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Abstract 

The brushtail possum (Trichosurus vulpecula) acts as a wildlife reservoir of Mycobacterium 

bovis infection for farmed livestock and other wildlife species in areas covering an estimated 

23 percent of New Zealand. This reservoir of infection is severely hampering efforts to 

eradicate TB from farmed animals in New Zealand. New s trategies need to be developed that 

focus on identifying areas of residual TB infection in possums and eradicating them, while 

maintaining low broad-scale population levels in the most cost-effective way. This thesis 

comprises a number of studies that apply multivariate modelling techniques and spatial 

analytical procedures to evaluate spatial patterns of possum habitat and of TB occurrence in 

cattle herds, and hence to identify high-risk localities for possum-derived TB and target 

control strategies of varying intensity where each will be most cost-effective. 

An initial case-control study of 132 possum capture sites was used to identify habitat and 

topographic factors at the scale of the possum home range that were predictors of the 

probability of capturing tuberculous possums. Data on the following factors were collected 

from a 50 meter square area at each capture site: abundance of plant species and structural 

features of vegetation, the abundance and quality of available den sites, and topographic 

factors such as slope and aspect .  Data were analysed using unconditional logistic regression 

modelling. S lope of the land and factors associated with the quality of dens were associated 

with the probability of capturing multiple TB possums. S lope of the land, height of trees ,  

percent cover of vegetation i n  the height range 0.3 - 2 metres and percent of the ground 

covered in vascular vegetation were associated with the probability of capturing single TB 

possums. 

A subsequent case control study was conducted at the larger scale of farms to identify possum 

habitat, geographic and farm factors associated with the probability of tuberculous possums 

being present on a farm, using random effects logistic regression modelling. A geographic 

information system (GIS) was used to combine and analyse digital geographic data sets to 

produce variables for the statistical analysis. Geographic data used for the study comprised 

farm boundaries, rivers, slope, and vegetation coverage which was derived from satellite 

imagery. Fragstats, a habitat pattern analysis programme, was used to produce variables 

representing patterns of possum habitat on farms. Variables were included in the model to 

account for spatial autocorrelation patterns in the data and a v ariogram analysis was 

conducted on residuals to test for any significant spatial autocorrelation that was not 



11 

accounted for in the model. Distance from the coastal forest, total area of  the farm, area of 

pine forest, area of manukalpasture and proportion of the farm covered with 

podocarp/broadleaved species were the significant variables in the final model. 

An automated classification procedure was used to generate a vegetation map from a SPOT3 

multi-spectral satellite image for this study. The resulting raster map comprised 8 vegetation 

classes, including 3 tree classes, 4 scrub classes and a pasture class .  This map had a high 

degree of spatial accuracy and more detailed vegetation classes than existing digital data 

available in New Zealand. However, some categories contained a heterogeneous range of 

plant species which limited the discriminatory power of models using this vegetation data. 

Spatial clustering of percent TB-positive years, five-year cumulative incidence and space-time 

clustering of annual cumulative incidence of TB in cattle were analysed for beef breeding 

farms in the area in which the farm-level case control study was conducted. Analyses used the 

spatial and space-time scan statistics which are available in SaTScan, a cluster analysis 

software package. Mapping of farms included in the resulting clusters enabled us to develop 

hypotheses on the association of different habitat patterns with the res ulting disease p atterns 

in cattle. This study also highlighted the value of these cluster analysis techniques as tools in 

surveillance for wildlife TB, by using farm-level patterns of TB as an indicator of the possible 

presence of wildlife TB . 

The final stage of the project described in this thesis was the development of  EpiMAN-TB, a 

spatial decision support system for the management of wildlife-related TB in New Zealand. 

Development of this tool was undertaken to assist the application of the research results 

described in this thesis at the field level. The system combined a relational database, map 

display tools, spatial analysis tools, simple expert systems and simulation models of the 

spread of TB in possums at the scale of individual farms and administrative regions. The 

software comprises five modules set within a user-friendly interface. The modules are: 

possum TB hot spot prediction, farm TB risk prediction, evaluation of possum c ontrol 

programmes at the farm and the regional level, and an administration module. 
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The brushtail possum (Trichosurus vulpecula) was introduced to New Zealand from Australia 

on multiple occasions between 1 837 and 1940 to establish a fur industry (Pracy, 1962). 

Possums adapted well to the New Zealand environment and populations have spread from the 

original colonisation sites to cover most of the country. Possums were first found to be 

infected with TB on the West Coast of the South Island in 1967 and the species has since been 

shown to be the most important wildlife vector of TB in New Zealand (Anon, 1 986 ;  Morris et 

aI. ,  1994; lackson, 1 995) .  It  has been estimated that infected possum populations cover 

approximately 23% of the land area of New Zealand (O'Neil and Pharo, 1995) in areas known 

as vector risk areas (VRAs). This reservoir of  infection is severely hampering efforts to 

eradicate TB from farmed animals in New Zealand and has resulted in a very expensive TB 

management programme due to the additional cost of controlling possum populations. 

The long term goal of the Animal Health B oard (AHB) as stated in the national pest 

management strategy for the five-year period 1 995/96-2000/01 ,  is to "eradicate bovine 

tuberculosis from New Zealand."  However, the authors of the strategy go on to say that 

"eradication is not a realistic possibility within the term of the strategy with current 

technology. Therefore, the primary focus of the five year strategy is on the reduction, and 

where technically feasible, elimination of the transmission of M. bovis to and within domestic 

livestock" (Animal Health Board, 1995). The four objectives for the five-year strategy period 

are: 

1 .  To reduce the number of infected herds in T B  Vector-Free Areas from 0.7 percent to 0.2 

percent of the total herds in those areas. 

2. To prevent the establishment of new TB Vector Risk Areas and/or the expansion of 

existing TB Vector Risk Areas into farmland free of  TB vectors . 

3 .  To decrease the number o f  infected herds in T B  Vector Risk Areas from 17 percent to 1 1  

percent of the total number of herds in those areas . 

4. To encourage individuals  to take action against TB on their properties and in their herds. 

A major component of the AHB' s strategy to achieve the objectives listed above is targeted at 

increased vector control, with the aim of "managing and eliminating disease risk from wild 

animals through increased vector control operations." Vector control in New Zealand has 

become a large business with an increase of expenditure from $ 1 8  million in 1 995 to a 

projected $3 1 million in 1999 (Animal Health Board, 1 995). Priorities listed by the AHB in 

the area of vector control are: 
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1 .  Establishment of protection zones to prevent leakage of infected vectors from infected 

areas. 

2. Encouragement and assistance to farmers in infected areas to improve their disease status 

through: 

• assistance with development and implementation of regional and locally initiated 

vector control programmes; 

• reclassification of areas as vector risks are reduced; 

• assistance to farmers with high risk herds; 

• self-help programmes; 

• one-on-one programmes. 

The major strategy applied to possum control programmes since the mid- 1 980s has been 

based on the modelling of Barlow ( 99 1 ;  1 993). This involves intensive initial control of 

possum populations followed by annual or biennial control to hold the population below a 

threshold at which TB will decline to extinction, hypothesised to be about 40% of the pre­

control density (Livingstone, 199 1 ;  Hickling, 1995b) . As this strategy has been applied to an 

increasing number of hectares within VRAs, the incidence of TB in farmed cattle and deer has 

fallen, and to a lesser extent the incidence of herds quarantined for TB control purposes has 

also fallen (Livingstone, 1997). Despite the reduction in the incidence of cattle and deer TB 

reactors, problem herds in which persistent reactors occur remain in areas that have been 

under a wildlife control programme for many years (G. Atkinson and G. Pannett, AgriQuality 

New Zealand, pers. comm. 1998) . Furthermore, historical experience with possum control in 

New Zealand has shown that continued control is required to maintain possum populations at 

a low level to prevent the rebuilding of populations and of TB infection through immigration 

and reproduction of the local population (Anon, 1 986; O'Neil and Pharo, 1995). 

Hickling ( 1995a) noted that eradication of TB from populations of possums may prove more 

difficult than current epidemiological models predict due to the disease retreating into small 

persistent foci once populations have been controlled. Hickling and Efford ( 1 996) suggest that 

the outcomes of the pest management strategy for TB that are based on current models may 

not be as predicted, due to complexity of the relationship between possum control and TB risk 

in livestock. The task of eradicating TB from possums is far more challenging than that of 

reducing the risk of transmission of TB from possums to livestock. Morris and Pfeiffer ( 1 995) 

. -/ 
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made the statement that "no single measure is going to achieve the desired result in 

controlling wildlife tuberculosis, and the key to progressive success will lie in tighter and 

tighter integration of a range of measures to reduce the problem to a point where it is no 

longer a major concern." As TB incidence declines the remaining foci take on greater 

importance in relation to achieving the goal of eradication. Successful control during this later 

stage requires new strategies that focus on identifying and clearing residual infection and 

preventing the re-introduction of infection into clear areas. There is a need to target control at 

different levels, and it is important to complement large-scale control with focussed efforts 

designed to suit the needs of particular problem farms or areas. 

To develop these more targeted strategies there is a need for more information on factors 

associated with the distribution of tuberculous possums, both at the smaller possum home 

range scale and at the larger farm scale. Such information would facilitate the design of 

control programmes that target control measures more intensively at probable locations of 

possum TB clusters, where residual infection may remain following possum population 

reduction. This would enable: 

More cost-effective programmes to be implemented during the maintenance phase of 

control programmes by targeting resources at areas based on possum TB risk. Such 

information may speed the rate of reduction of infected possums, and consequently of 

infected livestock within an area. 

- The design of control programmes tailored to the conditions on individual problem farms 

or problem areas. Such information may increase the probability of eradicating TB from 

these problem farms or areas. 

Tailored programmes to prevent the expansion of existing VRAs. 

Tailored programmes to prevent the introduction of infection into areas from which TB 

has been eradicated. 

Information that is critical to achieving the outcomes described above is the ability to predict 

the location of persistent foci of TB infection in possums. In Chapter 2 of this thesis we 

describe an initial study that was conducted to identify habitat and topographic factors 

associated with the distribution of tuberculous possums at the possum home range scale. 

Given the association of the distribution of TB in possums with spatially explicit factors, 

Geographical Information Systems (GIS) are a useful tool for research and management of 

TB in possums. In Chapter 1 we review the application of GIS and spatial analytical 
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techniques to health data. The development of a national digital database of farm boundaries, 

Agribase (Sanson and Pearson, 1997), has made it possible to display TB data in a GIS, to 

explore spatial patterns of TB at the farm level, and to aggregate geographic risk factors to the 

farm level. In Chapter 3 we describe a study in which we explored spatial patterns of TB 

incidence in cattle at the farm level in an area where TB has been endemic in possums since 

the 1960s. Habitat factors are known to be strongly associated with the density of possums 

and a digital map of possum habitat is critical to any analyses involving geographic data. 

Existing digital vegetation data sets were reviewed and a new more detailed vegetation data 

set was produced using satellite imagery (Chapter 4). This data set plus other digital 

topographic data were used in an analysis of geographic and management factors at the farm 

level with the aim of identifying habitat and geographic factors that could be used to predict 

farms with a high risk of TB possums being present (Chapter 5) .  

Decision making in relation to the management of wildlife-associated TB is very complex, 

involving information on cattle TB data, geographic information on farm locations and on 

possum distribution and possum TB distribution, plus likely response to different control 

measures, frequency and timing of control. To ensure that the management decisions made 

are the most cost-effective, all information that is available needs to be considered. Computer­

aided decision support can assist the decision process by making information more accessible 

to managers . Advanced information systems have been developed in the veterinary field 

(Morris et aI . ,  1993; Sanson, 1 993). In this study the EpiMAN(FMD) decision support system 

was modified and further developed to suit the needs of possum-related decision making in 

New Zealand (Chapter 6). EpiMAN(TB) provides a framework for applying current 

knowledge on the epidemiology of TB in possums through expert systems, models of the 

spread of TB in possums at both farm and regional scales and geographic data to possum 

management decisions. 

We present a final discussion of the results of all studies described in this thesis and conclude 

with a discussion of the application of these results to vector-associated TB control in New 

Zealand in the General Discussion. 

This thesis has been written in the form of a series of papers that have been prepared for 

publication. Some papers have been submitted for publication at the time of publishing this 

thesis, in which case the journal to which the paper has been submitted is given on the title 

page of the relevant chapter. The remaining papers will be submitted following the 

submission of this thesis. 



7 

Bibliography 

Animal Health Board. ( 1995). National Tb Strategy: proposed national pest management 

strategy for bovine tuberculosis. Animal Health Board, Wellington, New Zealand. 

Anon. ( 1986). History of Tb control scheme. In: S. Hennessy (Ed), Surveillance 1 3  (3) :  4-8 .  

Barlow, N.D. ( 199 1 ) .  A spatially aggregated disease/host model for bovine Tb in New 

Zealand possum populations. Journal of Applied Ecology 28 :  777-93. 

B arlow, N.D. ( 1993). A model for the spread of bovine Tb in New Zealand possum 

populations. Journal of Applied Ecology 30 ( 1 ) :  156-64. 

Hickling, G. ( l995a). Clustering of tuberculosis infection in brushtail possum populations: 

implications for epidemiological simulation models. In: F. Griffin, and O. de Lisle (Eds), 

Tuberculosis in Wildlife and Domestic Animals .  University of Otago Press, Dunedin, 

New Zealand. 174-77. 

Hickling, O. ( 1  995b). Wildlife reservoirs of bovine tuberculosis in New Zealand. In: F. 

Griffin, and G. de Lisle (Eds), Tuberculosis in Wildlife and Domestic Animals .  

University of Otago Press, Dunedin, New Zealand. 276-79. 

Hickling, G.J. and Efford, M.O. ( 1996). Assessing the risk of bovine tuberculosis infection for 

New Zealand cattle herds in TB vector risk areas (VRAs). Statistics in Ecology and 

Environmental Monitoring 2: 79-90. 

Jackson, R. ( 1995). Transmission of tuberculosis (Mycobacterium bovis) by possums. 

Unpublished PhD thesis, Massey University, New Zealand. 

Livingstone, P.G. ( 199 1 ) .  TB in New Zealand - Where have we reached? In: Proceedings of a 

Symposium on Tuberculosis. Veterinary Continuing Education Publication No. 1 32, 1 1 3-

24. 

Livingstone, P.G. ( 1 997). Update on the New Zealand TB situation. In: Proceedings of a 

Seminar on Possum and Mustelid Control Research. National Possum Control Agencies, 

Wellington, New Zealand. 17-30. 

Morris, R.S.  and Pfeiffer, D.U. ( 1995). Directions and issues in bovine tuberculosis 

epidemiology and control in New Zealand. New Zealand Veterinary Journal 43 (7): 256-

65 . 



8 

Morris ,  R.S., Pfeiffer, D.U., and Jackson, R. ( 1 994). The epidemiology of Mycobacterium 

bovis infections. Veterinary Microbiology 40 ( 1 ) : 1 53-77. 

Morris ,  R.S., Sanson, R.L., McKenzie, J.S., and Marsh, W.E. ( 1 993).  Decision support 

systems in animal health. In: M. Thrushfield (Ed), Proceedings of the Society for 

Veterinary Epidemiology and Preventive Medicine. 1 88-99. 

O 'Neil, B .D. and Pharo, H.J. ( 1 995). The control of bovine tuberculosis in New Zealand. New 

Zealand Veterinary Journal 43 (7) : 249-55 . 

Pracy, L.T. ( 1 962). Introduction and liberation of the opossum (Trichosurus vulpecula Kerr) 

into New Zealand. New Zealand Forest Service Information Series No. 45, 28pp. 

Sanson, R. L. ( 1 993). Development of a decision support system for an animal disease 

emergency. Massey University, New Zealand. 

Sanson, R.L. and Pearson, A.P. ( 1 997) . Agribase - A national spatial farm database. In: 

Proceedings of the 8th International Symposium on Veterinary Epidemiology and 

Economics. 1 2 . 1 6. 1  - 1 2. 1 6.3. 



9 

CHAPTER ! 

Spatial analysis of health data: a literature review 
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Introduction 

A popular historical reference point for spatial epidemiology is Snow' s  map of cholera 

incidence around the Broad street pump in Soho in 1 855 (Thomas, 1 990). There was little 

development of this field following Pasteur' s confirmation of the germ theory, when the 

medical focus was on aetiological agents. However, the revival of modern medical geography 

is attributed to the French physician, Jacques May, who re-emphasised the environmental 

influence by proposing the study of disease ecology in the middle of the 20th century, and 

received acclaim for his investigation of deficiency diseases in the developing world 

(Thomas, 1 990) . A number of authors have reviewed the development of the spatial 

epidemiology field (Verhasselt, 1993 ; Kitron, 1 998).  Others have focus sed their reviews more 

strongly on statistical analytical techniques for spatial data (Gesler, 1 986; Marshal l ,  199 1 ;  

Pfeiffer and Morris, 1 994; Gatrell et aI. ,  1995;  Gatrell and Bailey, 1 996; Pfeiffer, 1 996). 

Several reference books with details of spatial analytical techniques have also been published 

(Thomas, 1990; Elliott et aI. ,  1993; Fotheringham and Rogerson, 1 993b; B ailey and Gatrell ,  

1995; Arlinghaus, 1 996). These publications are evidence of  the growing awareness amongst 

epidemiologists of the importance of including spatial data in analyses . In their introduction 

Fotheringham and Rogerson, ( 1993b) make the point that: 

" . .  space must ultimately be viewed as more than a container of locations devoid of 

situational context." 

Access to computing power has grown through the 1 990s with the rapid increase in the power 

and capacity of personal computers, enabling larger data sets to be handled, and more 

complex analyses to be run in a short time. At the same time there have been significant 
\ 

developments in the software to handle geographical data. The availability of more simplified, 

menu-driven geographic information systems (GISs) has dramatically increased the GIS user 

group beyond the specialist computer-cum-geographic scientist. The explosion of the internet 

in the mid 1 990s has further enhanced the development of this field through the greater 

exchange of information between veterinary and medical epidemiologists and geographers. 

Advances in the satellite industry have made extensive digital land cover data sets readily 

available for all areas of the world, and have made possible the accurate recording of digital 

geographical coordinates with Global Positioning Systems (GPS) .  

Spatial data, also referred to as geo-referenced or geographically referenced data, has been 

defined as observations for which absolute location and/or relative positioning (spatial 
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arrangement) i s  taken into account (Anselin, 1 992). The analysis of  spatial data can be 

divided into two principal components : classical spatial analysis and spatial data analysis 

(spatial statistics) (Griffith, 1 996). The former has evolved with the science of geography and 

is referred to by Bailey ( 1994) as "a general ability to manipulate spatial data into different 

forms and extract additional meaning as a result." Griffith ( 1 996) describes classical spatial 

analysis as involving processes such as "spatial operations research (minimum route 

selection), logical overlaying (identifying areal units possessing joint categorical attributes), 

triangulated irregular networking (TIN), and buffering (distance bands around points or lines), 

among others ." GISs constitute a powerful technology that has been developed to manage 

geographically referenced data. They handle very well the tasks involved in classical spatial 

analysis. 

Spatial data analysis is defined as the statistical description and modeling of spatial data 

(Bailey and Gatrell, 1995). These authors further divide the area of spatial data analysis into 

three broad categories: data visualisation, exploratory data analysis, and the development of 

statistical models, although they make the point that the boundaries between the categories are 

not distinct. 

In this review I briefly discuss GISs and some of the more commonly used analytical tools 

that they provide for handling spatial data related to health events, plus their application as a 

simulation modelling tool and their application in decision support systems. I briefly discuss 

the availability of spatial data sets and issues associated with the visualisation of spatial data. 

The main focus of the review is on spatial data analysis techniques, with emphasis on 

examples of application of the various techniques in the literature. I do not describe the 

different analytical techniques in detail but discuss issues associated with the application of 

some of these techniques, particularly those that are applied in the studies described in this 

thesis. 

Geographic Information Systems 

GISs are a computerised set of tools for the collection, editing, storage, integration, analysis 

and spatial display of spatially referenced data (Maguire, 1 99 1 ;  Burrough, 1 986). In essence, 

GISs are information management systems that combine computerised mapping technology 

and database management systems. They include spatial data that describes the location of 

geographical features, and descriptive data that describes the quantitative and/or qualitative 

characteristics of the spatial features. There have been a number of reviews of the application 
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of GISs in both the human (Twigg, 1 990; de Savigny and Wij eyaratne, 1 995 ; Kitron, 1 998) 

and animal health fields (Sanson et aI . ,  1 99 1 ;  McKenzie, 1 996). Reader ( l 995a) provided a 

useful review of GIS resources available to epidemiologists in the health field. The many 

functions of GISs are dealt with in specialised texts on this subj ect (Burrough, 1 986; Maguire 

et aI . ,  1 99 1 ), and a detailed description of these is beyond the scope of this paper. I will give a 

brief summary of the analytical features of GISs that have commonly been applied to health 

studies with examples of these from the literature. 

The most common use of GISs in the health field has been as a cartographic tool to produce 

maps (Kitron, 1 998).  In addition the spatial analytical techniques available in GISs can be 

used to extract data on factors of interest to test hypotheses, using techniques such as 

overlaying, neighbourhood analysis, buffering, measuring areas and distances. Gatrell et al . 

( 1 995) note that GISs are especially powerful when there is more than one database to be 

explored, and a major strength of a GIS is its overlay capability. Data are generally stored in a 

GIS in separate layers (or coverages) representing different map themes .  Layers can be used 

to create composite maps by overlapping them on a computer display in the same way that 

clear acetate sheets are overlaid on an overhead projector. This feature can be used to extract 

new data on composite variables, or to compare the distribution of disease incidence and other 

environmental variables which can help identify factors that may explain the spatial and 

temporal distribution of diseases. 

The buffering capability can be used to create zones of different size around geographical 

features,  such as point locations of disease cases, farms or rivers. Twigg ( 1 990) described the 

benefit of intersecting disease incidence data with buffers around hazardous sites. Marsh et al. 

( 1 99 1 )  used buffering to determine the density of swine herds within a 5 kiIometer radius of 

herds infected with Aujeszky ' s  disease and uninfected control herds. The neighbourhood 

analysis capability within a GIS allows an investigator to find and list all features which meet 

certain criteria and are adjacent to a particular feature. This function can be used to identify 

the neighbours of study farms, which can then be used to obtain a measure of a 

neighbourhood variable. Measuring distances from risk factors is a capability often used in 

spatial analyses. When dealing with an areal unit such as a farm, rather than a point location 

unit, one needs to consider how the distances will be measured. Whether the distance is 

measured from the nearest boundary or from the centroid of a farm will depend on how the 

variable is thought to have its effect. Measuring areas of different units, for example 

vegetation types, is another useful function of a GIS .  Network analysis is a system of 
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optimising routes and the allocation of resource flows through a system connected by a set of 

linear features .  Essentially, it allows the modelling of networks. This technique was used to 

develop alternate measures of family planning accessibility in Thailand, taking into 

consideration different travel times along roads and tracks of varying quality (Entwisle et al . ,  

1997) . 

Spatial pattern software packages are also available, enabling epidemiologists to represent 

more detailed features of habitat mosaics in analyses. Fragstats is a spatial pattern analysis 

programme for quantifying habitat structure (McGarigal and Marks, 1 995). 

De Savigny et al ( 1 995) conducted a review of progress in the application of GIS to health 

issues in developing countries in 1 99 1 ,  and found that despite rapid and productive adoption 

of this tool by sectors such as agriculture, natural resources, demography, urban and regional 

planning, the health sector had not yet begun to explore the potential utility of GIS for either 

health research or for health programming. Likewise, Twigg ( 1 990) described the lack of 

application of GIS by the Department of Health in Britain. Reader ( 1 995b) commented that 

"there is a growing contingent of mature GIS application areas which possess well-developed 

spatial databases and a body of experienced users. On the other hand, a belief exists that the 

typical use of GIS has not progressed far beyond the use of mapping, query, and spatial data 

inventory management, and that the potential analytical power of the technology to help solve 

complex societal and environmental problems has yet to be realised." As recently as 1 996, 

Gatrell and Bailey ( 1996) described the use of GIS in health research as still in its infancy. 

These authors and others have referred to the fact that GISs have typically been found 

wanting when it comes to statistical analysis of spatial data (Anselin, 1 992; Fotheringham and 

Rogerson, 1 993a; Bailey, 1 994; Bailey and Gatrell, 1 995 ; Arlinghaus, 1 996; Gatrell and 

Bailey, 1 996). 

Spatial data sets 

A major factor limiting the application of GISs to health data has been the lack of accurate 

spatial data sets. Twigg ( 1 990) attributed the lack of spatial analysis of routinely collected 

health data in the United Kingdom to the lack of spatial detail and spatial consistency between 

the various data sets collected routinely by the Department of Health. Very often researchers 

are in the position of having to use disease incidence data that was collected for 

administrative purposes other than that for which the study was designed. As a result the data 

is often aggregated to a level that is too general for significant spatial patterns to be identified, 
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and lacks sufficient detail and accuracy in addresses to enable accurate geo-coding of records. 

Mott et al. ( 1995) refer to the "lack of map boundary data and the intrinsic unreliability of 

other databases" as constraints to the application of GISs to studying the epidemiology of 

parasitic zoonoses. 

Digital maps of the boundaries of administrative areas are now available in many countries of 

the world, and advances have been made in techniques to geo-code health data to these areas .  

Gatrell et al. ( 1995) discuss the use of postcodes t o  allocate patient records t o  specific 

geographical areas. In Britain, a machine-readable file, known as the Central Postcode 

Directory, links postcodes to both an Ordnance Survey grid reference and an electoral ward. 

Levine et aL ( l995a) describe the process used to geo-reference motor vehicle accidents in 

Honolulu to census blocks using a standardised dictionary of street names and the 

Topologically Integrated Geographic Encoding and Reference (TIGER) system available in 

the USA. Rushton and Lolonis ( 1 996) discuss different methods to assign addresses on birth 

records to geographical areas that were meaningful in an analysis of birth defect rates in an 

urban population in the USA. In a study of lead risk associated with houses in South 

Australia, O'Dwyer ( 1 998) linked the Digital Cadastral Database (DCDB) to property 

valuation assessments for rating and taxing purposes using parcel identification numbers. In 

the area of animal health, a map of farms is an important spatial data set. In New Zealand, 

AgriQuality New Zealand (formerly MAF Quality Management) has been developing such a 

database, known as Agribase, by attaching an unique farm identification number to land 

parcels that are managed as one farm (Sanson and Pearson, 1997) .  In Britain, the Ordnance 

Survey grid reference of farms is included in the National Tuberculosis Cattle database, 

facilitating the mapping and spatial analysis of TB data (Clifton -Hadley, 1993). The 

boundaries of administrative areas may not be the most appropriate for the disease being 

studied, and efforts are being put into the development of other more appropriate spatial 

databases in cases where funding can be obtained. For example, studies relating enteric 

diseases such as giardiasis and campylobacter in humans to water quality in New Zealand 

cities are restricted by the lack of accurate data on the distribution zones of different water 

sources within cities (Duncanson et al . ,  199 8 ;  Pirie, 1998).  As relevant spatial data sets are 

built up, applications of GISs will broaden. 

The increased availability of remotely sensed data from satellites has provided important 

spatial databases on vegetation and land use coverage. This is of particular value in diseases 

that are associated with land cover factors such as vector-borne diseases. A comprehensive 
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summary of the application of remotely sensed data in studies of vector-borne diseases was 

provided by Kitron ( 1 998). Extensive coverage of this area can also be found in the special 

issue of Preventive Veterinary Medicine (Volume 1 1 , Nos 3-4, 1 99 1 )  that focussed on 

applications of remote sensing to epidemiology and parasitology. 

Global Positioning Systems (GPS) are increasingly being used as a source of spatial data for 

health studies (Kitron, 1998). These systems use a series of navigational satellites to record 

the coordinates of a point or line or area in digital format, with a high degree of accuracy and 

precision. GPSs are very useful in areas where land occupancy can not be linked to a digital 

cadastral database, particularly in rural areas. Le Sueur et al . ( 1 995) used a handheld GPS to 

map households as a part of a malaria information system in the KwaZulu region in South 

Africa. Oranga ( 1 995) discussed plans to use a GPS to collect demographic data that could be 

used to evaluate the distribution of health facilities in Kenya. 

Many spatial data sets only include data for disease cases, with less accurate or no 

information on the distribution of the population at risk. This lack of information may be 

handled by randomly allocating the population at risk to locations on the basis of population 

density within the areal units being studied. When using grid data, controls may be randomly 

selected from all non-case cells (Pereira and Itami, 1 99 1 ) .  

Data visualisation 

Maps provide the most succinct summary of descriptive geographical data as the distribution 

of the characteristic of interest is readily visible to the eye (Elliott et aI. ,  1 993). Choropleth 

maps are the most common way of mapping descriptive (both qualitative and quantitative) 

disease data. These are maps in which areas of equal value are separated from areas of a 

different value by boundaries (Burrough, 1 986). Care must be exercised in the preparation of 

such maps, and careful consideration given to the class interval schemes used, the number of 

classes shown, and the use of particular shading and colour schemes. The inappropriate use of 

colour combinations and shading patterns results in maps that are tiring to read and difficult to 

interpret. Waiter and Bimie ( 1 991 )  conducted an extensive review of 49 national, 

intranational and international health atlases. They provide a very good discussion on factors 

that influence readers' impression of geographical variation in the data, and propose a set of 

methodological guidelines for consideration in future atlases as an appendix to the paper. 

WaIter ( 1 993b) discusses the effect of different shading and plotting symbols on the visual 

perception of map data. Smans and Esteve ( 1993) present some of the ideas on presentation of 
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disease maps that were developed at the International Agency for Research on Cancer while 

producing several cancer atlases. They discuss methods associated with risk estimation, 

categorisation of data, and colour design. Bailey and Gatrell ( 1 995) provide a detailed 

discussion of different visualisation methods for both point and area data. These authors refer 

to cartograms as a visualisation method that addresses the issue of the dominance of 

physically large areas on the visual perception of maps.  A useful ground rule for any graphic 

output is that if the main point of the map can not be inferred within thirty seconds then it is 

likely to be too complicated or incorrectly designed, and has therefore lost its purpose of 

getting across information in an abbreviated and easily assimilated form (Paterson, 1 995) .  

Other symbols used to represent magnitude of disease o n  maps are shapes, particularly 

circles, using variation in diameter to represent variation in magnitude of disease ( B aumann 

et aI, 1 994; Kitron and Kazmierczak, 1 997; Kitron, 1 998).  Care is required in the 

interpretation of these symbols as the human brain perceives variation in size of s hapes as 

variation in the area, not variation in a linear dimension such as width. For example, a circle 

twice the diameter of another has an area four times greater, and thus the perception of 

difference in size is markedly distorted (Paterson, 1 995) .  Hungerford ( l 99 1 b) used bar charts 

in conj unction with a boundary map to illustrate the incidence of bovine anaplasmosis by state 

within the USA. 

Dot density maps is another visualisation technique that has been used (Hirschmann, 1 994) . 

Dots of equal size represent the same number of cases, and are distributed indiscriminately 

within the area of interest such as a state or a farm. They provide no information on the 

distribution of disease within each area. The disadvantage of this method is that the density of 

dots is affected both by the magnitude of the disease being mapped and by the size of the area 

of interest. This can be misleading by indicating a worse situation in a small area where a 

smaller number of dots will appear more dense than a larger number of dots in a larger area, 

where the disease is in fact more prevalent. 

Other methods are available for representing the distribution of animal health and related 

information collected at points in space rather than areas. These include creation of a three 

dimensional surface using the level of disease as the third dimension, and creation of a 

contour or isobar map in which lines connect points of equal value. Both methods involve the 

interpolation of geographical data using the values at each point to create intervening values. 

The resulting surface will be a more accurate representation of reality with a greater density of 

sample points. Pfeiffer ( 1 994) used a three dimensional model to represent the distribution of 
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TB reactors throughout New Zealand in 1 992. Pfeiffer ( 1994) also used contour lines to 

spatially represent the number of possums trapped at each site in a research area and the 

incidence of TB in possums trapped at each site. The two maps were compared to identify if 

the distribution of each factor was the same to help develop hypotheses about the distribution 

of TB in possums. Laut ( 1 986) used contour lines to spatially represent the degree of 

difficulty imposed by the landscape on livestock mustering in Northern Australia for TB 

control purposes. The disadvantage with these two techniques is that they require some 

knowledge of the underlying geographical boundaries to put the disease distribution in 

context. The advantage is that they can be used to visually represent the pattern in space of a 

set of point data. 

Statistical data analysis 

Several reference books that provide a comprehensive discussion of statistical techniques for 

analysing spatial data have been published (Thomas, 1 990; Elliott et al . ,  1993; Fotheringham 

and Rogerson, 1993b; Bailey and Gatrell,  1 995; Arlinghaus, 1996). Several papers reviewing 

these techniques have also been published (Marshall,  1 99 1 ;  Fotheringham and Rogerson, 

1 993a; Pfeiffer and Morris, 1 994; Gatrell et al. ,  1995; Gatrell and Bailey, 1996; Pfeiffer, 

1 996; Kitron, 1998). Spatial data are generally represented either as discrete points in space, 

in which case analyses are conducted on the grid references themselves, or as an aggregation 

of individual events (such as counts of the number of cases) within fixed areal units (Gatrell et 

aI. ,  1 995). Areal units may be farms, counties, states, countries, or many other configurations, 

depending on the scale at which the analysis is conducted. The different types of data and the 

advantages and disadvantages of each are described in more detail in the publications cited at 

the beginning of this section. Point data generally represent features that are points in real life 

(true point data ); for example, house locations, intensive farming units such as small pig and 

pOUltry farms.  Points may also be used to represent the location of areas such as farms or 

counties, often as the centroid of such an area. Care is needed when points are used to 

represent areas in an analysis as they can significantly distort the spatial characteristics of the 

objects that they represent (Mackereth, 1998). 

Aggregation of data into areas is an important issue which has been discussed by the authors 

cited at the beginning of this section. Arlinghaus ( 1 996) dedicates a chapter to the discussion 

of this issue. To obtain an underlying distribution of population at risk, it is often necessary to 

use area data whose boundaries have no relationship to local health or environment issues 
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(Diggle et aI. ,  1990; Gatrell et al. ,  1995).  The most commonly available area maps are of 

administrative areas developed for government departments, such as regions, territorial local 

authorities, health districts, census blocks, etc. Brown ( 1996) makes the point that 

"aggregation is often necessary to uncover pattern in detail or integrate data from various 

sources." He provides a very useful discussion on aggregation of contiguous areas using a 

univariate classification procedure to identify regions of low internal variance. Brown 

examined three possible regionalisations on the basis of aggregated communes in Rwanda: 

prefectures which are sub-national administrative units, farming system regions which were 

defined on the basis of similar agricultural activities and cropping systems, and agroclimatic 

zones which were defined on the basis of environmental variability. Each regionalisation was 

constructed by aggregating communes into 8- 1 1  regions, and the internal variation of each 

was measured using the average coefficient of variation within each. Carvalho et al . ( 1996) 

discuss an algorithm that they used to aggregate small contiguous geographical areas with 

similar risk profiles, until an estimated population size was achieved. The risk profile was 

classified using principal components analysis, followed by a cluster analysis of social­

economic indicators. B ailey and Gatrell ( 1995) discuss methods by which areal units from 

different maps may be aggregated. 

An important issue associated with analysis of area data is described as the modifiable areal 

unit problem, which refers to the fact that map pattern can vary dramatically if the size and 

shape of the area! units forming the study region altered (Thomas, 1990; B ailey and Gatrell, 

1995) .  Quite different analytical results can be obtained by changing the configuration of the 

areal units. Another important issue is the scale at which an analysis is conducted, as different 

processes may operate at different levels of geographical aggregation. It may be possible to 

identify specific non-random patterns at a local level, which appear as random variation at a 

national level. Wilson ( 1998) discusses the effect of scale on the interpretation of tick 

distribution in the USA. Fotheringham and Rogerson ( 1993a) discuss the variability amongst 

parameters in a multiple linear regression model in terms of their sensitivity to scale. Getis 

and Franklin ( 1987) used second order analysis to show that heterogeneity of ponderosa pine 

trees within a forest was a function of the scale of analysis. 

To obtain the greatest spatial resolution of data, it is important to use the smallest available 

areal units with homogeneous populations. However, this can lead to the problems associated 

with exploring patterns in small area data as discussed by many authors cited at the beginning 

of this section. B ecause the populations forming the denominators, and the counts of cases 
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themselves, will often be small, disease rates may be highly variable or unstable. The use of 

'empirical Bayes estimates' is becoming a popular method to deal with this issue (Langford, 

1994). In essence, the method estimates the true incidence of an area as a weighted sum of 

both the observed incidence rate in the area and the mean rate in all areas (or a local 

neighbourhood of the zone in question). Weighting is  based on the population within each 

area, such that incidence values for large populations are given a high weight as the estimate 

of disease risk is more reliable, and that for small populations is given less weight and is 

pulled closer to the global or neighbourhood mean. 

Exploratory methods 

Exploratory methods of spatial data analysis summanse and describe map pattern and 

relationships within and between maps (Gatrell and Bailey, 1 996) . The choice of analytical 

method depends on whether area or point data are available. In the case of point data analyses, 

the focus of interest is on the distribution of the event locations themselves; for example, 

distribution of disease cases or controls. The focus of spatial analytical techniques for area 

data is on the spatial distribution of attributes of the areas studied; for example, disease 

incidence rates (Bailey and Gatrell, 1995). The main aim of exploratory analyses on both 

types of spatial data is to determine if there is significant clustering of the data in both space 

and in time and space. This can give valuable insights into the disease process underlying the 

pattern and also on possible risk factors associated with the disease. There are a number of 

different techniques available for testing for clustering in both point data and area data. 

Clustering of point data 

Kulldorff et al. ( 1997) give a very useful brief summary of the statistical tests available for 

spatial and space-time clustering in the Help file for the SaTScan software, with references to 

papers describing the different techniques. Kulldorff has written a more detailed review paper 

describing the appropriate use of the different spatial and space-time cluster detection 

methods in (Kulldorff, 1998). Cluster analyses may be divided into the following five 

categories: descriptive cluster detection methods without hypothesis testing, cluster detection 

tests that also identify the location and test the significance of clusters, focused tests to detect 

an elevated disease risk around a specific source, global space clustering tests and space-time 

interaction tests (Kulldorff et al., 1 997). 

Openshaw et al. ' s  ( 1 987) geographic analysis machine (GAM) and Rushton' s  D-map (URL) 
provide techniques for detecting clusters by using a moving circle of a fixed diameter that 
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centres on points at regular intervals within an area of interest. The methods compare the 

disease risk within the circle to the disease risk of the whole population. Rushton and Lolonis 

( 1 996) describe the application of their technique to detect clustering of birth defect rates.  A 

criticism of these methods is that a separate significance test is made for each circle, giving 

rise to a problem with multiple testing, which can lead to the possible detection of a number 

of false positive clusters that have occurred due to chance. Kulldorff et al. ( 1 997) note that 

these methods are both very useful for descriptive purposes,  but should not be used for 

hypothesis testing. 

