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Abstract

The well-known jury paradox – the more demanding the hurdle for conviction is, the more
likely it is that a jury will convict an innocent defendant – heavily relies on Bayesian updating.
However, with ambiguous information (e.g., a forensic test with accuracy of 60%, or more),
standard Bayesian updating becomes invalid, challenging the existence of this paradox. By
developing novel theoretical models and by testing their predictions in laboratory settings,
this thesis advances our understanding of how individuals process more realistically imprecise
measures of information reliability and how this impacts on information aggregation for the
group decision-making. Hence, our findings inform the institutional design of collective
deliberation, from small to large group decision-making.
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Preface
“...two factors [are] commonly used to determine a choice situation, the

relative desirability of the possible pay-offs and the relative likelihood of the
events affecting them, but in a third dimension of the problem of choice: the
nature of one’s information concerning the relative likelihood of events. What is
at issue might be called the ambiguity of this information, a quality depending
on the amount, type, reliability and ‘unanimity’ of information, and giving rise
to one’s degree of confidence in an estimate of relative likelihoods.”

Daniel Ellsberg, The Quarterly Journal of Economics, 1961, 75(4),
p. 657-659.
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Much real world negotiation and decision-making takes place in small groups. Mem-
bers within groups are either chosen by public voting or by authorised nomination. They
gather together to deliver their opinions or cast votes for determining an authoritative decision.
For example, congressmen are chosen by national voting to join Congress to decide whether
certain policies are allowed to take place or whether outdated codes need to be abolished.
Similarly, corporation board members need to deliberate during seasonal meetings regarding
business strategies, innovation projects, and so forth. Also, medical teams, judicial trials
(up to the Court of Appeal level), policy offices, and any expert teams are typical sources of
authoritative decisions ultimately impacting either treated patients, defendants, suspected
offenders, and/or the general public. Hence, small-group deliberations often determine final
outcomes (or consequences) mattering to – and affecting to various degrees – a multitude of
agents, from single individuals, households, businesses, and organisations, to communities
and the entire society.

The underlying mandate of those small groups and their related – implicit or explicit
– obligation, when e.g., acting either as expert teams or committees within institutions, is
to reach ‘the’ right/optimal/best decision for ‘the’ given case at hand. However, a final
recommendation/decision by a group of individuals will likely be affected by the processes,
the regulations as well as by the voting rules under which their deliberation(s) occurs. In
turns, the processes, the regulations, the voting rules, combined with the quality of available
information to the decision-partakers, all contribute to whether the outcome of a collective
deliberation, beyond being in line with the ‘declared’ goal set out to be achieved by the
deliberation group in the first instance, ultimately best reflects and is consistent with the ‘true’
nature of the case at hand.

Despite the fact that for any given selected process and voting rule combination it is
always possible to characterise/conjecture which decision(s) could be reached by a small
decision-group under specified preferences and information structure (whether the informa-
tion is common knowledge to all parties involved or not), it is far from obvious to anticipate
what the possible decision(s) would be in the presence of information which is inherently
ambiguous.

Ambiguity exists not only in the inability to assign well-defined, numerical probabilities
to specific events, as in Ellsberg (1961). It is also embedded in the language, the signals,
and even in many among well-recognised social norms used by agents to communicate with
one another within any given decision-making context. The language used in the regula-
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tions may be interpreted differently by different individuals. The probability of reaching
the expected payoff of implementing a new government policy might be difficult to assess.
Similarly, decisions whether to grant a patent to an invention by a given patent office, which
rely to some extent on the assessment of the quality/novelty of the idea/innovation within
a given jurisdiction, could appear to be inconsistent when one patent office grants a patent
on an innovation and another denies it. Yet, not all information related to an innovation can
be perfectly and unambiguously codified, possibly explaining the apparent contradiction.
Another example of when ambiguity matters, is within jury trials. It is not difficult to con-
ceive that jurors often need to form a verdict, based on the evidence submitted to a court
of law, the accuracy of which cannot though be assessed perfectly. In other words, jurors
are required to cast their votes in favour or against (acquit or convict) a defendant, despite
the potential source of ambiguity in the quality of the information provided to them. Thus,
even if the very same set of information, ambiguous information, is given to all individuals
within agencies/committees/jury in charge of making a decision, that information may still be
responsible for generating differing priors among those individuals. And, if more individuals
need to agree on the votes they cast, in favour or against, a given choice at hand, the presence
of ambiguity could alter the way consensus will be reached, and, potentially, the outcome
of such consensus, as opposed to predictions under canonical Bayesian settings. Ambiguity
might lead to misunderstanding, sub-optimal choice, and ambiguity-avoiding strategies.

Other Motivating Examples
Below we provide a list of cases, to name but a few examples of other small group

decision-making situations where a decision has to be reached for a binary choice under
information ambiguity.

The Court of Criminal Appeals This Court responds to defendants who require a review
of any adjudications made by the lower court during the original trials. When cases are to be
reviewed, lawyers prepare material based on all relevant past cases, including the decisions
as they were reached in these cases, and present them to the appeals court, consisting of
three or five judges in total. There is no hearing or debating process during the appeal: the
judges only read the briefs and the legal documents of the trial court and decide whether to
dismiss an appeal. The appeal will be rejected whenever the majority of judges agree with
the trial court, and vice versa. Although it does not require an unanimous agreement among
the judges, the fact is that different judges might respond differently to similar cases given in
the briefs. And, thus, they will hold different opinions regarding the decision of the lower
court, which might explain why they eventually fail to reach an agreement even when faced
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with the same materials.

The Surgical Team Assume a surgical team, consisting of one chief surgeon and a few
attending surgeons, has to come up with a solution about how to treat a cancer patient. The
surgeons could either opt to operate on the patient to try to remove the lesion, or conduct
chemotherapy and hope the cancer cells will shrink. The surgical team has to reach a decision
on the treatment before taking any further actions. Although surgeons are able to come up
with the probability of success if surgery is chosen, based on a large database of similar
cases, this ability alone does not guarantee that all surgeons will ex ante all agree on the
same treatment decision, as not all past cases are exactly the same as the case at hand,
due to the uniqueness of the human body, as well as the personal history and idiosyncratic
characteristics of the patient1. Thus, surgeons may fail to unanimously agree on a particular
course of action (decision regarding the treatment) at the state of the surgical consultation,
due to different priors/beliefs about which treatment has better odds of success, if undertaken,
for this particular patient. Based on those priors, they will most likely have to mediate their
positions, to reach an agreement (whether an unanimous one or not) and to be able to treat
the patient accordingly.

Organ Allocation Two heart failure patients are waiting for a heart transplant. Whether
one of them or the other makes it to the top of the transplant list will determine whether a
donor heart will go to the patient who needs it the most and can make the most out of the
transplant. When there is a donor heart, the organ allocation center will have to decide to
whom they will allocate this heart. Suppose there is a small medical team within the organ
allocation center which has to analyse these two patients’ cases and vote for who gets first on
that list. Whenever an unanimous vote is reached, it decides the receiver of the donor heart.
Although there are strict rules for evaluating who should be the receiver, there is still some
chance that the two patients’ medical conditions are extremely similar, and, thus, there is no
obvious way of choosing whom the heart should go to. For example, these two candidate
patients for a transplant have the same physical tissue and blood type matching, severity of
the disease, recovery potential, etc. It could even be the case that twins are waiting for the
heart, and, unfortunately, there is only one suitable donor organ available. Then, it will be

1The patients might have different ages or weights; their tumours might be of different sizes, or located
in different organs, benign or malignant. Based on past cases, a surgeon clearly knows whether this type of
surgery has succeeded or failed in the past. However, each patient treated before is different from the present
one. If the surgeon thinks this way, the adequate past cases seem impractical to him and he will end up with
nothing plausible to which to resort (Gilboa and Schmeidler, 2010). That is why the patient will be asked to
sign an ‘informed consent’ form to capture his understanding of all the potential risks that might happen in the
treatment, including death.
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a very hard decision of who gets the heart and who does not.2 Having to come up with a
choice, agreed by the team may be affected by each expert’s belief regarding who is more
likely to react positively to a transplant, and the final allocation may be affected by possi-
ble differing priors about those chances of successful transplant (such decision needs to be
a swift one, as the clock is ticking, determining the chances of any transplant to succeed at all).

The Innovation Funding Programme Suppose that the government offers a fund which
is only sufficient to promote one innovation project. All major universities have the opportu-
nity to submit their projects to the funding committee. The funding committee has to come
up with only one recipient from among all the candidates and their research projects. The
judgement standard includes the novelty, promise, feasibility of reproduction, and the poten-
tial social contributions of the research project, as well as the project proposer’s academic
background, publishing record, his/her network of the relevant experts in the field, their
co-authors’ backgrounds, research reputation, etc. After a few rounds of pre-selections, only
two final projects remain in the final round of assessment. In order to minimise the potential
dissent in the final decision, the fund will only be given to the project receiving some degree
of consensus from the members of the committee. However, members of the committee are
likely to each have their own idiosyncratic prior as to the merits of each project, based on their
own subjective assessment of its chances of success, say, up to the commercialisation (an
innovation may function, technically, but not be successful in the final market, for example,
due to how the market receives it – e.g., consumer taste for something really new cannot be
anticipated for certain, as there are no other innovations in use which resemble any of those
proposed new ones). Obviously, if the committee cannot find one project that all or at least
most of its members agree on, the fund will be lost, putting pressure on the committee to
find the best possible agreeable allocation of those funds, obeying the idea of the government
to promote the most promising innovation project. The intuition is that in this case there is
not enough statistical evidence about the distribution of ‘good projects’ versus ‘bad projects’
in the economy such that all members of the committee will be able to necessarily all share
the same belief about the exact chances of each project submitted to their attention to be of
either type. The members’ differing priors are likely to impact on the final selection of the
recipient of the fund.

2It could also happen for the parents of the twins to decide which kid they want to save by agreeing to the
heart transplant.
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In the above examples, medical surgeons, organ allocation officers, and funding commit-
tee members are the decision makers who are faced with some sort of ambiguous information
within each small group. Such small group decision-making could also extend to legislatures,
expert panels3 and other judicial bodies. Decision makers are asked to make a choice between
possible alternatives. Provided with the very same pieces of information, such as the medical
data of the patients, surgical history, project proposal, and the merit of a project, decision
makers will then generate their own ideas/opinions or beliefs independently. According to
Ellsberg (1961), ambiguity stems from such information, which exposes decision makers to
a potential dissent from their initial positions/judgements/beliefs. Decision makers need to
be aware of the fact that someone will have to vote against their received information/signal,
‘aligning their minds’ to eliminate any dissent to reach a decision (whether unanimously
or not) and that the quality of the information received matters in determining how such
alignment may be reached.

In the remainder of this thesis, we take the jury trial as the leading example, as the
metaphor for other small group decision-making examples, to study whether an ambiguous
information structure could affect collective deliberation processes, and if so how, in order
to gain a better understanding of the effects of different institutions on collective decision
outcomes.

To advance our understanding of how ambiguity can play a role in a jury trial setting,
we embed identical, but – at least partially – ambiguous information into the canonical jury
decision-making model of Feddersen and Pesendorfer (1998). Our main goal is to study
the effects of introducing different forms of ambiguity on the probabilities of convicting the
innocent (type I error) and acquitting the guilty (type II error), compared to the canonical
jury trial case.

To that end, in chapter 1 we begin by exploring a model in which jurors may distrust the
precision of the information given to them, leading to jurors adopting potentially differing
priors and altering the formation of their posteriors, used when casting votes to convict or

3The case of a legislature shares some similarity with the jury trial, in which there exists a default option, in
the case a consensus fails to be reached, which is the acquittal. Although legislatures might still be making a
binary choice, in general, they are choosing between whether to dismiss a proposal or accept it, a ‘Yes’ or ‘No’
question. That is the same for the expert panel, if they are considering whether to adopt a new technology. The
main difference between them is that the final choice indicates different results. When an unanimous decision
is not accepted, the status quo remains instead (similarly to the jury trial); then, the decision of ‘rejecting the
legislative proposal’ is the same as not voting. A binary choice in these cases is not to choose one option out
of two; it becomes whether to maintain the status quo or not. However, in the surgery case, either the patient
receives the surgery or he/she will have chemotherapy, neither of which are the status quo.
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to acquit a defendant. Within this model, we can summarise the following findings. As
the size of the jury grows sufficiently large, when voters share the same ‘trusting’ level of
belief, voting according to their private signals leads to a smaller probability of convicting an
innocent defendant. This suggests that if there were ways of framing all voters to believe that
the quality of the private information is the highest among alternative ones provided to them,
and that belief is wrong (jurors trust the precision to be higher than its ‘true’ underlying
level), type I errors would be reduced, if not even eliminated. Therefore, asymptotically,
being trusting of the information received or framing the information to induce more trust
in it, makes the unanimity voting rule less unappealing. However, for a small jury size,
distrusting the information provided would be best to reduce type I errors and to improve the
performance of the unanimity rule.

In chapter 2, we report results from an array of experiments designed to capture the
collective voting behaviour under the two-point non-common prior model introduced in
chapter 1 and to contrast them against results of canonical collective voting behaviour models.
Our aim is to investigate the collective decision-making outcomes under different voting
rules when the quality of the private information given to voters when casting their votes is
unmeasurable, triggering voters to adopt potentially differing beliefs about it. The results
of these experiments validate the theoretical predictions of voting under the two-point non-
common prior model, suggesting the importance of the quality of the information structure
in determining the collective deliberation outcomes. These results help establish when, in the
finite case, the unanimity voting rule can outperform majority voting rule if voters adopts
two-point non-common priors.

In chapter 3 we generalise the jury voting model of Feddersen and Pesendorfer (1998) by
embedding ambiguity into the private signal structure and considering voters who, being am-
biguity averse, adopt a Maxmin approach to form subjective beliefs. The Maxmin Expected
Utility Theorem (MMEU) of Gilboa and Schmeidler (1989) helps capture the voter’s attitude
towards ambiguity to analyse how this impacts the collective voting outcomes under both
the majority rule and the unanimity rule. According to MMEU, voters assign their priors
in an act-contingent manner, that is, ambiguity averse voters assign the prior, which gives
them the best among the worst expected utility levels when evaluating alternatives choices
(in this context, voting choices, namely whether to vote to convict or to acquit). Within
this framework we prove the existence of an informative voting equilibrium and of strategic
voting equilibria. Moreover, we find that if ambiguity exists in the precision of the private
information, it is easier to sustain informative voting as an equilibrium strategy, that is, there
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exists a larger set of reasonable doubt levels for the unanimity voting rule to prevail as an
equilibrium of the voting game. This is an important result as voting informatively, especially
under unanimity helps maintain the efficiency of information aggregation.

Our theoretical and experimental results call into question preconceived results about
the performance of different institutional designs and voting rules for collective deliberation
under differing information structures. When the objective probability of the information
is imprecisely measured, that is when the common-prior assumption is relaxed, novel re-
sults arise which deserve further exploration, challenging our views about the virtues of
adopting, say, majority voting, as opposed to unanimity voting, to avoid the bad outcome of
exacerbating the odds of convicting an innocent defendant (jury paradox).
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1.1 Introduction

Much decision-making takes place in small groups. Members gather together to cast votes

over alternatives proposed to them, be it for a bill to be passed in a Congress, a project to be

selected for financing, a patient to be put on a transplant list, or a defendant’s fate in a court

of law.

The way in which decision-making occurs, its process and the voting rule adopted, as

well as the information used by members of a committee/jury to finalise a decision, are

all important elements in the quality of that decision. Although, it is always possible to

conjecture which decision(s) would be reached by a small decision-group under specified

preferences and information structure, that is, whenever a common prior is shared by all

parties involved, it is far from obvious to anticipate what the final decision could be in the

presence of information which is inherently ambiguous.

As anticipated, in order to advance our understanding of how ambiguity can play a role in

a jury trial setting, we embed identical, but – at least partially – ambiguous information into

the canonical jury decision-making model of Feddersen and Pesendorfer (1998). Our main

goal is to provide more realistically imprecise measures of information reliability and to study

how those impact on information aggregation for the group decision-making. Specifically,

we are interested in studying the effects of introducing ambiguity on the probabilities of

convicting the innocent (type I error) and acquitting the guilty (type II error), compared to

the canonical jury trial case.

We begin by considering the case in which jurors/voters do not necessarily share the

same trust in the precision of the information provided to them. This raises the possibility for

multiple priors to coexist, altering the formation of posteriors, hence, the casting of the votes,

ultimately affecting the final collective decision. In this environment, we demonstrate that as

the size of the jury grows sufficiently large, when voters share the same ‘trusting’ level of

belief, voting according to their private signals leads to a smaller probability of convicting an
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innocent defendant. This suggests that if there were ways of framing all voters to believe that

the quality of the private information is the highest among alternative ones provided to them,

and that belief is wrong (jurors trust the precision to be higher than its ‘true’ underlying

level), type I errors would be reduced, if not even eliminated. Therefore, asymptotically,

being trusting of the information received or framing the information to induce more trust

in it, makes the unanimity voting rule less unappealing. However, for a small jury size,

distrusting the information provided would be best to reduce type I errors and to improve the

performance of the unanimity rule.

The remainder of this chapter is organised as follows. Section 1.2 contains a review

of the related literature on collective decision-making. Section 1.3 presents the jury trial

model and the main findings as studied in the seminal paper by Feddersen and Pesendorfer

(1998). Section 1.4 and section 1.5 are devoted to the analysis of a specific theoretical model

of voting under non-common prior: the two-point prior model, under the unanimity voting

rule and majority voting rule, respectively. Section 1.6 presents the simulation results of the

two-point prior model. Section 1.7 concludes. Appendices A.1-A.4 contain the technical

proofs for the derivation of the main results of this study, as well as the simulations conducted

within this study.
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1.2 Related Literature

The Condorcet Jury Theorem states that collective decision generated by majority voting

has a higher probability of selecting the correct alternative than the decision made by a

single individual. However, this result is derived under the assumption that voters vote in

accordance with their information, hence it precludes studying other rational behaviours of

decision makers, such as voting strategically, that is, potentially voting against one’s own

information (Austen-Smith and Banks, 1996). In other words, the Condorcet Jury Theorem

assumes that the behaviour of a voter when he is a member of the group is identical with the

behaviour when he makes the decision alone. However, voting sincerely and informatively

may not always be rational. To explore this further, three simple jury voting models have

been put forward in order to understand possible voter behaviour under majority voting rule

from a game-theoretic perspective.

Consider variants of a model in which all voters have a common preference for select-

ing the better alternative. Also, each voter receives a private signal independently from a

state-dependent distribution, which can be taken as a hint indicating the better alternative.

However, there are three sorts of possible voting behaviour: sincere voting, in which each

voter selects the alternative which gives him the highest expected payoff based on his own

signal; informative voting, in which each voter votes for the alternative, which not only gives

him the highest expected payoff, but also is consistent with the private signal he receives; and

rational voting, in which each voter updates the posterior belief and considers being pivotal

while taking into account others’ behaviour, and which, thus, constitutes a Nash equilibrium

of the Bayesian game. In the first model, sincere voting is informative and it is also rational if

majority voting rule is selected to aggregate individuals’ votes for determining the collective

decision. The second model assumes that each voter receives two independent draws of

private signals. The third model also allows each voter to receive two private signals, and

it also assumes that after observing their private signals, individuals receive a public signal

from a different state-dependent distribution. Sincere voting cannot be both informative and

rational under these two model setups. This indicates that if the Condorcet Jury Theorem
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applies, voters will vote sincerely. Whereas, the sincere voting strategy profile is irrational.

Or if the voting strategy profile is rational, which means it is an equilibrium of the Bayesian

game, this voting strategy profile cannot be sincere, and thus, the Condorcet Jury Theorem

fails to apply.

Similar results are found in the paper of Feddersen and Pesendorfer (1998), that is, voting

informatively might not be a Nash equilibrium under unanimous voting rule, thus, precluding

information aggregation. We will talk in more detail about this model and its findings in the

next section.

In the Bayesian game the pivotality assumption of the rational voters is unlikely to be true.

That is, rational voters expect others all vote informatively and conditioning on this unlikely

event, they might have the incentive to vote against their private signals. Thus, comparing

informative voting with the rational equilibrium concept of the Bayesian game is problematic.

Laslier and Weibull (2013) propose a randomised voting rule, which restores the infor-

mative voting incentive of each voter and makes the pivotality assumption hold. According

to the randomised voting rule, the classical majority voting rule will be adopted with a

high probability; and with a low probability, the collective decision will be determined by

dictatorship. The latter means that one casted vote will be randomly selected with equal

probability from all voters. Thus, there is an incentive for voters to cast their votes in

accordance to their private information. Laslier and Weibull (2013) extend the model of

Austen-Smith and Banks (1996) by allowing heterogeneity in the preferences for differ-

ent collective decision outcomes. And they find the more general necessary and sufficient

conditions for informative voting being a Nash equilibrium under the classical majority

voting rule. However, if private information is state-dependent and one signal is more

informative than another, informative voting precludes the Bayesian Nash equilibrium. If

the randomised majority rule is applied instead, each voter has a strict incentive to vote

informatively and informative voting is the unique Nash equilibrium. And asymptotically,
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the efficiency of the classical majority rule is obtained and the Condorcet Jury Theorem holds.

There is another implicit assumption of the Condorcet Jury Theorem, that is there is no

cost of obtaining the private signals. If this assumption fails to hold, results of the Condorcet

Jury Theorem cannot be established. If information acquisition is costly, given a small jury

size, the probability for a voter to be pivotal is higher than the cost of getting the information.

Therefore, a voter will incur the cost and cast his vote based on the information received.

However, if the jury size is big, voters prefer to avoid the cost of obtaining the information

and free-ride on the information of other voters. Then, a large committee leads to a lower

social welfare than a small one (using less information than it would be desirable). Therefore,

this suggests that selecting an optimal size of the committee is also vital in order to maintain

the efficiency of a large group.

Koriyama and Szentes (2009) studied the jury voting model by implementing a cost for

each jury member to obtain one private signal. To be specific, voters simultaneously decide

whether to invest in getting the private signals, which are not always informative. Then,

voters cast their votes conditional on the obtained signals and make the ex post efficient

decisions. Koriyama and Szentes (2009) find that there exists an optimal committee size,

which is bounded. This means that the Condorcet Jury Theorem fails to hold. When the

given committee size is small, there is a unique equilibrium in which all voters acquire their

private signals with probability one. If the given committee size is big, then some voters

will randomise. Although the social welfare decreases with more voters randomising, the

oversized committee generates higher social welfare than the undersized committee.

In reality, deliberation can improve the understanding of the information committee

members get, which would be helpful in terms of reaching a more informative decision.

However, there is a tradeoff in the increasing cost of delaying the voting process. Therefore,

Chan and Suen (2012) include the deliberation process of the committee by allowing the

acquisition of public information for each round as long as an alternative is not selected
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according to the given aggregation rule. They assume voters have heterogeneous preferences

for the two alternatives and incur different time cost regarding the duration of the voting

process. In each round, voters can vote for either of the two alternatives or abstain. If there is

an insufficient amount of votes for either of the alternatives to be selected as the collective

decision, the group receives a public information. Otherwise, the voting process ends. The

results show that under super-majority rule, deliberation will not collapse unless there are

sufficiently many impatient voters, who incur higher time cost and prefer quick decisions.

However, under simple majority rule, the deliberation ends almost instantaneously as long as

there is one impatient voter.

Moreover, one of the common assumptions of the previous studies is that voters have

common values regarding the true state of the world and the voting strategies are defined

by maximising subjective expected utility. However, equilibrium results under such setups

do not hold if there is ambiguity regarding the payoff relevant state (Ellis, 2012). And infor-

mation aggregation of the Condorcet Jury Theorem cannot be established, especially if the

information precision is too low to overcome the uncertainty of the ex-ante prior, when voters

exhibit Ellsberg-type ambiguity averse attitude, that is voters conform to maxmin expected

utility (Gilboa and Schmeidler, 1989). This leads voters to strictly prefer randomising as

compared to adopting pure strategies. Thus, information aggregation and the efficiency of

the election are not realised.

In this paper, we assume that voters are not confronted with any ambiguity regarding

the payoff relevant state. Rather, the ambiguity arises from the state-independent private

information with respect to the precision of the signal voters receive before casting their

votes contributing to the group’s decision. We assume the distribution of the precision of the

information is unknown, and, therefore, unmeasured.

Binmore (2015) uses an interesting example to illustrate an ambiguous scenario, in

which the objective probability measure is unmeasured. He states that decision-makers
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are not able to formulate subjective probabilities for some events for which they are not

well informed about. In other words, individuals do not get sufficiently many empirical

frequencies of the occurrence of these events to be able to form measurable probabilities

for them. Binmore postulates that a blind anthropologist from Mars, who were to come

to earth and join the roulette, without knowing what the roulette wheel really does, and

with nobody around to explain to him/her what the rules of this gamble are, would face an

ambiguous scenario/world. What the Martian hears is the croupier saying ‘high’ or ‘low’;

and then, the clink of chips being transferred. After many times of the roulette being played,

the Martian would form his/her own subjective probabilities for the ‘high’ and the ‘low’

event, respectively. If, suddenly, a new player were to join the casino and to start betting on

‘odd’ and ‘even’, the Martian would update his knowledge partition of the state space from

{Low,High} to {Odd ∩Low,Odd ∩High,Even∩Low,Even∩High}. Because the Martian

would not get a chance to observe any occurrence of events such as {Odd ∩ Low} and

{Even∩Low∪Even∩High}, these events would remain unmeasured. Of course, he/she

would not distinguish whether the state space of the roulette wheel is {1,2, · · · ,36} and thus,

would not be able to recognise all subsets of the true state space. Unless the Martian were to

sit at the roulette table and to keep playing for millions of times, he/she might never have the

chance to hear all the events which could have happened; and, thus, might never be able to

form an explicit and exact probability measure for the roulette wheel game.

Now, assume that another blind Martian were to land at the same casino, but to sit at

a different roulette wheel table from the previous Martian. After sitting there and hearing

the gamble repeat again and again for 5000 times, both Martians, upon flying back to Mars,

would likely teach their fellow Martians different ways of how to play the same gamble. We

could expect they would have developed different rules of the roulette wheel because the

knowledge partition of the state space would likely not be the same for those two Martians,

who were each not informed of all relevant events of the roulette. And their subjective

probabilities/priors with respect to the same event, for instance, {High}, might not be the

same, depending on the realised frequency of this event as each experienced it in each of the
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tables they were sitting at.

Thus, when an event is unmeasurable, it is impossible to assign a specific objective

probability measure to it. However, as Knight (1921) suggests in his book, individuals will

eventually assign an estimate towards an event and feel toward this estimate as toward any

other probabilities. He suggests that, even in the uncertain scenarios, decision makers will

form subjective probabilities and act according to them. Also, Ellsberg pointed out in his

paper that to apply total ignorance to the composition of the balls in the ambiguous urn is

improper. It is because of the ambiguity of the information the individual receives, rather than

his/her complete ignorance, that the individual is not able to pin down a unique likelihood of

the composition of the balls.

Therefore, even though we assume that decision makers receive information regarding

the true state of the world, and that the distribution of the precision of the information is

unmeasured, decision makers will still assign their (non necessarily identical) subjective

probability to the event of receiving the information which corresponds to the true state of

the world. Note that for simplicity, in the remainder of this chapter, we will refer to this type

of information as ‘ambiguous’. This is to avoid having to use different terminologies when

referring to each of the possible different sources, which are responsible for probabilities to

be unmeasurable (whether due to objective ambiguity or else).
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1.3 The Canonical Jury Trial Model: Feddersen and Pe-

sendorfer (1998)

In Feddersen and Pesendorfer (1998), results demonstrate that voters’ strategic behaviour

would lower the efficiency of a more conservative voting rule, compared to that of other

voting rules, which require fewer consensual decisions. In other words, the efficiency of

a jury trial, where the guilty defendants are sentenced to conviction and the innocent ones

are declared acquitted, is lower if an unanimous guilty/innocent verdict is required from

jurors. Compared to simple majoritarian rule, the unanimity verdict is proved to be inferior

under strategic voting due to the higher probability of committing type I error: convicting an

innocent defendant; and, also, type II error: acquitting a guilty one.

