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Abstract

This dissertation presents three essays on exchange rates. The reported work builds on
the market microstructure approach to exchange rate determination and extends this approach
to modelling and forecasting multivariate exchange rate movements, and to a multi-currency

trading application.

The first study investigates the role of order flow in explaining joint movements of
exchange rate returns, thereby building an original bridge between exchange rate co-
movement and the market microstructure literature. We document that absolute order flow
differentials have a significant negative effect on future joint currency movements at intraday
frequencies. The analysis also shows that other intraday variables, such as the bid—ask spread,
have no explanatory power for the co-movements after the absolute order flow differential is
accounted for, thereby confirming the robustness of order flow as the driving force for
exchange rate correlation. Further analysis demonstrates that absolute order flows also affect

conditional variance dynamics.

The second study adds to the findings of the first study. It evaluates the information
content of order flow for accurate predictions of exchange rate co-movement. In line with the
first study, we find that order flow information substantially enhances the accuracy of
covariance forecasts. Moreover, the interest rate differential has a limited role in explaining
and predicting correlation dynamics once the order flow differential is accounted for. The
study concludes by showing the economic value of the order-flow-based covariance
predictions, namely the value of order flow information for covariance predictions beyond

return predictions.



The third study focuses on the practical relevance of order flow information in foreign
exchange trading. Given the dominance of technical trading among forex professionals, the
study evaluates the value of order flow information for technical traders. Our initial
investigation questions the accuracy of trading signals if these are derived directly from order
flow. We conjecture that the reason for this is that order flow should first be used to generate
exchange rate predictions, which can then be used to derive profitable trading signals. We
examine this conjecture empirically, and the affirmative results highlight the value of order-
flow-based return predictions for technical analysis. Further, we propose a multivariate
trading strategy to boost the benefits of using order flow in technical analysis, which is shown

to be a highly profitable.
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Chapter One: Motivation and Overview

1.1 Introduction

The market microstructure approach to exchange rate determination has become a
standard tool for analysing univariate exchange rate movements that overcomes the inability
of traditional macroeconomic models to explain and predict reasonably accurate short-run
exchange rate fluctuations (see, for example, Meese and Rogoff, 1983 or Rogoff, 2002). This
approach, pioneered by Evans and Lyons (2002a), is based on different information sets across
all market participants that result from different expectations about the future fundamentals of
an exchange rate. The central element aggregating and transmitting all the dispersed information
about future fundamentals into prices is order flow, defined as the number of buyer-initiated
minus seller-initiated trades (Evans and Lyons, 2002a), arising from the asymmetries in

information and expectations about future exchange rate fundamentals.

Although the literature links order flow to exchange rate movements, the relationships
between order flow and joint appreciation or depreciation in exchange rates (co-movement) have
not yet been evaluated. This relationship arises because co-movements in prices result due to co-
movements in fundamentals (Barberis, Shleifer, and Wurgler, 2005). As order flow reflects the
expected changes in fundamentals, we conjecture that order flow can proxy for the co-
movements of the fundamentals that affect the co-movements of currency prices. Chapter 2
theoretically demonstrates this possibility in detail and undertakes an intraday examination of

this issue.

Although the emphasis of the market microstructure approach to exchange rate
determination has primarily been on explaining exchange rate movements via order flow,
several authors highlight the value of order flow information for exchange rate predictions

(e.g. Evans and Lyons, 2005b). The predictive power of current order flows for future



exchange rate movements results from the gradual incorporation of order flow information
into prices (Berger, Chaboud, Chernenko, Howorka and Wright, 2008) thereby affecting
exchange rate movements both instantly and with a substantial lag. Yet the predictive content
of current order flow for future exchange rate co-movements has been neglected in the
literature. Building upon the link between order flow and co-movement outlined in Chapter 2,
Chapter 3 evaluates whether order flow information helps to enhance co-movement forecasting.
Chapter 3 concludes by addressing the economic value of more accurate covariance predictions

for portfolio optimisation.

An argument for the economic value of order-flow-based return predictions is that order
flow is best suited to predicting short-term exchange rate fluctuations, as the impact of order
flow on exchange rate fluctuations is stronger for more frequent (intraday and daily) movements
and gradually decreases for lower frequencies (Berger, Chaboud, Chernenko, Howorka and
Wright, 2008). However, the economic literature has ignored this argument and has evaluated
the economic value of order flow information particularly in the context of portfolio
optimisation (e.g. King, Sarno and Sojli, 2010) which is typically a long-term investment
strategy. Upholding this argument, Chapter 4 turns away from order-flow-based portfolio
optimisation and asks whether order flow information can be used to generate profitable
technical trading signals. Further justification for doing so arises because the specific price
patterns generated by order flow is what technical trading indicators try to exploit (Neely and
Weller, 2011). Therefore, Chapter 4 explores this question by first demonstrating several
problems associated with deriving trading signals directly from order flow. The chapter then
goes further to show that using order flow to generate return predictions and then linking these
predictions to changes in the underlying market volatility can generate a highly profitable

trading strategy.



1.2 Main Findings and Contribution to the Literature

This section outlines the main findings and contributions of Chapters 2, 3 and 4 that comprise

the core part of this thesis.

Chapter 2 links order flow to joint movements (co-movements) of exchange rates.
The multivariate framework enables us to study how well the relative changes in the order
flows of different national currencies explain the joint movements of exchange rates, which
adds to both the market microstructure literature and the literature on modelling asset co-
movements. With respect to the latter, we focus on the role of exogenous variables in driving
conditional correlation dynamics, which links to the works of Benediktsdottir and Scotti

(2009), Schoppen (2012) and Li (2011).

We document a significant negative relationship between the absolute order flow
differential and exchange rate co-movement. This result relates to the market microstructure
literature suggesting that order flow aggregates all dispersed information about the expected
future fundamentals of an economy. Again in line with the market microstructure literature,
our intraday analysis suggests that the relationship is strongest for the highest intraday

frequencies evaluated and gradually decreases as frequencies increase (Berger et.al, 2008).

All conditional correlation studies suggest that correlation is time—dependent. This
time dependency raises the question of whether the driving forces of correlation dynamics
remain unchanged across financially turbulent and calm periods. A further, specific question
is whether order flows and their impacts on price movements are the same across such
different periods. To the best of our knowledge, no study has asked this research question
with respect to asset price co-movements. Dijk, Munandar and Hafner (2011) provide some
preliminary evidence of a structural break at the advent of the Euro and argue that neglecting

these structural breaks would lead to over- or underestimation of conditional correlations for



the different time periods studied. Our findings not only confirm the presence of structural
changes in conditional correlation dynamics caused by the 2007 global financial crisis (GFC)
and the 2009 European sovereign debt crisis (EDC), but, more importantly, reveal that the
impact of the absolute order-flow differential on exchange rate co-movements is not the same

across financially turbulent and tranquil time periods.

By studying which type of asymmetry —positive or negative— dominates intraday
correlation dynamics, Chapter 2 makes another contribution to the literature. The literature
documents that either type of asymmetry can dominate. In stock or bond markets, negative-
type asymmetry typically dominates, which is in line with leverage considerations (Cappiello,
Engle, and Sheppard, 2006; De Goeij and Marquering, 2004). However, in foreign exchange
markets positive-type asymmetry can dominate (Li, 2011). While all the aforementioned
studies have focused on daily or lower frequencies, we provide an argument based on
investor sentiment causing positive-type asymmetry to prevail in FX return correlations. This
argument is confirmed by data, suggesting that joint positive shocks have a stronger impact

on co-movements than joint negative shocks of the same magnitude.

The main contribution of Chapter 2 is to establish a link between order flow and
exchange rate return co-movements. Our rigorous intraday examination of this link follows

directly from theoretical considerations.

The study in Chapter 3 evaluates the accuracy of order-flow-based covariance
predictions compared with several alternative benchmarks commonly used in the literature. It
adds to the literature on correlation (covariance) forecasting, which mainly focuses on
different estimation techniques (see Bauwens, Laurent and Rombouts, 2006, for a detailed

review) , by examining how exogenous variables enhance co-variance predictions. This kind



of analysis has previously been limited to how the interest rate differential (IRD) affects

future exchange rate co-movements (Benediktsdottir and Scotti, 2009; Li, 2011).

Our results strongly suggest that the IRD alone is not a suitable predictor of future
correlation dynamics. Instead, we show that order-flow-based covariance predictions provide
the highest statistical accuracy out of several competing benchmark models, including those
in the aforementioned studies that use the interest rate differential to model exchange rate co-

movements.

The performance gains from order-flow-based forecasting are particularly large for
financially unstable time periods, confirming the incremental information content of order
flow during a financial downturn (Danielsson and Saltoglu, 2003; Rime and Tranvag, 2012).
Furthermore, we find that order flow information enhances the accuracy of volatility
predictions during economically instable time periods. The reason for this result is that

volatility spikes tend to occur in tandem with order flow spikes.

This chapter further contributes to the literature by examining the accuracy of
covariance forecasts using different estimation window sizes. This is warranted, as the
literature on order-flow-based forecasting directly uses a medium-sized rolling window,
without making any comparisons (e.g. Rime, Sarno, and Sojli (2010)). From a theoretical
point of view, long and short estimation windows both have advantages and disadvantages,
whereas a medium-sized window can minimise the disadvantages of both. We empirically
verify this theoretical conjecture and demonstrate that a medium-sized window is indeed

preferable to long and short windows.

While it assesses the statistical accuracy of our proposed methodology, Chapter 3 is
also related to the studies of order-flow-based portfolio optimisation (Rime, Sarno, and Sojli,

2010; Della Corte, Sarno, and Tsiakas, 2011). However, these studies typically do not predict



future joint movements (co-variance): they assume the covariance between the assets to be
constant. By contrast, we find that the order-flow-based covariance predictions lead to
substantially higher Sharpe ratios than any non-order-flow-based covariance prediction or the

constant covariance model used by the studies mentioned above.

The main aim of the study in Chapter 3 is the out-of-sample evaluation of order-flow-
based co-variance forecasting. It offers a deeper examination of the link as discussed in
Chapter 2, which confirms the importance of taking order flow into account in modelling and

forecasting correlation dynamics.

Chapter 4 critically investigates the financial value of order flow information. We
evaluate a trading strategy which utilises order flow information to generate profitable
technical trading signals. So far, the use of order flow as a buy or sell indicator has been
explored only for stock markets (Yamamoto, 2012). Chapter 4 starts by replicating
Yamamoto’s (2012) analysis but with a focus on the FX market, where order flow should
have a stronger impact on price fluctuations because of the strong zero inventory preference
of dealers (Bjonnes and Rime, 2005). We report similar results to those of the Yamamoto,
suggesting that order flow cannot be used as a proxy for making profitable buy or sell
decisions. This finding, however, does not imply that order flow has no value for technical
trading; instead it raises an issue related to deriving trading signals from order flow. As
shown in the literature, order flow is commonly used to generate exchange rate predictions,
which in turn act as trading signals (Gradojevic, 2007; Chordia and Subrahmanyam, 2004).
This indicates a potential non-linear relationship between order flow and exchange rate

movements.

Addressing this issue, we use a non-linear setting to generate exchange rate return

forecasts. The non-linear setting uses order flow to forecast future exchange rate movements-



and then generates a trading recommendation based on these forecasts. The initial setting is
the same as that outlined in Gradojevic (2007). However, our analysis involves a set of
exchange rates, not just the Canadian dollar (CAD) — US dollar (USD) rate only, thereby
confirming the robustness of the results in Gradojevic (2007) and the profitability of this

approach.

As a novel addition to the literature, we link the generated return predictions to the
underlying market volatility. Our proposed trading strategy combines exchange rate return
predictions and volatility information using a fuzzy logic inference setting to generate the
trading recommendation. This setting relates to the work of Bekiros (2011), which studied the
relationship between volatility and trading performance, and Christoffersen and Diebold
(2006), who argued that volatility changes would alter the probability of a negative return
sign. We show that our proposed trading approach is remarkably profitable and significantly
outperforms the approach adopted by Gradojevic (2007), which only takes the order-flow-

based exchange rate predictions into account, for several currency pairs.

Chapter 4’s main objective is to critically evaluate whether order flow can indeed
provide economic value for investors. Apart from the documented trading profits, our results
also reveal that there is a link between the volatility and technical trading rule profitability.
Thus- the results presented in Chapter 4 are of both academic and practical relevance.
Academically, they suggest that technical trading rule profitability may depend on the
underlying assets volatility. Practically, they provide currency traders with a useful guide for

forming trading strategies.



1.3 Structure of the Dissertation

The core part of this dissertation embraces three essays, each building upon the market
microstructure approach to exchange rate determination. In order to organise the dissertation
in a methodical manner, the three essays will appear as three independent chapters.

Specifically, the structure of this dissertation is briefly described as follows.

Chapter 2 theoretically and empirically examines the link between order flow and
exchange rate co-movements. The analysis focuses on intraday dynamics, although the link
applies to any data frequency. Chapter 3 builds upon this link and assesses its relevance for
accurate forecasting of exchange rate co-movements. Critically reviewing the common
practice of evaluating the economic value of order flow being in portfolio optimisation,
Chapter 4 turns to exploring the economic value of order flow in deriving profitable trading

signals. Chapter 5 concludes and discusses the intended future research direction.



2. Chapter Two: Order Flow and Exchange Rate Co-movement

2.1 Introduction

How assets co-move is crucially important for various financial and economic applications,
such as portfolio diversification- and rebalancing decisions (Beine, 2004; Wu, Chung and
Chang, 2012; Salmon and Schleicher, 2006) and monetary policy decisions (Benediktsdottir
and Scotti, 2009). Thus, extensive research work has been devoted to explaining and
modelling the dynamics of co-movements between different asset classes. Regarding foreign
exchange markets, the literature has placed emphasis on examining changes in the
macroeconomic fundamentals (Li, 2011) and central bank interventions (Beine, 2004; Beine,
Grauwe and Grimaldi, 2009) as being the determinants of joint currency movements. By
contrast, this chapter turns to order flow, a market -microstructure variable, as a possible
driving force behind joint appreciation or depreciation in the exchange rates, using the

intraday frequency for the first time in the literature.

The primary motivation for our study stems from the strong predictive power of order
flow for single exchange rate movements (Evans and Lyons, 2002a). Order flow is defined as
signed trading volume, or the net of buyer- and seller-initiated transactions, showing the
direction of trade. What makes currency order flow so powerful in exchange rate forecasting
is the fact that underneath order flow lie disperse public expectations about current and future
economic fundamentals that are relevant to exchange rates (Rime et al., 2010). This notion
suggests that changes in expectations will cause changes in order flow, which, in turn, will
affect the price of the currency. Thus, order flow, though a market-microstructure variable,
carries information about macroeconomic variables, but has data available at higher

frequencies than the latter.



However, one question left unanswered is whether and how well the relative changes
in the order flows of different national currencies predict the joint movements of exchange
rates. If asset co-movements are important for financial and economic applications, then it is
of interest to go from a univariate to a multivariate framework for studying the link between
currency order flows and currency prices. In doing so, we consider the absolute differentials
of order flows and evaluate their roles in determining the dynamic conditional correlations of

exchange rates.

We also examine whether the relationship between order flow differentials and
currency co-movements has undergone any structural change as a result of large events such
as the 2007 GFC or the 2010 EDC. The motivation comes again from the univariate market-
microstructure literature, namely the finding that order flows are more informative during an

economic crisis (see, Rime and Tranvag, 2012).

Yet another issue worth investigating is the asymmetric responses of exchange rate
co-movements to information shocks. On the empirical level, Patton (2006) provides
evidence in support of negative-type asymmetry, whereas Li (2011) shows evidence in favour
of positive-type asymmetry (-i.e., stronger exchange rate correlations during joint
appreciations than during joint depreciations). Whereas previous studies have explored the
dominating type of asymmetry at daily or lower frequency, the present study is the first to
examine the issue using intraday data. Note that the information shocks associated with the
asymmetry issue may or may not overlap with those contained in order flows. In any event,
allowing for asymmetry enables us to isolate the potential effects of investor sentiment from

the effects of order flows on exchange rate co-movements.

In investigating the aforementioned issues, we focus on the co-movements of,

respectively, eight exchange rate pairs: Euro (EUR)-British pound (GBP), EUR-Japanese
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yen (JPY), EUR-CAD, GBP-JPY, GBP-CAD, JPY-Australian dollar (AUD), New Zealand
dollar (NZD)-AUD and JPY-CAD. All the exchange rates measure the USD prices of the
respective currencies (i.e. EUR denotes USD per EUR, GBP denotes USD per GBP, etc.).

Our investigations yield several interesting results, outlined below:

First, there is overwhelming evidence that larger differences between order flows
considerably reduce co-movements. That is, the higher the absolute order flow differential,
the lower the probability of joint appreciation or depreciation. With intraday frequencies, we
find that this negative impact is stronger at a higher intraday frequency and gradually
decreases as the intraday frequency increases. The result is in line with the study of Berger et
al., (2008) on single exchange rate movements. Furthermore, the impact is stronger (weaker)
for exchange rate pairs with a higher (lower) level of unconditional correlation. However, for
the AUD-NZD correlation, there is some evidence that a larger absolute order flow

differential increases the co-movement.

Second, we find significant evidence that the 2007 GFC has caused structural changes
in the relationship between order flow differentials and conditional correlations for all the
eight exchange rate pairs. During the 2007 GFC, the relationship changed for the EUR-GBP
and EUR-CAD correlation, as a larger absolute order flow differential suddenly started to
increase the co-movement of these two pairs. A potential explanation for this finding is that
the differences in trading intensities dramatically changed during the 2007 GFC, thereby

allowing the order flow of one exchange rate to dominate the correlation dynamics.

Third, all exchange rate pairs, except AUD-NZD, exhibit strong positive-type
asymmetry: joint positive news subsequently leads to a higher correlation than joint negative
news. This result runs counter to stock market evidence that negative-type asymmetry

prevails. These results basically confirm Li’s (2011) study, which, nevertheless, evaluates
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interest rate differentials, rather than order flow differentials, regarding their impacts on
exchange rate co-movements. Since order flows contain information not only on interest rates
but also on other economic fundamentals, the result should have farther-reaching

implications, more credibility and greater practical relevance.

2.2 Related Literature

The market microstructure approach to exchange rate determination has become a
standard tool for explaining and predicting exchange rate fluctuations, surpassing traditional
macroeconomic models especially with respect to short-term frequencies (Evans and Lyons
(2005b)). This approach has proven to be quite successful in explaining (Evans and
Lyons,2002a, 2002b, 2002c; Payne, 2003; Killeen, Lyons, and Moore, 2006; Carlson and Lo,
2006) and predicting (Evans and Lyons, 2005b; Rime et al., 2010; Cerrato, Kim and

McDonald, 2015)* single exchange rate movements.

The strong explanatory power of order flow (-defined as the net of buyer- and seller
initiated trades -) for single exchange rate movements was first reported by Evans and Lyons
(2002a). Their path-breaking study demonstrated that order flow can explain up to 60% of
daily exchange rate variations in the Deutsche Mark (DEM) —USD spot rate, which opened a
door for the development of modern microstructure theory. Central to the theory is order
flow, which is believed to contain the dispersed information possessed by all agents or to
represent information heterogeneity. Thus the emphasis is placed on the aggregate of traders
willing to pay transaction costs in order to settle their trades. The difference between buying
and selling orders arises from information heterogeneity, is captured by order flow,
constitutes general buying or selling pressure on a currency’s prices, and ultimately leads to

its appreciation or depreciation.

! See King, Osler, and Rime (2013) for a review.
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The information heterogeneity amongst traders is central in the market microstructure
theory. It implies that order flow is the vehicle via which dispersed information about the
expected future fundamentals is aggregated and impacts on current and future prices. This
“proxy” view allows to explain why the relationship between order flow and exchange rates
seems to be dependent upon market conditions (Luo, 2001) and why some order flow is more
informative (Osler, 2005; Cerrato, Sarantis, and Saunders, 2011) than the other. Furthermore,
this “proxy” view allows one to explain how macroeconomic news is incorporated into
exchange rates (Evans and Lyons, 2005a; Love and Payne, 2008; Dunne, Hau, and Moore,
2010) via order flow and to link order flow to movements of joint return dynamics.? Note
that, even when order flow is not related to changes in the underlying fundamentals, order
flow can still have a persistent impact on exchange rate movements, as suggested by

Bacchetta and Wincoops’s (2006) “scapegoat” theory.

Given the strong explanatory power of order flow for univariate movements, it is
surprising that no attempts so far have linked market microstructure theory with asset co-
movements. Studies on how assets co-move are manifold in the literature, such as Cappiello
et al. (2006) on international bond and equity returns, Albuquerque and Vega (2009) on
interational stock markets, Silvennoinen and Thorp (2013) on commodities and Kuper and
Lestano (2007) on interest rates and stocks, among others. Recent studies highlighting the
economic value of modelling asset co-movement include the studies of Christoffersen,
Errunza, Jacobs, and Jin (2014), Kalotychou, Staikouras, and Zhao (2014) and Billio and

Caporin (2009) .

In addition to individual return shocks driving co-movement, the notion that joint
positive or negative news shocks have an incremental effect on correlation dynamics has

been investigated in detail in the literature (Patton, 2006; Hyde, Bredin, and Nguyen, 2007;

2 This link will be discussed in more detail the next section.
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Savva, 2009; Savva, Osborn, and Gill, 2009; Li, 2011), suggesting that both positive- and
negative- type asymmetry can drive correlation dynamics, a finding which provides several
implications for international diversification (Hyde et al. 2007). Although negative
asymmetry (joint negative shocks having an additional impact on correlation dynamics) is
widely found in stock and bond markets (e.g. Cappiello et al., 2006), the contrary is found in

foreign exchange markets (Li, 2011).

Further to return shocks and return asymmetries, the literature has evaluated the role
of exogenous variables as an additional driving force for correlation dynamics. For exchange
rate co-movements, the literature has evaluated the role of macroeconomic variables (Li,
2011; Benediktsdottir and Scotti, 2009) or monetary policy interventions in affecting the
volatility of exchange rates (Beine, 2004; Beine et al., 2009). Li (2011) evaluated the role of
the IRD in driving correlation dynamics, finding that both widening and narrowing IRDs
considerably lower the time-varying exchange rate correlation between five inflation-
targeting countries. Schoppen (2012) evaluated several exogenous variables and concluded
that gross domestic product growth and market turbulences drive conditional correlations for

international bond co-movements.

As correlation is usually time-varying, several papers have attempted to test for
structural breaks in correlation dynamics. This is to allow for different dynamics in times of
economic distress or to allow for breaks in correlation dynamics caused by significant
episodes such as the advent of the Euro in 1999 (Dijk et al., 2011; Kearney and Poti, 2006).
Neglecting these structural breaks would lead to under- or overestimation of future co-
movement, thereby reducing the benefits of covariance forecasts when they are most needed
in times of distress. Again, there is a link with order flows, as Rime and Tranvag (2012)

suggested that order flows are particularly informative (i.e., they have the highest explanatory
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content) during an economic downturn. This finding calls for an in-depth analysis of the
relationship between order flow and co-movement across financially stable and turbulent

periods, which we will investigate in this chapter.

In a previous study of the market microstructure effect on exchange rate correlations,
Vargas (2008) looked at the link between foreign exchange and equity returns, using capital
flows and the IRD as exogenous variables in a dynamic conditional correlation model. Our
approach is in the same spirit but has several noteworthy differences. First, we consider the
return correlations of exchange rate pairs, whereas Vargas (2008) examined how the returns
of a stock index co-move with depreciation and appreciation of the country’s exchange rate.
Second, we employ high-frequency data and order flow only, whereas Vargas (2008) used
microstructure variables as well as macroeconomic variables (the so-called hybrid model)
with a monthly frequency. Finally, we use the order flow differential instead of the difference

in equity purchases.
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2.3  Theories and Hypotheses

Our primary research question is: “Does order flow drive the intraday co-movements
between exchange rate returns?” Addressing this question should fill two voids in the
literature: the nexus between order flow and currency correlations, and the intraday frequency
for the nexus. To motivate the question, let us discuss the theoretical model of Rime et al.

(2010):

1_b o0
Asm = T[Et ( ft ) —$ :I T En = (1_ b)Zqu b* |:Et+l ( ft+l+q ) - El ( ft+1+q )J J (2-1)
where s, = log of nominal exchange rate of a currency against the USD (defined as the USD

price of a currency) at time t, As,, =S,., —S,, b (0<b<1)= the discount factor, f, =

economic fundamentals at time t, E,(f,) = market expectations about the current

fundamentals conditional on the information available at t, and E,( f,,) or E,,(f..,)

market expectations about future (g periods ahead or q+1 periods ahead) fundamentals
conditional on the information available at t or t+1. This equation says that order flow?

reflects both [E, (f,)—s,]and &, , which involve changes in expectations about fundamentals,

and thus can predict exchange rate movements, described by As,_,. Note that Equation (2.1)

t+1°

applies to different countries by changing the discount factor b accordingly.

Rime et al. (2010) provided empirical evidence that macroeconomic news is an
important determinant of order flow. This evidence is consistent with the theoretical

prediction of Equation (2.1). To fix the idea and without loss of generality, assume that

E,(f,)—s, =0. Now suppose that at t +1, news that indicates improvements in Country A’s

fundamentals is released. This positive news will make E,,, (f,,,,,) > E,(f,,,.,), which, given

® Order flow is defined as the net of buyer- and seller-initiated trades for each exchange rate pair.
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everything else, will make As”, >0 (an appreciation in Currency A in the USD price) via an

t+1
increase in the order flow of (or the net buying pressure on) the currency. The opposite will

occur if negative news about A’s fundamentals is released.

In this case, how do changes in the difference between the order flows of different

currencies affect their exchange rate correlations? Let x*(x°) be the order flow of Currency

A (B), where x* > 0 and x®> 0 (x*< 0 and x® < 0) represent the net buying (selling)

pressure on Currencies A and B respectively. Let p,be the conditional correlation between
As! and As? at t, resulting from x, — x°, (the difference between the two order flows at t —

1). In what follows below, we begin with the initial condition that x* —x°, = 0.

Consider the case where x> x* , x® > x?, and either (i) x"-x® = x* —x%, =
(i.e., the order flows of Currencies A and B rise by the same amount) or (ii) x*-x? >
x", —x2, =0 (i.e., the order flow of Currency A rises more than that of Currency B). Assume

the normal circumstance that b” and b® in Equation (2.1) are close enough to each other in

value. Under this circumstance, (i) suggests that s and s’ would be equally likely to
appreciate (i.e., As”> 0 and As®> 0 are equally likely), while (ii) suggests that s” is more
likely to appreciate than s’ (i.e., As> 0 is more likely than As?> 0). As a result, we expect
p0 > pi.

Next consider the case where x< x* , x* < x%, and (i) x"-x*> = x* —x°, =0
(i.e., the order flows of currencies A and B fall by the same amount) or (ii) x*-x° <

x", —x2, =0 (i.e., the order flow of currency A falls more than that of currency B). Under

the normal circumstance defined above, (i) suggests that s and s® would be equally likely
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to depreciate (i.e., As/*< 0 and As®< 0 are equally likely), while (ii) suggests that s is more

likely to depreciate than s’ (i.e., As< 0 is more likely than As’®< 0). As a result, we expect

0} (if)
P> p

Without exhausting all possible cases, we can make the following statement: under
the normal circumstance that the effect of order flow on the exchange rate is approximately
similar across two currencies, the absolute difference between order flows will have a
negative effect on the exchange rate correlation of the two currencies.

However, the discount factor b can be significantly different between different
countries, as it varies over time. Evans and Lyons (2008) proposed an empirical model for

testing the theoretical model like Equation (2.1), as follows:

As, =D(L,S,)x +¢, ; (2.2)

X =C(L) (2.3)

where D(L, Sy) is the state-dependent polynomial in the lag operator L; S; is the market state,
which is assumed to depend on trading intensity at t and C(L) is the lag polynomial
describing the dynamic responses of order flow to the dispersed information shocks &.r, that
arrived m periods prior to t. Equation (2.2) says that the effect of order flow on an exchange
rate can change from time to time via changes in D(L, S;) and thus can differ from currency to
currency. This is because the trading intensity of any currency changes over time. Comparing
equation (2.2) with equation (2.1), it appears that the discount factor b in (2.1) is related to

D(L, Sy). As S; hence D(L, S).changes over time, so does b (hence by).

Based on the findings of Evans and Lyons (2008), let us re-examine the reasoning

about the sign of the order flow’s effect on exchange rate correlations. In the discussion
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below, we revert to the theoretical model in Equation (2.1), with reference to the empirical
model in Equation (2.2). This is to acknowledge the obvious fact that both x; and b; jointly

determine the likelihood with which an exchange rate appreciates or depreciates.

Consider again the case where x> x,, x® > x®, and (i) x*-x® = x, -x*, =0or
(i) x*—x® > x* —xZ, = 0. Assume, however, an abnormal situation where the difference in
trading intensity between A and B is so vast as to result in the difference between D(L,S*)
and D(L,S?) that is so large to make b® << b/ happen. In (i), although x® and x”increase
by the same amount, that b® is much smaller than b implies that s would be much less
likely to appreciate than s?. As a result, p® should be low. Turning to (ii), although the
increase in x® is smaller than in x2, this could be offset by the larger b thanb®. As a
consequence, s and s¢ may become close to being equally likely to appreciate, leading to a
high p®.

Next, consider the case where x*< x*,, x® < x®, and (i) x"—xZ = x* —x®, =0or
(i) x* —x? < x?, —x%, = 0. Conducting reasoning analogous to the above, we can state the
following. In (i), s would be much less likely to depreciate than s?, so po® should be low.
In (i), s" and s? may become close to being equally likely to depreciate, leading to a high

(i)
P

Again, without exhausting all possible cases, the following statement holds: under the
abnormal circumstance that the effect of order flow on an exchange rate is vastly different
between two currencies, the absolute order flow differential will have a positive effect on the
their correlations. It is worth reiterating that if the trading intensities of two currencies change

significantly enough to make the effects of the order flows on their exchange rates vastly
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different from each other, then the sign of the effects of order flows on their correlations will

change. In conclusion from this discussion, we propose to test the following two hypotheses:

H1: Under normal circumstances, a greater absolute order flow differential between two

currencies will subsequently reduce their exchange rate return co-movements.

H2:  Under abnormal circumstances, a greater absolute order flow differential between

two currencies will subsequently increase their exchange rate return co-movements.

Some additional remarks are in order here regarding empirical tests of the two
hypotheses. Although “circumstance” is defined with respect to trading intensity, we do not
attempt to explicitly investigate its role in influencing correlation dynamics for the following
reasons. First, Evans and Lyons (2008) have produced convincing and relevant results, and
our study will simply take these as a starting point. This will make the correlation models
tractable and more focused. Second, we evaluate the effect of order flow on exchange rate
correlations based on a constant model parameter. Our theoretical analyses imply that the
sign of the parameter should not change as frequently as the trading intensity differential. If a
structural break in the parameter is significant enough to alter its sign, we take this to mean

that the trading intensity differential between two currencies exceeds a certain critical value.

We conjecture that a structural change occurs following a big event such as a global
financial crisis. Accordingly, if we combine H1 and H2, this leads to the third testable

hypothesis:

H3:  The effect of the absolute order flow differential on exchange rate co-movements is

not the same across financially tranquil and turbulent periods.

A financially tranquil (turbulent) period corresponds to normal (abnormal)

circumstances as defined earlier. In testing H3, we choose two major economic events within
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the sample period: the 2007 global financial crisis (GFC) and the 2010 European sovereign
debt crisis (EDC). Note that a structural break, if detected, does not necessarily alter the sign
of the order flow effect: the relevant parameter may change its value but not its sign, or it
may turn from being negative to being positive or vice versa. We offer some data-based
evidence to show the possible connections between trading intensity differentials and the

strength of structural change for the exchange rate pairs under investigation.

Order flows are unlikely to fully capture macroeconomic news as described by the

difference between the information set in E,,(f,,, ) and that in E(f_,,,) in Equation

(2.1). However, the information shocks omitted by order flows will also move exchange
rates, which is suggested by the error term ¢, in Equation (2.2). Therefore, apart from order

flows, we also examine how the omitted news shocks impact asymmetrically on exchange
rate correlations or, more specifically, the issue of positive and the negative asymmetry. The
former (latter) is defined as stronger exchange rate correlations during joint appreciation
(depreciation) than during joint depreciation (appreciation). Li (2011) maintains that
inflation-targeting currencies should demonstrate positive asymmetry in the correlations of
their exchange rates against a world currency (e.g., USD) and provides empirical evidence at
daily frequency to support his conjecture. However, the inflation-targeting argument may not

be applicable to intraday data and thus some other factors need to be considered.

In this chapter, we use investor sentiment as a possible explanation for positive type
asymmetry. Negative news shocks regarding the US economy may create fears of a further
decline in the USD (Hibbert et al., 2008).* These fears would then cause FX traders to
constantly sell USD for other major currencies such as EUR, GBP and JPY, for example,

leading to a prolonged “upward spiral” in the demand for and hence the USD price of these

* Although Hibbert et al. (2008) focused on the S&P 500 and changes in the CBOE VIX, the theory is equally
likely to hold in FX markets because of the large connection between both markets.
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currencies. The positive exchange rate returns to EUR, GBP or JPY then would raise their co-
movements during joint appreciations against USD. Conversely, when positive news shocks
hit the US economy, no fears would be present. Therefore, the increased demand for USD
would not be as persistent and strong as the increased supply of USD in the case of negative
news shocks to the US economy. Accordingly, the negative exchange rate returns to EUR,
GBP or JPY may also raise their co-movements during joint depreciation against USD, but to
a lesser degree. We therefore conjecture the effects of positive asymmetry, described in the

fourth hypothesis below:

H4:  Joint positive shocks affect intraday correlation dynamics more strongly than joint

negative shocks of a similar magnitude.

The fifth hypothesis arises from our intraday focus. The gradual information theory suggests
that order flow information is gradually incorporated into prices (Marsh and Teng, 2012;
Berger et al., 2008). This means that most of the information is incorporated directly after the
orders are submitted, whereas the remaining small amount of information is incorporated in
the long run, because dealers usually adjust their positions according to trades by other

dealers and investors. Therefore, we hypothesise the following:

H5:  The negative relationship between the absolute order flow differential and exchange
rate correlations is strongest at the highest intraday frequency and weakens for lower

intraday frequencies.

Some evidence exists in favour of the frequency-dependent impact of order flows on
single exchange rate movements. For example, Berger et al. (2008) found that although
lagged order flows affect future exchange rates, the impact gradually lessens as the frequency

lowers. Our fifth hypothesis extends this work to exchange rate co-movements.
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2.4 Data & Methodology

2.4.1 Data

Our empirical tests use the exchange rates of AUD, NZD, CAD, EUR, GBP and JPY against
USD as a common denominator.® Under this definition, changes in (logarithmic) exchange
rates can be interpreted as the USD return for holding one unit of foreign currency. The order
flow of a currency measures the difference between buyer-initiated trades and seller-initiated
trades of the currency. Absolute order flow differentials calculate the absolute values of the

differences between two currencies’ order follows.

We obtain data on the raw currency transactions and quotes from Thomson Reuters
Tick History (TRTH) provided by the Securities Industry Research Centre of Asia-Pacific
(SIRCA). TRTH covers all FX trades conducted in the D2000-2 electronic FX brooking
system, a brokered inter-dealer trading platform run by Thomson Reuters. D2000-2 is one of
the two main electronic brokers in this market, the other being Electronic Brooking Services
(EBS). EBS is the dominant trading platform used for the USD-EUR and USD-JPY rates,
but most of the trading under the USD-AUD, USD-NZD and USD-GBP rates is done via
Thompson Reuters D2000-2 (Smyth, 2009). However, although we only have access to the
D2000-2 data on the USD-EUR and USD-JPY rates as well as other rates, previous studies
(e.g., Danielsson and Payne, 2012) show that both databases have the same patterns and

prices as well as order flows moving in the same direction.®

® We exclude the three Nordic currencies (Danish krone, Swedish krona and Norwegian krone) and the Swiss
franc because of a lack of data availability over the sample period. The definition of order flow is equal to the
definition used in Evans and Lyons (2002a).

6 Due to the decentralized nature of the foreign exchange market, order flow data is available from end-user
transactions (proprietary customer transactions from major banks), interdealer transactions (Thomson Reuters
D2000-1), or brokered interdealer transactions (Thomson Reuters D2000-2 and EBS). In theory, the data from
all sources should have similar characteristics and predictive content, as customer demand is the primary reason
for trading. For a review of the different electronic trading systems we refer to Bjonnes and Rime (2005). Other
studies using order flow data from Thomson Reuters D2000-2 include Payne (2003), Carlson and Lo (2006) and
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Each transaction record contains a time stamp for the trade and a variable indicating
the trade as a market buy or sell and the transaction price. This makes it unnecessary to use
potentially inaccurate algorithms to assign the direction of the trade. A limitation of the data
is the lack of information about the monetary value of each trade, as only the sign of each
trade is given. However, studies on the information content of order flow data (e.g., Lyons
and Moore, 2009) show that the signed order flow volume leads to the same conclusions as
the absolute monetary volume of trades. This might be caused by the high degree of
standardisation in the interdealer market, with a minimum trade volume of 1 million units of

a base currency.

In addition to individual transactions, TRTH also provides intraday summary
statistics. The database reports an opening (closing) bid and an opening (closing) ask price
over certain time intervals ranging from 1 minute to 1 hour, which TRTH constructs using the
bid and ask quote closest to the beginning (end) of the fixed time interval. After filtering out
outliers, we calculate the exchange rate return as the difference between two log-mid quotes
with the mid-quote calculated as the average of the closing bid and the closing ask quote. We
add up tick-by-tick buying orders within a predetermined intraday time interval to obtain one
aggregated value for that interval and do the same for selling orders. We then take the

difference between the two values to yield the order flow for the time interval.

It is well documented that trading activity in FX markets slows down remarkably
during weekends’ and certain holidays’ (Andersen, Bollerslev, Diebold, and Vega, 2003;
Bauwens, Omrane, & Giot, 2005). Thus, we exclude a number of sparse trading periods.

Following Danielsson, Luo and Payne (2012) and Frommel, Kiss, and Pintér (2011), we

Danielsson and Payne (2012). The studies of Kileen, Lyons and Moore (2006) and Berger et al. (2008) use data
from EBS. The initial studies of Evans and Lyons (2002a, 2002b) use data from Thomson Reuters D2000-1, a
direct interdealer trading platform. Proprietary data from end-user trades are used in the studies of Evans and
Lyons (2005b) and Cerrato et al. (2015).
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remove the overnight period’, weekends and some world-wide public holidays. Furthermore,
following Selcuk and Gencay (2006) we eliminated any days that indicated no market
activity. Specifically, we eliminated the days within which there were at least 12 consecutive

5-minute zero returns.

The total sample period spans from 3 January 2002 to 29 December 2013. It contains
361,977 observations for the 5-minute frequency, 124,000 observations for 15-minute
frequency and over 30,000 observations for 60-minute frequency on the log returns as well as
order flows for each exchange rate. Our sample period starts January 3, 2002 for two reasons:
it was when the euro was physically introduced and it is the first date in Thomson Reuters D
2000-2 on which the required intraday data on the euro become available. Table 2.1 provides

descriptive statistics for the return series.®
2.4.2 Methodology

Let ry = [y, 2] be a 2x1 vector, containing two exchange rate return series (ri = Asy; and ry
= Asy, Where s = logarithm of the US dollar price of a currency). We filter each of the return

series model to get its demeaned series z;; via an ARMA (m,n) model of the form:

r,=c +Z 1 ®, fi ,+Zn+zk1 i =12, (2.4)

’ The overnight period is defined to be between 17:00 and 7:00 the following day. It should be noted that this
definition is only appropriate for traders in London and New York, but not for traders in Asian markets. Love
and Payne (2008) also exclude the overnight period in their study on the intraday relationship between order
flow and exchange rate fluctuations. The main conclusions drawn from our analysis do not alter if we include
the overnight period in the sample.

® In previous specifications, we also used 1-minute observations. However, at this frequency, there are many
missing bid and ask quotes as well as lapses in the data feed, which biases the statistical analysis.