The spatial scan statistic available within S aTScan (Kulldorff et aI. ,  1 997) is a cluster 

detection test that is able to pinpoint the location of specific clusters and test the significance 

of clusters . This method also uses a moving circular window to detect clusters. However, in 

the case of the spatial scan statistic the diameter of the circle varies in size at each point 

location up to a maximum set in the analysis. This has the advantage of being useful in a data 

set that contains points with a variable density, and also overcomes the problem of pre­

selection bias when testing for purported clusters as it tests for clustering within areas of all 

sizes at each location. The method compares the risk of disease within each circle to that 

outside the circle. It uses a hypothesi s  testing technique that overcomes the multiple testing 

problem (Kulldorff and Nagarwalla, 1 995). A further advantage of this method is that it it lists 

the geographic coordinates of the points included within significant clusters, allowing the 

location of clusters to be mapped. The spatial scan statistic has been used to investigate 

clustering of childhood leukaemia in Sweden (Hjalmars et aI. ,  1 996) and of breast cancer in 

the northeast United States (Kulldorff et aI. ,  1 997). 

Focused tests are used to test if there is an elevated risk of disease around a pre-specified 

point source. The S aTScan program can be used to conduct a focused test, and other tests 

listed by Kulldorff et al . ( 1 997) include Bithell ' s  test, the Lawson-Waller score test, Stone' s  

test and isotonic binary regression. KuIldorff warns that focused tests should never be used 

when the point source was defined using the data itself, due to the effect of pre-selection bias. 

Most of the available spatial clustering techniques test for global clustering; that is, they 

indicate whether there is evidence of spatial clustering in the data set or not, without 

specifying which points are included in the cluster(s). For example, the Cuzick and Edwards 

test and K nearest neighbour analysis were used to test for clustering of papillomatous digital 

dermatitis in dairy herds in California (Rodrfguez-Lainz et aI. ,  1 996), and of bluetongue in 

cattle herds in Queensland (Ward et aI. ,  1 996). The Cuzick and Edwards test and nearest 
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neighbour analysis were used to test for clustering of turkey farms with fowl cholera in 

California (Carpenter et al. ,  1 994). Hungerford ( 1 99 1 a) used second order analysis of points 

to test for clustering of herds with anaplasmosis within different breed groups, using a Monte 

Carlo technique to test for the significance of different levels of clustering in the different 

groups. Gatrell et al . ( 1 995) briefly describe the application of Diggle and Chetwynd' s K 

function to test for spatial clustering of point data controlling for the distribution of the 

population at risk. 

Testing for the presence of clustering in a combination of space and time can also provide 

useful insights into the mechanisms associated with disease transmission. A number of 

different tests have been developed to test for space-time clustering. These methods are 

designed to evaluate whether cases that are close in space are also close in time and vice 

versa, adjusting for any purely spatial or purely temporal clustering (Kulldorff et al. ,  1 997) . 

Knox' s  test for space-time clustering is a useful test for categorical data (Carpenter et al. ,  

1994; Pare et aI. ,  1 996), while Mantel ' s  test is useful for numerical data (Bailey and Gatrell, 

1995). These techniques test for the presence of global space-time interaction; that is, they 

indicate whether there is significant clustering throughout the study region and time period 

without pinpointing the location of the space-time clusters, either in space or in time. The 

space-time scan statistic available within the SaTScan program is able to both test for the 

presence of significant space-time clustering and to pinpoint the location of clusters in space 

and in time (Kulldorff et al. ,  1 998). 

Examples of other techniques for the analysis of spatial patterns in point data are available in 

the literature. Kitron et al. ( 199 1 )  compared the mean distance from a national park of deer 

infested with ticks carrying the bacterial agent causing Lyme disease with those carrying 

uninfested ticks, using Cochrans' modified Hest. Rodriguez-Lainz et al. ( 1996) compared the 

proportion of herds with and without papillomatous digital dermatitis in areas of different 

sizes using the Kolmogorov-Srnirnoff two-sample test. Elliott et al . ( 1994) compared the 

prevalence of disease in Bighorn sheep with a fixed-size shifting frame analysis using log­

likelihood ratio tests. 

Descriptive techniques such as mean centre, standard distances, and standard deviational 

ellipses were used to compare the distribution of different types of motor vehicle accidents in 

Honolulu (Levine et al., 1 995b), and of cattle herds with and without a history of badger­

associated tuberculosis in Britain (Clifton-Hadley, 1 993). Such techniques are useful as a 

summary measure with which to compare different sub-groups in the population. However, 
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The most common techniques used to analyse spatial patterns in area data, focus on spatial 

autocorrelation, which quantifies the correlation between values of the same attribute at 

different spatial locations (Bailey and Gatrell, 1 995 ) .  Significant autocorrelation indicates 

significant clustering of the attribute value being measured. The two measures that have been 

most widely used are Moran' s  I and Geary' s  C. The general tool that is used in these 

calculations is a spatial weights matrix W (also referred to as a proximity matrix), with 

number of rows and columns equal to the number of spatial units in the study. Each cell in the 

matrix,  wij represents a measure of the spatial proximity of areas Ai and Aj. In general, if two 

obj ects are considered to be in close proximity Wij is set to 1 ,  alternatively it is set to zero. 

Values between 0 and 1 may als o  be used. 

An important issue is how to represent proximity of observations when they may relate to 

irregularly shaped areal units. We can not simply use distances between the centroids of each 

of the areas, as we would be disregarding some aspects of the spatial nature of these areas 

(Bailey and Gatrell, 1 995). The way in which spatial proximity between areal units is defined 

depends on the disease process being modelled and the particular mechanisms through which 

one believes spatia] dependence to arise. Different weight matrices can be used to put 

emphasis on particular patterns and to test different hypotheses about the relationship between 

areal units (Hungerford, 1 99 1 b) .  

Arlinghaus ( 1996) presents an extensive discussion o n  the identification o f  spatial weights 

matrices ,  with references to other publications on this topic. B ailey and Gatrell ( 1 995) and 

Waiter ( 1 993a) describe a number of options for assessing the spatial proximity of areas, 

which are listed below. 

• Aj s hares a common boundary with Ai. 

• The centroid of Aj i s  one of the k nearest centroids to that of Ai 

• Centroid of Aj is within some specified distance of that of Ai. For example, Carpenter et 

al. ( 1994) used a radius tool to develop a weights matrix to measure autocorrelation 

between fowl cholera outbreaks on turkey farms in California. 

• The proportion of the boundary of Ai that abuts Aj. 

• The length of the common boundary between Ai and Aj divided by the perimeter of Ai is 
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greater than a certain proportion. 

• Inverse distance between points Ai and Aj; for example, Kitron and Kazmierczak ( 1 997) 

used the inverse of the distance between county centroids to assign highest weights to 

pairs of neighbouring counties, and decreasing weights to associations of counties further 

apart. 

• Inverse of the minimum number of boundaries one must cross to move between AI and Aj. 

• Hybrid measures based on these various criteria can also be used; for example, 

combinations of the length of shared boundary and distance between centroids. For 

example, Brown ( 1996) used a weights matrix of Wij = li/d/ where I equals the length of 

common border between areas and d the distance between centroids . 

We could also use proximity criteria that incorporate various alternative measures of spatial 

separation (Bailey and Gatrell, 1995). These might include travel time between area centroids, 

for example. The authors note that there is no reason why W need be symmetric. Hungerford 

( 1 991a) used different weight matrices when calculating Moran' s  I to test different 

hypotheses regarding factors associated with the spatial distribution of the prevalence of 

bovine anaplasmosis in counties in Illinois. In addition to using adjacency as a measure of 

proximity, she used the criterion that counties shared the same cattle market but did not share 

a common boundary, to isolate the effect of cattle movement on the spatial pattern of 

anaplasmosis at the county level. 

Mackereth ( 1 998) investigated the effect that representing area data as point data, based on 

the centroids of areas, had on measures of autocorrelation. He found that point data did not 

represent the proximity of observations as accurately as area data. A Moran' s  I test for 

autocorrelation in cattle tuberculosis rates on farms was significant at 1 00 meters for area data 

(using the true farm boundaries), but not for point data using the centroids of the same farms. 

Farms tended to be clustered by farm size, hence the scale at which autocorrelation occurred 

between centroids of large farms was different to that between centroids of small farms. 

Bailey and Gatrell ( 1 995) discuss the effect of non-stationarity on autocorrelation analyses, 

and make the point that analyses can become complex when representing non-stationarity in 

spatial data. Kitron and Kazmierczak ( 1997) subdivided the counties of Wisconsin into 3 

regions and studied spatial clustering patterns across the state as a whole, and within each 

region. They found peak clustering of human cases of Lyme disease occurred at different 

distances in each of the regions. Such regionalisation enables epidemiologists to detect more 
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detailed patterns at the regional level compared with an average acros s  the whole area. Walter 

( 1 993a) examined the power of both Moran' s  I and Geary ' s  C to detect clustering under 

different spatial configurations of data. He found that the power of these tests was reduced 

when high-rate polygons were clustered on the edge of the study area. He also discussed the 

effect of data quality on the ability to detect spatial patterns. 

By testing for autocorrelation across different neighbourhood distances, referred to as 

different spatial lags, one can generate a spatial correlogram which can be used to identify the 

distance at which the most significant autocorrelation occurs, Le. the spatial range over which 

the spatial clustering effects are maximised. Kitron and Kazmierczak ( 1 997) evaluated 

Moran' s  I at 5-kilometer intervals from the centroids of counties for tick distribution, Lyme 

disease cases, population density and NDVI values. 

Other tests are available for testing the spatial patterns between maps. For example, 

Hungerford ( 1 99 1 a) describes using the kappa statistic test for the overlap of areas on 

different maps, and another for the co-distribution of two variables at each point using 

Tj 11 stheim' s  statistic (Tj(?)stheim, 1 978).  Jacquez ( 1 995) presents an example of a slightly 

different variation on this theme with a test for the overlap of map boundaries. 

Statistical modelling 

Statistical modelling of data involves techniques that aim to explain or estimate the 

relationship between a dependent variable and a group of independent variables or covariates;  

for example, between some measure of disease incidence and social and/or environmental 

covariates. Many approaches have been used for the statistical modelling of spatial data. 

Buckland and Elston ( 1 993) provide a useful summary of different statistical modelling 

methods applied to the spatial distribution of wildlife .  A number of different predictive 

modelling approaches for spatial data were compared by Williams et al. ( 1994). They used 

linear and non-linear discriminant analysis, tree-based induction and neural networks to map 

tsetse fly distributions in Zimbabwe and concluded that while the simpler methods (linear 

discriminant analysis and tree-based induction) were less precise, they were easier to 

interpret. The most common statistical modelling methods used in the health field are multiple 

linear regression and logistic regression. Pfeiffer ( 1 996) notes that in the field of 

epidemiology parameters of interest are very often counts or proportions which can be 

modelled using generalised linear modelling techniques rather than ordinary least squares 

regression. A number of authors have included spatial data into multivariate analyses as 
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independent variables, but have not accounted for spatial dependence in these models . Pfeiffer 

( 1994) used specific geographical variables such as height above sea level, aspect, slope and 

distance to features of interest as explanatory variables in a multivariate statistical model of 

the distribution of dens used by tuberculous possums. Glass et al. ( 1 995) developed a risk 

density map for Lyme disease based on a multiple logistic regression model. 

For many years researchers have pointed out that we cannot directly apply these classical 

statistical models to spatial data as they are based on the assumptions that observations are 

independent and all observations are drawn from populations with equal variance, and such 

assumptions are often violated in the case of spatial data (Cook and Pocock, 1 983). However, 

in more recent years methods of representing spatial patterns in statistical models have been 

explored in more depth, and there is more published literature describing these techniques 

(Bailey and Gatrell, 1995 ; Arlinghaus, 1 996) . There are still relatively few examples in the 

literature of the incorporation of spatial patterns into regression models. In the case of spatial 

data, the assumption of independence of observations is often not met, as events at one 

location are likely to be correlated with events at neighbouring locations (spatial 

autocorrelation). Cook and Pocock ( 1983) point out that as long as it is possible to explain the 

non-independence in terms of covariates that are also spatially correlated, no problem arises . 

However, unexplained variation in spatial data will often lead to the error term in any multiple 

regression model being spatially correlated. Bailey and Gatrell ( 1 995) state that the standard 

regression assumptions that the error term is a vector of independent random errors with 

constant variance are very unlikely to be appropriate for spatial data because of the possibility 

of spatial dependence between the residuals. With most real area data this assumption is often 

violated and residuals from such a regression will be spatially correlated. In addition, it is 

unlikely that the variance will be constant across all residuals. As a result of one or both of 

these problems the conventional confidence intervals for regression coefficients and the 

corresponding assessment of the significance of any of the covariates may be unreliable. This 

results in an increased probability of rejecting the null hypothesis when it is in fact true (Type 

I error) as the standard error of parameter estimates tend to be smaller if spatial 

autocorrelation is not accounted for in the model. 

The most commonly recommended procedure to manage the lack of independence of spatial 

data is to first conduct an ordinary regression analysis without allowing for spatial 

autocorrelation. The residuals from the initial analysis are then tested for the presence of 

spatial autocorrelation using a test such as Moran' s 1. If significant autocorrelation is present, 
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then variables representing the spatial pattern in the residuals can be identified and included in 

the original model. This can be considered an iterative process of testing for autocorrelation in 

residuals and adding spatial pattern variables to the model until there is no significant 

autocorrelation remaining, indicating that the model is a good representation of the data. 

Bailey and GatreIl ( 1 995) discuss a number of different classes of auto regressive models. 

Such models include as covariates one or more variables that represent the spatial dependence 

of the outcome variable. 

The challenge for the epidemiologist is finding appropriate variables to represent spatial 

patterns in the data. One approach is to model the pattern of autocorrelation in the residuals 

using a variogram. Such a method could be applied to area data using the centroid of areas as 

point data (Bailey and Gatrell, ( 1 995). The variogram fits a smooth function of distance 

between point locations that can be incorporated as an independent variable in the final 

model. Thomson et al. ( 1 998) describe using a variogram of the standardised residuals from 

the fitted logistic regression model in order to estimate the spatial dependence in their data, in 

a study to predict the impact of insecticide treated bednets on malaria infection in villages in 

The Gambia. Based on the appearance of the variogram, they assumed that the correlation 

between a pair of measurements was an exponentially declining function of distance, i.e. p(d) 

= exp (-ad) for some positive value of a. Such models assume that the spatial autocorrelation 

effect is stationary across the study area. Bailey and Gatrel l  ( 1 995) state that "stationarity of 

the second order component is less likely to hold for area data. Even if there exists an 

underlying continuous space process that is stationary, indirect observation of this using 

aggregated values over irregular areas will result in variances and covariances in the areas that 

will not be the same for all areas. Further, we do not have a simple measure of distance 

between areas, in that proximity measures other than Euclidean distance between centroids 

may in many cases be preferable for area data." 

Another approach is to try different connectivity matrices that are not necessarily based on 

Euclidean distance functions between centroids ,  such as those discussed above under 

'Exploratory methods to analyse spatial data' (Bailey and Gatrell, 1 995 ; Arlinghaus, 1 996). 

This approach provides more flexibility in testing different hypotheses regarding spatial 

dependence in the data. Brown ( 1 996) discusses the sensitivity of spatial autoregressive 

models to the specification of the weights matrix. He tested different spatial weights matrices 

to show the sensitivity of the models to this, and found that significant spatial autocorrelation 

remained in the model residuals when the weights matrix was calculated with the exponent of 
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distance changed to - 1 .  He concluded that the generalised weights matrix with a proximity 

function of d-3 characterised the spatial interaction in the net migration field better than the 

other weighting schemes as it rendered a tighter pattern. Thomson et al. ( 1 996) used elements 

of distance matrices in a multiple linear regression models of bednet usage and malaria 

prevalence in The Gambia, to account for the confounding effect of the spatial dependence 

amongst villages included in the study. They did not specify the nature of the distance matrix 

used. Levine et al. ( 1995b) included a spatial lag variable in a linear regression model of 

motor vehicle accidents in Honolulu. These authors discuss the use of Spacestat, a special 

spatial statistics regression package that estimates linear regression equations controlling for 

the degree of spatial autocorrelation in the data. 

Spatial autocorrelation may be represented by variables other than proximity matrices. For 

example, Smith et al. ( 1 995) generated a conditional autoregressive model of mosquito 

density by adding a function that measured the spatially structured variation in the data. The 

function was the mean mosquito density for all neighbours (within a distance of 150 meters) 

of each house, not including the house itself. Such models are recommended by Bailey and 

Gatrell ( 1 995) as they need not assume stationarity of the spatial autocorrelation pattern (the 

second order effect), nor are they necessarily restricted to covariate structures that are smooth 

functions of Euclidean distance. 

Visual inspection of mapped residuals can provide important information on areas where the 

model is not fitting the data well. This in turn can help identify variables that represent the 

different spatial autocorrelation patterns associated with different areas. In a study of factors 

influencing migration in Rwanda, a map of residuals provided valuable information about 

controls on migration that were acting at a local level and not nationwide (Brown, 1996). The 

spatial autocorrelation in the residuals indicated that communes with higher in-migration than 

that predicted by the model tended to occur in groups in certain parts of the country. Other 

authors have tested the association of different independent variables (covariates) with the 

spatial pattern of the outcome variable. Feng ( 1 996) used a linear autoregressive model of 

regional fertility rates in an area of China to investigate the effect of implicit spatial factors 

whilst controlling for a number of explicit non-spatial variables. Jacqmin-Gadda et al . ( 1 997) 

propose a test of the residuals in generalised linear models that is a generalisation of the 

spatial autocorrelation test based on Moran' s  I. This allowed adjustment for sizes of 

geographical areas and for explanatory variables. Langford et al. ( 1 998) used multi-level 

modelling of geographically aggregated health data to study the effect of UV exposure on 



29 

malignant melanoma mortality in the European Community. 

Bailey and Gatrell ( 1 995) note that "spatial forms of logistic regression models are not well 

developed yet." These authors suggest introducing covariates into the regression model such 

as the spatial coordinates, or a variable representing regions categorised broadly by location to 

remove the effect of spatial dependence. Pfeiffer et al. ( 1 997) evaluated three different spatial 

models to predict the occurrence of theileriosis outbreaks in Zimbabwe, using the likelihood 

ratio to identify that which best explained the spatial pattern of the data. They compared 

models with spatial patterns represented in the following ways: entering the coordinates o f  

each grid cell included i n  the analysis ; including a s  a random effect a variable that represented 

the identity of a 25-cell area surrounding each grid cell, and another that represented a 1 6-cell 

area surrounding each grid cell; replacing the binary outcome variable with a binomial 

variable that represented the probability of theileriosis outbreaks in the immediately 

neighbouring grid cells; including this same variable as an independent variable with the 

binary dependent variable. Inclusion of the 25-grid area identification as a random effect 

variable resulted in the model with the smallest deviance term. The autoregressive model that 

included the probability of theileriosis in immediately neighbouring grid cells resulted in a 

model with lower deviance than that without any spatial parameters ,  while all other variables 

resulted in models with no significant difference in deviance terms. Augustin et al. ( 1 996) 

compared the deviance terms of logistic regression models of deer distribution in Scotland 

that included a spatial function operating over different scales, described as autologistic 

models .  They describe an autocovariance function that weights the probability of deer being 

present in a cell, as a function of the weighted average of the number of occupied cells in sets 

of neighbouring cells. They found that the autocovariate corresponding to a neighbouring area 

of 7 kilometers produced the greatest reduction in deviance. 

Spatial filtering methods have also been used to remove spatial dependence from grid data 

used in multivariate analyses (Kitron, 1 998).  Pereira and Itami ( 1 99 1 )  controlled for spatial 

autocorrelation in the independent habitat variables used to predict squirrel distribution using 

a systematic sampling scheme. They detected the maximum distance over which significant 

spatial autocorrelation occurred using Moran ' s  I, then used this distance to systematically 

select control cells .  
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GIS as a simulation modelling tool 

GISs have been used in a limited number of simulation models of diseases that are associated 

with one or more geographical risk factors. Such models represent a dynamic disease 

situation, and are extremely useful tools to test the effectiveness of different control strategies 

under different disease scenarios. PossPOP is a simulation model of the spread of TB in 

possums developed by Pfeiffer ( 1994). This model imports vegetation data from a GIS to 

represent the area over which possum den sites are distributed. By basing the model on real 

geographical data, it can be applied to different farm situations using the actual vegetation 

cover on those farms, hence providing a more realistic representation of the habitat on the 

farm, and hopefully more reliable results. The main aim of this model is to compare different 

possum control strategies, such as frequency and timing of population control, and population 

control in conjunction with vaccination for TB. 

Interspread is a simulation model of the spread of foot-and-mouth disease (FMD) between 

farms (Sanson et al . ,  1 994) .  It uses databases containing the actual geographical coordinates 

of the boundaries of all holdings containing susceptible animals in the study area, as well as 

the locations of saleyards and other animal congregation sites. The model operates at the farm 

level, and can be used to test different control strategies. Tinline ( 1988, cited in Sanson et al. ,  

1 99 1 )  identified six different factors that affect the persistence of rabies in southern Ontario, 

using computer simulation modelling. 

Models of the spread of airborne disease agents, such as viruses or air pollutants, can be used 

in a GIS in conjunction with a database of land and occupancy data to identify areas at risk. 

Wind spread is a geographical model of the airborne spread of FMD virus. The model uses a 

farm as a given starting point for the spread of virus, and uses climatic data, such as wind 

speed and direction, to simulate the spread. Overlaying the virus plume on a map of farms can 

be used to identify farms that are at risk of being exposed to the virus, which can help 

outbreak managers establish priorities for farms requiring surveillance, or the implementation 

of preventive measures such as vaccination or pre-emptive slaughter. Scott et al . ( 1 998) used 

a Gaussian plume dispersion model to represent the exposure of dairy and beef herds in 

Alberta, Canada to sour gas emissions, and associate this with health and productivity factors . 
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Use of GIS in decision support systems 

Decision support systems are useful in situations where decisions need to be made quickly 

such as in an emergency, and where decisions are complex, requiring information from many 

sources that needs to be pre-processed before being in a state useful to the decision maker. 

Such systems can also be programmed to produce maps of disease distribution, updating 

managers on the progress of control or eradication programs. One such example in the area of 

animal health is EpiMAN-FMD, a decision support system developed for the management of 

a FMD outbreak (Sanson, 1993) .  This decision support system comprises a GIS, a database 

management system, an expert system and models of the spread of FMD. The GIS includes a 

map of farm boundaries and topographic information, and i nterfaces with a farm database 

which contains livestock numbers, farm owner, address, phone number, and other details. One 

of the uses of the GIS is to predict windborne spread of FMD virus and to identify farms over 

which the ' virus plume' has passed and which may be incubating the disease, thus represent 

high priority for quarantine and monitoring. Another important use of the GIS is to identify 

and produce a list of farms that are located within distance zones of an infected property and 

which require quarantine and monitoring. 

A similar decision support system is being developed to assist with the management of TB in 

New Zealand, known as EpiMAN-TB (McKenzie and Morris,  1995 ; McKenzie et aI. ,  1997). 

This system also combines a GIS with a farm database, an expert system and models of the 

spread of TB at the farm scale and the regional scale. EpiMAN-TB can be considered a 'box 

of tools'  with a number of different functions available to TB managers at district, regional 

and national levels. The ' hot spot predictor' module identifies areas of vegetation with a high 

risk of TB occurring in the possum population and others with a low risk. The 'on-farm TB 

control ' module uses the TB simulation model, PossPOP, to compare different control 

strategies at the farm level. The 'farm risk' module will utilise the modelling capability of a 

GIS and classify farms in an area according to their risk of having a high incidence of TB, a 

sporadic incidence or no risk of TB , which can be used to target disease surveillance and 

vector control efforts in newly infected areas . 

Laube et al. ( 1997) describe a GIS-based decision support system for region-wide enzootic 

pneumonia eradication in pigs. The GIS uses farm ownership data, livestock numbers per 

farm and locational coordinates, and the simulation runs in ArcInfo (Version 7 .0).  Running of 

the GIS-based system in Switzerland has been limited by the lack of an adequate national 
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farm database, and the authors make the comment that "the full potential of GIS-based 

decision support systems in the field of animal health will - to a large extent depend on 

improvements of the accessibility and compatibility of national farm databases". 

Cameron et al. ( 1 997) have developed a computerised Outbreak Response Management 

System to assist in implementing ring vaccination of cattle and buffalo in the face of an FMD 

outbreak in Thailand. The system was developed in Arc View using the A venue programming 

language. It uses four geographical data sets: village locations, district boundaries, roads and 

the location of district veterinary offices. The program indicates the number of cattle and 

buffalo that need to be vaccinated in a buffer zone of specified radius around a specified 

village where an outbreak has occurred. 

Conclusion 

In this paper I have aimed to help those new to the field of applying GIS and spatial data 

analysis techniques to epidemiology understand the tools available to them and some of the 

issues associated with using spatial data. I have reviewed both the medical and veterinary 

literature for examples of how these tools have been applied. I have discussed the application 

of GISs in the visual display of disease data, the preparation/construction of geographic 

variables for statistical analyses, and the application of geographic data in simulation 

modelling and in decision support systems. I have described statistical techniques for 

analysing spatial data, and discussed in some detail different ways of measuring spatial 

proximity and representing this in spatial data analyses, and in the statistical modelling of 

spatial data by incorporating variables that represent the spatial patterns in the data. 

In 1 996 Clarke et al. wrote that, 

"GIS . . . . . .  does not fit neatly into the health scientist ' s  toolbox. It requires 

rethinking and reorganizing the way that data are collected, used and 

displayed. It requires expense, training, and a climb up a learning curve. It 

needs maintenance and support and can be both overwhelming and 

threatening to the uninitiated."  

The application of spatial data into epidemiology is indeed challenging. However, I believe 

that the number of scientists now working with spatial data in the health field together with 

the improvements in the user-friendliness of GISs and the greater availability of spatial data i s  

generating a momentum that will help this field continue to grow in the future. As there are 
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more examples of the application o f  spatial data i n  epidemiological studies in the literature, 

more people are likely to be encouraged to undertake similar studies .  This in turn is likely to 

lead to the availability of a wider range of spatial data and possibly to better quality data as 

more routine data is collected with the purpose of being used for spatial analyses. 
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Abstract 

This paper describes a case control study of 1 3 2  possum capture locations to identify habitat 

and topographic factors associated with the presence of single or mUltiple tuberculous 

possums within a 50-metre square area surrounding each capture location. D ata were 

collected on plant species and structural features of vegetation, the abundance and quality of 

available den sites, and topographic factors such as slope and aspect. Two unconditional 

logistic regression models that included different sets of den variables were produced to 

predict the probability that a location was a multiple TB site rather than a negative TB site. 

One logistic regression model was produced to predict the probability that a location was a 

single TB site rather than a negative TB site. Multiple tuberculous possums were more likely 

to be captured on flatter land with multiple fully enclosed dens or more abundant open dens in 

trees . Single tuberculous possums were more likely to be captured on flatter land with taller 

trees, a lower percent coverage of vegetation in tier 5 (height 0.3 - 2 metres), and a higher 

percentage of ground-level vegetation. The results of this study suggest that clustering of 

tuberculous possums is associated with a higher density of favourable possum dens,  by means 

of their influence on the probability of contact around the denning area. 

Introduction 

The brushtail possum (Trichosurus vulpecula) acts as a reservoir of Mycobacterium bovis 

infection for farmed livestock in New Zealand (Anon, 1 986; Morris et al., 1 994; Jackson, 

1 995). Areas in which tuberculosis (TB) is endemic in possum populations, known as vector 

risk areas (VRAs), were estimated to cover about 23 per cent of New Zealand in 1 995 (O'Neil 

and Pharo, 1 995).  This reservoir of infection is severely hampering efforts to eradicate TB 

from farmed animals in New Zealand and has resulted in a very expensive TB management 

programme due to the additional cost of controlling possum populations. A total of $26 

million was spent on possum control in the 1996/97 financial year and this is expected to 

increase to almost $30 million by the year 2000 (O' Neil and Pharo, 1 995). Current possum 

control strategies have successfully  reduced the incidence of TB in cattle and deer and have 

reduced the proportion of farms under quarantine for TB control purposes (Pannett, 1 995; 

Livingstone, 1 997) . However, they have not yet eradicated TB from possum populations in 

many areas and continual control of possum populations is  necessary to keep the incidence of 

TB in deer and cattle at a low level. As the incidence of TB reactors within cattle and deer 
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populations in VRAs continues to decline due to the increasing area of land brought under 

possum control, the marginal return on dollars invested in existing possum control measures 

will decrease, and it may become increasingly difficult to motivate stakeholders to maintain 

the current level of funding into the future. It is therefore important to explore more cost­

effective ways of maintaining a low incidence and/or of eradicating TB from possum 

populations. We believe that having information on the habitat in which tuberculous possums 

are more likely to be located will improve the cost-effectiveness of long term possum control 

programmes, by facilitating differential targeting of resources at various habitats based on 

assessment of TB risk. 

When considered across a broad geographical scale the estimated point prevalence of grossly 

recognisable TB amongst possums in endemic areas where populations have not been 

controlled has commonly been found to be quite low. Hickling ( 199 1 ,  1 995) reported results 

of 1-2% from a number of surveys. However, there have been a small number of large-scale 

surveys in which the prevalence has been of the order of 6-8% (Hickling, 1 995). At a smaller 

geographical scale, TB in possums is highly clustered both in space (Hickling, 1995) and in 

time (Pfeiffer, 1994). In a study that combined data from five large cross-sectional surveys, 

Hickling ( 1 995) estimated the prevalence of TB within infected subpopulations to range from 

9 to 32% (the size of these populations was not specified). During the first four years of a 

longitudinal study of an infected possum population at Castlepoint, on the south-east coast of 

the North Island, Pfeiffer ( 1994) and lackson ( 1995) found that the monthly prevalence of TB 

amongst the 1 50 study possums varied from 0 to 20%. The prevalence of possums found in 

annual cross-sectional surveys conducted over a period of 3 days on the forest margin at 

Ahaura on the west coast of the South Island varied from 4% to an exceptional 53% (Coleman 

et aI . ,  1 994; Coleman et aI. ,  1996). 

The most detailed scale of clustering has been reported at the level of individual traps 

(Hickling, 1 995) and individual dens (Pfeiffer, 1 994). Hickling ( 1 995) used a crowding index 

as a measure of 'patchiness' of TB possums between individual traps in a line and showed 

that tuberculous possums were 4- 16 times as crowded as if they were distributed randomly. 

Pfeiffer ( 1994) showed that the median distance between dens used by tuberculous possums 

was 25 metres, compared to a median distance of 55 metres between dens used by non­

tuberculous possums and the nearest den used by a tuberculous possum. Pfeiffer et al . ( 1 995) 

reported on a survey that was conducted using trap lines on forest-pasture boundaries in the 

central North Island, in which the average size of a cluster was 33 ± 25 metres .  One cluster 
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covered an area with a diameter of 1 20 metres. Riclding ( 1 99 1 )  reported on two cross­

sectional surveys of possums in the Hohonu area (located on the west coast of the South 

Island) which were conducted 1 7  years apart. While there were fewer TB possums caught 

during the second survey, the TB possums were caught either at the same trap or one trap 

either side of traps (set 20 metres apart) which had caught TB possums during the first survey, 

giving cluster sizes that varied from 20 to 40 metres . In all the calculations of cluster size 

from cross-sectional surveys, it was not known whether the trap lines crossed a particular 

cluster right through the middle or crossed at less than the full diameter. Information from 

these studies plus a small number of other studies, indicate that the size of possum TB clusters 

is relatively small, with a cross-sectional width of the order of 20-40 metres. 

Data from three of the four longitudinal or repeated cross-sectional studies of infected possum 

populations conducted in New Zealand suggest that some clusters are spatially very stable 

over time, albeit with a fluctuating prevalence, while others are more sporadic in nature, 

existing for a variable period then disappearing. Some possum TB clusters in the two Hohonu 

surveys were stable over 17 years, while others disappeared in  the intervening period 

(Ridding, 1 99 1 ) .  Furthermore, the stable clusters remained in the s ame small focus, and there 

was no evidence of outward spread from these. The main cluster of TB possums at the 

Castlepoint study site remained in the same 2 to 4 hectare area throughout the 9-year course 

of the project (pfeiffer, 1 994; Jackson, 1 995; Lugton, 1 997; Corner, pers comm 1 999). The 

study at Hohotaka, in the central North Island involved observations on an infected possum 

population that was subject to annual control (Hiciding, 1 989;  C aley, 1 995a). Despite the 

population being maintained at 20-40% of its pre-control size, tuberculous possums were 

caught at the original two cluster sites during 4 of the 6 years following initial control. The 

infected possum population at Ahaura was found to be more homogeneous in its distribution 

during the survey conducted in 1 992 when 54% of 68 possums were tuberculous. However, in 

subsequent years there was evidence of persistent clustering across 2 or 3 years at two trap 

locations, whilst TB was more transient at other trap locations where tuberculous possums 

had been caught, with no persistence across years (Coleman et aI. ,  1 994; Coleman et a1 . ,  

1 996). 

Information on the spatial and temporal patterns of different restriction endonuclease analysis 

(REA) types of M. bovis found in the Castlepoint study provides further insights into the 

nature of possum TB clusters. The spatial and temporal distribution of four REA types found 

in the first 5 years of the study (pfeiffer, 1 994; Jackson, 1 995) and the temporal distribution of 
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8 different REA types found during the first 5Y2 years of the longitudinal study (Lugton, 

1 997) show a variation in the patterns of different REA types. Possums with three different 

REA types denned within the location of the main TB cluster during the first four years of the 

study, but the temporal patterns of prevalence of each REA type were varied. Lugton ( 1 997) 

suggested that "the most likely explanation for this phenomenon was natural variation in the 

opportunities for transmission presented to particular infected individuals ." One less common 

REA type appeared as a temporary cluster in another part of the study area. This cluster 

involved two juvenile possums that appeared to have been infected in an area outside the 

study site before immigrating, and died on the study site without spreading infection to other 

study possums. Langmuir ( 196 1 ,  cited by Morris et aI . ,  1 994) notes that "Epidemiologically, 

the dominant concept in tuberculosis control has been, and to a large degree still is, the 

importance of close contact." He goes on to say that "These observations are much more 

consistent with the hypothesis that only certain tuberculous individuals act as effective 

disseminators and these do so probably intermittently and onl y  under certain circumstances." 

The spatial and temporal patterns of TB in possums suggest an interaction between consistent 

spatial factors that influence where tuberculous possums are more likely to be located, 

perhaps b y  influencing the likelihood of contact and effective disease transmission, and less 

consistent temporal factors that influence the infectivity of tuberculous possums. 

These data support the hypothesis proposed by McKenzie and Morris ( 1995) that persistent 

clusters occur at locations where TB spreads well between possums and thus becomes 

endemically established in the local possum population. Although the prevalence of possums 

with detectable lesions of TB sometimes falls  to a very low level at these locations, there is a 

sufficiently high prevalence of "subclinically" infected possums to maintain the disease at the 

location. Temporary or sporadic TB clusters occur where there is  much less spread of TB 

amongst possums, and the disease does not become endemically established in the local 

possum population. Hickling ( 1995) found that the proportion of habitat infested with 

tuberculous possums was highly correlated with mean crowding. He suggests that "when 

possum populations are crowded, tuberculosis spreads out from foci of infection to the 

surrounding population. Conversely, when possum numbers are controlled the disease may 

retreat into small foci where the disease remains locally prevalent." This i s  a similar pattern to 

the spatial and temporal patterns demonstrated by the two major REA types of M. bovis found 

at Castlepoint. These data suggest that persistent cluster locations are critical to the long term 

maintenance of TB within possum populations, and are the most likely locations for TB to 
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persist following the control of possum populations. 

Pfeiffer ( 1994) and Jackson ( 1995) found that TB clustering was associated with possum 

denning areas. This provided strong evidence that transmission of TB amongst possums was 

occurring as a result of social interactions in the vicinity of dens, rather than in other activity 

areas such as those used for feeding. An association between possum TB clusters and habitat 

was found in the possum surveys conducted in the Hohonu .  Hickling ( 1991 )  suggested that 

the high TB prevalence in the first 200 metres of forest at both surveys may be explained by 

habitat factors favouring disease transmission at certain sites, such as heavily-used dens or 

areas of palatable pasture vegetation where possums congregate to feed. Cook's ( 1975) report 

on the first cross-sectional survey of possums conducted in the Hohonu, noted that 

transmission of TB was most likely to occur in the band of podocarp forest located 50 - 400 

metres from the lowest margin of the forest. Some authors have reported an association 

between TB possums and the bush-pasture margin (Davidson, 1 976;  Hickling, 1 989). In his 

paper on the 1 973 survey conducted in the Hohonu, Coleman ( 1 988) suggested an association 

between TB and the bush pasture margin which is where he observed the highest prevalence 

of TB. However, in his report of the same survey, Cook ( 1 975) wrote that "the prevalence of 

tuberculosis infection was highest ( 15%) on pasture lands but was reduced to 8 .4% at the 

forest-pasture margin. (As a convention for the purpose of this trial, the forest/pasture margin 

was considered to extend 50 m into the forest). The rate rose to 1 2.5% between 5 1  and 400 m 

into the forest and then fell  to 1 1 .3% at between 401 m  and 2000m and to 4% at between 2001 

and 3600m." An association between the forestJpasture margin and TB prevalence in possums 

has not been found in other studies. Coleman et at ( 1 992) found the prevalence of TB in 

possums caught on 14 lines running 1 500 metres into the forest from the forestJscrub margin 

in Ahaura did not decrease with distance from the forest edge. In a study to identify the 

effectiveness of different buffer widths for possum control operations in the central North 

Island, a TB prevalence of 2.2% of 90 possums was found before control in the deep forest 

section of the 7-km buffer compared with zero at the forest/pasture margin (Coleman et aI. ,  

1 998). Subsequently, 2.2% of 89 possums was found with TB lesions in  the deep forest 

section of the 3-km buffer two years after the implementation of possum control, compared 

with zero at the forestJpasture margin. 

Pfeiffer ( 1 994) found that distance to the nearest den used by a tuberculous possum, height 

above sea level, aspect of the den site and interaction between aspect and height all influenced 

the likelihood that a particular den site would have been u sed by a tuberculous possum. A 
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high proportion of dens used by tuberculous possums was located in the northern part of the 

study site, and Pfeiffer postulated that the expression of TB in possums was influenced by the 

harshness of the site due to environmental exposure. However, Lugton ( 1 997) found that body 

weight was higher and serum cortisol levels were lower in possums in this northern part of the 

study area compared with the two areas where a lower density of possum dens was found. 

These results suggest that possums in this apparently harsh area of the study site were less 

stressed than in other areas, and that the disease presence was associated with environmental 

factors other than those which might induce stress in possums. It is possible that the exposure 

of the steep slope to strong winds resulted in habitat cover that provided favoured denning 

areas for possums, leading to a higher density of possums in this area. 

