Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

GED

A GENERALISED SYNTAX EDITOR

A Thesis Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Science in Computer Science

at Massey University

Giovanni Serafino Moretti

1984

MASSEY UNIVERSITY

AR

1261308248

ABSTRACT

This thesis traces the development of a full-screen
s3yntax-directed editor - a type of editor that operates om a
program in terms of its syntactic tree structure instead cf
its sequential character representation.

The editor is table-driven, reading as input an extended BNF
syntax of the target language. It can therefore be used for
any language whose syntax can be defined in EBNF. Print
formatting information can be included with the syntactic
definition to enable programs to be pretty-printed when they
are displayed.

The user is presented with a pretty-printed skeletal outline

of a program with the currently selected construct
highlighted and all required syntactic items provided by the
editor. Any constructs with alternatives, such as

"<statement>", which occurs in many languages, are initially
denoted by a placeholder in the form of a non-terminal name
(L.e. '"<statement>") which 1s expanded when the user
indicates which alternative 1s wanted. All symbols entered
by the user are parsed immediately and any erroneous symbols
rejected, making it 1impossible to create a syntactically
incorrect program. The editor cannot detect semantic errors
as no semantic information is available from the EBNF syntax.
However the first use of all identifiers is flagged by the
editor as an aid to the detection of undeclared identifiers.

A "help" area at the bottom of the screen continuously
displays a list of the correct next symbols and the syntactic
definition of the currently selected program construct. This
display, together with a multi-level "undo" command and the
provision of a skeletal program by the editor, provides a way
of exploring the various constructs in a programming
language, while ensuring the syntactic correctness of the
resultant program.

Table of Contents

I Program Preparation = The Traditional Approachecececccesssssscesesssel

. L]
0 O~ S W N -

o

Pt et e et et et et et it et
.

N
g
o

.
e = O 00~ OB W N

W - QO

RN NN N
o ¥ % 8 e & a8 .

LF%]
2]

.
—-—-c)a:n|a~UI¢~uih>P‘g

. 8 . & @ - . & -

Wl W W wwwwwww

W

. s
Pt e
w N

3.14

w W W
- .
—
~ v

3.18

w
.

-
L]

Integrated Programming EnvironmentSeeeccssssssccscssscsscsnssssssssel
IntErptEt1VE BASIC Systems..-............................-.....3
Keyword Entryeeseccceccccccssccscscccccccacscccsssssssssssnasnnsssh
Syntax-Directed Editing EnvironmentS«ssccecceccscsscccsaccaccned
Cornell Program Synthesiserssssesssscsscsscsccccscasssccsssssscel
ALOE - A Language Oriented EditOTesccscsccccssscsssssssssssassalb
Editor Allan POE - A Pascal Oriented EditOresscsceccccssssassel8
COPAS - A Conversational Pascal SySteMescscaseccccssssesssocssslb
NZW - The 95% Program Editorasssnsassnssansssssssnessssassseestl

Summary....--..--.-.........-o-.-o--.-.-..................--.42

= Gliovannl *s EdLEoresvesswssmavweevessawssaupesseesssesvesee el
Language Input Definitionccessccsscacsscccncccssssrsnsssnsscsencasdd
The User's View-......-......................-................50
The Display....-.-....-.-.........-.......................--..51
Inserting User INpuUlesssssssscsscsssasssssroansscscsssssnsssnsanedl
Displaying Optional and List PlaceholderS..ceccecccsccscccseed5
Cursor Movement CommandSesessscssscsscssssssssssnsssnssesscnnsadbd
Marking and Returning to Marked NodeSeeescececcertcceresacncsssb2
The Delete Command = FSecesccossnsccscsssssssesascsasnsnsssassbd
The Insert Command - F&---.----uoooo-o.-n-o...oooo-o.clooaoo..&?
Reading and Writing FileSeessesescscsvsssscsscsssscsnssasesncab?
Undo Function - FIZ.....................-.-.....-...-....-.-.69
A Command Summary in Function Key Order.cceseccscscscsesessss70

Sumary...l......l..........‘ll....-l.‘i.....'......".....‘-?2

= Its Internal Architectur@icccssesscesssssnncessscsnnssncncsall
The Input Language Syntax----o.o..-.o..........-........-.-ooo?3
Definition of the Extended BNF Accepted by GEDescscscassnsssee??
Requirements of the Internal Syntactic Representationesssssss85
Representating Tokens of the Meta and User LanguageSesssssceso87
Describins the Names Of ProductionSieeccssssccssessscsonseeceedd0
Non-terminal syﬂtax NodeSeessoessassssesesannesssnsanssnnnnsnned
Concatenation and Alternation of ProductionSeescssccscscesssss93
The Data Structure used to Represent Optional SymbolSe.seesss..98
The Data Structure used to represent the List ConstrucCte......99
Storing a Representation of the User’s Programsssscccsseeeesl05
Recording the State of a Parser Without a Stackeeecccesccessal06
The Initial Form of the Program Node Tree€ecssecsscsssssscssssl08
The Program Node Field DefinitionS.ccceccceccccccccscssaaseesll2
Automatic Inclusion of Necessary Terminal SymbolS.:cecsessseellb
The Cursor - the Concept of a "Current Node".eeseevseseseaselld
Where does the Cutaor stop?lllllll.l.illll..l.l.ll‘.....l...llg
The Inclusion of User Symbols into the Program Treee.esss:.123
The Structure Created by the Expansion of Loop NodeS...ss...130
Unparsing = Deriving a Display from the Program Tree..s....132

