
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

GED

A G~NERALISED SYNTAX EDITOR

A Thesis Presented in Partial Fulfilment of the Requirements

for the Degree of Master of Sci.ence in Computer Science

at Massey Uni~ersity

Gio-vanni Serafino Moretti

1984

MASSEY UNIVERSITY

~1~111111111111111111111111
1061308248

ABSTRACT

This thesis traces the development of a full-screen
3yntax-directed editor - a type of editor that operates on a
program in terms of its syntactic tree structure instead ~f
its sequential character representation.

The editor is table-driven, reading as input an extended BNF
syntax of the target language. It can therefore be used for
any language whose syntax can be defined in EBNF. Print
formatting information can be included with the syntactic
definition to enable programs to be pretty-printed when they
are displayed.

The user is presented with a pretty-printed skeletal outline
of a program with the currently selected construct
highlighted and all required syntactic items provided by the
editor. Any constructs with alternatives, such as
"<statement>", which occurs in many languages, are initially
denoted by a placeholder in the form of a non-terminal name
(i.e. "<statement>") which is expanded when the user
indicates which alternative is wanted. All symbols entered
by the user are parsed immediately and any erroneous symbols
rejected, making it impossible to create a syntactically
incorrect program. The editor cannot detect semantic errors
as no semantic information is available from the EBNF syntax.
However the first use of all identifiers is flagged by the
editor as an aid to the detection of undeclared identifiers.

A "help" area at the bottom of the screen continuously
displays a list of the correct next symbols and the syntactic
definition of the currently selected program construct. This
display, together with a multi-level "undo" command and the
provision of a skeletal program by the editor, provides a way
of exploring the various constructs in a programming
language, while ensuring the syntactic correctness of the
resultant program.

l

2

3

Table of Contents

Program Preparation - The Traditional Approach ••••••••••••••••••••• 1
1.1 Integrat~d Programming Environments •••••••••••••••••••••••••••• 3
1.2 Interpretive BASIC Systems ••••••••••••••••••••••••••••••••••••• 3
1.3
1.4
1.s
1.6
1.7
1.a
1.9
1.10

GED
2. l
2.2
2.3
2.4
2.s
2.6
2.7
2.8
2.9
2. 10
2.11
2.12
2.13

GED
3.1
3.2
3.3
3.4
'3. 5
3.6
3.7
3.8
3.9
3. 10
3. J l
3.12
3.13
3.14
3. 15
3 .16
3.17
3. 18
3.19

Keyvord Entry • ••••••••.•••••.••••••.•••••.•••••••••.•...•.•.••• 4
Syntax-Directed Editing Environments ••••••••••••••••••••••••••• s
Cornell Program Synthesiser •••••••••••••••••••••••••••••••••••• 7
ALOE - A Language Oriented Editor ••••••••••••••••••••••••••••• 16
Editor Allan POE - A Pascal Oriented Editor ••••••••••••••••••• 28
COPAS - A Conversational Pascal System •••••••••••••••••••••••• 34
"Z" - The 95% Program Editor •••••••••••••••••••••••••••••••••• 40

Sutn1nary •• 42

- Giovanni's Editor •••.••.••..•.•••.••. ••••••••••••••••••• .••. 44
Language Input Definition ••••••••••••••••••••••••••••••••••••• 45
The User's View .••••••..•••••••..••.•..••..•••....•.••••...••• 50
The Display .•.•••..•••••...•.••...•.••••..•••................. 51
Inserting User Input ••..••••.••.••..•••••..•.•...•............ 53
Displaying Optivnal and List Placeholders ••••••••••••••••••••• 55
Cursor Movement Commands ••••••••••••••••••••••••••••••.••••••• 56
Marking and Returning to Marked Nodes ••••••••••••••• , ••••••••• 62
Toe Delete Command - FS ••.•••••••••.••..•••••••...•..•..•.•... 64
The Insert Command - F6 ••••••••••••••••••.••••••••••••.••••••• 67

Reading and Writing Files •••••••••••••••••••••••••••••••••••• 67
Undo Function - Fl2••69
A Command Summary in Function Key Order ••••••••••••••.••••••• 70
Sunnna ry • •••••••••.•••••••••.••••••••••••.••••••.•••••.•.••••• 7 2

- Its Internal Architecture ••••••••••••••••••••••••••••••••••• 73
The Input Language SyntaX•••••••••••••••••••••••••••••••••••••73
Definition of the Extended BNF Accepted by GED •••••••••••••••• 77
Requirements of the Internal Syntactic Representation ••••••••• 85
Representating Tokens of the Meta and User Languages •••••••••• 87
Describing the Names Of Productions ••••••••••••••••••••••••••• 90
Non-terminal Syntax NodeS•••••••••••••••••••••••••••••••••••••92
Concatenation and Alternation of Productions •••••••••••••••••• 93
The Data Structure used to Represent Optional Symbols •.••••••• 98
The Data Structure used to represent the List Construct ••••••• 99