Caley ( 1996) conducted a study that attempted to address the hypothesis that possums with 

clinical TB were more likely to be found in areas with poorer quality dens which created a 

more stressful environment. He compared the quality and location of dens used by possums in 

an area where tuberculous possums had previously been caught and an area where no 

tuberculous possums had been caught over a seven-year period. He found no significant 

difference in the quality of dens between the two sites. However, there was a higher 

proportion of dens located above the ground in the non-TB area (58% versus 14%). During 

the habitat study reported in this paper we collected data from the non-treatment area included 

in Caley' s study, and it had the characteristics of a mUltiple TB site with many fully enclosed 

dens available and low slope. However TB has not been found at this site in the course of the 

seven-year study conducted at Hohotaka, despite TB being endemic in possums for a 

minimum of five years at a site 2 kilometres away. A possible explanation for TB not 

becoming established at the negative site studied by Caley ( 1 996) is that the higher proportion 

of den sites above ground did not provide an environment conducive to the transmission of 

TB. Likewise, this factor may explain why TB did not become established at the 

Orongorongo study site at the southern end of the North Island (Brockie et aI . ,  1 987). In a two 

year study at this location, Cowan (1989) found only 2% of 1 987 denning events were located 

at or below ground level and den sharing was not common. On only 3 .4% of 1 987 occasions 

were 2 or more possums located simultaneously in the same den tree, and on at least 70% of 

these occasions radio signal characteristics suggested that possums were in separate dens in 

the same tree. Most den trees were large and had several clumps of perching epiphytes .  

There is  no evidence of a positive relationship between the prevalence of TB in possums and 

the density of the possum population at the scale of large cross-sectional surveys (Hickling, 
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1 995), or at the smaller scale of 1 _km2 sampling units within such surveys (Riclding, 1989). 

At Ahaura, the prevalence of TB dropped over the 5 years that it was studied despite a steady 

increase in the abundance of the trapped population each year, providing evidence that TB 

infection can remain and rebuild even in very low-density populations (Coleman et al. ,  1 994; 

Coleman et aI. ,  1 996). Pfeiffer ( 1994) showed that the area of the highest density of traps that 

caught the highest proportion of tuberculous possums in the total catch per trap, was different 

to the area with the highest density of total possum catch. There is  evidence of a density effect 

at a very localised scale. Riclding ( 1995) found that disease prevalence was 2.2 times as high 

at trap sites where 3 or 4 possums were collected as at trap sites with only 1 or 2 possums. 

These data show that geographical scale is  very important in relation to identifying an 

association between possum density and clustering of TB. The association is strongest at a 

very localised scale, which appears to be of the order of less than one hectare. 

Multivariate statistical modelling has been used to explore the relationship between the 

distribution of wildlife species and specific habitat features,  and to predict the distribution of 

species (Broschart et aI . ,  1989; Lindenmayer et aI. ,  1 990; Pereira and Itami , 199 1 ;  Buckland 

and Elston, 1993), and of subpopulations within species (Bian and West, 1 997). In this paper 

we describe the application of logistic regression modelling in a study to identify habitat 

factors that could be used to predict the locations of tuberculous possums, and to gain further 

insights into the epidemiology of TB in possums. 

Materials and Methods 

Study population 

We used a case control study design in which the unit of interest was a 50 metre square area 

surrounding a site at which a possum of known TB status had been captured in an earlier 

investigation. Study sites were selected from among a number of cross-sectional possum TB 

surveys that had been conducted by ourselves, Ministry of Agriculture and Fisheries' staff and 

private trappers . We used surveys for which the locations of TB-positive possums and of the 

trap or poison lines had either been recorded or could be recalled to an accuracy of 20-30 

metres .  A "TB-positive" site was defined as one where one or more of the possums caught at 

the site had gross TB lesions on post mortem examination. TB-positive sites were further 

classified as "single TB-positive" and "multiple TB-positive" sites. A single TB site was one 

where only one TB-positive possum had been caught within a 50-metre radius of the site. A 
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mUltiple TB site was where more than one TB-positive possum had been caught. A "TB­

negative" site was one where equivalent intensity of investigation had been conducted but no 

TB-positive possums had been caught in the immediate vicinity at any time. Negative sites 

were a minimum of 100 metres and a maximum of 1 500 metres from the nearest boundary of 

a TB-positive site. One TB-negative site was selected for every positive site from within the 

same survey area, generally on the same farm or a neighbouring farm. This method was 

adopted to increase the chance that possums at negative sites had the same putative risk of 

being exposed to TB as those at positive sites. Negative sites were randomly selected from all 

eligible sites within the survey area. A total of 1 32 sites was included in the study, comprising 

66 TB-positive sites and 66 TB-negative sites. The TB-positive sites comprised 25 multiple 

and 4 1  single TB sites. 

Independent variables 

We collected data on three groupmgs of environmental factors: vegetation, den and 

topographic factors. Vegetation data was collected using the Recce inventory method (AlIen, 

1 992) which was designed by the New Zealand Forest Research Institute for rapid broad-scale 

surveys of compositional variation in mountain forests. Vegetation factors were the 

abundance of each plant species within five different height tiers « 0.3,  0.3-2, 3-5, 6- 1 2, > 1 2  

metres), mean height of the tallest trees or shrubs at the site, abundance of epiphytes, and 

presence or absence of large-diameter trees (trees with a circumference at breast height (cbh) 

greater than 75cm). Trees with a cbh greater than 75cm were considered large enough to 

contain potential possum den sites (Green and Coleman, 1 987). The abundance of plant 

species within each tier was calculated by estimating the percent of the site covered by each 

species if they were projected down to ground level, and scoring this using the Braun­

Blanquet scale with six categories (Kent & Coker, 1992). The score for each cover class plus 

the range and midpoint of the proportion of cover represented by each category is listed in 

Table 1 .  The proportion of the ground covered by vascular vegetation, moss, water, large logs 

and roots, and bare ground was also recorded. The abundance of epiphytes was recorded on a 

subjective scale of 1 (rare) - 5 (abundant), following the ACFOR scale described by Kent and 

Coker ( 1992). 
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Table 1 .  Details of the Braun-Blanquet scale used to score the abundance of p lant species with in 
each he ight tier. 

Score Percent coverage of site Midpoint of abundance 
class 

1 <1 0.5 
2 1 -5 3 
3 6-25 1 5.5 
4 26-50 38 
5 51 -75 63 
6 76-1 00 88 

The plant species data at each site was summarised in three ways. Firstly, the mid-point of the 

abundance class for each species was summed to give a total abundance score for vegetation 

cover within each height tier. Secondly, sites were classified according to the predominant 

group of  plant species present at each site using a cluster analysis which was conducted using 

PC-Recce, a vegetation inventory data analysis package produced by the Forest Research 

Institute (Hall, 1 992). This is a package of computer programmes designed to check, 

summarise and analyse vegetation description data recorded using Recce inventory methods. 

PC-Recce includes programmes for clustering, ordinating and classifying data. A Quantified 

Sorensen ' s  K coefficient was used to measure similarity between sites, and the group average 

was used as the linkage method to combine sites within a cluster. The weighting assigned to 

each species in each tier at each site was set equal to the score for the cover class recorded for 

each species, which ranged from 1 to 6 (see Table 1 ). One cluster analysis included vegetation 

data from tiers 2 to 5, which represented plant species in the canopy, sub-canopy and 

understorey layers of each site. A second cluster analysis included vegetation data from only 

tiers 2 and 3 ,  representing the canopy and sub-canopy layers of each site. The ground tier 

(height <30cm) was not included in either analysis as we had not recorded individual species 

at the ground level . Neither cluster analysis produced a set of plant species' groupings that 

could be used to classify sites for subsequent multivariate statistical analyses, as the 

composition of plant species at the study sites was too diverse to create a small number of 

species c ategories that each contained a sufficient number of sites. 

Thirdly, plant species within tiers 2 and 3 were classified into two groups on the basis of 

whether the species was likely to provide fully enclosed dens, either within their trunks or 

under their roots. These were classified either as 'good den trees'  or 'poor den trees ' .  A 
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description of the den tree classification of each species is presented in Table 2. The total 

abundance of each category was calculated by summing the mid-point of the abundance class 

for each species within each category. 

Table 2. List of tree species located in  tiers 2 and 3 that were classified as either 'good den trees' 
or 'poor den trees'. 

Good den trees 

Rimu (Dacrydium cuppressinum) 

Totara (Podocarpus totara) 

Miro (Prumnopitys ferruginea) 

Kahikatea (Podocarpus dacrydioides) 

Hinau (Elaeocarpus dentarus) 

Mahoe (Melicytus ramiflorus) 

Willow (Salix species) 

Poor den trees 

Titoki (Alectryon excelsus) 

Beech (Nothofagus spp) 

Eucalypt 

Rewarewa (Knightsia excelsa) 

Kanuka (Kunzea ericoides) 

Manuka (Leptospermum scoparium) 

Red matipo (Myrsine australis) 

Toro (Myrsine salicina) 

Black maire (Nestegis cunninghamii) 

Tanekaha (Phyllocladus trichomanoides) 

Pine (Pinus radiata) 

Pittosporum species 

Poplar (Populus spp) 

Lancewood (Pseudopanax crassifolius) 

Kowhai (Sophora spp) 

Wineberry (Aristotelia serrata) 

T awa (Beilschmiedia tawa) 

Rangiora (Brachyglottis repanda) 

Putaputaweta (Carpodetus serratus) 

Coprosma species 

Pigeonwood (Hedyarya arborea) 

Tree fuchsia (Fuchsia excorticata) 

Lacebark (Hoheria populnea) 

Ngaio (Myoporum laetum) 

Heketara (Olearia ram) 

Kaikomako (Pennantia corymbosa) 

Five finger (Pseudopanax arboreus) 
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Data on the location, abundance and quality of available possum dens was collected at each 

site by searching for available dens for up to 30 minutes, using a torch to look into dark areas. 

The quality of a den site was scored using the same four point scale as that used by Cole 

( 1993) and Caley et al . ( 1 998). Scores ranged from 1 to 4 depending on the degree to which 

the den was exposed to the environmental elements, with one being completely exposed and 4 
being completely enclosed (Table 3) .  

Table 3.  Description of  the four categories used to score the quality of dens. 

Score Description 

Very open to the environment, direct sunlight, rain and wind, with no structure defining a 
refuge site. 

2 Open to direct sunlight, rain and wind, with some degree of protection offered by a 
'structure' e.g. hole in the side of a trunk i n  which possums can sit. 

3 Mostly protected but sti l l  allowing daylight to enter. Protected from the rain ,  wind and 
sunlight in all but extreme conditions. 

4 Totally protected from the elements and represented an almost entirely enclosed air space. 

The abundance of dens of quality 2, 3 and 4 was scored and recorded for each of 21 locations 

at every study site . Abundance was scored using a subjective scale of 1 (rare) - 5 (abundant), 

according to the ACFOR scale described by Kent and Coker ( 1 992). Den locations were: 

under live tree roots , under dead tree roots, in live tree trunks, in dead tree trunks or stumps, 

in hollow logs, under logs, under piles of fallen tree fern leaves, under piles of dead branches 

and leaf litter, in recesses within banks, in recesses within rocks, in rabbit burrows, under 

gorse (Ulex europaeus), under flax (Phonnium tenax) , under blackberry (Rubus jruticosis), 

under toetoe (Cortadena toetoe), under Carex secta, under raupo (Typha muellen), under 

dense ground fern ,  under long grass,  under bracken (Pteridium esculentum), and other. The 

abundance of quality 1 dens was scored at the following locations: in the crowns of tree ferns, 

in epiphytes, in large trees that had flat areas at the top of the trunk or in the forks between 

large branches and the trunk or flat areas on large branches where possums could sit 

comfortably. These most commonly included Hall ' s  totara (Podocarpus cunninghamii), totara 

(Podocarpus totara), rimu (Dacrydium cupressinum), willow (Salix species), macrocarpa 

(Cupressus macrocarpa) and cabbage trees (Cordyline australis). Quality one dens were not 

coded at the different locations in which they were found as these were all considered to be 

'trees' . The den data at each site was summarised for the analysis by summing the abundance 

score for dens of the same quality across all locations, giving a total abundance score of dens 
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of each quality at each site. Den data was represented in a second way as a binary variable 

based on the presence or absence of multiple dens of each quality. 

Topographic variables were the mean slope and aspect of each site. Slope was measured using 

a clinometer laid on a one-metre ruler that was laid on a representative area of slope. \\!here 

the slope varied within the site, an average value was estimated for the whole site .  Aspect was 

measured using a compass and readings were adjusted for a 2 1  ° difference between magnetic 

and grid north. Aspect was divided into five categories comprising flat (no aspect), north 

(3 1 6-45°), east (46- 1 3  5°), south ( 1 36-225°), west (226-3 1 5°), and flat. 
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Figure 1 .  Map of the North Island of New Zealand showing general locations of the study sites. 
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Statistical analysis 

Univariate analyses were used to screen the relationship between individual variables and TB 

status of the sites.  Chi-squared analysis was used for categorical variables and a Mann­

Whitney U test for difference between medians was used for continuous variables as none of 

these was normally distributed. Variables that were associated with TB status of the sites at p 

< 0.2 were used in multivariate analyses. 

Table 4: Results of univariate chi-squared analyses for categorical variables. 

Variable Multiple (n=25) Single (n=41 ) Negative (n=66) Total p-value 

Obs Ex� Obs Ex� Obs Ex� 

Eoiohvtes 
Yes 6 4 8 6 7 1 0  21  
No 1 9  21  33 35 59 56 1 1 1  0 .27 
Larae-diameter trees 

Yes 1 7  1 5  26 24 34 39 77 

No 8 1 0  1 5  1 7  32 27 55 0 . 1 9 

Aspect 

Flat 8 5 1 2  8 6 1 3  26 
North 5 5 7 8 1 4  1 3  26 

East 4 4 7 7 1 2  1 1  23 

South 6 6 6 9 1 7  1 4  29 

West 2 5 9 9 1 7  14  28 0 . 1 6  
Multiple Qualitv1 dens 

Yes 1 8  1 3  1 9  21  3 1  34 68 

No 7 1 2  22 20 35 32 64 0.09 

Multiple Qualitv2 dens 

Yes 21 23 35 37 64 60 1 20 
No 4 2 6 4 2 6 1 2  0.06 

Multiple Qualitv3 dens 

Yes 20 1 8  31 30 46 48 97 
No 5 7 1 0  1 1  20 1 8  35 0.66 
Multiple Qualitv4 dens 

Yes 1 9  1 2  1 5  1 9  27 31 61 
No 6 1 3  26 22 39 36 71 0.005 

Obs: Observed Exp: Expected 

Separate unconditional logistic regression models were produced for "multiple TB-positive" 

sites and for "single TB-positive" sites, using the habitat factors that were selected from the 

univariate analyses. To overcome multicollinearity between the two groups of den variables, 

two separate groups of habitat factors were modelled for each of the "multiple TB-positive" 

and "single TB-positive" sites. One group included dens represented as the total abundance of 

dens of each quality score plus vegetation and topographic variables, while the other included 

dens represented as the presence or absence of multiple dens of each score plus vegetation and 
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Table 5. Summary statistics and results of univariate analyses using the Mann-Whitney U test for 
all continuous variables for which data was col lected in the habitat study. 

Variable Multiple (M) Single (S) Negative (N) Mann-Whitney U results 

n = 25 n = 41 n = 66 where p < 0.2 

Slooe 
Median (Range) 1 0 (0-45) 1 5  (0-50) 29 (0-50) M<S. M<N'. S<N' 
Std deviation 1 1  1 5  1 3  
Top heiQht 
Median (Range) 1 8  (7-30) 1 3  (4-30) 1 3  (3-35) M>N', M>S, S>N 
Std deviation 8 8 8 
Percent cover tier 2 (> 1 2m) 
Median (Range1) 3 (0-1 08) 3 (0-96) 0.5 (0-120) M>N 
Std deviation 34 26 29 
Percent cover tier 3 (5-12m) 
Median (Range1) 1 9  (3-1 1 0) 1 6  (0-1 03) 22 (0-1 1 1 )  M>S. N>S 
Std deviation 33 29 32 
Percent cover tier 4 (2-5ml 
Median (Range1) 31 (0-1 04) 1 0  (0-99) 31 (0-1 50) M>S', N>S' 
Std deviation 33 26 33 

Percent cover tier 5 (,3-2m) 
Median (Range1) 21 (,5-1 53) 1 1  (0-85) 1 7  (0- 1 14) M>N, M>S', N>S' 
Std deviation 42 1 8  32 

Percent cover tier 6 « O,3m) 
Median (Range1) 4 (,5-1 40) 31 (,5-1 05) 5 (0-99) M<S'. S>N' 
Std deviation 43 36 25 
Percent cover veQetation 
Median (Range) 20 (1 -95) 68 (,5-1 00) 26 (0-1 00) M<S', S>N' 
Std deviation 35 34 33 
Percent cover bare Qround 
Median (Range) 70 (0-98) 29(0-99) 65 (0-99) M>S', S<N' 
Std deviation 34 32 34 

Percent cover 10QS 
Median (Range) 1 (0-48) 0 (0-1 5) 0.5 (0-1 5) M>N'. M>S' 
Std deviation 1 0  4 3 

Percent cover water 
Median (Range) 0 (0-25) 0 (0-5) 0 (0-88) 
Std deviation 5 1 2  

Percent cover moss 
Median (Range) 0 (0-1 0) 0 (0-56) 0 (0-47) M<N. N>S 
Std deviation 2 12 7 

1 Values could sum to greater than 1 00% because of overlap of species within tiers. 

• Significant at p a 0.05 
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Variable Multiple (M) Single (S) Negative (N) Mann-Whitney U results 

n = 25 n = 41 n = 66 where p < 0.2 

Abundance den aualitv 1 
Median (Range) 5 (0-20) 1 (0- 12) 1 (0-8) M>N, M>S' 
Std deviation 4 3 0.3 
Abundance den aualitv 2 
Median 4 (0-1 2) 5 (0-1 9) 5 (0-1 9) M<N 
Std deviation 4 5 4 
Abundance den aualitv 3 
Median 5 (0-1 6) 4 (0-26) 3 (0- 17) M>N', M>S. S>N 
Std deviation 5 4 4 
Abundance den aualitv 4 
Median (Range) 4 (0- 1 4) 1 (0-1 2) 1 (0- 17) M>N', M>S' 
Std deviation 3 3 3 
Percent cover !lood den trees 
Median (Range) 6 (0-89) 0 (0-66) 0 (0-1 1 4) M>S· . M>N' 
Std deviation 24 1 3  1 8  
Percent cover poor den trees 
Median (Range) 1 7  (0- 1 1 4\ 1 7  (0-1 03) 21 (0-1 05) M<N . S<N 
Std Deviation �O 30 3Q 

1 Values could sum to greater than 1 00% because of overlap of species within  tiers. 

* Significant at p a. 0.05 

topographic variables. A forward selection process was used with a cut-off p-value of 0.05 for 

entry into and a p-value of < 0 . 10  for removal from the model . Two-way interaction terms 

between the variables that were selected in the final main effects model were tested using the 

chi-squared goodness of fit statistic. 

A Receiver Operating Characteristic (ROC) curve was generated for the regression model that 

had the highest R2 for "multiple TB-positive" sites and the model for "single TB-positive" 

sites . These curves display the sensitivity and specificity of the model based on varying the 

cut-off value for predictions (cut-off value = probability value) ,  and enable an optimal cut-off 

point to be identified to achieve a desired sensitivity and specificity level for classifying sites 

based on the predicted probability of the logistic regression model . 

Analyses were conducted using NCSS (v 97, Number Cruncher Statistical S ystems, 

Kaysville, Utah). 
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Results 

The areas in which the 1 32 study sites were located are shown in Figure 1 ,  with 95 sites in the 

central North Island and 37 in the south-eastern North Island. Summary descriptive statistics 

and results of the univariate analyses for categorical variables are shown in Table 4, and those 

for continuous variables are shown in Table 5 .  The variables that were put forward for 

multivariate analyses were: slope, mean top tree height, percent cover in tiers 3 ,  4 and 5,  

percent ground covered in vascular vegetation, percent ground covered with large logs and 

roots, presence/absence large-diameter trees, abundance of good den trees, abundance of poor 

den trees, abundance of dens of each quality score: 1 ,  2, 3 ,  and 4 and presence/absence of 

multiple den sites of each quality score. Several of the independent variables turned out to be 

highly correlated with another biologically associated variable, and hence produced 

collinearity problems in the analysis. In each case one of the collinear variables was removed 

from the analysis, and the factor represented by the remaining variable. Percent cover of tier 2 

was excluded as it was highly correlated with mean top height (1"=0.8). Percent cover in tier 6 

was excluded as it represented much the same information content as percent cover of 

vascular vegetation (1"=0.6). Percent cover of bare ground was excluded as it was highly 

negatively correlated with percent cover of vascular vegetation (1"=-0.9). Percent of the site 

covered by water and moss were not included in the analyses as the values were very small, 

so there was insufficient variation to give rise to significant differences between sites. Aspect 

was not included because the main category contributing to the significant difference between 

TB status groups was the flat category, and this variable was represented by the slope 

variable. 

Table 6. Final logistic regression model for "multiple TB-positive" sites, using the group of 
variables in which dens were represented as the abundance of dens of each quality. 

Variable Regression Standard Z-value P-value O.R. 95% C.1. 
coefficient deviation 

Constant 0.92 0.83 1 . 1 0  0.272 

Slope (1 0° units) -0.87 0.28 -3. 1 9  0.001 0.42 0 .25-0.72 

Abundance den1 0.31 0.1 1 2.91 0.004 1 .37 1 . 1 1 -1 .69 

Abundance den2 -0.24 0.1 1 -2.29 0.022 0.79 0.64-0.97 

R-squared 0.29 

O.R. = Odds ratio C. 1 .  = Confidence interval 
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Table 7. Final logistic regressi on model for "multiple TB-positive" sites, using the group of 
variables i n  which dens were represented as the presence/absence of multiple dens. 

Variable Regression Standard Z-value P-value O.R. 95% C.I. 
coefficient deviation 

Constant 1 .45 1 .04 1 .38 0.1 66 

Slope ( 1 0° un its) -0.84 0.23 -3.57 0.000 0.43 0.27-0.69 

Multiple Den4 1 .58 0.61 2.57 0.01 0 4.86 1 .46-1 6.23 

Multiple Den2 -2.02 1 .02 -1 .99 0.047 0.1 3 0.02-0.97 

R-squared 0 .26 

O.R. = Odds ratio C. I .  = Confidence interval 

Logistic regression analyses resulted in two significant models being produced for "multiple 

TB-positive" sites and one model for "single TB-positive" sites. The significant variables in 

one final model for "multiple TB-positive" sites were slope and abundance of quality 1 and 

quality 2 dens (Table 6), while those in the second model were slope and the presence of 

multiple quality 2 and quality 4 dens (Table 7). In both models slope and the abundance or 

presence of multiple quality 2 dens were negatively associated with the odds of a site being 

"multiple TB-positive", while the abundance of quality 1 dens and the presence of multiple 

quality 4 dens were both positively associated with the outcome variable. The multiple TB 

model in which den factors were represented as the total abundance of dens of each quality 

had a slightly higher R2 (0.29) than the model in which den factors were represented as the 

presence/absence of multiple dens of each quality (0.26). The final model for "single TB­
positive" sites included slope, mean top height of vegetation, percent coverage of tier 5 (0.3 -

2 metres high) and percent of the ground covered with vascular vegetation (Table 8). Slope 

and percent coverage of tier 5 were both negatively associated with the odds of a site being 

"single TB-positive", while mean top height and percent of the ground covered with vascular 

vegetation were positively associated. 

Table 8. Final logistic regression model for "single TB-positive" sites. 

Variable Regression Standard Z-value P-value O.R. 95% C.I. 
coefficient deviation 

Constant -1 .41 0.83 -1 .70 0.09 

Slope ( 1 0° units) -0.47 0. 1 7  -2.75 0.01 0.63 0.45-0.88 

Height (1 0 metre un its) 0 .62 0.31 1 .99 0.05 1 .87 1 .01 -3.46 

T5 cover ( 1 0% units) -0.20 0 . 1 0 -2.01 0.05 0.82 0.68-1 .00 

Ground vegn ( 1 0% units) 0.30 0.08 3.92 0.00 1 .34 1 . 1 6- 1 .56 

R-squared 0.24 

O. R. = Odds ratio C. I .  = Confidence interval 
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Figure 2. Histograms showing the percent of sites with in 5-degree slope categories for each TB 
status group. 
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Figure 3. Histograms of the percent sites with in 5-metre mean top height categories for each TB 
status group. 
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Figure 4. Histograms of the percent sites with in 1 0  percent abundance categories of vegetation 
cover in  tier 5 for each TB status group. 
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Figure 5 . Histograms showing the percent of sites within  categories for the abundance score of 
qual ity 1 dens. 

Histograms of the percent of study sites within 5-degree slope categories for each of the three 

TB status groups are shown in Figure 2 .  Eighty percent of "multiple TB-positive" sites had 

slopes less than 20° compared with 50% of "single TB-positive" sites and 27% of ''TB­

negative" sites. Histograms of the percent of study sites within 5-metre height categories are 

shown in Figure 3 .  Forty percent of "multiple TB-positive" sites and 35% of "single TB­

positive" sites contained trees that were an average of 20 metres or taller, compared with only 

1 5 %  of "TB-negative" sites. Histograms of the percent of study sites that were within 10% 

coverage categories for vegetation in tier 5 for each TB status group are shown in Figure 4.  

Seventeen percent of "TB-negative" sites had more than 60% coverage compared with 2% of 

"single TB-positive" sites and 16% of "multiple TB-positive" sites. Some values for percent 

coverage of Tier 5 were greater than 100% due to layering of different species within this 

height tier. A histogram of the percent of quality 2, 3 and 4 dens that were recorded at each of 

the 2 1  locations is shown in Figure 6. This figure shows the higher proportion of quality 2 

dens that was located under logs, fallen tree fern leaves, piles of branches or ground fern, or in 

bank recesses compared with quality 4 dens, of which a higher proportion was located under 

live or dead tree roots, in holes in live tree trunks or in hollow logs. The distribution of quality 

1 dens across different locations is not shown as these were all coded as being located in 

' trees' .  Histograms of the percent of study sites within abundance categories for quality 1 

dens are shown in Figure 5 .  Forty percent of "multiple TB-positive" sites had an abundance 

score for quality 1 dens greater than 5 compared with 1 1% and 10% for "single TB-positive" 

and ''TB-negative'' negative sites respectively. 
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Figure 6. Histogram showing the percent of total dens of each quality at each location. 

The ROe curve for the "multiple TB-positive" model that included the abundance of dens and 

the ROe curve for the "single TB-positive" model are shown in Figure 7. A cut-off 

probability of 0.26 for the "multiple TB-positive" model and 0.32 for the "single TB-positive" 

model jointly maximised the sensitivity and specificity of each model. The sensitivity and 

specificity for the "multiple TB-positive" model using a cut-off probability of 0.26 were 0.92 

and 0.74 respectively, and those for the "single TB-positive" model using a cut-off probability 

of 0.32 were 0.82 and 0.70. These figures show that the "multiple TB-positive" model was 

able to discriminate mUltiple TB sites from negative sites more accurately than the "single 

TB-positive" model was able to discriminate single TB sites from negative sites. 

Discussion 

Our initial intention had been to identify TB-positive and TB-negative sites for this study by 

conducting a series of cross-sectional surveys ourselves, so that we had full control over the 

quality of possum-location data. Because of the difficulties associated with finding 

tuberculous possums by means of cross-sectional post mortem surveys (Jackson, 1 995; 

Lugton, 1 997), we found in conducting a series of such examinations that we were unable to 

locate a sufficient number of TB-positive sites with the number of investigation hours 

available. As an alternative, we then changed strategy and made extensive use of existing data 

from surveys conducted in the past, for which the location of trap or poison lines and the 

location of TB-positive possums had either been recorded or could be recalled precisely by 

personnel who conducted the surveys. As a result we had no data on the number of possums 
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Figure 7: ROe curves for the "mu ltiple TB-positive" logistic regression model that included the 
abundance of dens and the "single TB-positive" model, showin g  the sensitivity and s pecificity 
with which each model predicts the TB status of a site using different probabil ity values as cut­
off points. 

caught at each location for most of the surveys used in this study. We thus had no information 

on the distribution of the population at risk, and the TB-negative sites selected in this study 

may in some cases have represented sites where no possums were caught. As we only had 

data on possum capture sites with no denning data for captured possums, we used the capture 

site to represent the denning area of each possum. We made the assumption that the habitat 

within 50 metres of the capture location represented that in which the possum normally 

denned. The size of our area of interest was a compromise between being large enough to 

capture the possum's  most likely denning area, but not so large that the habitat at each site 

was so varied that different patterns of habitat could not be discerned between sites. We are 

aware that the data used in this study have inherent weaknesses, and we consider the results in 

the light of these weaknesses. However, we believe that the number of sites included in this 

study was large enough to accommodate many of the possible biases in the data, and has 

enabled us to draw meaningful conclusions from the results. 

The multiple logistic regression model provides two sources of information. It identifies the 

variables that are significantly associated with the outcome variable and estimates the 

magnitude of their effects, expressed by the odds ratio, controlling for the other variables in 

the model. This provides insights into the epidemiology of the disease. It also provides a 

statistical model that can be used to predict the probability of particular values of the outcome 

variable occurring; in this case the probability that mUltiple, single or no tuberculous possums 

will be found at a site, given the nature of the habitat as represented through the values of the 
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predictor variables. We discuss both applications of the logistic regression model in this 

paper. 

Slope of the land was negatively associated with both multiple and single TB-positive 

categories, indicating that TB possums were more likely to be caught on flatter land (Table 6, 

Table 7, and Table 8 ;  Figure 2). A possible explanation for the association between multiple 

TB possums and flatter slopes found in this study may be that higher densities of possums 

occurred on flatter land because the habitat provided more favourable denning areas, and the 

higher density resulted in a higher contact rate amongst possums leading to more 

opportunities for the transmission of TB. Higher densities of possums have been found on 

flatter slopes in studies in two areas of New Zealand (Coleman et aI . ,  1 980; Clout and Gaze, 

1 984). At the Castlepoint study site the highest population density, measured by trap catch, 

was located in the northern part of the study site which was dominated by a very steep slope 

with a plateau area above the steep section (pfeiffer, 1 994). Clusters of dens used by TB 

possums were located on both very steep and flat slopes within this area. Both the high 

density of possums and the clustering of TB may have been associated with this part of the 

study area as it contained the habitat in which a high proportion of possum dens were located 

(paterson, et al. ,  1 995). In the 1975 Hohonu survey the majority of TB possums were caught 

in podocarp forest on flatter land. However, the infected possums that were found above the 

lowland podocarp forest were close to or on the crest of warm ridges (Cook, 1 975). The 

results of these different studies indicate that the steepness of slopes may not be consistently 

associated with the location of TB possums and the location of higher possum densities may 

vary between different geographic locations. This may occur as a result of variability in 

environmental conditions that produce habitat that contains possum dens which favour TB 

transmission. 

We considered possible biases in the data, that could have spuriously given rise to the 

significant effect of slope in our study. At some sites the traps had either been laid at the 

bottom of a range of hills or at the top of a steep gully, where the land extending away from 

the traps was flat for up to 1 00 metres then became steep. At these locations the habitat at the 

trap site may have been different to that in which the possums regularly denned. However, at 

a larger number of sites the slope of the terrain at the trap site continued for a long distance 

into the area beyond the study site, thus we could have more confidence that the habitat at the 

trap site represented that in which the possums denned. We considered the possibility that TB 

possums were more likely to be trapped on flatter areas because they were too weak to reach 
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their original denning area, which is  where they may have been infected. Paterson ( 1993) 

reported this phenomenon in the final stage of the disease. However, Jackson et al. ( 1 995a) 

found that there was no difference in live weight and body condition for possums with TB 

lesions and those without, until the final stages of the disease. Given that the data for this 

study was sourced from cross-sectional surveys that had been conducted over many different 

seasons of the year and over many different years, possums were likely to have been caught at 

many different stages of the disease. It is thus unlikely that sufficient TB possums were in the 

final stages of disease to bias the results in this way. 

A comparison of the final models for multiple and single TB-positive sites (Table 6, Table 7 

and Table 8)  shows that den factors were important in differentiating mUltiple TB-positive 

from negative sites but not in differentiating single TB-positive from negative sites. This 

supports the hypothesis generated from previous studies that possum TB clusters are 

associated with possum denning areas (Pfeiffer, 1994; Jackson, 1 995). Furthermore, if we 

consider the classification of mUltiple TB-positive sites used in this study to represent 

persistent TB clusters and single TB-positive sites to represent sporadic TB clusters as 

proposed by McKenzie and Morris ( 1995), the results of thi s  study suggest that factors 

influencing the location of persi stent clusters are more likely to be associated with the quality 

of dens than those influencing the location of sporadic clusters. We acknowledge that it i s  

difficult to accurately classify sites a s  persistent or sporadic TB clusters purely by the number 

of TB possums caught during a cross-sectional survey. However, given the relatively low 

success in catching TB possums in surveys due to clustering of these possums, single and 

multiple were reasonable proxies for persistent clusters and sporadic clusters, although this 

relationship has not been tested. 

In the model that included the abundance of dens of each quality, multiple TB-positive sites 

were positively associated with the abundance of quality 1 dens .  The quality 1 dens recorded 

in this study were located above ground in the crowns of tree ferns or in large trees which 

either contained epiphytes or had large branches with flat areas on which possums could 

comfortably sit. In the introduction we made the observation that areas in which a higher 

proportion of possums denned in trees above ground level may have a lower risk of 

supporting possum TB clusters, as the higher proportion of den sites above ground did not 

provide an environment conducive to the transmission of TB. The positive association 

between abundance of quality 1 dens and multiple TB-positive sites found in our study does 

not appear to be consistent with this hypothesis .  A possible explanation is  that the dens 
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recorded in this study were not located by radio tracking possums. All potential den sites were 

recorded regardless of whether they were used by possums or not, thus a number of the dens 

that were recorded may never have been used by possums. Quality 1 dens in this study may 

have indirectly represented other habitat factors associated with the quality of dens, with a 

higher abundance of quality 1 dens possibly indicating sites with a higher abundance of 

favourable possum dens of other quality scores. 

In the model that represented den factors by the presence/absence of multiple dens of each 

quality, the presence of multiple quality 4 dens had a very strong positive association with 

multiple TB-positive sites (O.R. = 4) (Table 7). Quality 4 dens recorded in this study were 

most commonly located within the trunks or under the roots of large trees, or in logs or 

stumps that were often found at the same locations as large trees (Figure 6). One possible 

explanation for this association is that simultaneous den sharing may be more likely to occur 

in quality 4 dens, providing an extremely favourable opportunity for the transmission of TB 

due to the close contact of possums within an enclosed air space. In a study of the denning 

behaviour of female possums conducted near Dunedin, Cole ( 1 993) found that simultaneous 

sharing occurred in 10% of the 40 core dens that she investigated, and that possums were 

more likely to share dens of higher quality. While a number of denning studies have found a 

small but significant amount of simultaneous sharing of dens by possums in the New Zealand 

environment (Green and Coleman, 1987; Fairweather, et aI. ,  1 987;  Cole, 1 993 ; Caley et aI. ,  

1 998), den sharing i s  unlikely to be the only mechanism for transmission of T B  amongst 

possums within the denning area. Den sharing was rarely observed at the Castlepoint study 

site (pfeiffer, 1 994; Paterson et aI . ,  1 995), yet TB has been maintained continuously at this 

site for over a decade (Corner, pers comm 1999). Furthermore, Caley et al. ( 1998) showed 

that den sharing is related to the density of the possum population. He found that the 

estimated probability of a denning event being shared reduced from 0.063 in an uncontrolled 

population with estimated density of 1 8  possums per hectare, to 0.0 1 2  when the population 

was reduced by 40%, and zero when reduced by 53%. Thus, den sharing may be less likely to 

explain the maintenance of TB infection in possum populations whose density has been 

greatly reduced by population control measures. While simultaneous den sharing has been 

found to be quite uncommon at the Castlepoint study site, in the study reported here areas 

where multiple TB possums had been trapped had a higher abundance of partially and fully 

enclosed dens than areas surrounding traps that caught only one or no tuberculous possums. 

This indicates that den quality is an important factor, though not exclusively by its influence 
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on den sharing. 

lackson ( 1 995) and Pfeiffer (1994) hypothesized that social interaction around the denning 

area, either agonistic behaviour or grooming and mating, was another mechanism for 

transmission of TB. We propose a refinement of this hypothesis that there is  a higher rate of 

agonistic encounters between possums during the process of selecting a den in areas where 

there i s  a high density of favourable possum dens. While this may sound counter-intuitive, the 

higher density of favourable dens may lead to a higher density of possums whose dens are 

located near to each other. Paterson ( 1 995) found that the dens used by most possums were 

clustered in a small area at one end of the home range, where interactions with neighbours 

would be common. The rate of agonistic encounters may be even higher if there are a few 

very favourable dens within an area of high possum density, and where there i s  considerable 

competition between possums for these dens. While possums have not been found to defend 

an exclusive home range, a good den is a valuable resource and this appears to be an area of 

the home range that a possum is prepared to defend (Winter, 1976). Possums have been 

shown to use a number of different dens and many dens are used by a sequence of possums on 

different occasions (Brockie et aI. ,  1 9 89 ;  Cowan, 1989;  Cole, 1 993; Pfeiffer, 1 994; Paterson 

et aI . ,  1 995). Cole found that whilst possums in a forested area used up to 1 6  dens each over a 

4 month period, they spent an average of 76% of their time in their three most popular den 

trees. Thus there may be more competition for certain dens, leading to more agonistic 

encounters in the denning area. Paterson ( 1993) and Winter ( 1976) both noted increased 

vocalisations whilst possums were returning to their dens before sunrise, which may indicate 

increased interaction whilst defending a den site. 

Quality 2 dens were strongly negatively associated with multiple TB-positive sites when 

represented both as total abundance and as the presence or absence of multiple quality 2 dens 

(Table 6 ,  Table 7 and Table 8). Figure 6 shows that a high proportion of quality 2 dens 

recorded in this study were located under logs, under piles of fallen branches and leaves, in 

recesses located in banks on steep slopes, or under ground cover such as long grass, fern, 

Carex species and bracken, with a lower proportion located in or under trees and stumps, or in 

hollow logs. Co le ( 1 993) found that quality 2 and quality 4 dens were the most frequently 

used dens in a study that was conducted in an area of remnant forest in Otago, suggesting that 

possums find quality 2 and quality 4 dens more favourable than quality 1 or quality 3 dens. 

However, the environment in which quality 2 dens occur may significantly influence the 

degree to which possums find them favourable. For example, quality 2 dens occurring within 
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forest may be more likely to be located in association with large trees and/or the dead trunks 

or stumps of large trees or fallen logs, and possums may find quality 2 dens in these 

environments more favourable than in environments where dens of this quality are located 

under piles of fallen branches and leaf litter or under dense ground-level vegetation such as 

fern, grass or Carex species. As the dens recorded in this study were not located by radio 

tracking possums, all potential den sites were recorded regardless of whether they were used 

by possums or not. As a result, a number of dens that were recorded may never have been 

used by possums. The negative association of quality 2 dens found in this study may possibly 

be explained by the fact that at sites where there was a high abundance of quality 2 dens, 

these dens tended to be located under ground-level vegetation or piles of fallen branches and 

leaf litter which may not have been favourable possum denning areas. As a result there may 

have been a low density of possums denning in these areas, resulting in fewer opportunities 

for the transmission of TB between possums. 

