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Abstract 

The increasing awareness of concussion in sport and its effect on cognitive 

functioning has prompted the development of neuropsychological assessments 

specific to sport concussion. ImPACT is one of the more popular assessment 

batteries that purports to measure five areas of cognitive functioning, despite a 

scarcity of empirical support. The current study assessed ImPACT’s factor 

structure to determine whether its items are accurately measuring the five 

cognitive domains it claims to measure. Three exploratory factor analyses using a 

male adolescent sample were computed before the final model, consisting of eight 

items and two factors, representing Reaction Time and Memory, was reached. The 

structure was inconsistent with the current ImPACT scoring structure. This model 

was then successfully validated among a new sample, while a competing model 

found in the literature was not successfully validated. This model was then 

assessed for its longitudinal stability over a three year period in addition to its 

cross-country validity between South African and New Zealand samples. The 

former was supported, indicating individuals’ memory and reaction time as 

measured by ImPACT, is relatively stable over time and that ImPACT is not 

subject to practice effects after a one-year interval. It is of note that cross-country 

invariance was not supported, therefore emphasising the importance of having 

population-specific norms. Overall, the present study found that ImPACT, at this 

stage, has several limitations. It is recommended that, while ImPACT has the 

potential to be a useful tool, modifications need to be made to increase its 

efficacy.  
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Introduction 

Participation in sports is an important part of many cultures. Adolescents make up 

the majority of the sport-playing population, with 92% of New Zealand youth 

involved in club, school, and recreational sports and physical activity (Sport New 

Zealand, 2001). While there are many benefits that arise from sports participation 

there is also the risk of injury. The most common sporting injuries include sprains 

and strains (46.7%), followed by haematomas (23.9%), lacerations (8.8), fractures 

(5.7%), concussions (also known as mild traumatic brain injury; 4.5%), and 

dislocations (3.7%) (Bird, Waller, Marshall, Alsop, Chalmers & Gerrard, 1998). 

Concussion differs from other sporting injuries in that its symptoms are often 

subtle and ambiguous, making it difficult to identify. However it can be one of the 

most detrimental injuries, particularly if an athlete returns to play before fully 

recovering. Therefore it is important to have appropriate methods to assess sport 

concussion and track an individual’s recovery. Assessment of concussion can 

involve a range of methods, including self-report of symptoms, postural stability 

testing, and/or neuropsychological assessment. Neuropsychological assessment 

has been deemed the cornerstone of concussion management by the international 

concussion in sport consensus group (McCrory et al., 2009). However there is 

controversy about the utility and application of cognitive testing, particularly the 

modern computerised neuropsychological batteries used to assess concussion. 

Several studies have concluded there is not enough empirical evidence to support 

their current widespread use throughout the United States and other developed 

countries (Mayers & Redick, 2012a, 2012b).  

The present study sought to contribute to the current debate by evaluating the 

psychometric properties of a commonly-used sport concussion 

neuropsychological battery, the Immediate Post-concussion Assessment and 

Cognitive Test (ImPACT; ImPACTonline, 2013). ImPACT was developed in the 

United States and consists of six test modules which claim to assess five cognitive 

domains; Verbal Memory, Visual Memory, Reaction Time, Visual Processing 

Speed, and Impulse Control. While the developers claim that ImPACT is the most 

well-validated and empirically researched computerised concussion management 

tool, review of the literature indicates that investigation of its psychometric 

properties is far from extensive. This is an important observation as the utility of 
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neuropsychological assessment, such as ImPACT, relies upon demonstrable 

evidence that the measure accurately and reliably detects changes in cognitive 

function. In this way, clinicians can interpret measures and provide subsequent 

recommendations with confidence.  

The following chapter describes the current literature pertaining to the definition, 

symptoms, and potential long-term consequences of concussion. The second 

chapter reviews the literature on the various methods of concussion assessment, 

both traditional and contemporary methods. This is followed by the third chapter, 

which presents a description of the Cattell-Horn-Carroll theory of cognitive 

functions and how it can be used to inform the current study. This chapter also 

outlines the cognitive areas believed to be affected by concussion and reviews the 

associated literature. The fourth chapter describes empirical research pertaining to 

the psychometric properties of the ImPACT battery, in addition to explaining the 

concepts of reliability and validity within a context of evaluating a measure. The 

rationale and objectives for the current study are outlined in Chapter 5 within the 

context of the reviewed literature presented in previous chapters. The methods of 

both the collection and analysis of data are described in Chapter 6, followed by 

the results of the analysis in Chapter 7. Lastly, the results are discussed in Chapter 

8, alongside the study’s limitations, implications and conclusions.  
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Chapter 1: Concussion in Sport 

In recent years diagnosis, treatment, and management of sports concussion has 

gained widespread attention in the area of neuropsychology and sports medicine 

(Aubry et al., 2002; Green & Jordan, 1998; White et al., 2013).  The strong 

growth of interest was prompted by media coverage of high profile athletes 

sustaining a concussion that resulted in either death or forced retirement (Lovell & 

Burke, 2000; Lovell & Pardini, 2010; Lovell, 1999).  This highlighted the 

frequency of concussions among athletes at all levels. Earlier studies estimated the 

annual prevalence of sport concussion in the US to be 300,000 athletes (Thurman, 

Branche, & Sniezek, 1998).  More recent estimates however, suggest 1.6 to 3.8 

million sports concussions occur each year among US athletes (Langlois, Rutland-

Brown, & Wald, 2006).  The large variation in estimates reflects several 

developments. Firstly, previous estimates only included concussions that involved 

loss of consciousness (LOC; Langlois et al., 2006; Thurman et al., 1998).  

However, it is now known that LOC is not a necessary condition of concussion 

(Hinton-Bayre, Geffen, & Friis, 2004; McCrory et al., 2009).  Additionally, the 

rise in estimate reflects current consensus that many athletes fail to report 

concussive symptoms due to fear of being sidelined, absence of concussion 

management guidelines, or simply that symptoms are not recognised due to either 

lack of knowledge or as a result of their often rapid onset and spontaneous 

recovery (McCrea, Hammeke, Olsen, Leo, & Guskiewicz, 2004; Puga, 2011).  As 

awareness of concussion increases there is likely to be a parallel increase in the 

frequency of reported concussions.  

Sports concussion incidence is highest among high school athletes, with it being 

the second leading cause of concussion following motor vehicle accidents among 

15 to 24 year olds  in the US (Marar, McIlvain, Fields, & Comstock, 2012). 

Gessel, Fields, Collins, Dick, and Comstock (2007) reported that sport-concussion 

accounted for 8.9% of all high school athletic injuries, with its highest prevalence 

in the US reported in football, followed by lacrosse and soccer. US epidemiology 

studies acknowledge that concussion incidence among rugby players is high, but 

empirical data is lacking (Halstead & Walter, 2010; Marshall & Spencer, 2001). 

Notwithstanding, a US study found that, among high school club rugby players, 

16.1% of males and 14.3% of female rugby players sustained a concussion 
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(Collins, Micheli, Yard, & Comstock, 2008). This finding is comparable to an 

Australian study that found 13% – 17% of male athletes sustained one concussion 

per season (Hinton-Bayre et al., 2004). 

1.1 Concussion Defined  

Despite decades of research and numerous publications on concussion in sport, a 

universally accepted definition has yet to be developed (Lovell & Pardini, 2010). 

Sports concussion was first defined in 1966 by the Committee on Head Injury 

Nomenclature of Neurological Surgeons (Congress of Neurosurgeons, 1968). 

They defined concussion as “a clinical syndrome characterized by the immediate 

and transient post-traumatic impairment of neural function such as alteration of 

consciousness, disturbance of vision or equilibrium, etc., due to brain stem 

dysfunction” (Congress of Neurosurgeons, 1968, p. 392). This definition was 

limited as it did not account for concussions that resulted in persistent 

impairments, nor did it reflect the complexity of the disorder. As new research 

emerged, such as that indicating that neither brain stem dysfunction nor LOC 

were universal in concussion presentation, modifications in the definition were 

observed. For instance, in 1997 the American Academy of Neurology (AAN) 

defined concussion as “a trauma induced alteration in mental status that may or 

may not include a loss of consciousness” (American Academy of Neurology, 

1997, p. 582).  

Although these definitions were initially endorsed by influential parties, such as 

the American Medical Association, their ambiguity and simplicity soon became 

apparent. There was an obvious need for a more comprehensive understanding of 

sports concussion. An international sports concussion panel, consisting of the 

International Ice Hockey Federation, the Federation Internationale de Football 

Association Medical Assessment and Research Centre, and the International 

Olympic Committee Medical Commission, responded to this need by organising 

four international sports conferences to date (Aubry et al., 2002; McCrory et al., 

2005, 2009, 2013). The first conference was in Vienna (Aubrey et al., 2002) in 

2001, the next in Prague in 2004 (McCrory et al., 2005), and the third and fourth 

conferences were held in Zurich, during 2008 and 2012, respectively (McCrory et 

al., 2009,  2013). The Vienna conference provided detailed guidelines for the 
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diagnosis and management of concussion within the sporting arena. Subsequent 

conferences have made adjustments consistent with the evolving literature. 

The most recent definition of concussion put forward during the 2012 conference 

defines concussion as “a complex pathophysiological process affecting the brain, 

induced by biomechanical forces” (McCrory et al., 2013, p. 1). The authors 

further described four potential features of concussion:  

1. “Concussion may be caused by a direct blow to the head, face, neck, or 

elsewhere on the body with an “impulsive” force transmitted to the head” 

(McCrory et al., 2013, p. 1). 

2. “Concussion typically results in the rapid onset of short lived impairment 

of neurological function that resolves spontaneously. However, in some 

cases, symptoms and signs may evolve over a number of minutes to 

hours” (McCrory et al., 2013, p. 1). 

3. “Concussion may result in neuropathological changes, but the acute 

clinical symptoms largely reflect a functional disturbance rather than a 

structural injury and, as such, no abnormality is seen on standard structural 

neuroimaging studies” (McCrory et al., 2013, p. 2). 

4. “Concussion results in a graded set of clinical symptoms that may or may 

not involve loss of consciousness. Resolution of the clinical and cognitive 

symptoms typically follows a sequential course. However, it is important 

to note that in some cases symptoms may be prolonged” (McCrory et al., 

p. 2). 

This definition reflects current knowledge regarding concussion. Firstly, it 

emphasises the metabolic rather than structural dysfunction underlying concussive 

symptoms. Secondly, it highlights the complexity and the differing symptom 

presentations of the disorder.  However, the author acknowledges this is an 

ongoing process as there is still plenty that remains unknown regarding 

concussion (McCrory et al., 2009). 

1.2 Pathophysiology and Biokinetics of Concussion 

Concussions are induced primarily from acceleration, deceleration, or rotational 

forces inflicted on the brain caused by an impact to the body, primarily the head, 
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neck, or face (Barth, Freeman, Broshek, & Varney, 2001; Denny-Brown & 

Russell, 1940). Impact upon the head causing rotational acceleration by contact 

with another player or surface, as opposed to linear acceleration from direct 

impact from a ball or stick, is more likely to result in a concussion (Barth et al., 

2001). Studies using helmet-based sensors with football players indicate an 

average magnitude of 95g is required, but it is not guaranteed to cause a 

concussion (Brolinson et al., 2006; McCaffrey, Mihalik, Crowell, Shields, & 

Guskiewicz, 2007). That is equivalent to driving a car into a wall at 48km per 

hour (Barr & McCrea, 2011).  

Contrary to earlier beliefs that concussive symptoms were attributable to 

structural changes, it is now believed they are a result of metabolic changes (Giza 

& Hovda, 2001). This is consistent with the failure of Computed Tomography and 

Magnetic Resonance Imagining scans to identify any visible pathology following 

concussion (Bazarian, Blyth, & Cimpello, 2006). The metabolic dysfunction is not 

fully understood; however, based on rodent models, it is hypothesised that 

forceful impact on the brain triggers a cascade of biochemical reactions (Giza & 

Hovda, 2001; Katayama, Becker, Tamura, & Hovda, 2009).  Immediately 

following injury an unregulated release of the excitatory amino acid, glutamate, 

occurs in conjunction with a large efflux of potassium (K+), causing 

depolarisation of the neuronal cell and an influx of calcium (Ca²+).  The sodium-

potassium pump begins to work excessively in an effort to restore the membrane 

potential. As a result more energy is required. The pump uses energy in the form 

of adenosine triphosphate (ATP) which is produced from free energy released 

during glycosis; the process by which glucose is converted into pyruvate. Thus 

there is a large increase in glucose metabolism known as hypermetabolism (Giza 

& Hovda, 2001). This occurs in a setting of decreased blood flow. The disparity 

between glucose (i.e., energy) demand and supply is thought to underlie post-

concussive vulnerability. Following this initial reaction a period of 

hypometabolism occurs. During hypometabolism a persistent increase of calcium 

occurs that worsens the energy crisis and can lead to cell death. Furthermore, the 

hyperglycosis leads to an increase in lactate production. Accumulation of lactic 

acid causes neuronal dysfunction as it alters permeability of the blood-brain-

barrier causing fluid build up (i.e. edema) and membrane damage. In summary, 
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following concussion a cascade of metabolic changes are triggered and while the 

brain is attempting to restore balance it is in a vulnerable state.  

1.3 Signs and Symptoms 

There are a wide range of concussive symptoms; however, they generally fall into 

one of four categories; physical, cognitive, emotional, or sleep-related (Halstead 

& Walter, 2010). Examples of each are presented in Table 1. Presenting 

symptoms vary greatly between individuals, depending on the biomechanical 

forces involved, the location of the affected brain areas, and any history of 

concussion (Lovell & Pardini, 2010). Athletes may present with only one 

symptom or a constellation of several symptoms. These symptoms may appear 

immediately or minutes to hours later. Thus, following a suspected concussion it 

is essential that all common symptoms are rigorously assessed many times in the 

post-concussion period (McCrory et al., 2009).  

Common on-field cognitive symptoms include confusion, disorientation, and 

amnesia (Fazio, Lovell, Pardini, & Collins, 2007). Both retrograde amnesia 

(memory loss of events prior to the incident) and anterograde amnesia (loss of 

memory of subsequent events) are possible concussive symptoms and are 

proposed to be a good clinical indicator of concussive severity (Cantu, 2001). 

Many individuals believe loss of consciousness (LOC) is the hallmark symptom 

of concussion, yet it occurs in only 10% of sport concussions (Bailes, 2009). LOC 

has been hypothesised to be indicative of severe concussion and long recovery 

periods (Cantu, 2001; Halstead & Walter, 2010). However, a study investigating 

the relationship between LOC and post-injury neuropsychological performance 

found no difference in test scores between concussed athletes with LOC, and 

those without LOC (Lovell, Iverson, Collins, McKeag, & Maroon, 1999).  

Therefore the validity of LOC as an indicator of concussive severity is 

questionable.  

Although immediate motor symptoms are rare, tonic posturing (stiffening) and 

convulsive movement, although benign, have been known to occur (McCrory et 

al., 2009). Common physical symptoms include nausea, balance and visual 

problems, and sensitivity to light and noise (Duff, 2009). Other possible 

symptoms include changes in emotional reactivity and sleep patterns. The most 
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common concussive symptom is headache, reported in 70% of cases (Collins et 

al., 2003). Headaches may develop immediately or in the following several 

minutes to hours. They are described as a sensation of pressure in the skull either 

localised or dispersed. Post-concussive headaches are indicative of additional 

post-concussive difficulties, and their onset is often correlated with memory 

problems and delayed reaction response (Collins et al., 2003).  

Although these symptoms are often brief and spontaneously resolve, some 

athletes may experience ongoing cognitive difficulties (McCrory et al., 2009). 

Although symptoms typically resolve spontaneously within 14 days (Halstead & 

Walter, 2010), studies have found that in some cases the cognitive consequences 

of concussion can persist up to three months post-concussion (McCrea et al., 

2013) or even two years post-concussion (Rees & Bellon, 2007).  

 

Table 1 
Common Concussive Signs and Symptoms 
 
Physical Cognitive Emotional Sleep 
 
Headache 
Nausea/vomiting 
Balance problems 
Visual problems 
Fatigue 
Sensitivity to light 
Sensitivity to 
noise 

 
Feeling mentally "foggy" 
Difficulty concentrating 
Difficulty remembering  
Forgetful of recent 
information 
Confusion  
Slow response to 
questions 

 
Irritability 
Nervousness 
Increased 
emotionality 

 
Drowsiness 
Decreased sleep 
Difficulty falling 
asleep  

 

 

1.3.1 Cumulative Effects.  

Concussion has been referred to as a cumulative disorder in that the effects 

sustained by each concussion are additive (Guskiewicz et al., 2003; Iverson et al., 

2004). For instance, those who have had a previous concussion are more likely to 

sustain another concussion in addition to demonstrating longer recovery periods 
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compared to athletes with no history of concussion (Guskiewcz et al., 2003). 

Those who suffer from multiple concussions are at risk of developing subtle 

chronic cognitive deficits (Moser, Schatz, & Jordan, 2005; Wall et al., 2006). For 

example, Moser and colleagues (2005) found that high school athletes with a 

history of two or more concussions produced similar scores on 

neuropsychological tests to those without a history of concussion but who had 

been concussed within the previous week. They also found that those with two 

concussions had significantly lower grade-point averages than students without a 

history of concussion. Additionally, Iverson and colleagues (2004) found that high 

school athletes with three or more concussions demonstrated more concussive 

symptoms and performed worse on a memory task than athletes with no 

concussive history during pre-season. Collins and colleagues (2002) compared on-

field concussion presentation between athletes with no history of concussion and 

athletes who had sustained three or more concussions previously. They found that 

athletes with a history of concussion were 9.3 times more likely than the non-

concussive history group to demonstrate three to four markers of concussive 

severity, including LOC, anterograde or retrograde amnesia, and confusion.  

These studies suggest that not only are the effects of concussion cumulative, but 

that they have the potential to be long-lasting. Guskiewicz and colleagues (2005) 

considered the relationship between previous concussion and the likelihood of 

developing mild cognitive impairment (MCI) and Alzheimer’s disease in a group 

of retired football players with a mean age of 53.8 years. They found an 

association between recurrent concussion, clinically diagnosed MCI and self-

reported memory impairments. Those with three or more concussions were five 

times more likely to receive a MCI diagnosis and three times more likely to report 

significant memory impairments compared with retirees with no concussive 

history. Concussive history was not associated with the presence of Alzheimer’s 

disease, however, it appeared that football retirees had earlier onset of 

Alzheimer’s disease than the general male population. 

1.3.2. Long-Term Effects. 

Long-term effects of concussion appear predominantly in cognitive and emotional 

domains (Halstead & Walter, 2010). Residual cognitive symptoms include 
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memory problems, slowed thinking and reaction time, impaired attention and 

judgement, and difficulty problem solving. Emotional problems that are known to 

persist include irritability, restlessness, depression, anxiety, and personality 

changes (Duff, 2009). The fourth volume of the Diagnostic and Statistical Manual 

of Mental Disorders (DSM-IV TR; American Psychiatric Association, 2000) 

defines Post-Concussion Syndrome as being a minimum of three months duration 

of three or more of the following symptoms; fatigue, disordered sleep, headache, 

vertigo/dizziness, irritability or aggressiveness, anxiety or depression, personality 

changes, and/or apathy. This diagnosis, however, fails to recognise cognitive 

symptoms, despite neuropsychological testing demonstrating that the most 

common difficulties are often found in memory and attention (Moser et al., 2007). 

While there remains much more to learn about the long-term effects of 

concussion, preliminary data support the notion that concussion, even at the non-

elite level, has the potential to result in long-term consequences (Centre for the 

Study of Traumatic Encephalopathy, 2009).  

1.3.3. Second Impact Syndrome. 

If athletes return to physical activity before their symptoms are completely 

resolved, existing post-concussive symptoms could be exacerbated (Majerske et 

al., 2008; Mayers, 2008), or a rare condition known as Second Impact Syndrome 

(SIS; Lovell & Collins, 2002) may occur. Second Impact Syndrome is when brain 

swelling occurs due to increased volume in extravascular compartments. 

Following a second impact the brain’s ability to regulate its blood supply is 

compromised (Cantu, 1998; McCrory & Berkovic, 1998). Impairment of vascular 

regulation results in excessive blood supply to the brain, causing intracranial 

pressure which in turn can cause cistern obliteration. This is when the brain shifts 

across structures within the skull such as the flax cerebri, the tentorium cerebelli, 

and the foramen magnum. Cistern obliteration places extreme pressure on parts of 

the brain, cutting off blood supply, which can be fatal.  

Initially when SIS occurs the athlete does not lose consciousness however, they 

appear dazed, remaining on their feet for 15 seconds to 1 minute, and then 

collapsing, appearing semi-comatose with rapidly dilating pupils, loss of eye 

movement, and respiratory failure (Cantu, 1998). Adolescents appear to be at the 
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highest risk for SIS, as all reported cases are of athletes under the age of 20 years 

(McCrory, 2001). Furthermore, severe football head injuries are three times more 

likely to occur in high school athletes than college athletes (Boden, Tacchetti, 

Cantu, Knowles, & Mueller, 2007). The reasons for the greater vulnerability in 

adolescents are unknown. However, it has been hypothesised that adolescents, 

compared to adults, have weaker necks, thus the impact to the body results in 

greater force being exerted onto the brain (Powell & Barber-Foss, 1999). Further, 

adolescent brains are still developing and injury may impede this developmental 

process.    

Schneider (1973) was the first to describe the syndrome when he detailed the case 

of two athletes who died from minor head injuries while recovering from a 

previous concussion. Saunders and Harbaugh (1984) later reported the same 

scenario in a 19-year-old football player and coined the term SIS. Second Impact 

Syndrome results in fatality for 50% of sufferers and causes long-term brain 

damage in survivors. There is debate as to whether a second impact is necessary 

as there are documented cases in which no second hit was observed, yet the 

athlete still died (McCrory, 2001). It is suggested the second blow can be minor 

and often not observed (Cantu, 1998). For instance a blow to the chest, often 

common in contact sports, can indirectly affect the brain.  

1.4. Summary 

In summary, awareness of concussion in the sporting arena and the potential 

negative impact on functioning is slowly increasing (Green & Jordan, 1998). 

Though a universal definition is still lacking and the underlying pathological 

process is yet to be fully understood, there is a consensus regarding the general 

areas of impairment following concussion (McCrory et al., 2013). Concussive 

symptoms can occur in the physical, cognitive, emotional, and sleep-related 

domains. While these symptoms often resolve spontaneously, there is potential for 

long-term consequences, usually within the cognitive domain (McCrea et al., 

2013; Rees & Bellon, 2007). Returning to play prematurely can exacerbate 

symptoms and increase the likelihood of long-term impairment. Although our 

understanding of concussion in the sporting arena remains in its infancy, research 
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in this area is proliferating, leading to gains in our understanding of sport 

concussion.  
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Chapter 2: Assessment and Management of Sport Concussion 

There are numerous methods and tools available for the assessment and 

management of sports concussion, with no one method prevailing as the gold 

standard (Halstead & Walter, 2010). These methods and tools have evolved over 

the years as new research emerged and they will continue to do so as long as 

research in this field continues. Initial attempts to assess concussion were in the 

form of grading scales, which classified concussion by severity levels and the 

level of severity informed recovery guidelines (Johnston, McCrory, Mohtadi, & 

Meeuwisse, 2001; Meehan & Bachur, 2009). As research emerged that 

highlighted the large individual variation in concussion presentation, assessment 

moved from group-based grading scales to more individualised, multi-method 

forms of assessment and return-to-play protocol (McCrory et al., 2005; Meehan & 

Bachur, 2009). Individualised assessment often involves self-report of symptoms, 

neuropsychological testing, and, in some cases, postural stability assessment 

(McCrory et al., 2009). In this chapter past and present forms of concussion 

assessment and management are reviewed.  

2.1 Traditional Methods of Concussion Assessment  

2.1.1 Grading and dichotomous scales.  

Traditionally, grading scales were the predominant method for assessing and 

managing concussion in sport (Meehan & Bachur, 2009). Over 25 concussion 

grading scales have been developed, and most evolved from expert opinion rather 

than empirical evidence (Johnston, McCrory, Mohtadi, & Meeuwisse, 2001). 

They use self-report symptoms and explicit player observations, such as loss of 

consciouness (LOC), to deduce concussion severity. The three most commonly 

used grading scales were those developed by Cantu (2001), the Colorado Medical 

Society (Schneider & McGrew, 2012), and the American Academy of Neurology 

(AAN; Kelly & Rosenberg, 1997). All these scales consist of three levels of 

concussion severity but differ in their classifying indicators.  

Cantu’s guidelines were first developed in 1986 (as cited in Halstead & Walter, 

2010) and then updated in 2001. They classify a concussion with no LOC and less 

than 30 minutes of symptoms as Grade I. A Grade II concussion is defined by 
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LOC for less than 1 minute and/or amnesia present for 30 minutes, but no longer 

than 24 hours. A grade III concussion is diagnosed if LOC persists longer than 1 

minute and/or post-concussive symptoms are present for longer than 1 week. The 

Colorado Medical Society’s guidelines suggest only confusion is present in a 

Grade I concussion, both confusion and amnesia are present in a Grade II 

concussion, and Grade III involves confusion, amnesia, and LOC (Schneider & 

McGrew, 2012). The AAN grading scale (Kelly & Rosenberg, 1997) is a revised 

version of the CMS scale (Colorado Medical Society, as cited in Halstead & 

Walter, 2010). Confusion lasting less than 15 minutes with an absence of LOC is 

indicative of a Grade I concussion. In a Grade II concussion these symptoms last 

longer than 15 minutes. If LOC occurs, a Grade III concussion is diagnosed. The 

grade of concussion was used to inform RTP decisions. For example if a Grade I 

concussion was diagnosed, according to Cantu’s grading scale, the player was 

allowed to return to play if they remained asymptomatic for a period of one week 

(Halstead & Walter, 2010).  This was a blanket recommendation for all players 

classified as Grade I, without considering individual factors such as gender, age, 

and number of prior concussions.  

The failure of grading scales to consider individual differences appeared to hinder 

their validity. For instance, it was demonstrated that the hypothesised recovery 

time based on the AAN (1997) and Colorado grading system guidelines was 

largely incorrect (McClincy, Lovell, Pardini, Collins, & Spore, 2006). If return-to-

play decisions were based solely on the grading system guidelines, 80% of 

concussed athletes in McClincy’s (2006) sample would have returned to play 

prior to cognitive symptoms being resolved. Furthermore, most grading scales use 

LOC as one of their main indicators of concussion grade (Cantu, 2001). However, 

inferring the duration of LOC is largely guesswork, as by the time the team 

physician comes in contact with the player they could have already lost 

consciousness for some time or had lost consciousness but have since regained 

consciousness.  

More recently, a dichotomous classification scale was developed, diagnosing 

concussion as either simple or complex (McCrory et al., 2005). A simple 

concussion resolved within 10 days whereas a complex concussion was defined as 

either a concussion in which symptoms persisted for longer than 10 days or if 
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concussive convulsions, prolonged LOC, and/or multiple previous concussions 

were present. Hence, the simple/complex classification is diagnosed 

retrospectively. However, recommendations from the 2008 Concussion in Sport 

Conference suggested that all classification/grading scales be abandoned given 

their lack of empirical support and their failure to consider individual factors 

(McCrory et al., 2009). For instance, the scales did not account for the fact that 

some individuals recover faster, are more susceptible to concussion, or report 

more symptoms than others (Makdissi, 2009). It is probable that the lack of 

consideration of individual factors contributes to the poor validity of grading 

scales and dichotomous classification systems.  

2.2 Individual differences in the presentation and recovery of concussion 

Growing evidence indicates that age is an individual difference that requires 

consideration. Adolescents and children have been found to recover slower from 

concussion than adults. In a large sample (N = 1631) of college football players, 

McCrea and colleagues (2004) found the cognitive effects of concussion, 

evidenced by neuropsychological testing, subsided within 5 to 7 days post-

concussion, whereas in a sample of high school students 14 days post-concussion 

was needed for most athletes to return to their cognitive baseline performance 

(McClincy et al., 2006). Furthermore, Field, Collins, Lovell, and Maroon (2003) 

compared recovery rates of high school and college athletes to healthy controls. 

They found college athletes’ cognitive performance matched that of healthy 

controls at day three post-concussion. However, high school athletes continued to 

perform significantly worse than age-matched controls at seven days post-

concussion, suggesting that younger age is associated with slower recovery time. 

The prolonged deficit observed in high school athletes versus college athletes is 

despite college athletes sustaining more severe concussions throughout the season. 