25



We assume that z; = [za, Z]’ is subject to a bivariate normal distribution conditional

on the information set Q, ,:°
2,19, ~N(O,H) (2.5)

where H; is the covariance matrix in which the diagonal elements h,, and h,; are the two

conditional variances of z;, and z,, respectively. The covariance matrix H, is modelled as:
H,=D,RD,, (2.6)

where D, =diag(h;?,hi/*), which is the 2x2 diagonal matrix of conditional standard
deviations; R, =(diag(Q,))™"-Q, -diag(Q,))™* , which is the 2x2 conditional correlation
matrix of & =[x, &’ which contains two standardized residuals defined as &, =z, /h;’*and

G Ghon | . . .
£y =Ly IN%. Q =(qi:q2j is the 2x2 conditional covariance matrix of &, whose elements,

U11t qut and q22t’ are Used to CompUte p12t = qut /(qlltq22t)1/2 '

We use a simple GARCH (1,1) model to estimate the conditional variances hi;:

hy, =@, + 6, Zii—l +0h

i=12. (2.7)

For investigating how order flows affect exchange rate correlations, we use the

asymmetric dynamic conditional correlation model of Engle (Engle, 2002) incorporating the

absolute order flow differential as an exogenous variable affectingQ, . We let Q, have the

following evolution:

° Even if conditional normality is absent, the results have a standard quasi-maximum likelihood (QMLE)
interpretation.
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Q= (6_ A@A— B'GB ~G'NG _77?) +Ae &' L A+CGN N G+B'Q B+ Xy — X |
(2.8)

The parameter matrices are defined as:

{3 2ol ) Dot
0 a, 0 5 0 o, 11

The sample means are calculated as 6=T*1Z:=Igtgt' ,N=T*)  nn

L (ne= g or &) and

va T - .
X =T Xy =X 2 The absolute order flow differential |x; — xx| as an exogenous

variable enters q,,,, 4, and 0,, in Q, to affect p12 indirectly.

We refer to the model characterised by Equation (2.8) as ADCCXS, which captures
asymmetry via differing slopes across joint negative and joint positive values of past shocks.

For the initial analysis following in Section 2.5.2, we set n; equal to &, .

As Li (2011) suggests, Q, can also be assumed to evolve according to what we call

ADCCXE, to be differentiated from ADCCXS. The ADCCXE model captures asymmetry by
appealing to “eccentricity”, i.e., by re-centering the news impact surface away from zero.

Specifically,

Q =(Q-AQA-B'QB-7;X)+A%® '  A+B'Q_B+7|Xy Xy, (2.9)

— 1 p &yt . . .
where Q =(_ p”], ) :( " 71), and other parameter matrices are defined as in the
P 1 Ex 17>

ADCCXS model (2.8) above.

' Note: Neither inclusion nor exclusion of the mean of the absolute order flow differential in the intercept alters
the results and conclusions drawn from the analysis.
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Some remarks regarding Equations 2.8 and 2.9. are in order. First, It is ready to see

that ADCCXS and ADCCXE regress to respectively ADCCS and ADCCE if n = 0, and

further to standard DCC if g1=g,=0and ;1 = j» = 0. We impose restrictions o + 7 + ¢/

<land o+ p? + g5 <1 when estimating ADCCXS, and impose o + > < 1and o+ f;

< 1 when estimating ADCCXE.

Second, the exogenous variable affects the conditional correlation coefficient p,,; in

the following manner**. According to the definition of p,,, we have

q12t — Ciot+nYe—1 (2 10)
Vaiie az2¢ - [Ci1e+7ye—11[Caze+7ye—1l '

P12¢ =

where, for the ADCCXE, *

Vi1 = |X16-1 — X2¢-1]
Ciie = (1 —af — b)) + af(eyr—q +v1)? + Bid11e-1
Cizt = )512(1 —a1a; — 3132) + a0, (St—l + V1)(52t—1 +v2) + B1P2q12t-1

Coze = (1 — a3 — b3) + ab(eze-1 + V2)* + Biq22e-1

Note, Ci1t, Ci2¢ and C,,: do not depend on y,_,. From these relations, we can

1912t

derive 2222t — - . Clearly both the sign of n and the sign of 1 —

8yt—1 JIC11e+nYe-11[Ca2t+NYi-1]

d12t
2

determine the sign of%, as \/[Ci1t + MYe-11[Caze + NYe—1] is >0. The estimation results
t—1

show that q,,, < 2 for all t and all currency pairs. Thus, if n <0, a rise (fall) in the absolute
order flow differential in the previous period would reduce (increase) exchange rate

correlation in the current period, given all other variables and parameters in (2.9); if n > 0, the

' In the following derivation we start with the initial condition that X is equal to zero.
12 The same relationship between the absolute order flow differential and conditional correlation dynamics apply
to the ADCCXS.
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reverse is true; and if n = 0, the absolute order flow differential will have no effect on the

correlation.

Third, the impact of joint positive (negative) news shocks - estimated via the
parameters (yq,v2) in the ADCCXE specification - affect the conditional correlation as
follows. The parameter estimates of (y,,y,) capture asymmetry by allowing the news impact
surface to be centred away from zero. This implies a greater response (larger effect) to joint
negative (positive) returns depending on where the surface is centred. When y,,y, >
0 (y1,v2 < 0) positive-type (negative-type) asymmetry will result as the surface is centred at
negative (positive) values of &;_1, €5:—1 ON pyo¢. In other words, when y;,y, > 0, joint
positive shocks will increase correlation more than joint negative shocks of similar

magnitude, and vice versa if y;,y, < 0.

The estimation of all the GARCH and DCC parameters and the computation of their

standard errors follow the two-stage procedure proposed in Engle and Sheppard (2001).

2.5  Empirical Results
2.5.1 Descriptive statistics

Table 2.1 presents the summary statistics for six exchange rate return (Panel A) and
order flow (Panel B) series calculated for the highest (5-minute) frequency available in our
sample.™. Each exchange rate is quoted as the US dollar price of one unit of a currency.
Thus, a positive return for an exchange rate implies an appreciation of the currency against
the US dollar (or a depreciation of the US dollar relative to the currency). One can see that
the mean returns are positive for all exchange rates, suggesting that all the six currencies

(EUR, GBP, JPY, AUD, NZD and CAD) appreciated on average relative to USD during the

3 Descriptive statistics for the other frequencies are outlined in Table A.1 in Appendix A.
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whole sample period**. The maximum appreciation and depreciation of the six currencies
against USD occurred during the US subprime crisis and the following GFC. Last, the
summary statistics exhibit high kurtosis. Thus the Jarque-Bera test statistics (JB-Prob.)

decisively reject the null of a Gaussian distribution for all return series at all frequencies.

Table 2.1 Descriptive statistics

USD—EUR USD—-GBP USD-JPY USD—-AUD USD—-NZD USD-CAD

Panel A. Descriptive statistics for 5-minute returns (n=361,977)

Maximum 0.024 0.035 0.029 0.039 0.037 0.027
Minimum -0.014 -0.031 -0.041 -0.057 -0.037 -0.022
Mean 1.18e-04 3.25e-05 6.4e-05 1.54e-04 1.87e-04 1.12e-04
Std.Dev. 0.059 0.056 0.062 0.082 0.087 0.059
Skewness 0.91 0.13 0.89 -1.57 -0.95 0.67
Kurtosis 103.24 142.66 259.35 285.9 144.55 79.32
JB-Prob. 0.00 0.00 0.00 0.00 0.00 0.00

Panel B. Descriptive statistics for 5-minute order flows (n=361,977)

Maximum 109 214 75 229 110 278
Minimum -93 -212 -95 -238 -87 -177
Mean 0.13 0.31 0.03 0.12 0.08 0.39
Std.Dev. 6.98 13.20 1.70 14.34 5.88 12.34
Skewness 0.10 0.08 -0.14 -0.16 -0.08 0.26
Kurtosis 8.39 8.19 17.31 11.97 9.91 14.97

Note: This table shows the descriptive statistics for 5-minute- returns (Panel A) and order flows (Panel B) for
six exchange rates. Returns are calculated as the difference between the log mid-quote. Order flow is defined as
the net of buyer- and seller transactions within a certain time interval. We measure order flow by adding up tick-
by-tick buying orders within an intraday time interval (e.g. five-minute intervals) to obtain one aggregated value
for the interval and do the same for selling orders. We then take the difference between the two values to yield
the order flow for the time interval. The means and standard deviations for exchange rate returns are expressed

in percentage points.

“ Take two most frequently traded currencies as an example: The USD-EUR and USD-GBP rates at the
beginning of our sample were USD 0.893 per EUR and USD 1.452 per GBP respectively, and rose to US$1.369
per EUR and US$1.636 per GBP in December 2013. This is equivalent to depreciations in USD of 53% against
the EUR and of 13% against the GBP.
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Panel B in Table 2.1 sets out the descriptive statistics for the order flows associated
with each spot rate™. For all six exchange rates, the mean order flows are positive, indicating
buying pressures on average for the six currencies. This is consistent with the positive mean
returns on the six exchange rates. The mean order flow is largest (0.39) for the USD-CAD
rate, followed by the USD-GBP rate (0.31), and is smallest but still positive (0.03) for the
USD-JPY spot rate. A similar finding relates to the volatility of the order flows, with the
volatility being largest (14.34) for USD-AUD followed by USD-GBP (13.20) and USD-
CAD (12.34) and smallest for order flow related to USD-JPY (1.70). There are two reasons
for this finding. First, Thomson Reuters D2000-2 is the main database used for USD-CAD
and USD-GBP inter-dealer trading, whereas for USD-JPY spot trades, dealers more
commonly use EBS. As we rely on Thomson-Reuters data, the smaller trading intensity for
USD-JPY is likely to result in lower order flows on average than the high trading intensity
for USD-CAD and USD-GBP trading. Second, for the USD-JPY rate, its average lower
buying pressure than other exchange rates could be caused by carry trade activities. In a carry
trade, investors borrow low-interest currencies (such as JPY) and buy high-interest currencies
(such as AUD and NZD). The carry trade will then generate frequent sell orders for the
USD-JPY rate, thereby offsetting the buying pressure on JPY arising from good news shocks
to JPY. For the analyses following in the reminder of the chapter, we measure order flow in

units of a hundred.
2.5.2 Order flow and correlation dynamics

Testing the five hypotheses developed in Section 2.3, we look at eight exchange rate
pairs, for the following reasons. The EUR-JPY pair is the primary hedging instrument for

trade between Asia and Europe, so it is relevant for multi-national companies. The EUR-

15 Summary statistics for the 15- and 60-minute return and order flow series used in the analysis can be found in
Table Al in Appendix A.
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GBP and GBP-JPY pairs are both actively traded crosses and thus they are relevant to FX
traders. The EUR-CAD, JPY-CAD and GBP-CAD pairs rely heavily on oil price
movements and so they are highly related to the underlying fundamentals. The AUD-NZD
pair has high levels of historical intraday correlation in the sample, as does the JPY-AUD
pair. More importantly, they are among the most popular pairs for carry trade because of the

large IRDs between New Zealand or Australia and Japan.

Table 2.2 summarises the estimation results of the GARCH-ADCCXS parameters and
the unconditional correlations for the eight exchange rate pairs at the 5-minute frequency.®
In this table, all of the GARCH parameters are statistically significant at the 1% level and

their sums are close to unity, indicating a high degree of persistence in the volatility.

Meanwhile, all the eight exchange rate pairs have modified Box—Pierce Q-statistics fore, ,

&y, & and g2 that are statistically insignificant at the 5% level, implying that the

standardised residuals are i.i.d.

Turning to the ADCCXS parameters, we can see that the dynamic parameters
(a; and B;) are economically and statistically significant, showing that the correlations are
time-varying and highly persistent. The resulting #* statistics allow us to reject the null of a
constant correlation in favour of a dynamic correlation model (such as the ADCCXS model)
for all the eight pairs. Correlation persistence is high in several pairs, as reflected by large
estimates of £, and f,: 0.994 and 0.9464 for EUR-GBP, 0.9965 and 0.9237 for EUR-JPY,
0.9862 and 0.9402 for EUR-CAD, 0.9961 and 0.9934 for NZD-AUD, and 0.9793 and
0.9773 for JPY-CAD. The large persistence in correlation is a common finding for exchange
rate returns, both at the intraday frequency (as in our study here) or the daily frequency (e.g.,

Li, 2011).

18 We also used other univariate volatility models and obtained qualitatively similar results.
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Regarding asymmetric responses to past negative shocks, the ADCCXS model
suggests that joint bad news has an economically insignificant effect on correlations, as the g;
estimate ranges between 0.002 and 0.0794 for all exchange rate combinations except for the
GBP-CAD return correlation. This is expected, since unlike equity returns there are no
theoretical reasons for the presence of the asymmetrical negative effect of joint past bad news
on currency return correlations. Thus we will test for another type of asymmetry, namely joint

positive asymmetry, for which we have theoretical justification (see the next section).

Table 2.2 also indicates that unconditional correlation varies. The EUR-GBP and
NZD-AUD pairs have p,, equal to 0.6559 and 0.6595 respectively, which is quite high. The
EUR-CAD, EUR-JPY, GBP-CAD and GBP-JPY pairs show medium levels of
unconditional correlation (0.3680, 0.2788, 0.2939, 0.3018 and 0.2394, respectively). The
lowest levels are found for the JPY-AUD and JPY-CAD pairs (0.1453 and 0.0770,
respectively). Different unconditional correlations may be useful information for analysis the

different impacts of order flow on correlation dynamics, to which we now turn.

As stated in the introduction, the parameter of main interest is 7, which is associated
with the absolute order flow differentials. For all the pairs except NZD-AUD, the negative
sign of 7 is in line with the expectations of H1: Under normal circumstances where the effect
of order flow on an exchange rate is close enough between two currencies, a greater absolute
order flow differential lowers the correlation between two exchange rate returns’. This
negative effect is strong for some currency pairs with high and medium levels of
unconditional correlation, such as the EUR-GBP (7 = -0.0649), EUR-JPY (7 = -0.0821),

EUR-CAD (7 = -0.0880) and GBP-JPY pairs (7 = -0.1575). On the other hand, the negative

7 See Section 2.3 for the theory leading to H1, and section 2.4.2, especially equation (2.10), for further
explanations of the sign of # in terms of the effect of the absolute order flow differential on correlation.
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effect is weaker for pairs with low levels of unconditional correlation, such as the JPY-CAD

pair (7 =-0.0350) and the JPY-AUD pair (77 = -0.0459).

For the NZD-AUD pair, the effect of order flow on the correlation is positive (77 =
0.0011) and statistically significant, albeit not economically significant. We take this as
evidence to support H2. The hypothesis concerns abnormal circumstances where trading
intensities are vastly different between AUD and NZD, and so the effect of the AUD’s order
flow on AUD fluctuations (b"“") and the effect of NZD’s order flow on NZD fluctuations
(bN“P) differ from each other significantly. Smyth (2009) finds evidence for this argument, as
he finds that the order flows of AUD have a stronger price impact on NZD than the order
flows of NZD per se. This evidence can be used to explain why 7 is positive for the NZD-

AUD pair, according to our earlier theoretical analysis that led to H2.
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2.5.3 Positive-type asymmetry

In this section, we further evaluate the impact of joint positive and joint negative news
shocks in driving exchange rate co-movement. Specifically we test for positive-type
asymmetry against symmetry or negative-type asymmetry. The ADCCXE model described in

Equation (2.9) serves our purpose.

Panel A in Table 2.3 sets out the parameter estimates of » and j» in the model. We
can see that they are all positive and statistically significant at the 1% level for all exchange
rate pairs excluding NZD-AUD. This indicates that joint positive shocks increase future co-
movements more than joint negative shocks of the same magnitude reduce future co-
movements. This result is confirmed by the corresponding likelihood ratio tests: the seven
likelihood ratio test (LRT) statistics allow us to reject the null of 1 = 3% = 0 for the EUR-
GBP, EUR-JPY, EUR-CAD, GBP-JPY, GBP-CAD, JPY-AUD and JPY-CAD
correlations. It is important to bear in mind that a positive (negative) shock as represented by
& > 0 (& < 0) corresponds to bad (good) news about the US, because our definition of the

exchange rate is the USD price of a currency.

The impact of joint positive shocks on co-movement is strong for some major
exchange rate pairs. For example, the EUR-GBP pair has parameter estimates of »; and j» of
0.258 and 0.1937 respectively, and the JPY-EUR pair has parameter estimates of » and j of
0.2329 and 0.4274 respectively. A similar observation applies to the JPY-GBP correlation,
where 1 and y; are estimated to be 0.2848 and 0.1841 respectively. The strong positive-type
asymmetry for the three major pairs can be explained by strong links among the EUR, JPY,
GBP and USD, and, more importantly, by the argument of investor sentiment, which leads to

the fourth hypothesis (H4) (see Section 2.3 for a detailed discussion). The results provided in
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the analysis thus offer overwhelming evidence in support of this hypothesis at the intraday

frequency.

However, the co-movements of the intraday AUD-NZD rates seem to be characterised
by negative-type asymmetry persisting (1 = -0.0103 and » = -0.0073 with statistical
significance at the 1% level). In other words, the correlation responds to joint negative shocks

(&44 <0and ¢, , <0; good news about the US) more strongly than joint positive shocks (

&4 > 0and g, , >0; bad news about the US). A possible explanation is that bad news about

the US mainly affects the major currencies such as EUR, JPY and GBP, and not the minor
currencies like NZD and AUD. So, although the correlations between major currencies
respond significantly to bad news (joint positive shocks), the correlation between NZD and
AUD does so to a much lesser degree. On the other hand, when good news about the US
arrives (joint negative shocks), investors may transfer massive funds from the two minor
currencies to USD, causing significant joint depreciation of AUD and NZD against USD.
Accordingly, joint negative shocks (good news about the US) increase NZD-AUD
correlations more than joint positive shocks (bad news about the US) of the same magnitude

do.

It is worth noting that that the two y estimates are smaller than their daily counterparts
reported in Li (2011). For instance, Li reported that » = 0.5865 and y2=0.6237 for the EUR-
GBP correlation. This suggests that, although positive asymmetry dominates at the intraday

frequency, this dominance is even stronger at the daily frequency.

Note that ADCCXE is not the only model that is suitable for testing for positive
asymmetry, as the ADCCXS can be tailored to estimate the impact of joint positive shocks

(by setting n; = &:%). Panel B in presents the estimates of the ADCCXS model testing for
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positive asymmetry. Briefly, the estimates confirm the economic significance of joint positive
return shocks, as the asymmetry parameters are significantly higher than the ADCCXS
specification testing for negative-type asymmetry via the change in slopes. Again, the
positive —type asymmetry is confirmed to be strong for some major exchange rate pairs. For
example, the EUR-GBP pair has g; and g, parameter estimates of 0.1641 and 0.1761
respectively, and the GBP-JPY pair has g; and g, parameter estimates of 0.2831 and 0.1095
respectively. However, the ADCCXS specification for positive asymmetry does not nest the
specification for negative asymmetry, although both nest the symmetry specifications.
Therefore, it is unclear whether positive or negative asymmetry is preferred, although both
specifications are preferred over symmetry for all exchange rate combinations tested, as
indicated by the LRT statistics. By contrast, the ADCCXE model, which focuses on
eccentricity, confirms the dominance of positive asymmetry over negative asymmetry in
intraday exchange rate co-movements. We will therefore use the ADCCXE specification in

the reminder of the chapter.
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For a graphical representation of our estimation results, highlighting the greater
impact of joint positive shocks over joint negative shocks on future co-movement, we present
the news impact surface of both the initial ADCCXS model which targets negative type
asymmetry and the ADCCXE model. We treat current exchange rate shocks (i.e., ;) as
““news” — with positive and negative shocks as good and bad news — and examine the impact
of such news on exchange rate correlation using the notion of the “*news impact surface” of
Kroner and Ng (1998). The news impact surface graphically highlights how different

combinations of shocks (&,; and &,;) impact p,,.18. News impact surfaces are evaluated in

the domain ¢ =[-3,3] (i=1,2).

Note that for the graphical representation outlined in Figures 2.1 and 2.2, we focus on
how news shocks (&1, &1) affect correlation dynamics, given the absolute order flow
differential (|x1,t-1 —X2.t-1 | ), following Li (2011). The news impact surface is therefore based
on the actual estimates from ADCCXE and ADCCXS, where y1 and y2 are jointly estimated

with 7 although the estimate of 7 becomes redundant in this exercise.

Figure 2.1 shows the impact of news on the EUR-GPB correlations, using 5-minute
return observations and the parameter estimates from the ADCCXS model targeting negative
type asymmetry via the changes in the slopes (see Table 2.2). As expected, given the small
parameter estimates (g;=0.0479 and g, = 0.0582 ) associated with negative asymmetry, the
news impact surface is almost symmetrical (if we compare the +,+ and -,- quadrants in Panel
A) and centred at zero (Panel B). In other words, the likelihood that EUR and GBP tend to
depreciate together against the USD, given that they have already depreciated together, is
almost similar to the likelihood that they tend to appreciate together against the USD given

that they have already appreciated together.

'8 The news impact surface for the ADCCXS (ADCCXE) is given by Equation 2.15 (2.16) in Appendix A.2.
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Figure 2.1 The ADCCXS news impact surface

Panel A. Panel B.

Figure 2.a Correlation news impact of USD/EUR-vs-USD/GBP: asymmeatric in joint bad news

Figure 2.a Carrelation news impact of USD/EUR-vs-USD/GBP: asymmetric in joint bad news
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This figure presents the news impact surface for the EUR-GBP correlation. Note: this figure depicts the news
impact surface by giving two different looks for the EUR-GBP correlation. We use the parameter estimates of
the ADCCXS model taken from Table 2.2 for constructing the surface, with the absolute order flow differential

given (by, e.g., assuming | x4, t1— X2, 1 | = 0) to focus on the analysis of asymmetry.

By contrast, the news impact surface presented for the ADCCXE model (Figure 2.2)
demonstrate that the surface is centred at a point (0.258, 0.1937) in the “‘- - ” standardised
residual quadrant, away from the origin (0, 0), resulting in a greater surface value for joint
positive than for joint negative standardised residuals of equal magnitudes. This implies a
larger response to joint good news (in the +, +quadrant) than to joint bad news (in the -,-

quadrant) of the correlation between the GBP and the EUR against the USD.

To be more concrete, let’s consider two scenarios, one where joint positive shocks
(g, = &, = 3) hit the FX markets, and another scenario for joint negative shocks (&, = ¢, =
—3). For the ADCCXS news impact surface function f(.,.), this would yield f (3,3) = 0.1152,
whereas the latter yields f(-3,-3) =0.1162. The difference between joint positive shocks and

joint negative shocks is hence a mere 0.001. By comparison, for the ADCCXE news impact

19 The estimates for the asymmetry parameters are displayed in Table 2.2 for negative asymmetry and Table 2.3
for positive asymmetry.
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surface, f (3, 3) = 0. 0.1292, whereas that for joint negative shocks is f (-3, -3) = 0.0964, about
two-thirds of the former. This comparison further highlights the main differences between the
ADCCXS and ADCCXE estimates, suggesting that joint positive returns have a much

stronger effect on intraday correlation dynamics as opposed to joint negative shocks.
Figure 2.2 The ADCCXE news impact surface

Panel A. ) Panel B.

Figure 3 Correlation news impact of USD/EUR-vs-USD/GEP: asymmetric in joint good news Figure 3 Correlation news impact of USDYEUR-vs-USD/GBP: asymmetric in joint good news
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This figure presents the news impact surface for the EUR-GBP correlation using the parameter estimates of the
ADCCXE model (except n) taken from Panel A in Table 2.3. Note: this figure depicts the news impact surface

by giving two different looks for the EUR-GBP correlation. Note that the news impact surface is not centred at
zero for the ADCCXE model.

2.5.4 Intraday Comparison

Table 2.4 compares three different intraday frequencies (5 minutes, 15 minutes and 60
minutes) in terms of the parameters for the ADCCXE model. This is to see if the impacts of

order flow differentials on exchange rate correlations change as the frequency changes.

Compared to the 5-minute results in Panel A (reproduced from Panel A in Table 2.3),

the estimates of 7 at the other two intraday frequencies (reported in Panels B and C) decline
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in absolute terms. Specifically, the ADCCXE estimate of 7 for the EUR-GBP pair is -0.0498
for the 5-minute frequency, but shrinks to -0.0155 for the 15-minute frequency and to -0.0064
for the 60-minute frequency. For the EUR-JPY and GBP-JPY dynamic correlations, the
same pattern also emerges, as the 7 estimated in the ADCCXE specification diminishes from
-0.0652 and -0.1432 for the 5-minute frequency to -0.0048 and -0.0063 respectively for the
60-minute frequency. The same pattern applies to the other five exchange rate pairs, such as
JPY-CAD, where 7 diminishes from -0.0143 to -0.0052 as the frequency lowers from 5-

minute to 60-minute.

This pattern in exchange rate co-movements is consistent with the pattern in single
exchange rate movements regarding the relationship between the impact of order flows and
the data frequency (see Berger et al., 2008). Our bivariate evidence adds to top of Berger et
al.’s univariate evidence confirming the gradual information hypothesis that the major part of
information contained in order flows is incorporated into prices immediately, within minutes

rather than hours.

The second observation to make from Table 2.4 is that persistence in correlation
remains similarly strong across the different frequencies used, as demonstrated by the
estimates of the nine A, valuesand the nine £, values all being above 0.91, with many above
0.99. This suggests that, even at the intraday frequency, shocks will have long-lasting effects

on co-movements via persistent correlation dynamics.

With respect to the asymmetry parameter estimates, the documented positive-type
asymmetry persists and hence dominates over negative-type asymmetry and symmetry across
all the intraday frequencies evaluated. The magnitude of the positive asymmetry, however,

does not follow a clear pattern across frequencies. For the EUR-GBP pair, y; (y;) increases
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from 0.2580 (0.1937) for the 5-minute frequency to 0.4246 (0.2034) for the 15-minute
frequency and further increases to 0.5125 (0.330). By comparison for the EUR-JPY pair, y,
(y2) is initially 0.2329 (0.4274) for the 5-minute frequency and then decreases (increases) to
0.0940 (0.4776) for the 15-minute frequency, whereas the opposite is seen for the GBP-CAD

pair.

To sum up, the negative relationship between the exchange rate correlation and the
absolute order flow differential only slightly decreases as the intraday frequency increases,
and thus the relationship is robust. This makes our main recommendations drawn from 5-

minute-frequency data applicable to other intraday frequencies.

44



174

"A]aA110adsal ‘|ana] %SG ayl pue [9A3] %T 8yl 1 30UrdIJIUBIS 310UBP x PUE 4y "WUNWIXEW
3yl 1e palenjens uonauny pooylaxil-hoj-isenb ayy si 4717 (T002) pieddays pue sjbuz ul pasodoid ainpadoid abeis-om1 syl sasn (SI04I8 paepuels paljipow syl Jo uoneindwod
pue) uonewnss ayl "salousnbaiy Aepeljul juaiaylp 1e parenjens sired ajes abueyoxe ybis 10y (6'2) pue (2'g) suonenb3 jo sejewnse Jeyawered a8yl SISeJIU0D B|qe} SIYL 810N

62210 €8/1°0 e6¥T0 Ze07°0 0reZ'0 8/S¥°0 LTEE0 61690 d
*xG'668TE ¥xC L9ELE »xG'/6G8T *xG'7/88T *x8'G508¢ »xE'/80€2 »x/'07092 +xEVS0TE dT1
2500°0- G200°0- xx 25000~ 9000°0- »x £900°0- »x G/20°0- 8700°0- *x ¥900°0- L
xx 0000 xx EEVY'0 xx 19100 0000°0 xx GZET0 ¥x CLETO0 *x 9/G7°0 xx OVEE0 2
xx TELS°0 xx GVTC0 xx OVT20 €070°0 xx 078070 xx C99E°0 xx EGET'0 xx GZTS0 A
xx 0,660 xx T.66°0 xx 82660 xx €166°0 xx 2066°0 xx BE660 xx 87660 xx 7€86°0 ¢
xx TV66°0 ¥x 61660 xx 67660 »x 1966°0 »x 9566°0 xx 60660 xx G066'0 xx 2286°0 g
*x €TL0°0 *x 1§10°0 xx 690T°0 *x 97900 »x E6ET°0 *x €500 *x L9TT0 *x €L0T°0 o
»x 180T°0 xx 6£90°0 *x 0L2T°0 *x 98800 »x £880°0 *x V1210 *x CLET0 xx 67810 o
S91eWINSA [apow X DDAV Aduanbal) ainuiw Q9 D |aued
vIT0 G6TL0 62vT0 6£8€°0 veyz o TESY0 862€°0 8889°0 d
G TLSVTC *x §'20502¢ *x1'9020T2 xx §'G606177C *xG'€E8GGC *x G§'TT99VC ¥xC'CT957Z +x 6'9T0E62 dT1
€900°0- 0200°0- *x 9TTO0- ¥x 2CT0°0- G0TO'0- xx TLE0°0- xx 07500~ xx GGTO'0- L
»x €52G6°0 199€°0 xx 98970 xx 60900 *x 9Y8T°0 xx 9820 *x 9.0 xx V€020 A
xx 60720 GZT.0 xx CGT2°0 xx 88190 62000 »x 16800 xx 0760°0 xx V2V 0 A
xx 78660 ¥+ 18660 xx 00960 xx 98660 xx 98660 xx €/66°0 xx 08660 *x 78660 |
xx £866°0 ¥x 116670 xx 0/76°0 xx G866°0 xx 06660 xx 88660 xx 08660 ¥x 8660 g
»x CT1G0°0 *x Y1900 xx 97600 »x T€G0°0 »x 87500 xx 8EL0°0 xx €£90°0 xx L6700 o
xx 6E£G0°0 xx 12900 *x 9TLZ0 *x 87500 »x G6E0°0 xx 26700 xx 62900 xx 66500 o
Sa1eWNSa [apow IX DDAV Adusnbaly sxnuiw GT g |aued
0,200 G659°0 eSrT0 6€62°0 ¥6€2°0 089¢°0 88/2°0 6559°0 d
G'9G8T90T G'7£9666 1°09/796 T69VLETT 2'12/680T 0'002660T v /8LEETT € /6866TT dT1
*x EVT00- »x GTZ0°0 xx 1200°0- *x TVT00- xx CEVT0- »x GZS0'0- xx 25900~ xx 8670°0- :
xx L2E2°0 *x £200°0 xx 02ST'0 »x G9EZ'0 »x TV8T'0 xx ZV6T0 xx V12V0 xx LEBT'0 U
xx CE22°0 »x €0T0°0- xx 8E6T'0 78700 »x 8782°0 *x 91520 xx 62E20 xx 08G2°0 R
xx 29660 »x 0£66°0 xx 08660 »x 7G56°0 »x 99660 xx 7€G6°0 xx 88160 xx VES6°0 2
xx £966°0 »x 19660 *x 116670 »x G806°0 xx 82660 xx 6£66°0 xx £566°0 ¥x 6£66°0 g
»x 78500 ¥x GT220 0900 »x 06€0°0 »x 0T80°0 xx 9182°0 xx C69E°0 *x 918270 2y
»x £G80°0 #xT2TT0 99/0°0 *x LTZE0 xx 16600 *x 29500 *x 2LS0°0 *x 29500 ey
SaJRWIISA [apow IX DDAV Adusnbaiy alnulw G W [dued

avo-asn anv-asn anv-asn avo-asn Adr-asn avo-asn Adr-asn d99-asn

Adr—asn azN-asn Adr-asn dg99-asn d99-asn 4Nn3-asn 4n3-asn 4Nn3-asn

salouanbal) Aepenui Jo suosredwo) 2 a|geL



2.5.5 Simulation

This section presents the simulation results based on the ADCCXE. These simulations
aim to reveal the effects of order flow differentials on the evolution of time-varying

correlation between exchange rate pairs more intuitively.

Figure 2.3 is based on the ADCCXE model?, using the 15-minute-frequency EUR—
GBP exchange rate correlation as an example. The figure shows the simulated “factual” and
“counterfactual” correlation series and their differences. The uppermost solid line, labelled
““factual”, uses the historical absolute order flow differentials, whereas the lower dotted line,
labelled *“counterfactual”, uses the perturbed absolute order flow differentials. The
perturbation is created by a permanent increase of 10 units* right from the beginning of the
sample period. Though arbitrarily chosen, the size of the increase must be plausible enough to
ensure the positive definiteness of Q; or the non-negativity and nonzero of Qi1 and Q.
Provided that this requirement is met, slightly changing the size of the increase does not
qualitatively change the conclusion. This permanent increase in the absolute order flow
differential, allows to see the degree to which increases/decreases in the historical absolute
order flow differential would affect conditional correlation dynamics, as predicted by the

ADCCXE model.

From Figure 2.3, one can see that the counterfactual line (green) always lies below the
factual line (blue). In other words, had the absolute order flow differentials between the

USD-GBP and USD-EUR been greater than their historical values, the USD-GBP-vs-USD-

?° For the simulations, we ignore the mean of the absolute order flow differential for the ADCCXE estimation to
make our graphical representation (albeit at the intraday frequency) comparable to that of Li (2011) (albeit at the
daily frequency). As stated before, excluding the mean of the absolute order flow differential in the intercept
does not change the sign or significance of the parameter estimate associated with the absolute order flow
differential.

% This perturbation is equivalent to one standard deviation of the absolute order flow differentials for the EUR—
GBP correlation at the 5-minute frequency.
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EUR correlation would have been lower than its historical levels. Therefore, Figure 2.3
confirms visually that the absolute order flow differential has a negative effect on correlation
for all the exchange rate pairs, again with the notable exception of the AUD-NZD

correlation.

An economic implication follows directly from these findings: A trader witnessing a
temporary increase in the absolute order flow differential, resulting in a temporarily weaker
correlation between two assets, could enter a pair trade, betting on the correlation increasing
again. A pair trade is defined as buying at an exchange rate that has previously depreciated
and selling at an exchange rate that has previously appreciated, betting that the *“spread”

between the two will converge again.

Figure 2.3 Factual and counterfactual representation of the ADCCXE estimates
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Note: This figure plots the simulated dynamic conditional correlations for the GBP—EUR pair using all the
parameter estimates of the GARCH-ADCCXS model under two different scenarios: (1) we consider historical
data on all the variables involved; and (2), we increase the historical absolute change in the absolute order flow
differential by 10 units while retaining the historical data for all other variables involved. The blue ‘“factual”
line represents the correlation series for (1) and the red “‘counterfactual” line corresponds to the correlation

series for (2).
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Figure 2.4 is based on the ADCCXE model, using the 15-minute EUR-GBP exchange
rate correlation as an example. We consider three simulations that were not seen in Figure
2.3. First, we simulate the model with all parameter estimates taken from Panel B in Table
2.4. This gives rise to the blue dotted line, labelled ADCCXE. Second, we impose a zero
restriction on both y1 and y2 and leave the other parameters intact. This leads to the blue,
solid line labelled DCCX. Third, we further impose a zero restriction on n, alongside the
restrictions y1 = y2 = 0, and leave the other parameters unchanged. This yields the green
dashed line labelled DCC. What is new about Figure 2.4 compared with previous studies such

as that of Li (2011) is our focus on intraday covariance dynamics.

Figure 2.4 Unrestricted vs. restricted ADCCXE
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Note: This figure plots the simulated dynamic conditional correlations for the GBP-EUR pair based on the
historical data on all the variables involved, under three different scenarios: (1) consideration of all the
parameter estimates of the GARCH-ADCCXE models taken from Table 2.4 (Panel B), (2) a zero restriction on

v1 and y2 while retaining all other parameter estimates and (3) another zero restriction on n.

Figure 2.4 illustrates that the ADCCXE (blue line) always lies above the DCCX (red
line). The differences measure the contribution of positive asymmetry to the historical total
correlation. In other words, ignoring positive asymmetry would lead us to underestimate the

correlation. For example, the unrestricted ADCCXE model indicates a minimum correlation

48



between EUR-GBP of -0.0119, whereas the DCCX estimates a minimum correlation between

EUR-GBP of -0.0819 towards the end of 2012.

With respect to the differences between ADCCXE (blue line) and DCC (red line) with
the restrictions y; =y, = 0 and n = 0), ignoring both positive asymmetry and the effect of the
absolute order flow differential will result into both over-and underestimation of the
correlation. In case of a large order flow differential, the DCC will overestimate the
conditional correlation dynamics, whereas in the case of a small order flow differential, the

DCC will underestimate the conditional correlation between two currency pairs.

2.6 Structural Change

As the sample period contains major financial and economic events, testing for
structural changes in correlation is indispensable. To ensure proper tractability with the large
amount of intraday data used, we take an exogenous approach by pre-determining two break
points. The first marks the start of the 2007 GFC on 9 August 2007. This is the date when
there was an unusual jump in spreads between the overnight inter-bank lending rate and the
London inter-bank offer rates. The event is often referred to as a “black swan” in the money
market and has been used as a proxy for the beginning of the GFC (Taylor and Williams,
2008). The second breakpoint chosen is 9 March 2010. This is the date when the focus of
global concern switched from the private sector to the public sector, as the International
Monetary Fund and the European Union jointly announced that they would provide financial
help to Greece. We take this date to be the start of the EDC. To perform the structural break

tests, we modify the basic DCC model in a similar way to Dijk et al. (2011).?

%2 The ADCCXE specification taking two structural breaks into account is given in Appendix A (Section A2).
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Figure 2.5 shows a graphical representation of the dynamic conditional correlation
estimates over the sample period for the correlation dynamics of the major exchange rate
combinations, such as the EUR-GBP pair. For the EUR-GBP pair, the unconditional
correlation is significantly lower during the 2007 GFC (p=0.6850) than before this period (p=
0.7322). In the aftermath of the GFC, the correlation for the EUR-GBP pair decreases further
(p= 0.6478)%. The same pattern applies to the EUR-JPY and GBP-JPY pairs, where the
conditional correlation drops significantly during the latter stages of our dataset and swings
more widely after the start of the 2007 GFC than before it. This graphical analysis therefore
confirms the possibility of two structural changes arising in our dataset caused by the massive

financial turmoil caused by the 2007 GFC and the 2010 EDC.

Figure 2.5 Conditional correlation dynamics for EUR-GBP, EUR-JPY and GBP-JPY
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Note: This figure displays the conditional correlation dynamics over the total sample period for the EUR-GBP,
EUR-JPY and GBP-JPY correlation dynamics. As before, EUR-GBP represents the correlation between USD-
EUR and USD-GBP returns. The horizontal dashed lines indicate the two hypothesised structural breaks. For
better visibility, we plot the 15-minute correlation dynamics; however, the same pattern arises for the other
intraday frequencies.

% These correlations displayed here are the mean levels of the dynamic conditional correlation estimates for
each subperiod.
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Panel A in Table 2.5 sets out the specific parameter estimates for the ADCCXE model
incorporating two structural breaks evaluated at the 5-minute frequency. Although we
previously concluded that an abnormal case (a larger absolute order flow differential
increasing exchange rate co-movement) is only seen for the AUD-NZD correlation dynamics,
the structural break estimates suggest that the abnormal case was also prominent during the
2007 GFC for both the EUR-CAD and EUR-GBP correlation. For the EUR-CAD and
EUR-GBP correlations, the order flow estimates were significantly positive during the 2007
GFC ( Mgur-grc = 0.0325 and 0.0288 respectively), whereas there is a strong negative

relationship before (Npre—grc =-0.1070 and -0.0274 ) and after the 2007 GFC (Npost—Enc = -

0.0405 and -0.0265). **

The key question is: what causes the relationship to be positive during the GFC for
both EUR-GBP and EUR-CAD correlations? We again resort to the trading intensity-based
explanation used to explain the positive relationship between absolute order flow differentials
and the AUD-NZD correlation. Between 2007 and 2010, the trading intensity decreased
drastically for the USD-EUR spot rate, compared to its pre-crisis level. However, average
trading intensities increased for all other exchange rates, and in particular for the USD-GBP

and USD-CAD rates each being the other party in the correlation pair with EUR.

The trading intensity of USD-EUR changed in opposite direction to those of USD-
GBP and USD-CAD. Such opposite movements must have drastically increased the
differences between the former one and the latter three trading intensities. As discussed in

section 3, if the difference between D(L,S/*) and D(L,S?) (with S depending on trading

intensity) is large enough, this would cause a large enough difference in the discount factor b

* The main conclusions derived from the 5-minute analysis apply to the other frequencies. Please see Table A3
in Appendix A for the analyses using 15- and 60-minute intervals for all exchange rate pairs.
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between two currencies (e.g., b << b/*), which could then lead to a change of the sign of 7

capturing the effects of order flows on their correlations. Based on those theoretical
discussions and on the above observations about trading intensities, we infer that the discount
factors for the exchange rates USD-EUR, USD-GBP and USD-CAD became drastically
apart, such that b¥R << b®® and bR << b“"P. Accordingly, the absolute order flow
differentials started to have positive effects on the EUR-CAD and EUR-GBP co-movements,

in line with the conjecture about abnormal trading circumstances in hypothesis H2.