In the setting of Feddersen and Pesendorfer, it is assumed that there are n jurors, j =

1, . . . ,n, gathered together to decide the fate of the defendant, who is believed to be guilty

or innocent with equal ex-ante probabilities. Before casting their votes, each of the jurors

receives a private and imperfect signal s j = {i,g}, with precision p = Pr(g|G) = Pr(i|I) and

p ∈ (1/2,1), pointing toward the ‘i = innocence’ or ‘g = guilt’ of a defendant given the

‘true’ state of the world {G, I} – that the defendant is either ‘G = guilty’ or ‘I = innocent’.

Take a voting rule requiring at least k̂ jurors to agree on a verdict, with k̂ ≤ n – be it simple

majority with k̂ = (n+1)/2 or unanimity with k̂ = n – and the trial will result in a verdict

{C,A} either to ‘C =Convict’ or to ‘A = Acquit’ the defendant, reflecting all jurors trying to

do the ‘right’ thing, that is, voting to convict whenever some threshold for reasonable doubt,

q ∈ (0,1), has been reached, and voting to acquit otherwise. All jurors are thus assumed to

have the same preferences with respect to the outcome (quality) of the verdict, so that their

preferences can be represented as follows:

u(A, I) = u(C,G) = 0,

u(C, I) =−q,
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u(A,G) =−(1−q).

In their model setup, Feddersen and Pesendorfer did not consider the case where jurors

vote naïvely. Rather, they study the case where all voters are strategic in terms of each voter

considering whether he can be pivotal and such that his vote makes a difference as to whether

a defendant is convicted or acquitted. After receiving their private information (signal), each

juror updates his posterior belief with respect to the guiltiness of the defendant according to

the Bayes’ rule, such that the posterior probability that the defendant is guilty, conditional

on observing n signals, k of which are guilty is denoted as β (k,n) = pk(1−p)n−k

pk(1−p)n−k+(1−p)k pn−k .

If β (k,n) > q, the defendant is guilty beyond any reasonable doubt. If β (k,n) < q, the

guilt of the defendant cannot be established beyond reasonable doubt. Hence, for any given

voting rule, k̂, voters will vote informatively, as long as β (k̂−1,n)< q < β (k̂,n). ‘Voting

informatively’ means that voters’ votes correspond with their private signals, that is those

who receives innocent signal i will vote for acquittal A; and those who receives guilty signal

g will vote for conviction C. However, if the condition above does not hold, voters may vote

against their signals. Using the wording of Feddersen and Pesendorfer, we will refer to this

second case as ‘strategic voting’. Below is a summary of their main findings, to be contrasted

next with our own findings under ambiguity.

Result #1: If voting is informative, the type I error under unanimous voting is smaller

than that under any other voting rules; although the type II error under unanimous voting is

bigger than that under any other voting rules.

Result #2: When β (k̂−1,n)> q, voters will not vote informatively; and, under strategic

voting, there exists a unique symmetric responsive Nash equilibrium, where voters who

receive signal g vote for conviction and those who receive signal i vote randomly (between

voting for conviction and acquittal). Then, the probability of committing both types of

errors under unanimous voting is bounded away from zero even when the size of the jury is

sufficiently large. Contrarily, the probability of committing both types of errors under other
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types of voting rules approaches zero when the size of the jury approaches infinity.

Therefore, the unanimity rule, which requires a more demanding hurdle for a conviction

verdict to be established, is a uniquely bad rule as opposed to other voting rules, when

jurors fail to vote informatively, especially for large size juries. This contradicts our normal

intuition that we would otherwise hold, that requiring everybody to agree to convict, for a

conviction verdict to be pronounced, provides more protection against innocent defendants: a

protection against finding themselves convicted by mistake. Instead, as the size of a jury gets

larger, and as voters tend to vote strategically, the unanimity rule leads to more opportunities

for the miscarriage of justice, hence the ‘jury paradox.’

This disappointing result is obtained by restricting attention to jurors who possess infor-

mation, the accuracy of which is commonly known and uniquely defined. However, it is

more than plausible to think of many realistic situations in which the quality of the private

information jurors receive is not that precise, rather often ambiguous. There is evidence, such

as hearsay evidence, witnesses’ testimony, and any indirect evidence that requires induction,

and for which it is not obvious to know what the exact reliability is, as the evidence such as a

DNA report. Assessing the reliability of this evidence requires some logical reasoning and

inference; and, also, it may be affected by the relative persuasion of the arguments made by

the prosecutor and the defence lawyer, respectively. Ultimately, the objective probabilities

measure of the evidence is unmeasurable and jurors are likely not to share the same prior

(belief about how reliable the evidence produced is). Differing jurors’ prior are also likely to

impact on the final verdict, which is what we want to address next, by introducing ambiguity

about the quality of information provided to voters within a voting model, and by relaxing

the common prior assumption, allowing for different jurors to be of different types, by nature,

with respect to their beliefs about the precision of the information they are provided with, in

the process of voting for acquittal or conviction of a given defendant.
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1.4 Non-common Prior: The Two-point Prior Model

1.4.1 Basic Settings

The main difference between our model and that of Feddersen and Pesendorfer is that we

assume the quality of the signal to be ambiguous to jurors rather than unique and commonly

known (measured). We assume that the correlation between the private signal and the true

state of the world even though positive is nevertheless ambiguous or partially ambiguous

as defined in Chew et al. (2013). Introducing ambiguity in the accuracy with which signals

are obtained allows us to depart from Feddersen and Pesendorfer set-up and to consider far

more common and realistic situations, where the objective probability of the reliability of

the evidence is unmeasured, in which jurors cannot assign a specific level of reliability to

the evidence they are provided with, say, during a trial, and, furthermore, even if they were

able to do so with a certain degree of confidence they would not necessarily agree on what

that level of reliability ought to be. Our next crucial assumption in this model, is to consider

jurors who are different by nature, with respect to their beliefs about the accuracy of the

information they are confronted with. We will provide more details on this, when describing

jurors’ types.

Here, we assume that the accuracy of the signal each juror receives about the defendant

being guilty or innocent belongs to the set P , where P needs not be a singleton – contrary to

Feddersen and Pesendofer set-up. In this chapter, we concentrate on the case of an exogenous

two-point non-common prior for the accuracy with which signals are believed to come about,

captured by P = {p, p̄}. Alternatively, in chapter 3 we consider the entire set of values this

accuracy can take within a closed interval, thereby capturing the extent of its potentially

continuous degree of ambiguity within that interval, with P = [p, p̄].

Hence, if the non-common prior about the quality of private information can take only

one of two possibly distinct values, P = {p, p̄}, we can concentrate on the following infor-

mative signal cases, for which 1/2 < p < p̄ < 1. For example, the evidence hints toward the
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defendant being guilty with either probability 60% or 90%. This could be so, because the

accuracy of a test/evidence is not universally accepted to be at a particular level, so that in

the absence of any extra information regarding the probability distribution of p and p̄, jurors

are free to believe either of those levels for the accuracy to be true. Only one would be, for

a specific case, but jurors have no way to verify that information when making their decisions.

We retain the assumption as in Feddersen and Pesendorfer (1998) that jurors have the

same preferences with respect to reaching a right verdict (convicting the guilty, or acquitting

the innocent) or a wrong verdict (convicting the innocent, or acquitting the guilty).

We distinguish two types of jurors/voters - sceptic and trusting - according to which

level of accuracy for their private information/signal they eventually adopt. We assume

voters form their subjective belief regarding the probability measure as follows: Pr j(g|G) =

Pr j(i|I) = (1−δ j)p+δ j p̄, where δ j is the index of trust for voter j. Next, we concentrate

attention to the extreme belief case, for which δ j ∈ {0,1}, which means that each of the

jurors can either be of an extreme sceptic or a fully trusting type. The radical trusting

juror believes Pr(g|G) = Pr(i|I) = p̄, with δ j = 1; whereas the extreme sceptic believes

Pr(g|G) = Pr(i|I) = p, with δ j = 0. Assume there exists a proportion m of voters who

belong to the extreme sceptic-type and a proportion 1−m of voters who belong to the fully

trusting-type, with m ∈ [0,1].

To be specific, our ambiguous jury voting game can be described as follows:

(i) Nature first chooses the true state of the world, either "Guilty"-G, or "Innocent"-I, with

equal probability, 1/2.

(ii) Nature makes n independent random draws of signals s∈{g, i} for n voters, j = 1, · · · ,n,

from random variable with precision P = {p, p̄}, where 1/2 < p < p̄ < 1. No further

probabilistic information about the signal precision is provided.
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(iii) Nature assigns types randomly and independently to all voters, such that each voter has

probability µ of being sceptic and 1−µ of being trusting. And the realised shares of

extreme sceptics and fully trusting jurors within a jury/committee are denoted by m and

1−m, respectively.

(iv) Each voter observes his private signal and votes according to his strategy (σ j(i),σ j(g)),

which represents the probability with which that voter j votes for conviction conditional

on receiving a signal hinting toward innocence or guiltiness, respectively.

(v) After all voters simultaneously cast their votes, the collective decision is determined

according to the given voting rule.

In the remainder of this chapter, we use this minimal set-up to explore the question of

how collective deliberation, such as voting by jurors in a trial, is affected by the reality that

jurors have multiple/distinct priors. We seek to address how the results obtained under the

common prior assumption change when multiple priors are allowed for, and, more impor-

tantly, whether such changes can ever offset the negative impact that more demanding voting

rules have in exacerbating the occurrence of mistakes in the judicial system. Do multiple

priors help mitigate or even eliminate the paradoxical result that the more demanding the

hurdle for conviction – on the spectrum from simple majority to unanimity – the more likely

it is that a jury will convict an innocent defendant?
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1.4.2 Informative versus Strategic Voting

In order to avoid any confusion with our notation, let us clarify that we use s̄ (s)

to represent the case in which the extreme sceptic (fully trusting) juror has received a

given signal, and, consistently, we use notation Pr(g|G) = Pr(i|I) = p̄ (or, alternatively,

Pr(g|G) = Pr(i|I) = p) to represent that juror’s held belief. Hence, we denote the fully

trusting voter’s strategy as σ̄ = {σ j(ī),σ j(ḡ)}, whereas we denote the extreme sceptic voter’s

strategy as σ = {σ j(i),σ j(g)}. In the remainder of this chapter, we will simply describe

a voter to be in short either sceptic or trusting, to represent the polar cases of an extreme

sceptic or fully trusting type, in terms of beliefs about the precision of the signal received.

In our setup, the fundamental rule of behaviour of each juror is the same as that in

the setup of Feddersen and Pesendorfer. Naïve voting is not considered in our analysis.

Voters simply compare the posterior probability of the defendant being guilty, conditional

on being pivotal under the given voting rule k̂, to the level of reasonable doubt. Due to the

heterogeneity across voters’ types, the pivotal voter has to take all possible combinations of

k̂−1 voters into consideration. We denote all possible combinations of the share of sceptic

and trusting types, given the true state of world G, for these k̂ − 1 voters as A ; and all

possible combinations of the share of sceptic and trusting types, given the true state of world

I, for these k̂−1 voters as B. Moreover, having assumed that a voter believes the precision

of the signal to be either p or p̄ also implies that a pivotal voter only cares about the votes of

others, whether to convict or to acquit, rather than their beliefs about the level of accuracy.

Put differently, it is plausible to think that if beliefs are extreme (as we are considering them

to be in this chapter) the pivotal voter will simply assign to signals received by others the

same level of precision attributed to his own signal, that is, the one he believes to be the true

one. Therefore,

A =
k̂−1

∑
j=0

 k̂−1

j

(1−µ) j
µ

k̂−1− j = 1,
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and

B =
k̂−1

∑
j=0

 k̂−1

j

µ
j(1−µ)k̂−1− j = 1.

Thus, for example, to the pivotal sceptical voter the posterior probability that the defendant

is guilty, conditional on observing n signals, k̂− 1 of which are guilty given all possible

combinations of k̂−1 voters, and given he believes in the precision of the signal to be p, is

simply

β (k̂−1,n,1− p) =
pk̂−1(1− p)n−k̂+1A

pk̂−1(1− p)n−k̂+1A +(1− p)k̂−1 pn−k̂+1B
< q,

β (k̂,n, p) =
pk̂(1− p)n−k̂A

pk̂(1− p)n−k̂A +(1− p)k̂ pn−k̂B
> q.

If the condition β (k̂−1,n,1− p)< q < β (k̂,n, p) is satisfied, a sceptical voter will vote

informatively. Similarly, a condition can be obtained for trusting voter to vote informatively,

namely that β (n−1,n,1− p̄)< q < β (n,n, p̄).

If the unanimity rule is adopted, k̂ = n. In this case, we first consider the possibility that

all voters in a jury happen to be sceptical, so that m = 1, leading to

β (n−1,n,1− p) =
pn−1(1− p)

pn−1(1− p)+(1− p)n−1 p
,

β (n,n, p) =
pn

pn +(1− p)n .

Thus, if all voters are sceptics, informative voting, σ = {σ j(i) = 0,σ j(g) = 1}, is an

equilibrium if β (n−1,n,1− p)< q < β (n,n, p).

Similarly, under unanimity rule, if all voters are trusting, i.e., m = 0, we have
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β (n−1,n,1− p̄) =
p̄n−1(1− p̄)

p̄n−1(1− p̄)+(1− p̄)n−1 p̄
,

β (n,n, p̄) =
p̄n

p̄n +(1− p̄)n .

Thus, if all voters are trusting, informative voting, σ̄ = {σ j(ī) = 0,σ j(ḡ) = 1}, is an

equilibrium if β (n−1,n,1− p̄)< q < β (n,n, p̄).

If there exists heterogeneity in the type of voters, if informative voting would be an

equilibrium under unanimity if and only if (i) β (n−1,n,1− p) < q < β (n,n, p) and also,

(ii) β (n−1,n,1− p̄)< q < β (n,n, p̄).

Proposition 1.1. For k̂ = n, given the two-point non-common prior P = {p, p̄}, informative

voting is an equilibrium,

(i) for m = 1 if β (n−1,n,1− p)< q < β (n,n, p);

(ii) for m = 0 if β (n−1,n,1− p̄)< q < β (n,n, p̄);

(iii) for 0 < m < 1 if β (n − 1,n,1 − p) < q < β (n,n, p) and β (n − 1,n,1 − p̄) < q <

β (n,n, p̄), where p >
( p̄

1−p̄ )
( n−2

n )

1+( p̄
1−p̄ )

( n−2
n )

.

Moreover, for the two-point non-common prior scenario, we next derive expressions for

the probabilities of convicting an innocent and of acquitting a guilty for the unanimity voting,

which is informative. For that, we need to remind ourselves that even though some voters

believe in p and others believe in p̄ to be true, the ‘true’ precision of the signal can only be

one or the other. Voters, by each choosing to cast a vote to acquit or to convict – which in

turn is based on their idiosyncratic belief (prior) and on their idiosyncratic posterior belief,

that is, in light of all the evidence, based on their respective degree of confidence about a

defendant being guilty – determine the collective decision whether to convict or to acquit

a defendant. These votes to convict or to acquit can be translated in the probabilities of
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convicting an innocent or acquitting a guilty, when using some underlying ‘true’ precision of

the signals (all evidence) obtained, which we can simply refer to as p.1 Comparisons of those

probabilities of committing errors in either directions to those obtained under the canonical

case are summarised in Corollary 1.1.

Corollary 1.1. For k̂ = n, given the two-point non-common prior P = {p, p̄}, and the ‘true’

precision of the signal equals p, if informative voting is an equilibrium,

1. Type I error, Pr(C|I) = (1− p)n, is smaller than that for k̂ ̸= n;

2. Type II error, Pr(A|G) = 1− pn is bigger than that for k̂ ̸= n, and it approaches one

when n → ∞.

1Take p to be the ‘true’ underlying precision of the signal. When k ̸= n, Pr(C|I)=∑
n
j=k

(
n
j

)
(1− p) j pn− j,

and, Pr(A|G) = ∑
k−1
j=0

(
n
j

)
(1− p)n− j p j.
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1.4.3 The Probability That A Convicted Defendant Is Innocent under

Unanimity Voting Rule

In this part, we check the probability that a convicted defendant is indeed innocent

under strategic voting for the unanimity voting rule. Under informative voting, given the

‘true’ precision of the signal is equal to p, Pr(I|C) = 1−Pr(G|C) = 1− pn

pn+(1−p)n , which

converges to zero as the size of the jury grows to infinity (as n → ∞). However, strategic

voting under unanimity imposes a lower bound to the probability that the convicted defendant

is innocent. There are two cases we can consider when voters vote strategically.

In the first case, the defendant is always convicted independently of signal s, such that

1− p > q when m = 1 and 1− p̄ > q when m < 1. Therefore, since the prior is that half

of the time a defendant happens to be innocent, convicting all defendants translates into

making an error with probability 1/2. This says that if voters always vote to convict, then

Pr(I|C) = 1/2.

In the second case, there is some juror who votes to acquit with positive probability, such

that the probability that the defendant is guilty, for either type of voter, conditional on being

pivotal and receiving either signal i or signal g, is less than or equal to the reasonable doubt

q, Pr(G|piv j,s)≤ q.

Proposition 1.2. Under strategic voting and given the two-point non-common prior P =

{p, p̄}, consider any Nash equilibrium in which the defendant is convicted with strictly

positive probability under the voting rule k̂ = n. If there exist heterogeneous beliefs with

respect to the ‘true’ precision of the signal p across voters, Pr(I|C) is bounded below by

min{1/2,
(1− p̄)(1− p)(1−q)

(1− p)(1−q)+ p̄(p+q−1)
}.

The proof of Proposition 1.2 is provided in Appendix A.1.
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If the true p = p̄, and there exist heterogeneous beliefs regarding the p, we have

Pr(G|C)≤ qp̄p̄
1−2p̄−q+ p̄2 +2qp̄

,

and

Pr(I|C) = 1−Pr(G|C)≥ (1− p̄)2(1−q)
1−2p̄+ p̄2 −q+2qp̄

≥ 1−q

1+q2 p̄−1
1−p̄2

.

If all voters’ beliefs are homogeneous and correspond to the true p = p̄, we have

Pr(I|C)≥ (1− p̄)2(1−q)
1−2p̄+ p̄2 −q+2qp̄

≥ 1−q

1+q2 p̄−1
1−p̄2

.

If all voters’ beliefs are homogeneous, however, they correspond to the wrong p, we have

Pr(I|C)≥
(1− p)2(1−q)

1−2p+ p2 −q+2qp
≥ 1−q

1+q
2p−1
1−p2

.

Corollary 1.2. Under unanimous voting with two-point ambiguous information structure, if

the ‘true’ p = p̄, the lower bound for the probability of a convicted defendant to be innocent

is

1. the largest when all voters’ beliefs correspond to the wrong p (everyone believes p);

2. otherwise, the lower bound equals the case of a commonly known and certain p (as

assumed by Feddersen and Pesendorfer (1998)).

If the ‘true’ p = p, and there exist heterogeneous beliefs regarding the p, we have

Pr(G|C)≤ 1
2p−1

p +
1−p

p
(1−q)(1−p̄)+qp̄

qp̄

=
p̄pq

(1− p)(1−q)+ p̄(p+q−1)
,

and

Pr(I|C) = 1−Pr(G|C)≥
(1− p̄)(1− p)(1−q)

(1− p)(1−q)+ p̄(p+q−1)
.
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If all voters’ beliefs are homogeneous and correspond to the true p = p, we have

Pr(I|C)≥
(1− p)2(1−q)

1−2p+ p2 −q+2qp
≥ 1−q

1+q
2p−1
1−p2

.

If all voters’ beliefs are homogeneous, however, they correspond to the wrong p, we have

Pr(I|C)≥ (1− p̄)2(1−q)
1−2p̄+ p̄2 −q+2qp̄

≥ 1−q

1+q2 p̄−1
1−p̄2

.

Corollary 1.3. Under unanimous voting with two-point non-common prior, if the ‘true’

p = p, the lower bound for the probability of a convicted defendant to be innocent

1. is no larger than under a commonly known and certain p (as assumed by Feddersen

and Pesendorfer (1998)); and,

2. has the smallest lower bound when there exist heterogeneous beliefs regarding the

‘true’ level of p.
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1.4.4 Symmetric Responsive Nash Equilibrium under Unanimity Vot-

ing Rule

In this section, we explicitly examine a specific strategic voting equilibrium under the

unanimity rule, the Symmetric Responsive Nash equilibrium.

Assumption 1.1. Symmetric

(i) σ(i) j = σ(i)− j, σ(g) j = σ(g)− j;

(ii) σ(ī) j = σ(ī)− j, σ(ḡ) j = σ(ḡ)− j;

(iii) if σ(s) is a pure strategy, then we require σ(s) = σ(s̄).

Therefore, a strategy profile is symmetric if all jurors who receive the same signal take

the same action; and if the voting strategy is a pure strategy, we assume the pure strategy is

symmetric across different voters’ types for simplicity.

For a strategy profile to be responsive all voters need to change their vote as a function of

their private information with some positive probability. This definition for the responsive

equilibrium follows that of Feddersen and Pesendorfer (1998). We first denote

γG = pσ(g)+(1− p)σ(i)

as the probability that a sceptical juror votes to convict if the defendant is indeed guilty and

γI = pσ(i)+(1− p)σ(g)

as the probability that a sceptical juror votes to convict if the defendant is indeed innocent.

Analogously,

γḠ = p̄σ(ḡ)+(1− p̄)σ(ī)

and

γĪ = p̄σ(ī)+(1− p̄)σ(ḡ)
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represent the probability that a trusting juror votes to convict if the defendant is guilty and if

the defendant is innocent, respectively. If heterogeneity exists regarding the type of voters,

being responsive means γG ̸= γI and γḠ ̸= γĪ .

Assumption 1.2. Responsive

(i) γG ̸= γI , such that σ(i) ̸= σ(g);

(ii) γḠ ̸= γĪ , such that σ(ī) ̸= σ(ḡ).

According to the above assumptions, we can remove the subscript j for all strategic

profiles and other notations. Next, we concentrate on purely strategic and Symmetric Re-

sponsive Nash Equilibria. In addition to those, there are two strategic Symmetric Nash

equilibria, {(σ(i) = 0,σ(g) = 0),(σ(ī) = 0,σ(ḡ) = 0)} and {(σ(i) = 1,σ(g) = 1),(σ(ī) =

1,σ(ḡ) = 1)}, for which all voters ignore their private signals and symmetrically vote

for either acquittal or conviction. According to Assumption 1.2, these two strategic equi-

libria are not responsive. Also, there is the case for which all voters vote informatively,

{(σ(i) = 0,σ(g) = 1),(σ(ī) = 0,σ(ḡ) = 1)}.

Proposition 1.3. Given k̂ = n and 0 < m < 1, there is one unique Symmetric Responsive

Nash Equilibrium under two-point non-common prior, such that ((0 < σ(i) < 1,σ(g) =

1),(0 < σ(ī)< 1,σ(ḡ) = 1)) as long as q > 1− p.

The proof for this result can be found in Appendix A.2.

When calculating both types of errors, we define γ̂G and γ̂I as a function of the ‘true’ p,

to represent the probabilities that the defendant gets convicted when the true state of world

is either guilty or innocent, respectively. Although a juror’s strategy is a direct function

of each juror’s idiosyncratic beliefs (prior and posterior beliefs, determining the individual

probability of voting to convict), the effective ex-ante probability of receiving either of the

signals is decided by the ‘true’ level of the signal accuracy, hence the probability that a
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collective decision, under a symmetric equilibrium, leads to errors of either type, can be

derived as a function of the probability of voting to convict, which depends on both those

subjective beliefs (whether right or wrong) and on the ‘true’ underlying precision with which

signals come about.

Therefore, we have

γ̂G = p+(1− p)σ(i),

γ̂I = pσ(i)+(1− p),

and

γ̂Ḡ = p+(1− p)σ(ī),

γ̂Ī = pσ(ī)+(1− p).

Given the symmetric responsive strategy profile, the probability that a sceptic, and, a

trusting, juror votes to convict if the defendant is indeed innocent is, respectively,

γ̂I =
[
(1−q)(1−p)

qp ]
1

(n−1) (p+ p−1)+ p− p

p− (1− p)[
(1−q)(1−p)

qp ]
1

(n−1)
,

and

γ̂Ī =
[ (1−q)(1−p̄)

qp̄ ]
1

(n−1) (p̄+ p−1)+ p̄− p

p̄− (1− p̄)[ (1−q)(1−p̄)
qp̄ ]

1
(n−1)

.

Whereas, the probability that a sceptic, and, a trusting, juror votes to convict if the

defendant is indeed guilty is, respectively,

γ̂G =
[
(1−q)(1−p)

qp ]
1

(n−1) (p− p)+(p+ p−1)

p− (1− p)[
(1−q)(1−p)

qp ]
1

(n−1)
,
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and

γ̂Ḡ =
[ (1−q)(1−p̄)

qp̄ ]
1

(n−1) (p̄− p)+(p̄+ p−1)

p̄− (1− p̄)[ (1−q)(1−p̄)
qp̄ ]

1
(n−1)

.

Therefore, we have type I error

Pr(C|I) = (γ̂I)
n = (γ̂m

I γ̂
1−m
Ī )n,

and type II error

Pr(A|G) = 1− (γ̂G)
n = (γ̂m

G γ̂
1−m
Ḡ )n.

When n → ∞, the limit results of both types of errors are

lim
n→∞

Pr(C|I) = lim
n→∞

(γ̂I)
n = (

(1−q)(1− p)
qp

)
pm

2p−1 (
(1−q)(1− p̄)

qp̄
)

p(1−m)
2p−1 ,

and

lim
n→∞

Pr(A|G) = lim
n→∞

1− (γ̂G)
n = 1− (

(1−q)(1− p)
qp

)
(1−p)m
2p−1 (

(1−q)(1− p̄)
qp̄

)
(1−p)(1−m)

2p−1 .

Also, the limit result of the lower bound of the probability of a convicted defendant to be

innocent equals

lim
n→∞

Pr(I|C)= lim
n→∞

1

1+ Pr(C|G)
Pr(C|I)

=
1

1+ limn→∞(1−Pr(A|G))
limn→∞ Pr(C|I)

=
1

1+(
qp

(1−q)(1−p))
m( qp̄

(1−q)(1−p̄))
1−m

.

Proposition 1.4. Under the two-point non-common prior P = {p, p̄} the Symmetric Re-

sponsive Nash Equilibrium,

1. for m = 0, leads to the smallest probability of convicting an innocent independently of

the ‘true’ level of p;

2. for m = 1, leads to the smallest probability of acquitting a guilty independently of the

‘true’ level of p.
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Thus, when the information structure allows for voters to adopt multiple priors, in order

to reach the lowest probability of convicting the innocent, all voters should be trusting and

believe in p̄. However, if the aim is to lower the probability of acquitting the guilty, then all

voters should be sceptical and believe in p instead. In other words, if all voters are trusting,

the incidence of type I errors is the smallest, though type II errors become more frequent.

Corollary 1.4. If the equilibrium strategic voting profile is symmetric and responsive,

1. And the ‘true’ p = p,

(i) Pr(C|I) under two-point non-common prior is no larger than that under a given

p, which is unique and commonly known to all voters;

(ii) Pr(A|G) under two-point non-common prior is no less than that under a given p,

which is unique and commonly known to all voters.

2. However, if the ‘true’ p = p̄,

(i) Pr(C|I) under two-point non-common prior is no less than that under a given p,

which is unique and commonly known to all voters;

(ii) Pr(A|G) under two-point non-common prior is no larger than that under a given

p, which is unique and commonly known to all voters.

