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Abstract 

In this thesis a formal foundation for data flow diagrams (DFDs) with control 

extensions is developed. The DFD is the primary specification tool of the Structured 

Analysis (SA) approach to requirements analysis and specification. 

In recent times, a number of extensions to DFDs, which enhance their use in 

the specification of behaviour of complex applications (i.e. applications with 

concurrent or real-time aspects), have been proposed. Such extensions tend to 

concentrate on increasing the descriptive power of DFDs, while paying less 

attention to providing the extended DFDs with a formal foundation. Such a 

foundation would facilitate the generation of formal specifications from DFDs, 

which could then be used to rigorously validate the DFDs and the behavioural 

properties they capture, and could also be used as the basis of formal verification 

activities where subsequent specifications are verified against the formal 

specifications generated from DFDs. Also, the simple, graphical nature of DFDs, 

supported by a formal foundation, facilitates their use in formal development 

strategies. Their use in this respect achieves a level of understandability not usually 

associated with formal specification tools. 

The formal foundation introduced in this thesis consists of two parts: the 

Picture Level (PL) and the Specification Level (SL). The PL is an algebraic 

specification characterizing the syntactic aspects of DFDs. The specification is 

associated with an operational semantics which provides an effective means for 

investigating the syntactic properties of DFDs with the PL. 

The SL consists of tools and techniques for describing control aspects of 

applications, and for formally specifying the data, functional, and control aspects of 

the control-extended DFDs. The control-extended DFDs are called Extended DFDs 

(ExtDFDs). An ExtDFD depicts the types of interactions that can take place between 

DFD components, as well as the events that affect the mode of operation of the 

application it models. A formal specification, called the Behavioural Specification 

(BS), is generated from an ExtDFD and supporting specifications characterizing the 

data objects and primitive processing components of the ExtDFD. The role of the 

BS in formal validation and verification activities is discussed in this thesis. 
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CHAPTER 0 

Introduction 

0.1 The context 
This section outlines the context in which the research described in this thesis 

should be placed. 

0.1.1 The requirements specification problem 

The increasing size and cost of software have been major concerns of 

software developers since the late sixties. These concerns are especially relevant 

today given the growing demand for, and scope of software in diverse application 

areas, and the widening influence of software on human welfare. 

While there is no general concensus on the central problems afflicting 

software development, there is increasing evidence that the lack of thorough 

attention to the requirements analysis and specification phase of software 

development is a major contributor [YZCC84]. The evidence usually cited takes the 

form of extensive rewriting of the software and cancellations of projects whose 

completion was found to be unfeasible as a consequence of inadequate or 

inappropriate requirements analysis and specification [Boe76, Boe81]. The 

importance of the requirements analysis and specification stage as the first stage of 

software development should be self-evident. The result of this phase, the 

requirements specification, as well as being the basis for further development, 

provides the means by which the quality and applicability of the software can be 

measured [FREQ79]. In order to adequately support such a role in development, 

requirements specifications should have the following properties: 

• Understandability : It is important that a requirements specification be 

understandable by users and implementors, as well as the specifiers, in order for 

effective communication to take place. This property is considered as being of 

prime importance by Balzer and Goldman [BG87]. Tse and Pong [TP86a] 

identify two main aspects of understandability - complexity and clarity of 

description. The reduction of complexity in an application can be achieved by the 

use of abstraction, and partition [YZCC84]. The use of abstraction allows one to 

suppress certain detail while concentrating on other essential detail, while 

partitioning permits one to represent the whole as the sum of its parts. The use of 

abstraction results in hierarchies of specifications, where a specification at a 

1 
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lower level in the hierarchy presents detail ignored at the higher levels. For this 

reason, abstraction is viewed as a vertical decomposition tool. Partitioning 

allows for the modular building of specifications, and can be viewed as a 

horizontal decomposition tool. On the clarity of description, it is generally felt 

that graphic-based languages with few constructs are easier to understand than 

mainly textual languages. 

• Precision : The requirements specification, as the basis of further development, 

must be stated in a precise, and unambiguous manner. This characteristic is 

necessary to reduce confusion or misunderstandings arising from information 

obtained from the specification. 

• Testability : A requirements specification is said to be testable if it can be used to 

establish in an effective manner that an implemented application is, in some well 

defined sense, "equivalent" to it. In general, a notion of equivalence is based on 

a mapping from information in the requirements specification to information in 

the implemented application. If it can be proved that an implemented application 

is equivalent to a specification, then the implementation is said to be correct with 

respect to the specification. The activity of determining the equivalence of an 

implementation and its specification is called verification. As a prerequisite to 

verification, it must be possible to determine whether the different parts of the 

specification are consistent with each other. Such an activity is called validation. 

• Modifiability: It is foolhardy to assume that requirements once given remain 

fixed throughout the development life of the software. Requirements can, and 

often do, change over time, thus it should be possible to modify a requirements 

specification without undue difficulty. 

Currently, there is no single requirements specification language in which 

specifications possessing all the above characteristics can be expressed. 

0.1.2 Formal requirements specifications 

Requirements specification languages can be classified as being formal or 

informal. Formal specification languages have strict syntax and semantics. The 

specifications that are expressible by them are calledformal specifications. Formal 

specification languages are seen by many reserachers as being necessary for 

expressing in a precise and unambiguous manner the requirements of applications 

(see for example [YZCC84, TP86a, BG87, FREQ79, Goo84, Zav82, ZY81, FP]). 

The use of formal specifications also permits validation of the specification by 

formal means, for example, by logical proof, automatic checks, or simulation. 

Formal verification is also facilitated by the use of formal specification 

languages. Currently, there are two approaches to the formal verification of 
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software. In the first approach the software is developed independently of the 

specification, and showing that the software implements the specification means 

developing a formal proof that the program implements the specification in some 

well defined sense. After two decades of work on this approach it is now generally 

accepted that such an approach is not feasible for realistically sized applications 

[San88]. In the second approach, called the transformation approach, software is 

developed from requirements specifications via a series of refinement steps. The 

result of each step is a specification which incorporates the design decisions the step 

encapsulates. Such an approach can be pictorially depicted as a sequence of 

specifications as shown below: 

SP0 --> SPl --> ... --> S 

where SP0 is the requirements specification and S is the implemented application. 

Each specification in the sequence can be thought of as an implementation of its 

predecessor, for example SPl can be thought of as an implementation of SP0. If 

each individual step can be proved correct, that is, if it can be proved that SPi 

implements SPi-1, then S itself is guarantied to be correct with respect to SP0. As a 

formal development method, this approach offers more promise than the first, 

though it is not without its problems. For example, when applied to large and 

complex applications the individual specifications SPi can become large and 

unwieldy resulting in some difficulty in proving the correctness of refinement steps 

[San88]. This problem can be solved by appropriately partitioning the specifications 

and refining them independently. Deriving an appropriate partitioning strategy is 

still an area of active research. 

A number of formal specification languages have been developed since the 

early seventies, but their use in industry is limited despite their potential usefulness. 

Both technical and sociological reasons can account for this lack of use. On the 

sociological side, the proper use of formal specification languages requires a degree 

of mathematical maturity not previously required by software developers. 

Furthermore, formal specifications are difficult to read, even by the trained eye. On 

the technical side, the lack of a firm method addressing the entire development of 

software, which unifies at least some of the techniques is lacking. Current work on 

the transformation approach is directed at deriving such a total method for software 

development. 

0.1.3 Thesis objectives 

In the wider context, this thesis investigates an approach to integrating formal 

and informal specification techniques, in order to come up with a specification 

language which is both understandable, and formal. The approach involves 
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associating with informal specification tools and associated techniques a formal 

framework, thus enabling the generation of formal specifications from the 

(informal) specifications built using the tools and techniques. The informal 

specifications can thus be viewed as 'fronts' to the formal specifications, and 

should provide intuitive insight consistent with the formal interpretation it seeks to 

hide. A developer could then develop a specification in terms of the (seemingly) 

informal language, which could then be translated into a specification expressed in 

terms of the underlying formal language. Such an approach is based on a proposal 

put forward by Naur [Nau82, Nau85], which essentially states that formal 

expressions are extensions of informal expressions. 

In the narrower context, this thesis provides a formal framework for 

structured analysis specification tools, mainly the data flow diagram, and also 

extends the notation so that aspects other than the data flow through an application 

can be specified. Most current languages provide support only for the specification 

of what the application does, ignoring other non-functional aspects such as timing, 

performance, and security. This is mainly because there is at present no 

comprehensive theory or methodology for specifying such requirements 

[YZCC84]. In this thesis attention is also paid to the specification of the time 

depenedent ( or control) aspects of applications. 

0.2 Fonnal specifications from data flow diagrams 
Structured Analysis (SA) is a methodology which addresses the requirements 

analysis and specification phase of software development [DeM78]. The primary 

tool of SA is the data flow diagram (DFD), which is a simple graphical language 

used for describing the required structure of an application in terms of the data 

flowing through it. At the time of its inception, SA was hailed as a radical approach 

to requirements analysis and specification because of its use of graphical 

specification tools as an aid to understanding. Less attention was paid to the lack of 

a firm conceptual basis for the tools and techniques until much later when the 

resulting problems reared their heads. Problems arose mainly from the different 

uses of the tools and techniques amongst practitioners, a direct result of the lack of 

a firm conceptual basis for them [Woo78]. This, inevitably, led to disagreements 

over the "proper" use of the tools and techniques, and encouraged many 

practitioners to incorporate customized extensions. Added to this, the irreversible 

nature of the transition from SA specifications to initial Structured Design (SD) 

specifications [YC78] limited their use in other than the requirements analysis and 

specification phase of software development [Pet88, Ric86]. Such transitions have 

also proved difficult to carry out in some cases, and require considerable experience 
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and skill on the part of the developer carrying out the transition [Ric86, Sho88]. A 

further problem with the SA approach is that it specifies applications in terms of a 

single aspect: the data flowing through it. For data processing applications this may 

have been adequate, but for other types of applications, for example embedded or 

real-time systems, other aspects are equally important. 

Providing SA with a mathematical foundation may solve some of the 

problems associated with its use, if one can be found. It is this author's view that 

requirements analysis involves sociological processes which cannot be formalized 

in terms of any mathematical theory. For this reason this thesis does not attempt to 

provide an all-encompassing mathematical basis for SA, rather it restricts itself to 

developing a formal framework for its specification tools, primarily the DFD. The 

objective is to alleviate the problems associated with the use of SA specifications 

discussed above, and at the same time provide a specification language which is 

understandable, precise, and testable. 

The formal framework consists of two parts: the Picture Level (PL), and the 

Specification Level (SL). The PL provides formal support for constructing DFDs 

by giving formal rules for building the syntactic entities involved. Specifically, the 

PL is a system for abstractly characterizing and formally reasoning about the 

syntactic structures of DFDs. The characterizations are abstract in the sense that 

they are representation independent. An effective, sound and complete deduction 

system can be associated with the PL, enabling its use as the formal basis for 

automated DFD syntax-checking tools which are based on the rules expressed by 

the PL. 

The SL can be viewed as the part of the formal foundation which is used to 

specify the semantic aspects of DFDs. Specifically, the SL is a set of techniques for 

formally specifying the data, functional, and control aspects of control-extended 

DFDs. The data aspects concern the structure of the data depicted in DFDs, and the 

relationships between them, while the functional aspects concern the input/output 

behaviour of the processing components of DFDs. The control aspects of DFDs 

concern the interactions between the processing and data components of DFDs. The 

primary product of the SL is the Behavioural Specification (BS), which is a formal 

specification characterizing the behaviour of applications depicted by control­

extended DFDs. Such a specification facilitates formal validation and verification 

activities, as is shown in this thesis. 

0.3 Overview of thesis 
Chapter 1 surveys some of the major extensions made to SA tools and 

techniques- over the years since the inception of the methodology. It describes the 
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early SA approach of DeMarco [DeM78] and discusses the problems associated 

with it, and the manner in which some of these problems are tackled by other 

researchers. Chapter 2 introduces, in an informal setting, the formal basis for 

DFDs. This chapter can be viewed as the informal 'front' to the more formal parts 

of the thesis. Chapter 3 details the mathematical and operational foundations of the 

algebraic specification technique underlying the formal framework. The technique is 

based on the work of Broy and Wirsing on partial algebraic specifications [WB82], 

the work of Astesiano et al on relational specifications [ARW86], and the work of 

Mohan et al on inequational assumptions [MS87].-Chapter 4 describes the PL, 

while Chapter 5 describes the techniques in the SL. Chapter 6 applies the 

techniques described in Chapter 5 to both a data intensive application, and a control 

intensive application. The data-intensive example is a computer-based library 

application for a university, and the control-intensive example is an automobile 

cruise-control application. Chapter 7 discusses the merits and the limitations of the 

formal framework and pinpoints areas which require further research. 



CHAPTER 1 

Data Flow-Orientated Requirements 
Specification Techniques 

1.0 Introduction 
Data flow-orientated specification techniques (DSTs) provide mechanisms for 

representing the flow and transformation of data in an application. Using DSTs, 

applications are specified in terms of flows, representing data flow through the 

application, and processes, representing the components of the application which 

transform data. 

The earliest indications of the use of DSTs in requirements analysis methods 

appeared in 1977, with the publication of the definitive papers on SofTech's 

Structured Analysis and Design Technique (SADT) [Ros77, RS77], which 

introduced a DST based on two diagraming tools called the activity and data 

diagram. During the next two years DeMarco, Weinberg, and Gane and Sarson 

published seminal books on structured analysis (SA) approaches [DeM78, Wei78, 

GS79], which used a DST based on a diagraming tool called the data flow diagram 

(DFD). The activity diagrams of SADT can be viewed as an early form of the DFD. 

Y ourdon and Constantine, during the same period, published a second edition of an 

earlier book on Structured Design (SD), which included a technique for translating 

SA products into initial SD specifications [YC79]. The combined use of DeMarco's 

SA approach and SD is popularly known as the Yourdon SA/SD approach. The 

publications of these easy to read works on SA, coupled with the relatively informal 

style of the approaches, helped to establish the use of SA/SD as a viable method in 

the software industry. 

The popularity of the SA/SD method stems mainly from its emphasis on 

creating clear, understandable specifications via the use of graphical notation, rather 

than text. The lack of an experience base and the novelty of a graphical language, 

led to the failure of authors to provide a firm conceptual basis for the tools and 

techniques [Woo88]. This led to variations in the use of SA tools and techniques 

amongst practitioners. This has been more evident in recent times, with the 

publication of papers and books which have extended SA/SD method in order to 

cope with the special nature of certain types of software, or to solve general 

problems related to the lack of a conceptual basis (see for example [Doc86, Doc87, 

Pet88, HP87, War86, Gom84, Sho88, TP86b, CTL87]). 

7 
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This chapter presents an overview of the early SA specification techniques, 

and surveys some of the notable extensions made to it. The overview of the early 

SA techniques is based on the published work of DeMarco [DeM78], since it 

provides a comprehensive description of the tools and techniques. 

1.1 Structured analysis (SA) specification techniques 

The following are the specifications produced as a result of the use of SA 

techniques: 

• Data flow diagrams (DFDs): Pictorial representations of the flow of data in an 

application. An application is usually represented by a hierarchy of DFDs. 

• A Data dictionary: A repository containing descriptions of the data objects 

depicted in DFDs. 

• Process specifications: Functional descriptions of the bottom level (primitive) 

processes in a hierarchy of DFDs. 

The central specification tool of SA is the DFD. A DFD depicts the data flow 

relationships between the processing, data storage, and external components of the 

application. Definitions of the data structures associated with the data flows, and 

data storage components, are kept in an organized manner in a data dictionary. 

Process specifications are used to describe the procedural logic of the processing 

components depicted at the bottom level of a hierarchy of DFDs representing an 

application. 

1.1.1 Data flow diagrams (DFDs) 

A DFD is built using the following types of constructs: 

• data flow - a construct representing the path on which data is conducted from 

one part of the application to another. 

• process -

• data store -

a construct representing a component which transforms data. 

a construct representing a repository of data. 

• external entity - a construct representing components on the periphery of the 

application which send data to, or receive data from the 

application. External entities can thus be viewed as sources 

and sinks of data flowing through an application. 

The symbolic representations of the above constructs differ amongst the major 

proponents of SA, as illustrated in Figure 1. 1. A brief description of the above 

constructs follows. 
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Construct DeMarco Gane and 
name constructs Sarson 

constructs 

Process 0 0 
Data store I 
External • • entity 

Figure 1.1 A comparison of DFD constructs 

Data Flow 

9 

A data flow is associated with a unique name, a direction, and a data type. 

Instances of the data type of a data flow are transmitted on the data flow in the 

direction associated with it. Notationally, data flows are depicted as named vectors. 

Data flows are not associated with any physical limits, nor is there any constraint on 

how the data flows through them. All that is of concern is what data is passed 

through them. Data passing through a data flow cannot be lost, modified, or 

destroyed during transmission. Also, data flows cannot create data. 

Data flows are not meant to be representations of flow of control, nor are they 

meant to be associated with any control related interpretations (for example, as 

activators of processes). Data flows simply depict the data paths between the 

components of a DFD. 

Different perspectives on data flows can be taken, depending on the aspect of 

data movement emphasized [TePi85]. From the standpoint of a process or an 

external entity, a data flow is an input or output, depending on whether the direction 

of movement is inwards or outwards with respect to the process. From the 

standpoint of a data store, a data flow represents an update if the direction of 

movement is inwards, or it represents a retrieval if the direction is outwards with 

respect to the data store. A data flow representing an update contains data which is 

to be written to the data store, while a data flow representing a retrieval contains 

data read from the data store. From the standpoint of a data flow connecting two 

constructs, the data flow is viewed as a data interface between the constructs. In 

what follows, the construct from which a data flow is directed away is called its 

generator, while the constructs it is directed towards are called its receivers. A data 

flow can have only one generator, though it may have many receivers. The case 

where a data flow has more than one destination is depicted by a branching data 

flow. One can view the point where the branching occurs as representing a copy 

function which creates copies of data on the data flow to be sent on all branches. 
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Process 

A process is associated with a name, a non-empty set of inputs, and a non­

empty set of outputs. Processes simply depict data transformations, thus issues 

related to their initiation and the manner in which they exchange data (via data 

flows) are not of concern. In other words, processes are not associated with any 

operational interpretation. 

Transformations carried out by a process can be classified as being logical or 

physical [Pet88]. A process which logically transforms data does not change the 

physical appearance of the data. That is, subsequent-use of the data is affected by 

the way in which the process classifies it, and not by any physical change. For 

example, a process in an order processing application, which determines whether 

an order is valid or not, transforms the order logically. A process which physically 

transforms data, changes it in such a way that it is no longer recognizable. For 

example, a process which produces an invoice given a valid order and information 

on the parts needed to the fill the order, transforms its inputs physically in order to 

create the invoice which is its output. 

Data Store 

A data store is associated with a name, and two sets of data flows 

representing retrievals and updates. Data stores are often likened to files in the SA 

literature to provide a more concrete view of what they represent, but can be used to 

represent other types of repositories of data which do not create or destroy data. 

Details of data organization, access mechanisms, and storage medium, are not 

depicted by data stores. 

Data flows directed towards data stores are always generated by processes, 

while data flows directed away from data stores are always directed towards 

processes. The data flows representing retrievals and updates are the net data flows 

resulting from read and write accesses made by processes on the data store. Thus, a 

data flow representing a retrieval contains data retrieved as a result of a read access 

made by a process on the data store, while a data flow representing an update 

contains data to be written to a data store as a result of a write access by a process 

on the data store. 
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External Entity 

An external entity is associated with a name, a set of inputs and a set of 

outputs. The external entities of a DFD represent the components of the 

environment with which the application must interface with. Such peripheral 

components may be persons, systems, or other applications, which generate data to 

and/or accept data from the application. External entities represent components that 

lie outside the scope of the application, thus details concerning the manner in which 

they derive or obtain data, and the way such data is used by the component are not 

depicted. 

The inputs of external entities are always directed away from processes, while 

their outputs are always directed towards processes, thus external entities are 

always connected to other external entities and data store via processes. 

Constructing and interpreting DFDs 

A DFD is a structural description of an application in the sense that it depicts 

the data flows and transformations in an application without showing how the 

flows and transformations are actually achieved. Flows of control, relationships 

involving time, and any notion of a process execution or execution precedence, 

should not be inferred from DFDs. More importantly DFDs are not associated with 

any operational interpretation. A DFD is essentially a docwnentation tool [CTL87], 

used to depict the data paths in an application. 

There are few strict rules guiding the construction of DFDs, permitting a great 

deal of flexibility in how they are built and used. The early work of DeMarco 

[DeM78] provides the following major guidelines: 

1. Identify all net inputs and outputs, where a net input is an input whose 

generator is not a component in the DFD and a net output has at least one 

receiver which is not a component of the DFD. The net inputs represent the 

inputs to the application while the net outputs represent the outputs of the 

application 

2. Derive the data paths from the inputs of the application to its outputs. This can 

be done either in a forward manner starting from the inputs, in a backward 

manner starting from the outputs, or in a middle-out manner starting from a 

set of internal data flows. 

3. Label the data flows and processes in such a manner that their meanings are 

reflected in the labels. 

4. Do not depict information related to the initialization and termination of the 

application. In other words, a DFD depicts an application in a "steady state", 

that is, when it is up and running. 
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5. Do not depict flow of control or control information. 

6. Omit trivial error-handling details. DeMarco feels that one should get the "big 

picture" right first before paying attention to "odds and ends" like error­

handling details. 

Some of the above guidelines are open to interpretation, for example, 

practitioners have found it difficult to decide on what should be viewed as a control 

flow or a data flow in guideline 5 [Gom84, Ric86], also it is not clear what 

constitutes a "trivial" error-handling procedure in guideline 6. 

Decomposing DFDs 

It is easy to see that large and relatively uncomplicated applications, could 

result in large, complicated DFDs. Hierarchy is the abstraction mechanism used in 

SA to control complexity. The application of hierarchy to DFDs is provided via the 

decomposition activity associated with processes and data flows. The 

decomposition activity involves examining each process in a DFD to see if it can be 

broken down into simpler processes which act in concert to transform the inputs of 

the process to its outputs. If a process of the DFD is felt to be simple enough, that 

is, it is not necessary to break it down to simpler parts, the process is called 

primitive. The use of hierarchy enables the structured presentation of detail by 

DFDs. 

The decomposition of a process is represented as a diagram, called the child 

diagram, consisting of process, data store, and data flow constructs. The process 

which is decomposed is called the parent process with respect to its child diagram, 

while the diagram containing the parent process is called the parent diagram, with 

respect to the child diagram. The net inputs of a child diagram are the data flows 

whose receivers are processes in the child diagram, but whose generators are 

processes not in the child diagram. The processes in a child diagram may be further 

decomposed, and so on, resulting in a hierarchy of diagrams. 

In SA, an application's data flow structure is specified by a hierarchy of 

DFDs, resulting from successive process decompositions, made up of a top, 

bottom, and middle levels. The top, or level O of the hierarchy, is a single DFD 

called the context diagram which consists of a single process, whose inputs are the 

net inputs of the application, and whose outputs are the net outputs of the 

application. The context diagram serves to delineate the boundaries of the 

application. The bottom level consists of DFDs containing only primitive processes, 

while the middle levels consist of the intermediate DFDs in the hierarchy. 
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In order for child diagrams to be interpreted correctly within the context of their 

parent diagram the following conditions must be satisfied: 

• Data flows into and out of a process in a parent diagram correspond to the net 

inputs to and a subset of the set of all outputs from its child diagram. A child 

diagram satisfying this rule is said to be balanced with respect to its parent 

diagram. Decomposition of data flows, resulting in data flows representing the 

constituent parts of the decomposed data flow, is also allowed in parallel with 

process decomposition. The matching of data flows in such a case depends on 

the existence of information from which relationships between the different 

levels of data flows can be established. Such information is kept in the data 

dictionary. 

• Data stores introduced in child diagrams are accessed only by the processes in 

the child diagram. 

Again, few formal rules exist for constructing a leveled set of DFDs, though 

guidelines do exist. The guidelines are concerned mainly with labeling conventions, 

data flow balancing, and considerations to be made when deciding on when to stop 

process decomposition. 

Evaluating DFDs 

The development of hierarchies of DFDs may lead to DFDs of poor quality. 

The lack of a firm conceptual basis for DFDs, as reflected in the lack of formal rules 

for constructing DFDs, makes it difficult to formally state criteria for determining 

the quality of a DFD. Guidelines and techniques for evaluating the quality of DFDs 

are provided by DeMarco, and can be classified as follows: 

• Completeness criteria are concerned with whether they are any missing parts in 

DFDs. For example, data stores which are read-only or write-only, or processes 

which do not transform data warrant further questioning. 

• Consistency criteria are concerned with the compatibility of DFD constructs and 

their child diagrams. Within a hierarchy of DFDs, consistency is maintained 

through appropriate connectivity, decomposition, consistent naming of 

constructs, and through the balancing of data flows. 

• Correctness criteria are concerned with the use of DFD constructs. For example, 

a DFD is incorrect if it depicts control flows or flows of control. 

• Communicability criteria are concerned with the complexity and conceptual 

clarity of DFDs. These criteria usually emphasize graphic organization, 

legibility, reproducibility, and presentation quality. 
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1.1.2 The data dictionary and process specifications 

DFDs, as described above depict only the paths of data through an 

application. It does not provide descriptions of the content of its data flows and data 

stores, henceforth called the data objects of the DFD, nor does it provide details of 

how the inputs of processes are related to their outputs. Thus, by themselves, 

DFDs do not provide adequate specifications of an application's requirements. 

Descriptions of the data objects are provided by a data dictionary, while procedural 

descriptions of processes are expressed by process specifications associated with 

the primitive processes of a hierarchy of DFDs. 

The data dictionary 

A data dictionary provides descriptions of the data objects (data flows and 

data stores) in a hierarchy of DFDs depicting an application. Three levels of data 

descriptions can be identified [GS79]: 

• data elements are items of data which are not usefully decomposed into their 

components, for example, an age; 

• data structures are composites of data elements and other data structures; and 

• data flows and data stores as described in the previous sections. Data flows and 

data stores are made up of data structures, while data structures are composed of 

data elements. 

The languages used by data dictionaries to express data definitions are 

essentially quasi-formal, providing constructs which enable developers to define 

data objects in terms of their components. For example, a particular language may 

have notation for representing data sequences, a selection of data, and repeated 

groups of data. An example of a portion of a data dictionary entry is shown in 

Figure 1.2. 

cust_order = cust_name + cust_addr + order_detail_line 
order_detail_line = list(part_number + quantity) 
part_number = 00011 ... 199999 
cust_addr = house_number + street_name + city + country + 
zip_code 

Figure 1.2 An example of data dictionary entries 

In the figure the "=" symbol means "is composed of", while the"+" symbol 

builds data structures which are sequences of data items and/or other data 

structures. For example, cust_order consists is a data structure which is defined as 

a sequence of cust_name, cust_addr, and order_detail_line data structures. The data 

structure order_detail_line is a list of data structures which are sequences of 
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part_number and quantity data structures. The data structure part_number is a data 

item which can take any integer value between 0001 and 99999. 

As well as storing data definitions, a data dictionary may also contain 

information about the frequency of occurrence, volume of data, size of data stores, 

security considerations, priorities, and any other information pertaining to the use 

of the data objects that is needed to gain an understanding of the requirements of an 

application. For large applications the data dictionary can become complex, thus 

making it difficult to manually maintain, and to relate DFD data objects with their 

definitions. This makes the automation of their maintenance and cross referencing 

activities essential. A number of automated data dictionary systems supporting 

such activities are commercially available. 

Process specifications 

Process specifications describe the procedural logic of the primitive processes 

in a hierarchy of DFDs. Decision tables and trees are used to describe processes 

with complex branching conditions, while languages such as Structured English or 

pseudocode are used to specify less complex processes. Such languages 

incorporate the basic procedural constructs, sequence, selection, and repetition, 

with a limited set of natural language phrases. An example of a portion of a process 

specification in Structured English is shown in Figure 1.3. The process 

Check_order determines whether an input order is invalid or not, by checking 

whether the customer is on the files, and checking whether the ordered parts are 

available. 

PROCESS: Check_order 
select a cust_order, check that customer is in the customer file 
if customer not on file then classify cust_order as "INVALID" 
else 

for each order_detail_line 
check that the part is in the part file 
if part not in part file then classify cust_order as "INVALID" 
else 

check that there is sufficient parts in stock to satisfy order 
if not sufficient parts then classify cust_order as "INVALID" 

Figure 1.3 An example of a process specification in Structured English 

1.1.3 SA and design 

SA is based on a lifecycle model, where requirements analysis and 

specification phase is followed by application design and implementation. 

Methodologies incorporating SA tools and techniques, usually employ structured 

design (SD) tools and techniques [YC79], together with techniques for 
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transforming SA specifications to initial SD specifications, in order to cover the 

requirements analysis and design phases of software development [DeM78, YC79]. 

SD is a strategy for producing modular, top-down designs. As originally 

conceived, SD was concerned with the systematic derivation of specifications of 

program structures which were maintainable and easily tested. Using SD to derive 

designs for applications entails viewing applications as collections of functions. 

This view permits applications to be specified as a hierarchy of logical functional 

units, called modules. The primary specification tool of SD is the Structure Chart 

(SC), which depicts the architecture of an application in terms of hierarchically 

structured modules. Positions in the hierarchy are determined by the modules' 

calling relationships, and the data exchanged by them [YC79]. SD also provides a 

number of heuristics and guidelines for evaluating designs. 

The transition from SA to SD is dependent on the type of application 

represented by the DFDs. Applications can be classified as follows: 

• Applications in which the same input data values always produces the same 

output data values are said to be transform-oriented. 

• Applications in which the same input data values do not necessarily produce the 

same output data values are said to be transaction-oriented. 

The outputs in a transform-oriented application are functions of the inputs 

alone. Batch-type applications, where the user enters the data then initiates the 

system, and where the results are always the same if the input values are the same, 

are examples of transform-oriented applications. 

In a transaction-oriented application the output values cannot be regarded as 

functions of the input values alone, since the application is also associated with 

different modes of operation, which affect how the input values are used by the 

application. The modes of operation of an application are called its states. Input 

values received when an application is in a particular state may cause the application 

to change its mode of operation, that is, move to another state. How data is 

transformed is dependent on the current state of the application, since information 

valid in one state may be invalid in another. Thus, the output depends, not only on 

the inputs, but also on the current state of the application. Alternatively stated, the 

output from a transaction-oriented application is a function of the series of prior 

inputs to the application which can cause the application to change its state [Pet88]. 

Transform-oriented applications may be viewed as transaction-oriented 

applications having only a single state. Transaction-oriented applications can also be 

viewed as a combination of transform-oriented sub applications under the control of 

a 'master' process or module. 
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The transition from the data flow representations of SA to SD specifications 

can be carried out in a five-steps [Pre87]: 

1. The type of application, with respect to its information flow, is established. 

2. The centre or 'master' process in the DFD is identified. 

3. The DFD is mapped into an initial program structure specification. 

4. The control hierarchy is defined by factoring. 

5. The resultant structure is evaluated and refined using SD measures and 

heuristics. 

In order to transform a set of DFDs to an initial SC, the type of the 

application, as represented by the DFD at level 1 (i.e. the child diagram to the 

Context diagram), is first determined in step 1, then the process in the DFD which 

is to act as the 'master' module (called the centre of the application) in the initial 

SC, is determined in step 2. Techniques exist for determining the centres for both 

transform, and transaction-oriented applications [DeM78, YC79], but this step 

usually requires a great deal of experience and insight in order to come up with a 

centre which would lead to a good initial SC [Pet88, Sho88]. Once the centre of an 

application is chosen, then the surrounding processes become subordinate modules, 

with their decompositions defining subordinate levels in the hierarchy of modules 

as is done in step 3. Step 4 defines the control hierarchy by factoring, which results 

in a structure where the top modules perform only control operations, the bottom 

level performs the input/output, and computational operations, and the middle levels 

carry out a mixture of operations. In step 5, the derived SC is refined according to 

the measures and heuristics associated with SD. 