Lastly, a study comparing recovery times of National Football League (NFL) and 

high school players found that NFL players recovered within a week with most 

showing no symptoms of concussion at two days after the injury. By contrast, 

high school athletes continued to experience difficulties in reaction time and 

processing speed (Pellman, Lovell, Viano, & Casson, 2006), suggesting they take 

longer to recover than adults.  
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The underlying mechanisms of prolonged recovery observed in younger 

individuals compared to adults are unclear; however, several hypotheses have 

been proposed. Firstly, there may be a selection bias in that high school athletes 

who are more prone to concussion or who recover slower do not go on to play 

during their adult years (Pellman et al., 2006; Pellman, Lovell, Viano, Casson, & 

Tucker, 2004). There is also evidence of concussion resulting in more diffuse and 

prolonged cerebral swelling in younger individuals compared to adults (Lang, 

Teasdale, Macpherson, & Lawrence, 2009; Pickles, 1950). And lastly, it appears 

children’s brains are 60 times more sensitive to glutamate, an excitatory 

neurotransmitter excessively released during the immediate post-concussion stage 

(McDonald & Johnston, 1990). All of these are potential explanations for the 

prolonged recovery observed in younger individuals.  

Gender is also a potential source of individual variation in the presentation of 

concussion, particularly among high school athletes (Dick, 2009). It has been 

reported that adolescent girls are almost twice as likely to sustain a concussion 

compared to boys in soccer, ice hockey, basketball (Dick, 2009), and 

softball/baseball (Powell & Barber-Foss, 1999). However, the incidence of 

concussion among college-aged soccer (Green & Jordan, 1998) and basketball 

players (Echemendia, Putukian, Mackin, Julian, & Shoss, 2001a) was invariant 

across genders. The mechanisms by which gender influences the presentation of 

concussion, among adolescents at least, remain unknown.   

Concussion history has also been noted as a source of individual variation, which 

has been linked to concussion risk and duration of post-concussion recovery 

(Guskiewicz et al., 2003). As described in the previous chapter, two or more 

concussions appear to increase an individual’s risk of sustaining subsequent 

concussions. If a subsequent concussion does occur, the symptoms are more 

severe and recovery time is longer than an individual with a first time concussion 

(Guskiewcz et al., 2003).  

2.3 Individualised Assessment and Management 

Modern sport concussion assessment and management adopts an individualised, 

multi-method approach, typically consisting of self-reported symptoms, neuro-

cognitive functioning, and/or postural stability (Broglio & Puetz, 2008).  
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2.3.1 Self-report symptom scales 

The assessment of self-report symptoms is often completed with checklists or 

scales and has been a consistent component of concussion management, preceding 

postural and neuropsychological assessment (Meehan & Bachur, 2009). Self-

report scales/checklists measure an individual’s perceived symptoms at a specific 

point in time and have repeatedly demonstrated their ability to detect concussion 

(Macciocchi, Barth, Alves, Rimel, & Jane, 1996; McCrea, Guskiewicz, Marshall, 

& et al, 2003). They are the most practical option for concussion screening given 

their simplicity to administer, both in regards of resources and time.  

Numerous concussion symptom scales exist, but most originate from six core 

scales (Alla, Sullivan, Hale, & McCrory, 2009). These include the Pittsburgh 

Stellers Post-Concussion Scale (17-items; Maroon, 2000), the Post-Concussion 

Symptom (PCS) Questionnaire (10-items; Cameron, Yunker, & Austin, 1999), the 

Concussion Resolution Index (CRI; 15-items; Erlanger, Feldman, & Kutner, 

1999), the Signs and Symptom Checklist (34-items; Pellman, Lovell, Viano, 

Casson, & Tucker, 2004), the Sports Concussion Assessment Tool (SCAT; 25-

items; McCrory et al., 2005), and the Concussion Symptom Inventory (CSI; 12-

items; Randolph et al., 2009).  

The Immediate Post-concussion Assessment and Cognitive Test (ImPACT) 

battery used in the current study includes a symptom scale that is a modified 

version of the Pittsburgh Steelers Post-Concussion Symptom Scale (PCSS) which 

was originally developed in the late 1980s (Lovell et al., 2006). The modified 

version used in ImPACT is referred to the Post-Concussion Scale (PSC) and 

consists of 22 items, as opposed to the 17 original items (Lovell et al., 2006). 

Athletes indicate which symptoms, if any, they have experienced over the past 72 

hours in addition to indicating the severity of each symptom on a 7-point Likert 

scale. The PCSS is currently used to monitor symptoms on the sideline and for 

subsequent follow up. Factor analysis of the PCS, employing 11 to 18 year olds, 

indicated a four factor structure with items measuring somatic, cognitive, sleep, 

and affective factors (Pardini et al., 2004). The PCSS has demonstrated robust 

internal consistency, with the Cronbach alpha reported to be .88 to .94 for a 

control group and .83 for a concussed group (Lovell et al., 2006).  
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2.3.2 Postural stability assessment.  

Postural stability assessment appears to be the least commonly used method of 

assessing concussion, perhaps because it is time-consuming to administer and 

assesses only one symptom of concussion. Impairment in postural control has 

been found following concussion. It is believed to result from a sensory 

integration deficit in the balance mechanism (Guskiewicz, Riemann, Perrin, & 

Nashner, 1997; Guskiewicz, Ross, & Marshall, 2001). Although there is limited 

research on postural controls associated with concussion, Broglio and Puetz 

(2008) found concussion had a large effect on postural control immediately after 

(d = -2.56) as well as 14 days post-concussion (d = 1.16). Disturbances in balance 

usually resolve within 3-5 days post-injury (McCrea, et al., 2003). A commonly 

used postural control assessment is the Balance Error Scoring System (BESS, 

Guskiewicz, 2003). This consists of a series of stances, including double and 

single-legged stances on a firm, foam, or tremor box surface. Participants attempt 

to hold each stance for 20 seconds with their hands on their hips and eyes closed 

(Wilkins, Valovich McLeod, Perrin, & Gansneder, 2004). 

2.3.3 Neuropsychological assessment  

Neuropsychological testing is the third method often used in concussion 

assessment. Neuropsychological tests are tasks designed to measure specific 

cognitive or psychological functions that are typically known to be associated 

with particular brain structures or pathways (Lezak, 1995). Neuropsychological 

testing has been termed the cornerstone of concussion management by the 

Concussion in Sport Concensus Group (McCrory et al., 2009), given its ability to 

detect subtle effects of concussion in the absence of self-reported symptoms (Van 

Kampen, Lovell, Pardini, Collins, & Fu, 2006). Although neuropsychological 

testing provides an objective measure of brain function, it is only one component 

of concussion assessment and should not be independently used to diagnose 

concussion or inform return-to-play decisions (Ellemberg, Henry, Macciocchi, 

Guskiewicz, & Broglio, 2009). 

Barth and colleagues (1989) were the first to investigate the utility of 

neuropsychological testing in detecting concussion within the sports arena. They 

conducted a large study, employing a baseline model in which they tested athletes 
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pre-season and post-concussion. They found neuropsychological testing was 

effective at detecting concussion. In 1990, Lovell adapted Barth's baseline model 

of assessment and implemented it as part of the Pittsburgh Steelers’ concussion 

management programme (Lovell, 1999). This marked the first clinically-

orientated project in professional sport to use neuropsychological testing to assess 

concussion and contribute to return-to-play decisions. The NFL took notice of 

Lovell’s initiative and in 1994 created the Mild Traumatic Brain Injury committee 

(Pellman, Viano, Tucker, Casson, & Waeckerle, 2003). Initially 

neuropsychological testing was voluntary within the NFL; however in 2007 

baseline and post-injury neuropsychological assessment was mandated for all 

NFL athletes (Lovell & Solomon, 2011).  

The use of neuropsychological testing for sports concussion gradually spread to 

other sporting codes such as ice hockey (Lovell & Burke, 2000), automobile 

racing (Olvey, 2002), soccer (Matser, Kessels, Lezak, Jordan, & Troost, 1999), 

rugby (Shuttleworth-Edwards & Radloff, 2008), skiing (Lovell & Solomon, 

2011), and Australian Rules football (Makdissi et al., 2001). At present almost all 

professional sports teams incorporate neuropsychological testing into their 

concussion management procedures (Lovell & Solomon, 2011; Pellman et al., 

2006; Van Kampen et al., 2006). At lower levels however such as in high schools, 

where concussion is most prevalent, neuropsychological testing is rare. This is 

perhaps due to financial limitations and lack of knowledge regarding potential 

consequences of concussion.  

The NFL battery consisted of mainstream neuropsychological tests which, instead 

of examining full cognitive function, focused on specific areas believed to be 

affected by concussion, such as attention, memory, and processing speed 

(Ellemberg et al., 2009). Each test and the cognitive area assessed are listed in 

Table 2. The traditional paper and pencil neuropsychological tests that comprised 

the NFL battery were resource intensive and time-consuming as they required a 

neuropsychologist to administer them to each athlete individually and manually 

score each test (Lovell & Solomon, 2011). Furthermore, some of the tests such as 

Digit Span were insensitive to the subtle effects of concussion (Ellemberg et al., 

2009). Additionally, there were no alternative forms of each subtest, therefore 
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practice effects were prominent (Strauss, Sherman, & Spreen, 2006), meaning that 

validity and reliability were weak. 

 

Table 2  

Areas of Cognition Assessed by Individual Tests that comprise the National 
Football League Battery  

Note. HVLT-R = Hopkins Verbal Learning Test – Revised; BVMT-R = Brief 
Visuospatial Memory Test – Revised; TMT = Trail Making Test; COWA = 
Controlled Oral Word Association; WAIS = Wechsler Adult Intelligent Scale.  

 

2.3.3.1 Computerised neuropsychological screening.  

To address the limitations of paper and pencil tests, computerised 

neuropsychological tests specific to sports concussion were developed (Patel, 

Shivdasani, & Baker, 2005). There are many advantages of computerised testing. 

They do not require a neuropsychologist to administer them, thus they are cost 

effective as they can be administered to a large group at the same time (Patel et 

al., 2005). Computerised testing ensures standardised administration, which 

increases reliability. Furthermore, they provide a more accurate measure of 

reaction time, measuring up to 0.01 of a second. They can randomise test items 

and generate alternative forms of the same test, minimising practice effects in 

Test    Areas assessed      
HVLT-R Verbal memory (learning, delayed, 

recognition) 
BVMT-R Visual memory  (learning, delayed, 

recognition) 
TMT-A Visual scanning & processing 

speed 
TMT-B Visual scanning, processing speed, & 

cognitive flexibility  
COWA Verbal fluency  

 WAIS;  
 Symbol Search 

Visual processing speed, perceptual 
organisation, & planning 

 Digit Symbol Coding  Psychomotor processing speed  
          Digit Span    Working memory & complex attention 



 

 
 

31 

repeat administrations. Lastly, most computerised tests automatically process raw 

scores into standardised scores (Lovell & Collins, 2002), removing the need for 

manual test scoring. Although the benefits over paper and pencil testing are vast, a 

disadvantage of computerised testing is that it does not allow for the administrator 

to observe the idiosyncratic behaviours during testing that often provide valuable 

information.  

Several computerised neuropsychological assessment programmes exist. The most 

commonly used are the Automated Neuropsychological Assessment (ANAM; 

Cernich, Reeves, Sun, & Bleiberg, 2007), Cogstate Sport (Makdissi et al., 2001), 

Headminders Concussion Resolution Index (CRI; Erlanger et al., 1999), and 

Immediate Post-concussion Assessment and Cognitive Testing (ImPACT; 

ImPACTonline, 2013). The ANAM was initially developed by the US 

Department of Defence to assess the effects of chemical exposure and 

environmental stressors on military personal (Cernich et al., 2007). The ANAM 

Sports Medicine Battery (ASMB) is a subtest within the ANAM that is sensitive 

to the cognitive effects of concussion and has been used by the US military 

academy in their concussion management programme since 1999 (Reeves, 

Winter, Bleiberg, & Kane, 2007). The ASMB has demonstrated adequate test-

retest reliability and internal consistency in addition to validity when compared to 

traditional paper and pencil neuropsychological tests (Cernich et al., 2007).  

The Concussion Resolution Index (CRI; Erlanger et al., 1999) was developed by a 

company named HeadMinder, to be used specifically in the sports arena. It has a 

three-factor structure, measuring processing speed, simple reaction time, and 

complex reaction time. It too has demonstrated adequate reliability and validity 

and is currently used by many athletic organisations at different levels (Schatz & 

Zillmer, 2003).  

Cogstate was developed in Australia, originally validated on 300 professional 

Australian Rules football players and hundreds of control participants (Makdissi 

et al., 2001). It too has demonstrated adequate reliability and validity (Schatz & 

Zillmer, 2003), but there is, however,  a paucity of normative data (Collie, Darby, 

& Maruff, 2001).  
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ImPACT was created in the US by Mark Lovell and Joseph Marron (ImPACT 

online, 2013). It was the first computerised test battery developed to assess sport 

concussion and appears to be the most widely-used battery. The developers of 

ImPACT claim it to be the most scientifically validated neuropsychological 

computerised assessment for sport concussion (ImPACTonline, 2013). ImPACT 

has been used with high school, college, and professional level athletes (Lovell et 

al., 2006). It was developed to address limitations of the traditional paper-and-

pencil NFL battery. It was initially developed as a desktop program in 2000, with 

an online version released in 2008 (Elbin, Schatz, & Covassin, 2011a). ImPACT 

follows a baseline model in which athletes act as their own controls, which 

individualises concussion assessment. Athletes complete the ImPACT battery pre-

season and this acts as a baseline measure to which post-concussion testing is 

compared. This model has been evaluated and supported as an effective method of 

assessing cognitive impairment following a concussion (Barth et al., 1989; 

Iverson, Brooks, Collins, & Lovell, 2006; Schatz & Zillmer, 2003).  

ImPACT consists of three main sections; demographic and health history 

information, a symptom inventory, and the neuropsychological test modules 

(ImPACTonline, 2013). The symptom inventory is the PCS mentioned previously 

in which athletes indicate on a 7-point Likert scale the severity of any symptoms 

they have experienced in the past 72 hours. From this a total symptom score is 

calculated. There are six different test modules (Word-memory, Design-memory, 

X’s and O’s, Symbol Match, Colour Match, and Three Letters) which were 

derived from traditional neuropsychological tests included in the NFL battery 

(ImPACTonline, 2013). Scores from the six test modules combine to produce five 

composite scores; Verbal Memory, Visual Memory, Visual Motor Speed, 

Reaction Time, and Impulse Control. A total score is not produced as test 

developers believe it would most likely be insensitive to concussive symptoms as 

not all concussed athletes will show decline in all cognitive areas assessed 

(ImPACTonline, 2013). The content of the ImPACT battery is discussed in more 

detail in the methodology section.  
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2.4 Summary  

The way in which sport concussion is assessed and managed has changed over the 

years due to gains in our knowledge regarding its presentation and course of 

recovery. Assessment has shifted away from a simple, generalised approach 

toward a more individualised, multi-method assessment (McCrory et al., 2005; 

McCrory et al., 2009). The Concussion in Sport Consensus group have suggested 

that assessment should include both a self-report of symptoms in addition to 

neuropsychological testing (McCrory et al., 2009). To increase efficiency of 

administration, neuropsychological testing is now computerised and can be 

completed online. The ImPACT battery includes both neuropsychological tests 

and a self-report symptom scale. It appears to be the most widely used sport 

concussion battery. Notwithstanding, it is not without its own limitations, 

particularly regarding the lack of theoretical foundations and empirical research 

supporting its accuracy and reliability in detecting the cognitive effects of 

concussion. Hence the following two chapters focus on potential theoretical 

underpinnings and psychometric properties of the ImPACT battery.  
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Chapter 3: The Theoretical and Empirical Underpinnings of Concussion 

Induced Cognitive Impairment 

Previous chapters have reviewed the literature pertaining to concussion in sport 

and, more specifically, the neuropsychological assessment of concussion within 

the sporting arena. The neuropsychological assessment instrument of interest in 

the current study is the Immediate Post-concussion Assessment and Cognitive 

Test (ImPACT). Assessment tools, such as ImPACT should be grounded in theory 

(Buckendahl & Plake, 2006), yet the theoretical foundation underpinning the 

development of ImPACT could not be located in the literature or in ImPACT’s 

technical manual (ImPACTonline, 2013). Although the current study is a 

psychometric evaluation, it is an evaluation of theoretical constructs and thus a 

theory is needed to guide the inquiry in addition to providing a framework from 

which to interpret the results. The Cattell-Horn-Carroll theory was chosen given 

its robust support in the literature. It provides a taxonomy for understanding and 

studying cognitive constructs which are, by nature, inter-related and sometimes 

hard to separate (Keith & Reynolds, 2010). However, it is comprehensive and 

inclusive of all academic and cognitive abilities, all of which are not affected by 

concussion. Thus one must also look to empirical research regarding the specific 

domains affected by concussion to guide and provide a context for the current 

study (Buckendahl & Plake, 2006).  

3.1 The Cattell-Horn-Theory of Intelligence  

The Cattell-Horn-Carroll (CHC) Theory is currently the most comprehensive and 

empirically supported psychometric theory of cognitive and academic abilities 

(Keith & Reynolds, 2010; McGrew, 2005, 2009). It was originally developed 

from the work of McGrew (1997) and represents a taxonomy regarding the 

structure of cognitive abilities. Keith and Reynolds (2010) claim that most 

recently developed or revised intelligence tests are based on CHC theory, or at 

least acknowledge it in their development. For example, the Woodcock-Johnson 

test (2001) of cognitive abilities is explicitly grounded in CHC theory (Woodcock, 

McGrew, & Mather, 2001; Woodcock, McGrew, Mather, & Schrank, 2003) and 

the highly regarded Wechsler intelligence batteries, which were originally 

atheoretical, have referenced the CHC theory in their more recent test manuals 
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(Wechsler, 2003, 2008). Furthermore, confirmatory factor analyses of the 

Woodcock-Johnson test of cognitive abilities (McGrew, Werder, & Woodcock, 

1991; McGrew & Woodcock, 2001), the Stanford-Binet test (Roid, 2003), the 

Differential Ability Scale (Sanders, McIntosh, Dunham, Rothlisberg, & Finch, 

2007; Stone, 1992), and the Wechsler tests (Chen, Keith, Chen, & Chang, 2009; 

Keith, Fine, Taub, Reynolds, & Kranzler, 2006) have identified structures which 

are compatible with the CHC theory. For example, McGrew and Woodcock 

(2001) completed several confirmatory factor analyses using the Woodcock-

Johnson III that compared the CHC model to other models of intelligence. They 

found that the CHC theory, compared to other models, provided a superior fit to 

the data.  

The CHC theory evolved from McGrew’s (1997) attempt to resolve the 

differences between Cattell-Horn’s (1991) Gf-Gc theory and Carroll's (1993) 

Three-Stratum theory. The result was an amalgamation of the two theories of 

intelligence and became known as the Cattel-Horn-Carroll (CHC) theory 

(McGrew, 1997). The traditional Gf-Gc theory postulated that intelligence 

incorporates approximately 100 abilities that interact in varying ways in different 

people and that these abilities separate into two broad forms of intelligence; 

Crystallised Intelligence (Gc) and Fluid Intelligence (Gf). Cattell (1941) stated 

that Crystallised Intelligence refers to acquired knowledge, often evidenced by 

one’s vocabulary and general knowledge. Fluid intelligence on the other hand 

refers to an individual’s ability to reason, think logically, and problem-solve. 

Cattell claimed that Crystallised Intelligence continues to increase with age, 

whereas Fluid Intelligence increases until approximately age 20 at which point it 

begins to gradually decline. Cattell’s hypothesis continues to be supported by 

current literature (e.g., Brevik, 2012; Cavanaugh & Blanchard-Fields, 2006; 

Rogers, Kang, & Miller, 2007).  Horn (1965) later expanded on Cattell’s (1941) 

original dichotomous model to include eight forms of intelligence, Visual 

Perception or Processing (Gv), Short-term Memory (Gsm), Long-term Memory  

(Glr), Speed of Processing (Gs), Auditory Processing (Ga), Reaction Time and 

Decision Speed (Gt), Quantitative Ability (Gq), and Broad Reading/Writing 

Ability (Gw). This expanded theory is now known as the Cattell-Horn Gf-Gc 

theory of intelligence (Horn, 1991) and is depicted in Figure 1.  
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The Three Stratum Theory resulted from Carroll’s (1993) extensive and 

systematic exploratory factor analysis (EFA) of over 460 cognitive ability data-

sets. His research was innovative as it was the first empirically-based taxonomy of 

cognitive ability presented in a single organised framework. Carroll (1993) 

proposed cognitive abilities could be best understood via three various strata. 

Stratum III was the broadest strata and represented general intelligence consistent 

with Spearman's (1927) concept of ‘g’, which encapsulated eight broad (Stratum 

II) abilities; Crystallized Intelligence (Gc), Fluid Intelligence (Gf), General 

Memory and Learning (Gy), Broad Visual Perception (Gv), Broad Auditory 

Perception (Gu), Broad Retrieval Ability (Gr), Broad Cognitive Speediness (Gs), 

and Processing Speed (Gt). These eight broad abilities could further be divided 

into 73 narrow (Stratum I) cognitive abilities, such as Language Comprehension, 

Memory Span, Language Development, and General Sequential Reasoning.  

 

Figure 1. Comparison of Cattell-Horn Gf-Gc theory and Carroll’s Three-Stratum 

theory. Source: Flanagan & McGrew (1997).  

 

The CHC model currently consists of 16 broad abilities and over 80 narrow 

abilities (Schneider & McGrew, 2012). The original 10 abilities included Fluid 

Intelligence (Gf), Crystallised Intelligence (Gc), Reading/Writing Ability (Grw), 
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Short-term Memory (Gsm), Quantitative Knowledge (Gq), Long-term Storage and 

Retrieval (Glr), Visual Processing (Gv), Auditory Processing (Ga), Processing 

Speed (Gs), and Decision Speed/Reaction Time (Gt). The model does not include 

‘g’, unlike Carroll’s (1993) original theory. There remains debate regarding 

whether ‘g’ exists or not, however given most cognitive tests aim to identify 

specific areas of strengths and weaknesses, a construct of ‘g’ is generally 

considered not to be of importance (Schneider & McGrew, 2012). In the most 

recent revision of the CHC theory, Schneider and McGrew (2012) added six 

broad abilities, General Knowledge (Gkn), Olfactory Abilities (Go), Tactile 

Abilities (Gh), Psychomotor Abilities (Gp), Kinaesthetic Abilities (Gk), and 

Psychomotor Speed (Gps). Most intelligence tests do not measure these abilities 

as they contribute little to the prediction of traditional concepts of achievement, 

the predominant aim of intelligence tests (Flanagan, Ortiz, & Alfonso, 2013). 

However, in tests that aim to assess the impact of neurologically-based disorders, 

such as Traumatic Brain Injury (TBI), these motor and sensory abilities are 

perhaps more relevant. The purpose of a test battery will determine what cognitive 

domains should be assessed, and, given the extensiveness of the CHC theory, it is 

unlikely any one test battery would assess all CHC specified domains. Instead the 

differentiation of cognitive abilities should adhere to the CHC theory while the 

specific areas chosen for assessment should be informed by prior research in the 

area of interest.  

3.2 Cognitive Domains Affected by Concussion 

In the sport concussion literature there appears to be a general consensus that 

memory, attention, working memory, processing speed, and executive functions 

are the predominant areas affected by concussion (Barr & McCrea, 2001; Bruce & 

Echemendia, 2003; Echemendia, Putukian, Mackin, Julian, & Shoss, 2001; 

McCrea, 2003; McCrea, Kelly, Kluge, Ackley, & Randolph, 1997).  These areas 

are indicative of one’s level of fluid intelligence (Conway, Cowan, Bunting, 

Therriault, & Minkoff, 2002; Fry & Hale, 2000). Crystallised abilities such as 

vocabulary and general knowledge are typically robust against head injuries, 

specifically mild forms such as concussion (Barth et al., 1989; Levin, Benton, & 

Grossman, 1982). Thus, it is uncommon for crystallised abilities to be measured 

by concussion assessments.   
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In a meta-analysis of 21 studies, researchers examined the effect of sport 

concussion on six different cognitive domains; orientation, attention, executive 

functions, memory acquisition, delayed memory, and global cognitive ability 

(Belanger & Vanderploeg, 2005). Overall, the study included 790 concussed 

individuals and 2014 control participants. The concussed group exhibited 

significant deficits in all cognitive domains except for attention and executive 

functions. Global cognitive ability demonstrated the largest effect size (d = .81), 

followed by memory acquisition (d = .78), delayed memory (d = .60), and 

orientation (d = .27). When cognitive performance was separated by time of 

assessment, there was a significant effect size for attention at 24-hours (d = .51) 

and 1-7 days (d =.35) post concussion. However, the effect size for executive 

functions at both time points remained non-significant for studies that compared 

concussed individuals performance to healthy controls. Of the 21 studies included 

in the meta-analysis, 19 included an assessment of attention, 10 measured delayed 

memory, seven measured memory acquisition and executive functions, six 

measured global cognitive abilities, and four assessed orientation.  

Attention was measured by most of the studies included in the meta-analysis 

(Belanger & Vanderploeg, 2005). This suggests that the various researchers 

believed that impaired attention is frequently present in concussion. The 

neuropsychological tests the authors included in the ‘attention’ category measure 

not only attention but also working memory and processing speed. For example, 

the attention category included tests such as the reaction time and processing 

speed items of the ImPACT battery, the processing speed, complex and simple 

reaction time subtests of the Concussion Resolution Index (CRI; Erlanger et al., 

1999), the Digit Span and Digit Symbol subtests from the Wechsler Adult 

Intelligence Scale (WAIS-IV; Wechsler, 2008) and the Paced Auditory Serial 

Addition Task (PASAT; Gronwall, 1977). To complete these tasks, although one 

cognitive ability may be the focus, all three abilities are needed to some extent 

(Gronwall, 1977). Thus, it is extremely difficult to separate out the constructs of 

attention, working memory, and processing speed, although they are distinct 

abilities. Nevertheless the meta-analysis highlights that test administer’s generally 

assume that attention, processing speed, and working memory are important areas 

to assess in concussion (Belanger & Vanderploeg, 2005).  
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3.2.1 Attention, Processing Speed, and Working Memory  

The importance of attention, processing speed, and working memory in 

concussion assessment can be better understood by looking at the older adult 

literature regarding cognitive decline (Bashore & Richard, 2002). In this 

literature, Salthouse (1996) highlights how the constructs of attention, working 

memory, and processing speed are often used interchangeably or lumped together 

in one category, despite being distinct functions. In his research he separates out 

these constructs and postulates that processing speed underlies the deficits seen in 

other cognitive domains among healthy aging adults (Kail & Salthouse, 1994; 

Salthouse, 1996). For instance, Kail and Salthouse (1994) demonstrated that 60% 

of cognitive decline among healthy older adults could be explained by decrements 

in speed of processing. The cognitive sequel observed in TBI is similar to that 

seen with natural aging, suggesting that the two processes may have an impact on 

common underlying neural mechanisms (Bashore & Richard, 2002; Hicks & 

Birren, 1970; Miller, 1970). Based on the author’s perusal of the literature, it 

appears that the literature pertaining to the cognitive effects of aging are more 

developed than that of the cognitive effects of TBI. Thus the adult literature can 

perhaps provide additional insight into cognitive sequela following TBI.   

Salthouse (1996) proposed that slowed information processing speed contributes 

to deficits in other areas via two distinct mechanisms, a time-limited mechanism 

and a simultaneity mechanism. The time-limited mechanism refers to the fact that, 

if an individual experiences a reduction in the speed at which they can process 

information then, in a finite period of time, the amount of information processed 

will be less than usual (Salthouse, 1996). Deficits of this type would be apparent 

in tasks, which require an individual to complete as many tasks as possible in a 

pre-specified time. The simultaneity mechanism, in which slowed processing 

speed can impact performance of other cognitive tasks, occurs in a context in 

which two tasks need to be completed. Due to slowed processing speed, earlier 

cognitive actions or information may not be available by the time later or more 

complex cognitive actions of the same task are supposed to be taking place. This 

can affect tasks that have an infinite time period in which they may be completed. 

For example, this mechanism can affect a task that requires information to be held 

in working memory and used to complete a series of actions. If one is slow at 
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completing the required actions due to slowed processing speed, the information 

held in working memory is more likely to decay compared to someone without 

slowed processing speed who can complete the actions faster. Thus, fewer actions 

will be completed, as without the information held in working memory one does 

not have the necessary information to complete the actions. Consequently, slowed 

processing speed is evident in both timed and untimed tasks (Salthouse, 1996).  