Storing a Representation of the User's Program •••••••••••••• 105
Recording the State of a Parser Without a Stack ••••••••••••• 106
The Initial Form of the Program Node Tree ••••••••••••••••••• 108
The Program Node Field Definittons •••••••••••••••••••••••••• 112
Automatic Inclusion of Necessary Terminal Symbols ••••••••••• 116
The Cursor - the Concept of a "Current Node" •••••••••••••••• 119
Where does the Cursor Stop?•••••••••••••••••••••••••••••••••l19
The Inclusion of User Symbols into the Program Tree ••••••••• 123
The Structure Created by the Expansion of Loop Nodes •••••••• 130
Unparsing - Deriving a Display from the Program Tree ••••••• 132

3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

4 The
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4. 10
4.11

Defining Layout - A Table-Driven Pretty Printer ••••••••••••• 134
GED Print Formatting Commands ••••••••••••••••••••••••••••••• 137
Associating Formatting Commands with the Syntax ••••••••••••• 138
Generating the Screen Display ••••••••••••••••••••••••••••••• 143
Optimising the Rewriting of the s~reen Display •••••••••••••• 144
The Impleraentation of User Commands ••••••••••••••••••••••••• 146
Primary Cursor Movement Commands •••••••••••••••••••••••••••• 146
Reading and Writing the Program and Clipped Subtrees •••••••• 147
The Clip/Delete and Insert CommandS•••••••••••••••••••• • ••••l51
Marking, and Moving to, Specific Nodes in the Program ••••••• 154
The Implementation of the "Undo" Command •••••••••••••••••••• 155

Implementation of Syntax-Editors for New Languages ••••••••••• 156
Preparing the Extended BNF Grammar ••••••••••••••••••••••••••• 157
A Case Study - The Implementation of a Snobol Editor ••••••••• 159
Areas of Alteration in the Snobol Grammar •••••••••••••••••••• 165
Are Identifiers, Numbers, Strings and Comments ••••••••••••••• 166
Hiding Optional Placeholders ••••••••••••••••••••••••••••••••• 167
Removing the Production for <BLANKS> from the Snobol ••••••••• 170
Rewriting the Pr~ductions to Remove Common Start Symbols ••••• 170
Defining the Print Formatting Commands ••••••••••••••••••••••• 173
The Implementation of Pascal and Lisp Editors •••••••••••••••• 174

Problems Encountered in the Addition of Formatting •••••••••• 178
Summary • ••.•. • 180

5 Conclusions ••••••••••••.••.••.•.•..•.•• . ••..•.••••••••• • ••••••••• 182
5. l
s.2
5.3
5.4
s.s
5.6
5.7

A Short Description of the System••••••••••••••••••••••••••••l82
The Realisation of Design Goals •••••••••••••••••••••••••••••• 182
Generality of the Editor•••••••••••••••••••••••••••••••••••••l83
Ease of Setting-UP•••l84
Ease of Use •••••••••••••••••••••••••••••••••••••• ••••••••••• • 185
Future DevelopmentS••l86
Final Thought • • • ••••••••••••••••••••• • •••••••.••.•••••••.••• • 18 7

Acknowledgements •• 188

Bibliography.• ...•• • .•.•••••••••••••••••••.••••••.••.••••••••••••..• 189

Chapter 1

Introduction

1 Program Preparation - The Traditional Approach

The most coml'DOn method of program preparation involves the repeated use

of a text-editor and a compiler. This method has an inherent

limitation - even if the user is sitting at a terminal, it enforces an

essentially batch mode of operation. The programs are prepared, and

then submitted to a compiler for verification and translation. There

are .two error classes that could be eliminated if the editor itself was

cognizant of the syntax of the programming language in use. The first

class is composed of errors that violate the lexical grammar of the

language and the second of errors in the constructive syntax the

productions that define how the lexical symbols may be combined.

Lexical Limitations

A text ~ditor accepts programs, as an arbitrary sequence of characters,

whereas logically a program is a sequence of \D'lique symbols •
•

Some of

these symbols are required by the syntax, others occur in

syntactically-ordered pairs or groups and some may be chosen by the
'

programmer.

The only items in a program whose textual nature is significant are

identifiers, n~bera, strings and comments. These are composite items

consisting of sequences of characters, and the fact that reserved words

Chapter l Introduction 2

are externally represented as sequences of chara~ters is irrelevant and

in this context misleading. It is irrelevant because although reserved

words look like identifiers, they are treated in the syntax as unique

symbols - a single incorrect character destroys the validity of a

reserved word, whereas even several altered characters may leave a

symbol still conforming to the syntax of an identifier.

More importantly, in this context it is misleading to treat reserved

words as character sequences as it leads the user to think of a program

as being composed of characters, not symbols. A text editor, having no

knowledge of program syntax, manipulates the program as text,

reinforcing this view.