1.1.4 Limitations of SA tools and techniques 

The SA approach to requirements analysis generates mainly descriptive 

specifications of applications. DFDs, for example, are no more than documentation 

tools, while data dictionary definitions and process specifications rely mainly on 

quasi-formal textual descriptions [Doc87, CTL87]. The limitations of SA tools and 

techniques stem mainly from the quasi-formal, descriptive nature of the generated 

specifications, and their sole emphasis on the data flow aspects of an application. 

On the other hand, the informal nature and simplicity of the tools, coupled with the 

use of graphic notation supported by hierarchy, are often cited as the major 

strengths of the tools. These qualities make the approach easy to learn and use but 

suggest a lack of expressive power, which, together with the lack of a firm 

conceptual basis for the tools, encourages extensions to the notation and 



Chapter 1: Requirements Specification Techniques 1 8 

disagreements over interpretations, making comprehension of the specifications 

apparent rather than actual [Woo88]. 

The limitations of the SA tools and techniques for requirements specification 

identified here are grouped into the following two classes : 

1. limitations associated with the use of SA tools and techniques for constructing 

and validating requirements specification; and 

2. limitations associated with the use of SA specifications as a basis for 

verification. 

Limitations on the construction and validation of SA specifications 

The lack of a theory formalizing the conceptual basis of SA tools and 

techniques places limitations on their use in the construction and validation of 

requirements specifications. In the construction of specifications, the lack of a firm 

conceptual basis allows a fair degree of flexibility in the manner in which the 

specifications are created. Such flexibility can lead to apparent misuse and/or 

disagreements over the "correct" interpretation of specifications. For example, 

Docker lists the following as the most common forms of misuse of DFDs [Doc87]: 

• Structurally inaccurate DFDs, for example, "simplified DFDs" in which external 

entities communicate directly with data stores, or in which external entities are 

not shown. 

• Viewing and specifying the application at too low a level of abstraction. This 

usually manifests itself as an overuse of data stores, for example using a data 

store to hold transactions which are later processed sequentially. 

• Over abstraction, where the analysis of an application is finished at too high a 

level of abstraction. 

• Textual glueing, where parts of the application which are not easily expressible 

in the quasi-formal languages of SA are described in natural language. 

• Regarding DFDs as a functional decomposition tool. 

Some practitioners may not view some of the above as misuses. Whether the 

above are actually misuses or not will remain a judgemental issue without a firm 

conceptual basis for the tools and techniques. Creating such a basis for SA is not an 

easy task since it requires detailed knowledge of the processes involved in 

structured analysis and specification. Such processes are currently not well enough 

understood thus more research, and a larger experience base, are needed before a 

useful conceptual basis covering all aspects of SA can be developed [Doc87]. 

Another factor which limits the use of SA tools and techniques for 

requirements specification is their sole emphasis on data flow aspects of 

applications. The SA approach ignores other aspects of applications such as the 
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relationships between data objects of the applications (data aspects), and time­

related relationships between processes (control aspects). The emphasis on data 

flows, and the resulting functional view of processes can be traced to the early use 

of the SA approach for specifying data processing applications. Such applications 

are usefully viewed as information processing systems, making the SA approach 

appropriate. In more recent times application areas have become more diverse, 

requiring aspects other than data flow to be specified in their requirements 

specifications. For example, the control aspects of real-time and embedded 

applications need to be specified in the analysis phase since such aspects are 

inherent parts of the applications. The insistence that no control detail be specified 

in the SA approach seriously limits its use for specifying such applications. 

Validation of requirements in the SA approach takes the form of user reviews 

of the generated specifications. As pointed out earlier, the lack of a conceptual basis 

can make comprehension of such specifications apparent rather than actual. The 

absence of a formal syntax and semantics for the specification languages also makes 

it difficult to prove the absence or presence of desired properties in specifications. 

For these reasons rigorous validation of specifications is difficult. 

Limitations on the use of SA specifications as a basis for verification 

The specifications produced from SA are of a logical nature, thus no 

operational model can be consistent with them. This seriously inhibits the use of SA 

specifications as a base for verification, since detailed designs and implementations 

are expressed in operational terms. Formal verification of designs and 

implementations against SA specifications are impossible for this reason. The best 

that can be done is an intuitive form of verification, which may be inadequate for 

some complex applications, and not healthy for certain critical applications where 

software failures could have drastic effects socially or economically. 

The SA/SD approach provides techniques for transforming SA specifications 

to initial SD specifications. The quasi-formal nature of SA specifications means that 

at best such techniques are themselves quasi-formal. This has led to a number of 

problems in applying the techniques in practice, with some practitioners actually 

reporting that the techniques were not applicable in some cases [Ric86, Sho88]. 

Using the techniques require a great deal of skill and experience, especially when 

the application has both transaction and transformation characteristics [Sho88]. 

Furthermore, the transition from SA to SD is an irreversible process, thus changes 

made in the design phases are not easily reflected in SA specifications [Pet88]. This 

is because a shift in perspective is made when going from SA specifications, which 

are concerned mainly with the data flow relationships in an application, to SD 
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specifications, which are concerned with the operational structure of the application. 

Once SA specifications are transformed into SD specifications they are of limited 

use in the subsequent stages of software development. 

1.2 Extensions to SA tools and techniques 

The limitations discussed in the previous section seriously hamper the use of 

SA tools and techniques in the specification of complex applications. To address 

these limitations a number of authors have suggested extensions to SA tools and 

techniques. Some notable extensions are reviewed in this section. 

1.2.1 Yourdon's Structured Method (YSM) 

The early work of DeMarco on SA has been extended by the Y ourdon group 

to create a method, called the Yourdon Structured Method (YSM) [MW86a, 

MW86b, Woo88, MP84]. YSM improves upon the earlier SA approach in three 

ways [Woo88]: 

• The emphasis in YSM is on the modelling of behaviour, rather than just 

function. 

• YSM introduces tools and new notation for modeling particular aspects of 

applications ignored in the original approach. Data relationships are expressed 

via entity-relationship diagrams (ERDs), while time-dependent behaviour is 

expressed with the aid of additional DFD notation and state transition diagrams 

(STDs). 

• YSM is divided into three distinct phases. The first is the feasibility study which 

involves the study of any current application and its environment. The second 

phase is essential modeling [MP84] which produces a logical specification called 

the essential model. The third phase is implementation modeling which involves 

incorporating into the essential model aspects of a user's requirements which are 

dependent on technology. The resulting specification, called the implementation 

model, can be viewed as an initial design specification. 

The essential model of an application describes the context in which an 

application is to exist, and the behaviour of the application. Three aspects of 

behaviour are described by the essential model: functional, data and control. The 

functional aspects, which are also modeled in the earlier versions of SA, are 

concerned with how applications transform their inputs to outputs, while the data 

aspects are concerned with the structure, and use of data in applications and the 

relationships between them. The control aspects of an application are concerned 

with its time-dependent behaviour. 
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The essential model consists of an extended form of DFDs called 

Transformation Schemas (TSs), ERDs for modeling data relationships, and a data 

dictionary for defining data objects. TSs depict both data and control dependencies, 

using additional constructs for depicting control aspects on DFDs. The constructs 

used in TSs are shown in Figure 1.4. 

Processes 0 
Data 

• Data flows Discrete data 

• Event flows Signal 

Stores 

Data store 

0 
Control 

Continuous data 

Activation 

Buffer 

•• Deactivation 

Figure 1.4 Transaction schema constructs 

In TSs, flows crossing the boundary between the application and its 

environment are representations of events. Such events are changes in the 

environment which lead to sets of actions by the application called responses. Data 

flows depict events which are associated with data, while control flows depict 

events which are not associated with data. Data flows which depict events that 

occur at discrete points in time are called discrete, while those depicting events that 

occur frequently are called continuous. In a TS a data flows can be combined to 

form a single data flow representing the combined data flows, or a data flow may 

be split into other data flows, where the data flows resulting from the split represent 

constituent parts of the split data flow. Such data flows are said to be composite, 

and they eliminate the need for processes whose sole purposes are to combine or 

split data flows. Labeling conventions are used to distinguish split and combined 

data flows from branching data flows which carry the same data on each branch. 

Each branch in a split or combined data flow is uniquely named. If the branches of 

a branching data flow are not named then it means that the branches represent the 

same data flow, and thus carry the same data instances on all branches. 

TSs utilize two kinds of processes: data and control processes. A data process 

transforms data inputs into outputs. A control process represents aspects of the 



Chapter 1: Requirements Specification Techniques 22 

control logic associated with part of an application. Control flows are used to 

control data processes. They can affect the behaviour of processes in three ways: 

• Enable - to enable a process means to allow it to be activated by a data flow. 

• Disable - to disable a process means to prevent it from being activated. 

• Trigger - to trigger a process is to activate a process in such a way that it 

deactivates itself when it has completed its task. 

Control flows representing the above events are called prompts. 

Control flows coming in from the environment are interpreted by control 

processes. The manner in which events depicted by control flows from the 

environment affect the application is specified by STDs. The effect the occurrence 

of an event in the environment has on the behaviour of an application is dependent 

on the current state of the application. The state of an application is a mode of 

operation that is externally observable. That is, if the application's behaviour was 

monitored, each state, or mode of operation, would be distinguishable. Information 

pertaining to the state of an application is kept by the control process. The 

occurrence of an event in the environment may cause a change in the current state of 

an application, which may in turn cause certain data processes to be enabled, 

disabled, and/or triggered. The events which may cause changes in the state of an 

application are depicted by control flow inputs of control processes, while the 

outputs of control processes depict the manner in which the control processes affect 

the behaviour of associated data processes. The behaviour of control processes is 

specified by state transition diagrams (STDs). An example of a STD is shown in 

Figure 1.5. The rectangular boxes represent the states of the application, while the 

labeled arrows represent state changes, where the labels specify the event causing 

the transition and the actions resulting from the occurrence of the event. 
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RUNNING engine_ 
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Figure 1.5 An example of a state transition diagram 
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Data stores in a TS, like data stores in traditional SA, are abstractions over 

files. TSs also use a special kind of data store called the event store or buffer. 

Buffers are abstractions over stacks and queues, and are used to represent delays 

between the occurrence and recognition of events by data processes. 

The following summarizes the formation rules and interpretations associated 

with TSs: 

Data processes 

• A data process may have at most one input flow which arrives independently of 

any action carried out by the data process. Such a flow is called active and can 

be a discrete data flow from an external entity, another data or control process, 

or a buffer, or a control flow from a control process or buffer [War86]. Data 

processes with active inputs are not allowed to have continuous outputs. When 

the active input is a triggering prompt then the process must also be associated 

with an input from a data store. A data process's enabling and disabling input 

prompts, and flows from data stores are not considered to be active inputs. 

• Data processes with only continuous input and output data flows accept inputs 

and produce outputs continuously. Enabling and disabling prompts may be 

associated with such processes, in which case the processes continuously 

produce outputs only when they are enabled. Data processes with continuous 

inputs and discrete outputs can only occur when there is also an active input to 

the process, in which case only the value on the continuous flow at the time an 

event occurs on the active flow is used to produce the values on the discrete 

outputs. 

• A data process may have zero or more active outputs, where an active output is 

an output created by the process which can be an active input for another process 

[War86]. An active output can be a discrete data flow or a control flow to a 

control process, buffer, or external entity. A data process with two or more 

active outputs can produce output on only one in a single activation. 

• A data process can have any number of continuous data flows, and discrete data 

flows to and from data stores. 

• A data process with discrete output flows and no active inputs produces output 

via one of the following ways: forced by a triggering prompt; upon the 

occurrence of some significant value of a continuous input; or on the occurrence 

of a specific time retained and read in from a data store [War86]. 

Control processes 

• Inputs and outputs to control processes are restricted to control flows. A control 

process must not have data flow inputs or output. 
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Flows 

• Each discrete data flow must be connected to a data process at one end while at 

the other end may be a data store, buffer, external entity, or another data 

process. 

• Each continuous data flow must be connected to a data process at one end while 

at the other end may be another data process, or an external entity. 

• Control flows may connect any pair of processes, a data process and a buffer, or 

a process and an external entity. Control flows emanating from control processes 

to data processes are prompts. 

Data stores 

• A data store must be connected by a discrete data flow to at least one data 

process. 

Buffers 

• A buffer must be connected by a discrete input (data or control flow) to at least 

one data process, and by a discrete output (data or control flow) to at least one 

data process. Types of flows for a single buffer are not mixed [W ar86]. 

• Every buffer is associated with a capacity, which may be finite or not. This is 

interpreted as the number of units that can be stored in the buffer. 

Essential modeling [MP84, Woo88] entails identifying the events in the 

environment that affect the application, and then developing a TS reflecting how the 

application responds to each identified event. In parallel, the control processes are 

specified by STDs, and data relationships by ERDs. The TS is then restructured 

into a leveled set of DFDs following the guidelines of the original SA approach. 

Implementation modeling extends the essential model with technology-dependent 

detail, such as performance and size constraints, and also provides specifications of 

the software structure, derived from the TS, in the form of Structure Charts (SCs) 

[YC79]. It is carried out in three phases: 

• Model the physical processors associated with the application. This involves 

grouping processes according to the physical processors they are to be 

implemented on. 

• Model the software environment in which the application i.s to exist, for 

example, some functions of an application may be carried uut by operating 

systems and/or database management systems. 

• Model the structure of the software to be produced. This involves translating the 

TS to an initial SC. 
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Limitations of YSM 

YSM does tackle some of the problems associated with the use of SA tools 

and techniques for specifying requirements. It permits the specification of aspects 

other than the data flowing through an application, and provides a finner conceptual 

basis for the tools and techniques than that provided in the original SA approach. 

Constructs are provided for representing control elements, together with a set of 

formation rules, which, if adhered to, permits a logical interpretation of the 

specifications. Such logical interpretation can be used as the basis for informal 

analysis of, and reasoning about, the specifications [Woo88]. 

The specifications generated by YSM are still descriptive in nature. The 

difference between SA and YSM in this respect is that YSM provides descriptions 

of other aspects of applications. The logical model implied by the descriptions is not 

consistent with any operational model thus formal verification of implementations is 

not possible. Furthermore, the approach is still reliant on the techniques for 

transforming DFDs to SCs, which, as discussed earlier, is problematic, and, when 

it can be done, is irreversible. Thus the specifications generated from YSM, like SA 

specifications, have limited use in other than the requirements analysis phase. 

1.2.2 Hatley's Extensions 

Harley's extensions to SA [HP87], like YSM, were borne out of the need to 

model aspects other than the data flowing through an application. The extensions to 

the specification techniques mainly concern the modeling of control aspects in 

parallel with the processing aspects of applications. Hatley also extends SA by 

providing techniques for building an architectural design for the application. Such a 

design is similar in purpose to the implementation model of YSM. 

Hatley provides techniques for building two types of models: the 

requirements model (RM) and the architecture model (AM). The RM specifies the 

required processing behaviour of an application. It is a description of the functional 

and control requirements of an application. The AM assigns the processes of the 

RM to physical modules that make up the application and establishes the 

relationships between them. The AM is thus an architectural design of the 

application whose required behaviour is specified by the corresponding RM. Below 

a description of these two models are given. 

Requirements Model 

The RM specifies what an application is to do in terms of its functional and 

control aspects. The functional aspects of an application are captured by the process 

model which consists of a leveled set of DFDs supported by a requirements 
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dictionary (RD), process specifications (PSPECs) and response time specifications 

for the primitive processes of the DFD. The leveled set of DFDs are constructed 

using the leveling and balancing. principles associated with DFDs in the SA 

approach. Data flows, as in YSM, are events that are associated with data 

components which may also be split and combined as in YSM. 

The control aspects of an application are captured by the control model, which 

consists of a leveled set of control flow diagrams (CFDs) supported by control 

specifications (CSPECs) and the RD. CFDs depict the flow of control signals 

(events not associated with data) while the CSPECs indicate how the signals affect 

the behaviour of the application. For each DFD in a leveled set of DFDs 

representing the functional aspects of an application, there is a corresponding CFD 

showing the control dependencies amongst the processes and external entities of the 

DFD. Thus, there is a direct correspondence between the levels in the leveled set of 

DFDs and the leveled set of CFDs for an application, where level O DFDs are 

associated with level O CFDs, level 1 DFDs with level 1 CFDs, and so on. CFDs 

consist of the processes, external entities, and data stores in their corresponding 

DFDs. CFDs, though, do not show data flows but control flows depicted by 

dashed directed arcs which obey the same routing rules as data flows. CFDs also 

utilize an additional construct, a bar, representing the control processing part of the 

application. A CFD may have a number of such bars with control flows going into 

and from them, all representing the single control processing unit of the CFD. 

Control processing in a CFD is specified by a CSPEC. Control behaviour is 

modeled by viewing applications as finite state machines whose inputs and outputs 

are control flows. Diagrammatic and tabular representations of finite state machines 

are contained in CSPECs. State transition diagrams (STDs), as in YSM, are used to 

show states of the application and how they are influenced by control flows. Events 

and actions are shown on STDs as "Event/Action" labels on each arrow depicting a 

state transition. The events on these labels are the control flows directed towards the 

bars in the corresponding CFD. Process activation tables (PAT), give the 

conditions under which processes are activated. The actions shown in the STD are 

entered into the PAT and associated with the processes they activate or deactivate. 

Processes which are not controlled in this way are "data triggered", that is they are 

activated each time there is sufficient data on their inputs to perform the specified 

function. 

The RD provides definitions for the data and control flows in the process 

model. Flows are classified as being either primitive or non-primitive, where non­

primitive flows are groups of primitive flows. Primitive flows are defined in terms 

of their attributes. The process model for an application also consists of a 
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specification of the timing requirements, stating the required recomputation rates for 

interface outputs and the required input/output response times for the signals at the 

application's interface. Recomputation rates are specified in the RD, while response 

times can be given in a tabular form. 

The process model is a logical model of an application's processing 

behaviour. Operationally, the process model can be viewed as an idealized, 

infinitely fast machine. Thus processes transform their inputs instantaneously, 

while control flows are interpreted instantaneously by the control processing 

components of the model. The process model, though, is not intended to represent 

an actual machine, rather, like SA specifications, it is merely a description of the 

processing requirements of an application. 

Architecture Model (AM) 

The AM shows the physical entities making up an application, defines the 

information flowing between these physical entities, and specifies the channels on 

which this information flows. The primary tool of the AM is the architecture flow 

diagram (AFD) which depicts the physical structure, or architecture, of the 

application in terms of its physical entities, called modules, and the information 

flow between them. The main purpose of the AFD is to allocate the processes given 

in the RM to physical units of the application. Additional processes may also be 

required in the AFD to support the new physical interfaces. Modules provide four 

additional perspectives to applications: input processing, output processing, user 

inteiface, and maintenance or self-test processing. The processes making up the 

input and output processing aspects represent the processes needed for the module 

to communicate with other modules, and to transform information to and from an 

internally usable form. Such processes are not shown in the RM. The user interface 

aspect is a special case of the input/output processing aspects. It is separated 

because of the special considerations, such as human factors, that affect the 

definition of the user interface, but have little to do with the interfaces between 

modules. The maintenance and self-test processing aspects concern the processes 

required to perform the self-monitoring, redundancy management, and data 

collection for maintenance purposes. The AFD itself is treated as a physical module, 

and depicts the modules modeling the above four aspects as well as the processing 

and control aspects specified in the RM. The modules in AFDs may also be 

"decomposed" into AFDs showing the modules modeling their six aspects. In this 

way hierarchies of AFDs are created. 

The physical means, or channels, by which modules communicate with each 

other are depicted by the architecture interconnect diagram (AID), supported by 
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architecture interconnect specifications (AISs) which are textual characterizations of 

the channels. The AID and the AFD for an application may be combined in a single 

diagram if the result is not too complex. 

An AFD is supported by architecture module specifications (AMSs), and an 

architecture dictionary (AD). AMSs define the inputs, outputs, and processes 

allocated from the RM for each module in the AFD. The AD contains the data and 

control flow definitions in the RD, plus the allocation of these flows to modules in 

theAFD. 

Limitations of Hatley's extensions 

Hatley's extensions, like YSM provide notation and concepts for modeling 

aspects other than the data flowing through an application. Furthermore, it provides 

tools and techniques for creating an initial architectural design from the specification 

of the required behaviour of an application, which is similar in form to a DFD. This 

means that while there may be a shift in emphasis in going from analysis to design, 

there is a straightfoward relationship between the initial design specification and the 

requirements specification, thus facilitating traceability, and consistency checking. 

Like YSM, Hatley's extensions suffer from their reliance on quasi-formal 

notation for definitions and the descriptive nature of the graphical specifications. 

Thus, like SA, the tools and techniques lack a formal basis for supporting rigorous 

validation and verification. 

1.2.3 ADISSA 

AD ISSA (Architectural Design of Information Systems based on Structured 

Analysis) is an architectural design method that is compatible with and forming a 

direct continuum with SA [Sho88]. This is essentially achieved by viewing external 

entities as event triggers. Shoval argues that taking such a view does not require 

additional notation to represent control and timing detail as in YSM, which results 

in a change in the appearance of DFDs which may reduce their conceptual clarity 

[Sho88]. 

ADISSA takes a transaction-orientated view of applications, where a 

transaction consists of one or more processes performing specific functions in 

response to stimuli from the environment. The view of applications by ADISSA is 

based on Wasserman's and Stinson's view of interactive applications as consisting 

of: (1) a user interface, (2) operations on data, and (3) a database [WS79]. The 

related concepts in ADISSA are: (1) a menu tree describing the external architecture 

of the system; (2) transactions, describing the internal architecture; and (3) a 

database schema of normalized records. 
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A system of menus, organized as a hierarchy of menu screens, forms the 

external architecture of the system from the user's point of view. Menu screens 

consist of selection lines providing access to other menu screens in the system, and 

terminal lines, which invoke procedures in the application. The system of menus is 

called a menu tree, and is derived from a hierarchy of DFDs specifying the 

application, where the menu lines are generated from the processes connected to 

external entities by data flows. Primitive processes generate terminal lines, while 

other processes generate selection lines. 

Transactions consist of primitive processes which form a data dependency 

chain, and of data stores and external entities which are connected to these 

processes. A hierarchy of DFDs, in general, consists of more than one transaction. 

These transactions make up the internal architecture of the system. ADISSA's 

design objectives as concerns transactions are given below. 

For each transaction identified: 

• identify what activates it; 

• determine the order in which the component processes are executed; and 

• determine the input/output operations carried out, and the data store accesses 

made by it. 

Transactions are activated by events, and are classified by the types of their 

activation event, given below: 

• User event - generated by a user (represented by an external entity) of the 

system, usually via the menu tree. Data flows between external entities, known 

as user entities (UEs), and primitive processes identify user-transactions: a data 

flow from an external entity to a primitive process signifies a user event that 

causes an application user to trigger a transaction which inputs data, while a data 

flow from a primitive process to an external entity signifies an user event which 

causes an application user to trigger a user-transaction which provides data on 

the data flow. 

• Time events - generated by a special kind of external entity, called a time entity 

(TE). Time events are used to model events that activate a transaction at a 

predetermined point in time or time interval. TEs trigger transactions, called 

time-transactions, in much the same way as UEs trigger user-transactions. 

• Real-time events - generated by a special kind of external entity, called a real­

time entity (RTE), which is an abstraction of a sensor/detector device. The type 

of information generated by RTEs are represented by the flows connecting them 

and processes. RTEs trigger real-time-transactions. 

• Communication events - generated by communication entities (CEs), which 

represent abstractions of communication mechanisms between the system being 
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modeled and other systems. Communication events occur when a message is 

received, and the message triggers a communication-transaction. 

A "chain effect" occurs when two or more primitive processes within a 

transaction sequentially activate each other. The chain effect terminates when the 

data generated by a process is sent to a data store or an external entity. 

The trigger of a transaction is the process connected to the external entity that 

activates it. The trigger is not necessarily the first process of a transaction to be 

executed, since it may be located anywhere in the chain of processes making up the 

transaction. If it is the first then the chain effect proceeds forward; if in any other 

position then it is necessary for the preceding processes to execute before the trigger 

can be executed. Thus, the event generated by the external entity is seen as 

activating the transaction from the start of the chain in all cases, even though the 

event entity may be at the end ( or middle) of the transaction. 

Structured descriptions of transactions replace the process specifications of 

SA. Shoval argues that it is more useful to specify the behaviour of transactions, 

rather than individual primitive processes, since the interrelationships among the 

processes, and data stores of the transaction can also be specified. Transaction 

specifications consist of a top- and a bottom-level description of a transaction. The 

top-level specification describes the externally observable behaviour of the 

processes making up the transaction. Specifically, the following four primitive 

functions are used in the top-level specification language: 

• execute process, performs a primitive process, whose detailed specification is 

given in the bottom-level specification; 

• read/write transfers data from data stores to processes; 

• input/output transfer data between external entities and primitive processes; and 

• move transfers data between primitive processes. 

The above functions are used together with the control structures of structured 

programming in order to derive a top-level "skeleton" specification for transactions. 

The bottom-level description details the internal logic for each process in the 

transaction, and can be stated in the same manner as process specifications in SA, 

for example, using Structured English, or Decision trees. 
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Shoval provides a methodology for developing AD ISSA specifications which 

consists of the following steps: 

l. Functional analysis, producing hierarchical DFDs and a data dictionary; and 

includes analysis of events and external entity types. 

2. Menu tree design, resulting in a menu tree for the application represented by 

the hierarchy of DFDs. 

3. Transaction design, involving identification of transactions, finding their 

triggers, and determining their order of execution. 

4. Transaction specification, resulting in structured descriptions of transactions. 

5. Database schema design. 

6. Input/output schema design, which associates input/output descriptions to the 

inputs and outputs described in the top-level transaction specification. 

7. Design of the ADISSA data dictionary, which is an extension of the data 

dictionary derived in step 1, consisting of a menu tree dictionary containing 

details of all screens and their lines, and the transactions dictionary containing 

details of the transactions. 

In [SP88] the use of ADISSA in a prototyping environment is described. The 

aim is to enhance user-analyst communication to enhance validation of the 

requirements specification by the user. The following are the types of prototypes 

that can be generated from AD ISSA products: 

• Interface prototype - a hierarchy of menu screens generated from the menu tree 

using a menu generator module. The user is allowed to navigate through these 

screens and make comments on the user interface of the application. 

• Data prototype - a database schema created using the database management 

module of an application generator and its definition language. 

• Process prototype - a collection of program modules based on the transaction 

specifications. 

• Application prototype - a program based on the top-level descriptions of 

transactions, and on the previous prototypes. 

ADISSA provides limited support for the specification of control 

requirements, in the form of specialized types of external entities. Control signals 

are not depicted, thus limiting the means for specifying conditions under which a 

process or transaction is can execute. Furthermore, the lack of a formal basis for 

AD ISSA means that there is little support for rigorous validation or verification. 

1.2.4 DARTS 

DARTS [Gom84, Gom86] is a software design method for real-time systems 

which utilizes the DFD tool. The method can be viewed as an extension to the 
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SA/SD method which also provides mechanisms for structuring processes into 

tasks and for defining interfaces between them. The following phases are identified 

by the method: 

• Data flow analysis - DFDs are used in DARTS to analyse the functional 

requirements of an application. This phase utilizes the tools and techniques of 

SA. 

• Decomposition into tasks - The processes identified in the data flow analysis 

phase are structured into concurrent tasks in this phase. Tasks may consist of a 

single process or a group of processes. Criteria for deciding whether a process 

can act as a task or can be grouped with other processes to form a single task are 

provided by Gomaa [Gom84]. The result of this phase is a DFD whose 

processes are tasks. 

• Defining task inteifaces - Task interfaces determine how tasks communicate with 

each other, and are defined by two classes of interface modules: the Task 

Communication Module (TCM), which handles all communication between 

tasks and typically consists of a (concurrently accessed) data structure with 

access functions; and the Task Synchronization Module (TSM), which handles 

synchronization between tasks. 

• Structured design of tasks - Each task represents a sequential program, and its 

design specification is derived by first representing it as a DFD, then 

transforming the DFD into an initial SC. The transition from DFDs to SCs is 

carried out in the same manner as in the SNSD method. DARTS also provides a 

State Transition Manager (STM) for specifying transaction-oriented applications. 

The STM module maintains the current state of the application and a state 

transition table defining legal and illegal state transitions. A task that needs to 

process a transaction calls the STM with the desired action as input and the STM 

determines whether the action can be carried out or not, updating the current state 

if a valid transition is determined. 

DARTS extends DFDs by expanding the notion of a data flow to include 

control signal flow, and allowing constraints on the interface between tasks to be 

specified. A data flow between two tasks is interpreted in one of the following 

ways: 

1. A loosely coupled message queue containing synchronization mechanisms for 

suspending generators when the queue becomes full and receivers when the 

queue is empty. Such an interface is used when two tasks need to pass 

information to each other, and still proceed at possibly differing speeds. 

2. A closely coupled message communication channel on which only one item of 

data can exist at any time. These channels are modeled as two uni-directional 
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channels with single-item queue structures. The two channel are orientated in 

opposite directions, representing the sending of messages and subsequent 

replies. Such an interface is used when information needs to be passed 

between two tasks, but the sending task cannot proceed until it has received a 

reply from the task it has sent information to. 

3. an event signal used to notify tasks about event occurrences and does not 

involve transmission of data. 

Interpretations 1 and 2 are defined in terms of a special TCM called a Mes sage 

Communication Module (MCM), while interpretation 3 is defined in terms of the 

TSM. Interactions with data stores are defined by a special TCM called an 

information hiding module (IHM), which is a data structure with access functions 

which can be concurrently accessed. DARTS provides special notation for the 

above types of interfaces, enabling them to be depicted on DFDs. 

State dependent behaviour of an application is described in DARTS by a 

module called a state transition manager (STM). The STM maintains both the 

current state of the application, as well as a state transition table which defines all 

legal and illegal state transitions. A task that needs to carry out an action calls the 

STM with the desired action. The STM then determines whether the action can be 

carried out given the current state of the system. If the action can be carried out the 

STM changes the state of the application, if required, and notifies the task that it can 

carry out the action, otherwise the STM notifies the task that the action cannot be 

carried out. DARTS provides a central state model for the application. The STM is a 

data structure. 

DARTS, as its name implies, is intended as a design tool, but its use of SA 

and the techniques used for converting DFDs into diagrams depicting types of 

communication interfaces, and partitions of processes solves some of the problems 

associated with the representation of control in DFDs. In particular, the method is 

especially useful for the specification of applications with complex interactions. 

Furthermore, the transition to specifications of program structure has the potential 

to be less contentious than the SA/SD approach, since structured charts are 

associated with individual tasks, rather than with the entire DFD. 

DARTS though seems to lack a formal basis, thus suffers from the problems 

associated with the lack of such a basis. 

1.2.5 Tse's extensions: Formal DFDs (FDFDs) 

Tse recognizes the need for a formal framework for the tools of SA, and has 

carried out a series of studies into possible formalisms ranging from the very 

abstract (initial algebras) to the more operational (Petri nets) [Tse85a, Tse85b, 
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Tse86, Tse87, TP86b]. The work of Tse on the abstract representation of the 

syntactic structure of DFDs [Tse86], in terms of algebraic specifications, is the 

inspiration for the part of the formal framework presented in this thesis that 

formalizes the syntactic aspects of DFDs. 

Formal DFDs (FDFDs) [Pong86, TP86b] is a language created by Tse and 

Pong which provides DFDs with a theoretical framework in the form of extended 

Petri nets. In recognition of the need to preserve understandability, the language has 

both graphic and symbolic aspects, which allow for the creation of graphical and 

formal symbolic representations in one-to-one correspondence. The formal 

symbolic description is needed since graphical descriptions cannot be analysed by 

computers. The one-to-one correspondence between the two descriptions enables 

traceability and consistency between the two. 

The graphical descriptions take the form of DFDs consisting of only two 

constructs: data flows, and processes. The symbolic representations take the form 

of algebraic expressions of Petri nets acting as the formal operational models of the 

DFDs. A Petri net ([Pete81]) interpretation of a DFD is obtained by viewing 

processes as transitions, and data flows as places. Tokens placed on data flows 

mean that data on the data flows are available to the processes needing them. The 

firing of a process causes the removal of tokens on some of its input data flows and 

the addition of tokens on some of its outputs data flows. In order to avoid 

ambiguities that may arise in deciding which inputs may fire and which outputs to 

place tokens on as a result of a process being fired, the Petri net model is extended 

with input and output and functions, which are derived from explicit relationships 

amongst the inputs and outputs of processes expressed in the DFD. 