This model of information processing speed provides a potential explanation of 

how slowed processing speed may contribute to deficits in other cognitive 

domains among healthy aging adults. Salthouse’s (1996) processing speed 

hypothesis of cognitive impairment is also supported by the TBI literature. For 

example, studies examining severe TBI patients performance on 

neuropsychological tasks found that, once they controlled for simple processing 

speed, deficits in divided attention (Brouwer, Ponds, Van Wolffelaar, & Van 

Zomeren, 1989; Spikman, Zomeren, & Deelman, 1996), focused attention 

(Spikman et al., 1996), switching attention (Brouwer et al., 1989), and executive 

functions of planning and inhibition were not apparent (Brouwer et al., 1989; 

Veltman et al., 1996). Slowed processing speed is postulated to result from diffuse 

axonal shearing. Axonal shearing is when the fibres that transfer information in 

the brain are damaged and thus the speed at which information can travel via them 

is impeded (Keith & Reynolds, 2010; McGrew, 2009; van Zomeren & Brouwer, 

1994).  

Slowed information-processing speed is one of the most commonly cited and 

most disruptive cognitive impairments following TBI (Azouvi, Jokic, Der Linden, 

Marlier, & Bussel, 1996; McDowell, Whyte, & D’Esposito, 1997). Wilberger and 

colleagues (1993) found that, in a group of high school football players who 

sustained a concussion, 75% demonstrated deficits in information processing 

speed at 24 hours, 61% at one month, and 55% of the sample continued to show 

deficits at three-months post-concussion. Furthermore, McCrea and colleagues 

(2004) assessed 1631 concussed college football players processing speed at 2 and 

7 days post-injury using traditional paper and pencil tests. At both time points 

participants demonstrated mild impairment in their processing speed. The robust 

relationship between impaired processing speed and concussion is supported by 

the ability of processing speed measures to differentiate between severity levels of 
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TBI, and between TBI patients and healthy controls (i.e., criterion validity; 

Donders et al., 2001; Hawkins, 1998; Martin, Donders, & Thompson, 2000). For 

example, in Martin and colleagues’ (2000) study, the Processing Speed index of 

the WAIS-III was the only index that demonstrated criterion validity, in that it 

was sensitive to the severity of TBI. Thus, information processing speed should be 

a prominent area of interest in the cognitive assessment of concussion.  

3.2.1.1. Simple versus Complex Processing Speed. Information 

processing speed refers to the time required to complete a cognitive task, or if 

given a finite time, the proportion of work that can be completed (Lezak, 

Howieson, & Loring, 2004). As mentioned previously, confusion exists in the 

literature regarding the definition of processing speed and the distinction between 

itself and other similar constructs such as complex attention, working memory, 

reaction time, and information processing. According to CHC theory, processing 

speed is distinct from the construct termed reaction/decision time (Flanagan & 

Harrison, 2012). Flanagan and Harrison (2012) define reaction time as the speed 

at which one can respond to a single stimulus, whereas processing speed is the 

speed at which one can respond to a series of stimuli items, completed in 

succession. The main difference is that in a reaction time task the stimuli or trials 

are presented one at a time so that the speed of perception and quickness of 

response can be gauged each time. Importantly, the examiner controls the pace of 

presentation, often allowing brief breaks between trials. In contrast, processing 

speed tasks present all stimuli simultaneously, the examinee determines the pace 

of progression and must continuously shift attention from one item to the next 

therefore requiring sustained attention for the duration of the task. This distinction 

was supported by Chiaravalloti, Christodoulou, Demaree, and DeLuca's (2003) 

factor analytic study that found reaction time tasks and processing speed tasks 

(i.e., Paced Auditory Serial Addition Test; PASAT) loaded onto two distinct latent 

factors.  

Salthouse’s (1996) theory of information processing speed is consistent with the 

CHC theory in that both describe two forms of processing speed. Salthouse argues 

that there is simple processing speed, which can be measured by reaction time 

tasks   and is synonymous to CHC’s reaction/decision time construct. Whereas 

what he refers to as complex processing speed appears synonymous to CHC’s 
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processing speed construct. Both DeLuca and Kalmar (2013), and Lezak (1995) 

claim that reaction time is a behavioural indicator of processing speed. Simple 

processing speed (i.e., reaction time) involves only sensory perception of the 

stimuli and a motor response. Complex processing speed on the other hand often 

requires working memory and executive attention. For instance, the PASAT is 

frequently used to assess complex processing speed even though validation 

studies consistently demonstrate that it also measures working memory and 

executive attention (Lezak, 1995; Roman, Edwall, Buchanan, & Patton, 1991; 

Sherman, Strauss, & Spellacy, 1997). One could thus argue that complex 

processing speed is not a pure measure of processing speed, as tasks used to 

assess it rely heavily on other cognitive functions. Thus, perhaps reaction time 

tasks or simple processing speed, are the best indicator of general processing 

speed.  

3.2.1.2 Attention. Attention refers to several abilities or processes 

concerned with how an individual becomes receptive and responsive to stimuli in 

their environment (Lezak et al., 2004). It requires both alertness and arousal and is 

often a pre-requisite for higher-level cognitive functions. There are varying 

theories of attention, however common features include the ability to orientate to 

a stimulus, selectively attend to a stimulus while ignoring others, and maintaining 

focus on a stimulus for the required time (Scott, 2011). Concentration is a term 

closely associated with attention. It refers to the capacity to sustain attention while 

ignoring irrelevant stimuli (i.e., distractions; Scott, 2011).  

Attention is a complex process involving multiple brain regions (Scott, 2011). 

Predominant areas include the orbital prefrontal cortex, which is important for 

sustaining attention, the dorsolateral prefrontal cortex, important for the initiation 

of attention, and the general pre-frontal cortex, required for voluntary initiation 

and sustaining of attention, rapid alternation, and shifting of attentional resources 

(Scott, 2011). The superior and inferior colliculi regulate automatic orientation to 

visual and verbal stimuli, respectively. The ascending reticular activating system 

stimulates arousal in the cortex needed to initiate and sustain attention. Other 

important areas include the parietal lobes, thalamus, and limbic system (Scott, 

2011). Impairment in attention can result following damage to any part of the 

brain, however frontal lobe damage in particular appears to have the most 
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catastrophic effect (Schoenberg & Scott, 2011). Attentional deficits are almost 

universally present in TBI presentation regardless of severity (Gronwall, 1991). 

However, previously mentioned studies (e.g. Brouwer et al., 1989; Spikman et al., 

1996) that failed to find deficits in attention once processing speed had been 

controlled for cast doubt on this statement. Given most measures of attention also 

require processing speed (e.g., PASAT), it may be that it is the deficit in 

processing speed and not attention that is leading to the diminished performance 

observed.  

3.2.1.3 Working Memory. Working memory refers to the ability to hold 

information in one’s awareness temporarily and to manipulate it if required 

(Knudsen, 2007). The amount of information able to be held at any one time is 

limited to seven, plus or minus two pieces of information (Miller, 1956). 

Baddeley and Hitch (1974) postulated that working memory includes subsystems 

which store and manipulate visual and verbal information, in addition to a ‘central 

executive’ which co-ordinates these subsystems. The regions of the brain 

predominantly involved in working memory include the frontal and parietal 

regions (Rottschy et al., 2012). Working memory and processing speed, although 

closely related are distinct constructs as evidenced by factor analytic studies 

(Arnau & Thompson, 2000; Chiaravalloti et al., 2003). Processing speed is 

thought to impede working memory in that, slowed processing speed allows more 

time for the content in working memory to decay (Chiaravalloti et al., 2003; 

Demaree, DeLuca, Gaudino, & Diamond, 1999). 

3.2.2 Memory   

Memory is the process in which information is encoded, stored, and retrieved. 

Impairment can occur at any stage of this process (Scott & Schoenberg, 2011). 

Memory is complex and involves multiple brain regions, some of the most 

important structures being the medial temporal lobes, entorhinal cortex, 

hippocampus, amygdala, cingulate cortex, basal forebrain, diencephalic structures, 

and the anterior temporal cortex (Schoenberg & Scott, 2011). There is some 

evidence for a lateralized effect of memory, with the left temporal lobe associated 

with verbal memory, memory for words, stories, and numbers, whereas the right 

temporal lobe is thought to be prominently associated with visual memory, 
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including faces and figures (Schoenberg & Scott, 2011). A distinction can also be 

made between immediate, delayed, and recognition memory. The latter is when 

information had been encoded but unable to be spontaneously retrieved. When 

possible, assessment should include an investigation of immediate, delayed, and 

recognition memory in both the visual and verbal modalities (Schoenberg & Scott, 

2011). 

The only division of memory in the CHC theory is that of short-term and long-

term memory. However, memory literature often divides memory into two major 

categories, declarative and procedural (Anderson, 2013; Lum, Conti-Ramsden, 

Page, & Ullman, 2012; Scott & Schoenberg, 2011). Declarative memory refers to 

memory of facts and knowledge, which can be consciously recalled, also known 

as explicit memory (Anderson, 2013). Declarative memory further divides into 

semantic and episodic memory. Episodic memory is the memory of 

autobiographical events, such as times and places, and is a spatio-temporal record 

of a person’s experiences (Anderson, 2013). Episodic memory is the memory 

system most affected by TBI (Armstrong & Morrow, 2010). However, given its 

idiosyncratic nature, computerized cognitive tests such as those used in the 

assessment of sport concussion, are unable to assess episodic memory. Therefore 

such assessments often test the other form of declarative memory, known as 

semantic memory, and this is often through word lists. Episodic memory can 

further be divided into non-verbal and verbal memory which can be presented 

visualy or auditory, and Morris (2010) recommends that all areas should be 

assessed in TBI.  

Factor analysis studies of neuropsychological batteries are not consistent on 

whether or not memory should be treated as a single factor or that a division 

between visual and auditory/verbal or immediate and delayed should exist. A 

common cause for the inconsistency is perhaps due to the variety in measures 

employed in different studies. Factor analysis studies with the Weschler Memory 

Scale - Revised (WMS-R; Bowden, Carstairs, & Arthur, 1999), and the Wechsler 

Memory Scale, Thrid Edition (WMS-III; Bradley Burton, Ryan, Axelrod, 

Schellenberger, & Richards, 2003), a psychometrically strong measure, do not 

support a division between immediate and delayed memory, but indicate that 

visual and verbal/auditory memory should be considered separately. Conversely, 
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another factor analysis study that performed a principle component analysis on an 

extremely large neuropsychology battery, including the Wechsler Adult 

Intelligence Scale (WAIS) and the WMS in addition to several other memory 

tests, found only a General Memory factor (Leonberger, Nicks, Larrabee, & 

Goldfader, 1992). Yet both verbal and visuospatial factors were produced 

although not specific to memory (Ardila, Galeano, & Rosselli, 1998).  Lastly, a 

study examining the psychosocial outcomes of head injury reported memory as a 

single factor in their outcome measures (Dikmen, Ross, Machamer, & Temkin, 

1995) and Larrabee and Curtiss (1995) found that visual and verbal memory items 

load onto a single General Memory factor. These findings are thus inconclusive. 

They do however suggest that there is little distinction between immediate and 

delayed memory in TBI and that these should possibly be considered as part of a 

single factor. In contrast, verbal and visual memory could potentially represent 

two distinct constructs and require further investigation prior to being combined.  

Memory impairment following concussion is often transient (McCrory et al., 

2013) and can be seen in both visual and verbal modalities (Iverson et al., 2006; 

McClincy et al., 2006). Lezak (2004) suggests that memory impairment in mild 

TBI is generally a result of difficulty at the encoding stage rather than at the 

storage or retrieval stages. This is consistent with the hypothesis that slowed 

processing speed contributes to deficits in memory as slowed processing speed 

decreases the efficiency at which information can be encoded (Salthouse, 1996). 

This will be especially disadvantageous if materials are presented for a brief 

period of time, as occurs in the ImPACT memory subtests (ImPACT, 2013).  

3.2.3 Executive functions 

Executive functions refer to a number of self-regulatory functions that control and 

manage other cognitive processes, emotions, and behaviours (Lezak et al., 2004). 

These include the ability to initiate or inhibit behavior, inhibit competing actions 

or stimuli, select relevant task goals, plan and organize, solve complex problems, 

shift problem solving strategies, monitor and evaluate behavior, and regulate 

emotions (Morris, 2010). Their neural correlates are predominately within pre-

frontal cortex that has projections to all other lobes in the brain, which allows it to 

co-ordinate the various lobes (Schoenberg & Scott, 2011). Individuals who sustain 
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concussion often report difficulties with everyday tasks that may reflect executive 

dysfunction, for example, difficulty in organizing and carrying out daily activities 

or difficulty anticipating consequences (Morris, 2010).  

Standardised brief neuropsychological tests’ ability to detect impairment in 

executive functions is somewhat limited (Morris, 2010). They lack sensitivity to 

impairment as they are most frequently administered in structured settings that fail 

to elicit the everyday difficulties commonly reported by TBI patients. For 

example, in Belanger and Vanderploeg's (2005) meta-analysis, effect sizes for the 

impact of concussion on executive functions failed to reach significance, 

indicating that either concussion does not influence executive functions or that the 

tests lacked sensitivity. Common standardised measures of executive functions, 

such as the Stroop Colour and Word Test and the Trail Making Test (Reitan & 

Wolfson, 1994) appear sensitive to general cerebral pathology but fail to 

demonstrate specificity regarding pre-frontal impairments, common in TBI 

(Cicerone, Levin, Malec, Stuss, & Whyte, 2006). However, studies that have 

compared TBI patients to non-injured controls have found the TBI group to be 

inferior at detecting and correcting errors made in everyday actions (Hart, 

Giovannetti, Montgomery, & Schwartz, 1998). Thus while it may be useful to 

include a measure of executive function in the assessment of concussion, it must 

be acknowledged that no one test will be sensitive to all possible forms of 

executive dysfunction given the multi-factorial structure of such functions 

(Bennett, Ong, & Ponsford, 2005; Chaytor & Schmitter-Edgecombe, 2007).  

3.3 Summary  

The CHC theory provides a taxonomy of cognitive functions for understanding 

and studying cognitive constructs, which are by nature inter-related and 

sometimes hard to separate. While the CHC theory provides a framework for 

investigating cognitive areas influenced by concussion, empirical research within 

the concussion literature is needed to identify the specific areas impacted by 

concussion. Based on the above review of concussion-induced cognitive 

impairment, it can be argued that in any neuropsychological assessment of 

concussion it is essential to include a measure of both simple and complex 

processing speed. Furthermore, memory is also an important area to assess. 
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Although there should be an assessment of immediate and delayed memory in 

addition to visual and verbal memory, these do not necessarily need to be separate 

constructs, especially in brief assessments when the number of tests able to be 

administered is limited. Lastly, though other areas such as executive functions 

(e.g., impulse control) may provide some information regarding the presence of 

concussion, brief forms of standardised tests lack sensitivity to everyday 

executive function impairment, and typically provide little additional information. 

This review of the literature provides a theoretical and empirical base upon which 

the ImPACT battery can be compared and evaluated. 
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Chapter 4: Reliability, Validity, and the ImPACT battery 

The Immediate Post-concussion Assessment and Cognitive Test (ImPACT) has 

been demonstrated to be a reliable and valid instrument for assessing the cognitive 

effects of sport concussion (Iverson et al., 2006, 2006; Schatz, Kontos, & Elbin, 

2012).  This chapter describes and critiques the empirical research pertaining to 

the psychometric properties of the ImPACT battery in addition to explaining the 

concepts of reliability and validity within the context of evaluating a measure. The 

empirical evidence regarding the ImPACT batteries’ reliability and validity is 

mixed. The developers of ImPACT claim it to be psychometrically robust and this 

is supported by several published papers (Elbin, Schatz, & Covassin, 2011b; 

Iverson, Lovell, & Collins, 2002; Schatz & Putz, 2006). Conversely, recent 

studies not supportive of ImPACTs reliablity and validity (e.g., Mayers & Redick, 

2012a, 2012b) state that there is not enough evidence to support the current 

widespread use of ImPACT.  

4.1 Test-retest reliability 

Reliability is an instrument’s ability to consistently produce similar results when 

applied under similar circumstances (Cronbach, 1988; DeCoster, 2005). Given 

that ImPACT’s purpose is to track cognitive performance over time, 

investigations into the longitudinal reliability of the measure are pertinent to its 

credibility (Mayers & Redick, 2012b). Investigations have examined test-retest 

reliability as one route to infer ImPACT’s stability over time. Test-retest 

reliability is the ability of an instrument to produce consistent results when the 

same entities are tested at two or more different time points (Field, 2009). The 

test-retest statistic reported for ImPACT has been either Pearson’s r or an 

intraclass correlation coefficient (ICC). Pearson’s r is a standardised measure of 

the strength of relationship between two variables. Possible scores range from -1 

to +1; the sign in front of the value represents the direction of the relationship 

whereas the value indicates the strength of the relationship, with values closer to -

/+1 indicating a stronger relationship (Rodgers & Nicewander, 1988). Intra-class 

correlations on the other hand, represent the consistency between the measures’ 

items (Koch, 1982). They are believed to be a superior measure of retest 
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reliability as they are not biased by sample size, unlike Pearson’s r (Wilk et al., 

2002).  

With regard to ImPACT, test-retest reliability studies tend to support the 

consistency of the measure over time. For instance, Iverson, Lovell, and Collins, 

(2003) reported Pearson’s r correlations across a 13-day interval for healthy 

individuals, ranging in age from 15 to 22. The four main ImPACT composites 

demonstrated strong temporal reliability evidenced by correlations of .70 for 

Verbal Memory, .67 for Visual Memory, .86 for Processing Speed, and .79 for 

Reaction time. Schatz (2010) found similar reliabilities, in the form of ICCs, for 

Visual Memory, Processing Speed, and Reaction Time, which ranged from .65 to 

.74. However, Verbal Memory demonstrated weak reliability, evidenced by an 

ICC of .46. The test-retest period used was two years and reliabilities were 

calculated for a sample of 95 athletes.  

These former studies employed the desktop version of ImPACT, whereas Elbin, 

Schatz, and Covassin (2011b) examined the test-retest reliability of the online 

version. They found comparable reliabilities (.62 Verbal Memory, .70 Visual 

Memory, .85 Processing Speed, .76 Reaction Time) over a period of 0.5 – 2.35 

years (mean 1.2 years). Conversely, low reliabilities (ICC), ranging from .23 to 

.38 for the four composites were found for a test-retest period of approximately 45 

days (Broglio, Ferrara, Macciocchi, Baumgartner, & Elliott, 2007). This study 

required participants to complete four distinct computerised cognitive assessment 

batteries consecutively at each testing interval. As a result, participants may have 

lost motivation or became fatigued, thus influencing results. Furthermore, whether 

or not alternative forms of the test were used at each testing interval could perhaps 

explain the variability in reliability results. For instance, Shuttleworth-Edwards 

and Radloff (2008) used alternative forms at pre- and post-season testing, 

minimising practice effects. They found no significant improvement in either the 

rugby or control group’s performance. Conversely, Whitefield (2006) 

administered the exact same test at pre- and post-season and found a significant 

increase in the control groups performance on the Visual Motor Speed composite, 

most likely attributable to a practice effect. Lastly, studies investigating 

significant change between scores across testing intervals among non-concussed 

athletes found either no significant change (Miller, Adamson, Pink, & Sweet, 
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2007) or minimal significant change (i.e. < 5%), but no more than what is to be 

expected with variation in human performance over time (Elbin et al., 2011b; 

Schatz, 2010).  

The test-retest approach to assessing the longitudinal reliability of a measure is 

limited as the correlations calculated include all item variance, that is, common 

variance, shared variance, and measurement error (Hambleton, Swaminathan, & 

Rogers, 1991). A correlation attempts to assess the strength of association based 

on the shared variance between two items (Field, 2009). This relationship can be 

distorted, as the computation is not based on the composites’ shared variance 

alone, but also included is variance and error specific to each item associated with 

the composite. In order to get a true representation of the strength of the 

relationship between two constructs, one must separate out the specific variance 

and error. A structural equation modelling (SEM) technique known as 

confirmatory factor analysis (CFA) is able to separate the common variance 

shared by all items of the construct from the variance and error specific to each 

item (Brown, 2006). This allows the relationship between two constructs to be 

examined without distortion. This method is used in the current study and thus is 

discussed in depth in the Method Section 6.3.3.3.  

4.2 Internal Consistency 

Another form of reliability is internal consistency. It relates to the consistency or 

relatedness of items that make up a measure or subscale (Streiner, 2003). Given 

ImPACT is a multi-dimensional battery, the items within each subscale should be 

sufficiently related to one another, but distinct from those of other subscales. The 

internal consistency of a test structure can be assessed via Cronbach’s alpha, 

corrected item-total correlations, and factor analysis. Cronbach’s alpha is the 

most common statistic reported for internal consistency, but is sensitive to sample 

size and thus should not be viewed in isolation (Nunnally & Bernstein, 1991).  

4.3 Content Validity  

Content validity is concerned with the degree to which an instrument includes 

items that are representative of all aspects of the construct it is attempting to 

measure (Field, 2009). The content of a test includes wording, format, content, 
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and item themes. With regard to ImPACT, content validity would be present if all 

areas affected by concussion were sufficiently assessed by the included items, and 

enough items were included to adequately represent each construct. Furthermore, 

items that are not representative of the construct of interest should not be 

included. The domains affected by concussion and thus those that should be 

included in the scale should be informed by theory, empirical research, and/or 

expert opinion (Buckendahl & Plake, 2006). To the author’s knowledge no 

published studies have specifically examined the content validity of the ImPACT 

measure.  

4.4 Construct Validity  

Construct validity is concerned with whether the instrument accurately measures 

the construct it purports to measure (Messick, 1995). If ImPACT could 

demonstrate that it is in fact measuring the cognitive domains it claims to 

measure, that is, Verbal Memory, Visual Memory, Reaction Time, Visual 

Processing Speed, and Impulse Control, then construct validity would be 

supported. Construct validity is often examined by looking at the relationship 

between the measure of interest with other instruments purporting to measure the 

same theoretical construct in addition to instruments purporting to measure 

distinct theoretical constructs (Messick, 1995). These techniques are referred to as 

convergent and divergent validity, respectively.  

4.4.1 Divergent validity  

Divergent validity is the degree to which a hypothesised construct differs to 

theoretically dissimilar constructs (Messick, 1995). It ensures that a substantial 

overlap with distinct constructs is not present. With regard to ImPACT, divergent 

validity between the composites has be investigated as opposed to between 

ImPACT and other independent measures. The composites should differ 

sufficiently to indicate that they are measuring distinct constructs, while still 

demonstrating slight association given they are all measures of cognitive functions 

and thus should be related. Studies investigating the divergent validity of 

ImPACT provide mixed support. Iverson, Lovell, and Collins (2002) reported that 

among a sample of 120 healthy high school and college athletes, weak 

correlations between the composites were obtained. As a result the authors 
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concluded the composites had minimal shared variance. However, Iverson and 

colleagues (2002) failed to report the numerical value of the correlations and they 

used a previous version (1.0) of ImPACT. Schatz and Putz (2006) also 

investigated divergent validity among healthy subjects. They found no significant 

correlations between the composites. However, this study used a small sample 

size (N = 30) and failed to report the values of all but one correlation. Despite the 

gaps in reported findings, these studies that have used healthy controls appear to 

support the presence of divergent validity among composites.  

Research employing concussed athletes have concluded that ImPACT composites 

do not demonstrate divergent validity. Significant correlations between the four 

composites have been reported (Iverson, Franzen, Lovell, & Collins, 2003) and 

Iverson, Lovell, and Collins, (2005) suggest that Processing Speed and Reaction 

Time are measuring a similar underlying construct, based on factor analysis. It 

should be borne in mind however, that the composite scores are derived from the 

same six tests and all are measuring some form of cognitive function, thus some 

shared variance should be expected.  

4.4.2 Convergent validity  

Convergent validity on the other hand refers to the extent to which different 

measures assessing the same or similar theoretical construct are related (Brown, 

2006). This is usually assessed via correlation. The few studies reported tend to 

support ImPACT’s convergent validity. Iverson and colleagues (2003) 

demonstrated convergent validity among a sample of 25 concussed amateur 

athletes who completed ImPACT and traditional neuropsychological measures 20 

days post-concussion. They reported medium, significant correlations for the 

Brief Visuospatial Memory Test total score (r = 0.5, p < .05) and delayed recall 

score (r = .85, p < .05) with the two ImPACT Memory composite scores. 

Furthermore, Trails A (r = -.49, p < .05) and Trails B (r = -.60, p < .05) were both 

negatively correlated with ImPACT Processing Speed. Iverson, Lovell and 

Collins (2005) reported that Symbol Digit Modality Test (SDMT), a measure of 

scanning and tracking aspects of attention and processing speed, correlated with 

Processing Speed and Reaction Time composites to a greater degree than with the 

Memory composites.  
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Furthermore, an exploratory factor analysis employing the four ImPACT 

composites and SDMT, found Processing Speed, Reaction Time and SDMT all 

loaded onto the same factor and thus appear to measure the same underlying 

construct. A more recent study found the Verbal Memory composite significantly 

correlated with traditional verbal memory tests, such as the Hopkins Verbal 

Learning Test-Revised total recall (r = .27, p = .01) and Digit Span (r = .29, p = 

.00). The Visual Memory composite was significantly related to the Brief 

Visuospatial Memory Test (BVMT) total recall (r = .38, p = .00; Allen & Gfeller, 

2011).  

4.4.3 Limitations of divergent and convergent validity  

While convergent and divergent validity provide an indication of a measure’s 

construct validity, they possess limitations (Messick, 1995). Firstly, both these 

techniques rely on having a ‘gold standard’ against which to compare item scores. 

A ‘gold standard’ is impossible given the improbability of an observed measure 

perfectly representing a theoretical construct.  

Furthermore, both convergent and divergent validity are assessed via correlations. 

Correlations include all of the item’s variance, common variance, item-specific 

variance, and measurement error (Field, 2009). Thus the strength of the 

relationship between the two items can be biased in either direction due to 

variance not associated with the construct of interest. For instance, the correlation 

of two items that are measured in the same way may be artificially inflated 

because their method of measurement is the same (i.e., method effect), whereas 

this erroneous inflation would not be present between items measured by distinct 

methods. For example, all three ImPACT reaction time items are measured in the 

same way (e.g., timed), however this method of measurement is different to that 

used for memory items (e.g., quantity of correct items, untimed). Lastly, if one 

measure possesses large measurement error and produces a significant correlation 

with another item, one cannot be sure if the association is due to the common 

variance or a result of measurement error (Messick, 1995).   
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4.4.4 Factorial validity  

Factorial validity is another method of evaluating construct validity which is not 

affected by the aforementioned limitations (Brown, 2006). Factorial validity is 

concerned with the structure of the measure, that is, the pattern and magnitude of 

relationships between items and their associated factors (i.e., the construct they 

purport to measure). Unlike convergent and divergent validity which look at the 

relationship between two observed variables, factor analytic techniques consider 

the relationship between an observed item and a hypothesised construct (i.e., the 

latent factor). A structural equation modelling (SEM) technique, termed 

confirmatory factor analysis (CFA) is often used in the assessment of factorial 

validity. Confirmatory factor analysis allows the relationship between the latent 

construct and the observed item to be modelled while adjusting for error (Brown, 

2006). Therefore the observed relationships are not biased by measurement error. 

Confirmatory factor analysis, in addition to exploratory forms of factor analysis, 

are commonly used in the development of measures to ensure unidimensionality 

of subscales and construct validity (Brown, 2006). It can also be used to assess the 

factor structure of an existing measure. For example, it is often used to ascertain 

whether the proposed factor structure upholds in different contexts (See Method 

section 6.3.3.3. for a detailed description of CFA).  

With regard to ImPACT, factorial validity is important because a specific 

combination of items contribute to several overall composite (i.e., factor) scores. 

If factorial validity is not achieved, in that items hypothesised to contribute to a 

specific composite do not, the overall composite score and any subsequent 

interpretations would be misleading. For example, if one of the three items that 

contribute to the Verbal Memory composite is measuring a construct other than 

verbal memory and a low score on that item occurs, it could erroneously reduce 

the overall score to make an individual’s verbal memory performance appear 

poorer than it is.  

Whether or not factor analytic techniques were used in the development of the 

ImPACT battery is unknown. The author could not locate an explanation of the 

psychometric development of the scale in the current test manual (ImPACT, 

2013) or empirical literature. Schatz and Maerlender (2013) indicated that factor 
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analytic studies were conducted on the earlier version of ImPACT (1.2) and were 

included in an earlier test manual. The earlier version of ImPACT did not contain 

the Visual Memory composite and the test manual is no longer accessible. One 

published article was found that detailed an initial exploration of ImPACT’s 

factor structure through principle component analysis (PCA; Allen & Gfeller, 

2011). The researchers employed a sample of 100 colleague students and 

identified a five-factor structure that did not mirror the item-factor relationships 

proposed by ImPACT developers. The factor structure they identified had several 

limitations. Firstly, one factor only had one indicator where, by definition, a factor 

must possess at least two indicators although three is preferred (Kline, 2011).  