Another question is whether alternative models, without break or with one break or
with two breaks, confirm the existence of two breaks in the correlation dynamics. The LRT
displayed in Panel A in Table 2.5 tests the null hypothesis of no structural break against the
alternative of two structural breaks. They are all statistically significant at a higher than 1%
level, thus rejecting the null. The LRT statistics in Panel B (C) test the null hypothesis of one
structural break associated with the 2007 GFC (the 2010 EDC) against the alternative of two
breaks. The statistics reject the null mostly at a higher than 1% level, and in two cases at a
higher than 5% level, in favour of the alternative of two breaks. Thus, we conclude that the
model with two structural breaks due to the 2007 GFC and the 2010 EDC significantly
outperforms the model with no break, or a single break due to the 2007 GFC, or a single

break due to the 2010 EDC. This amounts to lending support to hypothesis H3.
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2.7 Robustness

2.7.1. Bid-ask-spread

The first robustness check is to see whether our results will change if we incorporate
the bid-ask spread as an additional driving force for correlation dynamics. Traders are
sensitive to actual bid—ask spreads, as the spreads determine their transaction costs and hence
they may substitute trades in one currency for another that has a correlated exchange rate but
smaller bid—ask spreads. This is particularly relevant for intraday (technical) traders, as they
trade much more frequently than a long-term trader, thereby making transaction costs an
essential consideration in their trading decisions. The sensitivity of traders to an increase in
the bid—ask spread can also be used to infer the relationship between the bid—ask spread and

exchange rate co-movements.

We conjecture that the relationship is negative: a rise (fall) in the difference between
the bid-ask spreads across currencies leads to lower (higher) co-movements of their exchange
rates. The intuition is this. Consider a currency trader who wishes to trade USD for either
EUR or GBP as EUR and GBP are highly correlated in terms of their exchange rates against
USD. Whether the trader should ultimately choose EUR or GBP for trading depends further
on another important consideration — the bid-ask spread differential between the two
currencies. If the spreads associated with EUR and GBP rise/decline by the same amount, so
do their transaction costs, then the trader will be indifferent between the two trading
decisions. However, if the spread increases for (say) EUR and/or declines for GBP, the trader
should switch from trading USD for EUR to trading USD for GBP, to reduce transaction
costs. As a result, GBP is likely to experience more frequent trading than EUR with USD,

implying that GBP would experience greater appreciation/depreciation than EUR. In this
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case, the magnitude of joint appreciation or joint depreciation of EUR and GBP would

become smaller than when their bid-ask spreads increase (decreases) by the same amount.

Bid-ask spreads are related to market liquidity, which is a fundamental aspect of any
market. Although there may be a strong link between bid-ask spreads and exchange rate co-
movements, the market microstructure literature suggests that all the information about future
fundamentals (including bid-ask spreads) will be incorporated in current order flows. Current
order flows in turn transfer the information into price movements. To test this conjecture, we

modify the ADCCXE model in Equation (2.9) as follows:

Q = (6_ A@A— B'QB —fhy—??z?) +A'e € A+B'Q B +my | Xy g —Xory |47, | Yas = Yars |
(2.11)

where,

_ T — T
X=T lzt=1|xlt—l - X2t—l| Y =T 12(:1' Yier = Yara || X1~ Xt | and | Yien = Yo | represent
the absolute differences between the order flows and bid-ask spreads, respectively. All other

variables are defined as in Equation 2.9.

Note that the bid-ask spread affects the conditional correlation dynamics as outlined in
equation 2.10, i.e. ifn, < 0, a rise (fall) in the absolute bid-ask spread differential in the
previous period would reduce (increase) exchange rate correlation in the current period, given
all other variables and parameters in (2.09); if n, > 0, the reverse is true; and if n, = 0, the

absolute bid-ask spread differential will have no effect on the correlation.

Table 2.6 shows the results of our ADCCXE (Equation 2.11) with the bid—ask spread
as exogenous variable in addition to the absolute order flow differential. We centre our
analysis in depth on the 5-minute correlation dynamics, with the results for the other

frequencies reported in Appendix A.
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Although the bid-ask spread is statistically significant overall for seven out of the
nine testing specifications, the parameter estimate of the absolute order flow differential is
still significantly negative for all exchange rate pairs with the exception of the AUD-NZD
pair in the sample. The parameter estimate increases for EUR-GBP, EUR-CAD, GBP-CAD,

JPY-AUD and JPY-CAD, whereas the estimate decreases for EUR-JPY and GBP-JPY.

The increase in the parameter estimate is small for both the EUR-CAD and the JPY-
CAD pair, where n, increases from -0.0525 to -0.0552 for EUR-CAD and from -0.0143 to -
0.0145 for EUR-CAD. Large increases in the estimate related to the absolute order flow
differential arise for EUR-GBP (-0.0498 to -0.0778) and GBP-CAD (-0.0141 to -0.0346). By
contrast, the estimate related to the order flow differential drops significantly for GBP-JPY (-
0.1432 to -0.0532) and EUR-JPY (-0.0652 to -0.0520). Note that the relationship between
absolute order flow differential and co-movement was particularly strong for these two pairs

before controlling for the underlying bid—ask spread.

For several spot correlations (such as EUR-CAD and GBP-JPY), the bid-ask spread
parameter has the wrong sign, indicating that a larger bid—ask spread increases co-movement.
This counterintuitive finding, coupled with the insignificance for one-third of our sample,
makes us conclude (again in line with the market microstructure literature) that all
information about changes in the underlying market fundamentals (including spreads and

liquidity by definition) are already incorporated into order flows. %

An interesting field for future research would be to investigate whether order flows
can be linked to spread dynamics itself (i.e., to investigate the effect of the absolute order
flow differentials on the co-movement of bid—ask spreads from several currencies). We leave

this aspect for future research.

% One may suggest to further incorporate IRDs as an additional exogenous variable in the correlation process.
However, at an intraday frequency, the interest rate observations are constant throughout a day.
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2.7.2 Standardised measures of order flow

Yet another question to address is whether our findings are robust to different
standardisations of order flows. One potential concern is that individual order flows (referred
to below as “un-standardised order flows”) are of different magnitudes across different
currency markets. For example, the mean imbalance between buyer- and seller-initiated order
flows and the trading intensity are much greater in the trades of EUR with USD than in those
of AUD with USD: the EUR market’s order flows overwhelmingly dominate the AUD
market’s. So, our analysis based on un-standardized order flows might be biased when
comparing the transactions of EUR and of AUD with USD. In fact, this concern is relevant to
the use of daily net order flows for analysis. However, we still want to address it at the

intraday frequency.

In doing so, we follow Menkhoff et al. (2012) and divide order flows by their
standard deviations. This standardisation aims to make markets more comparable in terms of
mean order flow levels and their fluctuations. Another approach is to relate the net order
flows to the trading intensity in each market, thereby giving more weight to the net order
flows arising from lower trading intensities. This setting will penalise larger net order flows
due to larger trading volumes, thus making markets more comparable. The standardisations

are done in the following manners:

~ of; - _

X? =——""" for the volatility based standardisation; (2.12)
" o(of,,t:T)

_. of . . —_—

Xi, = i 'L for the trading intensity based standardisation® : (2.13)
’ [

it

*® In case the trading intensity (and hence the order flow) is zero during a particular interval we set i,“t equal to
0.
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where X/, denotes the standardised order flow of currency i adjusted by the standard

deviation of its order flow at t; )?f't the standardised order flow of currency i adjusted by its

trading intensity at t; of;; the order flow of currency i at t; o(ofj, t:T) the standard deviation of
the order flow of currency i; and ti;; the trading intensity of currency i. We then replace the

un-standardised order flows with the standardised order flows in the ADCCXE model.

Table 2.7 reports the results of this robustness test. Panel A displays the parameter

estimates for the ADCCXE model using the volatility-adjusted standardised order flows X7,.

We can see that the conclusions drawn from previous analysis using un-standardised order
flows remain unchanged. Specifically, for all exchange rate pairs under investigation, the
relationship between the absolute order flow differential and co-movement is still
significantly negative. As with the analysis conducted in section 5.2, the negative relationship
is strongest for the EUR-JPY and GBP-JPY co-movements (r = -0.0116 and -0.0215
respectively). The relationship is the weakest for the GBP-CAD and JPY-CAD correlation

dynamics (77 = -0.0032 and -0.0033 respectively).

Panel B reports the estimation results of the ADCCXE model using the trading-

intensity-adjusted standardised order flows ii‘ft. We can see that the similar pattern to that in

Panel A emerges: although one 7 parameter (with GBP-CAD) has a statistically and
economically insignificant estimate (-0.0005), all others remain statistically and economically
significant. More importantly, all the 7 estimates are still negative, confirming the robustness
of the baseline estimation results presented in Table 2. These results of robustness check
suggest that, even controlling for different trading intensities or order flow volatilities, the
negative relationship stated in hypothesis H1 generally does not change. This conclusion also

holds true for other intraday frequencies (See Table A2 in Appendix A.1).
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2.8 Order Flow and Volatility Dynamics

A final question related to modelling co-movement is whether order flow also drives
conditional variances, thereby affecting the results of testing hypothesis H1. This question is
relevant because, based on the dynamic conditional correlation models, the covariance
between two assets is a function of both conditional correlation and conditional variance.
Since a larger order flow represents a greater buying or selling pressure for an asset, it should
increase the conditional variance of the asset’s returns. Thus, one needs to control for this
volatility effect of order flow while investigating the relation between order flow and

dynamic correlation.

Our approach to incorporating order flow as a driving force for variance dynamics is
different from studies that relate the trading volume to volatility. Such studies apply
theoretical market-microstructure models, involving strategic interactions among asymmetric
informed agents (Payne, 2003). These models suggest that, due to information asymmetry,
higher trading volumes can result in price jumps. However, we conjecture that it is the buying
or selling pressures from order flows that are responsible for price jumps. This conjecture
comprises a simpler explanation for two reasons. First, it does not require agents to be
rational. Second, it does not rely on complex models to explain price changes, but simply and
more intuitively maintains that a larger imbalance between demand and supply would result

in greater price variations/volatility.

We assume that the exchange grate return follows a GARCH-X process (X =

“exogenous”™):
Tit = ¢ + Xj21 PyjTic—j + Zit + Lk=1 Kik Zit—k (2.14)
z¢| Q¢_1~N(0, Hy); (2.15)
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hjt = w; + 6Zizt—1 + 6hje—q + &[X4l, (2.16)

where X;_; is defined as the order flow for each exchange rate. Note that we use absolute
order flows, as we want to relate the absolute buying or selling pressure to the variance. The
second-stage correlation dynamics follows the ADCCXE representation outlined before. Note
that the GARCH model in Equation (2.7) is a nested version of the GARCH-X in Equation

(2.16), with £=0 being imposed.

Again, we base our analysis on the highest available frequency (i.e., 5 minutes)®’.
Table 2.8 shows the parameter estimates of the GARCH-X-ADCCXE model. We are
particularly interested in the exogenous parameters of the volatility equation (&). At first
sight, for all the exchange rates evaluated, the relationship between absolute order flow and
volatility is positive and highly significant, which is in line with our hypothesis. In other
words, a larger absolute order flow increases the volatility of an exchange rate, which is
consistent with the idea that larger absolute order flows represent greater buying or selling
pressure, resulting in larger price variations. This finding is statistically significant for all
exchange rates and the relationship is particularly large for USD-GBP (0.0074) and USD-
JPY (0.0032) volatility dynamics, whereas the effect is rather modest for the USD-AUD

(0.0005), USD-NZD (0.0006) and USD-EUR (0.0007) volatility dynamics.

Apart from these GARCH-X estimates, we have to note that the first-stage GARCH-
X estimation does not alter the conclusions drawn in the second-stage estimation. For all
exchange rate pairs except the AUD-NZD correlation (i.e., the relationship between absolute
order flow differentials and the correlation dynamics) is still significantly negative, with the
strongest relationship estimated for the EUR-GBP (n = -0.0451), EUR-CAD (1 = -0.0490)

and GBP-JPY (1 = -0.0516) correlation dynamics.

2" Chapter 3 will evaluate the forecasting performance of this GARCH-X approach using daily frequencies;
results for the other intraday frequencies are outlined in Table A5 in the Appendix A.
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Whereas this analysis documents the positive relationship between order flow and
exchange rate volatility, Figure 2.6 graphically presents the differences in the evolution of the
underlying volatility between the GARCH-X and GARCH parameterisations. This graphical
analysis documents the nature of the conditional return series, as the volatility is governed by
a high average persistence, as well as the implications of the 2007 GFC, which resulted in an
enormous spike in conditional volatility. Based on this graphical representation, one might
argue that testing for a structural break in the volatility dynamics akin to Dijk et al. (2011)

might be in order. We leave this for future research.

It is clearly visible that the volatility spikes estimated by the GARCH-X procedure are
higher volatility spikes, a pattern that is not as high in the in the normal GARCH process. The
reason for those spikes is that order flows spike after a news shock, thereby generating price
jumps and hence an increase conditional volatility. Given the fluent spikes in volatility
predicted by the GARCH-X model, this approach could be beneficial for predicting

conditional volatility during financial turmoil, a question we evaluate in the next chapter.

Figure 2.6 GARCH-X and GARCH variance dynamics

| GARCH-X GARCH |

0.05
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Note: This figure displays the estimated conditional variances for the USD-EUR exchange rate returns using two
different GARCH specifications. The red line displays the evolution of volatility following from the GARCH-X
estimates, given by Equation (2.16). The blue line displays the estimated variance dynamics from the GARCH

(1,1) model, given by Equation (2.7).
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2.9  Conclusion

This chapter extends traditional microstructure theory to analyse multivariate
exchange rate movements in a high-frequency setting. We theoretically link and empirically
test the link between the absolute order flow differential and the correlation dynamics of eight
exchange rate pairs. In what follows, we summarise the main findings and hypotheses tested

in this chapter.

First, this chapter confirms that correlations are dynamic and time-varying at intraday
frequencies, which is in line with the existing literature. Though this finding is not necessarily
unique to financial returns, this chapter evaluates how exchange rates co-move during
intraday intervals for the first time in the literature. We find that intraday correlation
dynamics are governed by an enormous level of persistence in correlation. We also find that
intraday exchange rates co-move more closely after joint appreciation than after joint
depreciation. This finding was previously reported for daily exchange rate correlation
dynamics. We attribute this finding to investor sentiment and, in particular, to over-reactions
to negative news for the US economy, which can explain why positive asymmetry dominates

negative asymmetry for intraday correlation dynamics.

Second, as a unique result, the research provides strong evidence for the link between
order flow and exchange rate correlation dynamics, finding that a higher order flow
differential is negatively related to return co-movement. This effect is particularly strong for
the highest intraday frequency evaluated and lowers as the frequency decreases, confirming
the gradual incorporation of order flow information into prices. Apart from the gradual
decrease in the relationship, we also find that the relationship is stronger for exchange rate
pairs with higher levels of unconditional correlation. We argue that this is because exchange
rates with low levels of unconditional correlation exhibit large absolute order flow

differentials more frequently, thereby lowering the impact of an additional increase in the
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absolute order flow differential. The negative relationship is highly significant for all
exchange rate pairs evaluated, with the notable exception of the AUD-NZD correlation
dynamics, which we argue arises from the vast differences in trading intensity between

USD/AUD and USD/NZD.

Third, incorporating two structural breaks caused by the 2007 GFC and the dramatic
worsening of the crisis in 2010 considerably improves the fit of our dynamic conditional
correlation model. In addition to that, we document that the effect of the order flow
differential changed for both the EUR-GBP and EUR-CAD pairs during the crisis, as a larger

order flow differential suddenly increased the future co-movement for both pairs.

Our findings dictate the direction for the second essay, as testing the forecasting performance
of our proposed models — thereby further examining the practical benefits of this research — is

a natural extension.
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Appendix A

A.1  Additional Tables

Table A.1 Further descriptive statistics

USD-EUR USD-GBP USD-JPY USD-AUD USD-NZD USD-CAD
Panel A. 15 minute returns
Maximum 0.024 0.031 0.031 0.043 0.036 0.028
Minimum -0.017 -0.027 -0.042 -0.059 -0.039 -0.023
Mean 3.50e-04 1.0e-04 1.87e-04 4.45e-04 5.35e-04 3.31e-04
Std.Dev. 0.09 0.09 0.11 0.14 0.14 0.09
Skewness 0.51 -0.14 0.42 -0.90 -0.67 0.47
Kurtosis 35.43 43.88 99.53 99.75 58.54 31.45
JB-Prab. 0.00 0.00 0.00 0.00 0.00 0.00
Panel B. 15 minute order flow
Maximum 179 300 95 326 119 369
Minimum -136 -252 -132 -368 -148 -330
Mean 0.38 0.87 -0.06 0.36 0.25 1.15
Std.Dev. 13.7 24.76 3.27 26.20 10.57 23.36
Skewness 0.20 0.14 0.61 -0.15 -0.11 0.297
Kurtosis 9.78 8.99 82.11 12.13 10.63 13.87
Panel C. 60 minute returns
Maximum 2.77 3.59 3.19 413 4.03 3.28
Minimum -1.88 -2.83 -4.25 -5.82 -4.02 -2.57
Mean 1.38e-03 3.31e-04 7.50e-04 1.80e-03 2.10e-03 1.31e-03
Std.Dev. 0.19 0.19 0.15 0.26 0.28 0.17
Skewness 0.20 -0.44 0.17 -0.67 -0.65 0.25
Kurtosis 11.57 14.80 28.20 35.62 19.83 12.79
JB-Prab. 0.00 0.00 0.00 0.00 0.00 0.00
Panel D. 60 minute order flow
Maximum 276 489 99 637 156 536
Minimum -241 -501 -117 -609 -264 -500
Mean 1.53 3.50 -0.02 1.44 0.98 4.60
Std.Dev. 29.3 52.1 7.2 57.6 22.70 50.9
Skewness 0.17 0.05 0.05 -0.21 -0.23 0.25
Kurtosis 4.73 6.89 25.30 8.80 8.52 9.40

Note: This table shows the descriptive statistics for 15 and 60-minute- returns- (Panels A and C) and order flows

(Panels B and D) for six exchange rates. Returns are calculated as the difference between the log mid-quote.

Order flows are aggregated tick-by-tick over the corresponding for 15 and 60-minute intervals. The means and

standard deviations for exchange rate returns are expressed in percentage points.

67



89

‘|9N3] %T Y1 1e 90URIILIUDIS SBI0USP x5 "WNWIXEW BU) 18 Palen|eAs
(D@3 0t0z) 249 2002 8yl 01 anp Mealq [eln1onais suo YlIM [apow 8yl Jo uonauny pooylaqi-6o] ayy (294, 17) 242477 "‘wnwixew ay) 18 palen|eAs syealq [eInonis g Yum
[3pow 3y} Jo uonouny pooy1|axi|-Ho| syy sexousp 294 49 177 "sxjeauq z 40 sAleuIR)E By} Isurebe (3esiq DA 0TOZ dY}) Yeaid T 4O [INU 8y} SIs8) €147 'syeald g JO dAleUIs)[e
ay1 1suiebe (dealq D49 200Z dYl) Meaiq T JO [Nu 3yl $I1S8] 1 ¥ "Syealq Z J0 aAleulIalfe ay) 1sulefe xealq ou Jo SIsaylodAy [Inu ayl $1s81 1 ¥ "01ISIIeIS 1581 011kl pooylayl|
ay1 se1ouap 147 (T002) preddays pue a1bu3 ul pasodo.d ainpadoid abeis-om] syl asn SI0JIa pJepuels palipow ayl Jo uoneindwod pue uonewnss ayl "z'v xipuaddy ui (gv)
uonenba ul [1elap ||y ul UsAIb si [apow ayl Jo uonezuslawedled syl (D@3) SIsud 1gap ublatanos ueadoing QTOZ 8yl 40 BuileIS J0) 0TOZ ‘6 Y2IBIN pue ‘(D49) SISLIO [eIduBULL
[eqolf 200z ay1 Jo Bunuels ayl Jo) 2002 ‘6 1snbBny ‘AjaAndadsal ‘are seyep yealq ayl ‘(g |aued) awnulw-09 pue (V [aued) ainulw-GT ‘Aj9A110adsal ‘ale UOIBWISS 10) pash
B1Ep BY_L "SYealq [eINIoNJISs 40} S1NSal 1581 pooyl|axi|-B0o] 8yl pue s)eaiq [edn1oniis oM Yim [apow IX00AV-HOHVYO 8yl JO sajewnss Jajsweled ayl syuasaid ajgel siyl "81oN

*x 7002 »x 8092 »x 06'EY xx 7087 *x G522 ¥x T'GET »x 82'G6 €14
T'€06TE 9'6658T 62T68T £'99082 z'zenee 621292 €'1/0T€ 29971
90 0£2 »x 8T°9E *x TO'SY xx 8T°9FE ¥x 12702 *x ETVT aRSR
8'CI6TE G'6098T 8'9T68T 699082 7'0€TET ¥°0,292 8'LTTTE 4411
*x ET°L2 »x TTE9Z xx GL°0ZT xx G6'G9 *x 907§ ¥x G6LY »x 9'8EE 14T
T'€T6TE 107981 8'v£68T 6’68082 6'LETET G'0829¢ 6v21TE 2448 243 47
6T¥0°0 €TL0°0 186T°0 L2.T0 08£€°0 18220 £2r9°0 0aa=150dg
12200 85€0°0 785€°0 85£0°0 TT8€0 LE0E0 GG59°0 od9—4ndd
L€2T°0 €182°0 L9S€0 €€8e0 0S2€0 9/82°0 6€9.°0 9d9-24dg
XX HHO0.0- XX @@O0.0- NO._”0.0- X% O._”O0.0- xx ._w._”O0.0- xx @HO0.0- XX muwoo.o- oassody,
XX @HO0.0- *%N#O0.0- N._NO0.0- XX N._”O0.0- xx w._noo.o x Nmoo.o XX Nmoo.o O49-1R/y
XX m.._uoo.ou XX wmoo.o- x¥X wmoo.o- XX wmoo.o- xx N._”O0.0- XX N?O0.0- XX @@O0.0- 24981y
SUOoIJeAIasqo anuiw-09 g |sued
xx 1'86 »x 809 ¥x 908 xx L'ESY xx 9'6GE *x £T6C ¥x 9211 €1y
8206¥1¢ GS'650TTC S ThY6he G'8£8GG¢ 21991 ¥9°GT9GYC 9'GTTE6L 24471
xx L'TET *x 8°02€ ¥x V9 xx V'/8E xx 9'6TE xx L'V8T *x 10 aRSE
ZvesyTe G'6E0TTC £ZSY6he 9'T/8GG¢ 0’1699V 6°89951Z Z61TE62 49471
¥x C'LS. »x 171202 xx8LL1 xx 6'E9Y ¥x 9'96€ »x 0’862 »x 1992 14T
Z0S6vT2 9'6TZTTC 7' 7876vC £'99095¢ 8'0T89%¢ 119572 ZYSTE6T e U
0800°0 0ETT0 8%72'0 868T°0 ¥282°0 S/¥20 92£9°0 0aa-350dd
08700 6EET 0 8e€0 28000 195€°0 2€0g0 2.89°0 2d49—4ndg
8T6T0 6TLE0 8T€0 T.¥7°0 SPTE0 L¥82°0 6GEL0 Jd9=24dd
xx G200'0- 6850°0- xx L000°0~ xx 7100°0- xx 0GT0°0- xx 78T70°0- xx 9800°0- oaIsod)
»x GE00'0- *x 9550°0- x ¥000°0- xx 67000 xx 87000 *x €220°0 *x 79000 03910y
»x 87000~ xx CVT00- xx GT00'0- xx 60T0°0- xx 6800°0- xx GZE0'0- *x G900°0- o921y
SUOIIBAIBSUO BINUIW-GT "V |dued

avo-Ade aNv-Adr avo-dgo Adl-d99 avo-dn3 Adr-4n3 d99-4n3

salouanbaly Jayuny — abueyd [In1onAs YUM [apowl IXIDAV-HOHVD aU1 JO Sajewiss Jsjaweled Z'y a|ge.l



69

‘A1oAnoadsal [8A8] %G 8Ul pue 94T 8yl 1e 8ourdIIUBIS alousp

» PUR 44 ‘WUNWIXEW 3Y) 1e palenjeAs uonauny pooyliaxi] Boj ayy salousp 4717 '(1002) paeddays pue sjbu3 ul pasodoid ainpadold abeis-o0Mmy ayl asn S1olia plepuels paljipow

8y} Jo uoneINdwod pue uonewnss ayl ‘(Q |aued) L1ep aInuIW-09 pue (D aued) -GT 8yl J0J SMOJ) Japlo pasipiepuels paseq-Aususiul-Buipen ayy Buisn pue ‘(g |aued) e1ep

alunw-09 pue (v [aued) -GT 8yl 10} SMOJJ J8pJo pasipiepur)s paseq-Alljie|oA syl Ajaandadsal Buisn ‘[apow IXDDAV 8U1 JO sajewnss Jajswedted & ay) syussaid ajqel siyL

€'/88T¢E V' ETV.LE 6'€TS8T 2'687.¢ 6'TT18¢ 8'¢LTEC 9'VETIC L'T8TTE 4771
*x¥7GT0°0- 0000°0- *x1000°0- T000'0- *x €000°0- xx ¢0T0°0- *x 09000~ * €¢20°0- u
SAOJJ 1apJo pasiplepuels paisnipe-A1isusiul-Buipes) pue suoleAIasqo alnuiw-09 Buisn & jo arewnss Jaysweled jspow IXDOAV 'd |sued
0'€656T¢ S'67T0ZC G'LETSTC 9'LLE61¢C '659695¢ 0'¢29¢9¢ Z'87961¢ 6'89T€E6C 4771
*»xT1¢V0°0- *x600°0- L000°0- *x TT000- x 7000°0- xx 0TT00- * 0V0°0- *x G€90°0- u
SMOJJ 18pJo pasipiepuels paisnlpe-Asusiul-Buipes) pue suoleAIssqo alnuiw-GT Buisn & Jo ayewnss Jsjswiesed [spow IXDOAV ‘D |aued
2'668T¢E CVITLE S'7658T €e6LYe L'€608¢ €06T€C L'0v19¢ 2'C9ETE 4771
*x GT00°0- *x0v10°0- *x 8000°0- x ¢200°0- *x 6000°0- xx G200°0- *x¥7.000°0- *x 7200°0- u
SMOJJ 1apJo pasipiepuels paisnipe-A11j11e|oA pue SUoITeAIasqo anNuUIW-09 Buisn & Jo s1ewnss Jajswedted [gpow IXDIAV ‘g |aued
2'200T¢e 8'0650¢¢ 0'vT280¢ G'89¢61¥¢ L'CET9GC G',0929¢ 2'G94961¢ 6'CL6C6C 477
*x G100°0- *x9000°0 *x G€00°0- *xx 8T100°0- 9000°0- *x 92000~ *x ¢000°0- *x 05000~ u
SMOJJ J9pJo pasipJepuels paisnipe-A11[11e]oA pue SUOITeAIasqo aINUIW-GT Buisn & Jo srewnss Jajewered jspow IXDOAV 'V |aued
avo—-asn anvy-dasn anv-dasn avo—asn Adr=adsn avo—-dasn Adlf—=Adsn dd9-dsn
Adlr—asn dzZN—-dasn Adlr—asn dd9—-dsn dd9—dsn dNn3—-asn dNn3a—-asn dN3-asn

sa1ouanbaiy Aepe.ul 1ay1iny — MOJJ JapJ0 JO SaINseall pPasipJepuels :S)jnsal Jo ssaulsnqoy £V ajgeL



0L

*K19A103dsal S|aA3] %G PUB 94T dU T8 30URdIUBIS 810UBP 4 PUE «x MOJJ J9PIO SINJOSCE

3y yum parerdosse si 3 Jsraweded sy 'salousnbal) snuIW-09 pue -GT uo Buisndoy ‘(9T°z) uonenb3 ul [spow X-HOHVYO 8y JO salewnss Jalswesed ay) siussaid ajgel siyL

G0-3¢8'1 xx 90-9/6'7 xx G0-9TL'8 *xG0-96C'T 90-286°¢C xx 70-9G0'T 3
*x G/86°0 *x €886°0 *x 1686°0 *»x €886°0 *x 7€86°0 *»x G066°0 ;)
xx G0TO'0 *x 8600°0 *x 8900°0 *x 96000 *x IVT00 *x¥7,00°0 Q

x»x G0-9€G°C xx G0-909'8 *x G0-990'T xx G0-986'1 xx G0-9¢20'9 xx G0-9E6'E fm
SUOIBAIBSO BINUIW 09 “g [aued
*x70-98€°¢C xx G0-989°L *x G0-9TL'E xx V0-9EC'T *x 70-9€9°€ xx G0-98¢'G 3
x*x 6€66°0 *x 9€66°0 *x ¢€66°0 *x C€66°0 xx 0V66°0 *x 6€66°0 ;)
*x 7000 *x 77000 *x 87000 *x 86000 *x 07000 *x T700°0 o
G0-9T9'T G0-9TC'T xx 90-9G.°9 xx G0-9G0'T *x GO9TV'T xx G0-9TE'T o
SUOIBAIBSCO SINUIW GT 'V |aued

dZN—-dsn anv-dasn d99-dsn avo—dasn Adlr—dsn dN3-asn

salouanbal) Aepenul Jaylny — solwreuAp AJIIRIOA pue MOJ) J8plO SV 3jdeL

‘KlaAnoadsal S[ana] 94G pue 94T 8yl 18 aduediyiubis

910UBP x PUR 4y ‘PeBIdS MSe—pIq ay) 01 SpuOdsaiiod 2L sesssym ‘[enualajlip MOJL JBpJ0 8INjosge 8yl YlIM pareroosse si Tl sajawesed 8yl “WNWIXew 8yl 18 palen|jens

uonouny pooytax1-Bol-1senb ayy st 477 "sa1ousnbaiy sInuIW-Q9 pue -GT uo Buisnaoy (TT°Z) uonenb3 ul jepow IXDOAY dYl JO serewnss Jayawresed ayy siuasaid ajqel siyL

T°906T¢ €80v.E 8',6G8T 8'96.¥¢ €¢.,08¢ L'TTTEC L'GETIC G'090TE ATT
¥000°0 ¢000°0 »x 9ET00 *x 92000 GT100°0- 8E€T00- »x 06,00 *x 6¢V0°0 e
971000~ ¥100°0- *x 92000~ *x 80000~ TS00°0- *x ¢600°0- *x LEOO0- *x G200°0- e

SuolJeAIasqo anulw Q09 g |aued
6'6TvV1C v'7691¢¢ T'T00TTC g'aevere L'C165S¢ v'LG99v¢ 6°¢cSsre T'GT¢eE6C 4711
*x 07000 *x 8000~ LS00 *x G700°0- 02¢00°0- 02000~ *x 87700 *»»x0€00°0- el
*xx 920070 xx 8T€0°0 *xx L2000~ T000°0- €000°0- xxx 0£00°0- xx 6020°0- xxx 6100°0- T
SUOIIBAISSQO slnulw GT 'Y |aued
avo—-asn anvy-dasn anv-dasn avo—dasn Adr=Adsn avo—-asn Adlf—=Adsn dd9-dsn
Adlf—Adsn dzZN-dsn Adl—=Adsn dd9-dsn dd9-dsn dN3—-dsn d4N3—-dsn dN3—-dsn

salouanbaly Aepeaul Jaylny -peaids Yse-piq pue Moy} J9pJo S1Nsal JO ssauIsnqoy 7'V ajgel



A.2  News Impact Surface and Structural Break Specification

The news impact surface for the ADCCXS correlation estimates is given by the

following formulae from Cappiello, Engle, and Sheppard (2006):

Ci2+(a102+Y1Y2)E182+B1B2P12

fore; 20,6, 20

f(ey,€2) = \/

" 2 211% 2 2
[Er1+al+y 2 €1 +B1 1[C2205+y22 €2 +B27]

Ciot(a102)€1€2+B1B2P12

,fOI‘Sl SO,EZ =0

f(Sl, 82) = \/

- 2 291 x 2
[C11+0‘§+Y12 €17 +B, ][CZZO(%EZZ"'BZ ]

f(e,, 8,) = —2tInieathibeliz  fore < 0,6, <0 (2.15)
J[5114‘0(%512+B12][5220(§+822+[322]

where g and ¢; are standardised residuals for both markets; ¢;;, ¢;; and ¢;;, are the
corresponding elements of the intercept in the correlation equation; a and b are the diagonal
elements of matrices A and B; and p;;, is the corresponding element of the unconditional
correlation matrix. These equations clearly highlight that asymmetry is captured by the
differences in slopes, as embodied in (a;a, + y1¥2)€.€, . By comparison, the news impact

surface of the ADCCXE model (Li, 2011) is given by:

f(€1,€2) — J Cip+aq0(81+Y1)(E2+Y2)+B1B2P12 ’ (216)

[6114‘0(%(51+Y1)2+312][(~322+0(§ (€2+Y2)2+322]

where the asymmetries are captured via “eccentricity” (i.e., a;o,(e; + v1) (€2 +V2)).
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The ADCCXE model that takes into account two structural breaks both in the long-run
mean and the dynamic parameters related to the absolute order flow differential has following

evolution for Q;:

r— r—

Q = I[t<7](Qq, —AQA-BQB—-nX)+ I[ty <t < 7,](Q, —~AQA—BQ,B -
n,X;) + 11, < t](Q; —AQA —BQB—1X3) + A'g,1€"r 1A+ B'Quy B+ I[t <

T1]T]1|X1,t—1 - Xz,t—1| + [t <t < Tz]Tl2|X1,t—1 - Xz,t—1| + Ity < t]ns]|(Xpe—1 — X2-1)]

(2.17)

where I[A] is the indicator function for Event A ,which can take on the values zero or

one, and 7; and 7, denote the break points , with 7; < 7,.Q; = 7,7 '3L,(g,€), Q =
(Tz - Tl)_l Zﬁifl(ete't) and Q3= (T— Tz)_l Zz::‘rz(gtg,t) I Z?:1(|(0fl,t—l -
ofz ), Xz = (7, — Tl)_l Y2, ((of e — ofp—1)]) and Qs = (T —17,) " X1y, |(ofyemq —

0f2,t—1)| .

The break points are fixed a priori, reflecting the start of the 2007 GFC (A,) as well as
the dramatic worsening of the EDC crisis with the European Union’s announcement of
providing financial help to Greece in 2010. The models with one structural break either due to

the 2007 GFC or 2010 EDC are nested versions of the model given in 2.17.

To evaluate the fit of the structural break model, we use standard likelihood ratio tests,
testing the null hypothesis of no structural break (Equation 2.9) against the alternative of two
structural breaks (Equation 2.17) and against the alternative of one structural break either due

to the 2007 GFC or 2010 EDC.
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3. Chapter Three: Forecasting FX Co-Movements via Order Flow
3.1 Introduction

Although the emphasis of the market microstructure approach to exchange rate
determination has primarily been on explaining exchange rate movements via order flow (e.g.
Evans and Lyons, 2002a) the predictive content of order flows for future exchange rate
movements has been studied in much less detail, and neglected the predictive content of order

flow for joint exchange rate movements.

This chapter adds to the studies on order-flow-based forecasting by examining how
well order flow can forecast the joint variations (co-movements) of exchange rate returns. The
intuition is that, although a single order flow explains and possibly predicts single exchange
rate movements as a result of the net buying pressure on the currency concerned, the
difference between the net buying pressures in two currency markets should determine how
both markets move together?. The reason why order flow is likely to have a persistent effect
on exchange rate fluctuations is the gradual incorporation of order flow information into

prices, as suggested by Berger et al. (2008).

Using daily data throughout this chapter, we find that the absolute order flow
differential between two currencies — defined as the absolute difference between two
individual order flows — is negatively related to future co-variations in returns. These “daily”
results and implications are therefore in line with those of the intraday analyses reported in
Chapter 2. A new finding from this chapter is that, as far as daily correlation dynamics are
concerned, the IRD loses its significance once the order flow differential is accounted for.?

This finding contributes to the literature in two ways. First, it directly confirms the market

%8 As in Chapter 2, order flow is defined as the net of buyer- and seller-initiated currency transactions.
29 Because intraday data on interest rates are not available or show no variations within a day, Chapter 2 did not
include the IRD in intraday analyses.
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microstructure literature which suggests that order flow contains information about economic
fundamentals, including changes in interest rates (Evans and Lyons, 2009; Cerrato, Sarantis,
and Sauders, 2011). Second, the finding challenges the previous studies which use the interest
rate differential as an exogenous determinant of exchange rate correlations (Benediktsdottir

and Scotti, 2009; Li, 2011).

More importantly, this chapter shows that order flow can enhance covariance
forecasts, as shown by their higher statistical accuracy compared with a variety of competing
benchmark models commonly used in the literature. This result applies to all combinations of
the three major exchange rates with different out-of-sample periods being evaluated. We have
to note that the order-flow-based covariance predictions also generate higher statistical
accuracy than any other interest-rate-based covariance prediction, again questioning the value
of the IRD for determining co-movement. Again in line with the market microstructure
literature, we find that order-flow-based covariance forecasts perform particularly well for the
out-of-sample period of the second subsample embracing the 2007 subprime mortgage crisis

(the GFC).

As in Chapter 2, we document that all exchange rate pairs exhibit strong positive
asymmetry on average across the sample period. In the context of predicting future co-
movements, however, positive asymmetry specifications outperform negative asymmetry
specifications only during financially tranquil periods in terms of accuracy. By contrast, for
financially turbulent time periods, such as the 2007 GFC, negative asymmetry models
dominate their counterparts in terms of predictive accuracy. This is in line with the literature,
suggesting that during economic downturns, assets start to co-move more closely (e.g. Kasch

and Caporin, 2013; Antonakakis, 2012).

The methodology evaluated and the results presented in this chapter are also relevant

to the discussions on optimal window size selection (see, for example, Clark and McCracken
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(2009) ) for return and covariance predictions. In line with the market microstructure
literature, we find that a medium-sized in-sample estimation window provides the most
accurate co-variance predictions. However, our conclusion is based on a comparison of the
performances of different window sizes, unlike most of the literature, which simply assumes
that a medium-sized window provides the highest accuracy.*® We argue that the reason for
this is that a medium-sized window combines the benefits (or the reduced disadvantages) of
both a short and a long window being used for parameter estimation. Specifically, a short
estimation window has a comparative advantage over a longer estimation window by
allowing the parameters to be more flexible to recent observations, since parameters are less
stable in long window estimations. As such, by choosing a medium-sized window, we get the

best balance in the trade-off between having too much and having too few data.

To further highlight the differences between the competing forecasting approaches, we
depict the distribution of the forecasting errors incurred by each competing forecasting
approach. This graphical representation confirms that the order-flow-based forecast approach
has smaller forecasting errors on average than other benchmark models. Furthermore, it also
reveals that the order-flow-based covariance predictions result in lower mean square errors
during extreme spikes in realised covariance. This result is particularly relevant to two types
of investors: investors needing accurate day-by-day covariance predictions, such as mean-
variance investors facing frequent rebalance decisions, and investors who are concerned with

extreme movements or tail risk. >

Alongside from statistical accuracy, we also assess the benefits of the more accurate
covariance forecast in a portfolio management application. Specifically, we evaluate the

economic value in a classic mean-variance setting in the spirit of Rime et al. (2010) and Della

% See, for example, King et al. (2010) or Rime et al. (2010)
®! The copula approaches, as opposed to the multivariate GARCH approach adopted in this study, however, are
more commonly used to evaluate tail risk. An overview of copula approaches can be found in Patton (2009).
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Corte et al. (2011). Whereas the two other studies investigated the benefits of order-flow-
based return forecasts, we turn to the incremental gain of using order flows to forecast not
only returns but also future joint variations in returns. We find that more accurate covariance
forecasts lead to substantial trading profits for the mean-variance investor. Thus, risk-averse
investors will be willing to pay a substantial performance fee of up to 477 basis points to
move from a constant covariance forecasting model to our proposed order-flow-based
covariance forecasting model. Note that this setting does not allow for transaction costs, an

aspect commonly ignored in the literature.