Analysis of FDFDs is carried out using analysis techniques based on the Petri 

net interpretation of DFDs. Tse identifies three types of analysis: 

1. Global consistency analysis, which concerns the consistency of the 

hierarchical structure of DFDs, for example, the directed graph derived as a 

result of the decomposition of processes should contain no cycles (i.e. 

recursive decomposition is not allowed); 

2. Structural consistency analysis, which concerns the input/output relationship 

between parent and child processes; and 

3. Behavioural consistency analysis, which concerns the preservation of 

behavioural properties, as modeled by Petri nets, during decomposition. 

Tse and Pong provides algorithms for carrying out the above types of 

analysis above [TP86b]. 

While Tse's objectives are similar to the objectives of the formal framework 

presented in this thesis, his work is carried out at the syntactic level. He does not 
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provide formal definitions for the data objects in the DFD (in fact data stores are 

ignored), nor does his work provide support for the formal specification of a 

process's logic, except in terms of other DFDs. While Petri nets do provide an 

operational basis from which executable specifications can be derived, one has to be 

careful about what aspects of the application are actually being made executable. A 

Petri net essentially provides a simulation of the control flow of an application, and 

are useful tools for representing applications with synchronous interactions. Data 

objects, and their relationships are not modeled explicitly, while the internal 

structure of processes are invisible. 

Petri nets provide formal operational models, but lack an associated 

mathematical basis. This limits the use of tools and techniques based on Petri nets 

in a formal development method. 

1.2.6 Extended DFDs (EXT-DFDs) 

Petri nets are also used as an operational basis for the visual language 

extensions to DFDs provided by extended data flow diagram (EXT-DFD) [CTL87]. 

The primary objectives of EXT-DFD are to provide a non-procedural, easy to use, 

graphical environment, with high processing power, for creating and validating 

DFDs. The visual aspects of EXT-DFD consist of DFDs, and entity-relation (ER) 

graphs which are transformed into user-interface forms for specifying database 

manipulation. The symbols of EXT-DFD are icons, associated with properties, 

which may be composed of other (sub) icons. Icons communicate by message 

passing interpreted as data flow. There are four types of icons in EXT_DFDs: 

1. Object icons represent entities with an associated set of operations or actions. 

Data store icons are classed as object icons. 

2. Action icons represent a specific operation (action) of the system. Process 

icons are classed as action icons. Forms are also action icons which 

manipulate the database. An action icon is associated with input and output 

data icons (see 3. below). It acts on the input data icons to produce the output 

data icons. The behaviour of an action icon acts as its semantics. 

3. Data icons represent data flow elements. They define the data type of a data 

flow, and may contain a value during execution of the EXT-DFD. 

4. External icons represent components lying outside the scope of an application, 

that is the external entities of a DFD. They are used to initiate and terminate the 

execution of EXT-DFDs. No processing is carried out by these icons. 

DFDs are viewed, in EXT-DFDs, as being composed of separate, interacting 

components, where each component has its own state which may change over time. 

The components can exhibit concurrency, and may require synchronization of 
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constituent actions. Petri nets are used as the operational basis because of their 

demonstrated usefulness in the modelling, analysing, and simulation of such 

concurrent components. 

When viewed as Petri nets the data flows, data stores and external entities of 

an EXT-DFD are treated as places, while the processes (action icons) are treated as 

transitions. Three types of Petri net places are distinguished: initial/terminal, store, 

and data places, corresponding to external entities, data stores, and data flows. 

Tokens, representing the presence or absence of data, are stored in places. Initial 

places initiate the execution of EXT-DFDs, given an external command to "run" the 

DFD. Terminal places terminate the execution of a DFD in an execution path. Rules 

governing the firing of transitions, and their effects on the tokens in places are also 

provided by the operational model [CTL87]. 

In order to support the decomposition of DFDs grouped transitions are used. 

A grouped transition is an abstraction of a Petri net model. Grouped transitions 

correspond to non-primitive processes, while single transitions correspond to 

primitive processes. 

EXT-DFDs are validated by analysing their components. Each component 

must satisfy a set of rules, called integrity constraints, which determine how 

components can be related. 

EXT-DFDs, improve upon FDFDs by incorporating abstraction concepts for 

structuring complexity in their modified Petri nets, and by considering data stores. 

EXT-DFDs also have the potential of further enhancing communication amongst 

developers and users through their use of a graphical language. The executable 

nature of EXT-DFDs also makes them potentially useful for validating behaviour 

with users, though, as pointed out, only the aspects related to the types of 

interactions between components are actually demonstrated. 

EXT-DFDs, while having a formal operational model, lack an associated 

mathematical basis thus limiting their use in formal development methods. 

1.3 Conclusion 
The methods reviewed above provide extensions to DFDs to alleviate 

problems associated with various aspects of their use. Some of the methods provide 

extensions to the descriptive power of the tools while few seek to provide formal 

operational frameworks for them. The need to provide a formal basis for the tools 

of SA is evident in the lack of automated tools for checking not only the syntactic 

aspects of the generated specifications, but the semantic, or behavioural aspects 

captured by the specifications. Formal frameworks which associate formal 

operational models interpretations for DFDs in terms of Petri nets can be seen as a 
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first step towards providing a basis for DFDs. Such operational models are useful 

for rigorously validating specifications with users. Petri nets, though, are not 

associated with any mathematical foundations, and this limits their use in formal 

development methods in which it is required that implementations be proven against 

the requirements specification. 



CHAPTER 2 

Syntactic and Semantic Aspects 
Diagrams Flow 

2.0 Introduction 

of Data 

This chapter serves as an informal introduction to the syntactic and semantic 

aspects of DFDs which are formalized in later chapters of this thesis. The syntactic 

aspects of DFDs are concerned with the building of their syntactic objects while the 

semantic aspects are concerned with the behavioural interpretations associated with 

the syntactic objects. 

2.1 A computer-based library application example 
This section introduces the example which will be used to illustrate the 

concepts and techniques used in this and other chapters. It is based on a problem set 

for the Fourth International Workshop on Software Specification and Design 

[SSD87]. 

The requirements for a university computer-based library application, in terms 

of the basic actions it is required to support, are as follows 1 : 

A 1. Add and remove copies of books to and from the library. 

A2. Borrow and return books. 

A3. Update borrower's record on full or part payment of fines. 

A4. Add and delete borrowers. 

The above actions can only be invoked by the library staff. There are three 

types of borrowers: undergraduates, postgraduates, and academic staff. There are 

also three types of books: references, general (access) books, and periodicals. 

References cannot be checked out. Periodicals can be checked out only by 

postgraduates and academic staff, and only for a period of two weeks. General 

books can be checked out by any type of borrower for the following periods: 

undergraduates - 2 weeks, postgraduates - 4 weeks, academic staff - 6 weeks. 

A fine of 20c per day is incurred for overdue books. The fine is accumulated 

starting from the day after the book is to be returned until the book is actually 

returned. If a borrower's accumulated fines for all books exceeds $30.00 the 

borrower is barred from checking out books until the fine is reduced to $30.00 or 

less. 

1 References to the library are actually references to the library data base. 

38 
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The following constraints must also be satisfied by the library application: 

A. All borrowable copies in the library must be available for checkout, or be 

checked out. 

B. No copy of a book may be both checked out and available at the same time. 

2.2 Syntactic aspects of DFDs 
The syntactic aspects of DFDs are characterized by the formal framework in 

terms of abstract syntactic objects. Abstract here means representation independent, 

that is, no particular concrete representations are implied by the definitions of the 

objects. This is to allow various graphical and textual representations to be used in 

conjunction with the formal framework. The abstract objects are defined in terms of 

their attributes and are associated with formation rules which characterize their 

structure. Syntactic objects which adhere to their formation rules are said to be 

structurally correct. Figure 2.1 shows the graphical representations of the basic 

syntactic structures (constructs) of DFDs used in this thesis. 

Process 

0 
Data stores 

11 11 
symbol for a data store 
that is repeated 
in a diagram 

External Entity 

• 
Data Flows 

: 
a branching 
data flow 

a decomposed input a composed output 

Figure 2.1 Graphical representations of DFD constructs 

In the SA approach, applications are represented by a hierarchy of DFDs, 

made up of a top level DFD called the context diagram consisting of a single 

process, a bottom level consisting of DFDs of primitive processes, and 

intermediary levels consisting of DFDs describing the processes and data flows at 

the higher levels in more detail ([DeM78], see also Chapter 1). Such a hierarchy of 

DFDs can alternatively be viewed in terms of a process hierarchy, where the top 

level consists of the single process in the context diagram, and the bottom and 

intermediary levels are the bottom and intermediary levels of the hierarchy of DFDs. 

Processes at the intermediary levels of a hierarchy of DFDs can similarly be viewed 
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as hierarchical structures. Also, data flow hierarchies can be associated with a 

hierarchy of DFDs in which process decomposition involves parallel data flow 

decomposition. The structures for decomposed inputs and composed outputs 

shown in Figure 2.1 are used to depict the decomposition of data flows. The 

processes and data flows in a hierarchy of DFDs are syntactically treated as 

hierarchical objects with structures conforming to rules governing the 

decomposition of processes and data flows provided by the formal framework. 

When the hierarchical nature of processes and data flows in a DFD are to be 

ignored, the DFD and its components are referred to as flat. 

Example 2.1 shows a hierarchy of DFDs representing the library application. 

Example 2.1 
Hierarchy of DFDs for library application 

Level O The Context Diagram 

staff 

do late book 

new book 

t , 
return info --

checkout info Library-

borr update_ info 
Application 

dol borr i . j~ •• ' 

,__ _______ ___. update_ 

new_borr 

return_ 
timQ 

time 

clock 

dolete mQ.Ssaqo 

return mos.saqo 

checkout message 

updatG status 

dol -borr~mess 

add me:i:saqo 

checkout 

timo 

~ 

i r 

staff 

Example 2.1 continued 
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Level 1 

Example 2.1 ( continued) 
Hierarch of DFDs for libr 
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In the Level 1 DFD the data store BORROWER contains information about borrowers 

for example, personal details and fines paid, and information accessed via the 

borrower, for example, details of books borrowed. Similarly the data store BOOK 

contains information about copies of books, such as copy details (authors, title, 

etc.), and a borrower flag indicating whether a book is available or not. The clock 

external entit rovides the current time to rocesses neeclin it. 

Example 2.1 continued 
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Level 2 

Example 2.1 ( continued) 
Hierarch of DFDs for libr 

out_book 

chockout 

info 

out 
borr 

chgckout 

time 

CheckoutBook 

:::::\ ?Z:~-l,f: ::::::::p~:::::::: ~~;~::a 
i.'. .. '.,f ··'. .. >r\··.Y;· .. \Jt 

CheckoutBook is decomposed into three processes: CheckBook determines 

whether the book to be checked out can be checked out; CheckBorrower 

determines whether the borrower is permitted to borrow any books; and 

CheckOutUpdate updates the BOOK and BORROWER, provided that the check 

out is possible, and generates a check out message indicating the status of the check 

out action. 

rot borr list 

roturn info 

return detail 

raturn_t1me 

ReturnBook 

updat.od_ 
borr 

RetunBook is decomposed into two processes: CheckReturnBook determines 

whether the book is a library copy; ReturnUpdate updates BORROWER and 

BOOK, if the book is a copy of the library, and generates a message indicating the 

status of the return book action. 

Example 2.1 continued 



Chapter 2: Syntactic and Semantic Aspects of DFDs 43 

Example 2.1 (continued) 
Hierarch of DFDs for libr lication 

UpdateBorrStatus 

~~::te :::;:-:::;:;:;:;:;;:::/ ~enera,te- -:~:~:;~ine_··. 'Update- =::,,:::::,:::: ~~~~~: 
Fines- -:::•:•.•.•:::2, .. :-:•·······•. ·· Borr-

'( i;:):):i:j:(~:({:[:):):)\:]:jf Record 

::;;,._ y::w: ····t~~;~'~,,c0I~;:!;~ :;:::;-
UpdateBorrStatus is decomposed into two processes: 

GenerateFinesRecord calculates the fine on each overdue book possessed by 

a borrower; UpdateBorrRecord updates BORROWER with the amount paid. 

Level 3 

CheckBorrower 

~"'.,::: -~;~s,~~:::: "~ ::::"'-
..;;t,;;;;1m;;;..e _-;,;:; Overdue- ':·:TJC::-i:. ~~~ulate Borrowe1"',:,:,,.,:,:,•""··•:,:;;..,: -=-• 

~}····;:::f······· .. ········· ... · ·.···•·:.).l_:.:;_:.:;_l.1; __ '_i:_i:_,:f' ... ,.: ... : ..... :.:.:.:.:.:.:.:.: ... •.··,\:,,,~g,,:,~'J': ·:· . . .... '.':·.·:,:······· 

·,·:·;J:'i';;::~::) ::::,::z=~i·'.(··:•,::··:·:"f ~'.~pi,_.,J(;i\i\(~.:\·•,•'•'•)" .:,·,::\:'":::;;::·'::,:,:•~~;•::,:,:::::::::,: 

out 

The level 2 process CheckBorrower consists of three processes: 

GetOverdueBooks calculates the fines for each overdue book possessed by the 

borrower; CalculateFine sums the fines; VettBorrower determines 

whether the borrower is ermitted to borrow books. 

In what follows the syntactic aspects of flat DFDs are described and then 

extended to incorporate concepts related to the decomposition of processes and data 

flows. The result is a set of abstract syntactic objects which encapsulate the 

syntactic aspects of hierarchies of DFDs. Formalization of the syntactic aspects of 

hierarchies of DFDs is thus achieved by providing formal definitions of the abstract 

objects introduced here, which is done in Chapter 4. 
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2.2.1 Syntactic aspects of flat DFDs 

Syntactically, a flat DFD is an abstract object consisting of an external 

environment (EE) and a process structure (PS). The EE of a flat DFD consists of 

external entities with their associated data flows, while the PS of a flat DFD 

consists of processes and data stores with their associated data flows. Syntactically, 

data flows have two attributes: a name and a direction. In what follows a data flow 

directed towards a construct is called an input of the construct, while a data flow 

directed away from a construct is called an output of the construct. Processes, data 

stores and external entities have the following syntactic attributes: a set of inputs, 

and a set of outputs. 

The following are the formation rules characterizing the syntactic aspects of 

flatDFDs. 

Processes 

Definition 2.1 
Characterizing the syntactic aspects of DFDs 

Fl. A structurally correct process has a non-empty set of inputs, and a non­

empty set outputs. Furthermore, the set of inputs and the set of outputs are 

disjoint, that is, an input of a process cannot be an output of the same 

process. 

Data stores 
F2. A structurally correct data store has a non-empty set of inputs or a non-empty 

set of outputs. Its set of inputs and set of outputs are also disjoint. 

Process structures 

F3. A structurally correct process structure has at least one process. All processes 

in a structurally correct process structure are structurally correct and are 

uniquely identified by their inputs and outputs. 

F4. All data stores in a structurally correct process structure are structurally 

correct. All the inputs of a data store in a structurally correct process structure 

are also outputs of processes in the process structure. Also all the outputs of a 

data store must also be inputs of processes in the process structure. 

Furthermore, the set of data flows (inputs and outputs) of a data store in a 

structurally correct process structure is disjoint from the set of data flows of 

any other data store in the process structure. This means that data stores are 

not directly connected by data flows in a structurally correct process structure. 

Data stores in a structurally correct process structure are uniquely identified 

by their inputs and outputs. 

Definition 2.1 continued 
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Definition 2.1 ( continued) 
Characterizing the syntactic aspects of DFDs 

F5. An output of a process in a structurally correct process 
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structure is either associated with another process and/or data store in the 

process structure as an input, or is not associated with any process or data 

store in the process structure. An input of a process in a structurally correct 

process structure, on the other hand, may be associated with more than one 

process and/or data store in a process structure as an input. 

F6. The net or boundary inputs of a process structure are the inputs associated 

with the processes and data stores in the process structure which are not also 

outputs of processes and data stores in the process structure. A structurally 

correct process structure has at least one net input. 

External entities 

F7. A structurally correct external entity has a non-empty set of inputs or a non­

empty set of outputs. Its set of inputs and the set of outputs are also disjoint. 

External environments (EEs) 

F8. A structurally correct EE consists only of structurally correct external entities. 

Furthermore, there is at least one external entity in the EE with a non-empty 

set of inputs, and at least one external entity with a non-empty set of outputs. 

All external entities in a structurally correct EE are uniquely identified by the 

set of their data flows. 

F9. An input of an external entity in a structurally correct EE is never an output of 

another external entity in the EE. An input, on the other hand may be 

associated with more than one external entity in the EE as an input, provided 

that it is not also an output of an external entity in the EE. The sets of outputs 

associated with the external entities in a structurally correct EE are all disjoint. 

Flat DFDs 

A flat DFD consists of a structurally correct process structure and a structurally 

correct EE (possibly empty) satisfying the following rule: 

Fl 0. The set of all outputs in the EE is equal to the set of the net inputs of the 

process structure. Also, the set of all inputs in the EE is a subset of the set of 

all outputs in the process structure. For a DFD with a non-empty EE the result 

is that each data flow in the DFD is associated with a unique generator, and a 

non-empty set of receivers. 
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Level 1 of the hierarchy of DFDs shown in Example 2.1 can be viewed as a 

flat DFD by ignoring the lower levels of the hierarchy. The EE of this DFD consists 

of the structurally correct external entities staff and clock, while the process 

structure consists of the structurally correct processes AddCopy, DeleteCopy, 

ReturnBook,CheckoutBook,UpdateBorrStatus,AddBorrower, and 

DeleteBorrower. In the EE, no two external entities are directly connected to 

each other, and all outputs are unique. Furthermore, the set of inputs to, and the set 

of outputs from the EE are non-empty. The EE is thus structurally correct. Within 

the process structure, the data store inputs (outputs) are all associated with process 

outputs (inputs). Furthermore, all outputs in the process structure are associated 

with unique generators. The net inputs of the process structure, new_book, 

delete_book,checkout info,checkout time,return time, 

return info, new_borr, del_borr, borr_update_info, and 

update_ time, are exactly the outputs of the EE, also the set of inputs of the EE 

is a subset of the set of outputs of the process structure. The process structure of 

the DFD and the DFD itself are thus structurally correct. 

2.2.2 Syntactic aspects of hierarchies of DFDs 

Hierarchies of DFDs are syntactically treated as objects consisting of 

hierarchical representations of processes and data flows. The objects can be viewed 

as extensions of the syntactic objects representing flat DFDs, characterized in the 

previous section, where the extensions take the form of additional attributes 

reflecting the hierarchical nature of processes and data flows. Processes and data 

flows so extended are referred to as hierarchical. Formation rules for hierarchical 

data flows and processes are given below. 

Hierarchical data flows 

Decomposition of data flows in a DFD results in the revelation of their 

component data flows. The component data flows so obtained either fully define the 

data flow, in which case they are all necessary and sufficient components of the 

data flow, or they may partially define the data flow, in which case they may not be 

sufficient to fully define the data flow. Decomposition of data flows whose 

structures consist of alternative components is not permitted here. Also, recursively 

defined data flows are not permitted, since such definitions are not consistent with 

the view of decomposition as an activity which results in the revelation of detail not 

provided at the previous level. These restrictions enable the representation of 

hierarchies resulting from successive decomposition of data flows, as tree 

structures, in which nodes are data flows and edges represent the "is a component 
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of' relationship between data flows. Such trees are called data flow trees. The data 

flow at the root of a data flow tree is called the root data flow, while the data flows 

with no components (i.e. the leaf, or bottom level, nodes of the tree) are called 

primitive data flows. Semantically, primitive data flows are associated with data 

types (with possibly alternative structures), which can then be used to generate the 

composite data types for the higher level data flows. An example of a data flow tree 

is given in Example 2.2. 

The syntactic aspects associated with the decomposition of data flows are 

captured by an object called a hierarchical data flow, with the following attributes: 

• a name, and 

• a set of hierarchical data flows, called the child decomposition set of the 

hierarchical data flow, representing the structure of the hierarchical data flow. 

Data flow trees are concrete representations of hierarchical data flows. The 

name of a hierarchical data flow is the name of the data flow at the root of its data 

flow tree representation, while its child decomposition set is the set of sub trees 

whose roots have an edge connecting them to the root data flow. For example the 

child decomposition set of the hierarchical data flow shown in Example 2.2 are the 

sub trees with roots book id and borr id. The nodes of a data flow tree are - -

called the sub data flows of the hierarchical data flow, while the sub trees whose set 

of leaf nodes are a subset of the set of leaf nodes of the data flow tree are called the 

sub hierarchical data flows of the hierarchical data flow. The rule characterizing 

structurally correct hierarchical data flows, given in Definition 2.2, is essentially a 

rule for building data flow tree structures. 

Definition 2.2 
Characterizing structurally correct hierarchical data flows 

Each sub data flow of a structurally correct hierarchical data flow is unique. 

In order to express the relationship between a data flow at a particular level of 

a hierarchy of DFDs and its decomposed data flows at the next level, the notions of 

full and partial decomposition sets are needed. 
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Definition 2.3 
Full and partial decomposition sets 

Afull decomposition set, F, of a hierarchical data flow D, is a set of sub 

hierarchical data flows of D, satisfying the following conditions: 

1. no two hierarchical data flows in F have common sub data flows; and 
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2. the set of all primitive data flows in the hierarchical data flows in F is equal to 

the set of primitive data flows in D. 

A partial decomposition set of a hierarchical data flow is simply a subset of its sub 

hierarchical data flows. 

A full decomposition set of a data flow fully defines the data flow. Examples 

of full and partial decomposition sets can be found in Example 2.2. 

Example 2.2 
Data flow tree for the hierarchical data flow checkout info 

~ 
book id borr id - -

/\ 
copy# ISBN 

The above data flow tree is a concrete representation of the hierarchical data flow 

checkout_info. The child decomposition set of checkout_info is the set 

consisting of the hierarchical data flows book_id and borr id. The set consisting 

only of the hierarchical data flows book_ id and borr _ id is a full decomposition 

set of checkout_ info, so also is the set consisting of the hierarchical data flows 

copy#, ISBN, and borr _id.The set consisting only of the data flows book_ id 

and copy# is a partial decomposition set of book id as well as of 

checkout info. 

In describing the syntactic aspects of hierarchies of DFDs, the use of 

hierarchical data flows parallels the use of flat data flows in describing flat DFDs. 

External entities and data stores associated with hierarchical data flows as inputs 

and outputs are referred to as hierarchical. Processes are also associated with 

hierarchical data flows in a manner described in the next sub section. 
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In a hierarchy of DFDs all data flows are uniquely named (see Definition 

2.2). To express this uniqueness property, the notions of a distinguished pair and 

set of hierarchical data flows are used. 

Definition 2.4 
Distinguished sets of hierarchical data flows 

Two hierarchical data flows are said to be distinguished if they do not have any 

common sub data flows. A set of hierarchical data flows in which every pair is 

distinguished is called a distinf.?uished set. 

Hierarchical processes 

The syntactic aspects of a hierarchy of processes, resulting from successive 

process decomposition, are concerned mainly with the relationships between high 

level processes and their more detailed description at the lower levels. Such aspects 

are captured by an abstract syntactic object called a hierarchical process, with the 

following attributes. 

• a set of hierarchical data flows, called the inputs of the hierarchical process; 

• a set of hierarchical data flows, called the outputs of the hierarchical process; 

and 

• a structure of (sub) hierarchical processes and hierarchical data stores, called the 

body of the hierarchical process. 

The body of a hierarchical process represents the hierarchical structure of the 

process arising from successive decompositions. As in hierarchies of data flows, 

recursive descriptions of processes are not permitted. Successive decomposition of 

a process can be concretely represented by a tree. In such a tree, here called a 

process tree, the nodes are flat processes (with their inputs and outputs), and the 

edges represent the "is a sub process of' relationship between processes. Each level 

of the tree is associated with a set of data stores, where the set of data stores at a 

particular level is disjoint from any other set associated with the other levels of the 

tree. The root of a process tree is called the root process, while the processes at the 

bottom level are called primitive. Primitive processes have empty bodies. The nodes 

of a process tree are called the sub processes of the corresponding hierarchical 

process, while the sub trees of a process tree whose leaf nodes are subsets of the 

set of leaf nodes of the process tree represent sub hierarchical processes of the 

hierarchical process corresponding to the process tree. An example of a process tree 

is given in Example 2.3 (data stores are not shown in the example). 
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Example 2.3 
Process tree for the libra 

The hierarchy of DFDs shown in Example 2.1 can be viewed as a tree of processes 

as is illustrated below: 

Book 

/,6.,-
Check- Borr- Out-
Book ower Update 

~ 
Get- Calculate- Vett-

LibraryApplication 

Return­
Book 

Records 

Borr­
ower 

Overdue- Fine Borower 
Books 

Copy copy Borr­
Status 

~ 
Gen­
Flnes­
Record 

Update­
Borr­
Record 

The hierarchical process corresponding to CheckouBook is the sub tree of the 

above tree with CheckoutBook as its root. The body of CheckoutBook, thus 

consists of the hierarchical processes CheckBook, CheckBorrower, and 

CheckOutUpdate, where both CheckBook and CheckOutUpdate are 

primitive, and their associated data stores (not shown in the tree diagram). 

The following definitions are needed to express the rules characterizing 

structurally correct hierarchical processes. The net inputs of a hierarchical process 

are the inputs in its body which are not also outputs in the body. For example, the 

net inputs of the hierarchical process CheckoutBook are the data flows 

out_book,out_book_id,out_borr_id,checkout_time, and 

out_borr. The set of all inputs (outputs) in the body of a hierarchical process is 

called the internal input ( output) set of the body. For example, the internal output 

set of the hierarchical process Checkout Book is {vet t e d _book, 

vetted_borr,checkout message,out updated book, 

out_updated_borr} 

Definition 2.5 gives the rules characterizing structurally correct hierarchical 

processes. 
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Definition 2.5 
Characterizing structurally correct hierarchical processes 

Hierarchical data stores 

Pl. A structurally correct (hierarchical) data store has a non-empty set of 

hierarchical inputs or a non-empty set of hierarchical outputs. The union 

of inputs and outputs of a data store is a distinguished set. 

The body 

P2. A structurally correct body is either empty or contains at least one 

structurally correct (sub) hierarchical process. All data stores in a body are 

structurally correct. 

P3. No two hierarchical processes in a structurally correct body must have 

common sub processes. 
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P4. The set of all data store inputs in a structurally correct body is a subset of the 

internal output set of the body, and the set of all data store outputs is a subset 

of the internal input set of the body. Furthermore, the receiver of a hierarchical 

data flow whose generator is a data store is never a data store. 

P5. Each hierarchical data flow in the internal output set has a unique generator in 

the body. The internal output set of a structurally correct body is a 

distinguished set. 

P6. There is at least one net input in a non-empty structurally correct body. 

Hierarchical processes 

P7. The set of inputs and the set of outputs of a structurally correct hierarchical 

process are both non-empty. Furthermore, the union of the inputs and the 

outputs of a hierarchical process is a distinguished set. 

P8. The body of a structurally correct hierarchical process is structurally correct. 

In a structurally correct hierarchical process with a non-empty body, an input 

corresponds to a subset of the net inputs in the body, called its decomposition 

set, which is a partial decomposition set of the input. The decomposition sets 

of any two hierarchical data flows in the input interface are disjoint, and the 

union of the decomposition sets associated with the inputs of the hierarchical 

process is exactly the set of the net inputs of the body. 

Definition 2.5 continued 
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Definition 2.5 ( continued) 
Characterizing structurally correct hierarchical processes 
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P9. For a structurally correct hierarchical process with a non-empty body, an 

output corresponds to a subset of the internal output set, called its 

decomposition set, which is a full decomposition set of the output. The 

decomposition sets of any two outputs is disjoint. If a hierarchical data flow in 

the internal output set of the body of a structurally correct hierarchical process 

is not in any decomposition set then it is directed towards hierarchical 

processes in the body. 

The rules determining the structure of the body of a hierarchical process can 

be viewed as extensions of the rules characterizing the PSs of flat DFDs, which 

take into consideration the hierarchical nature of data flows and processes. 

Similarly, the rules for hierarchical processes can be viewed as extensions to the 

rules characterizing structurally correct flat processes. 

Hierarchical DFDs 

The syntactic aspects of a hierarchy of DFDs are captured by an abstract 

syntactic object called a hierarchical DFD (H_DFD). A structurally correct H_DFD 

consists of a structurally correct hierarchical process and a structurally correct 

external environment (EE), where the EE of a H_DFD is a set o~.external entities 

with hierarchical inputs and outputs. The hierarchical process of a H_DFD 

represents the hierarchy of DFDs resulting from successive process 

decompositions, and can be viewed as a hierarchical representation of the single 

process in the context diagram of the corresponding hierarchy of DFDs. The rules 

characterizing structurally correct H_DFDs, given in Definition 2.6, can be viewed 

as extensions of the rules characterizing structurally correct flat DFDs. 

The abstract syntactic objects introduced above capture the desired syntactic 

aspects associated with hierarchies of DFDs. Formalizing the above definitions for 

the abstract objects results in the formalization of the syntactic aspects they capture, 

thus providing a basis for validating the syntactic structure of (hierarchies of) 

DFDs. Chapter 4 provides the formal counterparts of the rules characterizing 

structurally correct objects stated in this chapter. 



Chapter 2: Syntactic and Semantic Aspects of DFDs 53 

Definition 2.6 
Characterizing structurally correct hierarchical DFDs 

Hierarchical external entities 

H 1. A structurally correct external entity has a non-empty set of inputs or a non­

empty set of outputs. Also, the sets of inputs and outputs are disjoint, 

and their union is a distinguished set. 

External environments 

H2. A structurally correct EE consists of structurally correct external entities or no 

external entities. Furthermore, there is at least one external entity in the EE 

with a non-empty set of inputs, and at least one external entity in the EE with a 

non-empty set of outputs. All external entities in a strncturally correct EE are 

uniquely identified by their inputs and outputs. 

H3. An input of an external entity in a strncturally correct EE is never an output of 

another external entity in the EE. The sets of outputs of any two external 

entities in a structurally correct EE are disjoint and are distinguished sets. 

H DFDs 

H4. A structurally correct H_DFD consists of a structurally correct EE and a 

structurally correct hierarchical process. The set of all inputs (outputs) in the 

EE of a structurally correct H_DFD is equal to the set of inputs (outputs) of 

the hierarchical process of the H DFD. 

In the remainder of this chapter the semantic aspects of DFDs are introduced 

in an informal setting. Concrete representations of the abstract objects described 

above will be used for illustration purposes in what follows. 

2.3 Semantic aspects of DFDs 
In the SA/SD approach a data dictionary contains definitions of the structure 

and content of the data flows and data stores in a hierarchy of DFDs, while process 

specifications describe the functional behaviour of its primitive processes. The 

definitions provided by the data dictionary and process specifications are quasi­

formal, and thus provide little support for the rigorous validation and verification of 

behaviour. Furthermore, the transition from SA specifications to an initial design is 

problematic ([Sho88, Pet88], see also Chapter 1). Formal interpretations of the 

syntactic structures in DFDs facilitate the derivation of formal specifications of 

behaviour for DFDs, which can be viewed as initial designs of the applications 

described by the DFDs. 

The semantic aspects of hierarchical DFDs concern the interpretations 

associated with their syntactic structures. Two types of semantic aspects are 
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specifiable in the formal framework:behavioural and data . Behaviour refers to the 

manner in which components interact with each other. Two aspects of behaviour 

are emphasized:functional and control. Functional aspects concern the relationship 

between the input values and output values of a process while control aspects 

concern the time-related interactions between processes. Specifications of the 

functional aspects of a DFD are supported by specifications of its data aspects, 

which are concerned with the structure of the data objects in the DFD. 

To support the specification of the behavioural aspects of applications 

additional constructs for describing interactions in an application which cannot be 

described using the traditional DFD constructs are introduced. Diagrams created 

using these additional constructs are called Extended DFDs (ExtDFDs). In the 

formal framework, the behaviour of an ExtDFD is characterized by all the possible 

interactions that can take place amongst its components. Such interactions are 

determined by the occurrences of events which may or may not have data associated 

with them. The characterization is expressed as a formal specification derivable 

from the ExtDFD. The derivation of the formal specification of behaviour from a 

hierarchy of DFDs goes through the following steps: 

1. Generating a flat representation of the hierarchy of DFDs. Such a 

representation, called the primitive DFD, consists of the primitive processes, 

and all the data stores and external entities in the hierarchy of DFDs. 