Furthermore, negative loadings occurred for two items, one item demonstrated 

substantial (i.e., >.32) cross-loading, and two factors were defined by only two 

indicators each, all of which indicate the model is problematic. Negative loadings 

are problematic as they indicate the item is changing in the opposite direction of 

the latent factor, which should not be the case if the item is truly representative of 

the latent construct. Furthermore, if an item has only two indicators it is unlikely a 

true solution will be found as the factor is not sufficiently represented. Given the 

problems associated with this factor solution, in addition to the limitations of PCA 

(See Method section 6.3.3.1.), it is unlikely that this solution would hold up if one 

attempted to validate it among a distinct population. Two other factor analysis 

studies were identified in the literature; however both of these used composite 

scores as the first-order indicators. Composite scores represent a third level score, 

following second level subscale scores, and first-level raw scores. Factor analysis 

is designed to use raw scores as first-item indicators in the analysis and when 

appropriate subscale or parcel scores may be used as first-item indicators (Kline, 

2011). Thus, using composite scores in a factor analysis is erroneous and any 

results should be interpreted with extreme caution. Notwithstanding, the two 

studies both found ImPACT to have an underlying two-factor structure. One 

factor represented Memory and was defined by the Verbal Memory and Visual 

Memory composites and the second factor represented Speed defined by the 

Visual Motor Speed and Reaction Time composites (Iverson et al., 2005; Schatz 

& Maerlender, 2013).  
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4.5 Criterion Validity  

Criterion validity refers to a measure’s ability to predict an outcome, or determine 

the presence or absence of an outcome based on item responses (Field, 2009). 

With regard to ImPACT, criterion validity is concerned with the battery's ability 

to distinguish between those who have sustained a concussion and those who have 

not. Two components of criterion validity are sensitivity and specificity. 

Sensitivity refers to the measure’s ability to identify the presence of concussion 

when a concussion has occurred, whereas specificity refers to the measure’s 

ability to determine the absence of concussion when in fact no concussion has 

occurred (Schatz, Pardini, Lovell, Collins, & Podell, 2006). A measure with 

strong criterion validity should demonstrate sensitivity and specificity values 

close to 100% (Field, 2009). The aim is to develop a test that is sensitive enough 

to detect the presence of concussion, yet specific enough not to conclude a 

concussion is present when in fact it is not (i.e., a false positive).  

Studies examining the sensitivity and specificity of the ImPACT battery appear 

supportive. Schatz and colleagues (2006) reported ImPACT sensitivity as 81.9% 

and specificity as 89.4% among high school athletes. A more recent study found 

that among high school male football players a combination of symptom scores 

and the four main ImPACT composite scores produced higher sensitivity 

(65.22%) and specificity (80.36%) compared to symptoms or cognitive test scores 

individually (Lau, Collins, & Lovell, 2011). This study provided evidence for the 

utility of neuropsychological testing in the assessment of sports concussion as 

specificity increased by 24.41% when neuro-cognitive testing was used in 

addition to self-report symptoms scores. This is consistent with van Kempen and 

colleagues’ (2006) study in which they evaluated the added utility of ImPACT 

relative to symptom monitoring alone among 122 concussed and 72 non-

concussed high school and college athletes. They found ImPACT increased 

sensitivity by 19% (sensitivity = 92%) compared to symptom monitoring alone, 

however they did not comment on how this influenced specificity. 

4.6 Cross-Cultural/Country Validity 

Investigations of cross-cultural or cross-country validity of a measure are 

concerned with its applicability to a specific culture or country distinct to that in 
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which it was developed. Cultural differences in behaviour, language, and meaning 

have been well-documented in cross-cultural psychology literature (Berry, 

Poortinga, & Pandey, 1997; Nell, 2000; Segall, 1986). The validity of an 

instrument and its normative data only upholds to the original population (Brown, 

1996). Therefore if a measure is to be used with a population distinct to the 

population it was developed in, it must first be validated within the population of 

interest. The New Zealand Code of Ethics for Psychologists (Code of Ethics 

Review Group, 2012) indicates that ethical practice involves the clinician 

ensuring the assessment measure used is evidence-based and the context in which 

it is being used is supported in the literature. Therefore, using the ImPACT 

measure within a New Zealand context or any other context where ImPACT has 

not yet been validated would be questionable practice and would potentially lead 

to erroneous interpretations. For instance, as a result of comparing an individual to 

another population’s norms, it may appear they have recovered when in fact they 

have not and, as a consequence, put themselves at risk of serious injury by 

returning to play prematurely. Conversely it may appear a player has not 

recovered when in fact they have and thus they miss out on valuable game time.   

Only a small number of studies have investigated the cross-cultural or cross-

country validity of ImPACT. Review of the literature identified two studies that 

evaluated the equivalence of ImPACT scores across athletes of two countries. 

Tsushima and colleagues (2008) developed Hawaiian normative data based on 

728 adolescent athletes ranging in age from 13 to 18. The authors visually 

compared the Hawaiian composite norms, means, and standard deviations with 

US normative data (N = 424) and concluded that the two samples performed 

similarly. No formal statistical comparison of difference was employed, rather the 

conclusion was based merely on visual analysis. The other cross-country 

comparison study located in the literature was that by Shuttleworth-Edwards and 

colleagues (2009). They compared white South African rugby players’ ImPACT 

performance with that of age-matched US football players. Based on a series of 

independent t-tests computed for each composite, no significant differences 

between the groups were found. However, South African participants self-

reported more concussive symptoms. It was concluded that US ImPACT 
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normative data were an appropriate comparison for English first-language South 

African athletes.  

Two studies have looked at the cross-cultural validity of ImPACT within a 

country. Kontos, Elbin, Covassin, and Larson (2010) compared the performance 

of African American and White American high school and college athletes’ 

baseline and post-injury performance on ImPACT. A series of Analysis of 

Variance (ANOVA) calculations revealed no significant differences between the 

groups at baseline and post-injury with the exception of Processing Speed post-

injury. A second cross-cultural study reported by Horsman (2010) compared a 

sample of South African adolescents from an Afrikaans school to existing South 

African English normative data. Findings supported a general trend of poorer 

performance by the Afrikaans sample compared to the English sample. However 

the only statistically significant differences in performance, identified via t-tests, 

were found for Visual Memory in the 14 to 16 year age group and Reaction Time 

in the 17 to 21 year age group.  

While these studies are useful in providing a platform for investigations of cross-

country and cross-cultural comparisons of ImPACT, their conclusions of 

equivalence between two countries (e.g., Shuttleworth-Edwards et al., 2009) and 

two different cultures (e.g., Horsman, 2010; Kontos et al., 2010), are premature. 

These studies have established equivalence of test scores but any conclusions of 

equivalence beyond that, such as equivalence of the latent constructs the items 

purport to measure, would be misplaced. T-tests, as with other statistical methods 

used for group comparisons, assume that the instrument of measurement is 

operating in exactly the same way. That is, the ratio of change between the item 

and the latent factor is invariant and the underlying construct has the same 

theoretical structure and psychological meaning across the groups of interest. 

However, most studies, including those previously mentioned, fail to statistically 

test these assumptions prior to performing group comparisons. 

A statistically sophisticated technique for looking at differences between groups is 

a structural equation modelling (SEM) technique which allows for the comparison 

of groups within a multiple group confirmatory factor analysis (CFA) framework. 

This technique is often referred to as measurement invariance. This is an 
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extension from the single-group CFA described previously in the factor validity 

section. It employs a multiple-group design that allows for the comparison of two 

distinct groups’ latent variables with associated items and measurement error 

specified in the model. This method is discussed in detail in the method section. 

For now, however it is worth noting that it demonstrates advantages over t-tests 

and ANOVAs as it examines group differences while controlling for measurement 

error, thus providing greater accuracy. Additionally, it can identify the source of 

invariance, whether the invariance is at the item or construct level.  

4.7 Summary  

Several forms of validity and reliability must be demonstrated for a measure to be 

considered psychometrically robust, in that it provides consistent and accurate 

results that can be interpreted with confidence. Investigation into the ImPACT 

batteries reliability and validity is at a rudimentary stage. While attempts have 

been made to assess its psychometric properties, it appears some fundamental 

forms of validity have been overlooked. Given validity is cumulative, if one form 

of validity is omitted, confidence about which test scores can be interpreted is 

diminished (Buckendahl & Plake, 2006). Furthermore, the statistical methods 

used in the psychometric studies described in this chapter represent basic analyses 

which, although provide some useful information, need to be supported by more 

sophisticated analyses not subject to the same methodological limitations. 

Furthermore, if clinicians are to continue to use ImPACT in the assessment of 

sport concussions, they must first evaluate the validity and reliability of the 

measure within their specific population.  
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Chapter 5: The Current Study 

Concussion and its potentially harmful consequences is becoming an increasingly 

popular topic within the sporting arena and neuropsychology. Our understanding 

of concussion, the nature of its effects, the neural correlates, and recovery patterns 

are still far from comprehensive (McCrory et al., 2013). However, due to 

increased interest in the topic of sport concussion, research in this area is quickly 

proliferating. At present, the general consensus regarding the assessment of 

concussion is that it should be multifaceted, including physical examination, self-

report of symptoms, and an assessment of neurocognitive function and balance 

(Littleton & Guskiewicz, 2013; McCrory et al., 2013). A multifaceted approach to 

assessment is important given the large individual variation in both the 

presentation and recovery of concussion.  

The use of neuropsychological tests in the assessment of sport concussion is a 

relatively new approach, with the first concussion programme to implement 

neuropsychological testing dating back to only 1990 (Lovell et al., 1996;  Lovell., 

1999). Since then, neuropsychological testing has become computerised, with the 

most popular battery being the Immediate Post-concussion Assessment and 

Cognitive test (ImPACT; ImPACT online, 2013). Based on the author’s review of 

the literature, empirical support regarding ImPACT’s psychometric properties is 

inconclusive, with important forms of validity and reliability yet to be assessed. 

This is worrying given that the utility of ImPACT in the assessment of concussion 

relies on the demonstration of sound psychometric properties. If psychometric 

properties are poor the clinician cannot be certain whether individual scores 

reflect true cognitive ability or are instead an artifact of measurement variance. 

The overall aim of the current study is to extend the current psychometric 

literature regarding ImPACT by examining psychometric properties of ImPACT 

not yet assessed. Furthermore, structural equation modeling (SEM) techniques 

will be used, which overcome the methodological limitations of the more basic 

statistical analyses that have been previously used in the sport concussion 

literature. This will allow a more sophisticated and in-depth examination of 

ImPACT’s psychometric properties.  
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Structural Equation Modelling is a theoretically driven form of statistical analysis. 

An important theoretical difference between SEM techniques and those currently 

used in the assessment of ImPACT’s psychometric properties (e.g., t-tests, 

ANOVA) is the theoretical system each technique tests (Bollen & Lennox, 1991; 

Thompson & Green, 2006). The Latent Variable System, used by SEM 

techniques, assumes that the measured variable (i.e., the indicator) is a linear 

combination of an unobserved variable (i.e., the latent factor) and error 

(Thompson & Green, 2006). Thus variation among indicator scores is explained 

by variation in the factor plus error (Kline, 2011). Conversely, the Emergent 

System that is inherent in t-tests and ANOVA conceptualises measured variables 

as causal variables. That is, fluctuations observed among indicator scores explains 

fluctuations in the aggregated or latent factor score (Thompson & Green, 2006). 

While these more basic analyses assume an Emergent System, this is often 

inconsistent with the theoretical approach of the research in which it is used 

(Hancock & Samuelsen, 2008). ImPACT hypothesises that the items are 

indicators of unobservable (i.e., latent) cognitive functions (ImPACT online, 

2013) and therefore a Latent Variable System is more appropriate. Another 

advantage of SEM is that it distinguishes between specific and unique variance in 

addition to measurement error, therefore providing a more accurate account of 

affairs. 

Structural Equation Modelling techniques often require subjective decisions based 

on the available data, especially in the exploratory stages. Thus it is important that 

these decisions be guided by theory and are not simply based on the researcher’s 

opinion. Despite a search of the literature regarding ImPACT, the ImPACT 

website, and technical manual, no theoretical framework was found. It is uncertain 

whether the construction of ImPACT was atheoretical or whether the theoretical 

framework used in ImPACT’s development was never published. Either way, the 

lack of theoretical guidance resulted in the current study, choosing a cognitive 

theory from the literature to both guide the methodological process and provide a 

framework from which results could be interpreted. The Cattell-Horn-Carroll 

(CHC) theory was chosen given its robust support within the literature (Keith & 

Reynolds, 2010; McGrew, 2005, 2009). The Cattell-Horn-Carroll theory provides 

a taxonomy for understanding and studying cognitive constructs, which are by 
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nature inter-related and thus difficult to separate (McGrew, 1997). However, it is 

comprehensive and inclusive of all academic and cognitive abilities. Therefore the 

researcher also considered previous empirical research regarding the specific 

domains affected by concussion to guide decisions and provide a context for the 

current study. 

The current study has three main objectives. These are individually described 

below along with a rationale for each objective and their potential contribution to 

the literature.  

Objective 1A: To identify an underlying factor structure of the ImPACT battery. 

Identifying and validating the underlying factor structure of ImPACT (i.e., 

factorial validity) will add to ImPACT’s construct and content validity literature. 

Content validity refers to the degree to which ImPACT includes a sufficient 

number of items that are representative of the constructs affected by concussion 

and excludes irrelevant items. No studies were identified that specifically 

evaluated the content validity of ImPACT. As discussed in Chapter 3, a review of 

the literature indicates that any measure examining the cognitive effects of sport 

concussion should at a minimum include measures of processing speed and 

memory. Furthermore, both CHC theory and empirical research suggest complex 

processing speed and simple processing speed (i.e., reaction time) be assessed as 

separate constructs. However whether visual and verbal memory should be treated 

as separate constructs, or combined to form a General Memory factor, remains 

ambiguous based on the current literature.  

Construct validity, that is, ImPACT’s ability to measure the cognitive areas it 

purports to measure (Verbal Memory, Visual Memory, Reaction Time, Processing 

Speed, Impulse Control), has thus far been inferred from investigations of 

convergent and divergent validity (Iverson, Franzen, et al., 2003; Iverson et al., 

2005; Iverson et al., 2002). As discussed in Chapter 4, finding evidence for these 

types of validity is limited by their analysis. The major limitation is that the 

correlation analysis is between items that include all of the items’ variance and 

error. Thus the current study uses SEM techniques to assess construct validity in 

the form of factorial validity, which controls for error and distinguishes between 
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unique and common variance, and is thus not subject to the same limitation as 

simple correlation.   

As discussed in Chapter 4, validity is cumulative. Thus, if one form of validity is 

lacking, conclusions based on other forms of other validity are potentially 

erroneous. Factorial validity is a fundamental form of validity. Empirical studies 

investigating the factorial validity of ImPACT are limited. Of note, factor analytic 

techniques for identifying the structure of item-factor relationships (i.e., factorial 

validity) are recommended to form part of the development of a scale (Brown, 

2006). However, neither the psychometric nor the theoretical rationale or 

foundation employed to guide the development of the ImPACT battery is cited in 

the test manual (ImPACT, 2013) or the literature. Efforts to contact the developers 

resulted in no response. Thus it is unknown how the test developers concluded 

that five factors account for the variation in test items and also how they 

established the pattern of item-factor associations. Furthermore, upon examination 

of the item content, the researcher’s opinion is that the model is mis-specified. 

Firstly, at face value two items (i.e., XO-total-correct-interference and XO-

reaction-time) appear extremely similar and thus one is most likely redundant. 

Secondly, the Symbol Match – Memory item is loaded with the Verbal Memory 

factor when its content, at face value, appear representative of Visual Memory. A 

review of the literature revealed a small number of studies investigating the factor 

structure of ImPACT. However, they produced solutions inconsistent with the 

current scoring structure and are replete with methodological limitations. Thus, 

there is an obvious need for additional investigations of ImPACT’s factor 

structure as empirical support for the current structure is lacking. Based on the 

above rationale the first objective of the current study is to explore the underlying 

factor structure of the ImPACT battery so as to identify what factors are present, 

and the relationship between those factors and observed variables.  

Objective 1B: To determine whether the factor structure identified in the 

current study (1A) or Allen and Gfeller’s (2011) structure, best fits the data.  

To strengthen the confidence in the results from objective 1A, an attempt will be 

made to validate the identified factor structure via confirmatory factor analysis 

(CFA) among a distinct sample. Furthermore, Allen and Gfeller’s (2011) factor 
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structure will also be submitted to CFA to identify whether their five-factor 

structure depicted in Figure 3, or the one identified in the current study (i.e., 

Objective 1A), best accounts for the variance in observed items. It is hypothesised 

that Allen and Gfeller’s (2011) model will not provide an adequate fit to the data, 

but the factor structure identified in 1A will adequately fit the data. To the 

author’s knowledge the current study will be the first to conduct a ‘pure’ 

exploratory factor analysis (EFA) in addition to a CFA using items from the 

ImPACT battery.  

Objective 2: To assess the longitudinal stability of the identified ImPACT 

structure 

Longitudinal stability refers to the consistency of an instrument’s structure over 

time (Marsh, 1993). Although it is rarely assessed in psychological research, it is a 

fundamental aspect and implicit assumption of analyses that assess temporal 

change of a construct (e.g., test-retest reliability). When one investigates the 

stability of an overall instrument, this is referred to as measurement invariance. If 

measurement invariance over time is not empirically tested then observed 

temporal change of a construct may not be due to true change but may be the 

result of changes in the structure or measurement of the construct. Distinguishing 

between the potential causes of invariance is not possible in the absence of 

measurement invariance.  

Given that a search of the literature failed to identify any study that investigated 

the measurement invariance of the ImPACT battery over time, conclusions 

regarding the temporal reliability of ImPACT constructs are potentially erroneous. 

Such conclusions were based on test-retest reliability, which calculated Pearson’s 

r, a correlation co-efficient between each of the five composites with themselves 

at a different time point. In these studies (e.g., Elbin et al., 2011b; Iverson, Lovell, 

et al., 2003; Schatz, 2010) the temporal change or lack of it has been interpreted 

as a true score change of each construct (i.e., ImPACT composite), when in fact it 

may be that the structure of the construct or the precision of measurement may 

have changed over time. For this reason an assessment of measurement invariance 

should precede any other form of longitudinal analyses.  
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Thus the second objective of the current study was to strengthen the previous 

findings by investigating the longitudinal stability of the identified ImPACT 

structure. To improve upon previous methodological limitations in the literature 

regarding ImPACT’s longitudinal reliability, SEM techniques will be used for the 

analysis to allow invariance to be tested for the true score of the construct, the 

meaning of the construct (i.e., the number of factors that represents the construct), 

and the measurement properties (i.e., item-level scores) of ImPACT, over time. 

Thus, measurement invariance in addition to longitudinal stability and differences 

in latent means will be assessed for the ImPACT structure over time.  

Objective 3: To validate the identified ImPACT structure within a New Zealand 

adolescent sample and assess ImPACT’s cross-country validity.  

Brown (1996) states that the validity and reliability of an instrument only upholds 

to the population it was tested in or populations with demographically similar 

characteristics. One cannot assume that because a study has demonstrated 

adequate validity of ImPACT among a US population that it will be valid among 

samples from countries other than the US. To the author’s knowledge 

investigations regarding ImPACT’s psychometric properties have yet to be 

conducted with a New Zealand sample. There have been a few studies that have 

examined the cross-country validity of ImPACT, such as those described in 

Chapter 4, between the US and South Africa (Shuttleworth-Edwards et al., 2009), 

and the US and Hawaii (Tsushima, Oshiro, & Zimbra, 2008). However, like 

previous longitudinal investigations, these studies are limited by their 

methodology. Analyses used were t-tests and ANOVA, methods that assume the 

instrument of measurement is operating in exactly the same way and that the 

underlying construct has the same theoretical structure and psychological meaning 

across the groups of interest. Yet, this assumption is still to be empirically tested 

for the ImPACT battery. Another important limitation is that these methods do not 

account for measurement error, which has the potential to bias results.  

Due to the above rationale the third objective is to attempt to validate the 

ImPACT structure identified in Objective 1 among a sample consisting of 

individuals from a different country (i.e., New Zealand) to the sample (i.e., South 

Africa) in which the structure was identified and initially validated. In doing so it 
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is hoped additional evidence for the ImPACT structure identified by Objective 1 

will be provided, supporting its validity over other proposed structures. 
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Chapter 6: Method 

The current study sought to assess the validity of the Immediate Post-concussion 

Assessment and Cognitive Test (ImPACT) among a sample of adolescent athletes. 

Stage One attempted to identify the underlying factor structure of ImPACT as 

developers have not specified the theoretical or psychometric foundation upon 

which its current scoring structure is based upon. Additionally independent 

explorations of ImPACT’s factor structure are scarce. Therefore Stage One 

initially took an exploratory approach. A series of exploratory factor analyses 

(EFA) were conducted to identify a theoretically and psychometrically strong 

factor structure. The superior factor structure was then validated on a separate 

sample via confirmatory factor analysis (CFA). Stage Two sought to assess the 

longitudinal stability of the identified ImPACT structure across three time points. 

Structural stability, differential stability, and latent mean stability, across time 

were assessed. Lastly, Stage Three investigated the cross-country measurement 

invariance of the identified ImPACT structure across New Zealand and South 

African male adolescents.  

6.1 Participants 

An adolescent sample was chosen given the dearth of literature regarding 

adolescents and concussion, despite this age range exhibiting the highest 

prevalence of sport concussion. Furthermore, a New Zealand sample was chosen 

as the original aim of this research was to assess whether the ImPACT battery 

could be used with New Zealand adolescents as currently New Zealand high 

school rugby teams do not use neuropsychological assessment in the management 

of sport concussion, despite it being the recommended best practice (McCrory et 

al., 2009). The South African sample is one of convenience. Originally the aim 

was to compare a New Zealand sample to that of the American ImPACT 

normative data, however attempts to obtain American data were unsuccessful. 

Furthermore, given the difficulty recruiting New Zealand participants the South 

African sample was used as the primary data set for the EFA and two CFA’s as it 

was a larger sample, a required feature of factor analysis.  South African baseline 

data was obtained for three years, 2011, 2012, and 2013.  
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6.1.1 Sample A. Sample A consisted of 611 South African male sports-

playing students, ranging from 12 to 19 years of age (M = 15.02, SD = 1.42). The 

2012 sample was chosen for Stage One of the study, as it was the largest sample. 

Participants were English-speaking students, all from the same South African high 

school. Participants were excluded from the analysis if they had sustained more 

than two concussions and/or had a diagnosis of Attention Deficit Hyperactivity 

Disorder (ADHD) and/or a learning disability, as these are known to affect the 

cognitive domains measured by ImPACT (ImPACT online, 2013). Consequently, 

a total of 89 participants were excluded; 24 had a history of three or more 

concussions, 65 reported a diagnosis of ADHD, 11 of which also reported a 

diagnosis of dyslexia. The sample was then randomly divided to form two 

independent samples and will be referred to as 2012A (N = 271) and 2012B (N = 

257). The sample was split so both an EFA and CFA could be conducted. 

Demographic information is presented in Section 7.1.  

6.1.2 Sample B. Sample B initially consisted of 130 sports-playing, male 

students from two New Zealand high schools. Independent t-tests indicated no 

significant differences in age or performance between the two school samples on 

individual items, therefore the samples were combined for all further analyses 

(See Appendix D, Table 3). Exclusion criteria as outlined previously for Sample 

A resulted in the exclusion of 13 cases: Four participants reported a diagnosis of 

ADHD, one indicated the presence of ADHD and Dyslexia, and seven had 

sustained three or more previous concussions. A further nine cases were removed 

as they were identified as multivariate outliers (see section 6.3.4.1.2). The final 

sample consisted of 109 males, ranging in age from 12 to 17 (M = 14.5, SD = 

1.91). The final samples demographic information is presented Section 7.1.  

6.2 Measure: Immediate Post-concussion Assessment and Cognitive Test 

(ImPACT) 

ImPACT is a 30 minute computerised concussion evaluation system, utilised in 

the clinical management of sports concussion (ImPACTonline, 2013). It is widely 

used in several countries such as, the United States, South Africa, Sweden, and 

Canada. It is also used across ages and competition levels, including high school, 

college, and professional athletes (ImPACT online, 2012). ImPACT takes an 
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individualised approach to concussion management by recommending a baseline 

method of assessment. That is, athletes are tested pre-season to obtain a baseline 

measure of their cognitive performance, to which any post-injury testing can be 

compared (McCrory et al., 2005). Post-injury testing can be implemented 

numerous times until the athlete’s post-concussion cognitive function returns to 

baseline, indicating the individual has recovered. This is in comparison to simply 

comparing post-injury performance to normative data. However, if for some 

reason a baseline measure is not available, ImPACT provides normative data for 

which the individuals’ performance can be compared to. ImPACT has developed 

reliable change indices (RCI) for the five composite scores to identify when the 

difference between a baseline score and a post-injury score falls outside of normal 

score variation (ImPACT technical manual, 2012). Percentile scores are presented 

alongside the composite scores to provide additional information for interpretation 

as although a score may not exceed the RCI, the change from baseline may still be 

clinically significant. ImPACT is not intended to be used in isolation to diagnose 

concussion rather it provides additional information for a medical practitioner to 

consult when managing an individual’s concussion and their return-to-play 

(ImPACT technical manual, 2012).  

ImPACT consists of three main sections. The first pertains to demographic 

information, such as height, weight, age, sports code, history of concussion, 

and/or learning disorder (ImPACT, 2013). The second section consists of a 

subjective concussion symptom inventory. Participants indicate which of a 

possible 22 symptoms they are experiencing and indicate the severity of each on a 

7-point Likert scale. A total symptom score is produced by adding the individual 

items. The third section is the neuropsychological tests which consists of six 

modules, Word-memory, Design-memory, X’s and O’s, Symbol Matching, 

Colour Match, and Three Letter Memory, which together produce five composite 

scores, Verbal Memory, Visual Memory, Visual Motor Speed, Reaction Time, 

and Impulse Control. These tasks represent commonly employed 

neuropsychological tests. For example the Colour Match task is similar to the well 

known Stroop Colour and Word test (Stroop, 1935), and the Symbol Match task is 

similar to the Digit Symbol Coding in the Wechsler Adult Intelligence Scale, 

Fourth Edition (WAIS-IV: Wechsler, 2008).  
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The Word-memory and Design-memory modules are discrimination tasks in 

which 12 words/designs are briefly (750 milliseconds) presented on the screen. 

Presentation occurs twice to facilitate learning. The 12 target words or designs are 

then presented individually along with 12 non-targets words or designs and test-

takers are asked whether or not each word or design was one of those originally 

presented. In the X and O’s task a random assortment of X and O’s are visually 

presented, three of which are highlighted yellow. The participant must remember 

the location of the yellow X and O’s and following a distractor task recall their 

location. The distracter task is a choice reaction time test. On the screen either a 

red circle or blue square appears. If it is a blue square, the test-taker must click the 

left mouse button, if it is a red circle, then the right mouse button. Test-takers 

must respond as quickly as possible.  

The Colour Match task is also a choice reaction time task and measures impulse 

control and response inhibition. It is similar to the well known Stroop task 

(Stroop, 1935) as a colour word is displayed in either the same colour ink as the 

word or in a different coloured ink as the word. The participant is instructed to 

click the word as quickly as possible, but only if it is presented in matching ink. 

Lastly, the Three Letter Memory task requires test-takers to remember three 

displayed consonant letters. Following 18 seconds of a distracter task they are 

asked to recall the three letters. For the distracter task they are presented with a 

grid consisting of numbers 1 to 25 randomly placed. They must click in 

descending order as quickly as possible. 