3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

.=
]

0
1

Pl - S T L - - R -
— =D 00N OB W N -

Defining Layout - A Table-Driven Pretty Printerccccccsceceseel3é
GED Print Formatting Commandsessesses snwss swnssonesssinenssld?
Associating Formatting Commands with the SyntaX.seeeceesesss.138
Generating the Screen Displayeececessescscoccccscscnsscsasssldl
Optimising the Rewriting of the Screen Displayeeeceessessssssléd
The Implementation of User CommandSceccecscsccoccsccacsessssldb
Primary Cursor Movement CommandSecesseccccsscsscssssessessveseldb
Reading and Writing the Program and Clipped Subtrees..ssss..l47
The Clip/Delete and Insert CommandSssssassssvasssserervinsanldl
Marking, and Moving to, Specific Nodes in the Program.......l154
The Implementation of the "Undo" Command.sssssssscscsscasseal’s

Implementation of Syntax-Editors for New LanguageSeescecsecsssesl56
Preparing the Extended BNF Grammaresssccscsssssssssssesssssssl3’?
A Case Study - The Implementation of a Snobol Editor.seess...l59
Areas Of AltEration 1“ the Snobol Grammar.-...............---165
Are Identifiers, Numbers, Strings and CommentSc.eecescecsssssslbb
Hidiﬂg Optional Placeholders--.......a-...-.-.-....-'.....-..167
Removing the Production for <BLANKS> from the Snobol.c.sesss.170
Rewriting the Prnductions to Remove Common Start Symbols.....l170
Defining the Print Formatting CommandSeeeccecccccccccessscssssl?3
The Implementation of Pascal and Lisp EditorSceccccccscccscseal’lé
Problems Encountered in the Addition of Formattingessssesssal78

Sumary.l-iiﬂc.ll......llt-.d--lltll-.lcnnn--------c.-.-----lso

5 G nclusions-........------.-....................................olaz

o
1
2
3
4
5
6
7

A Short Description of the Systeémecscssssccecccsccsensessssceal82
The Realisation of Design GoalSessssssscescccsscsssocanensssal82
Generality of the EditOrececcscesssscssescsosssccssccsscsescsaal83
Ease of SEtting-up-.........---..........-.........-.....---.184
Ease Of US@eeesvevscsncacscsscstssssscsscssncsnssnsnnscnsssesl85
Future DevelopmentSeccssesscssssccssssssssssassssssscssssssssl8B6
Final Thought-...-.----.......-......-...................-.-.187

Acknowledgementsc........................-..--.-.-.-..-.------.-----188

Bibliograph}'l..'-"..‘l..l."'..I..I.'......'..lI.I...'........lll..lsg

Chapter 1

Introduction

1 Program Preparation = The Traditional Approach

The most common method of program preparation involves the repeated use
of a text-editor and a compiler. This method has an inherent
limitation - even if the user is sitting at a terminal, it enforces an
essentially batch mode of operation. The programs are prepared, and
then submitted to a compiler for verification and translation. There
are .two error classes that could be eliminated if the editor itself was
cognizant of the syntax of the programming language in use. The first
class is composed of errors that violate the lexical grammar of the
language and the second of errors in the constructive syntax =~ the

productions that define how the lexical symbols may be combined.

Lexical~L1mitations

A text editor accepts programs, as an arbitrary sequence of characters,
whereas logically a program is a sequence of unique symbols. Some of
these symbols are required by the syntax, others occur in

syntactically-ordered pairs or groups and some may be chosen by the

programmer.

The only items in a program whose textual nature 1is significant are
identifiers, numbers, strings and comments. These are composite items

consisting of sequences of characters, and the fact that reserved words

Chapter 1 Introduction 2

are externally represented as sequences of characters is irrelevant and
in this context misleading. It is irrelevant because although reserved
words look like identifiers, they are treated in the syntax as unique
symbols - a single incorrect character destroys the validity of a
reserved word, whereas even several altered characters may leave a

symbol still conforming to the syntax of an identifier.

More importantly, in this context it is misleading to treat reserved
words as character sequences as it leads the user to think of a program
as being composed of characters, not symbols. A text editor, having no
knowledge of program syntax, manipulates the program as text,

reinforcing this view.