The two logistic regression models for "multiple TB-positive" sites produced in this study 

indicate that den characteristics are important in explaining the difference between multiple 

TB-positive and TB-negative sites. The two models are so close in R2 (Table 6 and Table 7) 

that we cannot differentiate one as having significantly greater explanatory value than the 

other, and the two models can be considered to be interchangeable. 

The mean top height of vegetation and percent of the ground covered with vascular vegetation 

were both positively associated with the odds of a single TB site, while percent coverage of 

tier 5 was negatively associated (Table 8). The positive association of ground-level vegetation 

found in this study reflects the fact that a high number of single TB sites included a single tree 

or a small group of trees growing on open pasture, whereas few negative sites included such 

cover. The negative association of the abundance of vegetation in tier 5, which included a 

height range of 0.3 to 2 metres, may relate to the same habitat factors as those associated with 

the negative relationship between quality 2 dens and mUltiple TB-positive sites; that is, TB 
possums were less likely to be caught at sites which had a high abundance of cover in the 

height range of 0.3 to 2 metres. Such locations may provide fewer favourable den sites for 

possums and may be more difficult for possums to move through because of the density of 

cover towards ground level, reSUlting in a lower density of possums compared with sites that 

have less cover at this height. 

The logistic regression model may be used for predictive purposes to help target possum 

control efforts. A ROe curve was used to identify the cut-off probability for each model' s  
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output that optimised the sensitivity and specificity with which sites were classified as 

multiple, single or  negative. For the multiple TB model, a cut-off probability of 0.26 

maximised the sensitivity (0.92) and the specificity (0.74), while a cut-off probability of 0.32 

maximised the sensitivity (0.82) and the specificity (0.70) for the single TB model. The 

multiple TB-positive model has a high sensitivity of 0.92 which is associated with a lower 

specificity of 0.74. This lower specificity may be (in part at least) attributable to the fact that 

possum TB clusters do not expand to completely and permanently fil l  the habitat that has 

characteristics that favour cluster formation. This leaves large areas of potentially  favourable 

habitat free of TB clusters. In addition, the temporal variation in the prevalence of TB results 

in some clusters not being detected by means of cross-sectional surveys. We do not have 

sufficient information to identify in which parts of favourable habitat the clusters will be 

located, hence we need to consider all such habitat as potentially containing a TB cluster. 

Some such locations will be "susceptible" and others "infected". A susceptible location is  

potentially just as dangerous as an infected one because if  a TB-infected juvenile establishes a 

home range there, infection is likely to be spread and a persistent focus initiated. 

The information resulting from this study could be used to derive maps describing the 

probability of the presence of tuberculous possum using a geographic information system 

(OIS) .  This would enable the possum TB risk of habitat patches to be assessed over large 

geographical areas, making this a useful planning tool that could facilitate the differential 

targeting of possum control resources based on TB risk. Digital habitat data with directly 

recorded detail of den quality and den density derived by remote sensing is currently 

unavailable, and is unlikely to be available in the future as it is difficult to determine this 

directly from remotely sensed data, and it is impractical to collect on-the-ground data over 

large areas. Thus den quality and density will need to be indirectly measured by other habitat 

factors such as plant species and vegetation structure (height and density) which act as proxies 

for den characteristics and possum density. This is  likely to be less specific and possibly less 

sensitive in identifying areas with multiple high quality dens.  However, it could be used as an 

indicator or screening test which can be supplemented by other information to more 

accurately  identify the TB risk associated with particular habitat. Additional information 

could include cattle testing information, local farmer knowledge of possum TB hot spots, 

screening of habitat by farmers or control staff, and results of previous wildlife surveys. 
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More than 20 years ago, Cook ( 1 975) made the statement that "even though a possum 

population may be reduced drastically by . .  . . . well organised control operations, 

. .  . individuals may still be present to maintain a reservoir of infection menacing both cattle 

and immigrant possums. This inference could lead to a different phase of control that would 

start after routine operations have been completed." To date, the major focus of possum 

control efforts for TB control purposes has been on large-scale reduction of possum 

populations, and little emphasis has been put into the second phase, described by Cook, of 

identifying spatial reservoirs of infection. As the populations of possums in VRAs are 

reduced, control needs to focus more intently on identifying areas where tuberculous possums 

are most likely to remain and from which the infection could rebuild in an area. This study 

has provided insights into the epidemiology of TB in possums and information on habitat 

factors that could facilitate the implementation of a second phase of possum control that is 

targeted at identifying remaining reservoirs of tuberculous possums. Such an approach is 

likely to increase the effectiveness of possum control programmes in eradicating TB from 

possum populations. 
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CHAPTER 3 

Spatial and temporal patterns of vector-borne 

tuberculosis infection in beef breeding cattle2 

2 Submitted as McKenzie lS.,  Pfeiffer D.U., Morris R.S. Preventive Vetemary Medicine. 
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Abstract 

We used the spatial and space-time scan statistics to identify clustering of three measures of 

tuberculosis infection (TB) on beef breeding farms, in an area of New Zealand where TB is 

endemic in the wild possum population. We found significant spatial clusters for the disease 

frequency measures "five-year cumulative incidence" ( 1986-90) and "percent TB-positive 

years" ,  and significant space-time clusters for "annual cumulative incidence". An extremely 

useful feature of these scan statistics is their geographic output, which enables the user to map 

the locations of significant clusters. This  enabled us to develop greater insights into factors 

associated with the spatial and temporal distribution of TB in the study area. We conclude 

with a discussion of the application of these methods as a surveillance tool in the TB 

management programme, to detect both high-rate and low-rate TB incidence clusters at the 

farm level. 

Introduction 

Tuberculosis (TB) due to infection with Mycobacterium bovis i s  endemic in brushtail 

possums (Trichosurus vulpecula) in areas, known as vector risk areas (VRAs), which cover 

an estimated 24% of New Zealand. Possums are believed to be the source of TB infection for 

the majority of TB cases in cattle and deer in these areas (Livingstone, 1 997) . Patterns of the 

distribution of TB within infected possum populations have been explored in some detail ,  

with evidence of clustering of TB around possum denning areas, covering a cross-sectional 

area of the order of 40 meters (Pfeiffer, 1 994; Hickling, 1 995). There is evidence that some 

possum TB clusters , commonly referred to as TB hot spots, persist at the same location for 

many years while others are more sporadic and persist for short periods of time only 

(McKenzie et aI . ,  1997) .  The location of both persistent and sporadic clusters has been shown 

to be associated with specific habitat factors that influence the possum denning environment 

(see Chapter 2) .  Detailed investigations of spatial patterns of TB at a larger scale within 

VRAs have not been conducted. Veterinarians responsible for implementing the TB control 

programme in New Zealand have observed clustering of TB at the farm level within VRAs, 

with farms in some areas having a higher incidence than others. Quantitative analysis of the 

spatial patterns of TB at the farm level would enable us to identify if the observed clustering 

i s  likely to occur due to chance alone, and would help us develop h ypotheses about risk 

factors that are associated with vector-borne TB in cattle at the farm level . 
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Figure 8. Map of the North Island of New Zealand showing the location of the study area. 

The recent development of a digital geographicall y  referenced national farm database for New 

Zealand, known as Agribase (Sanson and Pearson, 1 997), has made it possible to map farm 

boundaries within a geographic information system (OlS), and to conduct spatial analyses 

using this data. The development of this database has coincided with the recent development 

of software (SaTScan) that can test for the significance of clustering within space and/or time 

within a geographic data set, and also identify the location of the clusters (Kulldorff and 

Nagarwalla, 1 995 ; Hjalmars et aI. ,  1 996; Kulldorff et aI . ,  1 997). Most tests for spatial 

clustering of health events, test for global clustering throughout the study region without the 

ability to pinpoint the location of specific clusters (Kulldorff et aI. ,  1997a) .  Likewise available 

space-time interaction tests evaluate global space-time interaction throughout the study region 

and time period without the ability to pinpoint the location of specific clusters. The spatial 

scan statistic and the space-time scan statistic used in SaTScan have the advantage of being 

able to detect the location and size of clusters and to test the significance of these clusters. 
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The driving force for the development of this methodology has been to develop a tool to help 

health officials evaluate local disease cluster alanns, where members of the public are 

concerned about a perceived increase in the incidence of disease in a localised area (Hjalmars 

et al . ,  1 996; Kulldorff et aI . ,  1 998).  This software helps determine whether the cluster has 

occurred by chance or whether the excess is so great that it is probably due to some common 

elevated risk factor acting at this location. The advantage of this method is that it tests clusters 

of all possible spatial and space-time sizes without any pre-selection bias as to the area within 

which the perceived cluster is located. We were interested in appl ying this methodology to 

vector-borne TB in cattle in an area in New Zealand where possums are known to be infected 

with TB, particularly because of the scan statistic's ability to identify the location of 

individual clusters. 

In this paper we describe the application of the spatial scan statistic and the space-time scan 

statistic to TB incidence data in beef breeding fanns in a VRA. We compare spatial and 

spatio-temporal patterns of three different TB measures at the farm level, and discuss 

hypotheses regarding the association of these patterns with specific risk factors. 

Materials and Methods 

Study area 

The study farms were located in a 60 kiIometer square area in the north-eastern part of the 

Wel lington region, known as the Wairarapa (Figure 8). The study area corresponded with the 

coverage of a SPOT3 multi spectral satellite image that was used to generate a vegetation map 

for a related study (McKenzie and Dymond, in preparation). This is a pastoral farming area 

dominated by sheep and beef production where TB has been endemic in cattle since the 1 950s 

(Shortridge, 1981 ) .  The traditional test and slaughter approach was successful in reducing the 

incidence of TB in cattle in this area until the late 1960s, when epidemiological evidence in 

this area and other parts of the country suggested that possums were acting as a reservoir for 

TB. TB was first found in possums in the Wairarapa in 1 968 (Anon, 1 993). Since that time 

tuberculous possums have been caught at over 140 different locations in the Wairarapa. Other 

feral and wild animals infected with TB have also been caught at several locations throughout 

the region since the early 1 970s. 

Large scale possum population control programmes were implemented in the eastern and 

southern zones of the Wairarapa between 1976 and 1 980 (Anon, 1 993). TB cattle reactor 



82 

numbers fel l  by 80% within two years of the initial control efforts. However, after 5 years 

they began to increase and were at pre-control levels 7-8 years after the original operation. 

During the period 1 980- 1988 there were only small areas under possum control and this 

period was associated with a steady increase in the number of TB reactors throughout the 

area. Since 1989 the area of land under possum control has increased steadily  with a total of 

100,000 hectares being treated in 1 996/97. The increased control efforts have been associated 

with a steady reduction in the annual incidence of TB reactors (Livingstone, 1 997). 

Cattle TB data 

We obtained cattle and deer TB testing data from the National Livestock Database (NLDB) 

which is administered by AgriQuality New Zealand (the state veterinary service) (Ryan, 

1 997). This database is designed to manage and record TB testing on farms as required by the 

national TB control programme. TB data are recorded in the NLDB on a herd basis and 

records for the Wairarapa date back to 1 979. In 1 996 the NLDB was amended to enable herds 

to be linked to the farm on which they were managed by the addition of a unique farm 

identification number. This was made possible by the development of a national 

geographically referenced farm database, known as Agribase, in which each farm is assigned 

a unique farm identification number (see below for details). This database has provided a vital 

link between TB history data and the geographic units from which the data arises, enabling 

mapping and spatial analysis of TB data to be conducted at the farm level. 

The year in which a possum control operation was implemented by the Regional Council is 

recorded for each farm in the NLDB. The date recorded is  September 1 st for the test year 

during which the operation was conducted. Most operations were conducted between January 

and June of the calendar year following that recorded in the database. We thus assumed that a 

possum control operation would begin to have an influence on the cattle TB testing results in 

the financial year following that during which the vector control programme was recorded as 

taking place. 

Farm boundary map 

A map of farm boundaries for the study area was obtained from Agribase, a national 

geographically referenced database of farms in New Zealand that has been developed by 

AgriQuality New Zealand (Sanson and Pearson, 1 997). Farm boundaries have been built up 

from the digital cadastral database (DCDB). Each l and parcel in the DCDB that has been 

matched to a farm has been allocated the appropriate farm identification number. The 
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adjoining boundaries of adjacent land parcels with the same identification number have been 

dissolved. However, most farms stil l  comprise multiple polygons as the component land 

parcels are not immediately adj acent to each other. The database for this area is graduall y  

being updated by AgriQuality NZ staff i n  the course of their routine activities. However, i t  

was not complete at the time of conducting this study, which limited the number o f  farms that 

could be included in the analysis .  

Study population 

The study population comprised 1 29 beef breeding farms which each had an area greater than 

1 0  hectares, and for which we had accurate farm boundary information. Only farms on which 

the cattle herd had been tested for a minimum of ten years up to and including the first year of 

possum control were included in the study, to maximise the chance that the full range of 

temporal variation in TB incidence was included for each study farm. Fourteen farms in the 

study group had a deer herd as well as a cattle herd on the property. Only cattle data were 

considered on these farms, as the deer were generally  confined to a small speciall y  fenced 

area of the farm and we made the assumption that their exclusion did not confound the cattle 

data. 

Data availability and quality 

Our data set of 1 29 farms represented a subset of farms in the study area, as this study of 

spatial patterns was part of a larger study to identify possum habitat and other geographic 

factors associated with TB incidence in cattle at the farm level. For this study, we required 

accurate farm boundary information to ensure accurate measurement of the geographic 

variables on farms, such as the area of different vegetation classes, length of rivers and 

distance from forests (see Chapter 5) .  Matching of all land parcels to farms had not been 

completed at the time of this study. As a result, we had to exclude a number of farms with 

inaccurate boundary information from the study. Other beef breeding farms were excluded as 

they did not have ten years of TB test data. Other farms or areas were excluded as they had no 

cattle, such as forests, or because they were not beef breeding management systems; for 

example, dairy or dry beef farms. This latter group of farms was excluded as the incidence of 

TB was more likely to be confounded by the movement of cattle between different farms, and 

was thus less likely to reflect possum TB conditions on the home farm. 

Very high quality data is desirable for a spatial analysis as areas with missing data or data 

associated with inaccurate locations can generate effects of the same order of magnitude as 
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Figure 9. Distribution of the 1 29 beef breeding study farms. 
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Figure 1 0. Distribution of point data used to represent the location of the study farms. Circle 
indicates an area where smaller farm size leads to a higher density of points. 
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might be expected from environmental influences (WaIter, 1993) .  The distribution of fanns 

used in this study is patchy (see Figure 9), and is not of a high quality for spatial analysis. 

However, we believe that the density of study fanns is sufficiently high in the south-east 

through the central to the north-west part of the study area to demonstrate the application of 

the spatial analytical techniques described in this paper, and to draw some preliminary 

conclusions on factors associated with spatial patterns in these areas. 

Measures of frequency of occurrence of cattle TB infection 

For the purposes of this study, TB-positive cattle included all cattle that were recorded in the 

NLDB as being either caudal fold tuberculin test-positive or comparative cervical tuberculin 

test-positive, regardless of whether they had post mortem lesions consistent with TB. The 

caudal fold tuberculin test is the routine test used for detection of TB in cattle in New 

Zealand. The comparative cervical tuberculin test is used in some herds as a supplementary 

test if there is doubt about the specificity of the caudal fold test. Cattle testing positive were 

included as TB-positives regardless of the reason for the testing, which could have been 

annual herd tests, sale tests, miscellaneous tests, and tests associated with the movement of 

animals between fanns. TB-positive cattle also included cattle that were slaughtered for 

market purposes and were recorded as having had TB lesions detected during routine 

inspection at the slaughter plant. 

We used the New Zealand government 's  financial year (1 July - 30 June) as the annual time 

period for calculating TB frequency measures as this was consistent with the time period 

currently used by AgriQuality New Zealand for reporting TB data. Herds whose annual herd 

test was conducted as two or more partial herd tests in different financial years, had the results 

from that test allocated to the financial year in which the final part of the test was conducted. 

Three different frequency measures of TB occurrence in cattle were calculated. 

i) Annual cumulative incidence 

Cumulative incidence (Cl) was calculated for each herd for each financial year for which TB 

surveil lance data was available in the NLDB within the period 1 979-96. The numerator was 

the sum of all TB-positive cattle recorded during each financial year. The denominator was 

the average number of cattle tested in whole herd tests during the financial year. Test-eligible 

animals included all cattle on the fann over the age of 1 2  weeks. If a whole herd test was 

conducted as a series of part herd tests, then the number tested at each part herd test was 

summed to give a total for that whole herd test. 
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Cumulative incidence was chosen over incidence density or corrected annual incidence 

(corrected to 365 days) as all herds in the study area were under annual testing thus the length 

of time between whole herd tests did not vary significantly between herds. Zewdie ( 1 997) 

showed that there was a high degree of correlation between TB cumulative incidence and 

incidence density in data for herds that were on an annual testing programme. 

ii) Five-year cumulative incidence (1986-90) 

A five-year Cl was calculated for the period 1986-90. We chose this time period to eliminate 

the confounding effect of possum control programmes on TB incidence from 1 990 onwards. 

The numerator of the five-year Cl was the sum of all TB-positive cattle recorded during 1 986-

90, and the denominator was the average number of cattle tested in the annual herd test during 

this period. 

iii) Percent years with TB-positive cattle 

The numerator for this measure was the number of years when the herd had at least one TB­

positive cattle beast. The denominator was the number of financial years that the herd had 

been included in AgriQuality New Zealand's TB surveillance programme, up to and including 

the first year during which a possum control operation was conducted on a farm. 

Statistical analysis 

Spatial clustering was evaluated for the five-year Cl ( 1986-90) and percent TB-positive years 

using a spatial scan statistic (Kulldorff and Nagarwalla, 1995 ; Kulldorff et al., 1997). The 

method uses point data, which in this study was the centroid of the largest polygon of each 

study farm (see Figure 1 0).  The spatial scan statistic applies a moving circular window that 

centres on each point in turn. At each position, the radius of the window varies so that the 

window includes a minimum of zero neighbouring points up to a maximum number set in the 

analysis.  We set the maximum size of a window such that it included up to 50% of the study 

population. This avoids the situation whereby the spatial window becomes so large that it is 

inappropriate to refer to a cluster in that zone as representing any mechanisms of 

epidemiological relevance. During the analysis the algorithm generates a very large number of 

distinct circular windows, each with a different set of neighbouring farms in it, and each a 

possible candidate for containing a cluster of TB cattle cases or of TB-positive years. The 

scan statistic assumes that cases are Poisso� distributed with uniform risk over space under 

the null hypothesis of absence of spatial clustering. For each window the method tests the null 

hypothesis against the alternative hypothesis that there is an elevated risk of TB in cattle or 
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TB-positive years within compared with outside the window.  For each window the numbers 

of disease cases inside and outside the window are noted, together with the expected number 

of cases reflecting the population at risk. On the basis of these numbers, the likelihood 

function is calculated for each circular window. The window with the maximum likelihood is  

denoted the 'most likely cluster' . The expected distribution of the likelihood ratio test statistic 

under the null hypothesis is obtained by repeating the same analytical exercise for a large 

number used 999) of random replications of the data set through a Monte Carlo sampling 

process. It i s  then used to estimate a expressing the probability of obtaining 

observed cluster under the null hypothesis (Kulldorff and Nagarwalla, 1 995). 

In addition to the most likely cluster, the spatial scan statistic identifies secondary clusters in 

the data set and can order them according to their likelihood ratio .  Secondary clusters are 

reported if likelihood ratio is larger than the likelihood ratio for the most likely cluster 

for at least one data set simulated under the null hypothesis "  The software does not report any 

sets of farms that partly overlap the most likely cluster and that have a likelihood almost as 

high, since most of them provide little additional information. As a result, we need to consider 

the results of the analysis as representing the approximate location of a cluster whose exact 

boundaries are uncertain .  

Space-time clustering of annual TB incidence on farms was evaluated using the space-time 

scan statistic (Kulldorff et al . ,  1 998). The space-time scan statistic is similar to the spatial scan 

statistic except that it is defined by a cylindrical window with a circular geographic base and 

with height corresponding to time. The height reflects any possible time interval up to a 

maximum set for the analysis. The window is then moved in space and time so that for each 

possible geographic location and size it also considers each possible time interval. Cases were 

assumed to be Poisson distributed with uniform risk over space and time under the null 

hypothesis, and with different risks inside and outside at least one of the cylinders under the 

alternative hypothesis .  S pace-time analyses were conducted at two different space-time 

scales .  In the first analysis the maximum settings recommended for both space and time 

windows were used (Kulldorff and Nagarwalla, 1995). These were 50% of the study farms 

(65 farms) and 90% of the study years ( 16  years) .  In the second analysis the maximum extent 

of the spatial window was limited to 6 farms (5% of the total number of study farms), and the 

maximum time window to 2 years ( 12% of the available time). These limits were chosen as 

we were interested in identifying if there was evidence of space-time clustering on 

immediately neighbouring farms over consecutive years . 
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Figure 1 1 .  D istribution of the five-year cumulative incidence of TB-positive cattle (1 986-90). 
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Figure 12. Location of the most l ikely high and low-rate clusters for five-year C l  (1986-90), 
together with the relative risk of TB-positive cattle on farms with in  versus without each cluster. 
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All spatial , space-time and temporal clustering calculations were performed using SaTScan, 

which has been designed specifically to implement the spatial scan and the space-time scan 

statistics (Kulldorff et al . ,  1997b). SatScan produces a text file that lists the geographic 

coordinates and the identification of each farm included each of the significant clusters . 

This data can be used in a GlS to map the locations of the clusters. The centroid of the largest 

polygon was used to represent a single point location of each farm in the analyses. However, 

the resulting clusters were mapped using the entire boundary of each farm whose centroid was 

within the cluster, as this enabled us to visualise the full  extent of clustered farms. As some 

farms had blocks of land remote from the largest polygon that was used to obtain the centroid 

for the analysis, some polygons shaded as being associated with a cluster were located outside 

the main region of the cluster. Maps were produced using ArcView version 3 . 1  (ESRl, 

Redlands, California, USA). 

Results 

We show the distribution of the five-year Cl ( 1986-90) for the 1 29 study farms in Figure 1 1 ,  

with median equal to 0.9% and a range of 0-39% .  Results of the cluster analysis for the five­

year Cl using the spatial scan statistic showed that the most likely high-rate cluster included 

39 farms located in the south-eastern part of the study area (Figure 1 2) .  The relative risk for 

TB-positive cattle occurring on farms within the cluster during 1 986-90 compared with those 

outside the cluster was 1 .63 (p=0.001 ). A secondary high-rate cluster included a single farm 

in the north-east that had a high relative risk of 3 .83  (p=0.00 1 )  during the 1 986-90 period. The 

most likely low-rate cluster for the five-year Cl included 55 farms located in the north­

western part of the study area (Figure 1 2) .  The relative risk for TB-positive cattle on farms 

within the cluster compared to those outside the cluster was 0.34 (p=O.OOl ) .  A secondary low­

rate cluster for Cl included 8 farms located towards the south-western part of the study area 

where the relative risk of TB-positive cattle was 0. 1 7  (p=O.OOl ) .  

We show the distribution of the percent TB-positive years for the 1 29 study farms i n  Figure 

1 3 ,  with median equal to 37% and a range of 0- 1 00%. The most likely high-rate cluster for 

percent TB-positive years included 66 farms located in the south-eastern part of the study area 

(Figure 14) ,  The relative risk of a TB-positive year occurring on farms within the cluster 

compared to those outside the cluster was 1 .47 (p=0.001 ) .  This was a large cluster that 

included just over half of the study farms. Two significant low-rate clusters were identified 

for percent TB-positive years. The most likely low-rate cluster included 29 farms in the north-
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Figure 1 4. Location of the most l ikely high and low-rate clusters for percent TB-positive years. 
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western part o f  the study area with a relative risk o f  0.24 (p=O.OO l )  (Figure 14). The 

secondary low-rate cluster included 6 farms located in the south of the study area with a 

relative risk of 0 .23 (p=O.OO l ). 

comparison of the location and extent of the high-rate and low-rate spatial clusters both 

the five-year Cl and the percent TB-positive years in Figure 12  andFigure 14 shows that the 

high-rate clusters for both measures were located in the south-eastern part of the study area, 

the low-rate clusters were both located the north-western area. The high-rate cluster 

percent TB-positive years included 66 farms and extended over a larger area than the high­

rate cluster for the five-year Cl, which included only 39 farms. A comparison of the 66 farms 

included in the high-rate c luster for percent TB-positive years with those in the five-year Cl 

clusters, showed that 39 were included in the high-rate cluster for the five-year Cl, 14 were 

included in the low-rate c lusters for the five-year Cl, and 1 3  were not included in any of the 

clusters . Conversely, the low-rate c luster for the five-year Cl included 55 farms and 

extended over a larger area than that for percent TB-positive years which included only 29 

farms . 

We show the location of the seven significant space-time clusters from the analysis with a 

maximum time window of 90% and a maximum space window of 50% in Figure 15 .  Details 

of the years during which each cluster occurred together with its relative risk and p-value are 

shown in Table 9.  The most likely space-time clustering occurred on a group of 27 farms 

located in the east of the study area during the period 1 985-96. The relative risk of TB­

positive cattle occurring on these farms during 1985-96 compared with any other space-time 

combination was 2.26 (p=O.OO l ) . A further two space-time clusters involved multiple farms; 

one included a group of 4 farms (cluster ID = 6) in the west in 1 982 (relative risk = 4.77, 

p=0.003) ,  and a second included 6 farms (cluster ID = 5) in the centre of the study area in 

1979 (relative risk == 3 .92, p=O.OOI ) . Four space-time clusters included a single farm in each, 

two of which had notably high relative risks for a one-year period. One farm (cluster ID = 2) 

had a relative risk of 22.2 (p=O.OO l )  during 1995 and the other (cluster ID = 3) had a relative 

risk of 1 8 . 1  (p=O.OO l )  during 1 993 (Table 9 ,  Figure 1 5) .  

Space-time analysis with the maximum space and time windows restricted to 5% and 1 2%, 

respectively, resulted in 23 significant space-time clusters, 7 involving multiple farms and 16 

involving single farms ,  We show the location of the 7 space-time clusters that involved 

mUltiple farms in Figure 16, and present details  of the years during which each cluster 

occurred and the relative risk and p-value in Table 10 .  We have not presented details of the 16 
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Figure 1 5. Location of all significant space-time clusters in  the analysis with a maximum time 
window of 16 years (90%) and a maximum spatial window of 65 farms (50%), together with the 
time period during which there was significant clustering.  
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Figure 16 .  Location of multiple-farm space-time clusters for the analysis with a maximum time 
window of 2 years, together with the time period during which there was significant clustering. 
Cl usters extending across 2 years are circled. 
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space-time clusters that involved single farms, as in this analysis we were interested in 

i dentifying if there was evidence of significant space-time clustering across contiguous farms 

within one or two-year periods, rather than identifying if the relative risk on an individual 

farm differed to that in the rest of the study area. Only 4 of the 8 multiple farm clusters 

involved clustering over a two-year period (circled in Figure 1 6), while the remaining 4 farms 

were clustered for a single year only. The three clusters in the east of the study area occurred 

during the period 1 993-94, the three towards the middle occurred in 1985-86, while the two 

clusters in the west occurred in 1982.  

Discussion 

Calculation of the spatial and space-time scan statistics is based on point location data. In this 

study we represented farms as a single point by using the centroid of the largest polygon of 

each study farm (Figure 10). Representing areal units by a single point can give rise to 

distortions in spatial analyses when the areal units are not distributed randomly with respect to 

size (Mackereth, 1 998). Fann data is  often clustered by farm size, with large farms occurring 

together in one area and small farms in another. The density of point data representing areal 

units i s  influenced by the size and the shape of the areas that they represent, and by missing 

data. In our study, density was highest in a small area in the west where a number of small 

contiguous farms was located (encircled in Figure 10) .  It w as lowest in areas where there was 

either a large number of fanns not included in the data set (for example, in the south-west and 

north-east part of the study area), or large areas of forest (for example, in the east and south­

east of the study area). Areas that included a number of larger contiguous farms had a 

moderate density. The application of spatial analyses that base proximity on the distance 

between points would not be valid in the case of this data. However, the spatial and space­

time scan statistics are less sensitive to non-stationarity (uneven variation across space) of the 

density of points, because the analyses use a shifting circular window that varies in size from 

an individual point to a maximum number set by the analyst. This allows for the detection of 

clustering over different distances in different parts of the study area. The varying window 

size also makes these techniques less sensitive to local variations in density that are due to 

missing data points. However, they are sensitive to missing values in the attribute data used to 

compare the relative risk within and without each circle. We need to be cautious in 

interpreting the results from the spatial analyses conducted in this study given the amount of 

missing data. We can place reasonable confidence in the results from parts of the study area 
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where there are groups of contiguous study farms with few missing farms between, such as 

the area from the north-west through to the south-east (Figure 9). However, data are too 

sparse in the north-eastern and south-western parts of the study area to have confidence in the 

results in these areas . 

Table 9: Time period, relative risk, p-value and number of farms for al l  significant space-time 
clusters with maximum space and time windows, shown in Figure 1 5. 

Cluster ID Cluster period Relative risk p-value Number of farms in the cluster 

1 1 985-96 2.26 0.001 27 

2 1 995-95 22.22 0.001 1 

3 1 993-93 1 8.1 4 0.001 1 

4 1 984-85 4.20 0.001 1 

5 1 979-79 3.92 0.001 6 

6 1 982-82 4.77 0.003 4 

7 1 982-82 6. 1 5  0.004 

Table 1 0: Time period, relative risk and p-value for multiple-farm space-time clusters with 
maximum spatial window of 5% and time window of 1 2%. 

ClusterlD Cluster period Relative Risk p-value Number of farms in the cluster 

1 1 993-94 6.62 0.001 3 

2 1 993-94 8.62 0.001 2 

3 1 985-86 4.07 0.001 5 

4 1 994-94 5.43 0.001 3 

5 1 985-86 5.78 0.001 3 

6 1 986-86 3.81 0.001 5 

7 1 982-82 4.73 0.001 4 

Spatial analysis of TB cattle data from beef breeding farms in an area of the Wairarapa using 

the spatial scan statistic showed significant clustering of both high and low rates for the five­

year Cl ( 1986-90) (Figure 1 2) and percent TB-positive years (Figure 1 4). SaTScan outputs a 

list of farms included in each cluster, which enabled us to map the clusters and identify their 

geographic location. This provides useful insights into the nature of the disease and helps 
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develop hypotheses regarding associated risk factors. High rates for both the five-year Cl 
( 1986-90) and percent TB-positive years were clustered in the south-eastern part of the study 

area, and low rates for both measures were c lustered in the north-western area (Figure 12  & 

Figure 14). An interesting feature of the clustering patterns of these two measures was the 

area of overlap of the low-rate cluster for Cl ( 1986-90) and the high-rate cluster for percent 

TB-positive years, and conversely of the high-rate cluster for Cl and the low-rate cluster for 

percent TB-positive years (Figure 1 2  & Figure 14). The group of 13  farms included in the 

area of overlap had moderate values for Cl ( 1986-90), with most falling within the range 0.5-

5% (Figure 1 1 ) ,  and moderate values for percent TB-positive years, with most falling within 

the range of 20-40% (Figure 1 3) .  The area of overlap of the two clusters represented a third 

cluster, and the combination of these clusters showed three reasonably distinct patterns of TB 

associated with different geographic locations in the study area. The low-Iow group in the 

north-west included 29 farms with a low percent TB-positive years and few TB-positive cattle 

during positive years. The low-high group in the centre included 1 3  farms that had a moderate 

percent TB-positive years and a moderate number of TB-positive cattle occurring during the 

positive years. The high-high group in the south-east included 39 farms with a high percent 

TB-positive years and a high risk of TB-positive cattle during those years. 

We hypothesise that these spatial clustering patterns are related to possum habitat patterns 

that influence both the number of persistent possum TB clusters on a farm and the overall 

density of possums in the area of the farm and its surrounds. We suggest that the 39 farms in 

the high-high category for both percent TB-positive years and Cl ( 1986-90) have a 

combination of multiple possum TB hot spots on the farm and more persistent TB infection 

within these hot spots over time. The mUltiple hot spots result in the possibility of a higher 

number of cattle being infected in any one year, and a higher possibility of infected possums 

being present in at least one of the hot spots in any one year. In a longitudinal study of an 

infected possum population Pfeiffer ( 1994) and Iackson ( 1 995) found significant temporal 

variation of TB incidence in possums within individual hot spots. Given this temporal 

variation, a higher number of hot spots present on a farm could result in a higher chance of 

there being at least one infectious possum on the farm in any one year. This in turn would 

result in the farm experiencing a higher percent of TB-positive years compared with farms 

which have fewer hot spots. TB infection may be more persistent at hot spots on these farms 

due to a combination of habitat factors that favour the transmission of TB between possums 

within hot spots, and a higher density of possums in the surrounding area which provides a 
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large pool of susceptible possums and a pool of infected juveniles which disperse. 

The space-time analysis that we conducted with the maximum size of the temporal and spatial 

windows was an initial exploratory analysis that showed the maximum scale of space-time 

clustering within the study area. The most likely space-time cluster included 27 farms located 

in the east of the study area during the period 1985-96 (Figure 1 5) .  This cluster included 27 of 

the 39 farms included in the most likely high-rate cluster for the five-year Cl ( 1986-90) . The 

space-time analysis uses a cumulative incidence in its calculation of relative risk within each 

space-time cylinder, hence the similarity of the clusters identified by the two analyses. 

Space-time clustering of TB in cattle is strongly confounded by possum control operations, 

which are implemented on a space-time basis .  Possum control operations conducted in the 

study area since 1990 covered an average of 30,000 hectares per operation, with intensive 

culling of possums in the first year of the operation and follow-up culling in subsequent years. 

The incidence of TB in cattle generall y  drops significantly in the year following a possum 

control operation, and remains low as long as the possum population is maintained at a low 

level (Anon, 1 986; Pannett, 1 99 1 ;  Anon, 1997). The pattern of space-time c lustering that we 

identified in the study area has been influenced by the location and timing of large-scale 

possum control operations. For example, the most significant space-time clustering in the 

east, which extended over a time period of 1 985-1996, is likely to have been influenced by 

intensive possum control that was initially conducted in this area in 1 979-80, with no further 

control on most farms in the cluster until 1995 (Anon 1 993 ; Anon, 1 997) .  The control in 

1 979-80 resulted in an initial reduction in the incidence of TB in cattle in this area, then the 

rate began to increase after 5 years which coincides with the beginning of the space-time 

cluster period. 

B y  restricting the maximum time and space windows to 1 2% and 5 %  respectively we were 

able to investigate if there was evidence of significant space-time clustering on groups of 

neighbouring farms during periods of 1 -2 years. There were onl y  7 space-time clusters that 

included multiple farms, and only 4 of these involved a two-year period (Figure 15) ,  while the 

remaining 3 involved only one year. These results suggest that factors that influence temporal 

clustering of TB in possums do not commonly act across contiguous farms during the same 

time period. Conversely, the incidence of TB on particular farms rose and fell independently 

of their neighbours during one to two-year periods in most parts of the study area. Only 4 of 

the 7 multiple-farm clusters (encircled in Figure 1 6) and 4 of the 1 6  single-farm clusters 

involved a two-year period, which suggests that peaks in TB incidence mostly involved only a 
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single year and did not persist over consecutive years. However, these results need to be 

interpreted with some caution. The space-time scan statistic only identifies the most likely 

clusters and does not list less significant clusters that partiall y  overlap the most likely clusters. 

This makes it difficult to identify any additional space-time clusters that occurred at locations 

overlapping the most likely cluster location, without breaking the data set into smaller time 

periods and conducting separate space-time analyses for each. These results are also likely to 

be sensitive to the number of missing data points, given the small size of clusters. 

In addition to assisting with hypothesis generation the spatial and the space-time scan 

statistics provide very useful tools for TB surveillance purposes (Hjalmars et al . ,  1 996). They 

could be used to identify individual farms or groups of farms with a higher TB incidence 

relative to the remainder of the area of interest in any one year, or in any group of years. This 

information could be used in setting priorities for the allocation of TB control resources. In 

this respect, these statistics could provide an objective method to define the boundaries of 

areas for possum control operations by identifying groups of farms with a high rate for TB 

incidence over the time period of interest. They could also be used to define areas that 

comprise Iow-rate clusters, where priority may be given to keeping those areas free of TB. In 

areas of New Zealand where possum populations are believed not to be infected with TB 

(referred to as Surveillance Areas), analysis for spatial and space-time clusters could be used 

as an early warning system to indicate that infection has entered the possum population. Any 

spatio-temoral clustering of TB incidence involving multiple farms in Surveillance Areas 

would be considered an indication that a wildlife vector, most commonly the possum, may be 

associated with infection, and such cases would warrant thorough investigation. We believe 

that given the availability of a digital map of farm locations on a regional or national basis, 

this analysis tool is very useful for the management of TB in New Zealand. 
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CHAPTER 4 

Automatic classification of a multispectral 

SPOT3 image to produce a vegetation map for 

modelling possum habitat in New Zealand3 

3Submitted as McKenzie lS . ,  Dymond J.R. and Morris R.S .  Geocarto International. 
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Abstract 

Supervised classification of a SPOT3 multi spectral image provided a vegetation map to model 

the distribution of possums and of tuberculous possums, both at the possum home range and 

the farm level . The resulting raster map comprised eight vegetation classes, including three 

forest classes, four scrub classes and one pasture class .  This is the most detailed vegetation 

map currently available for modelling possum habitat in New Zealand. However, the high 

degree of heterogeneity of species within two of the scrub classes limited the discriminatory 

power of models using this data. 

Introduction 

A national programme to control tuberculosis (TB) in cattle in New Zealand has been in place 

since the mid-seventies. Despite these efforts the disease is still endemic in many areas of the 

country and threatens our export markets (ONeil and Pharo, 1 995). The major factor 

hindering the eradication of TB in New Zealand is the presence of the disease in wildlife 

species that act as a reservoir of infection for farmed animals .  The brushtail possum 

(Trichosurus vulpecula) is the major reservoir host of TB, and considerable resources are 

invested in the control of possums in New Zealand each year. Possum populations in many 

areas have been reduced to very low levels. This has resulted in a reduction in the incidence 

of TB in farmed cattle and deer, nevertheless continued control of possum populations is 

necessary in affected areas to prevent a resurgence of the possum population and an 

associated increase in the incidence of disease in farmed animals .  Additional tools and 

information are required to continually refine current possum control programmes to ensure 

the most efficient use of resources in areas where the number of possums and of tuberculous 

possums have reached very low levels .  

Researchers at Massey University have developed models to assist the development and 

evaluation of possum control strategies for TB management purposes. The TB hot spot model 

is a geographic model that classifies the cells of a raster map into one of three possum TB risk 

categories (low, moderate, high), based on a combination of vegetation and slope data 

(McKenzie et aI. ,  1998). PossPOP is a geographical ly based simulation model of the spread of 

TB within a possum population that uses a vegetation map to populate the model with 

possums and dens (Pfeiffer, 1 994). This model i s  used to simulate the effect of different 

possum control programmes at the farm level. These models are useful tools for evaluating 
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different possum control programmes and for differential targeting of resources based on the 

risk of TB in possums. They have been incorporated into a decision support system, 

EpiMAN(TB), to facilitate their application at the field level (McKenzie et al . ,  1 997b). 