From the six modules twelve subscale scores are automatically produced, which 

contribute to the five composite scores (ImPACT technical manual, 2012). The 

subscale scores are either averages or totals of the items that comprise each 

subscale. The total composite scores of Verbal Memory and Reaction Time are 

comprised of three subscale scores each, whereas Visual Memory, Visual Motor 

Speed, and Impulse Control composites are each comprised of two subscale 

scores. The composites are averages of their constitute subscales. Table 4 outlines 

the scoring pattern and provides a description of the subscale scores. 
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Table 4 

ImPACT Scoring Structure  

Composite Item Description 

 
Verbal 
Memory 

 
Word-memory 

 
Symbol-match-memory 
 
Three-letters-memory 

 
Percentage of correct number of words 
recalled correctly  
Percentage of correct responses when the 
symbols were hidden from participant 
Percentage of correct number of letters 
correctly recalled 

Visual 
Memory 

Design-memory 
 
XO-memory 

Percentage of correct number of designs 
recalled correctly 
Percentage of correct number of X and O 
position recalled 

Visual Motor 
Speed 

XO-total-correct –
interference 
Three-letters-correct -
interference 

Number of correct responses to either the 
red circle or blue square 
Average amount of numbers counted in 
correct order 

Reaction 
Time 

XO- reaction-time 
 
Symbol-match-
reaction-time 
Colour-match-reaction-
time 

Average time to respond correctly during 
interference task 
Average time to respond correctly when 
symbols visible 
Average time to respond correctly 

Impulse 
Control 

XO-total-incorrect 
 
 
Colour-match-total-
commission 

Number of incorrect responses to either 
the red circle or blue square (interference 
task) 
Number of incorrect responses 
 

 

 

6.3 Procedure 

 6.3.1 Ethics. Ethical approval was obtained through Massey University 

Human Ethics Committee Northern (12/075). If a participant’s performance on 

ImPACT was below the expected range for their age then a senior clinical 

psychologist would review their results and provide the individual and their 

family with recommendations if needed.  
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6.3.2 Data Collection  

6.3.2.1 Sample A. The researcher contacted the head researchers of the 

concussion programme at Rhodes University in South Africa, requesting 

permission to utilise a portion of their ImPACT data in the current study. Rhodes 

university manages a sport concussion programme for several South African 

schools. The programme involves baseline testing each year and post-injury 

assessment and management should an individual sustain a sport concussion. 

Written into the contracts between Rhodes University and the schools whom 

utilise their concussion programme is that the schools give them consent to utilise 

the data for research purposes. A contract between Rhodes University and Massey 

University stipulating the purposes of the data was drafted by the university’s 

legal departments and signed by all parties. Subsequently, Rhodes University 

provided the researcher access to ImPACT data collected from one South African 

school dating back to 2009. 

For the purposes of the current study only baseline testing from 2011, 2012 and 

2013 were included in the sample. This was for two reasons, firstly previous years 

utilised a different version of ImPACT (2.0) and secondly, the same individuals 

were not tested every year, thus as more years were included the smaller the 

sample became. This data was collected in accordance with the ImPACT 

guidelines for testing. Administration occurred in groups and was overseen by a 

trained supervisor. Athletes completed the battery individually on a computer 

which automatically recorded individuals’ responses, collated their scores, and 

produced a print out of each individuals subscale scores.  

6.3.2.2 Sample B. Letters of invitation, as presented in Appendix A, were 

sent to approximately 30 high schools in the Auckland district of New Zealand, 

these included both uni-sex and co-educational high schools. The letter outlined 

the purpose and benefits of the research and the requirements of the school and 

students if they should wish to participate. If no response had been made within 

10 working days a follow up phone call was made to the school. Of approximately 

30 schools contacted, one male-only school agreed to participate in 2012 and one 

co-education school agreed to participate in 2013. The researcher and colleague 

met with the sports co-ordinator of each school to confirm the details of the study 
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and organise the schedule for testing. Information sheets were distributed to 

parents and consent was sought. Data collection for Sample B1 occurred over 

three sessions whereas collection of Sample B2 data occurred over eight sessions. 

Participants were administered the ImPACT battery in groups, ranging in size 

from three to 20.  Participants were seated at a computer, separated from others by 

at least one chair space. The purpose of the research was explained and informed 

consent was sought (see Appendix B and C). Participants were instructed to 

follow the on-screen instructions, work at their own pace, and to raise their hand if 

they had any questions. The ImPACT programme automatically recorded all data. 

Sessions took approximately 40 minutes and were supervised by the primary 

researcher.  

6.3.3 Data Analysis Methods 

Descriptive statistics and exploratory factor analyses were computed in Statistical 

Package for the Social Sciences version 20 (SPSS Inc, 2011), whereas the various 

confirmatory factor analyses were conducted in Analysis of Moment Structures 

version 21 (AMOS-21; Arbuckle, 2012).  

6.3.3.1 Exploratory factor analysis. Exploratory factor analysis (EFA) is a 

statistical technique used to identify the underlying structure of a set of observed 

variables (Tabachnick & Fidell, 2012). It is used when the structure of a set of 

variables is unknown, ambiguous, or lacking theoretical and/or empirical support. 

Items are entered into the analysis that has no a priori hypothesis regarding item-

factor relationships. Any item may be associated with any factor. There are 

several methods of EFA and thus the researcher must make a series of decisions 

regarding the specific steps taken based on the data they are using (Tabachnick & 

Fidell, 2012). In the current study, factor analysis (FA) was chosen over the more 

commonly used method of principal component analysis (PCA) for several 

reasons.  Firstly, FA only examines common variance compared to PCA which 

includes all item variance (i.e., specific and common) in its solution (Field, 2009). 

PCA is merely a data reduction exercise in that it attempts to explain the most 

amount of variance with the fewest components. Therefore components are 

simply aggregates of items, they are not representative of the variance shared 

between items, as is the case with factors. Another limitation of PCA compared to 
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factor analysis is that its findings cannot be generalised beyond the tested sample 

(Field, 2009). This is because in PCA it is assumed the sample is the population, 

whereas in FA it is assumed the sample is a random selection of the wider 

population and thus findings can be generalised beyond the current sample.  

The first step in FA is the extraction of factors. Maximum Likelihood (ML) was 

the method of extraction chosen in the current study. ML is the recommended 

extraction process. It allows for the computation of several goodness of fit indices 

for the model, the statistical significance of factor loadings, and the correlation 

among factors (Field, 2009). The factor loadings produced by ML are those that 

maximise the likelihood of observing the actual data (i.e., correlation matrix). 

Three major assumptions of ML are that the data are continuous, normally 

distributed, and the sample size is large (Byrne, 2009). In regards to sample size, 

absolute guidelines suggest that a sample size of 100 is the minimum required 

(Kline, 2005; Russell, 2002), a sample size between 100 and 200 is ‘medium’ and 

anything over 200 is large. According to these guidelines the current sample 

(2012A, N =264) is of sufficient size for the intended analyses.  With respect to 

normality the sample demonstrated both univaritate and multivariate normality 

(See Results Section 7.2).  Therefore the ML assumptions were satisfied and thus 

it was an appropriate method to be used for the current data set to be used. 

Following extraction of factors, rotation of those factors occurs, which results in 

items loading maximally onto one factor therefore making interpretation easier. 

Importantly, rotation does not change the original solution (i.e., the fit between the 

hypothesised model and the observed data) it simply makes it easier to interpret. 

There are two major types of rotation, oblique and orthogonal rotation. In the 

current study a form of oblique rotation was chosen, direct oblimin. Direct 

oblimin rotation aims to simplify factors by minimising cross-products of 

loadings.  Oblique rotation was chosen over orthogonal as it allows factors to 

correlate. The latent factors in the current study represent cognitive domains that 

are believed to be related, thus oblique rotation was appropriate.  

6.3.3.2 Structural equation modelling. Structural equation modelling 

(SEM) is an umbrella term which refers to a set of multivariate, statistical 

techniques which test theoretically driven, hypothesised relationships among 
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variables (Ullman & Bentler, 2012). The relationships between variables are 

assumed to be causal and each represents a regression path. Multiple regression 

paths constitute a ‘model’, which is a hypothesised structure of how the variables 

interact. The hypothesised model can be compared to the actual relationships 

among variables, observed in the data to assess their similarity (Byrne, 2009).  

Structural Equation Modelling techniques are an extension of General Linear 

Modelling procedures such as the Analysis of Variance (ANOVA) and Multiple 

Regression (Kline, 2011). However SEM techniques not only allow for the 

modelling of multiple independent and dependent variables, but also considers 

latent variables which may be represented by clusters of observed variables 

(Savalei & Bentler, 2010). Latent variables are constructs that cannot be directly 

measured, such as memory. Instead they are indirectly measured through several 

observed variables (i.e., items) believed to represent the construct. As the 

construct of interest is not measured directly, measurement error is most likely 

present. Measurement error represents variation in the observed scores that is not 

attributable to the latent variable. An advantage of SEM over ordinary regression 

models is that measurement error is taken into consideration when calculations are 

performed (Ullman & Bentler, 2012). Because SEM models measurement error 

separately to the indicator, it is controlled for and thus provides a superior 

reflection of the true relationship between two or more latent constructs (Kline, 

2011).  

6.3.3.3. Confirmatory factor analysis. Confirmatory factor analysis (CFA) 

is a type of SEM that is often used to assess the validity of a hypothesised factor 

structure (Kline, 2011). Factor analysis identifies a small set of unobserved 

variables which can account for the covariance among a larger set of observed 

variables (Brown, 2006). Within a CFA model, hypothesised relationships 

between items (observed variables or indicators) and latent factors (unobserved 

variables) are specified a priori, based on theory and/or empirical evidence. CFA 

is based on the Common Factor Model which postulates that each indicator is a 

linear function of one or more common factors and one unique factor (Harrington, 

2008). Common factors are unobserved (latent) variables that are defined based 

on observed variables (Brown, 2006). Thus, variation in the latent factors explains 

a proportion of the variations seen in the corresponding indicators, not the other 
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way around. The residual variation is unique variance, a combination of variance 

specific to the indicator in addition to random/measurement error (Brown, 2006). 

A CFA model always consists of a measurement model which includes a latent 

factor, several indicators (observed variables), and their associated measurement 

error (Byrne, 2001). Confirmatory Factor Analysis provides estimates of the 

magnitude and direction of the relationship between observed variables (items) 

and latent variables (factors), these are termed factor loadings or regression 

weights (Kline, 2011). Factor loadings represent how much of the variance in the 

indicator is explained by the latent factor. When there is more than one latent 

variable there is also a structural model which consists of the relationships 

between latent variables, the magnitude of which is protrayed through covariance 

estimates.   

The aim of CFA is to assess how well the hypothesised model matches the 

covariance matrix of the data set (Brown, 2006). That is, how well the estimated 

parameters of the factor solution reproduce the observed relationship among the 

input variables. To assess this, the estimated covariance matrix is compared to the 

observed covariance matrix and a test statistic of difference is calculated 

(Tabachnick & Fidell, 2013). Since it is common for more than one model of a 

particular measure or construct to be specified in the literature, CFA can test 

which of the competing models provides a superior explanation for the observed 

items variance and covariance.  The model consists of several equations, some of 

which the solutions are known and some unknown (Kline, 2011). The unknown 

equations are solved via an estimation process. The current study employed 

Maximum Likelihood (ML) estimation given it is the most commonly cited 

method in the literature (Kline, 2011, Tabachnick and Fidell, 2013), and 

importantly, it was most appropriate for the current data set. The previously 

mentioned, ML assumptions were also met by the data used in the series of 

CFA’s. Specifically, the sample size (2012B, N =257) was sufficiently large, the 

data were continuous and were normally distributed.  

6.3.3.4 Item parcelling. The current study used parcelled items as the 

lowest-order indicator variables in the CFA model. Parcels result from summing 

or averaging two or more items scores (Meade & Kroustalis, 2006). These are 

used in place of individual raw item scores in the analysis. In the current study 
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parcelled items were used, as raw data were not made available from the ImPACT 

company. The ImPACT programme automatically parcels items by averaging the 

subscale score; this is what test administers are provided with. The use of 

parcelled items or subscale scores appears to be common practice in factor 

analytic studies of neuropsychological batteries (Deary, 1993; Larrabee, Kane, & 

Schuck, 1983; Parker, 1983). In other research areas it is also not uncommon as 

highlighted by Bandalos and Finney (2001). In their review of 317 SEM studies 

conducted between 1989 and 2004, they found that 19.6% employed a form of 

parcelling and of these, 82.3% were CFA studies (Bandalos & Finney, 2001). 

Nevertheless, the use of parcelled items is controversial (Cattell & Burdsal, 1975; 

Little, Cunningham, Shahar, & Widaman, 2002; Nasser & Takahashi, 2003; 

Nasser & Wisenbaker, 2003; West, Finch, & Curran, 1995).  

The main criticism of parcelling is its threat to validity. Parcelling compresses the 

specific variance and random error of each individual item, either eliminating it 

all together or at least reducing it. The parcelled items typically share variance, 

and this is what is emphasised in the aggregated score. As a result model fit is 

improved and mis-specification can be obscured (Bagozzi & Edwards, 1998; 

Bagozzi & Heatherton, 1994). For example an item could originally load onto 

both a Memory and Reaction Time factor, if it is parcelled with other 

predominately memory loaded items, the aggregate or parcelled score may now 

only load on Memory and not Reaction Time. Thus, its association with the 

Reaction Time factor is concealed and the model is mis-specified.  

In the current study, furthermore to having no other option than to use parcelled 

items, parcelling items was advantageous. ImPACT raw scores are dichotomous, 

and thus given the limited range of scores, they lack variance and normality is 

impossible. Parcelling the items increased the range of possible scores, creating 

continuous data with the potential for normality. Other advantages of parcelling 

are that the number of items to sample size decreased (Bagozzi & Edwards, 1998) 

and therefore parcelled items are more reliable than individual items (Cattell & 

Burdsal, 1975; Kishton & Widaman, 1994). 

Guidelines regarding item parcelling suggest that if items are unidimensional then 

parcelling is acceptable (Kline, 2011). Whilst this assumption cannot be 
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statistically tested in the current study given the unavailability of raw scores, it is 

probable given the nature of the items. Within each subscale of ImPACT, the item 

(i.e., question or task) is predominantly the same. For example, in the Word-

memory subscale each item is “Did the word ______ previously appear?”. Whilst 

the specific word is different for each item the question is the same. In regards to 

the reaction time tests the items which make up each subscale or parcel are 

exactly the same, they are simply different trials of the same test. This is the 

typical format for tests of reaction time. Lastly, given the similar if not identical 

nature of the items within each parcel it is also likely that the specific variance 

and random error are also similar. However these are only hypotheses that could 

not be tested since raw data was not available.   

6.3.3.5 Evaluation of model fit. An evaluation of how well a hypothesised 

model fits the data should be inclusive of the overall fit evidenced by goodness-

of-fit statistics, localized areas of misfit, and the size and statistical significance of 

parameter estimates (Brown, 2006). Adequate fit of the overall model provides 

support for the validity of parameter estimates. Goodness-of-fit statistics provide a 

global measure of the models ability to reproduce the input covariance matrix, 

whereas localised strain and parameter estimates provide more specific 

information about the acceptability and utility of the solution (Byrne, 2001).  

Several goodness-of-fit statistics exist for evaluating model fit (Brown, 2006). 

Some statistics are absolute in their assessment of model fit whereas others 

provide a continuous measure of model-data correspondence. Various test 

statistics have different strengths and weaknesses, thus several indices will be 

considered collectively as guides for evaluating model fit (Byrne, 2001). The 

following fit indices were chosen as they are widely accepted and were 

appropriate to use with the data of the present study.  

6.3.3.5.1 Chi-square statistic. The chi-square (χ²), which is absolute in 

nature, is the classic fit statistic (Kline, 2011). It tests the similarity between the 

implied and the observed covariance matrix, also known as the exact fit 

hypothesis (Kline, 2011). If the chi-square associated p-value is statically 

significant (p < 0.05) then the null hypothesis of exact fit is rejected (Raykov & 

Marcoulides, 2006). When a model provides a good fit to the data, the chi-square 
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value is lowered. However the chi-square statistic is inflated by large sample sizes 

and in the presence of a large sample, even minor differences between covariance 

matrices can produce a significant result (Cheung & Rensvold, 2002). A further 

limitation cited in the literature is that the standard of ‘perfect fit’ is not practically 

realistic in social science research (Kline, 2011). Given these limitations less 

emphasis will be placed on the chi-square statistic and it will be interpreted in 

conjunction with more practical fit indexes outlined below.  

6.3.3.5.2 Comparative fit index and Tucker-Lewis index. Both the 

comparative fit index (CFI) and Tucker-Lewis index (TLI) are comparative fit 

indices as they compare the difference between the hypothesised model and an 

independence model in which all observed variables are uncorrelated (Kline, 

2011). Their values indicate the ratio of improvement of fit of the observed model 

over the independence model. Values vary from 0 to 1, with those exceeding .90 

indicative of adequate fit (Bentler & Bonett, 1980) and those exceeding .95 

indicative of good fit (Hu & Bentler, 1999). Unlike the chi-square statistic the CFI 

and TLI are not influenced by sample size (Brown, 2006).  

6.3.3.5.3 Root mean square error of approximation (RMSEA). The Root 

Mean Square Error of Approximation (RMSEA) is representative of the error of 

approximation within the population (Byrne, 2009). It examines the extent to 

which the hypothesised model fits the data “reasonably” well, opposed to the 

‘exact’ fit as assessed by the chi-square likelihood ratio test (Brown, 2006). A 

RMSEA of less than .05 is considered a good fit, .05-.08, a reasonable fit, .08 to 

.10, a mediocre fit, and values greater than 0.10, a poor fit (Hu & Bentler, 1999). 

The RMSEA incorporates a penalty for poor model parsimony and is sensitive to 

misspecification. Confidence intervals can be calculated around RMSEA values 

providing an indication of the precision of RMSEA estimates (Byrne, 2009).  

6.3.3.5.4 Modification indices. Whilst the fit statistics previously described 

are useful in assessing model fit, they should not be used in isolation (Kline, 

2011). Goodness-of-fit statistics summarise the overall fit of a complete model in 

a single number. The model could contain a severe misspecification in one of the 

groups or for one specific parameter, but still have a reasonable overall fit (Kline, 

2011). Therefore in addition to evaluating overall fit, it is equally important to 
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examine the model for localised areas of poor fit. Modification indices identify 

potential areas of local statistical poor fit (Brown, 2006). Modification indices are 

calculated if AMOS (Arbuckle, 2012) believes the addition of certain parameters 

would improve the fit of the model. That is, the data are suggestive of certain 

relationships that aren’t currently specified in the model. A modification index 

indicates how much the chi-square value of a model would decrease and model fit 

improve, if the parameter were free instead of constrained (Brown, 2006). 

Modification indices are in fact chi-square tests for individual equality constraints; 

high values indicate that the respective parameter constraint is ‘wrong’. However, 

given the chi-square statistic is sensitive to large sample size, only extremely high 

values, such as those exceeding 20, should be taken as strong evidence of poor fit. 

Because the chi-square values can be misleading, it is advisable to look at the 

expected parameter change (EPC) value as well (Kline, 2011). The parameter 

change indicates the extent to which a parameter would change if the equality 

constraint was removed. Parameter changes greater than .10 are considered 

substantial (Byrne, 2009). A caution regarding modification indices is that they 

are numerically driven, they are not theoretically based. Given the current study 

employs CFA, a theoretically driven technique, modification indices will not be 

heavily relied upon.  

6.3.3.5.5 Standardised residuals. Lastly, standardised residuals can also 

provide information regarding model fit. In CFA the residuals represent the 

discrepancy between the hypothesised covariance matrix and the observed 

covariance matrix (Kline, 2011). Standardised residuals are not dependent on the 

scale of measurement as they represent an estimate of the number of standard 

deviations the observed residuals are from a residual of zero that would exist if the 

model were perfect (Brown, 2006). In large samples and a correctly specified 

model, standardised residuals follow a normal distribution, thus the majority 

should be less than two standard deviations. Byrne (2009) suggests the z-score 

values above 2.58 are considered large and may indicate areas of misspecification. 

This number is chosen as standardised residuals can be loosely interpreted as z-

scores and a value that is equal to, or greater than 2.58 is two standard deviations 

away from the mean and represents a statistically significant value at p < .01. 
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6.3.3.6 Measurement invariance within a CFA framework. Measurement 

invariance is concerned with whether or not a measurement scale performs 

similarly across groups among similar circumstances (Kline, 2011). More 

specifically, whether the items (observed variables) are perceived in the same 

manner and thus represent the same underlying construct(s) across various groups. 

This is evidenced by equivalent relationships between the observed variables and 

latent variables across groups. Measurement invariance is an assumption of all 

group comparisons (e.g., t-tests, ANOVA) whether it is statistically tested or not 

(Vandenberg & Lance, 2000). In order to compare groups of individuals on their 

level of a construct one typically assumes that the measurement scale employed is 

measuring that same construct across groups (Schmitt & Kuljanin, 2008; 

Vandenberg, 2002). If this is not the case then differences in observed means may 

not reflect true difference of the construct, but rather, result from items measuring 

different constructs in each group (Meredith, 1993). Thus, for test scores to be 

comparable across distinct populations measurement invariance must be present. 

Test items must have invariant, quantitative relationships with the latent variable 

for each population of interest (Meredith, 1993). In regards to the current study, 

whether the items of the ImPACT battery were measuring the same constructs 

across time and across countries (New Zealand and South Africa) was tested.  

The current study followed Meredith’s (1993) hierarchy of invariance testing and 

thus configural invariance, weak factorial invariance, and strong factorial 

invariance were progressively assessed. This method involves testing increasingly 

stringent models and each level must be achieved for the subsequent model to be 

meaningful. The models are nested models in that they are progressions of one 

another. Essentially they are the same model with additional parameter 

constraints. Therefore, they are able to be statistically compared to one another to 

assess difference in fit. At each progression through the invariance hierarchy fit 

will decrease due to the increase in fixed parameters. If progression through each 

nested model does not result in significant change of model fit, then invariance is 

achieved.  

Configural invariance is the lowest form of invariance and is concerned with the 

equivalence of a measures structural pattern across groups (Meredith, 1993; 

Widaman & Reise, 1997). More specifically, whether the structure of a measure 
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has the equivalent number of items and factors and that the same items load onto 

the same latent variables in each group. Configural invariance requires no equality 

constraints. It is achieved when the identical models are run simultaneously and 

adequate fit, evidenced by goodness-of-fit indices, is present (Schmitt & Kuljanin, 

2008; Vandenberg & Lance, 2000).  

Weak factorial invariance, also known as metric invariance is a higher level of 

invariance than configural (Selig, Card, & Little, 2008). It examines whether 

factor loadings, which represent the magnitude of item-factor relationships are 

equal across groups. Meredith (1993) defined weak factorial invariance, as 

existing when, for every value of the latent variable, the associated mean and 

variance of the indicator are independent of group membership. Metric invariance 

is tested by constraining factor loadings equal across groups, if the model 

adequately fits the data and the decrement in fit is not statistically significant then 

weak factorial invariance is achieved (Milfont & Fischer, 2010; Vandenberg & 

Lance, 2000).  

Configural and weak factorial invariance are based on covariance structures, thus 

only parameters representing regression coefficients, variance, and covariance 

have been of interest thus far (Sousa & Chen, 2003). Covariance provides 

information regarding how items vary in relation to their latent structures, and 

these can be compared across groups. However the equivalence of covariance 

structures is not a sufficient predecessor for the comparison of latent means. If 

latent means are to be compared, a higher level of invariance, known as strong 

factorial (i.e., scalar) invariance, is needed (Cheung & Rensvold, 2002). In the 

analysis of covariance structures, observed variables are measured as deviations 

from their means of zero, thus intercept terms associated with the regression 

equations are irrelevant (Milfont & Fischer, 2010). In the analysis of mean 

structures however, item intercepts are the expected item scores for respondents 

that have a zero score on the latent variable. The invariance of item intercepts 

implies that all observed mean differences are a result of differences in the latent 

factor and are not a result of differences in item functioning or meaning across 

countries or over time. Strong factorial invariance is assessed by placing equality 

constraints on both the factor loadings and item intercepts (Meredith, 1993; 
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Widaman & Reise, 1997). This is a strict form of invariance and is seldom 

achieved. (Davidov, Dülmer, Schlüter, Schmidt, & Meuleman, 2012).  

If at any level of invariance, measurement invariance for the full model is not 

achieved it is possible to test for partial invariance (Meredith & Teresi, 2006; 

Schmitt & Kuljanin, 2008). If partial invariance is achieved then Byrne (1989) 

suggests that it is appropriate to proceed with subsequent invariance testing. Kline 

(2011) suggests systematically freeing non-invariant parameters, guided by 

modification indices as they identify the items or intercepts that display the largest 

group differences. Each time an equality constraint is removed the model should 

be re-run and assessed for fit. For a model to be partially invariance there must be 

at least two invariant items per factor, including the marker item (Byrne, 

Shavelson, & Muthén, 1989; Vandenberg, 2002). 

6.3.3.6.1. Assessing measurement invariance. Significant change between 

nested models was assessed via the chi-square difference test and the observed 

change in CFI estimates. The chi-square difference test evaluates the exact fit 

hypothesis for two hierarchical models (Kline, 2011). That is, it compares the 

model chi square statistic of the two hierarchical models and indicates whether the 

decrement in fit is statistically significant. The degrees of freedom of the chi-

square difference test are the difference between the two nested models degrees of 

freedom (Kline, 2011). If the difference between the chi-square statistics of the 

two nested models is greater than, or equal to the critical value, found in the chi-

square distribution table, then there is a statistically significant difference between 

the two models and measurement invariance is not present. As with the model chi-

square the chi-square difference test is too affected by sample size. This means 

that in large samples, the chi-square difference statistic could be statistically 

significant, even though the absolute differences in parameter estimates are 

minimal. That is, the chi-square difference may imply lack of measurement 

invariance when the imposition of equality constraints across groups makes little 

difference to model fit.  For this reason Cheung and Rensvold (2002) questioned 

the sole use of the chi square difference test. Cheung and Rensvold (2002) studied 

the characteristic of changes in the values of 20 different approximate fit indexes 

when invariance constraints were added. This was the first empirical attempt to 

investigate the sensitivity of fit indices to lack of measurement invariance. They 
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found that most were affected by model size and complexity, with the exception 

of the CFI (Bentler, 1990). Cheung and Rensvold (2002) suggest changes in CFI 

of .01 or below are indicative of measurement invariance.  In a later study also 

employing the Monte Carlo method, Chen (2007) agreeably found the CFI to be 

sensitive to lack of invariance, specifically invariance of factor loadings, 

intercepts, and residual variances. Meade and colleagues (2008) questioned 

Cheung and Rensvold’s cut-off of .01, stating that it was too strict for use with 

real-world data. Cheung and Rensvold (2002) stimulation studies used perfectly 

invariant data, an unlikely occurrence in the real world. Meade and colleagues 

(2008) suggest a less strict CFI change cut-off of .02 based on their stimulation 

studies which also used data known to be invariant, however not perfectly 

invariant. Meade and colleagues (2008) criteria for measurement invariance is 

used in the current study.  

6.3.3.7 Latent means analysis. Means of latent variables cannot be 

directly measured. They must be inferred from items that can be directly 

measured and which are assumed to be representative of the latent variable. The 

analysis of latent means is based on both co-variance and mean structures given 

the inclusion of intercepts (Little, 1997; Milfont & Fischer, 2010). Estimation of 

intercepts is needed as they are used in the calculation of item means. Unlike the 

analysis of only covariance structures, item means take on a non-zero value in 

order to estimate difference in latent means (Meredith & Teresi, 2006). Because 

item means are functions of other parameters in the model (i.e. variance 

parameters), the intercept must be estimated jointly with all other model 

parameters (Jöreskog & Yang, 1996). In the analysis of covariance structures, 

item means are ignored as items are treated as deviations about their means of 

zero (i.e. variances). 

Latent means are estimated within the scalar model. In this model, item intercepts 

are constrained equal across groups. As a result the factor intercepts have no 

definite origin, they are statistically undefined (Kline, 2011). Therefore the factor 

intercepts of one group, arbitrarily defined as the first group, must be fixed to zero 

to define the origin of the scale. However the factor intercepts of subsequent 

groups can be freely estimated. Thus, latent means are only interpretable in a 

relative sense, in that it can be detected if they differ between groups, but the 
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numerical mean for each factor of each group cannot be estimated (Steenkamp & 

Baumgartner, 1998). Thus the produced mean of a specific factor is the relative 

difference between itself and the factor that had its mean constrained to zero.  

6.3.4 Data analysis procedure  

6.3.4.1 Data preparation 

6.3.4.1.1 Sample size. The accuracy of fit indices and parameter estimates 

in SEM is dependent on having an adequate sample size to generate the level of 

power required for the analysis (Kline, 2011). Generally the sample size needed 

increases as the complexity of model increases (MacCallum, Widaman, Zhang, & 

Hong, 1999). Smaller sample sizes in SEM tend to result in more pessimistic 

estimates of goodness-of-fit when compared to larger samples (Fan, Thompson, & 

Wang, 1999). Absolute guidelines suggest a sample size of 100 is the minimum 

required for CFA (Kline, 2011; Russell, 2002), between 100 and 200 is ‘medium’ 

and anything over 200 is large. Sample sizes in the current study ranged from 109 

to 264, therefore all were of sufficient size for factor analysis.  