To address this aspect, we consider a more dynamic trading application that
incorporates transaction costs. This setting confirms the benefits of the order-flow-based
covariance forecasts. As in the classic mean-variance trading strategy, the order-flow-based
covariance forecasts generate substantially higher Sharpe ratios than several other benchmark
models commonly used in the literature. However, in contrast to the classic mean-variance

setting, Sharpe ratios remain positive even after taking into account transaction costs.
3.2  Related Literature

Apart from the explanatory power of order flow for exchange rate movements®?,
previous studies have also highlighted the role of order flow for predicting future exchange
rate movements. Arguably, Evans and Lyons (2002a) provided the first “forecast”, allowing
for a lagged impact of order flow on exchange rate returns. This inter-temporal relationship
follows from the argument that the information conveyed by order flows is not instantly, but
gradually, incorporated into prices. This gradual incorporation also conforms to the structure
of FX markets, where customer order flows (primary demand for a currency) triggers inter-

dealer trading (inter-dealer order flows), which then affects spot currency prices. At a

% Chapter 2 offers a detailed literature review regarding the explanatory content of order flow, the transmission
of news into prices via order flow, the sources of investor heterogeneity and the foreign exchange environment.
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theoretical level, Evans and Lyons (2008) formalize the notion that order flow conveys
fundamental information about exchange rates, which are not yet fully available to all agents

and therefore have an impact on future price movements.

Berger et al. (2008) documented one key mechanism of this gradual incorporation,
finding that order flow itself has a high degree of persistence and autocorrelation; that is, a
positive (negative) order flow is likely to be followed by a positive (negative) order flow. In
other words, buying (selling) pressure is likely to be followed by buying (selling) pressure,
thereby leading to a persistent effect on prices. Using brokered inter-dealer data, Berger et al.
(2008) confirmed this pattern for intraday frequencies as well as daily and monthly
frequencies. Danielsson et al. (2012) quantified the lag in the gradual incorporation from
order flow into prices, finding that although most of the content of order flow information is
incorporated at intraday frequencies, the “leftover” still affects daily or even weekly spot rate
movements. Both articles used order flow data from brokered inter-dealer transactions, the

same data source as used in this chapter.

The initial forecasting results from Evans and Lyons (2002a) have been readily
confirmed by the literature (Evans and Lyons, 2005b; Gradojevic and Yang, 2006; Marsh and
Teng, 2012). Contrary evidence has been provided only by Sager and Taylor (2008), which
we discuss in a moment. Whereas all of the aforementioned literature focused on one-step-
ahead exchange rate predictions, the study of Evans and Lyons (2006) found that forecasts
based on an order flow model outperformed those based on the random walk model at various

forecast horizons ranging from 1 to 20 trading days.

A concern related to the study of Evans and Lyons (2005b) and Sager and Taylor
(2008) points to the short sample size and the simple forecasting methods employed in those

articles. In a short sample, good forecasting performance could be due to chance or the
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specific time period used. Cerrato et al. (2015) and Della Corte (2011) joined this discussion
with enhanced models and longer datasets. Cerrato et al.(2015) adopted a non-linear approach
to predicting future exchange rate movements with current order flows, and found that this
approach produces smaller forecast errors than a random walk forecast. Indirectly addressing
the concerns in Sager and Taylor’s (2008) study, he concludes that the forecasting
performance depends on the modelling approach rather than the sample size. By the same
token, Della Corte et al. (2011) followed a predictive regression approach using a
substantially longer dataset than the datasets used in Evans and Lyons (2005b) and Sager and
Taylor (2008), and confirmed the advantages of applying order-flow-based models in
predicting future exchange rate movements. In a nutshell, all of the abovementioned literature
indicates that order flow indeed transmits expectations about future fundamentals with a lag.

This enables one to relate it to co-movement, as noted in Chapter 2.

Note that many previous studies rely on statistical criteria, focusing on the forecasting
accuracy while ignoring the economic benefits of order-flow-based return forecasts. Targeting
at economic benefits, however, Rime et al. (2010) evaluated the gains for mean-variance
investors, using order-flow-based return forecasts for the rebalancing decisions. He finds
portfolios formed by using order-flow-based return forecasts yielded substantially higher
Sharpe ratios than portfolios formed using macro-economic variables (such as the interest
rate) to predict future returns.® In line with Rime et al.”s (2010) findings, King et al. (2010)
also explored the benefits of employing order-flow-based return forecasts in portfolio
optimisation and reported substantial improvements in the Sharpe ratios compared with
macroeconomic forecasting models. A key shortcoming of the aforementioned studies,

however, is that they do not predict the future joint variations in returns, which is a key aspect

* The findings state that a risk-averse investor will be willing to pay a significantly higher performance fee to
switch from a random walk forecast to an order-flow-based forecast compared with switching from a random
walk forecast to a macroeconomic forecast (labelled ‘forward bias’ in Rime et al., 2010). The performance fee
calculated in this study follows the methodology outlined in Della Corte et al. (2011).
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affecting portfolio rebalancing, portfolio stability and profitability (Engle and Colacito, 2006;

Della Corte et al. 2012).

Due to the importance of accurate multivariate volatility predictions for portfolio
diversification, several different attempts have been made to predict joint variations in returns
(see Bauwens, Laurent and Rombouts, 2006, for a detailed review), resulting into a variety of
different modelling approaches. The most commonly used models are multivariate GARCH
approaches which include the well-known dynamic conditional correlation model (Engle,
2002) and its extensions®*, the constant conditional correlation model (Bollerslev, 1990), and
models focusing on covariance dynamics directly, such as the BEKK model (Engle and
Kroner, 1995). Other popular modelling approaches include moving average based predictors,
such as the exponentially weighted moving average model (Riskmetrics, 1996) and copula

approaches (see Patton, 2009, and the references therein).

Yet, it is unclear which of the competing modelling approaches generates the most
accurate predictions and largest economic value. The studies of Laurent et al. (2012, 2013)
evaluated the statistical accuracy of multivariate GARCH predictions. Laurent et al.’s (2012)
study on volatility dynamics between NASDAQ and NYSE stocks compared 125
multivariate GARCH configurations based on 1-, 5-, and 20- day-ahead predictions over a
period of 10 years, concluding that covariance predictions generated by dynamic correlation
models (DCC) models provide the most accurate predictions during unstable economic
conditions. In a subsequent study, Laurent et al. (2013) demonstrated that CCC models

provide the most accurate forecasts for intraday exchange rate co-movement.

Targeting economic applications, Wang and Wu (2012) concluded that the co-variance

predictions from a BEKK model are the best choice for hedging crude oil. By contrast,

# See Engle (2009) for an overview.
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Chong’s (2005) study on using covariance predictions for option trading, portfolio hedging
decisions, and value-at-risk calculations highlighted that an exponentially weighted moving
average model (EWMA) provides the largest gains overall. For portfolio optimisation,
however, Della Corte et al. (2012) concluded that DCC based covariance predictions generate
the largest Sharpe ratios. The contrasting findings suggest that apart from the modelling

approach, the intended applications determine the preferred forecasting model.

In contrast to the manifold modelling approaches, the role of exogenous variables in
generating accurate covariance predictions has not been evaluated in the literature, a gap this

chapter aims to fill.

3.3 Motivation and Testable Hypothesis

The existing studies on order flow and exchange rate determination have focused on
single exchange rate movements instead of exchange rate co-movements. Chapter 2 filled this
void by modelling and explaining intraday correlation dynamics via order flow. Going on
from there, this chapter investigates the predictive content of order flow for future exchange
rate covariance dynamics. In accomplishing this task, we use daily data. If order flow can
improve the accuracy of covariance forecasts, this will have significant practical relevance to
financial applications, such as currency option pricing and correlation timing for investment

decisions or portfolio optimisation.

Our main research question is: Can one predict future correlation and covariance based
on currently known order flow? As Chapter 2 already pointed out, the motivation for linking
order flows to co-movements arises from the market microstructure studies on univariate
movements driven by order flows. The studies suggest that order flow represents buying or
selling pressure on an asset leading to its price appreciation or depreciation. However, due to

the gradual incorporation of order flow information into prices, not all order flow information
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is incorporated into spot rates instantly. In other words, part of the information in current
order flows will be transmitted into prices with a substantial lag, so current order flows ought

to predict future exchange rate movements.

As for linking order flows to future correlation dynamics, the motivation is similar to
that presented in Chapter 2. Here, we restate it, albeit in a more intuitive way. Consider a
positive order flow (an excess of buyer-initiated trades over seller-initiated trades) for a
currency at its prevailing exchange rate. This will cause an increase in demand and an
appreciation of the exchange rate. However, not all of the information contained in the
positive order flow will be incorporated in the price of a currency immediately, as the markets
learn the details of and reasons behind the net demand gradually. Therefore, part of the
information is incorporated into prices with a significant lag, implying that current order
flows affect future movements. The hypothesis on how current order flow affects future co-
movements follows the same argument as mentioned in Chapter 2. If two currencies
experience a similar buying or selling pressure, their exchange rates against a world currency
(say, USD) are likely to move in the same direction. However, in the case where the order
flows are of different signs, this will reduce the probability of both currencies rolling in the
same direction, thereby reducing co-movements. Going further from here, if the buying or
selling pressure is incorporated over time into the spot rates, then the current differences in
buying or selling pressures will influence the future correlation of the two exchange rates.

Based on this analysis, our first two testable hypotheses are therefore:

H1:  Absolute differences in current order flows will negatively affect future co-movements

of exchange rates.

H2: Incorporating individual order flows into multivariate forecasting models will

improve their forecasting accuracy relative to the standard multivariate GARCH approaches.
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Note that although the first hypothesis follows Hypothesis 1 in Chapter 2, the
underlying research question is different. In this chapter, we investigate the out-of-sample
forecasting ability of current order flows for future covariance dynamics at the daily
frequency, whereas in Chapter 2, we studied how differences in order flows affect in-sample
correlation dynamics at the intraday frequency. The second hypothesis is based on the
intuition given above (i.e., differences in order flows between currencies predict differences in
their respective price movements), an argument following from univariate market

microstructure, which suggests that order flow enhances return predictions.

Another finding in the market microstructure literature is that order-flow-based return
forecasts dominate interest-rate-based return forecasts in terms of accuracy (Evans and Lyons,
2005b). The theoretical justification for this is that order flows contain all the dispersed
information available in the market, including the information content of interest rates. This is
an interesting aspect, as several previous studies have investigated the effect of the IRD on
correlation dynamics. However, we maintain that order flow is more powerful for predicting
future exchange rate co-movements, as order flow contains all the information about
macroeconomic fundamentals, including changes in the interest rate of a currency.® In other
words, multivariate GARCH models incorporating IRDs will yield less accurate predictions

than their counterparts using order flow. Therefore, the third testable hypothesis is:

H3:  Any interest-rate-based covariance forecasting model will underperform compared

with the order-flow-based multivariate forecasting models in terms of forecasting accuracy.

This hypothesis, if supported by the data, implies that interest rates, though widely used and
deemed to be a very important macroeconomic variable, contain less information about

economic fundamentals than order flows.

* The reason for this is that any changes in the interest rates (and hence in the profitability of carry trades) would
result in investors adjusting their portfolios, hence changing order flow, which then transmits information about
changes in IRDs into prices via order flows.
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The last relevant question arising from the market microstructure literature is whether
order flows can be used to predict volatilities directly, as volatilities, in turn, affect covariance
dynamics (See Chapter 2 for more detail). Opschoor, Taylor, Wel, and Dijk (2014) argued
that larger order flows predict increases in future volatility, because volatility does not mean-
revert immediately after news shocks. The news shocks are transmitted via order flows
thereby affecting the volatility of exchange rates. Thus the link between order flows and
exchange rate volatilities actually reflects the indirect link between news shocks and exchange
rate volatilities. This chapter evaluates this finding for out-of-sample forecasting purposes.
Based on the frequent spikes in conditional volatility attributable to order flow documented in
Chapter 2, we conjecture that order-flow-based volatility predictions will enhance covariance

predictions during financially turbulent periods. The resulting hypothesis is:

H4:  Using order flows as an exogenous variable in a GARCH-X model will provide more
accurate volatility forecasts than a standard GARCH model, particularly when the underlying

financial time period is characterised by frequent spikes in realised volatility.

The GARCH-X model is the standard GARCH model augmented with an exogenous variable,
which is absolute order flow in our case. If order flows generate more accurate forecasts of
the entire covariance matrix of returns, we will deem H2 and H4 to be valid. In this case, we
are able to claim that order flows not only help better forecast returns, as already seen in
previous studies, but also help forecast variance, correlation and covariance more accurately,

which is a novel contribution to the existing literature.

In addition to showing the higher statistical accuracy of our order-flow-based
approach, we also investigate the economic gains of this approach for predicting future
covariance series. Although statistical accuracy allows us to compare the competing

covariance forecasts in terms of MSE, forecasts with smaller MSEs do not necessarily result
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in higher economic values for an investor. For this reason, we attempt to verify that our
approach is not only statistically more accurate but also economically more valuable. We
consider an indirect evaluation of models, focusing on a mean-variance investor who uses
order flows to predict future returns and joint variations of returns for determining the optimal
investment weights. We conjecture that a more accurate covariance forecast should provide
more economic benefits to a mean-variance investor, since an accurate covariance forecast is
the key input in the classic mean-variance portfolio optimisation problem. We thus test the

following hypothesis:

H5:  More accurate order-flow-based, covariance predictions enhance the performance of
a portfolio management strategy that relies on covariance predictions.

We employ the mean-variance setting for the following two reasons. First, several
studies (e.g., Della Corte et al., 2012; Zakamulin, 2015) have evaluated covariance forecasts
via mean-variance optimisation, so our results are comparable to theirs. Second, recent studies
on using order flow for mean-variance portfolio optimisation (e.g., King et al., 2010) concern
themselves only with forecasting univariate return movements. Thus using the same setting
makes our multivariate results comparable with, and, more importantly, an addition to their

univariate results in terms of the economic gains for mean-variance investors.
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3.4  Data and Methodology

3.4.1 Data

The empirical work in this chapter continues to use data on the exchange rates of
AUD, NZD, CAD, EUR, GBP and JPY, all quoted in USD (i.e., the USD price of one unit of
a currency). Thus the change rate in a spot rate measures the rate of returns to an investor
purchasing one unit of a currency with USD and then selling the currency for USD. We
model the bivariate return correlations (i.e., the correlations between the returns on two
exchange rates), as we did in Chapter 2. However, the data frequency used in this chapter is

daily, not intraday, as in Chapter 2.

Daily order flow is calculated as the difference between buyer- and seller-initiated
transactions>® aggregated over the most active part of a trading day between 7:00 and 17:00
GMT. Hence, a positive (negative) order flow represents a net buying (selling) pressure in a
trading day. The daily rate of return on an exchange rate is measured as the difference
between the log mid-quote at 17:00 GMT of day t and 17:00 GMT of day t -1. As in Chapter

2, we excluded weekends and some world—wide public holidays.

Data on interest rates (3-month interbank interest rates) are obtained from the
Thomson Reuters DataStream. Our realised volatility measures are constructed by using
intraday observations from TRTH: we use bid and ask quotes to calculate the intraday returns,
and intraday variance and covariance. The methodology for the construction of the realised
volatility measures is outlined in the next section. The sample period for the empirical
investigation spans from 3 January 2002 to 29 December 2013, a total of 3112 observations

for each exchange rate.*

*® Note: A seller-initiated trade origins from exchanging (selling) the non-USD currency for (buying) USD. A
buyer-initiated trade is defined the other way around.
%" Table 3.1 provides descriptive statistics for the return and order flow series.
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3.4.2 Methodology

We employ the same ADCCXS model using the absolute order flow differential as an
additional input affecting correlation dynamics as in Chapter 2. However, the aim here is to
evaluate the predictive content of our proposed model, which uses the order flow differential
as an exogenous input. Our initial analysis starts with a comparison of the ADCCXS
estimates for daily return co-movement and the intraday estimates reported in Chapter 2.
Furthermore, we evaluate whether interest rates affect co-movement additionally to order

flow.

To test the predictive power of current order flow for future joint return movements,
we forecast one-day-ahead covariance series for the three major cross-rates (EUR- GBP,
EUR-JPY and JPY-GBP), using an ensemble of competing covariance forecasting
approaches. The competing models are based on the ADCCXS approaches captured in
Equations 2.7 and 2.8, as well as its nested versions (ADCC, DCC and CCC). Furthermore,
because of its popularity, we evaluate the performance of the risk-metrics moving average
(EWMA) as well as a BEKK type covariance prediction. Last, we evaluate the predictive
performance of a variant of the ADCCXS model that uses the IRD as a driving force for
correlation dynamics, which again follows Equations (2.7) and (2.8). To avoid possible
confusion with notation, we denote the ADCCXS taking into account the absolute order flow
differential as ADCCXS-OF and the version taking into account the interest rate differential

as ADCCXS~IR. The competing models are presented in detail in Section B.2 of Appendix B.

To measure out-of-sample forecasting performance, we compare the model based-
forecasts to ex post realisations as they become available. To do so, we need to select a loss

function and a proxy for the true conditional covariance. Following Laurent et al. (2012), we
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use an estimate for the realized covariance®® as a proxy for the “true” covariance. The
construction of the realised covariance follows Andersen, Bollerslev, Diebold, and Labys

(2003), using ad-hoc calendar-time sampling, described as below:

Lets, = [Sl,tJSZ,t] be a 2x1 vector of the log prices of 2 currencies at time t, where
each currency’s log price is aligned to a 5-minute interval. As trading takes place 24 hours a
day in the FX market, there are 288 5-minute intervals per trading day. For notational
simplicity, let A denote the 5-minute interval, and m = 1/A the number of samples taken per
day. The 2x2 realized covariance matrix (referred to as RCM) of daily returns® on day t is

given as:
RCM, = 271:1 Tt—1+jA rt—1+jA, ' 3.1)
Whel’e rt+A = St+A - St

The loss function used evaluates the mean squared error between the realized covariance and
the model based prediction. This allows ranking the competing models directly, based on the
criterion of the lowest loss. In this paper we employ a robust matrix-wise multivariate MSE

(denoted MMSE) loss function®, given by:
LEMMSE — Tr[(RCM, — H}™) (RCM, — H}™)],

- 1
LA = 35T LA @9

where Hi"” represents the predicted covariance matrix produced by model M, with M,,

=[ADCCXS, ADCC, DCC, CCC, BEKK and EWMA] and ¥, represents the realised

covariance matrix.

% Apart from realized covariance, the literature outlines several other proxies for the “true” conditional co-
variance, such as bi-power co-variation (Barndorff-Nielsen and Sheppard, 2004) or moving- average-based
estimators for realized covariance (Hansen, Large, and Lunde, 2008).

¥ This is the end-of-day return from the end of 17:00 GMT at day t — 1 until 17:00 GMT day t.

%0 \We choose this particular loss function due to its robustness to the proxy of the true covariance matrix (Patton,
2011). We are aware that this particular version double counts the loss associated to the conditional covariance.
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The UMSE related to the covariance prediction only, is given by:

Lfl\%ftSE = (RCM,; ¢ — hml ?

T 1
LARIST = FRT LA (34)
where RC; ; . denotes the realized covariance taken from the off-diagonal elements in RC, and

hﬁ‘f-;‘ denotes the predicted covariance from one of the competing models.

In order to assess the relative accuracy of each of the competing forecasts, we implement
Diebold—Mariano (DM) statistics (Diebold and Mariano, 1995). The DM test compares the
predictive powers of competing covariance forecasting models. The test is based on the loss

differential between two competing forecasts and is given by: dw, wm, = LFu,, —
LFy,, forv#u . The null hypothesis of equal predictive accuracy tested is

Ho: E[dm, m, ¢] = 0. The test statistic is:**

§= 2 (3.5)

avar(d)l/?’

For the initial analysis presented in Sections 3.6.1 to 3.6.3 we will rank the competing models
based on the univariate mean squared error (UMSE), i.e. on their losses resulting from
covariance predictions. In Section 3.6.4, where we compare the predictive accuracy of the
GARCH-X and GARCH-based class of dynamic conditional correlation models, however, we

focus on the matrix-wise multivariate MSE.

*1 5 is asymptotically normally distributed and hence can be interpreted in the same way as a t-statistic.
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3.5  Empirical Results

3.5.1 Descriptive statistics

Table 3.1 shows the descriptive statistics for the daily exchange rates investigated. As
in Chapter 2, the exchange rate is defined as the USD price of one unit of a currency. This
means that a deprecation in USD relative to a currency results in a positive return on holding
one unit of the currency such as EUR, GBP or JPY. As in the case of intraday returns, the
daily mean returns are small but positive for all six exchange rates. A comparison of the daily
descriptive statistics with the intraday descriptive statistics presented Chapter 2 indicates that
temporary intraday exchange rate shocks are smoothed out during a trading day, as shown by
the lower skewness and kurtosis statistics for daily rather than intraday exchange rate

returns.*?

The positive mean returns to the six currencies can be linked to the positive means of
the order flows (see Panel B) for each currency. A positive mean order flow implies an
average net demand for a non-USD currency over the entire sample, causing USD to
deprecate against the currency overall. Panel B of Table 3.1 shows that the mean order flow
differentials are much larger than those with intraday order flows (referring back to Chapter
2), which is caused by the aggregation of small but positive intraday order flows. For the
analyses following in the reminder of the chapter, we measure order flow in units of a

thousand.

*2 However, although the skewness and kurtosis statistics are smaller than those for intraday returns, the Jarque—
Bera statistic still rejects the null hypothesis of a normal distribution.
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Table 3.1 Descriptive statistics

USD/EUR USD/GBP USD/PY USD/AUD USD/NZD USD/CAD

Panel A. Descriptive statistics for daily returns

Maximum 0.046 0.045 0.037 0.067 0.058 0.042
Minimum -0.038 -0.039 -0.046 -0.088 -0.088 -0.038
Mean 0.013 0.004 0.007 0.017 0.021 0.013
Std.Dev. 0.46 0.53 0.57 0.87 0.89 0.53
Skewness 0.08 -0.07 0.26 -0.96 -0.47 0.12
Kurtosis 5.81 7.33 7.05 15.99 8.40 7.01
JB-Prob. 0.00 0.00 0.00 0.00 0.00 0.00

Panel B. Descriptive statistics for daily order flows

Maximum 478 990 152 986 447 986
Minimum -453 -765 -176 -1196 -496 -829
Mean 15.39 35.19 0.26 14.35 9.88 46.10
Std.Dev. 110.6 213.3 25.9 233.9 85.08 186.58
Skewness 0.09 0.05 0.04 -0.43 -0.18 0.24
Kurtosis 1.14 141 5.79 1.87 2.42 1.55

Note: This table shows the descriptive statistics for 5-minute- returns (Panel A) and order flows (Panel B) for six
exchange rates. Daily returns are calculated as the difference between the log mid-quote at 17:00 GMT of day t
and 17:00 GMT of day t -1. Daily order flows are aggregated tick-by-tick between 7:00 and 17:00 GMT. The

means and standard deviations for exchange rate returns are expressed in percentage points.

3.5.2 Comparison of daily and intraday correlation dynamics

The estimation results for the ADCCXS model targeting negative type asymmetry on
daily data are presented in Table 3.2.** Akin to the intraday analysis reported in Chapter 2, all
of the GARCH parameters are statistically significant at the 1% level and their sums are close
to unity, indicating a high degree of persistence in volatility. Furthermore, the modified Box—

Pierce Q-statistics fore,,, &,,, &; and &2, for all exchange rates are statistically insignificant

at the 5% level, implying that the standardised residuals are i.i.d.

Turning to the second-stage estimation — the estimation of the DCC parameters — we
can see that for all six exchange rate pairs, the a and  parameters for, respectively, shocks

and persistence are statistically significant. As for the intraday analysis presented in Chapter

* As in Chapter 2 we follow Cappiello et al. 2006 in the initial parameterization of the ADCCXS, setting n, =
&
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2, Correlation persistence is high in several pairs as reflected by the large estimates of 4 and
[, such as 0.9773 and 0.9735 for EUR-GBP, 0.9868 and 0.9630 for EUR-JPY and 0.9795

and 0.9810 for GBP-JPY.

Another similarity to the intraday analysis is that the estimates related to negative
asymmetry are very small and sometimes insignificant, consistent with the results of the
intraday analyses in Chapter 2. For the effect of order flow differentials on correlation, the
sign of the parameter estimates (v) is consistently and significantly negative across seven out
of eight pairs, but not for AUD-NZD. Thus, for the seven pairs, a rise in the absolute order
flow differential will reduce their future daily co-movements, supporting our hypothesis H1.
For the AUD-NZD pair, a higher order flow differential increases its future co-movements,
contrary to H1. The possible reason for this was already mentioned in Chapter 2, citing Smyth
(2009) . Note, however, that our research objective here is to investigate the predictive content

of order flow for future co-movements, not the sign of the eta parameter.

As in Chapter 2, we test for positive type asymmetry, which can dominate in FX
markets, by using both the ADCCXS (using joint positive returns to estimate the asymmetry
parameters) and ADCCXE models described in Chapter 2. The results are reported in Table
B.2 in Appendix B. In a nutshell, our findings indicate the same conclusions as drawn those
for intraday co-movements and are therefore in line with the results reported in Li (2011). We
find that both negative- and positive type asymmetry are preferred over the null hypothesis of
symmetry when employing the ADCCXS specification. The ADCCXE model focusing on
eccentricity as a measure of asymmetry confirms, however, that positive asymmetry
dominates negative asymmetry for all exchange rate combinations. As the focus of this study
is on predicting correlation dynamics, we do not discuss the differences in the parameter
estimates in detail, but rather evaluate which type of asymmetry results in more accurate out-

of-sample predictions.

91



6

() yoaa) 41+ (F2y)yosa Y + (¥)y22a = (PY) y22a) UOIIL|81I0D [EUOIIIPUOI IWEUAD B JO dAITRUIB)[E

ayp 1sutebe (y = ’y) pouad sjdwes sy} Bulnp UONE[31I0D [BUOIIPUOD JUBISUOD JO sIsaylodAy |Inu ayp sisa) preddays pue sjbug Agq pasodold 1sei-,X syl Ajaanosdsal 7.3

pue 72z ‘¥z Tz ypm pareroosse ale %) ‘%0 ‘r) ‘1)t (T00Z e 10 oleqoT 98s) ANonsepsysoslay oy parsnipe onsiels-O 821ald-xog aup sjuasaidas O AjaAnoadsal

‘|9A3] %S pUB [9A3] %T 8yl 18 39UedIIUBIS 810USP 4 PUR 4y "WNWIXBW 8Y) 18 palenfeAs uonouny pooyljsyi-Boj-1senb ayl st 477 '0= é4="4 o sisayiodAy |jnu ay1 Bunssy onsiels
1581 O11J pooyl a1 ayr sajousp 147 (T00z) preddsys pue ajbu3 ul pasodoid ainpadoid abeis-omy syl sasn (SI0419 pJepuels paljipow ay) Jo uoleindwod pue) uoiewIISa ay L
"S[eAJ1UI MO]J JapJo pue uinjal Ajrep Buisn sired arel abueyoxa Jo suoneulquod ajqissod 1ybis 1o) (8'2) pue (2°¢) suoienb3 Jo sajewlss Jajawered ay) suasaid ajgel SIYL 810N

€2'891G- €9'7S5ES- G8'06T9- 9'v9.¥- G9'80€SG- cv'S6817- SY €91 S- Q8 VLTV AT1
xxx L€8'/9 xxx ¢06'817¢ xxx 0L0'6/.¢ €8.°¢C xxx ¢5.°0L¢ xxx LVS' 9V xxx §G0°L6T €0'LL 193 — X
€T0°'6€ €0T €0T LTC 0 GE0T 889'9¢ €0'0T ST 240)
889'9¢ L0'TT L0'TT ¥G9'8T L0'TT 18L°TT L0'TT 88°LT 0]
18.'TT LE0'SE LTZ 0P LSTET /STET 65€'8T 889'97 89'9¢ o
LE0'GE 9¢2'8 GG9'8T 688°/LT 68°LT T9Y'2¢ T8L°TT 8L'TT o)
x9€¢'8 xxx 6E6'VT ¥0G'€ x ¢60'8 x V9L 90T xxx 1LC°0T xx LC'GT LYT
sonsnels
8600 €480 ¥ST°0 GGE0 6€C°0 68170 98¢0 669°0 d
XX vmoo.o- XX wNO0.0 XX @NN0.0- X ._w._woo.ou XX NNM0.0- X ._ww._no.ou XX Om._uo.ou XX ._wN._”0.0- il
*x IVV0°0 60000 xx 76€0°0 00000 »x 0€€0°0 TO000 *x 7970°0 *¥ 09%70°0 A
*¥ 99,00 0€00°0 *x 1¢80°0 00000 *x 9T€0°0 0000°0 *x 89G0°0 xx CV€0°0 TA
*x 8G86°0 *¥ 1986°0 *¥ 9€96°0 xx 9T66°0 xx 07860 x¥ 9€66°0 *x 0€96°0 x¥ G€.6°0 ¢
xx ET.6°0 xx G660 *x 8796°0 xx 0886°0 xx G6.6°0 xx G886°0 xx 8986°0 xx €€16°0 g
xx TT9T'0 xx TCYT0 xx 28220 *x T€60°0 xx LTST'0 *x 9€80°0 xx 96¥2°0 »x ELTT0 29)
*x L68T0 xx €ELT0 xx C19C°0 xx LLVT0 xx 686T°0 *x COVT0 xx 8TGT°0 xx 706T°0 o
siajaweled Japow SXOOAV
*x L9V6°0 xx 6976°0 xx GCE6'0 *x 9976°0 *x 0066°0 *x 9976°0 »x 7766°0 xx L0G6°0 )
*x G870°0 xx CV¥70°0 xx 7650°0 xx 98700 *x 99€0°0 *x 9870°0 xx LVE0'0 xx 6EV0°0 2
*x 61000 xx 7,000 xx 85000 xx 671000 *x 65000 xx 61000 xx 00000 xx 00000 tm
xx 66¥6°0 xx GZE6'0 xx 66160 xx £8V6°0 xx €8Y6°0 xx 9996°0 xx £996°0 xx £996°0 )
xx /9800 xx 76500 xx L9€0°0 xx 87100 xx 8¥Y0°0 xx TTE00 xx 60€0°0 xx 60€0°0 9
xx 65000 xx 85000 xx 65000 xx 12000 xx 72000 *x €T00°0 xx 00000 xx 00000 tm
s1g1eweled [spow HOYVO

avo—-dasn anv—-asn anv—-dasn avo—dasn Adlf—dsn avo—-dasn Adlf—adsn dg99—dsn

Adlf—asn dzN—dasn Adlf—dsn dg9—dsn dg99—adsn dNn3—asn dNn3—asn dN3—asn

[apoW SXODAV-HOYVO U} JO Salewlss Jalaweled '€ d|qeL



3.5.3 The role of the interest rate differential (IRD)

Previous studies suggest that, at the daily frequency, higher IRDs lower future
exchange rate co-movements (see, e.g., Li, 2011). However, the market microstructure
literature argues that order flow already contains all the information about macroeconomic
fundamentals, including changes in the interest rate of a currency.** Therefore, the interest
rate variable should not have a significant effect on dynamic conditional correlations in

addition to the effect of order flow.

To test this hypothesis, we use the ADCCXE model given by Equation (2.10),
replacing the bid—ask spread with the absolute IRDs. The absolute IRDs are constructed as the
absolute difference between the 3-month interbank interest rates of two economies other than

the US.

The test results are provided in Table 3.3. One can see that controlling for the absolute
IRD as an additional variable does not qualitatively alter the n; parameter estimates
associated with the order flow differential: the n; estimates remain significantly negative,
ranging between -0.046 (GBP-JPY) and -0.0045 (GBP-CAD), again with the exception of
the AUD-NZD pair, where m is positive (0.0297) but insignificant. On the other hand, the 1
parameter estimates on the IRD are not statistically different from zero for several cross-rates
(EUR-GBP, GBP-JPY, GBP-CAD and JPY-CAD). This means that the IRD has no effect
on their conditional correlations once the order flow differential is allowed for. In addition,
although the r, parameter estimate for the EUR-JPY pair is significant, its sign is wrong
(0.010), inconsistent with the theoretical prediction. In other words, statistical significance

does not necessarily guarantee economic plausibility.

* The reason for this is that any changes in the interest rates (and hence in the profitability of carry trades) would
result in investors adjusting their portfolios, hence changing order flow, which then transmits information about
changes in IRDs into prices via order flows.
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In general, these results are in line with the predictions of the market microstructure
literature™®. They also raise doubt about the usefulness of a macroeconomic variable such as
the interest rate for predicting future exchange rate correlations. We evaluate this doubt in the

next section in detail.

*> As in Chapter 2, we evaluate whether changes in the absolute bid—ask spread affect the parameter estimates
relating to the order flow differential. We report the corresponding estimates in Appendix B. In a nutshell, this
analysis further confirms the robustness of the documented negative relationship between the absolute order flow
differential and exchange rate co-movement, even after changes in the bid—ask spread are accounted for, with
similar patterns found to those in the discussion presented in section 3.5.2.
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3.6 Forecasting

The forecast methodology is as follows. We split the whole sample period into three
sub periods, each containing a total of 1000 observations. Out of each subsample, the first
800 observations are used as in-sample observations, whereas the remaining 200 observations
represent the out-of-sample observations used to evaluate the forecasting performances of
each competing model. Dividing the total sample into three subsamples of equal length is
justified by the following consideration: the first subperiod corresponds to the relatively calm
period before the 2007 GFC, the second covers the GFC period prior to the EDC, and the

third corresponds to the recovery period of the US but the deteriorating period of Europe.*® *’

The initial estimation window consists of the 800 observations closest to the out-of-
sample period. We then predict one-step-ahead*® covariance of two exchange rate returns for
the remaining 200 observations. Throughout this exercise, we re-estimate the model
parameters for all competing models after every 25 one-day-ahead covariance forecasts using
a rolling window of 500 observations. During the 25-day window between the re-estimations,

the parameters are kept fixed and only the data are updated.

3.6.1 Statistical accuracy

Table 3.4 outlines the univariate mean squared errors (UMSEs) from each competing
forecasting model for three distinctively different out of sample periods (Panel A, Panel B
and Panel C). The UMSE represent the squared difference between the forecasted and the

realised covariance. Next to the UMSEs are the corresponding DM statistics, testing whether

“* The choice of 200 out-of-sample observations to evaluate predictive accuracy is based on the portfolio
optimisation setting used later on. As Bailey and Lopez de Prado (2014) indicate, short track records tend to
inflate the Sharpe Ratios. To avoid this problem, we evaluate a track record of 200 out-of-sample observations
and use this out-of-sample size throughout this chapter to make the analysis coherent and consistent.

" The three distinctive periods evaluated are 01/2002-12/2005, 01/2006-12/2009 and 01/2010-12/2013.

“8 The reason for forecasting one-day-ahead rather than several-days- ahead is that a longer forecast horizon
would bias the models towards converging to unconditional correlation.
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the differences in the UMSE between each competing forecast model and the benchmark
ADCCXS-OF model are statistically different from zero. A negative value for the DM
statistic will indicate that the ADCCXS—-OF is more accurate in terms of “loss” (i.e., in terms
of the UMSEs between the predicted and the realised covariance). Initially, we use the
parameterisation for negative- type asymmetry via the change in slopes for the ADCC class

of models.

For the out-of-sample period of the first subsample (Panel A), the ADCCXS-OF
provides the lowest UMSE and hence its predictions are closest to realised covariance for the
EUR-GBP, EUR-JPY and GBP-JPY exchange rates. The differences among the forecasting
approaches are substantial: For the EUR-GBP joint return predictions, the order-flow-based
covariance prediction results in a UMSE of 1.24e-10, which is significantly lower than its
next competitor, the BEKK model, with an UMSE of 1.31e-10. The same holds for the EUR-
JPY and GBP-JPY pairs where the UMSEs of the ADCCXS-OF are equal to 5.82e-11 and
1.51e-10, and the closest competing models have UMSEs of 6.45e-11 (ADCCS) and 1.56e-
10 (BEKK). Looking at the ADCCXS and its nested variants, the ADCCXS-OF significantly
outperforms its nested variants, including the ADCCXS-IR for all three exchange rate pairs
in terms of forecasting accuracy during this subsample (1.24e-10 vs. 1.33e-10 for EUR-GBP,

5.82e-11 vs. 8.14e-11 for EUR-JPY and 1.51e-10 vs. 1.92e-10 for GBP-JPY).

An interesting question is whether the first subsample’s results will hold for a more
turbulent financial period, as the first subsample is characterised by small fluctuations in the
daily realised volatilities. We conjecture that the order-flow-based forecasts will perform
better than the other competing models for the more turbulent period. This conjecture is
based on the argument of Rime and Tranvag (2012) that during financial meltdowns, order

flows are more informative than other macroeconomic and price variables, as the latter will
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lose part of their information content. However, there is another argument: during an
economic downturn, frequent spikes characterise the realised volatility, so it is likely that
multivariate models in general will suffer from large imprecision. This seems to suggest that

multivariate models would not work well in forecasting for turbulent periods.

Panel B in Table 3.4 sets out the forecasting results for the second sub-period, which
includes the GFC. As conjectured above, the differences between the order-flow-based
dynamic conditional correlation predictions and its competitors become larger during this
period, highlighting the incremental value of order flow information in predicting future joint

movements during an economic downturn.

Looking at the individual results, the ADCCXS—OF forecasts are advantageous over
the forecasts of its nested dynamic versions for the EUR-GBP, EUR-JPY and GBP-JPY
joint return variations. For all of these pairs, the UMSEs from the ADCCXS-OF (7.47e-10,
9.13e-10 and 1.00e-09) are considerably lower than the losses from its nested variants, such
as the ADCCS (7.61e-10, 1.09e-09 and 1.20e-09) and the DCC (7.90e-10, 1.57e-09, 1.30e-
09). Furthermore, the ADCCXS-OF predictions are much more accurate than the competing
BEKK (9.72e-10 and 1.69e-09) and EWMA (2.10e-09 and 9.32e-10) forecasts for the EUR-
GBP and EUR-JPY covariance forecasts. Note, however, that all multivariate models
encounter a larger loss than the relatively tranquil first out-of-sample period, indicating that
the volatility predictions failed to predict the frequent spikes in volatility present during this

sub-period *°.

Comparing the interest-rate-based covariance forecasting model (i.e., ADCCXS-IR) against
the order-flow-based forecasting model (i.e., ADCCXS-OF) again highlights the improved

information content of order flows over the IRD in predicting future correlations. For all

“* This finding provides the first intuition for the GARCH-X approach evaluated later on.
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three exchange rate pairs, the UMSEs of the ADCCXS-OF model are significantly smaller
than the predictive errors of the ADCCXS-IR model, with the difference being the largest for
the EUR-JPY covariance forecasts (9.13e-10 vs. 3.92e-09) during the second out-of-sample
period. Note that the loss generated by the ADCCXS-OF is higher than the losses incurred by
the CCC and EWMA for GBP-JPY covariance predictions for this subsamples out-of-sample

period.

Panel C shows that in the third period, the differences among the competing
forecasting models become much smaller and that the ADCCXS-OF only significantly
outperforms its nested dynamic variants for the EUR-JPY covariance forecasts. For this
exchange rate pair, the ADCCXS-OF model has an error of 1.11e-10, which is substantially
lower than the errors of the ADCCS (1.26e-10), DCC (1.26e-10) and ADCCXS-IR (1.36e-
10) models. However, the ADCCXS-OF model generates a larger UMSE than the CCC

(9.64e-11) and BEKK (9.49e-11) model based predictions.

