Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

APPLICATION OF PREDICTIVE MAINTENANCE TO INDUSTRY INCLUDING CEPSTRUM ANALYSIS OF A GEARBOX

BY

MATTHEW ALADESAYE

A THESIS SUBMITTED

IN

FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

THE FACULTY OF GRADUATE STUDIES (Institute of Technology and Engineering)

MASSEY UNIVERSITY AUCKLAND, NEW ZEALAND July 2008

SUMMARY

The economic implications of equipment failure are called for effective maintenance techniques. The research investigates current maintenance practice in several New Zealand industries and the improvements that could be obtained by the use of predictive maintenance techniques.

Initial research was undertaken in a series of case studies within New Zealand industries situated in Auckland. The first two cases studies were of preventative maintenance techniques of two conveyor lines in a biscuit manufacturing company. The results showed a well defined preventive maintenance schedules that was Systems Applications Products (SAP) programme was used to managed for daily, weekly, monthly and yearly maintenance activities.

A third case study investigated current predictive maintenance technique involving Fast Fourier Transform analysis of shaft vibration to identify a bearing defect. The results diagnosed a machine with a ball bearing defect and recommendation was given to change the bearing immediately and install new one. The machine was opened up, a big dent was on one of the balls as predicted by the analysis and the bearing was changed.

Research then looked at a novel technique called Cepstrum analysis that allows the deconvolution of vibration spectra from separate sources. This allows identification of several defects from the monitoring of a single vibration signal. Experiments were carried out to generate transfer functions for different gear faults at two different loadings. Blind deconvolution of the signal using a homomorphic filter was used to separate the source forcing frequencies from the structure resonance effects of the two gear faults, indicating that the technique could be used successfully to monitor equipment for a range of gear faults occurring simultaneously.

CONTENTS

Chapter 1	INTRODUCTION	1
	1.1 The Topic of this Thesis	1
	1.2 Why Predictive Maintenance?	1
	1.3 Aims	2
	1.4 Thesis Overview	3
Chapter 2	LITERATURE REVIEW	5
	2.1 Machine Diagnosis and Reliability	5
	2.2 Predictive Maintenance – Vibration Monitoring	8
	2.3 Artificial Neural Network	12
	2.4 Blind Deconvolution and Cepstrum Analysis	13
Chapter 3	MAINTENANCE STRATEGIES	19
	3.1 Introduction	19
	3.2 Evolution of Maintenance	20
	3.2.1 First Generation	20
	3.2.2 Second Generation	20
	3.2.3 Third Generation	20
	3.3 Maintenance Cost	24
	3.4 Maintenance Strategies	24
	3.4.1 Breakdown Maintenance	25
	3.4.2 Preventive Maintenance	25
	3.4.2.1 Preventive Maintenance Costs by Frequency	26
	3.4.2.2 Case Study 1 – Fan Drive End Bearing under	27
	Preventive Maintenance 3.4.2.3 Plant Experience	29
	3.4.2.4 Manufacturers' Recommendations	29
	3.4.3 Predictive Maintenance	30
	3.4.3.1 Case Study 2 – Identification of Deep Grove Bearing Defects by Spectra Analysis	31
	3.4.3.2 Equipment Specifications	34
	3.4.3.3 Measured Frequency	36
	3.4.3.4 Predicted Frequency	37
Chapter 4	FAST FOURIER TRANSFORM TECHNIQUE & ITS PITFALLS	40