Remark 1.1. The lower bound of the probability that a convicted defendant is innocent,

Pr(I|C), is the smallest(highest) whenever m = 0 (m = 1).
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1.5 Two-point Prior Model under Non-unanimous Voting

Rule

We define the non-unanimous voting rule as k̂ = αn, with 0 < α < 1. We find that

the symmetric responsive Nash equilibrium exists for either type of voters under two-point

non-common prior. Moreover, when n → ∞, both types of errors approach to zero.

The probability the convicted is guilty is

Pr(G|C) =
1

1+(
(γI)mα (γĪ)

(1−m)α (1−γI)m(1−α)(1−γĪ)
(1−m)(1−α)

(γG)mα (γḠ)
(1−m)α (1−γG)m(1−α)(1−γḠ)

(1−m)(1−α) )
n
.

And we know that when n → ∞, the actual share of guilty votes converges to the expected

share of guilty votes in each state of the world. Then, for larger n, the defendant is guilty

with probability one if the above equation approaches one; the defendant is innocent with

probability one if the above equation approaches zero.

We consider the case when 1/2 ≤ α < 1 to make sure that 0 ≤ σ(i)< 1 and σ(g) = 1

and measure the probability of making either type of error for voting rules such as simple

majority and two-thirds majority. The proofs of the derivation of this equilibrium are confined

to Appendix A.3.

Then, in the limit case, we have

γ̂G = p+(1− p)
p(1+(

1−p
p )(1−α)/α )−1

p−(
1−p

p )(1−α)/α )(1−p)

γ̂I = p
p(1+(

1−p
p )(1−α)/α )−1

p−(
1−p

p )(1−α)/α )(1−p)
+(1− p)

γ̂Ḡ = p+(1− p)
p̄(1+( 1−p̄

p̄ )(1−α)/α )−1

p̄−( 1−p̄
p̄ )(1−α)/α )(1−p̄)
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γ̂Ī = p
p̄(1+( 1−p̄

p̄ )(1−α)/α )−1

p̄−( 1−p̄
p̄ )(1−α)/α )(1−p̄)

+(1− p)

And we can see that γ̂G > γ̂Ḡ > γ̂I > γ̂Ī .

Whenever m = 0, i.e., all voters believe in p̄, in order for the limit of the probability

of either type of errors to approach zero as the jury size gets larger (tends to infinity) the

following condition needs to hold: γ̂Ḡ > α > γ̂Ī .

However, whenever m = 1, i.e., all voters believe in p, in order for the limit of the

probability of either type of errors to approach zero as the jury size gets larger (tends to

infinity) the following condition needs to hold: γ̂G > α > γ̂I .

If there exist heterogeneous beliefs regarding p, we need (1−m)γḠ +mγG > α and

(1−m)γĪ +mγI <α for the probability that the convicted defendant is indeed guilty, Pr(G|C),

to tend to one as n → ∞, i.e.,

lim
n→∞

Pr(G|C) = lim
n→∞

1

1+(
γĪ
γḠ
)(1−m)αn(

γI
γG
)mαn(

1−γĪ
1−γḠ

)(1−m)(1−α)n(
1−γI
1−γG

)m(1−α)n
= 1.

This result is in sharp contrast to those obtained under the unanimous voting case, for

which both types of errors are bounded away from zero.
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For both types of errors to be zero as n grows sufficiently large, the conditions above can

also be rewritten as γ̂G > γ̂Ḡ > α > γ̂I > γ̂Ī .
2

Proposition 1.5 and Corollary 1.5 summarise these results.3

Proposition 1.5. Under two-point non-common prior and 1/2 ≤ α < 1

1. there is a Symmetric Responsive Equilibrium for n → ∞, such that {(0 ≤ σ(i) <

1,σ(g) = 1),(0 ≤ σ(ī)< 1,σ(ḡ) = 1)}; and,

2. both types of errors approach zero as long as γG > γḠ > α > γI > γĪ .

Corollary 1.5. Under two-point non-common prior, it is always possible to select an α∗ –

for the non-unanimous voting role with 1/2 ≤ α∗ < 1, such that type I and type II errors

tend to zero as n → ∞ (γ̂G > γ̂Ḡ > α∗ > γ̂I > γ̂Ī) for any given combinations of p, p and p̄.

Remark 1.2. This suggests that the virtues of eliminating type I and type II errors can also

be found in other voting rules but the simple majority, whenever there is scope for multiple

priors to exist in regard to the accuracy of the information provided to voters casting their

votes.

2Under this symmetric responsive Nash equilibrium, as long as γ̂G > γ̂Ḡ > α > γ̂I > γ̂Ī , we can demonstrate
that if the second term of the denominator for the expression of the probability of convicting a guilty defendant
approaches zero as n tends to infinity, the entire probability of convicting a guilty defendant approaches one.
That is so, because that second term can be rewritten as follows:

lim
n→∞

(
γ̂Ī

γ̂Ḡ
)(1−m)αn(

γ̂I

γ̂G
)mαn(

1− γ̂Ī

1− γ̂Ḡ
)(1−m)(1−α)n(

1− γ̂I

1− γ̂G
)m(1−α)n = 0.

Hence, this is equivalent to imposing the following restriction:

(
(γ̂I)

mα(γ̂Ī)
(1−m)α(1− γ̂I)

m(1−α)(1− γ̂Ī)
(1−m)(1−α)

(γ̂G)mα(γ̂Ḡ)
(1−m)α(1− γ̂G)m(1−α)(1− γ̂Ḡ)

(1−m)(1−α)
)< 1,

which translates in the condition γ̂G > γ̂Ḡ > α > γ̂I > γ̂Ī .
3Note that, yet another symmetric responsive Nash equilibrium exists for the less general case of 0 ≤ α <

1/2, for which the derivation can also be found in Appendix A.3. This case corresponds to decisions dictated
by minorities, which is less plausible than that for which at least simple majority of votes in favour of one
alternative is required for those votes to be decisive in that direction.
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1.6 Simulations: Finite Jury Size

In real life, most of collective decisions are made by small groups with a finite size of

members. Therefore, in this section, we use a series of parameters to perform simulations for

voting with imprecise probabilities by a jury/committee of finite size. Our aim is to obtain

results with respect to the performance of different voting rules, in regard to type-I error

in particular. For that, we simulate results for those errors along various dimensions, from

simple majority to unanimity rule, and both for the canonical jury model and our two-point

non-common prior model, using a finite jury/committee size.

We start the simulation with comparing different levels of the information precision, p,

and the reasonable doubt, q, with a given jury size4, n = 5. Given the chosen group size,

simple majority rule requires k = 3; and, unanimity rule, k = 5.

Also, we assume that the ‘true’ level of the signal accuracy, p, is either 0.6 or 0.9, with

an unknown distribution. In the canonical model, jurors’ priors equal the true p. In the

two-point non-common prior model, jurors might not form identical priors with respect to

the accuracy of the private signals they receive. Some of the jurors, the sceptics, believe the

accuracy to be equal to 0.6; whereas, the trusting juror, believes that accuracy to be equal to

0.9.

Moreover, we assume all voters either adopt q = 0.6 or q = 0.9 as their reasonable doubt,

or they select q = 0.6 when they are sceptical and q = 0.9 when they are trusting. The

composition of different type of jurors, m, as before, is let free to vary, so that m ∈ [0,1].

Table 1.1 contains the individual strategies with the resulted errors under simple majority

and the unanimity voting rules for the parameter settings: n = 5, true p = 0.6 with the reason-

able doubt being either q = 0.6 or q = 0.9 for all jurors or q = {0.6,0.9}, which depends on

4Any finite jury size could have been chosen, but we restrict our simulations to the special case of size of 5
to compare those to the experimental data generated with collective decision-making by groups of size 5.
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the juror’s type. Then, we set the true p to be 0.9. The performance of different voting rules

for both the canonical and the two-point non-common prior model can be found in Table 1.2.

Before discussing the results, note that, as a benchmark simulation for the canonical model,

with n = 5, we do not reproduce the ‘Jury Paradox’.5

Nevertheless, the results of the simulations are startling for several reasons. First, cases

where we observe that unanimity rule is inferior to majority rule in term of resulting in

higher type I error are: (1) in both model setups, if the true p = 0.9 and q = 0.6; (2) in the

two-point non-common prior setup, if p = 0.9, q = {0.6,0.9} and m = 1, that is, all voters

are trusting and believe in the right p. Otherwise, both under the canonical setup and the

two-point non-common prior setup, unanimity rule always outperforms majority rule for

all levels of q as it leads to lower type I errors. Second, both types of errors remain the

same: type I error, Pr(C|I) = 0.3174 and type II error, Pr(A|G) = 0.3174, if the true p = 0.6;

and type I error, Pr(C|I) = 0.0086 and type II error, Pr(A|G) = 0.0086, if the true p = 0.9.

Third, when majority rule is adopted, jurors vote informatively both in the canonical and

two-point non-common prior model. However, jurors vote symmetrically and responsively

when unanimous voting rule is used, except if a high level of reasonable doubt, q = 0.9, is

applied to the sceptics. Fourth, with a finite jury size we find that type I error decreases with

a higher proportion of sceptical voters, if the same level of reasonable doubt is exogenously

given to all jurors.6 This result is opposite to the limit results of the two-point non-common

prior model, which instead predicts that with more jurors being trusting, type I error becomes

smaller. This is an important difference, since with finite size, type I error gets smaller only

when being sceptical. Finally, in the two-point non-common prior model when the type I

error is at its lowest, the type II error is at its highest: decreasing the type I error comes at the

cost of increasing type II error, more in general. However, since the focus of the existing

literature is on the debate around the shortcomings of the unanimity rule, in that it delivers

5‘Jury Paradox’ can be found with other parameter setups when jury size are bigger, for example, n = 12,
p = 0.8 and q = 0.9 as illustrated in Feddersen and Pesendorfer (1998).

6When jurors have different levels of reasonable doubt depending on their types, simulation results are
consistent with the limit results of the two-point prior model.
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Table 1.1 Performance of Simple Majority and Unanimous Voting rules under The Canonical
Model Setup and The Two-point Prior Model, given ‘True’ p = 0.6

q = 0.6 q = 0.9 q = {0.6,0.9}

n = 5 k = 3 k = 5 k = 3 k = 5 k = 3 k = 5

Canonical Model
σ(g) 1 1 1 1 1 1
σ(i) 0 0.3288 0 0 0 0.3288
Pr(C|I) 0.3174 0.0760 0.3174 0.0102 0.3174 0.0760
Pr(A|G) 0.3174 0.7905 0.3174 0.9222 0.3174 0.7905

Two-point Prior Model
σ(g) 1 1 1 1 1 1
σ(i) 0 0.3288 0 0 0 0.3288

σ(ḡ) 1 1 1 1 1 1
σ(ī) 0 0.4358 0 0.2308 0 0.2308

Pr(C|I)
m = 1 0.3174 0.0760 0.3174 0.0102 0.3174 0.0760
m = 0.8 0.3174 0.0842 0.3174 0.0138 0.3174 0.0685
m = 0.6 0.3174 0.0932 0.3174 0.0186 0.3174 0.0618
m = 0.4 0.3174 0.1033 0.3174 0.0250 0.3174 0.0557
m = 0.2 0.3174 0.1144 0.3174 0.0336 0.3174 0.0502
m = 0 0.3174 0.1267 0.3174 0.0453 0.3174 0.0453

Pr(A|G)

m = 1 0.3174 0.7905 0.3174 0.9222 0.3174 0.7905
m = 0.8 0.3174 0.7783 0.3174 0.9103 0.3174 0.8018
m = 0.6 0.3174 0.7653 0.3174 0.8965 0.3174 0.8124
m = 0.4 0.3174 0.7515 0.3174 0.8805 0.3174 0.8224
m = 0.2 0.3174 0.7370 0.3174 0.8622 0.3174 0.8320
m = 0 0.3174 0.7216 0.3174 0.8410 0.3174 0.8410
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Table 1.2 Performance of Simple Majority and Unanimous Voting rules under The Canonical
Model Setup and The Two-point Prior Model, given ‘True’ p = 0.9

q = 0.6 q = 0.9 q = {0.6,0.9}

n = 5 k = 3 k = 5 k = 3 k = 5 k = 3 k = 5

Canonical Model
σ(g) 1 1 1 1 1 1
σ(i) 0 0.4358 0 0.2308 0 0.2308
Pr(C|I) 0.0086 0.0289 0.0086 0.0028 0.0086 0.0028
Pr(A|G) 0.0086 0.2520 0.0086 0.3298 0.0086 0.3298

Two-point Prior Model
σ(g) 1 1 1 1 1 1
σ(i) 0 0.3288 0 0 0 0.3288

σ(ḡ) 1 1 1 1 1 1
σ(ī) 0 0.4358 0 0.2308 0 0.2308

Pr(C|I)
m = 1 0.0086 0.0097 0.0086 0.0000 0.0086 0.0097
m = 0.8 0.0086 0.0121 0.0086 0.0000 0.0086 0.0076
m = 0.6 0.0086 0.0150 0.0086 0.0001 0.0086 0.0059
m = 0.4 0.0086 0.0187 0.0086 0.0003 0.0086 0.0046
m = 0.2 0.0086 0.0232 0.0086 0.0009 0.0086 0.0035
m = 0 0.0086 0.0289 0.0086 0.0028 0.0086 0.0028

Pr(A|G)

m = 1 0.0086 0.2935 0.0086 0.4095 0.0086 0.2935
m = 0.8 0.0086 0.2854 0.0086 0.3944 0.0086 0.3009
m = 0.6 0.0086 0.2772 0.0086 0.3788 0.0086 0.3082
m = 0.4 0.0086 0.2689 0.0086 0.3629 0.0086 0.3155
m = 0.2 0.0086 0.2605 0.0086 0.3466 0.0086 0.3227
m = 0 0.0086 0.2520 0.0086 0.3298 0.0086 0.3298
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the highest type I errors, it is worth stressing how the probability of convicting the innocent

varies, rather than how the probability of acquitting the guilty varies, when allowing for

non-common priors.

Next, we conduct the simulations by varying the jury size n each time with a given true

level of p and an identical q for all jurors.

5 9 13 17 21 25 29 33 37 41 45 49
n
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0.06

0.09
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0.18

0.21

Pr(C|I)

k=(n+1)/2

k=n,p={0.6,0.9},m=1 (k=n,p=0.6)

k=n,p={0.6,0.9},m=0

(a) ‘True’ p = 0.6, q = 0.6

5 10 15 20 25 30 35 40 45 50 55 60 65 70
n

0.05

0.1

0.15

0.2

0.25

0.3

Pr(C|I)

k=(n+1)/2

k=n,p={0.6,0.9},m=1 (k=n,p=0.6)

k=n,p={0.6,0.9},m=0

(b) ‘True’ p = 0.6, q = 0.9

Fig. 1.1 Type I Errors of Different Voting Rules under The Canonical Model and The
Two-point Prior Model, given ‘True’ p = 0.6

Figure 1.1 and Figure 1.2 illustrate the probability of convicting an innocent for both

the canonical model and the two-point non-common prior model, given the true level of the

signal precision equals p = 0.6 and p = 0.9, respectively. From the previous simulations, we
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know that type I errors under the canonical model are the same as those under the two-point

non-common prior model; and they are represented by the solid blue lines in the figures,

which are downward sloping.

In Figure 1.1, the type I errors under the unanimous voting rule are the same across the

canonical model and the two-point non-common prior model, if all jurors believes p = 0.6,

that is, m = 1. This results in the lowest probability of convicting an innocent; and it is

illustrated by the green dashed line. In Figure 1.1a, we can see that unanimous voting rule

is preferred to majority voting rule as long as the jury size is no larger than 45. In Figure

1.1b, with q = 0.9, unanimous voting rule is preferred even when the jury size approaches

70.7 If m = 0, with every juror believing p = 0.9, we have the highest type I error instead.

The highest level of type I errors exceeds the one under the majority rule if n > 31 in Figure

1.1a and if the jury size reaches 73 approximately in Figure 1.1b. This suggests that if the

information about the precision of the signal allows for potential multiple priors (it is not

uniquely determined), unanimous voting rule can deliver higher type I errors if jurors adopt

differing priors, which is the case when m ̸= 1.

However, in Figure 1.2, we can see that the existence of the two-point non-common prior

provides an improvement for the unanimous rule in terms of lowering the type I error, as

opposed to that of the canonical model, in which the precision of the information is unique

and commonly known to all jurors. In Figure 1.2a, although the majority rule outperforms the

unanimity rule for all n, the type I error can be reduced if more jurors become sceptical. The

most interesting case is illustrated in Figure 1.2b. We can see that the unanimity voting rule is

preferred to the majority rule if the jury size is smaller than 7 and all jurors’ beliefs coincide

with the true p, p = 0.9. However, as long as any juror deviates from this belief, which means

some of juror believes p to be equal to 0.6 instead of 0.9, the type I error decreases under the

two-point non-common prior model. Moreover, the lowest type I error can be obtained if

m = 1, and all voters are sceptics, with a preferable jury size for using the unanimity rule

7When everyone believes in the right p, that is, p = 0.6, the maximum jury size, for which unanimous rule
should be adopted is 271, given q = 0.9. Please see Figure A.1 in Appendix A.4.
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(a) ‘True’ p = 0.9, q = 0.6
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(b) ‘True’ p = 0.9, q = 0.9

Fig. 1.2 Type I Errors of Different Voting Rules under The Canonical Model and The
Two-point Prior Model, given ‘True’ p = 0.9

which can be extended to up to 17. This suggests that if the private information is not precise,

the unanimity voting rule is superior to the simple majority rule for a not too large jury size

and given certain parameter setups, which are very plausible to observe in the real world;

and also, it is still possible for the unanimity rule to outperform the majority rule even for a

larger jury size as long as not all jurors are trusting.

Details of the simulation of various sizes of the jury can be found in Appendix A.4.
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1.7 Conclusion

In this chapter, we study collective decision-making processes using theoretical mod-

elling and simulations for the case in which the common prior assumption is relaxed. To that

end, we introduce a two-point non-common prior model, and run simulations, to capture the

instances in which voters may possess differing priors (no common priors) beyond private

information about the case at hand, when casting their votes. We do so, to account for the

objective probability measure of the precision of the information possessed by each voter

to be unmeasurable, as often is for many decision-making situations members of various

committees are confronted with.

For the purpose of comparability with existing results in the literature for collective

decision-making under the common prior assumption, we develop the study taking the

leading example of the jury trial, and embedding unmeasurable probabilities to it. We take

the case of jurors who form extreme beliefs/priors in regard to the accuracy of the infor-

mation provided to them, say, in the course of a trial. Using this model, we find that the

non-unanimous voting rule continues to lead to a zero probability of committing both types

of errors – convicting the innocent defendant and acquitting the guilty defendant – when the

size of jury gets sufficiently large. However, the unanimous voting rule does not appear to

be as bad as under models using the common prior assumption, as studied extensively by

Feddersen and Pesendorfer (1998). This is so, despite under strategic voting, the probability

of making both types of errors is strictly bounded away from zero, even when the size of

the jury approaches infinity. There are two ways to improve unanimous voting in terms of

lowering the type I errors when the jury size tends to infinity: either (i) being genuinely

trusting, which means strongly believing in a higher quality/credibility of the information; or

(ii) framing the information towards the higher level of quality/credibility, such that not all

voters are sceptics. In either of those alternatives, the results are improved as compared to

the case in which the quality of the information is commonly known and uniquely given to

all voters.
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Furthermore, our simulation results, which focus on finite jury sizes, suggest that una-

nimity can improve upon non-unanimous voting rule, when the opposite is true, that is (i)

being genuinely sceptical, or (ii) framing the information towards the lower level of qual-

ity/credibility, such that not all voters are trusting, leads to lower probabilities of committing

the type I errors. Therefore, in the real-life judicial trial, if ambiguity matters, having a strong

prosecutor against a weak defence lawyer creates the worst case scenario for implement-

ing justice because a strong prosecutor is likely to frame jurors to form beliefs toward the

higher level of guiltiness. Under such circumstances, only an even stronger defence lawyer

outweighing the persuasion skills of the prosecutor would help rebalance beliefs in the right

direction, hence restoring the chance for justice to take its course, thereby reducing the type I

errors to the lowest level, for any given/chosen threshold of conviction.

Our simulation results deliver interesting testable predictions under two-point non-

common prior model. First, we obtain useful comparative results regarding the model

where the information is purely risky (the signal is correct with a commonly known and

unique probability measure/level), providing predictions that for a small group size, that the

unanimity voting rule not only does not always generate higher type I errors than majority

voting rule, but also that the errors predicted by the canonical model for unanimity under

a small jury size can be improved upon, when abandoning the common prior environment.

These results provide the confirmation/validation of our theoretical results for a finite jury

size, by which being sceptical is beneficial in lowering the occurrence of type I errors. These

predictions form the basis for testing them experimentally. This is the focus of chapter 2,

where we emulate jury-trials consistent with either model of the common prior or the two-

point non-common prior assumption, by means of human-subject laboratory experiments.

Our research suggests a novel way to study collective deliberation outcomes when aban-

doning the common prior assumption with respect to the quality of information possessed

by committee members. By doing so, we are able to highlight differences in conceived

results in the existing literature. We do so, by assuming in particular that the quality of
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the private information each members possesses is unmeasurable (for example, because

it is ambiguous in nature), so that voters’ subjective beliefs are let free to differ, leading

to possibly heterogeneous priors. By developing a theoretical model that incorporates the

scope for heterogeneous priors to matter, we obtain insights about the way to improve the

performance of the unanimity voting rule. Our results imply that one could manipulate

the trusting/sceptical attitude of voters in a collective deliberation setting by framing the

information so as to improve the performance of the unanimity voting rule. Our two-point

non-common prior model represents but one way of relaxing the common prior assumption.

An alternative way could be to allow for an interval within which those priors can be formed.

This is explored in chapter 3 of this thesis, where ambiguity aversion is taken explicitly into

account by voters, when casting their votes.
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Appendix A

Proofs for Chapter 1

A.1
Proof of The Lower Bound of Pr(I|C) under Strategic
Voting

When there is some juror who votes for acquittal with positive probability, that is because
his/her posterior probability of the defendant being guilty, conditional on being pivotal and
receiving either of the two signals – an innocent signal, i or an guilty signal, g – is not
overwhelming the reasonable doubt, such that Pr(G|piv j,s)≤ q.

Pr(G|piv j,s) =
Pr(prv j|G)Pr(s|G)Pr(G)

Pr(prv j|G)Pr(s|G)Pr(G)+Pr(prv j|I)Pr(s|I)Pr(I)
.

The prior about the ‘true’ state of the world is Pr(G) = Pr(I) = 0.5, and

∵ Pr(piv j|G) =
Pr(piv j|G)

Pr(piv j|G)+Pr(piv j|I)
,

∴ Pr(G|piv j,s) =

Pr(prv j|G)
Pr(prv j|G)+Pr(prv j|I)Pr(s|G)

Pr(prv j|G)
Pr(prv j|G)+Pr(prv j|I)Pr(s|G)+

Pr(prv j|I)
Pr(prv j|G)+Pr(prv j|I)Pr(s|I)

;

and according to Bayes’ Rule,

Pr(G|piv j,s) =
Pr(G|piv j)Pr(s|G)

Pr(G|piv j)Pr(s|G)+(1−Pr(G|piv j))Pr(s|I)
.
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We know that if voter j believes in p, we have

Pr(s|G) =

Pr(i|G) = 1− p

Pr(g|G) = p;

And

Pr(s|I) =

Pr(i|I) = p

Pr(g|I) = 1− p.

We know that if voter j believes in p̄,

Pr(s|G) =

Pr(i|G) = 1− p̄

Pr(g|G) = p̄;

And

Pr(s|I) =

Pr(i|I) = p̄

Pr(g|I) = 1− p̄.

Therefore,

Pr(G|piv j,g) =
Pr(G|piv j)Pr(g|G)

Pr(G|piv j)Pr(g|G)+(1−Pr(G|piv j))Pr(g|I)

=
Pr(G|piv j)p

Pr(G|piv j)p+(1−Pr(G|piv j))(1− p)
;

∵ q ≥ Pr(G|piv j,g),

∴ Pr(G|piv j)≤
qp−q

2qp−q− p
.

And

Pr(G|piv j, i) =
Pr(G|piv j)Pr(i|G)

Pr(G|piv j)Pr(i|G)+(1−Pr(G|piv j))Pr(i|I)

=
Pr(G|piv j)(1− p)

Pr(G|piv j)(1− p)+(1−Pr(G|piv j))p
;

∵ q ≥ Pr(G|piv j, i),
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∴ Pr(G|piv j)≤
qp

(1−q)(1− p)+qp
.

Referring to the sceptical voters, for either of the signal to satisfy the condition that the
posterior probability is not overwhelming the reasonable doubt, we obtain that Pr(G|piv j)≤

qp
(1−q)(1−p)+qp .

Regarding the trusting voters, a similar approach can be applied, then,

Pr(G|piv j, ḡ) =
Pr(G|piv j)Pr(ḡ|G)

Pr(G|piv j)Pr(ḡ|G)+(1−Pr(G|piv j))Pr(ḡ|I)

=
Pr(G|piv j)p̄

Pr(G|piv j)p̄+(1−Pr(G|piv j))(1− p̄)
;

∵ q ≥ Pr(G|piv j, ḡ),

∴ Pr(G|piv j)≤
qp̄−q

2qp̄−q− p̄
.

Pr(G|piv j, ī) =
Pr(G|piv j)Pr(ī|G)

Pr(G|piv j)Pr(ī|G)+(1−Pr(G|piv j))Pr(ī|I)

=
Pr(G|piv j)(1− p̄)

Pr(G|piv j)(1− p̄)+(1−Pr(G|piv j))p̄
;

∵ q ≥ Pr(G|piv j, ī),

∴ Pr(G|piv j)≤
qp̄

(1−q)(1− p̄)+qp̄
.

With respect to the trusting voter, for either of the signal to satisfy the condition,
Pr(G|piv j, s̄)≤ q, we obtain that Pr(G|piv j)≤ qp̄

(1−q)(1−p̄)+qp̄ .

Because we do not require every voter to vote to acquit with positive probability, as long
as Pr(G|piv j)≤ qp̄

(1−q)(1−p̄)+qp̄ , at least those who are trusting will vote accordingly.

Define γG j as the probability that the guilty defendant is convicted. γI j is the probability
the innocent defendant is convicted. Neither γG j nor γI j is the function of voter j’s own
perception of the signal accuracy, but the function of their voting strategies and the true
quality of private signals, which is labelled as p.



A.1
Proof of The Lower Bound of Pr(I|C) under Strategic Voting 45

Thus, for those who believe in p̄,

γḠ j = pσ j(ḡ)+(1− p)σ j(ī),

and
γĪ j = pσ j(ī)+(1− p)σ j(ḡ).

We assume that at least one of σ(ī) and σ(ḡ) lies in (0,1].

Thus, we first check whether
γĪ j
γḠ j

≥ 1−p
p when σ j(ḡ) ∈ (0,1].

We have
γĪ j

γḠ j
=

pσ j(ī)+(1− p)σ j(ḡ)
pσ j(ḡ)+(1− p)σ j(ī)

=
p σ(ī)

σ(ḡ) +(1− p)

p̄+(1− p) σ(ī)
σ(ḡ)

;

∵
σ(ī)
σ(ḡ)

∈ [0,+∞),

And, also,
p > 1− p,

Thus, p σ(ī)
σ(ḡ) ≥ (1− p) σ(ī)

σ(ḡ) ; and the minimum of
γĪ j
γḠ j

is 1−p
p .

Therefore, we proved that when σ j(ḡ) ∈ (0,1]; and thus, we have

γĪ j

γḠ j
≥ 1− p

p
.

Now, we check whether
γĪ j
γḠ j

≥ 1−p
p when σ j(ī) ∈ (0,1].

We have
γĪ j

γḠ j
=

p σ(ī)
σ(ḡ) +(1− p)

p+(1− p) σ(ī)
σ(ḡ)

;

because
σ(ī)
σ(ḡ)

∈ (0,+∞),



A.1
Proof of The Lower Bound of Pr(I|C) under Strategic Voting 46

thus,
p σ(ī)

σ(ḡ) +(1− p)

p+(1− p) σ(ī)
σ(ḡ)

>
1− p

p
.

