =  'L h; + 'L 'L 9i ,j ·  i= l i=l i<j ( 2 . 14 )  

Here t he one-part icle term is  simply the sum of  the  kinetic energy of  an electron 

and its potent ial energy in the field of t he nuclei 

and the two-part icle term is given by 

1 9i.j = - , Tij 
which is equivalent to the potential energy of two moving electrons. 

( 2 . 1 5 )  

( 2 . 16 )  

In order to solve the problem another approximation i s  needed which concerns 

the chosen wavefunction. A successful approach is to express W from a funct ion 

using a set of single electron wavefunct ions <P; (see also chapter 2 .4 . 1 ) , called 

orbitals 

n 

W = 'L atft (<P; . . .  <Pn ) · ( 2 . 1 7 )  
1 = 1  

Those approximate wavefunctions can t hen be  trialed employing t he Rayleigh­

Ritz variational principle, which optimizes the energy of the system giving an 

upper limit by 

- (w i H i w) (w i H i w) E =  > = E  
(\ll l \ll ) - (\ll l \ll ) 

to find t he one closest resembling t he exact wavefunction. 

( 2 . 1 8 )  
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2 . 2 . 1  The Hartree-Fock approximation 

The Hart ree-Fock method is the simplest approach to solve the many body elec­

t ron problem. The fundamental concept is to describe the Coulomb interact ion 

between the elect rons by an adequate effective potential leaving behind a system 

of non-interacting particles (mean-field approach ) .  

This means that the wave function \V can b e  embodied by a set of single elect ron 

orbitals <I>i , more precisely the ant i ymmetric sum of a product of wavefunctions 

<l>1 (r l ,  O"I ) <l>2 ( r 1 ,  O" I ) <I>n (r J , O"J )  
1 <I>1  (r2 ,  0"2 ) <I>2 (r2 ,  0"2 ) <I>n (r2 , 0"2 )  ( 2 . 19 )  \[! = -Vnf 

<l>1  (rn , O"n ) <l>2 ( rn , O"n ) <I>n ( rn , O"n ) 

This configuration was introduced by Fock and Slater [39 ,  40] and is known 

as the Slater determinant and already accounts for Pauli 's exclusion principle, 

where O"i represents the spin coordinate. However, it does not specify which 

electron occupies which orbital ,  as elect rons are indist inguishable. In fact ,  the 

Pauli principle follows directly from 8 rmi-Dirac stat ist ics. 

Applying the Rayleigh-Ritz variat ional principle to this t rial function generates 

the so-called Hartree-Fock equations 

( 2 . 20) 

This is an eigenvalue equation for the Fock-Operator 

n 

h = hi + L)Jj - Kj ) , ( 2 . 2 1 )  
j= l  

where the eigenfunctions are given by the orbitals I <I>i )  and the eigenvalues by 

t he orbital energies c;i . The operator hi is characterized by ( 2 . 15 ) .  The sum 

describes t he electron-electron interaction at which Jj is the Coulomb repulsion 

operator (Hartree term) between two individual electrons and Kj is the exchange 

operator (Fock term ) , which is necessary to  describe the effect of interchanging 

t he coordinates of two respective electrons ( antisymmetry) :  
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J1 I <Pi (2 ) )  = (<Pj ( 1 ) I T121 I <Pj ( 1 ) ) 1<P i ( 2) )  

J(j I <Pi ( 2) )  = ( <P j ( 1 )  I T  l21 1 <Pi  ( 1 ) )  I <P j ( 2) ) . 

1 3 

( 2 . 22 ) 

( 2 . 23 ) 

Note that the orbit als <Pi , with respect to  which the energy is optimized in order 

to obtain the Hartree-Fock wavefunction of the system, are in turn depending on 

the Fock operator of the system. Since fi again is correlated to the orbitals , solv­

ing the Hartree-Fock equations demands for an i terative procedure. Therefore, 

this approach introduced here is a self-consistent field (SCF ) method. 

Finally, the total energy of the electronic system is characterized by 

n 1 n 
E = L (<Pi l fi i <Pi ) - 2 L (<Pi i Jj - Kj i <Pi )  

i= l  i .j=l 
n 1 n 

= L Ei - 2 L ( (<Pi i Jj i <Pi ) - (<Pi i Kj i <Pi ) ) . 
i= l  i .j= l  

2 . 2 . 2  Electron correlation 

( 2 . 24) 

( 2 . 25 ) 

Within the Hartree-Fock approach electrons are regarded as independent parti­

cles (as far as the Pa.uli exclusion principle allows for ) , expressed in the descrip­

tion of the electronic wa.vefunction with a single Slater determinant (2 . 19) . By 

means of this theory the electronic repulsion is only accounted for ( in terms of 

the exchange term ) between electrons of the same spin , preventing them from 

co-existing at the exact same point in space. However, this neglects the Coulomb 

correlat ion between electrons of different spin , meaning that more than a. single 

determinant would be necessary to t reat the system accurately. 

This increases the repulsive interaction between electrons creating a so-called 

exchange-correlation hole around an arbitrary electron at any position in space 

and leads to an intrinsic total electronic energy difference between the so-called 

Ha.rtree-Fock limit and the exact solution of the electronic problem. This is 

reflected in the so-called pair distribution function g(r ,  r' ) ,  which indicates the 

probability of an electron to be found at t he position r' in space , if another 

one is assumed to occupy position r. For a. homogeneous elect ron gas g(r ,  r') = 

g( lr - r' l ) ,  which is illustrated in fig. 2 . 1 for several numerical approaches. Despite 



14 CHAPTER 2. THEORETICAL BACKGROUND 

yielding similar results for large inter-electron distances , the Hartree approxima­

tion does not account for the exchange operator K1 leading to g(r , r' ) = 1 .  

Hartree-Fock however, improves th is result , since it already prevents electrons 

of t he same spin from occupying the same region in space in terms of the Pauli 

principle (g ( r , r' ) = 0.5 for r = r' ) . Ideally, however , correlat ion needs to be 

accounted for as well ,  creating a more localized and deeper 'exchange-correlation 

hole ' .  

Generally speaking this energy loss relat ive to the Hartree-Fock results is referred 

to as the correlat ion energy 

( 2 .26) 

according to P. 0 .  Lowdin [4 1 ] . Yet ,  one has to  be careful how to  use the t erm, as 

exchange is a part of electron correlat ion already and arguably already con idered 

in t he Hartree-Fock energy of an elect ronic system . 
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Figure 2 . 1 :  Sketch of the pair distribution function g(r,  r') = g ( l r - r' l )  for the 
homogeneous electron gas .  The variable kp j r - r' l is given in arbitrary 
units, kp being the Fermi wave vector. 

Induced by this inconsistency numerous wavefunction-based advanced methods 

have been developed, treating elect ron correlation on top of Hartree-Fock. Some 

of those are many-body perturbation theory (MBPT) [42] , configuration inter­

action (Cl )  [43, 44] , multi-reference ( 1R)  methods and coupled-cluster (CC) 

theory [45 ,  46] . However, they shall not be discussed here as in the solid-state 

studies carried out for this thesis solely density-functi onal theory was used. It 

is only mentioned that Hartree-Fock theory, as well as the many advancements 

based upon, have proven very valuab le in theoretical quantum chemistry, but are 
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mainly used in atomic and molecular electronic structure calculations , although 

more recent ly a localized version of second-order IVIBPT has been developed for 

solids with large band-gaps ( local MP2 approach) [4 7] . 

2 . 2 . 3  Density functional theory 

1\!Iost wavefunction-based theories have one major drawback. For their appli­

cation in solid-state physics , even if enhanced to include systems with periodic 

boundary condit ions , they turn out to be less feasible. This is primarily to be 

blamed on the non-local character of the exchange operator Kj ( 2 .23 ) ,  making 

calculations for periodic systems rather inefficient and therefore computer-t ime 

expensive. Nevertheless, one program system called CRYSTAL has been devel­

oped which is based on the Hartree-Fock model using Gaussian type orbitals 

( e .g. [48] , [49] ) .  A more cost-effect ive alternative method is density functional 

theory (DFT) , which approaches the problem from a completely different direc­

t ion using a funct ional of t he one-particle density to describe the propert ies of a 

system. DFT has two main advantages . First of all , t he electron density is an 

actual observable and secondly, it is only depending on three coordinates inde­

pendent of the size of the n-electron system, t hus reducing the complexity of the 

problem dramatically. 

The Hohenberg-Kohn theorem and the Kohn-Sham equations 

That this concept is indeed valid , was proven by the so-called Hohenberg-Kohn 

theorem [50] . Here Hohenberg and Kohn state that the ground state of an elec­

t ronic system is completely and uniquely defined as a functional of the electron 

density of the ground state .  

This is indeed plausible as the relation for the part icle density of the ground 

state of the n-electron system 

( 2 . 27 )  

can be  reversed to  determine the wavefunction as a functional o f  the electron 

density, more precisely the ground-state wavefunction is then given by 

Ill o = Ill [no] ( 2 . 28 )  
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Hence, the ground-state expectat ion value of an observable is a funct ional of the 

density, too. In particular , it is 

Eo =  E [no] = (Wo iTe + Vee + V'eN I Wo) 

= Te [no] + V'ee [no] + J d3rVeN (r )no (r ) 

( 2 . 29 )  

(2 .30 )  

the ground-state energy of the system. Te [no] and Vee [no] are called universal 

functionals, since they do not depend on the external potential defining the 

problem. 

Minimizing this funct ional of the energy by applying the variat ional principle 

with respect to n(r) will yi ld the ground-state density n0 and therefore all further 

ground-state propert ies. This can be done using the method int roduced by Kohn 

and Sham [5 1 ] ,  where a fictit ious system of non-interact ing elect rons, having the 

·ame ground-state particle density as the real system of interacting electrons , is 

introduced. The universal functionals Te [no] and Vee [no] of the interacting system 

can then be expressed as t he sum of the kinet ic energy of the " non-interacting 

system" and addit ional terms accounting for inter-part icle contribut ions . Using 

Kohn-Sham orbitals as an ansatz for the one-particle density, the density and 

ground-state energy of t he interacting system are then given by 

n 

i=l  

1 n n 
E = - 2  L (<Pi i Y'2 j ci>i )  + EH [n] + Exc [n] + L(<Pi i VeN I<Pi) -

i=l  i= l  

( 2 . 3 1 )  

(2 .32 )  

Hence, with the help of the variational principle under the constraint of  the 

conservation of the total particle number the so-called Kohn-Sham equations 

(2 .33 )  

are obtained, where the Coulomb inter-electron interaction in terms of their den­

sity is described by the Hartree term VH and the so-called exchange-correlation 

functional Vxc summarizes all electron-electron interaction that is not accounted 
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for yet 1 , 

( 2 .34) 

(2 .35 )  

This is again an eigenvalue equation for the Kohn-Sham operat or J-J1<s , which 

can be regarded as an effect ive Hamiltonian for the non-interact ing system with 

the effect ive Kohn-Sham potential VKs = Vxc + V'eN including interpart icle in­

teractions of the real system. Equation (2 .33) has to be solved iterat ively in a 

self-consistency loop , since the obtained Kohn-Sham orbitals I <I> i ) in turn deter­

mine the operator f-Igs .  Finally the total energy of t he system is determined 

as 

E = t Ei - EH [n] + Exc [n] - j d3rVxc(r)n ( r ) .  
i= l  

(2 .36) 

I t  is  worth mentioning that the obtained orbitals have no physical meaning due 

to the fact t hat they are actually elect ronic orbitals of the non-interact ing system 

and therefore merely the eigenstates of t he used density matrix. 

The major advantage of density functional theory is that solving those equa­

t ions gives in principle the exact ground-state energy. Be that as it may, un­

fortunately the exchange-correlat ion functional Exc is unknown, which means 

sensible approximat ions have to be int roduced to describe the interaction of the 

electrons, some of which will be presented in the following sect ion . The types 

of funct ionals available are generally categorized into local (LDA ) ,  semilocal or 

gradient dependent (GGA ) ,  nonlocal (hybrids) and integral-dependent (ADA) 

functionals. 

Functionals for the approximation of exchange-correlation energy 

A very widely used approximation for the exchange correlation energy is the 

local density approximation (LDA) .  Here the density of an ensemble of electrons 

1This obviously includes all deviations between the fictitious non-interacting and the inter­
acting ensemble, e .g .  corrections for the Coulomb and kinetic terms as well. 
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in a system is locally compensated for with a density of the free homogeneous 

electron gas . This is the most obvious approach and rather convenient , since the 

exchange-correlat ion funct ional for the free electron gas is numerically known 

exactly. 

This means Exc depends on the density only at the coordinate where the func­

t ional is evaluated,  assuming that the density is a slowly varying function , 

( 2 . 37) 

with the according exchange correlat ion potential 

( 2 .38) 

Here E��m ( n ) is the exchange-correlation energy density of the homogeneous elec­

t ron gas , which con ists of an exchange part E�om (n ) and a correlat ion part 

E�om ( n ) . The exchange part of the density can be easily derived analytically [52] 

and is given by 

3 ( 3 ) 1 /3 
E hom (n ) = _

_ _ n l /3 
X 4 7f 

leading to the exchange energy as obtained wit hin LDA2 

3 ( 3) l /3 J ELDA [n] = - - - d3rn (r)4/3 X 4 7T 
. 

( 2 . 39) 

( 2 .40) 

The above equation assume a closed shell problem, meaning the number of spin 

up and down electrons is equal. Where this is not the case, a straightforward 

generalization of LDA is possible, the local spin-density approximation ( LSDA) ,  

to include spin-polarization as well .  

More effort has to  b e  made, however , to derive the correlation energy density 

of the uniform electron gas. In that case rather complex many body t echniques 

have to be employed [53] or its calculation is l imited to specific densities carrying 

2 Combining t he term for the exchange energy obtained using this model with the expressions 
for Te and Vee in the renowned Thomas-Fermi model leads to the so-called Thomas- Fermi-Dirac 
approximation of the total energy of the system. Multiplication with an adjustable parameter a 

on the other hand is known as the so-called X a approximation. However, these approximations 
are rarely applied nowadays. 
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out quantum Monte-Carlo simulations [54] . Further work was done by Vosko, 

Wilk and Nusair [55] as well as Perdew and Zunger [56] again using quantum 

Monte Carlo methods for different densit ies n, hence obtaining a suitable fit for 

E�om (n ) .  
In  general ,  LDA has proven to be  a very useful tool in  quantum chemistry and 

solid-state physics , even though it uses a rather simple approach. Surprisingly so, 

this is not only t rue for systems with a slowly varying density (such as metals and 

intrinsic semiconductors ) ,  which can be part ially explained by systematic3 error 

cancellat ion due to the combination of generally underest imated correlation en­

ergies and overestimated exchange energies . For nonhomogeneous bulk systems 

(e.g. t ransition met als) and even for molecules one obtains very good results for 

structure, tot al energy and bulk moduli or force constants ,  with deviat ions of 

only few percents ,  especially for the ground state .  However, this approximat ion 

tends to underest imate bond lengths ( in particular in molecules with a clearly 

strong varying particle density) ,  leading consequently to an overestimat ion of 

dissociation energies of often more than 10%. However, the major shortcoming 

of LDA is the severe underestimation of the band gap in semiconductors and 

insulators of up to 100%. 

To improve the performance of LDA, the self-evident measure is to not only rely 

on the local density but further take into account the gradient of the spatially 

varying density at t he point of evaluation. The so-called 'gradient-expansion 

approximation' aims at a systematic calculat ion of those gradient-corrections , 

an example being the Weizsacker term for t he descript ion of Te [n] . However , 

low-order corrections usually lead to  worse results than LDA, whereas higher­

order corrections are extremely difficult to calculate. 

Later it was discovered that this systemat ic expansion is not necessary and a 

semi-empirical approach known as the so-called generalized gradient approx­

imations (GGA) gives a far better value for the exchange-correlation energy, 

expressed as 

( 2 . 4 1 )  

The most commonly used GGA functionals nowadays are the ones developed by 

Perdew and Wang (PW9 1 )  [57, 58] and Perdew, Burke and Ernzerhof (PBE) [59] . 

3Systematic, since LDA satisfies the sum rule for the charge of the exchange correlation 
hole to equal - 1 .  



20 CHAPTER 2. THEORETICAL BACKGROUND 

Especially in quantum chemistry B LYP is very popular as well, combining Becke's 

exchange functional [60] with the correlation functional of Lee, Yang and Parr [61 ] . 

With t his approach generally speaking structural properties are calculated with 

improved accuracy and even bonding energies are significantly improved. This is 

even t rue for most cases where LDA fails, e .g .  some transitions metals and other 

inhomogeneous systems. 4  However , it cannot account for interactions like van der 

\iVaals forces and other many-body eff cts and still the band gaps are severely 

underest imated. In addit ion, DFT has one major drawback. No systematic 

improvement of the theory is currently possible in order to obt ain better results ,  

as i t  is the case for wavefunction-based methods . 

Further improvements therefore include the incorporation of exact exchange 

(hybrid-funct ionals ) and corrections for dispersive type of interactions ( long­

range corrected funct ionals) .  For fur ther reading on density functional theory 

the reader i referred to [62] . 

However, DFT GGA, as chosen for this thesis ,  i a good compromise between 

a realistic t reatment and keeping t he comput ational cost low. Explicit ly, the 

parametrization according to Perdew and Wang (PW9 1 )  [57, 58] is used in this 

study, where the exchange and correlat ion contributions to the energy for equal 

numbers of pin up and down electrons are given by 

EPW9I [ ] _ J ( )
3kp 1 + 0 . 1 965s sinh- 1 ( 7. 796s)  + (0 .274 - 0. 15 1 e- 10052 ) s2 

n - - drn r - --------'----:,---'----------'--
x 47r 1 + 0 . 1 964s sinh- 1 (7. 796s )  + 0 .004s4 

( 2 .42)  

( 2 .43) 

Here kp is t he local Fermi vector, s the scaled density gradient and ks the local 

screening wave vector as defined by 

kp = (37r2n ) 1 13 = 1 . 9 196/rs 

s = i 'Vn i /2kpn 

t = i 'Vn i /2k5n 

ks = ( 4kpj7r) l /2 , 

4 G G A  correctly predicts the ferromagnetic ground state of bulk iron . 

( 2 .44) 

(2 .45 )  

( 2 .46) 

(2 .47) 
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For a generalizat ion t o  a n  open-shell problem and a definit ion o f  the funct ion H 
the reader is referred to ref. [58] . 

2 . 2 .4  Relativistic effects in quantum chemistry 

In general, t he term relat ivistic effect in quantum chemistry accounts for all 

deviat ion of results obtained using methods either considering relativity or not . 

This is mainly for historical reasons , since the theory of relativity, although 

developed already in 1905 by Einstein, was not regarded to have a substantial 

influence in quantum chemist ry. In 1 929 Dirac commented on the topic : 

" The general theory of quantum mechanics is now almost complete. the imper­

fection that still remains being in connection with th e exact fitting in th e theory 

with 1·elativity ideas. These give rise to difficulties only when high-speed particles 

are involved, and are therefore of no importance in the consideration of atomic 

and molecular structm·e and ordinary chemical Teactions, in which it is, indeed, 

usually sufficiently accurate if one neglects Telativity variation of mass with ve­

locity and assumes only Coulomb forces between the various electTons and atomic 

nuclei. The undeTlying ph ysical laws necessary for th e mathematical theory of a 

large part of physics and the whole of chemistry are thus completely known, and 

the difficulty is only that the exact application of th ese laws leads to equations 

much too complicated to be solvable. TherefoTe, it becomes desirable that ap­

proximate practical methods of applying quantum mechanics should be developed, 

which can lead to an explanation of the main features of complex atomic systems 

without too much computation. " [63] 

However , Dirac (unknowingly at that t ime ) was incorrect with  this statement , 

since especially close to the nucleus core electrons travel at a. significant speed 

compared to the velocity of light . For the inner 1 s-orbit al of heavy elements veloc­

it ies of 0 .5c and more can be reached [64] . Therefore, for the heavier atoms with  

large nuclear charge a. relativistic t reatment i s  required,  especially for s-el ctrons 

which have considerable density close to the nucleus. Moreover, relat ivistic ef­

fects are important for higher angular momentum electrons as well despite the 

fact that the density goes t o  zero close to the nucleus. I t  was not until the 

seventies that attention was paid to relat ivistic effects in electronic structure 

t heory [ 1 6] .  Even worse , in the solid-state community relativistic effects were 

basically ignored for a long t ime with the exception of spin-orbit effects in band 

structure calculations. However, Christiansen and Seraphin showed in 1976 that 
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relativist ic effects change t he band structure in solid gold [65] considerably and 

Takeuchi et al. showed in 1 989 that the lattice constant , cohesive energy, and 

bulk modulus for fee gold is greatly influenced by relativistic effects [66] . 

Basically, relat ivist ic effects originate from the fact that light can only travel at a 

finite speed c. For objects ,  moving with a velocity close to  this, corrections have 

to be made to physical variables such as mass, t ime and length being the mo t 

prominent . On this note ,  a qualitative est imate of the impact of relat ivity in 

quantum chemistry can be made, when including the relativistic mass increa e 

on the effect ive Bohr radius 

mo 

fi 
ao = -- .  

mea 

( 2 .48) 

( 2 .49) 

Here m0 describes the elect ron ma s at rest and V e  the electron velocity. Fur­

t hermore, fi and a denote the reduced Planck's constant and the fine st ructure 

constant , respectively. Hence , if considering the velocity of an elect ron in atomic 

units Ve = Zjn ,  a ratio of 

!!:_ = J1 - v2 jc2 = J1 - (Zjnc)2 ao 
e (2 .50) 

is obtained for the relativistic and non-relat ivist ic Bohr radius (see fig .  2 . 2 ) ,  where 

n is t he principal quantum number. Therefore, it is obvious that this effect , being 

most pronounced for electrons with a low quantum number and a nucleus with 

a high charge, would lead to a. contraction of all orbitals. Quantifying this effect 

for e .g .  mercury with a nucl a.r charge of Z = 80, means that the radius for an 

1 s-electron would be 0 . 8 1  t imes its nonrelativistic value and therefore decreased 

by 19%. The speed of light in atomic units amounts to c = a- 1 = 137. 

From thi rather simple approach it is already apparent that relativistic per­

t urbation operators will affect primarily the region close to the nucleus , which 

exhibits a. major part of t he valence s electron density. Hence, major energy con­

t ributions stem from the K-shell region in stark contrast to the nonrelativistic 

case, where the valence shell region is responsible for 90% of t he total orbital 

energy [64] . 
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Figure 2 .2 :  R atio o f  relativistic and non-relativistic Bohr radius a s  a function of  the 
electron velocity. The dash-dotted line indicates the position of mercury. 

One could now argue that this at least has litt le effect on the d- and f -elect rons . 

However , it t urns out that the contract ion of th s-electrons due to t he above 

discussed direct relativistic effect leads in t urn to a more efficient shielding of the 

core, resulting in a reduced effective nuclear charge Zeff ( relativistic shielding ) .  

This on the other hand induces an expansion and energetic destabiliza.t ion of all 

orbitals as an indirect relativistic effect [67] . Hence, whereas direct relativist ic 

effects are predominant for s-orbit als and almost cancel out t he indirect effects 

for p-electrons, these indirect effects  are of utmost importance for electrons with 

higher angular momentum. In addition , the destabilization and expansion of the 

d and f -orbit als again triggers an indirect stabilization for all other orbitals due 

to a. relativistic deshielding going along with an increased effect ive charge of the 

nucleus. This however brief summary shows the sophist icated yet very subtle 

interplay caused by direct and indirect relativistic influences on the orbitals of 

heavy atoms. 

Equation ( 2 .50) explains why this subtle interplay was first discovered for the 

heavier elements of the periodic table. Most certainly this is not the only achieve­

ment of relativistic quantum chemistry. Prime examples are t he explanation of 

the inert pair effect , the liquid state of mercury at room temperature and the 

unusual reflectivity of gold explaining its golden colour [ 16] .  
Especially in gold and mercury relativistic effects are exceptionally s trong, known 

as the relativistic maximum. This can partly be explained with  t he filled d-shells, 

causing t he increased indirect stabilization to overcompensate for the indirect 

destabilization , which results in a significantly larger stabilization and contrac-
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tion than for other elements. From group 1 3  onwards with the filling of t he next 

p-orbitals this indirect stabilization starts to decrease again. For further reading 

on relativist ic effect s  see refs. [ 16 ,  1 7 , 64 , 68] . 

For a comprehensive treatment of relativity m quantum chemistry the one­

part icle Hamiltonian ( 2 . 1 5 )  has to be substituted by the Dirac operator 

( 2 . 5 1 )  

where Vnucl ( riA ) describes the electrostatic potential between the nucleus and 

the ith elect ron . The components of the vector a = (ax , a y , a z ) and f3 are 4 x 4 

matrices 

referred to as the Dirac matrices . /2 . t ands for the 2 x 2 unit matrix and the 

matrices ax , ay and az are known as the 2 x 2 Pauli spin matrices 

( 2 . 53 )  

Similar to the one-part icle term, t he two-particle term ( 2 . 16 )  can be  extended 

by a relativistic correction leading to the Coulomb-Breit operator 

( 2 .54) 

although this only includes correct ions of "' C1 up to second order. Terms of 

higher order can be derived using quantum electrodynamical considerations. 

Ultimately, the D irac equation can be written as 

( 2 .55)  

This is a system of four differential equations being split into two systems of equa­

tions. In this case the wavefunction consists of four components ,  which can be 
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separated into a so-called small W s and large W L component . In general, posit ive 

as well as negative energies are allowed , giving rise to 'positronic ' solutions . 

Analogously to the nonrelativist ic case the so-called Dira.c-Hartree equations can 

be set up, where operators and wavefunct ions need to be four component spinors. 

Exploiting t his formalism is rather sophisticated .  However, by applying various 

sophisticated approximat ions to those four component equations . it i possible 

to create a. so-called pseudopotentia.l , which already accounts for all those rel­

Flhvi stir pffPcts  and simplifying further calculat ions drast ically. The concept of 

the relativist ic pseudopotentia.l is int roduced and explained in chapter 2 .4 . 2 .  

2 . 3  Periodic systems 

In fact , every physical or chemical system inherits a. certain symmetry that if 

not determines at least crucially influences their propert ies . This is especially 

true for the systems treated in this thesis , i .e .  solids or more specifically crystals , 

which due to their periodicity by definit ion possess a. certain symmetry. Hence, 

in the following chapter a brief summary of the basics and definit ions of periodic 

systems and their symmetries in the context of crystallogra.phy will be given. 

The mathematical background to describ and quantify symmetries i. provided 

by the theory of finite groups , by systemat ically classifying periodic systems 

according to the irreducible representat ion of their point and space groups . 

2 .3 . 1 Crystal symmetries and Bravais lattices 

Ideal crystals are solids which are defined by a periodic arrangement of the atoms 

or molecules they consist of. This mean they inherit a. long-range order , where 

the positions of the component atoms are pinpointed by an underlying infinite 

array of discrete points , called Bra.va.is lattice5 . This lat t ice spans over the whole 

crystal and is ident ical from whichever point in the array it is viewed. Hence, it 

could be defined as a. set of translations defined through all vectors 

( 2 . 56 )  

where t he ai are linearly independent and n i  is an integer. Although those so-

5 amed after the French physicist A uguste Bravais ( 1 8 1 1 - 1 863) , who listed all possible 
Bravais lattices for the first time correctly. 
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called primitive v ctors ai are not unique, they generate the whole latt ice as 

indicated by fig. 2 .3 . 1 , meaning one can reach each point L ni ai in the lattice 

by t ranslating a length ai in steps of ni . 

• • • • 

• • • 

• • 

• • • • 

Figure 2 .3 :  The primitive vectors of a unit cell in two dimension . 

The parallelepiped of the volume 00 = (a1 x a2 ) · a3 spanned by the latt ice 

vectors ai is called unit cell of the crystal . In the special case where this volume 

of space, when t ranslated through all vectors , fills the whole Bravais latt ice space 

without any overlapping or leaving gaps the term primitive unit cell is used . This 

special unit cell contains exactly one latt ice point (smallest volume) , but again, 

like for the primitive vectors this choice is not unique. Therefore, usually a 

special primit ive ell , t he so-called Wigner-Seitz cell is used , which displays the 

full symmetry of the Bravais lat t ice . It is confined by the m dian lines between 

a lattice point and all its neighbours , meaning that no lattice point in this region 

of space is closer t o  the latt ice point contained in this unit cell t han to  any other 

lattice point . The absolute values of the ai including the angles between them 

are characteristic for each crystal and known as latt ice parameters . 

As mentioned earlier the Bravais latt ice is only the underlying structure of a 

crystal .  I t  describes purely the t ranslational symmetry of the crystal . In order 

to describe a real crystal structure a physical unit of atoms, like a motif, needs 

to be centred at each point of the Bravais latt ice within a particular unit cell. 

By doing this a point lattice is created as the set of all points in space where the 

atomic basis atoms are placed . The position of the atoms within the basis are 

then specified by placing the centre of reference, meaning a lattice point in the 

centre of one particular basis atom, giving the coordinates of the other atoms as 

fractions of the lattice constants .  

Using this definition of a crystal a whole range of different crystal structure is 
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possible. The purpose of crystallography is to achieve a full classification of 

all possible structures by identifying their inherent symmetry. This means all 

operations that leave the properties of the crystal unchanged. Looking just at the 

Bravais lat t ices they can be characterized by a et of rigid operat ions under which 

the latt ice remains the same, known as the space or symmetry group . Possible 

symmetry operations are translat ion through the latt ice vector. , inversion at the 

origin6 , rotat ion around symmetry axes and reflect ion in a plane. 

All of those operat ions can be separated into a pure translat ion and one that 

leaves at least one point of the latt ice unchanged, a so-called point group , which 

is a subset of the full symmetry group (without translation ) .  Just considering 

those point groups the Bravais latt ices can be categorized into seven different 

crystal systems with pecific rat ios of their lat t ice vectors and different angles a ,  

f3 and "! between those vectors . Those ar with increasing symmetry the triclinic , 

monoclinic , orthorhombic, hexagonal ,  rhombohedral or trigonal , tetragonal and 

cubic system. 

Of course there are not only primitive lattices , but also nonprimit ive ones with 

more then one atom per unit cell, which adds up to a tot al of 14 different Bravais 

latt ices. �Iost of the t ime it  is possible to describe the non-primitiv latt ices using 

a primit ive cel l .  which might in t urn not have the full symmetry of the Bravais 

latt ice anymore. 

Applying the same considerations to the crystal st ructure, the complete crystal 

system will not have the maximum symmetry of the Bravais lattice anymore , 

since the basis is not required to be symmetric. Therefore, one obtains 32 crys­

tallographic point groups (crystal class) analogous to the 7 crystal systems of 

the Bravais lat t ice , which are summarized in table 2 . 1 .  

The corresponding point groups in Schi:inflies not ation are characterized by rota­

t ional operat ions and symmetry planes and defined as follows. Cn describe an 

n-fold rotation axis and S2n the mirror-rot ation , where n is the order of rotation. 

Both of them directly name the according point group .  In the special case, where 

no symmetry axis or planes can be found at all , leaving only a centre of inversion, 

the class is denoted Ci . Furthermore, a point group which posses es n two-fold 

axes perpendicular to the principal Cn axis is called Dn · However, in addit ion 

to a rotat ion axi , a group might contain mirror (reflection) planes () ,  which can 

either be vertical ((Jv ) or horizontal (()h ) to the rotation axis or none of the two 

6Inversion replaces all points with their coordinates r by their inverse - r  with respect to 
the origin. 
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Crystal  system Unit cell Class Point group 
HM SF 

Triclinic a =/= b =/= c  1 1 c1 
a =/= !3 =1= 1 2 - 1  S2 (Ci )  

Monoclinic a =/= b =/= c  3 m Cs (Cih ) 
a = 1 = 90° =/= f3 4 2 c2 

5 2/m C2h 
Orthorhombic a =/= b =/= c  6 mm C2v 

a =  f3 = I =  90o 7 222 D2 
8 m m  m D2h 

Tetragonal a = b =/= c  9 4 c4 
a =  f3 = 1 = 90° 10 -4 54 

1 1  4/m c4h 
12 4mm C4v 
13 -42m D2c1 
14 422 D4 
15 4/mmm D4h. 

Rhombohedral a = b = c  16  3 c3 
( t rigonal )  a = f3 = 1 < 1 20° =/= 90° 1 7  -3 S6(C3i ) 

18  3m C3v 
19 32 D3 
20 -3m D3c1 

Hexagonal a = b =/= c  21  6 c6 
a =  f3 = 90° ,1 = 1 20° 22 -6 c3h 

23 6/m c6h 
24 -6m2  D3h 
25 6mm C6v 
26 622 D6 
27 6/mmm D6h 

Cubic a = b = c  28 23 T 
a =  f3 = I =  90o 29 m - 3  Th. 

30 43m Tc� 
31 432 0 
32 m - 3m oh 

Table 2 . 1 :  The seven Bravais lattices of a three-dimensional crystal with their ac-
carding classification into 32 point groups. It is a = <r (b, c) , f3 = <r(a ,  c) 
and 1 = <r (a,  b) , respectively. The point group is given according to the 
international Hermann-Mauguin (HM) and the historical Schonflies (SF ) 
notation. 
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(CJd) . Those point groups are indicated as Cnv , Cnh ,  Dnh and Dnd, respectively. 

They include Cs or C1h st anding for the point groups , in which only a single 

symmetry plane can be found. The cubic point groups T, Td , Th , 0 and Oh 

have more than one rotation axis of highest symmetry that is at least threefold. 

Using Hermann-}Jauguin notation 1 denotes the identity, - 1  inversion. n the 

n-fold rotat ion axis, - n  the n-fold mirror-rotat ion axis and m t he mirror plane. 

If the reflect ion plane is perpendicular to the n-fold rotation axis this is indicated 

by n/m.  

Compared to the 14 space groups of  the Bravais latt ices , there are 230 different 

symmetry groups a lat t ice with a basis can have, when the basis is required to be 

completely symmetric . Those include more sophist icated symmetry operations 

induced by screw axes and glide planes as well. 

Furthermore. it hould be noted that somet imes a different not at ion is used to  

categorize different crystal latt ice structures . The Pearson symbol designates a 

structure by symmetry class, lattice type and the number of atoms per unit cell 

(e .g .  oP4, cF4) .  For inst ance, cinnabar has a hexagonal (h)  primitive (P)  unit 

cell ,  which consists of 6 atoms and is therefore labelled as hP6 .  It should be 

mentioned that the Pear·son symbol does not always specify a unique structure 

(e .g .  cFS. see chapter 3. 1 . 1 ) .  

I t  is worth mentioning that in t he real world a crystal of course is not ideal. This 

means the periodic arrangement can be disrupted by localized defects ,  that can 

arise during crystal growth, and by the fact that real crystals are finite objects .  

2 . 4  Numerical implementation 

Almost all calculat ions forming the basis of this thesis were carried out using 

the Vienna ab-initio simulat ion package (VASP) [69, 70] . Thi program uses 

two basic concepts to reduce the comput at ional cost considerably. Fir t of all 

plane waves are used as a basis set for the one-electron wavefunctions. This is 

particularly advantageous for the treatment of periodic systems due to Bloch's 

theorem [71 ] .  Secondly, the core electrons are accounted for by a pseudopotential , 

hence only including the valence electrons explicitly in the computations . 
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2 .4. 1 Plane-wave basis and Bloch's Theorem 

Since the Kohn-Sham equations ( 2 . 33) cannot be solved exact ly an expansion 

of t he Kohn-Sham orbitals I <I\ )  into a linear combination of basis functions is 

necessary in order to solve them numerically: 

m 

( 2 . 57) 

Technically, those can be any suitable kind of function. However, the most intu­

it ive ansatz for atomic and molecular calculations is to use a linear combination 

of atomic orbitals ( LCAO, see also equat ions ( 2 . 1 7) and ( 2 . 19 ) ) ,  which are of 

the form of a single electron wavefunct ion derived from solving the Schroding r 

equation for the hydrogen atom. A popular approximat ion of those atomic or­

bitals are Slater type orbitals which were initially used and consist of a set of 

functions, exponent ially decaying with the distance r ·  from the nucleus. Those 

have the advantage of correctly describing the cusp of the electronic wavefunc­

t ion at the nucleus and the long-range decay, but can be further simplified by an 

expansion into Gaussian type orbitals (GTOs ) ,  thus . ubstant ially reducing the 

computational cost to solve overlap and exchange integrals. 

For the invest igation of the solid state and periodic sy terns in general, howev r ,  

the decomposit ion of the Kohn-Sham orbitals into plane waves is  beneficial . One 

of the reasons for t his lies in the natur of plane wav s, being of the form x( r ) ex 
eikr with the wave vector k,  to  automat ically fulfil Bloch 's Theorem [71 ]  

( 2 . 58)  

for every lat t ice vector R. This means, if in addition one exploits the periodicity 

of the tran lational invariant system, it is sufficient to describe the investigated 

system by just a unit cell and a respective atomic basis , which reduces the com­

putational cost t remendously. 

Taking those considerations into account it is possible to expand the Kohn-Sham 

orbitals into a Fourier-Series 

( 2 . 59)  
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with G and S10 being t he reciprocal lattice vector and unit cell volume respec­

t ively. Here , the wavefunction is determined by j ust a band index i and a con­

t inuous wavevector k, which is limited to t he first Brillouin zone. In general, 

this means by taking advantage of the periodicity (Bloch 's theorem ) , an initially 

infinite spectrum with the continuous wavevector k is transformed into a discrete 

basis set , which is numerically manageable. This means the basis will be infinite, 

even though for a given k it is t echnically discrete .  The transit ion from the real 

space description I <I>i )  to the k-space of plane waves l q) = l k + G) is facil itated 

by a Fourier transformation . 

In contrast to many other basis set choices , plane-wave basis sets will due to 

their completeness always converge very quickly to the exact wavefunction with  

respect to the number o f  basis funct ions involved. This means, i n  practice, the 

basis set can be truncated to a sphere in reciprocal space defined by the so-called 

cutoff energy Ecu.t 

( 2 . 60) 

determining a maximum G vector in the expansion and possibly t runcat ing the 

high spacial frequency parts as much as possible , since the number of basis 

f . . E312 A l f. f unctions IS ex: cut . typica number o a ew hundred plane waves per atom is 

usually needed . 

Another advantage of plane-wave basis sets over atomic orbitals is the fact that 

due to their orthogonality they do not inherit the  so-called basis set superposit ion 

error generated by the overlap of basis functions contributed by different atoms. 

By utilization of plane waves the Kohn-Sham equations turn into a system of 

linear equat ions for the coefficient C>.. ,k that need to be solved in momentum 

space, hereby determining the matrix elements for the effective potential . It 
appears that through this ansatz  integrals, such as for the kinetic energy, which 

need to be calculated , as well as derivatives , e .g .  forces (due to the non-local 

character ) can be computed with far more efficiency in reciprocal space. However, 

since the exchange-correlation potential is mostly calculated in real space, the 

transformation of t he matrix elements is carried out by a Fast-Fourier t ransform 

(FFT ) . 
In practise, the numerical integrations in the Brillouin zone are substituted by a 

summation over a discrete mesh of k-points according to  equation (2 .59 ) .  Several 
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schemes are available to  generate t his mesh in a systematic way. The approach 

by Monkhorst and Pack [72] for instance respects the space group symmetry of 

the invest igated system. Especially for hexagonal systems it is recommended to 

include the f-point as well for faster convergence of the energy. 

To keep comput ational costs as low as possible it is desirable t o  reduce the 

number of k-points as much as possible. Here the symmetry of the crystal is 

of further assistance, decreasing the number of non-equivalent k-points to the 

irreducible part of the Brillouin zone ( IBZ ) . 

In general ,  for the interatomic part of the wave function , where fluctuation 

are small and hence the wavefunction at neighbouring k-points are u ually very 

similar, high accuracy can be reached using just a relatively small number of 

k-points . However, the plane-wave approximation demands for a huge number 

of basis functions (high cutoff energy) when it comes to the description of local­

ized states and the atomic core region , where the wavefunction inherits  nodes 

and st rong fluctuations (high spacial frequencies) in order to maint ain orthog­

onality to the core state wavefunct ions. Therefore, as a further approximation 

pseudopotent ials are utilized ( see chapter 2 .4 . 2 ) . 

Based on the information given above it is sensible to preliminarily test calcu­

lat ions with respect to their convergence depending on the chosen energy cutoff 

and k-mesh.  For comparable comput ations it is important to keep the basis as 

similar as possible, since e .g .  with relaxation of the unit cell (varying the lattice 

constant ) ,  Gmax changes , influencing the total energy even with  a fixed energy 

cutoff. 

2.4 . 2 The frozen-core approximation and pseudopoten­

tials 

A mentioned earlier , it  is a challenge to describe the in the core region strongly 

oscillating valence states using a sensible number of basis functions . However, 

since fortunately most chemical and physical properties as well as chemical bond­

ing characteristics are mainly determined by the wavefunction of the valence 

electrons outside the core region, it is rendered obvious to either just account for 

those in an actual calculation or to modify both the wavefunction of the valence 

electrons and ionic core potential in t he core region accordingly to make those 

strong fluctuat ions disappear. 
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The first step to achieve t his is the separation of t he system into a core and 

valence region known as the frozen-core approximation. In t his concept ,  the 

wavefunctions of the core electrons are assumed t o  be independent from the 

chemical environment of t he atom and therefore independent from the valence 

part icle density nv .  The Kohn Sham equation can hereupon be solved for the 

valence electrons only, where the kept fixed (frozen ) wavefunction for the core 

electrons is derived from an all-electron atomic calculat ion. 

Even though this means a further reduction of the basis set size, it turns out that 

this approach is only suitable for atoms with well separated (spatially and en­

ergetically) electronic states, deeming it unsuitable especially for elements with 

partially filled cl orbit als , e .g .  t ransit ion metals. Here, t he concept of pseudopo­

tentials has proven to be a valuable tool. At this, in addition to the frozen-core 

approximation, it is assumed that the valence electron density of the core region 

as well have lit t le influence on the chemical bonding. 

Therefore, a pseudopotential is created which aims to  embody a pseudo-atom 

substituting the actual atom by an effective core plus inner valence shell and is 

supposed to lead to reasonably smooth pseudo-wavefunctions in the core region 

(fig. 2 .4 gives an idea) . It is desirable that this pseudopotential describes not only 

the core atoms but also their influence on the valence electrons . As mentioned 

in chapter 2 . 2 .4  this should include all interactions and therefore account for 

relat ivistic effects also. 

. 

. .· .. .  

Tcut - Wpp (r) 

••••••• W AE (r) 

Figure 2.4 :  The real ( all-electron) wavefunction ( dotted) compared to the pseu­
dopotent ial wavefunction (straight ) as a function of the radius. Both 
only match above a cutoff radius r cut = r1 .  

Naturally, a well constructed pseudopotential first ly leaves most physical and 

chemical properties of the true atom unchanged and is secondly independent 

from the set chemical environment ensuring its transferability. It has therefore 

to meet the following conditions : t he atomic all-elect ron eigenvalues do not differ 

from those obtained with the help of the pseudopotential (EAE = EPP ) , the 
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wavefunctions of the actual and t he pseudo-atom are equal beyond a certain 

cutoff radius r·1 ( for each angular momentum l )  marking the spatial edge of the 

p eudo-atom and the charge density of the real atom has to be the same as 

the pseudo charge within t he radius r1 account ing for norm conservation of the 

wavefunction. 

Pseudopotentials of this kind for the solid state were first int roduced by Hamann , 

Schliiter and Chiang [73] and are known as so-called norm-conserving pseudopo­

tentials . They are usually derived by solving the inverse radial Schrodinger ( 2 . 1 )  

or ( for the inclusion of relat ivistic effects) Dirac equation ( 2 . 55) for each angular 

momentum l, at which a suitable init ial fit of the wavefunction in close proximity 

to the core is assumed. Hence, the pseudopotent ial will depend on l as well . 