Possum control agencies have become interested in using vegetation maps to plan and 

implement possum control operations, as the scale and number of these operations has 

increased in recent years. We also required a digital vegetation map for a study to identify the 

association of vegetation patterns and other geographic factors with the risk of tuberculous 

possums being present on farms. An underlying requirement for these projects is digital 

vegetation data that can be used to map possum habitat. The vegetation data needs to fulfil the 

fol lowing criteria: 

1 .  It can be produced i n  a cost-effective manner for large areas of the country. 

2. It has sufficient spatial resolution to identify small patches of habitat, such as 0.25-hectare 

patches ,  shelter belts, and trees lining riverbanks. 

3. It has sufficient spectral resolution to differentiate vegetation into habitat classes that 

represent the structural and compositional features associated with the distribution of 

tuberculous possums. 

The distribution of TB in possums is clustered at a scale of approximately 50 meters square 

(pfeiffer, 1 994; Hickling, 1995) and clusters, which are commonly referred to as TB hot 

spots, are associated with habitat that provides highly favourable nesting sites for possums 

(Chapter 2). Given the association of possum TB clusters with specific habitat factors, we 

wanted to determine if habitat patterns at the farm level could be used to predict farms that 

were more likely to have TB hot spots, and hence have a higher risk of cattle becoming 

infected from possums. This information would be useful to predict farms that provide an 

environment in which TB in possums is more likely to become established, to help target 

disease surveillance and possum control efforts in uninfected areas surrounding known 

endemic areas. We were interested in investigating the heterogeneity of plant species within 

possum nesting habitat, plus spatial patterns of habitat as risk variables for the presence of TB 

hot spots on farms. We thus required vegetation data that was differentiated at a resolution of 

at least 50 meters square to capture habitat patterns at the scale of possum TB hot spots. 

Several vegetation data sets exist in New Zealand. However, none of these met the criteria 

required for our purposes. Satellite imagery has been used extensively to provide vegetation 

data to model habitat preferences of bird and animal species (Ormsby and Lunetta, 1 987;  
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Hodgson et al. ,  1 988 ;  Herr and Queen, 1 993;  Homer et aI. ,  1 993 ; and Duncan et aI. ,  1995). In 
most cases Landsat MSS or Landsat TM imagery was used due to its superior spectral 

resolution which enables greater differentiation between plant species (Chavez and Bowel l ,  

1 988) .  SPOT3 multi spectral imagery has good spatial resolution with 20-meter pixels, but 

poorer spectral resolution. As a result it has more commonly been used where spatial 

accuracy is important and land cover is classified into broad classes rather than highly 

differentiated species ' classes (Ehlers et aI. ,  1 990; Millette and Edelstein ,  1 99 1 ;  Treitz et al . ,  

1 992; Millen, 1 996). More recently SPOT3 images have been used to produce vegetation 

maps with greater differentiation of plant species (Passini and Lacaze, 1 995; Green, 1998) .  

Automatic classification of satellite images has been shown to provide a cost-effective means 

of generating a current vegetation map for large areas (Dymond et al., 1 996). However, there 

are problems associated with the production of accurate maps over large areas due to the 

effects of topography and varying atmospheric conditions. As a result visual interpretation of 

satellite imagery has been used in preference to automatic classification in the production of 

vegetation maps in some areas (Rasch, 1994; Rosenholm, ; Millen, 1 996) .  We were interested 

in applying an automatic classification procedure in this study, as it was less time-consuming 

and less labour intensive than visual interpretation. 

In this  paper we evaluate the vegetation data sources available in New Zealand and describe 

the process by  which we produced a vegetation map from a SPOT3 multi spectral satellite 

image using an automated classification procedure. We discuss the results of the classification 

and how well the resulting vegetation map met our needs for modelling possum habitat. 

Existing sources of vegetation data 

Existing sources of vegetation data in New Zealand were investigated to identify the most 

appropriate source of vegetation data for this project. A brief description of each source is  

presented. 

Black and white aerial photographs 

A series of black and white aerial photographs was taken for the entire Wairarapa region in 

1989 at a scale of 1 :54000. A more recent series was collected during the period 1 995-1999. 

Observation of black and white aerial photographs showed a significant variation in texture 

between different vegetation classes. For example, short, dense manukaJkanuka and gorse 

scrub had a smooth even appearance, whereas tall trees with large rounded crowns had a more 
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' lumpy' appearance. Given that the structure of the vegetation was the feature that related to 

the risk of TB transmission between possums, rather than the individual species per se, we 

investigated the possibility of classifying the vegetation using a texture analysis on black and 

white aerial photographs. However, testing of this approach showed there was too much 

overlap between the different classes to make this approach useful.  In addition, texture 

information was lost in shaded areas. Given that much of the study area was hill country, this 

would have led to a significant loss of information. 

New Zealand Land Resource Inventory (NZLRI) 

The NZLRI is the principal national land resource database available in New Zealand (Eyles 

and Newsome, 1 990; Newsome, 199 1 ). It contains an inventory of five sets of information: 

rock, soil, slope, erosion and vegetation cover for the whole country at a scale of 1 :63,360. It 

is based on map units of variable size that represent homogeneous land units derived from a 

combination of rock type, soil type, and slope. The minimum map unit area is approximately 

60 hectares. Vegetation in each unit is recorded as either covering more than o� less than forty 

percent of the unit. Vegetation covering less than 10 percent is not recorded. Thus, 

combinations of vegetation types are commonly recorded and there is no information on the 

distribution or location of vegetation types within each unit (Blaschke et aI . ,  198 1 ). The 

NZLRI was surveyed between 1973 and 1979, hence some of the vegetation information is 

now out-of-date, particularly in areas where exotic forests have been planted and scrub has 

either been cleared or regenerated (Wilde, 1 996). 

Whilst the NZLRI has a detailed vegetation legend, it was not appropriate for use in this 

project as the distribution and location of vegetation categories were not sufficiently specific. 

For example, a vegetation classification of the Gisbome district generated from a Landsat TM 

image in 1994 showed the total area of manukalkanuka cover to be 40,000 hectares (Dymond 

et al. ,  1 996). For the same area the NZLRI showed the total area covered by manukalkanuka 

to be much larger because the vegetation classification was generalised across the entire map 

unit within which it occurred. 

The vegetative cover map of New Zealand 

The vegetative cover map of New Zealand was compiled between 1 9 8 1  and 1 986 and 

published at a scale of 1 : 1  000 000, (New some, 1 987; Newsome, 199 1 ). This database 

classifies vegetation into 49 classes with a legend similar to that of the NZLRI, from which it 
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was derived. Although this database does have more complex vegetation associations, 

including mixes of forest, scrub and pasture, it did not show enough scrub species to be used 

as the primary source of vegetation information for this project. As was the case with the 

NZLRI, this database also lacks detailed location and distribution information for vegetation 

classes. 

Ecological survey of New Zealand indigenous forests 

All primary indigenous forests were mapped by the New Zealand Forest Service in the early 

1 970s as a part of an ecological survey of New Zealand indigenous forests (Nichols, 1 974). 

The classification of forest classes is more detailed than the NZLRI and includes 1 8  classes. 

Although the mapping was done over 20 years ago, the primary indigenous forest has 

changed little in that time. These maps do not contain any information on scrub or small 

remnants of indigenous forest outside the major forest areas, and are not in digital form. 

The New Zealand Department of Conservation in Wellington does have a digital map of 

indigenous forest in the Tararua Forest Park, which forms the western border of the study 

area. However, this map has no detailed classification of vegetation cover on farmland outside 

the forest park boundary. 

Protected Natural Areas Programme 

The Department of Conservation is implementing a Protected Natural Areas Programme 

(PNAP) designed to establish a network of reserves which is representative of the full range 

of New Zealand' s  natural diversity as embodied in the Reserves Act 1 977 (Leathwick et aI., 

1994). It involves the assessment of remnants of natural vegetation to allow identification of 

those with high conservation values located outside the existing reserves' network which 

should be given some form of protection. The eastern Wairarapa area, which includes part of 

the study area, was surveyed during 1998 (Anon, 1997). The outline of each remnant was 

drawn onto a 1 :50000 topographic map sheet and the species present within each remnant 

were recorded. These are divided into dominant species and other species, but the relative 

proportions of each are not recorded. The species in each remnant are listed without being 

keyed to a vegetation legend. The data for this area was not available in digital form at the 

time of undertaking this study. 

New Zealand Land Cover Data Base 

Terralink, the commercial arm of the New Zealand government' s land information 
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department, began developing a national land cover database from current satellite imagery in 

1996 (Millen, 1 996). The land is classified into classes within artificial, cultural and natural 

landscape categories. Natural landscapes include grassland, scrub, indigenous forest, exotic 

forest, bare ground, inland wetlands, coastal wetlands, inland water, and mangrove. The 

database comprises vector maps that are generated by visual interpretation of SPOT3 

multi spectral images, with a minimum mapping unit of 1 hectare. As of June 1 998, Terralink 

had completed the land cover database for all of the North Island and approximately half of 

the South Island. The major use of this database to date has been the identification of areas 

planted in exotic forest and areas of indigenous forest. 

While these maps have a high degree of spatial accuracy, considerable vegetation cover 

information has been lost by the broad categories used for classification and by using a 

minimum mapping unit of 1 hectare. Patches of vegetation less than one hectare have been 

incorporated into the surrounding vegetation class, resulting in the loss of habitat such as rows 

of willows along riverbanks. Heterogeneity within a vegetation patch is not represented as the 

patch is classified according to the dominant vegetation class present. This database was not 

sufficiently detailed to model possum habitat with sufficient accuracy for our purposes. 

Landcare Research has produced similar data for the Bay of Plenty region and for the 

Gisbome and Tasman districts, using SPOT3 multi spectral images for the former and Landsat 

TM for the latter. 

Satellite imagery 

Landcare Research was the sole distributor of satellite images in New Zealand until 1 996. 

They hold an archive of all satellite images (Landsat, SPOT and NOAA) that have been 

purchased by New Zealand organisations until 1 996, when Terralink also began to acquire 

SPOT3 satellite imagery. While Landsat TM images have high spectral resolution due to the 

collection of data in 1 1  spectral bands, we chose not to use this imagery because of its coarser 

spatial resolution at 30 square meters, which resulted in some smaller patches of habitat being 

missed. SPOT3 multi spectral images have a better spatial resolution at 20-meter pixels. This 

enables smaller patches of land cover to be identified, down to individual rows of trees .  While ' 

the spectral resolution is poorer than Landsat imagery, it provides sufficient detail to 

differentiate broad vegetation classes such as pasture, scrub, indigenous and exotic forest. 

Given the better spatial resolution and the adequate spectral resolution, we chose to use a 

SPOT3 multi spectral image as the source of vegetation data for this project. Historical SPOT 
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multi spectral images for the study area were held in the archives .  We used these to gain an 

impression of the land cover classes that could be differentiated using this imagery, but 

purchased a current image for the project .  

Method 

Study area 

The study area was a 60 kiIometer square area in the north-eastern part of the Wellington 

Region, known as the Wairarapa (Figure 17) .  The area corresponded with the coverage of a 

SPOT3 satellite image that was used for this study. This area i s  a pastoral farming area 

dominated by extensive sheep and beef farming, with a topography of rolling to steep hills .  In 
the western part of the study area vegetation is  predominantly improved pasture species, with 

patches of manukalkanuka (Leptospennum scopariumlKunzea ericoides) in gullies, some pine 

(Pin us radiata) plantations and podocarp forest remnants. There are some plantings of exotic 

species such as willows (Salix species) and poplars (Populus species) for soil conservation 

purposes,  with willows dominant along river banks. The eastern part of the study area is  

dominated by a range of hills that runs parallel to  the coast and i s  covered predominantly with 

pine forest. There are also large areas of beech (Nothofagus species) or podocarp/broadleaved 

forest on the hills, and mixed patches of gorse ( Ulex europeaus) and manuka (Leptospennum 

scoparium) occur where the forest has been cleared. 

Image analysis 

An image of the study area was acquired on 3 March 1 994 (Figure 1 7) .  It had dense cloud in 

the north-western area and a few small patches of cloud elsewhere (Figure 1 9) ,  but was 

generall y  of good quality with an off-nadir view angle of 1 . 8°. The image was ortho-rectified 

to the New Zealand Map Grid (NZMG), using a 20-meter raster digital elevation model. Even 

though the image had a low look angle of 1 .8°, we had it orthorectified as much of the terrain 

covered by the image was steep hill country. Burgess and McNeill ( 1992) calculated that at a 

height of 300 meters this angle would cause a planimetric distortion of approximately 20 

meters. We needed to compare the area of each habitat type on farms throughout the study 

area, thus it was important to remove the distortion that steep hil ls  would have introduced to 

the area calculations had the image not been orthorectified. 
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Figure 1 7. Regional map of the North Island of New Zealand showing the location of the study 
area in the northern part of the Well ington Region. 

We conducted the image analysis in ERDAS Imagine (ERDAS Inc, Atlanta, Georgia, USA) 

using a supervised classification approach. Our initial aim was to identify as many classes of 

habitat as possible. We initially listed 13 habitat classes that were associated with the 

distribution of tuberculous possums, and which we thought were likely to be distinguishable 

on a SPOT3 multi spectral image. These were pasture, gorse ( Ulex europaeus), 
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manukalkanuka (Leptospermum scopanumlKunzea encoides), willows (Salix species), pine 

forest (Pinus radiata), beech (Nothofagus species), groves of tree ferns (Cyathea or Dicksonia 

species), podocarp-broadleaved forest, broadleaved scrub, swamps, shelter belts of large 

mature trees (for example, macrocarpa (Cupressus macrocarpa), poplar (Populus) and pine 

(Pin us radiata)), and mahoe (Melicytus ramiflorus) stands. 

We displayed the image by assigning the near infrared, red and green spectral bands to the 

red, green and blue display guns, respectively .  We used field knowledge, colour photographs 

and black and white aerial photographs to identify the colours and tones associated with the 

habitat classes listed above. We then manually  drew over several training plots for each of the 

classes that could be distinguished and applied a maximum likelihood classifier to create an 

initial vegetation classification. 

Due to budget and time constraints we were not able to undertake extensive field checking of 

the vegetation map. We thus used a combination of methods to check the accuracy of the 

classification. We checked about 50 accessible sites in the field. In addition to this ,  we used 

existing data from the Department of Conservation' s  PNA surveys to check other areas of the 

map. We checked a total of 127 PNA sites against the vegetation map in the four areas shown 

in Figure 18 .  As the description of PNA sites only divided the species into 'dominant' and 

'other species ' with no information on the proportion of the site covered by each species, we 

could only base our accuracy assessment on the presence or absence of species rather than on 

the area covered by each species .  

We manually corrected obvious errors m the spectral classification using raster editing 

software. Many areas of pasture were classified as bare ground as the image was acquired at 

the end of the summer when pasture on the hills was very dry. We recoded bare ground across 

the whole map as pasture, which resulted in rock and sand along the coast also being recoded 

as pasture. This was acceptable as we were only interested in using the data on farmland. We 

did not correct areas where pine had been misclassified as beech as these two classes were 

similar in terms of their risk of TB in possums, and the misclassified pixels generally occurred 

around the perimeter of pine forest patches. We recoded crops and high quality pasture that 

had been misclassified as Podocarplbroadleaf, to Pasture. We edited small areas covered by 

cloud with the use of aerial photographs, and left large areas of cloud unclassified. 

We did not smooth the data because we did not wish to eliminate small patches of habitat, and 

we wanted to retain the full  extent of habitat heterogeneity. 
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Figure 1 8. Map showing the location of the PNA survey sites used for checking the vegetation 
classification. 

Results 

The SPOT3 image did not have a spectral range that was adequate to differentiate all the 

vegetation classes that we listed above. Consequently, we had to revise the list to a smaller 

number of broader vegetation classes. We show the final map legend of the vegetation classes 

that we could distinguish on the basis of spectral signature in Table 1 1 .  We show the results 

of the accuracy checking in Table 12 .  The figures in Table 1 2  represent the number of PNA 

checking sites at which each vegetation class was accurately classified on the vegetation map. 

We have used asterisks to show the classes into which groups of plant species were 

rnisclassified, as we did not have sufficient field data to quantify the relative distribution of 
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the misclassified classes. Overall, vegetation classes were accurately classified at 90% of the 

127 sites used for checking, with a range of 73- 100%. Classification results for each class are 

discussed in more detail below. 

Pine 

Pine was correctly classified on the vegetation map as being present at only 30 of the 4 1  

(73%) PNA sites at which it was recorded. Errors of omission were predominantly due to 

sparse pine trees on pasture being misclassified as Other species were misclassified on 

the vegetation map as Pine at 17 where pine had not been recorded the PNA survey. 

Field checking showed that this was mostly due to podocarp species and small patches of 

beech being misclassified as pine. 

Beech 

Beech was correctly classified on the vegetation map at 13  of the 1 6  ( 8 1  PNA sites at 

which it  was recorded. Field checking showed that stands of beech trees covering less than 1 

hectare (approximately) were misclassified as pine. Where beech occurred as the dominant 

species over a large area, the accuracy of classification was high . Other species were 

misclassified as beech at 6 1  sites where beech was not recorded as being present in the PNA 

survey. Field checking showed that the most common reason for thi s  was mixed pixels of pine 

or podocarp species and pasture being misclassified as Beech. 

Podocarplbroadleaf 

Podocarplbroadleaved species were correctly classified on the vegetation map at 8 1  of the 93 

(87%) PNA sites at  which they were recorded. Errors of omission were predominantly due to 

mixed pixels of low-density podocarp trees on pasture being misclassified as beech . Field 

checking showed that podocarp and broadleaf forest species were classified with a high 

degree of accuracy. However, the accuracy for broadleaved scrub species such as mahoe 

(Melicytus ramiflorus) , five finger (Pseudopanax arboreus) , Coprosma species and lace bark 

(Hoheria populnea) was lower, particularly if these species were mixed with manukalkanuka. 

Broadleaved scrub species were classified as either podocarp-broadleaf, manukalgorse or 

manukalkanuka under different circumstances. 

Other species were misclassified into the Podocarplbroadleaved class at 9 sites where 

podocarplbroadleaved species were not recorded as being present in the PNA survey. Field 

checking showed that this was predominantly due to young vigourously growing gorse and 
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Figure 19 .  Vegetation map produced by automatic classification of a SPOT3 multispectral image. 

vigourously growmg crops being misclassified as Podocarplbroadleaf. This class also 

included dense patches of willows, kowhai and tree ferns, plus some exotic species such as 

gums, poplars, and other deciduous garden trees. 

Manukalkanuka and Manukalpasture 

These two classes were combined for error checking as they both included manukalkanuka 

trees. The difference between the two classes was the density of trees, with Manukalkanuka 

having a higher density than Manuka/pasture. We could not check the accuracy with which 
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Table 1 1 .  Description of the classes in a vegetation map that was produced by automatic 
classification of a SPOT3 m ultispectral i mage 

Vegetation class 

Pine 

Beech 

Podocarp/broadleaf 

Manukalkanuka 

Manukalpasture 

Shrubland 

Manukalgorse 

Pasture 

Water 

Unclassified 

Description 

Pinus radiata of all ages, except very young 

Nothofagus species 

Podocarp species and some broadleaved forest and scrub species. Also 

included Eucalypt species, poplars (Populus species), exotic garden 

species and dense stands of tree fems (Oicksonia and Cyathea species), 

willow (Sa/ix species) and kowhai (Sophora species) 

Pure stands of Leptospermum scoparium and Kunzea ericoides (higher 

than 2 meters) 

Low-density stands of L. scoparium and K. ericoides on pasture 

Kowhai (Sophora species), willow (Sa/ix species) ,  low-density gorse (Ulex 

europaeus), scattered manukalkanuka 

Short dense manuka (Leptospermum scoparium), mingimingi (Leucopogon 

fascicu/atus) and gorse (U/ex europaeus) in pure or  mixed patches 

High quality and rough pasture comprising native and introduced grass 

species 

Rivers, lakes and sea 

Residential areas, cloud cover and steep shaded faces 

sites had been classified into each of these classes separately as we had no information on the 

density of plants in the PNA survey data. A total of 123 of the 1 27 PNA sites was recorded as 

having either manuka or kanuka trees present, and all sites were accurately classified on the 

vegetation map. Three sites were classified as Manukalkanuka on the vegetation map when 

these species were not reported as present in the PNA survey. Given the list of species 

recorded as being present at these sites, it was most likely that broadleaved scrub had been 

classified as Manukalkanuka. Field checking showed that the Manukalkanuka class generally 

represented pure stands of taller (over 2 meters) manuka and/or kanuka trees, although in 

some cases it did include shorter dense patches of these species. 
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Table 1 2. A cross-classification matrix showing the results of accuracy checking the 
classification of the seven non-pasture vegetation classes against data collected during a PNA 
survey at 1 27 locations 

PNA survey Number of accurately classified sites on the vegetation map Num. PNA Percent 
(true data) (interpreted data) sites accurac 

where y 
Pine Beech Podlbroad- Manikan Shrub Manukal present1 

leaf Man/pas -land gorse 

Pine 30 * 41 73 

Beech * 1 3  1 6  81 

Podlbroadleaf * 81 * * * 93 87 

Manukalkanuka 1 23 * 1 23 1 00 

Shrubland 1 24 1 24 1 00 

Manukalgorse 60 60 1 00 

* Indicates the vegetation map classes into which each species group was misclassified. 

1 A total of 1 27 sites was used for checking with data from the PNA survey. There were multiple vegetation 
classes present at some of the sites used for checking, hence the numbers in this column total to more than 1 27. 

Shrubland 

This was a heterogeneous category that represented mixed pixels of several scrub species at a 

low density on pasture. A total of 1 24 of the 1 27 PNA sites was recorded as containing at 

least one of the species included in this class, and all were accurately classified on the 

vegetation map as Shrubland. Field checking showed that each of the species included in this 

class was also represented in one of the other classes, when it was present at a higher density 

(for example, kowhai, willows and manukalkanuka) or was at a more vigorous stage of 

growth (for example, gorse). 

Manuka/gorse 

This was also a relatively heterogeneous class that included a range of scrub species growing 

at a higher density than that represented by Shrubland. A total of 60 of the 1 27 PNA sites was 

recorded as containing at least one of the species included in this class and all were accurately 

classified on the vegetation map as Manukalgorse. 

A copy of the final vegetation map is shown in Figure 19 .  The forest-covered hills towards 

the eastern coast are clearly delineated, as is  the pattern of increasing heterogeneity of 

vegetation cover as one moves eastward towards these hills. This  heterogeneity is associated 
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with poorer quality hil l  country where there are large patches of gorse and manuka scrub that 

are interspersed with patches of exotic and indigenous forest. 

Discussion 

The most accurate classification results from SPOT3 multi spectral images have been obtained 

by limiting classes to general land cover types and broad vegetation classes such as pasture, 

shrubland, indigenous and exotic forests (Ehlers et aI . ,  1 990; Millette and Edelstein, 1 99 1 ;  

Treitz et aI. ,  1 992; Millen, 1996). However, we were interested i n  differentiating plant species 

as much as possible, in particular the scrub species as these are an important source of possum 

habitat in the Wairarapa, particularly in the more extensive hill country towards the coast. 

There is a considerable range in the possum densities supported by different scrub species 

(Batcheler and Cowan, 1988) and likewise a difference in the risk of possum TB hot spots. 

The density of scrub and tree species also influences the density of possums. It was thus 

important to differentiate both the scrub species and the density of vegetation as much as 

possible, to model accurately the distribution of possums and of tuberculous possums. 

We produced a map with eight vegetation classes plus bare ground and water classes using an 

automated supervised classification of a SPOT3 multi spectral image. The classification of 

land cover into the different vegetation classes was influenced by a combination of plant 

species and structural features of the plants, such as height and density. The eight vegetation 

classes included three tree classes, four scrub classes and a pasture class (see Table 1 1 ) .  

Species were accurately classified into the appropriate vegetation class at an average of 90% 

of the 1 27 sites used for accuracy checking (Table 1 2). A point worth noting is that the use of 

PNA sites for accuracy checking resulted in an underestimation of the accuracy with which 

pine species are classified on SPOT3 multi spectral images .  The low accuracy rate resulted 

from there being too few pine trees at many of the PNA sites, where they were recorded as 

present, to be classified as Pine on the vegetation map. This occurred because the focus of the 

PNA survey was on indigenous forest, hence pine was not a dominant species at most of the 

4 1  PNA sites where it was recorded. Field checking showed that pine was classified with a 

high degree of accuracy except where it was present in a mixed pixel with pasture, such as on 

the perimeter of pine forest stands. One of the major applications of SPOT3 multi spectral 

imagery in New Zealand has in fact been to identify pine forest plantations. The high degree 

of accuracy recorded for the combined Manukalkanuka and Manukafpasture c lasses ,  plus 

Shrubland and Manukafgorse relates both to the heterogeneity of plant species included in the 
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latter two classes and the fact that manukalkanuka was represented in all four classes. If 

manukalkanuka was recorded as being present at a PNA site, the classification on the 

vegetation map was considered correct for any one of these four classes. The classification of 

manukalkanuka into each of these classes depended on a combination of the height and 

density of manukalkanuka plants and the other species with which it. was mixed, and we could 

not determine this level of detail from the PNA survey results. 

The three tree classes were Pine, Podocarplbroadleaf, and Beech (Table 1 1 ) .  Pine was a very 

homogeneous class that almost exclusively included P. radiata, plus small patches of beech 

and occasional pixels containing podocarp species. Podocarplbroadleaf was a more 

heterogeneous class that included podocarp and broadleaf forest species, plus some 

broadleaved scrub. It also included dense patches of willows, kowhai and tree ferns, some 

exotic tree species such as gum (Eucalypt species) and ornamental garden trees, plus patches 

of very vigorously growing gorse and crops. Beech included areas of beech forest greater than 

1 hectare (approximately), plus mixed pixels of tall trees (predominantly pine and podocarp) 

and pasture. Almost all areas of pine forest and podocarp forest had a strip of beech classified 

around their perimeter where mixed pixels of pine or podocarp trees and pasture occurred. 

Single trees on pasture were also classified as beech. 

The four scrub classes varied considerably in the heterogeneity of species that they included. 

Manukalpasture and Manukalkanuka were relatively homogeneous classes that included pure 

stands of manuka and/or kanuka trees that were taller than 2 meters (approximately), with the 

former representing lower density stands on pasture and the latter higher density stands. The 

Manukalkanuka class also included a small proportion of manukalkanuka bushes that were 

less than 2 meters tall ,  manuka mixed with gorse, and manukalkanuka mixed with 

broadleaved scrub species. The Manukalgorse and Shrubland classes were the most 

heterogeneous of the eight vegetation classes, with the former capturing high-density areas of 

scrub species and the latter low-density areas. Manukalgorse included both pure and mixed 

patches of dense gorse, short dense manukalkanuka,and/or Leucopogon or Cassinia species. It 

also included some patches of broadleaved scrub, particularly when these were mixed with 

manukalkanuka trees. Shrubland included low-density gorse, rows of kowhai and/or willows 

lining riverbanks, very scattered manukalkanuka trees, and possibly very low-density areas of 

broadleaved scrub species. 

Three different pasture classes were identified on the image, ranging from vigorously growing 

high quality pasture to poor quality rough pasture. These were combined into one pasture 

1 1 8  
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class as pasture quality was not significant in terms of possum habitat. There was some 

overlap between rough pasture and very low-density scrub such as gorse scattered on pasture. 

The vegetation map that we produced in this study was more useful than existing data sets of 

New Zealand vegetation for modelling possum habitat because the spatial distribution of 

vegetation classes was accurately represented, and because of the finer discrimination of plant 

species. This data represented well the heterogeneity of vegetation classes within areas of 

habitat and enabled us to identify specific habitat patterns associated with possum TB risk on 

farms. The major limitation of this data set was the diversity of plant species that were 

included in some of the vegetation classes, in particular the scrub classes. Shrubland and 

Manukafgorse were the most diverse classes in terms of the floristic mix found in different 

localities for the same classified vegetation type. As a result they probably represented 

different TB risks at different locations despite being classified as the same vegetation class. 

The Shrubland class in particular contained species which supported extremely different 

densities of possums, and which may have had very different risks in terms of TB possums 

associated with them. For example, willows can support high-density possum populations 

where the trees are large and have developed holes  in their branches and trunks, in which 

possums nest (Brockie, 1991) .  Such trees also provide an environment that favours the spread 

of TB between possums and thus constitutes a high risk for the presence of possum TB hot 

spots (McKenzie et aI. ,  1997a). Very scattered manukalkanuka on pasture supports very low 

possum densities and is not associated with a significant risk of TB infection in possums. 

Low-density gorse faUs between scattered manukalkanuka and willows in terms of the 

possum population it supports. When using this vegetation data to model the distribution of 

possums and/or the risk of TB hot spots all areas of habitat that comprised these plant species 

had the same possum density and TB hot spot risk attributed to them, as they had been 

classified into the same vegetation class (Shrubland). The Manukafgorse class contained 

species that support similar possum densities, but which may have different TB risks 

associated with them. This generalisation of the vegetation data within some of the vegetation 

classes reduced the specificity of the prediction of possum TB risk for patches of habitat when 

using this data. Greater differentiation of the scrub species would significantly improve the 

precision of the models that use digital vegetation data to predict the distribution of both 

possums and TB possums at the habitat patch level and the farm level . 

The use of vegetation maps will become increasingly important in the control of TB in New 

Zealand as the number of possums in infected areas is  reduced, and control measures will 
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need to be differentially targeted at higher risk areas to ensure the efficiency of these 

programmes is maintained. The technology available for both the capture of spatial data and 

the analysis of this data is currently developing rapidly. The remote sensing industry is 

expanding and alternative sources of satellite imagery with higher spectral and spatial 

resolution have become available since this project was undertaken. SPOT 4, which has a 

mid-infrared band with 20-meter resolution is now operational. The mid-infrared band will 

enable greater differentiation of plant species from these images compared with earlier SPOT 

images (Wilde, 1994; Chavez and Bowell,  1988).  New satellites are being built to produce 

images with even greater spatial and spectral resolution than that described above. Geographic 

information systems are becoming easier to use, enabling a wider range of people to use the 

cartographic and analytic functions of this software. Decision support systems that use 

geographic data are also becoming available (McKenzie et al. ,  1 997). It is thus important to 

invest further effort into identifying a source of digital vegetation data that will enable TB 

control managers and researchers to take full  advantage of this evolving area of technology. 
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CHAPTER S 

Application of GIS and spatial analytical techniques 

to statistical modelling of possum-associated TB risk 

on farms 
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Introduction 

The brushtail possum (Trichosurus vulpecula) acts as a reservoir host of Mycobacterium bovis 

in New Zealand and is the major source of tuberculosis (TB) infection for farmed cattle and 

deer (Jackson, 1 995;  Morris and Pfeiffer, 1995;  Livingstone, 1 997). Infected possum 

populations are estimated to cover approximately 24% of the land area of New Zealand in 

areas referred to as Vector Risk Areas (VRAs) (Livingstone, 1 997) .  Both the size and number 

of VRAs have increased steadily since TB was first identified in possums in the late 1 960s 

(Jackson, 1 995). A key objective of the Animal Health Board, the farmer representative 

organisation responsible for making policy with respect to the TB management programme,  i s  

to  restrict the increase in size of existing VRAs (Animal Health Board, 1995). The major 

method that is used to restrict this growth in size of VRAs is the generation of buffer zones 

with very low-density possum populations in areas that are adjacent to known infected areas. 

Despite this strategy some VRAs have gradually increased in size over time. Additional 

information to predict farms at greatest risk of developing a possum TB problem in areas 

surrounding VRAs, would help target possum control and TB surveillance efforts. Such 

information may make the implementation of buffer zones more effective. 

While the prevalence of TB in possums on infected farms i s  generally low, in the order of 1-

2% (Anon, 1 986; Hickling, 1991) ,  the disease in possums is clustered within small areas 

within farms (Hickling, 1989; Pfeiffer, 1 994) where the prevalence can reach high levels 

(Pfeiffer, 1 994; Hickling, 1 995; Jackson, 1 995). The size of possum TB clusters , commonly 

referred to as hot spots, has been shown to be small with a cross-sectional width in the order 

of 20-40 meters (Hickling, 199 1 ;  Pfeiffer, 1 994; Pfeiffer et aI . ,  1 995) .  These clusters are 

associated with habitat factors that favour the transmission of TB between possums in and 

around their dens (see Chapter 2) .  Cattle become infected with TB by investigating possums 

in the terminal stage of the disease when the possums have become weak and disoriented and 

may wander onto pasture during daylight instead of denning (Paterson, 1993;  Morris et aI . ,  

1 994; Paters on and Morris ,  1995 ; Paters on et aI . ,  1 995) .  The probability of cattle becoming 

infected is dependent on a number of factors that relate to the prevalence of TB in possums at 

cluster sites , the proximity of cattle grazing areas to possum TB cluster sites, and the length of 

time over which cattle are exposed to an infective possum (Paterson and Morris ,  1 995). As a 

result of these factors there is  considerable temporal variation in the annual incidence of TB 

in cattle and/or deer on farms. We found little evidence of temporal clustering of the annual 
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cumulative incidence of TB in cattle on neighbouring farms across two-year time periods, 

suggesting that temporal factors affecting the probability of transmission of TB from possums 

to cattle were not active within the same time period on neighbouring farms (see Chapter 3) .  

Although there was no strong temporal clustering of  the annual cumulative incidence of  TB in 

cattle on a year-to-year basis on farms, there was evidence of strong spatial clustering of both 

the percent of years during which cattle on a farm were infected with TB and the cumulative 

incidence of TB in cattle over a five-year period from 1986-90, within a VRA located in the 

south east of the North Island. A possible explanation for this clustering pattern was that 

habitat patterns influenced the number of persistent possum TB clusters, often referred to as 

'hot spots' ,  and the density of possums on farms. 

o 50 100 Kilorreters 
E=-3 I 

Figure 20. Regional map of the North Island of New Zealand showing the location of the study 
area. 
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The association of the distribution of TB in possums with explicit spatial factors such as 

vegetation patterns makes geographic information systems (GISs) a useful tool to manage and 

analyse TB data. In recent years GISs have increasingly been applied to the analysis of health 

data (Hungerford, 1 99 1 ;  Marsh et aI. ,  1 99 1 ;  Carpenter et al. ,  1 994; Norman et aI . ,  1994; 

Pfeiffer et al., 1 994; Rodriguez-Lainz et al . ,  1996;  McKenzie, 1996), particularly vector-borne 

diseases for which geographical features are important risk factors (Baumann et al. ,  1994; 

Glass et aI. ,  1995;  Smith et al. ,  1 995;  Augustin et aI. ,  1996; Kitron and Kazmierczak, 1997 ; 

Kitron et aI. ,  1 997 ; Pfeiffer et aI . ,  1 997; Thomson et al. ,  1998) .  Remote sensing is 

increasingly being applied in ecological and vector-borne disease studies (Daniel and Kolar, 

1990; Hugh-Jones, 199 1 ;  NorvaI et aI . ,  1 99 1 ;  Rogers, 199 1 ;  Perry et aI . ,  1 99 1 a; Perry et al . ,  

199 1 b; Beck et  aI . ,  1994; Kitron e t  al . ,  1 996), providing a cost-effective means of obtaining 

current vegetation data over a large area (Dymond et al . ,  1996). McKenzie and Dymond (refer 

Chapter 4) found that existing digital vegetation data sources in New Zealand did not meet the 

needs of research into associations between the distribution of possum TB clusters and habitat 

factors. They produced a more detailed vegetation map from a SPOT3 multi spectral satellite 

image that we used in this study. The recent development of a geographically referenced farm 

database in New Zealand, Agribase, now makes it possible to collate and analyse 

geographical data at the farm level (Sanson and Pearson, 1997). 

The aim of our study was to identify farm, geographical and possum habitat factors associated 

with the probability of tuberculous possums being present on farms .  In this paper we describe 

the geographical data used in the study and the geographical analytical techniques used to 

manipulate these for the analysis. We describe the statistical analytical techniques with 

particular reference to using cattle TB data clustered at the farm level, and using spatial data 

in logistic regression modelling. Finally, we discuss the results and their implications for TB 

management in New Zealand. 

Materials and Methods 

Study area 

The study was conducted in a 60 kiIometer square area in the north eastern part of the 

Wellington region known as the Wairarapa (Figure 20), which corresponded with the 

coverage of the satellite image used to generate a vegetation map for the study. This is a 
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pastoral farming area dominated by extensive sheep and beef farming where TB has been 

endemic in cattle since the 1950s (Shortridge, 1981). TB was first discovered in possums in 

the Wairarapa in 1968 (Anon, 1993) and since then tuberculous possums have been caught at 

over 140 different locations throughout the region. 

Vegetation in the western part of the study area is predominantly improved pasture species, 

with patches of manukalkanuka (Leptospermum scopariumlKunzea ericoides) in gullies, some 

pine (Pin us radiata) plantations and podocarp forest remnants. There are some plantings of 

exotic species such as willows (Salix species) and poplars (Populus species) for soil 

conservation purposes, with willows dominant along river banks. The eastern part of the study 

area is dominated by a range of hills that runs parallel to the coast and is covered 

predominantly with pine forest (referred to in the paper as the 'coastal forest ' ) .  There are also 

large areas of beech (Nothojagus species) or podocarplbroadleaved forest on the hills, and 

mixed patches of gorse ( Ulex europeaus) and manuka occur where the forest has been 

cleared. 

Geographical data 

Slope map 

We used 20-meter contour lines that had been digitised from 1 :50000 topographic maps 

(Terralink, Wellington, New Zealand) to produce a digital elevation model (DEM) from 

which we generated a slope map. We initially interpolated height data from the 20-meter 

contour lines to a resolution of 10 meters and then generalised the resulting DEM to 20-meter 

resolution. We derived a slope map from the 20-meter DEM using the SLOPE algorithm in 

Spatial Analyst, ArcView version 3 . 1  (ESRI, Redlands, California) . We then classified the 

slope data into 5 categories using the RECLASSIFY function. Slope categories were 0- 1 0°, 

1 1 -20°, 2 1 -30°, 3 1 -40°, >40°. 

Vegetation map 

We produced a vegetation map by automatic classification of a SPOT3 multi spectral satellite 

image captured in March 1994 (refer Chapter 4). The resulting map comprised eight 

vegetation classes and a water class. Vegetation classes included three tree classes (Pine, 

Podocarplbroadleaf, Beech), four scrub classes (Manukalkanuka, ManukaJpasture, 

ManukaJgorse, Shrubland) and a pasture class. Details of the plant species within each 

vegetation class are presented in Chapter 4. The vegetation data was in 20-meter raster format 
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which enabled u s  to use the Spatial Analyst functions for grid maps i n  ArcView. We did not 

smooth the data or generalise it to a larger cell size as we wanted to retain the full extent of 

habitat heterogeneity at a scale that was close to the expected size of possum TB clusters . 

River map 

We used a river map that had been digitised from NZ topographic maps at a scale of 1 :250000 

(Terralink, Wellington, New Zealand). 