Thus, we have proved that
γĪ j
γḠ j

≥ 1−p
p , when at least one of σ(ī) and σ(ḡ) lies in (0,1].

Therefore,

Pr(G|C) =
Pr(G|piv j)γḠ j

Pr(G|piv j)γḠ j +(1−Pr(G|piv j))γĪ j
=

Pr(G|piv j)

Pr(G|piv j)+(1−Pr(G|piv j))
γĪ j
γḠ j

.

∵
γĪ j

γḠ j
≥ 1− p

p
,

∴ Pr(G|C)≤
Pr(G|piv j)

Pr(G|piv j)+(1−Pr(G|piv j))(
1−p

p )

≤ 1
2p−1

p + 1−p
qp̄p

(1−q)(1−p̄)+qp̄

=
(1− p̄)(1− p)(1−q)

(1− p)(1−q)+ p̄(p+q−1)
.
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A.2
Proof of The Existence of Symmetric Responsive Nash
Equilibrium under Unanimous Voting

Define the probability the guilty defendant is convicted as γG and the probability the
innocent defendant is convicted as γI , we then have

γG = pσ(g)+(1− p)σ(i),

γI = pσ(i)+(1− p)σ(g),

γḠ = p̄σ(ḡ)+(1− p̄)σ(ī),

γĪ = p̄σ(ī)+(1− p̄)σ(ḡ).

Here, γ is a function of the private signals voters receive and voters beliefs about the
quality of the signals. The reason is because when a voter considers being pivotal, he/she
assumes that all others vote for conviction, and the pivotal voter will apply the belief he/she
adopted to all other voters.

Define all possible combinations of the share of sceptics and trusting voters, given the
true state of world G, for these n−1 voters as A ; and all possible combinations of the share
of sceptics and trusting voters, given the true state of world I, for these n−1 voters as B.
Therefore:

A =
n−1

∑
j=0

(
n−1

j

)
(1−µ) j

µ
n−1− j = 1,

and

B =
n−1

∑
j=0

(
n−1

j

)
µ

j(1−µ)n−1− j = 1.

First, we will prove that for those who believe in p, there exists a symmetric responsive
equilibrium (σ(g) = 1,0 < σ(i)< 1).

Assume there exists a symmetric equilibrium (σ(g) = 1,0 < σ(i)≤ 1).
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If 0 < σ(i)≤ 1, it indicates β (n−1,n,1− p)≥ q, then,

1
1+(

γI
γG
)n−1 p

1−p

≥ q.

This gives us

(
γI

γG
)n−1 ≤ 1−q

q
1− p

p
.

In the case when the pivotal voter receives g, it must be true that

1

1+(
γI
γG
)n−1 1−p

p

≥ 1

1+ 1−q
q

1−p
p

1−p
p

> q.

Thus, the posterior belief about the defendant being guilty is β (n,n, p)> q, which indicates
that those who receive signal g and believe in p will vote guilty for sure, σ(g) = 1.

As the strategic profile needs to be responsive, σ(i) has to be smaller than 1, thus,
(σ(g) = 1,0 < σ(i)< 1).

However, if 0 ≤ σ(g)< 1, then β (n,n, p)≤ q. We have

1

1+(
γI
γG
)n−1 1−p

p

≤ q;

and then,

(
γI

γG
)n−1 ≥ 1−q

q
p

1− p
.

We obtain
1

1+ 1−q
q

p
1−p

p
1−p

< q,

which says β (n− 1,n,1− p) < q. This shows that σ(i) = 0, if jurors receive signal i and
believe in p, they will never vote for conviction. Noticeably, being pivotal means there are
n−1 guilty votes. Since those who gets i do not vote for guilty, it has to be the case that
those who gets g vote for conviction. However, this contradicts our assumption of σ(g)< 1.
Therefore, σ(g)< 1 cannot be an equilibrium.
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Hence, σ(g) = 1 and 0 < σ(i)< 1 is the unique symmetric responsive strategy profile
for sceptical voters, who believes in p.

We then have
γG = p+(1− p)σ(i),

and
γI = pσ(i)+(1− p).

When 0 < σ(i)< 1, it means that

1
1+(

p
1−p)(

γI
γG
)n−1

=
1

1+(
p

1−p)(
pσ(i)+(1−p)
p+(1−p)σ(i))

n−1
= q.

σ(i) =
[
(1−q)(1−p)

qp ]
1

(n−1) p− (1− p)

p− [
(1−q)(1−p)

qp ]
1

(n−1) (1− p)

Examining the above equation, we can see hat σ(i)< 1 as long as q > 1− p.

Using a similar proof, we can get that σ(ḡ) = 1 and 0 < σ(ī)< 1 is the unique symmetric
responsive strategy profile for trusting voters, who believe in p̄. Also,

σ(ī) =
[ (1−q)(1−p̄)

qp̄ ]
1

(n−1) p̄− (1− p̄)

p̄− [ (1−q)(1−p̄)
qp̄ ]

1
(n−1) (1− p̄)

< 1,

as long as q > 1− p̄.

Thus, we have one unique symmetric responsive Nash equilibrium, ((0 < σ(i) <
1,σ(g) = 1),(0 < σ(ī) < 1,σ(ḡ) = 1)), when there exists heterogeneity in voters’ types
caused by the two-point non-common prior model.
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A.3
Proof of The Existence of Symmetric Responsive Nash
Equilibrium under Non-unanimous Voting

Define the non-unanimous voting rule as k̂ = αn, 0 < α < 1; all possible combinations
of the share of sceptics and trusting voters, given the true state of world G, for these αn−1
voters as A ; and all possible combinations of the share of sceptics and trusting voters, given
the true state of world I, for these αn−1 voters as B. Therefore,

A =
αn−1

∑
j=0

(
αn−1

j

)
(1−µ) j

µ
αn−1− j = 1,

and

B =
αn−1

∑
j=0

(
αn−1

j

)
µ

j(1−µ)αn−1− j = 1.

If σ(i)< 1, we must have

1

1+
p(γI)k̂−1(1−γI)n−k̂

(1−p)(γG)k̂−1(1−γG)n−k̂

≤ q,

with equality holding if 1 > σ(i)> 0.

Similarly, when σ(g)> 0, it must be true that

1

1+
(1−p)(γI)k̂−1(1−γI)n−k̂

p(γG)k̂−1(1−γG)n−k̂

≥ q,

with equality holding if 1 > σ(g)> 0.

We first prove, in any responsive equilibrium, we must have either σ(i) = 0 and 1 ≥
σ(g)> 0 or 0 ≤ σ(i)< 1 and σ(g) = 1.
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Suppose 1 ≥ σ(g)> 0, we have

1

1+
(1−p)(γI)k̂−1(1−γI)n−k̂

p(γG)k̂−1(1−γG)n−k̂

≥ q,

then,
(1−q)p
q(1− p)

≥
(γI)

k̂−1(1− γI)
n−k̂

(γG)k̂−1(1− γG)n−k̂
.

Thus, we have
1

1+ 1−q
q (

p
1−p)

2
< q,

which implies σ(i) = 0.

Suppose 1 > σ(i)≥ 0, we have

1

1+
p(γI)k̂−1(1−γI)n−k̂

(1−p)(γG)k̂−1(1−γG)n−k̂

≤ q,

then,
(1−q)(1− p)

qp
≤

(γI)
k̂−1(1− γI)

n−k̂

(γG)k̂−1(1− γG)n−k̂
.

Thus, we have
1

1+ 1−q
q (

(1−p)
p )2

> q,

which implies σ(g) = 1.

Thus, in any responsive equilibrium we must have either σ(i) = 0 and 0 < σ(g)≤ 1 or
0 ≤ σ(i)< 1 and σ(g) = 1 .

Then, we need to check whether σ(i)= 0 and σ(g)= 1 is a responsive voting equilibrium.

Suppose it is indeed a responsive voting equilibrium, we then have

γI = p,
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and
γG = 1− p.

σ(i) = 0 indicates that
1

1+
p(1−p)k̂−1(p)n−k̂

(1−p)(p)k̂−1(1−p)n−k̂

< q;

and we obtain
(1−q)(1− p)

qp
<

(1− p)k̂−1(p)n−k̂

(p)k̂−1(1− p)n−k̂
,

then,
1

1+
(1−p)(1−p)k̂−1(p)n−k̂

p(p)k̂−1(1−p)n−k̂

> q,

we proved that σ(i) = 0 and σ(g) = 1 is a responsive equilibrium.

If σ(i) = 0, σ(g) = 1 is not a responsive equilibrium, we then have two cases to consider.

If σ(i) = 0 and 0 < σ(g)< 1, then,

γI = (1− p)σ(g),

and

γG = pσ(g).

1

1+
(1−p)(γI)k̂−1(1−γI)n−k̂

p(γG)k̂−1(1−γG)n−k̂

= q,

(1−q)p
q(1− p)

=
(γI)

k̂−1(1− γI)
n−k̂

(γG)k̂−1(1− γG)n−k̂
,

=
((1− p)σ(g))k̂−1(1− (1− p)σ(g))n−k̂

(pσ(g))k̂−1(1− pσ(g)))n−k̂
,

= (
1− p

p
)k̂−1(

1− (1− p)σ(g)
1− pσ(g)

)n−k̂.
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Therefore, we get

(1−q)
q

(
p

1− p
)k̂ = (

1− (1− p)σ(g)
1− pσ(g)

)n−k̂,

(1−σ(g)+ pσ(g))
(1− pσ(g))

= (
(1−q)

q
(

p
1− p

)k̂)1/(n−k̂),

(
1−q

q
(

p
1− p

)k̂)
1

n−k̂ (1− pσ(g)) = 1−σ(g)(1− p),

(
1−q

q
(

p
1− p

)k̂)
1

n−k̂ − (
1−q

q
(

p
1− p

)k̂)
1

n−k̂ pσ(g)+σ(g)− pσ(g) = 1,

σ(g)((1− p)− p(
1−q

q
(

p
1− p

)k̂)
1

n−k̂ ) = 1− (
1−q

q
(

p
1− p

)k̂)
1

n−k̂ ,

∴ σ(g) =
(1−q

q (
p

1−p)
k̂)

1
n−k̂ −1

p(1−q
q (

p
1−p)

k̂)
1

n−k̂ − (1− p)
=

(1−q
q (

p
1−p)

k̂)
1

n−k̂ −1

p(1−q
q (

p
1−p)

k̂)
1

n−k̂ −1
.

This yields

σ(g) =
h−1

p(h+1)−1
,

where
h = (

(1−q)
q

(
p

1− p
)k̂)1/(n−k̂).

If σ(g) = 1 and 0 < σ(i)< 1, then,

γG = p+(1− p)σ(i)

and

γI = 1− p+ pσ(i)

(1− p)(γG)
k̂−1(1− γG)

n−k̂

p(γI)k̂−1(1− γI)n−k̂ +(1− p)(γG)k̂−1(1− γG)n−k̂
< q,
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∵
(1−q)(1− p)

qp
= (

γI

γG
)k̂−1(

1− γI

1− γG
)n−k̂,

∴
(1−q)(1− p)

qp
= (

1− p(1−σ(i))
1− (1− p)(1−σ(i))

)k̂−1(
p(1−σ(i))

(1− p)(1−σ(i))
)n−k̂,

(1−q)(1− p)
qp

(
p

1− p
)k̂−n = (

1− p+ pσ(i)
p+(1− p)σ(i)

)k̂−1,

(
(1−q)(1− p)

qp
(

p
1− p

)k̂−n)
1

k̂−1 =
1− p+ pσ(i)

p+(1− p)σ(i)
,

((
(1−q)(1− p)

qp
p

1− p
(

p
1− p

)k̂−n−1))
1

k̂−1 =
1− p+ pσ(i)

p+(1− p)σ(i)
,

((
1−q

q
)(

p
1− p

)k̂−n−1)
1

k̂−1 (p+(1− p)σ(i)) = 1− p+ pσ(i),

p((
1−q

q
)(

p
1− p

)k̂−n−1)
1

k̂−1 +(1− p)σ(i)((
1−q

q
)(

p
1− p

)k̂−n−1)
1

k̂−1 − pσ(i) = 1− p,

σ(i)((1− p)((
1−q

q
)(

p
1− p

)k̂−n−1)
1

k̂−1 − p) = 1− p− p((
1−q

q
)(

p
1− p

)k̂−n−1)
1

k̂−1 ,

∴ σ(i) =
1− p− p((1−q

q )(
p

1−p)
k̂−n−1)

1
k̂−1

(1− p)((1−q
q )(

p
1−p)

k̂−n−1)
1

k̂−1 − p
=

1− p(1+((1−q
q )(

p
1−p)

k̂−n−1)
1

k̂−1 )

(1− p)((1−q
q )(

p
1−p)

k̂−n−1)
1

k̂−1 − p
.

Thus, an interior solution in this case, is

σ(i) =
p(1+ f )−1
p− f (1− p)

,

where

f = (
(1−q)

q
(
(1− p)

p
)n−k̂+1)1/(k̂−1).
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We could also prove that symmetric responsive Nash equilibrium is either (0 ≤ σ(ī)<
1,σ(ḡ) = 1) or (σ(ī) = 0,0 < σ(ḡ)≤ 1) for those who believe in p̄ following a similar proof
as we have used for those who believe in p.

Next, we prove the existence of the symmetric responsive limit equilibrium.

When n → ∞,

lim
n→∞

f = lim
n→∞

(
(1−q)

q
(
(1− p)

p
)n−k̂+1)1/(k̂−1) = (

1− p
p

)
1−α

α ;

and, therefore, we have

σ(i) =
p(1+ f )−1
p− f (1− p)

=
p(1+(

1−p
p )(1−α)/α)−1

p− (
1−p

p )(1−α)/α)(1− p)
.

We can see that when 1 > α ≥ 1/2, σ(i)→ 1 as α → 1.

Similarly,

lim
n→∞

h = lim
n→∞

(
(1−q)

q
(

p
1− p

)k̂)1/(n−k̂) = (
p

1− p
)

α

1−α ,

σ(g) =
h−1

p(h+1)−1
=

(
p

1−p)
α/(1−α)−1

p((
p

1−p)
α/(1−α)+1)−1

.

When 0 < α ≤ 1/2, σ(g)→ 0 as α → 0.

This proves that for any α ∈ (0,1) there is a responsive limit equilibrium.

The limit strategy for those who believe in p̄ can be obtained in a similar way, such that

σ(ī) =
p̄(1+ f )−1
p− f (1− p̄)

=
p̄(1+(1−p̄

p̄ )(1−α)/α)−1

p̄− (1−p̄
p̄ )(1−α)/α)(1− p̄)

,

and

σ(ḡ) =
h−1

p̄(h+1)−1
=

( p̄
1−p̄)

α/(1−α)−1

p̄(( p̄
1−p̄)

α/(1−α)+1)−1
.
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Thus, we consider the case when 1 > α ≥ 1/2 to make sure that 0 ≤ σ(i) < 1 and
σ(g) = 1 and measure the probability of making either type of error for voting rules such as
simple majority and two-thirds majority.
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A.4
Simulation Results of Varying The Jury Size n

Table A.1 Type I Error of Different Voting Rules under The Canonical Model and The
Two-point Prior Model, Given ‘True’ p = 0.6 and q = 0.6

Type I Error, ‘True’ p = 0.6, q = 0.6

n 5 7 ... 27 29 31 ... 43 45 47
Canonical Model
k = n+1

2 0.32 0.29 ... 0.14 0.14 0.13 ... 0.09 0.09 0.08
k = n 0.08 0.08 ... 0.09 0.09 0.09 ... 0.09 0.09 0.09

Two-point Prior Model
k = n+1

2 0.32 0.29 ... 0.14 0.14 0.13 ... 0.09 0.09 0.08
k = n, m = 1 0.08 0.08 ... 0.09 0.09 0.09 ... 0.09 0.09 0.09
k = n, m = 0 0.13 0.13 ... 0.14 0.14 0.14 ... 0.14 0.14 0.14

Table A.2 Type I Error of Different Voting Rules under The Canonical Model and The
Two-point Prior Model, Given ‘True’ p = 0.6 and q = 0.9

Type I Error, ‘True’ p = 0.6, q = 0.9

n 5 7 ... 65 67 69 ... 269 271 273
Canonical Model
k = n+1

2 0.32 0.29 ... 0.05 0.05 0.05 ... 0.0005 0.0004 0.0004
k = n 0.01 0.02 ... 0.0005 0.0005 0.0005 ... 0.0004 0.0004 0.0004

Two-point Prior Model
k = n+1

2 0.32 0.29 ... 0.05 0.05 0.05 ... 0.0005 0.0004 0.0004
k = n, m = 1 0.01 0.02 ... 0.0005 0.0005 0.0005 ... 0.0004 0.0004 0.0004
k = n, m = 0 0.05 0.04 ... 0.04 0.04 0.04 ... 0.04 0.04 0.04
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259 261 263 265 267 269 271 273 275
n

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Pr(C|I)

k=(n+1)/2

k=n,p={0.6,0.9},m=1 (k=n,p=0.6)

k=n,p={0.6,0.9},m=0

(a) ‘True’ p = 0.6, q = 0.9

259 261 263 265 267 269 271 273 275
n

0.0001

0.0002

0.0003

0.0004

0.0005

Pr(C|I)

k=(n+1)/2

k=n,p={0.6,0.9},m=1 (k=n,p=0.6)

(b) ‘True’ p = 0.6, q = 0.9

Fig. A.1 Type I Errors of Different Voting Rules under The Canonical Model and The
Two-point Prior Model, given ‘True’ p = 0.9, q = 0.9 for larger n
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Table A.3 Type I Error of Different Voting Rules under The Canonical Model and The
Two-point Prior Model, Given ‘True’ p = 0.9 and q = 0.6

Type I Error, ‘True’ p = 0.9, q = 0.6

n 5 7 9 11 13 15 17 19
Canonical Model
k = n+1

2 0.009 0.003 0.001 0.00 0.00 0.00 0.00 0.00
k = n 0.029 0.036 0.039 0.042 0.044 0.045 0.046 0.047

Two-point Prior Model
k = n+1

2 0.009 0.003 0.001 0.00 0.00 0.00 0.00 0.00
k = n, m = 1 0.001 0.014 0.017 0.019 0.020 0.021 0.021 0.022
k = n, m = 0 0.029 0.036 0.039 0.042 0.044 0.045 0.046 0.047

Table A.4 Type I Error of Different Voting Rules under The Canonical Model and The
Two-point Prior Model, Given ‘True’ p = 0.6 and q = 0.9

Type I Error, ‘True’ p = 0.9, q = 0.9

n 5 7 9 11 13 15 17 19
Canonical Model
k = n+1

2 0.0086 0.0027 0.0009 0.0003 0.0001 0.00 0.00 0.00
k = n 0.0028 0.0038 0.0045 0.0049 0.0052 0.0055 0.0057 0.0058

Two-point Prior Model
k = n+1

2 0.0086 0.0027 0.0009 0.0003 0.0001 0.00 0.00 0.00
k = n, m = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
k = n, m = 0 0.0028 0.0038 0.0045 0.0049 0.0052 0.0055 0.0057 0.0058
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Non-common Prior: An Experiment



2.1 Introduction 61

2.1 Introduction

In this chapter, we introduce our laboratory experiments aimed at evaluating the effects

of different institutions on the voting outcomes when there exist potentially multiple priors

with respect to the quality with which private information can be obtained. Experiments also

help understand the plausible behaviour of jurors in such setting.

Our plan is to draw an experimental parallel to the theoretical analysis conducted in the

first chapter of the dissertation: the two-point prior model, with a focus on applications to the

jury trial case. Furthermore, we want to examine the impact of free-form communication on

collective decision-making outcomes.

For that, we report observations from the first lab experiments aimed at examining the

results of collective voting under different institutions, when (1) the accuracy of private

information is not univocally determined (scope for multiple priors); (2) the decision makers’

types, that is, the degree of their trusting nature vis–à–vis the quality of the information

provided to them, can vary; and (3) the communication among voters is allowed for, or not.

We employed a 2×2×2 design. We varied (i) the information structures for the accuracy of

private information received (probabilistic or two-point non-common prior), (ii) two different

institutional designs for determining the group decision (simple majority or unanimity), and

(iii) the availability of free-form communication prior to participants making their choices.

It is important to stress that our experimental setup captures the core elements of not only

the judicial trials, but also many other different small group deliberations, such as medical

consulting teams, recruitment and tenure decisions by university committees, government

legislatures, and more.

From the experiments, we found that the jury paradox is not always reproduced, so

that the realised type I errors under unanimity voting are smaller than those under majority

voting, regardless of the information structures. In particular, when multiple priors are
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possible, as long as not everyone is fully trusting the quality of the information to be the

highest among two possible values provided, both type I and type II errors are reduced.

Furthermore, free-form communication helps to reduce both type I errors and type II errors in

this environment. In particular, when decision makers are free to talk to the group members,

their voting strategies are remarkably close to the predictions of the two-point non-common

prior model. Additionally, free-form communication helps to eliminate the differences across

different voting rules. We found that if the information structure is probabilistic, both type I

errors and type II errors are not significantly different across voting rules when free-form

communication is available; however, if the information structure allows for multiple priors,

type I errors are not significantly different across voting rules when free-form communication

is available, however their levels are much reduced.

The remainder of this chapter is organised as follows. Section 2.2 contains a review of

the recent experimental work on voting. Section 2.3 explains the experimental design and

protocol we adopted for our own experiments. In section 2.4, we present the detailed exper-

iment data and our preliminary experimental evidence and results. Section 2.5 concludes.

Appendices B.1-B.6 contain the supplementary materials for the experimentations.
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2.2 Related Literature

The classic Condorcet Jury Theorem demonstrates that, under the simple majority voting

rule, increasing the number of jurors who receive a private, imperfect, yet informative and

independent signal, about the true state of the world (innocence or guiltiness of the defendant)

enhances the probability of reaching a correct verdict by the jury. In the limit, as the size of

the jury reaches infinity, the probability of convicting an innocent tends to zero (eliminating

type I errors). This is thanks to the information aggregation process generated by each juror

sticking to the basic behaviour of voting according to the signal if the accuracy of the signal

is above 1/2, and to vote against it, otherwise. Even though following such behaviour would

help the group reach the ‘correct’ decision in this environment, committing to this behaviour

needs not be individually rational. A fundamental weakness of this classic result is that

it heavily relies on the assumption that jurors do not follow any strategic behaviour when

casting their votes: each juror is assumed to vote sincerely, regardless of whether following

this strategy is compatible with a Nash equilibrium under any circumstances.

In line with the predictions of the Condorcet jury theorem, Blinder and Morgan (2000)

conducted a statistical urn problem to test the group decision quality as opposed to the

individual decision quality. They consider two urns, each of which contains 40 marbles

but comes with different compositions of the marbles: one of the urns contains 50% white

marbles and 50% black marbles; another urn contains either 70% white marbles and 30%

black ones, or 70% black marbles and 30% white ones. The urn with the composition ‘50-50’

are presented to all subjects in the beginning of the experiment. And they are told that no

later than the 10th round, the initial urn will be replaced with another urn, which could have

the composition either ‘70-30’ or ‘30-70’. Each subject could randomly draw a marble from

the urn with replacement in each round up to the 40th round. And subjects need to decide in

which round did this switch happen. The authors found that not only the collective decision is

better than the individual decision-making in terms of the quality, but also that the collective

decision does not take longer time to be made than decisions made by individuals.
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However, these results were challenged on the ground that jurors need not stick to the

strategy of voting for the alternative which has the higher probability of realisation. Rather,

they will consider being pivotal and vote strategically, that is, each voter behaves according

to whether his/her own vote will make a difference on the final decision, especially if that

involves the verdict of the defendant being guilty or innocent.

In this spirit, Ladha et al. (1996) conducted an experiment to test whether the sincere

voting equilibrium is observed in practice. And if not, whether voters’ votes can truthfully

reflect their private information; and then, whether majoritarian collective decisions are better

than individual decision outcomes. In the experiment, subjects form groups of three and are

asked to guess the colour of a marble. Two urns are provided: one of the urns contains 60

white marbles and 40 black marbles and another urn contains 100 black marbles. Group

decisions are determined by different institutional designs. In the first setting subjects are

told that the marble will be drawn from the urn containing both white and black marbles.

According to Condorcet jury theorem, all subjects would vote for white and the group deci-

sions would be correct 60% of the time. However, for that to be so, all subjects should vote

sincerely, a behaviour which is not observed in the experiment. In the second setting, subjects

are given private information, which is a clue about the colour of the hidden urn type: if the

hidden urn is of the first type, subjects can observe the colour of a marble, which is randomly

drawn from the urn containing both white and black marbles with replacement; if the hidden

urn is of the second type, the marble will be randomly selected from the urn containing only

black marbles with replacement. In either case, the colour of the randomly drawn marble

is privately revealed to each subject. The results of the second experiment indicate the fact

that subjects vote while considering themselves being pivotal. The equilibrium characterised

by all subjects voting informatively is not observed in the experiment. In other words, these

results show that subjects vote strategically rather than informatively.

There is another important assumption, which is missing in the Condorcet jury theorem,

that is the availability of communication/deliberation. Emulating jury trials, Guarnaschelli
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et al. (2000) presents a statistical urn experiment with two urns, each of which contains

100 marbles. However, these two urns are different in the composition of the colour of the

marbles. One of the urns contains 30 red marbles and 70 black ones. Another urn contains

30 black marbles and 70 red ones. Each subject observes the colour of a marble, which

is randomly drawn from the selected urn. Then, subjects vote in the pre-vote stage before

entering the final voting stage, at which point the collective decision will be determined

according to the given voting rule. The difference of this experiment from the one conducted

by Blinder and Morgan (2000) is that it allows the non-binding pre-vote deliberation, which

is the straw poll voting before the official voting. When pre-vote deliberation is not available,

results provide evidence of subjects voting strategically, in that a large fraction of subjects

vote against their private signals. Also, the bigger the jury size, the larger the fraction of

subjects voting strategically. Results of the experiments demonstrate that when subjects

are given the chance to deliberate before casting their final votes, most of them reveal their

signals truthfully by voting informatively. Although, when the straw vote is available, the

probability that subjects vote strategically gets lower under unanimous voting, the opposite

happens when the adopted voting rule is simple majority.

Goeree and Yariv (2011) provide a more comprehensive experimental study of collective

deliberation. They focus on the effect of free-form communication under different institu-

tional settings. The differences between this study and the previous ones are: (1) subjects

could have heterogeneous preferences; (2) besides simple majority and unanimity voting rule,

the intermediate two-thirds majority rule is also considered; (3) the pre-vote deliberation is

designed as free-form communication. The statistical urn experiments conducted are similar

to Guarnaschelli et al. (2000). Through a series of experiments, they found that without free-

form communication, subjects vote strategically. Also, simple majority rule delivers more

efficient outcomes of group decisions than unanimous voting rule. However, the availability

of free-form communication eliminates the institutional difference in terms of increasing

the collective decision quality. The experimental results indicate that most of the subjects

reveal their private information truthfully although they vote strategically. Moreover, the
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communication protocol consists of two phases: information sharing and opinion aggregation.

Thus, subjects first reveal their private information truthfully and publicly, then give opinion

on which alternative they should vote for; and, ultimately, vote for that alternative. These

results suggest that the availability of free-form deliberation and the communication protocol

are vital in the collective decision-making process.

Different from other common value experiments, Suzuki and Li (2016) set up a detail-free

environment to test the robustness of the strategic voting and the efficiency of different voting

rules. They did not use the standard urn game. Rather, they test individuals’ voting strategies

and the collective decision quality by asking them to identify the correctness of a math ques-

tion and a logic question. In their experiments, there is no explicit signal structure. Therefore,

voters’ beliefs are based on their own computational skills and reasoning abilities. Thus,

voters’ beliefs could be wrong due to the computational and reasoning errors. Moreover,

voters might not realise that they form the wrong beliefs and they are uncertain whether their

group members form the correct beliefs. In the experiments, Suzuki and Li (2016) found

that subjects’ behaviour is consistent with the pivotal reasoning regardless of the detail-free

information structure. They also found that there are more approval votes if unanimity rule

is adopted than the case when majority rule is selected. However, the focus of Suzuki and

Li (2016) is the individual voting behaviour. They did not compare the group level decision

outcomes under majority and unanimity voting rules.