For the EUR-GBP covariance predictions, the accuracy of the ADCCXS-OF approach
(1.59e-10) is quickly followed by that of the ADCCXS-IR (1.61e-10), ADCCS (1.64e-10)
and DCC (1.62e-10) models during this period. The same pattern applies to the GBP-JPY
covariance predictions, where the accuracy of the ADCCXS-OF model is not statistically
different from that of the ADCCXS—IR (4.02e-10) or CCC (4.00-10) models, suggesting that
the increase in benefits of using order flows is lower in the third subsample, although the
ADCCXS-OF approach still has a lower UMSEs than the nested dynamic models for all
three exchange rate pairs, consistent with the findings from the first and the second
subsamples. Note, however, that during the third period, volatility decreased substantially.
This decrease in volatility leads to overestimations of the conditional covariance in each

forecasting model. We will show later on (Section 3.6.4) that a GARCH-X model can
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capture the underlying volatilities better for the second and third subsample period, giving

rise to a more accurate prediction of the entire covariance matrix.

Table 3.4 Out-of-sample UMSEs for competing covariance forecasts

EUR-GBP EUR-JPY GBP-JPY

Panel A. January 2002 — December 2005

UMSE DM UMSE DM UMSE DM

ADCCXS—OF 1.24E-10 5.82E-11 1.51E-10

ADCCXS—IR  1.33E-10*** -2.52 8.14E-11*** -3.74 1.92E-10 *** -554
ADCCS 3.49E-10***  -8.58 6.45E-11* -1.58 1.76E-10 *** -3.38
DCC 1.32E-10**  -1.83 6.54E-11** -1.78 1.75E-10 *** -3.25
CcC 1.33E-10**  -1.95 8.11E-11*** -441 1.67E-10** -2.16
EWMA 1.47E-10*** -3.24 1.73E-10***  -8.99 2.32E-10***  -4.52
BEKK 1.31E-10**  -2.14 7.63E-11***  -3.65 1.56E-10 -0.68

Panel B. January 2006 — December 2009

UMSE DM UMSE DM UMSE DM

ADCCXS—OF 7.47E-10 9.13E-10 1.00E-09

ADCCXS—IR  7.89e-10**  -2.25 3.92E-09***  -4.59 1.33E-09 *** -3.44
ADCCS 7.61E-10 *** -5.09 1.09E-09 *** -2.46 1.20E-09 *** -2.96
DCC 7.90E-10 *** -3.37 1.57E-09***  -2.83 1.30E-09 *** -3.89
CCC 9.38E-10 *** -4.89 9.21E-10 -1.24 9.79E-10 1.15
EWMA 2.10E-09 *** -10.43 9.32E-10* -1.70 9.85E-10 1.27
BEKK 9.72E-10 *** -4.43 1.69E-09*** -3.41 1.59E-09 *** -3.30

Panel C. January 2010 — December 2013

UMSE DM UMSE DM UMSE DM

ADCCXS—OF 1.59E-10 1.11e-10 3.85E-10

ADCCXS—IR  1.61E-10* -1.39 1.36E-10** -2.24 4.02E-10 -0.67
ADCCS 1.64E-10* -151 1.26E-10 *** -3.75 5.44E-10 *** -2.37
DCC 1.62E-10 -1.23 1.26E-10 *** -3.75 6.81E-10 *** -2.53
CCcC 2.35E-10***  -6.72 9.64E-11 0.98 4.00E-10 -0.80
EWMA 3.39E-10***  -6.14 1.15E-10 -0.22 4.40E-10 *** -2.49
BEKK 1.89E-10*** -4.37 9.49E-11* 1.88 4.95E-10 ***  -2.56

Note: This table shows the univariate mean square errors (UMSEs) from the various competing forecasting
models evaluated at three different out-of-sample periods. The UMSEs are calculated based on the squared
difference between the forecasted covariance and the realised covariance. The out-of-sample period used in the
analysis is equal to the last 200 observations of each subsample. DM refers to the Diebold-Mariano test statistic,

evaluating whether the difference between two competing models’ forecasts is statistically different from zero.
The asterisks indicate that the ADCCXS—OF covariance forecasts are statistically more accurate than the

forecasts made by the competing forecasting approach. *** denote significance at the 1%, ** at the 5% and * at
the 10% levels.
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Summarising the results presented above, we find a lot of evidence confirming both
H2 and H3: order flow information enhances covariance predictions (H2) whereas, by
comparison, interest-rate-based methods generate significantly less accurate covariance

predictions (H3).

Figure 3.1 shows a graphical representation of the different performances. The
performance differences refer to the differences in the UMSEs between the ADCCXS-OF
model and its nested variants for the EUR-GBP covariance forecasts. This analysis will shed
further light on how the ADCCXS—OF model performs relative to its main competitors. If the
ADCCXS-OF model indeed performs better than its competitors on average, this should be
indicated by smaller UMSEs for most of the out-of-sample period; any superior predictive

ability for covariance spikes should also be shown in the time-series plots.

Two observations can be made from Figure 3.1. First of all, the ADCCXS-OF-based
forecasts provide lower UMSEs (represented by the blue line) on average than any of its
nested models during the whole out-of-sample period (represented by the red and yellow
lines). This indicates that the ADCCXS-OF model provides more accurate covariance
estimates on average than its nested variants. Second, when looking at the extreme spikes of
the diagram, the UMSEs of the ADCCXS-OF model usually fall below the nested
forecasting models’ UMSEs, suggesting that when the predicted forecast was imprecise, the
imprecision was the smallest for the ADCCXS-OF forecast. This pattern is particularly
notable during the out-of-sample period of the first subsample period. However, a similar

conclusion also applies to the out-of-sample period of the second subperiod (Panel B) **>*

%0 As the differences in accuracy among the competing covariance prediction models are very small for the out-
of-sample period of the third subsample, we do not provide a graphical representation for this subsample.

*! please note that the pattern is more visible in the first graph, as the maximum of the y-axis is equal to 4.5e-10,
whereas because of the larger MSEs in the second subperiod, the maximum of the y-axis is equal to 4.5e-9. If
we look at the differences in the spikes, the main conclusions are the same for all out-of-sample periods.
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Figure 3.1 Graphical UMSEs of the ADCCXS, ADCC and DCC covariance predictions
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Note: This graph compares the univariate mean square errors (UMSEs) of the ADCCXS-OF model and its
nested versions. The UMSEs are associated with the EUR-GBP covariance forecasts. The blue line represents
the UMSEs incurred by the ADCCXS—OF and the red (yellow) line represents UMSEs incurred by the DCC
(ADCC). Panel A represents the UMSEs for the out-of-sample period of the first subsample (15/03/2005-
31/12/2005) and Panel B for the second subsample (15/03/2009-31/12/2009) respectively.

3.6.2 Positive-type asymmetry

A question that arises is whether the dominance of positive-type asymmetry over
negative type asymmetry and symmetry documented in daily exchange rates (see Panel B in
Table B.1 in Appendix B) can enhance the predictions of our proposed ADCCXS-OF model
even further. To test this possibility, we use the ADCCXS-OF specification given in
Equation (2.8); however, we allow for positive asymmetry via the change in the slope
(n, = 1(g; > 0) o &.) and also use the ADCCXE-OF specification given in Equation (2.8).
Note that the ADCCXE-OF specification allows for either positive or negative asymmetry to
arise. However, given that positive asymmetry dominates on average across the sample

period (see Panel A in Table B.1 in Appendix B), we consider it as an additional specification
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test for positive asymmetry. For robustness purposes, we also evaluate the ADCCXS-IR
model, taking positive asymmetry into account. As before, we choose the ADCCXS-OF for
modelling negative type asymmetry via the change in the slope as the benchmark for our
comparison. To avoid confusion, we specifically label the ADCCXS model incorporating
joint positive returns as ADCCXP and as ADCCXN for the version incorporating joint

negative returns in the parameterization.

Table 3.5 sets out the empirical results for this exercise. Based on the results, the
answer to the question on whether positive asymmetry or negative asymmetry enhances
covariance predictions seems to depend on the time period studied. For the financially stable
initial out-of-sample period (Panel A), positive asymmetry models such as the ADCCXP-OF
dominate their negative asymmetry counterparts such as the ADCCXN-OF for all three
exchange rate combinations (EUR-GBP, EUR-JPY and GBP-JPY) in terms of accuracy.
The differences in the UMSEs between ADCCXP-OF and ADCCXN-OF, however, are not
statistically significant for any exchange rate pair (1.22 e-10 vs. 1.24e-10 for EUR-GBP,
5.38e-11 vs. 5.82e-11 for EUR-JPY and 1.49e-10 vs. 1.51e-10 for GBP-JPY). Further
evidence of the higher accuracy of models that rely on positive asymmetry during this sample
period can be found by comparing the ADCCXP-IR and ADCCP models in Table 3.5 with
their counterparts in Table 3.4. Note that the ADCCXE-OF model provides significantly
lower UMSEs for the GBP-JPY covariance predictions (1.41e-10) than the ADCCXN-OF

benchmark (1.51e-10).

Panel B documents a different pattern. For the EUR-GBP covariance dynamics, the
ADCCXN-OF model provides a significantly lower UMSE (7.47e-10) than the ADCCXP-
OF (7.77e-10) and outperforms any other specification with positive asymmetry. A similar

pattern is documented for the EUR-JPY and GBP-JPY pair, where the ADCCXN-OF model
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has a lower UMSE (9.13e-10 and 1.009e-10) than its closest competitor with positive
asymmetry, namely the ADCCXP-OF model (1.04e-09 and 1.17e-09). The accuracy of the
ADCCXE-OF-based forecasts (7.8-10, 1.14e-09 and 1.02e-09) closely follows the accuracy

of the ADCCXP-OF predictions (7.77e-10, 1.04e-09 and 1.17e-09).

Panel C further confirms the main findings in Panel B for the out-of-sample period of
the third subsample. Specifically the ADCCXN-OF model significantly outperforms all other
competing approaches for all exchange rate pairs, except the ADCCXE-OF specification
evaluated for GBP-JPY covariance predictions. The differences are not as large as they are
during the second subperiod for EUR-GBP and EUR-JPY covariance predictions, but are still
significant, thereby again showing the importance of taking negative asymmetry into account
when predicting joint variations in exchange rate returns during a financially turbulent period.
As our dataset contains two financially turbulent periods, we use the ADCC class of models
taking negative asymmetry into account via the change in a slope for the remainder of this

chapter.
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Table 3.5 Out-of-sample UMSEs for ADCCXN, ADCCXP, and ADCCXE

EUR-GBP EUR-JPY GBP-JPY
Panel A. January 2002 — December 2005

UMSE DM UMSE DM UMSE DM
ADCCXN-OF 1.24E-10 5.82E-11 1.51E-10
ADCCXP—-OF 1.22E-10 1.15 5.38E-11 1.43 1.49E-10 0.79
ADCCXP—-IR 1.28E-10 *** -2.29 7.14E-11 *** -4.29 1.72E-10 *** -3.25
ADCCP 1.29E-10* -1.53 5.71E-11 0.54 1.72E-10 *** -3.42
ADCCXE-OF 1.22E-10 0.82 5.74E-11 0.34 1.41E-10 3.19
Panel B. January 2006 — December 2009

UMSE DM UMSE DM UMSE DM
ADCCXN-OF 7.47E-10 9.13E-10 1.00E-09
ADCCXP—-OF 777E-10**  -1.92 1.04E-09 -1.31 1.17E-09* -1.57
ADCCXP—-IR 8.67E-10 *** -2.37 3.81E-09 *** -9.62 1.33E-09 *** -3.44
ADCCP 7.85E-10 **  -2.17 1.19E-09 *** -2.46 1.20E-09 *** -2.96
ADCCXE-OF 7.80E-10 **  -2.22 1.14E-09 **  -2.18 1.02E-09 -0.60
Panel C. January 2010 — December 2013

UMSE DM UMSE DM UMSE DM
ADCCXN-OF 1.59E-10 1.11e-10 3.85E-10
ADCCXP—-OF 1.62E-10 **  -1.69 1.15E-10 **  -2.04 6.05E-10 *** -2.50
ADCCXP—-IR 1.65E-10 *** -2.73 1.17E-10**  -2.24 5.97E-10 **  -2.15
ADCCP 1.64E-10 *** -2,51 1.20E-10 **  -1.84 5.44E-10 **  -2.30
ADCCXE-OF 1.64E-10 *** -2.83 1.29E-10 *** -4.15 3.94E-10 -0.68

Note: This table shows the univariate mean square errors (UMSEs) from the ADCC class of competing
forecasting models evaluated at three different out-of-sample periods. The UMSEs are calculated based on the
squared difference between the forecasted covariance and the realised covariance. The out-of-sample period
used in the analysis is equal to the last 200 observations of each subsample. DM refers to the Diebold—Mariano

test statistic, evaluating whether the difference between two competing models’ forecasts is statistically different
from zero. The asterisks indicate that the ADCCXSN—OF covariance forecasts are statistically more accurate

than the forecasts made by the competing forecasting approach. *** denote significance at the 1%, ** at the 5%
and * at the 10% levels.

3.6.3 Choice of rolling estimation window

In the baseline forecasting exercises, we have used a rolling window size of 500
observations. No previous studies on predicting co-movement have ever considered what

would happen if different window sizes were used. This question is practically relevant, so
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we empirically examine it by using three different rolling window sizes: a small one of 250
observations, a long one of the total number of observations in the sample period and a
medium one of 500 observations, as is commonly used. Again, the parameters are re-
estimated every 25 observations during evaluation of the performances associated with all

three window sizes.

The choice of 250 observations as the smallest window size is suggested by our
methodology presented above, where the first-stage estimation needs at least 250
observations to generate reasonably unbiased GARCH parameter estimates. We then select
500 observations for a medium-sized rolling window, which should provide a good trade-off
between having too far and having too much data. The largest possible estimation window
size contains 800 observations, the total in-sample period.>®> We argue that a medium-sized
window should provide us with the most accurate forecasting results. The reason for using
this medium-sized window is that it should reduce the disadvantages of either a long rolling
window or a short rolling window. For long rolling windows, the problem that arises is that a
lot of observations used for parameter estimation are potentially unrelated to the present (or,
even worse, not related to the data generating process itself), possibly resulting in biased
parameter estimates and forecasts (Clark and McCracken, 2009). Unfortunately, a very small
rolling window increases the variance of the parameter estimates. This increase in variance
leads to forecasting errors and causes the mean square forecasting error to increase. Hence,
when making a forecast, there needs to be a balance between using too much or too few data

for estimating the model parameters, which justifies a medium-sized rolling window.

52 We are aware that, apart from the discussion in the literature on the optimal window length, there is a growing
discussion as to whether expanding or rolling windows are preferred for forecasting applications (Giacomini and
White, 2006). We follow the finance literature in this chapter, where rolling windows are frequently used, and
compare the effects of different rolling windows.
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Table 3.6 presents the results of our experiments. To make the interpretation easier,
we report the differences between the short and medium, and between the long and medium
estimation windows, in terms of the MSE differences. Thus any positive values will indicate
that the medium-sized window is more accurate in terms of “loss” (i.e., in terms of the

UMSEs between the predicted and the realised covariance).

Looking at the first period in Table 3.6 (Panel A), a picture emerges. For all
covariance forecasts, the medium-sized window produces smaller UMSEs than the small
estimation window; in other words, the predicted covariance from the medium-sized window
better matches the realised covariance. For the EUR-JPY pair, the differences are statistically
significant for all models. For the ADCCXS-OF model, the additional loss caused by a small
or long moving window compared with a medium-sized window is 2.43e-11 and 1.66e-11
respectively. This is a substantial difference, as the MSE of the ADCCXS-OF model with a
medium-sized window is 1.24e-10, which indicates that the small estimation window
generates a ~10% higher UMSE, with the long estimation window generating a ~19% greater
UMSE. However, for other exchange rate pairs, no window size significantly outperformed

another, although the medium-sized window provided the lowest UMSES on average.

Turning to the second subsample period, Panel B indicates that the differences
between the medium window approach and both the short and long window approaches begin
to widen drastically. For this subperiod, the medium-sized estimation window results in
significantly more accurate forecasts, regardless of which forecasting model is run for the
EUR-GBP covariance forecasts. For the second subsample, the differences between different
window sizes are substantial. For the ADCCXS-OF model, the differences between the

medium and short windows reach 5.11e-10, which is equal to about two thirds of UMSE of
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the medium-sized window. In other words, the UMSE of the short window is more than 66%

larger than the UMSE of the medium window.

Table 3.6 Out-of-sample UMSE differences for competing estimation windows

EUR-GBP EUR-JPY GBP—-JPY
Panel A. January 2002 — December 2005

SW- MW LW- MW SW- MW LW- MW SW- MW LW- MW
ADCCXS-OF  9.19E-12 1.58E-11* 243E-11 *** 1.66E-11 *** 3.79E-12 3.47E-12
ADCCXS-1R  7.89E-12 1.55E-11 8.09E-11 *** 1.30E-11 *** 4.03E-13 3.06E-12
ADCCS 1.27E-12 1.22E-11 3.63E-11 *** 1.47E-11 8.64E-12 2.26E-11
DCC 2.06E-12 1.21E-11 3.32E-11 *** 8.24E-12 * 1.22E-12 2.25E-11
Panel B. January 2006 — December 2009

SW- MW LW- MW SW- MW LW- MW SW- MW LW- MW
ADCCXS-OF  5.11E-10 *** 2.48E-10 *** 1.69E-11 2.57E-12 1.16E-11 1.71E-10
ADCCXS-IR 5.60E-11 * 1.37E-10 *** 8.49E-11 *** 4.00E-12**  7.88E-11 *** 8.25E-11 ***
ADCCS 3.48E-10 *** 1.11E-10 *** 3.93E-11 *** 2.95E-12 3.81E-10 *** 5.07E-10 ***
DCC 4.14E-10 *** 1.87E-10 *** 3.85E-11 *** 5.27E-12 2.60E-10 *** 4.70E-10 ***
Panel C. January 2010 — December 2013

SW- MW LW- MW SW- MW LW- MW SW- MW LW- MW
ADCCXS-OF  1.69E-11 2.17E-12 4.27E-11 * 4.48E-11 9.95E-11 1.58E-11
ADCCXS-IR 1.45E-11 3.00E-13 8.53E-11 * 491E-11**  3.53E-10 6.40E-11
ADCCS 1.59E-11 7.35E-13 5.32E-12 1.25E-11 * 4.93E-11 2.20E-11
DCC 1.77E-11 1.17E-13 3.35E-12 1.25E-11 4.71E-11 1.97E-11

Note: This table shows the differences in univariate mean squared error (UMSE) between the different rolling
estimation windows investigated. We evaluate the differences for the ADCCXS and its nested variants. LW
denotes the long window estimation using 800 in-sample observations for parameter estimation. Similarly, MW
denotes a medium-sized window using 500 in-sample observations for parameter estimation and SW denotes the
short estimation window which uses 250 in-sample observations for parameter estimation. The out-of-sample
period used in the analysis is equal to the last 200 observations of each subsample. DM stands for the Diebold-
Mariano test statistic, evaluating whether the difference between two competing estimation windows models is
statistically different from zero. The asterisks indicate that the covariance forecasts based on a medium sized
window are statistically more accurate than the forecasts made by a short or long estimation window. ***
indicates significance at the 1%, ** indicates significance at the 5% level and * indicates significance at the 10%

level.
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The same pattern applies to the long window, with a MSE difference of 2.48e-10,
which is about 150% larger than the medium window’s. The medium window’s forecasts are
also statistically more accurate than those of the small or the long windows, for four out of
five competing models of forecasting GBP-JPY covariance. Though the differences are not
statistically significant for the EUR-JPY covariance predictions, the medium-sized window
still provides the highest accuracy for this pair. The final period’s results are shown in Panel
C. For each multivariate GARCH model and currency pair studied, the medium-sized
window yields the lowest UMSEs. However, the differences are not statistically significant

on average.

Figure 3.2 provides a graphical representation of the performance differences arising
from different rolling window choices, including a short, a medium-sized and a long window.
We evaluate the performance of each window on the accuracy of the ADCCXS-OF model’s
predictions for EUR-GBP covariance. The graphical representation helps to highlight how
the small and the large rolling windows’ forecasts result in larger inaccuracy than the medium

window’s forecasts.>

The smallest rolling window forecast produces extreme spikes, indicating that the
parameter flexibility leads to extreme covariance forecasts, resulting in large over- or
underestimations of the forecasted covariance evaluated against the realised covariance. By
comparison, the largest rolling window’s forecast generates higher MSEs over the total
sample period on average, as it never outperforms the medium rolling window’s forecast
because of the parameter inflexibility and hence the somewhat constant covariance
predictions arising from a large dataset. A second aspect is worth mentioning. During the

financially turbulent period, the short-term-window-based predictions suffer from re-

¥ We do not show the results for the third subperiod in the graph, as these are represents a mix between the
findings from the out-of-sample periods of the first and second subsamples.
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estimation issues, as shown by the spikes in the UMSEs during the 90™ and 160™ out-of-
sample evaluations. This again suggests the problem of having a short estimation window,
where the estimated parameters only depend on the most recent observations and thus do not
generalise well to new observations. Although the choice of the re-estimation window would
be another aspect worth investigating, we leave this for further research and follow the study

of Laurent et al. (2013), re-estimating the parameters after 25 out-of-sample predictions.

Figure 3.2 Graphical UMSEs of different window sizes
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Note: This graph compares the mean square errors (UMSES) of different window sizes for, respectively, the first
subsample’s and the second subsample’s out-of-sample period. The UMSEs are associated with the EUR-GBP
covariance forecasts resulting from the ADCCXS-OF model using different estimation window sizes. The blue
line represents the MSEs from a rolling window size of 250 observations (denoted short window or SW), the red
line is for 500 observations (MW) and the yellow line is for 800 observations (LW). Panel A represents the
MSEs for the out-of-sample period of the first subsample (01/03/2005-31/10/2005), Panel B is for the second
subsample (01/03/2009-31/10/2009).

3.6.4 Volatility Predictions

A natural extension of the work reported in the previous sections is to explore whether
order flows can predict future volatilities and so further improve covariance forecasting. To

this end, we replace the standard GARCH with the GARCH-X model in the first-stage
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estimation for all conditional correlation models. The GARCH-X-ADCCXS follows
Equations 2.15 and 2.8 outlined in the second chapter, using order flow to predict both

variance and correlation dynamics.

We conjecture that, under the GARCH-X model, order flows will be shown to be
beneficial for predicting the entire out-of-sample covariance matrix of a currency pair. The
underlying story, as told in Chapter 2, is that order flows create buying or selling pressure
that results in larger exchange rate fluctuations or volatility. Some initial evidence for the link
between order flows and the volatility dynamics has been provided in Chapter 2, as the
GARCH-X estimation results showed that order flows have positive effects on variance
dynamics. However, the estimates presented previously were in-sample in nature. In this

chapter, we turn to out-of-sample forecasting problems.

The approaches evaluated include the GARCH-X-ADCCXS, GARCH-X-ADCC (n = 0) and
GARCH-X-DCC (restricting y1 = y2 = 0) models. We evaluate their performances against the
performance of the GARCH-based dynamic correlation models, based on the matrix-wise
MSE (Equation 3.3) criterion. However, the matrix-wise and univariate errors are ultimately
linked, as the covariance forecasts depend on the correlation and variance forecasts. Table 3.7
sets out the results of the various GARCH-X-and GARCH-based forecasting approaches,

using a medium-sized estimation window of 500 observations.

In Table 3.7, the results of the GARCH-X-based forecasting models support
hypothesis H4: the MMSEs are on average lower for this class of models than for the
GARCH-based dynamic conditional correlation models. This finding holds for all the three
exchange rate pairs investigated and is robust to all subsamples’ out-of-sample periods,
except the covariance matrix prediction for the GBP-JPY pair over the third subsample’s out-

of-sample periods. In particular, for the second and third subsample period, the GARCH-X
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specification results in significantly lower MMSEs than the GARCH specification. This
confirms our two conjectures made before. First, the rather modest forecasting accuracy in
the third subsample may be caused by inaccurate variance forecasts, which affects the
covariance predictions. Second, the larger volatility spikes predicted by the GARCH-X
model (captured by spikes in the order flows) are conducive to volatility forecasting,
especially for periods of high fluctuation in the realised volatility (such as the second

subsample period, which covers the GFC).

Table 3.7 also demonstrates that, for the first subsample period, the GARCH-X-
ADCCXS model significantly outperforms four out of the five competing conditional
correlation models by showing the lowest MMSEs overall. It is followed in terms of accuracy
by the GARCH-X-ADCC model, thus revealing again the higher forecasting accuracy of the
GARCH-X-based models. Although the differences in MMSEs between the GARCH-X-
ADCCXS and GARCH-ADCCXS models are modest for this subsample period (ranging
between 4e-12 and 1.4e-11), the differences become substantially larger for the out-of-sample

period of the second subsample period.>*

Looking at the covariance matrix predictions of the EUR-GBP exchange rate pair
during the second subsample period, the MMSE of the GARCH-X-ADCCXS model is
4.75E-09, whereas the GARCH-ADCCXS MMSE equals 5.05E-09. The difference between
the two forecasting models reaches 3.0e-10, which is 6.3% of the average difference. For the
EUR-JPY and GBP-JPY pairs, again the GARCH-X-ADCCXS model results in slightly
lower MMSEs (4.78E-09 and 6.26E-09 respectively) than the GARCH-ADCCXS

specification (4.79E-09 and 6.30E-09).

> Even though the differences appear to be small, they are statistically significant.
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Table 3.7 Out-of-sample MMSEs for GARCHX-ADCCXS and GARCH-ADCCXS forecasts

EUR-GBP EUR-JPY GBP-JPY

Panel A. January 2002 — December 2005

MMSE DM MMSE DM MMSE DM
GARCH-X-ADCCXS  6.41e-10 8.00e-10 8.29%e-10
GARCH-X-ADCCS 6.49e-10 ** -2.23  8.03e-10 -0.56  8.32e-10 -0.61
GARCH-X-DCC 6.45e-10 ** -1.92  8.17e-10 *** -2.38  8.43e-10 ** -2.09
GARCH-ADCCXS 7.68e-10 ** -2.01  8.08e-10 ** -1.74  9.35e-10 *** -5.70
GARCH-ADCCS 7.79e-10 ** -1.70  8.14e-10 ** -1.77  9.71e-10 *** -5.82
GARCH-DCC 7.81e-10 ** -1.75  8.16e-10 ** -2.27  9.67e-10 *** -5.48
Panel B. January 2006 — December 2009

MMSE DM MMSE DM MMSE DM
GARCH-X-ADCCXS  4.75e-09 4.78e-09 6.26e-09
GARCH-X-ADCCS 4.83e-09 *** -3.35  5.09e-09 *** -2.58  6.30e-09*** -3.75
GARCH-X-DCC 4.81e-09* -1.39  5.41e-09 *** -3.81  6.52e-09 *** -3.88
GARCH-ADCCXS 5.05e-09*** -4.15  4.79%-09 -0.23  6.30e-09 -1.07
GARCH-ADCCS 5.04e-09 *** -3.56  5.25e-09 *** -2.65  6.48e-09*** -2.93
GARCH-DCC 5.06e-09 *** -3.68  5.11e-09 ** -2.25  6.33e-09 -0.09
Panel C. January 2010 — December 2013

MMSE DM MMSE DM MMSE DM
GARCH-X-ADCCXS  9.28e-10 1.93e-09 2.26e-09
GARCH-X-ADCCS 9.46e-10 ** -1.82  1.99e-09 *** -8.20  2.30e-09 ** -2.15
GARCH-X-DCC 9.43e-10 ** -2.18  1.99e-09 *** -8.20  2.31e-09 *** -2.46
GARCH-ADCCXS 9.86e-10 ** -2.02  2.02e-09 *** -4.12  2.19e-09 9.65
GARCH-ADCCS 9.90e-10 ** -1.87  2.04e-09 *** -4.24  2.29e-09* -1.31
GARCH-DCC 9.90e-10 ** -2.17  2.04e-09 *** -4.24  2.28e-09 -1.08

Note: This table shows the multivariate mean square errors (MMSEs) from GARCH and GARCH-X based
dynamic conditional correlation models. Multivariate mean square errors (MMSEs) are calculated as outlined in
Equation (3.3). The out-of-sample period used in the analysis is equal to the last 200 observations of each
subsample. DM stands for the Diebold-Mariano test statistic, evaluating whether the difference between two
competing forecasting models is statistically different from zero. The asterisks indicate that the GARCH-X-
ADCCXS covariance forecasts are statistically more accurate than the forecasts made by the competing
forecasting approach. *** indicates significance at the 1%, ** indicates significance at the 5% level and *

indicates significance at the 10% level.

As far as the third subsample period is concerned, Table 3.7 shows that the GARCH-
X-based correlation models significantly outperform the GARCH-based correlation models

for two out of the three major exchange rates. The GARCH-X-ADCCXS model provides the
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highest accuracy for the exchange rate pairs that involve EUR (9.28e-10 for EUR-GBP and
1.93e-09 for EUR-JPY), whereas the GARCH-ADCCXS model shows the highest accuracy

for predicting the GBP-JPY covariance matrix.

Figure 3.3 shows the distribution of the MMSEs for the entire out-of-sample period. The
GARCH-X-based dynamic conditional correlation models have similar MMSEs to the
GARCH-based correlation models on average. However, in the presence of spikes, the
MMSEs are substantially lower in the former than in the latter. This indicates that
incorporating order flows into a GARCH model is important, especially if volatility is high,

again confirming H4 visually in addition to the results presented in Table 3.7.

Figure 3.3 Graphical MMSEs of GARCH-X and GARCH-based predictions
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Note: This figure highlights the distribution of the multivariate mean squared errors (MMSESs) from both the
GARCH- and GARCH-X-based dynamic conditional correlation models during the first (Panel A) and the
second (Panel B) subsample periods’ out-of-sample period. Both periods are distinctively different in terms of
their mean returns and volatilities, as the former is a financially stable period with low volatility, whereas the
latter contains the GFC and frequent volatility spikes. ADCCXS refers to the model incorporating order flow in
the correlation driving process. Both graphs depict the MMSEs between the forecasted and realised covariance
matrix for the EUR-GBP pair.
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3.7 Portfolio Optimisation

As noted in introduction, this section aims to evaluate the economic gain for investors
arising from the work reported in the previous sections. The previous section showed that the
ADCCXS-0OF model outperforms any other models in terms of predictive accuracy for the
EUR-GBP covariance forecasts. However, a further question is whether or not a more
accurate covariance forecast would bring investors practical gains in trading. To address this
question, we consider a representative US investor who allocates his or her wealth every
period between two risky currency assets (EUR and GBP deposits) >° and one riskless
currency asset (USD deposits). The optimal investment weights are based on predictions of

the future returns and the future joint variations of the risky assets returns.
3.7.1 Notation and setup

Taking the perspective of a US investor, we forecast the daily exchange rate returns
for USD-EUR (USD-GBP) using predictive regressions including order flow as an
explanatory variable. The regressions are not new and therefore the explanation will be short

(see Rime et al., 2010). The predictive regressions have the following linear structure:

Pt=C+AXt_1+FPt_1+Ut, (34)

where P, = [As;] is a vector of the exchange rate returns, X;_, is a vector of order flow, A

and T are the coefficients to be estimated, C is the constant and U, is the residual®®.

>> Our choice of EUR and GBP is because these are most actively traded currencies worldwide. However, we
will show that the main conclusions also apply when EUR and JPY are considered as the risky assets.

%6 We decided to use this particular forecasting model for two reasons. First, the results in Rime et al. (2010)
seem to be in favour of this model (i.e., it has the highest predictive accuracy). Second, we experimented with
other models; however, only the order-flow-based return predictions generated positive Sharpe ratios for the
portfolio optimisation problem in what follows. For further information about the forecasting approach, see
Rime et al. (2010). We show the parameter estimates, and potential shortcomings of this regression in the next
chapter.
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Suppose the return from holding EUR and GBP is given by the following 2x1 vector of risky

returns, r,,,:
e = [E (Asey™ +i™), B (AsZL” +ic™)], (3.5)

and the return from holding the risk-free asset is the domestic (US) interest rate. The investor
dynamically rebalances his/her portfolio to maximise the expected return conditional on a
given target volatility. Thus, at each period t, the investor solves the following problem:

max {

it =W, Ty + (=W )i P } (3.6)

rp,t+l

s.t.(a; )2 = W;'Z:mJt W,

wherer, .., is the portfolio return at timet +1; (0’;) is the target level of risk (volatility) for

pt+1

the portfolio, : is a 2x1 matrix of ones, Zt+1|t is the predicted variance-covariance matrix of

the risky assets at time t+1 and w;, represents the 2x1 matrix of portfolio weights. The

solution to the optimization problem in (3.6) gives the following risky-asset weights:

0y .
Wy = \/_Z—tzt-l-lut( T+t — i) (3.7)
where,
Ce = (rt+1|t - igs)zt_-i-lut( Tev1)t — iys)- (3.8)

The weight assigned to the risk-free asset is (1 — w,). Clearly, the solution and hence the
weights (profitability) of portfolio depends on the future appreciations or depreciations of the

EUR and GBP relative to the USD (r;,4¢) as well as the future joint variations of the

exchange rate returns Z;}llt, all of which have to be forecasted.
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We construct the portfolio weights based on Equation 3.7 for each covariance
forecast, so different forecasts lead to different portfolios. We then evaluate the relative
performances of the portfolios by using their Sharpe ratios. The portfolio that yields the
highest Sharpe ratio is the one whose underlying covariance forecast will be deemed to be the
“best”, as all other parameters are the same for each portfolio. Following Rime et al. (2010),
we set the target volatility to 10% p.a. and compute the Sharpe Ratio (SR) , Sortino ratio (SO)
and performance fee a risk-averse investor will be willing to pay for switching from a
constant covariance model (denoted STATIC®') to a dynamic (ADCCXS, ADCC, DCC,
CCC, BEKK, EWMA) model. Further to the Sharpe Ratio (SR) we evaluate the Sortino ratio

(SO) and the performance fee noted above.

The Sharpe and Sortino ratios>® are given as:

- -
SR="2"7 so=121 (3.9)

Op gd

where rp, — 1fS represents the annualised average excess return from investment and opis the

annualised standard deviation of portfolio returns. o4 represents the standard deviation of the

negative returns.

Note that setting the target volatility at 10% p.a. in Equation 3.7 does not imply that the
volatility of the constructed portfolio is in fact equal to 10% p.a., nor does it imply that a
covariance prediction provides more economic value if the actual portfolio volatility is closer
to the target volatility. The target volatility is only used as a benchmark for the portfolio

construction. The best covariance prediction will lead to the highest risk adjusted returns for

> The constant covariance approach “predicts” that the future covariance matrix is equal to unconditional
covariance matrix of returns, i.e. the sample the sample average. This approach is commonly referred to as
“static” covariance prediction or constant covariance model.

*® The Sortino ratio measures the return to downside risk, whereas the Sharpe ratio measures the return to
overall risk.
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the portfolio, regardless of whether the target volatility is reached or not. A common method
to evaluate risk-adjusted returns is the Sharpe Ratio, a measure also employed in Rime et al.

(2010) and King et al. (2010) .

Different co-variance predictions might result into slightly lower or higher portfolio volatility
than the targeted volatility. In order to take this into account in our analysis, we follow Della

Corte et al. (2013) and present evaluate the trading strategies in terms of Sharpe

With regard to the performance fee criterion, we follow Goetzmann, Ingersoll,
Spiegel and Welch (2007). These authors define the so-called manipulation-proof

performance measure as:

(1-6)
1 1 _ 147 it
M@J=&&m% Lﬂ—ﬁfﬂ } (3.10)

where M(rp) is an estimate of the portfolio’s premium return after adjusting for risk. It can be
interpreted as the certainty equivalence of excess portfolio returns. This is an attractive
criterion, since it is robust to the distribution of portfolio returns and does not require the
assumption of a particular utility function when ranking portfolios. The & parameter denotes
the investor’s degree of relative risk aversion. We select a risk aversion coefficient of & = 6.
We then evaluate the differences between the risk premium of the portfolio constructed using
a particular covariance forecast and the risk premium of a portfolio constructed using a

constant variance covariance, as follows:
d =M(ry) — M(ry), (3.11)

where @ is the maximum performance fee an investor will pay to switch from the constant

covariance forecast to the time-varying alternative. In other words, this utility-based criterion
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measures how much a mean-variance investor is willing to pay for conditioning his

investment decisions on better covariance forecasts. We report & in annualised basis points.

3.7.2 Results

Table 3.8 presents the results from the portfolio optimisation setting, with annualised
Sharpe and Sortino ratios displayed in Columns 3 and 4. For the out-of-sample period of the
first subsample (Panel A), the following conclusions can be drawn. First, simple covariance
forecasting models such as the EWMA, CCC and STATIC approach provide the lowest
Sharpe (Sortino) ratios of 0.11 (0.31), 0.18 (0.39) and 0.14 (0.33). By contrast, for our
portfolios that consist of EUR, GBP and USD, the covariance forecasts using order flows
provide the investor with the highest Sharpe (Sortino) ratio of 0.55 (0.93), followed by the
BEKK forecasts with a Sharpe (Sortino) ratio equal to 0.41 (0.72), and the interest-rate-based
version of our forecast (ADCCXS-IR), with Sharpe and Sortino ratios of 0.37 and 0.70.
Although the difference in the Sharpe ratios is small, we can still confirm that covariance
forecasts based on order flow can improve the Sharpe ratio and therefore bring economic

5980 tast for differences in

value to a mean-variance investor. The Jobson and Korkie (1981)
the Sharpe ratio suggests that the ADCCXS-OF-based covariance forecast results in a
significantly higher Sharpe ratio (0.55) than the covariance “prediction” generated by a
constant covariance model (0.14). By contrast, the Sharpe ratios for all the other forecasting
approaches fall into the 90% confidence interval of the constant covariance prediction, which

means that they are not statistically different from the Sharpe ratios generated by a constant

covariance model.

% The methodology tests whether the Sharpe Ratio from any dynamic covariance forecast is significantly
greater than that from the historical covariance “prediction”. Since King et al. (2010) and Rime et al. (2010) use
this particular benchmark, we do so too in order to link our findings to theirs.

% Note that the Jobson and Korkie (1981) test for differences in Sharpe ratios is not the only possible test for
differences in Sharpe ratios. In fact, Lo (2002) proposed a methodology that takes differences in skew and
kurtosis between the portfolios’ returns into account. Although we argue that the Lo (2002) is more accurate and
will use it in the next chapter, in this chapter, we follow the literature on portfolio management strategies and
apply the more popular Jobson and Korkie (1981) test.
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The performance fees for each competing covariance forecast, except for the EWMA
based covariance prediction, are positive, indicating that a risk-averse trader will be willing to
give up part of his/her return to switch to a dynamic covariance forecast. The positive
performance fees indicate the economic value of all the dynamic covariance models (i.e., all
models except the constant covariance model). For the ADCCXS-OF-based forecasts, a risk-
averse investor would be willing to give up 222 basis points to switch from a static/ constant
covariance prediction to an order-flow-based covariance prediction. By comparison, the
performance fee given up to switch to the BEKK based forecast, the closest competitor in

terms of performance fee, is 149 basis points, a difference of 73 basis points®'.

For the second subsample’s out-of-sample period, shown in Panel B, the profitability
of the portfolio management strategy reduces significantly. The performance fees related to
all dynamic covariance predictions except for the CCC model are negative, confirming the
low Sharpe ratios associated with the dynamic models (ranging between -0.02 and 0.27). The
low Sharpe and Sortino ratios on average, however, cast doubt on the accuracy of the order-
flow-based spot rate predictions. Furthermore, we argue that a simple GARCH estimation
does not capture the underlying volatility dynamics particularly well during this financially
turbulent subperiod, an argument in line with the dominance of the CCC and STATIC model

during this subsample’s out-of-sample period.