However, the condition for the norm-conservation can be relaxed creating softer 

pseudopotent ials. This allows for very accurate t reatment of the first row ele­

ments as well as atoms that contain d-electrons (e .g . t ransit ion metal elements )  

while reducing the number of  necessary plane waves to  a minimum. Examples are 

t he so-called ultrasoft pseudopotent ia.l (US )  suggested by Vanderbuilt [74] and 

pseudopotent ials stemming from the applicat ion of the projector augmented­

wave scheme ( PAW) [75 , 76] . The latter are used in t his t hesis , since they are 

generally more accurate due to a smaller radial cutoff and an exact reconstruc­

t ion of the nodes of the valence funct ion in the core region. However , those 

approache demand for a correction of the wrong pseudo charge by either in­

t roducing a depletion ( for US)  or augmentation charge ( for PAW) utilizing a 

non-local overlap operator t o  account for these charges. 

2 . 5  O ptimization and solid-state properties 

The preceding sections introduced the basic concepts .  However , so far only 

methods to determine the electronic ystem were described . This chapter shall 

therefore cover how to describe the dynamics of the nuclei as well and explain 

t he fundamental procedure of how to actually obtain the crystal properties of a 

system. 
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Until now only the determinat ion of the optimized electronic system was de­

scribed . According to the Born-Oppenheimer approximation the ground-state 

density of the electrons as well as the total energy are depending parametrically 

on the posit ions of the atoms or ions . Looking at a periodic system a potential 

energy surface Etot (  {Ra } ) is spanned for the coordinates of the atoms in a unit 

cell (Born-Oppenheimer surface, see chapter 2 . 1 .2 ) .  

Therefore, as a first step to obt ain the ground-state energy and properties of a 

system the total energy Etot ( { Ra } )  is calculated for the electronic system opti­

mizing just the electronic degrees of freedom with respect to the posit ion of the 

ions or atoms of the invest igated system. This can happen within the framework 

of density functional theory solving the Kohn-Sha.m equation ( 2 . 33 )  to yield the 

Born-Oppenheimer potential energy surface. 

After this procedure however, one has to consider the dynamics of the ionic 

system, which can be done by calculat ing the forces acting on the nuclei from 

the potent ial energy surface 

F _ _ n E _ Fion + Fel a - V Ra tot - a a · 

They vanish as soon as the system reaches its equilibrium state .  

( 2 . 6 1 )  

By introducing a. fictitious t ime t on  which the trajectories Ra ( t )  depend, it is 

possible to calculate those interatomic forces in certain t ime intervals. This does 

not only allow for rather simple techniques to optimize the geometry of crystals, 

even with quite a few atoms in the unit cell , but can even be used to describe 

solids at higher temperatures (melting) and to invest igate phonons further. 

Ra (t )  can be determined for instance by treating t he nuclei as point part icles , 

applying classical mechanics in form of Newtons equation of motion for the ions 

of the mass Nfa 

( 2 . 62 )  

where Fa i s  given by ( 2 . 6 1 ) .  

Generally speaking, therefore having an initial guess for the atomic arrangement 

Ra ( t ) ,  t he Kohn-Sham equations are solved within the framework of DFT to 
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calculate the ground-state energy E[n] and hence Etat ( {Ra } ) . This is used to 

obtain t he forces Fa ,  which in turn using ( 2 . 62 )  gives the next time step 

1 2 
Ra ( t + 6.t )  = Ra ( t )  + Va ( t )6.t  + 2aa ( t )6.t + . . .  ( 2 . 63 )  

representing an  atomic configurat ion that i s  closer to  the equilibrium ensemble. 

Based on this, the equations ( 2 . 33 )  have to be solved again to find the adequate 

electronic state. 

The method is known a.s ab-initio mol cula.r dynamics (AIMD ) and comprises 

two interlocked iterat ion schemes . However, after each calculat ion of the new 

atomic arrangement a. new BO energy surface has to be calculated. To reduce 

computational effort it is therefore feasible to estimate the direction and if pos­

. ible even the velocity of how the energetic minimum will be approached using 

the calculated forces. It i. known as the method of steepest de cent . Even faster 

convergence is achieved u ing a conjugated gradient scheme ,  which is primarily 

u cl for the calculat ions presented here . 

2 . 5 . 2  Equilibrium properties o f  crystals 

The successful calculation of the ground-state energy for a. certain arrangement 

of atoms is the start ing point for the determination of various solid-state prop­

erties such as crystal structure ,  lattice constants ,  density of states and charge 

densities , cohesive energy and bulk modulus . Furthermore, t he coefficient of ther­

mal expansion , elas t ic constants and inter atomic forces (and therefore phonon 

frequencies ) can easily be obtained. 

Initially from an experimental point of view all material properties are derived 

at a. given pressure p and temperature T. Hence, the suit able thermodynamic 

potent ial is the free enthalpy or Gibb free energy (for constant particle number) 

G(T, p) = U - TS + pV ( 2 .64) 

and its optimization will lead to the thermodynamic equilibrium state .  The 

separate terms specify the internal energy U, the entropy S and the volume of 

the crystal V .  For t he purpose of theoretical computations however, this full 

thermodynamic treatment is challenging due t o  finite temperature effects and 

determining the entropy of the system. Hence, several approximat ions are used. 
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Firstly, t he bulk is assumed to be stress-free ,  therefore showing little change of 

volume for nearly constant pressure. This means that the equilibrium state is 

mainly determined by the free energy 

F(T, V ) = U(T, V ) - TS(T, V) ( 2 .65 )  

depending on the  temperature and volume, thereby giving a. definition for the 

term stress-free as 

( ciF ) 
p = 

- c!V T 
= 0. 7 ( 2 .66 )  

On the other hand, an approximat ion concerning the phonons is  made by ide­

alizing the entropy of t he electrons to be small. Therefore, the temperature 

dependency of the internal electronic energy should be neglegible. Hence, it is 

possible to substitute Uet (T -+ 0, V) approximately by the total energy of the 

system E(V) . This quasi-harmonic approach yields the following expression 

F(T, V) = E(V ) + U�;b( V )  + Fv;b( V, T ) ,  ( 2 . 67) 

where U�ib is the zero temperature vibrational energy and Fvib is the free energy 

of the oscillators. According to Debye for temperatures smaller than the Debye 

temperature 8 both phonon contribut ions can be approximated to be 9/8Sk88 ,  

which usually amounts t o  only a. few percent of the electronic contribut ion . If 

those terms are therefore neglected, we obtain the equilibrium volume from ( 2 . 66) 

c!E (V) 
dV 

l v=Vo = 0 . 

To determine the bulk modulus, experimentally given by 

( 2 . 68 )  

( 2 .69)  

by means of quantum chemical methods a sensible equation of state for t he solid 

system has to be derived. It  has been shown that in a pressure range of up to 

1 010 Pa. the pressure derivative 

7From this relation between volume and temperature t he thermal expansion coefficient 
a (T) = (dV/dT)/V can be derived . 
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( dB ) 
dp T 

(2 .  70) 

varies lit t le with pressure. The bulk modulus can therefore be assumed to be 

linearly dependent on the pressure 

B(T, p) = B0 (T) + B�(T)p, ( 2 . 7 1 ) 

where the zero indicates values at p = 0 .  

Rearranging and integrat ing this equation while applying p = -d�i)"l accord­

ing t o  t he quasi-harmonic approximat ion one obtains the so-called Murnaghan 

equat ion of state (EOS) [77] 

E(V)  = E BoV ( (V0/V)8o ) _ B0V0 0 + B' B' - 1 + 1 B' - 1 ' 0 0 0 
where the pressure is given by 

_ 
B0 [ ( V0 ) 8� l 

P - B' V 
- 1 

0 

( 2 .  72) 

(2 .73 )  

This equation has proven to  be  a very valuable tool i n  the fitting o f  total energy 

versus volume dependencies in order to obtain the properties in quest ion . How­

ever, for a wider pressure range one is r ferred to either use the Birch-Murnaghan 

equation [78] or the universal Vinet equation of state [79 , 80] . 

Furthermore, the calculation of the total energy enables the determination of 

binding and cohesion energies , defined as the work per unit cell that is neces­

sary t o  decompose a crystal of t he volume V into its atoms under isothermal 

condit ions 

( 2 . 74 )  

Ideally, U(T = 0 ,  V0 ) i s  calculated as  the  sum of  the electronic and vibrational 

part. U (T = 0, V = oo ) is determined by adding up t he groundstate energies for 

each isolated atom in the unit cell .  In general , by means of the approximations 

introduced above an overestimation of the cohesion energies is very common [8 1 ] ,  

which mainly originates in the underestimat ion of the atomic energies i n  t he 
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framework of LDA. 
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2 .5 .3  Determination of the crystal structure and phase 

transitions 

So far only stress free solids have been discussed. However , equations ( 2 . 72 )  and 

( 2 .  73 ) now also provide a tool to discuss the crystal st ructure under hydrostatic 

pressure and enable the determination of t he solid-state structure of a system 

at equilibrium condit ions as well as at higher pressures if phonon contributions 

are neglected . It is furt hermore possible to determine the pressure at which 

transitions between the different crystal structures occur. This is realized as 

follows. 

For simple structures , like cubic crystals, the total energy is calculated for dif­

ferent volumes and different structures in question. The equilibrium structure of 

ground-state and high-pressure phases is given by the minima. of the subsequent 

graphs for E = E(V)  as indicated by (2 . 68 ) ,  which defines the minimum volume 

V0. For those simple structures this automatically yields the lat t ice constant a .  

since the posit ions of the atoms are fixed. 

However, more sophisticated structures are usually characterized by the whole 

set of the latt ice constants a ,  b and c and several other parameters that define 

the positions of the cat- and anions within the unit cell .  Usually in that case, the 

equilibrium volume is determined first and subsequently, the rat ios cja and b/a 

plus the addit ional ionic degrees of freedom, have to be optimized separately for 

the according volume. Therefore, when using VASP it  is common procedure to 

carry out a full geometry optimization , i .e .  the cell-shape as well as the internal 

parameters of the respective structure 's unit cell are optimized over a. range of 

fixed unit-cell volumes . This is to avoid complicated calculat ions to evaluate the 

Pula.y-stress corrections . Pula.y stress occurs if a. volume relaxation is carried out 

using a constant basis set and leads to error in the stress tensor. 

To predict possible high pressure phases of the investigated solids , the energy­

volume dependency can give a first estimate employing the common tangent 

method. After the calculation of the energy-volume dependencies of two dif­

ferent crystal structures, a common tangent for the two curves in question is 

constructed . Hence, the transition pressure results from the negative slope of 

the tangent , since p = -dE/dV . Furthermore, a. transition of two phases is 
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characterized by the concordance of the Gibbs free energy of the modifications . 

However, at the low (zero ) temperature limit neglecting the entropy term, this 

can be simplified and the relevant thermodynamic potential is then given by the 

enthalpy H = E + pV,  which is known if one considers an EOS like ( 2 . 73 ) . This 

method also allows for the prediction of second order t ransitions , where the two 

re ·pective enthalpy versus pressure curves meet and hence the t ransition is in­

dicated by the crossing of the curves of the pressure derivative. Usually a phase 

transition goes along with a volume reduction . 



Chapter 3 

S tructural and computational 

details 

This chapter will give some explanatory notes about the group 12  chalcogenides , 

mainly the descript ion of the different crystal structures invest igated . as well as 

a descript ion of the computational method used to investigate the problem . 

3 . 1  Structures 

This section introduces the cryst al structures commonly found in the group 12  

chalcogenides, giving some guidance and informat ion with respect to the crys­

tallographic classificat ion , t he const ruction of the corresponding unit cell and 

structural parameters . Those structures are usually labelled in various ways , the 

most common alternat ives being by either historically evolved names (diamond , 

zinc blende, . . .  ) , by the chemical formula of the prototype (e .g .  NaCl, CsCl ,  . . .  ) ,  

by the labels in a phase diagram (a-mercury, HgSe- I I I ,  . . .  ) , by space-group sym­

metry (like Cmcm, Pmmn, . . .  ) , by the Pearson notation (e .g .  oP4, cF4) or even, 

if available, by the Strukturbericht designat ion . The latter characterizes the 

structure of a crystal in a semi-systematic way by using a specific combination of 

letters and numbers (A 1 ,  B3 ,  . . .  ) , at which the letter A referres to monoatomic 

structures and B to diatomic crystals with an equal numbers of atoms of each 

type, whereas other letters are assigned to more complicated structures . The 

numbers were added depending on the historical order, in which the lattices 

were investigated and the designation is therefore not always consistent. 

Here a mixture of notations will be used according to the terms most commonly 

4 1  
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z 

X 

Figure 3 . 1 :  The unit vectors and angles of a unit cell defined in the context of a 
right-handed coordinate system giving the x, y and z axes of a crystal. 

used in the literature. It alics are used for pointing out the symmetry of a system, 

whereas standard t ext is employed to  correspond to  the actual name of a struc­

ture. A more detailed descript ion of the st ructures can be found in refs .  [ 1 2] ,  [82] 

or [83] . 

Only the specification of the atomic posit ions uniquely defines a crystal struc­

ture. The atomic positions are usually referred to as so-called Wyckoff posit ions 

and are chosen in agreement with  the Bilbao Cryst allographic server or the In­

ternational Tables for Crystallography [84-86] . They are given as fractional 

coordinates of the lat t ice constants of the unit cell .  The latt ice parameters are 

always specified as a ,  b and c and the angles as ex , (3 and 'Y in a right-handed 

coordinate system (see fig. 3 . 1 ) . 
Table 3 . 1  gives an overview about which structures were considered for the inves­

t igated compounds. In general ,  an indicat ion of which crystal structure will be 

preferred by one or the other compound is the rat io of volumes of the component 

atoms. 

3 . 1 . 1  Cubic lattices 

As one of the seven crystal systems , the cubic crystal system is very common and 

the simplest structure found amongst minerals . One dist inguishes three Bravais 

lattices: simple (se ) ,  face-centred (fee) and body-centred (bee) cubic. They are 

the basis for many typical structures adopted by binary compounds. 
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Deno­
tations 
CsCl 
cc 
B2 
NaCl 
RS 
B 1  
ZnS 
ZB 
B3 
SC16 

Latt ice, basis, 
space group 

se 
2 atoms 
Pm3m 

fee 
2 atoms 
Fm3m 

fee 
2 atom 
F43m 

se 
16 atoms 

Pa3 

Lattice 
parameter 

a 

a 

a 

a ,  
V 

Chalcogenides 
invest igated 

ZnX, CdX , HgX , 
ZnO, CdO, HgO 

ZnX , CdX , HgX , 
ZnO,  CdO, HgO 

ZnX , CdX , HgX , 
ZnO, CdO, HgO 

ZnX , CdX , HgX 

\i\Turtzi t e  
\1\T 

a ,  c, 
u 

ZnX , CdX , HgX , 
ZnO , CdO, HgO 

B4 
(a- )HgS 
C2 
B9 

h 
6 atoms 

?31 21/  ?32 2 1  

a ,  c, 
U, V 

ZnX , CdX , HgX , 
HgO 

14/mmm 
bet 

bet 
2 atoms 

!4/m mm 

a ,  c HgO 

A a 

Cm cm 

bco 
4 atoms 
C222 1 

bco 
4 atoms 
Cm cm 

a ,  b, c, 

X ] ' Y2 

a, b, c, 
Y1 ,  Y2 

HgSe , HgTe 

ZnX, CdX , HgX 

Montroydite 
I\ 1  

0 

8 atoms 
Pnma 

a, b ,  c, 
x 1 , z1 , x2, z2 

HgO 

Pnma. 
Pmmn 0 

4 atoms 
Pm mn 

a, b ,  c, 
Z1 , Z2 

CdS , HgS 

Table 3 . 1 :  Structures adopted by and investigated for the group 1 2  chalcogenides. 
Listed are different denotations such as prototype ,  abbreviation and Struk­
turbericht designation as well as lattice type, number of atoms in the 
atomic basis, space group in Hermann-Mauguin notation, the according 
lattice parameters and the according chalcogenides for which this structure 
was investigated. It is X = S, Se, Te. The abbreviations se, fee ,  h, bet, 
bco and o stand for simple cubic, face-centred cubic, simple hexagonal, 
body-centred tetragonal, base-centred orthogonal and simple orthogonal, 
respectively. 
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Figure 3 .2 :  The units cells of the cesium chloride (left )  and the rocksalt ( right) struc­
t ure . 

Cesium chloride 

Cesium chloride is a common cubic st ructure named after its prototype CsCI . 

However, it is found in several other alkali halid�s (e .g .  CsBr, Csi, RbCl , AlCo, 

AgZn, BeCu ,  MgCe, RuAl and SrTl ) even though often formed under high pres­

sure .  It has not yet been found in too many group 1 2  chalcogenides , but is 

expected t o  emerge at very high pres ures . In general , this structure is preferred 

in binary compounds, where the ions of two elements are of approximately the 

same s1ze. 

The unit cell of t he CsCl structure is based on two interpenetrat ing simple cubic 

lattices , which form a bee structure, yet with two diff rent atomic species. The 

space group is 22 1  or Pm3m with th atomic sites 1 ( a) at (0 ,  0, 0) and 1 (b) at 

( 1 /2 ,  1 /2 ,  1 / 2 ) .  The origin is the centre of inversion. Hence, the unit cell accom­

modates two atoms ( Pearson symbol cP2) with a perfect eight-fold coordination 

as indicated by fig. 3 .2 .  The Strukturbericht designation is B2. 

Rocksalt 

Another cubic formation named after its prototype is rocksalt or NaCl structure, 

which is found in CdO at ambient pressure along with many alkali halides ( KBr, 

LiCl, LiF, NaBr, NaF, RbF )  and various metal oxides , sulfides, selenides , and 

tellurides (BaS , CaO , CeSe, MgO, NiO , SrO , YbO,  ZrO, TbTe ) .  Other com­

pounds showing this structure are AgCl ,  DyAs , Gd , PrBi, PuC , ScN, UC and 

Y . It occurs as a high pressure phase in Al , CaN, In , InP, ZnO, HgO, ZnX , 

CdX and HgX ( X  = S ,  Se, Te) .  
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a • a 

Figure 3 .3 :  The units cells of the zinc blende ( left )  and the wurtzite (right ) structure. 

The space group is 225 or Fm3m with the atoms of one species sitting at 4 (a. )  

(0 ,  0, 0 )  and the atoms of  the  other species a t  4 (b)  ( 1 /2 .  1 /2 ,  1/2) , which means 

that the lattice is built from two interpenetrating fee lat t ices . The st ructure is 

centrosymmetric with the centre of inversion at the origin and usually preferred 

if the cation is slight ly smaller than the anion (cat ion/anion radius ratio of 0 . 4 14  

to  0 .732) . 

The coordination number of each atom is 6 .  where the anions are surrounded 

by cations in the fashion of the corners of an octahedron and vice versa. giving 

rise to the Pea.rson notation cF8. The Strukturbericht designation is B l .  The 

conventional unit cell is shown in fig. 3 .2 .  

Zinc blende 

Zinc blende i a. very common structure not only amongst the group 1 2  chalco­

genides , but is in general the dominant st ructure under ambient condit ions for 

a. variety of I l l-V and I I-VI semiconductors and several binary compounds (e .g. 

Agl , AlAs, AlP, AlSb, BAs, BN,  BP, BeS , BeSe, BeTe, CdS , CuBr, CuCl, CuF, 

Cui ,  GaAs, GaP, Ga.Sb,  HgS , HgSe, HgTe, INAs, lnP, MnS , MnSe , SiC , ZnSe, 

ZnTe) . It derives its name from the zinc sulfide mineral zinc blende (or spha­

lerite ) .  

I t  i s  classified by the space group F43m or  2 16 ,  hence inheriting a. cubic sym­

metry with one atomic species located at the 4 (a) site (0 ,  0, 0) and the other 

one at the 4(c )  site ( 1 /4 ,  1 /4 , 1 /4 ) . The structure could therefore be described 

as two interpenetrating fee lat t ices , shifted by one quarter along the cubic di­

agonal. Hence, each atom is tetrahedra.lly coordinated with four unlike nearest 
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neighbours . The unit cell as can be seen in fig. 3 .3  i therefore uniquely described 

by j ust the lattice constant a. There ar 8 atoms in the unit cell leading to the 

Pearson symbol cF8. The Strukturbericht designation is B3. 

If all atoms are identical, the analog i the diamond structure. It is furthermore, 

the cubic analog of the wurtzite latt ice, similar to the analogy between the fee 

and hcp close packed structures, where the only difference is the stacking of the 

atoms or dimers , respectively, which is ABCABC along the [ 1 1 1 ] -direct ion in the 

case of  zinc blende ( i . e .  fee ) and ABAB for wurtzite ( i .e .  hcp ) .  

SC1 6  

The SC16  st ructure characterizes a simple cubic tructure that accommodates 

1 6  atoms in the unit cell. Hence,  the Pearson notation is cP16 .  The space group 

is Pa3 or 205 with the centre of inversion at ( 1 /4 ,  1/4 ,  1/4 ) .  No Strukturbericht 

designat ion i. available. 

After several theoret ical predictions of a SC 16  high-pressure phase in GaAs, GaP, 

AlSb and InAs, this structure was first observed in CuCl and CuBr [87] and later 

in GaAs by Me tlahon et al. [88] , who est ablished the posit ions of the two atomic 

species both at the 8 (c ) site with coordinates of ( u ,  u, u ) and ( v ,  v, v ) , r spec­

tively. In the case of GaAs it is 'l.l rv 0 . 1 5  and V rv 0.65. 

Interestingly, this structure packs more efficiently than diamond making it prefer­

able a t  higher pressures. This , howev r, comes with a slight di tort ion from the 

diamond bond length,  leading to an almost tetragonally bonded st ructure with 

a bond type A to the first-nearest neighbour and a bond type B for th three 

second-nearest neighbours. Yet ,  it causes an opt imized t et rah dral angle com­

pared t o  the diamond st ructure ,  which is different for the two atomic species if 

'l.l - V =/= 0 . 5  [89] . 

Furthermore, the structure is linked to the BC8 structure (body-centred cubic 

with 8 atoms in the unit cell) found in germanium and silicon by being its binary 

analog. This means the two structures are related to each other in the same way 

that zinc blende is related to the diamond structure. 

3 . 1 . 2  Hexagonal structures 

Another one of the seven crystal systems is the hexagonal lattice, but there is 

actually only one Bravais latt ice (hP) .  It i t  specified by t he lattice constants a 

and c, where the angle enclosed by the two in-plane lattice vectors is 60° . Several 
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elements and compounds crystallize in this structure with graphite as one of  the 

more prominent examples. 

Furthermore, the hexagonal close-packed structure should be ment ioned, smce 

at least 30 elements are known to crystallize in this formation. It is based on 

t he simple hexagonal Bravais lattice with the positions of the atoms given by 

( 1/3 ,  2/3, 1 /4) and (2/3 ,  1 /3 ,  3/4) both at a (2c) site. This can also be described 

by two simple hexagonal latt ices shifted by aJ /3 + a2/3 + a3/2 , hence achieving 

the highest space filling of 17 = \!;, /�, = 0 . 74 ,  where Va is the volume of the 

atoms in the unit cell with the volume Vu . 

Wurtzite 

The wurtzite structure is named after the zinc iron sulfide mineral (Zn ,Fe)S and 

is adopted by several binary compounds like Agl , InN,  ZnO, ZnS, CdS ,  CdSe, 

a-SiC .  GaN and AlN at ambient condit ions. For other semiconductors , where 

the wurtzite structure is not the most stable phase it might be preferred in the 

nano-crystal forms. 

It is a hexagonal latt ice with the space group P63mc or 1 86 and is built up from 

two interpenetrating hcp latt ices for each atomic species with t he atoms located 

at the 2 (b)  site at ( 1 /3 ,  2/3, 0) and the 2(b)  site at ( 1 /3 ,  2/3,  u ) , for the accord­

ing atomic species. Ideally 7.l = 3/8 , which is the case if a c/ a ratio equivalent to 

J813 = 1 . 63 is reached , characterizing an ' ideal ' wurtzite structure. Note that 

t he parameter 7. l  for the first atomic species is arbit rarily set to zero, which fixes 

t he actually arbit rary origin along z .  

As  mentioned earlier , wurtzite is the hexagonal analog to  t he zinc blende struc­

t ure ,  where those two structures are related in the same way as is the hcp latt ice 

to the fee .  This is expressed in the stacking of the binears : a ABCABC-layering 

is adopted along the ( 1 1 1 )-axis for zinc blende, whereas in wurtzite a ABAB­

stacking is achieved. Given this structural similarity, it is to be expected that 

for all group 12  chalcogenides the energy as well as the unit-cell volume differ­

ence between the two structures is rather small , which should induce very similar 

properties , especially regarding the cohesive energy. 

In the wurtzite structure each atom is tetrahedrally coordinated in a unit cell that 

includes four atoms (Pearson symbol hP4) as can be seen in fig. 3 .3 .  The Struk­

turbericht designation is B4. It is furthermore a non-centrosymmetric structure. 

This lack of inversion symmetry generally implies properties such a.s piezoelec­

tricity and pyroelectricity. 
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If the two atomic species are the same, the hexagonal diamond structure (so­

called lonsdaleite) is formed . 

3 . 1 . 3  Trigonal structures 

Cinnabar 

The cinnabar structure is named after the naturally occurring mineral of HgS. 

Under ambient conditions it  is furthermore found in HgO as a metastable phase 

and in HgSe, HgTe, CdTe, ZnTe and GaAs as a high-pressure phase. 

The structure is trigonal and non-centrosymmetric with the space group ?322 1  

o r  1 52 as first found by Auvra.y et al. in HgS [90] . However, a description of 

the structures is also po sible employing the enantiomorphic space group ?3 1 2 1  

( 154 ) ,  which is usually utilized ,  since one cannot dist inguish between the enan­

tiomorphic structures using powder data .  Furthermore, a hexagonal unit cell can 

be used to describe the structure .  If the lat ter space group is used, the atoms 

are posit ioned at t he 3 (a )  site at (u ,  0, 1 /3) and the 3 (b )  site at (v ,  0, 5/6 ) ,  for 

the two species respectively. The unit cell can be viewed in fig. 3 .4 ,  showing six 

atoms , which gives the Pearson symbol hP6. The St rukturbericht designation is 

B9. 

Comparing the illustrat ions ( a ) , (c) and (e) in fig .  3 .5 ,  i t  becomes obvious that 

cinnabar is merely a distort ion of t he rocksalt structure and therefore a sub­

group of this structure .  Both formations are identical if c/ a = J6 = 2 .449 and 

U = V =  2/3. 

How st rong the distort ion from the rocksalt structure is, can be estimated by 

the change in the coordinat ion number, where the transition from a six-fold co­

ordination to a 2+4 coordinat ion means that the two nearest neighbours in the 

cinnabar structure are much closer than the next four nearest neighbours . For 

instance for HgS, where u(Hg)  = 0 .  7 199 and v (S )  = 0.4889 [90] , this means a 

nearest-neighbour distance of 2 .368 A, and second nearest-neighbour distances 

of 3 .094 and 3 .287 A. 
As a consequence, the two closest nearest neighbours lead to a build-up of S-Hg­

S spiral chains running parallel to the z-axis (see fig. 1 .  3 ) , in which the S-Hg-S 

groups are linear. In t he cinnabar structure the interactions of  atoms within a 

chain are usually much s tronger than those between the chains . Therefore, they 

are thought to be of Van der Waals character in trigonal HgSe and HgTe [9 1 ] .  

However, the coordination number is strongly dependent on the parameters u 
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c 

Figure 3.4:  The unit cell of the cinnabar structure . 

and v .  Except for the case of HgO and HgS they are quite similar (and a little 

less than 2/3 ) ,  inducing a 2+2+2 coordination in HgSe and a 4+2 coordination 

in HgTe and CdTe [92] . The intra-chain distances then become comparable to 

the inter-chain distances. Looking at e.g. ZnTe u and v are almost the same 

(around 0 . 5 )  and an approximately four-fold coordination is reached. Character­

izing those chalcogenide structures by the prototype cinnabar is often questioned 

due to the st rong st ructural deviat ion . 

Still ,  HgO and HgS have a true 2+4 coordination meaning two close bond dis­

tance neighbours within the chain and 4 neighbours in adj acent chains . The 

t ransit ion in coordination from cinnabar to rocksalt can be viewed in fig. 3 .5  [91] . 

3 . 1 .4 Orthorhombic structures 

The C2221  structure belonging to the space group indicated by its name ( al­

ternatively space group 20) is a non-centrosymmetric structure appearing as an 

intermediate phase between zinc blende and cinnabar in HgSe and HgTe. 

The atoms are positioned at the 4 (a ) and 4 (b) sites at (x ,  0, 0) and (0 ,  y, 1 /4 ) , 
respectively. This means there are 8 atoms in the unit cell , hence the Pearson 

symbol oP8. A Strukturbericht designation does not exist . 

The structure is regarded as an orthorhombic distortion of the zinc blende forma­

tion. The two structures are identical if a =  b = c and x = 0.25 = y. In HgSe and 

HgTe the distort ion is minimal , therefore maintaining the fourfold coordination 

of the atoms. However, the bond angles are distorted considerably. 
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(b) 

(d) 

(f) 

Figure 3 .5 :  The structural transition of the group 12 chalcogenides starting from a 
2+4 coordination in HgO and HgS ( (a) and (b ) ) , changing to a 4+2 
coordination in e .g .  CdTe ( (c) and (d) )  towards the rocksalt structure 
of HgS with its typical sixfold coordination ( (e ) and (f ) ) . The pictures 
(a ) , (c ) and (e) show the plane perpendicular to the c-axis , while (b ) , 
(d ) and (f ) are views taken parallel to the c-axis. Dark atoms and open 
circles indicate the transition metals and chalcogenides, respectively. The 
z-coordinate for each atom is represented by the numbers next to the 
atoms. The picture is taken from ref. [91] . 

Cm cm 

The Cmcm structure is named after its space group and found in various binary 

structures , such as ZnSe, ZnTe, CdS, CdSe, CdTe, HgSe, HgTe, AlSb, GaP, 

GaAs , InP and InAs. The space group number is 63 with the Pearson notation 
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b 
a 

Figure 3.6 :  The unit cell of the montroydite structure. 

oC8. Here . the atoms in the units cell are both sit t ing at the 4 ( c ) ites at 

(0 ,  Yt , 1/4) and (0. y2 . 1 /4 ) ,  respect ively. 

The structure is an orthorhombic distort ion of the NaCl structure and identical 

if a = b = c, y 1 = 3/4 and y2 = 1 /4 .  This distort ion is characterized by a 

displacement along ±y leading to  x-y planes different from rocksalt . A further 

distort ion however appears if y1 - y2 -=/:- 0 .5 ,  which can be seen in the appearance 

of zigzag chains along the .r-axis , meaning the shortest cation-cation distance is 

either less or more than the shortest anion-anion distance if y1 - y2 < 0 .5  or 

> 0 .5 .  respectively. 

Accordingly. the coordinat ion number st rongly depends on the values of the 

latt ice parameters as well as the coordinates y1 and y2 . A 5 + 3 coordinat ion can 

be observed if y1  - y2 < 0.5, like in ZnTe and CdTe, although it becomes less 

pronounced in HgTe. 

Pnma 

Pnma is an orthorhombic structure with the space group 62 or Pn ma .  An 

example is the Montroydite phase of HgO, where both the Hg and 0 atoms can 

be found at the 4(c )  site at (x ,  1 /4, z ) . This means the structural degrees of 

freedom are a ,  b, c, x (Hg ) , z (Hg ) , x (O ) and z (O ) . The unit cell can be viewed 

in fig. 3 . 6 ,  which shows a total of 8 atoms in the unit cell .  

For HgO, where x (Hg) = 0 . 1 15 ,  z (Hg) = 0 . 245,  x (O ) = 0.36 and z (O ) = 0 .58 ,  

this results in a built-up of the crystal from planar -0-Hg-0-Hg- zigzag chains 

running parallel to the x-axis in the ac-plane showing a twofold coordination. 

The 0-Hg-0 group is linear , whereas the Hg-0-Hg group is bent with an angle 

of 108 .8 a and a Hg-0 bond distance of 2 .028 A. For the ful l  structure see fig. 1 . 2 .  
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The Pearson symbol is oP8. 

Pmmn 

Pmmn is an orthorhombic structure named after its space group ( alternatively 

number 59 ) .  The atoms are sitting at the 2 (b )  and 2(a) sites at (0 ,  1 /2 ,  z 1 ) and 

(0 ,  0, z2 ) ,  respectively. 

It can be viewed as an orthorhombic distort ion of the rocksalt structure, Both 

structures are identical if a =  c = b/ ,J2 and the atomic positions are (0 ,  1 /2 ,  1 /4 )  

and ( 0 ,  0 ,  1 / 4 ) ,  respect ively. A centre o f  inversion is found a t  ( 1 /4 ,  1 /4 ,  0)  and 

the Pearson symbol is oP4. 

3 . 1 . 5  Tetragonal structures 

14/mmm 

The 14/mmm structure has the space group 139 with the Hg and 0 atoms being 

at the 2 ( a )  and 2 (b )  at (0, 0. 0) and (0 ,  0 ,  1 /2 ) ,  respectively. It has a body­

centred unit cel l ,  hence th Pearson symbol is t 12 and the Strukturbericht symbol 

is Aa . 

This st ructure can be viewed as a rather small distortion of the rocksalt structure ,  

where the crystal i s  compressed along the z-axis . The two are identical i f  c/  a = 

,J2 = 1 . 4 14 .  For a picture of the unit cell refer to the picture on the right-hand 

ide of fig. 3 . 2 ,  but slightly shorten d along the z-axis. 

3 . 2  Computational details 

Generally, all calculations in the course of this thesis were carried out using den­

sity functional theory within a periodic boundary framework as implemented in 

the Vienna Ab-initio Simulation Package VASP [70] . 

Here, t he elect ron-electron interact ion is t reated within the generalized gradi­

ent approach ( GGA) [58] for the exchange-correlation energy according to the 

parametrization by Perdew and Wang (PW9 1 )  [93] and a plane wave basis set 

is employed as explained in chapter 2 .4 . 1 .  Furthermore, the atomic core region 

is described by means of the projector augmented-wave (PAW) method [75 , 76] , 

which allows to reduce the number of plane waves per atom for transition metals 
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as well as first row elements to a minimum. Here only the outermost (n- 1 )  d- plus 

n s-electrons are used in t he valence space. The integration over the Brillouin 

zone was carried out by summing over a uniform k-point mesh including the 

r-point , where the number of k-points was chosen to obtain a converged total 

energy. 

Relat ivistic effects were allowed by including them within the pseudopotent ial 

approximation, which only accounts for scalar-relat ivist ic (mass-velocity) contri­

butions . Yet .  comparable nonrelat ivistic calculat ions were only carried out for 

the mercury chalcogenides . This is just ified as the relat ivistic impact on the zinc 

as well as cadmium chalcogenides is much smaller and therefore negligible within 

the accuracy of the density functional t reatment chosen here. 

Even though the study at hand discusses the relativistic influences on the mer­

cury chalcogenides only, both structural and electronic properties were calculated 

for the zinc and cadmium chalcogenides as well ,  which primarily enables a di­

rect comparison of the nonrelativist ically treated mercury chalcogenides to those 

compounds . It furthermore has the posit ive side effect of providing a tool to test 

the quality of the computat ional specificat ions used, by comparing the results to 

previously published work. 

3 .2 . 1 Cutoff energy and k-point mesh 

In order to obt ain reliable results ,  their convergence with respect to the num­

ber of plane waves as well as the size of the k-point mesh needs to be assured 

prior to the actual calculat ions (see also chapter 2. 4 . 1 ) .  Tests were carried out 

for every considered crystal structure of each chalcogenide system both at the 

experimental equilibrium latt ice constant and at a volume expected to be well 

below the transition into  t he next phase . If no experimental data was available 

short benchmarking calculat ions were performed beforehand. It was aimed to 

keep the deviat ion in t he t otal  energy with respect to the tested parameters be­

low 1 meV. 

In general, the plane-wave expansion could be restricted to a maximum kinetic 

energy of 450 eV, except for the relativist ic HgO montroydite structure where a 

585 eV cutoff was necessary. Even if the required energy was below those values , 

i t  was increased to 450 e V in order to provide for opt imum comparability. 

Even more critical is the number of k-points necessary for a calculation , since the 

integration over the Brillouin zone is substituted by a summation over a uniform 

k-point mesh. The errors due to this problem are not transferable, meaning the 
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Transition metals 
E (eV) 

Chalcogenides 
E (eV) 

Zn 
0. 002 

0 
- 1 . 748 

Cd 
0 .005 

s 
-0 .928 

Hg 
-0.014 

Se 
-0. 773 

Hg ( nonrel. )  
0 .013 

Te 
-0 .641 

Table 3 .2 :  Atomic total energies in  eV .  The values for the chalcogenides were calcu­
lated including spin polarization . 

sam k-point mesh leads to completely different errors for different invest igated 

st ructures. Hence, several bulk calculat ions were executed using the previously 

determined plane wave cutoff, to check for the total energy convergence with 

respect to the dimension of the needed k-point mesh. 

3 . 2 . 2  Ground-state p roperties and transition pressures 

To obtain the equilibrium crystal properties a full geometry optimizat ion was 

carried out for different crystal  structures of the group 1 2  chalcogenides allowing 

the program VASP to optimize the positions of the ions by minimizing the forces 

on those ions as mentioned in  chapter 2 . 5 . 2 .  More specifically, the cell shape 

a wel l  as the internal Wyckoff parameters of the respective crystal st ructures 

were allowed to relax while the cell volume was kept constant , hence calculating 

the total energy for different cell volum s. This method allows for independent 

optimization of the lattice parameters , where more than one structural variable 

characterizes the structure of the according polymorph . 

The energy-volume relat ionships generated by those means, were employed to de­

termine the structural properties by fitting them to the Murnaghan EOS. From 

this, one immediately obtains the pressure as p =  -dE/dV,  the equilibrium vol­

ume V0 , the total energy per cation-anion pair E0 , the bulk modulus B and the 

pressure coefficient B' ( see also chapter 2 . 5 . 2 ) .  

Furthermore, from the total energy per cation-anion pair the cohesive energy was 

c alculated by subtracting the respective atomic total energies . This means that 

experimental data for comparison is identical to the so-called heat of vapouriza­

tion or atomization energy. The atomic total energies were obtained by carrying 

out single atom calculations for the according atoms in a well-defined box size 

using a plane-wave cutoff equivalent to the one used in the bulk calculations. 

Usually, a reference state inherit ing spherical symmetry is chosen to create the 

pseudopotential for the atoms ,  which is subsequently set to zero energy. This 

works well for most atoms in their ground state. However ,  in contrast to the tran-
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sition metals , the ground state for the chalcogenides is spin polarized according 

to Hund's law. Therefore , spin polarization was included in t he t reatment of 0 ,  

S ,  Se  and Te. Table 3 .2  shows the respective energies for the  atoms. 

Unless otherwise stated, the transit ion pressure was estimated for the low tem­

perature limit only, i .e .  instead of the Gibbs free energy G = U + pV - TS 

defining t he crystal stability for a given temperature and pressure the enthalpy 

H = E + pV is used , where U ( V) � E ( V ) .  The zero-point energy is neglected. 

The t ransit ion pressure then is received from the enthalpy-vs-pressure plot as 

the crossing of two curves of different crystal st ructures (see also chapter 2 .5 .3 ) . 

3 . 2 . 3  Determination o f  the electronic structure 

Figure 3. 7 :  The Brillouin zone of the fee lattice along with important k-points and 
paths within the Brillouin zone [84 ,  85]. 

Concerning the electronic structure calculations of the various crystals investi­

gated, the corresponding band structures are derived directly from the eigen­

values of the Kohn-Sham equation [5 1 ] .  Due to the density functional being 

chosen within the single-particle picture, this method implies an underestima­

t ion of the band gap and interband-transmission energies due to t he neglect of 

excitations [94 , 95] . However , it usually leads to surprisingly reasonable results 

for the dispersion and orbital character of the valence and conduction bands. 
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Figure 3.9: The Brillouin zone of the orthorhombic side-face centred lattice along 
with important k-points and paths within the Brillouin zone [84, 85] . 
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Hence , this method also allows for the calculation of the electronic density of 

states (DOS ) . 

The path for t he calculations of the band s tructure was chosen according to the 

Bilbao Crystallographic Server [84, 85] . For the picture of the Brillouin zone 

along with the respective k-vectors see fig.  3 .7  for the fee structures (rocksalt 

and zinc blende) , fig. 3.8 for all primitive hexagonal latt ices including cinnabar 

(due to the chosen hexagonal descript ion ) and fig. 3 .9  for the orthorhombic side­

face centred montroydite structure. 

To calculate t he electronic DOS, the tetrahedron method [96] is employed to in­

tegrate over t he Brillouin zone while increasing the k-point mesh to 25 x 25 x 25 

for the fee structures , 22 x 22 x 9 for the primit ive hexagonal latt ices and to 

1 5  x 15 x 23 for t he montroydite structure. 

Note that the respect ive computations were only carried out for the ambient 

pressure structures of each group 12 chalcogenide. Furthermore, it is mentioned 

that the electronic gap depends considerably on the latt ice constant . Hence, this 

limits the accuracy of the calculated ga.p energies and makes them very much 

dependent on the accuracy of the calculated lattice constant. 
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Chapter 4 

The group 1 2  oxides 

4. 1 Occurring crystal structures 

4. 1 . 1  Zinc oxide 

At room conditions zinc oxide exists in a wur tzite-type structure (a =  3. 2495 A 
and c = 5.2069 A [ 1 2] )  and can usually be found as a white powder . The natu­

rally occurring mineral ranges in colour depending on defects and is called zincite. 

Bates et al. first described a transition upon appliance of pressure (Pt = 10 GPa)  

into a site-ordered rocksalt structure and furthermore established that this phase 

can be stable at ambient conditions as well (by quenching from the tran it ion 

pressure) [97] . Others however , report the t ransit ion to be fully reversible [98] 

despite a quite large hysteresis [99, 1 00] , which made this transition very well in­

vestigated [99-106] . The transit ion is accompanied by a volume change (�V/V0 )  
of 1 6 . 6  % [ 102] and the new phase has a latt ice constant of a = 4 . 280 A [ 1 05] . 

Several theoretical studies confirm the properties of the ZnO phases and transi­

t ion pressures are usually in good agreement . Qteish predicted RS-ZnO to be a 

wide band gap indirect semiconductor [ 107] .  Another theoretical study by Azzaz 

et  al. , who extended their investigation to the cinnabar ,  Cmcm, ,6-tin, NiAs, 

Immm and Imm2 structures as well ,  proved none of them to be stable compared 

to the wurtzite and rocksalt structure [ 108] . 

In chapters 4 . 2 . 1 and 4 .3 . 1 the results for the zinc oxide equilibrium and high­

pressure modifications are listed. There, the t ables 4 . 1 and 4.4 will include the 

structural parameters and transition pressures determined by previous investiga­

tors (experimentally as wel l  as theoretically) of the various structures as discussed 
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here as well .  

4 . 1 . 2  Cadmium oxide 

CHAPTER 4. THE GROUP 12 OXIDES 

Cadmium oxide under ambient conditions adopts the rocksalt structure with a 

latt ice constant of a = 4 .6942 A [ 1 2] .  It occurs naturally, yet rarely, as the 

mineral monteponite ,  which appears in the form of brown to red crystals . 

For a long time, very little work had been done invest igating the high-pressure 

behaviour of cadmium oxide. Even from a theoretical point of view only few data 

is available. Here the work of Majewski and Vogl should be ment ioned, predict ing 

a transition into the cesium chloride tructure at 1 18 .3  GPa [ 109] . Finally in 

2004 Liu et al. confirmed the stability of the rocksalt phase experimentally up to 

90 G Pa ,  followed by a t ransit ion into the cesium chloride structure [ 1 10] .  This 

is an excellent example of the importance of theoretical calculat ions st imulating 

experimental investigations. 

Furthermore, the structures NiAs, Cmcm, cinnabar were ruled out as stable 

phases for CdO in the course of a comprehensive FP-LAPW DFT-GGA study 

by G uerrero-Moreno et al. [ 1 1 1] .  