Farm map 

We obtained a map of farm boundaries from AgriQuality NZ' s national geo-referenced farm 

database, Agribase (Sanson and Pearson, 1997). This database contains digital farm boundary 

information plus descriptive information for each farm such as land owner, main enterprise 

type, farm area and stock numbers. Each farm is identified by a unique farm identification 

number. The map was not complete for the Wairarapa at the time of the study, thus we were 

only able to use the farms for which accurate boundary information was available. 

Cattle TB data 

We obtained cattle and deer TB testing data from the National Livestock Database (NLDB) 

which is  administered by AgriQuality New Zealand (the New Zealand state veterinary 

service) (Ryan, 1997). This database is designed to manage and record TB testing on farms as 

required by the national TB control programme. TB data are recorded in the NLDB on a herd 

basis and records for the Wairarapa date back to 1979. In 1996 the NLDB was amended to 

enable herds to be linked to the farm on which they were managed by the addition of a unique 

farm identification number which matched the farm identification number in Agribase. This 

database has provided a vital link between TB history data and the geographical units from 

which the data arises, enabling mapping and spatial analysis of TB data to be conducted at the 

farm level. 

Study population 

The study population comprised 1 29 farms on which cattle were raised under a predominantly 

beef breeding management system and which each had an area greater than 10 hectares. We 

confined our study to beef breeding management systems to minimise the confounding effect 

of off-farm sources of TB infection in cattle. Under dry beef management systems almost all 

cattle are purchased rather than raised on-farm and under dairy management systems many 

herds are grazed off-farm for a period of the year. As a result the TB incidence in cattle under 
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both these systems may not be a true reflection of the possum TB situation on the home farm. 

Only farms on which the cattle herd had been tested for a minimum of ten years, up to and 

including the first year of possum control, were included in the study to maximise the chance 

that the full range of temporal variation in TB incidence was included for each study farm. 

Fourteen farms in the study group had a deer herd in addition to a cattle herd. Only cattle data 

were considered on these farms as the deer were generally confined to a small specially 

fenced area of the farm and we made the assumption that their exclusion did not confound the 

cattle data. 

Outcome variable 

Percent TB-positive years was used as the outcome variable. This variable represented the 

number of years during which at least one TB-positive cattle beast was detected under the 

national TB surveillance programme as a percent of the number of years that the herd had 

been under surveillance. TB-positive cattle included all cattle that were recorded in the NLDB 

as test-positive regardless of whether they had post mortem lesions consistent with TB. Cattle 

which were test-positive were included in this study as TB-positives regardless of the reason 

for the testing, which could have been annual herd tests, sale tests, miscellaneous tests, and 

tests associated with the movement of animals between farms. TB-positive cattle also 

included cattle that were slaughtered for market purposes and were recorded as having had 

TB lesions detected during routine inspection at the slaughter plant. 

Percent TB-positive years was used in preference to the five-year cumulative incidence for the 

period 1986-90 as the outcome variable as it was less subject to the annual variability that was 

associated with cumulative incidence measures. In the case of percent TB-positive years a 

farm was either negative or positive regardless of the incidence of TB-positive cattle found in 

any one year or any group of years, and thus it was considered to be a more stable measure of 

exposure of cattle to vector-derived TB than cumulative incidence. In a preliminary 

comparison, the spatial distribution of percent TB-positive years appeared to be more strongly 

associated with vegetation patterns than the five-year cumulative incidence, probably because 

it was less confounded by cattle management factors and more directly linked to the presence 

of persistent hot spots. 

Independent variables 

The unit of interest in this study was a farm plus a lOO-meter buffer around its perimeter. We 
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included the buffer to allow for the influence of possums on a neighbouring property given 

that the movement of possums is not stopped by farm boundary fences. Spatial variables were 

calculated using ArcView version 3 . 1  (Environmental Systems Research Inc, Redlands, 

California, USA) and its Spatial Analyst extension for grid data. Microsoft Access for 

Windows version 7.0 (Microsoft Corporation, Redmond, WA, USA) was used to collate the 

data from the GIS into a format suitable for statistical analysis .  

Habitat data 

Three different groups of habitat variables were calculated for this study, using the seven non­

pasture vegetation categories described above. Pasture was not included in the analyses as it is 

a constant factor across all farms and it supports extremely low possum populations, thus it 

has little influence on the number of possums on a farm. A description of the three groups of 

habitat variables is presented below. 

i. Total area of each vegetation class 

The total area (in hectares) of each of the seven non-pasture vegetation classes was calculated 

for each farm and for each lOO-meter farm buffer using the TABULATE AREA function. The 

two values were summed to give a total area of each vegetation class for each farm and its 

buffer. 

ii. Habitat patterns 

Habitat pattern variables were calculated using Fragstats , a spatial pattern analysis programme 

for quantifying habitat structure (McGarigal and Marks, 1995). Fragstats quantifies the areal 

extent and spatial distribution of habitat patches within a landscape. A PATCH is defined as a 

contiguous area of cells of the same vegetation type, and is the basic habitat unit used by 

Fragstats. In this study we used a raster data set with 20-meter cells, thus the minimum size of 

a patch was 0.04 hectares. A LANDSCAPE is defined as an area of land containing a mosaic 

of habitat patches, the boundaries of which are dependent on the objective of the study. In this 

study the landscape was a farm plus a lOO-meter buffer around its perimeter. Fragstats 

calculates variables at three levels of aggregation for each farm: individual patches, individual 

vegetation classes, and the farm as a whole. Variables are divided into the following groups: 

area metrics, patch density, patch size and variability metrics, edge metrics, shape metrics, 

core area metrics, nearest-neighbour metrics, diversity metrics and contagion and 

interspersion metrics. A list of the variables calculated by Fragstats is presented in Appendix 

I. As we were only interested in the habitat patterns of non-pasture vegetation classes, we set 
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pasture as a background variable which excludes it from the calculation of all habitat pattern 

variables. We use the term COVER in this paper as a general term to refer to the areas of non­

pasture vegetation on farms.  

Fragstats does not recognise a polygon as  defining the boundary of each landscape area of 

interest, thus we prepared a separate vegetation map for each of the farms included in the 

study. We used Idrisi for Windows version 2.0 (The IDRISI Project, Clark University, 

Worcester, MA, D.S.A.) to extract a portion of the original vegetation map that represented a 

farm plus its buffer, for each farm included in the study. We then ran Fragstats for each map 

using a DOS batch file and collated the results into an Access database. We selected a subset 

of the variables output by Fragstats that represented patterns for each vegetation class and 

summary habitat pattern s  at the farm level. We did not include individual patch variables as 

we were interested in patterns aggregated at the farm level . 

i i i .  Area of vegetation-slope categories 

Different combinations of vegetation class and slope of the land provide habitat that supports 

different densities of possums and has different risks of possum TB clusters being present (see 

Chapter 2). We combined the seven vegetation and five slope categories into a total of 35  

vegetation-slope categories. MAP QUERY was used to  produce a separate coverage for each 

vegetation-slope category from the original vegetation and slope maps. The area of each 

vegetation-slope category for each farm plus its buffer was then c alculated using the 

TABULATE AREA function. The two values were summed to give a total area of each 

vegetation-slope category on each farm plus its buffer. 

Table 1 3. The TB hot spot risk assigned to each vegetation-slope category. 

Vegetation classes Slope categories (degrees) 

0-10 1 1 -20 21-30 31-40 >40 

Podocarpibroadleaf Mod Low Low Low Low 

Beech Low Mod Mod Low Low 

Pine Mod Mod Low Low Low 

Manukalpasture Low Low Low Low Low 

Manuka Low Low Low Low Low 

Manukalgorse Mod Mod Mod High High 

Shrubland High Mod Mod Mod Mod 
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Hot spot areas 

Locations of clusters of tuberculous possums are colloquial ly referred to as 'hot spots ' .  One 

of three hot spot risk categories (low, moderate or high) was allocated to each vegetation­

slope category based on the probability that the habitat supported by each category contained 

tuberculous possums. The results of the study described in Chapter 2 and of the longitudinal 

study conducted by Pfeiffer ( 1 994),  Jackson ( 1 995) and Lugton ( 1997) were used to 

determine the TB risk classification of each of the vegetation-slope categories,  shown in 

Table 13 .  The total area of habitat associated with each TB risk category on each fann was 

identified by summing the area of vegetation-slope categories within each risk category. 

Possum number & density 

The total number of possums on each fann was estimated by multiplying the area of each 

vegetation category by the average density of possums per hectare for the category in Table 

14.  The densities in each vegetation type in the Wairarapa were provided by a person 

involved in estimating possum densities for control purposes (D. Meenken, Wellington 

Regional Council, pers. comm.) .  This was entered into the analysis both as the total number 

of possums and as density of possums per hectare of total area (fann plus buffer) . 

Table 1 4. Possum density per hectare of each vegetation class. 

Vegetation category Possum density (per hectare) 

Podocarplbroadleaf 8 

Beech 3 

Pine 5 

Man u kalpastu re 2 

Manukalkanuka 3 

Manukalgorse 7 

Shrubland 7 

River data 

The length of river on each farm was estimated by converting the line coverage to a lO-meter 

grid coverage and then calculating the area of river for each farm and buffer polygon using 

the TABULATE AREA function. We represented this variable in the analysis both as a total 

area and as a proportion of the farm plus buffer area. 



1 36 

Distance from coastal forest 

A variable for distance from the coastal forest was created as we hypothesised that a higher 

risk of tuberculous possums may have been associated with proximity to this area because of 

the high density of possums in the forest. Distance from the coastal forest was used rather 

than distance from all forests, including large pine plantations, as the coastal forest comprised 

a heterogeneous mix of pine plantations, areas of gorse and broadleaved scrub, and areas of 

podocarp/broadleaved forest. This habitat supported large densities of possums, whereas pine 

plantations outside the coastal forest area were more homogeneous and only supported low 

densities of possums (Clout, 1977). To calculate this variable polygons were digitised around 

the areas of coastal forest. The farm shape file was converted to a 50-meter grid file and the 

DISTANCE function was then used to determine the distance of each 50-meter cell from the 

coastal forest polygons. The distance of a farm from the forest was calculated by averaging 

the distance of all cells on each farm. 

Farm factors 

Total area represented the area of the farm plus the area of the WO-meter buffer in hectares. 

We calculated a variable to represent the shape of the farm using Ratio of buffer area to farm 

area. We calculated Livestock density on the farm using the number of livestock units (LSUs) 

per hectare, with a multiplication factor of 4 for total cattle and 1 for sheep. 

Autoregressive variable (Neighbourhood function) 

When using spatial data in statistical modelling it is possible that the assumption of 

independence of observations is not met as events at one location are likely to be correlated 

with events at neighbouring locations; that is, there is likely to be spatial autocorrelation in the 

data (Bai ley and Gatrell ,  1995). If this pattern is not accounted for in the model there is an 

increased probability of rejecting the null hypothesis when it is in fact true (Type I error) as 

the standard error of parameter estimates tends to be smaller. We hypothesised that the 

probability of tuberculous possums being on a farm may not be independent of the probability 

on neighbouring farms. To account for this effect a variable that represented the average of 

percent TB-positive years on contiguous farms was included. This variable was calculated by 

dividing the total number of TB-positive years by the total number of years tested for all 

farms that shared a common boundary with a farm, excluding the central farm. Inclusion in 

the model of a variable that represents the spatial pattern of the outcome variable results in a 

model referred to as an autoregressive model (Bailey and Gatrell, 1 995). 
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Statistical analysis 

The independent variables were divided into four groups on the basis of the nature of the 

geographical and vegetation information that they represented. The first group comprised 

general geographical features of a farm with habitat represented as the total area and the 

proportion of the farm of each vegetation class, and is  referred to as the general farm model. 

The second group comprised variables representing habitat patterns at the farm level and is 

referred to as the farm-level habitat pattern model. The third group comprised variables 

representing habitat patterns at the vegetation class level and is referred to as the class-level 

habitat pattern model. The fourth group comprised variables representing combinations of 

vegetation and slope data and is referred to as the vegetation-slope model. Analysis of data 

within these groups enabled us to explore in greater depth the different features of vegetation 

that were associated with the odds of a farm having at least one TB-positive cattle beast in 

any one year. 

A multi-stage process was used to produce a final statistical model of the data. The first stage 

involved modelling the variables within each of the four groups. The second stage involved 

constructing a final model that summarised all four groups of variables. The different groups 

of variables were modelled with and without the forest distance variable to identify which 

variables were confounded with distance from the forest. In the case of the vegetation class­

level habitat pattern group the first stage involved two steps .  In the first step a separate model 

was constructed for each of the seven vegetation classes and in the second step a summary 

model for the class-level habitat pattern group of variables was constructed using the 

significant variables from each individual vegetation class model. 

A two-step binomial logistic modelling process was applied at each stage, using the percent 

years during which TB-positive cattle occurred on a farm as the outcome variable (Curtis et 

aI . ,  1 993 ;  Atwill et aI. ,  1 996). The first step involved construction of a statistical model for 

each group using a stepwise process with ordinary logistic regression, and a p-value of less 

than 0.05 as the criterion for inclusion and of more than 0. 10  for exclusion of a variable. The 

second step involved random effects modelling to account for the extra-binomial variation 

between farms (McDermott and Schukken, 1994). The significant variables from the ordinary 

logistic regression model for each group were initially included in the random effects model . 

Variables were then removed from the random effects model for each group in a backwards 

stepping process using a p-value greater than 0.05 as the exclusion criterion. 
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The final model was constructed from the significant variables in the random effects model 

for each of the four groups using an initial stepwise ordinary logistic regression process 

followed by a random effects logistic regression process as described above. 

Analysis of residuals 

The residuals of the summary random effects logistic regression model were tested for the 

presence of spatial autocorrelation that had not been accounted for in the model. Firstly, the 

residuals were mapped to identify if there were any obvious spatial patterns present. 

Secondly, the residuals were analysed for spatial patterns by computing a variogram using a 

point coverage of farms, with each farm being represented by the centroid of the largest 

polygon of the farm. 

Table 15 :  Descriptive statistics for the 1 29 beef breeding farms included in our study. 

Variable Median Range 

Farm size (ha) 687 76 - 1 847 

Number of cattle tested 1 68 9 - 1 1 82 

Percent years TB-positive 37 0 - 1 00 

Pine (ha) 2 0 - 1 70 

Beech (ha) 3 0 - 42 

Podocarp/broadleaf (ha) 7 0 - 220 

Manukalpasture (ha) 1 8  0.5 - 73 

Manukalkanuka (ha) 4 0 - 81 

Shrubland (ha) 22 0.04 - 1 54 

Manukalgorse (ha) 4 0 - 76 

All regressIOn modelling was conducted using EGRET version 1 .02.07 (Statistics and 

Epidemiology Research Corporation and Cytel Software Corporation, Seattle, Washington, 

USA). Ordinary logistic regression models were fitted with a quasi-Newton algorithm and 

random effects models with a modified-Newton algorithm. The goodness-of-fit of each model 

was evaluated by comparing the scaled deviance for each model with the residual degrees of 

freedom as described in Curtis et al . ( 1993). The R2 of the final model was calculated based 

on the deviance of the intercept-only model and the deviance of the final model (Mittlboeck 

and Schemper, 1 996). The variogram analysis was conducted using VarioWin version 2.2 

(Institute of Mineralogy, BFSH2, University of Lausanne, 1 0 1 5  Lausanne Switzerland). 
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Results 

We present a summary of the descriptive statistics for study farms in Table 15 and show the 

distribution of observed and predicted percent TB-positive years for study farms in Figure 21 

and Figure 22 respectively.  

General farm-level model 

We list the variables that we entered into the general farm-·level lOgistic regression model in 

Table 16, and the variables that were significant the random effects model with their odds 

ratio plus 95% confidence limits and associated p-value in Table 17 . In the model that did not 

include Forest Distance, total area of each of the classes Pine, Podocarp/broadleaf and 

Manukalpasture and proportion of Beech were positively associated with percent TB-positive 

years, while the total area of Beech and the proportion of the farm covered by 

Podocarp/broadleaf were negatively associated with the outcome variable. When Forest 

Distance was added to the model both the proportion and total area of Beech and the total area 

of Podocarp/broadleaf became insignificant (Table 17). 

Table 1 6: List of variables entered into the general farm model. 

Variable Names 

Total Area (ha) Area Beech (ha) Proportion Podocarpfbroadleaf 

Perimeter (meters) Area Pine (ha) Proportion Manuka-Kanuka 

Buffer/Farm ratio Area Podocarpfbroadleaf (ha) Proportion Manukafpasture 

Density l ivestock units Area Manuka-Kanuka (ha) Proportion Shrubland 

Forest Distance (2 km) Area Manukafpasture (ha) Proportion Manukafgorse 

Neighbourhood function Area Shrubland (ha) Area low hot spot risk (ha) 

Area Rivers (ha) Area Manukafgorse (ha) Area moderate hot spot risk (ha) 

Number of possums Proportion Beech Area high hot spot risk (ha) 

Possum density (per ha) Proportion Pine 
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Table 1 7. Significant variables in the general farm random effects logistic regression model with 
their odds ratio plus 95% confidence interval,  without and with the addition of Forest Distance. 

Variable Model with vegetation variables only Model with Forest Distance 
added 

Odds Ratio 95% Col. Odds Ratio 95% Col. 

Area ManukaJpasture (1 0  ha) 1 .37 1 .22-1 .54 1 .22 1 . 1 0-1 .35 

Area Pine ( 1 0  ha) 1 .32 1 .1 4-1 .53 1 . 1 5  1 .02-1 .30 

Area Podocarpibroadleaf 1 .23 1 .00-1 .51 1 . 1 3  0.95-1 .35" 

Propn Beech 2.23 1 .42-3.80 1 .04 0.64-1 .68" 

Area Beech 0.58 0.34-0.99 0.97 0.60-1 .58" 

propn Podocarpibroadleaf 0.64 0.52-0.78 0 .78 0.65-0.93 

Forest Distance (2 km) 0.93 0.91 -0.95 

Deviance (dD 281 .73 (1 21 ) 242.22 (1 20) 
" Variables that became insignificant at p<0.05 when Forest Distance was included in the model. 

Farm-level habitat pattern model 

We list the variables that we entered into the fann-Ievel habitat pattern logistic regression 

model in Table 18 ,  and the variables that were significant in the random effects model with 

their odds ratio plus 95% confidence limits in Table 19 .  Total area, patch richness ,  patch 

richness density and core area coefficient of variation (CACV) were all positively associated 

with percent TB-positive years and contagion was negatively associated with the outcome 

variable when Forest Distance was not included in the model . However, when Forest Distance 

was included, Total Area was the only variable that remained significant indicating that the 

effect of the other variables was then represented by the Forest Distance variable. 

Table 1 8: Variables entered into the farm-level habitat pattern model. 

Variable Names 

Total Area (ha) Landscape Shape Index Patch Richness 

Area Non-Grass (ha) Area Weighted Mean Shape Index Patch Richness Density (per 1 00 ha) 

Largest Patch Index (per Total Core Area (ha) Simpson's Evenness Index 
1 000 ha) 

Patch Density 

Patch Size Coefficient of 
Variation 

Edge Density 

Core Area Coefficient of Variation I nterspersion & Juxtaposition 

Nearest Neighbour Coefficient of Contagion 
Variation (NNCV) 

Simpson's Diversity Index 
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Patch richness is a measure of species diversity that represents the total number of different 

vegetation classes (other than pasture) on a farm, regardless of the relative abundance of each 

patch type or the spatial arrangement of patches. A two-fold increase in the odds of a TB­

positive year was associated with every additional vegetation class present on a fann. Patch 

richness ranged from a minimum of three to a maximum of seven vegetation classes on each 

farm, and farms towards the east coast tended to have a higher number of vegetation classes 

than those further inland. Only 10% of farms had 3-5 vegetation classes. These farms had no 

Pine and very little Manuka or Manukalgorse. A further 1 5 %  of farms had 6 classes. Very few 

of these farms had Pine and those that did, had only a very small area. Seventy five percent of 

farms had all seven vegetation classes. Patch richness is generally a function of scale 

(McGarigal and Marks, 1 995). Larger areas are more commonly richer as there is generally 

greater heterogeneity over larger areas than over comparable smaller areas. 

Patch richness density represents the total number of different vegetation classes on a farm 

di vided by the total number of hectares of non-pasture vegetation classes on the farm. This 

measure standardises patch richness to a per area basis that facilitates comparison among 

farms. In this study patch richness density was associated with a small increase in the odds of 

a TB-positive year associated with every extra vegetation class per 1 00 hectares of non­

pasture cover, suggesting a slightly higher risk for farms with smaller areas of cover that were 

more heterogeneous. 

Core area coefficient of variation (CACV) was positively associated with percent TB-positive 

years. This variable measures the variability in the size of core areas relative to the mean size 

of core areas of non-pasture vegetation classes on a farm. It is estimated by calculating the 

standard deviation of core area size as a percentage of the mean size of core areas. Core area 

is defined as the area within a patch greater than some specified edge distance or buffer width 

(McGarigal and Marks, 1 995). In this study we specified the edge distance as 20 meters. Thus 

only patches, or parts of patches, with a width and length greater than 40 meters were 

included as core areas, which meant that rows of trees or very small patches of cover were not 

included as core areas. CACV tends to be higher for more fragmented or patchy landscapes 

where the size of patches is more variable. In this study farms with larger areas of 

heterogeneous cover tended to have higher CACV values as the patches of individual 

vegetation classes were broken up and interspersed with one another, resulting in more 

variability amongst patch size than those in areas of more homogeneous cover. 



143 

Table 1 9: Significant variables in the farm-level habitat pattern random effects logistic 
regression model with their odds ratio plus 95% confidence i nterval, without and with Forest 
Distance. 

Variable Model with landscape variables only Model with Forest Distance 
added 

Odds Ratio 95% C.I. Odds Ratio 95% C.1. 

Total Area ( 100 ha) 1 . 1 0  1 .04-1 . 16  1 . 1 0  1 .05-1 . 1 5 

Patch Richness 1 .91 1 .34-2.72 1 .02 0.73-1 .42' 

Patch Richness Density 1 .01 1 .00-1 .02 1 .00 0.99-1 .01 ' 

Core Area Coefficient of Variation 1 .001 1 .000-1 .002 1 .00 0.99-1 .00' 

Contagion 0.97 0.94-0.99 1 .00 0.98-1 .02' 

Forest Distance (2 kms) 0.92 0.89-0.94 

Deviance (df) 298.95 (1 22) 252.1 5 ( 121 ) 

* Variables that became insignificant at p <0.05 when Forest Distance was included in the model. 

Contagion measures the extent to which vegetation classes are aggregated or clumped; higher 

values of contagion may result from landscapes with a few l arge, contiguous patches, whereas 

lower values generally characterise landscapes with many small and dispersed patches 

(McGarigal and Marks, 1 995). Contagion is based on the adjacency of cells, not of patches as 

is the case with all other landscape variables in Fragstats. The contagion index represents the 

observed level of contagion as a percentage of the maximum possible, given the total number 

of patch types .  Farms with higher contagion values in this study tended to have more 

homogeneous areas of vegetation, which commonly comprised Podocarplbroadleaved forest, 

Shrubland and ManukaJpasture, whereas farms with lower contagion values had more 

heterogeneous areas of cover in which several vegetation classes were represented within 

each area. 

Vegetation class-level habitat pattern models 

We produced a random effects logistic regression model using habitat pattern variables for 

each of the seven vegetation classes. We list the variables that we entered into each of the 

vegetation class models in Table 20, and the significant variables in each of the vegetation 

class-specific random effects logistic regression models in Table 2 1 .  
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Table 20. Variables entered into the logistic regression model for each vegetation class in  the 
class-level habitat pattern models. 

Class area (ha) 

Number of patches 

Variable Names 

Total core area (ha) 

Total non-core area (ha) 

Patch Fractal Dimension (PFD) 

Area Weighted Mean Shape Index 
(AWMSI) 

Patch size coefficient of variation Percent core area 
(%) 

Nearest neighbour coefficient of variation 
(%) 

Largest patch area (ha) 

Largest patch index (per 1 000 ha) 

Total edge ( 1 00 meters) 

Number of core areas Mean Proximity Index 

Core area density (per 1 00 ha I nterspersion & Juxtaposition Index (%) 

Mean area of core patches 
(ha) 

Most of the habitat pattern variables that were positively associated with percent TB-positive 

years within each vegetation class were associated with areas of heterogeneous vegetation 

cover that comprise a large number of individual patches or number of core areas, with 

interspersion of the different vegetation classes. In addition, the larger patches of individual 

vegetation classes within these areas tended to have an uneven shape as indicated by the 

variable Area Weighted Mean Shape Index (A WMSI). Variables that were negatively 

associated with percent TB-positive years represented farms on which the area of largest 

patch of Podocarplbroadleaf or Manukalgorse was large relative to the size of the farm, the 

mean patch size was large relative to the size of the farm, and the density (per 1 00 hectares of 

non-pasture vegetation) of core areas of Podocarp/broadleaf, S hrubland and Manukalpasture 

was high. Higher density of core areas of these vegetation classes was more likely to occur on 

smaller farms. Total non-core area of Beech and of Shrubland was negatively associated with 

percent TB-positive years. Non-core areas were small and/or narrow patches, or parts of 

patches that were less than or equal to 40 meters wide and 40 meters long. This included 

single trees or very small patches of non-pasture vegetation and narrow strips of vegetation 

such as that lining river banks or shelterbelts. 
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Table 21 : Significant variables in each of the class-level habitat pattern ran dom effects logistic 
regression models, without and with the addition of Forest Distance, with their odds ratio plus 
95% confidence l imits. 

Vegetation Significant Variables Model with landscape Model with Forest 
Class variables onl� Distance added 

O.R. 95% C.I. O,R, 95% C,I. 

Beech Interspersion index 1 .02 1 .01 - 1 .02 1 .01 0.997-1 .01 ' 

No. core areas 1 .27 1 .08-1 .48 1 .1 8  1 .02-1 .35 

Total edge (1 OOm) 1 .08 1 .04-1 . 1 1 1 .04 1 .0 1 -1 .07 

Total non-core area (ha) 0.36 0.23-0.59 0.58 0.37-0.89 

Pine Interspersion index 1 .02 1 .0 1 - 1 .02 1 .01 0.997-1 .01 ' 

Number of patches 1 .02 1 .0 1 - 1 .03 1 .01 0.999-1 .03' 

Podocarp- Interspersion index 1 .03 1 .02-1 .05 1 .01 0.998-1 .02' 
broadleaf Total non-core area (ha) 1 .36 1 .20-1 .54 1 . 1 5  1 .03-1 .28 

Total edge (1 00m) 0.98 0.97-0.99 0.99 0.98-0.99 

Largest patch index 0.35 0.21 -0.59 0.54 0.35-0.86 

Core area density (per 1 00 ha) 0.82 0.67-0.99 0.92 0.90-0.94' 

Manuka- Number of patches 1 .08 1 .04-1 . 1 2  1 .03 0 .997-1 .06' 
Kanuka Total non-core area (ha) 2.02 1 .25-3.26 1 .30 0.87-1 .93' 

AWMSI 2.52 1 .55-4.09 1 .85 1 .23-2.78 

Total edge (1 OOm) 0.92 0.87-0.97 0.97 0.93-1 .01 ' 

Largest patch index 0.41 0 . 1 7-0.99 0.44 0.21 -0.90 

Manuka- Number of patches 1 .01 1 .005-1 .01 1 1 .004 1 .002-1 .006 
pasture AWMSI 3.03 1 .3 1 -7.06 2.33 1 .22-4.46 

Core area density (100 ha) 0.76 0.62-0.92 0 .83 0.71 -0.97 

Shrubland Interspersion index 1 .02 1 .00-1 .03 1 .004 0.99-1 .02 

Total edge ( 1 00m) 1 .02 1 .01 - 1 .03 1 .01 1 .00-1 .02' 

Total core area 1 . 1 6  1 .06-1 .26 1 .08 1 .00-1 . 1 6  

Total non-core area (ha) 0.86 0.76-0.96 0.93 0.84-1 .02' 

Core area density (1 00 ha) 0.84 0.74-0.95 0.91 0.82-1 .01 ' 

Manuka- Number of patches 1 .01 1 .003-1 .012 1 .003 0.999-1 .01 ' 
gorse Interspersion index 1 .020 1 .005-1 .035 1 .008 0.99-1 .03' 

AWMSI 8.38 2.54-27.59 3 . 13  1 . 1 6-8.49 

PFD 0.03 0.003-0.243 0 .25 0.04-1 .64' 

Mean patch index 0.92 0.86-0.99 0 .98 0.92-1 .03' 

Largest patch index 0. 1 8  0.05-0.62 0.29 0 . 1 0-0.81 

* Variables that became insignificant at p <0.05 when Forest Distance was included in the model. 
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Table 22: Significant variables in the vegetation class-level random effects logistic regression 
model that was built from the individual vegetation class models, without and with the addition 
of Forest Distance. 

Variable Model with landscape variables Model with Forest Distance 
only added 

Odds ratio 95% C.I. Odds ratio 95% C.1. 

Interspersion Manukalgorse 1 .02 1 .01 - 1 .03 1 .0 1  0.997-1 .02' 

Number of patches Manukalpasture 1 .004 1 .001 -1 .007 1 .004 1 .00-1 .01 

Number of patches Pine 1 .03 1 .02-1 .04 1 .0 1  0 .99-1 .02' 

Total core area Shrubland 1 .07 1 .0 1 -1 . 1 2  1 .04 0.99-1 .09' 

Core area density Shrubland 0.86 0 .78-0.95 0.92 0.83-1 .01 '  

Total edge Podocarp (1 00 meters) 0.996 0.995-0.998 0.999 0.997-1 .00 1 '  

Forest Distance (2 kms) 0.93 0.91 -0.96 

Deviance (df) 279.77 ( 121 ) 251 .42 (1 20) 

• Variables that became insignificant at p<0.05 when Forest Distance was included in the model. 

Addition of the Forest Distance variable to these models showed that many of the variables 

representing heterogeneity of patches of cover were more likely to occur on farms nearer the 

forest, likewise the variables representing homogeneity were more likely to occur further 

inland away from the forest. As a result, their effect became insignificant when Forest 

Distance was included in the model (Table 2 1 ). 

Summary vegetation class-level landscape model 

When the individual class-level landscape models were combined, many of the variables were 

no longer significant as there was a high degree of correlation between variables amongst 

vegetation classes. We list the significant summary class-level landscape variables that were 

associated with percent TB-positive years in Table 22. Interspersion of Manukalgorse, 

number of patches of Pine and number of patches of Manukalpasture were positively 

ass.ociated with percent TB-positive years, while total edge Podocarpfbroadleaf and core area 

density of Shrubland were negatively associated. Here again, interspersion of Manukalgorse, 

number of patches of Pine, total area of Shrubland and core area density of Shrubland were 

confounded with Forest Distance (Table 22). All of these variables except core area density of 

Shrubland had higher values on farms closer to the forest. Higher values of core area density 

of'Shrubland were associated with farms further from the forest hence they were negatively 

associated with percent TB-positive years. 
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Vegetation-slope model 

We list the variables that we entered into the vegetation-slope logistic regression model in 

Table 23,  and the variables that were significant in the random effects model, together with 

their odds ratio plus 95% confidence limits in Table 24. Total area of Podocarp/broadleaf on 

flat land (0_ 1 0°) was negatively associated with percent TB-positive years. Total area of the 

farm plus buffer, area of Pine on flat land (0_ 10°) and area of Shrubland on slopes of 1 1 -20° 

were positively associated with percent TB-positive years . Pine 0_ 10° and Shrubland 1 1 -20° 

were both confounded with Forest Distance and became insignificant once this variable was 

included in the model (Table 24). 

Table 23: List of variables entered into the vegetation-slope model. 

Variable Names 

Total Area (ha) Pod-b'leaf 1 1 -20° (ha) Manukalpasture 31 -40° (ha) 

Beech 0-1 0° (ha) Pod-b'leaf 21 -30° (ha) Manukalpasture 41 -60° (ha) 

Beech 1 1 -20° (ha) Pod-b'leaf 31 -40° (ha) Manukalgorse 0-1 0° (ha) 

Beech 21 -30° (ha) Pod-b'leaf 41 -60° (ha) Manukalgorse 1 1 -20° (ha) 

Beech 31 -40° (ha) Manuka-kanuka 0-1 0° (ha) Manukalgorse 21 -30° (ha) 

Beech 41 -60° (ha) Manuka-kanuka 1 1 -20° (ha) Manukalgorse 31 -40° (ha) 

Pine 0-1 0° (ha) Manuka-kanuka 21 -30° (ha) Manukalgorse 41 -60° (ha) 

Pine 1 1 -20° (ha) Manuka-kanuka 31 -40° (ha) Shrubland 0-1 0° (ha) 

Pine 21 -30° (ha) Manuka-kanuka 41 -60° (ha) Shrubland 1 1 -20° (ha) 

Pine 31 -40° (ha) Manukalpasture 0-1 0° (ha) Shrubland 21 -30° (ha) 

Pine 41 -60° (ha) Manukalpasture 1 1 -20° (ha) Shrubland 31 -40° (ha) 

Pod-b'leaf 0-1 0° (ha) Manukalpasture 21 -30° (ha) Shrubland 41 -60° (ha) 
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Table 24: Significant variables in the vegetation-s lope random effects logistic regression model 
with their odds ratio plus 95% confidence interval, without and with Forest Distance added. 

Variable Model with vegetation-slope variables Model with Forest Distance added 
onl� 

Odds ratio 95% C.1. Odds ratio 95% C.I. 

Total Area (1 00 ha) 1 .1 4  1 .08-1 .22 1 .1 0  1 .05-1 . 1 6  

Podocarp 0-1 0° (ha) 0.84 0.79-0.90 0.94 0.89-0.997 

Pine 0-1 0° (ha) 1 . 1 7  1 .1 0-1 .24 1 .05 0 .996-1 . 1 1 '  

Shrubland 1 1 -20° (ha) 1 .03 1 .01 -1 .05 1 .01 0 .996-1 .03' 

Forest Distance (2 kms) 0.92 0.91 -0.94 

Deviance (df) 299.56 (123) 247.38 (122) 

* Variables that became insign ificant at p <0.05 when Forest Distance was included i n  the model. 

Summary model 

We list the significant variables entered into the summary model, that was generated by 

entering the significant variables from each of the four random effects models into a final 

logistic model, i n  Table 25.  Total area of the farm plus buffer, total area of Pine and total area 

of Manukalpasture were positively associated with percent TB-positive years, while distance 

from the forest and proportion of the farm covered with Podocarpfbroadleaf were negatively 

associated with percent TB-positive years. This summary model had the highest goodness-of­

fit of all five models with a deviance of 241 and 1 22 degrees of freedom. The model 

explained 64% of the total variation in the data (R2 = 0.64) . This is made up of 33% which is  

explained by the biological variables included in the model and 31  % which is  explained by 

the random effect variable, which is  a variable representing the between farm variation. This 

is a high level of explanation for data of this complexity. 

Table 25: S ignificant variables in the summary random effects logistic regression model that 
was bui lt from the significant variables for each of the individual models, with their odds ratio, 
95% confidence l imits and p-value. 

Variable Odds ratio 95% Confidence Interval p-value 

Forest distance (2 km) 0.93 0.91 -0.95 < .001 

Total Area (1 00 ha) 1 .05 1 .00-1 .1 1 .055 

Area Pine ( 1 0  ha) 1 . 1 3  1 .02-1 .27 .026 

Area ManukaJpasture ( 1 0  ha) 1 .1 7  1 .04-1 .32 .007 

Proportion Podocarp 0.88 0.81 -0.97 .007 

Deviance (dt) 241 . 1 8 (1 22) 
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Figure 23. Spatial d istribution of residual values from the final random effects logistic regression 
model. 
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Analysis of residuals 

The map of residuals from the summary random effects logi stic regression model shows no 

obvious spatial pattern in residuals on visual examination (Figure 23). The variogram analysis 

shows that there is  a small group of 10 farms whose centroids are within approximately one 

kilometer of each other that demonstrate some spatial autocorrelation (Figure 24) . However, 

there was no spatial autocorrelation of the residual percent TB-positive years evident for the 

majority of the study farms ,  indicating that most spatial autocorrelation in the data had been 

accounted for by the model. 

Discussion 

The results of this study show that the most significant factor affecting the odds of a TB­

positive year occurring on a farm was distance from the coastal forest (Table 25) .  A reduction 

in the odds of a TB-positive year of 7% was associated with every increase of 2 kilometers in 

the distance from the forest boundary. We believe that this variable was so strongly 

significant because it represented two separate effects.  Firstly, it represented a direct effect of 

the high possum density within the forest that contributed to the maintenance of high-density 

possum populations in habitat on neighbouring farms. This high on-farm density may have 

played an important role in maintaining TB in hot spots on farms .  Secondly ,  i t  appears to have 

represented the gradient of heterogeneity of habitat across the study area, which was highest 

on farms near the forest and lowest on farms furthest from the forest (Figure 25).  By running 

the analyses with and without Forest Distance we were able to demonstrate that i t  was highly 

confounded with the spatial pattern of many of the habitat v ariables such as those representing 

heterogeneity or homogeneity of cover. The association of proximity to the coastal forest with 

habitat heterogeneity was most strongly demonstrated in the vegetation class-level habitat 

pattern models (Table 2 1 ,  Table 22) in which the variables representing homogeneity and 

heterogeneity of patches became insignificant once Forest Distance was entered into the 

models. Because Forest Distance and habitat heterogeneity were strongly negatively 

correlated it was difficult to entirely distinguish their effects .  The density of beef breeding 

farms was also not uniform with increasing distance from the coastal forest, so the outcome 

variable (as an indicator of possum TB risk) was not uniform. 

Distance from the coastal forest appears to be a crude indicator of multiple habitat factors that 

are associated with the probability of TB possums occurring on a farm. Inclusion of thi s  
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variable results in a model which fits the data used in this  study better than models without it. 

However, its inclusion results in a model that is very site-specific which reduces its predictive 

value in areas that do not have a forest that is similar to the coastal forest in this study area. 

While the models that did not include Forest Distance have lower predictive value for the data 

set used in this study, they provide greater insight into the habitat patterns that are associated 

with the risk of TB possums being present on a farm and they may have better predictive 

value for different geographic locations. Of the four models that included different groups of 

habitat variables,  the vegetation class-level habitat pattern model had the lowest deviance 

when Forest Distance was not included (Table 22) indicating the best fit for the data used in 

the analysis .  This model indicates that farms with cover that comprises Manukalgorse 

interspersed with other vegetation classes, a higher number of patches of both 

Manukalpasture and Pine and a larger core area of Shrubland have a higher odds of a TB­

positive year occurring. Such variables are more likely to occur when the areas of cover on 

farms comprise more heterogeneous mixes of different vegetation classes compared to those 

with areas of cover that are more homogeneous and comprise fewer individual patches of Pine 

and Manukalpasture with less interspersion of Manukalgorse. This pattern is illustrated in the 

vegetation map shown in Figure 25 with a high level of heterogeneity and interspersion of 

vegetation classes shown in the top right inset and lower levels in the bottom left inset located 

further from the forest. Figure 26 shows a photograph of an area of very heterogeneous cover 

with interspersion of many different vegetation classes. Figure 27 shows a photograph of an 

area of homogeneous Manukalkanuka cover. Core area represents the area within a patch that 

is a minimum of 20 metres from the edge of the patch. Thus only patches, or parts of patches, 

with a width and length greater than 20 metres were included as core areas, which meant that 

rows of trees or very small patches of cover were not included as core areas .  The positive 

association of total core area of Shrub land indicates that farms with larger patches of 

Shrubland had a higher risk of TB possums, while the negative association of core area 

density of Shrubland indicates that smaller farms with larger core areas of Shrubland had a 

lower risk of TB possums. Likewise farms with a higher total edge of Podocarplbroadleaf 

patches had a lower risk of TB possums being present. 