Structural Limitations

A text editor has no knowledge of the syntactic structure of a program.

Therefore common errors such as unbalanced bracketing symbols and the

omission of ~required symbols are not rec~gnised at a stage where 1t is
~

possible to correct them easily. Only later, during the compilation of

the program, will these errors be detected, and then

correction will be impossi~le.

immediate

lf the editor knew the target language ayntax then these syntactic

errors could either be detected immediately and corre~ted, or

prevented.

Chapter 1 Introduction 3

1.1 Integrated _rogramming Environments

The integration referred to here is that of the editor and the program

that actually translates the user's program, be it compiler or

interpreter. The most common such translators are interactive systems

for the language BASIC but languages with dynamic data structures like

APL, LISP and SNOBOL are also usually interpreted and often

interactive.

Tradit·.i.onal interactive systems were in general originally designed for

use with printing terminals and have had a line-oriente~ syntax the

slow speed of such terminals made the interactive editing of multi-line

syntactic items impractical.

versions of BASIC, LISP,

Examples of this approach are interactive

APL and the JOSS system although the most

common by far is BASIC. For a language with an appropriate syntax,

line oriented program entry is easy to use on both fast and slow speed

terminals as the incremental parsing alerts the user to errors in a

line as soon as that line is entered.

1.2 Interpretive BASIC Systems

The BASIC language was developed for teaching and was specifically

designed to be interective. The reasons for this are threefold:

(a) The input is checked for errors at the end of each line and

erroneous lines may be corrected immediately.

(b) An altered program is immediately executable without the need

to invoke a compiler or leave the BASIC system.

Chapter 1 Introduction 4

(c) A line trace is available during execution and it is possible

interactively to find and alter the values of all variables for

debugging purposes.

This first two of these are the most important, as having a single

environment in which to create, edit and execute programs is an

important contributor to BASIC'a ease of learning and use. As the

system can be left in "BASIC Mode", beginners do not need to learn

about the operating syst.am and edltor environments.

1.3 Keyword Entry

A letter from Mr G.J. Tee of the Auckland University Computer Science

Department contains a reference to what must be one of the earliest

systems for the entry of complete keywords in a single keystroke: "I

visited the ~mputer Centre at the University of Moscow during the

International Congress of Hathe1118ticians, in about June 1966. 1 saw

there card punches being used to prepare ALGOL source programs, with

the key-board including keys for the reserved words in ALGOL. For

instance, one key had the Russian equivalents of BEX;IN and END as the

lower-case and upper-case symbols" [Tee 1983]. More recently the

Sinclair ZX81 and the Spectrum microcomputers have their BASIC

interpreters and keyboards arranged ao that any keyword can be obtained

by depressing (possibly in conjuction with a shift key) an

appropriately labelled single key [Vickers 1980.1982]. This helps to

avoid spelling errors and to ease program entry. '11le use of keyword

entry reduces the program entry time simply by reducing the number of

characters that need to be typed - this ta especially valuable for

Chapter l Introduction 5

beginner who are often unfamiliar with a keyboard - and thereby reduces

the opportunity for error. The editing of existing lines of program is

also symbol oriented, with keywords being skipped, added and deleted as

single entities. The systems are interpretive and check the syntax on

a line-by-line basis which also contributes to their ease of use. This

single keystroke toker. entry is the first form of syntax-directed

program entry tc be widely available.

1.4 Syntax-Directed Editing Environments

In the BASIC systems discussed in the pre, :ous section, the user is

constrained by the syntax of language being entered and it is

lmpossible to construct erroneous program units larger than a single

line without the generation of an error message.

A contrasting technique 111ade possible by the widespread availability of

high-speed terminals has been the development of full-screen editors

that provide an window into a file 1 instead of a view based on lines.

Su~h editors may provide commands for editing the file in textual

constructs word processors deal with lett~r•, words, lines,

sentences, paragraphs and pages - or alt~ ·. natively provide an editing

environment in which the editing units are not textual but syntactic.

Given the high speed at which the screen may be redrawn, the ayntactic

constructs need not be line-oriented and can therefore extend ove~

several lines.

Chapter 1 Introduction 6

Syntax-directed editors permit the user to create programs that conform

to the syntax of the programming language in use. The BASIC systems

previously discussed are line-oriented examples of syntax-directed

editing environments. More recently. syntax-directed editors for

languages with a nested syntactic constructs have been developed.

Theee .include the Cornell Program Synthesiser for PL/C (a subset of

PL/1) [Teitelbaum 1981], the ALOE syntax-editor generator [Medina-Mora

1981], the POE editor for PASCAL [Fischer 1981] and the COPAS system

for Pascal [Atkinson 1981]. The Z editor [Wood 1981] is a text editor

but has features relating to program structure normally found ~nly in

true syntax-directed editors .

Each of these editors will be discussed to illustrate the user's view

of the editor and the commands available. Where relevant the internal

structure is also discussed.