Later (see chapters 4 . 2 . 2  and 4 . 3 . 2 ) ,  the structural parameters and transition 

pressures of the cadmium oxide polymorphs obt ained in the course of this thesis 

are summarized in tables 4 .2 and 4 .5 .  Those will also list the results of previous 

theoretical as well as experimental work for comparison. 

4 . 1 . 3  Mercury oxide 

At ambient pres ure mercury oxide adopts two different structures. The low­

temperature form has an orthorhombic structure with the space group Pnma, 
referred to as the montroydite phase after its naturally ( but rarely) occurring 

mineral , which is known to have a yellow to reddish brown colour, depending on 

the grain size of the crystals. On the other hand there is the cinnabar form of 

HgO, stable at temperatures above 220°C and orange in colour. 

Both forms are described by Aur ivillus et al. , who found the structural param­

eters of the montroydite phase to be a = 6 . 6 12  A, b = 5.520 A and c = 3 .521  A 
with x (Hg )  = 0. 1 1 5 ,  z (Hg)  = 0 . 245,  x (O)  = 0.36 and z (O )  = 0.58 [5] . The 

lattice constants of the cinnabar structure are a = 3 .577 A and c = 8 . 68 1  A, 
where u (Hg )  = 0. 745 and v (O )  = 0 .46 ,  accordingly [6] . 
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I f  the two structures are compared , the montroydite crystal consists o f  planar 

0-Hg-0-Hg zigzag chains lying in the a-c-plane and running parallel to the x­

axis ,  while the cinnabar form consists of spiral chains running parallel to the 

z-axis. In both cases the 0-Hg-0 group is linear, but the Hg-0-Hg group is 

bent with the angle being 1 08.8° and 107 .9° for montroydite and cinnabar, re­

spectively. The Hg-0 bond is 2 .028 A for the Pnma phase and 2 .030 A for the 

cinnabar form. 

According to studies based on measuring the resistivity the cinnabar phase t rans­

forms into a metallic state at 10 GPa, possibly to the NaCl structure [ 1 1 2] .  

The orthorhombic montroydite form however, is first reported t o  transform into 

a tetragonal phase under compression of up to 20 GPa [ 10] .  Zhou et al. support 

this observation in a combined Raman/ ADX study (Pt = 14 GPa) and reported 

the structure to be site-ordered with the space group I 4/m m m  and the latt ice 

constants a = 3.370 A and c = 4 .651  A at 19 . 3  GPa [ 1 1 ]  ( for atomic posit ion 

see chapter 3. 1 ) .  Despite the structure being incompatible with their Raman 

data ,  due to no other bet ter suitable option I4/mmm was regarded as the suit­

able description of the average structure , which was confirmed by Nelmes et al. 

(Pt = 1 1 .6 GPa) later on [ 1 2] .  

Further pressure increase reveals yet another t ransit ion at 26-28 GPa (Raman 

and ADX measurements ,  respectively) to  a metallic rocksalt phase [ 1 1 ,  1 2] . 

Tables 4 .3  and 4 .6  in chapters 4 . 2 . 3  and 4 .3 .3  will conclude the results for the 

structural parameters and transition pressures of the different mercury oxides 

phases . A summary of the parameters obtained in preceding experimental and 

theoretical invest igations as d iscussed above will be included as well .  

4 . 2  Equilibrium structures 

4.2 . 1  Zinc oxide 

Fig. 4 . 1  concludes the calculated energy-volume curves for the different crystal 

structures of ZnO, which confirm that zinc oxide at ambient conditions crystal­

lizes in a wurtzite structure (Ecoh = 7. 294 eV /pair) .  With a ground-state volume 

of 24 . 70 A 3/ pair the two lattice constants are determined to be a = 3. 279 A and 

c = 5.304 A, and the internal Wyckoff parameter is u = 0.3785. Those struc­

tural parameters are in very good agreement with experimental (a = 3 .258 A,  

c = 5 .220 A and u = 0.382 [1 1 7] )  and other published theoretical work (a = 
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Property 
Wurtzite 
a 
c 

cja 

u 

Vo 
Eo 
E' 
Ecoh 
Pt to RS 
Zinc blende 

This work Other theoretical 

3. 279 3 . 283a , 3 . 292c , 3 . 1 98d 

5 . 304 5 .309a , 5 . 292c , 5 . 167d 

1 . 6 1 8  1 . 6 17a ,  1 . 608c , 1 .6 16d 

0 . 3785 0 . 3786a , 0 . 3802c , 0. 379d 

24 . 70 24 . 78a , 24.83c , 22. 88d 

1 3 1 . 1  1 3 1 . 5a , 133 .7c ,  159 .5d 

4 .4 4 . 2a , 3 .8c ,  4 .5d 

7. 294 7 .20a ,  7 .69c 
13 . 3 1  1 1 . 8a , 13 . 39 ,  6 .6  (9 .3) h 

a 4.622 4 .627a , 4 .633c , 4.504d 

Vo 24.68 24. 77a , 24.86c , 22.84d 

Eo 1 30 . 9  1 3 1 . 6a ,  135 .3c ,  160 . 8d 

E' 4 .6  3 .3a , 3 .  7c , 5 .  7d 

Ecoh 7 .282 7. 19a ,  7.68c 

Experiments 

3 .258e , 3 . 25Qf 
5 .220e ,  5 .2Q4f 
1 .602e , 1 .6Ql f  

0 . 382e 
23 .99e , 23.8Qf 

18 1  e 183f ' 

4e 4f ' 

7.52b 
f 

. . 
8 .7  , 10 2 ,  9 .81 

aPAW-GGA from ref. [ 1 1 3] ,  bfrom ref. [ 1 14 ] ,  cfrom ref. [ 1 15 ] ,  dfrom ref. [ 1 1 6] ,  
efrom ref. [ 1 1 7] ,  !from ref. [ 102] , 9from ref. [ 107] , hLDA (GGA) from ref. [ 1 04] , 
i from ref. [97] , J from ref. [99, 100] 

Table 4 . 1 :  Ground-state properties o f  the equilibrium phases o f  ZnO. Presented are 
the latt ice constants a and c (A) , internal parameter u, axial rat io c/ a ,  

ground-state volume V0 (A3 /pair ) ,  bulk modulus Eo (GPa) and its pres­
sure derivative B' as well as the cohesive energy Ecoh ( e V /pair) and the 
transition pressure Pt (GPa) where applicable. 

3 .283 A, c = 5 . 309 A, u = 0 .3786 [ 1 13] ) .  For further properties see also t a­

ble 4 . 1 .  The bulk modulus obtained amounts to 1 3 1 . 1  GPa (experimental value: 

1 8 1  GPa [ 1 1 7] ) ,  whereas its pressure derivative is 4.4. The deviations in the bulk 

modulus are recorded in other theoretical invest igations as well [ 1 1 3] , and are 

most l ikely a finite temperature effect . 

The zinc blende structure of ZnO was investigated as well ,  and we obtain a 

lattice constant of a = 4 .622 A ( V0 = 24.68 A 3 /pair) and a cohesive energy 

of Ecoh = 7.282 eV /pair. Hence, this crystal arrangement is very close to the 

wurtzite structure [ 1 1 3] .  Yet ,  the energy difference of 1 2  me V /pair is big enough 

to confirm that the zinc blende structure is not accessible as an equilibrium phase. 

The bulk modulus is calculated to be 1 30 .9 GPa and E' equals 4.6 .  Again, those 

results are in excellent agreement with previous theoret ical studies (table 4. 1 ) ,  

but there is no experimental data available. 
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Figure 4 . 1 :  The total energy versus volume per cation-anion pair for different crystal 
structures of ZnO (upper panel) and CdO (lower panel) . 
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Property 
Rocksalt 
a 
Vo 
Bo 
B' 
Ecoh 
Pt to  CC 
Wurtzite 
a 
c 
cja 
u 

Vo 
Bo 
B' 
Ecoh 
Zinc blende 

This work 

4 . 779 
27 .29 
1 30 . 1 
4 . 0  

6 . 091  
84 . 24 

3 . 64 1  
5 .946 
1 . 633 

0 .3767 
34. 14  
93.9 
4 . 1  

6 . 067 

CHAPTER 4.  

Other t heoretical 

4.  nga ) 4 .  noc 
27 .29a , 27 . 1 3c 
1 30 .5a , 1 30c 
35.oa , 4 . F  
6 .ooa , 5 . 3oc 

85a 89d ) 

3. 678a , 3 . 660c 
5 . 825a , 5 . 856c 
1 .584a , 1 . 600c 

0 . 3849a , 0 . 35QQC 
34. 1 2a , 33. 97c 

92 .7a , 86c 
4 . 7a , 4 .5c 

5 .97a , 5 . 30c 

a 5 . 149 5 . 148a , 5 . 1 50C 
Vo 34 . 13 34. 1 1  a , 34. 1 5c 
Bo 94 .3 93 .9a , 82c 
B' 4 .4 5 .oa , 3 .oc 
Ecoh 6 . 046 5 .96a , 5 . 1 8c 

THE GROUP 12  OXIDES 

Experiments 

4 .696d , 4 . 694e 
25.89d, 25.86e 

148d ) 
4d 

6 .40b 
go I 

aPAW-GGA from ref. [ 1 1 3] ,  bfrom ref. [1 14] , cfrom ref. [ 1 1 1 ] ,  dfrom ref. [ 1 1 8] ,  
e from ref. [ 1 2] ,  !from ref. [ 1 1 0] 

Table 4 .2 :  Ground-state properties of  the  equilibrium phases of  CdO. Presented are 
t he latt ice constants a and c (A) ,  internal parameter u, axial ratio c/ a ,  

ground-state volume V0 (A3 /pair) , bulk modulus Bo (GPa) , its pressure 
derivative B' as well as the cohesive energy Ecoh (eV /pair) and the tran­
sition pressure Pt (GPa) where applicable. 

4 . 2 . 2  Cadmium oxide 

The results presented here , correctly predict the equilibrium structure of CdS to 

be rocksalt with a cohesion energy of 6 .091 eV , as can be derived from fig. 4 . 1 .  

A lattice parameter of a = 4. 779 A i s  obtained along with a ground-state volume 

of 27 .20 A3 /pair in good agreement with experimental values (a = 4.696 A [1 18] ) . 

Other theoretical calculations yield very similar results (a = 4 .  779 A [1 13] ) . 

The determined cohesion energy, the bulk modulus and its pressure derivative 

( B0 = 1 30 . 1  GPa,  B' = 4 .0 ) also compare rather well to previously published 

data. For details see table 4 . 2 .  

Furthermore, the investigation of  the energy-volume curves for the wurtzite and 
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zinc blende phase were included in t he calculations. The property values are 

listed in t able 4.2 as well and are in excellent agreement with other theoretical 

studies. Again ,  the cohesive energies of both phases are fairly alike with a. dif­

ference of 2 1  me V /pair , indicating t heir structural similarity. 

The cohesive energies are also rather similar to the one obtained for rocksalt . 

The difference in energy is 25 me V/ pair. However , from the energy differences 

obtained between for instance the wur tzite and zinc blende st ructure concern­

ing the discussion of the group 1 2  chalcogenides in general and comparing it to 

what is experimentally observed , it is safe to say that the energy difference is 

large enough t o  rule out the zinc blende as well as the wurtzite structure as an 

equilibrium phase in CdO. 

4 .2 .3  Mercury oxide 

As explained above HgO exists under normal condit ions in a so-called montroy­

dite as well as a cinnabar form . This is confirmed by figure 4 . 2 ,  which shows two 

very close lying energy curves for the two modifications with cohesive energies of 

4 .036 and 4 .029 eV /pair, respectively. The energy difference is very small with 

only 7 me V /pair. 

For the montroydite phase latt ice constants of a= 6 . 747 A, b= 5 . 779 A, and c= 

3 .697 A are obt ained with the parameters x (Hg) = 0 . 1 12 ,  z (Hg) = 0 .243, x (O )= 

0 .360, z (O )= 0 .571  for the orthorhombic structure. This compares very well 

to experiments, where the following structural parameters are determined : a= 

6 .612  A ,  b= 5 . 520 A .  c= 3.521 A .  Wyckoff posit ions x (Hg) = 0. 1 12 ,  z ( Hg ) = 0 .243, 

x (O) = 0 .358 and z (O ) = 0 .587 [1 0] . It is also in good agreement with another 

t heoretical PBE study attaining lat tice constants of a= 6 .74 A, b= 5 . 68 A and 

c=3 .  68 A [7] . However, in this work no other parameters and propert ies are given. 

For the bulk modulus and its pressure derivative the values E0 = 20. 7 GPa and 

E' = 9.7 are obtained , compared to E0 = 44 GPa and E' = 7 in an experimental 

reference [ 1 1 ] . However, in the experiment the same Murnaghan fit was used for 

t he montroydite modificat ion as well as for the high-pressure phase. 

Turning now to the cinnabar phase, the calculations presented here , find the lat­

t ice parameters a= 3 . 745 A and c= 8 .968 A a long with the Wyckoff parameters 

u (Hg )= 0 . 745, and v (O )= 0.414 ,  all in reasonable agreement with the experi­

mental results [6] . 

In general , the discrepancies in t he values are acceptable considering the very 

shallow potential  curve (see fig. 4 .2 ) expressed by the very small bulk moduli. 
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Property This work Other th  oretica1 Experiments 
M ontroydite 
a 6 . 747 6 . 74° 6 . 6 12b 

b 5. 784 5 .68° 5 . 520b 

c 3 . 693 3. 68° 3 .521  b 

bja 0 .857 0 . 843° 0. 835b 

cja 0 .547 0 . 546° 0. 533b 

x(Hg) 0. 1 120 0 . 1 1 2b 

z (Hg) 0. 2430 0 .243b 

x(O)  0.3595 0 .358b 

z (O ) 0.5707 0 .587b 

Vo 36.04 35. 22° 32. 13b 

Bo 20. 7 44c 

B' 9 . 7  7c 

Ecoh 4 .036 

Pt to I4/mmm 25 lOb .  14c
. 1 1 . 6d 

Cinnabar 
a 3. 745 3 .577e 

c 8 .968 8 .681e  
cja 2 . 395 2 .427e 

u (Hg) 0. 7450 0 . 745e 
v (O)  0 .4141 0 .460e 

Vo 36. 39 32.07e 
Eo 20 .5  
E' 5 .9  

Ecoh 4 .029 
Zinc blende 
a 5.309 5 .43! 

Vo 37 .41 40.03! 

Eo 82 . 1  
E' 5 .5  

Ecoh 3.825 
0PAVl-PBE from ref. [7] . bfrom ref. [ 10] ,  Cfrom ref. [ 1 1 ] ,  dfrom ref. [ 1 2] ,  
efrom ref. [6] , !from ref. [ 1 19] 

Table 4.3:  Ground-state properties of the equilibrium phases of HgO . Presented 
are the latt ice constants a, b and c (A) ,  respective internal parameters, 
ground- tate volume Vo (A3 /pair) , bulk modulus Bo (GPa) and its pres­
sure derivative B' as well as the cohesive energy Ecoh ( e V /pair) and the 
transition pressure Pt (GPa) where applicable. 

Nevertheless, we accurately predict these two crystal structures as low pressure 

modifications. Further details can be viewed in table 4.3 .  

Mercury oxide in a zinc blende structure was also calculated in t he course of t his 
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study. The lattice constant obtained is a = 5 .309 A along with E0 = 82 . 1  GPa 

and E' = 5 .5 .  Proposed a.s a metasta.ble sphalerite phase in shock-compression 

exp riments on HgO by Ovsyannikova et al. ( a  = 5.43 A) [ 1 1 9] , the calculated 

bond dist ances are overestimated . This is most likely due t o  t he difficult ies in 

examining metastable phases in general , or to the density functional approxima­

tion used . Compared to the cinnabar and montroydite form its cohesive energy 

of 3 .825 eV /pair is too high to find this modification as an equilibrium phase. 

4 . 3  High-pressure phases 

4 . 3 . 1  Zinc oxide 

Property 
Rocksalt 
a 

Vo 
Bo B' 
Ecoh 
Pt to CC 

This work 

4 .334 (4 .225)  
20.35 ( 18 .85)  

168 . 5  
5 . 5  

6 .997 
261 . 25 

Cesium chloride 

Other theoretical 

4 .334a , 4 . 345b 
20 .35a , 20 . 5 1  b 
167 .8a , 1 72 . 7b 

5 .3a , 3 . 7b 
6 .91  a ,  7 .46b 

261 a 256b 265! ' ' 

a 2 .690 ( 2 .350) 2 . 690a , 2 . 705b 
Vo 19 .46 ( 12 .9  ) 1 9 .46a , 19 . 79b 
Eo 1 6 1 . 9  1 62 .4a , 1 56 .9b 
B' 4.6 4.7a ,  3 .8b 
Ecoh 5 .838 5 . 76a , 6 . 33b 

Experiments 

4 .27F,  4 . 2 1 1d 4 . 275e 
19 .48c , 1 8 .67d ,  1 9 .53e 

228c , 1 94e 
4c , 9d , 4 .8e 

aPAW-GGA from ref. [ 1 1 3] ,  bfrom ref. [ 1 15 ] ,  cfrom ref. [ 102] , dat 1 0  GPa from ref. 
[ 1 05] , e from ref. [ 1 03] , fFP-LAPW LDA from ref. [ 108] . 

Table 4.4:  Ground-state properties of the high-pressure phases of ZnO. Presented 
are the lattice constant a (A ) ,  ground-state volume Vo (A3jpair) , bulk 
modulus Eo (GPa)  and its pressure derivative B' as well as the cohesive 
energy Ecoh (eV /pair) and the transition pressure Pt (GPa) where appli­
cable. Values in brackets indicate higher pressure. 

Looking at the energy-volume relat ionship shown in fig. 4 . 1 it already becomes 

obvious that the equilibrium wurtzite phase undergoes a transition to the cubic 

rocksalt structure with increasing pressure . The enthalpy-pressure dependencies 

derived from those results confirm this and predict the pressure for this transition 

to be 13 . 3 1  GPa, which is in reasonable agreement with previous theoretically 
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and experimentally obtained transition pressures (see t able 4. 1 ) .  
The st ructural ground-state properties for t his high-pressure modificat ion are: 

a = 4 .334 A, B0 = 168 .5 GPa and B' = 5 . 5 ,  whereas the cohesive energy is 

6 . 997 eV in accordance with other theoretical work (e .g .  a = 4 .334 A, E0 = 

1 67.8 GPa, B' = 5 .3 ,  Ecoh = 6 .9 1  eV using the PW91 functional as well [ 1 13] ) .  
The deviations from experimental values are slightly higher, see t able 4.4 .  How­

ever, if the lat t ice constant is determined at 1 5 . 98 GPa ( a = 4 .225 A) , the agree­

ment improves . Furthermore, the pressure derivative B' is not in agreement 

with the findings by Gerward and Staun Olsen, but t he unusually high value 

of 9 reported by them for the wurtzite and rocksalt polymorphs1 , was part ially 

blamed on experimental difficult ies in measuring the pressure in the transit ion 

region [ 1 05] . 
At 26 1 . 25 GPa , t he results presented here predict another pressure-induced t ran­

sit ion, which is in excellent concordance with earlier published calculat ions [ 1 08 , 
1 1 3] . The crystallographic arrangement changes towards the cesium chloride 

structure with a lattice constant of 2.690 A at zero pressure and 2 .235 A at 

1 62 .67  GPa.. This and other propert ies again compare very well to other theoret­

ical work. For details see t able 4 .4 .  However, due to the extremely high pressure 

predicted no experimental data. is available yet . 

4 . 3 . 2  Cadmium oxide 

Property This work Other theoret ical Experiments 
Cesium chloride 
a 2 .938 ( 2 . 650) 2. 94a 2 . 86 b 
Vo 25 .37 ( 18 .6 1 )  25 .4 1  a 23.39b 
Eo 1 30 . 5  1 14a 1 69b 
E' 4 .4  4 . 66a 4 . 66b 
Ecoh 5 .291  4 .47a 
aGGA from ref. [ 1 1 1] ,  bfrom ref. [ 1 1 0] .  

Table 4 .5 :  Ground-state properties of  the high-pressure phases of  CdO. Presented 
are the lattice constant a (A) , ground-state volume Vo (A3 /pair) , bulk 
modulus Bo (GPa) and its pressure derivative B' as well as the cohesive 
energy Ecoh (eV /pair ) .  Values in brackets indicate higher pressure. 

With increasing pressure CdO undergoes a. phase transition from the equilibrium 

rocksa.lt phase to the cesium chloride structure, see fig. 4. 1 .  Concluded from 

1 A typical value for materials like ZnO is 4 .  
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Property This work Experiments 
14/mmm 
a 3 . 5 17  3 . 370a 
c 4 .854 4 .651  a 
cja 1 . 380 1 . 380 
V 30.02 32 . 1 5a 
Eo 1 10 .6  44a 

B' 5 .9  7a 
Ecoh 3. 754 
Rocksalt 
a 4 .937 
V 30.08 
Eo 1 12 .3  
E' 3 .8 
Ecoh 3 .742 
Cesium chloTide 
a 3.028 
V 27.77 
Eo 120 .8 
B' 5 .3 
Ecoh 3 . 1 16 
a Raman/ ADX from ref. [ 1 1 ]  at 19 .3  GPa. 

Table 4 .6 :  Ground-state propert ies of the high-pressure phases of HgO . Presented 
are the lattice constants a and c (A) , axial ratio cja ,  bulk modulus Bo 
(GPa)  and its pressure derivative B' , together with the transition pressure 
Pt (GPa) . No other theoretical data is available. 

t he enthalpy versus pressure curves , the transit ion occurs at 84 .24 GPa, which 

supports t he experiment carried out by Liu et al. [ 1 1 0] , who obtained 90 GPa. 

The structural parameters ( a  = 2 .938 A, B0 = 130 .5  GPa, E' = 4.4 ) as well as 

the transition pressure are in excellent agreement with a theoretical investigation 

by Guerrero-Moreno et al. [ 1 1 1] , but show the general underestimation of t he 

bulk modulus compared to  the experiment . At a higher pressure of 83. 70 GPa 

the lattice constant is a = 2 .650 A .  For a listing of all parameters the reader is 

referred to t able 4 .5 .  Hence, there is nothing surprising for CdO. It is however 

less stable than ZnO. 

4 . 3 . 3  Mercury oxide 

Compared to  ZnO and CdO a completely different picture is found for the high­

pressure phases of mercury oxide, just like for the equilibrium phases . Here, a 
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t ransit ion at 25 GPa from the orthorhombic montroydite form into the tetrago­

nal 14/mmm structure is determined. 

The lattice constants are a = 3 . 5 1 7  and c = 4 .854 A, which confirms that the 

cj a ratio in th is st ructure differs only slightly from t he optimum value of J2. 
Those values are furthermore in good agreement wit h  experiment ( a=3 .370 A, 
c=4.651 A , c/a= l . 380 at 19 .3  GPa.; Pt= 1 4  GPa [ l l ] ) .The agreement of the ex­

perimenta lly obtained bulk modulus and B' ,  where the calculations presented 

here derive values of 1 10 . 6  GPa. and 5 .9 ,  re pectively, is not as good. However, 

this can be attributed to the use of the same fit for both the montroydite and 

14/mmm phase in the experiment . To the best of our knowledge no theoretical 

references are available. 

Another pressure induced transit ion i predicted to happen around 28 GPa into 

the metallic rocksalt structure with an according ground-state latt ice constant 

of 4 .937 A . 

Subsequently, t he rocksalt structure undergoes a t ransit ion into the cesium chlo­

ride structure with  a lat t ice constant of a = 3.028 A at zero pressure. This 

t ransition predicted at 57 GPa has not been found or predicted yet , but fits per­

fectly into the lineup of those semiconductor . However . another t ransit ion into 

an intermediate phase following t he rocksalt modificat ion cannot be ruled out . 

Other structural parameters for t he high-pre ure phases rocksalt and cesium 

chloride can be obtained from table 4 .6 .  

4 . 4  Electronic structure 

4.4 . 1 Zinc oxide 

The band structure and DOS calculated for the wurtzite structure using the 

scalar-relativistic approach is shown in the upper panel of fig. 4 .3 .  

According to this graph this equilibrium phase of  ZnO needs to be  catego­

rized as a typical semiconductor, which exhibits a direct gap with an energy 

of 0 . 75 eV at the f-point of the Brillouin zone. However, further local valence­

band maxima (VBM ) at A (-0 .37 eV ) and H (- 1 . 19 eV) are found as well as other 

conduction-band minima. (CBM ) , which appear at A ( 3.37 eV) and between L 

and M ( 5 .38 eV) , making the next direct transition possible at t he A-point with 

a significantly higher gap energy. 

The band structure calculated is in very good agreement with other theoretical 
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DFT-GGA framework. The valence-band maximum is set to zero en­
ergy. The black solid lines indicate the valence and the red dashed lines 
the conducting bands , respectively. 
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findings , e .g .  Schleife et al. with E9(f)  = 0. 73 e V [ 1 1 3] .  Yet ,  t he method used 

largely underest imates the band gap, which is measured to be about 3 .44 eV 

in a two-photon absorpt ion experiment at 6 K [ 120] . This value is confirmed 

by Vogel et al. , who employed t he more sophist icated self-interaction-corrected 

scheme [ 1 20] . 

4.4 .2  Cadmium oxide 

The electronic structure as depicted m the lower panel of fig. 4 .3 shows t he 

equilibrium rocksalt modificat ion of CdO at the . calar-relat ivistic level as a half­

met al .  

A direct gap of 0 . 66 eV is found at the centr of the Brillouin zone in excellent 

agreement with another calculated result using DFT-GGA (0 .66 eV [ 1 1 3] ) .  The 

VBI\I are located at the L-point (set to 0 eV) and along the 2::-line between r 
and /{ (-0 .07 eV ) . Both of t hose maxima however , lie above the CBI\I causing 

negative indirect band-gaps of -0 .49 and -0 .42 eV, respectively. The CBM is 

found at t he f-point . Those values are in accordance with another GGA study, 

where 0 . 5 1  and 0 .43 eV are obtained [ 1 13] . 
In contrast . experiments suggest a semiconductor. which has posit ive direct as 

well as indirect gaps ( E�ir (r )  = 2 .28 eV, E�nd (L - f ) = 0 .84 eV. E�nd (L: - f ) = 

1 . 09 eV [ 1 20] ) .  Self-interaction corrected calculat ions determine E�nd( L - r)  = 

1 . 7  eV, hence predict ing the correct electronic behaviour . The deviat ions to the 

present study are due to the severe underest imat ion of band gaps in t he DFT 

formalism. Furthermore, a DFT study by Boettger shows that , while relat ivis­

t ic corrections have l itt le impact on the bulk propert ies , they do influence t he 

electronic structure. Using a nonrelat ivistic descript ion, CdO is predicted to 

have a small band gap, whereas t he scalar-relativi t ic picture incorrect ly sug­

gests a semi-metallic state. The effect of spin-orbit splitting was proven to be 

negligible [ 1 21 ] . 

4.4 .3  Mercury oxide 

HgO in its ground-state montroydite form through photoconductivity measure­

ments is established to be a n-type I I-VI emiconductor [ 1 1 ]  with a band gap of 

approximately 2 . 1 9  [ 1 22] to 2 .80 eV [ 1 23] . Even though this result is qualita­

t ively confirmed by a theoretical LDA study by means of the scalar-relativistic 
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s R r 0 2 3 4 
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Figure 4.4: Band structure and density of states (normalized per pair) at zero pres­
sure for the HgO montroydite polymorph calculated within the scalar­
relativistic DFT-GGA framework (upper panel) as well as upon inclusion 
of spin-orbit effects (lower panel) . The valence-band maximum is set to 
zero energy. The black solid lines indicate the valence and the red dashed 
lines the conducting bands, respectively. 
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Figure 4 .5 :  Site-projected density of states at zero pressure for the HgO montroydite 
polymorph calculated within the scalar-relativistic DFT-GGA framework 
(upper panel) as well as upon inclusion of spin-orbit effects ( lower panel) . 
The black solid , red dashed and blue dash-dotted line indicate the s, p 
and d site-projected DOS, respectively. 
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t ight-binding linear muffin-tin orbital atomic sphere approximation as cited in 

ref. [ 1 1] , it nevertheless features the underestimation of the band gap, commonly 

occurring for the applied DFT methods. Hence, they yield an indirect band gap 

of 1 . 33 eV only. 

Using the scalar-relat ivist ic approach , the semiconductor character as well as t he 

indirect band gap are confirmed with the VBM and CBM o curring at the H 
l ine between T and Y and a t  the A line between r and Z ,  respect ively. Con­

sequently, a fundamental gap of 1 . 18 eV is calculated in good agreement with 

ref. [ 1 1 ] .  Several other indirect as well as direct transit ions are possible at slightly 

higher energie , the first po sible direct t ransit ion at the 6. line between Y and 

r at an energy of 1 .49 e V. To view the scalar-relativist ic elect ronic structure of 

HgO in i ts montroydite phase as well as the site-projected DOS see t he upper 

panels of figs. 4 .4 and 4 .5 .  

Even though this i s  in concordance with  the theoretical findings mentioned above, 

it neglects spin-orbit coupling. The relat ivistic expansion of the 5d5;rband in 

mercury is expected to lead to a sub ta.nt ial mixing with the 6s-band and one 

has to con ider the spin-orbit splitt ing in t he empty 6p bands as well . Looking at 

t he band structure and DOS calculated with  the inclusion of spin-orbit coupling 

(cf. lower panel of fig . 4 .4)  t he VBM and CBM are still locat cl at the H line 

between T and Y and the A l ine between r and Z. However, the band gap is 

marginally decreased to 1 . 1 7  e V. This also holds for a possible direct t ransition 

(at the 6. line between Y and r with a. gap energy of 1 .  50 e V) , meaning the 

values develop even further away from the experimental values. 

This result deviates from the statement in a publication [ 1 24] , where as a. first­

order approximation the charge den ity relaxed within t he scalar-relat ivistic ap­

proach was used leading to t he false conclusion that the method used charac­

terizes HgO as a. metal if spin-orbit coupling is included . Thi false description 

of GGA in terms of an underestimation of the band gap , is actually well-known 

in Matt-insulators in transit ion metal oxides [ 1 25] and for the 8-pha.se of solid 

plutonium [ 1 26] as discussed in detail in ref. [125] . Rather strong correlation 

effects in these transition metal oxides are to be blamed and make further in­

vestigations using methods l ike LDA+U desirable [ 127] .  Yet , it does not explain 

the strong deviation in the band structure calculation if the scalar-relat ivistic 

charge density is used as a. starting point for the spin-orbit coupling calculations. 

Further investigations are under way to explain this behaviour . 

Turning now to the cinnabar modification of HgO, an indirect semiconductor is 

found as the result of both the calculations excluding and including spin-orbit 
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effects as indicated by fig. 4 .6 .  In both cases the VBM is situated between the 

A- and L-point , followed by two very close lying maxima between A and H at 

(-0 .01 and -0.009 eV with and without spin-orbit coupling, respectively) and A 

and r (-0 .03 and -0. 009 eV with and without spin-orbit coupling, respectively ) .  

The CBM is located close to t he centre o f  the Brillouin zone ( t o  be  more spe­

cific towards the M -direction ) leading to a fund amen tal gap energy of 1 .  29 and 

1 . 32 e V considering and neglecting spin-orbit coupling, respectively. The first 

possible direct t ransition is extremely close in energy ( 1 .38 and 1 . 39 eV with and 

without spin-orbit coupling, respectively) .  

In general, the electronic st ructure looks rather similar to  t he one obtained for 

the montroydite phase, which can be explained by t he structural similarity of 

the chain-like constitution , confirmed in the close lying energy-volume curves 

(see fig. 4 . 2 ) .  Seemingly. no other data of t he band st ructure of cinnabar-HgO 

could be found to compare with .  

From t he display o f  the Hg site-projected DOS in  figs. 4 .5 and 4 .7  i t  becomes 

obvious that for both the montroydite and t he cinnabar modification the elec­

t ronic structure upon inclusion of spin-orbit coupling becomes far more complex. 

However, since the spin-orbit split t ing mainly occurs in the lower lying d-bands, 

t he semiconducting character as well as the gap energy are not significant ly al­

tered . A prominent split t ing of the Hg core-5d band into the 5d3;2 and 5d5;2 

contribut ions is evident , where t he energy difference is about 2 eV. This agrees 

nicely with the atomic level split t ing of 1 . 86 eV in t he Hg+ atom [128] . However , 

an addit ional superposit ion with the crystal-field splitting can be seen . This 

should be investigated further by spect roscopic methods. The Fermi edge has 

dominantly 0 2p and Hg 5d character. 

4 .  5 Relativistic influences 

4 . 5 . 1  Equilibrium structure 

If relativistic effects for mercury oxide are neglected we find a completely differ­

ent structural behaviour. Figure 4 .2 shows that in this case, the structure found 

under ambient conditions is the rocksalt arrangement . 

Here the obtained lattice constant a is 4 .996 A,  which is in fact by 15% and by 4% 

larger than the latt ice constant for the respective modificat ion in ZnO and CdO, 

indicating the suppression of the typical relativistic contraction by the crystal 
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Figure 4.6: Band structure and density of states (normalized per pair) at zero 
pressure for the HgO cinnabar polymorph calculated within the scalar­
relativistic DFT-GGA framework (upper panel) as well as upon inclusion 
of spin-orbit effects ( lower panel) . The valence-band maximum is set to 
zero energy. The black solid lines indicate the valence and the red dashed 
lines the conducting bands , respectively. 
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Figure 4. 7: Site-projected density of states at zero pressure for the HgO cinnabar 
polymorph calculated within the scalar-relativistic DFT-GGA framework 
( upper panel) as well as upon inclusion of spin-orbit effects ( lower panel) . 
The black solid, red dashed and blue dash-dotted line indicate the s, p 
and d site-projected DOS, respectively. 
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System ZnO CdO HgO nonrel . HgO 

dMo dMM dMo dMJ\J dl\Jo d l\J l\J dMo dl\1 111 
Wurtzite 2 . 00 3 . 26 2 . 23 3 .61  2 .33 3 . 85 

exp. 1 .98 3 . 2 1  
Zinc blende 2 .00 3 .27 2 . 23 3 . 64 2 . 30 3 . 75 2 .34 3 . 82 

exp. 2 . 35 3 .84 
Rocksalt 2 . 1 7  3 .07 2 .39 3 .38 2 .47 3 .49 2 .50 3 . 53 

exp. 2 . 1 4  3 .02 2 .35 3 .32 
Montroydite 2 . 06 3 .38 

exp. 2 .03 3 .31  
Cinnabar 2 .07 3 .33 

exp. 2 .03 3 .30 

Table 4. 7:  Closest metal-oxygen bond distance d1110 and closest metal-metal distance 
d111111 in A of the respect ive equilibrium structures of the group 12 oxides . 

field . In addit ion, t he nonrelat ivistic cohesive energy of 6 .20 eV /pair exceeds the 

relat ivistic value by more than 2 eV /pair. This is especially interesting, since 

this rather large relat ivistic latt ice destabilizat ion goes along with a huge rela­

t ivistic contraction of 0 .343 A in the int ra-chain Hg-0 bond distance compared 

to t he montroydite equilibrium structure of relat ivist ic HgO (see table 4 . 7  for 

metal-oxygen and metal-metal distances ) . For the purpose of comparison,  this 

fact causes the bond distance in HgO to be act ually just as small as t he ZnO 

bond distance for the wurtzite structure . 

However ,  it should be mentioned that this intra-chain contraction evokes an 

inter-chain expansion in b-direction, increasing t he inter-chain Hg-0 distance to  

2 .964 A. Thus , the overall volume i s  actually expanded from 31 . 2  to 36 .0 A3 

due to  the change in crystal symmetry, leading to a consequent density decrease 

from 1 1 .54 to 9 .98 g cm-3 upon inclusion of relat ivistic effects. To compare 

with , this only just exceeds the densit ies of ZnO and CdO with values of 5 . 6  and 

8 . 15 g cm -3 [ 1 1 4] , respectively. The experimental value found for the density of 

HgO in its equilibrium structure is 1 1 . 14 g cm-3 [ 1 14] .  
Even more suprising is the fact that both the montroydite as well as the cinnabar 

phases relax into the rocksalt structure upon structure optimization utilizing the 

nonrelativistic description . Therefore, those two modifications clearly become 

unstable at the nonrelativistic level, meaning that the existence of the montroy­

dite and cinnabar structure in HgO can be credited to relativistic effects .  

An explanation for this behaviour originates in the decrease of ionicity in HgO 

due to relativistic effects and a consequent significant increase of t he covalent 
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bonding in  t he solid state. Calculat ions show a substantial reduction o f  t he HgO 

dipole in the diatomic molecule from 8.0 to  5.6 Debye due to relat ivist ic effects .  

This is calculated at the Hartree-Fock level ,  where electron correlation is t reated 

within a second-order many-body perturbat ion theory. Indeed, t he calculat ions 

carried out reveal that the J\ Iulliken charge for the mercury atom in solid HgO 

decreases from 1 . 1 0  to 0 .90 going from the nonrelat ivist ic level ( rocksalt phase) 

to t he relat ivist ic description (montroydite structure) . This in turn, cause typ­

ical ionic st ructures like rocksalt to become less favourable. 

Furthermore, it should be noted that the large relat ivist ic destabilizat ion of solid 

HgO mentioned above (decrease in cohesive energy from 6. 2 to 4 e V upon inclu­

s ion of relat ivity) is also substantially increa. eel compared to t he HgO molecule. 

Here the change in dissociation energy is 1 . 0 eV at the nonrelativi t ic level as 

compared to only 0 . 1 7  eV at the relat ivist ic level [1] and gives rise also to the 

easy decomposit ion of HgO in the gas phase. which was mentioned in chapter 1 

already. 

Since spin-orbi t  coupling is suppressed in t he ionic lattice field , the structural 

change is assumed to  originate almost exclusively from scalar-relat ivist ic ( ma s­

velocity) effects. However, pin-orbit effects are important to determine t he exact 

band gap in HgO (see discussion in chapter 4 .5 . 3 ) .  Note also that t he sublima­

t ion energies of group 12  chalcogenides have recent ly been discussed in detail by 

SzentpaJy [ 1 29] . 

4 . 5 . 2  High-pressure structure 

System a c u Bo B' Ecoh Vo 
Rock alt 4 .996 1 13 .6  5 .5  6 . 1 98 3 1 . 1 7  
Wurtzite 3 .85 1 6 . 1 12 0 . 3850 79 .4  3 . 5  6 .056 39 .28 
Zinc blende 5 .400 8 1 . 5  5 .4 6 .033 39.36 
Cesium chloride 3 .066 1 17 .4 4 .8 5 .479 28.83 

Table 4.8:  Ground-state properties of equilibrium and high-pressure phases of HgO 
within the nonrelativistic approach. Presented are the lattice constants a 

and c (A) , internal parameter u ,  ground-state volume V0 (A3 /pair) , bulk 
modulus Bo (GPa) and its pressure derivative B' as well as the cohesive 
energy Ecoh (eV /pair) . 

Turning now to  t he high-pressure phases, the tetragonal 14/mmm phase found 

in HgO is not stable anywhere in the nonrelativistic regime studied here. There­

fore, a direct t ransition into the cesium chloride phase is observed at 62 GPa with 
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Band structure and density of states (normalized per pair) at zero pres­
sure for the HgO polymorph rocksalt calculated within the nonrelativistic 
DFT-GGA framework. The valence-band maximum is set to zero energy. 
The black solid lines indicate the valence and the red dashed lines the 
conducting bands , respectively. 

an according ground-state latt ice con tant of 3 .066 A. Hence, the nonrelat ivistic 

st ructural transit ion path  closely resembles t hat of CdO. 

In addition, the structural parameters for the zinc blende and wurtzite phase 

were calculated for nonrelat ivistic HgO as well, ee table 4 .8 .  In general a slight 

increase in t he lattice constants compared to the respective phases at t he rela­

t ivistic level can be observed due to  t he omission of relativistic contraction . 

4 . 5 . 3  Electronic structure 

Looking at the electronic behaviour of the nonrelativistic equilibrium state of 

HgO ,  the rocksalt structure, the differences to the relativi t ic picture are quite 

significant .  

The VBM is now located at the 2: line between r and K and at the L point , and 

the CBM occurs at the r point as indicated by fig. 4 .8 .  The results presented 

suggests a half metal at the nonrelativistic level, since the VBM lie above the 

CBM inducing negative indirect band gaps of -0.56 and -0 .64 eV, respectively. 
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Figure 4 .9 :  Site-projected density of states at zero pressure for the HgO polymorph 
cinnabar c alculated within the nonrelat ivist ic DFT-GGA framework . 
The black solid, red clashed and blue dash-dotted line indicate the s , 
p and d site-projected DOS, respectively. 

The smallest direct gap occurs at the r point with an energy of 0 .52 eV. 

This behaviour is rather similar to the characterist ics found for CdO (see chap­

ter 4 .4 .2 )  and in st ark contrast to the semiconducting nature of the cinnabar and 

montroydite st ructure when using the relat ivistic approach. 

The Hg site-projected DOS for nonrelat ivist ic HgO depicted in fig. 4.9 shows a 

well-defined crystal-field splitting for the d-bands of approximately 0 .8  eV, which 

is typical for an octahedral arrangement like in the rocksalt structure. In con­

trast , the Hg site-projected DOS upon inclusion of spin-orbit coupling for t he 

montroydite as well as the cinnabar structure becomes far more complex (see 

figs . 4 .5  and 4. 7) . Here, t he spin-orbit split t ing dominates over the crystal-field 

splitting. 

4 . 6  Summary 

The latt ice properties and transition pressures obtained for the group 12 oxides 

in the course of this thesis are in excellent agreement with other theoretical and 
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experimental studies available. The only except ion are the bulk moduli where 

the discrepancies are slightly larger. Yet other theoret ical work suggest similar 

deviations . Concerning the t ransit ion pressure, only the value for the montroy­

dite t o  I4/mmm transit ion is overestimated which is to  be blamed on the minute 

energy and structural difference between the rocksalt and tetragonal st ructure 

in the transition region . Hence, the transition pressure is pushed towards the 

theoretical M --t RS t ransition value. Furthermore, the elect ronic structure 

is qualitat ively in good agreement with experiments, with the u ual DFT-like 

underestimation of the band gaps .  In the case of CdO it is so severe that a 

half-metal is predicted instead of the experimentally observed semiconducting 

behaviour .  

To t he best of our knowledge the high-pressure behaviour of mercury oxide has 

been invest igated by theoret ical means in this thesis for t he first t ime and no 

other theoret ical studies could be found to compare with .  In addit ion , a new 

ce. ium chloride phase of HgO is predicted following the rocksalt modifications. 

The transition pressure is rather low with 57 GPa in order to be confirmed ex­

perimentally. Yet ,  intermediate phases will have to be excluded by theoret ical 

or experimental means . 

The influence of relat ivist ic effect s  on the structure of HgO is rather dramatic 

for the equilibrium as well as the high-pressure behaviour. First and foremost ,  

the  montroydite and cinnabar equilibrium phases become unstable i f  relativity 

is neglected .  Instead the rocksalt structure is predicted s imilar to CdO. This 

is due to the large relat ivistic latt ice destabilizat ion of 2 .2 eV and a relativist ic 

decrease in ionicity, suppressing the typical ionic rocksalt structure. Considering 

the high-pressure behaviour, the I4/mmm phase is not stable anymore causing 

a transition path that is very similar to CdO. 



Chapter 5 

The group 1 2  sulfides 

5 . 1  Occurring crystal structures 

5. 1 . 1  Zinc sulfide 

Zinc sulfide is known to adopt two different crystalline structures at ambient 

condit ions . This is on the one hand the stable zinc blende structure, where ZnS 

itself delivers t he prototype. with a latt ice constant of a =  5 .4102 A [ 12] .  On t he 

other hand it crystallizes in a metastable wurtzite structure . where the latt ice 

parameters are a =  3 .8226 A and c = 6.2605 A [ 12] .  This structur wa obs rved 

to t ransform into the zinc blende structure at appliance of pressure [130] . � 1any 

intermediate polytypes have been found. 