2. Introducing notation for describing state dependent behaviour into the 

primitive DFD, specifying the state dependent behaviour, and identifying 

actions, and state and asynchronous data flows to and from the external 

environment (EE). The result of this step is an ExtDFD. 

3. Specifying the data types associated with the ExtDFD's data flows and data 

stores. 

4. Specifying the behaviour of the ExtDFD's primitive processes and data stores. 

5. Deriving the specifications of behaviours of the ExtDFD's actions from the 

specifications of behaviours of their constituent processes. 

6. Deriving the specification of behaviour of the ExtDFD from the specifications 

of behaviour of its actions, data stores, and asynchronous data flows, and the 

specification of its state dependent behaviour. The resulting specification is 

called the Behavioural Specification (BS). 

An overview of these steps is given in the following sections. 

2.3.1 Flattening hierarchies of DFDs 

In deriving a formal specification of behaviour from a hierarchy of DFDs it 

is sufficient to consider the interactions amongst its primitive processes and data 
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stores, and their interactions with the EE. The structure consisting only of the 

primitive processes, data stores and EE of a hierarchy of DFDs is called the 

primitive DFD of the hierarchy, and can be viewed as a flat representation of the 

hierarchy. 

The data flow relationships between structures in a primitive DFD are not 

simple, since data flows associated with structures in one part of the DFD may be 

decomposed in other parts of it. The relationships between such data flows are 

depicted by splitter and binder symbols, shown in Figure 2.2. A splitter takes an 

incoming data flow, called its input, and generates a subset of its sub data flows, 

called the outputs of the splitter. A binder takes a set of incoming data flows, called 

its inputs, and combines them to form a single outgoing data flow, called its output. 

The input of a splitter may emanate from a binder, data store, external entity, or a 

process, while its outputs can be directed to processes and or binders. The inputs of 

binders may emanate from splitters and/or processes while its output may be 

directed towards processes, data stores, external entities, and/or splitters. Later it 

will be shown how splitters and binders force their associated processes to 

synchronize their receive and send events. 

Splitter 

_i_n - •c 
outp 

Binder 

inl 

. ' inp 

Figure 2.2 Splitter and binder symbols 

out 

Example 2.4 shows the primitive DFD for the H_DFD for the library 

application depicted in Example 2.1. 
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Example 2.4 
The rirnitive DFD for the library a lication 
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Henceforth, the term process will refer to a primitive process, and the term 

DFD refers to the primitive DFD. 

2.3.2 Describing the control aspects of applications 

Situations in which the required behaviour of an application is dependent on 

the current state, or mode of operation, of the application often occur in certain 

types of applications, for example real-time applications. Additional notation is 
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required in order to describe state dependent behaviour with DFDs. Two types of 

constructs are used here in this respect: a state entity and control flows. The state 

entity encapsulates information about the current state of the DFD affecting the 

behaviour of the application, while control flows represent the events which cause 

changes in the mode of operation. Syntactically, a state entity has the following 

attributes: a name, a set of control flows called the inputs of the state entity, and 

another set of control flows called the outputs of the state entity. Semantically, a 

state entity can be viewed as an interpreter of events represented by its inputs, 

which may generate other events, represented by its outputs, as a result of 

interpretations. A state entity can affect the behaviour of processes via its outputs, 

in three ways: 

• It can enable processes. An enabled process is permitted to transform its inputs 

to outputs when required to do so. 

• It can disable processes. A disabled process is not allowed to transform its 

inputs to outputs. 

• It can initiate processes. A process that is initiated is enabled for only a single 

transformation after which it disables itself. 

Control flows are either directed from external entities or processes to a state 

entity or to other processes, or are directed from a state entity to processes. A 

control flow, like a data flow, may be directed towards more than one construct, 

called the receivers of the control flow, but emanate only from a single construct, 

called the generator of the control flow. Control flows differ from data flows in that 

they represent events which are not associated with data. Control flows generated 

by external entities and processes are called signals. Control flows from the state 

entity to processes are associated with one of the following type of events, 

reflecting the manner in which the state entity can affect the behaviour of processes. 

• Enablers: events which enable processes. 

• Disablers: events which disable processes. 

• Initiators: events which initiate processes. 

Enablers, disablers, and initiators are events extended in time, whose 

occurrences last for the periods of time that the associated processes are enabled, 

disabled, and initiated respectively. Control flows emanating from other than the 

state entity can also be input to processes. Such control flows depict events that 

affect only the behaviour of the process, and behave as initiators. 

The constructs depicting control information are shown in Figure 2.3. 
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Figure 2.3 State entity and control flow symbols 
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The approach described above is similar to that used in YSM for describing 

state dependent behaviour [War86, Woo88]. The state entity corresponds to the 

control process in YSM, while control flows play similar roles in both approaches. 

As in YSM, the state dependent behaviour of an application can be described by a 

state diagram, associated with the state entity, defining the manner in which the 

state entity interprets its inputs. The differences between YSM and the SL lie in 

their use of the control extended DFDs. Here, such DFDs are associated with a 

theoretical basis enabling the derivation of formal specifications characterizing the 

class of behavioural models for the DFDs, while in YSM, the diagrams, together 

with their associated state diagrams, are used as descriptions of an application's 

behaviour. The control extended DFDs used in this thesis can be viewed as 

informal, pictorial representations of the derived formal specifications. An example 

of a control extended DFD is given in Example 2.5. 

Example 2.5 
A control-extended DFD for a cruise-control system 

A cruise-control system, when active, maintains the speed of a vehicle at a constant 

level. In the system, depicted below, the driver sends signals to the system which 

activates and deactivates it. The system can only be activated when the engine is 

running. When activated the system maintains the current speed of the vehicle, if it 

is greater than 30 miles per hour, until the system is deactivated. A more detailed 

version of this example is presented in Chapter 6. 

Example 2.5 continued 
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Example 2.5 ( continued) 
A control-extended DFD for a cruise-controls stem 
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The state transition diagram for the state entity in the above diagram. 
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2.3.3 Semantic aspects of data flows and data stores 

There are two aspects to the semantics associated with data flows and data 

stores: static and dynamic. The static aspects are concerned with the specification 

of the structure and data content of data flows and data stores, while the dynamic 

aspects are concerned with the manner in which the data stores and data flows 

interact with other DFD constructs. Below an overview of the static and dynamic 

aspects of data flows and data stores is given. 

Data flows 

Data flows represent data interfaces between processes, or between a process 

and a data store or external entity. The static aspects of a data flow concerns the 

definition of the data type associated with the interface it represents, and the 

structure of the interface, where the structure of an interface is determined by the 

relationships between the data present in the interface. The data types and structures 

associated with data flows are treated as abstract data types (ADTs) to avoid 

premature consideration of representation issues. Instances of the types associated 

with data flows (and data stores) will be called objects, or simply data where it does 

not cause confusion. 

Whether a data flow is associated with a structure or not is dependent on the 

type of interface it provides, which in turn is determined by the dynamic aspects of 

data flows. Dynamically, a data flow is associated with either a state variable or data 

communication events. A state variable is an entity that is persistently present, that 

is, it is always associated with a value representing its current state. An event, on 

the other hand, is intermittently present, thus one speaks about an event occurrence. 

An occurrence may be instantaneous or may be extended in time. 

A data flow associated with a state variable is called a state flow. State flows 

always have external entities as their generators. For example, the data flow 

checkout time is associated with a state variable with a value representing the 

current state of the external entity clock (i.e. the current time). State flows have 

simple dynamic interpretations: state values are simply read by their receivers 

whenever they are required to do so. Such flows are not associated with a structure 

since only one value (representing the current state) is associated with it at any time. 

A data communication event is an event which is associated with data. The 

occurrence of a data communication event signifies the transmission of the data 

associated with the event. A data flow associated with data communication events is 

called a data event flow. A data event flow can either be synchronous or 

asynchronous. A synchronous data event flow is one which requires its generator 

and receivers to cooperate in order for data communication to take place. That is the 
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generator cannot proceed after sending data on the data flow until the receiver has 

acknowledged receipt of the data sent. When no such cooperation is required in 

order to transmit data, the data event flow is said to be asynchronous. In such cases 

the generators do not require acknowledgement from receivers in order to proceed 

after sending data on the data flow. A synchronous data event flow is associated 

with a single communication event, representing the synchronized generation and 

receipt of data. Synchronized data event flows have no structure associated with 

them since at most a single item of data (i.e. the data being transmitted) is associated 

with the flow at any time. 

The uncooperative interaction associated with an asynchronous data event 

flow is obtained by associating with it a data structure and two communication 

events: send and receive. The send event of an asynchronous data flow passes on a 

single item of data from the data flow to all its receivers, while the receive event 

accepts a single item of data from its generator and 'stores' it in the the data 

structure awaiting transmission to its receivers. The data structures associated with 

asynchronous flows are queues. The send event of an asynchronous flow thus 

takes a data object from the top of its queue, while the receive event puts a data 

value at the end of the queue. The symbols used for depicting state and data event 

flows on a DFD are shown in Figure 2.4. 

Asynchronous 
Data Flow 

:::EJ • 

Synchronous 
Data Flow 

• 
State Flow 

Figure 2.4 Symbols for asynchronous, synchronous and state flows 

Data stores 

The static aspects of data stores concern the specification of the type of data 

held in the data store, and the data store's structure, and are treated in the same way 

as the static aspects of data flows in the formal framework. 

Dynamically, data stores are associated with access events which observe 

and/or modify the data store. The following are the classes of access events 

associated with data stores: 

• Read accesses, for example the access events associated with the data flows 

copy#_list, out_book, return_detail of the data store BOOK. A read 

access event returns either a data object (or a sub structure of a data object), or a 

structure of (sub structures of) data objects in a data store. Some access schemes 

may require that the access event be supplied with data which identify the 

particular object in the data store to be accessed. The object returned by a read 
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access is of the type associated with its data flow. For example, the read access 

associated with copy# list returns a list of the copy# attributes of the data 

objects in BOOK. 

• Updates, for example the access events associated with the data flows 

ret_updated_book, and out_updated_book of the data store BOOK. 

An update changes the values of a subset of the attributes of a select set of data 

objects in a data store. The objects to be updated are identified by data supplied 

to the event. 

• Additions, for example the access event associated with the data flow 

new_ book_ rec of the data store BOOK. Additions simply add new objects to 

a data store. 

• Deletions, for example the access event associated with the data flow 

deleted_ book of the data store BOOK. Deletions remove objects from a data 

store. Some access schemes may require information on the the objects to be 

deleted to be supplied to the event. 

In the formal treatment, data stores are treated as ADTs on which concurrent 

accesses can be carried out. Such a treatment of data stores provides flexibility in 

the type of interactions possible between processes and data stores. 

Example 2.6 gives type definitions for the data objects in the library 

application. Such definitions can be viewed as an informal front to the formal 

specifications characterizing the data objects. Base types are predefined classes of 

indivisible objects, or list or set structures of such objects, while non-base types 

are classes of composite objects based on the base types. The type definitions are 

expressed in the form typename ::= typedefinition, where typename is a 

name, and typedefinition is either another name or a structure of names 

enclosed within <, >. Structures consist of mandatory types identified by names 

separated by commas, and/or alternative sub structures separated by 'I'. Particular 

instances of a type may also be included in a structure in place of type names, for 

example, the message/flag types of the library application are defined in terms of 

their instances which are text strings of the form "message", reflecting the 

condition which the message/flag reports on. In the definitions of the non-base 

types, base components are written in bold. The indivisible base types used for the 

library application are: 

number - the class of floating point numbers, 

time - the class of time points, 

character - the class of characters, and 

message/flag types within the application. 
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Aliases for base types, reflecting their use in the composite objects, are used 

to aid readability. 

Example 2.6 
Type definitions for the librarv application 

List structures are enclosed within[,], for example, [number] is a list of objects 
of type number. 

Non-base data types 
bb status 
book 

book id 
borr detail 
borr fine record - -
borr_flag 

borr_update_info 
borrower 

borrower book detail 
borrower id 
borrower indicator 
checkout info 
checkout_message 
del borr 
delete book 
deleted borr 
deleted book 
ISBN 
new book 

new book rec 
new borr 

new borr rec 
other borr 
out book 
out book id 
out borr 

out borr id - -
out_updated_book 
out updated borr 
ret-borr list - -
ret_updated_book 
ret_updated_borr 
return detail 
return info 
update_id 
update_status 

vetted book 

<time returned I "Not returned"> 
<book-id, title, subject, author, 
copy type, borrower indicator> 
<ISBN, copy#> -
<[borrower_book_detail], number> 
<<number, borrower_id> I "Not in file" 
<"Not in file" I <out borr, 
borrower id>> -
<borrower_id, number> 
<borrower_id, borrower_name, 
borrower addr, borrower type, 
[borrower=book_detail], -
payment to date> 
<book_id-; due_time, bb_status> 
<[character]> 
<"Available" I borrower id> 
<book_id, borrower_id> -
<vetted_borr, vetted_book> 
borrower id 
book id 

··= [borrower book_detail] 
borrower indicator 
<[integer]> 
<ISBN, title, subject, author, 
copy_type> 
book 
<borrower_id, borrower name, 
borrower addr> 
borrower 
borrower id 
<borrower_indicator, copy_type> 
book id 
<[borrower_book_detail], 
borrower type, payment to date> 
borrower id - -

· · = borrower indicator 
[borrower book detail] 
[borrower=book=detail] 

· · = borrower indicator 
[borrower_book_detail] 
borrower indicator 
book id 
borrower id 
<outstanding fine I excess_number 
"Not in file" I "No fines" I "Cleared"> 

· · = <<book_id, copy_type> I "book not in 
file"! "book already checked out" 
I "not borrowable"> 

Example 2.6 continued 
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Example 2.6 ( continued) 
Type definitions for the library application 

vetted borr 

vetted return book - -

Base data types 
add_message 
amount_paid 
author 
borrower addr 
borrower name 
borrower type 
checkout-time 
copy# 
copy#_list 
copy_type 

<<"Fines over limit", number>\ 
"borrower not in file" I 
<out_borr, borrower_id>> 
<"Not in file" I "Already returned" I 
<book_id, borrower id>> 

<"OK" I "Borrower already in file"> 
number 
[ character] 
[ character] 
[ character] 

· ·= <"undergrad" I postgrad" I "staff"> 
time 
integer 
[integer] 

· ·= <"book" I "reference" I "periodical"> 
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del borr mess 
delete_message 

· ·= <"OK" I "Not in file" I "Has books out"> 
<"delete-OK"\ "Not in file" I 

due time 
excess number 
fine 
fines record 
new copy# 
outstanding_fine 
paidup_amount 
payment_to_date 
return_message 

return time 
subject 
time returned 
title 
update_time 
updated_borr_detail 

"Not available"> 
time 
number 
number 
[number] 
integer 
number 
number 
number 
<"Already in" 
"Ok return"> 
time 
[ character] 
time 
[ character] 
time 
number 

I "Not in file" I 

2.3.4 Semantic aspects of processes 

Unlike the usual logical approaches to interpreting process behaviour in DFDs 

(eg. see [War86, Woo88, Hat88]), the transformation from inputs to outputs is not 

assumed, within the formal framework, to be instantaneous. Such a logical view 

may be helpful as a first approximation of behaviour, but is of little use to further 

development since no operational view can be consistent with it [KK88]. The 

behaviour of a process is characterized by its class of invocations (or p­

invocations), where an invocation represents a particular transformation of single 

instances of the types associated with some of the inputs of the process, to single 

instances of the types associated with some of its outputs. Formally, an invocation 

is a labeled sequence of states, where the labels represent the effects of events 
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occurring within the transformation represented by the invocation. Such a labeled 

sequence can be depicted as follows: s0-10-sl-ll-s2- ... -sn-ln-sn+l, where si 

(lg:s:n) is a state, and li (lg:S:n) is its associated label. The states of an invocation 

reflect the observable effects of events thus far in an invocation. Such states are said 

to be observable. An event represented by a label in an invocation causes a change 

from its associated state in the sequence to the next state in the sequence. The first 

state of a process invocation is called its idle state, and represents the situation 

where no inputs of the process are being transformed into outputs. The event which 

causes a change from an idle state to another state is called an invocation event of 

the process, and a process is said to be invoked when it occurs. 

Operational models of behaviour can be associated with DFD processes, since 

transformations are interpreted as sequences of observable states rather than 

instantaneous conversions of inputs to outputs. The class of operational models 

associated with a DFD process is abstractly characterized by an algebraic 

specification of the labeled state transitions that can take place in its invocations. 

The class of invocations characterizing a process's behaviour can be pictorially 

represented by a state transition tree (STT), with classes of states as nodes and 

classes of labels as edges. Example 2.7 shows the STT for the process 

CheckBook. Conditions under which certain transitions can take place can be 

included in STTs by associating such conditions, expressed in an appropriate 

language, with the respective edges. STTs can thus be made to show all 

information necessary for characterizing the invocation class of a process. 

Example 2.7 
State transition tree for the process CheckBook 

A state of CheckBook is of the form <Book_id, Status, Vett_Book>, 

where Book_ id is either an object communicated via the data flow 

out_book_id, or a null object, Null 1, representing the situation where no such 

communication has occurred, Status is either an object communicated via the data 

flow out status, or a null object, Nu 112, representing the situation where no 

such communication has occurred, and Vett_Book is either an object to be sent 

for communication via the data flow vetted_ book, or a null value, Nu 113, 

representing the situation where no object is available for communication on 

vetted book. <Null 1, Nu 112, Null3> is thus the idle state of the process. 

Example 2.7 continued 
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Example 2. 7 ( continued) 
State transition tree for the rocess CheckBook 

The classes of event labels associated with CheckBook are the following: 

Receive (bid) - representing a receive communication event which receives a 

book_ id object, bid, from the data flow out_ book_ id; 

Read (bid, val) - representing a read event to the data store BOOK, which 

accesses a book object identified by a a book id object bid, and retrieves the 

out_book object, val, associated with the book object. 

Er read (bid) - representing an unsuccessful read access to BOOK. This may 

occur, for example, when the book object identified by bid is not in BOOK. 

Send (vbook) - representing a send communication event, which sends a 

vetted_ book object, vbook, on the data flow vetted_ book. The function 

vet t returns a vetted_ book object given a book_ id object and an out_ book 

object. This function checks whether the book can be borrowed. 

The STT for CheckBook is shown below: 

<Nulll, Null2, Null3> 

Receive (bid) 

<bid, Null2, Null3> 

Read (bid, 

<bid, val, Null3> <bid, ERR, Null3> 

Send(vett(bid,val)) Send("Notinfile") 

<bid, val, vett(bid,val)> <bid, val, "Notinfile"> 

The above STT can be intuitively interpreted as follows: A particular transformation 

of CheckBook would first receive data from the data flow out_ book_ id, 

represented by the occurrence of the receive event (the invocation event) whose 

effect is labeled by Receive (bid) , and then attempt a read access to the data 

store BOOK. The effect of a successful read attempt is represented by a label of the 

form Read (bid, val), while an unsuccessful read attempt is represented by the 

label Erread (bid). The next externally observable event is the send event which 

sends data on the data flow vetted_ book, the value of which is dependent on 

whether a successful or unsuccessful read attem twas made. 

Example 2.7 continued 
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Example 2.7 (continued) 
State transition tree for the process CheckBook 

An example of a Che ckBook invocation is the labeled sequence: <Nu 111, 

Null2, Null3>-Receive(bid)-<bid, Null2, Null3>­

Erread(bid)-<bid, ERR, Null3>-Send("Notinfile")-<bid, 

val, "Notinfile">. 
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The quasi-formal specifications associated with processes in the SA approach 

are replaced by formal specifications of behaviour created using the techniques of 

the formal framework. The formal specifications are algebraic characterizations of 

all the possible state transitions that can occur as a result of the occurrences of 

events. 

2.3.5 Describing the interactions in a DFD 

A DFD is interpreted as a system of processes and data stores interacting with 

an external environment. The environment interacts with the system in an 

uncooperative manner, thus allowing the system and the environment to proceed at 

different speeds, without the need to synchronize for communication. Such 

interaction often occurs in real-time applications and is sometimes a desirable 

feature of some non real-time applications [KK88]. Uncooperative interaction 

between the environment and the application is represented by asynchronous data 

flows or state flows in extended DFDs, thus data flows between external entities 

and processes are either state flows or asynchronous data flows. 

In describing the interactions in the system of processes and data stores of a 

DFD the processes of the DFD are partitioned into actions, allowing a modular 

description of interactions. An action is a system of related processes in which 

certain processes are designated as invoker, and in which each process which is not 

an invoker: 

• depends only on the other processes in the action for its data inputs; and 

• is not associated with control inputs. 

The invokers of an action are the processes that must be invoked before any 

of the other processes in the action can be invoked. The invocation events of 

invokers are synchronized with each other, thus an action can be thought of as 

being invoked by a single synchronization event. Only the invokers of a process 

can be associated with input control flows. Since the invocation events of the 

invokers of an action are synchronized, an initiator associated with a particular 
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invoker of an action must also be associated with all the invokers of the action. An 

action whose invokers have disablers as inputs cannot be invoked when at least one 

of its invokers is disabled, in which case the action itself is said to be disabled. 

Similarly, an action whose invokers have enablers as inputs can only be invoked 

when all of its invokers are enabled, in which case the action itself is said to be 

enabled. 

The terminators of an action are the processes in the action which have 

outputs to external entities, data stores, and/or invokers of other actions. Once 

invoked an action transforms the data inputs of its invokers to data outputs on its 

terminators. An action can thus be viewed as a high level process, where the inputs 

of its invokers are referred to as the inputs of the action, and the outputs of the 

terminators directed towards data stores, external entities and other actions are 

referred to as the outputs of the action, and each disabler to its invokers is referred 

to as an action disabler, while an enabler representing the conjunction of all the 

enablers associated with its invokers is called the enabler of the action. 

In Figure 2.5, a DFD is partitioned into the actions Al, A2 and A3. Al and 

A2 together cannot form an action since the process p2 has an input from p4, which 

is not in Al or A2. 

ee3 

Figure 2.5 Actions in a DFD 

Actions are also associated with a termination event which causes all its 

constituent processes to revert to the idle state. Such an event occurs when an action 

has transformed its inputs to outputs. An action is said to be terminated, or in an 

idle state, when all its processes are in the idle state. Notice that the behavioural 

semantics associated with processes implies that an action, once invoked, cannot be 

invoked again until it has terminated. 

The behaviour of an invoked action is determined by the behaviour of its 

processes. Within an action, all data flows which are not also inputs to or outputs 

from the action, are synchronous. Intuitively, actions are system? of processes 
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which cooperate, via synchronization, to transform single instances of its inputs to 

outputs. 

Splitters and binders occur only in actions, and force their associated 

processes to synchronize. The processes associated with the outputs of a splitter are 

the processes to which the outgoing data flows are directed to, while the processes 

associated with the inputs of a binder are the processes from which the incoming 

data flows emanate. The processes associated with the outputs of a splitter, and the 

processes associated with the inputs of a binder, are forced to synchronize the 

receipt and generation of data on the respective data flows. Figure 2.6 illustrates the 

different situations in which binders and splitters may occur. In Figure 2.6(a) a 

binder takes p inputs, all of which must be synchronous data flows, from 

processes, and generates a synchronous data flow, called its output, directed 

towards other processes and/or splitters. This situation is interpreted as a 

synchronization of the send events of the processes associated with the inputs of the 

binder and the receive events of the processes associated with the output of the 

binder, either directly or indirectly via splitters. In Figure 2.6(b) the output of the 

binder is an asynchronous data flow. This situation is interpreted as a 

synchronization of the send events of the processes associated with the inputs of the 

binder, and the receive event of the asynchronous data flow. Figure 2.6(c) shows a 

splitter with p outputs directed towards processes, and an incoming synchronous 

data flow, called its input, emanating from a process or a binder. This situation is 

interpreted as a synchronization of the send event of the process from which the 

data flow emanates, or in the case that the input emanates from a binder, the send 

events of the processes associated with the inputs of the binder, and the receive 

events of the processes associated with the outputs of the splitter. In Figure 2.6(d), 

the input to the splitter is an asynchronous data flow. This situation is interpreted as 

a synchronization of the send event of the asynchronous data flow and the receive 

event of the processes associated with the outputs of the splitter. 
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'

?~ ··-:. 

inp 

ou: • 
inp 
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outl 
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Figure 2.6 Communication situations involving binders and splitters 
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The specification of behaviour of an action is derived from the specifications 

of its processes. An action is viewed as a system of synchronously interacting 

processes, thus, provided the specification of the processes are given, together with 

specifications of the data transmitted by the processes, the action's specification can 

be generated. 

A class of labeled sequences of states can be associated with actions, in the 

same way they can be associated with processes. Such sequences, called a­

invocations, represent the sequence of states an action passes through when 

transforming a particular data on a subset of its inputs to data on some of its 

outputs. The states of an action is a tuple of states of its DFD processes, while the 

events represented by the labels of an a-invocation are occurrences of action events 

arising from the interactions of its DFD processes. 

All communication between actions are uncooperative (represented by 

asynchronous data flows), while communication between actions and data stores 

are always cooperative (represented by synchronous data flows). The output flows 

of a data store may be associated with splitters, representing the situation where the 

decomposed parts of the data flows are needed in different parts of a action. In such 

a situation, the read events of the processes associated with the outputs of the 

splitter are synchronized. Similarly an input to a data store may be the output of a 

binder, in which case the write events of the processes associated with the inputs of 

the binder must be synchronized. These situations are illustrated in Figure 2.7. 
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Figure 2. 7 Relationships between the extractors and data stores, and between 

binders and data stores 

Actions interact with asynchronous data flows in a synchronized manner, 

where the send event of an action which is a generator of the asynchronous data 

flow is synchronized with the receive event of the asynchronous data flow, while 

the receive event of an action which is a receiver of an asynchronous data flow is 

synchronized with the send event of the asynchronous data flow. 
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The DFD resulting from the identification of actions, synchronous and 

asynchronous data flows, and state flows, in a possibly control-extended DFD is 

called an Extended DFD (ExtDFD). An ExtDFD is interpreted as a system of 

interacting actions. The view of actions as high-level processes permits the 

technique used for specifying the behaviour of processes to be used to specify the 

behaviour of actions. The specification of an ExtDFD's behaviour is derived from 

the specifications of its actions and the specifications of the dynamic and static 

aspects of its data stores and asynchronous data flows, and from a specification of 

the effects of events on the mode of operation (depicted by control flows directed 

towards the state entity). 

The BS characterizes the behaviour of ExtDFDs in the same way as processes 

and actions are characterized. The state of an ExtDFD consists of the states of its 

actions and data stores, as well as a flag indicating the current mode of operation the 

ExtDFD is in (this can be omitted when the ExtDFD has only one mode). The set of 

events associated with an ExtDFD consists of action events, and the events arising 

from the interaction amongst actions, data stores and external entities, and events 

associated with control flows. 

2.4 Summary 

This chapter presented, in an informal setting, the syntactic and semantic 

aspects of DFDs on which the formal framework developed in this thesis is 

founded. The syntactic aspects of DFDs are concerned with the building of correct 

syntactic structures, and hierarchies of such structures, and are encapsulated by 

abstract objects. The part of the formal framework concerned with formalizing the 

syntactic aspects of DFDs is called the Picture Level (PL), and is described in 

Chapter 4. 

The semantic aspects concern the building of a specification of behaviour for 

suitably extended DFDs called ExtDFDs. Dynamically, an ExtDFD is a system of 

interacting processes with an uncooperative interface to its environment. The formal 

specification of behaviour for an ExtDFD characterizes what the ExtDFD is allowed 

to do in terms of the possible interactions amongst its components. The building of 

such a specification requires that the syntactic structures are associated with 

dynamic, as well as static interpretations. The part of the formal framework which 

provides support for specifying the semantic aspects of DFDs is called the 

Specification Level (SL), and is described in Chapter 5. 



CHAPTER 3 

Positive-Negative Relational 
Specifications: An Algebraic Approach 

to Specification 

3.0 Introduction 
Specification techniques based on data abstraction have been developed by 

many researchers (see, for example [GTW78, GHM78, LZ75, LZ77]), and the use 

of such techniques for specifying applications has shown promising results. The 

data abstraction approach to specifying applications entails viewing applications as 

consisting of groups of related functions, acting upon particular classes of objects, 

with the constraint that the behaviour of the objects can only be observed through 

application of the functions [LZ7 5]. 

Algebraic specification techniques are a class of techniques based on the data 

abstraction approach, which have firm mathematical foundations based on concepts 

from universal algebra and mathematical logic [GTW78, WB82]. Such techniques 

provide implicit definitions of classes of objects and their functions in terms of 

algebraic relations. The resulting (algebraic) specifications, are syntactic entities, 

consisting of a declaration part, called the signature, and a set of relations, called 

laws, between terms formed using the symbols declared in the signature. An 

algebraic specification is associated with a model semantics in the form of a class of 

algebras. The mathematical foundations for algebraic specification techniques 

enables the generated specifications to be used in the investigation of formal 

properties of the objects they characterize. Also, some researchers provide formal 

criteria for establishing whether an algebraic specification implements another. 

Considerable research has also gone into providing an operational semantics 

for algebraic specifications based on term rewriting systems [Hue80, Kap84, 

Kap87, Jou87]. Under suitable conditions, such operational semantics provide 

effective deduction systems, which can be used to investigate properties of the 

specifications in a computational manner. The conditions under which decidable 

deduction systems can be obtained can place serious restrictions on the form of 

laws which, inevitably, affects their expressiveness. Research in this area has 

progressed from algebraic specifications consisting only of unconditional equational 

laws (see, for example [Hue80, Der87, HO80]) to specifications consisting of 

conditional equational laws (see for example [Kap84, Jou87, Dro84, RZ84, BK82, 

CTRS87]). Conditional laws are more expressive than their unconditional 
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counterparts, but are still not expressive enough to specify some objects 'naturally'. 

Recent research, in this area, which introduce inequalities into the condition parts of 

conditional laws, look promising in this respect [Kap87, MS87]. 

Current algebraic specification techniques are well supported by firm 

mathematical and operational foundations, but no single such technique provides 

the expressive power needed to support for range of specifications required by the 

formal framework developed in this thesis. In this chapter a specialized algebraic 

technique, together with its mathematical foundations, is introduced. The technique 

unifies and extends techniques based on partial functions [WB82], relations 

[ARW86], and conditional term rewriting with inequalities [MS87]. In what 

follows, concepts and notations from the works of Goguen et al [GTW78], and 

Wirsing and Broy [WB82] are freely used. 

3.1 Positive-Negative Relational Specifications (RSs) 
A positive-negative relational specification, or simply called a relational 

specification (RS), is a partial conditional algebraic specification with relations. In 

this section, the concepts and notation used for building RSs are discussed. In 

particular, it is shown how the notions of hierarchy and schema help reduce the 

complexity in building and understanding large RSs. 

3.1.1 Specifications and algebras 

A RS consists of a signature and a set of laws. The signature is the 

declaration part of the RS while the laws are relations between terms formed by the 

symbols declared in the signature. The formal definition of a RS signature given in 

Defintion 3.1, utilizes the following notion of an indexed set: a S-indexed set, A, is 

a family of component sets As for each index s in S. 

Function symbols can be partitioned into two sets: 

• The set of function symbols called constructors, C, representing functions which 

create new objects of a sort. 

• The set of all other function symbols, called non-constructors. 