6.3.4.1.2 Normality and outliers. Normality of each sample was assessed 

by examining skew and kurtosis values for each individual item. In line with West 

and colleagues (1995) guidelines, an item was considered to have an acceptable 

normal distribution if its skew value did not exceed two and kurtosis value did not 

exceed seven.  

Multivariate normality and outliers were also assessed. Mahalanobis Distance (D) 

was used to identify potential multivariate outliers. It provides a relative measure 

of a data points distance from the median (Kline, 2011). Whilst there is no cut-off 

point to indicate a case is an outlier, Arbuckle & Wothke, (1999) suggest that 

cases should be considered as potential outliers if their D is well separated from 

other D’s. Multivariate kurtosis and thus normality was indicated by Mardia’s 

(1970) co-efficient. According to Bollen (1989), multivariate normality is 

achieved if Mardia’s coefficient is lower than p(p+2), where p is the number of 

observed variables.  

6.3.4.2 Stage One. Initially a correlation matrix was computed utilising 

Sample 2012A including all twelve items. Factorability of the matrix was assessed 
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against several standards including the magnitude of correlations, Bartlett’s (1954, 

as cited in Tabachnick & Fidell, 2012) test of sphericity, and Kaisers (1970, cited 

in Tabachnick & Fidell, 2012) measure of sampling adequacy. In order for a 

correlation matrix to be factorable it must contain several correlations that exceed 

.30, suggesting a number of items are sufficiently related to warrant factor 

analysis. However correlations exceeding .90 are undesirable as one of the items 

may be redundant given the similar nature of the two involved. Bartletts test of 

sphericity tests the null hypothesis that the off-diagonal correlations in the matrix 

are equal to zero. Thus if it is significant, the null is rejected, suggesting the 

correlations are large enough to proceed with factor analysis. Of note Bartletts test 

of sphericity is dependent on sample size, therefore in large samples it is likely to 

be significant even if correlations are low. Given the current sample uses 

relatively large samples it will be cautiously interpreted. Kaiser’s measure of 

sampling (KMO) adequacy is the average degree of interrelatedness over all 

variables. The KMO statistic ranges between zero and one. Kaiser suggests a 

value .50 is the absolute minimum however values above .60 are desired 

(Tabachnick and Fidell 2013). The KMO can be calculated for the overall scale 

and for items individually.  

Given the suitability of the data for factor analysis based on the above criterion, 

the twelve items were initially submitted to a maximum likelihood (ML) EFA with 

direct oblimin rotation. No limit was specified for the number of factors to be 

retained, instead factors were retained if their eigenvalues exceeded 1. An 

eigenvalue represents variance, therefore the greater the eigenvalue of a factor the 

greater amount of item variance is explained by that factor. An individual item’s 

variance is equal to 1. Factors are only retained if their eigenvalues exceed 1, as it 

would explain more variance than one item alone.  

Following rotation the magnitude of communalities and factor loadings were 

assessed. Factor loadings represent the correlation between the observed variable 

and the factor. Tabachnick and Fidell (2013) suggest only factor loadings that 

exceed .32 should be interpreted. Loadings above .80 are considered very high, 

those between .60 and .80 are high, those between .40 and .60 are moderate, and 

those below .40 are low. Communalities are squared correlations and represent the 

proportion of common variance possessed by a variable. Possible values range 
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from 0 to 1. Zero indicates the item has no common variance with other variables 

in the measure, suggesting all the items variance is item-specific and one indicates 

all variance is common variance. However values of 1 are problematic and are 

referred to as Heywood cases.  The presence of Heywood cases suggest that there 

is a problem with the specification of the model (Tabachnick and Fidell 2013).  

The first EFA’s solution was problematic for reasons outlined in the results 

section 7.2.1. The factor analysis was re-run with ten items. The KMO and 

Bartletts test of sphercity were inspected for adequate factorability. The identified 

factors (i.e., subscales) internal consistency was assessed via Cronbach’s alpha. 

Cronbach’s alpha represents the level of consistency of responses across scale 

items (Nunnally, 1991). Values above .50 are acceptable yet poor, those above .70 

are adequate, and above .80 are good (Kline, 2011). Corrected item-total 

correlations were also examined. They represent the correlation between an item 

with the total scale score, minus the value of the item the correlation is with. The 

item of interest is removed from the total score as if it were included it would 

inflate the correlation as a component of the total correlation would be the 

correlation of the item of interest with itself. Thus the corrected item-total 

correlation represents the strength of the relationship between the item of interest 

and the collective total of the other items in the scale (IBM, 2006). High 

correlations are desired as it is expected that if an individual performs well on one 

item they should also perform well on other items of a similar nature. Negative 

corrected item-total correlations are problematic as it is unlikely that an individual 

will perform poorly on one item but highly on another, which are both measuring 

the same construct. If the scale is realible all items should produce correlations of 

at least .30 with the total (Field, 2006). Lastly, Cronbach’s alpha if item deleted 

was also reviewed. If this is significantly larger than the total items alpha, when a 

specific item is deleted then that item may not be sufficiently related to the other 

items within the scale.  

The Processing Speed/Reaction Time factor’s internal consistency was extremely 

low. Two items, Three-letters-average-correct and XO-total-correct were deleted. 

These two items represent complex processing speed according to ImPACT 

developers and thus are qualitatively distinct from the other items in the scale 

which are representative of reaction time (simple processing speed). This is 
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consistent with the CHC theory as they too distinguish between complex and 

simple (reaction time) processing speed.  

The EFA was re-run with only eight items. Again the KMO and Bartletts test of 

Spherity were assessed for suitable factorability. Furthermore factor loadings were 

checked for suitable loading onto corresponding factors, and lastly the internal 

consistency of the Reaction Time subscale was assessed via Cronbach’s alpha, in 

addition to corrected item-total correlations and alpha if item-deleted. The 

resulting solution was acceptable.  

The second part of Stage One attempted to validate the hypothesised model 

identified in the previous EFA (i.e., Figure 2) in addition to that proposed by 

Allen and Gfeller  (2011) via CFA. The second half of the 2012 sample (2012B, N 

= 257) was used in the computation. Allen and Gfeller’s (2011) model was 

identified via a principal component analysis and purported that eleven items 

could be explained by five underlying dimensions. In their Model one factor was 

defined by only one indicator. In the current study this factor and hence indicator 

was removed, given that a minimum of two, preferably three indicators is needed 

to form a factor (Brown, 2006). CFA models were computed in AMOS graphics 

and were depicted using SEM notation. A latent variable was symbolised by an 

oval, an indicator as a rectangle, and error as a small circle. A single headed arrow 

represents causality, with factors causing indicators as hypothesised in a latent 

variable system. A curved, double headed arrow indicates a reciprocal 

relationship. Model fit was assessed via goodness-of-fit indices, modification 

indices, and standardised residuals. Given adequate fit statistics and thus 

validation of the model, factor loadings were assessed to ensure they were 

associated with their purported factors.  
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Figure 2. Model A: ImPACT model identified in current study. 

  

Figure 3. Model B: ImPACT model identified by Allen and Gfeller (2011).  
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6.3.4.3 Stage Two: Longitudinal stability. Longitudinal stability was assessed 

within a single factor repeated measures model. Three time points were included, 

2011, 2012, and 2013 in the one model. Data from the 2011 (N = 595), 2012B (N 

= 257), and 2013 (N = 559) samples were compared to identify individuals who 

had been tested at all three time points. The 2012A sample was not included as it 

had been used to conduct the EFA. A total of 116 participants were identified as 

have being tested at all three time points and thus made up the final longitudinal 

sample.  

Each factor (Memory and Reaction Time) was tested individually, therefore two 

independent repeated-measures were submitted to invariance testing. A 

hierarchical series of nested single-domain models were fitted to the data from all 

three time points simultaneously. The first item of each factor (i.e., Word-memory 

and Symbol-match-reaction-time) was chosen as the marker variable and its factor 

loading was fixed to one for both groups. Item errors were allowed to correlate 

with identical items at different time points. This specification was based on 

Marsh’s (1993) suggestion as he found that item errors tend to correlate when the 

same measure (i.e., item) is administered at different time points. Failure to 

account for these correlations can erroneously inflate factor loadings. This model 

served as the baseline (i.e., configural) model for invariance testing. Invariance 

testing followed Meredith’s hierarchy as explained previously (Section 6.3.3.4). 

Configural, weak factorial, and strong factorial invariance were assessed. Each 

superior level of invariance was only tested if the preceding level was achieved. 

Each successive model was assessed for adequate model fit based on the 

previously mentioned criteria (i.e., CFI > 0.90, TLI > 0.90, RMSEA < 0.08). 

Invariance was achieved if there was no significant change in model fit, primarily 

indicated by a change of CFI below 0.02.   

Differential Stability was reported for the model which achieved the highest level 

of invariance. Differential stability is the correlation between a latent variable 

measure at different time points. It represents the consistency of individuals’ rank-

order over time. The higher the correlation, the greater consistency of an 

individual’s relative standing across time. It does not provide information 

regarding the consistency of individuals’ absolute score. This is gauged from an 

analysis of latent means. Relative differences in latent means were assessed for 
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the Memory factor but not the Reaction Time factor given strong factorial 

invariance was only achieved for the former. The mean of the Memory factor at 

Time 1 was fixed to zero to define the numerical origin of the scale. The means of 

the Memory factor at Time 2 and Time 3 were unconstrained, allowing for a 

relative estimate of mean differences. To estimate the difference between Time 2 

and Time 3 the mean at Time 2 was fixed to zero and Time 1 was unconstrained.  

6.3.4.4 Stage Three: Cross-country invariance. Cross-country invariance 

was assessed within a multi-group confirmatory factor analysis (MGCFA) 

framework. MGCFA is simply an extension of CFA, which tests the invariance of 

estimated parameters of two nested models across groups (Kline, 2011). The data 

files for Group One (New Zealand) and Group Two (South Africa) were specified 

to AMOS. The first item of each factor (i.e., Word-memory and Symbol-match-

reaction-time) was chosen as the marker variable and its factor loading was fixed 

to one for both groups. The marker variable defines the scale of the latent 

variable, as they have no inherent scale (Stevens, 2002). The respecified, two-

factor, eight-item model, identified in Stage One was used as the baseline model 

for cross-country invariance testing. Previous to invariance testing each model 

was run individually to ensure the data adequately fit the model independently of 

one another. The investigation of cross-country invariance followed Meredith’s 

hierarchy of increasingly stringent models, explained in detail previously. 

Configural and weak factorial invariance were assessed, however given the latter 

was not achieved, a test of strong factorial invariance and hence latent mean 

analysis was omitted.  Each model was assessed for adequate fit (i.e., CFI > .90, 

TLI > .90, RMSEA < .08) and the change in fit, particularly the change in CFI 

between nested models, was analysed.  
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Chapter 7: Results 

This section is separated into three stages. In the first stage the factor structure of 

the ImPACT battery was investigated via exploratory factor analysis (EFA) 

techniques and reliability analyses (i.e., internal consistency). To strengthen the 

findings of the EFA, the identified model was subsequently validated on a 

different sample via confirmatory factor analysis (CFA).  Both Stage Two and 

Stage Three report findings from an investigation of the measurement invariance 

of the previously identified ImPACT structure. The second stage report’s findings 

regarding longitudinal stability of the ImPACT battery, assessed via a repeated 

measures model confirmatory factor analysis, across three time points. The final 

stage reports results regarding cross-country (South Africa and New Zealand) 

invariance of the ImPACT battery within a multiple-group-confirmatory factor 

analysis model.  

7.1 Participant Demographic Information  

Demographic data for the final New Zealand (N = 109) sample is presented in 

Table 5 This sample omits cases that met exclusion criteria and those that were 

multivariate outliers. The demographics of the final 2012 South African sample 

(N = 519), before it was randomly split is presented in Table 6. Since the 2011 (N 

= 595) and 2013 (N = 559) South African samples consist of the same individuals 

as those in the 2012 sample, demographic data for only the 2012 year is presented. 

For each descriptive item if there were multiple categories with less than three 

participants they were amalgamated into one ‘other’ category. For both samples, 

the majority of participants had sustained no previous concussions, played Rugby 

as their primary sport, were right handed, and English was their first language. No 

comparisons were made within demographic variables given the disproportionate 

sample size of the dominant category compared with the others.  
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Table 5  
 
Demographic Information of the New Zealand Sample  

        
Frequency  

                           
Percentage  

 

Number of Previous 0 87 79.80% 
Concussions  1 17 15.60% 

2 5 4.60% 
  

Sport   
Rugby 94 86.20% 
Soccer 8 7.30% 
Other 7 6.40% 

 
Native Country   

New Zealand 76 69.70% 
Samoa 7 6.40% 
America 6 5.50% 
Tonga 5 4.60% 
Fiji 3 2.80% 
South Africa 3 2.80% 
Other 9 8.10% 

 
First Language  

English 91 83.50% 
Tongan 5 4.60% 
Samoan 4 3.70% 
Other 9 8.10% 

 
Handedness  

Right 95 87.20% 
Left 12 11.00% 
Ambidextrous  2 1.80% 
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Table 6  

Demographic Information of theSouth African Sample 

           Frequency  Percentage 
            
Number of Previous 0 366  70.80% 
Concussions 1      108  20.40% 

2 45  8.80% 
   

Sport     
Rugby 342  65.80% 
Hockey 103  19.80% 
Basketball 31  6.20% 
Water polo 18  3.50% 
Soccer 10  1.80% 
Squash 5  1.20% 
Other 10  1.80% 

   
Native Country     

South Africa 455  87.60% 
America 21  4.10% 
Zimbabwe  10  2.40% 
Zambia 7  1.50% 
Kenya 4  0.90% 
Other 18  3.60% 

   
First Language    

English 451  87.60% 
Afrikaans 6  1.20% 
Other 62  0.60% 

   
   

Handedness    
Right 467  89.70% 
Left 31  6.20% 
Ambidextrous  21  4.10% 
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7.2 Stage One: Exploring the structure of the ImPACT Battery  

Normality was assessed for the two South African 2012 samples independently. 

Mardia’s co-efficient for sample 2012A (N = 264) indicated multivariate 

normality, evidenced by a value of 35.39, well below the calculated cut-off of 

168. According to Bollen (1989), multivariate normality is achieved if Mardia’s 

coefficient is lower than p(p+2), where p is the number of observed variables. 

There were originally 12 observed variables, thus 12(12+2) = 168. Mardia’s co-

efficient should be below 168 for normality to be supported. Furthermore, there 

was no clear discontinuation of Mahalanobis d-square values. Univariate 

normality was also supported, evidenced by skew values less than two and 

kurtosis scores less than seven as demonstrated in Table 7. Sample 2012A items 

skew values ranged from 0.53 to 1.91 and kurtosis values ranged from 0.22 to 

5.30 and are presented in Table 8 in Appendix E.  

Both univariate and multivariate normality was supported for Sample 2012B (N = 

255). Univariate skew values ranged from 0.02 to 2.04 and kurtosis values varied 

from 0.01 to 6.21. Sample 2012B was used in the confirmatory factor analysis, 

which had only eight observed variables. Thus based on Bollen's (1989) criteria, a 

Mardia’s value below 80 is indicative of multivariate normality. Mardia’s co-

efficient for the current sample was 50.12, thus normality was supported. 
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Table 7  

Mean and Standard Deviations for South African Samples 2012A and 2012B 

     South Africa 2012A          South Africa 2012B 
 M SD M SD 
 
Word-memory 92.36 8.28 92.75 7.58 
Design-memory 82.79 12.82 82.63 13.35 
XO-memory 71.62 19.47 70.62 19.12 
XO-correct-interference 28.36 2.21 28.38 2.16 
XO-reaction-time 0.49 0.07 0.49 0.07 
XO-total-incorrect 7.27 5.28 7.66 5.56 
SM-reaction-time 0.52 0.11 0.52 0.12 
SM-memory 67.00 23.43 69.67 22.87 
CM-reaction-time 0.78 0.15 0.77 0.16 
CM-total-commissions 0.39 0.61 0.77 0.16 
TL-memory 88.18 15.08 86.56 15.59 
TL-correct-interference 45.70 13.47 44.86 14.15 
     
Note. SM = Symbol Match; CM = Colour Match; TL = Three Letters.  

 

7.2.1 Exploratory factor analysis and internal consistency 

Sample 2012A was subjected to an exploratory factor analysis (EFA) utilizing 

maximum likelihood as the extraction method with direct oblimin rotation. 

Factorability of sample 2012A’s correlation matrix was supported. Firstly, it 

revealed several correlations above .30 and none that exceeded .90 as depicted in 

Table 9 (see Appendix F) The highest correlation was reported between XO-

reaction-time and XO-correct-interference (r = -0.84, p < 0.01) and was 

suggestive of multi-collinearity. Two items (Colour-match-commissions and XO-

total-incorrect), both hypothesised to load onto the Impulse Control factor failed 

to produce correlations greater than .30 with any other variable. Notwithstanding, 

these items were initially retained given their inclusion in the ImPACT scoring 

structure. The Kaiser-Meyer-Olkin (KMO) measure of sample adequacy statistic 

was .56 for the total scale (12-items). The lowest individual KMO score was 

reported for XO-total-incorrect (.15) and highest was for Colour-match-reaction-
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time (.92). The Barlett’s Test of Sphericity statistic was significant ( 2 [66] = 

1541.38, p < .001) indicating the correlation matrix significantly differed from the 

identity matrix. On the basis of these findings it was appropriate to proceed with 

factor analysis.  

7.2.1.1 Model 1. All twelve items were initially submitted to a factor 

analysis. Three factors with eigenvalues (3.48, 1.78, 1.28) greater than one were 

extracted. The first factor accounted for 28.97% of total variance, followed by a 

factor that accounted for 14.82% variance, and a third factor accounting for 

10.69% variance.  The factors represented a Reaction Time/Processing Speed 

factor, an Impulse Control factor, and a General Memory factor, respectively. 

Cumulatively, these three factors accounted for 54.48% of the total variance of the 

samples performance on the ImPACT battery. During iterations one or more 

estimates with communalities greater than one were encountered, therefore the 

solution of the previous iteration (i.e., 15th) was presented. This is problematic 

given the true solution was not found and it is strongly suggestive of 

misspecification, thus caution was taken in interpreting the results. Communality 

values at extraction ranged from .05 to .99 and are presented in Table 10. Five 

communalities were weak, evidenced by values less than .30, in addition to two 

communalities equal to one (i.e., Heywood cases). The rotated factor loadings 

were all above the desired .32 cut-off, suggested by Tabnachnick and Fidell 

(2012), with the exception of CM-commissions. As expected the Reaction Time 

items loaded negatively onto their factor as a higher score represented poorer 

performance, whereas with all other items a higher score represented superior 

performance. Two Heywood cases were produced and dominated their associated 

factor; XO-total-incorrect-interference produced a factor loading of .99 and XO-

total-correct-interference had a factor loading of .95, which were substantially 

higher than the majority of other items within their associated factors.  

Given the aforementioned difficulties with the current solution, it was decided to 

remove the two Impulse Control items, XO-total-incorrect and CM-commissions 

and re-run the EFA. These items were removed, firstly because they did not 

produce correlations greater than .30 with any other item, including each other. 

Secondly, XO-total-incorrect produced a low KMO (.15) and a communality 

equal to 1, suggestive of misspecification. And lastly, literature suggests that 
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artificial measures of impulse control fail to capture the everyday executive 

dysfunction observed in concussed individuals (Maillard-Wermelinger et al., 

2009; Turkstra & Byom, 2010). This is supported by the fact that the ImPACT 

guidelines recommend the Impulse Control composite should not be used to 

inform clinical decisions (ImPACTonline, 2013). 

Table 10 

Factor Loadings and Communalities of Twelve Items of the ImPACT Battery  

                               Factor  Communality  

Item  
Reaction Time/ 
Processing speed  

Impulse 
Control 

General  
Memory 

XO-total-correct .95 0.99 
XO-reaction-time -.91 0.98 
TL-correct-interference           .50 0.33 
SM-reaction-time -.37 0.12 
CM-reaction-time  -.35 0.22 
XO-total-incorrect .99 0.99 
CM-commissions .22 0.05 
Design-memory  .76 0.58 
Word-memory .65 0.39 
SM-memory .57 0.34 
TL-memory .43 0.20 
XO-memory .34 0.19 
      

Note: Factor loadings less than .32 were suppressed. SM = Symbol Match; CM = 
Colour Match; TL = Three Letters.  
 

7.2.1.2 Model 2. The remaining ten items were submitted to another factor 

analysis, again using maximum likelihood with direct oblimin rotation. The KMO 

statistic was .77 indicating that underlying dimensions could explain a large 

quantity of co-variation among variables. Individual KMO statistics were all 

above the acceptable limit of .50 and ranged from .70 to .90 with a mean of .79. 

The Barlett’s Test of Sphericity statistic was significant ( 2 [45] = 799.20, p < 

.001), suggesting items were sufficiently correlated to proceed with factor 

analysis. A two-factor solution was produced. The first factor had an eigenvalue 

of 3.48 and accounted for 28.97% of the total variance, whereas the second factor 

had an eigenvalue of 1.78 and accounted for 14.82% of the total variance. The 
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factors appeared to represent a Reaction Time/Processing Speed factor and a 

General Memory factor, respectively, and cumulatively accounted for 54.48% of 

the ImPACT battery’s total variance. Each factor possessed five indicators each. 

The indicators’ rotated factor loadings were all greater than .32, the suggested 

minimum, and no substantial cross-loadings were present. Rotated loadings for 

factor one ranged from .38 to .88 and loadings for factor two ranged from .37 to 

.76. These are presented in Table 11.  

Table 11  

Factor Loadings and Communalities of Ten Items of the ImPACT Battery   

                                 Factor    Communality 

Item  
Reaction Time/ 
Processing speed  

General  
Memory   

XO-total-correct .87 .86 
XO-reaction-time -.88 .80 
TL-correct-interference               .53 .36 
SM-reaction-time -.41 .15 
CM-reaction-time  -.38 .23 
Design-memory  .76 .58 
Word-memory .65 .39 
SM-memory .58 .34 
TL-memory .44 .20 
XO-memory .37 .17 

  
Note. Factor loadings less than 0.32 were suppressed. SM = Symbol Match; CM = 
Colour Match; TL = Three Letters.  
 

Assessment of the internal consistency of each subscale revealed mixed findings. 

The Memory subscale demonstrated acceptable, although low internal 

consistency, evidenced by a Cronbach alpha value of .63 for the five memory 

items. Corrected item-total correlations ranged from .33 to .56. Although low 

they exceeded .30, therefore supportive of the scales reliability. Furthermore if 

any of the items were deleted it would result in a decrease of the overall subscales 

reliability (see Table 12, Appendix G). Therefore the inclusion of all five items 

was supported. Conversely, the reliability for the Processing Speed/Reaction Time 

subscale was extremely poor, evidenced by a Cronbach alpha of .17. Analysis of 
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the Cronbach’s alpha if item deleted indicated that deletion of any individual 

items would have produced minimal change in reliability. 

Given the unacceptable internal consistency of the Reaction Time/Processing 

Speed scale another factor analysis was run with the deletion of Three-letters-

average-correct and XO-total-correct. These two items were chosen to be deleted 

primarily because ImPACT conceptualises them as complex processing speed 

tasks and there is consensus in the literature that simple and complex processing 

speed are two distinct constructs (Chiaravalloti et al., 2003; Flanagan & Harrison, 

2012; Salthouse, 1996). Thus compressing them together to form one unitary 

concept would be erroneous. Furthermore as explained in the method section it is 

of the author’s opinion that XO-total-correct is representative of simple 

processing speed, not complex processing speed as outlined in the scoring 

structure. Furthermore it is redundant given its similar nature to XO-reaction-time 

which is a more direct measure of simple processing speed. Therefore only one 

complex processing speed item remained and one item is not a sufficient 

representation of a latent construct.  

7.2.1.3. Model 3. The remaining eight items were submitted to another 

factor analysis, again utilizing maximum likelihood as the extraction method, with 

direct oblimin rotation. The overall KMO statistic (.75) was above acceptable 

limits in addition to individual item KMO’s (range: .57 – .84). Furthermore 

Bartlett’s Test of Spehericity was significant ( 2 [28] = 339.68, p < .001), 

indicating items were sufficiently correlated to proceed with factor analysis. Two 

factors were extracted based on eigenvalues greater than 1. The first factors 

eigenvalue was 2.59 and explained 32.40% of common variance. This factor 

possessed the five memory items and thus represented a General Memory factor. 

The second factor represented Reaction Time (i.e., simple processing speed) and 

had an eigenvalue of 1.45, explaining 18.08% of the shared variance. 

Cumulatively these two factors accounted for 50.48 of the overall variance. The 

rotated loadings were all above the suggested .32 minimum and ranged from .40 

to .76, as demonstrated in Table 13.  
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Table 13  

Factor Loadings and Communalities of Eight Items of the ImPACT Battery  

                                 Factor      Communality 
Item  General Memory Reaction Time   

Design-memory  .76 .58 
Word-memory .62 .39 
SM-memory .59 .35 
TL-memory .44 .19 
XO-memory .40 .16 
XO-reaction-time .66 .47 
SM-reaction-time .58 .29 
CM-reaction-time  .51 .37 
            

Note. Factor loadings less than .32 were suppressed. SM = Symbol Match; TL = 
Three Letters; XO = X and O’s; CM = Colour Match.  

 

Internal consistency of the revised Reaction Time scale revealed minimally 

acceptable reliability, evidenced by a Cronbach alpha value of .54. The corrected 

item-total correlations for XO-reaction-time (.47), Symbol-match-reaction-time 

(.32), and Colour-match-reaction-time (.44) indicated that each item was related 

to the total scale score. Based on alpha if item deleted values, if any of the items 

were to be deleted the scales reliability would decrease (see Table 14, Appendix 

G). Lastly the internal consistency of the overall scale, inclusive of both Memory 

and Reaction Time items was .58.  

7.2.2 Confirmatory factor analysis  

Utilizing AMOS graphics (version 21; Arbuckle, 2012) two distinct models were 

submitted to independent confirmatory factor analyses (CFA) with South African 

sample 2012B (N = 257). The first model was identified through a principle 

component analysis conducted by Allen and Gfeller (2011) and the second was 

identified in the previous exploratory factor analysis (EFA). 

In the present analysis, Allen and Gfeller’s (2011) model as depicted in Figure 3 

(Section 6.3.4.2) was under-identified, in that not all the information needed to 

calculate the unknown parameters were present. Therefore it did not converge and 
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no solution was found. Conversely the model identified in the previous EFA did 

produce a solution that demonstrated adequate fit to the data. A non-significant (p 

= .26) chi-square statistic of 22.46 with 19 degrees of freedom was produced 

along with an adequate TLI (.99), CFI (.98), and RMSEA (.03; .00–.06). No 

modification indices were produced and no problematic standardised residuals 

were revealed. The largest standardised residual was 1.99. All freely estimated 

unstandardised regression weights were statistically significant (p < .001). 

Standardised factor loading estimates revealed a moderate (i.e., .40 – .60) 

relationship for five indicators and a strong (i.e., >.60) relationship for three 

indicators with their purported latent factors as depicted in Figure 4. Additionally, 

a moderate negative relationship (-.41) between the two latent factors was 

observed.  

Figure 4. Confirmatory factor analysis for the eight item, two-factor correlated 

model.  

7.3 Stage Two: Longitudinal Stability  

Participants who were tested at all three time points (2011, 2012, 2013) were 

included in the investigation of longitudinal stability for the eight-item, two-factor 
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model identified and confirmed in Stage One. Each item’s mean and standard 

deviation are reported in Table 15 and skew and kurtosis are presented in Table 16 

in Appendix H, for each time point. These descriptive statistics are presented for 

all twelve items although only eight were included in the analysis. Univariate 

normality was supported for the eight included items, over the three time points, 

evidenced by a skew less than two and kurtosis value less than seven, with the 

exception of Three-letters-memory (skew 2.15) at Time 1 and Word-memory 

(2.17) at Time 3. Multivariate normality was also supported for the memory 

items, evidenced by a Mardia’s coefficient of 57.90, a value less than the cut-off 

of 80 based on Bollens calculation (p[p+2]; p = number of observed variables).  