�.' 

152 

, . 
. ' , ' ,,::: ' .. � "' . " 

. , 

, f · ...... ..... .J. . 
I. 

, , 
" 

. ' .... 

I , • 
. ... � ., . � . �,,: : 

' .. / . �R� , I _ 
.

. 1 

L_" _" __ --..,.". 
::. , t ... . .. 

.. 

• 1:-" 

" . .. � 
. )' . .. '/ . I 

-

o 5 10 Kilometers 
.; 1 IE��3IC=:=) 

Vegetation 
D Unclassified 
_ Pine 

Beech 
_ Shrubland 
D Podocarp/broadleaf 
o Water 
_ Manuka/kanuka 
o Pasture 
_ Manukalgorse 
o Manuka/pasture 
_ No Data 
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Figure 26. An area of heterogeneous cover with a h igh degree of 
patchiness and the interspersion of many vegetation c lasses. 

Figure 27. An area of homogeneous Manukalkanuka cover. 
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We evaluated the hypothesis that possum density was an important factor associated with the 

likelihood of tuberculous possums being present on a farm. Intriguingly,  we did not find the 

density of possums on a farm to be significant in this study. This may have occurred because 

the Forest Distance variable represented the pattern of possum density more accurately than 

the density variable that we calculated by  estimating the number of possums per hectare of 

farm plus lOO-meter buffer. This density measure is sensitive to farm size, with less stable 

estimates of possum density occurring on smaller farms. The estimates of possum density on 

smaller farms were also less reliable indicators of the actual possum density that influences 

the risk of TB in possums on the smaller farms ,  as this  was more likely to be influenced by 

possum density over an area extending beyond the area of the farm. It may be more valid to 

measure possum density within the same area associated with each farm. For future studies 

we suggest that possum density be measured over a standard area for each farm; for example, 

within a circle of diameter 3 ki lometers (this diameter may be varied to suit local habitat) 

surrounding the centroid of each farm, to evaluate whether this provides better definition of 

the influence of possum density within a small locality. 

We had expected the area of hot spots, in particular high-risk hot spots, to be significantly 

associated with percent TB-positive years, as the higher the number of hot spots the higher the 

chance of at least one tuberculous possum being present on the farm. In this study the area of 

hot spots on each farm was not significant. This may have occurred because this variable was 

highly correlated with one or more variables which did enter the model,  or because of the 

inadequate specificity of the hot spot classification system, given the limi ted differentiation of 

plant species within the vegetation data. This may have led to over-prediction of hot spots and 

inclusion of areas of habitat that were not high risk but that were classified into the same 

vegetation class as other high-risk habitat. 

The total area of Pine and of ManukaJpasture on a farm was positively associated with the 

odds of a TB-positive year occurring. Neither of these vegetation c lasses supports a high 

possum density (Clout, 1 977 ; B atcheler and Cowan, 1988) ,  and their significance in this study 

was most likely due to their being a proxy variable for high-risk patterns of vegetation. For 

example, farmers tend to plant pine trees in areas where the soil is of poorer quality and the 

land is covered in scrub so that they can obtain a better return from that land. Thus more pine 

occurs on farms with more extensive scrub cover, particularly gorse. These variables may 

have been indicator variables for farms that had more extensive scrub cover, which hence had 

a higher risk of containing tuberculous possums. 
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The vegetation classes that were found to be significantly associated with percent TB-positive 

years in this study, i .e. Pine, Manukalpasture and Podocarplbroadleaf, were more 

homogeneous in tenns of the range of tree species and/or habitat structure that each class 

contained, compared with the other vegetation classes (refer to details in Chapter 4). 

Shrubland and Manukalgorse were the most diverse classes in tenns of the floristic mix found 

in different localities for the same classified vegetation type. As a result they probably 

represented different TB risks at different locations despite being classified as the same 

vegetation class. For example, field checking of the vegetation map showed that many of the 

areas of cover located in the eastern part of the study area that were classified as 

Manukafgorse comprised a mixture of manukalkanuka and gorse, whereas many of the areas 

of cover with the same vegetation classification in the western part of the study area 

comprised manukalkanuka and broadleaved scrub. The Shrubland class included willows 

lining riverbanks as well as narrow rows of manuka on pasture, and low-density gorse on 

pasture. While these were all classified into the same vegetation category the different habitat 

types can be associated with very different possum densities and may be associated with 

different risks of supporting possum TB hot spots. We believe that a more detailed vegetation 

map that had greater differentiation of plant species within these scrub categories would 

enable more specific vegetation classes to be identified in association with TB risk at the fann 

level. 

This study involved the statistical analysis of spatial data. Farm data in such cases may be 

spatially correlated due to their relative locations,  thus violating the assumption that 

individual observations are independent (Bailey and Gatrell , 1 995 ; Arlinghaus, 1 996) . Just as 

clustering of the units of observation (farm-years) used to measure the outcome variable was 

handled by including fann as a random effect variable, spatial clustering can be handled by 

the addition of variables representing the spatial autocorrelation of observations. In this study 

we incorporated a neighbourhood function variable to represent any correlation between a 

farm and its immediate neighbours. The lack of significance of the neighbourhood function 

suggests that any spatial autocorrelation that occurred in the data had been explained by other 

variables in the mode1 . Alternatively, the proximity measure of contiguity did not represent 

the scale at which autocorrelation occurred in the data. The neighbourhood function may also 

have been affected by missing data as neighbours of many farms were missing from the data 

set because of the incompleteness of the fann boundary map. The cluster of percent TB­

positive years described in Chapter 3 showed that spatial autocorrelation occurred at a scale of 
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several kilometers, and we believe that this effect was picked up by the Forest Distance 

variable. 

Analysis of spatial patterns in the residuals of a logistic regression model is a useful way to 

determine if spatial autocorrelation in the data has been adequately represented in the model . 

If there are no significant spatial patterns in residuals we can have more confidence in the 

accuracy of the parameter estimates in the model . In this study we found no strong evidence 

of spatial patterns in the residuals based on variogram analysis, suggesting that any spatial 

autocorrelation in the data w as represented in the summary logistic regression model. 

In this study we explored different methods of analysing possum habitat and geographical 

variables at the farm level using a GIS and habitat pattern analyses to identify the variables 

that would be most useful as predictors of possum TB risk on farms. The variables that were 

most significant in this study were those associated with the heterogeneity of areas of cover. 

Farms with more heterogeneous areas of cover had a higher odds of a TB-positive year than 

those with more homogeneous areas of cover. Having access to a complete map of farm 

boundaries, from AgriQuality NZ' s  Agribase is a basic requirement for such analyses and is 

an essential data set for research and management of wildlife vector-related TB in New 

Zealand. Further examination of methods for analysing geographical variables, such as that 

suggested for possum density, is likely to increase the explanatory value of habitat models. 

There have been significant developments in the remote sensing industry since conducting 

this study and satellite imagery with higher spectral information and the s ame spatial 

resolution is now available, enabling the production of more detailed vegetation maps. As 

more detailed geographical data becomes available i n  the future we can use the experience 

gained in this study to identify factors that will predict the possum TB risk of farms more 

accurately, providing information to target TB management resources at higher risk farms. 

Bibliography 

Animal Health Board. ( 1995) .  National Tb Strategy: proposed national pest management 

strategy for bovine tuberculosis. Animal Health B oard, Wellington, New Zealand. 

Anon. ( 1986). History of Tb control scheme. In: S .  Hennessy (Ed), Surveillance 1 3  (3): 4-8 .  

Anon. ( 1 993). Wellington region operational plan for bovine tuberculosis, July 1 993 - June 

1 998 .  MAF Quality Management, Masterton, New Zealand. 

Arlinghaus, S .  L. ,  Editor. ( 1 996). Practical handbook of spatial statistics.  Boca Raton, Florida, 



1 57 

U.S .A. : CRC Press. 

Atwill ,  E.R . ,  Mohammed, H.O. ,  Lopez, J.W., McCuIloch, C .E. , and Dubovi, E.J. ( 1 996). 

Cross-sectional evaluation of environmental, host, and management factors associated 

with risk of seropositivity to Erlichia risticii in horses of New York State. AJVR 57 (3):  

278-85. 

Augustin, N.H., Mugglestone, M.A, and Buckland, S .T. ( 1996). An autologistic model for 

the spatial distribution of wildlife. Journal of Applied Ecology 33  : 339-47. 

B ailey, T. C . ,  and Gatrell ,  A. C .  ( 1995). Interactive Spatial Data Analysis. B urnt Mill, 

Harlow, Essex, CM20 2JE, England: Longman Scientific & Technical. 

Batcheler, c.L. and Cowan, P.E. (1 988). Review of the status of the possum (Trichosurus 

vulpecula) in New Zealand, for the Agricultural Pest Destruction Council .  Ministry of 

Agriculture and Fisheries, Wellington, New Zealand. 

Baumann, M.P.O. ,  Zessin, K.H. , and Carlton, T.L. ( 1994). Application of a geographic 

information system (GIS) for area-related cross-sectional studies in Sudan - Geographical 

analytical epidemiology on Trypanosomiasis .  In: Proceedings of a WHO consultation on 

development and application of geographical methods in the epidemiology of zoonoses. 

Beck, L.R, Rodriguez, M.H., Dister, S .W., Rodriguez, AD., Rej mankova, E., Ulloa, A, 

Meza, R.A, Roberts, D.R. ,  Paris,  J.P., Spanner, M.A. , Washino, R .K. ,  Hacker, C . ,  and 

Legters , L.J. ( 1 994) . Remote sensing as a landscape epidemiologic tool to identify 

villages at high risk for malaria transmission. American Journal of Tropical Medicine 

Hygiene 5 1  (3):  27 1 -80. 

Carpenter, T.E. , Snipes, K.P., and Hird, D.W. ( 1 994). A spatial epidemiologic investigation of 

fowl cholera. In: Proceedings of the 7th International Symposium on Veterinary 

Epidemiology and Economics. 

Clout, M. N. ( 1 977). The ecology of the possum (Trichosurus vulpecula Kerr) in Pinus 

radiata plantations. Unpublished Ph.D. thesis, University of Auckland. 

Curtis ,  C.R, Mauritsen, RH., Kass ,  P.H., Salman, MD . ,  and Erb, H.N. ( 1 993) .  Ordinary 

versus random-effects logistic regression for analyzing herd-level calf morbidity and 

mortality data. Preventive Veterinary Medicine 16 : 207-22. 

Daniel , M. and Kolar, J.  ( 1990). Using satellite data to forecast the occurrence of the common 

tick Ixodes ricinus CL.). Journal of Hygiene, Epidemiology, Microbiology and 



1 58 

Immunology 34 (3): 243-52. 

Dymond, J.R., Page, MJ., and Brown, LJ. ( 1996) . Large area vegetation mapping in the 

Gisborne district, New Zealand, from Landsat TM. International Journal of Remote 

Sensing 1 7  (2) : 263-75 . 

Glass, G.E., Schwartz, B .S . ,  Morgan, J.M., Johnson, D.T., Noy, P.M., and Israel, E. ( 1 995) .  

Environmental risk factors for Lyme disease identified with geographic information 

systems. American Journal of Public Health 85 (7) :  944-48 .  

Riclding, G .  ( 1 995). Clustering of tuberculosis infection in  brushtail possum populations: 

implications for epidemiological simulation models. In: F. Griffin, and G. de Lisle (Eds), 

Tuberculosis in Wildlife and Domestic Animals .  University of Otago Press, Dunedin, 

New Zealand. 174-77. 

Hickling, G.J. ( 1 989). Assessment of possum control in an area of endemic bovine 

tuberculosis. Forest Research Institute, Christchurch, New Zealand. 

Hickling, G.J. ( 1991) .  Ecological aspects of endemic bovine tuberculosis infection in 

brushtail possum populations in New Zealand. In : Proceedings of the 9th Australian 

Vertebrate Pest Control Conference. 332-36. 

Hugh-Jones, M. ( 199 1) .  Satellite imaging as a technique for obtaining disease-related data. 

Review Scientifique Techincal, Office Internationale Epizooties 10 ( 1 ) :  197-204. 

Hungerford, L.L. ( 1 991 ). Application of spatial statistics to the study of the epidemiology of 

bovine anaplasmosis. In: Proceedings of the 6th International Symposium on Veterinary 

Epidemiology and Economics. 

Jackson, R. ( 1 995). Transmission of tuberculosis (Mycobacterium bovis) by possums. 

Unpublished PhD thesis, Massey University, New Zealand. 

Kitron, U. and Kazmierczak, J.1. ( 1997). Spatial analysis of the distribution of Lyme disease 

in Wisconsin. American Journal of Epidemiology 145 (6): 558-66. 47 ref. 

Kitron, u., J. Michael, 1. Swanson, and L. Haramis.  ( 1 997). Spatial analysis of the distribution 

of LaCrosse encephalitis in illinois, using a geographic information system and local and 

global spatial statistics. American Journal of Tropical Medicine & Hygiene 57 (4) 4: 

469-75. 

Kitron, u., Otieno, L.H. , Hungerford, L.L., Odulaja, A.,  Brigham, W.u., Okello, 0.0., 



159 

Joselyn, M. ,  Mohamed-Ahmed, M.M. , and Cook, E.  ( 1996). Spatial analysis of  the 

distribution of tsetse flies in the Lambwe Valley, Kenya, using Landsat TM satellite 

imagery and GIS . Journal of Animal Ecology 65 (3): 37 1 -80. 

Livingstone, P.G. ( 1997). Update on the New Zealand TB situation. In : Proceedings of a 

Seminar on Possum and Mustelid Control Research. National Possum Control Agencies, 

Wellington, New Zealand. 1 7-30. 

Lugton, I .  W. ( 1 997). The contribution of wild animals to the epidemiology of tuberculosis in 

New Zealand. Unpublished PhD thesis,  Massey University, New Zealand.  

Marsh, W .E. ,  D amrongwatanpokin, T . ,  Larntz, K. ,  and Morrison, R.B.  ( 199 1 ) .  The use of a 

geographic information system in an epidemiological study of pseudorabies (Aujeszky's 

disease) in Minnesota swine herds.  Preventive Veterinary Medicine 1 1  : 249-54. 

McDermott, J.J. and Schukken, YH. ( 1 994). A review of methods used to adjust for cluster 

effects in explanatory epidemiological studies of animal populations .  Preventive 

Veterinary Medicine 1 8  : 1 55-73.  

McGarigal, K. and Marks, B.J. ( 1995). FRAGSTATS. Spatial pattern analysis program for 

quantifying landscape structure Ver. 1 .0.  General Technical Report PNW-GTR-35 1 .  

Forest Science Department, Oregon State University, Corvalli s ,  Oregon, D.S.A. 

McKenzie, J.S . ( 1996). The application of GIS to animal health issues using TB management 

and research in New Zealand as an example. In: J. S .  McKenzie (Ed), Proceedings of the 

Epidemiology and State Veterinary Programmes, NZV N A V A Pan Pacific Conference. 

Dept of Veterinary Clinical Sciences, Massey University, Palmerston North, New 

Zealand. 

Mittlboeck, M. and S chemper, M. ( 1 996). Explained variation for logistic regreSSIOn. 

Statistics in Medicine 1 5  : 1 987-97. 

Morris ,  RS.  and Pfeiffer, D.U. ( 1 995). Directions and issues in bovine tuberculosis 

epidemiology and control in New Zealand. New Zealand Veterinary Journal 43 (7) :  256-

65. 

Morris ,  R S . ,  Pfeiffer, D .U.,  and Jackson, R ( 1 994). The epidemiology of Mycobacterium 

bovis infections. Veterinary Microbiology 40 ( 1 ) : 1 53-77. 

Norman, H.S . ,  Sischo, W.M. , Day, R.L., Pitcher, P . ,  and Nesselrodt, A.  ( 1994). Evaluating 

the influence of neighbouring swine herd status on the spread of pseudorabies virus using 



1 60 

a geographical infonnation system. Proceedings of the 7th International Symposium on 

Veterinary Epidemiology and Economics. 

Norval, R.AJ. , Perry, B .D. ,  Gebreab, F., and Lessard, P. ( 199 1) .  East Coast fever: a problem 

of the future for the horn of Africa? Preventive Veterinary Medicine 10 : 1 63-72. 

Paterson, B. M. ( 1993) .  Behavioural patterns of possum and cattle which may facilitate the 

transmission of tuberculosis .  Unpublished Masters thesis, Massey University, New 

Zealand. 

Paters on , B .M. and Morris, R.S. ( 1 995). Interactions between beef cattle and simulated 

sedated possums on pasture. New Zealand Veterinary Journal 43 (7): 289-93. 

Paterson, B .M., Morris, R.S. ,  Weston, J . ,  and Cowan, P. ( 1 995). Foraging and denning pattern 

of brushtail possum and their possible relationships to contact with cattle and tuberculosis 

transmission. New Zealand Veterinary Journal 43 (7): 28 1 -88 .  

Perry, B .D . ,  Kruska, R. ,  Lessard, P . ,  Norval, R.A.I., and Kundert, K. ( 199 1 a).  Estimating the 

distribution and abundance of Rhipicephalus appendiculatus in Africa. Preventive 

Veterinary Medicine 1 1  : 26 1 -68. 

Perry, B.D., Norval, R.AJ., Kruska, R.L., Ushewokunze-Obatolu, U.,  and Booth, T.H. 

( 1991b). Predicting the epidemiology of tick-borne diseases of cattle in Zimbabwe using 

geographic infonnation systems. In: Proceedings of the 6th International Symposium on 

Veterinary Epidemiology and Economics. 

Pfeiffer, D. U. ( 1994). The role of a wildlife reservoir in the epidemiology of bovine 

tuberculosis.  Unpublished PhD thesis, Massey University, New Zealand. 

Pfeiffer, D.U., Duchateau, L., Kruska, R.L. , Ushewokunze-Obatolu, u., and Perry, B .D.  

( 1997). A spatially predictive logistic regression model for occurrence of theileriosis 

outbreaks in Zimbabwe. In: Proceedings of the 8th International Symposium on 

Veterinary Epidemiology and Economics. 1 2. 12 . 1 - 1 2. 1 2.3 .  

Pfeiffer, D.U.,  Hickling, G.J.,  Morris, R.S . ,  Patters on , K.P. ,  Ryan, T.J . ,  and Crews K.B.  

( 1995). The epidemiology of Mycobacterium bovis infection in brushtail possums 

(Trichosurus vulpecula Kerr) in the Hauhungaroa Ranges, New Zealand. New Zealand 

Veterinary Journal 43 (7): 27 1-80. 

Pfeiffer, D.U. , Morris R.S. ,  and Sanson, R.L. ( 1 994) .  Application of GIS in animal disease 

control - possibilities and limits. In: Proceedings of a WHO consultation on development 



1 6 1  

and application o f  geographical methods i n  the epidemiology o f  zoonoses. 

Rodriguez-Lainz, A. ,  Bird, D.W., Carpenter, T.E. , and Read, D.H. ( 1996). Case-control study 

of papillomatous digital dermatitis in southern California dairy farms. Preventive 

Veterinary Medicine 28 (2): 1 17-3 l .  

Rogers, D.J. ( 1 99 1) .  S atellite imagery, tsetse and trypanosomiasis I n  Africa. Preventive 

Veterinary Medicine 1 1 :  201 -20. 

Ryan, TJ. ( 1 997). The New Zealand National Livestock Database. In : Epidemiology 

Program. Proceedings of the 1 0th Federation of Asian Veterinary Associations (FAVA) 

Congress. Cairns, Australia. 1 67-70. 

Sanson, R.L.and Pearson, A.P. ( 1 997) .  Agribase - A national spatial farm database. In: 

Proceedings of the 8th International S ymposium on Veterinary Epidemiology and 

Economics. 1 2. 1 6. 1  - 1 2. 1 6.3 .  

Shortridge E.H. ( 1 98 1 ). Tuberculosis in cattle and opossums. In: Proceedings of a Veterinary 

Public Health Seminar. Palmerston North, New Zealand. 83-95 . 

Smith, T. ,  Charlwood, J.D. ,  Takken, W. ,  Tanner, M., and Spiegelhalter, D.J. ( 1 995). Mapping 

the densities of malaria vectors within a single village. Acta Tropica 59 : 1 - 1 8 .  

Thomson, M.C.,  Connor, S .1. , Alessandro, V.D. ,  Rowlingson, B . ,  Diggle, P. ,  Cresswell, M., 

and Greenwood, B .M. ( 1998) . A spatial model of malaria risk in  The Gambia: predicting 

the impact of insecticide treated and untreated bednets on malaria infection. P. Firns 

(Editor), Proceedings of the 1 0th Annual Colloquium of the Spatial Information Research 

Centre. Spatial Information Research Centre, Dunedin, New Zealand. 3 2 1 -28. 



1 62 

Appendix i 

List of the habitat variables output by Fragstats for the three levels of aggregation: patch, 

vegetation class and landscape (farm). 

PATCH INDICES 
Patch ID 
Area (ha) 

Perimeter (m) 

Shape index 

Core area (ha) 

Core area index (%) 

Proximity index 

CLASS INDICES 
Patch type 

Total area (ha) 

Largest patch index (%) 

Patch density (#/100 ha) 

Patch size standard deviation (ha) 

Total edge (m) 

Contrast-weight edge density (m/ha) 

Mean edge contrast (%) 

Landscape shape index 
\ 

Area-weighted mean shape 

Mean patch fractal 

Core area similarity (%) 

Number core areas 

Mean core area 1 (ha) 

Core area CV 1 (%) 

Core area standard deviation 2 (ha) 

Total core area index (%) 

Mean near neighbour distance (m) 

Nearest neighbour coefficient of variation (%) 

Interspersion/juxtaposition (%) 

Class area (ha) 

Landscape similarity (%) 

Number patches 

Mean patch size (ha) 

Patch size coefficient of variation (%) 

Edge density (rn/ha) 

Total edge contrast (%) 

Area-weighted mean edge contrast (%) 

Mean shape index 

Double log fractal 

Area-weighted mean fractal 

Total core area (ha) 

Core area density (#/100 ha) 

Core area standard deviation 1 (ha) 

Mean core area 2 (ha) 

Core area coefficient of variation 2 (%) 

Mean core area index (%) 

Nearest neighbour standard deviation (m) 

Mean proximity index 



LANDSCAPE INDICES 

Total area (ha) 

Number of patches 

Mean patch size (ha) 

Patch size coefficient of variation (%) 

Edge density (m/ha) 

Total edge contrast index (%) 

Area-weighted mean class edge contrast (%) 

Mean shape index 

Double log fractal dimension 

Area-weighted mean fractal dimension 

Number of core areas 

Mean core area 1 (ha) 

Core area coefficient of variation 1 (%) 

Core area standard deviation 2 (ha) 

Total core area index (%) 

Mean nearest neighbour (m) 

Nearest neighbour coefficient of variation (%) 

Shannon's  diversity index 

Modified Simpson' s di versity index 

Patch richness density (#11 00 ha) 

Shannon' s  evenness index 

Modified Simpson' s  evenness index 

Contagion (%) 

Largest patch index 

Patch density (#1100 ha) 

Patch size standard deviation (ha) 

Total edge (m) 

Contrast-weight edge density (m/ha) 

Mean edge contrast index (%) 

Landscape shape index 

Area-weighted mean shape index 

Mean patch fractal dimension 

Total core area (ha) 

Core area density (#11 00 ha) 

Core area standard deviation 1 (ha) 

Mean core area 2 (ha) 
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Core area coefficient of variation 2 (%) 

Mean core area index (%) 

Nearest neighbour standard deviation (m) 

Mean proximity index 

S impson' s  diversity index 

Patch richness 

Relative patch richness (%) 

S impson ' s  evenness index 

Interspersion/juxtaposition index (%) 
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CHAPTER 6 

EpiMAN-TB, a spatial decision support system for 

the management of wildlife-related tuberculosis in 

cattle and deer in New Zealand 
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Abstract 

EpiMAN-TB is a spatial decision support system that has been developed to assist field 

veterinarians and pest control managers develop and evaluate TB-related possum control 

strategies in New Zealand. The basic objective of EpiMAN-TB is to improve the cost­

effectiveness of possum control strategies in eradicating TB from possum populations, and 

preventing the introduction of infection into areas that are free of TB in wildlife populations. 

The software takes the form of a workbench of tools that include classifying patches of habitat 

by possum TB risk,  classifying farms by possum TB risk, and evaluating possum TB control 

strategies at the level of individual farms and at regional level. EpiMAN-TB comprises a 

relational database, map display and spatial analytical tools, simulation models of the spread 

of TB between possums at both farm and regional levels, and expert systems. It utilises spatial 

information relating to vegetation cover, topography and farm boundaries, plus non-spatial 

information relating to TB history and management information for individual farms. 

Introduction 

Tuberculosis (TB) in cattle and deer is a problem of national concern to the New Zealand 

pastoral industries due principally to its negative impact on export markets .  A national TB 

control programme has been in place since the 1 970s (Anon, 1 986; O'Neil and Pharo, 1 995). 

However, efforts to control the disease in farmed animals have been hampered by the 

presence of TB In wildlife species, the most important being the brushtail possum 

(Trichosurus vulpecula). Infected possum populations are the major source of TB infection 

for cattle and deer in New Zealand (Jackson, 1 995;  Morris and Pfeiffer, 1 995; Livingstone, 

1 997) . Thus control of the disease in farmed animals involves controlling the disease in 

infected possum populations. 

The control of possums for TB management purposes has become a large business in recent 

years, principally driven by the Animal Health B oard's goal to eradicate TB from New 

Zealand (Animal Health Board, 1 995).  A total of $26 million was spent on possum control in 

the 1 996/97 financial year and this is expected to increase to almost $30 million by the year 

2000 (O'Neil and Pharo, 1 995). The main focus of possum control strategies to date has been 

the initial reduction of possum abundance by 80-90% over large areas where there is evidence 

that possums are infected with TB, followed by an on-going programme to maintain the 

population at less than 40% of its original size. Modelling of B arlow ( 199 1 )  has shown this to 



1 68 

be the threshold for TB transmission within possum populations. The application of this 

approach over a large proportion of the areas in which possum populations are infected, 

known as Vector Risk Areas (VRAs), has produced significant reductions in both the 

incidence of TB in cattle and the prevalence of herds under quarantine for TB-control 

purposes (Livingstone, 1997). Despite these achievements problem herds in which persistent 

reactors occur remain in areas that have been under a wildlife control programme for many 

years (G. Atkinson and G. Pannett, AgriQuality New Zealand, pers. comm.). Furthermore, 

historical experience with possum control in New Zealand has shown that continued control is 

required to maintain possum populations at a low level to prevent the rebuilding of 

populations and of TB infection through immigration and reproduction of the local population 

(Anon, 1 986; O'Neil and Pharo, 1995). 

The task of eradicating TB from possums is far more challenging than that of reducing the 

risk of transmission of TB from possums to livestock. Morris and Pfeiffer ( 1 995) advised that 

"no single measure is going to achieve the desired result in controlling wildlife tuberculosis, 

and the key to progressive success will lie in tighter and tighter integration of a range of 

measures to reduce the problem to a point where it is no longer a major concern." As disease 

incidence declines the remaining foci of infection take on greater importance in achieving the 

goal of eradication. Successful control at this stage requires new strategies that focus on 

identifying and clearing residual infection of TB in possums. There is a need to target control 

at different levels ,  and it is important to complement large-scale control with focussed efforts 

designed to suit the needs of particular problem areas or farms.  Additional information on 

factors that could be used to differentiate areas with a high risk of TB possums from those 

with a low risk, both at the habitat patch and the farm level, would enable: 

- More cost-effective programmes to be implemented at the larger scale of operational 

areas, by targeting resources at areas based on possum TB risk during the maintenance 

phase of control programmes. Such information may speed the rate of reduction of 

infected possums, and consequently of infected livestock. 

- The design of control programmes tailored to the conditions on individual problem farms 

or problem areas. 

- Prevention of the establishment of new Vector Risk Areas (VRAs), defined as areas in 

which TB is endemic in the possum population. 

- Prevention of the introduction of infection into areas from which TB has been eradicated. 
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There have been many developments in our understanding of the epidemiology of TB in 

possums in recent years that could be used in the development of possum control strategies 

for TB control purposes. For example, habitat factors associated with the distribution of 

possums have been identified at both the possum home range level (refer to Chapter 2) and 

the farm level (refer to Chapter 5) .  The explicit association of the distribution of possums and 

of tuberculous possums with geographic factors makes Geographic Information Systems 

(GISs)  a useful tool for managing and analysing data associated with TB management. With 

the development of GISs and remote sensing technology in recent years, there is increased 

availability of digital data sets of geographic variables. For example, McKenzie and Dymond 

(Chapter 4) produced a vegetation map from a SPOT3 multi spectral satellite image for an area 

in the Wairarapa, demonstrating the application of an automated classification procedure that 

would be practical for producing detailed vegetation maps for large areas of New Zealand. A 

national digital database of farm boundaries with associated land ownership and land use 

information has been developed by AgriQuality New Zealand (Sanson and Pearson, 1 997), 

making possible the mapping of TB data by farm and the aggregation of geographic data to 

the farm level. 

A number of models of the spread of TB within possum populations have been developed. 

B arlow ( 1 993) and Roberts ( 1 996) have developed deterministic mathematical models that 

can be used to evaluate possum c ontrol strategies at the scale of  thousands of hectares. 

Barlow's model has had a maj or influence on current possum control strategies implemented 

to date (Barlow, 1 995; Hickling and Efford, 1 996). Pfeiffer et al . ( 1995b) have developed a 

geographically-based simulation model of the spread of TB amongst possums that can be 

used to compare the relative effects of different possum control strategies on the prevalence of 

TB in possum populations at the farm level (pfeiffer et aI. ,  1 995a). Efford ( 1996) has 

developed a spatial model of possums by coupling an individual-based demographic model to 

a raster GIS . As a part of this project we have developed an additional geographically-based 

model , referred to as TB-Spread, which can be used to evaluate possum control programmes 

at the regional level (described later in this chapter). 

Decision support systems (DSS) provide a very useful way of integrating this epidemiological 

information, geographic data and simulation models into TB management decisions. In this 

paper we describe DSSs in more detail and discuss the features of these systems that make 

their application to TB management in New Zealand relevant. We describe in detail 

EpiMAN-TB, the spatial DSS that has been developed to assist the development and 
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evaluation of TB-related possum control strategies in New Zealand. We describe the functions 

that are available within EpiMAN-TB and discuss how each of these may be applied to 

develop possum control strategies that make the most cost-effective use of available resources 

to achieve the long term TB control objectives in New Zealand. 

Decision support systems 

DSS are defined as "interactive computer based systems, which help decision makers utilise 

data and models to solve unstructured problems (Sprague, 1993). He defined the 

characteristics of a DSS as follows: 

• they tend to be aimed at the less well structured, underspecified problems; 

• they attempt to combine the use of models or analytic techniques with traditional data 

access and retrieval functions; 

• they specifically focus on features which make them easy to use by non-computer people 

in an interactive mode; and 

• they emphasise flexibility and adaptability to accommodate changes in the environment 

and the decision making approach of the user." 

Cropper and Forte ( 1 997) defined DSS to be: 

"Systems which call for, order and promote deliberation and analysis directly 

relevant to management tasks where complexity and uncertainty make it difficult to 

arrive at a reasoned response. A distinctive feature of such systems is their use of 

computer-assisted modelling methods to help make sense of current issues, in 

exploring opti0!ls for future policy and action, and in assessing their 

consequences. " 

Both of these definitions highlight the focus of DSS on complex tasks that are less well 

structured and have an element of uncertainty. Decisions relating to the development of TB­

related possum control strategies are complex and unstructured as they require judgement and 

cannot be made according to a strict routine. They need to be targeted to the particular 

conditions within an area, and what is appropriate for one area may not be appropriate for 

another. Spatial problems are generically complex and are usually ill-defined or semi­

structured (Clarke and Clarke, 1997). The outcome of possum control strategies can be 

variable. Cropper and Forte ( 1997) note that when the 'normal'  management processes of 
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deliberation, analysis and decision making can produce outcomes in  which managers lack 

confidence it is normal to try to simplify the decision task by excluding complexity, making 

unexamined assumptions, or ignoring uncertainties . DSS have most to offer under such 

circumstances as they enable more of the complexity to be recognized and managed within 

the decision process. 

DSS themselves do not take decisions, but aim to extend the c apabilities of the decision 

maker and not to replace them. They provide for informed decisions by promoting 

deliberation and analysis of information directly relevant to management tasks (Cropper and 

Forte, 1 997). 

Models form an integral part of DSS,  as indicated by the dialogue, data and models (D,D,M) 

paradigm for DSS suggested by Watson & Sprague Jf. ( 1993). Models are representations of 

real processes, events and structures expressed as systems of logical or mathematical 

relationships between variables (Cropper and Forte, 1997) . They are abstractions from reality 

which provide a framework for understanding the nature of a problem and for exploring 

options for future policy and action without having to test the options in practice through pilot 

projects or prototype developments. To be of help in decision making, models must capture 

those characteristics of a decision situation believed to give rise to critical outcomes,  or 

potential points for management intervention: they cannot represent all aspects of the 

situation, but must capture enough of the complexity to be plausible. Blanning and King 

( 1993) noted that a principal concern with respect to operations research and management 

science was that it was directed to the construction of models, but there was insufficient 

attention paid to the implementation of models, and almost no attention paid to the ongoing 

use of models by practicing managers. This is the case with possum TB models in New 

Zealand which do not have an interface that makes them easy to use by TB or pest control 

managers that are unfamiliar with the models.  DSS can provide a user friendly interface that 

enables managers to perform 'what-if' scenarios to explore the outcomes of different 

decisions . 

An important feature of DSS is  the development of a user friendly interface which enables 

users who are not familiar with computers and/or with the analytical processes used in the 

DSS to have access to the information within the system. Watson and Sprague Jr. ( 1993) 

noted that "an appreciation of the importance of the dialog component is  gained by 

recognizing that from the user' s perspective, the dialog is  the system." 

A number of spatial decision support systems have been developed for forest pest 
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management (Hutchison et aI. ,  1993 ; Twery et aI . ,  1993 ; Williams, 1 993) and for other areas 

of environmental resource management (Frysinger et aI . ,  1 996; Kessell, 1 996). There is 

increasing interest in New Zealand in DSS for pest control management (McGlinchy, 1 996). 

A number of DSS have been developed to manage animal health problems at both the fann 

level and the national level (Morris et aI . ,  1 993). EpiMAN(FMD) is a DSS that has been 

developed in New Zealand to manage an outbreak of foot-and-mouth disease (FMD) (Morris 

et aI . ,  1993 ; Sanson, 1 993). This is a spatial DSS that combines a database management 

system, a geographic infonnation system, expert system elements, various models of specific 

aspects of FMD epidemiology, and a statistical analysis capability. EpiMAN-FMD was 

developed with the aim that the system could be modified and added to, to develop DSSs to 

help manage outbreaks of other exotic diseases such as EpiMAN-SF (Stark et aI . ,  1 996) and 

endemic diseases such as EpiMAN-TB (McKenzie and Morris, 1 995; McKenzie et al. ,  1 997). 

Overview of EpiMAN -TB 

EpiMAN-TB is a decision support system designed for the use of field veterinarians and pest 

control managers, providing them with access to expert knowledge on the epidemiology of 

TB in possums, TB simulation models, and tools to display and analyse geographic data in an 

interface that is easy to use. It is a stand alone system designed to run on pes under Windows 

95. It has principally been designed for the use of TB managers within AgriQuality New 

Zealand (fonnerly MAF Quality Management) as they are contracted by the Animal Health 

Board to implement the TB control programme, and they either own or manage the two major 

databases that contain infonnation used by EpiMAN-TB. At present the database infonnation 

is extracted from the original two databases and is maintained separately within EpiMAN-TB, 

which provides flexibility for the DSS to be used by individuals who do not have on-line 

access to AgriQuality NZ' s  databases such as private veterinarians or pest control managers. 

However, the establishment of a live link between EpiMAN-TB and the original databases 

could be explored in the future as this would provide for more efficient use of computer space 

and ensure that the infonnation is as current as that in the original databases. 

EpiMAN-TB is a spatial DSS that is designed to manage and analyse spatial data. The 

geographic tools programmed into EpiMAN-TB include spatial data analysis and display 

functions that are customised to the users' needs as they relate to the development and 

evaluation of possum control strategies for TB control purposes. We have made a deliberate 

effort to not be dependent on any particular commercial GIS or database management 
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software so that the software may be distributed to a number of users without the additional 

cost of purchasing licences for commercial GIS software. We have aimed to make the design 

of this system flexible so that it can be refined as further information becomes available in the 

future. We have also aimed to keep the design as generic as possible so it can be applied to 

the development of control strategies for other wildlife species that are shown to play a 

significant role in the maintenance of TB , and can also be adapted to manage other endemic 

diseases that have a strong spatial component in their epidemiology. 

Description of the system 

EpiMAN-TB has four main functions that support possum control decisions at two major 

levels :  the individual farm level involving hundreds of hectares and the regional level 

involving thousands of hectares (Figure 28). These are : 

1 .  Classification o f  patches of habitat by risk of supporting tuberculous possums. 

2 .  Evaluation of the effectiveness of control programmes in controlling 

populations at the farm level .  

in possum 

3. Evaluation of the effectiveness of control programmes In controlling TB In possum 

populations at the regional level .  

4.  Classification of farms according to the risk of TB possums being present on the farm. 

These functions are implemented by combining tools such as a relational database, map 

display and spatial analysis tools, simulation models of TB in possums at the farm level and at 

the regional level, and expel1 systems as i l lustrated in Figure 28.  The basic structure of 

EpiMAN-TB includes five modules . These include four modules that implement the functions 

described above plus an administrative module. Development of the five modules has reached 

different stages .  The modules for the administrative functions, the hot spot predictor and the 

evaluation of farm-level possum control strategies have been completed and tested by end 

users in the field who have provided feedback on the interface and the functions available. 

The module for evaluating possum control strategies at the regional level has been 

implemented and a framework developed for applying different models of the spread of TB 

within possum populations.  The farm risk module requires further research to refine 

geographic predictors of farm risk before it is developed to an operational stage. 
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EpiMAN-TB has  been developed using geographic data for a 60 kilometre square area in the 

northeast of the Wellington region ,  which had been obtained for research into habitat and 

topographic factors associated with the distribution of TB possums at the farm level (refer to 

Chapter 5). More extensive data sets can be incorporated as the system is refined and adopted 

for operational purposes. 

Spatial data 

EpiMAN-TB has been designed to use spatial data in both vector and raster data format. The 

system does not i nclude a wide range of sophisticated spatial manipulation tools and users 

require access to map data that has already been processed with a GIS into the form required 

by EpiMAN-TB. Data sets currently included in EpiMAN-TB include slope, vegetation , 

rivers, roads, coastline, and farm boundaries. These maps are described in more detail below. 