For the third subsample period, Panel C shows that the ADCCXS-OF model
incorporating order flows dominates all other models in terms of the Sharpe ratio arising from
the portfolio optimisation strategy. What is astonishing is that during this subsample period,

the ADCCXS-IR covariance forecasts result in a substantially lower Sharpe ratio than the

81 We exclude the GARCH-X-based models outlined in Section 3.6.4, so that any performance difference
between the competing dynamic conditional correlation models is caused by different covariance predictions
only. For GARCH-X as opposed to GARCH-based correlation models, performance differences could arise as a
result of both variance and covariance predictions.
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ADCCXS-OF model (1.43 vs. 1.9). This finding is further confirmed by the Sortino ratios
(3.01 vs. 3.5) and the estimated performance fees (174.01 vs. 476.94 bps). The latter indicates
that a risk-averse trader would be willing to pay up to 476.94 percentage points annually to
switch from a static covariance prediction (constant covariance model) to order-flow-based
dynamic covariance forecasting. On the other hand, the performance fee the investor is
willing to give up to switch to interest-rate-based forecasting is substantially smaller, a

finding in line with the other out-of-sample periods. This confirms H5.
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Table 3.8 Out-of-sample economic evaluation of covariance forecasts (EUR-GBP-USD

portfolio)
Hyp op SR SO o

Panel A. January 2002 — December 2005
ADCCXS-OF  7.25% 8.96% 0.55* 0.93 222.46
ADCCXS-IR 5.57% 8.67% 0.37 0.70 127.29
CCC 4.15% 10.00% 0.18 0.39 23.20
ADCCS 4.69% 9.29% 0.25 0.51 62.31
DCC 5.20% 9.35% 0.30 0.58 91.03
EWMA 3.37% 9.46% 0.11 0.31 -15.88
BEKK 6.21% 9.36% 0.41 0.72 149.40
STATIC 3.71% 9.91% 0.14 0.33

Panel B. January 2006 — December 2009
ADCCXS-OF  3.19% 8.99% 0.22 0.40 -107.05
ADCCXS-IR 2.33% 10.14% 0.11 0.18 -448.44
CCC 3.98% 10.34% 0.27 0.44 41.33
ADCCS 2.63% 9.15% 0.15 0.28 -309.34
DCC 2.68% 9.34% 0.16 0.28 -302.49
EWMA 1.06% 8.54% -0.02 -0.03 -846.80
BEKK 2.98% 9.98% 0.17 0.29 -240.34
STATIC 3.98% 10.88% 0.25 0.40

Panel C. January 2010 — December 2013
ADCCXS-OF  17.01% 8.33% 1.90 *** 3.50 476.94
ADCCXS-IR 11.68% 7.29% 143 3.01 174.01
CCC 16.72% 8.33% 1.86*** 3.44 451.16
ADCCS 16.19% 8.29% 1.81 ** 3.35 418.94
DCC 15.58% 8.54% 1.68 ** 3.04 335.15
EWMA 13.42% 8.41% 1.45* 2.65 186.90
BEKK 15.96% 8.85% 1.66** 2.93 322.25
STATIC 11.49% 8.88% 1.16 2.03

This table presents the mean portfolio return (up), volatility (ap) and Sharpe ratios (SRs) for the portfolio

optimisation strategy embodied in Equation (3.6). Return forecasting is based on Equation (3.4) and the
competing covariance forecasting models are described as previously. All returns and SRs are before the
transaction costs and have been annualised to make our results comparable to King et al.’s work (2010). The
Sortino ratio (SO) measures returns to downside risk and @ refers to the risk premium a risk-averse investor is
willing to give up to switch from a static covariance prediction (denoted STATIC) to a dynamic covariance
forecast. The risk premium displayed is in annualised basis points. The out-of-sample period used in the analysis
is equal to the last 200 observations of each subsample. Panel A is concerned with the out-of-sample period of
the first subsample, and Panels B. and C. with the second and third subsamples’ out-of-sample period
accordingly. We use the Jobson—-Korkie (1981) test to evaluate whether the differences in SRs generated by the
dynamic and static predictions are statistically different from zero. *** represents significance at the 1% level,
** at the 5% level and * at the 10% level.
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3.7.3 Robustness

A natural question is whether the benefits of our proposed model still hold for other
risky assets. Table 3.10 concerns this question for the US trader who chooses to invest in
EUR and the JPY. The exchange rates of the two currencies against the USD normally move
in opposite directions, which is in contrast to the portfolio consisting of the EUR and GBP

(EUR and GBP tend to move in the same direction relative to the USD).

The answer to the question is affirmative. The results here follow the results presented
in Table 3.9. For a trader choosing to trade the EUR and the JPY as two risky assets, the
order flow- based covariance forecasts (ADCCXS-OF) yield higher Sharpe ratios than its
nested dynamic variants (ADCC, DCC), as well as higher Sharpe ratios than the ADCCXS-

IR model for all the three subsamples’ out-of-sample periods.

Looking at the differences in detail, the ADCCXS-OF generates the highest Sharpe
ratio of 0.78, closely followed by the EWMA specification (0.75) and the ADCCXS-IR
specification (0.72) for the first subsample’s out-of-sample period. The smallest Sharpe ratio
is generated by the constant covariance model (0.51). In contrast to the out-of-sample period
of the first subsample, for the second subsample, the risk-metrics EWMA predictions produce
the largest trading gains (0.27), followed by the CCC (0.13) and ADCCXS-OF covariance
predictions (0.12). Note that again the Sharpe ratios are very small for this time period,
similar to the findings presented earlier for a portfolio containing EUR, GBP and USD. The
interest-rate-based covariance prediction generates a very low Sharpe ratio for this out-of-
sample period, which is in fact negative (-0.01) even before considering the transaction costs.
For the out-of-sample period of the third subsample, the largest gains go to the ADCCXS-OF
(0.64), followed by the CCC and ADCCS models (0.62). The smallest Sharpe ratio is

generated by the constant covariance model (0.32). As for the first and second subsample, the
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Sharpe ratio of the ADCCXS-OF prediction is higher than the Sharpe ratio generated by the

ADCCXS-IR model (0.58).

Table 3.9 Out-of-sample economic evaluation of covariance forecasts (EUR-JPY-USD

portfolio)

Panel A. January 2002 — Panel B. January 2006 — Panel C. January 2010 —
December 2005 December 2009 December 2013
Hp Op SR Up Op SR Up Op SR

ADCCXS-OF 9.10% 10.19% 0.78 2.21% 11.34% 0.12 7.34% 9.62%  0.64
ADCCXS -IR 8.30% 9.92% 0.72 0.68%  11.00% -0.01 709% 9.92%  0.58

CcC 8.92% 10.64% 0.73 2.36% 11.24% 0.13 7.01% 9.40% 0.62
ADCCS 8.69% 10.70% 0.70 1.83% 11.44% 0.08 7.02% 9.42%  0.62
DCC 8.69% 10.70% 0.70 2.21% 11.56% 0.11 7.09% 9.79%  0.60
EWMA 8.88% 10.35% 0.75 4.01% 11.53% 0.27 6.72% 9.75%  0.55
BEKK 7.72% 9.94% 0.66 2.12% 11.42% 0.10 6.80% 9.93%  0.52
STATIC 5.90% 9.30% 051 211% 11.34% 0.11 579%  10.10% 0.32

Note: This table presents the mean portfolio return (u,,), volatility (ap) and Sharpe ratios (SRs) for the portfolio

optimisation strategy embodied in Equation (3.6), for a EUR-JPY-USD portfolio. All returns and SRs are before
the transaction costs and have been annualised to make our results comparable to King et al.’s work (2010). The
out-of-sample period used in the analysis is equal to the last 200 observations of each subsample. Panel A is
concerned with the out-of-sample period of the first subsample, and Panels B and C with the second and third
subsamples’ out-of-sample period accordingly. We use the Jobson—Korkie (1981) test to evaluate whether the
differences in SRs generated by the dynamic and static predictions are statistically different from zero. ***
represents significance at the 1% level, ** at the 5% level and * at the 10% level.

Our analysis so far has not taken transaction costs into account.®> However, with daily
portfolio rebalancing, the transaction costs are fairly large and could range between a 5% and
7% decrease in profit. This may lead to a 0.3-0.5 decrease in the Sharpe ratio on average.
Comparing this with the actual returns and the Sharpe ratios generated by the strategy in
Equation (3.6), the economic value of our analysis is questionable for the first subsample’s

and the second subsample’s out-of-sample period. This is because the returns may be equal to

®2 Excluding the transaction costs from analysis is common practice in the literature on order-flow-based return
forecasting. Although excluding transaction costs allows us to highlight the differences between the competing
(co-) variance predictions, as it excludes differences arising from changes in the investment weights, any
analysis neglecting these costs will overestimate the Sharpe ratio.
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the transaction costs. In contrast, the returns generated by the strategy during the third
subsample’s out-of-sample period are more than sufficient to generate positive Sharpe ratios

after taking transaction costs into account.

We therefore follow an approach derived from Garleanu and Pedersen (2013), where
we trade partially towards the portfolio weights given by Equation 3.6, again considering an
US trader who chooses to invest in EUR and the GBP. The story behind this strategy is that,
because of transaction costs, it is not optimal to rebalance portfolio holdings fully. In other
words, transaction costs make it optimal to slow down trading and to trade only partially to
the optimal weights. Garleanu and Pedersen (2013) suggest that the optimal trading rate is
based on the risk aversion of the investor, the transaction costs, and the discount factor of the
future. As outlined by the authors, for a static solution assuming a risk aversion of y = 6 and
that the transaction costs are equal to 2 basis points, the solution is to rebalance ~10% of the
current portfolio towards the optimal portfolio weights every period and to maintain the
previous 90% weights. This setting is denoted as “aim-for-the target” approach in Garleanu

and Pedersen (2013).

Note that in this setting, the return and covariance predictions affect the portfolio weights via
two different channels. First, the return and covariance predictions are used to generate the
optimal portfolio weights the portfolio trades partially towards. Second, as a result of
partially trading towards the optimal portfolio every period, the portfolio weights also depend

on the previous weights of the optimal portfolio.

Table 3.9 shows the transaction cost-adjusted returns and Sharpe ratios of this
strategy. The order-flow-based covariance forecasting approach results in the highest Sharpe
ratios for the trader for the first and third subsamples’ out of sample periods (0.21 and 1.01

respectively). However, the Sharpe ratios are positive even after deducting the transaction
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costs over the three out-of-sample periods. This is different from the traditional portfolio
optimisation strategy mentioned before.®®> To be more precise, for the first two subsamples’
out-of-sample periods, the Sharpe ratios are positive, but in the previous portfolio

optimisation strategy, they turn negative after taking transaction costs into account.

Specifically investigating the performance of the ADCCXS-IR model, we can see
from Table 3.9 that, in the first and the third subsample, the portfolio constructed using the
IRD results in significantly lower returns than the order-flow-based approach (2.62% vs.
2.85% and 8.70% vs. 8.05%), higher volatility (14.18% vs. 13.6% and 9.50% vs. 8.63%) and
hence a lower Sharpe ratio (0.21 vs. 0.18 and 1.11 vs. 0.85). Looking at the performance

between the ADCCXS-OF model and its nested variants, the same pattern remains.

Consistent with the portfolio optimisation setting outlined before, this aim-for-the-
target approach provides substantially higher Sharpe ratios for the first and third subsamples’
out-of-sample periods, with the Sharpe ratios for the second subsample’s out-of-sample
period being modest. Note that Sharpe ratios can be negative even when the mean return is
positive, as the risk free rate is deducted from the mean returns in calculating the Sharpe

ratios.

% This aim-for-the-target strategy must not be confused with no trading in case the return forecast is smaller
than the transaction costs. We implemented this strategy and all Sharpe ratios were negative after including the
transaction costs.
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Table 3.10 Out-of-sample economic evaluation of competing covariance forecasts (Aim

portfolio)

Panel A. January 2002 — Panel B. January 2006 — Panel C. January 2010 —

December 2005 December 2009 December 2013

Up Oy SR Hyp Op SR Hp Op SR
ADCCXS-OF 2.85% 13.60% 0.21 0.74% 9.86%  0.07 8.70% 8.63% 1.01
ADCCXS -IR 2.62% 14.18% 0.18 057%  11.09% 0.05 8.05% 9.50%  0.85
ccc 0.61%  13.64% 0.04 1.39% 12.12% 0.11 483% 7.71% 0.63
ADCCS 1.38%  14.22% 0.09 0.42%  10.04% 0.04 8.14% 8.63% 094
DCC 1.75%  14.18% 0.12 0.48%  10.03% 0.04 749% 856%  0.88
EWMA 1.98%  14.38% 0.13 1.09%  12.08% 0.09 752% 9.86% 0.76
BEKK 2.85%  13.60% 0.20 0.64% 9.86%  0.06 8.17% 8.83% 093
STATIC 2.62% 14.18% 0.18 0.57% 11.09% 0.05 8.05% 9.50%  0.85

Note: This table evaluates the aim-for-the-target approach where the investor trades towards the optimal

portfolio (at a rate of ~ 10%) derived from equation 3.6. Mean portfolio return (,up), volatility (ap) and Sharpe

ratios (SRs) are annualized and do take into account transaction costs. We employ the Jobson-Korkie (1981)

test to evaluate whether the differences in Sharpe Ratios generated from the dynamic and static predictions are

statistically different from zero. *** represents significance at 1% level, ** at the 5% and * at the 10% level.

Based on the analyses in Section 3.7, we conclude that the results have important

implications for traders. A successful investor should use order flows to forecast (1) exchange

rate movements,® (2) exchange rate co-movements and (3) volatility dynamics, especially

when facing financial turbulence. All the three steps combined would ensure that the risk-

adjusted returns from our proposed portfolio optimisation strategies will be the highest,

thanks to the benefits of order-flow-based return and covariance forecasts.

% Note that order-flow-based return predictions are the key input in the portfolio optimisation strategy displayed
in Sections 3.7.2 and 3.7.3. We experimented with interest-rate-based return predictions; however, they did not

result in positive Sharpe ratios for any strategy.
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3.8 Conclusion

Previous studies have applied the traditional market microstructure theory in the
univariate framework to forecast single exchange rate movements. The objective of this

chapter is to extend those studies to forecasting co-movements of exchange rates.

The chapter begins by empirically examining the link between the absolute order flow
differential and the correlation dynamics of spot exchange rates. We find that the latter
depend significantly negatively on the former. This result is robust to controlling for interest
rates, a macroeconomic variable commonly used to predict to exchange rate co-movements.
Moreover, our research also unambiguously suggests that the IRD has no significant impact
on the co-movements after allowing for the order flow differential. Therefore, we conclude
that all the information content about changes in the interest rate is already incorporated in

the order flows.

We then evaluate the predictive accuracy of order flows for future covariance
dynamics. We find that order flows can significantly improve the forecasting accuracy of a
dynamic conditional correlation model. The order-flow-based conditional correlation model
outperforms all the other models commonly used in the literature in terms of statistical
forecasting accuracy, regardless of the time periods and/or exchange rates considered. We
also show that our order-flow-based covariance forecasting approach has a particular
advantage for periods afflicted with economic or financial instability. This is in line with
Rime and Tranvag’s (2012) claim that order flows are most informative during an economic

downturn.

Having compared alternative covariance forecasting approaches, we also examine the
effects of window size on forecasting performance. We find that a medium-sized window

provides the highest accuracy for the covariance predictions of all the models used. Although
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the differences between the medium and either a short or a long rolling window are mostly
insignificant for economically tranquil times, the differences are large and statistically
significant for economically turbulent periods. This indicates that a medium-sized estimation

window is particularly useful for covariance forecasting during troubled time periods.

Our work also highlights the fact that order flows can enhance univariate volatility
forecasts, as order flows capture jumps in the underlying volatility. The model used to yield
this result is labelled the GARCH-X model. Comparing GARCH-X- and GARCH-based
conditional correlation models, the former considerably outperform the latter, as judged by
the MSEs, for the three subsample periods and for the world’s three major exchange rate
pairs. Put differently, the information content incorporated in order flows can improve
second-moment forecasts alongside covariance forecasts. This result is new, as it adds to

previous results on return forecasts (first-moment forecasts) reported in the existing literature.

Finally, this chapter investigates the economic value of accurate covariance forecasts

for portfolio optimisation, which is of practical relevance to investors. Our proposed
approach leads to higher Sharpe ratios than the constant covariance models commonly used
in the literature. Tackling the transaction costs associated with frequent rebalancing, we
propose a variant of the mean-variance optimisation setting. This setting involves trading
towards the optimal portfolio at a rate determined by the transaction costs. Again, the order-
flow-based covariance forecasts outperform all other competing models in terms of the
Sharpe ratios. This result indicates the robustness of our approach and highlights the
economic value for investors, as the Sharpe ratio gains remain positive even after accounting

for transaction costs.

In a nutshell, our results confirm that order flows have significant effects on future

correlation dynamics and thus can be used to enhance the forecasting accuracy of
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multivariate conditional correlation models. The high predictive accuracy brings nontrivial
trading gains to a mean-variance investor. Although this chapter gives a first glance at the
economic benefits of using order flows, the next chapter will further asses the practical value

of order flows for investors.
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B.2 Competing forecasting approaches

This section outlines the competing models in detail. The covariance forecasts for all DCC-
type models come from the basic DCC elements given in Engle (2002) , where the
covariance is a function of the underlying volatilities and conditional correlations between

assets:
H,=D,RD,, (3.13)

Both the conditional correlations R; and the conditional volatilities D, at time t depend on
lagged variables, implying that R, and D, are one-step-ahead forecasts made at time t-1 for
time t. For the diagonal elements (h;;) of the conditional variance matrix D;, the evolution

follows a GARCH process:
hy =@, + é‘izii—l +6h.,, =12 (3.14)
We assume that:

Z, |Qt—1 - N(O, Ht) %

The time-varying correlation matrix R, evolves according to:

R, = (diag(Q,))™ - Q, -diag(Q,))™ (3.15)

where Qt=(hh] represents a 2x2 conditional covariance matrix of standardised
12t q22t

residuals driving the time-varying correlation. Performance differences between the DCC and

its extensions arise from different evolutions of Q, which prompts us to evaluate these

% This assumption is not crucial, as the results have a standard quasi-maximum likelihood estimate
interpretation in the absence of a normal distribution.
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models to see how differently they perform in forecasting. Therefore, in what follows, we
describe different ways of modelling Q, The family of dynamic conditional correlation

models evaluated consists of DCC, ADCCS and the ADCCXS models for which we show the

dynamics below.

The DCC model assumes that Q, evolves according to:

Q =(Q-AQA-B'QB)+As, &', , A+B'Q_,B (3.16)

0 0 — :
where A=| “ and B = A and Q=T‘lzT g&, af + i< land ol + B2 <1
0 a, 0 5 i

are the restrictions used to guarantee positive definiteness, and &, represents the standardised

(de-volatised) return residuals.

The ADCCS takes asymmetry into account in the response of correlation to joint shocks. Q;

is assumed to evolve according to:
Q =(Q-AQA-B'QB-G'NG)+A¢, &', A+Gn ,n' ,G+B'Q_,B (3.17)

0

where G =(gl
0 g,

j , N :T*lentnt' 66 and all other matrices are defined as before, and

al+pF+ gl <land of+pB; + g5 <1 are parameter restrictions.

For the constant conditional correlation model, the conditional correlation driving process is

replaced by the sample average: Q, =Q (3.18)

% 1, represents the standardised (de-volatised) negative or positive return residuals.
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In the ADCCXS-OF model, conditional correlations are driven by order flow as an

exogenous variable and the corresponding Q, evolves according to:

Q =(Q-AQA-B'QB-G'NG-nX)+A¢ &'\  A+Gn_n',,G+B'Q_B+7| Xy — X |

(3.19)

where | X, , — X,,_, |denotes the absolute order flow differential, X :T‘lztll|x1t,l — X4/, and

all the other matrices and restrictions are the same as given above.

The ADCCXS-IR model has the same correlation dynamics as the ADCCXS-OF model, with
the only difference being that order flow is replaced by the interest rate. Therefore, Q,

evolves according to:

Q = (6_ A@A— BlaB ~G'NG _77?) +A'e e A+GN N G+B'Q_ B+ Xy —Xp, |
(3.20)

where | X, ; — X,,_, |denotes the absolute IRD, X =T*1z:=1|xn_1 — X4 ,and all other matrices

and restrictions are the same as given above.

The ADCCXE-OF model proposed by Li (2011) has the same correlation driving process as

the ADCCXS model, with the only difference occurring in the way asymmetry is modelled:

Q =(Q-AQA-B'QB-7X)+A® € A+B'Q B+7|X s — Xy, (3.21)
Euth ; i

where, ¢, =[ ] and all the other matrices are the same as given above.
ExT72

Estimation of all the GARCH and DCC parameters in the conditional correlation models is

done using the two-stage maximum likelihood procedure proposed in Engle (2002).
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Similar to the dynamic conditional correlation models, covariance dynamics in the BEKK-
type models depend on lagged variables, which naturally generate one-step-ahead covariance
forecasts. We consider a diagonal BEKK model. The evolution of the covariance matrix H; is

given by:
H = CoCy + A’ &_1&_;A+B'H,_ B, (3.22)

where C, is a lower triangular matrix, and A and B are set as the diagonal matrices:

Az("‘1 O)ande(Bl 0).

0 a 0 B2

The main difference between the BEKK and DCC covariance models is that the BEKK-type
models model covariance dynamics directly, whereas in the DCC-type models, the
covariance dynamics follow from the correlation and variance dynamics. Estimation of all the

BEKK parameters is done via maximum likelihood.
In the risk metrics smoother or EWMA, covariance evolves according to:
Hy=(1—-2) g—181 + AHeg, (3.23)

where A is the smoothing parameter, typically set at 0.94 and 0.96. Similar to the BEKK
models, the risk metrics approach models covariance dynamics directly and focuses on return
shocks and persistence. Unlike the BEKK, however, the parameters in the risk metrics
approach are not estimated using maximum likelihood: A is set by the researcher (as 0.94 in

this paper).
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4. Chapter Four: Order Flow as Technical Trading Signal

4.1 Introduction

Technical analysis involves the use of historical market data such as price, volume
and other variables to predict future asset movements. This technique is widely used by
practitioners, and almost all FX professionals use technical analysis as a tool in decision
making to some degree (Menkhoff and Taylor, 2007). Given the large practical relevance of
technical trading, it is not surprising that the performance of indicators that rely on past prices
or volumes to predict future exchange rate movements have been studied in much detail in

the literature (e.g., Qi and Wu, 2006; Hsu, Taylor and Wang, 2016).

In contrast to price- and volume-based trading indicators, this chapter evaluates the
performance of order-flow-based technical trading indicators in FX trading. Furthermore, this
chapter quantifies the economic value of monitoring the underlying market volatility to

justify the trading decisions arising from order-flow-based trading indicators.

The primary motivation for this study arises from the common practice of evaluating
the economic benefits of order-flow-based exchange rate predictions in the context of
optimizing currency portfolios (e.g. King et al., 2010; Rime et al., 2010). This is somewhat
puzzling, as order-flow information is incorporated into prices into prices rapidly — within
minutes and days rather than weeks (Berger et al., 2008), making order flow a powerful
variable for predicting short run exchange rate fluctuations. Since the benefits of using order-
flow-based return forecasts are related to predicting short-term exchange rate fluctuations,
one may cast doubts on their relevance to portfolio optimization which is typically a long-
term investment strategy. By contrast, technical traders usually change position sizes at daily

or even intraday intervals (Neely and Weller, 2003; Marshall, Cahan and Cahan, 2008).
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Therefore, the economic value of order flow information should be particularly relevant for

technical traders.

However, the literature on order-flow based trading indicators is scarce, reporting
mixed results regarding the profitability of trading signals derived from order-flow for stock
markets (Yamamoto, 2012; Chordia and Subrahmanyam, 2004). The same applies to forex
applications, where, to the best of our knowledge, the only profitable order-flow-based
technical trading indicators use order flow information to either derive a return- (Gradojevic,
2007) or momentum (Gradojevic and Lento, 2015) prediction rather than deriving a buy or
sell indicator directly. The lack of applying other modelling approaches is puzzling. Neely
and Weller (2012) note that “[A]n empirical challenge for technical analysis — one that has
not been successfully met so far — would be to link order flow to technical trading signals and

returns.”

In view of this call, therefore, the first objective of this chapter is to analyse the case
where one links order flow directly to technical trading signals; that is, to use order flow as a
buy or sell indicator instead of using order flow to generate a return prediction as a trading
indicator. This setting is akin to Yamamoto’s (2012) analysis of selected Nikkei stocks and
evaluates whether the signal conveyed in order flows is robust enough to generate profitable
trading recommendations. We deem this analysis worthwhile, as the relationship between
order flow and price fluctuations is stronger in FX markets than in stock markets.®” Note,
however, that there are several problems with using order flows to generate trading signals
directly rather than using a return prediction based on order flow information as a trading
signal. One reason for this is that the relationship between order flow and exchange rate
movements is probably nonlinear (Cerrato et al., 2015), which means that a larger absolute

order flow does not necessary result in a larger fluctuation in an exchange rate. Several other

87 A detailed discussion on this follows in Section 4.3.
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aspects, to be discussed later on, allow us to conjecture that deriving trading signals directly
from order flow will not provide substantial trading profits. The analysis confirms the need
for a more sophisticated setting, as no technical trading indicator, regardless of whether the
indicator uses order-flow- or price-based information, can significantly outperform a buy-

and-hold strategy for all exchange rates in the sample.

After demonstrating that using order flows to generate trading signals directly does
not work out, we consider a multivariate trading application that incorporates an order-flow-
based exchange rate change predication alongside a proxy for the underlying market volatility.
The methodology used builds upon the neuro-fuzzy framework proposed in Gradojevic
(2007), using order flows to forecast future exchange rate returns. This strategy is shown to
be highly profitable for the USD-CAD spot rate. While confirming that the results of
Gradojevic (2007) are valid for other exchange rate combinations as well, the novelty of our
approach is that we use the change in the underlying volatility to support or contradict the
order-flow-based return prediction. A fuzzy logic inference setting is used to link both

variables to a trading recommendation.

Our proposed approach significantly outperforms the neuro-fuzzy approach that relies
on order-flow-based exchange rate predictions only. Notably, the profitability of our
approach is stunning, leading to annualised Sharpe ratios up to 5.43 for an USD-EUR and
552 for an USD-NZD trader. The incremental performance is solely caused by the
adjustment in trading weights if the volatility change contradicts the magnitude or sign of the

order-flow-based return prediction.

Moreover, this finding is highly robust. Neither the inclusion of transaction costs, nor
evaluation of different time periods, affects the superiority of our approach for five out of the

six currency pairs under investigation. The performance of the approach is further robust to
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different shapes of the membership functions used in the fuzzy logic inference setting or

differences in accuracy of the order-flow-based exchange rate change predictions.

As an extension of our approach, we explore the question of whether the performance
of a classic price-based indicator can be boosted by linking its trading recommendation to the
underlying volatility. This was in fact already implied by Gradojevic and Gengay (2013). The
two authors note that a moving average (MA) indicator performs better during more volatile
days. Exploring along this line, we show that there are significant trading gains arising from
linking the trading signal generated by the moving average indicator to the change in the
underlying market volatility. This indicates that the performance of both price-based and
order-flow-based forex trading strategies can be boosted significantly by combining their

trading signals with a proxy for the underlying volatility.
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4.2 Related Literature

Technical analysis has been widely studied and evaluated in the literature because of
its high practical relevance (Gehrig and Menkhoff, 2006; Menkhoff, 2010), yielding a variety
of different conclusions regarding the actual value of technical analysis. While early studies
typically document limited profitability of technical trading indicators (e.g. Fama and Blume,
1966), the findings from more recent studies are mixed, with several studies documenting
that technical trading indicators can indeed generate substantial trading profits (Brock,

Lakonishok and LeBaron, 1992; LeBaron, 1999;Qi and Wu, 2006).

Summarising all the contradictory findings, Park and Irwin (2007) , found that 56 out
of 95 “modern” studies on technical analysis produced supportive evidence of its
profitability. It must be noted, however, that technical trading indicators seem to be
particularly profitable for foreign exchange markets (Neely and Weller, 2013). Although this
documented profitability contradicts the efficient market hypothesis (Fama, 1970), the
adaptive market hypothesis outlined by Lo and MacKinlay (2002) is suitable for explaining

the profitability of using technical trading indicators in FX trading.®®

Survey evidence suggests, however, that in FX exchange trading, technical trading
indicators are seldom used in isolation and are often accompanied by order flow analysis
(Gehrig and Menkhoff, 2004). The motivation for traders to monitor order flows arises from
the strong predictive power of order flows for future exchange rate movements and, to some
extent, from feedback trading affecting future price movements (Gradojevic and Lento,
2015). Further motivation can be drawn from the hypothesis that order flow drives price

trends by gradually incorporating private information within prices (Neely, Weller and

%8 See Neely, Weller and Ulreich (2009) for a review of studies confirming the adaptive market hypothesis
specifically related to technical trading strategies in FX.
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Ulreich, 2009). This means that the underlying order flow results in the price patterns

technical traders try to exploit.

In contrast to all the aforementioned literature implying the value of order-flow-based
trading indicators, actual empirical applications of order-flow-based technical indicators have
been somewhat neglected in the literature, except for the studies of Gradojevic (2007) and
Yamamoto (2012), two studies our approach builds upon. Yamamoto (2012) reported that
neither price-based nor order-flow-based trading indicators can outperform a buy-and-hold
strategy after considering data-snooping biases. The findings might imply that while order
flow is useful for predicting future exchange rate fluctuations, it is a too noisy proxy for
deriving buy and sell recommendations directly. In line with this argument, Gradojevic
(2007) used order flow to predict future exchange rate fluctuations and used a fuzzy logic
control setting that assists in generating the buy and sell recommendations, an approach that

has been shown to be highly profitable.

Nonlinear trading models — such as the neuro-fuzzy approach mentioned above — have
gained popularity in academic research, as they are frequently used by professionals. Apart
from evaluating the statistical accuracy of nonlinear asset return predictions (Gencgay, 1998;
Gencay and Stengos (1998); Cao, Leggio, Schniederjans, 2005) the literature has highlighted
the profitability of trading models relying on nonlinear return predictions (Dunnis and
Williams, 2002; Ferndndez-Rodriguez, Gonzalez-Martel, and Sosvilla-Rivero 2000; Jasic and

Wood, 2004).

The economic value of the nonlinear return predictions is commonly evaluated using
a simple switching strategy: positive predicted returns are executed as long positions and
negative returns as short positions. Fernandez-Rodriguez et al. (2000) and Jasic and Wood

(2004) proved the profitability of this trading rule for stock market index trading, where the
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return signs are estimated by a feed forward neural network, a class of artificial neural
networks (ANN). The inputs in the neural network correspond to the daily returns over the
previous days, which are then used by the network to learn®® the underlying relationship
between lagged and current returns, and to generate return predictions. Using the same
switching strategy, Dunnis and Williams (2002) confirm the profitability of neural network

based return predictions for an USD-EUR trader.

A shortcoming of this simple regime switching approach, however, is that the trading
indicator can only take three values: 1 which represents a long position, 0 which represents a
neutral position, and -1 which represents a short position. This incurs frequent rebalancing
and hence transaction costs, and further substantial losses in case the return prediction is
slightly imprecise. As a remedy, Gradojevic (2007) proposed a fuzzy logic inference
technique which we follow in this chapter. The fuzzy logic inference technique links the
magnitude and sign of the network based return predictions to the trading recommendations,
thereby reducing transaction costs and trading uncertainty. Gradojevic (2007) found that this
strategy is highly profitable for a USD-CAD trader, a finding confirmed by Lee and Tsung

(2007) for a trader specialising in USD-AUD.

In a closely related paper, Bekiros (2011) proposed a volatility-based-neuro-fuzzy
model (VNF), which generates trading recommendations based on return and volatility
information. This study builds up on earlier findings in Bekiros and Georgoutsos (2008)
highlighting that S&P 500 volatility information enhances the directional accuracy of neural
network based S&P 500 index return predictions. The author showed that a trading strategy
based on the VNF model outperforms several other nonlinear trading models, with the

performance gains arising solely due to incorporating a proxy for the underlying volatility.

% We will elaborate on the learning process in the methodology section.

144



The motivation for incorporating estimates of the underlying volatility in the trading strategy
arises from the documented negative relationship between returns and conditional (implied)
volatility (Bekaert and Wu, 2000; Christoffersen and Diebold (2006); Giot (2005); Hibbert et

al. (2008)).

Our methodology is in the same spirit but has several noteworthy differences. The
approach outlined in Bekiros (2011) uses return and volatility information as inputs in a fuzzy
logic inference setting. The fuzzy logic setting then configures the membership functions for
both returns and volatility, where the parameters of the membership functions are optimized
via neural network training. By contrast, our approach uses a neural network based return
prediction and the underlying market volatility as inputs in the fuzzy logic inference setting.
The fuzzy logic rule base and membership functions are constructed in advance and do not
adjust to the data. This setting allows to link order flows to exchange rate return predictions
and trading recommendations, while controlling for changes in the underlying market

volatility.

4.3  Research Question and Hypotheses

Based on the ability of order flow to both explain and forecast exchange rate
movements, one would be tempted to think that a simple technical trading strategy deriving
buy and sell signals from order flow may outperform other traditional price-based strategies.
The intuition is that order flow creates the patterns that price-based trading strategies try to
exploit. In its most simplest from, order flows could be used to generate a buy or sell

recommendation based on whether the daily order flow is positive or negative.

However, there may be several potential problems associated with using order flows

directly as a trading indicator. First and foremost, it is enormously difficult to find the
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appropriate trigger value. The trigger value essentially specifies a critical value that leads to a
buy, a hold or a sell recommendation. Clearly, to set a trigger value, one needs some sort of
benchmark, such as the maximum or minimum price jump, for the entire sample period. If the
trigger value is set too high, the indicator might miss profitable investment opportunities; if it
is set too low, the signal might be noisy, thereby resulting in losses. Finding an appropriate
trigger value is a challenge in choosing an order-flow-based indicator, as there are no clear
benchmarks. The reason for this is that the distribution of order flows shows massive peaks
(because of its non-normal distribution). Second, achieving significant trading gains requires
information on both the directional accuracy and difference in magnitude, which poses a

problem for any non-price-based indicator.™

The above considerations lead us to hypothesise that any technical trading strategy
using the sign of order flow (i.e., the sign of the net of net buyer- and seller-initiated trades),

as a trading indicator will not outperform traditional price-based strategies:

H1:  Technical trading indicators deriving a buy or sell recommendation from

order flows will not outperform price-based technical trading indicators.

Though we do not expect that order flows can be used directly as an indicator, recent
literature on nonlinear modelling has shown that order flows can be used to obtain an
accurate prediction of spot rate movements. An example of this approach was provided by
Gradojevic (2007), who used a neuro-fuzzy trading strategy, as mentioned in the literature
review. We also use this approach; however, we hypothesise that the performance of this

approach can be substantially boosted from incorporating the underlying volatility in the

"0 By comparing a simple filter rule with an order-flow-based indicator, we can further illuminate this argument.
In a filter rule, a trading signal is derived if the current price is above or below a certain percentage of the
previous high or low. Therefore, this indicator will give a direction (positive or negative) and an indication of
how big the future movement is going to be (measured by the percentage difference). On the other hand, an
order-flow-based indicator will show the buying or selling pressure, but it is ambiguous as to whether a larger
positive or negative order flow will indeed trigger a larger appreciation or depreciation.
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fuzzy logic setting, a motivation arising from Bekiros (2011) and Christoffersen and Diebold

(2006).

The *sign-dependence” theory of Christoffersen & Diebold (2006) suggests that
volatility dependence produces sign dependence, and therefore directional predictability, as
long as expected returns are non-zero. The intuition behind this theory is that volatility
changes will alter the probability of observing negative or positive returns. Specifically, the
““higher’’ the volatility, the ““higher’” is the probability of a negative return arising, given that

the expected returns are positive’*.

Following this theory, we hypothesise about the probability of the exchange rate
change ? prediction having the correct sign based on current increases or decreases in the
underlying volatility. As all our exchange rates are defined as the USD price of one unit of
foreign currency, we hypothesise that an increase in the underlying market volatility” results

in a lower future return from holding the foreign currency ™.

In other words, a positive (negative) predicted return, i.e. a depreciation (appreciation)
of the USD relative to the foreign currency, is more likely to be correct (or to have the correct
sign) if the underlying market volatility decreases (increases). The probability of the return
prediction having the correct sign will be largest for very high positive (negative) predicted
returns accompanied by large decreases (increases) in the underlying volatility and will be

smallest for small values of positive (negative) predicted returns accompanied by large

Note that this “sign-dependence” theory applies to all financial markets, whereas other theories on the
asymmetric return-volatility relationship typically apply to equity markets only.

"2 The exchange rate change prediction is equivalent to the predicted return (in USD) for holding one unit of
foreign (non-USD) currency.

7 The underlying market refers to the underlying market for a particular exchange rate.

™ This hypothesis further links to the flight to quality or flight to liquidity phenomena associated with increases
in risk or volatility.
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increases (decreases) in the underlying volatility. Accordingly, the trading recommendations

should be adjusted for very low probabilities of the return forecast having the “correct” sign.

Note that we do not aim to derive trading signals directly from volatility changes’,
but instead take both predicted returns and the underlying volatility into account. We

therefore hypothesise:

H2:  We expect the highest returns from order flow information in a neuro-fuzzy

logic setting controlling for the underlying market volatility

The reason why we conjecture that this setting will provide the largest returns is as
follows: The exact relationship and causality between volatility changes and future returns is
not generally agreed upon. The fuzzy interaction allows us to empirically test different
relationships by setting the rule base in advance and allowing us to specify the relationship in
linguistic terms. Furthermore, the return prediction is possibly imprecise, incomplete or
unreliable. The same applies to market volatility, which is hard to quantify in real terms.
Fuzzy logic, by its very nature, tolerates uncertainty by defining variables as imprecise terms.
.Other benefits include a smoother decision output, which is simply smoother trading

recommendations, thereby reducing transaction costs.

A final key question is whether our proposed methodology can be used to boost the
performance of simple price based trading strategies. Though we firmly believe that order-
flow-based return forecasts are preferable over any other technical trading indicator, we are
interested in whether even simple trading indicators could be improved by linking them to
changes in the underlying market volatility. An interesting finding from Gradojevic and
Gencay (2013) gives an initial indication of this claim, showing that a MA fuzzy logic control

setting provides the higher intraday returns when the conditional volatility is higher. This

™ As outlined in Gradojevic, Lento, and Wright (2007), the economic value of volatility based trading
indicators, such as Bollinger bands, is questionable.
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finding is in line with any risk premium considerations (Kho, 1996) and contradicts the
findings in Reitz (2006), suggesting that increases in volatility deteriorate the performance of
technical trading indicators. Based on the findings in Gradojevic and Gengay (2013) we

hypothesise:

H3:  Even the performance of a simple MA indictor can be boosted significantly if

we link the signal of the former to changes in the underlying market volatility.

To test this hypothesis, we will use the same fuzzy logic methodology that was used
to evaluate the second hypothesis. This hypothesis is an add-on, and if proven correctly will
show the increased benefits of linking changes in a currency pair’s volatility to simple price-

based technical trading signals.

In the next section, we describe the trading rules. The dataset used is the same as that
in Chapter 4, with the addition of the oil price, CBOE VIX and EPU data which we obtain
from Thomson Reuters DataStream. The results are reported and discussed in Sections 4.5,

4.6 and 4.7. Section 4.8 concludes the chapter.
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44  Methodology

In the first step, we evaluate the performance of classic technical trading strategies and
simple order flow strategies, compared with a simple buy-and-hold strategy, which serves as
a benchmark. The main question is whether the simple order-flow-based indicator will
outperform the buy-and-hold strategy, a common benchmark used in the finance literature.
The reason why the buy-and-hold strategy is commonly used as benchmark is because it
supports the efficient market hypothesis: as the security is valued fairly all the time, it is best

to buy and hold the security for long-run gains.

This initial setting lays the foundation for our fuzzy logic modelling, as it confirms that
after accounting for transaction costs, no simple technical trading strategy can outperform a
simple buy-and-hold strategy, thus showing the need of a more sophisticated soft computing
approach. The focus on simple and classic technical trading strategies in the beginning also
permits us to tie our work to that of Qi and Wu (2006). These two authors considered the
benchmark to be a zero-return strategy and concluded that price-based trading indicators can
significantly outperform this benchmark. However, in our opinion, a benchmark of zero is not
practically relevant. We start with a short description of the technical trading rules to be
evaluated; for a complete description of the price-based rules we refer the reader to Sullivan,
Timmermann, and White (1999) or Qi and Wu (2006). After that, we introduce the multi-

fuzzy strategy to be evaluated in this chapter.