In our experiment, we provide subjects with another form of ‘detail-free environment’, in

which the measure of the objective probabilities, representing the level of the accuracy of the

information available to them, is not univocally determined and has unknown distribution.

In this environment, it is plausible to conceive that subjects will form their own beliefs as

to which accuracy level to adopt/adhere to, which allows us to categorise subjects into two

groups, or types, according to their adopted/subjective beliefs regarding the true state of the

world, which are based on their beliefs in (weighting of) the private information they receive.

This framework gives us a chance to not only analyse the individual voting behaviour, but
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also evaluate collective decision-making quality under different institutional designs.



2.3 Experimental Design and Protocol/Execution 68

2.3 Experimental Design and Protocol/Execution

Our experiments employ a 2× 2× 2 design. Namely, our 8 experimental treatments

involve (i) two different imperfect informational structures for the accuracy of signals re-

ceived (probabilistic or two-point ambiguous structure), (ii) two different institution settings

or voting rules for the group decision to be made (simple majority or unanimity), and (iii)

two communication protocols, that is, whether or not free-form communication is available

to subjects prior to them making their choices.

We used those 8 treatments to conduct an array of experiments to emulate a jury decision-

making process. To be specific, preceding each session, subjects were asked to participate

in a trial experiment to familiarise with the process. Sessions were designed so that in each

experimental session, groups of five subjects were confronted with making a collective deci-

sion between one of two alternatives, representing neutral metaphors for either an acquittal

or a conviction. Before casting their votes, subjects received private signals regarding the

true state of the world. The private signals so received played an homologue role to the

evidence and testimonies produced in a trial. Individual decisions (votes) translated into the

group decision in favour of a given state of the world as a function of the voting rule applied.

Subjects received the corresponding rewards reflecting the quality of the group decision(s)

they were part of, that is, whether their group decision(s) was correct, or wrong, with respect

to the underlying ‘true’ state of the world.

The experimental sessions were all computerised using the z-Tree software (Fischbacher,

2007). For each of the treatments envisaged, after all subjects arrived, instructions were

provided by the experimenters and time was given to subjects to go through those instructions

and to answer open questions, if any, before the experiment started. Each experimental

session involved 20 decision tasks, one for each separate/independent rounds/periods.

For each of those sessions, we presented jars of potentially different composition to the

subjects. Jars could either be red or blue. Each jar contained 10 balls with either majority of
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red or blue coloured balls. The ‘red’ jar was referred to the jar, which contained more red

balls than blue ones; and the ‘blue’ jar was referred to as the jar, which contained more blue

balls than red ones. The red (blue) jar was a metaphor for the underlying true state of the

world, namely the state of the world in which the defendant happened to be guilty (innocent).

At the start of each of those 20 rounds, one of the jars was randomly chosen, and subjects

were randomly and anonymously matched to a group of five then labelled from 1-5 by the

computer. Then, each subject received a hint about the true colour of the selected jar by

picking a ball from the chosen jar independently with replacement. The colour of the ball

was revealed only to the subject himself/herself, which represented a token of the private

information in our setting. Ultimately, subjects needed to cast their individual votes, which

then contributed to the group-decision about what the true colour of the chosen jar was

(believed to be). No feedback regarding the quality of the individual and each group’s

decision was provided to subjects after each rounds. Instead, each subject was paid according

to whether the resulting collective decision of one of those round picked at random was

correct or wrong. Subjects received a $10 show up fee and at the end of the experiment they

also received a bonus of $15 if the randomly selected round for the group decision they were

involved in was correct, and $5 otherwise. Any period of the experiment could have counted

toward such payment, and, thus, subjects needed to pay attention throughout the experiment

to maximise their expected payment for the collective deliberations they participated in.

As indicated above, there are three important components of this experimental design: the

private information structure each subject faces, the voting rule in place, and the availability

of free-form communication.

Private Information Structure: At the beginning of each period, subjects are informed

that either the red jar or the blue jar was selected at random with equal probability. And then,

each member within the group received an independent draw (with replacement) from the jar

which was selected beforehand. In the baseline case of a probabilistic setting, subjects were
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given only two jars, each of them contained 10 balls with colour either red or blue. The red

jar contained 6 red balls and 4 blue balls, and the blue jar contained 6 blue balls and 4 red

ones. Thus, the subjects were made aware that the colour of the drawn ball matched the jar’s

colour with probability p = 0.6 (or 60%), which is referred to as the accuracy of the private

signal. In the two-point non-common prior setting, four compositions of red and blue balls

were feasible for those jars instead: there were two alternative ways in which a ‘red’ jar could

come about, either when it contained 6 red balls, and 4 blue ones; or when it contained 9 red

balls and 1 blue ball. The ‘blue’ jar could either be one which contained 6 blue balls and 4

red balls, or 9 blue balls and 1 red ball. The subjects were shown possible variations of the

relative probability with which either the ‘red’ or the ‘blue’ type jars could come about, which

did not leave any hints as to how such distribution happens with any regularity. To avoid

participants to form intermediate priors, for example 0.75, rather than 0.6 or 0.9, we adopted

the method Stecher et al. (2011) suggested in their paper to create true ambiguity. A graph

including 50 histograms for the occurrence of either of the compositions, each consisting

of 1000 times of such occurrence is provided to participants who are in the ‘ambiguous’

treatment. The purpose of presenting such histogram graph was to show the participants

that there was no known prior, no known ex-ante distribution for either of the two possible

realisations, either red or blue. All that was known was that the composition of an urn could

either be 60-40 or 90-10 and nothing more. In addition, from the histograms, participants

were not able to generate any patterns or regularity of the objective distribution of the possible

compositions, which is indeed what unmeasurable probabilities (or ambiguity specifically)

indicates, so that in this setting the objective probability was genuinely unmeasurable.1 Thus,

if the chosen jar was ‘red’ (‘blue’) in the sense just described, we could have had p equal

to either 0.6 or 0.9. Once a jar was chosen, subjects could see the colour of a ball drawn at

random from that jar, which served as their private signal before the casting of their votes.

Their individual votes then determined the collective choice within the group they belong

1To understand this further, think of the parallel example of two possibly unfair coins, which could be
selected: one of them is tilted to show one side 60% of the time, when flipping it many times; whereas the other
unfair coin shows that same side 90% of the time, when flipped many times. And, one does not know which of
the two coins is selected, prior to flipping it many times, making it impossible to predict the exact frequency of
the possible realisations of heads and tails, a priori.
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to, also depending on the selected voting rule (simple majority or unanimity) for the session

they participated in.

Voting Rules: The voting rule was explained to the subjects at the outset of the experiment,

depending on the threshold k given to reach the group decision/consensus, where the red

jar was the group choice if and only if k of n subjects within the group voted for red. The

colour red of our experiments can be taken as a metaphor for ‘guilty’, so that the colour ‘blue’

represents ‘innocent’, when interpreting results as emulating jury-trials. In the experiments,

there were two types of treatments, corresponding to different voting rules: k = 3 (simple

majority), and k = 5 (unanimity). Under unanimity, the pre-set default colour was blue,

whenever subjects failed to reach an unanimous consensus for red.

Communication: In the ‘communication’ treatment, subjects first observed the private

signal, then, they were free to communicate with their group members through the shared

chat box that appeared on each of their screens. Messages could have taken any (written)

form and sufficient time was given to the communication process before subjects were

asked to submit their individual votes, which then contributed to the group decision. In the

‘non-communication’ treatment, subjects casted their votes directly after observing their

private signals.

Appendix B.1 provides an illustrative sample of the experimental instructions we used

for the sessions: risky treatment under majority voting rule without communication and

ambiguity treatment under unanimity voting rule with communication.
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2.4 Data and Preliminary Results

Based on our experimental design and protocol, and after receiving all relevant eth-

ical clearances from the Human Ethics Committees of both the University of Auckland

and Massey University2, an array of experiments were conducted on 2–9 October 2015

at DECIDE (Laboratory for Business Decision Making), an experimental lab based at the

University of Auckland. We recruited overall 165 subjects to participate in the experi-

ments through the ORSEE system (Greiner, 2004) among the students of the University

of Auckland3. In the course of these experimental sessions, we collected 3300 individual

decision-making results and 660 group decision-making outcomes.

Using our experimental data, we start by comparing the realised individual strategies

with the theoretical predictions of the two-point non-common prior model. Table 2.1 and

Table 2.2 summarise participants’ strategies and the realised errors for all treatments. The

theoretical predictions of the two-point non-common prior model are presented in the round

parentheses. As we can see, when free-form communication is not available before voters

cast their votes, the experimental evidence both for the risky treatment and the ambiguity

treatment is in line with what the theory predicts for each of those settings. First of all, in

the absence of communication, reaching an unanimous decision is not easy. Thus, having a

default set to failing to convict whenever not reaching unanimity, in order to emulate real-life

situations, leads to observing a very small occurrence of type I errors under this voting rule

for a small number of jurors, as expected. In other words, for a small jury size as predicted by

the theory – and in line with previous experimental evidence, at least for the risky treatment

equivalent to our experiments – the jury paradox is not reproduced, so that the realised type

I errors under unanimity voting are smaller than those under majority voting, both in the

2Ethical approvals to conduct this research with human subjects were obtained from both the Massey
University Human Ethics Committee and the University of Auckland Human Participants Ethics Committee
on the 5th of March 2015 and on the 18th of June 2015 (with reference number 014565), respectively. Both
ethical clearances are valid for a duration of three years. And the details of the Ethics clearance can be found in
Appendix B.2.

3A copy of the invitation letter used for recruiting participants through ORSEE is provided in B.3. Also,
extra material, which includes the participant information sheet, participant consent form and the experimental
payment slip/receipt, is also provided in Appendix B.4, Appendix B.5 and B.6
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risky and the ambiguous scenarios. Also, under the risky treatment, the probability of voting

for red when receiving a blue signal with majority rule is significantly different from the

probability of voting for red when receiving a blue signal with unanimous rule at the 5%

level. However, when free-form communication is available, these two probabilities are not

significantly different from each other. Furthermore, in the risky treatment without communi-

cation, both types of errors under different voting rules are significantly different at the 1%

level. Nonetheless, the difference from different institutions are eliminated by the free-form

communication. Similar results are observed under the ambiguity treatment. Differences in

the probabilities of voting for red when receiving a blue signal and the difference in the type

I errors under different voting rules are also eliminated when communication is viable.

In the treatment that allows for communication, we assume individuals could follow a

specific strategy in equilibrium, that is to vote for the commonly preferred alternative within

the group based on the signals they acknowledged through the communication process. The

errors that would have resulted in the equilibrium in which voters were to believe what was

reported in the communication stage are reported in the square brackets. If the information

structure is purely risky – our baseline case – and individuals follow the commonly preferred

alternative, they will commit higher type I errors; and, indeed, the higher type I errors are

found in the experiment. However, when the information structure is ambiguous, free-form

communication is very helpful in terms of lowering both types of errors, against the pre-

diction of this specific strategy being followed in equilibrium as evidenced in other studies

not allowing for multiple priors as we do; and, instead, more in line with our theoretical

predictions, stemming from the two-point non-common prior model. And communication

helps to eliminate the difference in the resulted type I errors from both the majority voting

and the unanimity voting, although type II errors are still significantly different for any

conventional levels of confidence.

In real life, if the quality of the information provided to jurors were genuinely ambiguous,

neither would we be in a position to assess, nor even meaningfully discuss, what the ‘true’
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level of accuracy really ought to be. We would not necessarily be able to pinpoint an exact

probability measure for the quality of the information, limiting our ability to distinguish

the real consequences of facing an ambiguous scenario. Instead, in an experiment we can

design scenarios with and without ambiguity, starting with a predefined/specific level of

accuracy for the risky treatment – our baseline treatment –, to compare results obtained in

that environment against those obtained when altering the information, to allow the accuracy

not to be measurable anymore. By identifying different levels for the ‘true’ p, we can derive

the theoretical predictions for the two-point non-common prior model based on those, one at

a time, to compare them against the evidence provided by the experimental data, as derived

in a laboratory/controlled environment. By doing that, we find that the experimental data

conforms very well with the predictions of the theoretical models considered, implying again

that the availability of free-form communication results in lower errors. If we compare across

the communication and the non-communication treatment, when the information structure is

ambiguous, we can see that the level of the realised errors when communication is available,

is closer to the two-point non-common prior model predictions, as illustrated in Table 2.3.

This result suggests that individuals tend to vote symmetrically and responsively when their

private signals are ambiguous especially when they are allowed to communicate with their

group members before casting their votes. Similar results can be found when the true p is

identified in different treatments.

To summarise, there are several insights we gain by comparing our experimental data

with the model predictions.

(1) When information is purely risky – baseline treatment –, (1a) in the absence of

free-form communication, individuals behave strategically, which is consistent with the pre-

dictions of the canonical model; (1b) when free-form communication is available, individuals

tend to vote for the commonly preferred alternative, and, thus, collective decisions result

in higher probability of committing the type I errors, and (1c) the difference between both

type I and type II errors under different institutions is eliminated due to the communication,
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although both types of errors are increased as opposed to the case when communication is

not viable.

(2) When information is ambiguous (scope for multiple priors), (2a) individual’s strategies

are in the line with the predictions of the two-point non-common prior model if commu-

nication is not allowed during the collective decision-making process; (2b) however, if

deliberations occur before individuals cast their votes, then, not only the difference be-

tween type I errors under different voting rules are eliminated, but individuals also vote

symmetrically and responsively, much in the spirit of the two-point non-common prior model,

matching the theoretical predictions very closely, and, consequently, resulting in smaller type

I errors under the unanimity voting rule than under the majority voting rule.
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Table 2.1 Experimental Realisations and Theory Predictions under Risky Treatment

Without Communication With Communication

n = 5 k = 3 k = 5 k = 3 k = 5

Risky Treatment

Number of individual decisions 400 500 300 300

Number of group decisions 80 100 60 60

Red votes with red signals 82% (100%)† 76% (100%) 85%/56%‡ 100%/72%

Red votes with blue signals 17% (0%) 33% (60%) 39%/11% 100%/28%

Wrong jury outcomes 36% (32%) 35% (42%) 47% [47%]§ 30% [31%]

True jar blue (Type I error) 37% (32%) 2% (25%) 45% [45%] 31% [34%]

True jar red (Type II error) 36% (32%) 81% (59%) 47% [47%] 29% [29%]

† Numbers in the round parentheses are the theory predictions without free-form communica-

tion.
‡ A pair of percentages x%/y% indicates the probability to vote to convict by a pivotal voter

based on the realised signals, that is, when the optimal decision is red/blue.
§ Numbers in the square brackets are the resulted errors if voters vote for the commonly

preferred alternative within the group based on the signals they acknowledged through the

free-from communication process.
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Table 2.2 Experimental Realisations and Theory Predictions under Ambiguity Treatment

Without Communication With Communication

n = 5 k = 3 k = 5 k = 3 k = 5

Ambiguity Treatment
Number of individual decisions 300 500 500 500
Number of group decisions 60 100 100 100

Sceptical types
Red votes with red signals 63% (100%) 74% (100%) 100%/60% 93%/58%
Red votes with blue signals 26% (0%) 49% (60%) 53%/0% 80%/8%

Trusting types
Red votes with red signals 93% (100%) 89% (100%) 98%/52% 90%/61%
Red votes with blue signals 3% (0%) 21% (50%) 28%/8% 91%/8%

Wrong jury outcomes 28% (16%) 38% (30%) 14% [10%] 27% [20%]
True jar blue (Type I error) 20% (15%) 5% (13%) 14% [9%] 8% [13%]
True jar red (Type II error) 37% (16%) 80% (50%) 14% [12%] 47% [28%]
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Table 2.3 Experimental Realisations and Theory Predictions under Ambiguity Treatment with Specified ‘True’ p

Without Communication With Communication

n = 5 k = 3 k = 5 k = 3 k = 5
p = 0.6 p = 0.9 p = 0.6 p = 0.9 p = 0.6 p = 0.9 p = 0.6 p = 0.9

Type I error 36% (32%) 6% (1%) 8% (20%) 3% (7%) 31% [19%] 0% [0%] 15% [24%] 0% [0%]
Type II error 67% (32%) 7% (1%) 90% (65%) 60% (22%) 27% [22%] 0% [0%] 61% [46%] 29% [4%]

p = 0.6 p = 0.9 p = 0.6 p = 0.9 p = 0.6 p = 0.9 p = 0.6 p = 0.9

Type I error
m < 0.5 42% (32%) 7% (1%) 11% (19%) 0% (6%) 30% [17%] 0% [0%] 19% [31%] 0% [0%]
m > 0.5 0% (32%) 0% (1%) 0% (22%) 14% (8%) 33% [33%] 0% [0%] 0% [0%] 0% [0%]
Type II error
m < 0.5 64% (32%) 8% (1%) 88% (65%) 62% (22%) 30% [24%] 0% [0%] 63% [42%] 27% [6%]
m > 0.5 75% (32%) 0% (1%) 100% (62%) 50% (19%) 0% [0%] 0% [0%] 56% [56%] 33% [0%]
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2.5 Conclusion

In this chapter, we report results from an experiment designed to capture the collective

voting behaviour under two-point non-common prior model and to contrast them against

results of canonical collective voting behaviour models, such as those already studied, both

theoretically and experimentally, in the existing literature. Our aim is to investigate the

collective decision-making outcomes under different voting rules when the quality of the

private information given to voters when casting their votes is somewhat unmeasurable,

triggering voters to adopt potentially differing beliefs about it.

The experimental results proved that (1) the voters tend to vote strategically, consistent

with the existing literature; (2) the ‘Jury paradox’ was not manifesting itself, given the rela-

tively small size of the group voting collectively and consistent with the existing literature; (3)

when group members form heterogeneous priors, both types I and II errors are reduced, this

is a novel result in the literature; especially, when free-form communication is allowed before

voters casting their votes; (4) if the information is purely risky – baseline treatment –, voters

vote according to the majority of the signals they received within a group, consistent with the

existing literature; (5) however, when information is ambiguous, voters vote symmetrically

and responsively, this is a novel result in the literature.

The results of the experiments replicate the theoretical predictions of voting under two-

point non-common prior model. This suggests the importance of the information structure in

the collective deliberation outcomes. Our theoretical and experimental results call into ques-

tion preconceived results about the performance of different institutional designs. When the

objective probability of information is imprecisely measured, that is when the common-prior

assumption is relaxed, novel results arise which deserve further exploration, challenging our

views about the virtues of adopting, say, majority voting, as opposed to unanimity voting,

to avoid the bad outcome of exacerbating the odds of convicting an innocent defendant

(jury paradox). Our results help establish when, in the finite case, unanimity voting rule can
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outperform majority voting rule if voters adopts two-point non-common priors.

Although in our experiments we have tested only one specific type of imprecisely mea-

sured information structure, two simple voting rules and one particular communication

protocol, the free-form communication, we believe that the qualitative conclusions hold more

generally. In this respect, our experiments can be extended so as to capture more realistic

set-ups with respect to collective deliberation processes. The simple way of doing so is

to vary the jury size and/or let the information precision vary within an interval, to next

check how voters’ behaviour and the performance of alternative institutional voting rules

could change to secure the lowest occurrence of instances of miscarriage of justice. Next

chapter, chapter 3 is devoted to explore this question further. In particular, in chapter 3 we

aim at addressing the question of whether when voters are confronted with information that

comes with varying degrees of precision (within an interval), and could form subjective

beliefs, say, according to the Maxmin approach, the performance of alternative voting rules

replicates some of the flavour of the results obtained under the specific case of the two-point

non-common prior; and, hence, whether there is any scope for resurrecting unanimity against

majority, when facing an ambiguous world.
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Appendix B

Supplementary Materials for
Experimentation

B.1
Samples of Experimental Instructions

B.1.1 Experimental Instructions for Risky Treatment without Commu-
nication under Majority Voting Rule



Welcome to the Lab 

• Welcome and thank you for registering for today’s 
experimental session! 
 

• Shortly, we will be giving you some preliminary 
information and, if you choose to stay and participate 
in today’s experiment, you will next receive more 
detailed instructions on it. 
 

• From now on, please do not communicate with other 
participants. 

 
Remember: Similar rules of behavior as during 
examinations apply to today’s experimental session. 

 1 

Outline of the experiment 

• You will participate in 20 rounds of decision tasks 
– At the beginning of each round, you will be randomly 

assigned to 4 other participants to form a group 
tasked with making a collective decision. 

– The decision reached within your group will 
determine your overall payment in this experiment. 

• Remuneration 
– You will receive $10 as a show-up fee. 
– You will receive an additional payment of either $5 or 

$15 depending on your group performance. 

• Ethics considerations 
– Participation is entirely voluntary and anonymous. 

2 

What’s next… 

• Earlier on: 
– When we invited you, we sent you a link to the 

PARTICIPANT INFORMATION SHEET with details of the 
experiment (instructions will come again, in 
greater details in a few seconds).  

• Today: 
– If you agree to participate, please sign one copy of 

PARTICIPANT CONSENT FORM for the experimenter to 
collect (one copy is for you to keep).  

– If not, please raise your hand so that the 
experimenter can assist you with collecting your 
show-up fee of $10 and with leaving the 
experimental lab.  

3 

Before we get started: 
Some ‘House-Keeping’ Rules 

 

• Please use computers only as instructed. 
- Do not start or end any programs, unless told to 

do so. 
- Do not change any settings.  
 

• Please only use the material provided. 
• We will now give you instructions step by step. 
 
Please note: If you have any questions either now, 
or during the experiment, raise your hand, and an 
experimenter will come and assist you privately. 
 

4 



Experimental Instructions 

• Today, you will participate in an experiment in 
group decision-making. 
- You will be involved in making decisions for 20 

consecutive rounds. 
- In each round, you will be randomly matched to 4 

other participants, with whom you will form a 
group, tasked with making a decision, for that 
round. 

- The entire experiment will take place through 
computer terminals. 

- All interaction between you and your group 
members will take place via the computer. 

Respect this rule: It is important that you do not 
talk to any other participants during the experiment. 5 

The Decision Task 

• In each round, 
 You are randomized into a group of 5 members. 
 One of two colored jars is randomly chosen by the 

computer, with equal probability. Either 
 Red jar containing 6 red balls and 4 blue balls; or 
 Blue jar containing 6 blue balls and 4 red balls. 

 You get to see the color of a randomly selected ball 
for you, with replacement, from the chosen jar for 
that round. 
 Note: The color you see and the one your group 

members see may not be the same. 

 You and your group members each submit a decision 
about which is the chosen jar for that round, 
determining the group decision for that round. 

6 

Majority Voting 

• Your group decision is based on majority voting. 
 
“Red Jar” is your group decision in a given round, if 3, 

4 or 5 of the members you are matched with in that 
round choose “Red Jar” [e.g., even if you choose “Blue 
Jar” but 3 or more of your group members choose “Red 

Jar”, the group decision is “Red Jar”]. 
 

“Blue Jar” is your group decision in a given round, if 3, 
4 or 5 of the members you are matched with in that 
round choose “Blue Jar” [e.g., even if you choose “Red 
Jar” but 3 or more of your group members choose “Blue 

Jar”, the group decision is “Blue Jar”]. 
  

7 

Your Payment in the Experiment 
• You will be paid in cash 
At the end of the experiment, the computer will 

randomly choose one of 20 rounds, and you will be 
paid according to whether the group decision for that 
round was correct.  
 If your group decision is correct, you will get $25 as 

reward ($10 “show up” fee + $15). 
 If your group decision is wrong, you will get $15 as 

reward ($10 “show up” fee + $5). 

 We will call you by your computer terminal number 
(see sticker on your desk) at the end of the 
experiment and pay you privately.  

Note: Different subjects may earn different amounts. 
You need not tell any other participant how much 
you earned. 
 

8 



Some Warming Up Exercise! 
 

• Before we get into the real experiment, let’s do 
some practice (go through some trials). 
 

• The next slides are meant to familiarise you 
 With the voting rule in place for the group decision. 
 With the computer interface you will use for this 

experiment. 
 

9 

Experimental Interface-Decision Rule 

Before the real experiment starts, you will be asked about how 
a group decision is formed, for a specific fictitious scenario, to 
make sure the voting rule in place is well understood.  

You need to choose either of two options  

Then, click “Submit answer” to continue 

10 

Experimental Interface-Decision Rule 

11 

Experimental Interface-Decision Rule 

You should click “ok” to continue 

You will see the answer you just made 

You will see whether your answer is correct  The computer reminds you again how the group decisions are made 

12 



Experimental Interface-Trial 

13 

Experimental-Trial 

The top centre part of the screen indicates which round you are in. If you are in the trial experiment, it shows “Trial”. If you are in 
round 1 of the experiment, it shows “Round 1 out of 20” 

14 

Experimental-Trial 

In the left side of the screen, important rules of this experiment are stated (the same as in the written instructions just covered)  

 
 15 

Experimental-Trial 

There are two possible jars: a “Red Jar” and a “Blue Jar” illustrated in the upper right portion of your screen. The red jar contains 6 
red balls and 4 blue balls. The blue jar contains 6 blue balls and 4 red balls. One of the two jars will be chosen randomly by the 
computer, but you don’t know which one 

16 



Experimental-Trial 

However, you – and each of the members of your group – get to see the color of a ramdonly chosen ball by the computer, each 
with replacement, from the randomly selected jar. The color of the ball you get to see is displayed, before you make your choice 
which, together with your other group members’ choices, contributes to the group decision 

 
 

17 

Experimental-Trial 

Click “Submit decision” to continue 

The color of the ball the computer 
randomly selected for you is displayed on 
your screen 

 
 

You need to make your decision on which 
jar you think the ball is picked from by 
choosing either of the options 

18 

Experimental Interface-Official Experiment 

19 

Experimental Interface-Payment 

20 



Experimental Interface-Payment 
You will see the selected round for 
generating your payment and the 
chosen jar in that round. 

Your decision and your group 
decision in that round, leads to a 
wrong decision in this case 

Your total payment for today’s 
experiment is calculated accordingly 
and is highlighted in red 

21 

Experimental Interface-Payment 
You will see the selected round for 
generating your payment and the 
chosen jar in that round 

Your decision and your group 
decision in that round, leads to a 
correct decision in this case 

Your total payment for today’s 
experiment is calculated accordingly 
and is highlighted in red 

22 

Experimental Interface-Payment 

23 

Let the Experiment Begin! 

• If there are no questions, we will now begin the 
experiment. 

 
 

24 



To get started 

Double click this icon 

25 
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B.1.2 Experimental Instructions for Ambiguity Treatment with Com-
munication under Unanimity Voting Rule



Welcome to the Lab 

• Welcome and thank you for registering for today’s 
experimental session! 
 

• Shortly, we will be giving you some preliminary 
information and, if you choose to stay and participate 
in today’s experiment, you will next receive more 
detailed instructions on it. 
 

• From now on, please do not communicate with other 
participants. 

 
Remember: Similar rules of behavior as during 
examinations apply to today’s experimental session. 

 1 

Outline of the experiment 

• You will participate in 20 rounds of decision tasks 
– At the beginning of each round, you will be randomly 

assigned to 4 other participants to form a group 
tasked with making a collective decision. 

– The decision reached within your group will 
determine your overall payment in this experiment. 

• Remuneration 
– You will receive $10 as a show-up fee. 
– You will receive an additional payment of either $5 or 

$15 depending on your group performance. 

• Ethics considerations 
– Participation is entirely voluntary and anonymous. 

2 

What’s next… 

• Earlier on: 
– When we invited you, we sent you a link to the 

PARTICIPANT INFORMATION SHEET with details of the 
experiment (instructions will come again, in 
greater details in a few seconds).  