Various studies concerning t he high-pressure b haviour of the zinc blende struc­

ture were conducted. �I inomura. et al. [ 131 ]  for the first t ime ob erved a transition 

at higher pressures to a st ructure, which was later ident ified in ref. [ 132] to have 

a rocksalt arrangement . Using different diffraction and optical techniques the 

value for the t ransit ion pressure is reported to be between 1 1 .7  and 15 .4 GPa 

(see table 5 . 1 ) .  Ev n though Minomura et al. reported the N a Cl phase to be 

metallic, it is an indirect-gap semiconductor with a gap of about 2 eV [133,  134] . 

The latt ice constant is 4 .839 A at 17 . 1  GPa [134] . 

However, the situation is not absolutely clear from a t heoretical point of view, 

where Na.zzal e t  al. using a PP-PW approach in conjunction with DFT-LDA 

predicted a transition from the zinc blende to  the cinnabar structure ( 1 1 .4 GPa) 

first and only t hen the passage into the rocksalt structure ( 14 .5  GPa) [ 135] . But 

two X-ray diffraction studies [ 12 ,  130] rule out the intermediate cinnabar phase 

85 
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for ZnS, as does a later t heoretical study by Qteish et  al. [ 136] . 

Nelmes and McMahon [ 1 2] did, however, observe a transition at 69 GPa into a 

most likely Cmcm-like structure, but could not resolve t he struct ural parameters. 

o further t ransit ion was found up to 84 GPa .  Desgreniers et al. [ 130] support 

those findings experimentally, as well as L6pez-Solano et al. theoretically [ 137] . 

Furthermore, Qteish and Parinello predicted a new phase intermediate between 

zinc blende and rocksa.lt [ 138] . This ZnS form has the SC16  st ructure  and was 

confirmed by another calculation of ref. [ 139] . However ,  the transition might be 

hindered by energy barriers , since this new arrangement of ZnS has not been 

found experiment ally yet . 

In chapters 5 .2 . 1 and 5 . 3 . 1 ,  t he structur al parameters and transition pressure 

obt ained for t he zinc sulfide phases in the course of t his t hesis will be presented 

in t ables 5 . 1 ,  5 .4 and 5 . 5 .  Those will also list the results of previous theoretical 

as well as experimental work for comparison. 

5 . 1 . 2 Cadmium sulfide 

Polytypism also applies to cadmium sulfide, where again two stable phases are 

found at room conditions. Equivalent to zinc sulfide, those two st ructures are 

wur tzite (stable and semiconducting) with lat t ice constants a = 4. 1362 A and 

c = 6 . 7 14 A and meta.stable zinc blende (a = 5 .818 A )  [ 1 2] .  

Det ailed studies under high pressure are, however, only available for the wurtzite 

phase, where a transition at 2. 75 GP a was first observed by Edwards and Drick­

amer [140] (optical measur ments ) .  This new phase was later identified to have 

a rocksalt structure (a = 5 .42 A [ 141 ] ) .  The transition goes along with a sudden 

decrease in resistivity [ 142] and an over all volume decrease ( 6. V /V0 )  of 16% is 

noted [ 143] . The rocksalt structure was found to be semiconducting with an 

indirect band gap of 1 . 6  eV [144] . 

A further transformation into CdS-1 1 1  was observed at 50-58 GPa by Suzuki et al. 

(combining EDX and ADX ) ,  which characterized the new phase as an orthorhom­

bic (low-pressure KCN-type)  structure with the space group Pmmn [ 145] which 

is stable at least up to 68 GPa .  However, no atomic positions were reported . 

A reinvest iga.tion of the structure [ 12] confirmed findings in general , but the ab­

sence of the NaC1 ( 1 1 1 )-peak splitting was criticized. Therefore , in analogy of the 

Cmcm phase in CdTe and ZnSe, the data. was fitted to t hat structure as well , 

which however led to a poorer fit. For lattice parameters see table 5 .6 .  

The stability of  the Pmmn or Cmcm phase was investigated theoretically as well ,  
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with ,  however, differing outcomes [ 146, 147] .  No post-Cmcm high-pressure be­

haviour is reported yet , neither experimentally nor theoretically. 

The chapters 5 .2 . 2  and 5 .3 .2 ,  where the results for the cadmium sulfide equilib­

rium and high-pressure modifications are summarized in t ables 5 . 2 ,  5 . 6  and 5 .7 ,  

will include the structural parameters and transit ion pressures determined by 

previous investigators (by experimental and theoret ical means) of those struc­

tures as wel l .  

5 . 1 . 3 Mercury sulfide 

At ambient condit ions mercury sulfide can be found in its stable mineral form,  

which delivers the prototype for the  so-called cinnabar st ructure. This is a red 

cryst al with the latt ice parameters a =  4 . 1 45 A and c = 9.496 A and internal pa­

rameters u ( Hg)  = 0 .7198 and v(S)  = 0.4889 [90] . However, a second metastable 

low-pressure black coloured form exists which adopts a zinc blende structure 

with a = 5 .851  A. It transforms into the cinnabar phase at 5 GPa.  The cinnabar 

structure is again built from S-Hg-S spiral chains lying parallel to the z-axis , 

implying a 2+4 coordinat ion equivalent to the situation found in cinnabar-HgO. 

At higher pressures a transformation to the rocksalt structure ( a = 5.070 A) 

occurs , which was first described by Huang et al. and Werner et  al. [ 148, 149] . 

The pressure range of the st ructure change created a debate between the two 

groups, but was confirmed by Nelmes and McMahon to take place at 20. 5 GPa 

(high-resolution ADX) [ 12] . During the course of t hose studies a further transi­

tion was observed at around 52 GPa into HgS-I I I ,  where a Cmcm-structure was 

proposed in accordance with the knowledge about HgSe and HgTe. 

Later , t he structural parameters and transition pressures of the different mer­

cury sulfide phases calculated in this study are concluded in tables 5 .3  and 5 .8 

(see chapters 5 .2 .3  and 5 .3 .3 ) . Those results will be compared to  the param­

eters obtained in preceding experimental and theoretical investigations as just 

discussed. 
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Figure 5 .1 :  The total energy versus volume per cation-anion pair for different crystal 
structures of ZnS (upper panel) and CdS ( lower panel) . 
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Property 
Zinc blende 
a 
Vo 
Bo 
B' 
Ecoh 
Pt to SC 16  

Pt to RS 

Pt to C2 
Wurtzite 

a 

c 
cja 
1t 

Vo 
Bo 
B' 
Ecoh 
Pt to RS 

This work 

5 .446 
40.38 
70 . 4  
4 .6  

5 .971 
16 .73 
16 .97 

18 .53 

3 .848 
6.308 
1 . 639 

0 .3747 
40.44 
69 . 7  
4 .4 

5 .963 
16 .61  

Other theoretical 

5 .449° , 5 . 404b , 5 . 58c 

40.45° , 39 .45b , 43.44c 

69 .8° , 7 1 .22b , 75.9c 

4 .4° , 4 .  7b , 4 .  7 c 

4 . 66c , 5 . 88r 
1 2 . 8P ,  1 2 .25q 

1 8 . 50° , 15 .4- 1 7.5b ,  
1 6 . F ,  14 . 35P 
1 1 .4n , 1 7. 8° 

3. 852° , 3 . 840J , 3 .982m 
6 . 3 13° ,  6 .  267J , 6 . 5oom 
1 . 639° , 1 . 632J , 1 . 632m 
0 .375° , 0 . 375j , 0 . 377m 
40.56° 1 40 .01j , 44.63m 

68 .5° , 68 .96J 
4 . 1  CL l 4.39J 

14 . 84° l 1 7 .21 

Experiments 

5 .410d ,  5 . 4 12! 
39.59d l 39.63! 
76 .9d ,  79 . 5  e 

4 . 9d ,  4e 
6 .33d , 6 . 36r 

1 7 .4d, 1 1 . 79 ,  1 2\ 
14 .5- 15 . 4i 

3 . 823d l 3 .8 1 1  k 
6 .261d ,  6 . 234k 
1 . 638d ) 1 . 636k 
0 .37481 , 0 . 375° 
39.62d,  39 . 2 1  k 

76 . 2d l 80. 1 h, 75 .8° 
4h 4 4° l . 

0PAW-GGA from ref. [ 150] and refs . therein; bPP-GGA from ref. [ 1 5 1 ] ;  cHF­
LCAO from ref. [ 152] : dfrom ref[ 1 53] : e from ref. [ 130] : !from ref. [ 143] ; 9 from ref. 
[ 132] ;  " from ref. [ 130] ; i from ref. [ 1 2] ; JPW-GGA from ref. [ 154] ; 1 from ref. [ 1 55] : 
kfrom ref. [ 143] ; mfrom ref. [ 156] : nPP-PW-LDA from ref. [ 1 35] ;  0PP-PW from 
ref. [ 1 36] ; PPP-PW from ref. [ 138] ; qTB-LMTO [ 139] ; rsemi-empirical TB calc . 
from ref. [ 1 57] and refs . therein. 
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Table 5 . 1 :  Ground-state properties o f  the equilibrium phases of ZnS. Presented are 
the lattice constants a and c (A ) ,  internal parameter u, axial ratio cja. 
ground-state volume Vo (A3 /pair ) , bulk modulus B0 (GPa.) and its pres­
sure derivat ive B' as well as the cohesive energy Ecah ( e V /pair ) and the 
transition pressure Pt (GPa) where applicable. 

5 . 2  Equilibrium structures 

5 . 2 . 1  Z inc sulfide 

Figure 5 . 1  shows the total energies per ZnS pair plotted against t he volume of 

the unit cell per pair. The graph clearly confirms the polytypism found in zinc 

sulfide, as the curves for the zinc blende as well as the wurtzite structure are in 

very close proximity with a cohesive energy of 5 .97 1  eV /pair and 5 . 963 eV /pair, 

respectively. This means that the B3 structure is slightly more stable having the 
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lower energy. At the same time, the difference in energy (8  me V /pair) agrees 

with the calculations by Yeh et al. , who obtained 3 . 1  me V /atom [ 1 58] . 
The calculat ions presented here give a ground-state latt ice constant of a = 
5 .446 A (corresponding to a volume V0 = 40.38 A3 /pair) for the prototype zinc 

blende structure, which is in accordance with other experimental and theoretical 

investigation (see table 5 . 1 ) . Compared to very recent theoretical invest igations 

using similar methods (PAW-GGA) t he agreement is excellent (see refs. [ 1 50] 
and [ 1 5 1 ]  in t able 5 . 1 ) .  The corresponding bulk modulus and its pressure deriva­

t ive are 70.4 GPa and 4 .6 .  Those values again match other results. 

For the metastable wurtzite phase the derived lat t ice constants are a = 3 .848 A 

and c = 6 .308 A, whereas the internal vVyckoff parameter was calculated to be 

u = 0.3747 and the ground-state unit-cell volume is V0 = 40.44 A3 /pair, accord­

ingly. Compared to zinc blende, the ground-st ate unit-cell volume is very similar. 

The rat io c/a= 1 . 639 is therefore very close to the ideal value of 1 .633. The bulk 

modulus for t he wurtzite "tructure is determined to be 67.8 GPa with a pressure 

derivative of 3. 9. Looking at table 5 . 1 the determined properties agree very well 

with other work. 

5 . 2 . 2  Cadmium sulfide 

Similar to zinc sulfide, t he calculat ions presented here confirm that as ment ioned 

before under normal conditions cadmium sulfide exists in two forms, t he cubic 

zinc blende and the hexagonal wurtzite form. Again, the minute difference in 

cohesive en rgy of 3 me V /pair ( E�� = 5 . 266 eV /pair, E!h = 5 .269 eV /pair) 

indicates that both crystal arrangements are very similar. This very small en­

ergy difference lies within t he methodical uncertainty of DFT, making it very 

difficult to predict , which phase is nergetica.lly most stable. This can also be 

gathered from the energy-volume dependencies of fig. 5 . 1 .  However, rather few 

experimental data. are available for t he investigation of the zinc blende form at 

normal conditions as well as at higher pressure, which might indicate that it is 

slightly less stable or common than the wurtzite form. This is confirmed by the 

results presented here. Furthermore, the energy difference of only 3 me V /pair 

compares well to investigations of Yeh et al. where flEw -ZB = - 1 . 1  me V/ atom 

and Wei et al. who obtained flEW-ZB = - 2 me V /pair [ 158 ,  16 1 ] .  
For the zinc blende phase a zero pressure volume of  52 . 29  A 3 /pair i s  calculated, 

going along with a. latt ice constant of 5 . 936 A. A bulk modulus of B0 = 53 .9 GPa. 

together with a B' of 4 . 7  are obtained. Those results compare well to previous 
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Property 
Wurtzite 
a 
c 
cja 
u 

Vo 
Eo 
B' 

Ecah 
Pt to RS 
Zinc blende 
a 

Vo 
Eo 
B' 

Ecah 
Pt to RS 

This work 

4 . 1 99 
6 .853 
1 .632 

0 . 3758 
52 .3 1  
53 .7  
4 . 7  

5 . 269 
4 . 1 5  

5 . 936 
52 .29 
53 .9 
4 . 7  

5 . 266 
4 . 1 1  

Other t heoretical 

4 . 1 08° , 4 . 1 9b ,  4 . 10F 
6 .66b ,  6 .687c 

1 . 589b , 1 . 631  c 
0 .3757c 

50. 7 1 b ,  48. 69c 
68 .8° , 66.4b, 46 .79 

4 . 5° 

3 . 2" 

5 . 808° . 5 . 87b ,  5 . 83k 
48 .98° , 50 .55b ,  49 .54k 

69.44° ) 65 . 5b )  62 .31 
4 .6° , 5 . 41 

4 .8741 , 5 . 78m 
3 .2" , 4 .48n 

9 1  

Experiments 

4 . 1 36d , 4. 14e 
6.  714d,  6 .  72e 
1 . 623d, 1 . 623e 

0 .3777! 
49. 73d, 49.89e 

62° , 62 .8b 

2 .8d ,  2 .34e, 3i , 2 . 3J 

5 . 8 18d 
49. 23d 

64.4m , 66 .0b 

5 .68m 

°FP-LMTO-LDA from ref. [ 1 59] ; binteratomic potentials from ref. [ 1 60] ; cLAPW­
LDA from ref. [ 1 6 1 ] ;  dfrom ref. [ 1 53] ; efrom ref. [ 1 43 ] ;  !from ref. [ 1 20] ; 9 ab-initio 
GDSP /DFT from ref. [ 162] ; h FP-LMTO-LDA from ref. [ 146] ; iX-ray diffraction 
from ref. [ 145] ; J ADX from ref. [ 12] : kPP-LDA from ref. [ 147] : 1MD from ref. 
[ 163] : msemi-empirical TB calc. from ref. [ 1 5  7] and refs. therein: n ab-initio PP 
calculat ion from ref. [ 164] . 

Table 5 .2 :  Ground-state properties of  the equilibrium phases of CdS .  Presented are 
the lattice constants a and c (A ) ,  internal parameter u,  axial ratio cja ,  

ground-state volume V0 (A3 /pair ) ,  bulk modulus B0 (GPa) and i t s  pres­
sure derivat ive B' as well as the cohesive energy Ecah ( eV /pair) and the 
transition pressure Pt (GPa) where applicable. 

experimental data ( a = 5 . 8 18  A, V0 = 49.23 A3 /pair, B0 = 64 .4 GPa [ 153 ,  1 5 7] )  

and are in good agreement with other theoretical investigations (see t able 5 .  2 ) .  

However, the deviation from experimental data for the bulk modulus of a t  least 

19% is rather big. 

In the case of the wurtzite structure the determined lattice properties are a = 

4. 199 A,  c = 6 .853 A and u = 0 .3758 , in good agreement with other results . The 

lattice constants vary within a few percent as is to be expected within the frame­

work of DFT. The cj a ratio is again very close to t he optimal value of J873. In 

addition , the bulk modulus and its pressure derivative ( Eo = 53 . 7  GPa, E' = 4 .7 )  

are within limits compared to other calculations as well as experimental investi­

gations (see table 5 . 2 ) . 
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5 . 2 . 3  Mercury sulfide 

Property 
Cinnabar 
a 
c 

cfa 
u 

V 

Vo 
Bo 
B' 
Ecoh 
Pt to RS 
Zinc blende 
a 
Vo 
Bo 
B' 
Ecoh 
Pt to  C2 
Pt to RS 

This work 

4 .395 
9 . 729 
2 .2 14  

0 .7515  
0 .4633 
55 . 16 

8 . 8  ( 1 7. 3 ) 
8 .9  (5 .4 ) 

3.657 
28 . 7  

6.009 
54.67 
50.4 
4 .9 

3 .680 
1 . 38 
5 .60 

Other theoretical Experiments 

4 .294a 4 . 149b ,  4 . 074c , 4 . 145d 
9 . 885a 9 .495b , 9 . 395c , 9.496d 
2 .302a 2 . 289b , 2 . 306c , 2 .29 1  d 

0 . 7 192a 0. 7 1 89d, 0. 720e 
0 .4960a 0.4889d, 0 .480e 
5 1 . 32a 47. 18b ,  45 .02c , 47. 1 0d 
22 .48a 1 9.4b, 1 8-37c 

4 . 8a 1 1 . 1  b 
3 . 641 

26. 57a 24b , 139 ,  20 .5\ 29i 

5 . 975j l 5 .83-6 .03k 5 . 85 1 1  
53 .33j l 49.5-54 . 8k 50.081 
55 . 3J l 64.9-67.0 k 68 . 61 

3 .471 
51 

0 .36m 

a AP\iV + 10-GGA at zero pressure from ref. [91 ] ;  bX-ray diffraction at zero pres­
sure from ref. [ 149] ; ex-ray diffract ion at 0.4 GPa from ref. [ 165] ;  dfrom ref. [90] ; 
e from ref. [ 1 66] ; !from ref. [ 120 ] ;  9 X-ray diffraction from ref. [ 1 48] ; h ADX from 
ref. [ 1 2] ;  iconductivity measurements from ref. [ 167] ;  j ab-initio GDSP /DFT from 
ref. [ 1 62 ] ;  kFP-LMTO LDA and GGA from ref. [ 1 68] ; 1 from ref. [ 169] ; mab-initio 
pseudo-potential calculations from ref. [ 1 64 ] .  

Table 5 .3 :  Ground-state properties of the equilibrium phases of HgS . Presented are 
the lattice constants a and c (A) , internal parameters u and v, axial ratio 
c/a, ground-state volume Vo (A3 /pair) , bulk modulus Eo (GPa) and its 
pressure derivat ive B' as well as the cohesive energy Ecoh ( e V/ pair) , and 
the transition pressure Pt (GPa) where applicable. 

The energy-volume curves for the different crystal structures of mercury sulfide 

can be viewed in fig. 5 . 10 .  As mentioned above, under ambient condit ions mer­

cury sulfide crystallizes in both a cinnabar as well as a zinc blende form. This 

is confirmed by our calculations considering that those two structures lead to 

the lowest energies with cohesive energies of 3 .657 eV /pair and 3 .680 eV /pair, 

respectively. 

Hence, t he zinc blende structure seems to be energetically more favourable by 

23 me V /pair, which is significantly higher than the energy deviation between 
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wurtzite and zinc blende in e .g .  ZnS and CdS. However , the picture changes 

quickly with pressure increase and we find a transit ion into the cinnabar modifi­

cat ion at a rather low pressure of 1 . 4  GPa, in concordance with the experimental 

t ransit ion pressure of 5 GPa [ 169] .  Since the cinnabar structure is observed to 

be t he stable equilibrium form of HgS,  t he differences are most likely due to 

temperature effects .  

Yet ,  the wurtzite structure is in close proximity ( Ecoh = 3 .673 eV /pair) to those 

two structures , but up to at least 100 GPa zinc blende is always more stable. A 

possible wurtzite phase would undergo the t ransit ion into cinnabar at even lower 

pressures of just 1 . 0  GPa. 

The lattice parameters obtained for the cinnabar phase are a = 4 .395 A and 

c = 9. 729 A with u (Hg) = 0. 7515 and v(S)  = 0.4633. The minimum volume is 

reached at 54 . 23 A3 per HgS pair. The bulk modulus and its pres ure derivat ive 

are determined to be 8 .8 GPa and 8 .9 ,  respect ively. Whereas t he structura l  prop­

ert ies are in reasonable agreement with other work, t he bulk modulu seems to 

be extremely low compared to other calculat ions and the experimental value (see 

table 5 .3 ) . However, if more data points are included into the fit the obtained 

bulk modulus quickly rises to 1 7.3  GPa ( B' = 5 .4 ) , showing how much t he com­

pressibility depends on t he pressure. Thi. in turn means that the l\ Iurnaghan 

and Vinet EOS might not be the optimal choice for t he fit . Comparability of 

the latt ice and internal parameters can be improved if one looks at a pressure 

of 1 . 27 GPa, which is just below the t ransit ion pressure of the ZB--C2 transi­

tion , where the following parameters are obtained : a = 4. 207 A, c = 9 . 569 A ,  

cja = 2.274 ,  u = 0 .7150,  v = 0.4962 and V =  48 .9 1  A3/pair. Those values are 

in excellent agreement with the other theoretical and experimental results which 

again shows how sensitive t he internal parameters are to pressure. 

On t he other hand, for the zinc blende form a latt ice constant of a = 6 .009 A 

( V0 = 54.23 A3 /pair) is found, which is in good agreement with experimental and 

theoret ical invest igations. This is, within the limitat ions of the applied method­

ology, true for the bulk modulus as well ( Bo = 50.4 GPa) , where other groups 

obtained values of 68.6 GPa (experimentally) and 55 .3-67.0 GPa (theoretically) .  

The pressure derivative B' was determined to b e  4 .9 .  See table 5 . 3  for details. 

For the non-existent wurtzite phase the fol lowing properties are obtained: V0 = 
54.28 A3 /pair a = 4. 256 A ,  c = 6 .923 A , u = 0.3777, B0 = 50.0 GPa and 

B' = 5.0 .  Almost no difference is observed for the t hree different ground-state 

volumes. 
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5 . 3  High-pressure phases 

5 . 3 . 1  Zinc sulfide 

The t hesis at hand predicts t hat t he zinc blende form of ZnS undergoes a phase 

t ransition into the SC16  structure at approximately 1 6 . 73 GPa. This is at a 

significantly higher pressure than determined by Ga .ngadharan et  al. and Qteish 

et al. ( 12 . 25 and 12 .8  GPa) , who invest igated thi pha e as well .  The transfor­

mat ion from SC16 into the rocksalt st ructure takes place at 17 . 23 GPa. This 

leaves a stability range of only 0 .5  GPa as compared to 3 .4 GPa obtained by 

Qteish et  al. , who calculated t he pressure for the SC1 6---+RS  transformat ion to 

be 16 .2 GPa. 

In contrast , the latt ice properties of a =  6 .688 A, u(Zn)  = 0. 1560, v (S )  = 0.6442 

compare quite well to t he ot her theoret ical studies (see t able 5 .4  for details ) .  This 

is also t rue for the bulk modulus and its pressure derivative ( B0 = 65 . 1  GPa , 

B' = 5 .4) , if t he difference in methodology is considered . 

However, according to  the study at hand, at 16 .97 GPa the zinc blende form 

of ZnS t ransforms into t he rocksa.lt structure. The est imated pressure is in 

good agreement with other theoretical ( 15 .4- 18 .5 GPa.) as well as experiment al 

( 1 1 . 7- 1 7 .4 GPa) work. This means that the pressure derived for the ZB---+SC16 

t ransition is in very close proximity to  the one obtained for ZB---+ RS  t ransition. 

Hence, i t  is difficult to estimate whether SC16 would actually exist as an inter­

mediate phase, especially since it has not been observed experimentally yet. The 

transition might also be kinetically hindered . 

For t he rocksa.lt structure the following solid-state properties are derived : a = 

5 . 108 A, V0 = 33.32 A3 /pair, B0 = 86.8 GPa and B' = 4.8 along with a. co­

hesion energy of 5 .336 eV /pair. The agreement in particular with other theo­

retical investigations is excellent with deviat ions of only a few percent . Having 

a look at the obtained parameters at a pressure above the transition pressure 

(p = 19 .44 GPa) , the lattice contant is 4 .850 with a unit-cell volume of 

V = 28.52 A3 /pair. 

On the basis of the calculations presented here, the rocksa.lt phase of ZnS is 

predicted to undergo a transition into the Cmcm structure at approximately 

59 .5 GPa. This transition was investigated by only two groups so far1 and the 

1 Desgreniers et al. , who used x-ray diffraction and L6pez-Solano et al., who employed a 
plane wave pseudo-potential approach in combination with DFT-LDA . 
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Property 
SC1 6 
a 

u(Zn )  
v (S )  
V 
Eo 
B' 
Ecoh 
Pt to RS 
Rocksalt 
a 
V 
Bo 
B' 
Ecoh 
Pt to  Cmcm 
Cm cm 

a 

b 
c 

b/a 
cja 
y(Zn)  
y(S )  
V 
Vo 
Bo 
B' 

This work 

6 .688 
0 . 1 560 
0 .6442 
37.40 
65 . 1  
5 . 4  

5 . 672 
1 7.23 

5 . 108 
33.32 
86 .8  
4 .8  

5 . 336 
59 .5  

( 4 .482)  
( 4 . 537) 
( 4 .429) 
( 1 . 0 12 )  
(0 .988) 
(0 . 7020) 
(0 . 2099) 
(22 .5 1 )  
33.43 
104 .6  
3. 1 

Ecoh 5 . 3 14  
Pt to CsCl 2 15  

Other theoretical 

6.555° ) 6 .586b 
0. 1 541°  
0 .6431 a 

35 . 2 1 ° ,  35. 709b 
78 .4° , 89. 53b 

4 . 7° 

16 . 2a 

5 . 1 07c, 5 . 07d , 5 . 2 1 e 
33. 30c , 32 . 58d , 35 .36e 
85 . 1 1 c ,  89. 54d , 83 . 1e 

4 .5c ,  4 .6d ,  1 0 . oe 

65h 

(4 .45h ) 
( 4 .49h) 
( 4 .40" ) 
( L0 1 h ) 
(0 .99h ) 
(0 . 7 1 h ) 
(0 . 22h ) 

( 2 1 . 98/t )  
30 .99h 

1 15 . 3/t 
3 .5h 

95 

Experiments 

5 .060\ 5 . 2 1J,t , 5 . 1 3j,:j: 
32 .38i ' 35 .36J.t ' 33. 75j,:j: 

1 03 .6i ' 47 .5j.t )  85 . 0j,:j: 
4i , 6 . 2j,t , 4j.:j: 

(4 .459 ) 
( 4 .499 ) 
( 4 .439 ) 
( 1 .0 1 9 )  
( 1 . 009 ) 

0PP-PW from ref. [ 1 38] ; bTB-LMTO [139] ; cPAW-GGA from ref. [ 1 50] ; dPP-GGA 
from ref. [ 1 5 1 ] ;  eHF-LCAO from ref. [ 1 52] ; !from ref. [ 12] ;  9 at 90 GPa from ref. 
[1 30] ;  hPW-PP-LDA at 77.7 GPa from ref. [ 137] ; i from ref. [ 133] (B' kept fixed) ;  
J from ref. [ 134] ; where B' kept fixed using the Vinet fit ( :j: )  and B '  relaxed using a 
3rd order Birch-Murnaghan fit ( t ) .  

Table 5.4 :  Ground-state properties of the high-pressure phases of ZnS.  Presented 
are the lattice constants a, b and c (A) ,  respective internal parameters, 
ground-state volume Vo (A3 /pair) , bulk modulus Eo (GPa) and its pres­
sure derivative B' as well as the cohesive energy Ecoh (eV /pair) and the 
transition pressure Pt (GPa) where applicable. Values in brackets indicate 
higher pressure. 



96 CHAPTER 5. THE GROUP 12 SULFIDES 

Property This work Other theoretical 
Cesium chloride 
a 
V 
Bo 
B' 
Ecoh 
Cinnabar 
a 
c 
cja 
u (Zn )  
v (S )  
V 
Bo 

3 .202 
32 .82 
74 . 5  
4 .4  

4 .018  

3 .807 
8 . 745 
2 . 297 

0 .5016 
0. 5004 
36 .57 
76 .5  

3 . 765a , 3 . 784b , 3 . 761 c  
8 . 786c 
2 . 336c 
0 .455c 
0 .480c 

B' 4 .3  4 .5a , 3 .  F 
Ecoh 5 . 595 
Pt to RS 1 5 . 3 1  1 4 .5c 

a pp_pw from ref. [ 1 38] ;  bTB-LMTO [ 1 39] ; cPP-PW-LDA from ref. [1 35] . 

Table 5 .5 :  Ground-state properties of  the high-pres ure phases of  ZnS. Presented 
are the latt ice constants a, b and c (A) ,  respective internal parameters, 
ground-state volume Vo (A3/pair) , bulk modulus Bo (GPa) and its pres­
sure derivative B' as well as the cohesive energy Ecoh (eV /pair) and the 
transition pressure Pt (GPa) where applicable. Experimental dat a  are not 
available. 

transitions pressure is in good agreement with their results of Pt = 65 - 69 GPa 

(see also table 5 .4 ) . 

Since the Cmcm structure is a distort ion of the rocksalt arrangement , it re­

laxes directly into this structure for lower pressures , and a listing of the crystal 

properties at zero pressure is not possible . A seamless tran ition of the struc­

tural parameters towards rocksalt occurs ,  meaning all three lattice constants 

become equal and the values for y(Zn)  and y (S )  are developing towards 0. 75 

and 0 . 25, respectively. Therefore, the structural parameters are evaluated at a 

pressure well above the transition: at 80 .7  GP a equivalent to a unit-cell volume 

of 22 . 5 1  A 3 /pair the l attice constants are a = 4.482 A , b = 4 .537 A, c = 4.429 A 

( hence, b/a = 1 . 0 1 2  and cja = 0.988 ) with y (Zn)  = 0 . 7020 and y(S)  = 0 .2099. 

Even with increasing pressure the orthorhombic distortion is rather small . It 

should also be noted that the volume difference between the rocksalt and Cmcm 

phases is rather small ( see fig. 5 . 1 ) , which is not surprising due to the similarity 

of the two structures . 
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Comparison of the latt ice constants and structural parameters with previous 

results is rather difficult , since refs . [ 130] as well as [137] contain figures only. 

The data presented in table 5 .4 are therefore est imated from those graphs and 

rather approximate. Furthermore, Desgreniers et al. mention t hat , due to the 

very small orthorhombic distort ion , the data points are quite scattered , making 

an accurate determinat ion of the latt ice constants very hard (and possible only 

above 78 GPa )  and an est imate of t he internal parameters impossible. Bearing 

in mind these problems, the agreement between the values presented here and 

other experimental and theoretical results is reasonable (see table 5 . 4 ) .  Lopez­

Solano et al. already ment ion that the deviations are clue to the limits of DFT 

and non-zero temperature effects .  Turning now to the bulk modulus and its 

pressure derivat ive. the agreement with a PW-PP-LDA study by Lopez-Solano 

et al. is good ( table 5 .4 )  and deviat ion can be blamed on the use of the different 

funct ionals . 

At an extremely high pressure of 2 1 5  GPa a transition from Cmcm into the 

cesium chloride structure occurs. This is also in concordance with the stud­

ies mentioned above, who rule out a further transit ion only up to pressures of 

120 GPa [137] .  The latt ice parameters obtained for this phase are a = 3 .202 A 

represent ing an equilibrium volume of 32 .82 A 3 /pair. The calculated bulk mod­

ulus is 74 .5  GPa along with a pressure derivat ive of 4 .4 .  

However, no other reference data are available yet . Since a distort ion of the CsCl 

phase vvoulcl be possible as well. as it is t he case for HgTe, the existence as well 

a.s stability of the cesium chloride structure at high pressures for ZnS will have to 

be invest igated further theoret ically a.s well as experimentally. The latter would 

be very challenging clue to the high pressure required . 

After init ially converse statements of an intermediate phase between zinc blencle 

and rocksalt , now the consensus is reached that the cinnabar phase is not stable 

for zinc sulfide. It was included in the calculat ions carried out and the discussion 

presented here due to the general importance of this structure within the group 

12 chalcogenicles. Furthermore, in GaAs cinnabar is found as a metastable phase 

only [ 138] . This could be the case here as well .  

In this study latt ice constants of a = 3 .807 A and c = 8 .745 A are obtained 

(V0 = 36 . 6  A3 /pair ) ,  leading to  a ratio of cja = 2 .297, which is in good agreement 

with the previou theoretical results ( see t able 5 . 5 ) .  The bulk modulus ( B0 = 

76 .5 GPa) and its pressure derivative ( B'=4.3) compare equally good ( Bo = 

8 1 . 0  GPa [139] , B' = 4 .5  [ 138] ) .  In contrast ,  the internal parameters u = 0.5016 
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and v = 0 . 5004 deviate from the values obtained by Nazzal et al. with u = 0 .455 

and v = 0 .480 [ 135] . The reason for t his remains unclear. However, it  means 

that the coordination in cinnabar-ZnS is four-fold like in zinc blende, unlike HgS, 

which Qteish et  al .  found as well .  

However, the results also confirm the non-stability of the cinnabar structure with 

respect to SC16 :  The transit ion pressure of 15 .3 1  GPa into the rocksalt form, 

consistent wit h  the results obtained by azzal et al. (Pt = 14 .5  GPa) [ 135] , is 

well below the pressure for the transition ZB--+RS (Pt = 1 7  GPa) . 

5 . 3 . 2  Cadmium sulfide 

The results presented here show that both the wurtzite and the zinc blende 

st ructure become thermodynamically unstable with respect to the rocksalt form 

of CdS. The t ransition pressure for the ZB--+RS transit ion is 4 . 1 1  GPa, a.s op­

posed to 4 . 15  GPa for the W--+RS transit ion . A recent DFT-LDA study by 

Benkhettou et al. found a transit ion pressure of 3. 2 GPa in both cases while 

experimental results are available for the V!--+RS transition only and range from 

2 . 3-3 GPa .  

For the rocksalt st ructure a lat t ice constant of 5 .503 A is determined along with 

a volume of 4 1 . 66 A3 /pair, whereas the bulk modulus and its pressure derivat ive 

are 73.3 GPa and 4 .9 ,  respectively. At a slight ly elevated pressure of 4 .02 GPa 

we obtain t he following parameters: a = 5 .414 A, V0 = 39.67 A3 /pair. Those 

values compare very nicely to the lattice parameters obtained in experimental 

investigations. 

For the post-rocksalt behaviour of CdS two different orthorhombic distortions 

of rocksalt have been discussed , that is either a Pmmn or Cmcm structure (see 

chapter 5 . 1 ) .  The calculations presented here support a transit ion into the Cmcm 

structure at approximately 43.99 GPa first ,  followed by a structure change to­

wards Pmmn at 6 1 .56 GPa. This transition pressure is in excellent agreement 

with Kirin e t  al. , who obtain 47 GPa for the RS-.Cmcm transition [ 147] .  

However, considering that both structures are very close in energy in the range 

where a transition would be possible and keeping in mind the deviations to 

experimenta l  results due to non-zero temperature effects, the results presented 

here cannot with absolute certainty state the existence of the Cmcm phase in 

CdS . Hence both structures could be possible. Assuming the non-existence of 

the Cmcm phase, the RS--+Pmmn transition would occur at 56.35 GPa, which 



5 .3. HIGH-PRESSURE PHASES 

Property 
Rocksalt 
a 
Vo 
Eo 
E' 
Ecah 
Pt to Cmcm 
Pt to Pmmn 
Cm cm 
a 
b 
c 
b/a 
cja 
y(Cd) 
y(S)  
V 
Eo 
E' 
Ecah 
Pt to Pmmn 
Pmmn 
a 
b 
c 
b/a 
cja 
z (Cd) 
z (S ) 
V 
Eo 
E' 
Ecoh 
Pt dist . CsCl 
Pt CsCl 

This work 

5 .503 (5 .414) 
4 1 .67  (39.67) 

73.3 
4.9 

5 .0 10  
43.99 
56.35 

( 4 .896) 
( 4 . 940) 
( 4 . 845) 
( 1 .009) 
( 0 . 990) 

( 0 . 7036) 
( 0 . 2076) 
( 29 .30) 

89 .8  
3 .3  

5 . 008 
6 1 . 56 

( 3 . 560) 
(4 . 758) 
(3 . 369) 
( 1 . 337) 
( 0 . 946) 
(0 .3439) 
(0 . 1 664) 
( 28 . 54) 

55 .8  
3 .4 

5 . 248 
129 
361  

99 

Other t heoretical Experiments 

( 5 . 353a , 5 . 353b) ( 5 .42c) 
(38.35a ) ,  ( 38 .34b ) ( 39. 8 1  c ) 

97 .3a , 99 .68b 86. 7d 
4 .5a , 4 .0b 4 .4d 

47 .0e 5 1 !  
58 .6b 56d 5 1 !  ' 

( 4 . 883! ) 
(4 .88 1 ! )  
(4 . 875f ) 
( l . OOOf ) 
(0 .998! ) 
(0 .699! ) 
(0 . 1 74f )  
(29 .05! ) 

3 .480b (3 .471d ) , (3 .493! ) 
5 . 138b (4 . 873d ) , (4 . 877f ) 
3 . 550b (3 .399d ) , ( 3 . 4 121 )  
1 .4 76b ( 1 .404d ) ,  ( 1 . 396! ) 
1 . 02Gb (0 . 979d ) ,  (0 .977f ) 

0 .3555b (0 .3 191 ) 
0 . 16 15 b  (0 . 148! )  
63 .47b (57 .06d ) ,  (58 . 1 2 1 )  
1 07 .0b 
3 . 7b 

a FP-LNITO-LDA from ref. [ 1 59] ; 6FP-LMTO-LDA from ref. [ 1 46] ; cat 4 GPa from 
ref. [ 1 4 1 ] ;  dX-ray diffract ion at 61 GPa from ref. [ 1 45] ; ePP-LDA from ref. [1 47] ;  
f ADX at 60 GPa from ref. [ 1 2] .  

Table 5 .6 :  Ground-state properties of the high-pressure phases of CdS. Presented 
are the lattice constants a, b and c (A) , respective internal parameters, 
ground-state volume V0 (A3 /pair ) ,  bulk modulus Bo (GPa) and its pres­
sure derivative B' as well as the cohesive energy Ecoh (eV /pair) and the 
transition pressure Pt (GPa) where applicable. Values in brackets indicate 
higher pressure. 
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Property 
a 
c 
cja 
u (Cd) 
v (S )  
Vo 
Bo 
B' 
Ecoh 
Pt to RS 

CHAPTER 5 .  THE GROUP 1 2  SULFIDES 

Cesium chloride 
3 .415 

39.83 
70.5  
4 .8  

3 .988 

Cinnabar 
4 .092 
9 .598 
2 . 346 
0. 5081 
0 . 5035 
46.41 
60. 1 
4 .6 

5 .04 1 
0 .89 

SC 16  
7 .246 

0. 1542 
0.6428 
47.55 
5 1 . 4  
4 .6  

5 .068 
1 . 56 

Table 5 .  7: Ground-state properties of the high-pressure phases of CdS. Presented are 
the latt ice constants a and c (A) ,  internal parameters u and v ,  ground-state 
volume Vo (A3 /pair) , bulk modulus Eo (GPa) and its pressure derivative 
B' as well a the cohesive energy Ecoh ( e V /pair) and the t ransit ion pressure 
Pt (GPa) where applicable. No previous data are available . 

compares very well to the X-ray diffr action dat a  of Suzuki et  al. (56 GPa) [ 145] 

and other theoret ical results [146] . 

In contrast ,  McMahon et  al. [ 12] in the course of their ADX studies observe only 

one t ransit ion at 51 GPa which would suit both of the pressures calculated here 

for either the RS  to Cmcm or Pmmn transition. Unfortunately, Kirin et al. do 

not investigate the tability of the Pmmn st ructure and the only other compar­

ative t heoretical study claims Cmcm to  be unstable [146] . The presence of the 

Cmcm structure as an intermediate phase between rocksalt and Pmmn therefore 

remains an open quest ion and should be invest igated further experimentally. 

Concerning the Cmcm structure of CdS the fol lowing latt ice parameter are de­

rived a t  57 .30 GPa: a = 4 .896, b = 4 .940, c = 4 .845 A ( V  = 29. 30 A3 /pair, 

bja = 1 . 009, cja = 0 .990) along with y(Cd) = 0. 7036 and y(S)  = 0. 2076. Those 

values compare rather well to the ones fitted by McMahon et al. ( a  = 4 .883, 

b = 4 .88 1 ,  c = 4 .875 A , V = 29 .05 A3/pair, bja = 1 .000 , cja = 0.998 , 

y (Cd)  = 0.699 and y(S)  = 0. 1 74 a t  60 GPa [ 12] ) .  The bulk modulus estimated 

from the d at a  points available is 89 .8 GPa and its pressure derivative 3.3 from 

the Murnaghan fit . 

The solid-state properties for the Pmmn phase obtained are 3 .560, 4. 7 48 and 

3 . 369 A for the lattice constants a, b and c, respectively, together with the in­

ternal parameters z (Cd )  = 0 .3439 and z(S)  = 0. 1664 at a pressure of 61 .02 GPa 

and an estimate of 55.8 GPa for t he bulk modulus at 0 GPa ( B' = 3.4) is t aken 

from the Murnaghan fit  using the data  points available. Those values are in good 
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agreement with experimental and theoretical data. While the latt ice constants  

seem to compare better to  the  experimental results, the  internal parameters are 

closer to data obtained in other theoretical work ( for further details see table 5 .6 ) . 

I n  contrast ,  the bulk modulus deviates extremely, which is easily justified con­

sidering t hat no data points are available around 0 GPa (where the Murnaghan 

fit is most reliable) and due to the unreliability of LDA when it comes to bulk 

moduli. 

I nterestingly enough at even higher pressures a seamless transition from Pmmn 

into a distorted CsCl structure is observed . This is indicated by fig. 5 . 2 ,  where the 

development of the latt ice constants calculated for t he Pmmn phase is depicted 

depending on the pressure. Here one can see t he pressure range in which the 

Pmmn form of CdS is actually stable, and that at 1 29 GPa the latt ice constants 

a and b become equal .  At this pressure the parameters are a =  3.997, b = 4 .002,  

c = 2 . 978 A (VPt = 23.82 A3 /pair) with z (Ccl) = 0 .4993 and z(S) = 0 .0740, which 

means a latt ice const ant ratio of bja = 1 . 001 and cja = 0 .745 . The ideal cesium 

chloride st ructure would be reached if a =  b and cja = 1/ J2 = 0 . 707, with the 

atoms being posit ioned at z (Ccl) = 0.5 and z (S )  = 0 .0 .  Therefore. it is concluded 

that a small distort ion a long the z-axis remains, where t he latt ice constants a 

and b given above would be equal to a CsCl latt ice constant of 2 . 83 A . 

However , a further transition into the exact cesium chloride structure is pre­

dicted at extremely high pressures of around 361 G Pa ( VPt = 18 .04 A 3 /pair) 

with a lat t ice constant of 2 . 623 A. To the best of our knowledge neither the 

distorted nor the exact cesium chloride phase have been detected yet . neither ex­

perimentally nor theoretically, but fit very well within the line-up of other group 

12 chalcogenicles . 

There is no evidence for a cinnabar phase in cadmium sulfide. But clue to reports 

claiming its existence in zinc sulfide and for reasons of consistency it was included 

in this study. The latt ice parameters obtained are 4 . 092 and 9.598 A for a and c, 

respectively, whereas the internal parameters are calculated to be u (Cd)  = 0 .5081 

and v (S)  = 0.5035 . Furthermore, the bulk modulus, i ts  pressure derivative and 

the cohesive energy are B0 = 60. 1 GPa, B' = 4 . 6  and Ecah = 5 .041  eV (at zero 

pressure) .  To the best of our knowledge no theoretical investigations have been 

carried out to compare with .  