	4.1 Introduction	40
	4.2 Complex Number	40
	4.3 Theory of FFT Analyzer	42
	4.4 Case Study 3 – Bearing Failure Due to Shaft Deflection & Critical Speed	44
	4.4.1 Natural Frequency & Critical Speed	44
	4.4.2 Whirling of Shaft & Critical Speed	46
	4.4.3 Deflection & Stiffness	46
	4.4.4 Permissible Angular Misalignment	47
	4.4.5 Results	47
	4.5 Case Study 4 – Fan Imbalance	52
	4.6 Case Study 5 – Root Cause Analysis Technique to Identify a Gearbox Failure	55
Chapter 5	THE THEORY OF CEPSTRUM TECHNIQUE	62
	5.1 Introduction	62
	5.2 Gearbox Vibration	63
	5.3 Transmission Path	64
	5.4 Transmission Errors	64
	5.4.1 Static Transmission Error	65
	5.4.2 Residual Error signals	67
	5.5 Signal Processing	68
	5.6 Homomorphic Theory	71
	5.7 Cepstrum Technique	73
	5.8 Poles and Zeros Analysis	78
Chapter 6	EXPERIMENTAL ANALYSIS	81
	6.1 Introduction	81
	6.2 Gear Test Rig	81
	6.3 Instrumentation	84
	6.4 Instrumentation for Data Collection	84
	6.5 The Structure of the Data Files	85
	6.6 Blind Deconvolution	85
	6.7 Results	87
	6.7.1 Homomorphic Deconvolution	94
	6.7.2 Poles and Zeros Analysis	99

Chapter 7	Conclusion and Recommendation	104
	7.1 Introduction	104
	7.2 Discussion	104
	7.3 Conclusion	112
	7.4 Recommendations for Future Work	113
	References	115
APPENDIX	A: CEPSTRUM TECHNIQUE AND HOMOMORPHIC	
FILTERING	G - 126	

APPENDIX B: PREVENTIVE MAINTENANCE - 180

LIST OF TABLES

Table 1.1	Fatal Accident Causes By Category	2
Table 3.1	Questionnaires	21
Table 3.2	The Summary of Maintenance Evolution	22
Table 3.3	Preventive Maintenance Schedule	29
Table 4.1	Entek Spectrum Analyzer Characteristics	43
Table 4.2	Shaft Conditions	51
Table 4.3	Design and Manufacturing Considerations	57
Table 5.1	Comparison of Terms Used in Spectra and Cepstral Analysis	76
Table 6.1	The Poles and Zeros from Curve Fitting Cepstra	103

LIST OF FIGURES

Figure 3.1	Maintenance Strategies Based on Practices in New Zealand	23
	Companies	
Figure 3.2	Preventive Costs by Frequency	26
Figure 3.3	Steel Manufacturing Company in Auckland New Zealand	27
Figure 3.4	Multi Hearth Furnace Fan	28
Figure 3.5	Fan End Bearing	28
Figure 3.6	Spectrum Showing the Bearing Defect	36
Figure 3.7	Acceleration Amplitude versus Frequency	37
Figure 3.8	The Bearing Defect	38
Figure 3.9	New Spectrum with Low Acceleration Amplitude	39
Figure 4.1	Real and Imaginary Plane of a Complex Number	41
Figure 4.2	Fan Bearing Housing at Drive End, Horizontal Direction	45
Figure 4.3	Fan Bearing Housing at Drive End, Axial Direction	46
Figure 4.4	Concentrated Load on a Simply supported Shaft	48
Figure 4.5	Effect of Shaft deflection on Bearing	49
Figure 4.6	Effect of Misalignment Angle on Bearing	49
Figure 4.7	Imbalance Spectrum with High Amplitude	53
Figure 4.8	Spectrum after Balancing of Fan	54
Figure 4.9	Gear with the Broken Teeth	55
Figure 4.10	Gearbox Spectrum	56
Figure 4.11	The Envelope	56
Figure 5.1	Gearbox Spectrum from the Case Study	63
Figure 5.2	Frequency Domain of Graphical Representation	68
Figure 5.3	Vibration of a Gearbox	69
Figure 5.4a	The Negatively Inverted Echo Due to Cracked Tooth	70
Figure 5.4b	The Negatively Inverted Echo Due to Spall	70
Figure 5.5	Signal Processing for a Gearbox Diagnosis	72
Figure 5.6	Two Signals Deconvolved to Two Separate Signals	73
Figure 5.7a	Cepstrum of the Cracked Tooth	74
Figure 5.7b	Cepstrum of the Tooth with Spall	74
Figure 5.7c	Cepstrum of the Undamaged Teeth	74
Figure 5.8	Frequency Response of a System	76