• Today: 
– If you agree to participate, please sign one copy of 

PARTICIPANT CONSENT FORM for the experimenter to 
collect (one copy is for you to keep).  

– If not, please raise your hand so that the 
experimenter can assist you with collecting your 
show-up fee of $10 and with leaving the 
experimental lab.  

3 

Before we get started: 
Some ‘House-Keeping’ Rules 

 

• Please use computers only as instructed. 
- Do not start or end any programs, unless told to 

do so. 
- Do not change any settings.  
 

• Please only use the material provided. 
• We will now give you instructions step by step. 
 
Please note: If you have any questions either now, 
or during the experiment, raise your hand, and an 
experimenter will come and assist you privately. 
 

4 



Experimental Instructions 

• Today, you will participate in an experiment in 
group decision-making. 
- You will be involved in making decisions for 20 

consecutive rounds. 
- In each round, you will be randomly matched to 4 

other participants, with whom you will form a 
group, tasked with making a decision, for that 
round. 

- The entire experiment will take place through 
computer terminals. 

- All interaction between you and your group 
members will take place via the computer. 

Respect this rule: It is important that you do not 
talk to any other participants during the experiment. 5 

The Decision Task 

• In each round, 
 You are randomized into a group of 5 members. 
 One of two possible colored jars is randomly 

chosen by the computer, with equal probability: a 
“Red Jar” or a “Blue Jar”. 

 There are two types, with unknown distributions, 
in which a “Red Jar” and a “Blue Jar” can come 
about.  
 Red-type jar can either contain: 
 6 red balls and 4 blue balls; or, 
 9 red balls and 1 blue ball. 
 Blue-type jar can either contain: 
 6 blue balls and 4 red balls; or, 
 9 blue balls and 1 red ball. 

6 

The Decision Task (Continued) 

 The computer randomly selects the composition of 
the red or blue jar which was previously chosen at 
random.  
 

 You do not get to see which jar color and which 
composition is chosen by the computer, but what 
you get to see is the color of a randomly selected 
ball for you, with replacement, from the chosen jar 
(one ball for each decision round). 

 
 Note: The color you see and the one your group 

members see may not be the same. 

7 

Three-Step Decision Task 

 
① You each first choose which is the likely composition 

of the selected jar. 
 

② Next, you observe the color of a randomly picked 
ball from the selected jar, and have an opportunity 
to chat with members of your group, via a chat-box. 
 

③ Finally, you are asked to choose whether the 
selected jar is red or blue, determining the group 
decision for that round. 

8 



Unanimity Voting 

• Your group decision is based on unanimity voting. 
 
“Red Jar” is your group decision in a given round, if all 

members in your group choose “Red Jar”. 
 
“Blue Jar” is your group decision in a given round, if at 

least one member in your group chooses “Blue Jar” . 

9 

Your Payment in the Experiment 
• You will be paid in cash 
At the end of the experiment, the computer will 

randomly choose one of 20 rounds, and you will be 
paid according to whether the group decision for that 
round was correct.  
 If your group decision is correct, you will get $25 as 

reward ($10 “show up” fee + $15). 
 If your group decision is wrong, you will get $15 as 

reward ($10 “show up” fee + $5). 

 We will call you by your computer terminal number 
(see sticker on your desk) at the end of the 
experiment and pay you privately.  

Note: Different subjects may earn different amounts. 
You need not tell any other participant how much 
you earned. 
 

10 

Some Warming Up Exercise! 
 

• Before we get into the real experiment, let’s do 
some practice (go through some trials). 
 

• The next slides are meant to familiarise you 
 With the voting rule in place for the group decision. 
 With the computer interface you will use for this 

experiment. 
 

11 

Experimental Interface-Decision Rule 

Before the real experiment starts, you will be asked about how 
a group decision is formed, for a specific fictitious scenario, to 
make sure the voting rule in place is well understood 

You need to choose either of two options  

Then, click “Submit answer” to continue 
12 



Experimental Interface-Decision Rule 

13 

Experimental Interface-Decision Rule 

You will see whether your answer is correct  The computer reminds you again how the group decision will be made 

You should click “ok” to continue 

You will see the answer you just made 

14 

Experimental Interface-Trial 

15 

Experimental Interface-Trial 

The top centre part of the screen indicates which round you are in. If you are in the trial experiment, it shows “Trial”. If you are in 
round 1 of the experiment, it shows “Round 1 out of 20” 

 
16 



Experimental Interface-Trial 

In the upper right portion of the screen, you can see 4 jars with different composition of red and blue balls  

17 

Experimental Interface-Trial 

The 2 jars on the top level have the “60/40” and “40/60” composition. This means that those jars either have 6 red balls and 4 
blue balls or 6 blue balls and 4 red balls, respectively  

18 

Experimental Interface-Trial 

The 2 jars at the bottom level have the “90/10” and “10/90” composition. This means that those jars either have 9 red balls and 1 
blue ball or 9 blue balls and 1 blue ball, respectively  

19 

Experimental Interface-Trial 

We refer to a “Red Jar” as the jar containing more red balls than blue balls, whether that red jar contains 6 or 9 red balls 

20 



Experimental Interface-Trial 

We refer to a “Blue Jar” as the jar containing more blue balls than red balls, whether that blue jar contains 6 or 9 blue balls 

21 

Experimental Interface-Trial 

In the left side of the screen, a graph is displayed, which contains an illustration of the possible relative frequency with which a 
specific composition can materialise, when repeating random draws 1,000 times, for each of those graphs (50,000 draws in total). 
The graphs illustrates that there is no known precise distribution for those compositions 

22 

Experimental Interface-Trial 

In this environment, you are asked to first make a choice with respect to 
what composition you think will be picked at random by the computer  Then, you should click “Submit decision” to continue 

23 

Experimental-Trial 

After observing the color of a randomly picked ball from the selected jar and before making your choice with respect to what is 
the color of the randomly selected jar, you have an opportunity to chat with the members of your group, via a chat box appearing 
on your screen 

24 



Experimental-Trial 

To help you in that choice, in the left side of the screen, important rules of this experiment are stated (the same as in the written 
instructions just covered)  

 
 25 

Experimental-Trial 

While your decision on the composition you have just made is 
displayed in the left side of the screen… 

 

…the two jars, a red jar and a blue jar, whose composition 
correspond to the decision you have just made (in this 
example it was “90/10”) are displayed in the upper right 
portion of your screen 26 

Experimental-Trial 

Instead, if your decision on the composition of the balls was “60/40”, the two jars, a red jar and a blue jar, with the “60/40” 
composition are displayed in the upper right portion of your screen 

27 

Experimental-Trial 

You will also get to see the color of the ball the computer randomly 
selected from the chosen jar 

 
 

You should then click this button to start 
chatting with your group members 

28 



Experimental-Trial 

You will see your group members’ messages in this dialogue box  

 

29 

Experimental-Trial 

After chatting with your group members, you need to make your decision on 
which jar you think the ball is picked from by choosing either of the two options You should then click “Submit 

decision” to continue 
30 

Experimental Interface-Official Experiment 

31 

Experimental Interface-Payment 

32 



Experimental Interface-Payment 
You will see the selected round for 
generating your payment and the 
chosen jar in that round. 

Your decision and your group 
decision in that round, leads to a 
wrong decision in this case 

Your total payment for today’s 
experiment is calculated accordingly 
and is highlighted in red 

33 

Experimental Interface-Payment 
You will see the selected round for 
generating your payment and the 
chosen jar in that round 

Your decision and your group 
decision in that round, leads to a 
correct decision in this case 

Your total payment for today’s 
experiment is calculated accordingly 
and is highlighted in red 

34 

Experimental Interface-Payment 

35 

Let the Experiment Begin! 

• If there are no questions, we will now begin the 
experiment. 

 
 

36 



To get started 

Double click this icon 

37 
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Massey University Human Ethics Committee 

Accredited by the Health Research Council 

05 March 2015 
 
 
Simona Fabrizi 

School of Economics and Finance 

Albany Campus 
 
Dear Simona 
 
Re: Collective deliberation under ambiguity: theory and experimentation 
 
Thank you for your Low Risk Notification which was received on 05 March 2015. 
 
Your project has been recorded on the Low Risk Database which is reported in the Annual Report of the Massey 
University Human Ethics Committees. 
 
You are reminded that staff researchers and supervisors are fully responsible for ensuring that the information in the 
low risk notification has met the requirements and guidelines for submission of a low risk notification. 
 
The low risk notification for this project is valid for a maximum of three years. 
 
Please notify me if situations subsequently occur which cause you to reconsider your initial ethical analysis that it is 
safe to proceed without approval by one of the University’s Human Ethics Committees. 
 
Please note that travel undertaken by students must be approved by the supervisor and the relevant Pro Vice-Chancellor 

and be in accordance with the Policy and Procedures for Course-Related Student Travel Overseas.  In addition, the 

supervisor must advise the University’s Insurance Officer. 
 
A reminder to include the following statement on all public documents: 
 

“This project has been evaluated by peer review and judged to be low risk.  Consequently, it has not 
been reviewed by one of the University’s Human Ethics Committees.  The researcher(s) named above are 
responsible for the ethical conduct of this research. 
 
If you have any concerns about the conduct of this research that you wish to raise with someone other 
than the researcher(s), please contact Dr Brian Finch, Director (Research Ethics), telephone 06 356 
9099, extn 84459, e-mail humanethics@massey.ac.nz”. 

 
Please note that if a sponsoring organisation, funding authority or a journal in which you wish to publish requires 
evidence of committee approval (with an approval number), you will have to provide a full application to one of the 
University’s Human Ethics Committees.  You should also note that such an approval can only be provided prior to the 
commencement of the research. 
 
 
Yours sincerely 
 

 
 
Brian T Finch (Dr) 
Chair, Human Ethics Chairs’ Committee and 
Director (Research Ethics) 
 
 
cc Professor Martin Young 
 School of Economics & Finance 

Palmerston North 



Office of the Vice-Chancellor 
Finance, Ethics and Compliance

UoA logo

The University of Auckland
Private Bag 92019
Auckland, New Zealand

Level 10, 49 Symonds Street
Telephone: 64 9 373 7599
Extension: 87830 / 83761
Facsimile: 64 9 373 7432

UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS COMMITTEE (UAHPEC)

18-Jun-2015 

MEMORANDUM TO:

Dr Valery Pavlov
Info Systems & Operations Mgmt

Re: Application for Ethics Approval (Our Ref. 014565): Approved

The Committee considered your application for ethics approval for your project entitled Collective 
deliberation under ambiguity: theory and experimentation.

We are pleased to inform you that ethics approval is granted for a period of three years.

The expiry date for this approval is 18-Jun-2018. 

If the project changes significantly, you are required to submit a new application to UAHPEC for further 
consideration. 

If you have obtained funding other than from UniServices, send a copy of this approval letter to the 
Research Office, at ro-awards@auckland.ac.nz. For UniServices contracts, send a copy of the approval 
letter to the Contract Manager, UniServices. 

In order that an up-to-date record can be maintained, you are requested to notify UAHPEC once your 
project is completed.

The Chair and the members of UAHPEC would be happy to discuss general matters relating to ethics 
approvals. If you wish to do so, please contact the UAHPEC Ethics Administrators at ro-
ethics@auckland.ac.nz in the first instance.   

Please quote reference number: 014565 on all communication with the UAHPEC regarding this 
application. 

(This is a computer generated letter. No signature required.)

UAHPEC Administrators
University of Auckland Human Participants Ethics Committee

c.c. Head of Department / School, Info Systems & Operations Mgmt
 Steffen Lippert



Additional information:
1. Do not forget to fill in the 'approval wording' on the Participant Information Sheets and Consent 

Forms, giving the dates of approval and the reference number, before you send them out to your 
participants.

2. Should you need to make any changes to the project,please complete the online proposed changes 
and include any revised documentation.

3. At the end of three years, or if the project is completed before the expiry, please advise UAHPEC of 
its completion.

4. Should you require an extension, please complete the online Amendment Request form associated 
with this approval number giving full details along with revised documentation. An extension can be 
granted for up to three years, after which a new application must be submitted.

5. Please note that UAHPEC may from time to time conduct audits of approved projects to ensure that 
the research has been carried out according to the approval that was given.
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B.3
Invitation Letter Sent Through ORSEE System for Re-
cruiting Participants



Invitation email  

Subject: Invitation to participate in a decision-making experiment 

Dear #FirstName# #LastName#, 

we invite you to participate in a laboratory study of collective decision-making. 

 

1. This study has been approved by the University of Auckland Human Participants Ethics 

Committee. The data collected during the experiment is fully anonymous. Your participation 

is entirely voluntary and you will be able to withdraw from participation at any time and 

leave the room without providing any explanations. For more information, please refer to 

the Participant Information Sheet. 

2. For your participation you will receive a show-up fee of $10 and some amount that 

depends on the decisions you will have made in the experiment. We expect that on average 

participants will be paid about $20 as a result of participation in a 90-min session. The 

individual payoffs, however, can be different among the participants, ranging from $15 

(including the show-up fee) to possibly $25. 

3. The sessions are scheduled for the following times: 

#sessionlist# 

If you want to participate, you can register by clicking on the following link: 

#registration link# (If you cannot click on the link, copy and paste it into the address line 

in your browser.) 

 

Kind regards, 

You experimenters. 

--- 

This E-Mail was sent to you by the experiment participant recruitment system. If you want to 

change or to delete your data, please follow the link: [Link to the subscriber page] 

The University of Auckland DECIDE Laboratory for Behavioural Decision-Making  

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS 

COMMITTEE ON 18-06-2015 for (3) years, Reference Number _ 014565__ 
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PROJECT	
  TITLE:	
   	
  

COLLECTIVE	
  DELIBERATION	
  UNDER	
  AMBIGUITY:	
  THEORY	
  AND	
  
EXPERIMENTATION	
  
Researchers:	
  Dr	
  Valery	
  Pavlov	
  (Co-­‐Director	
  of	
  the	
  Laboratory	
  for	
  
Business	
  Decision	
  Making	
  (DECIDE));	
  Dr	
  Simona	
  Fabrizi,	
  Prof	
  Thomas	
  
Pfeiffer	
  and	
  Miss	
  Addison	
  (Siwen)	
  Pan	
  (all	
  Massey	
  University),	
  
A/Prof	
  Matthew	
  Ryan	
  (AUT)	
  and	
  Dr	
  Steffen	
  Lippert	
  (Department	
  of	
  
Economics,	
  University	
  of	
  Auckland).	
  

 

 

 

 

 

 

	
   	
  
	
  

	
  
 

 

 

 

Owen G. Glenn Building 
4th floor, 12 Grafton Road 
Auckland 1142, New Zealand 
Telephone 64 9 373 7599   
Facsimile 64 9 373 7430 

www.isom.auckland.ac.nz  

The University of Auckland 
Private Bag 92019 
Auckland 1142 
New Zealand 

DEPARTMENT OF INFORMATION SYSTEMS  
AND OPERATIONS MANAGEMENT 

	
  

PARTICIPANT	
  INFORMATION	
  SHEET	
  

Project	
  description	
  

You	
  are	
   invited	
   to	
  participate	
   in	
  an	
  experiment	
  studying	
  how	
   individual	
   information	
  and	
   individual’s	
   choices	
  
determine	
  the	
  quality	
  of	
  collective	
  decision-­‐making.	
  Think	
  of	
  a	
  hiring	
  committee	
  which	
  must	
  vote	
  “Yes”	
  or	
  “No”	
  
on	
  an	
  applicant	
  for	
  a	
  position;	
  or	
  a	
  team	
  of	
  surgeons	
  who	
  must	
  vote	
  “Yes”	
  or	
  “No”	
  on	
  a	
  patient	
  receiving	
  an	
  
organ	
  for	
  a	
  transplant;	
  or	
  jurors	
  voting	
  to	
  “Acquit”	
  or	
  “Convict”	
  a	
  defendant.	
  In	
  all	
  these	
  situations,	
  deliberation	
  
and	
  voting	
  procedures	
  over	
  these	
  binary	
  choices	
  amongst	
  a	
  few,	
  each	
  bringing	
  their	
  own	
  views	
  to	
  the	
  decision	
  
task,	
  determine	
  whether	
  to	
  approve	
  one	
  option	
  or	
  another,	
  thereby	
  potentially	
  affecting	
  the	
  quality	
  of	
  those	
  
decisions.	
  

The	
  goal	
  of	
  this	
  research	
  is	
  to	
  study	
  the	
  impact	
  of	
  a	
  variety	
  of	
  information	
  protocols	
  and	
  voting	
  procedures	
  on	
  
the	
  quality	
  of	
  collective	
  decision-­‐making.	
  To	
  that	
  end,	
  we	
  seek	
  to	
  investigate	
  experimentally	
  decision-­‐making	
  
scenarios	
  over	
  binary	
  options	
  in	
  as	
  neutral	
  environments	
  as	
  possible,	
  to	
  gain	
  insights,	
  which	
  could	
  be	
  applied	
  to	
  
various	
  small	
  group	
  decision-­‐making	
  more	
   in	
  general,	
  be	
   it,	
  e.g.,	
   for	
  any	
  selection	
  decision	
  made	
  by	
  a	
  hiring	
  
committee,	
  or	
  for	
  reaching	
  a	
  verdict	
  in	
  a	
  jury	
  trial.	
  

	
  

Project	
  procedures	
  

The	
  data	
  will	
  be	
  collected	
  in	
  a	
  laboratory	
  experiment	
  simulating	
  collective	
  deliberations	
  over	
  binary	
  choices.	
  A	
  
typical	
  collective	
  deliberation	
  could	
  be	
  described	
  by	
  the	
  information	
  available	
  to	
  each	
  decision-­‐maker,	
  the	
  size	
  
of	
  the	
  decision-­‐group,	
  as	
  well	
  as	
  the	
  voting	
  rule,	
  that	
  is,	
  the	
  minimum	
  number	
  of	
  votes	
  to	
  be	
  collected	
  in	
  favor	
  
of	
  one	
  option,	
   for	
   that	
  option	
   to	
  be	
   selected.	
  The	
   simulation	
  of	
   collective	
  deliberation	
  will	
  be	
   facilitated	
  via	
  
computer-­‐generated	
   scenarios	
   to	
   include	
   the	
   information	
   transmitted	
   to	
   the	
  participants	
   in	
   the	
   experiment	
  
regarding	
  the	
  case	
  at	
  hand.	
  In	
  an	
  experiment	
  setting,	
  such	
  information	
  is	
  disclosed	
  to	
  participants	
  via	
  sharing	
  
with	
  them	
  what	
  is	
  known	
  about,	
  say,	
  the	
  composition	
  of	
  the	
  colored	
  balls	
  within	
  two	
  urns,	
  either	
  urn	
  A	
  or	
  B,	
  
representing	
   two	
   possible	
   states	
   of	
   nature,	
   or,	
   equivalently,	
   the	
   set	
   of	
   binary	
   choices	
   individuals	
   in	
   a	
   small	
  
group	
  decision-­‐making	
  context	
  need	
  to	
  make.	
  

The	
  computer	
  then	
  randomly	
  draws	
  one	
  of	
  the	
  two	
  urns	
  and	
  which	
  urn	
  was	
  picked	
  is	
  going	
  to	
  be	
  revealed	
  to	
  all	
  
participants	
  at	
  the	
  end	
  of	
  the	
  experiment.	
   	
  

First,	
   the	
   information	
   about	
   the	
   possible	
   composition	
   of	
   each	
   of	
   the	
   two	
   urns	
   is	
   disseminated	
   to	
   all	
  
participants,	
  then	
  one	
  of	
  the	
  two	
  urns	
  is	
  randomly	
  selected	
  by	
  the	
  computer,	
  after	
  which,	
  participants	
  receive	
  
signals	
  about	
  the	
  selected	
  urn,	
  by	
  observing	
  the	
  color	
  of	
  computer-­‐generated	
  randomly	
  drawn	
  balls	
  from	
  the	
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3.1 Introduction

Consider once more a standard voting game in which voters simultaneously cast votes

to contribute to the collective decision-making outcome. Assume again that, before casting

her vote, each voter receives a private signal, which is positively related to the true state of

the world. In chapter 1 we analyse the case in which the private information that each voter

receives is imprecisely measured and the precision of the signal can take two possible levels,

hence, we derive results for the two-point non-common prior model. There, we assume that

individual’s prior is exogenously determined. The approach in this chapter is very different

from it.

First, the private signal each voter gets is ambiguous within a continuum, rather than

being only ambiguous with respect two points. Second, we assume voters are ambiguity

averse. Therefore, we use Maxmin Expected Utility Theorem (MMEU) of Gilboa and

Schmeidler (1989) to capture the voter’s attitude towards ambiguity to analyse how this

impacts the collective voting outcomes under both the majority rule and the unanimity rule.

According to MMEU, voters assess each of their available actions (to acquit or to convict) by

the minimum expected utility associated with each of those actions.

Our aim is to address the following key questions.

1. In a general ambiguity setting, what are the possible priors that voters would adopt?

2. Does voting strategically survive as a plausible equilibrium in the presence of ambiguity

and ambiguity averse voters?

3. Does the jury paradox hold when voters are not ambiguous neutral?

To do so, we generalise the jury voting model of Feddersen and Pesendorfer (1998) by

embedding ambiguity into the private signal structure and considering voters who, being am-

biguity averse, adopt a Maxmin approach to form subjective beliefs. Within this framework

we prove the existence of an informative voting equilibrium and of strategic voting equilibria.

Moreover, we find that if ambiguity exists in the precision of the private information, it is
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easier to sustain informative voting as an equilibrium strategy, that is, there exists a larger set

of reasonable doubt levels for the unanimity voting rule to prevail as an equilibrium of the

voting game. This is an important result as voting informatively, especially under unanimity

helps maintain the efficiency of information aggregation.

The rest of the chapter proceeds as follows. Section 3.2 offers a review of the related

literature on ambiguity, and ambiguity aversion in particular. Section 3.3 describes the

collective voting game with the interval ambiguous information structure and ambiguity

averse voters. In this section we also prove the existence of both an informative voting

equilibrium and of the strategic voting equilibrium for both the unanimous voting rule and

the majority rule. Some numerical examples and comparative statics results are provided in

section 3.4. Section 3.5 concludes.
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3.2 Related Literature

The Expected Utility (EU) theory of Neumann and Morgenstern (1947) assumes that

the outcomes of the events under examination have objectively known probabilities. They

define the preferences over acts by a real-valued utility function of the choices weighted by

the objective probabilities of the outcomes of the states.

However, cases when the probability measure of the events are known to all decision

makers hardly exist in real life. Decision makers are not able to form purely objective beliefs

regarding the states unless they are confronted with a fair coin, a perfect die, or a well-made

roulette wheel. Knight (1921) is the first person to distinguish ‘risk’ from ‘uncertainty’ by

referring to the existence/absence of objective probabilities. ‘Risk’ is defined by events

the objective probability measure of which could either (i) be theoretically deduced, which

means that individuals are able to form priori probabilities; or (ii) be determined by empirical

frequencies, which means individuals can generate statistical probabilities. Knight uses the

notion of ‘uncertainty,’ when referring to events that do not fall within these two categories,

that is, if either of the previous methods are not available for measuring the objective proba-

bilities of such events. He also suggests that even in the uncertain cases, individuals can form

estimates, which represent the concept of subjective probabilities, when making decisions

based on them.

Savage (1954) suggested that probabilities are not necessarily something objectively

known. Instead, decision makers have their subjective beliefs regarding the probability

measure of the states. For example, unlike the roulette lottery, the horse lottery does not

associate a known chance with each observation of the lottery. In other words, the decision

maker cannot assign a specific probability to the outcomes of a horse lottery.

Thus, in Subjective Expected Utility (SEU) theory, preference relations over acts are

represented by some real-valued utility function on the set of the consequences weighted

by the subjective probabilities of the states; whereas the individual’s choice behaviour in
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situations of risk is predictable under certain postulates, such as complete ordering and the

sure-thing principle.

Anscombe and Aumann (1963) established the theory of State-Dependent Expected

Utility by combining EU and SEU. They started by redefining the word ‘probability’. They

separated ‘probability’ into two very different concepts. When it is interpreted within the ‘log-

ical’ sense, it means the plausibility of some events or reasonableness of some expectations,

whereas if it is interpreted within the sense of ‘physics’, it is roughly identical to the word

‘chances’, which refers to the proportion of successes in some events in the statistical way.

This allows to transform a choice under uncertainty into a two-stage lottery-act framework.

Although SEU gives a rather accurate prediction of a decision maker’s gambling choice

and his/her reflective choice behaviour, Ellsberg (1961) points out that Savage’s normative

rules are not applicable whenever there is an unmeasurable uncertainty in the relative likeli-

hood of the events. In his paper, ambiguity exists whenever there is inadequate information

regarding the relative likelihood of the events. For example, ambiguity could be caused

purely by lack of information. It could also be due to the fact that the decision maker receives

contradicting information or/and the source of information is not credible. He provided a

famous thought experiment and proved that there is a non-negligible minority of decision

makers who violate Savage’s axioms, who are not able to reduce the unmeasurable uncer-

tainty to risk, or to apply the von Neumann–Morgenstern Expected Utility Theory.

In the Ellsberg two-colour urn experiment, decision makers are faced with two urns

containing 100 balls each of either red or black colour, from which one ball will be randomly

drawn. Let us suppose that in Urn A, the composition of red and black balls is not known to

the decision maker. However, in Urn B, there are 50 red balls and 50 black ones. Decision

makers are asked which one they prefer, (1) to bet on RedA or to bet on BlackA? (2) to bet

on RedB or BlackB? (3) to bet on RedA or RedB? (4) to bet on BlackA or BlackB? To ‘bet on

RedA’ means that the decision maker chooses to draw a ball from Urn A; and that he/she will
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receive a prize a if the drawn ball is red, which means RedA occurs. If the drawn ball is black,

then the decision maker receives the prize b, which means not–RedA occurs; and the amount

of prize a is bigger than b. Also, RedA, BlackA, RedB and BlackB are mutually exclusive.

Fig. 3.1 Ellsberg Two-colour Urn Experiment

According to Savage’s theorem, the individuals should be indifferent to either of the

options for these four questions. This means that individuals should be indifferent with

respect to the colour they bet on. Moreover, they should also be indifferent with respect

to the urn they choose to bet on. A number of people, including Savage himself, although

being indifferent between the options of questions (1) and (2), and those of questions (3)

and (4), nevertheless prefer betting on RedB to RedA, and BlackB to BlackA. This preference

obviously violates the Savage Axioms. Thus, the preferences elicited from the Ellsberg Urn

game cannot be explained by the Savage Axioms. This contradiction between ambiguity and

SEU theory becomes a major challenge to game theory and rational choice theory.

As stated in Table 3.1 below, let a and b be the payoffs, a > b, such that, for example, in

gamble I, if ‘RA’ occurs, the payoff of betting on ‘RA’ is a. According to Savage’s theorem,

individual should be indifferent between gamble I and gamble II. Also, they should be indif-

ferent between gamble III and gamble IV. Following Savage’s postulates, complete ordering

and the sure-thing principle, individuals are indifferent between gamble V and gamble VI,
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which means that decision makers are not only indifferent to bet on either of the colour from

each urn, but also are indifferent to bet on either of the urns.

Table 3.1 Ellsberg Two-Colour Urn Game

RA BA RB BB

I a b b b
II b a b b

III b b a b
IV b b b a

V a a b b
VI b b a a

Then, starting with the assumption that the individual prefers gamble III to gamble I, we

could make certain transformations toward gamble I and gamble III on the basis of complete

ordering and the sure-thing principle and keep the preference unchanged, that is individuals

always prefer the second gamble in the five pairs listed in Table 3.2. If the payoff of betting

on BlackB changes from b to a, we have the payoffs as gamble I’ and III’ in Table 3.2.