 

Table 15  

Mean and Standard Deviations for Each Item Across Time Points, South African 
Sample    

2011 (n = 116) 2012 (n = 116) 2013 (n = 116) 

 Item      M SD M SD    M     SD 
 
Word-memory 94.67 6.45 93.87 20.15 93.41 8.57 
Design-memory 84.37 13.96 84.11 13.41 85.35 12.75 
XO-memory 67.46 22.14 72.49 20.15 72.85 20.88 
XO-total-interference    27.45 2.03     8.60 1.90 27.57 1.80 
XO-reaction-time 0.51 0.07 0.48 0.06 0.51 0.06 
XO-total-incorrect 8.60 6.5 7.66 5.05 7.54 6.05 
SM-reaction-time 0.50 0.10 0.50 0.10 0.52 0.09 
SM-memory 69.64 22.89 71.36 23.18 73.37 26.37 
CM-reaction-time 0.82 0.16 0.76 0.13 0.80 0.13 
CM-total-
commissions 0.78 1.01 0.61 0.95 0.54 0.96 
TL-memory 85.75 16.73 86.47 17.08 89.31 13.93 
TL-correct-
interference 39.64 13.82 46.35 13.10 52.16 12.49 

              

Note. XO = X and O’s; SM = Symbol Match; CM = Colour Match; TL = Three 
Letters.  
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Meredith’s hierarchy of invariance testing was followed in that a series of 

increasingly stringent longitudinal models were tested. Longitudinal invariance 

and hence structural stability are reported for each unidimensional factor (i.e., 

Memory and Reaction Time) individually.  

7.3.1 Memory factor  

A baseline model with correlated errors was initially assessed to ensure each time 

point adequately fit the model, in the absence of any temporal constraints. All 

freely estimated unstandardised regression weights were statistically significant. 

The baseline model and standardised factor loadings for each of the three time 

cycles are presented in Figure 5. Design-memory produced the largest loading at 

Time 1 (.76) and Time 2 (.73) and at each time point demonstrated a strong 

relationship with the Memory factor. The Word-memory item also demonstrated a 

strong relationship with the Memory factor at Time 2 (.67) and Time 3 (.74), 

however a moderate (.55) relationship was observed at Time 1. XO-memory, 

Symbol-match-memory, and Colour-match-memory items all demonstrated a 

moderate relationship with the Memory Factor across all three time points. The 

correlation between the Memory Factor at Time 1 and Time 2 was .86, between 

Time 1 and Time 3 was .79, and between Time 1 and Time 2 was .92, suggestive 

of a strong relationship between all the time points.  

The longitudinal baseline model was supportive of configural invariance, 

evidenced by a CFI of .96, a TLI of .95, and a RMSEA of .05 (.00-.08). 

Constraints were subsequently placed on all eight measurement weights, and the 

resulting solution indicated adequate fit to the data evidenced by a CFI of .95, TLI 

of .93, and a RMSEA of .06 (.03 - .08). The change in CFI (Model 2 – Model 3) 

was .01, below Meade and colleagues’ (2008) cut-off of .02. However the 

difference in the chi-square statistics of the two nested models (16.35) slightly 

exceeded the critical value (χ² [7] =14.07). Given the limitations of the chi-square 

difference test as discussed in the Method section 6.3.3.6.1, it was concluded that 

on the basis of non-significant change in CFI, weak factorial invariance was 

achieved. Strong factorial invariance (i.e., Model 4) was also achieved as the 

subsequent model in which constraints were added to item intercepts provided 

adequate fit to the data (CFI = .95, TLI = .95, RMSEA = .05) and produced a 
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change in CFI that was less than .02 as displayed in Table 17. However, again the 

difference in chi-square (19.11) slightly exceeded the critical value (χ² [10] = 

18.31). 

 

Table 17  

Goodness-of-Fit Statistics for Progressive Levels of Longitudinal Invariance for 
the Memory Factor  

Model    χ² df ∆χ²  ∆df CFI ∆CFI TLI RMSEA  

M1:Correlated 
errors 92.09*** 72 .96 .95 .05 (.00-.08) 

M2:Equal  
loadings 108.45* 79 16.35 7 .95  .01 

  
.93 .06 (.03-.08) 

M3:Equal  
intercepts 114.93* 89 19.11 10 .95 .02 .95 .05 (.02-.08) 

          
Note. M1 = Model 1; M2 = Model 2; M3 = Model 3. 
 
Strong factorial invariance was the highest level of invariance achieved, thus 

differential stability coefficients were estimated for the model. Strong differential 

stability was achieved between all three time points. The strongest correlation was 

exhibited between Time 2 and Time 3 (.90), followed by that between Time 1 and 

Time 2 (.88), and Time 1 and Time 3 (.81).  

Given scalar invariance was achieved longitudinal differences among latent 

means were assessed. The latent mean model fit the data well, evidenced by a CFI 

value of .94, a TLI value of .92, and an RMSEA of .06 (.03-.08) As can be seen in 

Table 18 there were no significant differences in the latent means of both Memory 

at Time 1 and Time 2 (-.13) and Memory at Time 1 and Time 3 (.72) as evidenced 

by critical ratio’s below 1.96 and p-values above .05. To estimate the difference 

between Memory at Time 2 and Time 3, the mean at Time 2 was then constrained 

to zero and Time 1 was freely estimated. Again there was no significant difference 

between the Memory factor at Time 2 and Time 3 (.86, p > .05). 
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Table 18  

Differences Between Memory Latent Means Over Time 

  Estimate SE c.r. p 

T1 - T2 -0.13 0.57 -0.23 0.82 
T1 - T3 0.72 0.66 1.10 0.27 
T2 - T3 0.86 0.54 1.58 0.12 
          

Note. T1 = Time 1; T2 = Time 2; T3 = Time 3; SE = standard error; c.r. = critical 
ratio; p = significance level.  

 

7.3.2. Reaction time factor 

A longitudinal invariance baseline model for the Reaction Time factor supported the 

unidimensional structure across the three time points. All freely estimated 

unstandardised regression weights were statistically significant at the .001 level, with 

the exception of Symbol-match-reaction-time at Time 3, which was significant at the 

.01 level. The Reaction Time baseline model and standardised factor loadings for 

each time point are presented in Figure 6. The XO-reaction-time item consistently 

produced strong factor loadings at all three time points (.83, .68, .84), respectively. 

The Symbol-match-reaction-time item demonstrated a moderate loading at Time 1 

(.54) and Time 2 (.53), however loaded poorly onto the Reaction Time factor at 

Time 3 (.32). Lastly, the Reaction Time factor at Time 2 (.55) and Time 3 (.49) 

loaded moderately onto Colour-match-reaction-time. The correlation between the 

reaction time factor at Time 1 and Time 2 was .87, between Time 1 and Time 3 was 

.75, and between Time 1 and Time 2 was .71. 
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Fit statistics for the longitudinal baseline measure supported configural invariance, 

evidenced by a non-significant chi-square statistic (χ² [15] =16.97, p < .05), a CFI of 

.99, TLI of .99, and RMSEA of .04 (.00 – .09). The metric model in which factor 

loadings were constrained equal also provided adequate fit to the data (CFI .99, TLI 

.99, RMSEA of .03) as depicted in Table 19. Furthermore, metric invariance (i.e., 

weak factorial invariance) was supported, given that change in CFI was minimal 

(.001) and the chi-square difference (4.30) was smaller than the critical value (χ² [4] 

= 9.49). The scalar model in which all intercepts were constrained equal across 

groups failed to provide an adequate fit to the data and did not support strong 

factorial invariance. The change in CFI exceeded .02 and the chi square difference 

(83.63) exceeded the critical value (χ² [6] =12.59). Standardised residuals revealed 

no potential areas of poor fit, as the highest residual was 1.55. Three intercept 

modification indices were however produced for the XO-reaction-time item at each 

time point. None of the associated expected parameter of change (EPC) values 

exceeded 0.1 and only the modification index for XO-reaction-time at Time 2 

exceeded 20. Therefore partial invariance was explored by re-analyzing Model 3 

with the intercept for XO-reaction-time at Time 2 unconstrained (i.e., Model 4). The 

resulting model provided adequate fit to the data (CFI = .95, TLI = .93, RMSEA = 

.08), but failed to support partial scalar invariance, evidenced by a change in CFI of 

.04 and a non-significant (p > .05) chi-square difference test. The highest 

standardised residual was 1.05 and only one intercept modification index was 

produced, however it was below 20 and its EPC did not exceed 0.1. No localized 

areas of potential non-invariance were identified therefore invariance testing ceased 

and partial scalar invariance was not achieved.  

Stability coefficients were estimated from the metric model as weak factorial 

invariance was the highest level of invariance achieved. The stability co-efficient 

reported between Time 1 and Time 2 (.84) was the strongest, followed by Time 2 

and Time 3 (.76), and lastly Time 1 and Time 3 (.75). 
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Table 19  

Goodness-of-Fit Statistics for Progressive Levels of Longitudinal Invariance of the 
Reaction Time Factor 

Model    χ² df ∆χ²  ∆df CFI ∆CFI TLI 
RMSEA 
[95% CI] 

M1:Correlated  
Errors 

16.97 15   .99    .99 .03 
[.00-.09] 

        
M2:Equal  
Loadings 

21.27 19 4.30  
(9.49) 

4 .99 .00   .99        .03  
[.00-.09] 

        
        

M3:Equal  
Intercepts 

104.89 25 83.63 
(12.59) 

6 .76 .23   .65 .17 
[.13-.20] 

        
M4:Equal 
intercepts 

40.07* 24 18.80 
(11.07) 

5 .95 .04   .93 .08 
[.03-.12] 

(XORT-T2 
unconstrained) 

        

                    
Note: M1 = Model 1; M2 = Model 2; M3 = Model 3; M4 = Model 4; XORT-T2 = 
XO Reaction Time item at Time 2.  
* p < 0.05 
 

7.4. Stage Three: Cross-Country Invariance  

Cross-country invariance was assessed between a New Zealand sample (N = 109) 

and the 2013 South African sample (N = 116). Each item’s mean, standard deviation, 

skew, and kurtosis for the New Zealand sample are presented in Table 20. These 

descriptive statistics were previously reported for the South African sample in Table 

7 in Section 7.2 and Table 8 in Appendix E. Among the New Zealand sample initial 

univariate skew and kurtosis values indicated five of the eight items were non-

normal. Additionally the Mardia’s coefficient (425.85) indicated extreme 

multivariate non-normality as based on Bollens (1989) calculation, any value which 

exceeded 80 was suggestive of non-normality. Mahalanobis Distance (D) values 

identified nine cases as multivariate outliers and these were subsequently deleted 

from the analysis. As a result univariate skew and kurtosis values fell within the 



 

 
 

114 

acceptable range as displayed in Table 20, and the Mardia’s coefficient (10.94) 

indicated the data were now multivariately normal.       

Table 20  

Item Means, Standard Deviations, Skew and Kurtosis Values for the New Zealand 
Sample  

Note. XO = X and O’s; SM = Symbol Match; CM = Colour Match; TL = Three 
Letters.  

 

The hypothesised eight-item, two-factor model was computed with each sample 

individually. The model provided a good fit to the data of each country’s sample. 

The New Zealand model produced a non-significant chi-square statistic (χ² [19] = 

29.88), an adequate CFI (.93) and RMSEA (.72), although the RMSEA statistic 

possessed a wide confidence interval (.00 – .12). The TLI (.89) was slightly below 

the desired .90.  All unstandardised estimates were statistically significant at an alpha 

level of .01. Standardised estimates were all above the minimum recommendation of 

.32, the minimum loading suggested by Tabachnick and Fidell (2012). Symbol-

Item    M SD Skew Kurtosis 

Word-memory 92.62 5.97 -0.96 0.87 

Design-memory 74.30 13.87 -0.05 -0.49 

XO -memory 66.28 18.54 -0.36 -0.22 

XO-total-interference 26.12 2.80 -1.94 6.50 

XO-reaction-time 0.55 0.07 1.14 2.71 

XO-total-incorrect 8.10 6.26 1.11 0.83 

SM-reaction-time 0.55 0.13 1.60 3.50 

SM-total-memory 62.79 20.20 0.09 -0.67 

CM-reaction-time 0.82 0.18 0.80 2.30 

CM-total-commission 0.46 0.67 1.35 1.31 

TL-letters-correct 86.69 17.21 -2.23 5.81 

TL-correct-interference 41.40 14.07 -0.09 0.27 
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match-reaction-time produced a low standardised loading (.33), Word-memory (.46), 

Symbol-match-memory (.55), and Three-letters-memory (.53) demonstrated 

moderate loadings, whereas Design-memory (.63), XO-memory (.61), XO-reaction-

time (.82), and Colour-match-reaction-time (.66) loaded strongly with their 

purported factors. A moderate negative relationship (-.58) was found between the 

two latent factors, Memory and Reaction Time as displayed in Figure 7. No factor-

item modification indices were produced and the highest standardised residual was 

1.75. 

The hypothesised model as shown in Figure 8 also provided an adequate fit to the 

South African sample (2012B). The chi-square statistic (χ² [19] =24.24) was non-

significant and the CFI (.96) and TLI (.94) were both above the desired .90. 

Furthermore the RMSEA suggested good fit (.05).  However, as with the New 

Zealand sample, the confidence interval was wide (.00-.10). All unstandardised 

regression weights were significant at an alpha level of .05. All standardised loadings 

were above the desired .32. Two items evidenced weak loadings, three items were 

moderate, and three items revealed a strong relationship with their purported factors. 

Only a small negative correlation (-.18) was reported between the latent factors of 

Memory and Reaction Time. No factor-item modification indices were produced and 

the highest standardised residual was 2.33.  

Figure 7. Baseline model with standardised regression weights for the New Zealand 

sample. 
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Figure 8. Baseline model with standardised regression weights for the South African 

sample.  

 

To test for configural invariance (i.e., Model 1) the two models were run 

simultaneously. Configural invariance was supported as the model adequately fitted 

the data, evidenced by a CFI of .94, a TLI of .91, and a RMSEA of .04 (.01-.07) as 

displayed in Table 21. Equality constraints were subsequently placed on the 

regression weights to test for metric invariance. Whilst the model provided adequate 

fit to the data (CFI = .92, TLI = .89, RMSEA = .05) the change in CFI (.03) 

exceeded .01, therefore metric invariance was not supported. Only one factor-to-item 

modification index was produced and it was between the Reaction Time factor and 

Three-letter-memory item, among the New Zealand sample. No problematic 

standardised residuals (i.e., > 2.58) were evident for either group. Model 2 was re-

run with Three-letter-memory regression weight unconstrained (Model 3). This 

resulted in a minute difference in model fit and the change in CFI (.03). Additionally 

the chi-square difference test (χ² [5] = 12.94) failed to support metric invariance. 

Model 3 did not produce any problematic standardised residuals or modification 

indices, thus invariance testing ceased. 
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Table 21 

 Goodness-of-Fit Statistics for Progressive Levels of Cross-Country Invariance  

Model χ² df ∆χ² ∆df CFI ∆CFI TLI RMSEA 

 
Baseline: 
New Zealand   

(N=109)    
South Africa 

(N = 116) 

 
 
29.88 
24.24 
 

 
 
19 
19 

   
 
.93 
.96 

  
 
.89 
.94 
 

 
 
.07(.00-.12) 
.05(.00-.10) 
 

M1: 
Configural 
model 
 

53.12* 38   .94  .91 .05(.01-.07) 

M2:Equal 
loadings 
 

67.23* 44 14.11 6 .92 .03 .89 .05(.02-.07) 

M3: Equal 
loadings, TL-
memory 
unconstrained 

66.06* 43 12.94 5 .92 .03 .89 .05(.02-.07) 

Note: M1 = Model 1; M2 = Model 2; M3 = Model 3; TL = Three Letters. 
* p < .05 
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Chapter Eight: Discussion 

Neuropsychological assessment is now an integral component of concussion 

assessment and management within the sporting arena. The Immediate Post-

concussion Assessment and Cognitive Test (ImPACT) is a commonly used 

neuropsychological battery to assess for the presence of cognitive dysfunction in 

concussion. The empirical support regarding ImPACT’s psychometric properties has 

to date been inconclusive and incomplete, with only a small number of studies 

assessing limited areas of reliability and validity. This is concerning since the utility 

of ImPACT, or any other neuropsychological test, is reliant upon a foundation of 

robust reliability and validity. If psychometric properties are poor, clinicians cannot 

have confidence in interpretations that arise from the measure.  

The aim of the current study was to extend the psychometric literature pertaining to 

the ImPACT neuropsychological battery. This was achieved using a sample of both 

New Zealand and South African male adolescent athletes. To date, psychometric 

evaluations of the ImPACT battery have been based upon simplistic statistical 

methods. This study represents the first investigation using advanced statistical 

techniques that control for methodological error, producing a more accurate picture 

of the state of affairs. The current study investigated three main objectives, each of 

which is presented below accompanied by a discussion of the findings and their 

implications.  

8.1. Investigation of ImPACT’s factor structure 

The first objective was to identify the underlying factor structure of the ImPACT 

battery. Due to several concerns with the ImPACT scoring structure, initial factor 

analysis took an exploratory approach as opposed to attempting to confirm the 

current composite structure. A primary concern was that neither the theoretical nor 

psychometric foundations, upon which the battery was developed could be located 

by the author of the present study in the literature or test manual. Previous factor 

analytic studies have produced solutions that are inconsistent with the current 

scoring (i.e., composite) structure of ImPACT and these studies are replete with 

methodological limitations. An additional concern was that upon examination of 

item content, the researcher’s opinion was that the model was mis-specified. Firstly, 

one item was redundant (XO-total-correct-interference) given its similarity to 



 

 
 

120 

another (XO-reaction-time) and the Symbol-match-memory item was loaded with 

the Verbal Memory factor when its content was representative of Visual Memory.  

Three exploratory factor analyses (EFA) were run before the final model was 

reached. The final model possesses only eight items, with two factors. The first EFA 

with all twelve items produced a solution with three factors, representative of 

General Memory, Processing Speed, and Impulse Control. This model was 

unsatisfactory given some items shared very little variance (i.e., common variance) 

with other items within the battery and some items produced Heywood cases (i.e., 

communality greater than one) which are indicative of model mis-specification. The 

Heywood cases were present for XO-total-correct and XO-total-incorrect.  

It was decided to remove two items; XO-total-incorrect and Colour-match-

commissions, these were both Impulse Control items. They were removed firstly 

because XO-total-incorrect produced a Heywood case and, additionally, neither 

produced correlations greater than .30 with any other item, including each other. It is 

concerning that they failed to sufficiently correlate with one another given they are 

hypothesised to be measuring the same latent construct. Given the lack of association 

between the two items it appears they are measuring two distinct constructs. When 

items loading onto one construct are not sufficiently related in that at least one is not 

representative of the construct of interest, the erroneous item can bias the overall 

composite score leading to false interpretations regarding the construct of interest.  

The literature suggests that standardised measures of executive function (e.g., 

impulse control) fail to capture the everyday executive dysfunction observed in 

concussed individuals (Lezak, 1982; Maillard-Wermelinger et al., 2009; Turkstra & 

Byom, 2010). This is supported by the fact that ImPACT guidelines state that the 

Impulse Control composite should not be used to inform clinical decisions. 

Additionally, studies that have investigated the psychometric properties of ImPACT 

typically omit the Impulse Control composite and its items.   

The second EFA, with the removal of the above two items, produced an acceptable 

two factor model. Adequate model fit was achieved and all items were sufficiently 

associated with their purported factors. The two factors were the same two of three 

produced in the previous analysis, General Memory and Processing Speed. The 

current two-factor solution was also consistent with Schatz and Maerlender’s (2013) 
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study in that a clear distinction was made between memory and speed. Importantly, 

the Processing Speed factor was inclusive of items measuring both reaction time 

(i.e., simple processing) and visual processing speed (i.e., complex processing 

speed). This however was consistent with a principal components analysis (PCA) 

conducted with the four main ImPACT composites and the Symbol Digits 

Modalities Test (SDMT), a measure of processing speed and attention (Iverson et al., 

2005). Using a concussed sample Iverson and colleagues (2005) found two factors, 

the first consisting of the memory items and the second factor including the SDMT 

battery items, the reaction time items, and the processing speed items. Thus the 

authors concluded that these three types of items were measuring a similar 

underlying construct (Iverson et al., 2005).  

The current EFA findings are partly inconsistent with the ImPACT composite 

structure, CHC theory, and previous cognitive literature, which argue that simple 

processing speed (i.e., reaction time) and complex processing speed are two distinct 

factors (ImPACT, 2013; McCrew, 1997). In the current study the distinction 

between simple and complex processing speed emerged only after the internal 

consistency of the Processing Speed factor was assessed via Cronbach’s alpha. The 

inter-relatedness of items as evidenced by Cronbach’s alpha was extremely poor. 

Perhaps the EFA grouped these five items together due to the scarcity of items and, 

with a greater number of items representative of each construct (i.e., simple 

processing speed and complex processing speed), the distinction may have emerged. 

Furthermore, if raw scores were used as first-level indicators instead of parceled 

items, this may have also led to a clearer distinction between simple and complex 

processing speed. Another explanation may lie in the similarity between XO-

reaction-time and XO-total-correct. In the author’s opinion XO-total-correct is a 

measure of simple processing speed. However, according to the ImPACT composite 

structure, it is a measure of complex processing speed as it is included in the Visual 

Processing Speed composite. A complex processing speed task is one in which all 

stimuli are presented simultaneously, allowing the examinee to determine the pace of 

progression and requiring them to continuously shift their attention from one item to 

the next. Simple processing speed tasks on the other hand have one stimulus (i.e., 

trial) presented at a time. Thus, the examiner controls the pace of presentation and 

often brief breaks occur between trials. The XO-total-correct score represents the 
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total number of trials the participant got correct on the interference XO task. The 

task was a choice reaction time test, representative of simple processing speed in that 

one trial was presented at a time. Hence, the XO-total-correct score provides very 

similar information to that of XO-reaction-time. This hypothesis is supported by the 

high and significant correlation between the two items (r = -.84, p = .01). 

Consequently, the other visual processing speed item was also removed since, 

although a measure of cognitive effects of concussion should ideally include a 

measure of complex processing speed, one item is not sufficient to represent the 

latent construct. 

Given the above, the third EFA was run with eight items and an acceptable solution 

was produced in that the model adequately fit the data and items sufficiently loaded 

with their corresponding factors. The internal consistency (i.e., Cronbach’s alpha) of 

each subscale was borderline acceptable. This was lower than expected given the 

robust factor loadings of individual items to their construct. The extremely small 

number of items per scale may explain the low internal consistency despite robust 

factorial validity. It has been found that Cronbach’s alpha increases as the number of 

items in a scale increases (Nunnally, 1978). The identified sub-scales of Reaction 

Time and Memory only had three and five items each respectively. Also of note is 

that estimates of alpha lie at the lower limit of reliability and, as Sijtsma (2009) 

states, they are a gross underestimation of reliability. Thus the acceptability of the 

internal consistency of the current study’s scales is debatable. Notwithstanding, more 

emphasise was placed on the factorial validity findings since, in addition to alpha’s 

sensitivity to sample size, factorial validity was the main point of inquiry.  

The two factors (i.e., subscales) identified were representative of a General Memory 

factor and a Reaction Time/Simple Processing Speed factor. Of note, there was no 

distinction between non-verbal and verbal memory. Previous research appears mixed 

on whether or not these should be considered individual factors or one General 

Memory factor (e.g., Ardila et al., 1998; Bowden et al., 1999; Bradley et al., 2003). 

However, the ImPACT composite structure does distinguish between verbal and 

visual memory, which is inconsistent with the current study’s findings. The inability 

of the current EFA to distinguish between these two types of memory may be due to 

the lack of indicators. If it was possible to include the raw items as opposed to 

subscale scores (i.e., parceled items) the distinction between visual and verbal 
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memory may have emerged. Furthermore, the Symbol-match-memory task appears 

to be more indicative of visual memory than verbal memory, as stipulated by the 

ImPACT scoring structure. The task requires the participant to recall which symbol 

matches which number, thus it is clearly a task of visual memory. This hypothesis is 

supported by the higher correlation of Symbol-match-memory with Design-memory 

(i.e., visual memory) compared to Word-memory (verbal memory). Furthermore 

other cognitive tasks, which use symbol stimuli, are classified as visual tasks, not 

verbal tasks. For example, the Coding task in the Wechsler Adult Intelligence Scale, 

Third Edition (WAIS-III; Wechsler, 1997) has an optional free recall task in which 

the participant recalls the symbol-number pairings. It is hypothesised that poor 

performance on this task should be mirrored by poor performance on visual memory 

tasks (Espe-Pfeifer & Wachsler-Felder, 2000). Thus it is unclear why the developers 

of ImPACT use the Symbol-match-memory score in the calculation of the Verbal 

Memory composite. One last potential explanation for the holistic General Memory 

factor may be that the Word-memory task, supposedly representative of verbal 

memory, was presented visually as opposed to audibly. Thus it may also be tapping 

areas of visual memory in addition to verbal memory.  

Following the EFA, two confirmatory factor analyses (CFA’s) were conducted 

employing a new data set. A CFA was run for the two-factor, eight-item structure 

previously identified through EFA, for the purpose of confirming the structure and 

thus to strengthen confidence in the findings. A second CFA was computed for Allen 

and Gfeller’s (2011) model. It was the only other hypothesised factor structure 

identified in the literature that also used subscale scores as indicators. The structure 

identified was inconsistent with that identified in the current study’s EFA as well as 

with ImPACTs scoring structure. As expected, Allen and Gfeller’s (2011) model 

failed to converge and thus a solution was not found. Conversely, the data was 

supportive of the current study’s two-factor, eight-item model, in that it produced a 

good fit to the data and item-factor relationships were robust. As expected, the two 

latent factors, Memory and Reaction Time, were moderately associated with one 

another. Greater memory performance was associated with decreased reaction times. 

The fact the structure identified in the current study was successfully validated 

provides robust evidence for its factorial validity and hence, construct validity.  
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This study represents the first to validate a hypothesised factor structure of the 

ImPACT battery through CFA. Confirming or validating a factor structure in a 

sample other than that in which it was originally identified is important as it 

strengthens the validity of the structure. It provides support for the construct validity 

of the Reaction Time factor and a General Memory factor. The structure identified 

and subsequently validated in the current study is inconsistent with the current 

ImPACT scoring structure. Importantly, this is not the first study to produce a factor 

solution through exploratory means that differs from that stipulated by ImPACT 

(e.g., Iverson et al., 2005; Allen & Gfeller, 2011). Thus it is uncertain why the 

ImPACT programme maintains their current scoring structure despite the absence of 

supporting evidence.  

Based on the current findings it is strongly recommended that the developers of 

ImPACT revise the current items included in the battery and its scoring structure. 

The current findings suggest that there should be no distinction between visual and 

verbal memory, and that the ImPACT scoring structure should therefore only have 

one General Memory composite. This was the case in earlier versions of the 

ImPACT battery (Schatz & Maerlender, 2013). Furthermore, it is recommended that 

XO-total-correct-interference item be removed given its similar nature to XO-

reaction-time. Lastly, although a Processing Speed factor was not produced, 

empirical research indicates it to be an important area to assess in concussion. This is 

supported by the fact that other popular neuropsychological concussion batteries, 

such as Cogstate and the Concussion Resolution Index (CRI), include a measure of 

processing speed. Thus, it is recommended that items be added so the processing 

speed construct is sufficiently represented. Furthermore, it is important that complex 

processing speed items not be combined with reaction time items (i.e., simple 

complex processing speed) to create one composite, given that the literature clearly 

demonstrates them to be two distinct constructs.  

ImPACT has the potential to be a useful assessment tool for concussion as the items 

retained demonstrated robust validity. However, it needs to be modified to improve 

its efficiency.  ImPACT is a brief measure; brief measures need to be efficient in that 

all items included should provide unique information, unlike full neuropsychological 

batteries, brief measures do not have the luxury of including many items. Thus items 

must target the most prominent areas affected by concussion and those which can be 
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accurately measured. Thus it appears, Impulse Control and Executive Function items 

should be omitted and focus should rather be on including a sufficient number of 

items that accurately and reliably represent Memory, Reaction Time, and Complex 

Processing Speed. This is consistent with another popular concussion battery, the 

CRI by Headminder, which also does not assess executive functions (Erlanger et al., 

1999).  

8.2. Longitudinal Stability  

The second objective of the current study was to assess the longitudinal stability of 

the ImPACT structure identified in the previous analysis. Longitudinal stability was 

assessed for the performance of South African male adolescent athletes on ImPACT 

across three time points, with approximately 1-year intervals. The ImPACT structure 

at each of the three time points was combined to form a single longitudinal model 

upon which the stability of the measure over time was tested through confirmatory 

factor analysis (CFA). Each factor (i.e., Memory and Reaction Time) was analyzed 

individually for its structural stability, differential stability, and latent mean stability 

over time.   

8.2.1. Memory  

The Memory factor with five indicators achieved all three levels of longitudinal 

stability. The structural stability of the Memory factor was supported, as configural, 

weak, and strong factorial invariance were achieved. The presence of weak factorial 

invariance means that factor loadings were equivalent across the three time points. 