Structural Limitations

A text editor has no knowledge of the syntactic structure of a program.
Therefore common errors such as unbalanced bracketing symbols and the
omigaion of _required symbols are not recognised at a stage where it is
possible to correct them easily. Only later, during the compilation of
the program, will these errors be detected, and then immediate

correction will be impossidle.

I1f the editor knew the target language syntax then these syntactic

errors could either be detected immediately and corrected, or

prevented.

Chapter 1 Introduction 3

l.1 Integrated .cogramming Environments

The Integration referred to here 1s that of the editor and the program
that actually translates the user’s program, be it compiler or
interpreter. The most common such translators are interactive systems
for the language BASIC but languages with dynamic data structures like

APL, LISP and SNOBOL are also usually 1interpreted and often

interactive.

Traditional interactive systems were in general originally designed for
use with printing terminals and have had a line-orientei syntax = the
slow speed of such terminals made the interactive editing of multi-line
syntactic items impractical. Examples of this approach are interactive
versions of BASIC, LISP, APL and the JOSS system although the most
common by far is BASIC. For a language with an appropriate syntax,
line oriented program entry is easy to use on both fast and slow speed
terminals as the incremental parsing alerts the user to errors in a

line as soon as that line is entered.

1.2 Interpretive BASIC Systems

The BASIC language was developed for teaching and was specifically

designed to be interactive. The reasons for this are threefold:

(a) The input is checked for errors at the end of each 1line and
erroneous lines may be corrected immediately.
(b) An altered program is immediately executable without the need

to invoke a compiler or leave the BASIC system.

Chapter 1 Introduction 4

{c) A line trace is available during execution and it is possible
interactively to find and alter the values of all variables for

debugging purposes.

This first two of these are the most important, as having a single
environment in which o create, edit and execute programs is an
important contributor to BASIC’s ease of learning and use. As the
system can be 1left in "BASIC Mode", beginaners do not need to learn

about the operating system and editor environments.

1.3 Keyword Entry

A letter from Mr G.J. Tee of the Auckland University Computer Science
Department contains a reference to what must be one of the earliest
systems for the entry of complete keywords in a single keystroke: "I
visited the cvomputer Centre at the University of Moscow during the
International Congress of Mathematicians, in about June 1966. 1 saw
there card punches being used to prepare ALGOL source programs, with
the key=-board including keys for the reserved words in ALGOL. For
instance, one key had the Russian equivalents of BEGIN and END as the
lower-case and upper-case symbols" [Tee 1983]. More recently the
Sinclair ZX81 and the Spectrum microcomputers have their BASIC
interpreters and keyboards arranged so that any keyword can be obtained
by depressing (possibly 1in conjuction with a shift key) an
appropriately labelled single key [Vickers 1980,1982]. This helps to
avoid spelling errors and to ease program entry. The use of keyword
entry reduces the program entry time simply by reducing the number of

characters that need to be typed - this is especially valuable for

Chapter 1 Introduction 5

beginner who are often unfamiliar with a keyboard - and thereby reduces
the opportunity for error. The editing of existing lines of program 1is
also symbol oriented, with keywords being skipped, added and deleted as
single entities. The systems are interpretive and check the syntax on
a line-by-line basis which also contributes to their ease of use. This

single keystroke toker entry is the first form of syntax—directed

program entry tc be widely available.

l.4 Syntax-Directed Editing Environments

In the BASIC systems discussed in the pre\ .ous section, the user 1is
constrained by the syntax of language being entered and it 1is
impossible to comstruct erroneous program units larger than a single

line without the generation of an error message.

A contrasting technique made possible by the widespread availability of
high-speed terminals has been the development of full-screen editors
that provide an window into a file, instead of a view based on lines.
Such editors may provide commands for editing the file imn textual
constructs - word processors deal with letters, words, lines,
sentences, paragraphs and pages - or alte.natively provide an editing
environment in which the editing units are not textual but syntactic.
Given the high speed at which the screen may be redrawn, the syntactic

constructs need not be line-oriented and can therefore extend over

several lines.

Chapter 1 Introduction 6

Syntax-directed editors permit the user to create programs that conform
to the syntax of the programming language in use. The BASIC systems
previously discussed are 1line-oriented examples of syntax-directed
editing environments. More racently,‘ syntax-directed editors for

langusages with a nested syntactic constructs have been developed.

These include the Cornell Program Synthesiser for PL/C (a subset of
PL/1) [Teitelbaum 1981), the ALOE syntax-editor gemerator [Medina-Mora
1981], the POE editor for PASCAL [Fischer 1981) and the COPAS system
for Pascal [Atkinson 198l1]. The Z editor [Wood 1981] is a text editor
but has features relating to program structure normally found only in

true syntax=-directed editors.

Each of these editors will be discussed to illustrate the user’s view
of the editor and the commands available. Where relevant the internal

structure is also discussed.