Slope map 

Slope data is represented in five categories: 0- 1 0°, 1 1 -20°, 2 1 -30°, 3 1 -40°, >40°, in a raster 

format with a spatial resolution of 20 metres. The digital elevation model (DEM) that was 

used to generate the slope map for EpiMAN-TB was produced by interpolating height data 

from 20-metre contour lines to a resolution of 1 0  metres and then generalising the resulting 

DEM to 20-metre resolution. The 20-metre contour lines had been digitised from 1 : 50000 

topographic maps (Terralink, Wellington, New Zealand). The slope map was generated using 

the slope algorithm in Spatial Analyst, ArcView version 3 . 1  (ESRI, Redlands, California). 

Vegetation map 

Vegetation data is represented in eight categories that include three tree classes (Pine, 

Podocarplbroadleaf, Beech), four scrub classes (Manukalkanuka, Manukalpasture, 

Manukalgorse, Shrubland) and a pasture class .  Details  of the species  composition of each 

vegetation class are presented in Chapter 4 of this thesis. The vegetation data was produced 

by automatic classification of a SPOT3 multi spectral satellite image that had been captured in 

March 1 994 (McKenzie and Dymond, Chapter 4) and is in raster format with a resolution of 

20 metres. 

Rivers map 

River data was digitised from NZ topographic maps at a scale of 1 :250,000 (Terralink, 

Wellington, New Zealand), and is in vector format. 
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Farm map 

Farm boundary data was obtained from AgriQuality NZ' s  national geo-referenced farm 

database, Agribase (Sanson and Pearson, 1 997). This database contains digital farm boundary 

information in vector format plus descriptive information for each farm such as land owner, 

main enterprise type, farm area and stock numbers. Each farm is identified by a unique farm 

identification number. 

Non-spatial data 

Non-spatial database information required to run EpiMAN-TB relates to farm ownership, 

animal numbers and TB status of cattle and deer on the farms. This information is currently 

available in databases which are either owned or managed by AgriQuality New Zealand. 

Farm information is obtained from Agribase which is a national database of farms in which 

each farm is uniquely identified. Agribase contains basic property ownership and land use 

information plus locational information that facilitates the production of farm maps. TB status 

information is obtained from the National Livestock Database (NLDB). This database 

contains a history of TB testing results for most farms in New Zealand. Farms are identified 

by the Agribase farm identification number so that information in the two databases can be 

linked. 

Functions 

Users are able to select from a number of different tasks available within the software by 

means of a simple interface. The initial screen shows the five main modules included within 

EpiMAN-TB (Figure 29). These include the four main functions of the DSS plus an 

administration module. Each module is described in more detail below. 
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Figure 29. Opening screen of EpiMAN-TB. 

TB hot spot analysis module 

"Hot spot" is the colloquial tenn used to describe a location where a cluster of tuberculous 

possums is believed to exist. Hot spots are critical to the eradication of TB from possum 

populations as they are the most likely location where tuberculous possums persist following 

population control programmes. The ability to predict the risk of a patch of habitat being a TB 

hot spot enables possum control efforts to be refmed so that high-risk areas of habitat can be 

targeted more intensively than low-risk areas. This prediction system is useful for the 

development of possum control programmes at both the regional scale and the individual farm 

scale. At the individual farm scale, having the ability to predict the location of areas of habitat 

where TB is likely to be persistent in possums helps develop a TB management plan for the 

farm. These high-risk areas can be targeted for more intensive possum control efforts, and/or 

can be avoided in a cattle or deer grazing programme. Having the infonnation to develop such 

a targeted programme is more likely to motivate a farmer to implement the programme and 

also is likely to increase the probability of eradicating TB from the possum population on the 

fann. Pest managers responsible for possum control programmes at a large scale could use the 
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information to help refme their programmes, for example by targeting hot spots more 

frequently or with more intensive possum control methods compared to those applied to low­

risk patches of habitat. 

The functions available within the hot spot module are shown in Figure 30 and are described 

in more detail below. 
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I 

Figure 30. Functions available within the hot spot predictor module. 

Hot spot rules 

The core of the hot spot module is a set of rules (a simple expert system) for allocating one of 

three hot spot risk categories (high, medium or low) to each cell of a grid using a combination 

of vegetation and slope information. The high-risk category represents locations where 

c lusters of TB possums are l ikely to persist over many years as they provide conditions that 

favour the transmission of TB between possums. The medium-risk category represents 

locations where tuberculous possums may be located but on a more sporadic basis than at 

high risk locations as they provide conditions that are less favourable for the transmission of 

TB between possums. The low-risk category represents locations where TB possums are 

unlikely to be located at any time. Vegetation and slope factors that combine to produce high 
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risk hot spots may differ between different geographical areas, thus users reqUIre the 

flexibility to defme and store different rule sets for different areas. Users are able to create a 

set of hot spot rules customised to their area of interest by means of a form that is shown in 

Figure 3 1 . Vegetation and slope categories are presented in a simple matrix, and a hot spot 

risk is allocated by clicking on each cell in the matrix. We developed the set of rules for the 

Wairarapa shown in Figure 3 1  based on combined information from the hot spot study (see 

Chapter 2) and the longitudinal study conducted in the Wairarapa (Pfeiffer 1 994; lackson 

1 995). 
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Figure 31 . Screen for entering hot spot rules associated with each combination of vegetation 
and slope category.  
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Figure 32. Hot spot analysis screen which enables the user to view vegetation, slope and hot 
spot data simultaneously. 

Hot spot anaLysis 
The hot spot analysis screen enables users to view in detai l  the input vegetation and slope 

maps and the resulting hot spot risk map for a small area s imultaneously on the same screen 

before running the analysis for a larger area (Figure 32) .  

Hot spot viewer 
This is the main map viewIng tool available in EpiMAN-TB (Figure 3 3 ).  Any of the 

geographic data that has been imported into the DSS can be viewed using this tool .  Al l  layers 

that have been loaded for viewing can be switched on or off, enab l ing the user to choose 

which layer to v iew. Vector data can be overlaid on raster data, which enables the user to 

identify data associated w ith a speci fic farm or a specific pre-defined geographic area. An 

extensive menu system is available to access boundary data for a spec i fic farm in d i fferent 

ways. For example, by means of entering the farm identification number if it is known; 

alternatively entering the name of the land owner, or entering the name of the road on which 

the farm is located, which wi l l  bring up a l ist of all  farms located on that road. 
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Figure 33. Map viewer function in which all spatial data in EpiMAN-TB can be viewed. 

A printing function provides users with the option to print views of data as paper maps. 

Single farm analysis 
The single farm analysis facil ity includes tools  to edit raster data and to store the edited data 

in a separate fi le so that the original database is not modified. This function has not yet been 

developed. However, it has been included in the concept as it was a function that TB 

managers who trialled the software wanted inc luded. This enables users to modify the hot 

spot or the vegetation c lassification of a patch of habitat having obtained further on-the­

ground information from the farm concerned. 
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Figure 34. Screen for entering the possu m  TB control strategies to be modelled in PossPOP. 

On-farm possum control module 

This module is used to evaluate the effect of different possum control strategies on the 

prevalence of TB in possums at the scale of an individual farm or a small user-deftned area. 

The module incorporates a simulation model of TB in possums, known as PossPOP. PossPOP 

is a geographic model representing the ecology and infection dynamics of wild possum 

populations, which includes natural stochastic variation, spatial patterns such as spatial 

heterogeneity and autocorrelation, and temporal patterns representing seasonal and cycl ical 

effects (Pfeiffer et ai, 1 994) . PossPOP uses a real vegetation map to "populate" the model 

with both possums and possum den sites for the area of interest in the s im ulation. The model 

can also use the hot spot risk map produced by the hot spot predictor model to adj ust the 

probabi l ity of TB transmission between possums in accordance with the vegetation cover. 

When a hot spot map is included in the model the probability of transmission between 

possums is modifted such that it is h igher within hot spot areas than without. 

Parameters associated with possum control programmes that can be manipulated by the user 

include: percent reduction in population, frequency and duration of population reduction, and 

the location over which population reduction is appl ied (Figure 34).  Users may digitise 

polygons on-screen to del ineate sub-areas within the larger area being model led, in which a 
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different control programme may be defmed. This enables habitat risk factors to be taken into 

consideration in the design of control programmes. For example, a programme with the same 

level of possum reduction over the entire farm can be compared with a programme that has a 

higher and more frequent population reduction programme in high and medium-risk patches 

of habitat compared to low-risk areas. Figure 35 shows an example in which individual 

control areas have been digitised on-screen by the user to model a programme that involves a 

higher frequency of control in hot spot areas compared to the surrounding area. The graphical 

output provided by PossPOP includes possum popUlation parameters, TB infection 

parameters, and location of ' infectious' den sites .  

Figure 35. Screen shot from PossPOP showing sub-areas defined b y  the user which have a 
different control programme compared to the surrounding area. 



1 84 

.... PouPop Control a 
�elect Farm 

Select 6rea 

Create files 

PossPop simulation parameters--------�----­

Vegetation Layer: 

jVegetation4 

Regional: T rue 
FafmlD: (Regional) 
Notes: 
Resolution: 20 
D ataType: 1 
RangedValues: False 
ValueUnits: 

Hot Spot Lat;er: 

-----------

1;lose 

Figure 36. Screen for defining the vegetation and hot spot maps to run POSSPOP. 

EpiMAN-TB provides an interface that allows the user to defme the vegetation map and the 

hot spot risk map for the area of interest and then to run the model (Figure 36). As for the hot 

spot prediction model, the geographic boundaries of the vegetation map can be defmed either 

by entering a fann identification number or by an interactive process. If the user wishes to 

include the habitat risk map in the model, its geographic boundaries can be defmed in the 

same way. 

Regional TB spread module 

Most possum control programmes are implemented at the scale of several thousand hectares 

(Anon, 1 993), to counter the problem of immigrating possums maintaining TB infection in 

the controlled area. The size of the area chosen for control in any one operation is influenced 

by a number of factors that include the extent of contiguous fanns with a high rate of TB in 

cattle, the location of geographical features that may prevent or inhibit the movement of  

possums (such as rivers and mountain ranges), and resource constraints .  Mathematical models 

have been developed and used in the development of possum control strategies over this large 

scale in New Zealand (Barlow, 199 1 ;  Roberts, 1 996). However, these models are run using a 

hypothetical possum population that has no explicit association with space. We have 
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developed a model, known as TB-Spread, to evaluate the effects of control programmes at the 

regional level by incorporating spatially explicit features such as the boundaries of operational 

areas, farm boundaries and c attle TB data, plus actual vegetation and topographic data. This 

enables the mosaic of different control programmes that are implemented within different 

areas of a region, referred to as 'operational areas' ,  to be modelled simultaneously over time. 

TB-Spread is a geographic simulation model of the spread of TB at a regional scale. It is 

based on 25-hectare square land units which are generated by overlaying a vector coverage in 

the form of a 25-hectare grid on a vegetation map. Each square polygon representing a land 

unit i s  given a unique identification number, and the area of each vegetation class within each 

land unit is tabulated and used to calculate various parameters associated with land units. 

This is a very flexible model design that embeds sub-models within a framework that uses a 

database as the integration and communication mechanism between sub-models ,  such as that 

described by Watson and Sprague Jr. ( 1 993). The model centers around a database which 

contains data on e ach land unit and has a set of sub-routines that extract data from the 

database, process it throlJgh a user- defined model, and then feed results back to the database. 

A schematic representation of the model is presented in Figure 36, showing the different 

components of data included in the database that i s  central to the model . The raw geographic 

and topographic data plus the intersecting farm polygons associated with each land unit are 

represented in the left hand column, and the initial population size and TB prevalence for 

possums in each land unit is represented in the central column. The dynamic component of 

the model is represented in the right hand column, in which different models may be used to 

represent the change in possum population and TB prevalence over time, given a specified 

control programme .  This framework assumes that although simulation models might operate 

in very different ways they require and produce the same basic set of information; that is ,  total 

number of possums and prevalence of clinical and subclinical TB within the possums. The 

differences between models generally relate to the predicted levels of each of these variables, 

rather than to the v ariables that are used. 
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Figure 37. Schematic diagram of TB-Spread. 

Notes. 

stochastic 
model 

TBSpread 
Deterministic 
model (test) 

Although the diagram shows TB Spread and PossPop-based models operating via text files these programmes 
actually interact directly to a set of tables in the database. The text-file interface is available for existing 
programs which cannot easily be modified to interact with the database. The same information is involved in 
both cases. 
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The components of TB-Spread are shown in Figure 3 8, and each is described in more detail 
below. 

Possum Control 

and 
Administration 

Figure 38. Components of the TB-Spread module. 

Vegetation classification 

Each land unit is assigned a vegetation category based on rules that relate to the vegetation 

pattern within each land unit. Currently a very simple set of categories has been developed to 

illustrate this function (Table 26). However, these can be more complex if desired. 

Table 26. Description of the vegetation patterns withi n  each land unit vegetation category. 

land un it vegetation category 

Pasture 

Pine 

Mixed 

Details of vegetation patterns within  each land un it category 

> 80% pasture 

> 60% pine 

Any combination of vegetation classes other than the two described 

above. 
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Initial possum population 

The area of each vegetation class is used to populate each land unit with possums by 

mUltiplying the area of each vegetation category by the number of possums per hectare for 

each category, giving a total number of possums per land unit. Possum density figures used 

for each vegetation category are listed in Table 27. 

Table 27. Possum density per hectare of each vegetation class. 

Vegetation category Possum density (per hectare) 

Podocarpibroadleaf 8 
Beech 3 

Pine 5 

ManukalPasture 2 

Manukalkanuka 3 

ManukalGorse 7 

Shrubland 7 

Initial TB prevalence in possums 

The initial TB prevalence in possums in each land unit is derived from the incidence of TB in 

cattle. This is achieved by overlaying the farm boundary map on the land unit map. A 

function then calculates the areas of intersection of farms with each land unit, creating a table 

of farm i dentification numbers associated with each land unit, and the area of each section of 

each farm that overlaps each land unit. This data can then be manipulated by an expression 

that converts TB incidence data in the cattle to a TB prevalence figure in possums. Currently 

the system is designed so that the cattle TB incidence data from the farm with the highest 

incidence of all farms that overlap a land unit is used to determine the prevalence of TB in 

possums using a mathematical function to convert cattle incidence to clinical and subclinical 

prevalence of TB in the possum population. 

Control programme 

The possum control programme is entered by digitising polygons that represent the boundary 

of each control area. The control boundary file is a polygon layer that defines the areas across 

which users would like to differentiate control measures. For example, users may want to 

undertake annual possum control in one area and bi-annual in another. Alternatively, users 

may want to apply possum control and vaccination in one area and possum control only in 

another area. 
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Modelling population and TB dynamics 

The software has been designed so that it can use different models of the dynamics of possum 

populations and of TB within these populations. It includes a set of tables in which the land 

units have a particular possum popUlation and TB prevalence. Any model can be applied such 

that it updates these parameters for each land unit in the table . 

We have run the model using the output from PossPOP, by applying the outputs in a semi­

deterministic way. We have also run the model with a simple deterministic model of possum 

popUlation and TB dynamics. It is possible to run TB-Spread with other models such as that 

of Barlow (1 993). 

Juvenile possum movement 

Movement of juvenile possums is included as a separate function in the model, using a 

Poisson distribution to determine the distance that a juvenile possum moves from its land unit 

of origin. The movement of juvenile possums may be modified by naturally occurring 

geographic barriers such as wide rivers and mountain ranges. The number of juveniles 

available for migration is a function of the deterministic model output. 

Running TB-Spread 

The screen for running the model once the initial parameters have been set is shown in Figure 

39. 

Figure 39. Screen for running TB-Spread once the i n it ia l  parameters have been set. 
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Model output 

Users have the option of printing out four maps that describe different features of land units 

for each time period over which the model was run. These are vegetation pattern 

classification, possum population, clinical prevalence of TB and subclinical prevalence of TB 

in possums. 

Farm risk predictor module 

The ability to classify farms within a region according to the risk of TB in the on-farm cattle 

or deer population being high, medium or low would enable TB managers to differentiate the 

intensity with which control measures are applied according to the risk of the farm having a 

TB problem. This is particularly useful in an area where the possum population has recently 

become infected with TB as farms at the greatest risk of having infected possums on their 

property could be targeted more intensively for surveil lance and disease control activities. 

We conducted research as a part of the larger study described in this thesis to identify 

geographic predictors of possum TB risk at the farm level (see Chapter 5).  We identified a set 

of predictor variables. However, the nature of the variables makes them very specific for the 

particular geographic area in which the study was conducted. Further research is required to 

refine the model before coding of an operational module is undertaken in EpiMAN-TB. As an 

alternative to developing an expert system to predict farm risk, we have included in this 

software a function that enables farms to be displayed by cattle TB incidence or any other 

attribute included in the database. 

Administration module 

This module provides tools to import geographic data sets, and delete or rename existing data 

sets. Currently the system, has been designed to import raster data in the following three 

formats: Idrisi, EPIC (Image analysis software used by Landcare NZ), and ArclInfo text 

format for grid fi les. The other main feature of the administration module is the ability to 

define category sets. An appropriate category set can be chosen when importing data. This 

screen enables users to define display colours and labels for each category. 
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Conclusion 

As current possum control strategies achieve the initial disease control objectives outlined in 

the Animal Health Board's five year strategy (Animal Health Board, 1 995), strategies to 

eradic ate TB from possum populations and prevent the recrudescence of TB will undoubtedly 

become more complex as the remaining problem areas have not responded to the standard 

approach already implemented. To ensure that cost effective strategies are developed to 

handle these situations, TB managers need access to all the infonnation and infonnation 

processing tools available. 

EpiMAN-TB is a comprehensive piece of software that provides easy access to the 

infonnation required for the major decisions that need to be made with respect to the 

management of TB-related possum control in an area. While the concept of EpiMAN-TB 

appears to be "high tech", the tool itself i s  designed to be very simple to use, providing an 

important means of giving field managers access to expert epidemiological infonnation, 

spatial data processing tools and models to evaluate possum control strategies. We believe 

that use of thi s  system will result in the development of more cost-effective possum control 

strategies both by means of providing important infonnation and by  promoting deliberation 

and analysis of the different options available. 

Sprague ( 1 993) wrote that the development of a DSS is an iterative process, with the most 

important four steps in the typical systems development process - analysis, design, 

construction, implementation - combined into a single step that is iteratively repeated. In this 

project we have completed these four steps for the administrative, hot spot predictor and 

evaluation of on-farm possum control strategies modules. The control strategy evaluation at 

the regional level is at the implementation stage. The farm risk module requires further 

research to refine a set of predictor variables that can be used as a rules base to construct an 

operational module. 

Future plans involye the application of EpiMAN-TB in the field to develop a long tenn 

possum control strategy for a trial area that is located within the study area used in this 

proj ect, as we already have geographical data sets for this area. A comparison of this 

programme with the existing possum control programme that is currently being implemented 

will enable us to identify areas where the additional infonnation available within EpiMAN­

TB resulted in the development of a control strategy that differed to the original . In addition, 

the process of implementing EpiMAN-TB in a field situation will enable us to identify how 
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the DSS helps the decision making process and also identify refinements that can be made to 

the system to better meet the needs of the decision makers using it. EpiMAN-TB has been 

designed with a flexible framework so that existing features can be modified and refined and 

additional features can be added as new information becomes available. This is a dynamic and 

flexible tool that will evolve as it is used in the field and managers identify additional 

information and/or functions that they would like to use. 
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GENERAL DISCUSSION 
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Habitat predictors of possum TB risk at the possum home range level 

In this study we have identified specific habitat and topographic factors associated with the 

probability of multiple and of single tuberculous possums being captured at a particular 

location (Chapter 2). Multiple TB possums were more likely to be caught on flatter land with 

a higher abundance of open dens (quality 1 dens) in large trees or tree ferns, or on flatter land 

with multiple fully enclosed dens (quality 4 dens). Single TB possums were more likely to be 

caught on flatter land with taller average tree height, a lower percent coverage of vegetation in 

the height range 0.3 - 2 metres, and a higher percent coverage of vegetation at the ground 

level compared to TB-negative possums. Considering these results in the light of other 

research findings, we believe that the most likely explanation of the location of possum TB 

clusters is that they are associated with particular patches of habitat that support a high 

number of favourable possum dens leading to local crowding of possums within these 

denning areas. This in turn may lead to a higher contact rate amongst possums, particularly 

during the process of finding a den each morning, and greater opportunity for the transmission 

of TB between possums. The opportunities for transmission may be even higher if there are 

one or two extremely favourable dens present as there may be increased competition amongst 

possums for such dens, leading to a higher rate of agonistic encounters around the entrance to 

these dens,  close physical proximity, and/or a higher rate of den sharing, all of which provide 

suitable opportunity for the transmission of TB. The location of dens relative to ground level 

may also influence the degree of contact of possums around the denning area. For example, in 

areas where possums predominantly den above ground in trees there may be less direct 

contact between possums than in areas where possums predominantly den at or below ground 

level. 

Previous studies on den factors that may be associated with the transmission of TB have 

focussed on identifying the frequency of simultaneous den sharing (Cole, 1993;  Caley et al . ,  
1998) and sequential den sharing by possums (Paterson et aI . ,  1 995). Observations of possums 

within dens during the day do not provide information on the c ontact that may have occurred 

between possums during the process of obtaining the den. We suggest that an appropriate 

direction for future research into factors associated with clustering of TB in possums relates to 

studying the nature of contacts amongst possums in the denning area, although this has 

proved difficult to achieve in earlier attempts. 
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A comparison of the ROC curves of the logistic regression models for distinguishing multiple 

and single TB sites from negative TB sites (see Chapter 2) shows that the habitat factors 

included in the models discriminate multiple TB sites more accurately from negative TB sites 

than they do single TB sites from negative TB sites. If we consider that the multiple TB site 

classification used in this study represents persistent possum TB clusters and the single TB 

site classification represents sporadic TB clusters, the results of this study suggest that habitat 

factors are more significant in the maintenance of persistent TB clusters than sporadic 

clusters. As described earlier, this could be explained by the effect of habitat on the 

probability of transmission of TB between possums, with TB clusters being persistent at 

locations where habitat favours transmission of TB, leading to the maintenance of TB at the 

location over a long period of time. Conversely, the habitat at sporadic sites is less favourable 

for the transmission of TB, hence the disease does not persist at these locations over the long 

term. In reality the locations of TB possums will fall along a gradient of highly persistent to 

less persistent. Persistent TB clusters are likely to have a very important influence on efforts 

to eradicate TB from possum populations, as TB possums are more likely to remain at the 

location of persistent clusters following population control and act as a focus from which 

infection can rebuild in the population. The ability to predict the locations of persistent TB 

clusters using habitat information facilitates the differential targetting  of possum control 

resources at various habitat based on an assessment of possum TB risk with a consequent 

improvement in the cost-effectiveness of possum control programmes. 

Application of GIS to TB management and research 

Given the association of possum populations and of possum TB clusters with explicit spatial 

factors such as habitat types, geographical information systems (GIS) are a useful tool for the 

management and analysis of possum-associated data. A significant part of the studies 

presented in this thesis involved the investigation of available digital geographical data sets 

(Chapter 4) and of ways in which these data sets could be combined and analysed to represent 

habitat patterns that reflected factors associated with the distribution of possums and of TB 

possums (Chapter 5). 

Vegetation coverage 

Vegetation coverage is a fundamental data set for possum research and management as it has 

the greatest influence on the distribution of possums by means of its influence on food 
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sources and den sites. The digital vegetation data set that is currently available for a large part 

of New Zealand is the Land Cover Database (LCDB) which has been derived by manual 

interpretation of SPOT3 multi spectral satellite images (Terralink, Wellington, New Zealand) . 

We found that this data set did not meet our research needs as vegetation was classified into 

one of four broad categories (pasture, scrub, indigenous forest and exotic forest), and entire 

patches of habitat were generally classified into the one class .  Thus much of the floristic 

heterogeneity of habitat patches had been lost in the classification process, and areas of cover 

less than one hectare were not included. As a part of this study we produced a vegetation data 

set for an area in the Wairarapa using an automated classification of a SPOT3 multi spectral 

image (Chapter 4). We were interested in investigating the degree of accuracy that could be 

achieved with an automated classification procedure as this would be a more efficient way to 

produce maps of vegetation data for large areas of the country compared to manual 

classification. The final vegetation map comprised 8 classes and had considerably  more detail 

than the LCDB, which enabled us to obtain more information on landscape patterns such as 

heterogeneity of patches of habitat. The accuracy of the classification was sufficiently high 

for our purposes. However, some of the classes were relatively  broad and included a wide 

range of plant species. This resulted in different plant species that had different associated 

risks of TB possums being classified into the same vegetation class, which reduced the 

specificity of a TB risk classification system that used these vegetation classes . The remote 

sensing industry is rapidly expanding at present with the development of imagery with higher 

spatial and spectral resolution. We recommend further investigation of new imagery is 

required to identify that with a level of detail sufficient to be useful for possum control 

purposes. 

Farm boundary data 

As digital geographical data sets become available we can move from using static paper-based 

maps to dynamic computer-based maps with the flexibility to manipulate and present data in a 

multitude of different ways. The development of Agribase, a national digital data set of farm 

boundaries in New Zealand, is a valuable resource for TB management and research as farms 

are the basic geographical unit used in the administration and implementation of the TB 

management programme in New Zealand. Representing farms by their boundaries provides 

more information than representing farms by a single point. It enables users to visualise the 

extent of individual farms, to accurately identify the contiguity of individual farms with other 

farms and with other topographic features such as rivers, forests, lakes and roads. A digital 
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database of fann boundaries enables current maps of the distribution of different measures of 

TB in livestock to be easily drawn, enabling spatial patterns of the distribution of TB at the 

fann level to be identified (Chapter 3).  This makes it easier to incorporate spatial information 

into decisions such as planning priority areas for possum control and for monitoring the 

effectiveness of control programmes. Hickling and Efford ( 1 996) showed that the results of 

possum control programmes on fanns varied with incidence of TB in cattle prior to control. 

These results suggest that it would be useful to group contiguous fanns into areas according 

to TB incidence patterns and tailor programmes to the conditions depending on the specific 

disease management goals set for each area; for example, reduction of reactors, reduction of 

fanns under quarantine, or prevention of re-infection. Digital farm boundary data makes it 

possible to use spatial analytical techniques to group farms in this way on the basis of 

contiguity and TB incidence patterns. Digital farm boundary data also enables maps of the 

distribution of the livestock population at risk per unit area to be drawn, which gives an 

indication of the sampling pressure for TB in possums. 

As we obtain more epidemiological information on geographical risk factors associated with 

the distribution of TB possums at the farm level, digital fann boundary data enables these 

factors to be used to predict farms with a higher risk using computer technology. Such 

information is useful to target disease surveillance and vector control resources at higher risk 

fanns which is particularly relevant in the TB-free areas surrounding VRAs to prevent the 

outward spread of VRAs. 

Habitat and geographical predictors of possum TB risk at the farm level 

I!1 this study we used the percent years during which at least one TB-positive cattle beast was 

detected on a beef breeding fann as an indicator of the risk of TB possums being present on a 

fann in any one year (Chapter 5). We identified a group of habitat and geographical factors 

that could be used as predictors of fanns with a higher risk of tuberculous possums being 

present on the fann. Fann size, total area of Pine and total area of Manukalpasture were 

positively associated with percent TB-positive years, while distance from the coastal forest 

and proportion of the fann covered with Podocarpfbroadleaved species were negatively 

associated. The model was strongly dominated by the variable 'distance from the coastal 

forest' ,  which tended to swamp other variables that represented more detailed habitat patterns 

that may be associated with the risk of TB possums. This resulted in the model being very 

specific for the geographical area studied. By excluding 'distance from the coastal forest' 
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from the analyses we produced models of habitat variables which had a slightly lower 

predictive value, but which provided greater insight into the habitat factors that were 

associated with the odds of a TB-positive year occurring on a farm. Farms on which areas of 

habitat comprised a heterogeneous mix of vegetation classes, in particular Pine, 

Manukalgorse and Manukalpasture, interspersed in a patchy mosaic were associated with a 

higher odds of a TB-positive year occurring compared with farms on which the areas of 

habitat were more homogeneous. We believe that the most likely explanation for this effect is 

that the more heterogeneous the habitat the greater the chance of getting at least one location 

with the appropriate mix of conditions that supports a persistent TB hot spot. Farms with 

more heterogeneous areas of cover are likely to have both a higher number of persistent 

possum TB hot spots and a higher density of possums on the farm and surrounding area. 

Given the temporal variation of TB prevalence within possum TB hot spots a higher number 

of hot spots increases the probability that cattle will be exposed to at least one infectious 

possum within a year. TB infection may be more persistent at hot spots on these farms due to 

a combination of habitat factors that favour the transmission of TB between possums within 

hot spots, and a higher density of possums in the surrounding area which provides a large 

pool of susceptible possums and a pool of infected juveniles which disperse. 

This study gave us valuable experience in analysing habitat and geographical patterns 

associated with the risk of TB possums occurring on a farm. As we have access to a more 

complete Agribase data set and more detailed vegetation information the methods applied in 

this study can be used to run further analyses and refine the model for predicting possum TB 

risk at the farm level. 

Spatial patterns of TB at the farm level 

We demonstrated the extent of significant spatial clustering of both the five-year cumulative 

incidence ( 1986-90) and percent TB-positive years on farms in an area of the Wairarapa 

(Chapter 3) using a spatial scan statistic which is available in the cluster analysis tool, 

SaTScan (Kulldorff et aI . ,  1 997). SaTScan both identifies if there is significant spatial 

clustering in the data set or not, and also identifies the units included in each cluster so that 

they can be mapped in a GIS. Visual display of the location of clusters provides greater 

insight into the nature of the disease and helps develop hypotheses regarding associated risk 

factors . B y  combining the clusters from both these TB measures we were able to identify 

different patterns of TB on farms in different geographical locations. A group of farms in the 
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north-western part of the study area had both a low cumulative incidence for the five-year 

period 1986-90 and a low percent of years during which TB-positive cattle were detected. A 

group of farms in the centre of the study area had a high percent of years during which at least 

one TB-positive cattle beast was detected but a low cumulative incidence, indicating that 

relatively low numbers of TB-positive cattle were detected during the five-year period 1 986-

90. A group of farms in the east of the study area had both a high percent of TB-positive years 

and a high cumulative incidence rate during the five-year period 1986-90. 

Using a space-time scan statistic we showed evidence of space-time clustering of annual 

cumulative incidence of TB in cattle on only seven small groups of contiguous farms (2-5 

farms) across a time period of one-to-two years, during the period 1 979-95. This suggested 

that the temporal factors influencing annual cumulative incidence on an individual farm 

generally did not occur on neighbouring farms within the same year. 

Through the course of this study we also i dentified how SaTScan could be applied as a useful 

surveillance tool for TB management purposes. The software identifies the location of groups 

of farms that have either a higher or a lower rate of TB incidence. Such clusters could form 

the basis of possum control strategies. For example, high incidence rate c lusters can be 

targetted for disease reduction moving towards eradication, whereas low incidence rate 

clusters can be targetted for disease eradication and for maintaining freedom from disease. 

This cluster analysis tool can also be used to identify the location of individual farms that 

have a higher incidence than other farms in the surrounding area studied which would be 

useful in  identifying problem farms that require extra disease control efforts. In areas of New 

Zealand where possum populations are believed not to be infected with TB (referred to as 

Surveillance Areas), analysis for spatial and space-time clusters could be used as an early 

warning system to indicate that infection has entered the possum population. Any spatio­

temoral clustering of TB incidence involving multiple farms in Surveillance Areas would be 

considered an indication that a wildlife vector, most commonly the possum, may be 

associated with infection, and such c ases would warrant thorough investigation. 

EpiMAN(TB) 

Decision making in relation to possum control for TB management purposes i s  very complex, 

involving data from multiple sources, including complicated geographical data. We have 

developed EpiMAN-TB as a tool to incorporate much of the epidemiological information that 

has resulted from this study, together with map display tools to facilitate the application of 
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this infonnation and technology at the field level. The hot spot module classifies pixels within 

a raster image into one of three possum TB hot spot risk categories using a set of rules that 

combine categorical vegetation and slope data. As the particular combination of vegetation 

and slope categories that are associated with a higher risk of TB possums may vary between 

geographic regions, this module has been developed with the flexibility to allow the user to 

define different sets of rules by allocating different TB hot spot risks to different 

combinations of vegetation and slope data. A map of the resulting hot spot risk classification 

may be drawn over a vegetation map together with farm boundaries, rivers and other 

topographic features enabling the user to visually identify areas of habitat with a higher risk. 

This infonnation can be used to design a possum control programme that is tailored to the 

particular conditions in the area of interest. 

PossPOP is a spatial simulation model of the spread of TB in a possum population at the 

individual farm scale.  It is a useful tool to evaluate the relative effect of different possum 

control strategies on population size and the prevalence of TB in the population . The model 

uses a real vegetation map to populate the area of interest with possums and with possum 

dens ,  and it can also use the hot spot risk map to more realistically represent the clustering of 

TB in certain habitat types. 

The hot spot and PossPOP modules have been evaluated by two AgriQuality NZ veterinarians 

in the Wairarapa who indicated they would find the system useful as long as they had 

confidence in the accuracy with which the system predicted the location of possum TB hot 

spots and in the accuracy with which the possum TB model, PossPOP, simulated the 

dynamics of possum populations and of TB in these populations. 

TB-Spread has been developed as a framework that can facilitate the application of different 

possum TB models within a spatial context at the regional level, on the basis of 25-hectare 

land units. This model can be used to evaluate regional control programmes which include a 

mosaic of operational areas each with a different history of possum contro1. 

The development of EpiMAN-TB is an evolving process involving application of the 

software, feedback and refinement. The advantage of such a system is not only the 

infonnation that is available to assist with decision making, but also the fact that it promotes 

deliberation of a problem. Sprague ( 1993)noted that one of the benefits described during 

research into the use of DSS was that managers considered a wider range of alternatives than 

they would have without the DSS. This system has been designed with a flexible framework 
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so that existing features can be modified and refined and additional features can be added as 

new infonnation becomes available and as users identify additional infonnation and/or 

functions that they would like to use. 

Possum density 

The localised scale at which the association between density and possum TB clusters appears 

to occur is worthy of further discussion, as this has important implications for measuring the 

effectiveness of possum control operations. The effect of possum density on TB transmission 

that leads to the development of TB clusters, appears to occur at a very localised scale, 

somewhere in the order of an area of typical diameter of 20-40 metres. Average measures of 

reduction in possum density over large areas do not measure density at the scale at which it 

influences transmission of TB between possums. Such density estimates are useful for 

assessing the effectiveness of possum control operations in reducing the overall possum 

population, which has been shown to reduce the abundance of TB possums. However, they 

are not necessarily useful in identifying how successful the operations will be in eradicating 

TB. 

Implications for control 

To move closer to the AHB 's goal of eradicating wildlife-derived TB from domestic stock in 

New Zealand, new strategies need to be developed that focus on identifying and managing 

likely areas of residual infection in possums, while at the same time maintaining low 

population levels in the most cost-effective way. To ensure that the most cost-effective 

programmes are being implemented it is important that full use is made of current information 

on the understanding of the epidemiology of TB, and that infonnation management tools such 

as GIS and DSS are utilised to develop strategies and manage the implementation of 

programmes .  These tools can be used to design customised programmes for different areas 

and different farms to: 

• eradicate TB (reduce incidence of TB in cattle and deer towards eradication in some 

areas); 

• prevent TB from returning to these areas; 

• . prevent the expansion of existing VRAs. 

There is a danger that those involved with developing policy, funding and implementing TB-
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related possum control programmes are lulled into complacency that the satisfying results 

currently being achieved will continue and that intensification of control effort is unnecessary. 

History has shown us that this is risky as the disease will rebuild slowly but relentlessly as 

soon as the pressure of possum control i s  removed. It i s  important to be planning strategies for 

thi s  stage .  There already appears to be some public questioning of the scale of resources 

currently being spent on possum control for TB management purposes, and it is imperative 

that organisations responsible for implementing possum control are able to show that they are 

using the most cost-effective approaches available for their areas . 
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Appendix 1 :  Forms for recording possum habitat data 

I POSSUM HABITAT ANALYSISPLOT SHEET I 
Date: Fann name: 

Photograph numbers and description: 

File name and location of GPS readings: 

Comments about the site: 

Trap/poison site no: 

TRAP LOCATION AND PLOT DIAGRAM (number each quarter, and note slope & aspect) 

2 1 1 



2 1 2  

VEGETATION DATA SHEET Date: Fann: 

Hgt DBH Species % Abundance & Distribution & Shrub density 
! (note T2 T3 T4 T5 T6 
I .

) I species 
(12m +) ( l2-5m) (5-2m) (2-0.3m) « 30cm) 

, l .  
I 

I 

I 
: Epiphytes 

I 
I 

2. 
I 

Epiphytes 

3. 

I 

, 
i , 

Epiphytes 

4. 

I 

Epiphytes 

DIStributIOn: C: Contmuous, I: Interrupted, P: Patchy, S: Scattered 
Braun-Blanquet: 1: <1 (0.5), 2: 1 -5 (3), 3 :  6-25 (15.5), 4 :  26-50 (38), 5: 51-75 (63), 6 :  76-95 (85.5), 7: 96-100 (98) 

Ground cover: V: vascular vegetation, M: moss, B: bare ground & leaf litter, R: roots, branches & hollow logs, 
W: water 

Site No: 

Ground 
(%) 

V 

M 

B 

R 
W 

V 

M 

B 

R 

W 

V 

M 

B 

R 

W 

V I 
M 

B 

R 

W 

I 



2 1 3  

DEN SITE DATA SHEET 

Date: Farm Name: Trap/Poison site No: 

1 2 3 4 

Den Site ReI. Locn Qual ReI. Loen Qual ReI. Locn Qual ReI. Locn Qual 
abun abun abun abun 

Under live roots 
Under dead roots 
Dead hollow trunks 
Live hollow trunks 
Hollow stumps <2m 
In hollow logs 
Under hollow logs 
Under piles of 
branches 
Overgrown tree base 
Overgrown fallen 
loglbranch 
B urrows 
Tomos 
Gorse 
Flax 
Blackberry 
Toetoe 
Carex spp 
Raupo 
Dense around fern 
Underfin rocks 
Hollows in grass 
Recesses in bank 
Tree fern crowns 
Fallen punga leaves 
Epiphytes 
Cabbage trees 
Totara branches 
Buildings 

Relative abundance: A: Abundant, C: Common, F: Frequent, 0: Occasional , R: Rare 

Location: A:  Above ground, G: Ground level, B: Below ground 

Den quality: 
1 Very open to the environment, direct sunlight, rain and wind. No structure defining a refuge site, e.g. 

epiphytes, in foliage of trees. 
2 Open to direct sunlight, rain and wind. Some degree of protection offered by a ' structure' ,  e.g. hole in the 

side of a tree trunk in which animals can sit. 
3 Mostly protected but still allowing daylight to enter. Protected from the wind, rain and sunlight in all but 

extreme conditions. 
4 Totally protected, e .g.  hollow logs and long burrows 

I I 

I 
I 

i 
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