However, as expected the  cinnabar phase is not a stable phase in  CdS according 

to the study presented here, as the pressure for the wurtzite to cinnabar transition 

with 6 . 75 GPa as well as for the zinc blende to cinnabar transition with 6 .69 GPa 
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Figure 5 .2 :  Lattice parameters depending on the pressure c alculated for the Pmmn 
structure of CdS. 

is well above the pressures for the respective transitions into the rocksalt structure 

with 4 . 1 5  and 4 . 1 1  GPa, respectively. 

In addit ion t he SC16 structure was investigated as well  due to the lack of its 

study in CdS . However, the ZB�SC16 and w�SC16 transition occurs at 6 .97 

and 7.03 GPa and would therefore happen after the transition to RS .  Yet ,  it 

should be mentioned that the st ructure would be extremely close in energy to 

the cinnabar structure. The lattice parameters obtained for the SC16 structure 

are listed in t able 5. 7. 

5 . 3 . 3  Mercury sulfide 

The first t ransition under high pressure in HgS according to  the study at hand 

takes place at 28 .7 GPa, which is in excellent concordance with e .g .  the GGA 

results of Sun et al. (26 .57 GPa) [9 1] and shows good resemblance with var­

ious experimental investigations ( 13-29 GPa, see table 5 . 3 ) , too. It should be 

mentioned that the transition is rather smooth ,  with a corresponding change of 

the internal parameters towards the trigonal description of rocksalt , meaning the 
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Property 
Rocksalt 
a 

Vo 
Eo 
E' 
Ecoh 
Pt to Cmcm 
Pt to Pmmn 
Cm cm 
a 

b 
c 
b/a 
cja 
y (Hg) 
y (S) 
V 

Eo 
E' 
Ecoh 
Pt to Pmmn 
Pmmn 
a 

b 
c 

b/a 
cja 
z (Hg) 
z (S) 
V 

Bo 
B' 
Ecoh 
Pt CsCl 

This work 

5 .582 (5 . 150)  
43 .47 (34 . 15 )  

67.3 
5 .2  

3 . 337 
54.55 
63 .5 1  

(4 .895) 
(4 .898) 
(4 .907) 
( 1 .00 1 )  
( 1 .003) 
(0 .7356) 
(0 . 2365) 
( 29.4 1 )  
1 13 .2  
2 .9  

3 .294 
57.85 

(3 .633) 
(4 .930 ) 
(3 .312 )  
( 1 .357) 
(0 .912 )  
(0 .3150) 
(0 . 1903) 
(29 .66) 

89.5 
3 .2 

3 .343 
2 10.87 

Other theoretical Experiments 

(5 .052° ) (5 . 1 80b ) ,  (5 .070c) 
(32. 23a ) (34 . 74b ) ( 32 .58c ) 

67.3° 
4 .6a 

52d 

0APW+L0-GGA from ref. [91 ] ;  bX-ray diffraction at 23 .4 GPa from ref. [ 165] ; 
ex-ray diffraction at 30 GPa from ref. [ 148] ; dADX from ref. [ 12 ] .  

103 

Table 5 .8 :  Ground-state properties of the high-pressure phases of  HgS . Presented 
are the lattice constants a, b and c (A) , respective internal parameters, 
ground-state volume Vo (A 3 /pair ) ,  bulk modulus Bo (GPa) and its pres­
sure derivative B' as well as the cohesive energy Ecoh ( e V /pair) and the 
transition pressure Pt (GPa) where applicable. 
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E-V curves superpose at this point . This was also observed by Sun et  al. and 

indicates a second order transi t ion. 

The ground-state properties obtained for the rocksalt modification of HgS are 

a = 5.582 A, V0 = 44 .03 A3 /pair , B0 = 67.3 GPa and B' = 5 .2 .  The cohesive 

energy is 3 .337 eV /pair .  Comparing with the theoretical and experimental values 

of other work listed in table 5 .8 ,  t he latt ice constant is st rongly overestimated . 

Bulk modulus and B' are in excellent concordance with t he GGA study of Sun 

et  al. They give a. ground-st ate volume of 32.23 A3 /pair, which would go along 

with a lattice constant of 5 .052 A. This deviates from the value calculated here 

by quite a few percent . However , this value is for the rocksalt structure treated 

as the cinnabar structure using u = v = 2/3, hence avoiding the error due to 

change of symmetry. At a pressure of  30 . 24 GPa the calculations presented in 

this work give a. lattice constant of 5 . 150 A, which certainly agrees with the ex­

perimental values . A recent publicat ion also ment ions that the authors observed 

the rocksalt and cinnabar phase to coexist between 15-23 GPa.. This gives rise 

to relat ively large errors for the unit-cell parameters, explaining the deviation 

between experiments and the results presented here [ 165] . 

Since in the case of CdS ,  both Cmcm and Pmmn were suggested as high-pressure 

st ructures and not much is known of the post-RS  behaviour of HgS , calculat ions 

were carried out determining both of those structures for HgS as well .  The 

stability of the Cmcm phase over the Pmmn modification is supported by the 

results presented here. The transit ion from rocksa.lt into the Cmcm phase ac­

tually takes place at 54 .55 GPa compared to 63 . 5 1  GPa. for the Pmmn form .  

The Cmcm---tPmmn t ransit ion i s  predicted a t  57.85 GPa. Both structures are, 

however , close in energy. Yet ,  the pressure predicted for the first transition 

agrees very well with the one measured by Nelme and McMa.hon , who obtained 

52 GPa. But too little is known yet , as they did not resolve the structure ,  but 

merely suggested 'a distort ion of the a.Cl structure, possibly Cmcm' [ 12] . 

Calculating the lattice parameters for the Cmcm structure gives a = 4 .895 A , 

b = 4.898 A, c = 4 . 907 A (bja = 1 . 001 ,  cja = 1 .003) and V = 29.41  A3 /pair 

as well as y (Hg) = 0 . 7356 and y (S)  = 0.2365 at 67.77 GPa.. Bulk modulus and 

pressure derivative are estimated from the data points available (see table 5 .8 ) .  

The lattice constants obtained for the possible Pmmn phase are a = 3 .633 A,  
b = 4.930 A, c = 3 . 3 12  A along with the following internal parameters: z (Hg) = 

0 .3 150 and z (S )  = 0. 1903. All those values are determined at a pressure of 

63.54 GPa. Unfortunately, no data to compare with is available and further 
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Figure 5.3 :  Lattice parameters depending on the pressure calculated for the Pmmn 
structure of HgS . 

investigations by theoret ical means would be strongly recommended . 

Finally, we predict the transition into the CsCl structure at about 2 10  GPa . 

However, subjective to the few structures invest igated we cannot rule out the 

transit ion into intermediate phases between Pmmn and CsCl t hat yet have to 

be discovered either experimentally or theoretically. In addition, t he pressure 

necessary is extremely high making it difficult for experimentalists to obtain this 

structure. No evidence is found in HgS for the distorted CsCl structure occurring 

intermediate between Pmmn and CsCl in CdS (see fig .  5 .3) . 

Furthermore, the SC16  structure was calculated for HgS as well ,  which has not 

been done before. However, it is always at least 0 . 1 eV higher in enthalpy 

compared to t he cinnabar phase and t herefore unlikely to appear in HgS. The 

ground-state properties were obtained anyway and are V0 = 48. 8 1  A 3/ pair, a = 

7.309 A, u = 0 . 1471 and v = 0.6462, Eo = 45.67 GPa, B' = 6 .0  and Ecoh = 

3.500 eV. 
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5 . 4  E lectronic structure 

5 .4. 1 Zinc sulfide 

Looking at t he electronic st ructure of the ZnS equilibrium phases while using the 

discussed scalar-relativistic approach , the band structures and density of states 

depicted in fig. 5 . 4  indicate a wide-gap semiconductor with a direct fundamental 

gap for both polymorphs. 

It occurs at the r-point in the Brillouin zone a.nd is 2 .00 and 2 .06 eV for zinc 

blende and wurtzite , respectively, showing a rather similar electronic st ructure 

despite the different structure and coordinat ion.  It should be ment ioned that 

further local minima of the conduction bands are located at the L-, X- and f{­

points and at t he A-point as well as between L and M for the cubic and hexagonal 

modificat ion , respect ively. Addit ional local valence-band maxima (VBIVI )  can be 

found at the L-point for the zinc blende form and at A, !If and H for t he wurtzite 

phase of ZnS.  

As expected those results underest imate the experimental gap of 3 .8  and 3 .9 eV 

severely [ 1 53] , but agree very well with other theoretical DFT work , where the 

band gap is calculated to be 1 .82 (LDA) [ 1 70] and 2 .0 eV (GGA) [ 150] for ZB-ZnS 

and 1 . 97 eV (LDA)  [ 1 71 ]  for the hexagonal structure. Furthermore, comparability 

with experiments can be improved using the GW approximation , where Fleszar 

et al. obtained fundamental gaps of 3.38-3 .99 GPa for the zinc blende form [ 1 70] . 

5 .4 .2  Cadmium sulfide 

Concerning the equilibrium st ructures of CdS,  the method employed here gives 

a band gap of 1 . 08 and 1 . 00 eV for the wurtzite and zinc blende form, respec­

tively. Like for ZnS ,  the valence-band maximum as well as the conduction-band 

minimum are at the centre of the Brillouin zone, thus making both polymorphs 

direct wide-gap semiconductors (see fig. 5 . 5 ) .  

However, for the cubic form further local minima o f  the first conduction band 

are located at the L- ,  X- and K-points .  Another local maximum of t he last 

filled valence-band can be found at the L-point . In the case of the wurtzite form 

more conduction-band minima are found at the A-point and between L and M ,  

whereas another local valence-band maximum i s  located at A,  N I  and H .  
Again,  values estimated by experimental means with a gap of E9 (f )  = 2 .58 eV 

(at 1 .8 K)  for hexagonal and E9(f )  = 2 .48 eV (at 1 . 6  K) [ 120] for cubic CdS 
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Figure 5 .4 :  Band structure and density of states (normalized per pair) at zero pres­
sure for the ZnS polymorphs zinc blende (upper panel) and wurtzite 
(lower panel) calculated within the scalar-relativistic DFT-GGA frame­
work. The valence-band maximum is set to zero energy. The black solid 
lines indicate the valence and the red dashed lines the conducting bands , 
respectively. 
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at zero pressure are very much underestimated, but the electronic structure is 

in good qualitat ive agreement . Another theoret ical LDA calculation by Fleszar 

et al. finds a direct bandgap of E9 (r )  = 0.80 eV for the zinc blende modifica­

t ion similar to the value obtained here, but the authors refine their result using 

different GW approximation approaches ( E9 (r )  = 2 . 1 1 - 2.63 eV) [ 1 70] . Cal­

culat ions using so-called self-interaction-corrected pseudopotent ials approximate 

the band-gap value for the hexagonal polymorph to E9 ( r )  = 2 . 5  eV [ 1 20] . 

5 .4 .3  Mercury sulfide 

Like for mercury oxide, again the band tructure and density of st ates was calcu­

lated at different levels of theory, employing a pure scalar-relat ivist ic approach 

as well as including the effects of spin-orbit coupling . The result can be found 

in figs . 5 . 6  and 5.8 for the cinnabar and zinc blende modificat ion . respectively. 

HgS in its prototype cinnabar modification ha. according to variou · l umines­

cence experiments a. band gap of 2 .275 eV, which is most likely direct [ 120] . It 

is therefore classified as a. large-gap semiconductor [ 1 72] . 

\i\Then facilit ating a scalar-relat ivistic approach , the t rigonal modificat ion of mer­

cury sulfide is technically an indirect band gap . emiconductor (see upper panel of 

fig . 5 .6) . The CB�I occurs at the r-point at 1 . 60 eV with other local minima to 

follow at M ( 2 . 1 7  eV) and L (2 .27 eV) . The VB I can be found along the 6.-line 

between r and A along with further local maxima between A and L (-0. 005 eV) 

and between A and H ( -0 .005 e V) as well as at r ( -0 .020 e V) . 

However. this mean that the smallest direct fundamental gap occurs at the r­

point with E9 (r )  = 1 . 62 eV. This is extremely close in energy to the indirect 

gap. which explains why experiments classify it as direct . 

Furthermore, those results ( including the DOS) are in excellent qualitat ive agree­

ment with the GGA calculat ions of Sun et al. using a APW+lo plane-wave basis 

set [ 1 73] . According to t heir graphs the band gap is around 1.6 e V as well (hard 

to estimate from just pictures) .  

Taking into account pin-orbit split ting, the picture does not change dramati­

cally, as can be seen in the lower panel of fig. 5 .6 .  However, the CBM is now 

slightly shifted and two minima open up extremely close to r at an energy of 

1 .585 eV. They are located at the 6.-line between r and A and between M and r .  

Further minima can be found around M ( 2 . 1 24 eV)  and shortly before L between 

A and L ( 2 . 243 eV) . Concerning the VBM, the local maximum A and H in the 

scalar-relativistic calculat ions becomes more prominent , but a further maxima 
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H K 2 

2 3 4 

Band structure and density of states (normalized per pair) at zero 
pressure for the HgS cinnabar polymorph calculated within the scalar­
relativistic DFT-GGA framework (upper panel) as well as upon inclusion 
of spin-orbit effects ( lower panel) . The valence-band maximum is set to 
zero energy. The black solid lines indicate the valence and the red dashed 
lines the conducting bands, respectively. 
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between A and L occurs a lmost at the same energy. More fol low between r and 

A and between K and r still very close in energy. The first direct transition is 

possible around r with a gap energy of 1 . 6 14  eV. Further theoretical results on 

this level of theory would be desirable to compare with .  

The site-projected DOS are depicted as well using both the scalar-relat ivistic 

approach and upon inclusion of spin-orbit coupling ( see fig. 5 . 7 ) .  The scalar­

relativistic DOS agrees wel l  with the results of Sun and Dong [1 73] . The d-bands 

feature the typical crysta l  field splitting pattern of the trigonal bonded struc­

t ures , where the three peaks are separated by approximately 0. 1 and 0.4 e V 

respectively in accordance with experimental values (0 . 10 and 0 .39 eV calcu­

l ated from Dq = 0 .05 eV [ 120] ) .  The mo t prominent feature of the spin-orbit 

corrected site-projected DOS is again t he spin-orbit split t ing in the d-bands of 

the Hg atom of about 2 eV resembling the one found for the atomic split ting 

( 1 .86 eV [ 128] ) . 

Turning now to the zinc blende modificat ion of mercury sulfide, it is particularly 

interest ing because of its rat her unique electronic structure. It was first described 

as a zero-gap semiconductor, i .e .  semimetal , evoked by a band degeneracy due 

to symmetry [ 1 20] . However, a band gap of 0 .54 eV is measured through absorp­

t ion at 300 K [ 120] . Other measurements through plasma edge reflectivity and 

interband absorption conclude an inverted band structure along with a negat ive 

band gap -0. 1 10 to -0. 150 e V [ 172] . The inverted structure can be explained by 

t he large effective posit ive charge of the Hg core, which causes the bands of the 

r 6 symmetry to be shifted below the r 8 level . Therefore, only two of the four 

r8 bands are occupied , while the other two contribute to the conduction band . 

The hence induced degeneracy with the highest valence band gives rise to a zero 

gap [168] . 

Interest ingly enough, the scalar-relativistic calculations carried out (see upper 

panel of fig. 5 .8 )  confirm the non-existence of the fundamental gap. However , 

if one looks at t he electronic structure determined by the inclusion of spin-orbit 

coupling, depicted in the lower panel of fig. 5 .8 ,  counting bands a small band-gap 

op ns up close to the r-point . The VBM occurs at the Z::- line between f{ and 

r .  But two more local VBM , which are almost as high appear along t he A-line 

between r and L and at the �-line between r and X ,  all of which are very close 

to the centre of the Bril louin zone. The CBM can be found at the r-point a t  

0 . 028eV. Hence, this HgS phase at  ambient conditions has an indirect energy gap 

of E9 (r - I:) = 0 .028 eV, whereas the smallest direct gap can be found at the 
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�-line and is determined to be E9(f)=0 .090 eV. This agrees very well with the 

result of Cardona et  al. ( E�iTect = 0 .091 eV [ 1 74] , VASP-GGA) and Delin et  al. 

( E�iTect < 0 . 1 eV [ 168] ,  FP-LMTO LDA ) .  According to the authors t hose values 

also match t he experimental results of Zallen and Slade (0 .25 eV) reasonably 

well .  

However, the negative spin-orbit splitt ing needs to  be accounted for ,  which in­

verts the band structure. This means t he energy gap is found between f6 and 

r 8 .  In that case. according to the calculat ion presented here, the direct energy 

gap obtained is -0 . 57  eV, which is in excellent agreement with the reference cited 

above ( E�iTect ,GGA = -0.483 eV, E�iTect ,LDA = - 0.573 eV) . Interestingly enough 

Cardona et al. also point out that . according to the G\iV calculat ions of e .g .  

Fleszar and Hanke [ 1 70] , the r 1 state of HgX compounds calculated wit hin LDA 

needs to be corrected by 0. 75 e V. If one adds this value to the obtained gap 

energy, t he fundamental gap of zinc blende HgS actually becomes posit ive. This 

means it h as to be characterized as a semiconductor. The site-projected DOS 

are shown in fig. 5 .9 .  
Comparing the  scalar-relat ivistic calculat ions presented here with other theoreti­

cal reports [ 1 62 .  1 68] , the resemblance is good. In general like for HgO, a further 

invest igat ion of t hose band st ructures using LDA + U or t he G\iV approximation 

would be recommended. 

5 . 5  Relativistic influences 

5 . 5 . 1  Equilibrium structure 

System a c u l v  Bo B' Ecoh Vo 
Wurtzite 4 . 398 7 .091 o .3792 1 - 48. 1 4 .5 5 . 383 59 .37 
Zinc blende 6 . 192 - I - 47.9 4 .7 5 .377 59 .35 
Rocksalt 5 . 7 1 1 - I - 67.4 4 . 7  5 . 302 46.57 
Cesium chloride 3 .523 - I - 67.4 4 .8 4 .432 43. 73 
Cinnabar 4 . 233 10 . 085 o. 5o6o 1 o.5032 53 .8 4 .6  5 . 2 13  52 . 1 7  
SC16 7 . 537 o. 1 539 1 o .64 1 7  46.3 5 . 1  5 . 2 1 5  53 .52 

Table 5.9: Ground-state properties of equilibrium and high-pressure phases of HgS 
within the nonrelativistic approach. Presented are the lattice constants 
a and c (A) ,  respective internal parameters, ground-state volume Vo 
(A3 /pair) ,  bulk modulus Bo (GPa) and its pressure derivative B' as well 
as the cohesive energy Ecoh ( e V /pair ) .  
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Looking at the nonrelativistic energy-volume curves for HgS , depicted in the 

lower panel of fig. 5 . 10 ,  the equilibrium behaviour changes dramatically. The 

cinnabar structure disappears not only as the equilibrium phase, but completely. 

In summary a similar behaviour as in ZnS and CdS is found , meaning the struc­

tures lying lowest in total  energy are wurtzite and zinc blende. Yet , the wurtzite 

structure is slightly preferred with an energy difference of only 6 me V /pair. This 

means, assuming the non-relativistic description of HgS, the relative stability 

of the wurtzite form compared to zinc blende structure actually increases going 

from ZnS via CdS to HgS , whereas the relativistic influences change that picture 

favouring the cinnabar st ructure over wurtzite instead .  

The lat t ice properties determined for the wurtzite st ructure are a = 4 .398 A ,  

c = 7 .091 A and V0 = 59 .37 A3  /pair (see table 5 . 9 ) . Hence, the lat t ice constant 

is 14% and 5% larger than for the respective structure in ZnS and CdS . This 

is opposed to a value of 4. 256 A in relativistic wurtzit -HgS, making the lat tice 

constant almost comparable to the one in CdS and therefore showing the typical 

relat ivist ic contraction . 

This effect becomes even more obvious, if one looks at the bond distances (see 

table 5. 10 ) : Induced by the structure change due to  relat ivistic effects ,  the met al­

sulphur bond distance of cinnaba.r-HgS ( 2 .40 A)  is comparable to the one ob­

tained for the equilibrium structure of ZnS ( 2 . 35 A) .  This means a huge rela­

t ivistic contraction in the intra-chain Hg-S distances of 0 .28 A,  if one compares 

the relat ivist ic to  the nonrelat ivistic value (2 .68 A ) .  However, this comes at the 

cost of increa ing the inter-chain Hg-S bond dist ance to 3 .36 A.  Hence, the over­

all volume expands from 55. 16  (relat ivistic) to 59.37 A3/pair (nonrelativist ic) 

decreasing the density from 7 . 19 to 7.00 g cm-3 .  The experimental value for 

cinnabar-HgS is 8 .2  g cm-3 as compared to 4 .0 g cm-3 in ZB-ZnS and 4 .8  cm-3 

in W-CdS [ 1 14] .  

Looking at the cohesive energies , a. deviation of over 1 .  73 e V /pair is determined 

changing from the relat ivistic (Ecoh = 3 .657 eV /pair) to the nonrelativistic 

( Ecoh = 5 . 383 eV /pair) picture , hence indicating a. strong lat t ice destabiliza­

t ion due to relativistic influences. 

Furthermore, the extreme contraction in bond length is even applicable if one 

compares the metal-sulphur distances of HgS with the hypothetical cinnabar 

forms of ZnS and CdS . Even then the value is a lmost comparable to the 2 .39 A 

obtained in cinnabar-ZnS and significantly lower than in nonrelativistic cinnabar­

HgS (dHgS = 2 . 70 A) .  This is due to a significant change in the internal parame­

ters u and v, leading to a fourfold coordination instead of the 2+4 coordination 
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found in relat ivist ic HgS (see fig 3 . 5  for visualization ) . 

The solid-state properties of the possible equilibrium phases of nonrelativistic 

HgS as well as the cohesive energies are summarized in table 5 .9 .  

System ZnS CdS HgS nonrel. HgS 

dMs dM M  dMs dMM dMs d /11 /If dMs d/IJM 
\,Yurtzite 2 . 35 3 . 84 2 .57 4 .20 2 .60 4 .24 2 .68 4 .36 

exp . 2 . 34 3 . 82 2 .53 4 . 1 2  
Zinc blende 2 .36 3 . 85 2 .56 4 . 1 9  2 .60 4 .25 2 .68 4 .38 

exp .  2 .34 3 .82 2 .52 4. 1 1  2.53 4 . 1 4  
Cinnabar 2 .39 3 .48 2 .59 3 .79 2.40 4 .39 2 . 70 3 . 97 

2 .41 4 .20 
exp . 2.37 4 . 1 4  

Table 5 . 1 0 :  Closest metal-sulphur bond distance dll!s and closest metal-metal dis-
t ance d!II !If in A of the respective equilibrium structures of the group 1 2  
sulficles. 

5 . 5 . 2  High-pressure structure 

5 . 5  

0 50 1 00 1 50 200 

Pressure (GPa) 
250 

Figure 5 . 1 1 :  Lattice parameters depending on the pressure calculated for the Pmmn 
structure of nonrelativistic HgS. 
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While the change in the equilibrium structure accompanying the neglect of rel­

ativist ic effects is rather dramat ic, nothing special can be said about the high­

pressure phases of HgS in those circumstances. 

A transition to the rocksalt structure is predicted to happen at 1 . 07 GPa ending 

the stability range for the wurtzite form (Pt = 0.97 GPa for zinc blende ) .  The 

ground-state lattice constant of this phase is calculated to be 5 .7 1 1 A, which 

is significant ly larger than the respect ive values for the wurtzite form of ZnS 

(5 . 108 A) ,  CdS (5 .503 A) and relativistic HgS (5 .582 A) .  The bulk moduli de­

crease in the same order. but are almost identical for relat ivistic and nonrela­

tivistic HgS. 

Subsequently, a transition to the Cmcm structure takes place at 37.97 GPa. The 

Pmmn structure is unstable in the presence of Cmcm and the respective transi­

tion (RS-->Pmmn) would only occur at 43.80 GPa. However, in the transit ion 

region the three st ructures are less than 2 me V a part from each other in enthal py, 

making it difficult to make pr dictions due to the precision of the calculations . 

The solid-state properties for the Cm cm st ructure are V = 34.59 A 3 /pair, a = 

5 . 1 72 A, b = 5 . 1 75 A, c = 5. 169 A (hence bja = 1 . 000 and cja = 0 .999) as well as 

y(Hg) = 0. 7388 and y(S )  = 0 . 2393 at 40. 70 GPa. For the Pmmn modification the 

following values are obtained at 44.86 GPa: V = 33.36 A3 /pair. a = 3 . 848 A. 
b = 4 .985 A, c = 3.478 A, bja = 1 . 295, cja = 0 .904, z (Hg) = 0 .3590 and 

z (S )  = 0 . 1 508 . The transition from Cmcm to Pmmn t akes place at 43 .94 GPa. 

Finally, at 73.6 GP a. the lattice constants a and b become equal and the cj a 

rat io indicates a. t ransit ion towards distorted CsCl (see fig. 5 . 1 1 )  having an 

approximate lattice constant of 2 .972 A at 108 GPa,  with a. furt her transi­

tion to CsCl at 280.25 GPa.,  where a. lat tice cons tant of 2 . 767 A is calculated 

( V = 2 1 . 18 A3jpa.ir ) .  

I t  should be  mentioned that neither the cinnabar nor the SC 16  structure are 

stable in nonrela.tivistic HgS . All properties are summarized in table 5 .9 .  

5 . 5 . 3  Electronic structure 

Considering the small energy difference and following the trend from ZnS and 

CdS it is likely that both the zinc blende and the wurt zite phase would exist 

as an equilibrium phase for nonrelativistic HgS . Therefore, electronic structure 

calculations for both of those potential nonrelativistic equilibrium states of HgS 

were carried out . Fig. 5. 1 2  indicates that the band structure and DOS for non­

relativistic HgS are rather similar to the ones obtained for CdS . 
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Figure 5 . 12 :  Band structure and density of states (normalized per pair) at zero pres­
sure for the HgS polymorphs wurtzite (upper panel) and zinc blende 
( lower panel) calculated within the nonrelativistic DFT-GGA frame­
work. The valence-band maximum is set to zero energy. The black 
solid lines indicate the valence and the red dashed lines the conducting 
bands, respectively. 
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respectively. 
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The wurtzite modification of HgS would have a semiconducting character with  a 

direct band gap of 0 .97 eV at the centre of the Brillouin zone. Additional local 

VBM and CBM can be found. Thi means compared to the stable relativistic 

equilibrium form (cinnabar ) the band gap is significantly reduced , imitating the 

behaviour in wurtzite-CdS . However, the semiconducting properties are main­

t ained. 

For the zinc blende structure the changes due to relativistic effects are even more 

severe. The inverted band st ructure is now abolished , leaving nonrela.tivistic cu­

bic HgS as a rather ordinary small-gap semiconductor. The VBM as well as the 

CBM,  similarly to CdS, can be found at r, hence giving rise to a. direct band-gap 

with E9(f )  = 0 . 89 eV, again similar to ZB-CdS. Other local CBM, however much 

higher in energy, can be found at X and J( . 
The site-projected DOS of both possible equilibrium forms of nonrelat ivistic HgS 

are shown in fig. 5 . 13 .  For both polymorphs the site-projected DOS is rather 

simplified compared to the relat ivistic equivalents. The crystal field split t ing can 

be clearly seen, which is around 0 .23 eV for W-HgS as well as for ZB-HgS and is 

typical for the tet rahedral bonding in those st ructures . In both cases the Fermi 

edge is characterized mainly by the Hg-5cl and S-2p orbitals. 

5 . 6  Summary 

In general , the properties for the group 12  sulfides are in good agreement with 

experimental and other theoretical work, where available. This is true for the 

equilibrium as well as high pressure phases . Concerning the electronic structure, 

the band gap is generally drastical ly underestimated due to the known short­

comings of DFT in this context , yet qualitat ive agreement is ensured. 

The predicted tran it ions paths are mostly in concordance with experiments. 

However, for ZnS the stability of the SC 16  structure as an intermediate phase 

between the zinc blende and rocksalt form is supported in accordance with other 

theoretical work. Furthermore, a transition from the Cmcm to a cesium chloride 

structure has been newly predicted. However, the new structure still needs to be 

confirmed experimentally, especially with respect to possible intermediate phases. 

Furthermore, the previously discussed Cmcm and Pmmn structures of CdS are 

for the first time investigated together with the same method and compared. In 

addition, the Cmcm and Pmmn structures found in CdS are investigated theo­

retically for HgS and are calculated to be stable in HgS under higher pressure as 
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well, which has not been done before . Since in both cases the two structures are 

rather close in energy, it is likely that both phases might exist in a mixed form 

in experiments. This would explain why both structures only partially explain 

the diffraction pattern found experimentally in CdS . Furthermore , a possibly 

new phase following the Pmmn structure in CdS is predicted and identified as a 

distorted CsCl form stretched along the c-axis. A high-pressure cesium chloride 

form in HgS has been predicted as well , which should be confirmed experimen­

tally as well as theoretically to rule out intermediate phases. 

Concerning the influence of relativistic effects , it is found that especially the 

equi librium structure of HgS is significantly altered if a nonrelat ivist ic treatment 

is chosen . In this case the cinnabar phase, similar to what was observed in HgO. 

becomes unstable and even disappears not only as an equilibrium phase, but as 

a possible high-pressure phase as well .  Hence. this modification suppresses the 

wurtzite form, which nonrelat ivistically would increase in stability going from 

ZnS via CdS to HgS. Yet ,  a relativistic lattice destabilization of 1 . 73 eV /pair is 

already less than in HgO, where the difference amounts to more t han 2 eV /pair. 

This shows for instance in the fact that the relat ive st ability of the cinnabar form 

compared to the zinc blende form is already less . i . e .  the zinc blende st ructure 

is found as a high-temperature equilibrium phase in HgS. 

The high-pressure behaviour for HgS as well as the electronic structure become 

more similar to CdS, which is indicated by a similar transition path and smaller 

band gaps. 
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Chapter 6 

The group 1 2  selenides 

6 . 1  Occurring crystal structures 

6. 1 . 1  Zinc selenide 

Zinc selenide cryst allizes in a zinc blende st ructure with a lat tice const ant of 

a = 5 .668 A under ambient conditions. It can be found as a grey microscopic 

mineral known as stilleite. Depending on the preparat ion condition it may. how­

ever, also adopt it s high-temperature ( metastable ) wurtzite structure with the 

lat t ice constants a = 4 .003 A and c = 6 .540 A [ 1 20] . 

A t ransition under pressure was observed a t  around 13  GPa by means of op­

tical [ 1 75 ,  1 76] as well as resist ivity [ 1 77, 1 78] measurements ,  and the new 

phase was reported to have a (site-ordered ) rocksalt structure ( a = 5 . 1 10 A 

at 13 .6  GPa ) with a reproted volume change (6.V/V0)  of 13% [ 12 ,  102] . 

It should also be noted that , after Raman studies by Lin et al. and Gre ne et  

al. , th issue was raised, whether the NaCl phase is  actually an approximately 

equal mixture of rocksalt and a simple hexagonal phase based on diffraction data 

anomalies at around 5 GPa or whether i t  t ransforms completely into this phase 

at 48 GPa. However ,  Raman studies of Arora et al. and ADX s tudies of Nelmes 

and McMahon show no such evidence [ 12 ] . 

At 30.5 GPa a very slow Cmcm-type distortion of the rocksalt st ructure is de­

scribed by McMahon and Nelmes with the final t ransition at about 48 GPa [ 1 79] . 

The lattice parameters for ZnSe- I I I  at 60 GPa are a = 4. 728 A,  b = 4 .800 A, 
c = 4 . 703 A, y (Zn ) = 0. 704 and y (Se) = 0 . 196 .  Nelmes and McMahon also 

report a very weak further distortion somewhere above 48 GPa. 

1 25 
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Furthermore, a potentially stable but fourfold coordinated cinnabar phase is 

suggested by a theoretical pseudopotential study of Cote et  al. in a region of 

10 .2- 1 3 . 4  GPa [ 1 80] , which however is close to the resolution of the calculations . 

It is also supported by a theoretical investigation of Qteish and M uiioz [ 181 ]  and 

experimental findings of Pellicer-Porres et al. [ 1 82] . The latter, however, observe 

the cinnabar phase in a region of 1 0 . 1 - 10 .9 GPa only. 

Theoretical r ports have furthermore suggested the SC16 st ructure as an interme­

diate phase between the zinc blende and the rocksalt modification [ 1 39 ,  1 8 1 ,  183] . 

Later, the results for both structural parameter data as well as transition pres­

sures of the different zinc sel nide phases are summarized in tables 6 . 1 ,  6 .4 and 6 .5  

(see chapters 6 .2 . 1 and 6 .3 . 1 ) .  For comparison the above discussed theoretical 

and experimental reference data is listed in those tables as well .  

6 . 1 . 2  Cadmium selenide 

Like cadmium sulfide, cadmium se! nide at room conditions exists in a stable 

wurtzite as well as a metastable zinc blende st ructure. The lattice param ters 

are a = 4 .300 A and c = 7 .010 A and a = 6.052 A, respectively [ 1 2] .  The 

naturally occurring mineral of cadmium selenide is known as cadmoselite, which 

is a black to pale grey opaque yet very rare crystal. 

The wurtzite form of CdSe was first reported to transform at 2. 7 GP a (optical 

study) [ 140] ,  which later turned out to be a nonmetallic (site-ordered) rocksalt 

st ructure [ 1 84 , 1 85] with a lattice constant of a = 5 .08 A at 1 0  GPa and an 

indirect band gap of 0 . 65 eV at 3 GPa ( [ 120 ,  1 86] ) .  The transition is indicated 

by a drastic decrease in electrical resistivity [ 1 87] as well as a volume change 

(�V  / V0 )  of 16 .4 % [ 143] . 

Not many high pressure studies of CdSe are available, but a pseudopotential 

calculation [ 1 88] predicts a transition into a cesium chloride structure at about 

94 GPa. However, a transition into an intermediate phase between NaCl and 

CsCl is possible and later studies suggest the cinnabar as well as the Cmcm 

structure. A transition from rocksalt to Cmcm was predicted by first-principles 

calculations at 29 GPa [ 1 80] and subsequent ly confirmed by ADX studies of 

elmes and Mcl\!Iahon (Pt = 27.0 GPa) . The refined (site-ordered) structure 

at 34.4 GPa has the following l attice parameters: a = 5 .200 A , b = 5 . 222 A, 

c = 5 . 1 59 A, y(Cd) = 0 . 703 and y (Se )  = 0 .214 [ 12] .  

They further observed a possible transition into a distorted Cmcm structure 

at approximately 36 GPa, which seems to be stable up to the highest pressure 
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measured ( 85 GPa ) ,  but the structure could not be  resolved. 

In chapters 6 .2 . 2  and 6 .3 . 2  the structural parameters and transit ion pressures 

obtained in this study for the cadmium elenide phases will be discussed. The 

according tables 6 .2 .  6 .6 and 6 . 7  can also used as a summary for the parameters 

determined in the previously discussed theoretical and experimental reference 

data . 

6 . 1 . 3 Mercury selenide 

Under ambient condit ions mercury selenide adopts a semimet allic zinc blende 

structure [1 9] , which is naturally found as a dull grey (to reddish brown or 

black) mineral called tiemannite in hydrothermal veins in associat ion with other 

selenides and calcite. I t  has a lat t ice constant of a = 6 . 084 A. This is signalling 

a change in the structural b haviour of the mercury chalcogenicle to favouring 

less complicated lat t ices. 

However , a (site-ordered) cinnabar struct ure is still existent in HgSe, where 

Bridgeman first observed a transit ion at a rather low pressure of 0 . 74 GPa [ 1 69] . 

The transition goes along with a strong increase in resistivity. indicat ing the 

changeover into a semiconclucting behaviour with a gap of 0 . 5-0 .9  eV [ 1 89-192] , 

and a volume change ( � V  / V0 )  of 9.0 % [ 1 93] . In the course of their ADX stud­

ies Nelmes and Id\lahon report the latt ice parameters to be a = 4. 1 20 A .  

c = 9 .560 A ,  u (Hg) = 0.662 and v (Se) = 0 .550 at 4 .0  GPa [ 194] . Therefore, the 

oorclination is 2+2+2 with 3 pairs of unlike neighbours, at which the bond dis­

tances are 2 .541 , 2 .891 and 3 . 240 A, respect ively. Hence, the cinnabar st ructure 

in HgSe differs significant ly from the one obtained in HgO and HgS . 

In addit ion , l\ Icl\Ia.hon et al. discovered another transit ion of the zinc blende 

HgSe phase, which they identified as a (site-ordered ) orthorhombic distort ion of 

zinc blencle with the space group C222 1 . It appears clue to pressure increase 

during a very low ZB to cinnabar transit ion . is st able in only a. mall pressure 

range (2 . 1-2 .25 GPa) and therefore labelled as a 'hidden' intermediate phase 

between zinc blencle and cinnabar [ 1 95] . The following lattice parameters were 

determined at 2 . 25 GPa:  a =  5 .992 A, b = 5 .879 A , c = 6 .045 A, x (Hg) = 0 .302 

and y(Se) = 0 . 207. 

Upon further increase of pressure the cinnabar form was found to adopt a (site­

ordered) rocksa.lt structure at 15 . 5  GPa with a =  5 . 360 A at 21  GPa [ 19 1 ,  192 ,  

196] . The volume change is  0 .2 % at 15 .7 GPa. [ 12] . 

Possibly a. further high temperature phase exists in a pressure regime of 1 5-
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1 7  G Pa,  which is however unidentified [ 1 9 1 ,  192] . 

At 28 GPa another phase (HgSe-IV) was observed [196] . After a discussion 

of possible structures ( including orthorhombic, body-centred (,8-tin) or hexag­

onal ) ,  it has been characterized as (site-ordered) orthorhombic Cmcm by ADX 

studies , at which the lattice parameters and atomic posit ions are a = 5. 153 A, 
b = 5 .559 A, c = 4 .972 A, y(Hg) = 0 .644 and y(Se) = 0 . 1 4 1  at 35.6 GPa [ 194] . 

The transition is accompanied by a. 0 .9 % volume change. 

No further transition has been found up to 50 GPa.. The different phases of mer­

cury sulfide calculated within the scope of this thesis including structural param­

eters and the transition pressures ar summarized in chapters 6 .2 . 3  and 6 .3 .3 .  In 

those chapters tables 6.3 , 6 . 8  and 6.9 will also list the according data of previous 

work as introduced above. 

6 . 2  Equilibrium structures 

6 . 2 . 1 Zinc selenide 

The energy-volume relat ionships of the various ZnSe modificat ions are displayed 

in the upper panel of fig. 6 . 1 .  They clearly show that zinc blende is the preferred 

structure under normal conditions with a cohesive energy of 5 .3 10  eV /pair. How­

ever, the wurtzite modification is separated in energy by only 9 me V /pair, which 

fits nicely with an ab-initio LAPW calculation by Yeh e t  al. , who noted a differ­

ence of 5.3m e V/ atom [ 1 58] . The properties derived for the equilibrium phases 

of ZnSe are summarized in table 6. 1 .  

Using t he Murnaghan EOS a lattice constant of 5 . 734 A is derived , which is 

overall in good agreement with other theoretical work and overestimates the ex­

perimental value ( 5 .668 A)  by only 1 %.  Good comparability is also given for the 

bulk modulus, where a value of B0 = 57 .3 GPa is obtained (see table 6. 1 ) .  For 

the pressure derivative the calculated value of B' = 4 .  7 lies within the relatively 

wide range of experimental and theoretical results. 

For the metastable wurtzite modification lattice constants of a = 4.049 A and 

c = 6 .646 A are calculated , which means that the ground-state volume of V0 = 

47 .20 A3jpair barely differs from the one obtained for ZB-ZnSe (47. 1 3  A3jpair) .  

Those values are i n  excellent agreement with both experimental and other com­

putational work. However, the bulk modulus B0 = 57. 1 GPa and its pressure 

derivative B' = 4 .6  for unknown reasons deviate rather strongly from the ex-
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Figure 6 . 1 :  The total energy versus volume per cat ion-anion pair for different crystal 
structures of ZnSe (upper panel) and CdSe (lower panel) . 
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Property 
Zinc blende 
a 
Vo 
Eo 
E' 
Ecoh 
Pt to RS 
Pt to C2 
Pt to SC16 
Wur·tzite 
a 
c 
cja 
u 

Vo 
Eo 
E' 

This work 

5 . 734 
47 . 13  
57 .3  
4 . 7 

5 . 3 1 0  
1 3 . 76 
13 . 96 
1 2 .50 

4 .049 
6 . 646 
1 . 64 1  

0 .3743 
47 .20 
57 . 1 
4 .6  

Ecoh 5 . 30 1  
Pt to ZB 2 . 25 
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Other theoretical 

5 .606° , 5 . 669b, 5 . 820c 
44.05 ° ,  45 .55b,  49.28c 

70 .5° , 63.07b, 52. 92c 
3 .9b ,  4 .059 , 4 . 88i 

4 .574j ) 5 . 20k 
1 1 ° ,  1 5-21 c , 12 . 61 

10 .2° , 13 . 1 1  
13b ,  9 .2 1 ,  s . r  

3 .974P 
6 . 506P 
1 . 637P 
0 .375P 
44 .49P 

Experiments 

5. 668d, 5 . 667e.f 
45 .52d, 45. 5049 

64 . 7e ,  69.31 ,  58 h 

4. 77e , 5 . 5h 

4. 38d, 5 . 16k 
1 2m ,  10- 16 .5n  

4.003n 
6 . 540n 
1 .634n 

Pt to RS 12 . 94 4 .49 13 .09 
Pt to C2 1 2 . 5 1  

0PW-PP LDA from ref. [ 1 80] ; bPW-PP GGA from ref. [ 1 83] ;  cFP-LAPW and 
NAO+GC from ref. [ 197] ; dfrom ref. [ 1 53] ; e from ref. [ 198] ; !from ref. [88] , 9from 
ref. [102] ; hX-ray diffract ion from ref. [ 182] ; iFP-APW+lo LDA from ref. [ 1 99] ; 
JMD calculations from ref. [ 163] ; ksemi-empirical TB calculations from ref. [157] 
and refs . therein ;  1PP Kohn-Sham LDA from ref. [ 18 1 ] ;  m from ref. [200] ; nfrom 
ref. [ 120] ; 0TB-LMTO from ref. [ 1 39] ; PLAPW-LDA from ref. [ 158] . 

Table 6 . 1 :  Ground-state properties of the equilibrium phases of ZnSe. Presented 
are the lattice constants a and c (A) ,  internal parameter u, axial ratio 
cja, ground-state volume Vo (A3 /pair) , bulk modulus B0 (GPa) and its 
pressure derivat ive B' as well as the cohesive energy Ecoh (eV /pair) and 
the transition pressure Pt (GPa) where applicable. 

perimental values (see table 6 . 1 ) , but only one study is available to compare 

with. 

6 . 2 . 2  Cadmium selenide 

The equilibrium phases of CdSe are known to be the zinc blende and wurtzite 

structures as well .  This again is confirmed by the calculations presented here, as 

can be seen in the lower panel of fig. 6. 1 .  The energy difference of 4 me V /pair 
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Property 
Zinc blende 
a 
Vo 
Bo 
B' 
Ecoh 
Pt to RS  
Pt to C2 

Pt to SC16  
Wurtzite 
a 
c 

cja 
u 

Vo 
Bo 
B' 

This work 

6. 202 
59.64 
45.0 
4 .5 

4 . 778 
4 .01  
5 . 70 
5 . 53 

4.386 
7. 168 
1 .634 

0. 3753 
59 . 70 
45 .0 
4 .8 

Ecoh 4. 774 

Other theoretical 

6 . 050a , 6 .055b, 6 .035c 
55 .36a , 55 .5Gb , 54.95c 

57 .2a , 54 .6b ,  66.SC 
5 . 57b 

4 . 448b , 4 . 78! 
2 . 5a ,  2 .33e 2 .629 

4 . 293i , 4 .272j 
7. 038\ 6 .979j 
1 . 639i , 1 . 634j 

0 . 374\ 0 .3756j 
56 . 1 7i '  55 . 15j 

53 .6i . 57 .9j 
4 .6i 

Experiments 

6 .052d, 6 . 077e 
55 .36d , 56 . 1 1  e 

55 .0! 