Figure 5.9	System with Input-Output Relationship	78
Figure 5.10	Poles and Zeros Plot From Transfer Function	80
Figure 6.1	Gear Test Rig	82
Figure 6.2	Cracked and Spall Gears	83
Figure 6.3	Gear Test Rig	84
Figure 6.4	Undamaged Gear Vibration Signal	88
Figure 6.5	Cracked Tooth Vibration Signal	89
Figure 6.6	Spall Tooth Vibration Signal	89
Figure 6.7	Cepstrum of Undamaged Teeth Under 50Nm Load	90
Figure 6.8	Cepstrum of Undamaged Teeth Under 100Nm Load	91
Figure 6.9	Cepstrum of Cracked Tooth Under 50Nm Load	91
Figure 6.10	Cepstrum of Cracked Tooth Under 100Nm Load	92
Figure 6.11	Cepstrum of Spall Tooth Under 50Nm Load	93
Figure 6.12	Cepstrum of Spall Tooth Under 100Nm Load	93
Figure 6.13	Undamaged Gear Under 100Nm After Filtering	95
Figure 6.14	Cracked Gear Under 100Nm After Filtering	96
Figure 6.15	Spall Gear Under 100Nm After Filtering	97
Figure 6.16	Smoothed Spectra for Undamaged, Spall and Cracked Gears	101
Figure 6.17	Frequency Response of System with Cracked, Spall and	102
	Undamaged Teeth	
Figure 7.1	Cepstra for Different Measurements	106
Figure 7.2	Cepstra for Different Measurements	107
Figure 7.3	Cepstra for Different Measurements	108
Figure 7.4	Cepstra for Different Measurements	109
Figure 7.5	Cepstra for Different Measurements	110
Figure 7.6	Poles and Zeros Frequency Response	111

ACKNOWLEDGMENT

I will like to express first and foremost my gratitude to my supervisors Dr. Huub Bakker and Johan Potgieter for their guidance and encouragement in the course of this research. Their patience and support are sincerely appreciated.

I express my special gratitude to my external supervisor, Professor R.B. Randall, University of New South Wales (UNSW), Sydney, Australia, for his guidance, great support, patience and his very useful comments.

I like to also acknowledge David Hanson, PhD student at UNSW for his support, encouragement, contribution and valuable advice during the time I was carrying out my experiments out in the university.

My gratitude extends to the technical staff of the UNSW, mechanical engineering workshop for allowing me to use their facility for my experiments and testing. I will like to thank Werner Schneider of SchemNZ who got the funding for this research from TechNZ.

It would be impossible to include everyone who has provided help and inspiration throughout my stay in Massey University, Albany Campus, Auckland. Let me humbly thank fellow students and others who have contributed.

My deepest gratitude goes to my family members for their love, encouragement and unconditional support during the whole course of my Ph.D work at Massey University, Auckland, and for providing a reason to finish as soon as possible.

Finally, my utmost thanks go to my Heavenly Father and the Lord Jesus Christ. Strong biblical convictions form the core of my personality and provide my source of strength and optimism. It would be very remiss not giving glory to whom glory is ultimately due.

DECLARATION OF ORIGINALITY

I, Matthew Aladesaye, declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published and unpublished work of others has been acknowledged in the text and a list of references is given in this thesis.

I also acknowledge that I have pursued the PhD course in accordance with the requirements of the university's regulations:

- Research practice and ethical policies have been complied with appropriately
- This thesis does not exceed 100,000 words, excluding appendices.

Signed.,.....