"® See, for example, Brock et al. (1992) and Gradojevic (2007).
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4.4.1 Price- and order—flow-based technical trading rules

In the standard filter rule, a buy (sell) signal is extracted if the daily closing price (in
US dollars) of a foreign currency (EUR, GBP, JPY,CAD, NZD, AUD) increases (decreases)
by at least x percent from the previous low. For all rules considered, a buy signal means that
the trader borrows in US dollars and buys the foreign currency. Once traders have observed a
signal, they execute their trade and hold the position until the opposite signal appears. We
define the previous low (high) as the lowest (highest) price achieved while holding a
particular short (long) position. In addition, we consider an alternative definition of high
(low), by calculating the highest (lowest) price over the previous periods e. Another version
defines the rule as one that that generates a buy signal when the price increases by at least x
percent from the previous low, but the sell signal is observed when the price decreases by at
least y percent from the previous high. We also consider the case where a given long or short

position is held for ¢ days, during which period, all other signals are ignored.””

The standard MA rule generates a buy signal when the foreign currency price (in US
dollars) is higher than the moving average of prices over the previous n periods. This is
similar to the filter rule: once a buy signal is received, the position is kept until the next sell
signal has been extracted and vice versa. We also use a fixed percentage band filter that
requires the buy or sell signal to exceed the MA by a fixed multiplicative amount, b. A
second version of the MA rule focuses on the differences between slow and fast MAs with
different window sizes. A buy (sell) signal is observed when a fast MA is larger than a slow

MA, where a slow MA refers to the average over longer periods compared with a fast MA”,

" The parameter values are given as follows: x = 0.005,0.01,0.015,0.02,0.025,0.03,0.035,0.04, 0.045, 0.05, 0.06, 0.07,
0.08,0.09,0.1,0.12,0.14,0.16,0.18,0.2,0.25,0.3, 0.4 and 0.5 [24 values]; 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05,
0.075, 0.1, 0.15 and 0.2 [12 values]; €=1,2,5,20 [five values] and ¢ = 5, 10, 15, 25, and 50 [five values]. Given that y
is less than x, this yields a total of 449 filter rules.

"8 The parameter values for moving average rules are given as follows: n = 2, 5, 10, 15, 20, 25, 50, 75, 100, 150,
200 and 250 [12 values]; m = 66, which refers to the number of fast—slow combinations of moving averages
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As for the filter rules, we consider the case where traders take a position for c¢ periods,

ignoring any signal during these periods.

In a trading break rule, a buy signal is produced when the price of a foreign currency
(in US dollars) exceeds the maximum price over the previous tb periods; a sell signal is
produced when the price falls below the minimum price over the previous th periods’®. We
considered a fixed multiplicative band filter b and a fixed holding period c, during which
traders ignore any other signals. Channel breakout rules allow traders to buy (sell) and hold a
long (short) position when the price exceeds (falls below) the channel, where a channel is
produced when the high over the previous cb periods is within xb percent of the low over the

previous cb periods®.

The order flow based rules use the order flow in a currency pair to derive a buy or sell
recommendation for that currency pair. For this version, a buy (sell) signal for a foreign
currency is observed when its most recent order flow is positive (negative) by a fixed amount
0. Once a trading signal has been observed, investors are assumed to trade immediately and
to keep the position until the opposite signal appears. As before, we consider two variations
of the trading rule. First, we allow for a fixed holding period ¢ during which traders ignore
any other signals. Second, in the spirit of the filter rules, we define the rule that a buy signal
arises when the most recent order flow is positive by a fixed amount o, whereas a sell signal

arises when the most recent order flow is negative by a fixed amount k. &

The total amount of technical trading rules amounts to 2691. To test whether the best

trading rule can outperform a buy- and hold strategy after accounting for possible data-

based on the window sizes n; b = 0.001, 0.005, 0.01, 0.015, 0.02, 0.03, 0.04 and 0.05 [eight values], yielding a
total of 1222 moving average rules.

"th =5, 10, 15, 20, 25, 50, 100, 150, 200 and 250 [10 values]. The total number of trading break rules is 300.

8 ¢h =5, 10, 15, 20, 25, 50, 100, 150, 200 and 250 [10 values]; xb = 0.005, 0.01, 0.02, 0.03, 0.05, 0.06, 0.07 and
0.08 [eight values]. Assuming b to be less than xb, the total number of channel breakout rules is 480.

80=1, 2,5, 7,10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 125, 150, 175 and 200 [18 values]. k=1, 2, 5, 10, 15, 20,
25, 30, 40, 50, 60, 75 and 100 [13 values]. Assuming that k<o, the total number of order-flow based rules is 240.
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snooping biases, we use White’s reality check (White, 2000) and Hansen’s test for superior
predictive accuracy (Hansen, 2005), both of which are outlined in detail in Section C2 in

Appendix C.
4.4.2 Multi-fuzzy trading strategy

After investigating the simple trading strategies, we propose and evaluate a non-linear
fuzzy logic based trading strategy. This strategy builds up on the methodology outlined in
Gradojevic (2007), which combines an artificial neural network (ANN) based exchange rate
change prediction with a fuzzy logic inference technique (denoted neuro-fuzzy approach) to
derive trading recommendations. Novel to our setting is that we take into account the change
in the underlying volatility additionally. We denote our methodology as multivariate fuzzy
(multi-fuzzy) trading strategy and multivariate fuzzy logic framework. Figure 4.1 depicts a

graphical representation of the proposed methodology.

Figure 4.1 Graphical representation of the multivariate fuzzy trading strategy
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Note: This figure displays the architecture of our proposed multivariate fuzzy (multi-fuzzy) trading strategy. The
fuzzy logic inference setting links two inputs, namely the predicted return and a proxy for the change in the
underlying volatility (denoted “exchange-rate-volatility-change”), to a trading recommendation. The neuro-
fuzzy approach outlined in Gradojevic (2007) generates the trading recommendation based on the exchange rate
change prediction only and is hence a nested version of our proposed approach. The fuzzy logic inference

setting will be outlined in detail later on.
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The exchange rate change (return) prediction is based on an artificial neural network
(ANN). ANNs have the advantage of detecting noisy, unstable and time-varying relationships
between variables. This is relevant to providing accurate exchange rate forecasts and thus is
part of the reason why ANNSs have been used in virtually every research area. However, an
ANN is, in some sense, a black box, as we can only set the input parameters and the design of
the network (e.g., the neurons) but cannot explain how the system comes up with the optimal
solution. By contrast, fuzzy logic operators have predefined membership functions, although
it is possible to adapt the membership functions to the data (see the adaptive neuro-fuzzy
logic models of Atsalakis and Valavanis (2009)). As such, it is clear how a decision is
reached. However, their learning capability is limited compared with ANNS, as fuzzy logic
operators can only learn about input—output patterns, whereas networks typically have a

memory.

The ANN model produces exchange rate forecasts based on the following input/

output relationship:
Ast=f(Aoft_1,A0ilt_1'Airt_1'), (4'1)

where As; represents the change in the future exchange rate, Aof;_; represents the order flow
arising in a particular currency pair and Air,_, represents changes in the IRD between two
economies. The order flows create buying or selling pressure for an exchange rate pair,
thereby affecting changes in the spot price. The IRD is commonly used in predicting
exchange rate movements, as differences in interest rates have an effect on the future
exchange rate if the interest rate parity (IRP) holds. Akin to Gradojevic (2007), we
incorporate the change in the oil price, Aoil,_4, in the ANN. The underlying rationale is that
movements in commodity prices affect capital inflows and outflows and hence the exchange

rate.
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The networks trained and tested were the three-layer and four-layer feed-forward
back-propagation networks. The number of input neurons was three (one neuron per input),
while the number of hidden neurons varied between three and five. The last layer had one
linear output neuron. To avoid overtraining, the ANN used an early stopping technique,
where all the in-sample data was divided into three subsets: a training set (used for
“learning”, i.e. gradient calculation, weights and bias updating); a validation set (used to stop
training when the error in this sets starts increasing) and a testing set (used to compare real
and model output and to compare different network architectures). This division reduces the
problem of overtraining and thus results in a network that can be generalised better to new
unseen data. The training set consists of 60 percent of the total in-sample observations, with
the other forty percent split equally between validation and testing set. The transfer functions
(activation functions) in the hidden layers are set to be sigmoid and tan-sigmoid. Figure 4.2

graphically outlines the network architecture for the three layer feed-forward network tested.

Figure 4.2 A three-layer feed-forward neural network

Hidden Qutput

x(t)

Note: This figure displays a common three layer feed-forward network employed. “x” represents the inputs in
the input layer (order flow, changes in the oil price and IRDs). “Hidden” stands for the hidden layer, used by the
neural network to memorize and “Output” represents the output layer. “w” and “b” represent the weights and
biases assigned to the inputs in the hidden and output layers. The transfer (activation) functions displayed are
sigmoid (in the hidden layer) and linear (in the output layer). “y” represents the output (the exchange-rate-

change prediction) generated by the neural network.
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The network development followed the following steps:

1) Setting the number of hidden layers, neurons, training algorithm (resilient
backpropagation in our case), transfer functions, data division, initial connection

weights, neuron biases and activation function for each neurons

2) Network training and validation. The first sixty percent of the data given to the
network is used for training, i.e. to determine the connection weights and biases
values within the network. The next 20 percent was used for validation. The network
learns the relationship using the training set, and the validation set is used to monitor
the network errors when the network is applied to new unseen data (i.e., data that are
not used during training) and to halt training when the validation set’s test error

increases during training.

3) Estimation of the predicted output. The last 20 percent of the observations were then
used by the trained ANN to generate exchange rate predictions. The accuracy of the
exchange rate predictions is then compared to detect the optimal ANN architecture.
Steps. 1-3 were repeated until the error goal (the minimum of the mean squared error
in the testing set) is reached. The testing set is used to compare different network
architectures, and the network architecture that provides the smallest MSE during the
testing set is used to generate out-of-sample predictions. In order to evaluate a large
number of initial connection weights, we evaluate a total of 30 trials with three to five
hidden neurons. We then pick the one that yields the lowest MSE during the testing

set.

As a proxy for the underlying volatility, we follow Bekiros (2011) and use a simple

GARCH (1,1) model to estimate the conditional exchange rate volatility. The change in the
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underlying volatility is then constructed as the difference between the conditional volatility

estimates at time t and t-1.%

Fuzzy logic inference (denoted “Fuzzy-Logic” in Figure 4.1) works as follows: Fuzzy
logic is built upon the notion of fuzzy sets (see Zadeh, 1965), which allow for partial
memberships between variables. The fuzzy logic inference setting takes the ANN-based
exchange rate prediction and the change in the underlying volatility as inputs (both scaled to
fall into a [-1,1] interval) and evaluates assigned degrees of membership from each fuzzy set
to the inputs. These fuzzy sets are governed by a membership function, which determines the
degrees to which an input belongs to a certain set (labelled the “degree of truth”). We initially
choose Gaussian membership functions for the order-flow-based return forecasts. For the
change in the volatility, we choose triangular membership functions which have clearer

boundaries between the different states.

The following functions are assigned to each exchange-rate-change state (fuzzy set):
“VERY NEGATIVE (V-NEG),” “NEGATIVE (NEG),” “WEAKLY NEGATIVE (W-
NEG),” “STABLE,” “WEAKLY POSITIVE (W-PQOS),” “POSITIVE (POS),” and “VERY
POSITIVE (V-POS)”. The functions assigned to the each volatility-change state are:
“STRONG DECREASE (S-DEC),” “DECREASE (DEC),” “STABLE,” “INCREASE
(INC)” and “STRONG INCREASE (S-INC)”. The FX trader’s action or trading
recommendation is also a fuzzy variable with the triangular fuzzy membership functions that
represent five fuzzy sets between -1 and 1: “VERY STRONG SELL (VS-SELL),” “SELL (S-

SELL),” “WEAK SELL (W-SELL),” “HOLD,” “WEAK BUY (W-BUY),” “BUY (BUY),”

8 Note: The main conclusions drawn in the analysis are robust to different GARCH type models. The GARCH
(1,1) model used in the analysis is initially estimated using all of the in-sample observations, and afterwards re-
estimated daily during the out-of-sample period. The GARCH (1,1) is outlined in Equation 2.7.
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and “STRONG BUY (S-BUY)”. Figure 4.3 provides a graphical representation of the
membership functions (fuzzy sets)®.

Figure 4.3 Graphical representation of the membership functions and fuzzy sets

Panel A. Panel B.
V-NEG I NEGI ‘u’\lu’-NEGI Stalble IW-F'OIS IF‘OS I V-A0S 9-DEC ‘ IDEC I I STAIEILE I I INC I I S-HNC
1 1
08 08
2 o6} 2 o6}
& 5
E E
s 04f s 04}
& &
02 02}
0 0
-1 08 06 04 02 0 02 04 06 08 1 -1 08 06 -04 02 0 0.2 04 0.6 0.8 1
Exchange-rate-change-forecast Exchange-rate-volatility-change

Panel C.

B-SELL  S-SELL W-SELL HOLD  W-BUY  S-BUY  VS-BUY

=
=] -
T

=
o
T

=
.
T

Degree of membership

0.2F

Trading-Recommendation

Note: This figure displays a graphical representation of the membership functions (fuzzy sets) used by the
neuro-fuzzy and multi-fuzzy trading strategy. The multi-fuzzy approach uses both the proxy for the change in
the underlying volatility (denoted “exchange-rate-volatility-change™) and the exchange rate return predictions as
inputs. By contrast, the neuro- fuzzy approach, which acts as a benchmark in the analysis presented later on,

directly links the exchange rate change forecast to the trading recommendation.

# Note that increasing the number of membership functions for the input (output) states did not produce any
significant improvements in the profitability of the multi-fuzzy and neuro-fuzzy models evaluated.
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The point of fuzzy logic framework is to map an input space to an output space. The
primary mechanism for doing this is a list of if-then statements called rules. All rules are
evaluated in parallel and refer to variables and the adjectives that describe those variables. In
our approach, the if-then rules are specified with a focus on the hypothesised negative
relationship between increases in the underlying market volatility and future appreciations of
the foreign currency relative to the USD. Given that the change in the volatility matches the
sign of the predicted returns (i.e., when the underlying volatility decreases (increases) and the
return forecast is positive (negative)), the trading recommendation will be based entirely on
the magnitude of the return prediction. On the other hand, if the volatility changes contradict
the sign of the predicted return (ie., when the underlying
volatility decreases (increases) and the predicted return is negative (positive)), the trading
recommendation will be adjusted. Furthermore, if the volatility change contradicts the
magnitude of the return prediction, the trading weights are adjusted. To underline this,

consider the rules given below:

1. If the return forecast is “V-NEG” and the change in the volatility is a “S-INC”,
“INC”, “STABLE”, or “DEC”, then “VS-SELL.”

2. If the return forecast is “V-NEG” and the change in the volatility is a “S-DEC”, then
“S-SELL.”

3. If the return forecast is “V-POS” and the change in the volatility is a “S-DEC”,
“DEC”, “STABLE”, or ”INC*, then “VS-BUY.”

4. If the return forecast is “V-POS” and the change in the volatility is a “S-INC” then
“W-BUY”

5. If the return forecast is “NEG” and the change in the volatility is an “INC”,

“STABLE”, or “DEC”, then “S-SELL.”
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6. If the return forecast is “NEG” and the change in the volatility is a “S-DEC” (“S-
INC”) then “W-SELL” (“VS-SELL”).

7. If the return forecast is “POS” and the change in the volatility is a “DEC”,
“STABLE”, or ”INC*, then “S-BUY”,

8. If the return forecast is “POS” and the change in the volatility is a “S-INC” (*S-
DEC”), then “W-BUY” (“VS-BUY”).

9. If the return forecast is “W-NEG” and the change in the volatility is an “INC”,
“STABLE”, or “DEC”, then “W-SELL.”

10. If the return forecast is “W-NEG” and the change in the volatility is an “S-DEC” (“S-
INC”), then “HOLD” (“S-SELL™).

11. If the return forecast is “W-POS” and the change in the volatility is a “DEC”,
“STABLE”, or ”INC*, then “W-BUY”.

12. If the return forecast is “W-POS” and the change in the volatility is an “S-DEC” (“S-
INC”), then “S-SELL” (“HOLD”).

13. If (the return forecast is stable) then (the trading recommendation is to hold)®*

Rules 1, 3, 5, 7, 9 and 11 are the examples for when the volatility change is in line
with the return predictions and give full weight to the return predictions. However, if the sign
or magnitude of the return forecast contradicts the volatility change, as indicated in Rules 2,
4, 6, 8, 10 and 12, then the trading recommendation is adjusted. This is a novelty of our
approach: we adjust the weights in the case when the fuzzy logic inputs contradict each other.
By contrast, the neuro-fuzzy (univariate) framework (Gradojevic, 2007), which our approach
builds up on, would use the following rules: If the return forecast is “V-NEG” then “VS-

SELL”; if the return forecast is “NEG” then “S-SELL”; if the return forecast is “W-NEG”

8 For any combination of a stable return forecast and changes in the underlying volatility, all rules result into a
hold recommendation. Note that the “if-then” rules only allow for two “if” conditions at once per rule, i.e. “if
the return forecast is “V-NEG” and the change in the volatility is “S-INC”, then “VS-SELL”; if the return
forecast is “V-NEG” and the change in the volatility is “INC”, then “VS-SELL”.
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then “W-SELL”; if the return forecast is “STABLE” then “HOLD?”; if the return forecast is
“W-POS” then “W-BUY?”; if the return forecast is “POS” then “S-BUY™; and if the return
forecast is “S-POS” then “VS-BUY”. Note that the rules of the neuro-fuzzy approach
correspond to Rules 1,3,5,7,9,11 and 13 used in the multi-fuzzy approach. The output of the

trading recommendation falls within the discrete intervals, shown in Table 4.1.

Table 4.1 Intervals for discrete trading recommendations (based on defuzzified output)

Trading strategy Interval for z
SELL STRONG -1<zt<-0.8
SELL -0.8<zt<-0.55
SELL WEAK -0.55<7zt<-0.25
HOLD -0.25<72t<0.25
BUY WEAK 0.25 <7t <0.55
BUY 0.55<zt<0.8
BUY STRONG 08<zt<1

Note: This table shows the boundaries between the overlapping membership functions for the variable’s trading
recommendation, which falls between -1 (sell one unit of foreign currency) and +1 (buy one unit of foreign
currency). Given that all exchange rates are denominated against the USD, a positive value suggests buying the
foreign currency using the fraction of US dollars, whereas a negative value indicates a fraction of foreign

currency to be sold.

The fuzzy logic is, therefore, essentially a look-up function that looks up the
corresponding trading recommendation based on the inputs, membership functions and rules.
The main difference is how the trading recommendation is looked up, as more than one rule
can be active in the fuzzy logic setting (due to the partial memberships of the inputs). A
“centroid method” is used to generate the trading recommendation based on the combined

membership functions of the inputs.
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To give further insight into the differences between the neuro-fuzzy and the multi-
fuzzy framework, consider the following example. Suppose the ANN predicts an exchange
rate change with an assigned value of -0.54 for the next period and the assigned value for the
change in the underlying volatility is -0.7. This is graphically depicted in Figure 4.4. Panel A.
displays the trading recommendation generated by our multivariate fuzzy logic framework,
whereas Panel B displays the trading recommendation generated by the univariate fuzzy logic

framework.

Figure 4.4 Comparison of multivariate and univariate fuzzy logic framework
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Note: This figure is for illustrative purposes only. Panel A displays parts of the fuzzy logic inference setting for
the multi-fuzzy trading strategy. Panel B displays the fuzzy logic inference setting for the neuro-fuzzy strategy
replicated from Gradojevic (2007). The yellow shaded areas represent the degree of membership from the inputs
to each fuzzy set. The blue triangles represent the fuzzy sets for the output states (trading recommendation). The
blue shaded areas represent the outputs generated by the fuzzy rules and their degree of membership to a

particular output set. The red bar shows the centre of mass, which gives the trading recommendation.

The exchange rate change prediction of -0.54 corresponds to two fuzzy logic sets: the
“negative” and “weakly negative” set. This is the same for both the neuro- and multi-fuzzy

strategies. However, the neuro-fuzzy strategy would directly link the return prediction to the
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trading recommendation via two “if-then” rules (the two active rules are “if the return
forecast is “NEG” then “S-SELL” and if the return forecast is “W-NEG” then “W-SELL”)
resulting in a recommendation to sell a fraction of 0.58 units of the foreign currency. By
contrast, in the multivariate fuzzy logic inference setting, four “if then” rules are active
resulting in a recommendation to 0.28 units of the foreign currency. This difference in the
trading weights between both approaches is due to the decrease in the underlying volatility,

which the univariate fuzzy approach (Panel B) does not take into account.
45  Empirical Results
45.1 Initial assessment

Prior to investigating the profitability of the technical trading strategies, we examine
the statistical properties of the returns and determine the statistical tests that are most
appropriate for examining the performance of technical trading rules®. As our first step, we
investigate the daily return predictability from order flow, using the same regression as in

Section 3.7.1 in Chapter 3:

Pt - C + AXt—l + FPt—l + Ut' (42)

where P, = [As;] is a vector of the exchange rate returns, X;_, is a vector of order
flow (measured in thousands), A and I are the coefficients to be estimated, C is the constant

and U, is the residual.

Table 4.2 shows the results of our regression. As we can see, the order flow parameter
estimate A is only statistically significant for four (USD-GBP, USD-NZD, USD-AUD and

USD-CAD) out of the six exchange rate pairs investigated. Although the parameter estimates

8 We use the same dataset as in the previous chapter. Data on the CBOE VIX and EPU Index used in the
robustness section is obtained from Thomsen Reuters DataStream.
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are not significant for the USD-EUR and USD-JPY rates, the other exchange rates show that

the current order flow has significantly positive effect on their future movements.

There are a variety of reasons for this result. The most obvious is the high
autocorrelation of order flow itself (a positive order flow today is likely to be followed by a
positive order flow tomorrow and similarly for a negative order flow today), leading to a
persisting impact of the current order flow on future spot rate fluctuations®®. However, the
parameter estimates on the lagged returns are all insignificant (except for USD-CAD). This
might indicate that either the lagged returns have no effect on future spot rate movements,
which would contradict the popularity of price-based technical trading indicators, or that one
should consider different lags in the relationship. The last observation is that the R? values of
all regressions are very small: literally zero, casting doubts on the presence of a linear

relationship among order flows, lagged returns and current spot rate movements.®’

Table 4.2 Regression of return predictability from order-flow and lagged returns

USD-EUR USD-GBP USD-JPY USD-AUD USD-NZD USD-CAD

C 0.012 0.032 *** 0.007 0.013 0.014 0.082
A 0.086 0.174%** 0.516 0.374*** 0.735*** 0.119 ***
r -0.001 0.003 0.039 -0.062 -0.002 0.126 ***
R? 0.002 0.048 0.015 0.088 0.048 0.062

Note: The regression presented uses the exchange rate return as the dependent variable and order flow and
lagged exchange rate returns as the explanatory variable. Returns are multiplied by 100. *** denotes

significance at the 1% level, ** at the 5% level and * at the 10% level.

4.5.2 Price- and order-flow-based technical trading indicators

Table 4.3 shows the performance of the price- and order flow indicators. The total

return for each strategy is calculated as:

¥ Another explanation is the gradual incorporation of current information into future prices via order flow, as
outlined in Chapter 3.
8 As the dataset is mainly the same as used in Chapter 2, we do not report the descriptive statistics here.
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R = Ti5 Weglesn (4.3)

where w; represents the trading recommendations (-1,0 or +1 in this case). k=1,...,M refers
to the number of technical trading rules (M=2691) and N is the number of trading periods
(N= 2856)%. We report the performance of only the best price- and order-flow-based trading
indicators for parsimony ®®. The White Reality Check and Hansen’s test for superior
predictive accuracy, however take into account all the 2691 trading rules in the universe to

calculate the p-values.

Before accounting for transaction costs, we can see a fairly clear pattern. The best
order flow based trading indicator generates the highest returns for the USD-GBP, USD-
AUD and USD-NZD currency pairs, with a maximum of roughly 17% p.a. seen for the
USD-NZD exchange rate. Conventional trading strategies seem to work fairly well, with the
best MA and filter rules resulting in greater returns on average than channel breakouts and
trading range breaks. This finding is in line with Qi and Wu (2006). Although the best order
flow based technical indicator leads to a higher return than conventional strategies for USD-
GBP, USD-AUD and USD-NZD (the difference is roughly 8.35% p.a. for the USD-NZD
pair), our results might be biased by data snooping, which is suggested by the insignificant p-
value of White’s reality check and Hansen’s test for superior predictive accuracy. The
evidence in favour of achieving superior trading profits from simple order-flow (price-based)
trading strategies is therefore very weak. Furthermore, the differences in profitability between
order-flow and price-based trading strategies are small for four out of the six currency pairs

evaluated a finding which supports H1.

% Note: In this analysis we follow the literature and use the entire dataset to evaluate the profitability of the
competing technical trading indicators. The main conclusions drawn from this analysis, however, apply to the
three specific subsamples used in the next section. The first trading signal is generated for the 256" observation
for all specifications, as some rules require 255 days of previous data in order to generate a trading signal.

8 We report the performance of the best strategy in terms of returns generated. The main conclusions drawn,
however, do not alter when comparing the best strategies in terms of Sharpe ratios.
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Table 4.3 Performance of the best trading rule among price- and order-flow-based strategies

USD-EUR USD-GBP USD-JPY USD-AUD USD-NZD USD-CAD

Panel A. Performance before transaction costs. January 2002 — December 2013

FILT 7.24% 3.90% 4.40% 8.24% 8.67% 7.37%
MA 7.61% 6.40% 7.00% 8.36% 8.59% 7.27%
B 5.47% 3.31% 5.75% 9.95% 8.30% 7.36%
CB 5.13% 5.00% 5.32% 6.65% 7.51% 6.60%
OF 7.24% 7.47% 3.38% 16.06% 17.02% 5.50%
Buy-and-

hold 3.44% 1.04% 2.53% 5.04% 5.69 3.30%
White RC 0.79 0.46 0.42 0.30 0.38 0.91
Hansen SPA  0.79 0.46 0.42 0.30 0.38 0.90

Panel B. Performance after transaction costs. January 2002 — December 2013

FILT 7.17% 2.86% 3.80% 8.07% 8.60% 7.34%
MA 7.54% 6.08% 5.77% 8.25% 8.58% 7.26%
B 5.34% 2.40% 5.15% 9.33% 8.28% 7.32%
CB 4.97% 4.71% 5.29% 4.65% 4.51% 6.26%
OF 7.03% 6.74% 3.24% 10.20% 13.52% 5.45%
Buy-and-

hold 3.44% 1.04 2.53% 5.04% 5.69% 3.30%
White RC 0.83 0.47 0.45 0.56 0.53 0.91
Hansen SPA  0.83 0.44 0.45 0.55 0.52 0.86

Note: This table presents the annualised percentage returns of the best price-based and order-flow-based
technical indicators from the universe of 2,691 trading rules for each currency. Panel A. shows the returns in
the absence of transaction cost, whereas Panel B. shows the transaction cost-adjusted returns. The buy-and-hold
strategy (BH) acts as a benchmark. The annualised returns for each strategy correspond to the optimal critical
values. Transaction costs are equal to 2 basis points. FILT represents the filter rule, SMA is the simple moving
average indicator, TB and CB represent the trading range break and the channel break technical indicators
respectively, OF represents the performance of the order-flow-based indicator. White’s reality check (RC) and
Hansen’s test for superior predictive accuracy (SPA) are p-values obtained from the bootstrap approach outlined

in Appendix C, and test whether any given trading strategy can outperform the buy-and-hold benchmark.

Turning to the results that allowing for transaction costs reported in Panel B, the
pattern still persists: the best order flow based trading indicator still provides higher returns
than the best price-based indicators for the USD-GBP (6.74%), the USD-AUD (10.20%) and
the USD-NZD rate (13.52%). The best MA indicator provides the highest return for the

USD-EUR spot rate of 7.54% and USD-JPY rate of 5.77% p.a. For the USD-CAD, the
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largest return is generated by the best filter rule. Again, although the order flow based trading
rules generate a substantially higher return for USD-GBP, USD-AUD and USD-NZD than
price-based indicators, the performance differences are not significant after accounting for

data snooping®

All of the findings in section 4.5.2 confirm the hypothesis that implementing order
flows directly as a trading indicator does not provide significant benefits after accounting for
data snooping. We believe that this finding warrants a more sophisticated nonlinear approach,

a possible one being the neuro-fuzzy setting to which we now turn.

4.5.3 Performance of the neuro-fuzzy and the multi-fuzzy strategy

The primary input in both the neuro—fuzzy and the multi- fuzzy trading strategy is the
order-flow-based ANN forecast. The performance of both approaches hence relies critically
on the accuracy of the ANN-based return prediction. Given that the return predictions would
be highly inaccurate the profitability of the trading strategy would be limited. Therefore, we

first asses the accuracy of the neural network based return predictions.

Figure 4.2 plots the relationship between the inputs (order flow, interest rate
differential and oil price) and the targets (changes in the logarithmic exchange rate) of the
ANN. This figure gives the first indication of the relationship between the order flows,
changes in the oil price, changes in the IRD and the standardised change in the EUR-USD

rate. There seems to be a relationship between the standardised inputs and targets, but the

% \We also experimented with combinations of price- and order-flow-based technical indicators, following the
documented profitability of combined trading indicators outlined by Lento (2009). Contrary to Lento (2009),
however, we found that no combined trading indicator led to a significantly larger rate of return than a buy-and-
hold strategy, regardless of the exchange rate pair evaluated. We do not display the results because of
parsimony.
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relationship is not linear. The aim of the ANN is to estimate this nonlinear relationship

between exchange rate movements and the input variables.

Figure 4.5 Relationship between artificial neural network (ANN) inputs and targets
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Note: This figure plots the relationship between normalised inputs (change in the oil price, order flows and the
interest rate differential) and the logarithm of the USD-GBP exchange rate. All variables are normalised to the [-
1,1] interval. The same data are given to the ANN to establish a nonlinear relationship between changes in the

exchange rate and the input variables.

Although Figure 4.2 gives a visual justification for using the ANN forecast, a more
formal justification for this relies on whether the ANN model can outperform a random walk
prediction (in terms of mean squared errors arising from both predictions) and the directional
accuracy of the ANN predictions, measured as the percentage of correctly predicted signs

(PERC).

Mean squared errors (MSEs) are constructed as the squared differences between the
return prediction and the actual returns and are a standard measure to evaluate the accuracy of
competing return predictions. Yet, the primary indicator for forecasting power (trading rule
profitability) is not necessarily the mean squared error, but the percentage of correctly
forecasted directions of real exchange rate fluctuations. PERC measures the total number of
correctly forecasted positive and negative movements over the out-of-sample period and are

calculated as:
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PERC = %zf_l P, (4.4)

where, p, =1 if r.f, >0 and 0 otherwise.

To see whether the PERCs are significantly different from the sample average and if
the MSEs are significantly different from a random walk forecast, we apply the Pesaran and
Timmermann (PT) test for directional- and the Diebold-Mariano (DM) test for predictive
accuracy. A positive DM statistic indicates that the ANN based prediction resulted in a lower
MSE than the random walk based return prediction. A higher PT statistic indicates a better
directional accuracy. The null hypothesis is that there is no difference in the PERCs of the
random walk and the ANN model. Both the PT and DM statistics are asymptotically

distributed as a N(0,1).

Table 4.4 shows the summary statistics of the ANN-based return forecasts for three
distinctive out-of-sample periods and the six exchange rates studied. The three out-of-sample
periods are constructed following the same methodology as Chapter 3: each subsample
contains 1000 observations, with the out-of-sample part of each subsample used to evaluate
the ANN accuracy chosen to be the last 200 observations. The 800 in sample observation
represent the training, validation and testing set for the neural network. Afterwards the
network takes the data from the out-of-sample period to generate one-step-ahead exchange

rate predictions.

The main finding from Table 4.4 is that, regardless of the exchange rate or time
period studied, the ANN forecast always outperforms a random walk forecast, in terms of
mean squared errors (MSE), as indicated by the corresponding DM test statistics. The PERC
varies widely, depending on both the exchange rate under investigation as well as on the

subsample period studied. To put things in perspective, for USD-CAD return sign
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predictions, the PERC statistic ranges between 56% and 59.5%, showing the strongest sign
detection ability during the out-of-sample period of the second subsample. The same
observation can be made for USD-AUD and USD-NZD where the PERC statistics vary
between 55% and 59.5%, showing the strongest sign detection ability during the out-of-
sample period of the first subsample. For both exchange rates, the sign predictions are
statistically different from the sample averages for all periods, as indicated by the PT
statistics. The largest directional accuracy of the network based return predictions is found for
the USD-EUR and USD-GBP exchange rates during the second subsample’s out-of-sample
period (61% and 62% correctly predicted signs). By contrast, the directional accuracy of the

network predictions is questionable for USD-JPY predictions during this period.

Table 4.4 Out-of-sample accuracy of the Artificial Neural Network (ANN) predictions

USD-EUR USD-GBP USD-JPY USD-CAD USD-AUD USD-NzD

Panel A. January 2002 — December 2005

PERC 0.550 0.605 0.560 0.560 0.595 0.590
DM 5.75%** 4.69 *** 2.43%** 4.72 *** 4.445 *** 3.39 ***
PT 3.28*** 2.97%** 2.32%* 1.41* 3.377%** 2.98***

Panel B. January 2006 — December 2009

PERC 0.610 0.620 0.530 0.595 0.590 0.580
DM 3.46%** 2.09 *** 1.43* 5.199 *** 2.77%** 2.993 ***
PT 3.29%** 3.74** 1.05 2472 *** 2.56%** 2.05**

Panel C. January 2010 — December 2013

PERC 0.570 0.590 0.59 0.560 0.550 0.550
DM 4. 73%** 4.50%** 1.99** 3.546 *** 2471 *** 3.26 ***
PT 2.24** 2.57%** 2.09** 1.762 ** 1.692 ** 2.34%**

Note: This table displays the key statistics of the accuracy of the ANN. PERC denotes the percentage of
correctly predicted hits over the out-of-sample period. The out-of-sample period used in the analysis is equal to
the last 200 observations of each subsample. DM is the Diebold—-Mariano (1995) test statistic for equal
predictive accuracy. The benchmark prediction is the order-flow-based ANN forecast. The competing prediction
is a random walk forecast. PT refers to the Pesaran—Timmermann (1992) test for sign prediction. The one sided
critical values for both tests are and 2.33, 1.645 and 1.282 for confidence levels of 99%, 95% and 90%,

respectively. *** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.
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Apart from screening the ANN inputs and evaluating the statistical accuracy of the
network prediction, another starting point is to ask whether a simple trading indicator derived
from an order-flow-based ANN forecast can indeed outperform a simple buy-and-hold
strategy, as this would indicate that order flows can only be linked indirectly to technical
trading rule profits, which further justifies its use in the fuzzy logic application below. In fact,
such a strategy was outlined by Fernandez-Rodriguez et al. (2000) and Jasic and Wood
(2004), where the return sign from the neural network prediction is used as a buy or sell [1,-
1] indicator. We follow this “regime-switching” strategy, i.e. a positive predicted return

generates a buy- and a negative predicted return generates a sell recommendation.

In this analysis, we evaluate the profitability in terms of Sharpe ratios, which makes it
easier for comparison against the fuzzy logic strategies (to be described later). The returns for

each strategy are constructed as in Equation 4.4., and the Sharpe ratios are constructed as:

=
X
=

SR =

, (4.5)

where the numerator is the average return in each trading strategy (the buy-and-hold
strategy, the regime-switching strategy which uses the ANN prediction directly as a trading
indicator, or the neuro fuzzy-logic-based trading strategies outlined later on)®*, 17 and the
denominator is the standard deviation of the returns from each trading strategy. We then test
whether the Sharpe ratios generated by the three strategies are statistically different from each

other, following the testing procedure outlined in Jobson and Korkie (1981) and Memmel

%1 The numerator of the Sharpe ratio is usually defined as the excess return from a particular trading strategy
over some risk-free rate. In this paper, however, we follow Qi and Wu (2006) by setting risk-free rate to zero,
because they suggest that the excess return (zero net investment) for an investor is the speculative position in the
FX market (the benchmark is for the investor not to take a position in the FX market and hence a zero return).
This practice of setting risk-free rate to zero can further allow us to link our findings directly to Gradojevic
(2007) who also specifies the Sharpe ratio according to equation (4.5). More importantly, this practice also
allows us to make the setting intuitive and practically relevant to small traders who do not necessarily get
interest rates from their brokers.
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(2003), denoted as JKM test. This test has been most frequently used for the equality of two

trading strategies **.

The test for differences between two competing Sharpe ratios follows from the
asymptotic distribution of the differences in risk-adjusted returns between two trading

strategies given by:

VT(SR, — SRp) > N(O,y/Vayer )With Vaigr = 2 — 2pa + 3 [SR2 + SRE — 2SR,SRypZ,] ,

(4.6)

Where, SR, and SRy, represent the estimated Sharpe Ratios from the two competing
trading strategies and p, , represents the correlation in returns between both strategies. The
standard error of the estimated Sharpe ratio difference is equal to the square root of V.

The null hypothesis tested is that the difference in Sharpe Ratios is equal to zero.

We compare different trading strategies in terms of Sharpe ratios only, for the
following reasons. First, comparing raw returns to evaluate the fuzzy logic trading strategies,
though more intuitive, is inappropriate, as it would neglect the differences in the trading
weights between the competing strategies. Such neglecting would overlook the differences in
volatility and hence riskiness between the strategies. For instance, smaller trading weights
will typically result in smaller returns, but at the same time will also reduce the risk involved
in the trading strategy. If using raw returns only, the strategies with smaller trading weights
would be considered inferior strategies, whereas according to risk-adjusted returns (Sharpe
ratio) they may not be. Second, all other financial ratios, with the exception of the Traynor

ratio albeit more applicable for stock markets, can only gauge the profitability of a trading

%2 The test was initially outlined in Jobson and Korkie (1981) with Memmel (2003) correcting some
shortcomings in the derivation of the important formulas.
% See Opdyke (2007) for further explanation on the testing procedure.
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strategy, but do not enable one to judge whether one strategy is significantly better than
another. This shortcoming of other financial ratios renders it necessary to apply the Sharpe
ratio which can sever the purposes of comparisons. Finally, a common practice in the existing
studies that evaluate the profitability of the trading strategies is to employ the Sharpe ratio,

due to its practical relevance for market participants. We follow this argument and practice.

As outlined in Table 4.5, using an order-flow-based ANN forecast as a trading
indicator typically generates substantially larger Sharpe ratios than a buy-and-hold strategy.
This regime switching strategy provides significantly higher Sharpe ratios than the buy-and-
hold strategy for trading USD-EUR, USD-GBP, USD-CAD and USD-NZD, regardless of
time period studied. For a trader specialising in USD-JPY and USD-AUD, the regime
switching strategy based on an ANN prediction provides significantly higher Sharpe ratios

than the buy-and-hold strategy for the first and third sub-sample’s out-of-sample periods.

For the financially tranquil first out-of-sample period, the Sharpe ratios are
particularly large for trading the USD-EUR and USD-GBP currency pairs (4.45 and 4.64
before, and 3.89 and 4.17 after transaction costs). For the financially turbulent second out-of-
sample period, the Sharpe ratios generated by the regime switching strategy are particularly
high for trading USD-NZD (3.44 and 3.24) and again USD-EUR (3.25 and 3.00); however,
the strategy does not produce significantly different Sharpe ratios compared to a buy-and
hold strategy for a trader investing in USD-JPY and USD-AUD. For the third sub-sample,
the simple regime switching strategy provides the highest Sharpe Ratios for an USD-EUR
(3.78 and 3.01) and USD-JPY (3.07 and 2.72) trader; however, the strategy results in a

negative risk-adjusted return for trading USD-AUD after transaction costs (-0.05) .

The findings from this analysis are, however, not unexpected, or else ANNs would

not be so prominently used by traders, and a buy-and-hold strategy is not really a benchmark
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in FX trading, as exchange rates do not pay a dividend. Furthermore, although a simple
trading indicator based on an ANN return prediction indeed provides larger Sharpe ratios
than a buy-and-hold strategy, the performance of this trading strategy suffers from frequent
rebalancing, as transaction cost-adjusted returns remove about one-third of the Shape ratio on

average.