Thus, given their equivalence, a unit of change in any of the memory item’s score 

would result in an equal unit change in the Memory factor, regardless of the time 

point. Furthermore, given the intercepts were also invariant (i.e., strong factorial 

invariance) any change that is observed in the indicator items can be interpreted as 

true change in the latent Memory factor. Thus, the measurement precision of the five 

ImPACT items reflective of memory, were stable across time. That is, the memory 

items are consistently measuring the same concept of memory over time.  

Differential stability was supported for the Memory construct indicating the rank-

order of individuals’ scores were consistent over the three time points. Thus, each 

participant’s memory performance relative to others was consistent over time. As 
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expected, the differential stability decreased as the time interval increased. The 

correlation between Time 1 and Time 2 was .88, between Time 2 and Time 3 was 

.90, and the correlation for the 2-year interval, between Time 1 and Time 3 was 

slightly lower, .81. Differential stability is very similar to test-retest reliability in that 

they both measure the consistency of variance over time. The difference is that, 

because differential stability is computed within a confirmatory factor model, 

measurement error is taken into account and hence it is a more accurate estimate of 

longitudinal reliability than that found with test-retest reliability.   

The differential stability found in the current study is superior to the test-retest 

reliability (i.e., intra-class correlation coefficient; ICC) over a two-year period 

reported by Schatz (2010). They reported low test-retest reliability for both the 

Visual Memory (.65) and Verbal Memory (.46) composites of the ImPACT battery. 

A possible explanation for the discrepancy in findings may be the different average 

age of the samples as there are differences in concussion presentation between adults 

and adolescents (McCrea et al., 2004; Pellman et al., 2006). Schatz employed a 

college sample whereas the current studies sample consisted of adolescents. 

Furthermore, differential stability took into account error whereas the test-retest 

reliability in Schatz’s (2010) study did not. Lastly, it may be that when the items of 

two ImPACT Memory composites are combined, as in the current study, they 

produce a more reliable and stable construct due to the increase in the quantity of 

indicators and the appropriate factor-item associations. This hypothesis is supported 

by Schatz and Maerlender’s (2013) study in which they recalculated the test-retest 

reliability for a General Memory factor, inclusive of visual and verbal memory 

items, using the data from Schatz’s (2010) earlier study. They found test-retest 

reliability as evidenced by ICCs was greater for a combined General Memory (.74) 

factor than for the Visual Memory (.65) and Verbal Memory (.46) composites alone.  

Given strong factorial invariance was achieved, an assessment of differences in 

latent means was warranted. Comparison of the Memory latent mean across the three 

time points revealed no significant differences in absolute scores. That is, non-

concussed, South African, adolescent males’ memory ability remained relatively 

stable over a three-year period. Based on the absence of improved performance, 

practice effects appeared absent. This is consistent with previous studies which too 

found ImPACT to be free from practice effects (Lovell et al., 2009; Schatz, Pardini, 
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Lovell, Collins, & Podell, 2006). This is an important observation given ImPACT is 

often used within a baseline framework, in that return-to-play decisions are based on 

post-injury performance returning to that at baseline. If practice effects were present, 

observed improvements in performance (i.e., returning to baseline) may be reflective 

of practice effects rather than true improvement and recovery. The mean Memory 

performance at Time 3 was .85 units greater than that at Time 2 and .72 units greater 

than Time 1, and Time 1 was .13 units greater than Time 2. Overall there was a 

slight, though insignificant increase from Time 1 to Time 3. The increase was 

expected since the sample consisted of adolescents who are still cognitively 

developing; thus, it would be expected that their memory would improve slighty 

over time.  

8.2.2. Reaction time  

The Reaction Time factor, with three indicators, achieved both configural and weak 

factorial invariance. Weak invariance was sufficient evidence to support the presence 

of measurement invariance of the Reaction Time factor, as strong invariance is often 

hard to achieve (Chen et al., 2005). The achievement of weak invariance means that 

the scale of measurement for the Reaction Time factor remained consistent over 

time. That is, each unit of change in the reaction time items was equivalent to one 

unit of change in the Reaction Time factor, regardless of the year of testing. Given 

strong invariance was not achieved, item intercepts were not invariant across time. 

Therefore latent mean analysis was not conducted, as any change in the score of the 

Reaction Time factor over time could not undeniably be interpreted as the ‘true’ 

score change. Hence, item scores may vary over time due to factors other than 

changes in the latent construct of Reaction Time. This is important to consider in the 

clinical application of ImPACT. Clinicians should keep this limitation in mind when 

interpreting scores: the Reaction Time composite score is not a perfect reflection of 

an individual’s reaction time capability. This caveat is not new, both the developers 

of ImPACT in addition to the Concussion in Sport Consensus Group state that 

neuropsychological assessment scores should only be one of many pieces of 

information that inform clinical decisions regarding the management of concussion 

(ImPACT online, 2013; McCrory et al., 2013).  
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Differential stability was assessed within the metric model, as this was the highest 

level of invariance achieved. Differential stability between all three time-points was 

supported. The strongest correlation was reported between Time 1 and Time 2 (.84), 

followed by Time 2 and Time 3 (.76), and lastly Time 1 and Time 3 (.75). Therefore, 

the rank-order of individuals’ score on the Reaction Time construct relative to 

others, was relatively consistent over the three baseline testing sessions. These 

findings are substantially better than the test-retest reliability reported for the 

Reaction Time composite in Schatz’s (2010) study. He calculated a Pearson’s r of 

.52 and an ICC of .68 over a two-year interval. Despite the shorter test-retest 

interval, Iverson, Lovell, and Collins (2003) produced comparable findings to the 

current study, with a Pearson’s r of .79 over a period of 5.8 days (range 1 – 13 days).  

This study has contributed to the literature, as it is the first to have statistically tested 

the assumption of measurement invariance over time. This is an assumption of all 

statistical methods that have assessed the stability of ImPACT performance over 

time, yet until now this assumption has not been tested. Since measurement 

invariance was supported for both the Reaction Time and Memory factors, greater 

confidence can be had in the findings of previous studies, which have assessed 

change over time (e.g., Broglio et al., 2007; Elbin et al., 2011b; Schatz & 

Maerlender, 2013; Schatz, 2010). That is, because measurement invariance implies 

that the measurement precision of the ImPACT instrument is consistent over time, 

confidence can be had that any change in item scores is the result of the same 

quantity of change in the latent factor, regardless of time. Having confidence that 

any change in observed scores is reflective of change in the latent constructs of 

Memory and Reaction Time is important for the clinical use of ImPACT as 

clinicians are using information provided by ImPACT to inform their decisions 

regarding whether or not a player is ready to return to play.  

Another practical implication of the current findings pertains to the frequency of 

baseline testing. At present there are no official guidelines regarding how frequent 

baseline testing should be conducted among adolescents. However one would 

assume testing should be relatively frequent given adolescence is a time of rapid 

cognitive development. The current findings suggest conducting baseline testing 

every two years would suffice, given no significant changes were observed during 

this period. This is consistent with recommendations of Elbin and colleagues (2011) 
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who also suggest a two year interval between repeated baseline testing for 

adolescents is sufficient. Therefore, if for some reason individuals’ baseline data for 

the current year were missing or invalid, comparing post-injury testing to the 

previous year’s baseline performance would yield clinically relevant results.  

8.3. Cross-Country Invariance  

The third aim of the current study was to validate the identified structure within a 

New Zealand sample and to assess whether the structure was invariant across New 

Zealand and South African male adolescents. The two-factor, eight-item structure 

was successfully validated among a New Zealand sample, evidenced by adequate 

model-fit statistics and sufficient factor loadings. The fact that the previously 

identified structure was upheld within a new sample of individuals from a different 

country provides robust evidence supporting the factor structure identified in this 

study opposed to alternative proposed structures such as the Allen and Gfeller model 

and the ImPACT scoring structure. However, the structure failed to achieve 

measurement invariance between the two countries, as configural invariance was the 

highest level of invariance achieved. The presence of configural invariance means 

that the number of factors and the item-factor pattern was the same for both New 

Zealand and South African samples. Additionally it implies the latent factors being 

measured are similar, although not identical in each country. As mentioned 

previously, at least weak factorial invariance is required for measurement invariance 

to be supported. Given neither weak nor strong factorial invariance was achieved, 

measurement invariance for ImPACT between the two countries was not present. 

Thus test items appear not to be measuring the same latent construct in both groups 

and the scale of measurement is different for the two countries. Therefore any 

comparisons made between the Memory and Reaction Time composites between 

these two countries would potentially yield inaccurate results and meaningless 

interpretations (Billet, 2003). Because measurement invariance was not present 

between the two countries, any differences found between means or other statistics 

may not be accurate, but might reflect systematic bias of response across countries 

(Steenkamp & Baumgartner, 1998). With the exclusion of the current study, all 

studies comparing ImPACT performance between countries (e.g., Shuttleworth-

Edwards, Whitefield-Alexander, Radloff, Taylor, & Lovell, 2009; Tsushima, Oshiro, 

& Zimbra, 2008) have not statistically tested the assumption of measurement 



 

 
 

130 

invariance prior to performing group comparisons. Therefore their findings may be 

erroneous if this assumption is found to be incorrect.  

Possible reasons for non-invariance may be due to methodological issues such as 

small sample size. While both New Zealand (N = 109) and South African samples, 

(N = 116) met the minimum requirement of 100 participants (Kline, 2011), a larger 

sample may have produced more favourable results. While it was possible to use a 

larger South African sample, it was decided to use a sample that was similar in size 

to that of the New Zealand sample given disproportionate sample sizes between 

groups can cause results of the multiple-group model to be biased toward the model 

of the group with the largest sample size (Brown, 2006).  Because the chi-square is 

affected by sample size, the group with the larger samples’ contribution to the 

overall chi-square will be greater than that of the group with the smaller sample size. 

Furthermore, any other CFA statistics based on the chi-square (e.g., CFI) or that are 

sensitive to sample size will be disproportionately influenced by the unequal sample 

sizes (Brown, 2006). An alternative explanation for the absences of invariance 

between New Zealand and South Africa may be that measurement bias is present in 

these items so that different aspects of Memory and Reaction Time are being 

assessed, or potentially the items are measuring different constructs in each country. 

However, this seems unlikely given the objective nature of memory and reaction 

item. Lastly, it may be that the New Zealand sample performed poorer than the 

South African participates. This explanation appears more probable given the 

noticeable differences of item means between the two countries (see Table 8 and 

Table 20).  

This investigation of cross-country invariance was unique as it was the first to 

evaluate measurement invariance across different country populations. Previous 

studies comparing individuals from different countries performance on ImPACT 

have employed less sophisticated techniques to evaluate equivalence (e.g., 

Shuttleworth-Edwards et al., 2009; Tsushima et al., 2008). Given the lack of 

measurement invariance in the current study a shadow of doubt is cast on the 

conclusion of equivalence from those previous studies. However, this is purely a 

hypothesis and measurement invariance between the specific populations of previous 

comparative studies would need to be statistically evaluated. Nevertheless, the 

current findings imply that if ImPACT were to be used in New Zealand, New 
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Zealand specific norms would need to be developed given the measure’s lack of 

invariance with the South African population. While ImPACT recommends an 

individual approach using baseline data, the Concussion in Sport Group states that 

there is not enough evidence to endorse baseline testing (McCrory et al., 2013). 

Therefore, it is essential to have normative data available for the population in which 

ImPACT is used to provide a comparison for post-injury performance and guide 

return-to-play decisions. 

The fact that the measure was variant across countries highlights the importance of 

first validating the test within the culture, context, and/or cohort it is going to be used 

in and not simply to generalise findings or information gathered from one group to 

another of differing characteristics. ImPACT is currently used in several countries, in 

many of which the test is being administered in the native language (ImPACTonline, 

2014). In light of the current findings it is important to develop local normative data 

in each country. This is unless measurement invariance can be demonstrated with the 

country whose norms they wish to use.  

8.4. Limitations and Future Research 

A limitation of the current study was that parcelled items were used as the lowest-

order indicator variables in the CFA models. Parcelled items were used in place of 

individual item scores (i.e., raw scores) as the latter were not available from 

ImPACT. The use of parcelled items is controversial: if they are used, an essential 

assumption is that the items that make up the parcel are unidimensional, as 

multidimensionality within a parcel is problematic (Little, Cunningham, Shahar, & 

Widaman, 2002). Although we suspect this assumption to be true given the identical 

nature of test items within each parcel, since the raw scores were not available this 

could not be statistically tested in the current study. Furthermore, parcelled items can 

be problematic as they threaten the validity of findings. Parcelling compresses the 

specific variance and random error of each individual item, either eliminating it 

altogether or at least reducing it. The parcelled items typically share variance, and 

this is what is emphasised in the aggregated score. As a result, the model fit is 

improved and mis-specification can be obscured (Bagozzi & Edwards, 1998; 

Bagozzi & Heatherton, 1994). For example, an item could originally load onto both a 

Memory and Reaction Time factor. If it is then parcelled with other predominately 
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memory-loaded items, the aggregate or parcelled score may now only load on 

Memory and not Reaction Time. Thus, its association with Reaction Time is 

concealed and the model is mis-specified. Basically, parcelling items reduces item-

specific error and improves model fit. Without access to the raw scores we cannot be 

sure of the extent to which model fit was inflated due to item parcelling. Although 

the current study was of the opinion that parcelling raw scores was appropriate, 

future research should, if possible, assess the unidimensionality of each parcel 

(subscale) score.  

The sample was one of convenience and thus this limited the size and diversity of 

participants. In both the New Zealand and South African samples female participants 

were non-existent. This appears to be a common limitation in the sport concussion 

literature. Nevertheless, gender invariance of the ImPACT structure could not be 

tested, thus it is unknown whether the structure identified in the current study is 

applicable to female athletes. Furthermore, the sample was limited to a non-clinical 

population in that no participants had recently sustained a concussion. It is important 

that the structure also be validated among a concussed sample because, as Delis and 

colleagues (2003) suggest, the item-factor relationships may differ between healthy 

and concussed populations. It may, for example, be possible that the distinction 

between visual and verbal memory emerges when one is concussed. That is, 

although the visual and verbal memory items appear to share variance in the healthy 

brain, this may not be the case for a concussed brain. Thus it is essential for future 

research to attempt to validate the identified ImPACT structure among a sample of 

concussed athletes given the purpose of the battery is to assess the cognitive effects 

of concussion and monitor their resolution. Furthermore, given the ImPACT battery 

is currently used within diverse populations, such as differing countries, cultures, 

genders, and sporting levels, future research should attempt to validate the battery 

within each of these populations as research of this kind is currently minimal.  

The most pressing issue for future research is to re-evaluate the ImPACT battery. An 

analysis of the content should be conducted to ensure the test items are measuring 

what they purport to measure. Following from this should be a re-evaluation of the 

scoring structure, specifically ensuring that the item-factor relationships are correct. 

And lastly, more complex processing speed items should be added so that this 

construct is sufficiently represented. The adequate representation of processing speed 
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is important if Salthouse’s (1996) theory claim, that processing speed deficits 

underlie impairments in other cognitive domains, is true.  

The current study assessed the longitudinal stability over a one and two year period. 

While this length of temporal interval provides valuable information regarding the 

required frequency of baseline testing, evaluation of stability over shorter time 

intervals and with concussed athletes is an important avenue for future research. The 

reason for this is that, following a concussion, ImPACT is administered repeatedly 

over a short period of time, usually once a week until symptoms resolve. Thus it is 

important to ascertain the stability of the measure over this time period, in addition 

to assessing for practice effects which are typically more prominent during shorter 

intervals. This is also important as test-retest reliability is used in the calculation of 

Reliable Change Indices and ImPACT uses these to determine if any change in 

performance is clinically meaningful. Thus it is important that test-retest reliability 

for these shorter intervals be accurate. One step in ensuring the accuracy of the test-

retest calculation is by statistically testing the important assumption that 

measurement invariance is present.  

8.5. Concluding Summary 

Sport concussion is currently a topic of interest, evidenced by increased media 

attention and empirical research. The growth within the sport concussion literature 

has centered on the utility of neuropsychological tests in assessing and managing 

sport concussion yet few studies have examined the psychometric properties of such 

tests. Neuropsychological batteries for sport concussion are now computerised and, 

with sophisticated marketing techniques, there is now widespread use of such testing 

throughout America and other developed countries. The widespread use of 

neuropsychological testing for the assessment of sport concussion is not however 

adequately supported in the literature. The use of neuropsychological testing, 

specifically of one particular battery, ImPACT, appears to have spread faster than 

research regarding its utility can be produced. This study took a step back and 

investigated the fundamental properties that should be present in order for this 

widespread use of ImPACT to be supported.  

The study achieved its three objectives of identifying ImPACT’s factor structure and 

assessing the structure’s measurement invariance both over time and across two 
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populations. A factor structure was identified and later confirmed (i.e., validated) 

which was inconsistent with ImPACT’s current scoring structure. As a result, it was 

strongly recommended that ImPACT revise the items included in the battery in 

addition to the scoring structure. Specifically it was proposed that a measure of 

executive function and impulse control should be omitted and instead focus should 

be on including a sufficient number of items to accurately and reliably measure 

memory, complex processing speed, and simple processing speed (i.e., reaction time) 

as these appear to be the more salient areas affected by concussion. Furthermore the 

identified structure demonstrated measurement invariance over three time-points 

with one-year intervals. This has practical implications for baseline testing in that it 

suggests baseline testing conducted two-yearly would suffice. Lastly, the structure 

failed to demonstrate invariance between populations of two countries, New Zealand 

and South Africa, emphasising the importance of having population specific norms.  

The current study advanced knowledge regarding the psychometric properties of the 

ImPACT structure and the stability of the structure over time and across different 

country populations. The most salient strength of this study was methodological. Not 

only did it highlight the limitations of previous studies, it overcame these limitations 

and represented a more rigorous investigation of factor structure, stability over time, 

and stability across different populations. This was achieved through structural 

equation modelling  (SEM) techniques. If this thesis is to achieve anything, it is 

hoped that it will raise awareness of concussion in the sporting arena. It should 

encourage individuals to critically evaluate the empirical research regarding 

ImPACT or any other neuropsychological battery used in the assessment of sport 

concussion and not simply accept the information provided by the test-sellers at face 

value.  
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Appendix A 

 

 

 

 

 
 

Dear [Name of Principal] 
 
Re: Request to conduct research at [Name of school] 
 
My name is Shannon Martin and I am completing my Doctorate of Clinical Psychology at Massey 
University. My research dissertation focuses on the assessment and management of sport concussion 
among New Zealand high school athletes. I’m writing to your school to see if you would be willing to 
support this research by participating in this study. Please take five minutes to read the attached 
document outlining what I propose to do and how it will benefit adolescent athletes. 

Concussion is defined as a disturbance of the brain after a blow to, or violent shaking of, the head. A 
concussion typically results in cognitive, physical, or emotional symptoms. Contrary to popular belief 
loss of consciousness is not the hallmark symptom of concussion in fact it occurs in only 10% of 
cases. More common symptoms include confusion, headaches, nausea, and amnesia. Usually these 
symptoms will resolve spontaneously within 14 days. However in some cases long-term effects are 
observed, especially following multiple concussions.  
 
Sport concussion is a serious injury which has ended professional sporting careers and in several 
cases has resulted in death.  For instance, Steve Devine an Auckland Blues player retired following 
serious impairments as a result of multiple concussions. He suffered severe migraines, extreme 
fatigue, and lack of concentration, for many years. Concussions do not only affect professional 
players, in fact children and adolescents, whose brains are still developing, are at higher risk of 
concussion than adults. Recently a Northland teenager, Darryl Sabin was left in a critical condition 
following multiple concussions. Prior to the final concussion his father was so worried he took out a 
court injunction to stop his son from playing. However, due to the clubs lack of concussion 
management procedures Darryl convinced the club to allow him to play. Had they adhered to 
appropriate concussion protocols this life threatening incident could have been avoided.  
 
The Immediate Post-Concussion Assessment and Cognitive Testing battery (ImPACT), developed at 
the University of Pittsburgh, is a tool commonly used to assess concussion. ImPACT is computerised 
and uses neuropsychological tests to measure the cognitive effects of concussion. It is currently used 
by both the National Football League and National Hockey League in American as well as the Super 
15 rugby teams in New Zealand. However, the applicability of ImPACT among New Zealand 
adolescents is yet to be tested. This is important as due to cultural differences we cannot assume that 
ImPACT will be a reliable and valid measure when used within New Zealand setting. Consequently, 
the aim of this research is to compare the performance of New Zealand and US adolescent’s on 
ImPACT so as to establish whether or not ImPACT is suitable to use with New Zealand adolescents.  
What this study will involve if you are willing to support this research: 
  

 Participation from students who participate in contact sports (i.e., rugby, soccer, and 
hockey). Participant’s data will be excluded if they have a history of two or more 
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concussions, have sustained a concussion in the past two weeks, or have been diagnosed with 
a neurological, learning, or psychiatric disorder.  

 Participation involves the once-off completion of the ImPACT test online. This will take 
approximately 50 minutes. Data collection would ideally occur in small groups (10 students) 
in a school computer lab with broadband access at a time that is most suitable to the school. 

 Ideally I would like to test 200 consenting students, however, any number of participants you 
are willing and able to make available would be greatly appreciated.  

 As an ethically approved project, all data will be de-identified (rendered anonymous) prior to 
any analysis or publication.  

 Collected data will be stored securely electronically on the US ImPACT database. Access to 
the collected data will only be possible following approval by the Database Committee and 
all distributed data will be de-identified.  

 
 
If you have any questions regarding the research project, or if you would like me to discuss it further 
with you in person then please feel free to contact me, Shannon Martin at 
shannon.martin@windowslive.com  or 021 144 2977. This project will be supervised by Clifford van 
Ommen, a senior lecturer at Massey University and a registered Clinical Psychologist. He can be 
contacted on 09 441-8175 or c.vanommen@massey.ac.nz  
 
Sincerely 
 
[Signature] 
 
Shannon Martin 
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Appendix B  
 

 

 

 

 

Dear Student 

My name is Shannon Martin and I am a Doctoral student  at Massey University. I am currently 
conducting research investigating the cognitive effects of sport concussion among adolescents and 
invite you to participate. The project is supervised by Dr Clifford van Ommen, a registered clinical 
psychologist and the Director of Massey University’s Centre for Psychology.   

Should you agree to this then it is understood that:  

1. This data will be used to investigate whether the US developed ImPACT test is applicable to 
New Zealand adolescents.  

2. Participation involves the completion on-line of the ImPACT (Immediate Post Concussion 
Assessment and Cognitive Testing) programme. This will take 50 minutes to complete and 
involves a symptom questionnaire and several cognitive measures assessing memory, attention, 
and reaction time.  

3. If you score significantly low in any of the cognitive domains measured (e.g. memory, attention) 
you will be contacted by Clifford van Ommen. 

4. This data will be securely stored electronically on the USA ImPACT database. Access to the 
collected data will only be possible following approval by the Database Committee and all 
distributed data will be de-identified.  

5. Participation in the research is completely voluntary and you have the right to withdraw from the 
study up to two weeks following data collection. 

6. Information collected from this project will be used anonymously for thesis and publication 
purposes. 

7. Your data will be excluded from the study if you have a history of two or more concussions, have 
sustained a concussion in the past two weeks, or been diagnosed with a neurological, learning, or 
psychiatric disorder.  

 

If you are willing to participate in this research then please return this form with the appropriate 
signature. If you have any questions please feel free to contact me, Shannon Martin, 021 144 2977 or 
shannon.martin@windowslive.com or my supervisor Dr Clifford van Ommen, 
c.vanommen@massey.ac.nz or 09 414 0800 extn 41241. 

This project has been reviewed and approved by the Massey University Human Ethics Committee: 
Northern, Application 12/072. If you have any concerns about the conduct of this research, please 
contact Dr Ralph Bathurst, Chair, Massey University Human Ethics Committee: Northern, telephone 
09 414 0800 x 43404 emailhumanethicsnorth@massey.ac.nz  
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Appendix C 

 

CONSENT FORM  

RE: Concussion in Sport: The incremental validity of neuropsychological 
testing 

I have read the Information Sheet and understand the details of the study. My 
questions have been answered to my satisfaction, and I understand that I may ask 
further questions at any time. I understand this data will be stored securely on the 
ImPACT database and only be distributed in a de-identified form.  

I, _____________________________ agree to participate in the ImPACT 
Concussion Research Project under the conditions set out in the Information Sheet. 

  

Signature of Student      _____________________________                

Date ______________ 
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Appendix D 

 

Table 3  

Independent t-tests for ImPACT items between New Zealand samples  

Item 
M(Group1)   
N = 60 

M(Group2) 
N = 48 t df p 

Word-memory 93.52 91.35 1.9 106 0.06 
Design-memory 74.37 73.83 0.2 106 0.84 
XO-memory 68.89 62.67 1.75 106 0.08 
XO-correct-
interference 

26.19 25.95 0.45 106 0.65 

XO-reaction-time 0.55 0.56 -0.53 106 0.6 
XO-total-incorrect 8.38 7.69 0.57 106 0.57 
SM-reaction-time 0.53 0.58 -1.97 106 0.06 
SM-memory 65 59.49 1.42 106 0.16 
CM-reaction-time 0.8 0.85 -1.71 106 0.09 
CM-total-commission 0.53 0.38 1.21 106 0.23 
TL-memory 41.66 40.75 0.33 106 0.74 
TL-correct-interference             85.57 89.73 -0.14 106 0.17 
     

Note. XO = X and O’s; SM = Symbol Match; CM = Colour Match; TL = Three 
Letters. 
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Appendix E 

 

Table 8  

Skew and Kurtosis Values for Individual Items for Sample 2012A and 2012B  

 South Africa 
(N = 264) 

 South Africa 
(N = 255) 

 

Item Skew  Kurtosis Skew Kurtosis 
 
Word-memory 

 
-1.91 

 
4.18 

 
-1.69 

 
3.31 

Design-memory -0.67 -0.22 -0.65 -0.34 
XO-memory -0.56 -0.38 -0.64 -0.01 
XO-correct-interference -0.69 0.58 -0.86 1.36 
XO-reaction-time 0.88 0.33 1.34 2.62 
XO-total-incorrect 1.67 3.82 1.91 6.21 
SM-reaction-time 1.61 4.07 1.68 4.02 
SM-total-memory -0.26 -0.93 -0.55 -0.47 
CM-reaction-time 0.59 5.00 -0.12 4.74 
CM-total-commission 1.39 1.35 2.04 4.55 
TL-memory -1.65 3.62 -1.27 1.51 
TL-correct-interference 
 

-0.53 -5.3 -0.02 -0.28 

Note. XO = X and O’s; SM = Symbol Match; CM = Colour Match; TL = Three 
Letters.  
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Appendix G 

 

Table 12  
Reliability Values of the Memory Scale  

Item Corrected item-
total correlation 

Cronbach’s alpha if 
item deleted 

 
Word-memory 
Design-memory 
XO-memory 
SM-memory 
TL-memory  

 
.47 
.56 
.33 
.43 
.37 

 
.59 
.52 
.62 
.58 
.59 
 

Note. XO = X and O’s; SM = Symbol Match; TL = Three Letters. 

 

 

Table 14 
Reliability Values of the Reaction Time Scale  

Item Corrected item-
total correlation 

Cronbach’s alpha if item 
deleted 

 
XO-reaction-time 
SM- reaction-time 
CM-reaction-time 

 
.47 
.32 
.40 

 
.40 
.49 
.44 
 

Note. XO = X and O’s; SM = Symbol Match; CM = Colour Match.  
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Appendix H 

 

Table 16 

Skew and Kurtosis Values forEeac Item Over Time, South African Sample 

2011 (116)    2012 (116)    2013 (116) 

  Skew Kurtosis Skew  Kurtosis Skew Kurtosis 
 
Word-memory -1.54 1.90 -1.52 2.32 -2.17 4.77 
Design-memory -1.27 1.22 -0.82 -0.02 -0.90 -1.31 
XO-memory -0.43 -0.52 -0.88 0.38 -0.86 0.55 
XO-total-interference -0.75 0.46 -0.30 -0.28 -0.63 0.72 
XO-reaction-time 0.93 1.51 0.83 0.55 1.78 8.08 
XO-total-incorrect 1.90 5.13 1.35 2.73 2.34 6.89 
SM-reaction-time 1.53 3.61 1.17 1.41 1.13 1.71 
SM-memory -0.40 -0.97 -0.64 0.49 -0.85 -0.16 
CM-reaction-time -0.36 6.16 1.27 2.13 1.00 2.42 
CM-commissions 1.38 2.07 2.10 5.40 3.01 12.12 
TL-memory -2.15 6.74 -1.74 4.14 -1.80 4.14 
TL-correct-counted 
 

-0.14 0.69 -0.27 0.31 -0.06 -1.04 

Note. WM = Word Memory; DM = Design Memory; XO = X and O’s; SM = 
Symbol Match; CM = Colour Match; TL = Three Letters.  

 

 

 

 

 