The signature of a RS is associated with a class of algebraic models, called 1:­
RS algebras, or simply Ii-algebras. A Ii-algebra, defined in Defintion 3.2, 

provides representations for the objects of each sort, and interpretations for the 

function and relation symbols in the signature. 
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Definition 3.1 
RS Sienature 

A RS signature I= <S, F, R> consists of: 

• a non-empty set S of sorts (S* denotes the set of all finite strings from S, 

including the empty string denoted by A); 
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• a non-empty S*x S indexed set, F = {Fw,s I w E S*, s E S}, where Fw,s is the 

set of function symbols with arity w, a string made up of the domain sorts of the 

functions, and sorts, the sort of the object returned by the functions (a function 

symbol fin the set Fw,s where w = s1 ... sn, will be written as f: s1,. .. ,sn • s); and 

• a non-empty S*-indexed set R = {Rw I w E S*}, where Rw is a set ofrelation 

symbols of sort w (a relation symbol r in Rw, where w = s1 ... sn, will be written 

as r: S1 ... ,Sn). 
' 

Definition 3.2 
I-RS Algebra 

For a RS signature I= <S, F, R>, an algebra with relations, A= <{As I s E S}, 

Ap, AR>, is called a I',-RS algebra if it consists of: 

• a S-indexed set, {As Is E S}, called the carrier sets; 

• a S* x S-indexed family of functions Ap = { Aw,s : Fw,s • [Aw 1 • As] I w E S*, 

s E S}, which consists of functions mapping function symbols in F to partial 

functions, where [Aw • As] denotes the set of all partial functions from Aw to 

As; and 

• an S*-indexed family of functions AR= {ARw: Rw • Atupw I w E S*}, which 

consists of functions mapping the relation symbols in R to elements in Atupw, 

where Atupw is the set of all sets whose elements are Aw tuples. 

The interpretation of a function or relation symbol, t, in an algebra, A, is 

denoted by tA. Relation symbols are interpreted as sets of tuples, where each tuple 

of the set signifies that the relation represented by the symbol holds amongst the 

objects in the tuple. 

Example 3.1 gives an example of a signature and an algebra for the signature. 

1Aw, where W=(sL.sn) ES*, represents the cartesian product A51x ... x Asn• 
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L(Natnum) = 
Signature 

sorts nat 
constructors 

0: • nat 

Example 3.1 
A signature for natural numbers 

succ: nat • nat 
auxiliary functions 

+ : nat, nat • nat 
rel.-ations 

_<_: nat, nat 

An algebra, A, for I,(Natnum) can be defined where Anat is the set of natural 
numbers, + is mapped to the addition function on natural numbers, and < is 
mapped to the relation "is less than" defined on natural numbers. 
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Every signature, I,, defines a set of syntactically correct expressions, called 

welljormed terms, built using the function and relation symbols of I,. Such terms 

can be partitioned into two sets: a set of function terms, called F-terms, and a set of 

relation terms, called R-terms. 

Definition 3.3 
Well-formed F-terms 

For a signature I,= <S, F, R>, and an S-sorted set {Xs Is e S} of symbols called 

variables, the set of welljormedfunction terms, called F-terms, of sorts in S with 

variables is defined as the least set, T(F, X)s, having the following properties: 

• all variables x in Xs are F-terms of sorts, 

• all constant symbols, f : • s (i.e. function symbols with arity A, and sort s), in 

F are F-terms of sort s, 

• for all function symbols f: s1, ... , Sn • sin F (n >0) and all F-terms t1, ... ,tn of 

sorts s1 ... , Sn respectively, f(t1, ... ,tn) is a F-term of sort s. 

A ground F-term is a F-term containing no variables (i.e. elements in X). The 

set of ground F-terms of sorts is denoted by T(F)s. A constructor term is a term 

which consists only of constructor symbols and variables. Thus a constructor term 

is of the form c(c1 ... ,cn) where c is a constructor and c1 ... , Cn are constructor , ' 
terms. The set of all ground constructor terms of sort s is denoted by Tc(F)s-
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Definition 3.4 
Well-formed R-terms 

Given a signature I,= <S,F,R>, the set of well-formed relation terms, called R­
terms , of type w E S* , with free variables from an S-sorted set {Xs I s ES) of 
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symbols called variables, is defined as the least set, T(R,X)w, having the following 

property: 

• for all relation symbols r : s1, ... ,sn in R (n>0), and all F-terms t1,. .. ,tn of sorts 

s1, ... ,sn respectively, r(t1. ... ,tn) is a R-term of type w = s1 ... sn, 

A ground relational term is a R-term containing no variables. The set of 

ground R-terms of type w E S*, is denoted by T(R)w. The union of the set of F-

and R-terms will be denoted by T(I,,X), and the terms are collectively called 1:­
terms. The set of ground I,-terms is denoted by T(I,). 

Example 3.2 
Examples of F- and R-terms 

Examples of F-terms from the signature in Example 3.1 are succ(succ(0)), 

succ(x)+succ(succ(succ(x))), where succ(succ(0)) is a ground constructor term. 

Examples of R-terms from the same signature are succ(x)+succ(succ(x))<succ(0) 

and succ(0)<0, where succ(0)<0 is a ground relation term. 

The 'evaluation' of a I,-term in a I,-algebra is intuitively captured by the 

notion of an interpretation. For a I,-algebra, A = < { As I s E S), Ap, AR>, a S­

indexed set of variables { Xs I s E S ) , and a S-indexed family of partial functions V 

= {vs I Vs: Xs ~ As), an interpretation with respect to V, of a I,-term tin A, 

denoted by V it), is defined as follows : 

(1) VA(Xs) = Vs(Xs) for Xs E Xs. 

(2) VA(f(t1, ... ,tn)) = fA(VA(t1), ... , VA(tn)) for f E F, provided that every VA(ti), 

1:s;i:s;n, is defined and the n-tuple (VA(t1) ... V A(tn)) is in the domain of fA. 

Otherwise Vif(tl, ... , tn)) is undefined. 

(3) VA(r(t1, .. ,,tn)) = (VA(t1) ... VA(tn)) forr E Rel (the set of relation symbols in 

I,), provided that every VA(ti), 1:s;i:s;n, is defined, and (VA(t1) ... VA(tn)) E rA. 

Otherwise V A(r(t1, .. ,,tn)) is undefined. 

The interpretation of a ground term t' in an algebra A does not depend on V, 

and its unique interpretation is denoted by t'A-

Every I,-algebra, A, contains a least sub algebra A' which is finitely 

generated by the constants in I,. If A does not contain a proper sub algebra (i.e. A 

= A') then A is called afinitely generated algebra [WB82]. Ground terms define a 
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special finitely generated I.-algebra called the };-term algebra, denoted by T:1:, with 

the carrier sets T(F)5 for s E S, functions f: T(F)s1, ... , T(F)sn • T(F)s mapping 

(t1, ... ,tn) to the term f(t1, .. ,,tn), for f E F, and a set {r(t1, .. ,,tn) I r(t1, .. ,,tn) E 

T(R)w} for each relation symbol, r E R with type w = s1, .. ,,sn, 

An interpretation, VA• from T(I., X) into a I,-algebra A induces a congruence 

on the F-terms, =A, called the strong equality of A, defined as follows: 

t =At' if and only if tA = t'A 

that is the F-terms t and t' are congruent with respect to the algebra A if and only if 

either both F-terms are undefined in A or both F-terms are defined in A and their 

interpretations are equal. 

The definedness of I.-terms in an algebra A is determined by associating a 

predicate, called an ok-predicate, with each sort in I., defined over the terms of the 

sort as follows: 

DA(t) = true if VA(t) is defined, and 

D A(t) = false if V A(t) is not defined, where tis a term of sort s, and D is the ok­

predicate associated with the sort. 

Properties of the objects declared in a I.-signature are implicitly expressed by 

statements, called laws, in a first-order language of I.-terms. Such laws 

characterize the behaviour of the functions and relations on the objects by 

establishing relationships between them. Well-formed I.-laws are defined in 

Definition 3.5. 

Definition 3.5 
Well-formed positive-negative conditional I.-laws 

A well-formed positive-negative conditional I:-law has the following form : 

• (/\i=l...j okciCtD) /\ (/\i=l ... l (Okai(Ui) /\ okai(vi) /\ Ui = vi)) /\ (/\i=l...n (okbiCu\) /\ 

okbi(v'i) /\ u\ :;t: v'i)) /\ (/\i=1...o rdi(w)) /\ (/\i=l...p ~r'eiCw')) • C, 

where ti, Ui, Vi, u\, v'i are F-terms in T(I.,X), okci, okai and okbi are ok-predicates, 

ai, bi, ci, di, and ei are sorts, and rdi(w)and r'eiCw') are R-terms in T(I,,X). C is 

either of the form ok(t), z, or x = y, where z is a R-term and t, x, and y are F-terms 

in T(I,,X). C is called the consequence, while the expression to the left of the 

implication symbol, •, is called the antecedent of the law. A literal of the form ~r, 

where r is a R-term, is called a negated relation (n-relation). 

A closed law is a formula having no free variables, while a ground law is one 

which has no variables. 

Well-formed I,-laws are assumed to be universally quantified on defined terms 

only. 
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A Ii-algebra, A, satisfies a I-law, <; of the form given in Definition 3.5, 

denoted by A I=<;, if and only if for all interpretations VA: 

• okciA(ti), i = 1 to j, and 

• okaiACuD /\ okaiA(vi) /\ Ui =A Vi, i = 1 to 1, and 

• okbiACu'i) /\ okbiA(v'i) /\ u'i :f::A v'i , i = 1 ton (i.e. u'i and v'i do not have equal 

interpretations), and 

• rdi(w) E rdiA, i = 1 too, and 

• r'eiCw') e r'eiA, i = 1 to p, 

implies that okA(t), or x =A y, or, for z = r(t), z e rA, depending on the form of the 

consequence. 

A formal definition of the structure of a RS can now be given. 

Definition 3.6 
Positive-negative relational specification (RS) 

A positive-negative relational specification (RS) PR = <Ii+OK, E> consists of a 

signature, I,+OK, where OK is a set of ok-predicate symbols for each sort in I,, 

and a set E of well-formed I-laws. 

The class of algebras satisfying the laws of a RS is denoted by Alg ;E.E. In 

presenting the laws of an RS a comma is used in place of the symbol/\, and the 

following short form is used: 

• A law u • v, where ti are the free variables occurring in u • v, is the short 

form for (J\i=l. .. j okciCti)) /\ u • v, for example a law f(xl, x2) = g(x3) is the 

short form for okl(xl) /\ ok2(x2) /\ ok3(x3) • f(xl, x2) = g(x3), where oki is 

the ok-predicate associated with the sort of xi, 1:s;i::;;3. 

RS laws are derived and presented in a modular fashion, with each non­

constructor and relation symbol, of the RS being associated with a unique set of 

laws, called its characterizing set, which characterizes the function or relation. 

Characterizing sets are presented so that they are distinguishable: the characterizing 

set for a function symbol, f, consists of all laws in which f appears in the 

consequence as the outermost symbol on the left hand side of the equality, while the 

characterizing set of a relation symbol, r, consists of all the laws in which r appears 

as the outermost symbol of the consequence. Example 3.3 has examples of 

characterizing sets. 

The defined objects of a sort are characterized in an RS by the set of laws 

whose consequences have ok-predicate symbols of the sort as the outermost 

symbols (the characterizing set of the ok-predicate). 
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Example 3.3 
An RS characterizing natural numbers 

Natnum = 
Signature 

sorts nat 
constructors 

0: • nat 
succ: nat • nat 

auxiliary functions 
_+_: nat, nat • nat 

ck-predicates 
oknat: nat 

relations 
< : nat, nat 

Laws °9 x, xl, x2:nat 
Characterizing set for oknat 
1. oknat(O) 
2. oknat(succ(x)) 
Characterizing set for+ 
3. x+O = x 
4. xl+succ(x2) = succ(xl+x2) 
Characterizing set for< 
5. O<succ(x) = true 
6. xl<x2 =true • succ(xl)<succ(x2) true 
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The modular approach for presenting laws is not enough to control the 

complexity in large RSs. Two syntactic concepts which have proved useful in this 

respect are hierarchy [WB82] and schemas. The aim is to control complexity by 

permitting complex specifications to be built up from simpler and/or generic 

specifications. 

3.1.2 Hierarchical RSs 

A hierarchical RS provides a leveled view of a specification, where each 

lower level contains RSs that are simpler than those at the higher levels. Thus an 

understanding of the RS is based on an understanding of its simpler components. 

Hierarchical RSs are defined in Defintion 3.7. 

Note that every primitive term is of primitive sort but a term of primitive sort 

is not necessarily primitive. A hierarchical RS, HS, based on primitive hierarchical 

RSs, HSI, ... , HSn, is presented in the following manner: HS= HSI+ ... + HSn 

+ Signature Sig Laws E, where Sig is the signature declaring the non-primitive 

sorts and symbols, and E is a set of laws. 
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Definition 3. 7 
Hierarchical RSs 
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A hierarchical RS HS is a triple <I, E, {P1, ... ,Pn}>, where the hierarchical RS, Pi 

(1:'.5;i:'.5;n), with signature Lpi and a set of laws Er,i, is contained in HS, i.e. Lpi is a 

subset of I,, and Epi is a subset of E. Pi is called a primitive RS of HS, and HS is 

said to be based on the RSs in {P1, ... ,Pn}. A ground term t is called primitive if t 

is built solely from symbols declared in the primitive RSs (primitive symbols). A F­

term t' is said to be of primitive sort if t' is of sort s and s is a sort declared in a 

primitive RS (primitive sort). 

In order to preserve the algebraic interpretations of primitive RSs within the 

context of hierarchical RSs the notion of hierarchy-constraints is used. An algebra 

satisfies the hierarchy-constraints if the primitive carrier sets are built only by 

interpretations on the primitive ground terms [WB82]. Intuitively, this means that 

non-primitive constructors cannot create new objects of a primitive sort. 

Definition 3.8 
Reducts and hierarchy constraints 

Let A be a I,-RS algebra, and let I,' be a sub signature of I, (i.e. the set of sorts 

and symbols of I,' is a subset of the set of sorts and symbols of I,). The J;' reduct 

of A, denoted by AII,', is the I,'-algebra whose carriers, functions and relations are 

those of A named in I,'. The I,'-sub algebra of A generated by the relation, and 

function symbols in I,', is denoted by <A>2;. An algebra A satisfies the hierarchy 

constraints with respect to I;' if and only if AII,' = <A>:r:, that is the I,'-reduct of 

A is a finitely generated algebra. 

The above can be extended to hierarchy-constraints with respect to a set of 

signatures by considering all hierarchy constraints with respect to the signatures in 

the set. For any hierarchical RS <I, E, {P1, ... ,Pn}>, the class of all finitely­

generated I-algebras which satisfy the hierarchy constraints with respect to { Lpi I 

l:'.5;i:'.5;n}, and the laws of E, is denoted by HAlg(I,, E, SP), where SP = 
{ P1, ... ,P n}. In Section 3.4 it is shown that a sufficient completeness condition, 

derived from an operational interpretation of RSs, ensures the existence of such 

algebras. 

The hierarchical and modular approach to presenting RS functions determines 

a relationship on the function symbols, <h, defined as follows: 
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Definition 3.9 
The relation <h on function symbols 

For a hierarchical RS, <I.. E, SP>,f <hg , where f, g E I, if and only if: 

• f is a primitive function symbol and g is a non-primitive function symbol; or 

• f is a constructor and g is a non-constructor at the same level as f; or 

• f and g are function symbols at the same level and f appears as the outermost 

symbol of a sub term in the characterizing set of g, and g does not appear as the 

outermost symbol of any sub term in the characterizing set off. 

The above relation is used as part of a syntactic check on the sufficient 

completeness property mentioned above, given later in this chapter. 

Example 3.4 
Characterizing the natural numbers by a hierarchical RS 

Setnum = Boolean + Natnum + 
Signature 

sorts setnum 
constructors 

0 : • setnum 
--- constant symbol for an empty set 

insert : nat, setnum • setnum 
--- symbol for the function which adds a natural number to a 
set -

auxiliary functions 
isempty : setnum • boolean 

symbol for the function which returns the value true if 
and only if the set is empty 

isin : nat, setnum • boolean 
symbol for the function which returns the value true if 

and onlv if the natural number is in the set ---
Example 3.4 continued 
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Example 3.4 ( continued) 
Characterizing the natural numbers by a hierarchical RS 

issubset : setnum, setnum • boolean 
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--- symbol for the function which returns the value true if 
and only if the leftmost set of the argument is a subset of 
the rightmost set ---

_-int-_, + : setnum, setnum • set 
--- int is the symbol for the function which returns set 
which is an intersection of the two sets, and+ is the symbol 
for the function which returns the union of the two sets ---

ck-predicate 
okset : setnum 

Laws Vn,nl,n2:nat; s,sl,s2:setnum 
Laws characterizing isempty 
Sl isempty(0) = true 
S2 isempty(insert(n,s)) = false 
Laws characterizing isin 
S3 nl = n2 =>isin(nl,insert(n2, s)) = true 
S4 nl c.c n2=>isin(nl,insert(n2,s)) = isin(nl,s) 
S5 isin(n,0) = false 
Laws characterizing issubset 
S6 issubset(0,s) = true 
S7 isin (n, s2) = true=> 

issubset(insert(n,sl),s2) = issubset(sl,s2) 
S8 isin(n,s2) = false=>issubset(insert(n,sl),s2) = false 
Laws characterizing+ 
S9 insert (n, sl) +s2 = insert (n, (sl+s2)) 
S1O 0+s = s 
Laws characterizing int 
S11 0-int-s = 0 
S12 isin(n,s2) =true=> 

insert(n,sl)-int-s2 = insert(n, sl-int-s2) 
S13 isin(n,s2) = false=>insert(n,sl)-int-s2 = sl-int-s2 
Laws characterizing okset 
S14 okset (0) 
S15 isin (n, s) = false => okset (insert (n, s)) 

The non-primitive sort is setnum, representing sets of natural numbers, and the 
primitive sorts are the sorts of Boolean and Natnum (i.e. nat for Natnum, and 
boolean for Boolean). The symbols isempty, isin, and is subset are 
non-primitive symbols of primitive sort boolean.Characterizing sets are preceded 
by headings ( eg. the characterizing set for - int - is { s 11, s 12, s 13} ). The 
following are examples of relations in <h: succ<hf and <<hf, where f is a non­
primitive symbol, isin<hissubset, isin<hisempty, and isin<h-int-. 
The following points about the above RS are made briefly here, but will be 
extended upon in later sections of this chapter. 
• The left hand side of the consequences of each law are of the form f(cl, ... , en) 

where ci (1~:s;n) is a constructor term. The form of the laws is in keeping with 
the notion of constructors as the only creators of new objects of the sort , 
implying that all terms of a sort should be expressible as a constructor term. This 
notion is formalized when the model and operational semantics for RSs are 
discussed. 

• Note that the RS does not contain any laws expressing the commutativity of the 
functions+ and -int-. Such laws are left implicit in the RS. How such laws 
are made explicit is described in Section 3.2 
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3.1.3 RS Schemas 

Example 3.4 illustrates a RS characterizing the set of natural numbers. A 

similar characterization for sets of other objects can be made. Rather than build 

separate RSs for each such characterization, the similarity in the structure of the 

RSs can be used to derive a generic specification, from which particular RSs can be 

generated when provided with parameters. A RS schema is such a generic 

specification, and can have one of the following structures: 

• PS(P1 with {I,1; Li}, .. ,,Pn with {I,n; Ln}) = Prim1 + ... +Primm+ Signature 

Sig Laws E, where Pi is a RS name, called a parameter name, L (l;S;i;S;n) is a 

signature, and Li (lsisn) is a set of laws, called constraints, Primi is a primitive 

RS, Sig is the signature declaring the non-primitive sorts and symbols, Eis a set 

of laws. An RS is generated from a schema of the above form by providing an 

RS, Pari = <Lpi, Epi, SPpi > for each Pi, such that L-i is a subset of Lpi, and 

Li is a subset of Epi, for l;S;i;S;n. Such RSs are called RS parameters of the 

schema. The result is an RS which is the smallest extension of the RS 

parameters and the hierarchical specification on the right of the = symbol. 

• PS( Par1, ... , Parn where Par1 is [P11, ... ,P1pL ... , Parn is [Pn1, .. ,,PnqD = 
Prim1 + ... + Primm+ Signature Sig Laws E, where Pari (1::;i;S;n) is a parameter 

name, and Pij (1::;i;S;n) is a hierarchical RS. This is a more restrictive form of a 

schema than the one given above since only the hierarchical RSs associated with 

the parameter names by is can be used as RS parameters for the names. The 

result, as in the previous case, is an RS which is the smallest extension of the 

RS parameters and the hierarchical specification on the right of the = symbol. 

Example 3.5 
A RS schema for sets, based on the primitive RS, Boolean, characterizing a two­

valued boolean algebra 

Set (Element with { Signature sorts elem)) = Boolean + 
Signature 

sorts set 
constructors 

0 : • set 
insert : elem, set • set 

auxiliary functions 
isempty : set • boolean 
isin : elem, set • boolean 
issubset : set, set • boolean 
-int-, + : set, set • set 

Laws -V e;-el ~e2: el.em; s, sl, s2: set 
Laws characterizing isempty 
Sl isempty(0) = true 
S2 isemotv (insert (e, s)) = false 

Example 3.5 continued 
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Example 3.5 ( continued) 
A RS schema for sets, based on the primitive RS, Boolean, characterizing a two­

valued boolean algebra 

Laws characterizing 1s1n 
S3 isin(e,insert(e, s)) = true 
S4 el # e2 • isin (el, insert (e2, s)) 
S5 isin(e,0) = false 
Laws characterizing issubset 
S6 issubset(0,s) = true 
S7 isin (e, s2) = true • 

isin(el,s) 

issubset(insert(e,sl),s2) = issubset(sl,s2) 
S8 isin (e, s2) = false • issubset (insert (e, sl), s2) false 
Laws characterizing+ 
S9 insert(e,sl)+s2 = insert(e, (sl+s2)) 
S1O 0+s = s 
Laws characterizing int 
S11 0-int-s = 0 
S12 isin(e,s2) =true • 

insert(e,sl)-int-s2 = insert(e, sl-int-s2) 
S13 isin(e,s2) =false • insert(e,sl)-int-s2 = sl-int-s2 
Laws characterizing okset 
S14 okset (0) 
S15 isin (e, s) = false • okset (insert (n, s)) 

3.2 Model-theoretic interpretation of RSs 
In formulating the laws of a RS, certain information, in the form of assumed 

inequalities and equalities between ground constructor terms, and n-relations, is left 

implicit. The set of inequations, equations, and n-relations that are left implicit in 

RS laws are called assumptions. Of the models which satisfy the laws of an RS, 

only those that also satisfy the assumptions of the RS are of interest. Of these 

algebras, the finitely generated algebras which satisfy the hierarchy-constraints are 

considered as useful semantic models of RSs. Specifically, algebras whose 

elements are all generated by constructors only, are desirable, since they provide a 

formalization of the intuitive notion of a constructor as the sole creators of objects. 

For a hierarchical RS, <L E, SP>, one is thus interested in the algebras in 

HAlg(I,, E, SP) which also satisfy the assumptions. Let a= µ+µ'+ri, where µ 

represents the inequality assumptions, µ' represents the equality assumptions, and 

ri represents then-relation assumptions. MI,,E+a represents the subclass of algebras 

in HAlg(I,, E, SP) that also satisfy the assumptions a. The algebras in MI,,E+a are 

called the models of the associated RS. 

3.2.1 Equality and inequality assumptions 

The approach to specifying inequality and equality assumptions is adapted 

from the work of Mohan et al [MS87]. In their work, inequality assumptions are 
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inequalities between all ground constructor terms, that is, µ = { <x,y> I x = 
cl(xl, ... ,xn); y = c2(yl, ... ,yn); cl, c2 E C 5 ; xl, ... , xn, yl, ... , yn E Tc(F)}, 

where Cs is the set of constructors of sort s, and Tc(F) is the set of ground 

constructor terms derived from the symbols in F. This approach assumes a sub 

language of constructor terms which is 'free' in the sense that all constructor terms 

are assumed distinct. 

The approach used here assumes a sub language of defined ground 

constructor terms2 which are not all distinct. In such a sub language the constructor 

terms are not all distinct, for example, in a specification of sets, not all set 

constructor terms should be assumed distinct. In order to determine which ground 

constructor terms are equal, and which are distinct, a well-defined mapping, called 

a normalizing function, is associated with each sort of a RS. A normalizing function 

for a sort s takes a ground constructor term of sort s and returns a ground 

constructor term of sort s, called its normal term. 

All normal terms of a sort are considered distinct. This provides the basis for 

generating equality and inequality assumptions as follows: 

• ground constructor terms which map into the same normal term are equal, while 

• ground constructor terms which map into different normal terms are distinct. 

Normalizing functions are defined below. 

Definition 3.10 
Normalizing functions 

For any hierarchical RS, HS= <2,, E, SP>, where I.=<S, F>, there is associated a 

S-indexed family of normalizing functions, N = {N5 : Tc(F)s • Tc(F)5 I s E S}. N8 

is a mapping from defined ground constructor terms of sort s to defined ground 

constructor terms of sorts, such that for any ground constructor term, c(x1, ... ,xn), 

of sorts, where x1, ... , Xn are defined ground constructor terms (primitive or non­

primitive) of sorts sl, ... , sn respectively, N 5 (c(x1, ... ,xn)) = 

NsC c(Ns1 (x 1), ... ,Ns2Cxn)) ). 

Normalizing functions can be based on a total ordering on defined constructor 

terms, in which case they simply order the sub terms of their ground constructor 

term arguments in order to derive a unique normal term. An example of a 

normalizing functions is given in Example 3.6. 

2 All subsequent references to constructor terms in this section are nctually 
references to defined constructor terms. Undefined constructor terms are 
considered equal. 
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Example 3.6 
Normalizing functions for sets 
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Consider two defined constructor terms of sort setnum given in Example 3.4: 

insert( e,i nsert( d,insert(f ,empty))) and insert(f ,insert( d,insert( e,empty)) ), 

where e, d, and fare of sort natnum. They should have equal interpretations in 

any model for Setnum, since they represent sets with the same elements, thus they 

should be mapped to the same normal term by the normalizing function for the sort 

setnum. The ordering< characterized in Natnum can be used as a basis for the 

normalizing function for set. Thus, if d<e<f, and a normal term of setnum is 

defined as a set of natural numbers in ascending order, the two ground constructor 

terms are mapped into the normal term insert(d,insert(e,insert(f,empty))) by the 

normalizing function for setnum. 

The equality and inequality assumptions for a RS are made explicit in the 

manner defined in Definition 3.11. 

Definition 3.11 
Inequality and equality assumptions 

Given a hierarchical RS, <I. E, SP>, where~= <S, F>, the equality assumption 

set associated with the RS is the set Q = µ'p1+ ... +µ'pn+µ', where µ'p1+ ... +µ'pn is 

the union of the equality assumption sets of the primitive RSs P1, ... ,Pn in SP, and 

µ' is the union of a family of S-indexed sets consisting of sets µ's = { <x,y> I N5(x) 

= Ns(y); x, y E s}, where N5 is the normalizing function for s E S. The inequality 

assumption set associated with the RS is the set I = µpl+ ... +µpn+µ, where 

µP 1 + ... +µpn is the union of the inequality assumption sets of the primitive RSs 

P1, ... ,Pn in SP, andµ is the union of a S-indexed family of sets consisting of the 

sets µs = { <x,y> I Ns(x) * N5(y); x, y E s}, where Ns is the normalizing function 

for s E S. 

To summarize, RSs are formulated partially based on assumptions made on 

the equality and inequality of terms in a sub language of ground constructor terms. 

To make such assumptions explicit, each RS is associated with a set of normalizing 

functions which generate normal terms. A pair of defined ground constructor terms 

which map to the same normal term is called an equality assumption, while a pair of 

defined ground constructor terms of the same sort mapping to different normal 

terms is called an inequality assumption. The set of all equality (inequality) 

assumptions of a RS is called the equality (inequality) assumption set of the RS. 
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3.2.2 Negated relation assumptions 

N-relation assumptions concern the relationships that must hold amongst 

defined ground terms. They are based on an implicit operational interpretation for 

relations, where relations on ground terms whose truth cannot be 'deduced' are 

false. Deduction is based on an operational semantics for RSs detailed in the next 

section. The generation of these assumptions thus depends on the operational 

semantics of RSs. 

3.3 An operational semantics for RSs 
A useful operational semantics, in terms of conditional term rewriting systems 

(CTRSs), can be associated with RSs, provided the RSs satisfy certain syntactic 

conditions. The operational semantics is useful in the sense that it provides 

computationally effective representations of the objects abstractly characterized by 

the laws and assumptions of the RS. In this section it is shown that for any RS, 

<L E>, satisfying the syntactic conditions referred to above, rewriting in the 

derived CTRS is sound and complete with respect to MI,E+a. where a are the 

assumptions associated with the RS. Furthermore, such rewriting determines a 

canonical algebra in MI,,E+a. consisting exactly of the normal terms generated by 

the normalizing functions (the "effective representation"). When such an operational 

semantics can be associated with a RS, the canonical algebra is taken as the 

semantic model for the RS. Note, however, that if an operational semantics cannot 

be associated with the RS, then a model-theoretic interpretation, in terms of 

MI,E+a. is not possible, since the n-relation assumptions in a cannot be made 

explicit. 

The particular type of CTRSs and the sufficient conditions ensuring 

soundness and completeness, are detailed in the following sections. Some 

preliminary concepts and definitions are introduced here. A more detailed account 

of the following definitions, together with an introduction to CTRSs, can be found 

in Appendix I. 

Let T(I,, X) be the set of all well-formed terms formed from the symbols in 

the signature I,= <S, F>, and the elements in X (called variables). 

• The function Var takes a term in T(I,, X) and returns the set of variables 

occurring in it. 

• A substitution, a, is a mapping from X to T(F, X), with cr(x) = x almost 

everywhere. A defined substitution is a mapping from X to defined terms in 

T(F, X) only. Substitutions are extended to morphisms of T(I,, X) as follows: 

cr(f(t1, ... ,tn)) = f(crt1, ... ,crtn). 
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• The relative occurrence (or position) of a sub term in a term is represented by a 

sequence of positive integers, where the empty sequence is denoted by A. Let 

O(t) denote the set of all sub term occurrences in the term t. The sub term oft at 

1t, where 1t is a sequence of positive integers, denoted by tin is defined as 

follows: 

• If t = x E X, the O(t) = A, and tlA = t. 
• If t = f(t1, ... ,tn), then O(t) = {A}+{i1t I ls;is;n, 1t E O(ti)}, tlA = t, and tli1t 

= til1t. 

• The replacement of a sub term at an occurrence 1t in t, by another term t', is 

denoted by t[n<-t']. 

3.3.1 Relational conditional term rewriting systems (R-CTRSs) 

A relational conditional term rewriting system (R-CTRS), that can be 

associated with RSs is defined in Definition 3.12. 

Normalizing functions and ok-predicates play the same roles in R-CTRSs as 

they do in RSs. A RS law can be transformed into a R-CTRS rule if the 

consequences of the laws can be oriented and the antecedents satisfy the conditions 

on R-CTRS rules given in Definition 3.12. 

• R induces a relationship, called a rewrite relation, on the terms in T(LX), 

which can be informally described as follows: t rewrites tot', or t• Rt' if there is a 

rule in the R-CTRS, with a consequence whose left hand side matches a sub term 

oft, after suitable substitution, and whose premises hold under the substitutions 

resulting from the match, such that t' is the result of replacing the matching sub 

term in t by the substituted rhs of the rule. Before a formal definition of rewriting is 

given, some notation is introduced. 

Rewriting in zero or more steps, or the transitive closure of • R, is denoted 

by • * R • If a term t is minimal with respect to • * R (i.e. there is no t' such that 

t• Rt') then tis called a normal form. The set of all normal forms is denoted by :N. 

t• NRt' if and only if t' is a normal form and t' is called a normal form oft. The 

following relationships are derived from • R: 

• tJ,t' if and only if 3 tl such that t• *Rtl and t' • *Rtl. 

• tit' if and only if 3 tl such that tl • *Rt and tl • *Rt'. 