Table 4.5. Out-of-sample performance of the regime switching strategy

USD-EUR USD-GBP USD-JPY USD-CAD USD-AUD USD-NZD

Panel A. January 2002 — December 2005

BH -1.42 -1.18 -1.79 0.70 -0.71 -0.47
BH* -1.42 -1.18 -1.79 0.70 -0.72 -0.47
ANN 4.45%* 4.64** 2.99** 2.04** 1.99%** 2.89%**
ANN* 3.89** 4.17** 2.59%* 1.80** 1.63*** 2.20 ***

Panel B. January 2006 — December 2009

BH 1.06 0.83 0.14 1.21 1.75 1.58
BH* 1.06 0.83 0.14 1.21 1.75 1.58
ANN 3.25%** 2.04** 3.02 2.80** 3.39 3.44 ***
ANN* 3.00%** 1.80%** 2.71 2.52%* 3.16 3.25 ***

Panel C. January 2010 — December 2013

BH 0.24 -0.92 -2.85 -1.29 -1.46 -0.34
BH* 0.24 -0.92 -2.85 -1.29 -1.46 -0.34
ANN 2.01%** 3.78** 3.07*** 1.39%** 0.50*** 3.34%**
ANN* 1.41%** 3.01%** 2.72%** 0.48*** -0.05*** 3.12%**

Note: This table presents the annualised Sharpe ratios generated by a buy-and-hold strategy (denoted BH) and a
simple regime switching strategy using the ANN-based return forecast as a technical trading indicator (denoted
ANN). Panel A reports the results for the out-of-sample period of the first subsample, and Panels B and C do the
same for the out-of-sample periods of the other subsamples. An asterisk next to a strategy indicates that the
Sharpe ratios for the trading strategy are calculated after the transaction costs, which are assumed to be equal to
2 basis points. The out-of-sample period used in the analysis is equal to the last 200 observations of each
subsample. We use the test outlined in Jobson and Korkie (1981) and Memmel (2003) to evaluate whether the
differences in Sharpe ratios are statistically different from zero. The asterisks next to the Sharpe ratios indicate
that the Sharpe ratios generated by the ANN-based trading strategy are statistically different from the buy-and-

hold strategy. *** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.

The natural solution, which allows us to reduce trading uncertainty and also generates

a smoother decision surface, is to link the ANN forecast to the trading recommendations in a
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fuzzy logic setting. This has been discussed above for the CAD-USD exchange rate, and our
approach builds upon this. Table 4.7 compares the neuro-fuzzy approach (replicated from
Gradojevic (2007)), which uses only the ANN based return predictions as an input, versus our
proposed approach outlined in section 4.4.2. To avoid confusion we label the univariate fuzzy
approach as NF to highlight the fact that this approach only uses the ANN prediction.
Opposed to this, our proposed multi-fuzzy strategy takes the order-flow-based ANN return
predictions into account as well as changes in the underlying market volatility, which we
proxy with changes in the conditional exchange rate volatility. We therefore denote this

approach MF.

As demonstrated in Table 4.6, both the neuro-fuzzy and multi-fuzzy strategy, on
average, provide substantially higher Sharpe ratios for each exchange rate and over all the
subsample periods compared to the strategy evaluated in Table 4.5, which uses the return
prediction directly as a trading signal. This result becomes even stronger when we compare
the Sharpe ratios after the transaction costs because of the smoother trading recommendations

of the fuzzy logic approach.

What is truly striking is that the multi- fuzzy approach dominates the neuro-fuzzy
approach, for 5 out of the six exchange rates regardless of the time period evaluated. The
differences in the Sharpe ratios are statistically significant for USD-NZD across all out-of-
sample periods evaluated, and for USD-EUR, USD-GBP, USD-AUD and USD-CAD for

two out of the three periods evaluated.

Overall, the differences between both approaches are the largest for the first
subsample’s out-of-sample period, where the differences in Sharpe Ratios range up to 0.88

(0.80 after transaction costs) for a trader trading AUD with USD, and 0.7 (0.67 after
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transaction costs) for a trader trading NZD with USD. To put the aspects into perspective,

these differences in Sharpe Ratios correspond to a gain of around 25% and 32%.

This immense difference reveals the economic value of our proposed approach.
Though the differences are particularly large for the first subsample period, the benefits are
still economically significant for the second and third subsamples. For the out-of-sample
period of the second subsample, the Sharpe ratios from the neuro-fuzzy approach range
between 2.54 and 4.43, which are lower than those of the multi-fuzzy approach (ranging
between 2.85 and 4.83); a similar pattern is also discernible for the third subsample’s out-of-
sample period, where the multi-fuzzy strategy generates an astonishing Sharpe ratio of 5.52
and 5.20 after transaction costs for trading the NZD-USD currency pair. The same
conclusions apply to the transaction cost-adjusted Sharpe ratios, as both strategies incur

similar shares of transaction costs, thereby confirming H2.
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Table 4.6 Out-of-sample performance of the neuro- and the multi-fuzzy trading strategy

USD-EUR USD-GBP USD-JPY USD-CAD USD-AUD USD-NZD

Panel A. January 2002 — December 2005

NF 4.86 4.75 3.79 1.93 3.56 2.20

NF* 4.23 4.27 3.38 1.55 3.12 1.65

MF 5.43 ** 4.95 3.79 2.22* 4.44%** 2.90***

MF* 475 ** 4.45 3.31 1.81* 3.92%** 2.32%**
Panel B. January 2006 — December 2009

NF 3.52 2.54 3.72 2.80 3.21 4.43

NF* 3.22 2.27 3.40 2.47 2.97 4.25

MF 3.93** 2.95%** 3.49 2.85 3.48 4.83**

MF* 3.60** 2.66*** 3.14 2.49 3.25 4.64**
Panel C. January 2010 — December 2013

NF 2.58 4.28 2.76 2.02 0.72 4.76

NF* 1.88 3.40 2.36 0.81 0.24 4.45

MF 2.71 5.08*** 2.38 2.39* 0.98* 5.52%**

MF* 2.01 4.25%** 2.17 1.33** 0.50* 5.20%**

Note: This table presents annualised Sharpe ratios generated by the neuro- and the multi-fuzzy trading strategy.

NF refers to a trading strategy using the ANN-based exchange rate return prediction as a fuzzy logic input

directly; The MF strategy uses the change in the underlying (conditional) volatility as an additional input. The

MF setting is displayed in Figure 1. Panel A. reports the results for the out-of-sample period of the first

subsample, and Panels B and C do the same for the out-of-sample periods of the other subsamples. The out-of-

sample period used in the analysis is equal to the last 200 observations of each subsample. An asterisk next to a

strategy indicates that the Sharpe ratios for the trading strategy are calculated after the transaction costs, which

are assumed to be equal to 2 basis points. We use the test outlined in Jobson and Korkie (1981) and Memmel

(2003) to evaluate whether the differences in Sharpe ratios are statistically different from zero. The asterisks

next to the Sharpe ratios indicate that the Sharpe ratios generated by the MF strategy are statistically different

from the NF strategy *** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.
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4.6 Robustness

4.6.1 Choice of membership functions

The first robustness test evaluates two alternative shapes for the input space:
triangular and trapezoidal membership functions. A graphical representation of the fuzzy
logic setting using triangular and trapezoidal membership functions is given in Figure C1 in

the Appendix.

In a nutshell, using triangular membership functions does not change the conclusions
drawn before as outlined in Table 4.6. The multi-fuzzy strategy outperforms its univariate
counterpart for 5 out of the six exchange rates and over all the subsample periods. As in the
baseline analysis, the differences are statistically significant for USD-NZD across all out-of-
sample periods evaluated and for USD-EUR, USD-AUD, USD-GBP and USD-CAD for

two out of the three periods evaluated.

Scrutinising the differences among the periods, the first subsample demonstrates that
the biggest difference is 0.21 (= 4.00 — 3.79) for the USD-JPY rate, followed by -0.13 (= 2.77
- 2.90) for the USD-NZD rate. The second subsample indicates that the biggest difference
arises for the USD-EUR rate (-0.10 = 4.03- 3.93), followed by the USD-CAD rate (0.08 =
2.93 — 2.85). The third subsample shows that the biggest difference goes to the USD-GBP
rate (-0.12 = 4.96 — 5.08) followed by the USD-CAD (0.04 = 2.39 — 2.35). As the Sharpe
ratios are very similar to the original parameterisation, this analysis confirms the robustness

of our setting to triangular membership functions®.

* Note that the results do not alter when we use trapezoidal membership functions (see Table C.1 in Appendix
C), which further confirms the robustness of the trading strategy.
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Table 4.7 Out-of-sample performance of the neuro- and the multi-fuzzy trading strategy

(triangular membership functions)

USD-EUR USD-GBP USD-JPY USD-CAD USD-AUD USD-NZD

Panel A. January 2002 — December 2005

NF 4.87 4.76 3.62 1.93 3.56 2.20
NF* 4.25 4.27 3.14 1.55 3.12 1.66
MF 5.44%* 4.82 4.00* 2.25* 4.44%** 2.77%**
MF* 4.77** 4.33 3.42 1.83* 3.93%** 2.23%**
Panel B. January 2006 — December 2009

NF 3.52 2.54 3.72 2.80 3.21 4.43
NF* 3.22 2.27 3.40 2.47 2.97 4.25
MF 4.03*** 2.97*** 3.44 2.93 3.44 4.82**
MF* 3.70%** 2.67*** 3.10 2.56 3.21 4.63**

Panel C. January 2010 — December 2013

NF 2.58 4.28 2.76 2.02 0.72 4.75
NF* 1.88 3.40 2.36 0.81 0.23 4.44
MF 2.74 4.96** 2.37 2.35* 0.99* 5.54***
MF* 2.04 4.22%%* 2.16 1.29*%* 0.46* 5.22%**

Note: This table presents annualised Sharpe ratios generated by the neuro- and the multi-fuzzy trading strategy.
NF refers to a trading strategy using the ANN-based exchange rate return prediction as a fuzzy logic input
directly; The MF strategy uses the change in the underlying (conditional) volatility as an additional input. The
MF setting is displayed in Figure 1. Panel A. reports the results for the out-of-sample period of the first
subsample, and Panels B and C do the same for the out-of-sample periods of the other subsamples. The out-of-
sample period used in the analysis is equal to the last 200 observations of each subsample. An asterisk next to a
strategy indicates that the Sharpe ratios for the trading strategy are calculated after the transaction costs, which
are assumed to be equal to 2 basis points. We use the test outlined in Jobson and Korkie (1981) and Memmel
(2003) to evaluate whether the differences in Sharpe ratios are statistically different from zero. The asterisks
next to the Sharpe ratios indicate that the Sharpe ratios generated by the MF strategy are statistically different

from the NF strategy *** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.

4.6.2. Alternative volatility proxies

An interesting question is whether using changes in a proxy for global (exchange rate)
volatility would generate a similar boost in trading rule performance. To test this possibility,
we test the performance of our proposed multi-fuzzy strategy using proxies for the change in

global risk aversion and uncertainty as the second input. As outlined below, increases in
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global risk aversion and uncertainty should increase the volatility of the individual currency
pairs; we therefore use this analysis as a further test for the robustness of our proposed

approach.

We focus on changes in the Chicago Board Options Exchange volatility index (VIX)
and economic policy uncertainty (EPU). The VIX measures the implied volatility of index
options of the S&P 500 index, which is shown to be a close proxy for the volatility of the
constituents of the S&P 500 (Fleming, Ostdiek, and Whaley, 1995), their price jumps
(Becker, Clements, and McClelland, 2009) and their expected returns (Whaley, 2000). The
VIX is, in itself, a forward-looking measure, as it is based on the options’ implied volatility,
which is the expected market volatility over the next 30 days and is commonly termed “fear
index” (Whaley, 2000) as it reflects option implied volatility which rises given there is a

higher demand for put options.

The EPU index consists of three underlying components: media coverage of policy-
related economic uncertainty, reports by the Congressional Budget Office on tax code
provisions and uncertainty about policy-related macroeconomic variables. Its applications in
the literature have not only evaluated EPU-based volatility predictions, as outlined in Liu and
Zhang (2015), but have also indicated the existence of a link between policy uncertainty and

macroeconomic fundamentals (Baker, Bloom, and Davis, 2015).

The intuition is that all exchange rates display a larger volatility when global risk
aversion or uncertainty increases, which is reflected by strong increases in the VIX and EPU.
Based on the reasoning outlined before, increases (decreases) in the VIX (EPU) should result
in an appreciation (depreciation) of the USD relative to all other foreign currencies. A
behavioural explanation for this argument is that increases in uncertainty (EPU) or risk

aversion (VIX) could cause a flight to quality or flight to liquidity, thereby causing an

180



increased demand for USD holdings, as the USD is the major reserve currency. Note that
although the EPU and the VIX have a strong correlation to each other, conceptually, they
measure something different. The VIX measures changes in risk aversion, whereas the EPU

is a measure for (policy related) economic uncertainty.

The testing procedure is same as before: evaluating the risk-adjusted returns from
each trading strategy, we test for differences in the Sharpe ratios generated by both proxies
used as inputs in the multi-fuzzy strategy against the benchmark of the neuro-fuzzy approach,
replicated from Gradojevic (2007). To avoid confusion, we will label the baseline multi-fuzzy
strategy as MF-GARCH and the multi-fuzzy strategies using changes in the VIX and EPU as

MF-VIX and MF-EPU.

Table 4.8 shows the results of this analysis. The MF-GARCH results are replicated
from Table 4.6. At first glance, regardless of the volatility proxy used, the multi-fuzzy
approaches (MF-GARCH, MF-VIX and MF-EPU) typically yield higher risk-adjusted
returns than the neuro-fuzzy approach (NF). A second general observation is in order. The
MF-VIX typically yields higher risk-adjusted returns than the MF-EPU and closely matches

the MF-GARCH.

Looking at the differences in detail, we find that the MF-GARCH (MF-VIX) is always
preferred over the MF-EPU strategy during the first out-of-sample period, regardless of the
exchange rate pair evaluated. The differences between the MF-GARCH and MF-VIX are
small by comparison, and no clear pattern emerges. For the USD-EUR and USD-NZD the
MF-GARCH approach results in the highest Sharpe ratios generated (4.75and 2.32), whereas
the MF-VIX approach results in the highest Sharpe Ratios for the USD-GBP, USD-AUD
and USD-CAD pairs. As before, no multi-fuzzy strategy outperforms the neuro-fuzzy

strategy for the USD-JPY pair.
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For the second out-of-sample period, the same pattern remains, as the MF-GARCH and MF-
VIX typically dominate the MF-EPU strategy. Taking the USD-NZD as an example, the
Sharpe ratio generated by the MF-VIX (MF-GARCH) is equal to 4.69 (4.64) compared with
4.00 for the MF-EPU, a difference of 17.2 (16) %. A similar conclusion applies to USD-EUR
and USD-AUD. Note that during this period, the MF-VIX provides a significantly larger
Sharpe Ratio than the neuro-fuzzy strategy for an USD-JPY trader, whereas both MF-
GARCH and MF-EPU result in a smaller Sharpe ratio than the NF trading strategy.
Summarising the findings for this period, the MF-VIX is the preferred strategy for five out of

the six exchange rate pairs, and the MF-GARCH for the other currency pair.

For the out-of-sample period of the third subsample, the MF-EPU strategy generates
the highest Sharpe Ratio for trading USD-AUD (0.55), the MF-VIX generates the largest
Sharpe ratio for trading USD-CAD (2.07) and the MF-GARCH is preferred for the other four

exchange rates.

Although the fuzzy logic setting incorporating the EPU generates lower Sharpe ratios
than using other volatility proxies on average, this does not mean that the EPU is less
informative proxy for the change in the underlying volatility. The lower Sharpe ratios
generated are a result of the distribution of the EPU index: the index shows massive spikes
followed by calm periods, which makes the normalisation of EPU changes to any interval
problematic®. By contrast, changes in the VIX and GARCH based volatility estimates are
easier to model for an interval, as they are less volatile. Overall, it seems that the MF-
GARCH is the most consistent approach; however the MF-VIX also provides substantially
higher risk adjusted returns than the NF strategy. We take this finding as a confirmation for

the robustness of our approach.

% See Section 4.4.2. The proxy for the global volatility change and the network based return prediction both fall
within the range [-1,1].
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Table 4.8 Out-of-sample performance comparisons of different volatility proxies

USD-EUR  USD-GBP  USD-JPY USD-CAD USD-AUD USD-NzZD

Panel A. January 2002 — December 2005

NF* 4.23 4.27 3.38 1.55 3.12 1.65
MF-GARCH* 4.75%* 4.45 3.04 1.81* 3.93*** 2.32%%*
MF-VIX* 4.54 4.32 3.08 2.02%* 3.98*** 1.87**
MF-EPU* 4.25 3.84 3.11 1.30 2.54 1.82

Panel B. January 2006 — December 2009

NF* 3.22 2.27 3.40 2.47 2.97 4.25
MF-GARCH* 3.60** 2.66*** 3.14 2.49 3.25 4.64**
MF-VIX* 3.77F** 2.32 3.82** 3.25%** 3.57** 4.69**
MF-EPU* 3.54** 2.53 3.24 2.72 2.73 4.00

Panel C. January 2010 — December 2013

NF* 1.88 3.40 2.36 0.81 0.24 4.45
MF-GARCH* 2.01 4.25%** 2.17 1.34** 0.50* 5.20%**
MF-VIX* 2.00 3.48 2.50 1.02 0.48* 4.70
MF-EPU* 2.09 3.53 2.53 1.00 0.55* 4.49

This table presents annualised Sharpe ratios generated by the neuro- and the multi-fuzzy trading strategy. NF
refers to a trading strategy using the ANN-based exchange rate prediction as a fuzzy logic input directly; The
MF-GARCH uses the change in the underlying (conditional) volatility as an additional input. The MF-VIX and
MF-EPU use changes in a proxy for global exchange rate volatility, measured by changes in the VIX and EPU,
as an additional input. The performance of each strategy is net of transaction costs. The MF setting is displayed
in Figure 1. Panel A. reports the results for the out-of-sample period of the first subsample, and Panels B and C
do the same for the out-of-sample periods of the other subsamples. The out-of-sample period used in the
analysis is equal to the last 200 observations of each subsample. We use the test outlined in Jobson and Korkie
(1981) and Memmel (2003) to evaluate whether the differences in Sharpe ratios are statistically different from
zero. The asterisks next to the Sharpe ratios indicate that the Sharpe ratios generated by the MF strategy are
statistically different from the NF strategy *** denotes significance at the 1% level, ** at the 5% level and * at
the 10% level.
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4.7. A MA Fuzzy Logic Approach

Based on the striking boost in trading rule performance achieved by linking the
underlying volatility to order-flow-based exchange rate predictions, we now investigate
whether the performance of moving average rules can be boosted by linking changes in the

underlying volatility to the trading signals generated by the moving average rules.

Moving average rules commony compare the differences between a short (l;) and long
(I2) moving average to derive the trading signal, which results in either a buy [1] or sell [-1]
recommendation. While many combinations of short and moving averages are possible, we

focus on the four combinations ([1,50], [1,200], [5,200] and [2,200]) used in Gradojevic and

Gencay (2013) in this section. The buy and sell signals are calculated as s,fl'lz = mir —mb,

with a buy signal generated when s/*** > 0 and a sell signal when s> < 0. As before, a

buy signal indicates to buy the foreign currency using US dollars.

We compare the performance of a simple moving average trading strategy against two
moving average based fuzzy logic trading strategies. The simple moving average trading
strategy generates a trading signal based on the sign of the moving average difference
directly. The two fuzzy logic trading strategies work as follows. The first strategy uses the
differences between the long and short moving average as the only input, and links the
magnitude of the moving average differences directly to the trading recommendation. This
trading strategy is replicated from Gradojevic and Gencgay (2013), and is in the spirit of the
neuro-fuzzy approach, using the moving average difference in lieu of the neural network

based return prediction.

The second strategy is based on the multi-fuzzy strategy outlined in section 4.4.2.

This strategy uses two inputs, namely the difference between the long and short moving
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average for a currency pair and the currrent change in underlying volatility to derive the
trading recommendation. The if-then rules used by this version of the strategy are akin to the
multi-fuzzy strategy using the neural network based exchange rate change prediction as
primary input (e.g. “If the difference between the long and short MA is “POS” and the
change in the volatility is “S-DEC” (“S-INC”) then the trading recommendation is a “VS-

BUY” (“W-BUY™)).

To avoid confusion, we denote the simple moving average strategy as MA, the fuzzy
logic strategy relying on the moving average differences only as MA-FUZZY and the
multivariate counterpart as MULTI-FUZZY. As we use four different moving average
combinations, this results in four different trading recommendations (and hence risk adjusted
returns) generated by each strategy. We then average the risk adjusted returns generated by

all four moving average combinations for each strategy.

As reported in Table 4.9, we find overwhelming evidence that the MULTI-FUZZY
approach yields significantly higher Sharpe ratios than both the MA and MA-FUZZY trading
strategies. The superior performance of the MULTI-FUZZY approach is solely due to
adjusting the trading weights in case the volatility change does not match the moving average

trading signal. This confirms H3.

Looking at the individual subsamples in detail, we find that for out-of-sample period
of the first subsample, the MULTI-FUZZY generates a significantly higher Sharpe ratio than
the MA-FUZZY and the simple MA indicator, regardless of the exchange rate studied, both
before and after taking transaction costs into account. The trading gains are especially high
for the USD-CAD rate: the Sharpe ratio of the MULTI-FUZZY equals 2.45 (2.24 after

transaction costs) compared to 1.90 (1.82). The largest relative increase arises for a USD-
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GBP trader, where the Sharpe ratio generated by the MULTI-FUZZY strategy is about 60%

larger than the Sharpe ratio generated by the MA-FUZZY and MA strategy.

The superior performance of our strategy does not substantially alter for the second
subsample. For this period and the USD-EUR exchange rate, the MULTI-FUZZY generates
a gross risk adjusted return of 0.73, which is much larger than the Sharpe ratio of the MA-
FUZZY (0.37) and MA trading strategy (0.02). The same applies for a trader investing in
USD-GBP, USD-JPY, USD-CAD or USD-AUD. Only the USD-NZD rate does not follow
this pattern, where the MA-FUZZY approach dominates the other approaches; the
differences in performances between the competing approaches are, however, not statistically

significant.

The out-of-sample period of the third subsample further confirms the main
conclusions drawn from the analysis presented for the first and second subsamples’ out-of-
sample periods. The MULTI-FUZZY approach dominates the other approaches in terms of
risk adjusted returns and provides significantly higher returns for a USD-GBP or USD-AUD
trader than the other two approaches. Note that the fuzzy logic based trading strategies even
result in positive risk adjusted returns for the USD-GBP (0.88 and 1.36) when the moving

average trading strategy generates a loss (-0.22).

Comparing the analysis presented in Table 4.9 with the regime switching strategy or
the neural network based fuzzy logic trading strategies in Table 4.5 and Table 4.6, however,
highlights the larger economic value of order flow based return predictions over price-based
trading indicators. In other words, the ANN-based (-fuzzy) trading strategies dominate the
MA-based (-fuzzy) trading strategies on average. This explains why practitioners apply

ANNSs very widely.
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Table 4.9 Out-of-sample performance for simple and fuzzy-logic-based MA rules

USD-EUR USD-GBP  USD-JPY USD-CAD USD-AUD USD-NZD

Panel A. January 2002 — December 2005

MA 1.00 0.53 0.64 1.39 0.49 -0.66
MA * 0.95 0.50 0.60 1.32 0.39 -0.72
MA-FUZZY 1.20 0.55 0.88 1.90 0.75 -0.81
MA-FUZZY * 1.18 0.51 0.84 1.82 0.69 -0.85
MULTI-FUZZY 1.58*** 0.88*** 1.15%** 2.45%%* 1.12%** -0.37***
MULTI-FUZZY * 1.35%** 082*** 1.08*** 2.24% 0.95%*** -0.54%**

Panel B. January 2006 — December 2009

MA 0.02 0.06 2.63 0.11 0.78 0.64
MA * -0.03 0.03 2.56 0.09 0.70 0.60
MA-FUZZY 0.37 1.20 1.86 0.38 0.92 1.04
MA-FUZZY * 0.34 1.15 1.82 0.32 0.88 1.02
MULTI-FUZZY 0.73*** 1.501%** 2.04%** 0.72%** 1.14%** 0.92
MULTI-FUZZY * 0.65*** 1.30* 1.95 0.51** 1.06* 0.87

Panel C. January 2010 — December 2013

MA -1.12 -0.22 0.58 0.06 0.77 0.46
MA * -1.21 -0.28 0.54 0.03 0.70 0.40
MA-FUZZY -0.30 0.88 0.39 0.61 0.92 0.11
MA-FUZZY * -0.34 0.81 0.34 0.54 0.88 0.04
MULTI-FUZZY -0.21 1.36%** 0.46 0.73 1.27** 0.15
MULTI-FUZZY * -0.27 1.10%** 0.32 0.33 1.10** 0.10

Note: This table presents annualised Sharpe ratios of the competing moving average based trading strategies.
MA refers to the average performance of the four simple moving average trading rules. MA-FUZZY refers to a
fuzzy logic based trading strategy only considering the differences between a slow and fast MA. MULTI-
FUZZY refers to a trading strategy using the differences between the long and the short MA and the change in
the underlying (conditional) volatility of the currency pair. As for the MA rule, the performance measure for the
MA-FUZZY and MULTI-FUZZY refers to the average performance of the trading strategies for all four
moving average combinations evaluated. An asterisk next to a strategy indicates that the Sharpe ratios for the
trading strategy are net of transaction costs, which are assumed to be equal to 2 basis points. The out-of-sample
period used for the analysis is equal to the last 200 observations of each subsample We use the test outlined in
Jobson and Korkie (1981) and Memmel (2003) to evaluate whether the differences in Sharpe ratios are
statistically different from zero. The asterisks next to the Sharpe ratios indicate that the Sharpe ratios generated
by the MULTI-FUZZY strategy are statistically different from the MA-FUZZY strategy. *** denotes

significance at the 1% level, ** at the 5% level and * at the 10% level.
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4.8 Conclusion

This chapter proposes a multivariate fuzzy logic framework to boost the benefits of
using order flows in technical analyses for FX trading. The approach incorporates and
combines order-flow-based return predictions as well as the underlying market volatility. We
show the superiority of our approach by comparing it against the performance of various
strategies such as simple trading rules and neuro-fuzzy trading strategy. Our study yields
conclusions related to the former and conclusions pertaining to the latter including our novel

approach.

We begin with a simple but interesting research question regarding the practical value
of order flow information. Given that order flows have been found to be useful for predicting
future movements and that the forecasting accuracy has been found to be the highest for
intraday movements, this chapter goes further to evaluate the practical benefits that may
appeal to investors. We find that a simple trading indicator based on order flow yields a
higher return than conventional strategies for several currency pairs. However, this result
could be caused by data snooping, thus casting doubt on the profitability of simple modelling.
The same argument also applies to combinations of price-based and order-flow-based

technical trading rules.

By contrast, we show that order-flow-based return forecasts can produce statistically
significant excess returns. This result provides the foundation for evaluating a neuro-fuzzy
logic approach. Although order-flow-based return forecasts generate an excellent trading
indicator, the trading recommendations of any simple strategy will be a binary integer, which
does not and cannot take the magnitude of the return forecasts into account. We circumvent
this problem by using the return forecasts as inputs in a fuzzy logic setting, which generates

smoother trading recommendations by considering the magnitude of the return forecast in
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question. This approach outperforms the direct strategy for all the exchange rates under
investigation, a finding previously reported by Gradojevic (2007) for the USD-CAD rate

only.

Although this fuzzy logic trading strategy can provide even higher excess returns than
any simple trading strategy using order-flow-based return predictions, we also uncover that
the performance of this strategy can be improved substantially by linking the exchange rate
forecast to changes in the underlying volatility. The theory behind the strategy is based on a
hypothesized positive relationship between appreciations of the USD relative to a foreign
currency and increases in the underlying market volatility. The multi-fuzzy strategy makes
use of this theory by adjusting the trading weights in the case where the exchange rate return

prediction contradicts the change in the underlying market volatility.
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Appendix C

C.1. Additional Tables and Graphs

Table C.1 Out-of-sample performance of the neuro- and the multi-fuzzy trading strategy

(trapezoidal membership functions)

USD-EUR USD-GBP USD-JPY USD-CAD USD-AUD  USD-NZD
Panel A. January 2002 — December 2005
NF 4.92 4.76 3.62 1.93 3.56 2.20
NF* 4.33 4.27 3.14 1.55 3.12 1.82
MF 5.57 ** 4.96 4.00* 2.25* 4.42%** 2.85%**
MF* 4.85 ** 4.45 3.40 1.84* 3.90%** 2.30%**
Panel B. January 2006 — December 2009
NF 3.52 2.54 3.72 2.80 3.21 4.43
NF* 3.22 2.27 3.40 2.47 2.97 4.25
MF 4.02%** 2.99*** 3.44 2.83 3.43 4.82**
MF* 3.68*** 2.69*** 3.10 2.49 3.20 4.62**
Panel C. January 2010 — December 2013
NF 2.59 4.28 2.76 2.02 0.72 4.73
NF* 1.89 3.40 2.36 0.81 0.22 4.43
MF 2.75 4.99** 2.37 2.34* 0.89** 5.50%**
MF* 2.05 4.22%** 2.16 1.30** 0.45** 5.18***

Notes: This table presents annualised Sharpe ratios of the neuro-fuzzy and multi-fuzzy trading strategies. NF

refers to a trading strategy using the artificial neural network (ANN) forecast as a fuzzy logic input directly; The

MF strategy uses the change in the underlying (conditional) volatility as an additional input. The MF setting is

displayed in Figure 4.1. Panel A. reports the results for the out-of-sample period of the first subsample, and

Panels B and C do the same for the out-of-sample periods of the other subsamples. The out-of-sample period

used in the analysis is equal to the last 200 observations of each subsample. An asterisk next to a strategy

indicates that the Sharpe ratios for the trading strategy are calculated after the transaction costs, which are

assumed to be equal to 2 basis points. We use the test outlined in Lo (2002) to evaluate whether the differences

in Sharpe ratios are statistically different from zero. The asterisks next to the Sharpe ratios indicate that the

Sharpe ratios generated by the MF strategy are statistically different from the NF strategy. *** denotes

significance at the 1% level, ** at the 5% level and * at the 10% level.
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Figure C.1 Triangular and trapezoidal membership functions
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Note: Panels A. and B. display the triangular membership functions used in analysis in Section 4.6.1. Panels C

and D display the trapezoidal membership functions used in the analysis presented in Table C.1.
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C.2 White’s Reality Check and Hansen’s test for superior predictive ability

White’s (2000) reality check allows us to test whether any given model has superior
predictive accuracy over a benchmark model after accounting for data snooping effects. The
null hypothesis is that no rule can outperform a predefined benchmark (in our case a buy-and-
hold strategy) in terms of returns. The White reality check gives an estimate of the true p-
value for the null hypothesis, adjusted for data snooping by taking the entire universe of rules

from which the best rule is selected into account. Mathematically, this is described below.

The performance statistic for each trading rule is given by f, = T~ YT, fic (41, Where
k =1,...,M. M refers to the number of technical trading rules, T is the number of trading
periods, and f .1 represents the performance measure at ¢ + 1. f; .44 is defined as the
excess returns of a trading rule k over a benchmark return (a return from the buy-and-hold

strategy). The null hypothesis is that the returns from the best technical trading rule will not
be higher than those from the benchmark: Hy: man:l,...,M{ fi} < 0. The rejection of the null

hypothesis implies that the best trading rule results in a higher performance than the

benchmark.

The null hypothesis is evaluated by applying the stationary bootstrapping of Politis
and Romano (1994) to the observed value of f; .,1. The steps are as follows. First, for each
trading rule, we resample f, .4, B times. Following Yamamoto (2012) we set B equal to 500.
Let us denote the re-sampled series as f;' ¢4, (0=1, ..., B). Then we calculate the average of

the bootstrap returns as the mean over the sample period, as follows: f;, =T *¥I_ f; .,

(b=1,....B). We then compute the statistic V =max,-, n[VT fi] and
V; = max=y,_ u[VT(fi» — fi)]- White’s reality check p-value is obtained by comparing

with V;;. In particular, we sort V;; (b=1,...B) and find the number of times V;; is larger than V.
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Denoting N as the number of times V;; is larger than 7/, the reality check p-value is given as:

1-N/M.

The superior predictive ability test proposed by Hansen (2005) employs a studentised
test statistic that reduces the influence of very inaccurate forecasts and evaluates the risk-
adjusted performances of the competing trading rules. Hansen’s superior predictive ability
test evaluates the risk-adjusted performance by re-centring the null distribution. The average
of the centred returns is calculated as follows: R}, = fi., — fi I , where I is an indicator
function that takes 1 if the average is reasonably small. In this approach, the critical statistics

are given as:

T Rip _ T fi

,0 ] V=max| maxy-; wm e ,0 . 4.7
k

X7*
Vp = max| maxy—; m

Where, as before, the p-value is obtained by comparing V with V;;.
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Chapter 5 Conclusion

5.1 Summary of Contributions

The market microstructure approach to determining exchange rates has proven to be
highly successful for explaining and predicting single exchange rate movements. This thesis
builds upon the foundations of order flow theory and links it to the explanation and prediction
of multivariate exchange rate movements. A further multivariate application studied in this
thesis links order flows to profitable trading signals by coupling them with the underlying

volatility.

As anticipating correlations is at the heart of risk management, the driving forces of
conditional correlation warrant a further investigation. We do so by employing a proxy that
contains information about all other potential macroeconomic correlation drivers. The proxy
is order flow, a market microstructure variable. It has been shown in the existing literature to
be able to explain and predict univariate exchange rate movements. Order flow is simply
signed trading volume, the net of buyer- over seller-initiated trades, and thus indicates
whether a currency experiences buying or selling pressure. Although this buying or selling
pressure drives single exchange rate movements, its relationship with joint movements of
currencies has not yet been evaluated in the literature. This dissertation attempts to fill the

void.

We find that absolute order flow differentials between spot rates have a significant
negative effect on joint (co-)movements. This finding applies to all exchange rate pairs in our
sample and remains valid when we use standardised proxies for the order flow differential.
More specifically, in line with the gradual information hypothesis, the relationship is the
strongest for the highest intraday frequency evaluated and gradually decreases as the

frequency increases. This finding is robust when we control for the bid-ask spread, a key
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variable in intraday price dynamics. In fact, the finding suggests that the bid—ask spread has
only a very limited role to play in explaining correlation dynamics once the order flow
differential is accounted for, in line with the market microstructure literature. Finally, we
document that the relationship between absolute order flow differentials and exchange rate
co-movements is not the same across financially stable and turbulent periods, with a special
case arising from the different trading intensities between financially calm and financially

turbulent periods.

As well as modelling correlation dynamics, anticipating correlations involves
prediction of future fluctuations in the joint return movements of assets. Given that
exogenous variables, such as the IRD, drive conditional correlation dynamics, a question
arises as to whether this relationship would result in benefits from predicting future
correlation dynamics. Surprisingly, the previous studies linking exogenous variables to co-
movement have overlooked this question (e.g., Li, 2011). Chapter 3 of this thesis thus turns to
addressing this omission in the literature. We find that covariance predictions taking order
flow information into account trace realised covariance more closely than several competing
benchmark models that do not take the fact that exogenous variables may affect covariance
dynamics into account. In addition, our findings suggest that the IRD only has a limited role

to play in predicting future joint return fluctuations.

Although order-flow-based predictions provide the highest predictive accuracy
regardless of the time period evaluated, we document that the incremental gains are the
largest for economically turbulent time periods, such as the 2007 GFC. In other words, the
superior performance of our proposed order-flow-based models over other competing
benchmark models becomes more apparent during an economic downturn. This finding again

confirms the market microstructure literature, suggesting that the information content of order
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flows is strongest during economic downturns, though from the perspective of co-movement

predictions.

Alongside the modelling approach, we evaluate different estimation windows in terms
of generating covariance predictions. We show that a medium-sized estimation window
typically provides the highest accuracy, which is in line with the literature. The theoretical
reason is that a medium-sized window mitigates the parameter inflexibility caused by a long
estimation window while maintaining the parameter robustness that short estimation windows

lack.

We also assess the economic value of more accurate covariance predictions by using
the same portfolio optimisation setting as King et al. (2010) and Rime et al. (2010). The
setting allows us to investigate the incremental value of order-flow-based covariance
predictions, an aspect neglected in the order-flow-based portfolio optimisation studies. Our
findings indicate that a risk-averse investor will be willing to give up a substantial risk
premium to switch from a static covariance prediction to our proposed model. We deem this
to be the economic value of order-flow-based covariance predictions. A more dynamic

application that takes transaction costs into account confirms that our results are robust.

However, the portfolio optimisation setting commonly used to evaluate the benefits of
order-flow-based return and covariance predictions entails frequent rebalancing because
order flow information is strongest for short-term return predictions. The fourth chapter of
this thesis therefore examines the benefits of order flow information, again in a multivariate
setting, to generate trading profits before and after the transaction costs involved in portfolio
rebalancing. By linking the probability of order-flow-based forecasts to have the correct sign

to changes in the underlying volatility, we create a highly profitable trading strategy. This
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trading application is novel and adds to the practical value of utilising order flow information,

an aspect that has largely been neglected in the market microstructure literature.

Starting from a very simple approach, we derive technical trading signals directly
from the observed order flow in a market, an analysis previously conducted for stock markets
(Yamamoto, 2012). This approach, although intuitive and in the spirit of classic price-based
trading indicators, does not outperform a buy-and-hold strategy after taking data snooping
biases into account. Our explanation for this finding is that order flow is a problematic
variable for any technical trading indicator because of its non-normal distribution and
therefore is better suited for exchange rate predictions; the exchange rate predictions can then

be used as a profitable proxy for trading decisions.

Using order flow to generate return predictions, we confirm the value of order flow
information for a FX trader. We find that this approach indeed provides substantial trading
profits for all exchange rate pairs evaluated, confirming the robustness of the findings of
Gradojevic (2007) for all exchange rates under our investigation, whereas Gradojevic (2007)
focuses on the CAD-USD exchange rate only. Furthermore, we propose a multivariate fuzzy-
logic-based trading strategy which uses order-flow-based exchange rate change predictions
and changes in the underlying market volatility to derive the trading recommendations. This

novel methodology turns out to be highly profitable.

To sum up, this thesis contributes to the literature by going beyond the existing
univariate framework to the multivariate framework in terms of the order flow—exchange rate
nexus. Our results suggest that order flow differentials are a significant driver of the high-
frequency co-movements of exchange rates. The bridge we build between market
microstructure and dynamic currency co-movements transcends the traditional research on

how such co-movements react to macroeconomic factors, including interest rates or central
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banks’ FX interventions. This bridge facilitates exchange rate predictions in terms of both
their statistical accuracy and economic gains. The study conducted in Chapter 4 critically
evaluates the value of order flow information in technical analysis as an investment strategy

commonly used by professionals.

5.2 Future Research Agenda

This section discuses an intended agenda for future research. The present dissertation
endeavours to investigate the important role of order flow in explaining and forecasting
exchange rate co-movements and the economic value of information contained in order flow

and volatility.

With respect to co-movement, an interesting question for future research is whether
and how the co-movements of interest rates are affected by order flow. The intuition is that
order flow should fully represent the aggregated expected changes in interest rates (Rime et
al., 2010). Therefore, the relationship between order flow and interest rate co-movements
should be even stronger than the relationship between order flow and exchange rate co-
movement. Ferreira (2005) studied the forecasting of the co-movements of spot interest rates,
but without incorporating exogenous variables into his analysis. Our proposed research work
would help fill this void by allowing order flow to be a potential exogenous variable and by,

presumably, improving forecasts of spot interest rate co-movements.

Yet another possible avenue of research would be to enhance the fuzzy logic setting
outlined in Chapter 4. In the spirit of Atsalakis and Valavanis (2009), we plan to allow the
fuzzy logic setting to adapt to data, rather than specifying its core elements in advance. In the
fuzzy logic setting presented in this thesis, the membership functions were chosen arbitrarily

and the rule structure was essentially predetermined by our interpretation of the
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characteristics of the variables in the model. By contrast, the adaptive version of the fuzzy
logic setting tailors the membership functions to the input/output data and the rule structure
depends on the patterns learned by the fuzzy logic setting based on actual input/output data.
The adaptive setting further tunes its rules towards new data, as opposed to our setting where

the if-then rules are the same for the entire time period.

Although this implies that the fuzzy logic setting would be more of a black box, it
assures us that the underlying membership functions and rule base fully reflect the actual data
at all times, which should further enhance the profitability of our proposed multivariate fuzzy

logic setting outlined in Chapter 4.
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