According to the sure-thing principle, preference regarding a pair of gambles will not change

by the payoff values of events, for which both gambles have the same payoffs. Thus, gamble

III’ is preferred to gamble I’. As gamble III’ is equivalent to gamble VI in Table 3.1 and

gamble VI is indifferent to gamble V, we can transform III’ to III”. Gamble III”’ is preferred

to gamble I”’ after we apply the sure-thing principle by changing the value of the payoffs of

the event RedA from a to b under both gambles. Then, we get that gamble III”” is preferred

to gamble I”” as gamble III”’ is equivalent to gamble II in Table 3.1 and individuals are

indifferent between II and I. However, gamble III”” (equivalent to I) is preferred to gamble

I”” (equivalent to III), which contradicts the assumption that gamble III is preferred to I.

Thus, the Savage Axioms cannot explain these preference relations, opening up the door for

alternative explanations.
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Table 3.2 Transformed Ellsberg Two-Colour Urn Game

RA BA RB BB

I a b b b
III b b a b

I’ a b b a
III’ b b a a

I” a b b a
III” a a b b

I”’ b b b a
III”’ b a b b

I”” b b a b
III”” a b b b

In Ellsberg’s three-colour urn game, the participants exhibit the same pattern as they

do in the previous two-colour experiment. The participants are given an urn containing 90

balls, of which 30 are red and the remaining 60 are either black or yellow. In this alterna-

tive experiment, participants prefer betting on events for which they know more about the

probability measure over the states—the event that a red (black or yellow) ball will be picked

out of this urn to betting on black (red) one. As shown in Table 3.3, betting on red has a

winning probability of 1/3 and betting on either black or yellow has a winning probability of

2/3; thus, the decision maker prefers X to Y and Y ′ to X ′. Since these two pairs of acts are

identical without taking yellow into consideration, if X ≻ Y , then X ′ ≻ Y ′. However, such a

pattern also violates the sure-thing principle. To be consistent with the sure-thing principle,

X is preferred to Y and X ′ is preferred to Y ′, since the sure-thing principle requires decision

makers to ignore the states in which the act leads to the same payoff. This means that the

state yellow will not influence the individuals’ choice when comparing acts of X and Y ; and

the same applies to X ′ and Y ′.

In addition, the first order stochastic dominance axiom is violated by Ellsberg-type

preferences. In the two-colour urn game, the probability of winning by betting on RedA is
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Table 3.3 Ellsberg Three-Colour Urn Game

Number of balls
30 60

Act Red Black Yellow

X W 0 0

Y 0 W 0

X’ W 0 W

Y’ 0 W W

higher than from betting on RedB if the composition of red and black in Urn A is (60,40), for

instance. However, RedB ≻ RedA to the Ellsberg type. The explanation of the three-colour

urn game is fairly similar to that of the two-colour case.

Moreover, not only Savage’s theorem but also other subjective utility theories with

additive probabilities are proved to be implausible, as they fail to infer the probabili-

ties from the decision maker’s choice for Ellsberg’s ambiguous urn game. In the two-

colour case, the individual prefers to bet on RedB rather than RedA. This means the

same as that the decision maker believes that P(RedB) > P(RedA), which indicates that

1−P(RedB) < 1−P(RedA). However, this contradicts the preference of the individual,

P(BlackB) > P(BlackA). Analogously, in the three-colour urn game, denote the subjec-

tive probabilities of drawing a red, black and yellow by P(Red), P(Black) and P(Yellow),

respectively. Y ′ ≻ X ′ indicates P(Black∪Yellow) > P(Red ∪Yellow). Thus, when prob-

abilities are additive, P(Black∪Yellow) = P(Black)+P(Yellow) and P(Red ∪Yellow) =

P(Red)+P(Yellow). However, given the preference Y ′ ≻ X ′, P(Red) < P(Black). Thus,

this contradicts the preference X ≻ Y .

A series of empirical studies have been conducted following Ellsberg’s thought exper-

iment so as to test the existence of ambiguity and ambiguity aversion. The aversion to

ambiguous choices have been well demonstrated in the replications of the Ellsberg urn
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experiments in Becker and Brownson (1964), Larson (1980), Hogarth and Einhorn (1990),

Bernasconi and Loomes (1992), Seidenfeld and Wasserman (1993), Keren and Gerritsen

(1999), Ivanov (2011), among others. In these experiments, as in Ellsberg’s Urn experiment,

objective probabilities exist; nevertheless, individuals can only partially access such measure-

ments. If individuals were allowed to access the whole objective probabilities measurement,

for example, by looking into Ellsberg’s Urn A, and by seeing every ball in it, then, they would

know the exact measurement of the objective probabilities of each ball to be drawn from

that urn. Thus, Urn A would be no longer ambiguous, rather a risky urn and each individual

would be able to settle on the same explicit probability measure of the event of a particular

ball being drawn from it and, hence, form an identical prior/belief from such well-defined

probability measure. However, there is another type of ambiguity, where the underlying

objective probabilities measure is intrinsically unknown/unmeasurable. Unlike Ellsberg’s

design of the game, some experiments have taken natural events, such as betting on future

stock prices, or GNP, that is, events for which there exists conflicting advice regarding their

probability distributions. Those are instances of events with ambiguous probabilities, as ob-

jective probability measures can neither be deduced theoretically nor generated by obtaining

sufficiently empirical frequencies for them, to test decision makers’ attitudes towards them,

as in MacCrimmon (1968), Goldsmith and Sahlin (1983), and Einhorn and Hogarth (1985).

Other experiments have found that individuals exhibit an ambiguity seeking attitude when

the probability for gain is low and when the probability for loss is high (see Kahn and Sarin

(1988), Curley et al. (1989)).

Besides decision analysis, the concepts of ambiguity and ambiguity aversion also prevail

in other realistic applications. Kellner (2010) argues that a tournament contract is preferred

to an independent contract in an ambiguous situation, where the relationship between effort

and output is opaque. Tournament contracts will not be favourable when agents are risk

averse but ambiguity neutral. However, as long as ambiguity aversion occurs, rank-dependent

tournaments will most often be attractive for agents over effort-dependent contracts, although
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they may not be optimal. When the relation between effort and output is opaque, agents prefer

a tournament contract, where the wage is based on the ranks of the agents’ contributions, to

an independent contract, where the wage is solely based on the agent’s own performance,

because a tournament contract removes this ambiguity from the unknown distribution of

output in the principal–agent problem (Kellner and Riener (2011)).

Dickhaut et al. (2011) study investment behaviour both under uncertainty and ambiguous

probabilities. They find that only one-third of investors act consistently with SEU in a

first-price sealed bid auction when deciding on their investment in a financial asset. This

shows that bidders tend to bid higher than the expected return of the assets, given the range

of the expected return when not informed of the specific probabilities of each asset. The

experimental work of Bossaerts et al. (2010) also displays substantial heterogeneity in atti-

tudes towards ambiguity when choosing a portfolio with ambiguous Arrow securities. This

generates different financial market equilibria than with the traditional approach, which

assumes that agents are ambiguity neutral.

Also, in the auction market, the effect of ambiguity is amplified by its mechanism (Mal-

mendier and Szeidl, 2008). It is claimed that bidders with the most market experience overbid

more frequently than inexperienced ones. Bidders face ambiguous information as to all

alternative auction goods and their winning bid. Bidders may over-value the good, because

of the anchoring effect. In addition, unlike commodity-type goods, bidders are constrained

by differentiated private values for goods like antiques, paintings, and collectibles, as the

private values of the other competing bidders are unknown.

Similarly, when compared to individuals, firms in the market face an even more per-

plexing strategic environment. Armstrong and Huck (2010) found that entrepreneurs are

over-optimistic, caring more about satisfactory results than optimisation, and resorting to

rules of thumb when making strategic decisions for firms. In comparing the present or future

outcomes with the historical figures of the firm itself or with the previous outcomes of their
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peers, entrepreneurs feel happy as long as the outcome remains as high as previous outcomes,

when the probability of reaching the target set by the optimal strategy is rather ambiguous.

Thus, entrepreneurs do not spend time on calculating the optimal equilibrium strategies even

when there is no search cost. They adopt rules of thumb, resorting to imitating the successful

strategies of their rivals or peers, against other strategies which would have been optimal

instead.

Given the abundant evidence for ambiguity averse attitudes in well controlled labora-

tory experiments and in real life, other theories than SEU have been explored in order to

solve/overcome the Ellsberg paradox, which incorporate ambiguity aversion. Inspired by this

idea, Gilboa and Schmeidler (1989) assume that the decision makers formulate a set of possi-

ble additive probabilities when faced with ambiguity. They redefine the independence axiom

for a non-unique prior. Moreover, they define uncertainty aversion. Thus, in the ambiguous

urn game, the uncertainty averse decision maker takes the minimal expected utility over the

prior set as his/her utility, for all priors in this set. In other words, preferences are represented

by the minimum expected utilities over the set of possible probability measures. In Ellsberg’s

two-colour urn game, if the decision maker forms a prior set with all possible probability

distributions of red and black balls in Urn A, the minimal expected utility of betting on Urn A

will be zero for a utility maximising decision maker. With the probability of a red (black) ball

picked from the risky Urn B as 1/2, the decision maker will prefer betting on the risky urn

as long as the payoff of betting on Urn B is bigger than zero. Similarly, in the three-colour

problem, the probability measure of P(Black) could be [0,2/3]. We assume the reward of

winning the bet is W . Then, the expected utility is (1/3)W and the minimum expected utility

is 0 if the individual bets on the ambiguous urn. However, both the expected utility and the

minimum expected utility is (1/3)W if the individual bets on the unambiguous urn with an

equal number of red, black and yellow balls in it. This explains why most individuals prefer

the unambiguous urn to the ambiguous one.
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Schmeidler (1989) restates Ellsberg’s point that the probability assigned to an uncertain

event is not only based on the information the decision maker receives when forming such a

probability; the missing information reflects a heuristic part, which the decision maker takes

into consideration to assess the uncertainty probability component. He axiomatises SEU

in an Anscombe and Aumann framework. Schmeidler replaces the classical independence

axiom with a weaker condition: co-monotonic independence; this allows SEU to be gener-

alised to allow non-additive probability measures. A non-additive probability describes the

probabilities of two equally likely events as being equal but not necessarily 1/2, unless the

information set for assigning the probabilities is rich enough. In the Ellsberg experiment, the

probability measure on the set of states need not be additive, due to the fact that the decision

maker receives little information. For example, in the two-colour urn, P(BlackA) = P(RedA).

However, the sum of P(BlackA) and P(RedA) need not be 1. 1−P(BlackA)−P(RedA) mea-

sures the decision maker’s confidence in the probability. Thus, the capacity of a red (black)

ball to be picked from Urn B is 0.5 and the capacity of getting a red (black) ball picked from

Urn A is smaller than 1/2. We might assign 0 capacities to the events of RedA and BlackA,

so that betting on either of the colours from urn A gives the decision maker a zero utility.

Thus, SEU with non-additive probability also gives a conceivable explanation of the observed

preferences from the ambiguous urn game.

Although ambiguity aversion has been observed through well controlled laboratory ex-

periments and in real life, studies only focus on comparing decision-makings under different

scenarios, without and with ambiguity. This means individuals are given both the risky

environment and the ambiguous one, and they are asked to make decisions as if they were

confronted with the Ellsberg Urn game. In reality, decision makers do not always have both

risky and ambiguous scenarios to choose from. The risky world and the ambiguous world are

mutually exclusive, which means individuals could start with being in the ambiguous world,

with the risky world never becoming available. In the remainder of this chapter, we study

voters confronted with ambiguity: voters cannot choose to switch to a non-ambiguous world.
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3.3 The Collective Voting Game Under Ambiguity: The

MMEU Approach

As in Feddersen and Pesendorfer (1998), and as in chapter 1, a group of n jurors,

j = 1, · · · ,n, have to reach a verdict on a defendant, who could be either "guilty"-G, or

"innocent"-I with ex-ante equal probability, i.e., Pr(G) = Pr(I) = 1/2. Each juror is expected

to cast a vote {C,A} either to ‘C=convict’ or to ‘A=acquit’ the defendant based on the

evidence received, with signal’s precision p, where p = Pr(g|G) = Pr(i|I). The individual

votes then contribute towards the collective verdict. As before, we assume that all jurors have

the same preferences with respect to the outcome of the verdict, that is, they all want to reach

the correct judgment. Their preferences are defined as follows:

u(A, I) = u(C,G) = 0,

u(C, I) =−q,

u(A,G) =−(1−q),

with q ∈ (0,1) representing once again the threshold of reasonable doubt for conviction.

However, before jurors cast their votes, each voter j receives an independent randomly

drawn private and imperfect signal s j ∈ {g, i} as the evidence, with random and ambiguous

precision p with p ∈ P = [p, p̄] and 1/2 < p < p̄ < 1. No further probabilistic information

about the signal precision is provided. This implies that, differing once more from the

existing jury voting literature, the quality of the private signals is imprecisely measured. In

particular, we allow such precision to fall within two levels, in the sense that the domain

of the information quality is a closed interval, rather than a set including only two points

as in chapter 1, or a singleton (Feddersen and Pesendorfer, 1998). The interval ambiguity

with respect to the signal precision could be understood as the case in which a piece of

evidence, say, hinting toward the defendant being guilty, tells us that the probability that the
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defendant is guilty is at least 60%, but at most 90%. However, except for this, there is no

extra information provided regarding the probability measure of the underling true accuracy

of the information (evidence) each voter receives.

Define the set of all possible priors as Π, Π = [p, p̄]. The ambiguity averse voter chooses

the action that maximises the minimum utility across all possible signal precisions.

With this in mind, we maintain the assumption that after observing the private signals,

each juror casts her vote simultaneously, according to the strategy σ j(s j,π j), which is the

probability that voter j votes for conviction conditional on her private signal s j and her

subjectively formed prior π j. As before, the collective decision is determined by the voting

rule k̂, k̂ ≤ n. The given voting rule is the simple majority rule when k̂ = (n+1)/2; and it is

the unanimity rule when k̂ = n. And, as always, the verdict is either acquittal or conviction,

depending on whether the threshold of necessary votes to convict is either not reached, or

reached.
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3.3.1 Informative Voting

A voter j’s expected utility of voting for acquittal, conditional on being pivotal and

receiving an innocent signal is

E[u j(A, ·) | piv,s j = i] = u j(A|I)Pr(I|piv,s j = i)+u j(A|G)Pr(G|piv,s j = i).

Because u j(A|I) = 0 and u j(A|G) =−(1−q), we then have

E[u j(A, ·) | piv,s j = i] =−(1−q)Pr(G|piv,s j = i).

Denote the posterior belief that the defendant is guilty conditional on the voter being pivotal

and having received signal i, when all other voters vote informatively, as β i
G(π j,σ(·)). Hence,

Pr(G|piv,s j = i) = β
i
G(π j,σ(·)) = 1

1+(
π j

1−π j
)(

1−π j
π j

)n−1
.

For an ambiguity averse voter j, we can determine what is the selected belief or prior π j, that

corresponds to the action leading to the highest among the minimum expected utilities from

choosing, say, to acquit a defendant.

To do so, we first determine the prior, among those one can hold, which leads to the

lowest utility of acquitting a guilty when receiving the innocent signal:

minπ j∈ΠE[u j(A, ·) | piv,s j = i] =−(1−q)maxπ j∈Πβ
i
G(π j,σ(·)).

Denote maxπ j∈Πβ i
G(π j,σ(·)) as β̄ i

G(π,σ(·)), so that

minπ j∈ΠE[u j(A, ·) | piv,s j = i] =−(1−q)β̄ i
G(π j,σ(·)).

We can repeat the exercise for a voter j’s expected utility of voting for conviction, conditional
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on being pivotal and receiving an innocent signal. This leads to:

E[u j(C, ·) | piv,s j = i] = u j(C|I)Pr(I|piv,s j = i)+u j(C|G)Pr(G|piv,s j = i),

which is equivalent to

E[u j(C, ·) | piv,s j = i] =−qPr(I|piv,s j = i).

An ambiguity averse voter assesses her action to vote to convict by the minimum expected

utility of this action, conditional on being pivotal and receiving an innocent signal. That is,

minπ j∈ΠE[u j(C, ·) | piv,s j = i] =−qmaxπ j∈Πβ
i
I (π j,σ(·)).

We know that β i
I (π j) = 1−β i

G(π j). Hence, maxπ j∈Πβ i
I (π j,σ(·)) = 1−minπ j∈Πβ i

G(π j,σ(·)).

Define minπ j∈Πβ i
G(π j,σ(·)) as β

i
G
(π j,σ(·)), we then have

minπ j∈ΠE[u j(C, ·) | piv,s j = i] =−q(1−β
i
G
(π j,σ(·))).

Thus, the ambiguity averse voter will vote for acquittal informatively if and only if her

minimum expected utility of voting for acquittal is bigger than the minimum utility of voting

for conviction, given her private signal is i, conditional on being pivotal and all other voters

voting informatively, i.e.,

minπ j∈ΠE[u j(A, ·) | s j = i]> minπ j∈ΠE[u j(C, ·) | s j = i].

As the utility of convicting the guilty and acquitting the innocent is zero, we have

minπ j∈ΠE[u j(A,G) | s j = i]> minπ j∈ΠE[u j(C, I) | s j = i], (3.1)



3.3 The Collective Voting Game Under Ambiguity: The MMEU Approach 130

which is equivalent to:

−(1−q)maxπ j∈ΠPr(G|s j = i)>−qmaxπ j∈ΠPr(I|s j = i).

Therefore, requiring condition (3.1) to be satisfied is equivalent to verifying that the

following condition holds:

−(1−q)β̄ i
G(π j,σ(·))>−qβ̄

i
I (π j,σ(·)).

Because β̄ i
I (π j,σ(·)) = 1−β

i
G
(π j,σ(·)), we then have

β̄ i
G(π j,σ(·))

1−β
i
G
(π j,σ(·))

<
q

1−q
.

Analogously, the ambiguity averse j voter will vote for conviction informatively if and

only if

minπ j∈ΠE[u j(C, ·) | piv,s j = g]> minπ j∈ΠE[u j(A, ·) | piv,s j = g].

As the utility of convicting the guilty and acquitting the innocent is zero, we have

minπ j∈ΠE[u j(C, I) | s j = i]> minπ j∈ΠE[u j(A,G) | s j = i], (3.2)

which is equivalent to:

−q(1−β
g
G
(π j,σ(·)))>−(1−q)β̄ g

G(π j,σ(·)),

that is
β̄

g
G(π j,σ(·))

1−β
g
G
(π j,σ(·))

>
q

1−q
.

Given that in an informative equilibrium all jurors behave the same and that σ(i) = 0

and σ(g) = 1, in the remainder of this chapter, we omit the index j, when referring to the
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equilibrium beliefs and strategies of a specific juror, and, for the rest of this subsection, we

also omit to specify the equilibrium strategy when describing the belief function.

Thus, the condition for informative voting being a Nash equilibrium, can simply be

written as β̄ i
G(π)

1−β
i
G
(π)

< q <
β̄

g
G(π)

1−β
g
G(π)

.

Notice that

β
i
G(π) =

(1−π)π k̂−1(1−π)n−k̂

(1−π)π k̂−1(1−π)n−k̂ +π(1−π)k̂−1πn−k̂
=

1

1+(1−π

π
)2k̂−n−2

is strictly increasing with π when k ≥ n+2
2 , for example, when k̂ = n, it reaches its maximum

when π = p̄; whereas, if k < n+2
2 , for example, when k̂ = n+1

2 , β i
G reaches its maximum

when π = p; and,

β
g
G(π) =

ππ k̂−1(1−π)n−k̂

ππ k̂−1(1−π)n−k̂ +(1−π)(1−π)k̂−1πn−k̂
=

1

1+(1−π

π
)2k̂−n

is strictly increasing with p when k ≥ n
2 , when π = p, it reaches its minimum.

Proposition 3.1. Under the Maxmin approach and ambiguous information p, with p ∈ [p, p̄],

informative voting is an equilibrium for ambiguity averse voters if and only if β̄ i
G(π)

1−β
i
G
(π)

<

q
1−q <

β̄
g
G(π)

1−β
g
G
(π)

.
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3.3.2 Strategic Voting Under Unanimity

In this section, we study the Symmetric Responsive Nash Equilibrium under unanimous

voting rule, when informative voting is not an equilibrium, that is, equation (3.1) and equation

(3.2) are not satisfied at the same time. Under the Maxmin approach, voter strategic behaviour

is still captured by considering the minimum level of utility of either votes one can cast, and

each voter chooses the action, which gives the highest utility between the two.

A voter j’s expected utility of voting for acquittal, conditional on being pivotal and

receiving an innocent signal is

E[u j(A, ·) | piv,s j = i] =−(1−q)Pr(G|piv,s j = i).

We denote Pr(G|piv,s j = i) as β i
G(π,σ(·)), which is the posterior belief that the defendant

is guilty conditional on the voter being pivotal and receive signal i, that is

β
i
G(π,σ(·)) = 1

1+( π

1−π
)( γI

γG
)n−1 ,

where

γI(π,σ(·)) = πσ(i)+(1−π)σ(g);

and

γG(π,σ(·)) = πσ(g)+(1−π)σ(i).

An ambiguity averse voter assesses her action to acquit by its minimum expected utility

among all possible priors, that is,

minπ∈ΠE[u j(A, ·) | piv,s j = i] =−(1−q)maxπ∈Πβ
i
G(π,σ(·)).

Define maxπ∈Πβ i
G(π,σ(·)) as β̄ i

G(π,σ(·)), we have

minπ∈ΠE[u j(A, ·) | piv,s j = i] =−(1−q)β̄ i
G(π,σ(·)). (3.3)
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An ambiguity averse voter accesses her action to convict by its minimum expected utility,

conditional on being pivotal and receiving an innocent signal. That is,

minπ∈ΠE[u j(C, ·) | piv,s j = i] =−qmaxπ∈Πβ
i
I (π,σ(·)).

We know β i
I (π,σ(·))= 1−β i

G(π,σ(·)). Hence, maxπ∈Πβ i
I (π,σ(·))= 1−minπ∈Πβ i

G(π,σ(·)).

Define minπ∈Πβ i
G(π,σ(·)) as β

i
G
(π,σ(·)), we then have

minπ∈ΠE[u j(C, ·) | piv,s j = i] =−q(1−β
i
G
(π,σ(·))). (3.4)

Similarly, an ambiguity averse voter’s minimum expected utility of voting to acquit,

conditional on being pivotal and receiving a guilty signal is

minπ∈ΠE[u j(A, ·) | piv,s j = g] =−(1−q)β̄ g
G(π,σ(·)); (3.5)

and her minimum expected utility of voting to convict, conditional on being pivotal and

receiving a guilty signal is

minπ∈ΠE[u j(C, ·) | piv,s j = g] =−q(1−β
g
G
(π,σ(·))), (3.6)

where

β
g
G(π,σ(·)) = 1

1+(1−π

π
)( γI

γG
)n−1

,

where

γI(π,σ(·)) = πσ(i)+(1−π)σ(g);

and

γG(π,σ(·)) = πσ(g)+(1−π)σ(i).

Hence, β̄
g
G(π,σ(·)) and β

g
G
(π,σ(·)) are respectively the maximum level of the posterior

belief and the minimum level of the posterior belief that the defendant is guilty conditional

on the voter being pivotal and receiving signal g.
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Notice that because receiving a guilty signal can never be information in favour of the

innocence of the defendant more than receiving an innocent signal can ever be, we know that

β
g
G(π,σ(·)) > β i

G(π,σ(·)). Therefore, β̄
g
G(π,σ(·)) > β̄ i

G(π,σ(·)); and 1−β
g
G
(π,σ(·)) <

1−β
i
G
(π,σ(·)). Thus:

β̄
g
G(π,σ(·))

1−β
g
G
(π,σ(·))

>
β̄ i

G(π,σ(·))
1−β

i
G
(π,σ(·))

. (3.7)

Lemma 3.1. If β̄
g
G(π,σ(·))

1−β
g
G(π,σ(·)) >

β̄ i
G(π,σ(·))

1−β
i
G(π,σ(·))

, (0 < σ(i) < 1,σ(g) = 1) is the Symmetric Re-

sponsive Nash Equilibrium.

Proof. Assume equation (3.1) does not hold, that is voter’s minimum expected utility of

voting for acquittal is no larger than the minimum expected utility of voting for conviction,

conditional on being pivotal and receiving an innocent signal, that is

−(1−q)β̄ i
G(π,σ(·))≤−q(1−β

i
G
(π,σ(·))).

It is equivalent to
β̄ i

G(π,σ(·))
1−β

i
G
(π,σ(·))

≥ q
1−q

.

If inequality (3.7) holds, it must be

β̄
g
G(π,σ(·))

1−β
g
G
(π,σ(·))

>
q

1−q
.

And this proves that if 0 < σ(i)≤ 1, then σ(g) = 1. Because the strategic voting equilibrium

has to be responsive, then we have the equilibrium, such that (0 < σ(i)< 1,σ(g) = 1). And

0 < σ(i)< 1 simply means that voters randomise when receiving an innocent signal, which

requires
β̄ i

G(π,σ(i))

1−β
i
G
(π,σ(i))

=
q

1−q
.

If equation (3.2) fails to hold, that is voter’s minimum expected utility of voting for

conviction is no larger than the minimum expected utility of voting for acquittal, conditional
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on being pivotal and receiving a guilty signal, that is

−q(1−β
g
G
(π,σ(·)))≤−(1−q)β̄ g

G(π,σ(·)),

we can also conclude that
β̄

g
G(π,σ(·))

1−β
g
G
(π,σ(·))

≤ q
1−q

.

And because of equation (3.9), we have

β̄ i
G(π,σ(·))

1−β
i
G
(π,σ(·))

<
q

1−q
,

leading to a contradiction, since it says that when 0 ≤ σ(g) < 1, σ(i) = 0). Due to the

requirement of being responsive, σ(g) cannot equal to 0, however, (0 < σ(g)< 1,σ(i) = 0)

would not satisfy being a symmetric responsive Nash equilibrium. When 0 < σ(g) < 1,

being pivotal means that the other n−1 voters all received signal g, because if they received

signal i, they would vote to acquit with probability 1. But if this is the case, then a pivotal

voter with a guilty signal would always vote to convict. Thus, this contradicts the assumption

0 < σ(g)< 1.

Lemma 3.2. The function β̄ i
G(π,σ(i))

1−β
i
G(π,σ(i))

is continuous at every σ(i) ∈ [0,1].

Proof. Let Π = (0.5,1). Define φ : [0,1]→ 2Π by φ(σ(i)) = [π, π̄] for every σ(i) ∈ [0,1].

Note that φ is nonempty, continuous and compact-valued and that β i
G(π,σ(i)) is continuous

in both π and σ(i). Thus by Berge Maximum Theorem (Aliprantis and Border, 2006), both

β̄ i
G(π,σ(i)) and β

i
G
(π,σ(i)) are continuous, and so is β̄ i

G(π,σ(i))
1−β

i
G(π,σ(i))

.

Therefore, Lemma 3.1 suggests that the symmetric responsive equilibrium exists when
β̄ i

G(π,σ(i))
1−β

i
G
(π,σ(i))

= q
1−q . As shown in Figure 3.2,1 if β̄ i

G(π,σ(i))
1−β

i
G
(π,σ(i))

< q
1−q , voters will vote informa-

tively, which is the orange shaded area. If β̄ i
G(π,σ(i))

1−β
i
G
(π,σ(i))

> q
1−q , then voters vote for conviction

1Figure 3.2 has been obtained by a numerical simulation of the function β̄ i
G(π,σ(i))

1−β
i
G(π,σ(i))

, when fixing n = 5,

p ∈ [0.70,0.80] and letting the variable σ(i) vary between 0 and 1. Other simulations for other values of n
and the interval of p led to similar qualitative behaviours for this function. Since we do not have a formal
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regardless of the signals, that is (σ(i) = 1,σ(g) = 1), which is the green shaded area. In

between is the are where voters can randomise their strategy when receiving an innocent

signal. And there exists such strategy 0 < σ∗(i)< 1 if and only if there is a horizontal line
q

1−q intercepting the continuous function β̄ i
G(π,σ

∗(i))
1−β

i
G
(π,σ∗(i))

.