Rewriting in a R-CTRS is formally defined in Definition 3.13. 
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Definition 3.12 
Relational conditional term rewriting systems 

A relational conditional term rewriting system (R-CTRS) is a triple <2,, RR, N> 

consisting of: 
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• a signature, I= <S, F, R, OK>, where S is a set of sorts, Fis a set of function 

symbols, with a special subset of symbols called constructors, R is a set of 

relation symbols, and OK is a set of predicate symbols, one each for the sorts in 

S, called ok-predicates; 

• a set of rules, RR, of the form 

( Ui = Vi)i=l...l, ( u\ * v\)i=l...n, (rJi=l...o, ( ~r\)i=l. .. p • C, 

where C (called the consequence) is one of the following forms: 

(1) an oriented pair of F-terms, t• Rt', t,t' E T(F, X), where tis called the 

left hand side (lhs) and t' is called the right hand side (rhs), such that 

(Var(ui), Var(vi))i=1...1, (Var(u'i), Var(v\))i=1. .. n, Var(ri);=1...o, Var(r\);=1. .. p, 

Var(t') are all subsets of Var(t); 

(2) an oriented pair, r• R TT, where r E T(R, X), such that (V ar(ui), 

Var(vi))i=!. .. l, (Var(u\), Var(v\)}=1...n, Var(ri)i=l. .. o, Var(r\)i=l...p are all 

subsets of V ar(r); or 

(3) an oriented pair ok(t) • R TT, where ok E OK and t E T(F, X), such 

that (Var(ui), Var(vi));=1...1, (Var(u\), Var(v\));=1...n, Var(ri)i=l. .. o, 

Var(r\);=1. .. p are all subsets ofVar(t) 

• a set of partial functions, N, called normalizing functions, which map ground 

constructor terms to ground constructor terms. The set contains exactly one 

function for each sort in S. 

Definition 3.13 
Rewrite relation 

A ground term t is said to rewrite to a ground term t' under a relational conditional 

term rewriting system (R-CTRS), R, denoted by t• Rt', if and only if there is a rule 

in r: (ui = Vj)i=1. .. 1, (u'i-# v'j)i=1 ... n, (ri);=1 ... o, (~r\);=1. .. p • lhs• Rrhs in R such that: 

Match and replace 

• there exists a defined substitution cr, and an occurrence 1t in t such that tin = crlhs 

and t' = t[n<-crrhs], 

Convergence of R-terms 

( '""'"·-----'-* TT). • V.L1---, R 1=1. .• o, 

Definition 3.13 continued 
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Definition 3.13 (continued) 
Rewrite relation 

Non-convergence of R-terms 

• (NOT(crr'i• *RTT)L1...p, 

Convergence of F-terms 

• (okai(O"lli)• *RTT, okaiCcrvi)• *RTT)i=1...1, and ((crui.J,crvi), or (O"lli• *Rcl, 

crvi• *Rc2, and Nai(cl) = NaiCc2); cl, c2 E Tc(F)aD)i=i. .. 1, where Nai is the 

normalizing function for the sort ai, and 

Non-convergence of F-terms 

• (okbiCcru\)• *RTT, okbiCcrv\)• *RTT\=1. .. n and (NOT(cru\.J,crv\));.1. .. n, and 

(011\• *Rcl, crv\• *Rc2 • Nbi(cl) -:t:- Nbi(c2); cl, c2 E Tc(F)bi)i=l...n, 

where Nbi is the normalizing function for the sort bi. 
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A ground term t, of sorts, is said to be defined in R, if and only if oks(t)• *RTT, 

where oks is the ok-predicate for s. 

Note that rewriting under a R-CTRS is defined only on ground terms. It can 

be extended to terms with variables by treating the variables as constants in the 

rewriting relationship. In such a situation the rewriting relationship is not closed 

since t• Rt' does not imply crt• Rcrt' [Kap87]. For this reason, only term rewriting 

on ground terms is considered here. 

To show the non-convergence of a R-term it is necessary to have a finite 

number of reduction steps starting from the R-term. Non-convergence then occurs 

when the final term in the reduction sequence is not TT. Similarly, to show the non­

convergence of a pair of F-terms, t and t', it is necessary to have a finite number of 

reduction steps starting each from t and t'. Non-convergence then occurs when the 

reducts generated by t are all distinct from the reducts generated by t', and for any 

ground constructor term reducts c 1 generated by t and c2 generated by t', the 

normal terms corresponding to them are distinct. Thus there may be cases where it 

cannot be determined that t• Rt' in a R-CTRS, R, as illustrated in Example 3.7. 
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Example 3.7 
Examples of situations where convergence and non-convergence of rewriting 

cannot be determined 

The example CTRS given below is taken from [MS87]. In the R-CTRS R = (f(x) -:,t. 

g(y) • h(x,y) • c; f(a) • g(a); g(a) • f(a)}, it is not possible to conclude that 

h(a,b) • c since there is an infinite reduction sequence starting from f(a) thus 

reduction from h(a,b) does not terminate. It is not also possible to conclude that 

NOT(h(a,b)• c) since f(a) and g(b) cannot be shown to converge. 

• R is said to be noetherian, or terminating, if and only if there is no infinite 

sequence tl • Rt2 • R ... • Rtn• R ... (i.e. when • R is well-founded). An 

important property of term rewriting systems is confluence. • R is said to be 

confluent if and only if, Vt,t' tJ,t' = tit'. In a confluent and terminating CTRS 

every term is rewritten to a unique normal form. 

3. 3. 2 Sufficient conditions for termination and confluence of R­

CTRSs 

Termination and confluence are properties R-CTRSs need to have in order to 

be sound and complete, as is shown later. In what follows, sufficient conditions for 

ensuring termination, and confluence are given. 

In unconditional term rewriting systems, one-step rewriting obviously 

terminates. This is not the case for CTRSs, since one-step rewriting also involves 

recursive calls to the evaluation procedure for evaluating the premises of the rule. 

Infinite calls to the evaluating procedure are thus possible. In order to avoid such 

infinite calls Kaplan suggests the use of a simplification ordering on terms, which 

makes the literals in the antecedents of rules, in some sense, "simpler" than their 

consequences [Kap84]. A similar type of ordering, based on the relationship <h on 

function symbols, defined in Definition 3.8, is used here. The following 

proposition states how such an ordering can be used to check for termination of 

rewriting in a R-CTRS. 

Proposition 3.1 An R-CTRS, R, is terminating if: 

(1) <h is a partial ordering on T(F) 

(2) for every rule with consequent f(s) • rhs, every sub term of rhs and every sub 

term of the terms appearing in the premises, g(t), is either: 

• g<hf, or 

• NOT(f<hg), and t%S, where % is the multi-set ordering on terms based on 

<h· (See Appendix I) 
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The proof of Proposition 3.1 can be found in Appendix II. 

Example 3.8 
An example of termination 

The set of rules { O<succ(x) = true; x <y = true => succ(x)<succ(y) = true}, taken 

from the RS Natnum in Example 3.3, is terminating since true<h<, and {x, 

Y}«h{succ(x), succ(y)} 

A very strong sufficient condition for confluence is used here, somewhat 

similar to the one used in [MS87]. The condition ensures that two rules of a R­

CTRS cannot be simultaneously applied to the same occurrence of a ground term 

resulting in two distinct terms. The severity of the above condition has the 

advantage that implementations of R-CTRSs are easier to design since, at any 

particular time, the rule to be used for reducing a given ground term is decidable. 

Furthermore, as will be seen later, the restriction provides a useful guideline for 

writing R-CTRSs (hence RSs) which are sufficiently complete. The above 

condition requires that arguments of the left hand sides of consequences must all be 

constructor terms only. This prevents overlaps between non-unifiable left hand 

sides. The condition also requires that if the left hand sides of two rules are 

unifiable and the corresponding instantiated right hand sides are distinct, then the 

antecedents of the rules cannot hold simultaneously. The conditions for confluence 

are formally stated below. 
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Proposition 3.2 A R-CTRS is confluent if the following conditions hold: 

(1) The consequences of a rule must have left hand sides with only constructor 

terms as proper sub terms (i.e. a lhs must be of the form f(cl, ... ,en) where 

cl, ... ,en are constructor terms); and 

(2) Let Al • lhsl • Rrhsl and A2 • lhs2• Rrhs2, be any two rules in a R 

CTRS such that there is a defined substitution, cr, which unifies lhsl and lhs2 

(i.e. crlhsl =s crlhs2 where =s symbolizes syntactic equality). Then either: 

• crrhs 1 =s crrhs2; or 

• there exists u':;t:v' E Al+A2 such that cru' and crv' have a common reduct, 

or cru' • *Rcl, oks•(cl), crv' • *Rc2, oks'(c2), and Ns•(cl) = Ns•(c2), 

where c 1 and c2 are ground constructor terms of sort s', and N s' is the 

normalizing function for the sort; or 

• there exists u = v E Al+A2 such that NOT(cruJ.crv), and if cru• *Rcl, 

oks(cl), crv• *Rc2, oks(c2), then Ns(cl) :;t: Ns(c2), where cl and c2 are 

ground constructor terms of sorts, and Ns is the normalizing function for 

the sort; or 

• there exists r E Al+A2 such that NOT(crr• *RTT); or 

• there exists ~r' E Al+A2 such that crr'• *RTT. 

The proof of Proposition 3.2 can be found in Appendix IL 

Example 3.9 
Example of ground confluence 

The RS Natnum, repeated below from Example 3.3, is ground confluent since the 
left hand sides of each rule contain only constructor terms or variables as proper 
sub terms, and at any time only one rule can be applied to a ground term. 

Natnum = 
Signature 

sorts nat 
constructors 

0: • nat 
succ: nat • nat 

auxiliary functions 
_+_: nat, nat • nat 

ok-predicates 
oknat: nat 

relations 
< : nat, nat 

Laws-V x, xl, x2:nat 
1. oknat (0) 
2. oknat(succ(x)) 
3. x+O = x 
4. xl+succ(x2) = succ(xl+x2) 
5. O<succ(x) = true 
6. x<v = true • succ (x) <succ (y) true 
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3.3.3 Correctness of R-CTRSs 

A R-CTRS determines a RS where the normalizing functions of the R-CTRS 

become the normalizing functions of the derived RS. Then-relation assumption set, 

Tl, of the RS is defined as follows: Tl= {ri(t1i, .. ,,tni) I Va, 

NOT(crri(tli, .. ,,tni)• *RTT); (okj(tji)• *RTT, tji e T(F)j\=i, ... ,n}, where okj is the ok­

predicate for the sort of the ground constructor term Cji· The conditions under which 

rewriting in a R-CTRS is sound and complete, with respect to the derived RS, or 

correctness criteria, are now given. 

An R-CTRSs, R, are said to be correct if rewriting with R is sound and 

complete in the following sense. 

Definition 3.14 
Soundness and completeness of rewriting with R-CTRSs 

Rewriting with a R-CTRS, R is sound and complete with respect to a set of 

assumptions a, if the following conditions hold: 

• Soundness : for all relational terms re T(R), r• *R TT • MI,E+a.l= r, and for all 

F-terms t, t' e T(F), ok(t) and ok(t') and t• *Rt' • MI,E+aJ= t = t'; 

• Completeness: for all relational terms r E T(R), MI.E+a.l= r • r• *RTT, and for 

all F-terms t, t' E T(F), MI,E+al= ok(t) • (Mt,E+a.l= t = t' • t• *Rt'), 

In general termination and confluence are not sufficient conditions to ensure 

the correctness of a R-CTRS. An additional criteria, which supports the intuitive 

interpretation of constructors as generators of carrier sets, is that every defined non­

constructor term in a R-CTRS, R, is reducible to a unique defined ground 

constructor term. 

Definition 3.15 
Sufficient completeness of R-CTRSs 

A R-CTRS, R, is said to be sufficiently complete if and only if the following 

conditions hold: 

• R is terminating and confluent; and 

• for every non-constructor term, f e T(F), ok(f)• *RTT • f• *Rc, where c is a 

constructor term and ok(c)• *RTT, 

Proposition 3.3 An R-CTRS is correct if it is sufficiently complete. 
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The proof of Proposition 3.3 can be found in Appendix II. A sufficiently 

complete R-CTRS generates a canonical algebra in MI,E+a, whose carrier sets are 

exactly the defined ground constructor terms. A hierarchical RS which can be 

transformed into a sufficiently complete R-CTRS is called a reducing RS, and, has 

models which reflect its hierarchical structure (i.e. the models satisfy the hierarchy­

constraints) since all defined terms are reducible to ground constructor terms, thus 

terms of a primitive sort, s, are reducible to constructor terms of sort s. This means 

that non-primitive functions do not create objects of primitive sorts. 

3.4 Summary 
This chapter detailed a new algebraic specification technique which forms the 

cornerstone of the formal framework developed in this thesis. The specifications 

generated by the technique are called positive-negative relational conditional 

specifications (RSs), since they involve conditional equations with relations, 

inequalities, and negated relations (n-relations). Inequalities and n-relations are 

provided with operational interpretations, from which a model interpretation can be 

derived based on the notion of an assumption. In the model-theoretic sense, 

assumptions are equations that are not explicitly stated in the presented form, but 

are implicit in the formulation of the RS. Inequality and equality assumptions are 

based on a sub language of defined ground constructor terms generated from 

normalizing functions associated with the RS, while n-relation assumptions are 

derived from the operational interpretation of RSs. Only the algebraic models in 

which the RS laws and the assumptions are true, and whose structure matches the 

hierarchical structure of the RS (i.e. they satisfy the hierarchy-constraints) are 

considered as useful models of a RS. The class of such algebras, for a RS <LE>, 
is denoted by MI,E+a, where a is the set of assumptions. 

The operational semantics is given in terms of a conditional term rewriting 

system (CTRS) called a relational CTRS (R-CTRS). Inequalities and n-relations are 

interpreted as the non-convergence of the terms involved. The sufficient 

completeness condition ensures that rewriting in a R-CTRS is sound and complete. 

The algebra of defined ground constructor terms generated by the R-CTRS can be 

taken as the model semantics for the RS. 



CHAPTER 4 

The Picture Level: 
Characterizing The Syntactic Aspects 

of DFDs 

4.0 Introduction 
The Picture Level (PL) is an algebraic theory characterizing the syntactic 

aspects of hierarchies of DFDs. The algebraic treatment of the syntactic aspects of 

DFDs entails viewing syntactic DFD structures as objects. The objects capturing the 

syntactic aspects of hierarchies of DFDs are called a hierarchical data flow diagrams 

(H_DFDs). H_DFDs and their components were introduced in Chapter 2, together 

with rules characterizing their structure. Such objects are said to be structurally 

correct.if they satisfy their associated rules. The PL is a formalization of the rules 

characterizing structurally correct objects, stated in Chapter 2. 

Specifically, the PL is a (positive-negative) relational specification (RS) 

named H_Plapplic, characterizing functions that construct, modify, or carry out 

observations on the syntactic objects. The laws of H_PLapplic are formal 

expressions of the rules characterizing H_DFDs and their components given in 

Chapter 2. The term representation of a syntactic object is called its PL 

representation and is taken as the formal textual representation of the object. Such 

formal representations, unlike graphical representations, are capable of being 

automatically analysed, for example, by term rewriting systems. 

In this chapter, the structure of H_PLapplic and its model and operational 

semantics are described. Section 4.1 details the building of a RS, called 

SimpleApplic, which characterizes the syntactic aspects of flat DFDs. This section 

provides the essential flavour of the approach to characterizing the syntactic aspects 

of DFDs without the complexity introduced by hierarchies. In Section 4.2, 

SimpleApplic is extended to H_Plapplic by incorporating RSs characterizing 

hierarchies of data flows and processes into SimpleApplic. 

H_Plapplic has an operational semantics in the form of a relational 

conditional rewriting system (R-CTRS) which is sufficiently complete (see Chapter 

3). The canonical model generated by the operational interpretation provides the 

model semantics for H_Plapplic. The model consists of the PL representations of 

structurally correct DFD structures. Section 4.3 describes the operational and model 

semantics for H_PLapplic. Section 4.4 discusses the limitations of the PL. 
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The flat DFD at level 1 of the hierarchy of DFDs representing the library 

application shown in Example 2.1 in Chapter 2, is repeated here as Figure 4.1, and 

will be used for illustration purposes in this chapter. 

Add­
Borrower 

a.dd_ 
m.osaqo new 

borr 

c::heckout_moseaqe 

chockout_info 

clock 

borr_ 
Update- upo.ate_l.n o 

,__ _ _. Borr-

Status update etatue ,__-"==-

Delete­
Borrower 

del 
borr 

staff 

staff 

Figure 4.1 Level 1 of the hierarchy of DFDs describing the library 

application 

4.1 Characterizing the syntactic aspects of flat DFDs 
The RS characterizing structurally correct flat DFDs is based on primitive RSs 

characterizing structurally correct external environments (EEs) and process 

structures. In tum, the RS characterizing structurally correct EEs is based on a RS 

characterizing structurally correct external entities, while the RS characterizing 

structurally correct process structures is based on RSs characterizing structurally 

correct processes and data stores. 

The following RSs are assumed available in what follows: 

• Boolean : A RS characterizing truth values, with sort boolean, and 

constant functions true and false, where true * false. 

• Flowname: A RS defining a finite set of data flow names of sort flowname. 
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•Set: A RS schema characterizing sets with the functions, insert,_+_ 

(set union)1, _-diff-_ (set difference), _-int-_ (set intersection), 

isempty, isin, and the constant function 0 (see Example 3.5 in 

Chapter 3). 

The non-constructors of the RSs used by the PL can be categorized as 

observation and auxiliary functions. Observation functions are functions which 

return sub structures of their arguments, that is, they carry out observations on the 

objects in the arguments. All other functions are called auxiliary functions. 

4.1.1 Characterizing structurally correct flat data flows 

The syntactic aspects of data flows are characterized by the RS Plflow, 

shown in Figure 4.2. Plflow characterizes the type plflow2 whose objects capture 

the syntactic aspects of data flows. The single law of the RS states that all plflows 

created from defined flownames are defined. For example, the PL representation 

of the structurally correct data flow new_ book in Figure 4.1 is 

mkflow("new_book"), where "new_book" is a structurally correct flowname. 

Plflow = Flowname + 
Signature 

sort plflow 
constructor 

mkflow: flowname • plflow 
ok-predicate 

okflow : plflow 
Laws 'ii f:flowname 

F1. okflow(mkflow(f)) 

Figure 4.2 The RS characterizing structurally correct data flows 

4.1.2 Characterizing structurally correct flat processes 

The syntactic aspects of processes are characterized by the RS Plprocess, 

shown in Figure 4.3. Plprocess characterizes the type plprocess whose objects 

encapsulate the syntactic aspects of processes. The constructor, mkplprocess, 

creates a plprocess from two sets of plflows representing the inputs and outputs of 

the process. For example, the PL representation of the process ReturnBook in 

Figure 4.1 is given in Example 4.1. 

The law characterizing the ok-predicate, okproc, formally states the rule that 

a process is structurally correct if and only if its sets of inputs and outputs are 

disjoint and are both non-empty. The observation functions getpinputs and 

getpoutputs respectively return the set of input plflows and the set of output 

1 _ marks the position of the argument for infix functions 
2 the "pl" stands for picture level and indicates that only the syntactic aspects of the data flow is of interest. 
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plflows of a plprocess. The effects of these observation functions on the PL 

representation of ReturnBook are given in Example 4.1. 

PLprocess = Set( Plflow) + 
Signature 

sort plprocess 
constructor 

mkplprocess: set(plflow), set(plflow) • plprocess 
observation functions 

getpinputs, getpoutputs: plprocess • set(plflow) 
ok-predicate 

okproc : plprocess 
Laws V in,out:set(plflow) 

Law characterizino the ok-predicate 
PR 1. isempty(in-int-out) = true, isempty(in) = false, isempty(out) =false • 

okproc(mkplprocess(in,out)) 
Laws characterizino the observation functions 
PR2. getpinputs(mkplprocess(in,out)) = in 
PR3. getpoutputs(mkplprocess(in,out)) = out 

Figure 4.3 The RS, Plprocess, characterizing structurally correct 
processes 

Example 4.1 
PL representation for the process Ret urnBook 

ReturnBook = 

mkplprocess( {mkflow("return_info"), mkflow("return_time"), mkflow("return_detail"), 

mkflow("ret_borr_list)}, 

{mkflow("return_message"), mkflow("ret_updated_book"), 

mkflow("ret_updated_borr")}) 

The effects of the observation functions on ReturnBook are as follows: 

getpinputs(ReturnBook) = {mkflow("return_info"), mkflow("return_time"), 

mkflow("retu rn_ detail"), mkflow("ret_borr _list)} 

getpoutputs(P1) = { { mkflow("retu rn_message"), mkflow("ret_updated_book"), 

mkflow("ret_updated_bo rr")} 
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4.1.3 Characterizing structurally correct flat external entities and data 

stores 

The syntactic aspects of external entities and data stores are characterized by 

the RSs Plentity and Plstore shown in Figure 4.4 and Figure 4.5. Plentity 
characterizes the type plentity whose objects encapsulate the syntactic aspects of 

external entities, while Plstore characterizes the type plstore whose objects 

encapsulate the syntactic aspects of data stores. The constructors of these types 

create objects consisting of a set of input plflows and a set of output plflows 

respectively representing the inputs and outputs of the corresponding external 

entities and data stores. Like Plprocess, both Plentity and Plstore have 

observation functions which return the input plflows and output plflows of 

plentities and plstores. Example 4.2 gives the PL representations for the external 

entity clock and the data store BOOK. 

The laws characterizing the ok-predicates for the Plentity and Plstore 
classes formally state the rules characterizing structurally correct external entities 

and data stores given in Chapter 2. These rules are repeated below. 

Fl. A structurally correct data store has a non-empty set of inputs or a non-empty 

set of outputs. Its set of inputs and set of outputs are also disjoint. 

F7. A structurally correct external entity has a non-empty set of inputs or a non­

empty set of outputs. Its set of inputs and the set of outputs are also disjoint. 

Fl is expressed by the laws EEl and EE2, while F7 is expressed by the laws 

DSl and DS2. 

Plentity = Set(Plflow) + 
Signature 

sort plentity 
constructor 

mkplentity: set(plflow), set(plflow) • plentity 
observation functions 

geteinputs, geteoutputs: plentity • set(plflow) 
ok-predicate 

okentity : plentity 
Laws V in,out:set(plflow) 

Laws characterizing the ok-predicate 
EE1. isempty(in-int-out) = true, isempty(in) =false • okproc(mkplentity(in,out)) 
EE2. isempty(in-int-out) = true, isempty(out) =false • okproc(mkplentity(in,out)) 
Laws characterizing the observation functions 
EE3. geteinputs(mkplentity(in,out)) = in 
EE4. geteoutputs(mkplentity(in,out)) = out 

Figure 4.4 The RS PLentity characterizing structurally correct external entities 
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PLstore = Set(Plflow) + 
Signature 

sort plstore 
constructor 

mkplstore: set(plflow), set(plflow) • plstore 
observation functions 

getsinputs, getsoutputs: plstore • set(plflow) 
ok-predicate 

okstore : plstore 
Laws V in,out:set(plflow) 

Law characterizing the ok-predicate 
OS1. isempty(in-int-out), isempty(in) =false=> okproc(mkplstore(in,out)) 
OS2. isempty(in-int-out), isempty(out) = false • okproc(mkplstore(in,out)) 
Laws characterizing the observation functions 
OS3. getsinputs(mkplstore(in,out)) = in 
OS4. getsoutputs(mkplstore(in,out)) = out 
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Figure 4.5 The RS PLstore characterizing structurally correct data stores 

Example 4.2 
PL representations for clock and BOOK 

clock= 

mkplentity(0, {mkflow("update_time"), mkflow("checkout_time"), 

mkflow("return_time")}) 

book= 

mkplstore( { mkflow("new _book_rec"), mkflow("out_updated_book"), 

mkflow("ret_updated_book")} 

{mkflow("copy#_list"), mkflow("deleted_book"), mkflow("out_book"), 

mkflow("return_detail")}) 

4.1.4 Characterizing structurally correct process structures 

Process structures are characterized by the RS Struct, shown in Figure 4.6. 

The objects of sort struct are process structures, and are built using three 

constructors: initstruct builds the simplest process structure consisting of exactly 

one plprocess; mkstruct1 builds a new process structure by adding a plprocess to a 

given process structure; and mkstruct2 builds a new process structure by adding a 

plstore to a given process structure. An example of the PL representation of a 

process structure is given in Example 4.3. 

The' laws, ST1, ST2, and ST3, characterizing the ok-predicate okstruct, are 

formal expressions of the rules governing the construction of structurally correct 

process structures given in Chapter 2 and repeated below: 
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F3. A structurally correct process structure has at least one process. All processes 

in a structurally correct process structure are structurally correct and are 

uniquely identified by their inputs and outputs. 

F4. All data stores in a structurally correct process structure are structurally 

correct. All the inputs of a data store in a structurally correct process structure 

are also outputs of processes in the process structure, and all the outputs of a 

data store are also inputs of processes in the process structure. Furthermore, 

the set of data flows (inputs and outputs) of a data store in a structurally 

correct process structure is disjoint from the set of data flows of any other 

data store in the process structure. Data stores in a structurally correct process 

structure are uniquely identified by their inputs and outputs. 

FS. An output of a process in a structurally correct process structure is either 

associated with another process and/or data store in the process structure as 

an input, or is not associated with any process or data store in the process 

structure. An input of a process in a structurally correct process structure, on 

the other hand, may be associated with more than one process and/or data 

store in a process structure as an input. 

F6. A net or boundary inputs of a structurally correct process structure is an input 

associated with processes and data stores in the process structure that is not 

an output of process or data store in the process structure. A structurally 

correct process structure has at least one net input. 

The observation functions getinflows and getoutflows return the set of 

inputs and the set of outputs, respectively, in a process structure, while 

getininterface returns the set of net inputs of a process structure. The function 

getprocs returns the set of plprocesses in a process structure, while getstores 

returns the set of plstores in a process structure. Examples of the application of the 

observation functions on a process structure are given in Example 4.3. 
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Struct utilizes two RSs, characterizing sets of processes and data stores, 

which are the results of instantiations of an RS schema, Plset shown in Figure 

4.6. Plset extends the RS schema, Set, with functions which return the set of all 

inputs, outputs, and names of the parameter where the parameter is restricted to 

being one of Plentity, Plstore, and Plprocess. 

PLset(Set(PLelem) where Plelem is [Plentity, Plstore, Plprocess]) = 
Signature 

observation functions 
getallinputs, getalloutputs: set(plelem) • set(plflow) 

Laws v' e:plelem; se:set(plelem) 
S1. getalloutputs(insert(e,se)) = getoutputs(e)+getalloutputs(se) 
S2. getalloutputs(0) = 0 
S3. getallinputs(insert(e,se)) = getinputs(e)+getallinputs(se) 
S4. getallinputs(0) = 0 

Struct = PLset(PLprocess) + PLset(PLstore) + 
Signature 

sort struct 
constructors 

initstruct: plprocess • struct 
mkstruct1: plprocess, struct • struct 
mkstruct2: plstore, struct • struct 

observation functions 
getinflows, getoutflows, getininterface: struct • set(plflow) 
getprocs : struct • set(plprocess) 
getstores: struct • set(plstore) 

Ok-predicate 
okstruct : struct 

Laws v' p,p1 :plprocess; ds:plstore; st:struct 
Laws characterizino the ok-predjcate 
ST1. okstruct(initstruct(p)) 
ST2. isempty(getpoutputs(p)-int-getoutflows(st)) = true • 

okstruct(mkstruct1 (p,st)) 
ST3. isempty(getsoutputs(ds)-int-getoutflows(st)) = true, 

issubset(getsinputs( ds) ,getoutflows( st)) = true, 
issubset(getsoutputs(ds),getinflows(st)) = true • 
okstruct(mkstruct1 (ds,st)) 

Laws characterizino the observation functions: 
oetprocs. oetstores 
ST 4. getprocs(initstruct(p)) = insert(p,0) 
ST5. getstores(initstruct(p)) = 0 
ST6. getprocs(mkstruct1 (p1 ,st)) = p1 +getprocs(st) 
ST?. getprocs(mkstruct2(ds,st)) = getprocs(st) 
ST8. getstores(mkstruct1 (p1 ,st)) = getstores(st) 
ST9. getstores(mkstruct2(ds,st)) = ds+getstores(st) 
oetoutflows, oetinflows 
ST1O. getoutflows(mkstruct1 (p1 ,st)) = getpoutputs(p1 )+getoutflows(st) 
ST11. getoutflows(mkstruct2(ds,st)) = getsoutputs(ds)+getoutflows(st) 
ST12. getoutflows(initstruct(p)) = getpoutputs(p) 
ST13. getinflows(mkstruct1 (p,st)) = getpinputs(p)+getinflows(st) 
ST14. getinflows(mkstruct2(ds,st)) = getsinputs(ds)+getinflows(st) 
ST15. getinflows(initstruct(p)) = getpinputs(p) 
oetininterface 
ST16. getininterface(st) = getinflows(st)-diff-getouflows(st) 

Figure 4.6 The RS characterizing structurally correct process structures 
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Example 4.3 
The PL representation of the process struct for the level 1 DFD of the library 

application 

To enhance readability the constructors associated with plflows will be left implicit, 

for example, new_book = mkflow("new_book "). 

The names of the PL representations for the processes are as follows: 

AddCopy = mkplprocess({new_book, copy#_list}, {new_book_rec}) 

DeleteCopy = mkplprocess({delete_book, deleted_book}, {delete_message}) 

ReturnBook = mkplprocess({return_info, return_time,, ret_borr_list, return_detail}, 

{ret_updated_book, ret_updated_borr, return_message}) 

CheckoutBook = mkplprocess({out_borr, checkout_info, checkout_time, out_book}, 

{ checkout_message, out_updated_borr, out_updated_book}) 

UpdateBorrStatus = mkplprocess({borr_update_info, update_time, borr_detail}, 

{updated_borr_detail, update_status}) 

DeleteBorrower = mkplprocess({del_borr, deleted_borr}, {del_borr_mess}) 

AddBorrower = mkplprocess({new_borr, other_borr}, {new_borr_rec, add_message}) 

The names of the PL representations for the data stores are as follows: 

book = mkplstore({new_book_rec, out_updated_book, ret_updated_book}, {copy#_list, 

deleted_book, out_book, return_detail}) 

borrower = mkplstore({ret_updated_borr, new_borr_rec, updated_borr_detail, 

out_updated_borr}, {ret_borr_list, other_borr, deleted_borr, 

borr_detail, out_borr}) 

Example 4.3 continued 
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Example 4.3 ( continued) 
The PL representation of the process struct for the level 1 DFD of the library 

application 

The PL representation, PSlib, for the process structure of the level I library DFD 

is: 

PSlib = mkstruct2(book, mkstruct2(borrower, mkstruct1 (AddCopy, 

mkstruct1 (DeleteCopy, 

mkstruct1 (ReturnBook, mkstruct1 (CheckoutBook, mkstruct1 (UpdateBorrStatus, 

mkstruct1(AddBorrower, initstruct(DeleteBorrower))))))))) 

The effects of the observation functions on PSlib are as follows: 

getinflows(PSlib) = {new_book, copy#_list, delete_book, deleted_book, return_info, 

return_time,, ret_borr_list, return_detail, out_borr, checkout_info, 

checkout_time, out_book, borr_update_info, update_time, 

borr_detail, del_borr, deleted_borr, new_borr, other_borr, 

new_book_rec, out_updated_book, ret_updated_book, 

ret_updated_borr, new_borr_rec, updated_borr_detail, 

out_updated_borr } 

getinflows(PSlib) = { new_book_rec, delete_message, 

ret_updated_book, ret_updated_borr, 

return_message, checkout_message, out_updated_borr, 

out_updated_book, updated_borr_detail, update_status, 

del_borr_mess, new_borr_rec, add_message, copy#_list, 

deleted_book, out_book, return_detail, ret_borr_list, other_borr, 

deleted_borr, borr_detail, out_borr} 

getininterface(PSlib) = {new_book, delete_book, return_info, 

return_time, checkout_time, 

update_time, del_borr, new_borr, checkout_info, borr_update_info} 

getprocs(PSlib) = {AddCopy, DeleteCopy, ReturnBook, 

CheckoutBook, UpdateBorrStatus, 

AddBorrower, DeleteBorrower} 

qetstores(PSlib) = {book, borrower} 
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4.1.5 The RS characterizing structurally correct flat DFDs 

The RS, SimpleApplic, characterizing structurally correct flat DFDs is based 

on the RSs characterizing process structures, Struct, and sets of external entities, 

PLset(PLentity), as is shown in Figure 4.7. The objects of type plapplic, 

characterized by SimpleApplic, encapsulate the syntactic aspects of flat DFDs, and 

are built, via the constructor mkapplic, from a struct (process structure) and a set 

of plentities (the EE). 