3 . 334e ( Esub ) 
2 . 8h 

4 . 29 1-4.309e 
7 . 007-7.03e 
1 . 630- 1 . 638e 

0 .3760e 
56 .05-56.47e 

53 .4e 
3 . 1 7e 

Pt to RS 4 .03 2 .09 2 . 7k 
Pt to C2 5 .68 
Pt to SC16  5 . 5 1  

1 3 1  

apw_pp LDA from ref. [ 180] : bMD from ref. [ 163] : cab-initio GDSP /DFT from ref. 
[ 162] : dfrom ref. [ 1 2] :  efrom ref. [ 1 20] : f semi-empirical TB calc . from ref. [ 1 57] and 
refs .  therein; 9FP-Li\ITO from ref. [ 1 46] : h from ref. [ 1 93] : i FP-LMTO DFT-LDA 
from ref. [201 ] :  JLAPW-LDA from ref. [ 1 6 1 ] :  kfrom ref. [ 140] . 

Table 6 .2 :  Ground-state properties of  the equilibrium phases of  CdSe. Presented 
are the latt ice constants a and c (A) ,  internal parameter u, axial ratio 
cja ,  ground-state volume Vo (A3 /pair ) ,  bulk modulus B0 (GPa) and its 
pressure derivative B' as well as the cohesive energy Ecoh ( e V /pair) and 
the transit ion pres ure p1 (GPa) where applicable. 

between the two phases is very small , but according to the results presented here 

the zinc blende structure seems to  be slightly favoured ( Efo� = 4 . 778 eV /pair 

versus E:h = 4 . 774 eV /pair ) . A LAPW-LDA study by Yeh et  al. also finds 

the zinc blende structure to be lower in energy by 1 .4 me V /atom [ 1 58] ,  whereas 

ref. [ 16 1 ]  gives f:::.EW-ZB = 2 me V /pair. Yet ,  this prediction is in contrast to 

experiments ,  where the zinc blende phase is only metastable. I t  can most likely 

be blamed on temperature effects and it should also be noted that the calculated 

energy difference between the two phases is definitely smaller than for ZnSe and 

HgSe, where zinc blende is the stable form. 

The determined lattice constant of 6 .202 A for the zinc blende polymorph corn-
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pares well to other theoretical and experimental (a =  6.052 A) re ults, yet again 

is by a few percent too large . This is a consequence of the method used . Values of 

45.0 GPa and 4 . 5  for the bulk modulus and its pressure derivat ive, respectively, 

are in reasonable agreement with other work (see table 6 .2  for details ) . 

For the wurtzite modification the lat tice parameters are a =  4 .386 A ,  c = 7. 1 68 A 
and u = 0 .3753 , whereas the bulk modulus and its pressure d rivative are calcu­

lated to be 45 .0 GPa and 4 .8 .  Within the limits of the method employed, t hose 

values compare well to experimental as well as other theoretical results (see again 

table 6 . 2 )  despite the overestimation of the latt ice conta.nts. 

Note that wurtzite is the high temperature phase of CdSe with the t ransition 

occurring at 95 ac [ 1 20] . Table 6 .2  summarizes the results .  

6 . 2 . 3  Mercury selenide 

The upper panel of fig. 6 .6 shows the energy-volume dependencies for HgSe within 

the scalar-relativistic treatment . The zinc blende structure yields the lowest total 

energy and with a. cohesive energy of 3 .373 eV /pair is proven to be the preferred 

polymorph under normal conditions . 

The lat t ice constant of 6 .272 A ( V0 = 6 1 .68 A 3 /pair ) is in exc llent concordance 

with other DFT calculations, but shows the typical overestimat ion in comparison 

with experimental data (a = 6.085 A [ 1 20] ) .  The opposite effect is achieved 

for the bulk modulus , where a value of 43 .0  GPa is determined compared to 

57 .6 GPa. found in ultrasound velocity experiments [ 120] . Bigger discrepancies 

are noted for the pressure derivativ of the bulk modulus, where a value of 4 .8 

i obtained ( B' = 2 .6  by ultrasound measurements) . However, agreement with 

other theoret ical work is good .  

Looking at the wurtzite structure with Ecoh = 3.359 eV /pair, i t  i s  energetically 

close. This means an energy difference of 14 me V /pair, which fits nicely with the 

results of Yeh e t  al. , who obtained a difference of 6.9 me V /atom [ 1 58] . The bulk 

propertie are a =  4 .433 A, c = 7 .263 A, V0 = 6 1 .81 A3 /pair, B0 = 42 .3 GPa and 

B' = 5 .0 .  Similar values for the ground-state volume and the bulk modulus as 

well as its pressure derivative indicate the structural similarity to the zinc blende 

form .  However, very few data are available to compare with (see table 6 . 3 ) , and 

even though it is occasionally claimed in literature that HgSe crystallizes in both 

the zinc blende and the wurtzite form, no experimental structural parameters 

could be found . 

The results are concluded along with some previous work in table 6 .3 .  
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Property 
Zinc blende 
a 
Vo 
Eo 
E' 

Ecoh 
Pt to C2 

Pt to C222 1  
Wurtzite 
a 
c 

cja 
u 

This work 

6 .272 
6 1 . 68 
43.0 
4 .8  

3 . 373 
1 . 96 

1 . 35-3 .06 

4 .433 
7 . 263 
1 . 638 

0 . 3747 

Other theoret ical 

6 .077-6.303a , 6 . 1 94b , 6. 255c 
56 . 1-62 .6a .  59 .4 1b , 6 1 . 1 8c 

58. 1-59 . 2a ,  4 1 . 8b 

4 . 3 109 
7. 0649 
1 . 6399 
0 .3759 

V0 6 1 . 8 1  56 .829 
Eo 42 .3  
E' 5 .0 
Ecoh 3 . 359 

133 

Experiments 

6.085d , 6. 084e 
56 .33d , 56.30e 

5 1 .66d 

2 .6d 

3 . 856d ( Esub ) 
0 . 74- 1 . 5e , 
1 . 15-2 .201 

2 . 1e 

a FP-LMTO LDA and GGA from ref. [ 1 68] : b ab-initio GDSP /DFT from ref. [ 1 62] : 
cpw-PP GGA from ref. [ 1 74] : dfrom ref. [ 1 20] : efrom ref. [ 1 2] : !from ref. [200] 
(C2221 mixed with ZB between 2 . 1  and 2 .25 GPa) : 9LAPW-LDA from ref. [ 158] . 

Table 6 .3 :  Ground-state properties of the equilibrium phases of HgSe. Presented 
are the latt ice constants a and c (A ) ,  internal parameter u .  axial ratio 
c/a, ground-state volume Vo (A3 /pair ) ,  bulk modulus Eo (GPa) and its 
pressure derivative B' as well as the cohesive energy Ecah (eV /pair) and 
the transition pressure Pt (GPa) where applicable. 

6 . 3  High-pressure phases 

6.3 . 1 Zinc selenide 

The high-pressure transit ion of ZnSe in its zinc blende form was invest igated and 

a change into t he rocksalt structure is predicted to happen at 13 . 76 GP a. This 

is in excellent agreement with both experimental and theoretical inv st igations 

(see table 6 . 1 ) .  

The ground-state latt ice constant obtained for t his new phase is 5.372 A , which 

compares rather well to the literature values (e .g .  aexp = 5 . 292 A at 0 GPa [ 1 02] ) .  

This is true for t he bulk modulus E0 = 71 . 7  GPa and E' = 4 .7 ,  too, if compared 

to other theoretical results. Comparison with experimental values is difficult , 

since the bulk moduli were fitted with a fixed E' .  However, the bulk modulus 
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Property This work Other theoretical Experiments 
SC1 6 
a 7.041 6.903a , 6 .881b , 6 .987c 
u 0 . 1568 0 . 1 563b , 0 . 1453c 
V 0 .6432 0 .642 1 b , 0 .6473c 
Vo 43 .64 4 1 . 1 2a , 40 . 73b , 42.64c 
Bo 54. 27  63.55a , 63.9b , 53 . 78c 
B' 4 .6  5 . 5b , 4. F 
Ecoh 5 .049 
Pt to RS 1 5 . 1 6  16 . 4b , 1 7c 
Rocksalt 
a 5.372 5 . 304a , 5 .3 19c 5 .08d , 5 . 292e 
Vo 38 . 76 37.30c' , 37 .62c 32 .77d , 37 .01e 
Bo 7 1 . 7  77.84c , 74-91! 1 04e , 549 
B' 4 . 7  3 . 75c , 3 .5-4.9! 4 .oe , 5 .59 
Ecoh 4 .697 
Pt  to Cmcm 29.602 29 .8c , 36 .5h 30i 

Cm cm 
a ( 4 . 735) 5 . 276c 4 . 728i 

b (4 .965) 4 . 800i 

c ( 4 .533) 4 . 703i 

b/a ( 1 . 049) 1 . 0 1 5i 

cja (0 . 957) 0 .995i 

y( Zn)  (0 .6607) 0 .  704i 

y(Se) (0 . 1 850) 0 . 1 96i 

V (26 .64)  26 .68i 

Eo 79.56 7o.oc 
B' 3 .4 4 . 32c 
Ecoh 4 . 709 
Pt to CC 234.96 
aTB-LMTO from ref. [ 1 39] ; bpp Kohn-Sham LDA from ref. [ 1 8 1 ]  at 0 GPa; cpw_ 
PP GGA from ref. [ 1 83] ; dfrom ref. [ 1 20] at 10  GPa; efrom ref. [ 1 02] (B' fixed ) ;  
fFLAPW from ref. [ 1 97] ; 9X-ray diffraction from ref. [ 182] (B' fixed) ;  hPW-PP 
LDA from ref. [ 180] ; i ADX from ref. [ 1 79] at 60 GPa. 

Table 6 .4 :  Ground-state properties of t he high-pressure phases of  ZnSe. Presented 
are the lattice constants a, b and c (A) ,  respective internal parameters , 
ground-state volume Vo (A3jpair ) ,  bulk modulus Bo (GPa) and its pres­
sure derivative B' as well as the cohesive energy Ecoh (eV /pair) and the 
transition pressure Pt ( GPa) where applicable. Values in brackets indicate 
higher pressure. 

is within the experimental range of 54- 1 04 GPa. Looking at the bulk properties 

at a post-transition pressure of 10 . 4  GPa results in the fol lowing parameters : 

a = 5 . 1 75 A and B0 = 1 20 . 24 GPa, meaning agreement with experiments is 
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Property This work 
Cesium chloride 
a 3 .356 
Vo 37.8 1  
Bo 64. 1 
B' 4 .8  
Ecoh 3. 604 
Cinnabar 
a 3 .808 
c 8 .819  
cja 2 .316  
u (Zn ) 0 .4966 
v(Se)  0 . 4979 
Vo 36 . 9 1  
Bo 62.4 
B' 3.4 
Ecoh 4 . 777 

Other t heoretical 

3.987° , 3 . 932b ,  3 .97F 
8.992b 

3 .287b , 2 . 26e 
0 . 5e 
0 . 5e 

40. 13b 
69.03a . 72 . 6b .  68. 33c 

5 . 5b .  3 . 7 1  c 

Pt to RS 13 .50 13 .4e 

1 35 

Experiments 

3 . 789(1 , 3 . 785d 
8 .844d 
2 . 34d 

0 .63 (0 . 5 ) d  
0 . 55 (0 . 5 ) d  

36 .5  d 
65 . 7° 

0TB-Li\ ITO from ref. [ 139] : bpp Kohn-Sham LDA from ref. [ 1 8 1] : cpw_pp GGA 
from ref. [ 183] ; dX-ray diffraction from ref. [ 1 82] : ePW-PP LDA from ref. [ 1 80] . 

Table 6.5 :  Ground-state properties of the high-pressure phases of ZnSe. Presented 
are the latt ice constants a .  b and c (A) .  respective internal parameters. 
ground-state volume V0 (A3 /pair ) .  bulk modulus Bo (GPa) and its pres­
sure derivative B' as well as the cohesive energy Ecoh ( e V /pair ) and the 
transition pressure Pt (GPa) where applicable . Values in brackets indicate 
higher pressure .  

good for higher pressures as well (see table 6 .4 ) .  Yet ,  t he calculated latt ice 

constant is somewhat overest imated . 

For the wurtzite to  rocksalt transition the pressure est imated is 12 . 94 GPa which 

compares well to t he experimental result (p1 = 13 .0  GPa [ 102] ) .  However , t his 

tran i t ion is not well invest igated since wurtzite is known to transform into t he 

zinc blende structure at 3 GPa. The transition pressure is determined to  be 

2 .25 GPa matching other t heoretical results .  

However, in addit ion, the simple cubic SC16 st ructure introduced a a possible 

high-pressure phase by t heoretical means [ 1 8 1] has been t aken into consideration 

as well and indeed is found to be an intermediate st ructure between the transit ion 

from zinc blende to rocksalt . The ZB�SC16 t ransit ion occurs at 12 . 50 GPa,  

which is  in excellent agreement with other theoretical work, where the transition 

pressure ranges from 8 . 7- 13  GPa [ 139 ,  18 1 , 1 83] . 

The bulk properties found are a = 7.041 A, V0 = 43. 64 A3 /pair, u = 0 . 1 568, 
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v = 0 .6432, B0 = 54 .27 GPa and B' = 4 .6 at ambient condit ions along with 

a cohesive energy of 5 .049 eV /pair . Looking at the data obtained by Cui et 
al. agreement is extremely good ,  but unfortunately this ZnSe modificat ion will 

stil l have to be discovered experimentally. Yet , the possibility of energy barriers 

hindering the transition needs to be considered . The lat t ice parameters at the 

t ransit ion pressure are given as well :  a = 6.675 A, V0 = 37. 18 A 3 /pair, u = 

0 . 1486, V =  0 .6437. 

Eventually, SC16-ZnSe changes over into the rocksalt structure at 15 . 16 GPa, 

again in concordance with other theoret ical work. Hence , t he range of stability 

(2 .66 GPa) is on the lower end of the scale of previous predictions (4-7 .2 GPa) 

(see table 6 .4 ) but close to  the range found for SC16-ZnS (3 .4 GPa) [ 138] . 

Looking at even higher pres. ures , a rocksalt to Cmcm transit ion is observed at 

29 .60 GPa. Since this is a second order tran. ition the st ructure slowly relaxes 

towards th  rocksalt parameters for lower pressure, meaning that no ground­

st ate propert ies can be obt ained . Instead , the bulk properties are determined 

at 59 .90 GPa,  where latt ice constants of a =  4 .735, b = 4 .965 and c = 4.533 A 

are determined along with y (Zn ) = 0 .6607 and y(Se ) = 0. 1850. In particular 

the latt ice constant · agree very well with an experiment (a = 4 .728 , b = 4 .800 

and c = 4. 703 A at 60 GP a) as do derived properties such as t he c/ a- and b/ a­

ratios as well as the unit-cell volume [ 179] . The bulk modulus and its pre sure 

derivat ive are 79 .56 GPa and 3 .4 in accordance with theoretical invest igations 

( for details refer t o  table 6 .4 ) . 

At an extremely high pressure of 235 GPa a transit ion into the cesium chloride 

structure would be possible according to the calculat ions discussed here with 

the ground-state properties listed in table 6 .5 .  At 235 GPa the following values 

would be observed : V = 18 .6 1  A3 /pair and a = 2 .650 A . The ground-state 

bulk modulus and B' are 64 . 1  GPa and 4 .8 .  However, whether this transition is 

genuine should be subject to further investigations to make sure no intermediate 

structure change occurs between the Cmcm and cesium chloride phase. 

In addition , the cinnabar phase was investigated, which was claimed by Cote 

et al. to be stable between 10 . 2  and 13 .4 GPa. However, according to the cal­

culations presented here, this is not the case. Over the whole volume range 

investigated the SC16 structure is lower in enthalpy, making it the preferred 

structure. But even in the absence of the SC16 phase , the transition from zinc 

blende to cinnabar would happen at 13 .96 GPa, at which pressure transition 

from zinc blende to rocksalt would have already occurred (Pt = 13 .76 GPa) . 
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Also, the transition from cinnabar to rocksalt i s  predicted to  start a t  13 . 5  GPa 

already. For this possible cinnabar modification propert ies of a = 3 .808 A and 

c = 8 .8 19 A along with the Wyckoff parameters u � 0.5 � v are derived at 

1 2 . 3  GPa. The properties at zero pressure can be viewed in table 6 .5 .  They are 

very consistent with t he pseudopotential study of Cote et al. [ 1 80] as well as the 

X-ray diffraction data. of Pellicer-Porres et  al. , for whom t he cinnabar phase is 

only accessible in downstroke experiments [ 1 82] . Their experiment al data lead to 

better results using the \Nyckoff parameters derived by Cote et al . .  However, it 

is mentioned that at 14 . 7  GPa. the calculations presented here result in values of 

u = 0.5616 and v = 0 .5386, similar to the ones measured by ref. [ 1 82] and deviat­

ing from 0.5 at an increased cja ratio of 2 .337. The ground-state bulk modulus 

and its pressure derivative are B0 = 62.4 GPa and B' = 3.4 . Another study 

shows calculat ions of t he ground-state properties as well ,  but find the cinnabar 

phase not to be st able [ 1 83] (see also table 6.5 ) .  

The fact that t he cinnabar phase is experimentally only observed i n  down­

stroke measurements ,  reinforces the possibility of the structure being in fact 

a metastable phase [ 1 80] . This might be an explanat ion that despite experimen­

t al observation, the cinnabar modification is not st able in ZnSe according to the 

results presented here. 

6 . 3 . 2  Cadmium selenide 

CdSe is very similar to ZnSe in its high-pressure behaviour . Again first of all , 

both the zinc blende and t he wurtzite phase become unstable towards the rocksalt 

structure at 4 .01  GPa and 4 .03 GPa in reasonable accordance vvith previous work 

(see table 6 . 2 ) .  The cohesive energy at ambient conditions is 4.493 eV /pair. 

For this modification a lattice constant of 5 .743 A at 0 GPa and 5.625 A at 

4 .33 GPa along with a ground-state volume of 47 .35 A3 /pair at 0 GPa and 

44.49 A 3 /pair at 4.33 GP a is determined. The ground-state bulk modulus and the 

pressure derivative are 60. 9  GPa and 4 .9 respectively. This matches experimental 

and theoretical values where available as listed in detail in table 6 .6 .  

With increasing pressure a transition into the Cmcm structure i s  predicted at  

26. 1 7  G Pa according to the calculations presented here. This pressure i s  in good 

agreement with experimental as well as theoretical results. This also holds for 

the lattice properties, where values of a =  5 . 250 A, b = 5 . 3 17  A, c = 5 . 1 78 A with 

y (Cd) = 0 .6999 and y (Se)  = 0 . 2064 are determined at a pressure of 30.5  GPa. 
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Property 
Rocksalt 
a 
V 
Bo 
B' 
Ecoh 
Pt to  Cmcm 
Cm cm 
a 
b 
c 
cja 
bja 
y (Cd ) 
y (Se) 
V 
Bo 
B' 
Ecoh 
Pt to ? 

Pt to  CC 
Cesium chloride 
a 
Vo 
Bo 
B' 
Ecoh 

This work 

5 . 743 (5 .625) 
47 .35 (44 .49) 

60 . 9  
4 . 9  

4 .493 
26. 1 7  

(5 . 250) 
(5 . 3 1 7) 
(5 . 1 78 )  
(0 .986) 
( 1 . 0 1 3 )  
(0 .6999) 
(0 . 2064 ) 
(36. 14 )  

54. 1 
3 . 7  

4. 576 

108 .22 

3 . 562 ( 2 . 975) 
45. 19  ( 26 .33)  

58 .6 
4 . 8  

3 . 57 1  
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Other theoretical Experiments 

5 .576a , 5 . 72b ( 5 .49) c , (5 .5 )d , 5 . 7 1b 
43 . 34a , 46 .79b ( 4 1 .4 )c , ( 4 1 . 59)d , 46.54b 
85 .0a , 57 .7b 

4 .0a 

29 .0e 27.0f 

5 . 195a ( 5 .200)! 

5 .9 16a ( 5 . 222) ! 

5 . 545a (5 . 159) ! 

0. 707a ( 0 .992) ! 

0. 2 1 1a ( 1 . 004)! 

(0 .703) ! 

(0 .214) ! 

42.60a (35 .02)! 

0 . 6a 
4 .6a 

379 

3 .443a 
40.82a 
8 1 . 6a 
4 . 6a 

aFP-LMTO from ref. [ 146] ; bfrom ref. [202] ;  ex-ray a t  3 .2 GPa from ref. [ 185] ; 
dX-ray at 2 GPa from ref. [ 1 84] ; epw-PP LDA from ref. [ 1 80] ;  !from ref. [ 1 2] 
at 34 .4 GPa; 9X-ray scattering from ref. [ 1 79] . 

Table 6.6 :  Ground-state properties of the high-pressure phases of CdSe. Presented 
are the lattice constants a, b and c (A) ,  respective internal parameters, 
ground-state volume Vo (A3jpair ) ,  bulk modulus Bo (GPa) and its pres­
sure derivative B' as well as the cohesive energy Ecoh ( e V/ pair) and the 
transition pressure Pt (GPa) where applicable. Values in brackets indicate 
higher pressure .  

However, t he ground-state volume could not be obtained, since for lower pressure 

in general a relaxation into the rocksalt form is experienced . The parameters are 

evaluated at a slightly lower value than in t he experiment , but comparability 

with experimental as well as theoretical data. is very good. The bulk modulus 

B0 = 54. 1 GPa and its pressure derivative B' = 3 . 7  are estimated from the 
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Property This work Other theoretical 
Cinnabar 
a 4 . 28 1 /4 .282 
c 9 .9307/9.927 
c/a 2 . 3 1 9/2 .3 18  
u 0 .4983/0 . 5501 
V 0 .4993/0.5229 
Vo 53.00/52 . 74 
Eo 50.4/35 .96 
E' 4 .3/-4 . 7  
Ecoh 4 . 565/4 .564 
SC1 6 
a 7 .569 
u 0 . 1561 
V 0 .64 1 1  
Vo 54. 2 1  
Eo 42 .9 
E' 5 .8  
Ecoh 4 .60 1  
aPW-PP LDA from ref. [ 1 80] (est imated from graph) . 

Table 6 .  7 :  Ground-state properties of  the high-pressure phases of  CdSe . Presented 
are the lattice constants a, b and c (A ) ,  respective internal parameters, 
ground-state volume 1/0 (A3/pair ) ,  bulk modulus B0 ( GPa) a.ud its pres­
sure derivative B' as well as the cohesive energy Ecah ( e V /pair ) and the 
transition pressure Pt ( GP a) where applicable. Values in brackets indicate 
higher pressure. No experimental data. are available. 

Murnaghan fit only over the volume range accessible for the calculat ions carried 

out . They t herefore deviate from the values derived by Benkhet tou et al. 

The cesium chloride structure was also included in our calculat ions being a 

promising candidate  for a high-pressure phase of 1 1-VI semiconductors . The 

transition from Cmcm-CdSe is calculated at 108 .2 GPa and the ground-state 

properties are given in t able 6.6. A previous calculat ion was done by Benkhettou 

et  al. , but the authors do not give a pressure for which the results are obtained. 

However, the lattice parameters are not in agreement especially if compared to 

values calculated at a post-transition pressure of 1 1 7 GPa, where according to 

the results presented here, the fol lowing parameters are valid :  a = 2 .975 A and 

V0 = 26.33 A 3 /pair. If one uses the values obtained off the graph in ref. [ 146] 

it becomes obvious, that a factor of two is missing in the ground-state volume 

determined by the authors . Using the corrected values , agreement is good (see 

table 6 .6) . 
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Since the cinnabar phase and SC16 structure have been discussed for the zinc and 

cadmium selenides before, they have been included in the calculation presented 

here. Both phases are found to be very close lying in enthalpy at the transition 

pressure from ZB to aCl , which is in excellent agreement with t he findings of 

Cote et al. [ 180] . 

However, t he pressures for the ZB-+C2, W-+C2, ZB-+SC16 and W-+SC16 tran­

sitions are calculated to be 4 . 19 ,  4 . 2 1 ,  5 . 53 and 5 . 5 1  GPa and t herefore slight ly 

above the respective pressure for t he t ransit ion from zinc blende and wurtzite to 

rocksalt . Therefore, and since no experimental observations are recorded, these 

calculations suggest that neither cinnabar nor SC16 are stable phases for CdSe. 

Yet ,  it should be kept in mind that the energy differences are small and similar 

to ZnSe. Thus, the possibility of a metastable pha. e ( i . e . only accessible in 

downstroke experiments ) should be admitted for. 

The ground-state propert ies for both st ructures are l isted in table 6. 7. As pointed 

out by Cote et al. generally for the cinnabar structure, t here is always a minimum 

if u = 0 .5  = v [ 180] . This is for instance t he only minimum that can be found in 

ZnSe. In addition to that , in some cases a second energetic minimum is found 

for ·u =/= v =/= 0 .5 , like in  HgSe (see next chapter) . Interestingly nough for CdSe,  

both minima are very close, so that for higher volumes, the internal parameters 

slowly converge towards a value of 0 .5 .  This induces a negative value for B' , most 

lik ly due to a. change in st ructure (and coordination ) between t he two minimum 

st ructures. Hence, two different sets of values are given in t able 6 .  7. 

A comprehensive study of supposed other crystal structures would be desirable to  

rule out or  confirm possible intermediate phases between the Cmcm and t he ce­

sium chloride structure, especially since Nelmes and Me t!a.hon observed a. truc­

ture change around 37 GPa.. This however goes beyond the scope of this thesis , 

where mainly the relativistic influence is discussed with the focus on the cinnabar 

and montroydite structure. 

6 . 3 . 3  Mercury selenide 

Unfortunately, HgSe seems to have been studied theoretically mainly in its zinc 

blende form. Hence, the comparison of the results obtained for the behaviour a.t 

higher pressure will be limited to  experimental data.. 

The calculations presented here predict that the equilibrium zinc blende structure 

of HgSe undergoes a. transition into the cinnabar form a.t about 1 . 96 GPa.. The 
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Property This work Experiments 
Cinnabar 
a 4.481 (4 . 1 79)  4 . 1 20a , 4 .32b , 4 . 1 74c 
c 9 .949 (9 . 708) 9 .560° , 9 .68b , 9 .626c 
cja 2 . 220 ( 2 . 323) 2. 320a , 2 .24b, 2 . 306c 
u 0 .71 18  (0 .6624 ) 0.662a , 0 .666c 
V 0.4966 (0 .549 1 )  0 . 550a , 0 .540c 
V 57.69 (48.95) 46.845a . 52. 1 5b ,  4 .41 c 
Bo 10 . 1 ( 24 . 0 1 )  
B' 12 . 1 (4 .4 )  
Ecoh 3 .300 
Pt to RS 13 . 56 14 .6- 15 .5a . 1 6d 
C2221 
a (6 . 149) 5 . 992c 
b (5 .980) 5 .879c 
c (6 . 185)  6 .045c 
b/a (0 .973 ) 0. 98F 
cja ( 1 .006) 1 . 009c 
x (Hg) (0 .3 100) 0. 302c 
y (Se ) (0 .2082) 0. 207c 
V (56 .86) 53.24c 
Bo 6.9 
B' 4 . 7  
Ecoh ( 3 . 3 19 )  
Rocksalt 
a 5 .808 (5 . 275 )  5 .360d 
V 48.98 (36 . 70)  38 .50d 

Bo 57.9 
B' 5 .2 
Ecoh 3 .066 
Pt to Cmcm 35. 70 28e 

a ADX at 4 GPa from ref. [ 12 ] : bfrom ref. [ 185] at 1 .5 GPa ; ex-ray 
diffraction from ref. [ 1 79 ,  1 95] at 2.25 GPa; dfrom ref. [203] at 
2 1  GPa; efrom ref [ 1 96] . 

Table 6.8:  Ground- tate properties of the high-pressure phases of HgSe. Presented 
are the lattice constants a, b and c (A) ,  respective internal parameters, 
ground-state volume Vo (A3 /pair ) ,  bulk modulus Eo (GPa. ) and its pres­
sure derivative B' as well as the cohesive energy Ecoh (eV /pair) and the 
transition pressure Pt (GPa) where applicable. Values in brackets indicate 
higher pressure . o other theoretical data. are available . 

ground-state properties obtained and summarized in t able 6.8 are in accordance 

with experimental data, but again show the for DFT typical overestimation of 

the latt ice constants. 
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Property 
Cm cm 
a 
b 
c 
b/a  
cja 
y(Hg)  
y (Se)  
V 
Eo 
E' 
Ecah 
Pt to CC 
Cesium chloride 
a 

Vo 
Eo 
E' 
Ecah 

CHAPTER 6. 

This work 

( 5 . 2 15 )  
(5 .680) 
(4 .801 )  
( 1 .089) 
(0 .92 1 )  
(0 . 6383 ) 
(0 . 1 53 1 )  
(35 .6 )  
76 . 6  
3 .8  

2 .842 
107 .67 

3 .609 (3 .025) 
47 .01 (27 .68) 

53 . 2  
5 . 7  

2 . 263 

a ADX at 35.6 GPa from ref. [1 94]. 

THE GROUP 1 2  SELENIDES 

Experiments 

5 . 153a 
5 .559a 
4. 972a 
1 . 079a 
0 .965a 
0. 644a 
0 . 141 a 
35.601a 

Table 6 .9 :  Ground-state properties of  the high-pressure phases of  HgSe. Presented 
are t he latt ice constants a ,  b and c (A) ,  respective internal parameters, 
ground-state volume Vo (A3 /pair) , bulk modulus B0 (GPa ) and its pres­
sure derivative B' as well as the cohesive energy Ecoh (eV /pair ) and the 
t ransit ion pressure Pt (GPa) where applicable. Values in brackets indicate 
higher pressure. No other theoretical data are available. 

At 4 . 7  GPa, a pressure close to the experimental reference data, lattice constants 

of a = 4 . 1 79 A and c = 9. 708 A are determined along with u = 0. 6624 and 

v = 0 .549 1 as the Wyckoff posit ions. This improves comparability with the 

experiment even more and yields excellent results for the c/ a-ratio and unit-cell 

volume (see t able 6 . 8 ) .  

Which also stands out , i s  the anomalously small bulk modulus o f  just 10 . 1 GPa 

in combinat ion with an extremely high pressure derivative (E' = 12 . 1 ) ,  which 

indicates that the bulk material rapidly stiffens with pressure. This is s imilar to 

the values obtained for HgO and HgS and is caused by the chain-like structure. 

However, if more data points are included a bulk modulus of 24 . 0 1  GPa with a 

pressure derivative of 4 .4 is determined , meaning a physically more sensible value 

for B'. This might suggest that the Murnaghan fit is not suitable to describe 

cinnabar-HgSe. Unfortunately, no data could be found to compare with .  
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More recent reports however, describe the appearance of a 'hidden' intermediate 

phase of HgSe, which t herefore was t aken as encouragement to invest igate the 

transition to  t his distorted zinc blende st ructure ( C222 1 ) theoretically. This 

structure is found to be energetically very close in the transition range between 

zinc blende and cinnabar. However, using t he l\Iurnaghan fit in the first place to 

determine the enthalpy-pressure curve, it turns out to describe the energy-volume 

relationship for C2221 rather poorly. Hence , the transition pressure obtained 

for the ZB ---> C2221 structure change is calculated to be 3.06 GPa while the 

C222 1 ---> C2 transit ion is predicted to  occur a t  1 . 75 GPa. This leaves no stability 

window for the C222 1 phase. However. if a simple spline is used as a first est imate 

to describe the energy-volume curve the t ransit ion pressures change to  1 . 35 and 

1 . 94 GPa .  In t hat case, this phase would be accessible. Yet , it shows how 

delicate this system is and that by no means the accuracy of the used method is 

good enough to make an accurate prediction. It should also be noted that the 

transit ion from ZB to C2221 in the experiments also occurs outside t he actual 

stability range of ZB with respect to cinnabar ,  pointing out the special st atus 

this phase has as a hidden form. Other experimental groups even j ust measure 

a mixed state [200] . 

The bulk properties at 2 .85 GPa are determined to  be a =  6 . 149 A .  b = 5 .980 A, 
c = 6 . 1 85 A ,  x(Hg) = 0.3 100 and x (Se) = 0. 2082, with further details list d 

in t able 6 .8 .  The values are in good agreement with experimental d at a  [ 195] , 

but no ground-st ate properties can be given since for lower pressures only the 

relaxation into the zinc blende structure can be observed. The bulk modulus 

is therefore evaluated using t he few data points available. It is again very low. 

Nlore theoret ical work is necessary to solve th is st ructure. 

No matter how t he st ructure change to the cinnabar phase is achieved , according 

to the calculat ions carried out in the course of this study there is no doubt 

that upon pressure increase a transit ion into the rocksalt structure happens at 

13 .56 GPa. This matches previous experimental work. In the ground st ate a 

latt ice constant of 5 .808 A is obtained for this structure with a respective unit­

cell volume of 48 .98 A3 /pair and at 22.4 GPa  values of a = 5.400 A and V = 

39 .37 A 3 /pair are determined. This is in good agreement with the experimental 

data available (e .g .  a = 5 .360 at 21 GPa [203] ) .  The bulk modulus and its 

pressure derivative in  the ground state have also been calculated and are B0 = 

57.9 GPa and 5 .2 ,  respectively. 

At an even higher pressure a transition to the orthorhombic Cmcm structure is 
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predicted , which is found to be stable from 35 .70 GPa onwards, in accordance 

with 28 GPa measured by Huang and Ruoff for the mistakenly denoted bet­

phase. 

Again no ground-state values can be given due to the tendency of the structure 

to directly relax into  the rocksalt st ructure for lower pressure. However, at a 

pressure of 37 .5 GPa, shortly after t he t ran. ition , lattice parameters of a = 

5 . 2 1 5  A, b = 5 .680 A, c = 4 .801  A, y ( Hg) = 0.6383 and y (Se) = 0. 1531 are 

obtained . Those values are in excellent concordance with the experimental data  

by Nelmes and McMahon (see table 6 . 9 ) .  The unit-cell volume is almost identical. 

The bulk modulus and pressure derivative were fitted using the available data. 

and t herefore will most likely underestimate the true value. A bulk modulus of 

B0 = 76 . 6  GPa. and a pressure derivative of 3 .8  are determined. 

Furthermore, at 107.67 GPa. a. transit ion to the cesium chloride structure is 

suggested. Ground-state propert ies for this phase are a = 3 . 609 A, Vo = 

47 .01  A3 /pair, B0 = 53.2 GPa ,  B' = 5 . 7  and Ecoh = 2 .263 eV /pair. At a. 

pressure of 1 15 GPa the lattice constant has decreased to 3 .025 A . However, 

other possible structures should be investigated to exclude phases intermediate 

between Cmcm and cesium chloride . 

6 . 4  Electronic structure 

6 .4 . 1 Zinc selenide 

According to t he results presented here, ZnSe at ambient pre sures in its zinc 

blende modification proves to be a direct-gap semiconductor. The smallest band 

gap appears at the centre of the Brillouin zone with a fundamental gap of 1 . 14 e V 

as can be viewed in fig. 6 .2  (upper panel ) . However, further CBM are located at 

the L- ( 2 . 5  eV) ,  X- (3 . 1 eV) and K-point (3 .6 eV) .  

Experimentalists find a. gap energy of 2 . 82 eV [204] , which is as to be expected 

significantly bigger than the calculated result .  Highly accurate calculations using 

different GW-approximation approaches confirm the measurements ( E9 (f)  = 

2 . 24 - 2 . 68 eV [204] ) .  Yet , the band structure presented here compares very well 

to calcul ations at a similar level of theory, e.g. E9 (f) = 0 .88 eV according to 

Kohn-Sham LDA by Fleszar and H a.nke [ 1 70] . 

Similar t o  ZB-ZnSe, for t he wurtzite modification the results presented here 

reveal a direct band gap semiconductor as well .  The gap energy is 1 . 1 8  eV. This 
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Figure 6 .2 :  Band structure and density of states (normalized per pair) at  zero pres­
sure for the ZnSe polymorphs zinc blende (upper panel) and wurtzite 
(lower panel) calculated within the scalar-relativistic DFT-GGA frame­
work . The valence-band maximum is set to zero energy. The black solid 
lines indicate the valence and the red dashed lines the conducting bands, 
respectively. 
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can be  read from the lower panel of fig. 6 .2 .  Both the VBM as well as t he CBM 

appear at the centre of the Brillouin zone, even though other local maxima and 

minima can be found . However, agreement with  the experimentally measured 

band gap of E9 (f )  = 2 . 87 eV [ 120] is again diminished by the general shortcoming 

of DFT for band st ructure calculat ions. Yet ,  t he difference in the energy of the 

fundamental gaps between the zinc blende and wurtzite form compare very well 

t o  experiment al data. 

6 . 4 . 2 Cadmium selenide 

The bandstructure and DOS for t he zinc blende as well as t he wurtzite st ructure 

of CdSe are depicted in fig .  6 . 3 .  Both clearly confirm that CdSe at normal pres­

sure is a direct-gap semiconductor and in both cases the smallest gap occurs at 

t he f-point of the Brillion zone in the style of the behaviour in ZnSe. 

However, unlike the ZnSe polymorphs the fundamental gap i rather small with 

an energy of E9(f)  = 0.48 eV and E9(f)  = 0 .52 eV for the zinc blende and 

t he wurtzite case, respectively. But other prominent CBM can be found at L 

( 2 . 3 1  eV) , X (3 .23 eV) and J( (3 .69 eV ) in the zinc blende phase. Further 

CBM for the wurtzite structure show up at A and between L (2 . 25 eV) and ]If 
( 2 . 67  eV ) . Lower lying VBM are located at L ,  J( and X for t he ZB modification 

and at A ,  ll1 and H for t he wur tzite polymorph, leaving room for energetically 

higher transitions. 

The data for zinc blende predicts t he quantitative electronic structure correctly, 

yet underestimates the measured band gap ( E9 ( f) = 1 .  70 e V [204] ) by over lOOo/c, 

not surprisingly within the DFT Kohn-Sham approach. However, the results are 

in accordance with  other similar calculations, where DFT-LDA predicts an en­

ergy of E9(f )  = 0. 1 7  eV [1 70] . But Fleszar and Hanke also show that addit ional 

computational effort can improve the result (E9 (f ) = 1 . 25 - 1 . 70 eV) . 
In  t he case of CdSe-wurtzite structure, experimentalists found an energy gap 

of 1 . 7 1  eV by means of photomodulated transmission spectroscopy [204] . A 

semi-empirical tight-binding calculat ion by Kobayashi et al. yields 2 .0 eV, while 

a theoretical investigation at similar level of theory as presented here gives 

E9 (f ) = 0.43 eV (FP-LMTO DFT-LDA and GGA ) [201 ]  in good agreement 

with the results presented here. 
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Figure 6.3:  Band structure and density of states (normalized per pair) at zero pr -
sure for the CdSe polymorphs zinc blende (upper panel) and wurtzite 
( lower panel) calculated within the scalar-relativistic DFT-GGA frame­
work. The valence-band maximum is set to zero energy. The black solid 
lines indicate the valence and the red dashed lines the conducting bands, 
respectively. 
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Figure 6.4: Band structure and density of states (normalized per pair) at zero pres­
sure for the HgSe zinc blende polymorph calculated within the scalar­
relativistic DFT-GGA framework (upper panel) as well as upon inclusion 
of spin-orbit effects (lower panel) . The valence-band maximum is set to 
zero energy. The black solid lines indicate the valence and the red dashed 
lines the conducting bands, respectively. 
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Figure 6 .5 :  Site-projected density of states at zero pressure for the HgSe zinc blende 
polymorph calculated within the scalar-relativistic DFT-GGA framework 
(upper panel) as well as upon inclusion of spin-orbit effects ( lower panel) . 
The black solid , red dashed and blue dash-dotted line indicate the s ,  p 
and d site-projected DOS, respectively. 
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6 .4 .3  Mercury selenide 

According to ref. [ 1 20] HgSe in its zinc blende equilibrium form is a zero-gap 

material or semimetal , which is caused by the lowest conduction band and the 

highest occupied valence band being degenerate at the f-point of t he Brillouin 

zone. However, ZB-HgSe exhibits a so-called inverted band structure, which 

means that t he for most cubic semiconductors first conduction band, f6 , is found 

below the f8-state .  Hence, a negative energy gap is created and at 4 . 2  K a gap 

energy of -0 .27 eV is measured [ 120] . 

This is confirmed by t he invest igat ions concluded in this t hesis and in both ,  the 

scalar-relativistic and t he spin-orbit correct ed descript ion , a zero-gap material is 

found . The CBM as well as the VBM are calculat d to be at the centre of the 

Brillouin zone evoking a disappearing energy gap. Yet ,  other local VBJ\1 and 

CBM exist at the L- ,  K- and X -points in the reciprocal space. Other theoretical 

investigations of t he bandstructure [ 162 .  168,  174] agree rather well with the 

results obtained . The band structure and DOS in the scalar-relativistic model as 

well as upon inclusion of spin-orbit effects is shown in fig. 6 .4 .  The site-projected 

DOS at both levels of theory can be found in fig. 6 .5 .  

By comparing the respective parts of  t he e graphs i t  can be concluded t hat , 

while the lowest lying band with a 4s-Se character is not influenced by spin­

orbit effects, t he following set of 5d-Hg bands is split . To begin with ,  the scalar 

relativistic calculations show a crystal field splitting of approximately 0 .45 e V 

for the d-bands, which is caused by t he tetrahedral arrangement in ZB-HgS. 

However, improving t hose results by the inclusion of spin-orbit effects, the lower 

lying set of 5d-Hg bands is split again . The split t ing of approximately 1 .87 eV 

is again in good agreement with the level splitting of 1 . 86 eV found for the 

atom [ 128] . 

For the Eg (fsv - f6c )-gap values of - 1 . 04 and - 1 . 12 eV are measured in the scalar­

relat ivist ic picture and upon inclusion of spin-orbit effects, respectively. This 

overestimates the experimental result (see above) , but is in excellent agreement 

with values listed in ref. [ 174] (- 1 . 07 eV for VASP-GGA) .  Furthermore, Fleszar 

and Hanke [ 1 70] pointed out that gap energies of HgX compounds calculated 

within LDA need to be corrected by 0. 75 e V. If this value is added, the agreement 

with the experimenta l  result is good. 

Looking at the band structure calculated upon inclusion of spin-orbit effects 

(see lower panel of fig. 6 .4) , the splitting of the highest lying valence band is 

determined to be 0 .25  eV. This again agrees very well the results of Cardona et 
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al. [ 1 74] , who obtain the same value at t he same level of  theory. 

6 . 5  Relativistic influences 

6 . 5 . 1 Equilibrium structure 

System a c u j v  Eo B' Ecoh Vo 
Wurzite 4 .569 7.426 o .3767 1 - 40.9 4.5 4 . 925 67. 1 1  
Zinc blende 6.450 - I - 40.8 4 .5 4 . 922 67.08 
Rocksalt 5.941 - I - 57 .4 4 .8 4 . 8 1 1 52 .41  
Cinnabar 4 .437 10 .429 o . 5  I o .5 45 .34 4 .2 4 . 759 59.07 
Cesium chloride 3.669 - I - 57 .3 4 .7  3 .974 49 . 39 
SC16 

Table 6. 10 :  Ground-state properties of  equilibrium and high-pressure phases of  HgSe 
within the nonrelativistic approach. Presented are the latt ice constants 
a and c (A ) ,  respective internal parameters, ground-state volume Vo 
(A3 /pair) , bulk modulus Eo (GPa ) and its pressure derivat ive B' as 
well as the cohesive energy Ecoh (eV /pair) . 