σ* (i)

0.2 0.4 0.6 0.8 1.0
σ(i)

5

10

15

βG
i /(1-β

G
i )

Fig. 3.2 Symmetric Responsive Equilibrium (0 < σ(i)< 1,σ(g) = 1)

Proposition 3.2. Under the Maxmin approach and ambiguous information p, with p ∈ [p, p̄],

there exists a Symmetric Responsive Nash Equilibrium for the unanimity rule, when
1−p

1−p+p̄ <

q <
1+(

1−p
p )n−2

1+(
1−p

p )n−2(2+( 1−p̄
p̄ )n−2)

, such that 0 < σ∗(i)< 1, and such that β̄ i
G(π,σ(i))

1−β
i
G(π,σ(i))

= q
1−q .

Proof. Given σ(g) = 1, then

γI(π,σ(i)) = πσ(i)+(1−π);

and

γG(π,σ(i)) = π +(1−π)σ(i),

proof that the function is strictly monotonic, we provide this figure for purely illustrative purposes, and only
claim existence of a strategic equilibrium for intermediate levels of q, leaving the proof of uniqueness of such
equilibrium to further research.
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with 0 < σ(i)< 1. Then,

β
i
G(π,σ(i)) =

1

1+( π

1−π
)(πσ(i)+(1−π)

π+(1−π)σ(i))
n−1

.

Fig. 3.3 3D Plot of β i
G(π,σ(i))

Because β i
G(π,σ(i)) is continuous at σ(i) = 0, as shown in Figure 3.3, we have

lim
σ(i)→0+

β
i
G(π,σ(i)) =

1
1+(1−π

π
)n−2

.

Hence,

lim
σ(i)→0+

β̄
i
G(π

∗,σ(i)) =
1

1+(1−π∗
π∗ )n−2

,

with π∗ = p̄, and

lim
σ(i)→0+

β
i
G
(π∗,σ(i)) =

1
1+(1−π∗

π∗ )n−2
,
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with π∗ = p. Therefore, by continuity

lim
σ(i)→0+

β̄ i
G(π,σ(i))

1−β
i
G
(π,σ(i))

=
limσ(i)→0+ β̄ i

G(π,σ(i))

1− limσ(i)→0+ β
i
G
(π,σ(i))

=

1
1+( 1−p̄

p̄ )n−2

1− 1
1+(

1−p
p )n−2

. (3.8)

Similarly, β i
G(π,σ(i)) is continues at σ(i) = 1, and then,

lim
σ(i)→1−

β
i
G(π,σ(i)) =

1
1+( π

1−π
)
.

Hence,

lim
σ(i)→1−

β̄
i
G(π

∗,σ(i)) =
1

1+( π∗
1−π∗ )

,

with π∗ = p, and

lim
σ(i)→1−

β
i
G
(π∗,σ(i)) =

1
1+( π∗

1−π∗ )
,

with π∗ = p̄. Therefore, by continuity

lim
σ(i)→1−

β̄ i
G(π,σ(i))

1−β
i
G
(π,σ(i))

=
limσ(i)→1− β̄ i

G(π,σ(i))

1− limσ(i)→1− β
i
G
(π,σ(i))

=

1
1+(

p
1−p )

1− 1
1+( p̄

1−p̄ )

=
1− p

p̄
. (3.9)

Therefore, whenever q
1−q is strictly between the values identified in equations (3.8) and

(3.9), that is β̄ i
G(π,σ(i))

1−β
i
G
(π,σ(i))

= q
1−q , there exists 0 < σ(i)< 1 as an equilibrium.

Note that this condition can also be split into two components, as follows:

q <
1+(

1−p
p )n−2

1+(
1−p

p )n−2(2+(1−p̄
p̄ )n−2)

; (3.10)

and

q >
1− p

1− p+ p̄
. (3.11)
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Therefore, we proved that as long as
1−p

1−p+p̄ < q <
1+(

1−p
p )n−2

1+(
1−p

p )n−2(2+( 1−p̄
p̄ )n−2)

, there exists

0 < σ∗(i)< 1, which is the equilibrium strategy when voter receives signal i.

In addition, if condition (3.11) is violated, that is q <
1−p

1−p+p̄ , there exists a Symmetric

Non-Responsive Strategic Nash Equilibrium, that is (σ(i) = 1,σ(g) = 1), where voters vote

for conviction regardless of their signals. This strategy leads to the highest type I error,

Pr(C|I) = 1, and the lowest type II error, Pr(A|G) = 0.

Corollary 3.1. Under the Maxmin approach and ambiguous information p, with p ∈ [p, p̄],

for unanimous voting, there exists Symmetric Non-Responsive Nash Equilibrium with (σ(i) =

1,σ(g) = 1) if and only if β̄ i
G(π,σ(i))

1−β
i
G(π,σ(i))

> q
1−q , that is as long as q <

1−p
1−p+p̄ .
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3.3.3 Strategic Voting Under Non-Unanimity

For non-unanimous voting, k̂ ̸= n, we have

β
i
G(π,σ(·), k̂) = 1

1+( π

1−π
)( γI

γG
)k̂−1( 1−γI

1−γG
)n−k̂

and

β
g
G(π,σ(·), k̂) = 1

1+(1−π

π
)( γI

γG
)k̂−1( 1−γI

1−γG
)n−k̂

,

where

γI(π,σ(·)) = πσ(i)+(1−π)σ(g),

and

γG(π,σ(·)) = πσ(g)+(1−π)σ(i).

Because β
g
G(π,σ(·), k̂) > β i

G(π,σ(·), k̂), Lemma 3.1 also holds for the case where k̂ ̸= n.

Hence, we also have a Symmetric Responsive Nash Equilibrium for non-unanimous voting,

(0 < σ(i)< 1,σ(g) = 1). Using Lemma 3.2, we can also prove the existence of the symmet-

ric responsive Nash equilibrium for non-unanimous voting rule. The formal proofs can be

found in Appendix C.1, whereas the main results for this case are summarised below.

Proposition 3.3. Under the Maxmin approach and ambiguous information p, with p ∈ [p, p̄],

for the non-unanimous voting rule, there exists Symmetric Responsive Nash Equilibria,

(0 < σ(i)< 1,σ(g) = 1), if and only if β̄ i
G(π,σ(i),k̂)

1−β
i
G(π,σ(i),k̂)

= q
1−q , that is,

1. if k̂ > n+2
2 and

1+( p̄
1−p̄ )

n−k̂+1

1+( p̄
1−p̄ )

n−k̂+1(2+(
p

1−p )
n−k̂+1)

< q <
1+(

1−p
p )2k̂−n−2

1+(
1−p

p )2k̂−n−2(2+( 1−p̄
p̄ )2k̂−n−2)

;

2. if 0 < k̂ ≤ n+2
2 and

1+( p̄
1−p̄ )

n−k̂+1

1+( p̄
1−p̄ )

n−k̂+1(2+(
p

1−p )
n−k̂+1)

< q <
1+( 1−p̄

p̄ )2k̂−n−2

1+( 1−p̄
p̄ )2k̂−n−2(2+(

1−p
p )2k̂−n−2)

.

Corollary 3.2. Under the Maxmin approach and ambiguous information p, with p ∈ [p, p̄],

for non-unanimous voting, if q <
1+( p̄

1−p̄ )
n−k̂+1

1+( p̄
1−p̄ )

n−k̂+1(2+(
p

1−p )
n−k̂+1)

, there exists Symmetric Non-

Responsive Nash Equilibria, that is (σ(i) = 1,σ(g) = 1), where voters vote for conviction
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regardless of their signals, which leads to the highest type I error, Pr(C|I) = 1, and the lowest

type II error, Pr(A|G) = 0.
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3.4 Comparative Statics Results

Consider the 12-person jury example as in Feddersen and Pesendorfer (1998), that is

when n = 12, p = 0.8 and k̂ = 12 or 7. We know that when signal precision is uniquely

defined, voters behave symmetrically and responsibly if and only if 1− p < q < 1
1+( 1−p

p )n−2 .

Especially, from Figure 3.4, we can see the cut-off value of q for informative voting being

an equilibrium is very high, which is almost 1. This says that, it is almost impossible for

voters to vote informatively in this scenario. For any level of q, which is exogenously given

and set equal to q = 0.9, which is below the cut-off value for informative voting, strategic

equilibria arise. We can compute the voter’s strategy for this case, which is exactly equal to

σ(i) = 0.575, σ(g) = 1.

0.2 0.99

σ(i) = 1 0 < σ(i)< 1 σ(i) = 0

Fig. 3.4 Threshold values of q for different voting equilibria when p = 0.8

However, if we were in the presence of ambiguous information and voters were ambiguity

averse and choosing their beliefs according to the Maxmin analysed in this chapter, we would

be able to observe voters voting informatively under the unanimity rule, for a larger range of

thresholds of reasonable doubts, below the level 0.9.

Take the signal precision to belong to p ∈ [0.6,0.8], from Figure 3.5, the cut-off value for

informative voting being an equilibrium is 0.894, which is smaller than the given reasonable

doubt level 0.9. Voters’ strategy is σ(i) = 0, σ(g) = 1 in this case, since voters cast their

votes according to the signals they receive.

On the other hand, although the cut-off value for the strategy σ(i) = 1, σ(g) = 1 being

an equilibrium is increased, it will never exceed 0.5.
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0.36 0.894

σ(i) = 1 0 < σ(i)< 1 σ(i) = 0

Fig. 3.5 Threshold values of q for different voting equilibria when p = [0.55,0.8]

Under majority voting rule, if the signal precision is ambiguous, we observe similar

results as we do under the unanimous voting rule, that is, the threshold for informative voting

being an equilibrium is lower given p ∈ [0.6,0.8] than that when p = 0.8. The results are

summarised in Table 3.4.

In Table 3.4, we looked at the three different voting rules, unanimity, simple majority and

super majority. We found that (1) when information is downward ambiguous, the threshold

level of q for voting informatively is lower. Thus, (2) informative voting is the only equilib-

rium for these three voting rules. The unanimity rule is the least preferred one when p = 0.8.

However, (3) when p = [0.55,0.8], it outperforms other voting rules as it leads to the smallest

type I error as opposed to other rules.

In chapter 2, we presented and discussed our experiments for the two-point non-common

prior model. Based on the same parameters as the ones used in those experiments, n = 5,

q = 0.5, p = {0.6,0.9}, we first check how the threshold level of the reasonable doubt re-

quired for informative voting to be an equilibrium is affected by the introduction of imprecise

probabilities belonging to an interval, rather, as opposed to the case when the precision

of the signal is known and unique. We do so, by conducting a simple simulation so as to

find out what is the voting strategy under unanimous voting rule when interval ambiguous

information is provided instead of two-point ambiguous information, that is when signal

precision is at least 0.6, but at most 0.9.

Table 3.5 shows that if the signal precision is amplified from its initial value 0.6, the

threshold level of q for voting informatively under unanimity voting is increased. Whereas,
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if the signal precision is undermined from its initial value 0.9, the threshold level of q under

the unanimity rule for voting informatively is decreased. Conversely for the majority voting

rule. Because in the experiments we conducted we set the q = 0.5, which is very low, we do

not observe the switch of voting strategy.

However, the ambiguous information not only affects the threshold level of q, it also

affects the symmetric responsive voting strategy σ(i). From Table 3.6, we do observe the

dramatic decrease of type I error for unanimous voting rule when the information is amplified

from 0.6, which is caused by the decrease in σ(i). This suggests that if q is set fairly low, we

should amplify the information precision from its initial level as it will lower the probability

of voting against the received private signals.
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Table 3.4 12-Person Jury Case under Different Information Structures, given q = 0.9

Signal Precision Voting Rule Threshold for σ(i) = 1 Threshold for σ(i) = 0 Informative Voting Pr(C|I) Pr(A|G)

p = 0.8 k̂ = 12 0.2 0.99 No 0.0069 0.6540
k̂ = 8 0.00098 0.94 No 0.0011 0.0666
k̂ = 7 0.00025 0.5 Yes 0.0039 0.0194

p = [0.55,0.8] k̂ = 12 0.36 0.894 Yes 0.0000 0.9313
k̂ = 8 0.218 0.701 Yes 0.0006 0.0726
k̂ = 7 0.188 0.5 Yes 0.0039 0.0194
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Table 3.5 Group Decision under Different Information Structures, given n = 5, q = 0.5

Signal Precision Voting Rule Threshold for σ(i) = 0 Informative Voting
p = 0.6 k̂ = 5 0.7714 No

k̂ = 3 0.4 Yes

p = 0.9 k̂ = 5 0.9986 No
k̂ = 3 0.1 Yes

p = [0.6,0.9] k̂ = 5 0.8137 No
k̂ = 3 0.3077 Yes

Table 3.6 Voting Strategies and Resulted Errors across Different Information Structures,
given n = 5, q = 0.5

n = 5 p = 0.6 p = 0.9 p = {0.6,0.9} p = (0.6,0.9)
k̂ = 5 True p = 0.6 True p = 0.9 True p = 0.6 True p = 0.9

σ(i) 0.5959 0.4982 0.5618 0.5618 0.5248 0.5248
Pr(C|I) 0.25 0.0496 0.2176 0.0815 0.1867 0.0614
Pr(A|G) 0.59 0.2227 0.6185 0.2007 0.6515 0.2161

k̂ = 3 True p = 0.6 True p = 0.9 True p = 0.6 True p = 0.9

σ(i) 0 0 0 0 0 0
Pr(C|I) 0.32 0.0086 0.32 0.0086 0.32 0.0086
Pr(A|G) 0.32 0.0086 0.32 0.0086 0.32 0.0086
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3.5 Conclusion

In this chapter we generalise the jury voting model of Feddersen and Pesendorfer (1998)

by embedding ambiguity into the private signal structure and considering voters who, being

ambiguity averse, adopt a Maxmin approach to assess each available action. We start our

analysis by adopting the Maxmin approach (Gilboa and Schmeidler, 1989) to analyse the

collective deliberation problem in the presence of an ambiguous precision of the private infor-

mation voters/jurors possess. According to the Maxmin expected utility theorem, ambiguity

averse voters assign the least favourable prior to evaluate each of their actions; and choose

the action among the alternatives available to them, which gives the highest expected utility

among the worst case scenarios.

Notice that, when using the standard Bayesian updating rule, Pr(A|B) = Pr(A∩B)
Pr(B) , the

implicit assumption requires both A∩B and B to be measurable sets. This suggests that under

ambiguity, as no sufficient information is available for decision-makers to assign a probability

for all relevant events, the conditional probability Pr(A|B) is not well-defined. Thus, the

standard Bayesian updating rule is not a proper updating rule to use under ambiguity. In this

chapter, we use the Full Bayesian updating rule to update the conditional probability of the

defendant being guilty conditional on the pivotal voter gets certain signal. The Full Bayesian

updating rule requires updating all possible priors according to Baye’s rule, without excluding

any of them. Pires (2002) provided a decision-theoretic axiomatisation of this updating rule,

which allows us to use Full Bayesian updating rule in the context of MMEU. Also, Eichberger

et al. (2007) provides an axiomatic proof for updating non-additive capacities by using Full

Bayesian update rule.

Following the Maxmin approach, we proved existence of both informative voting equilib-

rium and the strategic voting equilibria. However, there exist ways to improve upon the type I

errors induced by the adoption of the unanimity rule, by selecting the appropriate width of the

interval within which the ambiguity lies, for any adopted level of the threshold of reasonable

doubt and size of the jury combinations. For example, we found that if the reasonable doubt
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level is set very high, at least, if we can undermine the information precision from its initial

level, we can allow for a wider range of the reasonable doubt for informative voting being

an equilibrium. And thus, unanimity outperforms non-unanimous voting. If the reasonable

doubt level is fairly low, we might not see the switch of the equilibrium under the unanimity

rule. If this is the case, then, amplifying the information precision from its initial level lowers

the probability of voting against the private signal, and thus, lowers type I errors.
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Appendix C

Proofs of Results from Chapter 3

C.1
Proof of Proposition 3

Proof. Given σ(g) = 1, we have

β
i
G(π,σ(i), k̂) =

1

1+( π

1−π
)(πσ(i)+(1−π)

π+(1−π)σ(i))
k̂−1( π

1−π
)n−k̂

=
1

1+( π

1−π
)n−k̂+1(πσ(i)+(1−π)

π+(1−π)σ(i))
k̂−1

.

Because β i
G(π,σ(i), k̂) is continuous at σ(i) = 1, and then,

lim
σ(i)→1−

β
i
G(π,σ(i), k̂) =

1

1+( π

1−π
)n−k̂+1

.

Hence,

lim
σ(i)→1−

β̄
i
G(π

∗,σ(i), k̂) =
1

1+( π∗
1−π∗ )n−k̂+1

,

with π∗ = p, and

lim
σ(i)→1−

β
i
G
(π∗,σ(i), k̂) =

1

1+( π∗
1−π∗ )n−k̂+1

,

with π∗ = p̄. Therefore,

lim
σ(i)→1−

β̄ i
G(π,σ(i), k̂)

1−β
i
G
(π,σ(i), k̂)

=
limσ(i)→1− β̄ i

G(π,σ(i), k̂)

1− limσ(i)→1− β
i
G
(π,σ(i), k̂)

=

1
1+(

p
1−p )

n−k̂+1

1− 1
1+( p̄

1−p̄ )
n−k̂+1

. (C.1)
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And β i
G(π,σ(i), k̂) is continuous at σ(i) = 0, then, we have

lim
σ(i)→0+

β
i
G(π,σ(i), k̂) =

1

1+(1−π

π
)2k̂−n−2

.

We can see that the monotonicity of limσ(i)→0+ β i
G(π,σ(i), k̂) depends on k̂. When

k̂ > n+2
2 , limσ(i)→0+ β i

G(π,σ(i)v) is an increasing function of π . When n+1
2 < k̂ ≤ n+2

2 ,
limσ(i)→0+ β i

G(π,σ(i), k̂) is an increasing function of π .

If k̂ > n+2
2 ,

lim
σ(i)→0+

β̄
i
G(π

∗,σ(i), k̂) =
1

1+(1−π∗
π∗ )2k̂−n−2

,

with π∗ = p̄, and

lim
σ(i)→0+

β
i
G
(π∗,σ(i), k̂) =

1

1+(1−π∗
π∗ )2k̂−n−2

,

with π∗ = p. Therefore,

lim
σ(i)→0+

β̄ i
G(π,σ(i), k̂)

1−β
i
G
(π,σ(i), k̂)

=
limσ(i)→0+ β̄ i

G(π,σ(i), k̂)

1− limσ(i)→0+ β
i
G
(π,σ(i), k̂)

=

1
1+( 1−p̄

p̄ )2k̂−n−2

1− 1
1+(

1−p
p )2k̂−n−2

. (C.2)

Therefore, whenever q
1−q is strictly between the values identified in equations (C.1) and

(C.2), there exists σ∗(i) ∈ (0,1) such that β̄ i
G(π,σ

∗(i),k̂)
1−β

i
G(π,σ

∗(i),k̂)
= q

1−q .

This is equivalent to requiring that conditions (C.3) and (C.4) below are satisfied at the
same time:

q >
1+( p̄

1−p̄)
n−k̂+1

1+( p̄
1−p̄)

n−k̂+1(2+(
p

1−p)
n−k̂+1)

; (C.3)

and

q <
1+(

1−p
p )2k̂−n−2

1+(
1−p

p )2k̂−n−2(2+(1−p̄
p̄ )2k̂−n−2)

. (C.4)

Thus, if k̂ > n+2
2 , as long as

1+( p̄
1−p̄ )

n−k̂+1

1+( p̄
1−p̄ )

n−k̂+1(2+(
p

1−p )
n−k̂+1)

< q <
1+(

1−p
p )2k̂−n−2

1+(
1−p

p )2k̂−n−2(2+( 1−p̄
p̄ )2k̂−n−2)

,

we have 0 < σ(i)< 1 as the equilibrium strategy, which indicates that voters are indifferent
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to vote for convicting and acquitting when receiving signal i.

If 0 < k̂ < n+2
2 ,

lim
σ(i)→0+

β̄
i
G(π

∗,σ(i), k̂) =
1

1+(1−π∗
π∗ )2k̂−n−2

,

with π∗ = p, and
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σ(i)→0+

β
i
G
(π∗,σ(i), k̂) =

1

1+(1−π∗
π∗ )2k̂−n−2

,

with π∗ = p̄. Therefore,
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G(π,σ(i), k̂)

1−β
i
G
(π,σ(i), k̂)

=
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G(π,σ(i), k̂)
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=

1
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1− 1
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p̄ )2k̂−n−2

. (C.5)

Therefore, whenever q
1−q is strictly between the limit identified in equation (C.1) and the

one identified in equation (C.5), there exists σ∗(i) ∈ (0,1) such that β̄ i
G(π,σ

∗(i),k̂)
1−β

i
G
(π,σ∗(i),k̂)

= q
1−q .

Notice that this condition can be broken down into two conditions, as follows:

q >
1+( p̄

1−p̄)
n−k̂+1

1+( p̄
1−p̄)

n−k̂+1(2+(
p

1−p)
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; (C.6)

and
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1+(1−p̄

p̄ )2k̂−n−2

1+(1−p̄
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If k̂ = n+2
2 , we have

lim
σ(i)→0+

β̄
i
G(π

∗,σ(i), k̂) =
1

1+(1−π∗
π∗ )2k̂−n−2

=
1
2
,

and
lim

σ(i)→0+
β

i
G
(π∗,σ(i), k̂) =

1

1+(1−π∗
π∗ )2k̂−n−2

=
1
2
.

Therefore,

lim
σ(i)→0+

β̄ i
G(π,σ(i), k̂)

1−β
i
G
(π,σ(i), k̂)

=
limσ(i)→0+ β̄ i

G(π,σ(i), k̂)

1− limσ(i)→0+ β
i
G
(π,σ(i), k̂)

= 1. (C.8)
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And, we know that when k̂ ≤ n+2
2 , the limit value identified by condition (C.5) is larger

than 1. Therefore, whenever q
1−q is strictly between the limit identified in equation (C.1) and

the one identified in equation (C.5), there exists 0 < σ(i)< 1 as the symmetric responsive

equilibrium strategy, that is, n+1
2 < k̂ ≤ n+2

2 , as long as
1+( p̄

1−p̄ )
n−k̂+1

1+( p̄
1−p̄ )

n−k̂+1(2+(
p

1−p )
n−k̂+1)

< q <

1+( 1−p̄
p̄ )2k̂−n−2

1+( 1−p̄
p̄ )2k̂−n−2(2+(

1−p
p )2k̂−n−2)

.



Chapter 4

Conclusion And Further Research

Much decision-making takes place in small groups. Members gather together to cast

votes over alternatives proposed to them, be it for a bill to be passed in a Congress, a project

to be selected for financing, a patient to be put on a transplant list, or a defendant’s fate in a

court of law.

The way in which decision-making occurs, its process and the voting rule adopted, as well

as the information used by members of a committee to finalise a decision, are all important

elements in the quality of that decision. Although, it is always possible to conjecture which

decision(s) would be reached by a small decision-group under specified preferences and

information structure, that is, whenever a common prior is shared by all parties involved, it is

far from obvious to anticipate what the final decision could be in the presence of information

which is inherently ambiguous.

Using the jury trial as our leading example, and to advance our understanding of how am-

biguity can play a role in a jury trial setting, in this thesis we investigated how the embedding

of identical, but – at least partially – ambiguous information into the canonical jury decision-

making model of Feddersen and Pesendorfer (1998) changes its main findings. We did so by

providing more realistically imprecise measures of information reliability and by studying

how those impact on information aggregation for the group decision-making. Specifically, we
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were interested in studying how the introduction of ambiguity in the precision of the signals

voters receive before casting their votes affects the probabilities of convicting the innocent

(type I error) and acquitting the guilty (type II error) when compared to the canonical jury

trial case.

To that end, in chapter 1 we began by exploring a model in which jurors may distrust the

precision of the information given to them, leading to jurors adopting potentially differing

priors and altering the formation of their posteriors, used when casting votes to convict or to

acquit a defendant. Within this model, we obtained the following findings. As the size of the

jury grows sufficiently large, when voters share the same ‘trusting’ level of belief, voting

according to their private signals leads to a smaller probability of convicting an innocent

defendant than in the canonical model. This suggest that if there were ways of framing all

voters to believe that the quality of the private information is the highest among alternative

ones provided to them, and that belief is wrong (jurors trust the precision to be higher than

its ‘true’ underlying level), type I errors would be reduced, if not even eliminated. Therefore,

asymptotically, being trusting of the information received or framing the information to

induce more trust in it, makes the unanimity voting rule less unappealing. However, for a

small jury size, distrusting the information provided would be best to reduce type I errors

and to improve the performance of the unanimity rule.

In chapter 2, we reported results from an array of experiments designed to capture the

collective voting behaviour under the two-point non-common prior model introduced in

chapter 1 and to contrast them against results of canonical collective voting behaviour models.

Our aim was to investigate the collective decision-making outcomes under different voting

rules when the quality of the private information given to voters when casting their votes is

unmeasurable, triggering voters to adopt potentially differing beliefs about it. The results

of these experiments validate the theoretical predictions of voting under the two-point non-

common prior model, suggesting the importance of the quality of the information structure

in determining the collective deliberation outcomes. These results help establish when, in the
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finite case, the unanimity voting rule can outperform majority voting rule if voters adopts

two-point non-common priors.

In chapter 3 we generalised the jury voting model of Feddersen and Pesendorfer (1998)

by embedding ambiguity into the private signal structure and considering voters who, being

ambiguity averse, adopt a Maxmin approach to form subjective beliefs. The Maxmin Ex-

pected Utility Theorem (MMEU) of Gilboa and Schmeidler (1989) helped capture the voter’s

attitude towards ambiguity to analyse how this impacts the collective voting outcomes under

both the majority rule and the unanimity rule. According to MMEU, voters assign their priors

in an act-contingent manner, that is, ambiguity averse voters assign the prior, which gives

them the best among the worst expected utility levels when evaluating alternatives choices

(in this context, voting choices, namely whether to vote to convict or to acquit). Within this

framework we proved the existence of an informative voting equilibrium and of strategic

voting equilibria. Moreover, we found that if ambiguity exists in the precision of the private

information, it is easier to sustain informative voting as an equilibrium strategy, that is, there

exists a larger set of reasonable doubt levels for the unanimity voting rule to prevail as an

equilibrium of the voting game. This is an important result as voting informatively, especially

under unanimity helps maintain the efficiency of information aggregation: there is scope for

resurrecting unanimity against majority, when facing an ambiguous world.

Our theoretical and experimental results call into question preconceived results about

the performance of different institutional designs and voting rules for collective deliberation

under differing information structures. When the objective probability of the information is

imprecisely measured, that is when the common-prior assumption is relaxed, novel results

arise which deserve further exploration, challenging our views about the virtues of adopting,

say, majority voting, as opposed to unanimity voting, to avoid the bad outcome of exacerbat-

ing the odds of convicting an innocent defendant (jury paradox).
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Drawing from the lessons from our laboratory experiments conducted at the University of

Auckland, and on theoretical predictions obtained in chapter 3, we plan to conduct additional

laboratory experiments, emulating real life decision-making scenarios. Our experimental

designs could be varied along the following dimensions: (i) The voting rule (unanimity

versus majority vote); (ii) The size of the decision-making group (small, medium, or large);

(iii) The communication channel amongst subjects to emulate various deliberation processes

in real life (with and without free-form communication); (iv) The source of non-common

priors (ambiguous information versus maximum likelihood belief revision); and (v) The

spread and the positioning of the ambiguous information with respect to some ‘true’ level

of precision of the signal to be taken as a benchmark. Additionally, we could also control

for whether information is (vi) provided in a neutral fashion or with context; and (vii)

acquired descriptively or experientially. With these experimental designs we will continue to

effectively engage in decision-making engineering, with control and treatment groups, to

disentangle what information structures and belief revision processes are most conducive to

sound group decision-making.
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