The rule FlO characterizing structurally correct flat DFDs given in Chapter 2 

is repeated below, and is formally expressed by the laws of SimpleApplic. 

Example 4.4 gives the PL representation of the DFD in Figure 4.1. It is easily 

verified that it is structurally correct. 

A flat DFD consists of a structurally correct process structure and a structurally 

correct EE (possibly empty) satisfying the following rule: 

FlO. The set of all outputs in the EE is equal to the set of the net inputs of the 

process structure, while the set of all inputs in the EE is a subset of the set of 

all outputs in the process structure. For a DFD with a non-empty EE, the 

result is that each data flow in the DFD is associated with a unique generator, 

and a non-empty set of receivers. 

SimpleApplic = Struct + PLset(PLentity) + 
Signature 

sort plapplic 
constructor 

mkapplic: struct, set(plentity) • plapplic 
ck-predicate 

okapplic : plapplic • boolean 
Laws: V se:set(plentity); st:struct 

A1. isempty(se) = false, isempty(getallinputs(se)-int-getalloutputs(se)) = true, 
getalloutputs( se) = getininterface( st), issubset(getallinputs( se), 
getoutflows(st)) • okapplic(mkapplic(st,se)) 

A2. isempty(se) =true • okapplic(mkapplic(st,se)) 

Figure 4.7 The RS SimpleApplic characterizing non-hierarchical DFDs 
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Example 4.4 
The PL representation of the DFD at level 1 of the library DFD 

The PL representations of the external entities in the EE are: 

staff = mkplentity({delete_message, return_message, 

checkout_message, update_status, 

del_borr_mess, add_message}, 

{return_info, delete_book, checkout_info, 

borr_update_info, del_borr, 

new_book, new_borr}) 

clock= mkplentity(0, {update_time, checkout_time, return_time}) 

The PL representation for the DFD is: 

Lib= mkaoolic(PSlib, {staff, clock}) 

4. 2 Characterizing the syntactic aspects of hierarchical 
DFDs (H_DFDs) 
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In this section, the RS SimpleApplic is modified to a RS characterizing 

syntactically correct H_DFDs, called H_Plapplic. The modifications concern the 

characterization of the hierarchical structures of data flows and processes ignored in 

SimpleApplic. 

4.2.1 Characterizing structurally correct hierarchical data flows 

Decomposition of data flows results in the revelation of their component data 

flows, as described in Chapter 2. Tree structures of data flows result from the 

successive decompositions of data flows. Hierarchical data flows encapsulate the 

syntactic aspects of such structures, and are formally characterized by the RS 

Flowstruct shown in Figure 4.8. The objects of type flowstruct characterized by 

Flowstruct are hierarchical data flows. Such objects are built up using three 

constructors: Nilfstruct, _•_, and _J_. Nilfstruct and _J_ create objects of type 

fstruct, which, intuitively, are lists of hierarchical data flow, where Nilfstruct 

corresponds to an empty list. _• _ creates objects of type flowstruct from a 

flowname and a fstruct representing the child decomposition set of the hierarchical 

data flow. An example of the PL representation for a hierarchical data flow is given 

in Example 4.5. 

In Chapter 2 structurally correct hierarchical data flows were characterized by 

a single rule: 

• Each sub data flow of a structurally correct hierarchical data flow is unique. 
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Flowstruct = Set(Flowname) + 
sorts fstruct, flowstruct 
constructors 

Nilfstruct: • fstruct 
• : flowname, fstruct• flowstruct 

=i=: flowstruct, fstruct• fstruct 
observation functions 

getfstruct: flowstruct• fstruct 
getflow: flowstruct• flowname 
flat: fstruct• set(flowname) 

ok-predicates 
okfstruct: fstruct 
okflowstruct: flowstruct 

Laws ds:fstruct; d:flowstruct; f:flowname 
Laws characterizino the observation functions 
D1. getfstruct(f•ds) = ds 
D2. getflow(f•ds) = f 
D3. flat(Nilfstruct) = 0 
D4. flat( dlds) = insert(getflow( d) ,flat(getfstruct( d)) )+flat( ds) 

Laws characterizino okfstruct 
D5. okfstruct(Nilfstruct) 

108 

D6. isempty(insert(getflow( d) ,flat(getfstruct( d)) )-int-flat( ds)) = true • okfstruct( dlds) 

Laws characterizino okflowstruct 
D7. isin(f, flat(ds)) =false • okflowstruct(f•ds) 

Figure 4.8 The RS Flowstruct characterizing structurally correct hierarchical data 
flows 

The laws defining the ok-predicates for fstruct and flowstruct, D5 to D7, are 

formal expressions of the above rule for structural correctness. The following 

observation functions are used to express these laws: 

• getfstruct: Returns the child decomposition set of a hierarchical data flow. 

• getflow: Returns the flowname of a hierarchical data flow. 

• flat: Returns the set of all sub data flows in a hierarchical data flow. 

Law D5 states that an empty fstruct object is structurally correct, while D6 

states that a non-empty fstruct is structurally correct if the flow names are all 

unique. D7 states that a flowstruct (hierarchical data flow) is structurally correct if 

its fstruct is structurally correct and the flowname of the flowstruct is not repeated 

in the f struct. 
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Example 4.5 
PL re resentation of the hierarchical data flow checkout info 

checkout info 

book id borr id 

copy# ISBN# 

The PL representation for hierarchical depicted above is: 

checkoutinfo = checkout_info•( 

(book_id•( 

( copy#• N ilfstruct) I 
( ISBN•Nilfstruct) I 

Nilfstruct))I 

(bo rr _id• Nilfstruct) I 

Nilfstruct) 

The effects of the observation functions on checkoutinfo are given below: 

getflow(checkoutinfo) = checkout_info 

getfstruct( checkout info) = 

(book_id•( copy#•Nilfstruct) I( ISBN·Nilfstruct) I Nilfstruct) l(borr_id•Nilfstruct) I 

Nilfstruct) 

flat(getfstruct(checkoutinfo)) = {book_id, copy#, ISBN, borr_id} 

i09 

In order to characterize the syntactic aspects of external entities, data stores, 

and (hierarchical) processes associated with hierarchical data flows, additional 

functions on flowstructs and sorts based on flowstructs are needed. The additional 

functions and sorts are provided by a RS named ExtFlowstruct shown in Figure 

4.9. 

The sorts ininterface, and outinterface, introduced by ExtFlowstruct are 

types whose objects are of the form <df, {fl, ... ,fn}>, where df is a flowstruct, 
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called the parent flow, and fl, ... ,fn are flowstructs called descendant flows. These 

objects are used later, in the characterization of hierarchical processes, to relate the 

inputs and outputs of hierarchical processes to the decomposed flows in their 

bodies. An ininterface represents the partial decomposition relationship between an 

input (represented by the parent flow) of a hierarchical process and its 

decomposition set (whose elements are represented by the descendant flows). An 

outinterface represents the full decomposition relationship between an output 

(represented by the parent flow) of a hierarchical process and its decomposition set 

(whose elements are represented by the descendant flows). The relation .U., in 

Extf lowstruct, represents the "is a full decomposition set of" relationship between 

a hierarchical data flow and a set of hierarchical data flows, and is defined by law 

E7. The definitions of full and partial decomposition sets given in Chapter 2 are 

repeated below: 

A full decomposition set, F, of a hierarchical data flow D, is a set of sub 

hierarchical data flows of D satisfying the following conditions: 

1. no two hierarchical data flows in F have common sub data flows; and 

2. the set of all the primitive data flows in the hierarchical data flows in F is 

equal to the set of primitive data flows in D. 

A partial decomposition set of a hierarchical data flow is simply a subset of its sub 

hierarchical data flows. 

The following auxiliary and observation functions are also defined in 

Extflowstruct: 

• getleaves: Returns the set of primitive data flows of a set of hierarchical 

data flows. 

• getflowstructs: Returns the child decomposition set of a hierarchical data 

flow. 

• getsubstructs: Returns the set of all sub hierarchical data flows in a 

hierarchical data flow. 

• disting: 

• getinrhs: 

• getoutrhs: 

• getinlhs: 

• getoutlhs: 

• getallflows: 

Returns the value true if a set of hierarchical data flows is a 

distinguished set, else it returns the value false. 

Returns the set of descendant flows of an ininterface. 

Returns the set of descendant flows of an outinterface. 

Returns the parent flow of an ininterface. 

Returns the parent flow of an outinterface. 

Returns the set of all sub data flows in a set of hierarchical 

data flows. 
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ExtFlowstruct = Set(Flowstruct) + 
Signature 

sorts ininterface, outinterface 
constructors 

mkin: flowstruct, set(flowstruct) • ininterface 
mkout: flowstruct, set(flowstruct) • outinterface 

relations 
lJ-: flowstruct, set(flowstruct) 

observation functions 
getinrhs: ininterface • set(flowstruct) 
getoutrhs: outinterface • set(flowstruct) 
getinlhs: ininterface • flowstruct 
getoutlhs: outinterface • flowstruct 

auxiliary functions 
getleaves, getallflows : set(flowstruct) • set(flowname) 
getflowstructs : fstruct • set(flowstruct) 
getsubstructs: set(flowstruct) • set(flowstruct) 
disting: set(flowstruct)• boolean 

ok-predicates 
okin: ininterface 
okout: outinterface 

Laws d,d1 :flowstruct; ds,ds':fstruct; sd:set(flowstruct); f:plflow 
Laws characterizing getleaves 
E 1 . getleaves(0) = 0 
E2. getleaves(insert((f•Nilfstruct),sd)) = 

insert(f ,getleaves(getflowstructs( ds) )+getleaves( sd)) 
E3. ds * Nilfstruct• 

1 1 1 

getleaves(insert(f•ds,sd)) = getleaves(getflowstructs(ds))+getleaves(sd) 
Laws characterizing getflowstructs 
E4. getflowstructs(dlds) = insert(d, getflowstructs(ds)) 
E5. getflowstructs(Nilfstruct) = 0 
Laws characterizing getsubstructs 
E6. getsubstructs(insert(f•ds,sd) = 
insert(f •ds,getsubstructs(getf lowstructs( ds))) +getsu bstructs( sd) 
Laws characterizing lJ, 
E7. disting(sd), getleaves(getflowstructs(ds))) = getleaves(sd) • f•dslJ-sd 
Laws characterizing ck-predicates okout and okin 
Ea. dlJ-sd • okout(mkout(d,sd)) 
E9. issubset(sd,getsubstructs(insert(d,0))) =true • okin(mkin(d,sd)) 
Laws characterizing getinrhs. getoutrhs. getinlhs. and getoutlhs 
E1O. getinrhs(mkin(d,sd)) = sd 
E11. getoutrhs(mkout(d,ds)) = getflowstructs(ds) 
E12. getinlhs(mkin(d,sd)) = d 
E13. getoutlhs(mkout(d,ds)) = d 
Laws characterizing getallflows 
E14. getallflows(insert(f•ds, sd)) = insert(f, flat( ds) )+getallflows(sd) 
E 15. getallflows(0) = 0 
Laws characterizing distjng 
E16. isempty(insert(f, flat(ds))-int-getallflows(sd)) =true • 

disting(insert(f•ds,sd)) = disting(sd) 
E 17. isempty(insert(f, flat( ds) )-int-getallflows(sd)) = false • 
disting(insert(f•ds,sd)) = false 
E18. disting(0) = true 

Figure 4.9 The RS ExtFlowstruct characterizing additional sorts and functions 

associated with the use of hierarchical data flows 

The modified RSs characterizing the syntactic aspects of external entities and 

data stores with hierarchical inputs and outputs are given in Figure 4.10. The laws 
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of these RS s are formal expressions of the rules for hierarchical external entities and 

data stores given in Chapter 2 and repeated below. 

P 1. A structurally correct (hierarchical) data store has a non-empty set of 

hierarchical inputs or a non-empty set of hierarchical outputs. The union of 

inputs and outputs of a data store is a distinguished set. 

H 1. A structurally correct external entity has a non-empty set of inputs or a non­

empty set of outputs. The union of inputs and outputs of an external entity is 

a distinguished set. 

H_Plentity = Set(Flowstruct) + 
Signature 

sorts hplentity 
constructor 

mkhplentity: set(flowstruct), set(flowstruct) • hplentity 
observation functions 

geteinputs, geteoutputs: hplentity • set(flowstruct) 
ok-predicate 

okhplentity: hplentity 
Laws 'ii in, out:set(flowstruct) 

1. disting(in+out) = true, isempty(in) = false => okhplentity(mkhplentity(in, out)) 
2. disting(in+out) = true, isempty(out) =false=> okhplentity(mkhplentity(in, out)) 
3. geteinputs(mkhplentity(in, out)) = in 
4. geteoutputs(mkhplentity(in, out)) = out 

Set_HPLentity = Set(H_Plentity) + 
Signature 

observation functions 
getalleinputs, getalleoutputs: set(hplentity) • set(flowstruct) 

Laws 'ii he:hplentlty; se: set(hplentity) 
1. getalleinputs(he, se) = geteinputs(he)+getalleinputs(se) 
2. getalleoutputs(he, se) = geteoutputs(he)+getalleoutputs(se) 

H_PLstore = Set(Flowstruct) + 
Signature 

sorts hplstore 
constructor 

mkhplstore: set(flowstruct), set(flowstruct) • hplstore 
observation functions 

geteinputs, geteoutputs: hplstore• set(flowstruct) 
ok-predicate 

okhplstore: hplstore 
Laws 'ii in, out:set(flowstruct) 

1. disting(in+out) = true, isempty(in) = false => okhplstore(mkhplstore(in, out)) 
2. disting(in+out) = true, isempty(out) =false=> okhplentity(mkhplstore(in, out)) 
3. geteinputs(mkhplstore(in, out)) = in 
4. geteoutputs(mkhplstore(in, out)) = out 

Figure 4.10 The RSs characterizing external entities and data stores with 

hierarchical inputs and outputs 
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4.2.2 Characterizing structurally correct hierarchical processes 

Hierarchical processes encapsulate the syntactic aspects of process hierarchies 

resulting from successive process decompositions. from Chapter 2, a hierarchical 

process consists of a body, a set of inputs and a set of outputs. The body of a 

hierarchical process is a structure of (sub) hierarchical processes and data stores. 

The RS characterizing hierarchical processes Procstruct is shown in Figure 4.11. 

Hierarchical processes are objects of type procstruct, and are associated with four 

constructors: Nilstruct, mkstruct, mkpstruct1, and mkpstruct2. Nilstruct, 

mkpstruct1, and mkpstruct2 create objects of type pstruct which are bodies of 

hierarchical processes. Nilstruct creates an empty body, mkpstruct1 creates a new 

body from a given body by adding a hierarchical process to the body, and 

mkpstruct2 creates a new body from a given body by adding a data store to it. The 

constructor mkstruct builds a hierarchical process given a pstruct (a body), a set of 

ininterfaces, and a set of outinterfaces. The ininterfaces and the outinterfaces 

explicitly state the relationships between the inputs and outputs of a hierarchical 

process and its internal data flows. 

The rules characterizing structurally correct hierarchical processes given in 

Chapter 2 are repeated below: 

P2. A structurally correct body is either empty or contains at least one structurally 

correct (sub) hierarchical process. All data stores in a body are structurally 

correct. 

P3. No two hierarchical processes in a structurally correct body must have 

common sub processes. 

P4. The set of all data store inputs in a structurally correct body is a subset of the 

internal output set of the body, and the set of all data store outputs is a subset 

of the internal input set of the body. Furthermore, the receiver of a 

hierarchical data flow whose generator is a data store is never a data store. 

PS. Each hierarchical data flow in the internal output set has a unique generator in 

the body. The internal output set of a structurally correct body 1s a 

distinguished set. 

P6. There is at least one net input in a non-empty structurally correct body. 

P7. The set of inputs and the set of outputs of a structurally correct hierarchical 

process are both non-empty. Furthermore, the union of the inputs and the 

outputs of a hierarchical process is a distinguished set. 

P8. The body of a structurally correct hierarchical process is structurally correct. 

In a structurally correct hierarchical process with a non-empty body, an input 

corresponds to a subset of the net inputs in the body, called its decomposition 

set, which is a partial decomposition set of the input. The decomposition sets 
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of any two hierarchical data flows in the input interface are disjoint, and the 

union of the decomposition sets associated with the inputs of the hierarchical 

process is exactly the set of the net inputs of the body. 

P9. For a structurally correct hierarchical process with a non-empty body, an 

output corresponds to a subset of the internal output set, called its 

decomposition set, which is a full decomposition set of the output. The 

decomposition sets of any two outputs is disjoint. If a hierarchical data flow 

in the internal output set of the body of a structurally correct hierarchical 

process is not in any decomposition set then it is directed towards hierarchical 

processes in the body. 

Laws PS1 to PS3 express the rules P2 to P6 given above, where law PS1 

states that an empty body is structurally correct, and law PS 2 states that a 

structurally correct hierarchical process can only be added to a structurally correct 

body if: 

• the outputs of all the sub processes and sub data stores of the hierarchical 

process are not also outputs in the body or outputs of sub processes and data 

stores of the hierarchical processes in the body; and 

• the data flows generated by the sub processes of the hierarchical process which 

are not also outputs of the hierarchical process, are not sub data flows of the net 

inputs of the body. 

Law PS3 states that a structurally correct data store can only be added to a 

structurally correct body if the data store is not already in the body, nor in the 

hierarchical processes of the body, and if the inputs of the data store are also 

outputs of hierarchical processes in the body, and outputs of the data store are also 

inputs of hierarchical processes in the body. 

Laws PS4 and PS5 express the rules characterizing structurally correct 

hierarchical processes, where law PS4 states that a hierarchical process with an 

empty body (a primitive process) is structurally correct, and law PS5 expresses the 

rule characterizing structurally correct hierarchical processes with non-empty 

bodies. 

The observation functions of Procstruct are informal I~ described below: 

• getinflows Returns the set of all inputs in a body. 

• getoutflows Returns the set of all outputs in a body. 

• getnetinputs 

• getstores 

• getinslhs 

• getinsrhs 

• getoutslhs 

Returns the net inputs of a body. 

Returns the set of data stores in a process structure. 

Returns the set of parent flows in a set of ininterf aces. 

Returns the set of descendant flows in a set of ininterfaces. 

Returns the set of parent flows in a set of outinterfaces. 
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• getoutsrhs 

• getinputs 

Returns the set of descendant flows in a set of outinterfaces. 

Returns the set of inputs of a hierarchical process (the parent 

flows of the ininterfaces of the hierarchical process). 

• getoutputs 

• getalloutflows 

Returns the set of outputs of a hierarchical process (the parent 

flows of the outinterfaces of the hierarchical process). 

Returns the set of flownames of all the outputs in the 

hierarchical processes of a body. In concrete terms, the 

function returns all the outputs of processes in the process 

tree representations of the hierarchical processes in a body. 

Example 4.6 is an example of the PL representation of a structurally correct 

hierarchical process, and the effects of the observation functions on it. 

Procstruct = ExtFlowstruct + H_PLstore + 
Signature 

sorts procstruct, pstruct 
constructors 

Nilstruct: • pstruct 
mkstruct: set(ininterface), set(outinterface), pstruct • procstruct 
mkpstruct1 : procstruct, pstruct • pstruct 
mkpstruct2: hplstore, pstruct • pstruct 

observation functions 
getinflows, getoutflows, getnetinputs: pstruct • set(flowstruct) 
getstores: pstruct • set(plstore) 
getoutputs, getinputs: procstruct • set(flowstruct) 
getinslhs, getinsrhs: set(ininterface) • set(flowstruct) 
getoutslhs,getoutsrhs: set(outinterface) • set(flowstruct) 
getalloutflows : pstruct • set(flowname) 

ok-predlcate 
okpstruct : pstruct • boolean 
okprocstruct: procstruct • boolean 

Laws V p:procstruct; st,sp:pstruct; ds:plstore; In, i1 :set(lnlnterface); 
out,o1 :set(outinterface); n:procname 

Laws characterizing okpstruct 
PS1. okpstruct(Nilstruct) 
PS2. isempty(getalloutflows(st)-int-

(getallflows(getoutslhs( out) )+getalloutflows( sp))) = true, 
isempty(getnetinputs(st)-int-(getalloutflows(sp)-diff­
getallflows(getoutslhs(out)))) = true => okpstruct(mkpstruct1 (mkstruct(in, 
out, sp), st)) 

PS3. isempty(getalloutflows(st)-int-getsoutputs(ds)) = true, 
issubset(getsinputs( ds) ,getoutflows( st)) = true, 
issubset(getsoutputs(ds),getinflows(st)) = true => 
okpstruct( mkpstruct2( ds,st)) 

Laws characterizing okprocstruct 
PS4. isempty(getinslhs(in)) = false, isempty(getoutslhs(out)) = false, 

disting(getinslhs(in)+getoutslhs(out)) = true, getinsrhs(in) = 0, 
getoutsrhs(out) = 0 => okprocstruct(mkstruct(in,out,Nilstruct)) 

PS5. sp -:1: Nilstruct, isempty(getinslhs(in)) = false, isempty(getoutslhs(out)) = 
false, disting(getinslhs(in)+getoutslhs( out)) = true, getinsrhs(in) = 
getnetinputs(sp), issubset(getoutsrhs(out),getoutflows(sp)) =true=> 
okprocstruct(mkstruct(in ,out,sp)) 

Laws characterizing getstores 
PS6. getstores(Nilstruct) = 0 
PS?. getstores(mkstruct1 (mkstruct(n,in,out,sp),st)) = 

getstores( sp+getstores( st)) 
PSS. getstores(mkstruct2(ds,st)) = ds+getstores(st) 
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Laws characterizing getinsrhs. getinslhs. getoutslhs, and getoutrhs 
PS9. getinslhs(insert(i1 ,in)) = insert(getinlhs(i1 ),getinslhs(in)) 
PS10. getinslhs(0) = 0 
PS11. getinsrhs(insert(i1 ,in)) = insert(getinrhs(i1 ),getinsrhs(in)) 
PS12. getinsrhs(0) = 0 
PS 13. getoutslhs(insert( o1,out)) = insert(getoutlhs( 01) ,getoutslhs(out)) 
PS 14. getoutslhs(0) = 0 
PS 15. getoutsrhs(insert(o1,out)) = insert(getoutrhs(o1) ,getoutsrhs(out)) 
PS16. getoutsrhs(0) = 0 
Laws characterizing getoutputs and getinputs 
P17. getoutputs(mkstruct(in, out, sp)) = getoutslhs(out) 
P18. getinputs(mkstruct(in, out, sp)) = getinslhs(in) 
Laws characterizing getouttlows and getintlows 
PS 19. getoutflows_(mkstruct1 (p,st)) = getoutputs(p)+getoutflows_(st) 
PS2O. getoutflows_(mkstruct2(ds,st)) = getsoutputs(ds)+getoutflows_(st) 
PS21. getoutflows_(Nilstruct) = 0 
PS22. getinflows(mkstruct1 (p,st)) = getinputs(p)+getinflows(st) 
PS23. getinflows(mkstruct2(ds,st)) = getsinputs(ds)+getinflows(st) 
PS24. getinflows(Nilstruct) = 0 
Laws characterizing getnetinputs 
PS25. getnetinputs(Nilstruct) = 0 
PS26. getnetinputs(st) = getinflows(st)-getouflows(st) 
Laws characterizing getalloutf lows 
PS27. getalloutflows(mkpstruct1 (mkstruct(in, out, sp), st))= 

(getal If lows(getoutsl hs ( out) )+getalloutflows ( sp)) +get al !outflows( st) 
PS28. getalloutflows(Nilstruct) = 0 

Figure 4.11 The RS Procstruct characterizing hierarchical processes 

Example 4.6 
The PL representation for the hierarchical process UpdateBorrStatus 

The process UpdateBorrStatus is decomposed into two primitive processes, 

UpdateBorrRecord and GenerateFinesRecord (see Chapter 2). The only 

non-primitive hierarchical data flow is borr_update_info which has the following 

PL representation: 

borrinfo = borr_update_inf•((amount_paid•Nilfstruct)l(update_id•Nilfstruct)INilfstruct) 

The PL representations of the primitive processes are: 

UpdateBorrRecord = mkstruct({<amount_paid, 0>, <borr_fine_record, 0>}, 

{<update_status, 0>, <Updated_borr_detail, 0>}, Nilstruct) 

GenFinesRecord = mkstruct({<update_id, 0>, <Update_time, 0>, <borr_detail, 0>}, 

{<borr_fine_record, 0>}, Nilstruct) 

The PL representation of the body consisting of the above two primitive processes 

is: 

UpdateBody = mkpstruct1 (GenFinesRecord, mkpstruct1 (UpdateBorrRecord, Nilstruct)) 

Example 4.6 continued 
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Example 4.6 ( continued) 
The PL representation for the hierarchical process UpdateBorrStatus 

The PL representation of the hierarchical processes is: 

UpdateBorrStatus = 
mkstruct( { <borrinfo, { amount_paid•Nilfstruct, update_id•Nilfstruct}>, 

<Update_time•Nilfstruct, {update_time•Nilfstruct}>, 

<borr_detail•Nilfstruct, {borr_detail•Nilfstruct}> }, { <Update_status• Nilfstruct, 

{update_status•Nilfstruct}>, <updated_borr_detail•Nilfstruct, 

{updated_borr_detail•Nilfstruct}>, Nilstruct} 

11 7 

The effects of the observation functions on the above hierarchical process are given 

below: 

getinflows(UpdateBody) = 

{borr_fine_record•Nilfstruct, amount_paid•Nilfstruct, update_id•Nilfstruct, 

update_time•Nilfstruct, borr_detail•Nilfstruct} 

getoutflows(UpdateBody) = 

{update_status•Nilfstruct, updated_borr_detail•Nilfstruct, borr_fine_record•Nilfstruct} 

getnetinputs(UpdateBody) = 

{amount_paid•Nilfstruct, update_id•Nilfstruct, borr_detail•Nilfstruct, 

update_time•Nilfstruct} 

getstores(UpdateBody) = 0 

getoutputs(UpdateBorrStatus) = {update_status•Nilfstruct, 

updated_borr_detail•Nilfstruct} 

getinputs(UpdateBorrStatus) = {borrinfo, update_time•Nilfstruct, borr_detail•Nilfstruct} 

getalloutflows(UpdateBody) = {update_status, updated_borr_detail, borr_fine_record} 

4.2.3 The RS characterizing H_DFDs 

H_Plapplic, the RS characterizing structurally correct H_DFDs shown in 

Figure 4.11, is obtained from SimpleApplic, by replacing the primitive RS 

Plflow by Flowstruct, replacing the RS Struct by Procstruct, and by replacing 

Plentity and Plstore by H_Plentity and H_Plstore, respectively. 

Objects of the type h_dfd characterized by H_Plapplic are H_DFDs. The 

type is associated with a constructor mkapplic, which creates a H_DFD given a 

hierarchical process (procstruct) and an EE (set(hplentity)). The laws of the RS 

formally express the rule characterizing structurally correct H_DFDs given in 

Chapter 2 and repeated below: 
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H4. A structurally correct H_DFD consists of a structurally correct EE and a 

structurally correct hierarchical process. The set of all inputs (outputs) in the 

EE of a structurally correct H_DFD is equal to the set of inputs (outputs) of 

the hierarchical process of the H_DFD. 

H_PLapplic = Procstruct + Set(H_PLentity) + 
Signature 

sort h_dfd 
constructor 

mkapplic: procstruct, set(hplentity) • h_dfd 
ok-predicate 

okapplic : h_dfd • boolean 
Laws: V se:set(hplentity); p E procstruct 

A 1. isempty(se) = false, isempty(getalleinputs(se)-int-getalleoutputs(se)) = 
true, getalleinputs(se) = getoutputs(p), getalleoutputs(se) = getinputs(p) 
• okapplic(mkapplic(p,se)) 

A2. okapplic(mkapplic(p,0)) 

Figure 4.12 The RS H_PLapplic characterizing H_DFDs 

4.3 Model and operational semantics for the PL 
The models associated with the RS, as well as satisfying the explicit laws of 

the RS, also satisfy certain implicit laws arising from equality, inequality 

assumptions, and assumptions on relations, made when formulating the laws of the 

RS. Normalizing functions which transform terms to normal terms, where equal 

terms are transformed to the same normal term, and unequal terms are transformed 

to unequal normal terms, are used to express equality and inequality assumptions 

(see Chapter 3). A description of the normalizing functions associated with 

H_Plapplic follows. 

Normalizing function for flowname 

The RS characterizing flowname consists only of constructors for strings of 

alphanumeric characters. All ground constructor terms are assumed unique (i.e. two 

names are equal if and only if they are built in exactly the same way). Thus the 

identity function is the normalizing function for flownames. Flowames are also 

associated with an ordering based on an alphabetic and numeric ordering, in which 

alphabetic characters are less than numeric characters. Tv..o \Lrings are compared 

from left to right in the following manner: if the current character being checked in 

the first string is greater than the corresponding character in the second string then 

the first string is greater than the second string; if the t\l,, o characters are the same 

then the next characters in the two strings are compared. For example, 

ap23d>apf5h since 2>f. This ordering is used by normalizing functions for some of 

the other sorts of H_Plapplic. 
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Normalizing functions for flowstruct 

Two hierarchical data flows are equal if they have the same name and their 

child decomposition sets are equal. The normalizing function for flowstruct orders 

the flownames at each level of a flowstruct using the ordering on flownames 

described earlier. For example the two flowstructs: 

fl•( 

(f22•( 

(f221 • Nilfstruct)I 

(f222• Nilfstruct)I 

Nilfstruct)I 

(f21 • Nilfstruct)I 

(f23• Nilfstruct)I 

Nilfstruct), and fl•( 

(f23• Nilfstruct)I 

( f21 • Nilfstruct) I 

(f22•( 

(f222• Nilfstruct)I 

(f221 • Nilfstruct)I 

Nilfstruct)I 

Nilfstruct) 

where f21<f22<f23, and f221<f222, are both transformed to the normal term: 

fl•( 

(f21 • Nilfstruct)I 

(f22•( 

(f221 •Nilfstruct)I 

(f222• Nilfstruct)I 

Nilfstruct)I 

(f23• Nilfstruct)I 

Nilfstruct) 

Normalizing functions for hplentity and hplstore 

Two hierarchical external entities (data stores) are equal if their sets of inputs 

and outputs are equal. The normalizing functions for hplentities and hplstores 

simply normalize their input and output sets of flowstructs. 
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Normalizing functions for ininterface and outinterface 

Two in(out)interfaces are equal if and only if their parent flows are equal and 

their sets of descendant flows are equal. The normalizing functions for these sorts 

simply normalize the set of descendant flows. 

Normalizing function for pstruct 

Two bodies are equal if they contain the same hierarchical processes and data 

stores. The normalizing function for pstruct simply normalize the hierarchical 

processes (see below) and data stores in the body. 

Normalizing function for Procstruct 

Two hierarchical processes are equal if they have equal ininterfaces, 

outinterfaces and bodies. The normalizing function for procstruct simply normalizes 

the in(out)interfaces and bodies of hierarchical processes. 

The assumptions on negated relations are derived from the operational 

interpretation of H_PLapplic, described in the following section. 

4.3.1 The PL R-CTRS 

H_Plapplic can be converted to a R-CTRS by replacing the "=" symbol in 

the consequences of the laws to "•". This is possible since, in each law, the sets 

of variables of the literals in the antecedent are all a subset of the set of variables in 

the term on the left hand side of the equality symbol (or relation or ok-predicate) of 

the consequence, and the set of variables in the term on the right hand side of the 

equality symbol of the consequence is a subset of the set of variables in the term on 

the left hand side of the equality symbol. 

Recall from Chapter 3 that a R-CTRS is sufficiently complete if and only if: 

1 . it is ground terminating and ground confluent; and 

2. every defined non-constructor term rewrites (in one or more steps) to a ground 

constructor term (i.e. for a defined non-constructor term, f E T(F), 

ok(f)• *TT • f• *c, where c is a constructor term). 