Looking at HgSe within a nonrelat ivist ic approach leads to the energy-volume 

curves in t he lower panel of fig. 6 .6 .  The changes in the equilibrium st ructure 

are less dramatic than in HgO and HgS due to the absence of an equilibrium 

cinnabar phase in HgSe. However, the summary of the solid-st ate propert ies 

in table 6 . 1 0 , bows that the wurtzite st ructure has a minutely higher cohe­

sive energy than the zinc blende structure. Even though the difference is only 

3 me V /pair. it indicates t hat , similarly to the trend in HgS ( in the absence of 

the innabar st ructure) . in a nonrelat ivistic picture the wurtzite modificat ion is 

preferred in HgSe as well .  This means t hat the relat ive stability of t he wurtzite 

structure compared to zinc blende increases going from ZnSe via CdSe to  HgSe, 

if relat ivist ic effects are neglected (D.E;;::,;zB = -9 , -4 and 3 me V /pair for ZnSe, 

CdSe and nonrelativistic HgSe, respectively as compared to - 13 .97 me V /pair in 

relativistic HgSe) .  Considering the small  energetic deviat ion it is l ikely t hat both 

the zinc blende and the wurtzite form would be found as equilibrium structures 

in a nonrelativistic world . 

The lat t ice constants for t he nonrelativist ic wurtzite phase of HgSe are a = 

4.569 A and c = 7.426 A going along with ground-state volume of 67. 1 1  A 3 /pair 

(for further properties see table 6 . 1 0 ) .  This implies considerably l arger lattice 

constants than in ZnSe (a = 4.049 A )  and CdSe ( a  = 4.386 A) as well as rela-
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Figure 6.6:  The total energy versus volume per cation-anion pair for different crystal 

structures of relativistic (upper panel) and nonrelativistic HgSe ( lower 
panel ) .  
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t ivistic \tV-HgSe ( a = 4.433 A) ,  showing the e ffects of a relat ivist ic contraction. 

This can also be concluded from the bond distances itemized in table 6 . 1 1 .  This 

relativistic contraction can also be observed in the overall volume of the unit cel l ,  

in stark contrast to  t he behaviour in HgO and HgS . For those compounds, due 

to t he change in structure (allowing a dramatic contract ion in the intra-chain 

HgO-distances ) overall a relat ivist ic volume expansion has been observed , even 

though the effect of the relativist ic contract ion in latt ice constants and bond 

distances is even more dramat ic than in HgSe. 

On the other hand the cohesive energy is increased by 1 . 55 eV, which means that , 

even though small r than in HgO and HgS, still a considerable lat tice destabi­

lizat ion by 50% is found when including relativist ic effects. 

System 

Wurtzite 
exp .  

Zinc blende 
exp . 

Cinnabar 
at Pt 
exp . 

Table 6. 1 1 :  

ZnSe CdSe 

dJI!se cl !If AI d!llse cl !If AI  
2 . 49 4 .05 2 .68 4 .38 
2 .45 4 .00 2 . 64 4 .30 
2 .48 4.05 2 .68 4.38 
2 .45 4 .01  2 . 64 4 .29 
2 . 40 3 .50 2 .67 3 .96 

HgSe 

dAJse dA/!11 
2 .7 1  4 .43 

2 . 72 4 .43 
2 .63 4 .30 
2 . 55 4 .00 
2 .58 4 .03 
2 .54 4 .00 

nonrel. 

cl AI Se 
2 . 79 

2 . 79 

2 . 79 

HgSe 
cl !If AI 
4 .55 

4 .56 

4 . 18 

Closest metal-selenium bond distance clJI!se and closest metal-metal dis-
tance clAI AI in A of the respect ive equilibrium structures (unless indicated 
otherwise) of the group 1 2  selenides. 

6 . 5 . 2  High-pressure structure 

Th high-pressur behaviour of HgSe t reated nonrelativi t ically is comparable to 

CdSe leading to t he following transit ion path :  ZB/W --+ RS --+ Cmcm --+ CC. 

The transit ion from the wurtzite to t he zinc blende structure is bound to  happen 

at 3 .38 GPa, whereas both tructures undergo a transit ion to the rocksa.lt phase 

at 1 . 31  and 1 . 24 GPa for the wurtzite and zinc blende modification , respectively. 

For the nonrelativistic RS-HgSe modification a ground-state lattice constant of 

5 .94 1  A is obtained, larger than for all relat ivist ically treated group 12 selenides 

with lattice constants ranging from 5 .372 A in ZnSe to 5 .808 A in HgSe. 

At a higher pressure of 22.80 GPa a transit ion into the Cmcm structure t akes 

place and at 25 .00 GPa the following properties are obtained: V0 = 40.99 A3 /pair , 
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a = 5 .476 A , b = 5 .490 A, c = 5 .454 A ,  y (Hg) = 0 .7235 and y(Se)  = 0 . 2256. 

Subsequently, the transition to the cesium chloride structure is predicted at 

66.59 GPa.  

The enthalpies of the cinnabar as well as the SC16 st ructure are always above 

t he one for the rocksalt modification, hence excluding thos structures as high­

pressure modificat ions. Furthermore, t he C2221 structure becomes unstable in 

t he nonrelativist ic picture as well .  The properties ar summarized in table 6 . 10 .  

This means , even though t he cinnabar structure doe not appear as  an equilib­

rium phase in HgSe, its absence as a high-pressure modification in the nonrela­

t ivistic picture in opposit ion to t he relat ivistic case, demonstrates that relativistic 

effects indeed play a crucial role to xplain the occurrence of the cinnabar struc­

ture as such . 

Furthermore, if one has a closer look at the Hg-Se bond lengths in t he cinnabar 

structure for t he various selenides (see t able 6. 1 1 ) ,  relat ivistic effects significant ly 

shorten t he Hg-Se bond. This is coherent with a very different coordinat ion . In 

ZnSe for in 'tance, a definite fourfold coordination is found, at which t he Zn­

Se bond distance is 2 .40 A (Zn-Zn bond distances equals 3 .50 A ) .  For CdSe at 

t he minimum of its E-V-curve, the closest bond Cd-Se distances are 2 .67,  2 . 76 

and 3 .82 A with two bonds each , whereas t he closest Cd-Cd distance is 3 .96 A.  
This means that a 2+2+2 coordinat ion i s  found. This 2+2+2 coordination is 

also obtained for HgSe, but only if ones looks at a pressure shortly after the 

ZB -t C2 transition. The Hg-Se bond distances at this pre . ure ( 4 .  7 GP a) are 

2 .58 ,  2 . 94 and 3 . 29 A (closest Hg-Hg bond distances equals 4 .03 A) , which is 

in excellent accordance with the experimentally observed struct ure ,  where the 

bond distances are determined to be 2 . 54 ,  2 .89 and 3 .24 A [ 1 2] . However, if 

relativist ic cinnabar-HgSe is studied at 0 GPa to enable comparison with ZnSe 

and CdTe ,  t he chain-like arrangem nt typical for HgS and HgO is still existent . 

The closest Hg-Se distances at this pressure are 2 .55, 3 .29 and 3 . 53 A , which 

means that a 2+4 coordination is still present . This however, is in stark contrast 

to the coordination obtained if cinnabar-HgSe is treated nonrelativistically. In 

that case, the Hg-Se bond distances are 2 . 79 ,  2 . 93 and 3 .79 A indicat ing that the 

2+2+2 coordination obtained for CdSe is restored. This change from a 2+4 to 

a more or l ss fourfold coordination is depicted in fig. 3 .5 .  
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(lower panel) calculated within the nonrelativistic DFT-GGA framework. 
The valence-band maximum is set to zero energy. The black solid lines 
indicate the valence and the red dashed lines the conducting bands, re­
spect ively. 
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6 . 5 . 3  Electronic properties 

If one looks at the electronic tructure of t he HgSe equilibrium structure nonrela.­

t ivist ically, dramatic changes happen . From the band structure shown in fig. 6 . 7  

i t  becomes immediately obvious t hat the wurtzite as well as the  zinc blende 

modification have semiconducting properties . Specifically for nonrelat ivist ic ZB­

HgSe, the 6s states of Hg now become degenerate with t he higher lying bands 

close to the Fermi edge at the f-point . hence abolishing t he inverted band struc­

ture. This in turn means t hat compared to the semimetallic behaviour in the 

relat ivist ic d script ion t he semiconducting properties are now restored . 

The band st ructures and DOS for both the wurtzite and the zinc blende struc­

ture look qualitatively very similar to t he ones calculated for ZnSe and CdS . 

Likev.rise. the VBT\I as well as t he CBT\I are located at r leading to a. direct-gap 

of 0 . 48 eV and 0 .53 eV for zinc blende and wurtzite, respectively. Those val­

ues are quant itat ively very close to  the gap energies in CdSe. indicating that 

the electronic structure of HgSe would follow the trend of CdSe if relat ivistic 

effects are neglected. Detail. concerning this trend can also be t aken from the 

site-projected DOS for both possible modifications shown in fig. 6 .8 .  

6 . 6  Summary 

Overall ,  the st ructural propert ies obtained for the equilibrium as well as high­

pressure phases of the group 12 selenides compare well to experimental and other 

theoretical . tudies , as far a.s t he method used allows for. This applie · for the 

qualitat ive behaviour in th  electronic structure calculat ions as well .  However. 

as pointed out before, t he band gaps determined are st rongly underest imated . 

The predicted transit ion paths are in good concordance with other previous work , 

where available. In addit ion , a cesium chloride high pressure phase for ZnSe and 

HgSe is predicted for the first t ime. However, further work should be carried 

out to test for phase transit ions intermediate between the according Cmcm and 

cesium chloride modificat ions. Furthermore, no t heoret ical work has been car­

ried out to investigate the high-pressure behaviour of HgSe. Hence the results 

presented here, for the first t ime confirm the t ransition path under high pressure 

observed experimentally for this compound. 

Under the neglect of relat ivistic influences, it is found that t he equilibrium struc­

tures are not as significantly altered as in HgS and HgO. Yet ,  a general trend 
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towards t he stability of the wurtzite phase is observed , if one follows the se­

quence ZnS , CdSe to nonrelativistic HgSe, which is interestingly enough totally 

absent in relat ivistic HgSe. Furthermore, a relativistic lattice destabilization of 

1 . 55 eV /pair is found. 

In addit ion , i t  is discovered that even t hough the cinnabar structure is not found 

as an equilibrium structure anymore in HgSe, it st ill appears as an high-pressure 

phase in stark contrast to ZnSe, CdSe and nonrelat ivistic HgSe. Furthermore, 

its coordinat ion changes in HgSe, if one switches off relat ivistic effects, from a 

2+2+2 to an almost fourfold coordination. 

While the relat ivist ic influence on the structural properties and the transition 

path of HgSe are less pronounced than in HgO and HgS ,  t he electronic structure 

of HgSe in t he relat ivist ic and nonrelativist ic picture differ significantly changing 

its emimetallic behaviour as far as to restoration of semiconducting propert ies . 



Chapter 7 

The group 1 2  tellurides 

7. 1 Occurring crystal structures 

7. 1 . 1  Zinc tellurides 

Zinc tell uride is known to crystallize in the zinc blende structure at normal con­

ditions ( a =  6. 1037 A)  [ 1 2] and is a semiconductor with a band gap of 2 .39 eV 

(at  0 K) [ 1 20] . 

I t  t ransforms to ZnTe-11  at about 8 . 5-9 .4 GPa which goes along with a sharp 

discontinuity in t he conductivity [ 132 ,  142 ,  205-207] . Resist ivity as well as op­

tical studies have characterized t his phase to be a transparent semiconductor 

with a 2 . 5  eV band gap [205 , 207] . The st ruct ure of ZnTe-1 1  has been resolved 

by means of ADX [208, 209] . EDX [2 10 ,  2 1 1 ] and combined EDX/EXAFS [2 1 2] 

experiments and appears to have a (site-ordered) cinnabar structure with the 

following structural parameters : a =  4 . 105 A,  c = 9.397 A,  u (Zn) = 0 .540 and 

v(Te) = 0.504 (at 8 .9  GPa) [209] . In contrast to cinnabar-HgO and ciunabar­

HgS , it shows a more or less fourfold coordination (indicated by the values of u 

and v being very close to  0 .5 ,  see chapter 3. 1 )  with  two unequal nearest neigh­

bours at 2 . 528 A and 2 .646 A and the next two nearest neighbours both at 

3 . 743 A. The transition from zinc blende to cinnabar was confirmed in calcula­

t ions carried out by Lee and Ihm as well as Cote et al. [ 180,  2 13] .  

A further high-pressure phase can be detected above 1 1  GPa (ZnTe-I I I ) , first 

proposed in ref. [ 132] . Upon subsequent investigation this phase is found to be 

metallic [205 , 206] . Even though the structure proved difficult to solve by diffrac­

tion and EXAFS measurements, ADX studies by Nelmes et al. [2 14] finally pin-

1 59 
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pointed it to  be a distorted-RS arrangement inherit ing the space group Cm cm1 . 
At 15 . 7  GPa the authors determined the lattice constants to be a = 5 .379 A,  

b = 5 .971 A and c = 5 .010 A and t he atomic posit ion y (Zn) = 0 .640 and 

y (T ) = 0. 190,  respectively. Interestingly, this structure has a surpri. ing fivefold 

coordination , where the five unlike nearest neighbours have a distance of about 

2 .  7 A. Again, t heoretical studies support this transformation and predict t he 

Cmcm phase t o  be stable up to 100 GPa [ 180, 2 13] .  

Another change in st ructure is indicated by new diffraction peaks at 85 GPa, 

which is supposedly stable up to 93 GPa, the highest investigated pressure by 

respective authors [ 1 2] .  However the structure has not been solved so far and 

is in disagreement with the above theoret ical findings. Furthermore, a Raman 

study by Camacho et al . predicts an intermediate phase between cinnabar and 

Cmcm, which has a SC16 st ructure [2 15] .  This is however not confirmed by the 

calculations in ref. [ 1 39] .  No reports on post-Cmcm high-pressure phases have 

been found . 

It is noteworthy to emphasize the absence of the in I I-VI semiconductors very 

common rocksalt structure as a low temperature phase in ZnTe. This is mo t 

likely due to t he fact that ZnTe has the lowest ionicity in its family [83] . However, 

diffract ion studies (EDX ) show a transit ion to ZnTe- IV with a rocksa.lt st ructure 

for high pressures a. well as high temperatures , at which the triple point for the 

cinnabar, Cmcm and RS phases was determined to be at 13 GPa and 453 K [2 16] .  

Later on t ables 7. 1 ,  7 .4 and 7.5 will summarize the structural parameters and 

t ransit ion pressures for the zinc telluride phases obt ained as t he outcome of t his 

t hesis (see chapters 7. 2 . 1  and 7.3 . 1 ) .  This will include the results of previous 

experimental and theoret ical invest igations introduced above. 

7. 1 . 2  Cadmium tellurides 

At ambient pressure cadmium telluride has a zinc blende structure with a l at­

tice constant of a = 6 .482 A [ 12] and is widely used as a. solar cell material .  

A transit ion into CdTe-I I  was first observed at about 3 .5 GPa by Edwards and 

Drickamer (optical measurements ) [ 140] and a second phase t ransition was dis­

covered at 10 GPa by subsequent conductivity measurements [ 142] . 

Upon fur ther investigation by diffraction techniques to identify the structure ,  

CdTe- I I  was found to have a rocksalt structure [ 14 1 ,  185, 2 1 7] ,  with a =  5 .930 A 

1 This introduced a proper description of the Cmcm struct ure into the community explaining 
u nresolved structu res of various I lla-Va compounds and GaAs. 
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(at 3 .9  GPa) .  Gonzalez et  al. later identi fied the NaCl phase a s  a semiconduc­

tor wit h  a band gap of 0 .08 eV at 6 . 8  GPa [2 18] . However, t he transition was 

questioned by ADX measurements of ref. [2 19] ,  who proposed an actual double 

transit ion of zinc blende to cinnabar at 3 .4 GPa closely followed by a rocksalt­

cinnabar passage at 3.9 GPa introducing an intermediate semiconducting site­

ordered cinnabar phase2 . This double transition is confirmed by calculations of 

Ahuj a et al . , who however find a different transition pressure of 10 GPa for the 

second t ransit ion [220] . 

The volume changes for t he two transit ions are determined to be 3 . 4  and 12 . 2  %, 

respectively. A mapping of the phase diagram [22 1 ]  pinpointed t he triple point 

of the zinc blende. cinnabar, rocksalt phase transit ion at 2 .6 GPa and 735 K ,  

showing t hat a direct ZB to RS passage i s  possible above this temperature. 

The latt ice parameters obtained for t he cinnabar phase are a = 4 .3 19  A and 

c = 10 . 265 A ,  whereas u (Cd)  and v (Te) are 0.622 and 0 .565, respectively at 

3 .2  GPa [222] . Similar to HgTe, and indicated by u and v being so close to 0 .5 ,  

t he cinnabar form has a 4+2 coordination ( again very different from HgO and 

HgS) , gett ing closer to the sixfold N aCl coordination upon pressure increase. 

The other transit ion reported at 10 GPa  has shown to be to a phase with a site­

ordered Cm cm structure ,  distorting N aCl orthorhombically [223] . The latt ice 

parameters are determined to be a =  5. 573 A, b = 5.960 A and c = 5 . 284 A with 

y(Cd) = 0 .650 and y(Te) = 0. 180 (at  18 .6 GPa) ,  changing the sixfold Na.Cl­

coordination to a 5+3 coordination . The t ransit ion is supported t heoretically, 

but yet again wit h  a different transit ion pressure (Pt = 15 GPa) [220] . 

Nelmes et al. furthermore report another phase transit ion at 42 GPa ,  but could 

not solve t he structure [ 1 2] and find no further transit ion up to 55 GPa.  

The t heoretical study of Ahuj a et a l .  predicts a transit ion to t he CsCl st ruc­

ture at 28 GPa [220] . Another theoret ical study by Cote et al. confirms the 

order of transit ions but slight ly overest imates the pressure for the RS-Cmcm 

passage [ 180] . 

Chapters 7 .2 .2  and 7.3 . 2 ,  where the results for the cadmium tellurides are pre­

sented , will directly compare the structural parameters and the transition pres­

sures of the different phases as determined by previous studies to the values 

obtained in the thesis at h and (see t ables 7 .2 ,  7 .6 and 7 .7) .  

2 Historically, this was the first t ime the c innabar phase was found in a compound apart 
from the mercury chalcogenides. 
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7. 1 . 3  Mercury tellurides 

The low pressur phase of mercury t elluride has the zinc blende structure ,  where 

a = 6.4603 A, and was found to be semimetallic [189] . The naturally occurring 

mineral ,  called coloradoite, is very soft and has an iron-black metallic luster. 

In general mercury telluride shows a behaviour very similar to HgSe, meaning 

it has an analog transition sequence of structures from zinc blende to cinnabar 

to rocksalt to Cmcm with a 'hidden ' intermediate C2221 phase between the zinc 

blende and cinnabar modificat ion. 

The first t ransition occurs at 1 . 3 GPa [ 169] changing the electronic properties to 

a semiconducting behaviour as indicated by a steep increase in resistivity [224] 

with an energy gap of 0 . 7  eV at 2 GPa (0 eV at 6.5 GPa) [ 191 , 192] . The (site­

ordered ) cinnabar st ructure for this phase was first proposed by Mariano and 

Warekois and has t he following structural parameters at 3 .6 GPa: a = 4 . 383 A, 

c = 10 .022 A, u ( Hg) = 0.64 1  and v (Te ) = 0. 562 [92 , 185] . With those parameters 

HgTe shows a 4+2 coordination wit h each atom having three pairs of unlike 

neighbours at 2 . 732 ,  2 .995 and 3.460 A. The transit ion to cinnabar-HgTe goes 

along wit h  a volume change of 1 1  % [225] . 

Upon compression the structure becomes more similar to NaCl, but significant 

discontinuit ies in t he transition for the structural parameters are observed [225] . 

At 8 GPa the t ransit ion to  a metallic rocksalt phase occurs as pointed out by 

resistivity as well as diffraction studies [ 19 1 ,  1 92] . The structure was identified 

in refs .  [92 ,  226] . The new phase is site-ordered with a = 5 .843 A at 8 .9  GPa 

and the volume change for t he transit ion is determined to be 3 % [225] . 

Like for HgSe however , later on an orthorhombic C2221 structure was found by 

McMahon et  al. as a 'hidden ' intermediate phase [195] . It is supposed t o  occur 

at 2 .25 GPa along with a volume change of 1 . 2 % and the structural parameters 

at 2 .55 GPa are a = 6 .295 A, b = 6 .24 1  A , c = 6.364 A, x (Hg) = 0 .3 15  and 

y (Te) = 0 .205 [1 95] . This means that the distortion is less than in HgSe, t herefore 

making it hard to be certain of t he site-ordered nature of the structure. This 

structure transforms into the cinnabar form at 2 .6 GPa, where 6.VjV0 = 8 . 7  % . 

At 1 2  GPa a transition to  HgTe-IV occurs [ 191 ,  192] which was, like in HgSe, 

mistaken to be a transition to beta-tin or orthorhombic structure [149,  226] , 

but eventually identified to be site-ordered Cmcm by McMahon et al. using 

ADX techniques [227] . The structure was solved at 18 .5 GPa leading to lattice 

constants of a = 5.5626 A, b = 6 . 15 16  A and c = 5. 1050 A with t he Hg and Te 

atoms at y (Hg) = 0.624 and y (Te) = 0. 1 52 ,  respectively. This leads to a five-
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fold coordinat ion , which is however les. pronounced than in CdTe. The volume 

change for t he t ransit ion is 1 . 2  % at 1 1  GPa.  

Furthermore, Idiahon et al. could explain t he data with  another slight ly better 

fit of another Cmcm structure. The Hg and Te sites are interchanged resulting 

in two nearest neighbours. However, it has been eliminated by X-ray absorpt ion 

invest igat ions of Briois et al. [228] . 

In addition ,  Huang and Ruoff observed yet another transit ion at 38. 1 GPa to 

HgTe-V inheriting a distorted-CsCl st ructure [203] . Telmes et al. confirmed thi 

at a however lower pressure of 28 GPa (50 GPa for a complete transformation) 

with a volume change of 3 .0 o/c and obtained a latt ice constant of a = 3 .299 A 

(at 5 1  GPa) [209] for a disordered C ·Cl (bee) structure .  

Later. in chapters 7 .2 .3 and 7 .3 .2 .  the tables 7 .3 .  7 .8 and 7 .9 will give an overview 

of the different cadmium telluride phases including t heir st ructural parameters 

and the transit ion pressures. For comparison t hose include the results of previous 

experimental invest igat ions and calculations as discussed above. 

7 . 2  Equilibrium structures 

7. 2 . 1  Zinc telluride 

Looking at t he volume-energy relat ionships for t he different modificat ions of 

ZnTe in the upper panel of fig . 7. 1 ,  the zinc blende structure is obviously t he 

mo. t stable one wit h a cohesive energy of 4 . 592 eV. This is consistent with 

previous experimental as well as theoretical results ,  as is t he obtained latt ice 

constant of a = 6 . 1 79 A, especially within the accuracy of the used methodology. 

For bulk modulus and t he according pressure derivat ive values of B0 = 43 .6  GPa 

and 4 .9  are calculated . They compare rather well with other th or tical data ,  but 

again underest imate the experimental value ( B0 = 50.9 GPa, B' = 5 .04 [ 153] ) 

by a few percent . 

The wurtzite tructure of ZnTe was calculated as well and has a cohesive energy 

of 4 . 580 eV /pair, which is 12 me V /pair below the one obtained for the zinc blende 

phase. This difference is slightly bigger than for the elenides and sulfides, which 

supports that zinc blende is the only equilibrium structure found in ZnTe. This 

result also matches the energy deviation of 6 .4  me V / atom determined in ab-init io 

LAPW calculat ions by Yeh et al. [ 158] . The equilibrium parameters obtained for 

wurtzite are a = 4 .358 A, c = 7. 1 78 A and u = 0.3733 and compare well to the 
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Figure 7. 1 :  The total energy versus volume per cation-anion pair for different crystal 
structures of ZnTe (upper panel) and CdTe (lower panel) . 
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Property 
Zinc blende 
a 

Vo 
Bo 
B' 

Ecoh 
Pt to SC16 

Pt to C2 
Wurtzite 

a 

c 

cja 
u 

Vo 
Bo 
B' 

This work 

6 . 1 79 
58 .98 
43 .6 
4 .9 

4 . 592 
9 . 33 
9 .80 

4 .358 
7. 1 78 
1 . 647 

0 .3733 
59 .04 
43 .6  
4 . 6  

Ecoh 4 . 580 

Other theoretical 

6 .013a ,  6 .020b , 6 . 1 74c 
54.35a , 54.54b , 58 .84c 
54 . 7a ,  49 .2b ,  55 . 2 1d 

4 . 88c , 4 . 6d 

4 .40/ 
1 2 . 7" 

5 .9a ,  8 .06J ,  1 1 .91 

4 .273k 
6 .989k 
1 . 636k 
0.375k 
55. 26" 

1 65 

Experiments 

6 .089b, 6 . 103e 
56 .44b, 56.83e 

50.9e 
5 .04e 
4 .56/ 

9 .69 '  8 .5-9 .4i 

aPW-PP LDA from ref. [ 180] : b ab-initio GDSP /DFT from ref. [162] : csCR-LNITO 
from ref. [229] ; dFP-APW +lo LDA from ref. [ 199] ; e from ref. [ 1 53] ; f semi-empiri­
cal TB calculat ion from ref. [ 157] and refs. therein; 9Raman study from ref [2 15] ; 
"TB-LMTO from ref. [ 139] : i from ref. [ 1 2 ] :  J from ref. [2 1 3] ;  kLAPW-LDA from 
ref. [ 1 5 8] ;  1DFT from ref. [230] . 

Table 7 . 1 :  Ground-state properties o f  the equilibrium phases o f  ZnTe. Presented 
are the latt ice constants a and c (A) ,  internal parameter u, axial ratio 
cja ,  ground-state volume Vo (A3jpair ) ,  bulk modulus Eo (GPa) and its 
pressure derivative B' as well as the cohesive energy Ecoh ( e V /pair) and 
the transition pressure Pt (GPa) where applicable. 

results of Yeh et al. Furthermore, values of 43.6 GPa and 4 .6  are calculated for 

the bulk modulus and its pressure derivative. 

For details and to compare the results  presented here with  previous experimenta l  

and theoret ical work in  detail see table 7 . 1 .  

7.2 .2  Cadmium telluride 

For CdTe, according to  the calculations presented here, the zinc blende struc­

ture again is t he equilibrium phase in accordance with experiments. This can 

already be deduced from the energy-volume curves in the lower panel of fig. 7. 1 .  

The cohesive energy of 4 .2 1 7  eV /pair matches t he experimentally obtained value 

(Ecoh = 4 . 1 2  eV /pair [ 1 57] ) very well. 



1 66 

Property 
Zinc blende 
a 
Vo 
Eo 
E' 
Ecoh 
Pt to RS 
Pt to  C2 
Pt to  SC16  
Wurtzite 
a 
c 

c/a 

u 

Vo 
Eo 
E' 

This work 

6 . 620 
72 . 529 
35 . 6  
4 .8  

4 . 2 1 7  
4 . 1 1  
4 . 16  
4 . 1 8  

4 . 674 
7 .664 
1 . 640 

0 .3740 
72 . 5 1  
35 .5 
5 . 2  

Ecoh 4 . 209 
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Other theoretical 

6 .430a,b , 6 .487c , 6 .486-6 .573c 
66 .46a,b , 68.25c , 68. 2 1-71 . 00c 

46.0a , 29 .5b , 4 1 .9c 
4 . 29c , 3 . 6-4 .36c 

4 . 1 36c , 3 .74d 
3 . 79h 

3 .39 

4 . 550e 
7 .45 1 e  
1 . 638e 

0. 3754e 
66 . 79e 
45.4e 

Experiments 

6.48 1  c 
68.06c 

44 .5b , 42 .4d 
6 .4c 

4 . 1 2d 

aPW-PP LDA from ref. [ 180] ; b ab-initio GDSP jDFT from ref. [ 162] ;  cl\IID from 
ref. [23 1 ]  and refs . therein; dsemi-empirical TB calculation from ref. [ 157] and refs .  
therein ; eLAPW-LDA from ref. [ 1 6 1 ] ; !from ref. [219] ; 9FP-LMTO from ref. [220] ; 
h PP-GGA from ref. [232] . 

Table 7 .2 :  Ground-state properties of  the equilibrium phases of  CdTe. Presented 
are the lattice constants a and c (A ) ,  internal parameter u ,  a..xial ratio 
cja ,  ground-state volume Vo (A3 /pair) , bulk modulus Bo (GPa) and its 
pressure derivative B' as well as the cohesive energy Ecoh ( e V /pair) and 
the transition pressure Pt (GPa) where applicable. 

The lattice properties obtained are a = 6 .620 A , B0 = 35 . 6  GPa and E' = 4.8 ,  

al l  of which are in good agreement with previous experimental and theoretical 

data listed in t able 7 .2 .  Again ,  t he variations of a few percent compared to ex­

periments is to be blamed on the method used . 

The wurtzite structure was considered as well even though no experimenta l  data 

i available due to the absence of this structure in CdTe. With the obtained 

lat t ice constants of a = 4 .674 A and c = 7 .664 A and the internal parame­

ter u = 0.3740 agreement is reasonable with a LAPW-LDA study by ref. [16 1 ] 

( a  = 4 .550 A, c = 7.451 A, u = 0.3754) . The cohesive energy obtained is 

4 . 209 eV /pair. This means the energy difference to the zinc blende structure 

is 8 me V /pair, which matches another theoretical value extremely well, i .e .  

9 meV/pair using LAPW-LDA in ref. [1 6 1 ] . 
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7. 2 .3  Mercury telluride 

Property 
Zinc blende 
a 
Vo 
Bo 
B' 
Ecah Pt to C222 1 

Pt to C2 
Wurtzite 

a 

c 

cja 
u 

Vo 
Bo 
B' 

This work 

6.660 
73.85 
34 .4  
5 .2  

3 .059 
3.04 
2 .30 

4. 703 
7. 723 
1 .642 

0 .374 1  
73 . 95 
34 . 1  
5 . 2  

Ecah 3 .044 

Other theoretical 

6.451-6 . 718a , 6 .530b . 6 . 633c 
67. 1 -75.8a , 69 .6 1 b ,  72 .96c 

46 .4-47.8a , 47. 1 b  

9.481 

1 . 5h 

1 67 

Experiments 

6.453d, 6 .461 e 
67. 1 8d 

47 .6b ,  42 .31 
2 . 1  d 

2 . 1 76e (Esub ) 
2 . 559 
1 . 3i 

a FP-LMTO LDA and GGA from ref. [ 168 ] ;  6 ab-initi o GDSP /DFT from ref. [ 162] ; 
cPW-PP GGA from ref. [ 1 74] ; dX-ray diffraction from ref. [ 149] ; efrom ref. [ 1 20] ; 
I semi-empirical TB calculat ion from ref. [ 157] and refs. therein: 9X-ray diffraction 
from ref. [ 195] ; h PW-US from ref. LDA [233] ; i from ref. [ 1 69] . 

Table 7.3: Ground-state properties of the equilibrium phases of HgTe. Presented 
are the lattice constants a and c (A) , internal parameter u, axial ratio 
cja ,  ground-state volume Vo (A3 /pair ) , bulk modulus Bo (GPa) and its 
pressure derivat ive B' as well as the cohesive energy Ecah (eV /pair) and 
the transition pressure Pt (GPa) where applicable. 

The equilibrium state for HgTe is again the zinc blende structure , which is sup­

ported by the energy-volume curves presented in the upper panel of fig. 7.5 .  The 

cohesive energy obtained is 3 .059 eV /pair, lower than any other investigated 

structure. 

A latt ice constant of 6 .660 A is determined along with a. ground-state volume 

of 73.85 A3 /pair, a. zero-pressure bulk modulus of B0 = 34.4 GPa. and a. pres­

sure derivative of 5 .2 .  All properties agree, within t he expected accuracy of the 

method used, with available experimental and theoretical data (see t able 7.3 for 

details ) ,  but again overestimate the ground-state volume while underestimat ing 

the bulk modulus . 

The wurtzite structure, which was investigated as well ,  is found to be 1 5  me V /pair 

higher in energy than t he zinc blende phase, which j ustifies that this modification 
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does not occur under normal condit ions in HgTe. The calculated propert ies are 

very similar to the ones obtained for t he zinc blende modificat ion , but unfortu­

nately no other studies could be found to compare with .  

7 . 3  High-pressure phases 

7. 3 . 1  Zinc telluride 

As a result of the calculat ions presented here , first a transit ion from the zinc 

blende structure to the SC16  or the cinnabar structure is obtained. The pressure 

at which this happens is 9 . 33 and 9.80 GPa, respect ively. Both st ructures are 

clo e in energy. For t he cinnabar arrangement a ground-st ate cohesive energy of 

4 . 290 eV /pair is found, which is about 70 me V lower t han t he one for the SC16  

form. This deviat ion narrows down for higher pressure. This means that with 

the methods available at th moment , no statement can be made as to which 

st ructure is more stable. In addit ion , both calculated t ransition pressures are 

in very good agreement with other theoretical as well as experiment al results as 

can be concluded from t able 7. 1 .  Furthermore, the transit ion between t he SC16 

and cinnabar structure is  calculated to be possible at 15 . 50 GPa.  

Even though Qteish and Munoz already mention the l ikelihood of a stable SC16 

phase in ZnTe [ 181 ] , t he experimental invest igations by Cama ho et al. [215] as 

well as t he TB-LMTO calculation by ref. [ 139] conclude the cinnabar phase is 

preferred over t he SC16 phase. However, Camacho et al. at least observe the 

SC16 structure following cinnabar in a narrow pressure range of 1 2- 13 .8 GPa, 

which is extremely close to the stability range of approximately 2.01 GPa ob­

tained here. Refer to table 7 .4 for details. 

If  the SC16----tC2 transition is not considered, the results presented here predict 

that both structures becom unstable with respect to the Cmcm symmetry (skip­

ping the rocksalt structure in contrast to all other group 12 chalcogenides) .  This 

can already be deduced from the upper panel of fig. 7. 1 .  The transition pressures 

are 1 1 . 34 and 9 . 73 GPa for the SC16 and cinnabar form, respectively, in good 

agreement with other theoretical and experimental results. 

The lattice constant for the SC16 modification under ambient conditions is cal­

culated to be 7 .578 A, which means a ground-state volume of 54.40 A3 /pair. 

The Wyckoff parameters are u = 0 . 1570 for the Hg atoms and v = 0.6423 for 

the Te atoms , while the bulk modulus and its pressure derivative are 4 1 . 5  GPa 
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Property This work Other theoretical Experiments 
SC1 6 
a 

Vo 
u 

V 

Bo 
B' 
Ecoh 
Pt to  Cmcm 
Cm cm 
a 

b 
c 

bja 
cja 
y(Zn)  
y (Te) 

Vo 
Bo 
B' 
Ecoh 
Pt to  CC 
Cesium chloride 
a 

Vo 
Bo 
B' 
Ecoh 

7 .578 ( 7. 200) 
54.40 (46 .66) 

0 . 1 570 (0 . 1484) 
0 .6423 (0 . 6436) 

4 1 . 5  
4 .5  

4 .363 
1 1 . 34 

5 .424 (5 . 360) 
6 .852 (6 . 009) 
5 .601  (4 .9 13 )  
1 . 263 ( 1 . 1 2 1 )  
1 . 033 (0 . 9 17) 

0 . 6395 (0 . 6260) 
0 . 2445 (0 . 1 848) 
52 .00 (39 .56) 

49 . 2  
3 .8  

4 .062 
130 .35 

3 . 596 ( 2 . 925) 
46 .51  (25 .03) 

50.8 
4 .9 

3 . 235 

102 .35a 

5 .655b 
6 . 277b 
5 . 267b 
1 . 1 1Gb 
0 .93 1 b  

5 . 379c 
5 .971 c 
5 .0 1Q C  
l . l lOC 
0 .93F 
0.640C 
0 . 1 90C 
40. 23c 
134d 
2 .4d 

0 TB-LI\ITO from ref. [ 1 39] : bDFT from ref. [230] : cfrom ref. [2 14] at 15 . 7  GPa: 
dX-ray diffraction from ref. [234] . 

Table 7.4 :  Ground- tate properties of the high-pressure phases of ZnTe. Presented 
are the latt ice constants a, b and c (A) ,  respective internal parameters, 
ground-state volume V0 (A3 /pair ) ,  bulk modulus Eo (GPa) and its pres­
sure derivat ive B' as well as the cohesive energy Ecoh (eV /pair) and the 
transition pressure Pt (GPa) where applicable. Values in brackets indicate 
higher pressure. 

and 4 .5 .  The cohesive energy in the ground state is 4 .363 eV /pair. If one looks 

at the lattice constant at a higher pressure close to the t ransition (9 .20 GP a ) , 

a value of 7. 200 A (V  = 46 .66 A3 /pair ) is obtained . This means that t he re­

sults presented here bracket t he latt ice constant indicated by Gangadharan et al. 

(a = 7. 292 A) [ 139] , who unfortunately do not give the pressure at which their 
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Property 
Cinnabar 
a 
c 
cja 
u 

V 

Vo 
Bo 
B' 
Ecoh 
Pt to SC 1 6  
Pt to  Cmcm 
Rocksalt 
a 
Vo 
Bo 
B' 
Ecoh 
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This work 

4 .351  (4 . 1 0 1 )  
9 .  783 (9 .373) 
2 . 248 (2 . 286) 

0 . 4991 (0 . 5 1 75 )  
0 .4996 (0 . 5 1 1 2 )  
53 . 29 (45 . 5 1 )  

47 .7 
4 .9  

4 . 290 

9 .73 

5 . 775 (5 .500) 
48 . 14 ( 4 1 . 59)  

54 .3 
4 .9 

3 . 999 

Other theoretical 

4 . 1 58a , 4 . 305b 
9 .899b 
2 . 299b 

52 .96b 
62. P ,  5 1 . 4b 

4 . 5b 

5 . 749b 
47 .51b 
57 .0b 
5 .4b 

Experiments 

4 . 1 05c 
9 .397c 
2 .289c 
0 . 540C 
0 . 504C 
45 . 7F 
9 1 . 3d 

0 .8d 

5 .5029 
4 1 .649 
1459 
59 

aTB-LMTO from ref. [ 1 39] ; bDFT from ref. [230] ;  Cfrom ref. [209] at 8 .9 GPa; 
dX-ray diffract ion from ref. [234 ] ;  eRaman study from ref [215 ] :  f from ref. [ 1 2 ] :  
9X-ray diffraction at 1 1 .6  GPa from ref. [ 2 12] . 

Table 7.5 :  Ground-state properties o f  the high-pressure phases o f  ZnTe. Presented 
are the lat t ice constants a and c (A) , respective internal parameters , 
ground-state volume Vo (A3 /pair ) ,  bulk modulus Bo (GPa) and its pres­
sure derivative B' as well as the cohesive energy Ecoh ( e V /pair ) and the 
transition pressure Pt (GPa) where applicable. Values in brackets indicate 
higher pressure. 

data is taken. However, the bulk modulus is not in accordance with their results . 

This might be due to the different method used. No further data is available to 

compare with .  

On the other hand,  the lattice parameters for the cinnabar modification are 

a = 4 . 1 0 1  A, c = 9 .3 73 A, u = 0 . 5 175 and v =0.5 1 1 2  ( V  = 45 . 5 1  A3 /pair) at 

10 .92 GPa. The corresponding ground-state values are given in t able 7.5 and 

agree considerably well with the results of existing investigations by Nelmes et 

al. and G angadharan and eo-workers [139, 209] . Comparability with ref. [230] 

is reasonable, considering that the authors fixed the internal parameters with 

respect to the experimental values . 

ZnTe- I I I  has according t o  the result discussed here a Cmcm structure ( Ecoh = 

4 .062 eV /pair) with l attice constants of a =  5 .424 A , b = 6 .852 A and c = 5 .60 1  A 
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along wit h  y(Zn)  = 0 .6395 and y(Te)  = 0 . 2445 as internal parameters. The 

latt ice constants are in reasonable agreement with the calculat ions of ref. [230] , 

who have fixed t he internal parameters ( as well as the latt ice const ant ratios) to 

the experimental ones measured by Nelmes et  al. [2 14] . This procedure explains 

the deviat ions in the bulk modulus as well (see table 7.4 ) .  The results are 

furthermore in concordance with experiments .  especially if one looks at t he lat t ice 

const ant at a post-transit ion pressure :  At 16 .53 GPa latt ice constants of a = 

5 .360 A ,  b = 6. 009 A and c = 4 .913 A and internal parameters of y (Zn)  = 0.6260 

and y(Te) = 0 . 1 848 are derived (experimental dat a: a = 5.379 A, b = 5 .971  A,  

c = 5 .0 10  A. y (Zn)  = 0 . 640, y(Te) = 0 . 190 at  15 . 7  GPa) .  However. the  bulk 

modulus seems to be severely underestimated compared to the experiment values. 

For furt her details concerning the bulk properties of Cmcm-ZnTe see table 7.4 .  

Furthermore. t he present results predict a transit ion of the Cmcm phase to a 

CsCl-like st ructure at 130 . 35 GPa. The ground-. tate propert ies can be gathered 

from table 7 .4 .  At a post-t ransit ion pressure of 138 .08 GPa, the calculated lattice 

const ant is 2 .925 A. Further work has to be c lone, to establish whether the CsCl 

structure becomes unst able in t he presence of another intermediate phase. This 

is very likely. since Nelmes and l\IcMahon ob ·ervecl a phase transit ion around 

85 GPa [ 1 2] . Here, specially a distorted CsCl or bee structure \voulcl be worth 

investigating. 

The calculat ions presented here agree with the interest ing fact t hat the stan­

dard t ransit ion path for ZnTc does not involve the rocksalt structure in st ark 

cont rast to  the other zinc chalcogenides . The ground-state cohesive energy of 

Ecoh = 3.999 eV /pair is considerably higher t han the one obtained for the Cmcm 

structure. But since there is evidence of this modificat ion at high t emperatures 

(at 1 1 . 5  GP a and 400°C) [2 12] ,  the bulk properties are included here as well .  The 

ground-state values obt ained are : a = 5 . 775 A, B0 = 54 .3 GPa and B' = 4.9 .  

At an increased pressure of 1 1 . 3  GPa t he lat t ice constant decreases to 5 .500 A 

(V  = 41 .59 A3 /pair ) .  This is in excellent concordance with the results in ref. [2 12] 

(a = 5 .502 A at 1 1 . 6 GPa ) .  However, the bulk modulus is severely underesti­

mated , which is to be blamed on t he fixed value for B' used in t he experimental 

fit and t he fact that the authors of ref. [2 1 2] give their bulk modulus at higher 

pressure. Furt hermore, t he ground-state values are in excellent agreement with 

previous t heoretical work (see table 7.5 ) .  
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7.3 .2  Cadmium telluride 

Strict ly speaking t he tran it ion path calculated for CdTe would go from t he zinc 

blende via the rocksalt to the distorted rocksalt (Cmcm) structure and finally to 

a caesium chloride arrangement . The according transitions pressures are 4. 1 1 ,  

12 .4  and 69.5 G Pa .  

However, the situat ion is rather complicated with the cinnabar and SC16  st ruc­

tures being energetically in close proximity, especially in the transition region. 

The transit ion pressures are very closely spaced with values of 4 . 1 1 ,  4 . 1 6  and 

4. 1 GPa for t he ZB--tRS ,  ZB--tcinnabar and ZB--tSC16 tran. it ion, re. pectively. 

Therefore, in a pressure range of 4. 1 1  to 4. 18  GPa several transitions are possible 

from a theoret ical point of view and the method used is not accurate enough to 

make a definit st atement . 

Yet ,  it is very likely that those st ructures can be found experimentally, at  least 

as metastable or hidden intermediate phases. The case found here is similar 

to the situat ion for t he C2221 pha e in HgSe and HgTe. Outside the stability 

range of ZB with respect to RS (0-4 . 1 1  GPa ) ,  two possible transit ions are found 

to either the cinnabar or t he SC16 structure at 4. 16 and 4 . 18  GPa respectively. 

But like for C2221-HgSe an actual tability range cannot be determined , since 

the C2--tRS and SC16--tRS transitions are calculated to happen at 3 . 96 and 

4 .05 GPa,  respectively. 

It is mentioned again that only slight energy deviations due to t he methodology 

would change this picture completely, let alone the consideration of l ifferences 

du to temperature effects . It should also be mentioned that for the cinnabar 

st ructure ,  even t hough found upon pressure increase as well as decrease , a sin­

gle phase sample could only be obtained in downstroke experiments [ 1 2] .  This 

supports the fact that all tructures are energetically very similar. 

Concerning the structural properties a ground-state volume of 57 .52 A3 /pair i 

obtained for the rocksalt structure, leading to a latt ice constant of 6. 128  A . It 

decreases to 5 .875 A (V = 50.69 A 3 /pair) at a pressure of 8.3 GP a in excellent 

agreement with available experimental data ( 5 .843 A at 8 .9 GPa [226] ) .  The 

lattice constant is furthermore in good concordance with other theoretical results 

(see table 7 .6 ) . The calculated bulk modulus ( B0 = 47.5 GPa) underestimates 

the experimental value, but is acceptable at the lower end of the theoretical 

results, as is its pressure derivative ( B' = 5 . 3 ) .  

The bulk properties determined for the CdTe-IV phase (Cmcm) also m atch pre-



7.3. HIGH-PRESSURE PHASES 

Property 
Rocksalt 
a 
Vo 
Eo 
E' 
Ecoh 
Pt to Cmcm 
Cm cm 
a 
b 
c 
bja 
cja 

Y1 
Y2 
Vo 
Eo 
E' 
Ecoh 
Pt to CC 
Cesium ch loTide 
a 
Vo 
Eo 
E' 
Ecoh 

This work 

6 . 1 28 (5 .875) 
57.52 (50.69) 

47.5 
5 .3 

3.868 
12 .41  

(5 .648) 
(6 .084 ) 
(5 .227) 
( 1 . 077) 
(0 .926) 
(0 . 6396) 
(0 . 1 732) 

56 .90 (44. 9 1 )  
49.02 

3.9 
3 .816 
69.53 

(3 . 225) 3. 788 
(33 .54) 54 . 35 

45.9 
5.0 

3. 135 

Other theoretical 

5. 787-5 .8 10a ,  5 . 924b 
48.45-49.03a , 5 1 . 97b 

74 . 8- 76 . 2° , 66 .4b ,  55 .3e 
4 . 29-4 .67a , 4 . 2b ,  5 . 2e 

15e 

5 . 568b 
6 . 392b 
5 .501 b 
1 . 148b 
0. 988b 
0 . 6532b 
0 . 1 770b 
48.95b 
67.0b 
4 . 5b 

28e 

4 . 609b . 2 . 936e 
25 .3 1  e 

66 .9b ,  108 .oe 
4 . 72b . 5 . 3e 

1 73 

Experiments 

5.930c , 5 . 843d 
52 . 1 3c ,  49 .87d 

69f 
5 . 1 ! 

5 .5739 
5 .9609 
5 . 2849 
1 . 0699 
0 .94 9 
0 . 6509 
0 . 1 09 
43 .99 

0 LDA and LDA-GGA from ref. [232] ; bFP-LN ITO from ref. [ 1 46] ; ex-ray diffrac­
t ion at 3 .9 GPa from ref. [2 19] ;  dX-ray diffraction at 8 . 9  GPa from ref. [226] ; 
eFP-LN ITO from ref. [220] ; fX-ray diffract ion from ref. [222] ;  9from ref. [223] at 
1 8 .6 GPa : h from ref. [ 142] : i from ref. [ 12 ] . 

Table 7.6: Ground-state properties of the high-pressure phases of CdTe. Pre ented 
are t he latt ice constants a ,  b and c (A ) .  respective internal parameters, 
ground-state volume V0 (A3 /pair) ,  bulk modulus B0 (GPa) and its pres­
sure derivative B' as well as the cohesive energy Ecoh (eV /pair ) and the 
transit ion pressure Pt (GPa) where applicable. Values in brackets indicate 
higher pressure. 

vious data satisfactorily. At 18 .99 GPa the lattice constants are 5 .648 A, 6 . 084 A 

and 5 . 227 A with a corresponding unit-cell volume of 44.91 A3 /pair. Those val­

ues as well as the Wyckoff positions y (Cd ) = 0.6396 and y (Te) = 0 . 1 732 are in 

very good agreement with t he experimental data by Nelmes et al. (a =  5 .573 A,  

b = 5.960 A, c = 5 . 284 A, y (Cd) = 0, 650 ,  y (Te ) = 0 . 180 at 18 . 6  GPa) . The 
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Property 
Cinnabar 
a 
c 
cja 
u 

V 

V 
Bo 
B' 
Eeoh 
Pt to SC16  
Pt to RS  
SC16 
a 
u 

V 

Vo 
Bo 
B' 
Eeoh 
Pt to RS  
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This work 

4 .6 18  (4 .364) 
10 . 5 12  ( 10 .285) 
2 . 276 ( 2 . 357)  

0 . 5 193 (0 .6209) 
0 . 5082 (0 .5742)  
64.64 (56 .55) 

35. 1 
0 . 1 8  
4 .005 
4 . 1 3  
3 .96 

8 .078 ( 7. 800) 
0 . 1576 (0 . 1 5 14 )  
0 . 6395 (0 .6404) 
65 .90 (59 .32 ) 

34. 1 
5 .3  

4 .054 
4 .05 

Other theoret ical 

4 .326a 
10 .322a 
2 .386a 
0 .6540a 
0 .675a 
55 . 76° 
5 1 . 7a 
4 .9° 

Experiment 

4 .338b , 4 . 292e 
10 . 273b , 10 . 235e 
2 .368b , 2 .3  se 
0 .6 1 2b , 0 .64F  
0.566b , 0 .564e 
55.8 1 b , 54.43e 

32b 

aFP-LMTO from ref. [ 146] ; bX-ray diffraction at 2. 7 GPa from ref. [222] ; ex-ray 
diffraction at 3 .6  GPa from ref. [ 2 19] ;  c/FP-LMTO from ref. [220] . 

Table 7. 7: Ground-state properties of the high-pressure phases of CdTe. Presented 
are the latt ice constants a and c (A) ,  respective internal parameters, 
ground-state volume V0 (A3jpair) , bulk modulus B0 (GPa) and it pres­
sure derivative B' as well as the cohesive energy Eeoh ( e V /pair) and the 
transition pressure Pt (GPa) where applicable. Values in brackets indicate 
higher pressure . 

ground-state values according to  t he Murnaghan fit are listed in table 7.6 in 

brackets, but should be regarded with suspicion, since only values up to a vol­

ume of 50.54 A 3 /pair could be used . This means the minimum i not actually 

included , therefore the ground-state volume will be over- and the bulk modulus 

underestimated, since the tfurnaghan fit is most reliable for lower pressures. To 

compare with theoretical data see table 7.6 .  

For the cesium chloride phase at 73 . 72 GPa a unit-cell volume of 33. 54 A3jpair 

along with a lattice constant of 3 .225 A is calculated. However, at this pres­

sure the solid would only be just stable with a very low cohesive energy of 

0 . 154 eV /pair. The ground-state properties were evaluated as well and can be 
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found in table 7 .6 .  Except for the pressure derivat ive of the bulk modulus agree­

ment with ref. [220] for unknown reasons is not very good. But the authors also 

get a very low t ransit ion pressure of only 28 GPa, while Nelmes and McMahon 

reported t he Cmcm phase to be stable up to 40 GPa [12] .  Comparing t his to  

the transition pressure calculated here (69.3 GPa)  it i s  very likely that another 

intermediate phase between Cmcm and caesium chloride exists. This should 

encourage fur ther invest igations . but is not the intention of this the is. 

The ground-state propert ies for the cinnabar structure are listed in table 7 .  7. 

At a pressure of 4 . 1 3  GPa in the transit ion region the following properties are 

determined: V =  56 .55  A3 /pair, a =  4.364 A, c = 1 0 .285 A, u = 0. 6209 and v = 

0.5742. The values ar in excellent agreement with the respective experimental 

and theoret ical data in t able 7.7. The bulk modulus of 35 . 1  GPa differs from 

the other computat ional reference data .  but i. in excellent concordance with the 

experimental value ( 32 GPa [222] ) .  However. the pressure derivat ive is extremely 

low with a value of jus t  0 . 18 .  

The structural parameters calculated for the ground state of  the SC16 structure 

in CdTe are: Ecoh = 4 .054 eV /pair. a =  8 .078 A, V0 = 65.90 A3 /pair, u = 0. 1 576, 

v = 0.6395 . B0 = 34. 1 GPa and B' = 5 .3 . At a higher pressure of 4 .52 GPa the 

new lat t ice parameters are: a = 7.800 A.  V = 59 .3 19  A3/pair. u = 0. 1 5 1 4  

and v = 0 .6404 . Thi phase however . is a pure predict ion and no experiment al 

invest igations have been reported yet . No other t heoret ical work could be found 

either. However, following the predictions for ZnTe ,  a SC16-CdTe phase is very 

likely, if not hindered by nergy barriers. 

7.3 .3  Mercury telluride 

For the high-pressure behaviour of HgTe a very similar picture to HgSe is found. 

Similarly, the transit ion of the equilibrium phase ( zinc blende) to the cinnabar 

phase is predicted at 2 .30 GPa, while the method used here fails to predict 

t he intermediate C222 1 phase observed by McMa.hon et al. [ 195] . The pres­

sure values obtained for the transit ion are Pt (ZB ____, C222J ) = 3 .04 GPa. and 

Pt (C2221 ____, C2) = 2 .20 GPa (experimental values: Pt (ZB ____, C222 1 ) = 2 .55 GPa 

and Pt (C2221  ____, C2) = 2 . 6  GPa. [ 195] ) .  However, again the C222 1  structure 

seems to be very sensit ive and it is hard to find a. Murnagha.n fit ,  since only 

values over a small volume range are obtained (due to relaxation into other 

structures) .  Furthermore, the pressure range for this phase is extremely narrow 
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Property 
Cinnabar 
a 
c 

cja 
u 

V 

V 
Bo 
B' 
Ecoh 
Pt t o RS 
C2221 
a 

b 
c 

bja 
cja 
x(Hg) 
y (Te ) 
V 
Bo 
B' 
Ecoh 
Pt to C2 
Rocksalt 
a 
V 
Bo 
B' 

This work 

4 .695 ( 4 . 452) 
10. 4 1 7  ( 10 . 1 86 )  
2 . 2 1 9  ( 2 . 288) 

0. 6639 (0 .6489) 
0 .5219 (0 .5590) 
66 . 28 (58 .28) 

2 1 .3 1  
5 . 1  

2 . 941  
5 .67  

(6 .53 1 )  
(6 .342) 
(6 .490) 
(0 .971 ) 
(0 .994) 

(0 .3 107) 
(0 . 2053) 
(67 . 2 1 )  

( 2 . 992) 
2 . 20 

6 . 1 50 (5 .875) 
58 . 15 (50.69) 

47.0 
5 .4  

Ecoh 2 . 772 
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Other theoretical Experiments 

4 .382a (4 .383)b , (4 .45)c 
10 .028a ( 10 .022)b ,  (9 .89 )c 
2 . 288a ( 2 .278 ) b ,  ( 2 . 22 )c 

(0 . 64 1 )b 
(0 .562)b 

55.586a ( 55 .58) b ,  (56 .53)c 

55. 7a 16 . oc , 32-41d 
7 .3c , 3 .3-5 .5d 

se 

( 6 . 295)e 
( 6 . 24 1  )e 
(6 .364) e  
(0 .99 1 )e 
( l . O l l )e 
(0 .3 15)e  
( 0 . 205)e 

2 . 6e 

(5 .83/5 . 80)c , (5 .843)1 
( 49 .54/48 . 78)c , (49.87) 1 

Pt to  Cmcm 1 2 . 99 10 . 29 ,  1 2h 

apw-US LDA from ref. [233] ;  bX-ray diffraction at 3.6 GPa from ref. [92] ; ex_ 
ray diffraction at 2 .6  GPa for the cinnabar and at 8 .2/10 .5  GPa for the RS form 
from ref. [ 149] ; dX-ray diffraction from ref. [225] ; ex-ray diffract ion at 2 .55 GPa 
from ref. [ 1 95] ; 1X-ray diffraction at 8 .9  GPa from ref. [226] ; 9 from ref. [227] ; 
h from refs. [ 1 9 1 ,  1 92] . 

Table 7.8:  Ground-state properties of the high-pressure phases of HgTe. Presented 
are the latt ice const ants a ,  b and c (A),  respective internal parameters, 
ground-state volume Vo (A3 /pair) , bulk modulus Bo (GPa) and its pres­
sure derivative B' as well as the cohesive energy Ecoh ( e V /pair) and the 
transition pressure Pt (GPa) where applicable. Values in brackets indicate 
higher pressure. 
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Property 
Cm cm 
a 
b 
c 

bja 
cja 
y (Hg) 
y(Te ) 
V 
Bo 
B' 
Ecoh Pt to  CC 
Cesium chloride 
a 
V 
Bo 
B' 
Ecoh 

This work 

(5 . 674 )  
(6 . 251 )  
( 5 . 1 63) 
( 1 . 1 02 )  
(0 .9 10)  
(0 . 6260) 
(0 . 1 546) 

57.28 (45 .78) 
49 .7 
4 .2 

2 . 705 
56 .74 

3 .  00 (3 .325) 
54 .87 (36 . 76) 

54 .8 
4 . 1  

2 . 236 

Other theoretical 

5 .612a 
6 . 194a 
5 . 102a 

3 .302a 
36.ooa 
277.2a 

Experiments 

(5 .563)b 
(6 . 1 52) b  
(5 . 105 ) b  

(0 . 624)b 
(0 . 152)b  

(38 . 1 c ' 2 -50d) * 

(3 .299)d 
(35 .90)d 

apw-US from ref. LDA [233] ; bX-ray diffraction at 18 . 5  GPa from ref. [227] : 
ex-ray diffraction from ref. [203] : dX-ray diffraction at 5 1  GPa from ref. [209] . 
*The structure is believed to be distorted CsCl or disordered bee. 
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Table 7.9:  Ground- tate properties of the high-pressure pha es of HgTe. Presented 
are the latt ice constants a, b and c (A) , respective internal parameters, 
ground-state volume V0 ( A3 /pair) . bulk modulus Bo (GPa) and its pres­
sure derivat ive B' as well as the cohesive energy Ecoh (eV /pair) and the 
transition pressure Pt (GPa) where applicable. Values in brackets indicate 
higher pre sure. 

(0 .05 GPa) and it is actually observed outside the pressure range. where zinc 

blende is stable with respect to cinnabar. Hence. t his phase is not accessible to 

theoretical calculat ions. 

The structural properties derived for the cinnabar phase of HgTe are a = 4 . 695 A , 

c = 10 .417  A,  u = 0 .6639 , v = 0.5219 at zero pressure and a = 4 .452 A,  

c = 10 . 186 A , u = 0 .6489, v = 0.5590 at  3 .69 GPa .  Hence, the result are in 

excellent agreement with the experimental data (see t able 7 .8) . Experiments also 

measured the bulk modulus for cinnabar-HgTe to be between 16 .0  and 4 1  GPa 

using different fits, while t he pressure dependence is estimated t o  be in t he range 

of 3 .3-7 .3 .  The values determined here, B0 = 2 1 . 3 1  GP a and B' = 5. 1 ,  are 

very well within those brackets. Typical for the cinnabar structure among the 
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mercury chalcogenides is t he rather low bulk modulus . The cohesive energy is 

2 .94 1 eV/pair ,  approximately 0. 1 eV/pa.ir lower than in zinc blende, meaning 

t hat the two structures are very well separated. 

Similarly, good results are obtained for the latt ice parameters of the C222 1 

structure ,  where a = 6 .531  A ,  b = 6 .342 A,  c = 6 .490 A,  x(Hg) = 0 .3107 ,  

y(Te) = 0.2053 at 2 . 78 GPa. This mean that at a. similar pressure to exper­

iments , t he Wyckoff posit ions fit nicely, while the l attice parameters show the 

typical overestimation due to DFT. No structural details are obtained for the 

ground state due to the direct relaxation into the zinc blende structure for lower 

pressures. For furt her det ails see table 7 .8 .  

Furthermore , at 5 .67 GPa a. definite structure change from the cinnabar to the 

rocksalt arrangement is observed . At 5.9 GPa RS-HgTe has the following pa­

rameters : a = 5 .875 A and V = 50.69 A 3 /pair. The ground-state properties can 

be found in table 7 . 8 .  They agree well with the experimental data. within the 

l imitat ions of t he method used. o other theoret ical invest igation have be n 

carr ied out yet . The bulk modulus and pressure derivative are 47.0 GPa. and 5 .4 .  

The orthorhombic Cmcm st ructure i s  found above pressures of 1 2 . 99 GPa and i s  

stable up to  56 .74 GPa. with respect to the cesium chloride structure. Again no 

ground-state propert ies can be given for t he Cmcm tructure due to relaxat ion 

into rocksalt for lower pressures. However, at 18 .36 GPa the latt ice constants 

of a = 5 .674 A, b = 6 . 25 1  A and c = 5. 163 A are in good agreement with 

experimental as well as theoretical work, although no pressure is given for the 

calculated reference data. .  The Wyckoff parameters y(Hg) = 0.6260 and y(Te) = 

0 . 1 546 match t he X-ra.y diffraction values ev n bet ter. The few ground-state 

values given in table 7 .9  are estimated from the data. points available using the 

Murna.ghan fit and hence will most likely underest imate B0 .  

At  still higher pressures o f  56. 74 GPa  a. transition t o  the CsCl structure is pre­

dicted with an according lattice constant of 3 .325 A (V  = 36. 76 A3 /pair) at 

55.56 GPa. The cohesive energy at this pressure is very low (0. 1 1 6  eV /pair) and 

the tructure therefore only just stable. However, having said that , one has to 

bear temperature effects in mind as wel l .  The respective ground-state properties 

can be found in table 7 .9  along with another theoretical study. The results show 

good comparability to other theoretical work. 

Comparison with experimental data. is diffcult, since the structure of HgTe's post­

Cmcm phase is still debated . Hua.ng and Ruoff observed a transition at 38. 1 GPa., 

which they believe to be to a distorted CsCl arrangement . However, elmes et 
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al. find a transition at 28 GPa, which could be explained by a disordered CsCl or 

bee structure (no long-range order) . Yet ,  a single-phase probe is only obtained 

at 50 GPa and the latt ice constant is a = 3 .299 A ( at 5 1  GPa) [209] . This is 

in excellent concordance with t he l att ice constant presented for the site-ordered 

CsCl structure. 

Analogous to HgSe, the SC16 st ructure is too high in energy to be considered a 

stable phase in HgTe ( Ecoh = 2 .908 eV /pair) . However , the ground-state latt ice 

constant obtained is 8. 1 20 A along with internal parameters of u = 0. 1623 and 

v = 0 .6340. Hence, t he ground-state volume is V0 = 66.93 A 3 /pair. Furthermore, 

the values calculated for the bulk modulus and its pressure dependency are B0 = 

32 .9 G Pa and 6.4 respect ively. 

7.4  Electronic structure 

7.4. 1 Zinc telluride 

The elect ronic structure and density of states of ZnTe in its equilibrium state 

is depicted in fig. 7 . 2 .  The VBl'v i  and CB�I appear both at the centre of the 

Brillouin zone, and further VBM as well as CBM are located at L ,  [{ and X .  

Hence, i t  is concluded that t he zinc blende form of ZnTe under ambient pressure 

is a direct-gap semiconducting material with a fundamental gap of 1 . 07 e V .  

Compared to  this the experimentally observed energy of  2 . 39 eV (at 0 K) [ 1 20] 

is significantly higher showing the inadequacy of DFT for the calculat ion of 

absolute gap energies. Yet ,  the quali tat ive picture compares very well to other 

invest igations . In addit ion . the values presented agree wit h  calculat ions at the 

same level , e .g a LDA calculation discussed in ref. [ 1 70] obtaining a value of 

E9 (f )  = 0 . 74 eV at  a lat t ice constant of a =  6.088 A.  A significant improvement 

of the value could be achieved by using various improved approaches within the 

computationally extremely expensive GW approximation , leading to values of 

1 . 97 t o  2 . 27  eV [ 1 70] . 

7.4 . 2  Cadmium telluride 

According to the study at hand and in concordance with experimental and other 

theoretical invest igat ions, CdTe is classified as a small-gap semiconductor , and a 

direct gap of 0.58 e V is found at the f-point in the Brillouin zone. Similarly to 
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Figure 7.2:  Band structure and density of states (normalized per pair) at zero pres­
sure for t he ZnTe ( upper panel) and CdTe ( lower panel) zinc blende poly­
morph calculated within the scalar-relativistic DFT-GGA framework. 
The valence-band maximum is set to zero energy. The black solid lines 
indicate the valence and the red dashed lines the conducting bands, re­
spectively. 
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ZnTe, other local CBM and Vmvi are s ituated a t  the L ,  I< and X -points .  For 

an illustration of the band structure and DOS the reader is referred to the lower 

panel of fig. 7 .2 .  

Again t he method used here, despite producing qualitat ively correct results ,  

severely underestimates t he band gap ,  as a gap energy of 1 . 59 eV was mea­

sured at 1 . 6  K [ 120] . Those values can only be obtained computationally, if one 

employs very expensive methods such as t he GW-approximation . In that case 

ref. [ 1 70] calculates an energy of E9 ( f ) = 1 . 22 - 1 . 5 1  eV. However . compara­

bility with  an according LDA calculation is acceptable considering the slightly 

different latt ice constants used as well ( E9 (f )  = 0 .21  eV at a latt ice constant of 

a =  6 .480 A ) [ 1 70] . 

7.4.3 Mercury telluride 

Experimentally, HgTe was found to be a zero-gap material , i . e . a semimetal, vvith 

the smallest gap at the f-point . Here an inverted band structure is observed since 

the f6-level ,  being the CBl\1 for most cubic semiconductors has a lower energy 

than the f8-st ate (VBM ) [ 1 20] . Hence, a small negat ive band gap of -0 .304 eV 

(at 0 K) is measured [ 120] . 

This is confirmed by the study at hand, where t he results are depicted in figs. 7 .3 

and 7 .4 .  For both approaches , the scalar-relat ivistic methodology as well as 

upon inclusion of spin-orbit coupling, t he Hg-6s band are located below t he 0-

5p bands, as can be concluded from the sit e-projected density of states. Just by 

counting, t he bands should be occupied up to the first 0-5p, making HgTe a zero­

gap material. Hence, the inverted band st ructure as well as the semiconduct ing 

character of ZB-HgTe are correctly reproduced . 

Due to t he spin-orbit splitt ing the picture  changes slightly and the situation 

is similar to HgSe, where spin-orbit splitt ing of the p-states is large enough 

and hence the r 8 levels are higher in energy t han t he r 7 levels. For the direct 

E9 (f8 - f6 )-gap an energy of - 1 . 1 54 eV is calculated . This compares well to  

other theoretical investigations . For example , Card on a et al. [ 1 7  4 ]  obtain a value 

of E9 = - 1 .025/ - 1 . 1 13 eV using Vasp LDA and GGA, respectively. The 

discrepancy can be explained by the slightly different l at t ice const ant used (a = 

6.433/6.633 A for LDA and GGA, respectively ) . 

Looking at t he plot of the relativistic Hg site-projected DOS, a complex picture 

emerges. Here, a splitt ing of about 2 e V is found, again indicating t he splitting 

of the 5d band into 5d3;2 and 5d5;2 as it was the case for previously described Hg 
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Figure 7.3:  Band structure and density of states (normalized per pair) at zero pres­
sure for the HgTe zinc blende polymorph calculated within the scalar­
relativistic DFT-GGA framework (upper panel) as well as upon inclusion 
of spin-orbit effects (lower panel) . The valence-band maximum is set to 
zero energy. The black solid lines i ndicate the valence and the red dashed 
lines the conducting bands, respectively. 
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Figure 7.4: Site-projected density of states at zero pressure for the HgTe zinc blende 
polymorph calculated within the scalar-relativistic DFT-GGA framework 
(upper panel) as well as upon inclusion of spin-orbit effects ( lower panel) . 
The black solid, red dashed and blue dash-dotted line indicate t he s, p 
and d site-projected DOS, respectively. 
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chalcogenides. An additional influence of the crystal-field splitt ing can be seen. 

7 . 5  Relativistic influences 

7. 5 . 1  Equilibrium structure 

System a c u j v  Bo B' Ecoh Vo 
Zinc blende 6.860 - 1- 32.6 4.9 4 .390 80. 71 
Wurtzite 4.850 7.926 0 .3749 1 - 32.6 4.9 4 .385 80.74 
SC16 8.353 0 . 1576 1 o.6386 32. 1 4 .8  4 . 250 72.85 
Cinnabar 4 . 742 10 .927 o . 5397 1 o.521o 22 .6 - 10 .3 4 . 2 14 70 .95 
Rocksalt 6 . 320 - I - 44 .9  5 .0  4 . 171  63. 12  
Cesium chloride 3.897 - I - 44 .2  4 .8  3 .422 59. 17 

Table 7. 10 :  Ground-state properties of equilibrium and high-pressure phases of  HgTe 
within the nonrelat ivistic approach. Presented are the lat tice constants 
a and c (A ) ,  respective internal parameters, ground-state volume Vo 
(A3 /pair ) ,  bulk modulus Bo (GPa) and its pressure derivative B' as 
well as the cohesive energy Ecoh ( e V /pair) .  

The volume-energy dependencies of nonrelat ivistically treated HgTe can be viewed 

in t he lower panel of fig .  7 .5 .  It shows t hat , similar to what has already been 

described for HgSe, the zinc blende and wur tzite structure yield the lowest ener­

gies. Table 7 . 1 0  shows, however ,  that for the first t ime within the nonrelativistic 

Hg chalcogenides the zinc blende st ructure actually reaches a higher cohesive 

energy t han t he wurtzite structure, indicating that this is the preferred equi­

l ibrium phase. Yet , the energy difference of just 5 me V /pair is very small and 

resembles approximately the energy deviat ion in CdSe, in which case still both 

structures occur at ambient pressures . Also, looking at t he sequence of energy 

differences between t he zinc blende and t he wurtzite structure within the group 

1 2  tellurides ( 1 2  me V /pair, 8 me V /pair and 15 me V /pair for ZnTe ,  CdTe and 

HgTe respectively) , it becomes obvious that relativistic influences at least desta­

bilize the wurtzite structure. 

The bulk properties obtained for the zinc blende form are a = 6 .860 A, V0 = 

80.71  A 3 ,  B0 = 32 .6 GP a and B' = 4 .9 .  This means that yet again the scalar­

relativistic calculat ions for HgTe lead to a typically relativistically contracted 

lattice constant compared to the nonrelativistic value. This can also be deduced 

from t he bond distances in t able 7. 1 1 ,  where relativity causes ZB-HgTe as well 

as W-HgTe to adopt almost the same values as obtained for CdTe. 



7.5. RELATIVISTIC INFL UENCES 

� � 
0.. -2 :>... bJ) � � -2 .5 � 

'"@ -3 ...... 
0 

E- -3 . 5 

I I 
\ I 
. I \ I 

\ I 
\ I 
�· 

' 
' 

I 1
\ 

V \ \ 
\ 

\ 

I . 

\ 
\ 

' 

\ 
\ 

\ 

' 

- Wurtzite 
Zinc blende 
Rocksalt 
Cm cm 
Cesium chloride 
Cinnabar 
SC 1 6  

-4 �--�--��--�--�----�--�----�--�--� 40 50 60 70 80 

I I 

I 1. 
I 

I .I \ 
I I \ 

I \ \ 
. 

I 
I 

\ 

,, 
\ 

40 

Volume of cell per pair (A
3
) 

\ 

\ 

. ' ' 

\ 

' 

\ 

' 

- Wurtzite 
Zinc blende 

· - · Rocksalt 
Cm cm 

- Cesium chloride 
Cinnabar 
SC 1 6  

\. 
\. 

- . . -
' ' 

- · -

50 60 70 80 

Volume of cell per pair (A
3
) 

1 85 

Figure 7.5 :  The total energy versus volume per cation-anion pair for different crystal 
structures of relativistic (upper panel) and nonrelativistic HgTe ( lower 
panel) . 
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Furthermore, an energetic latt ice destabilizat ion is observed lowering t he cohesive 

energy relat ivistically from 4.390 t o  3 .059 eV /pair. The difference of 1 . 33 eV /pair 

is even less than in HgSe. 

System 

Wurtzite 
Zinc blende 

exp .  
Cinnabar 

at Pt 
exp .  

Table 7. 1 1 :  

ZnTe CdTe HgTe nonrel. HgTe 

d/IITe dl\1 /11 dl\fTe d/IIAI di\ITe d/III\1 di\ITe d/II 1\J 
2 .67 4 .38 2 . 86 4 .68 2.88 4 .72 2 .97 4 .85 
2 .67 4 .37 2 .87 4.68 2.88 4. 7 1  2 .97 4 .85 
2 .64 4.32 2 . 8 1  4 .58 2.80 4 .57  
2 . 72 3 .92 2 . 88 4 .20 2 .76 4 .40 2 .96 4 .36 
2 .57 4 . 10 2 . 79 4. 17  2 .76 4 .34 2 .94 4 .38 

2 . 77 4. 14 2 .73 4 . 1 3  

Closest metal-tellurium bond distance di\ITe and closest metal-metal dis-
t ance dl\11\1  in A of the respective equilibrium structures (unless indicated 
otherwise) of the group 1 2  tellurides. 

7 . 5 . 2  High-pressure structure 

The order of structural transitions at higher pr ssure for the nonrelat ivist ica.lly 

treated HgTe is calculated to be ZB--+RS--+Cmcm--+CsCl .  The transit ion pres­

sures obtained are 2 . 12 ,  13 .30 and 53. 71  GPa,  respectively. 

A t ransit ion from the zinc blende st ructure to a cinnabar form of nonrela­

t ivist ic HgTe is not achieved unt il the cinnabar structure already converts into 

t he rocksalt arrangement . However , it is hard to make a prediction since the 

structures are close in energy and the deviat ions in the t ransiti on pressures 

(Pt (ZB --+ C2) = 2 .33 GPa. and Pt (C2 --+ RS) = 1 . 67 GPa.) smaller than the 

precision of the method used . Furthermore, for t he cinnabar st ructure again 

( like in nonrela.t ivi t ic HgSe) the problem occurs that the structural minimum 

characterized by u � 0.5 � v splits up for higher pressures. The energy-volume 

curve ,  for which the Wyckoff positions deviate from 0 .5 ,  is lower in energy. But 

since this curve for lower pressures immediately relaxes into the other curve, a. 

negative pressure derivative of the bulk modulus is calculated for nonrelativistic 

HgTe, making it hard to calculate the correct transition pressure. 

This behaviour is similar to CdTe and immediately shows the different nature of 

the cinnabar phase in nonrelat ivistic HgTe compared to the relativistic charac­

teristics. In contrast , for the relativistic calculations of cinnabar-HgTe, a strong 

energy-volume minimum is found, with u and v deviating from 0.5 over the 

whole pressure range investigated. This leads to a 4+2 coordination almost all 
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the way through with nearest Hg-Te bond distances of 2 .  76 ,  3 .07 and 3 .50 A 
at  3 .69 GPa (in good agreement with the experimental distances of 2. 73 , 3 . 00 

and 3 .46 A [ 1 2] ) ,  whereas the closest Hg-Hg bond distance is 4 .34 A. The bond 

distances change only slightly for lower pressures, where values of 2. 76 , 3 .28 and 

3 . 75 A are obt ained , indicating a segue into t he 2+2+2 coordination observed 

in HgSe. In nonrelativistic cinnabar-HgTe however, the nearest Hg-Te bond dis­

t ances are 2 .96,  3 .04 and 4 . 27 A around the minimum and 2 .94 ,  3 .09 and 3 .66 A 
at a slightly higher pressure ( 1 .  87 G Pa) . This means t hat even though for higher 

pressures all group 12 tellurides inherit t he 4+2 coordination , t he zero pressure 

st ructure still varies with a fourfold coordination equivalent to cinnabar-ZnTe 

and CdTe, but different from relat ivist ically treated cinnabar-HgTe. Yet ,  this 

effect is a lot less pronounced than in HgSe. HgS and HgO. All bond distances 

are listed in t able 7. 1 1 .  For a more visual idea of the t ransit ion from a fourfold to 

t he 4+2 coordination in t he cinnabar structure the reader is referred to fig. 3 .5 .  

In addition , the C2221 structure found in HgTe, becomes significantly less stable 

due to the neglect of relativistic effects. Furthermore , it  should be noted that the 

SC16 structure is again too high in enthalpy to be considered in the transit ion 

path .  

The struct ural parameters and other ground-state properties of the HgTe high­

pressure phases in the nonrelat ivistic picture are summarized in t able 7. 10 .  In 

general , clue to the effect of relat ivistic contraction, t he lattice constants are 

slightly bigger than in t heir relativistically treated counterparts . 

7 . 5 . 3  Electronic properties 

The zero pressure elect ronic st ructure of nonrelativist ic ZB-HgTe including the 

site-projected DOS is shown in figs. 7 .6  and 7 .7 .  Compared to figs . 7 .3 and 7 .4 

t he st riking differences between t he relativist ic and nonrelativistic picture be­

come immediately obvious: If relat ivistic effects are neglected, the semi-metallic 

character of HgTe disappears and a small band-gap semiconductor with a gap 

energy of 0 . 63 eV similar to ZB-CclTe occurs instead . Analogously, the CBM 

and VBM are located at the centre of the Brillouin zone and further maxima 

and minima are equally located at L, K and X .  
The site-projected DOS clarifies the described behaviour , as one can clearly see 

that the Hg-6s band is now shifted and superposes with t he Te-5p band. This 

leads to a degeneracy at t he r-point overturning the inverted band structure. 

Furthermore, the crystal-field splitting in the d-bands is clearly visible in the 
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Figure 7.6:  Band structure and den ity of states (normalized per pair) at zero pres­
sure for the HgTe polymorphs zinc blende calculated within the nonrela­
tivistic DFT-GGA framework. The valence-band maximum is set to zero 
energy. The black solid lines indicate the valence and the reel dashed lines 
the conducting bands, respect ively. 

Hg-spectrum. The separat ion energy is about 0. 15  eV due to  the tetrahedral 

arrangement characterist ic for t he zinc blende structure . 

7 . 6  Summary 

In general , the bulk properties calculated in this study are in good agreement 

with other theoretical and experimental work. Yet , the bulk moduli are usually 

somewhat underestimated if compared to experimental results, but are consis­

t ent with other computationa l  investigations. The ame hold for the qualitative 

characterization of the electronic structure ,  even though the gap energies are 

severely underestimated , which is to be expected using DFT. 

Furthermore, the order of the high-pressure phases and the according transition 

pressures are predicted correctly. Yet ,  due to the fact that the transitions in­

volving the cinnabar phases are very closely spaced, the method used here might 

not be accurate enough to make a definite statement . For ZnTe the results 
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Figure 7 .7 :  Site-projected density of states at zero pressure for the HgTe polymorph 
zinc blende calculated within the nonrelat ivistic DFT-GGA nonrelat ivis­
tic framework. The black solid, red dashed and b lue dash-dotted line 
indicate the s, p and cl site-projected DOS. respect ively. 

presented here confirm its special role in terms of the high-pressure behaviour 

predict ing the absence of the RS st ructure. This can most likely be explained by 

the low ionicity of ZnTe compared to similar compounds . However, in contrast 

to other reports , the SC16 st ructure is most likely more stable than the cinnabar 

st ructure. In addit ion , a new t ransit ion from the Cmcm to the cesium chlo­

ride structure is predicted. \t\Thether any intermediate phases between those two 

modifications are possible should encourage further investigations by theoretical 

as well as experimental means . 

Even though, the stability of the cinnabar phase seems to be slight ly underesti­

mated in this investigation, the differences between t he relat ivistic and nonrel­

ativist ic t reatment of HgTe become obvious. However, the deviations are less 

obvious than in the other mercury chalcogenides, since t he cinnabar phase is 

observed as a high pressure modification in all three group 12 tel lurides. Con­

cerning the structural properties, a difference in coordination is found : For the 

relat ivist ically treated HgTe a non-fourfold coordination is obtained over the 

whole range investigated , in contrast to nonrelativist ic HgTe. 

For the equilibrium phases the relativistic lattice de tabilization is calculated to 
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be 1 . 33 eV /pair, which is less that in HgO, HgS and HgSe due to t he absence 

of structure change. In addition , it is again determined that the stability of t he 

wurtzite phase is decreased with respect to the zinc blende structure if relativis­

tic effects are included. 

Even t hough the structural difference between nonrelativist ic and relativistic 

HgTe are less pronounced than in HgO and HgS, a significant change in the 

electronic structure behaviour is observed, where the characterist ics change from 

semimetallic propert ies in relat ivistic HgTe to a semiconduct ing behaviour in 

nonrelativistic HgTe .  



Chapter 8 

Conclusion and outlook 

In  the thesis at hand, for the first time the influence of relativistic effects on the 

solid-state structure of the mercury chalcogenides has been investigated. To this 

end, relativistic as well as nonrelativistic density functional theory calculations 

have been carried out for a considerable range of equilibrium and high-pressure 

modifications of the group 12 chalcogenides . By those means structural proper­

t ies of the various chalcogenide phases were obtained , their stabilities calculated 

and compared. 

It was shown , that relativist ic effects play indeed a crucial role in the explanation 

and understanding of the sophisticated chain-like structures, namely cinnabar 

and montroydite, so typical for the mercury chalcogenides in contrast to the 

l ighter group 1 2  chalcogenides. 

First and foremost , all mercury chalcogenides investigated show relativistic con­

tractions in the bond-distances (for equilibrium as well as high-pressure phases ) 
and a large relativistic lattice destabilization for the equilibrium structure. This 

destabilization decreases when going from the oxides to the tellurides (b.E equals 

2 . 15 ,  1 . 73 ,  1 . 55 and 1 . 33 eV for HgO, HgS ,  HgSe and HgTe respectively) . An 

explanation for this behaviour is given by the reduction of the effective charge 

of the mercury atom due to relativity, i .e .  in bulk HgO the Mullikan charge 

of the mercury atom changes from +0.90 at the relativistic level to + 1 . 10 at 

the nonrelativistic level .  This effect however is balanced out by the decreasing 

electronegativity descending the 1 2th group , favouring a more covalent bonding 

already for the relativistically treated mercury chalcogenides. 

Interestingly enough, for the cinnabar phases of HgO and HgS, the above men­

t ioned relativistic contraction is only valid for the inter-chain Hg-chalcogenide 

191  
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distances . As a big trade-off this contraction is linked to an increase in the intra­

chain distances , which in turn leads to a surprising overall volume expansion and 

a subsequent density decrease upon inclusion of relativistic effects .  For relativis­

tically treated HgO, densities as small as the ones found for ZnO and CdO are 

obtained . This behaviour is in stark contrast to all previous knowledge about the 

influence of relativistic effects in solids, but is to be blamed on the suppression of 

the relativistic contraction by the crystal field. However, this effect is not appar­

ent in HgSe and HgTe due to the absence of the pronounced structural change 

induced by a nonrelativistic treatment (i . e  the absence of the cinnabar structure 

as an equilibrium form) . Hence, the relativistic contraction can be identified in 

the unit-cell volume as well. 

Even more suprising is the fact that the montroydite and cinnabar structures 

found as equilibrium phases in HgO and HgS are solely attributed to relativistic 

effects and disappear, not only as the ambient pressure phases , but completely, 

if relativity is neglected. It is found that this can be explained by the decrease 

in ionicity induced by relativistic effects as well . Hence, typically more ionic 

bonded structures are favoured in the nonrelativistic picture . 

However, this dramatic change in the equilibrium structure becomes less pro­

nounced for mercury selenide and telluride due to the absence of the cinnabar 

structure as a zero-pressure phase . Yet , significant changes in the coordination of 

the respective cinnabar modifications are calculated. This t rend starts to appear 

already in HgS where relativity changes a simple fourfold coordination ( in non­

relativistic HgS ) to the unique 2+4 coordination of HgS. The structural change 

in the Wyckoff parameters u and v here is so large that it has already been 

challenged whether this arrangement should still be attributed to the prototype 

cinnabar structure. 

Furthermore, it is determined that relativistic effects destabilize the wurtzite 

structure with respect to the zinc blende structure. This effect is present for all 

mercury chalcogenides, yet the energetic difference lessens going from HgO via 

HgS and HgSe to HgTe. It has already been stated in a study that the difference 

in energy �E(W Z - ZB) increases if the anion atomic number increase from 

S and Se to Te. As the atomic number decreases , the structures become more 

ionic, since the Madelung constant for wurtzite (a�z = 1 .6413) is larger than 

for zinc blende (afl = 1 .638 1 )  [ 161 ] . Hence, the less covalent wurtzite phase 

is p referred in the nonrelativistic picture due to the increase in ionicity upon 

neglect of relativity. 
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In general the transition paths of nonrelativistically treated mercury chalco­

genides seems to resemble the ones found for the cadmium chalcogenides rather 

closely. 

All structural changes observed due to relativistic effects are expected to orig­

inate mainly from scalar-relativistic effects, since spin-orbit coupling is usually 

suppressed in the ionic lattice field. Yet ,  spin-orbit effects play an important role 

to determine an accurate band structure and band gap for the mercury chalco­

genides. 

It is found that relativistic effects have a major impact on the electronic struc­

ture of the mercury chalcogenides as well .  For HgO and HgS , the differences 

between a relativistic and nonrelativistic treatment mainly alter the size of t he 

band gap, which will most likely also be the reason for the red colour found in 

HgO cinnabar. However, the electronic properties are left unchanged. This is in 

contrast to HgSe and HgTe, where the neglect of relativistic effects goes as far as 

changing the experimentally observed semimetallic behaviour to the restoration 

of semiconducting properties . 

Last but not least, the thesis at hand not only exploits the influence of relativistic 

effects extensively, but also represents a very systematic study of the group 1 2  

chalcogenides in general due to the rather thourough comparative approach. The 

calculated properties such as lattice constants, internal parameters, bulk moduli ,  

their pressure derivatives and the cohesive energies were calculated and are over 

all in very good agreement with experimental and other theoretical investigations. 

Only the bulk moduli at times vary strongly from experimental values . Yet , those 

deviations are reported in other theoretical studies as well [ 1 13] and can most 

likely be blamed on temperature effects . 

With regard to the predicted phase transitions, often several phases are very close 

in energy in the regions of possible phase transitions. This is particularly true 

for modifications with many degrees of freedom, e .g .  the cinnabar structure. 

Often the deviations in the total energy are j ust of the order of typical DFT 

errors and can easily result in a change of the transition order, therefore making 

reliable predictions difficult . Yet ,  it was necessary to rely on DFT as more 

sophisticated methods are not as well developed for the treatment of solids or 

rather expensive in computer time. Here, the incremental method developed by 

Stoll and Fulde [235] should be mentioned as a possible improvement. 

Furthermore, it is mentioned that the results presented here are based on a mere 

thermodynamical treatment and in addition are carried out at zero temperature 
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only. Hence, an evaluation of phonon dispersions and the inclusion of electron 

excitations would be desirable, but are beyond the scope of this thesis where 

the focus lies on the influence of relativistic effects . However, the calculation of 

exact phase diagrams including temperature induced transitions is very hard and 

intricate. 

The shortcomings of a density functional approach become especially obvious in 

the severe underestimation of band gaps compared to the available experimen­

t al data. However, the results obtained are in very good qualitative agreement 

and compare excellently to other work at the same level of theory. In order to 

obtain results comparable to experiments, an improvement of the method such 

as the GW approximation in conjunction with the random-phase approxima­

tion is necessary. However, due to its computational cost and the actual aim of 

this thesis to estimate the influence of relativistic effects , it was not used here. 

Major advancement can be achieved, if one goes away from the single particle 

p icture. Here, a more thorough investigation of the electronic structure using 

highly sophisticated methods such as the Bethe-Salpeter or self- interaction cor­

rected schemes are suggested. 
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