Since ok-predicates are characterized in terms of constructor terms only in the 

laws of H_PLapplic (see D5 to D7 of Flowstruct; E8, E9 of ExtFlowstruct; HEl, 

HE2 of H_PLentity; HS 1, HS2 of H_PLstore; PS 1 to PSS of Procstruct; and A 1, 

A2 of H_PLapplic), then if ok(f)• *TT, where f is a non constructor term, then f is 

reducible to a ground constructor term, c, such that ok( c )• TT. Thus condition 2 

above is satisfied Chapter 3 gives conditions for termination and confluence, which 

are repeated below: 
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An R-CTRS, R, is terminating if: 

(1) <his a partial ordering on T(F) 
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(2) for every rule with consequence f(s) • rhs, every sub term of rhs and every 

sub term of the terms appearing in the premises, g(t), is either: 

• g<hf, or 

• NOT(f<hg), and t%S, where% is the multi-set ordering on terms based on 

<h. 

A R-CTRS is confluent if the following conditions hold: 

(1) The consequences of a rule must have left hand sides with only constructor 

terms as proper sub terms (i.e. a lhs must be of the form f(cl, ... ,en) where 

cl, ... ,en are constructor terms); and 

(2) Let Al • lhsl • Rrhsl and A2 • lhs2• Rrhs2, be any two rules in a R 

CTRS such that there is a defined substitution, a, which unifies lhsl and lhs2 

(i.e. alhsl =s alhs2 where =s symbolizes syntactic equality). Then either: 

• arhs 1 =s arhs2; or 

• there exists u':;t:v' E Al+A2 such that au' and av' have a common reduct, 

or au' • *Rcl, oks'(cl), av' • *Rc2, oks'(c2), and Ns•(cl) = Ns•(c2), 

where c 1 and c2 are ground constructor terms of sort s', and N s' is the 

normalizing function for the sort; or 

• there exists u = v E Al+A2 such that NOT(auJ.av), and if au• *Rcl, 

oks(cl), av• *Rc2, oks(c2), then Ns(cl) :;t: Ns(c2), where cl and c2 are 

ground constructor terms of sort s, and N s is the normalizing function for 

the sort; or 

• there exists r E Al+A2 such that NOT(ar• *RTT); or 

• there exists ~r' E Al+A2 such that ar'• *RTT. 

An inspection of the laws would show that the characterizing sets of non­

constructors use only function and relation symbols that are already characterized in 

terms of other non-constructors at the same level or at lower levels (i.e. primitive 

non-constructors; see for example, the characterizing set of getflowstructs {E4, 

ES}, and the characterizing set for getnetinputs {PS2S, PS26}). Also, primitive 

non-constructors are not characterized in terms of non-primitive function symbols. 

In the case of ok-predicates, recursive definitions, in terms of other ok-predicates at 

the same level are permitted (for example, see the characterizing sets for the 

constructors of data flow, {DS, D6, D7}, and process hierarchies, {PSl, PS2, 

PS3, PS4, PSS}). In such cases, inspection of the characterizing sets will reveal 

that the arguments of the constructors in the antecedents of the laws are simpler than 

the arguments on the left hand side of the equality symbol in the consequence, for 

example, in the law PSS, implicit in the antecedent is the literal okpstruct(sp ), 
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where okpstruct and okprocstruct are incomparable, but the arguments of okpstruct 

are simpler than the arguments of okprocstruct, since { sp} <<h { mkstruct(in, out, 

sp)}. The relation <hon the function symbols of H_Plapplic is thus a partial order 

and determines a simplification order on its ground terms. Thus termination of the 

R-CTRS corresponding to the H_PLapplic is guaranteed. 

The laws in the characterizing sets of the non-constructors and ok-predicates all 

have consequences whose left hand sides are have only constructor terms as 

arguments, thus satisfying condition (1) of the confluence conditions. Furthermore, 

no two rules may be applied to the same term, such that the left hand sides of the 

consequences of the rules match, but not their right hand sides. Thus H_PLapplic is 

also ground confluent. 

The R-CTRS generated from H_Plapplic is thus sufficiently complete, 

providing an effective means by which the syntactic properties of DFDs can be 

investigated. 

The following steps may be carried out in an investigation of the structural 

correctness of DFD structures: 

1. Transform the construct to its PL representation, say c. 

2. Find the set of laws characterizing the ok-predicate for the construct, ok, 

whose consequences can be matched with c. If the set is empty then the 

construct is not structurally correct. If the set is not empty then apply each rule 

to c, until either 

a. a law is found such that ok(C) • TT, in which case the construct is 

structurally correct; or 

b. all laws in the set have been applied and none reduces ok(c) to TT, in 

which case the construct is not structurally correct. 

The operational interpretation of H_PLapplic in terms of the R-CTRS, provides 

a formal basis for syntax analysis tools. Builders of such tools can use the PL to 

formally validate their tools. 

4.4 Limitations of the PL 
The PL provides a formal characterization of the syntactic aspects of DFD 

hierarchies and supports automated reasoning about such aspects via an operational 

interpretation. It has the potential to act as the formal basis for syntax analysis tools 

which take DFD structures and transform them into formal representations capable 

of being analysed. The PL in its present form though provides only a very basic 

foundation for an automated environment supporting the analysis of the syntactic 

aspects of DFDs. One notable limitation is that the PL provides very little support 

for the analysis of syntactic structure still undergoing development. For example, if 
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one decomposes the primitive processes of a hierarchy of DFDs further, it is 

viewed as the creation of a new hierarchical structure in the PL with no formal 

relationship to the hierarchy it was developed from. To enhance the use of the PL in 

this respect it would be useful to have a sub system of RSs in the PL which 

characterize modification functions (eg. adding, and deleting syntactic structures), 

and "is a refinement of" relationships between syntactic structures which have been 

decomposed further. 

Another limitation related to the one above, is that currently the PL can only 

be used to reason about the structural correctness of complete structures. In the 

actual construction of DFDs one might also like to reason about incomplete 

syntactic structures, as well as reason about other properties of correct structures. 

By adding a special defined object, called a void object, in each sort, syntactic 

structures which are incomplete as a result of missing parts can be represented by 

placing the void objects of the appropriate sorts in the missing parts of the syntactic 

structures. The void objects indicate that the omissions were intentional, and 

'completes' the syntactic structures so that the functions and relations which act 

only on complete syntactic structures, can also be applied to the incomplete 

constructs. 

Relations, other than the ok-predicates characterizing structurally correct DFD 

structures can be added to express additional properties which may be of interest to 

tool developers and users. Such laws may be expressed using the observation, and 

auxiliary functions that already exist in the PL, or they may require additional 

functions to be added to the current PL. 

The PL is useful only for the investigation of syntactic properties of DFDs. It 

does not provide semantic interpretations for the data objects in the DFD, nor does 

it provide behavioural interpretations for the processing components. Such 

interpretations are needed in order to fully specify the data and behavioural aspects 

of an application. Chapter 5 provides semantic interpretations for the structurally 

correct structures characterized in this chapter. 



CHAPTER 5 

The Specification Level: 
Deriving Behavioural Specifications 

from DFDs 

5.0 Introduction 
A number of researchers have proposed extensions to DFDs to support the 

specification of time-dependent behaviour. The tools and techniques based on such 

extensions lack the degree of formality required to support their use in the rigorous 

validation and verification of behavioural properties. The Specification Level (SL) 

of the formal framework for SA provides tools and techniques for pictorially 

describing and formally specifying the behaviour of applications, based on such 

formal foundations. 

The derivation of the formal specification of behaviour from a hierarchy of 

DFDs goes through the following steps, as outlined in Chapter 2: 

1. Generating a flat representation of the hierarchy of DFDs. Such a 

representation, called the primitive DFD, consists of the primitive processes, 

and all the data stores and external entities in the hierarchy of DFDs. 

2. Introducing notation for describing state dependent behaviour into the 

primitive DFD, specifying the state dependent behaviour, and identifying 

actions, and state and asynchronous data flows to and from the external 

environment (EE). The result of this step is an ExtDFD. 

3. Specifying the data types associated with the ExtDFD's data flows and data 

stores. 

4. Specifying the behaviour of the ExtDFD's primitive processes and data stores. 

5. Deriving the specifications of behaviours of the ExtDFD's actions from the 

specifications of behaviours of their constituent processes. 

6. Deriving the specification of behaviour of the ExtDFD from the specifications 

of behaviour of its actions, data stores, and asynchronous data flows, and the 

specification of its state dependent behaviour. 

This chapter describes the tools and techniques of the SL which are used in 

steps 3, 4, 5, and 6 above. Steps 1 and 2 were covered in Chapter 2. The use of the 

derived formal specification in the formal validation and verification of behavioural 

properties is also discussed in this chapter. 

The SL consists of tools and techniques for formally specifying: 
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(A) the static aspects of data flows and data stores in an ExtDFD, and 

(B) the dynamic aspects of data flows, data stores, processes and actions, in an 

ExtDFD. 

The use of these technique results in two types of specifications for ExtDFDs: 

the Data Environment (DE), and the Behavioural Specification (BS). The DE of an 

ExtDFD is the set of RSs resulting from the use of the techniques in (A). Such RSs 

characterize the object classes associated with the data flows and data stores in an 

ExtDFD, and their structures. In SA, such definitions were expressed quasi­

formally in the data dictionary. The DE can be viewed as the formal counterpart of 

the data dictionary. 

The BS of an ExtDFD is derived as a result of using the techniques in (B). It 

integrates specifications of the data aspects of an ExtDFD, provided by the DE, 

with specifications of the functional and control aspects of the ExtDFD. 

Behaviourally, actions and their constituent processes, data stores and 

asynchronous data flows are treated in the same manner, thus, allowing their 

specifications to be integrated in a "natural" way, that is, without resorting to 

techniques for bridging different specification tools. When only their behavioural 

aspects are of concern actions, ExtDFD processes, data stores and data flows are 

collectively called processes. To distinguish this use of the term process from its 

use in describing places of transformations in an ExtDFD, the latter use is qualified 

by the term ExtDFD, as is done in the previous sentence. 

Furthermore, processes are treated as abstract data types (ADTs), thus 

permitting the integration of data specifications with specifications of behaviour. 

The BS of an ExtDFD is an algebraic characterization of an ADT representing the 

class of behaviours of the ExtDFD. A similar treatment of data and processes is 

used in the SMoLCS approach [AGR88]. Another approach to integrating data and 

process specifications based on ADTs can be found in Kaplan and Pnueli [KP87]. 

The SL techniques described in this chapter are demonstrated with the aid of 

the action CheckoutBook and its associated data stores, asynchronous data flows 

and state flows. The diagram is shown in Figure 5.1. 
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Figure 5.1 The ExtDFD for CheckoutBook 

5.1 The Data Environment (DE) 
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When only the static aspects of data stores and data flows are of concern they 

are collectively called data entities. A data entity is associated with a class of 

objects, and data stores and asynchronous data flows are also associated with 

structures. The DE provides algebraic characterizations of the class of objects and 

structures of data entities, in the form of RSs. The RSs characterizing the object 

class of a data entity also include functions for 'splitting' objects into sub objects. 

Such functions are needed, for example, to establish the relationships between the 

input and outputs of splitters. 

The algebraic characterizations of the structures associated with data entities 

include functions which observe and modify the structures. 

5.1.1 Characterizing the object classes associated with data entities 

The function symbols in a RS characterizing the object class of a data entity 

can be categorized as follows: 

• Constructors : A constructor is a function which builds new objects of an object 

class. 

• Observation functions: An observation function returns a sub object of an object. 

• Auxiliary functions: Non-constructors which are not observation functions. 

The RSs characterizing the object class of the data entities associated with 

CheckoutBook are given in Example 5.1. The characterizations are based on the 

type definitions given in Example 2.7 of Chapter 2, and repeated in Example 5.1. 
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Example 5.1 
Characterizing the object classes of the data entities associated with the action 

CheckoutBook 

Type definitions for the data entities associated with the action CheckoutBook on 
which the specifications given in this example are based: 

Non-base data types 
bb status 
book 

book id 
borr detail 
borr fine record - -
borr_flag 
out borr>> 
borr_update_info 
borrower 

payment to date> 
borrower-be~ detail 
borrower id 
borrower indicator 
checkout info 
checkout_message 
ISBN 
out book 
out book id 
out borr 
borrower_type, 
out_updated_book 
out_updated_borr 
vetted book 

vetted borr 

Base data types 
amount_paid 
author 
borrower addr 
borrower name 
borrower_type 
checkout time -
copy# 
copy_type 
fine 
fines record 
out borr id - -
payment_to date 
subject 
title 

.. -

<time returned I "Not returned"> 
<book=id, title, subject, author, 
copy type, borrower indicator> 
<ISBN, copy#> -
[borrower_book_detail] 
<<number, borrower_id> I "Not in file" 
<"Not in file" I <borrower id, 

<borrower id, number> 
<borrower id, borrower name, 
borrower-addr, borrower type, 
[borrower book_detail], -

<book id, due_time, bb status> 
< [character]> 
<"Available" I borrower id> 
<book id, borrower_id> -
<vetted_borr, vetted book> 
<[integer]> 
<borrower_indicator, copy_type> 
book id 
<[borrower_book_detail], 

payment to date> 
borrower indicator 
[borrower_book_detail] 
<<book id, copy type> I "book not in 
file" I "book al~eady checked out" I 
"not borrowable"> 
<<"Fines over limit", number> I 
"borrower not in file" I 
<out_borr, borrower_id>> 

number 
[ character] 
[ character] 
[ character] 
<"undergrad" I postgrad" I "staff"> 
time 
integer 
<"book" I "reference" I "periodical"> 
number 
[number] 
borrower id -
number 
[ character] 
[ character] 

Example 5.1 continued 
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Example 5.1 ( continued) 
Characterizing the object classes of the data entities associated with the action 

CheckoutBook 

The RSs characterizing the object classes associated with the data store BOOK 

Copy_type = 
Signature 

sort copy_type 
constructors 

Book: • copy_type 
--- corresponds to the "book" option in the type definition for copy_type --­
Ref : • copy_type 
--- corresponds to the "reference" option in the type definition for copy_type --­
Per: • copy_type 
--- corresponds to the "periodical" option in the type definition for copy_type ---

Book_id = ISBN_code + Integer+ 
Signature 

sort book_id 
constructor 

mkbkid: ISBN, integer • book_id 

Borrower_indic = Borrower_id + 
Signature 

sort borrower_indicator 
constructors 

mkbind : borrower_id • borrower_indicator 
Available : • borrower_indicator 
--- corresponds to the "Available" option in the type definition for 
borrower_indicator ---

Book= Borrower_indic + Book_id + List(Character) +Time+ Copy_type + 
Signature 

sorts book 
constructor 

mkbook: book_id, list(char), list(char), list(char), copy_type, 
borrower_indicator • book 

Book characterizes the object class, book, of the data store BOOK. The three lists of 
characters in the domain of the constructor mkbook represent the title, subject, and 
author of the book, respectively. 

The RSs characterising the object classes associated with the data store 
BORROWER 

An RS Borrower_id, characterising the class of borrower_id objects, is assumed 
available in what follows. 

Example 5.1 continued 
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Exa1nple 5.1 ( continued) 
Characterizing the object classes of the data entities associated with the action 

CheckoutBook 
Borrower_book_detail = Book_id + Time + 

Sig nature 
sorts borrower_book_detail, bb_status 
constructors 

mkbbstatus : time • bb_status 
NotRet : • bb_status 
--- corresponds to the "Not returned " option in the type definition for 
bb_status ---

Borrower_type = 
Signature 

sort borrower_type 
constructors 

Undergrad : • borrower_type 
Postgrad : • borrower_type 
Staff: • borrower_type 

Borrower= Borrower_id + List(Borrower_Book_Detail) +Number+ List(Character) + 
Borrower_type + 

Signature 
sort borrower 
constructor 

mkborr: borrower_id, list(char), list(char), borrower_type, 
list(borrower_book_detail), number • borrower 

Borrower characterizes the class of objects stored in the data store BORROWER. 
The two lists of characters in the constructor mkborrower represent the borrower's 
name and address, respectively, while the number represents the amount paid on 
fines by the borrower. 

RSs characterizing the object classes associated with the data flows of 
CheckoutBook 

Checkout_info = Book_id + Borrower_id + 
Sig nature 

sort checkout_info 
constructor 

mkoutinfo : book_id, borrower_id • checkout_info 
observation functions 

getbookid : checkout_info • book_id 
getborrid : checkout_info • borrower_id 

Laws V bk:book_id; borr:borrower_id 
1. getbookid(mkoutinfo(bk, borr)) = bk 
2. getborrid(mkoutinfo(bk, borr)) = borr 

Checkout_info defines the object class of the data flow checkout_info. The 
observeration functions are associated with the splitting of the data flow into the sub 
data flows out book id (getbookid) and out borr id (getborrid). 

Example 5.1 continued 
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Example 5.1 (continued) 
Characterizing the object classes of the data entities associated with the action 

CheckoutBook 
Out_book = Copy_type + Borrower_indic + 

Signature 
sort out_book 
constructor 

mkoutbk : borrower_indic, copy_type • out_book 

Out_book characterizes the object class of the data flow out_book. 

Vetted_book = Book_id + Copy_type + 
Signature 

sort vetted_book 
constructors 

mkvbk: book_id, copy_type • vetted_book 
Bknotinfile : • vetted_book 
--- corresponds to the "book not in file" option in the type definition for 
vetted_book ---
CheckedOut : • vetted_book 
--- corresponds to the "book already checked out" option in the type 
definition for vetted_book ---
NotBorr :• vetted_book 
--- corresponds to the "not borrowable" option in the type definition for 
vetted_book ---

Vetted_ book characterizes the object class for the data flow vetted_book. 

Out_borr = Borrower_type + List(Borrower_book_detail) + Number + 
Signature 

sort out_borr 
constructor 

mkoutbr : list(borrower_book_detail), borrower_type, number • out_borr 

Out_borr characterizes the object class of the data flow out_borr. 

Borr_flag = List(Borrower_book_detail) + 
Signature 

sorts borr_flag 
constructors 

Bflag : • borr_flag 
--- corresponds to the "Not in file" option in the type definition for 
borr_flag ---
mkbflag : borrower_id, out_borr • borr_flag 

Borrower flaQ defines the object class of the data flow borr flag. 
Example 5.1 continued 
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Example 5.1 ( continued) 
Characterizing the object classes of the data entities associated with the action 

CheckoutBook 

Vetted_borr = Borrower_flag + Number+ 
Signature 

sorts vetted_borr 
constructors 

mkerrvborr : number • vetted_borr 
--- corresponds to the "Fines over limit" option in the type definition for 
vetted_borr ---
NoBorr : • vetted_borr 
--- corresponds to the "borrower not in file" option of the type definition for 
vetted_borr ---
mkvetborr: out_borr, borrower_id • vetted_borr 

Vetted_borower defines the object class of the data flow vetted_borrower. 

Checkout_message = Vetted_book + Vetted_borr + 
Signature 

sorts checkout_message 
constructor 

mkoutmess : vetted_borr, vetted_book • checkout_message 

Checkout_message defines the object class of the data flow 
checkout_message. 

5.1.2 Characterizing the structure of data entities 

Asynchronous data flows and data stores may be associated with more than 

one object at any particular point in time. The structure of data stores and 

asynchronous data flows define the relationships between the objects asociated with 

them. Structures are characterized in terms of access functions which modify and 

observe them. 

Asynchronous Data Flows 

Asynchronous data flows are associated with queue structures. The receivers 

of an asynchronous data flow receive objects from the top of the queue associated 

with the data flow, while the generator places an object at the bottom of the queue. 

The RS schema characterzing the generic structure of asynchronous data flows is 

given in Figure 5.2. The specification of the structure of a particular asynchronous 

flow is obtained by instantiating the schema with the RS characterizing the object 

class of the data flow. 
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Asynch(Element) = 
Signature 

sort asynch 
constructors 

emptyq : • asynch 
addq : elem, asynch • asynch 

observeration function 
top : asynch • elem 

auxiliary function 
deleteq : asynch • asynch 

Laws V e:elem; q:asynch 
, . deleteq(addq(e,emptyq)) = emptyq 
2. q -f:. emptyq • deleteq(addq(e,q)) = add(e,deleteq(q)) 
3. top(addq(e,emptyq)) = e 
4. q -f:. emptyq • top(addq(e,q)) = top(q) 
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Figure 5.2 The RS schema characterizing the generic structure of 
asynchronous data flows 

Data Stores 

, The access functions in a RS characterizing the structure of a data store can be 

classified as follows: 

• Read access functions : functions which carry out observations on the structure. 

Such functions usually return an object in the structure, or an object indicating 

that a requested object is not in the structure. 

• Update functions : functions which modify an existing object in the structure. 

• Add functions: functions which add new objects to the structure. 

• Delete functions : functions which delete existing objects from a structure. 

Update and add functions are collectively referred to as write access 

functions. The access functions associated with the structure of a data store is 

determined by its inputs and outputs. Each input of a data store is associated with a 

write access function in the RS characterizing the structure of the data store, while 

each output is associated with a read and/or delete function in the RS. Example 5.2 

gives the RS characterizing the structure of the data store BOOK, associated with the 

data flows shown in Figure 5.1. 
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Example 5.2 
Characterizin_g the structure of the data store BOOK, shown in Figure 5.1 

The data store BOOK has a single input, out updated book, and a single 
output, out book, in Figure 5.1. The inputout updated book represents an 
update on the data store and is associated with an update access function called 
updatebk2 in the RS BookStore characterizing the structure of the data store 
BOOK. The output out book represents a read access, and is associated with a 
read access function in BookStore called readbook2. 
BOOK is a list of book objects. The type readval is tl)e class of objects 
representing the status of a read access on the data store. Thus, if the read access is 
successful, that is, if the desired object is in the data store, then the read val object 
returned reflects the object retrieved otherwise the readval object returned, Nullval, 
reflects an error situation. 

Bookstore = List(Book) + Out_book + Borrowe_indic + 
Signature 

sort readval 
constructors 

Nullval : • readval 
mkreadval : out_book • readval 

read-access function 
readbook2 : list(book), book_id • readval 

update function 
updatebk2 : list(book), borrower_indicator, book_id • list(book) 

Laws V bid, bid':book_id; t,s,a:list(char); ct:copy_type; lb:list(book); 
indic, indic':borrower_indicator 

Laws characterizing the read function associated with the output out book 
1. bid= bid' • readbook2(mkbook(bid, t, s, a, ct, indic)jlb, bid')= 

mkreadval(mkoutbk(indic, ct)) 
2. bid :t bid' • readbook2(mkbook(bid, t, s, a, ct, indic)jlb, bid') = 

readbook2(1b,bid') 
3. readbook(emptylist, bid)= Nullval 
Laws characterizing the update function associated with the input 
out updated book 
4. bid = bid' • 

updatebk2(mkbook(bid, t, s, a, ct, indic)jlb, indic', bid') 
= mkbook(bid, t, s, a, ct, indic')llb 

5. bid :t bid' • 
updatebk2(mkbook(bid, t, s, a, ct, indic)jlb, indic', bid') 

= mkbook(bid, t, s, a, ct, cs', indic')Jupdatebk2(1b, indic', bid') 
6. updatebk2(emptylist, indic, bid) = emptylist 

5.2 The Behavioural Specification (BS) 
An ExtDFD is interpreted as a system of asynchronously interacting actions, 

where actions are themselves systems of synchronously interacting ExtDFD 

processes. The BS characterizing the behaviour of an ExtDFD, is derived from the 

specifications of the behaviour of its actions, data stores and asynchronous data 

flows, and the specifications of its state dependent behaviour. 
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Process behaviour is characterized in terms of labeled state transition systems. 

The particular technique, algebraic specification of labeled transition systems, was 

chosen for the following reasons: 

• the abstract nature of the derived specifications means that they are more likely 

not to specify detail which may unduly constrain subsequent development; 

• it provides a framework for integrating specifications of the data, functional, and 

control aspects of an application; and 

• its formal foundation can be used to support rigorous validation and verification 

activities. 

Labeled transition systems have been used to specify complex interactions at 

various specification levels. At the program specification level the work of Milner 

and Hoare [Mil80, Hoa85] are outstanding examples, while the work of Lamport 

[Lam86, Lam88] is an example of the use of such systems at both the design and 

program specification levels. An algebraic characterization of labeled transition 

systems defining program behaviours was introduced by Broy and Wirsing 

[BW83], and further developed by Astesiano et al. in the SMoLCS approach 

[AR87, AGR88]. The characterizations are based on an operational interpretation of 

processes as labeled transition systems, and of systems of processes as the 

composition of their sub systems [AGR87]. The algebraic technique used here is 

based, in principle, on the work of Astesiano et al. [AGR88], but applied to a 

higher specification level. 

5.2.1 Algebraic state transition systems (ASTSs) 

A labeled state transition system is a triple <S, L, T> where S is a set of 

states, Lis a set of event labels, and Tis the labeled transition relation [S, L, SJ, 

whose elements are called transitions. A transition [sl, 11, s2], where sl and s2 are 

in S and 11 is in L, intuitively means that the effect of an event, represented by 11, 

on the state sl is a change to the state s2. 

In the SL, state transition systems are characterized algebraically by RSs of 

the form shown in Figure 5.3. The primitive RS ST A TE characterizes a set of 

states, LABEL characterizes a set of labels, and AUXS characterizes the additional 

functions and/or relations needed to characterize the transition relation, denoted by 

the symbol_=_=>_ and characterized by the set of equations TRANSEQS. Such 

algebraic specifications of state transition systems are called algebraic state 

transition systems (ASTSs). 
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TS= STATE+ LABEL+ AUXS + 
transition relation 

_=_=>_: state, label, state 
laws TRANSEQS 

Figure 5.3 Algebraic specification of a state transition system 
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The BS of an ExtDFD is an ASTS with the primitive RSs, ST A TE 

characterizing the states of the ExtDFD, and LABEL characterizing the event labels 

of the ExtDFD. The BS is compositional in the sense that it is built up from ASTSs 

characterizing the behaviour of asynchronous data flows, data stores, and actions. 

The ASTS for action are in turn built up from ASTSs characterizing their 

constituent ExtDFD processes. 

5.2.2 Specifying the behaviour of ExtDFD processes 

An ExtDFD process is characterized by its class of behaviours called 

invocations, where an invocation is a labeled sequence of process states. The class 

of invocations associated with a DFD process is characterized implicitly by a labeled 

state transition system, <S, L, T>, where S is a set of ExtDFD process states, L is 

a set of ExtDFD process labels, and T is the transition relation defining the 

allowable state transition. For an ExtDFD process with n data inputs and m control 

and data outputs, a state in Sis a (n+m)-tuple, where each place of the tuple reflects 

the effect of event occurrences, represented by the labels in L, related to the receipt 

of data on the corresponding input or the genertation of data or signals on the 

corresponding output. 

The following types of event labels may be associated with an ExtDFD 

process: 

• Receive : Labels representing the observable effects of events which take data 

off the inputs of the process which are not emanating from data stores. 

• Read/Delete : Labels representing the observable effects of successful read or 

delete events on data stores. 

• Erread!Errdel: Labels representing the observable effects of unsuccessful read 

or delete events on data stores. 

• Send: Labels representing the observable effects of send events on data flows. 

The behaviour of ExtDFDprocesses, as defined here, is determined by the 

events related to the receipt of data on their inputs and the generation of data and/or 

signals on their outputs. ASTSs specifying processes in the above manner can be 

said to characterize the externally observable behaviour of the processes. Details 

concerning the internal structure of processes, in the form of state changes 

occurring as the result of inputs being transformed into outputs, are not 

characterized by the ASTSs used here. The high level nature of these specifications 
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is appropriate at the requirements specification/initial design stages, for which the 

SL is intended, since they do not overly constrain subsequent development with 

internal details of a process's activities. 

The ASTS for the process CheckBook is given in Example 5.3. 

Example 5.3 
Characterizing the state transitions of CheckBook 

The DFD process CheckBook is associated with an abbreviated name PS, which is 
used in the names of the RSs characterizing its states, labels, and transition system. 

P5Iabels = Vetted_book + Out_book + Book_id + 
Sig nature 

sort p5Iabel 
constructors 

Receivep5 : book_id • p5Iabel 
Readp5 : book_id, out_book • p5Iabel 
Erreadp5 : book_id • p5Iabel 
Sendp5 : vetted_book • p5Iabel 

P5Iabels gives the labels associated with CheckBook. 

P5state= Vetted_book + Book_id + Out_book + 
Signature 

sorts receivep5, readp5, sendp5, p5state 
constructors 

Nullinp5 : • receivep5 
inp5 : book_id • receivep5 
Nullrdp5 : • readp15 
errp5 : • readp5 
rdp5 : out_book • readp5 
Nulloutp5 : • sendp5 
outp5 : vetted_book • sendp5 
<_,_,_> : receivep5, readp5, sendp5 • p5state 

The state of CheckBook is a tuple of sorts receivep5, readp5, sendp5 which 
represent the states of the accesses associated with the data flows out book id, 
out book, and vetted book respectively. The states Nullinp5, Nullrdp5, 
and Nulloutp5 represent the situation where no accesses via the associated data 
flows have been attempted. errp5 denotes an unsuccessful read attempt to the data 
store BOOK. 

CheckBook_ TS = P5state + P5Iabel + 
Sig nature 

transition relation 
_-_-> _: p5state, p5Iabel, p5state 

Laws V outbk:out_book; ty:copy_type; bid:book_id 
1. <Nullinp5, Nullrdp5, Nulloutp5> 

-Receivep5(bid)-> 
<inp5(bid), Nullrdp5, Nulloutp5> 

2. <inp5(bid), Nullrdp5, Nulloutp5> 
-Readp5(bid, outbk)-> 

<inp5(bid), rdp5(outbk), Nulloutp5> 

Example 5.3 continued 
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3. ty:;t:Ref • 

Example 5.3 (continued) 
Characterizing the state transitions of CheckBook 

<inp5(bid), rdp5(mkoutbk(Available, ty)), Nulloutp5> 
-Sendp5(mkvbk(bid, ty))-> 

<inp5(bid), rdp5(mkoutbk(Available, ty)), outp5(mkvbk(bid, ty))> 
4. <inp5(bid), rdp5(mkoutbk(Available, Ref)), Nulloutp5> 

-Sendp5(Notborr)-> 
<inp5(bid), rdp5(mkoutbk(Available, ty)), outp5(Notborr)> 

5. inp5(bid), rdp5(mkoutbk(mkbind(borrid)), Nulloutp5> 
-Sendp5(Checkedout)-> 

<inp5(bid), rdp5(mkoutbk(mkbind(borrid)), outR5( Checkedout)> 
6. <inp5(bid), Nullrdp5, Nulloutp5> 

-Erreadp5(bid)-> 
<inp5(bid), errp5, Nulloutp5> 

7. <inp5(bid), errp5, Nulloutp5> 
-Sendp5( Bknotinfile )-> 

<inp5(bid), errp5, outp5(Bknotinfile)> 
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Law 1 defines the transition caused by an access event on out book id. Law 2 
defines the transition resulting from a successful read access to the datastore BOOK, 
while law 6 defines the transition resulting from an unsuccessful read access to the 
same data store. Laws 3, 4, 5, and 7 define the transition resulting from the 
occurrence of the send event, under different conditions on the input data. Law 6 
defines the transition resulting from the occurrence of the send error event which 
occurs after an unsucessful read has been made. 

5.2.3 Specifying ExtDFD actions 

The actions of an ExtDFD are associated with states and event labels derived 

from the states and labels of their constituent ExtDFD processes. For an action 

consisting of n ExtDFD processes, Pl, ... , Pn, a state of the action is of the form 

<pl, ... , pn>, where pi is a state of Pi, l:S::i::;n. 

The event labels of an action represent: 

• synchronized send/receive events for for each data flow between ExtDFD 

processes, where such events are called internal action events, 

• synchronized receive events associated with the inputs of its initiators, 

• read and/or delete events associated with its ExtDFD processes, 

• send events associated with its terminators, 

• parallel events composed of internal action events, 

• a termination event whose effect is to revert all the DFD processes to their idle 

state, 

All data flows between DFD processes in an action are synchronous thus the 

send and receive events of DFD processes connected by data flows in an action are 

synchronized. Also the invocation events of the invokers of an action are all 

synchronized. Labels representing the effect of synchronized sets of events of an 

action are called synchronous labels. Such labels are generated by the function 
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SYNCH which takes a set of labels and returns a synchronous label representing 

the effect of the synchronized set of events. In an ASTS characterizing the 

behaviour of an action with n ExtDFD processes, the laws characterizing the effect 

of synchronized events on the state of an action, are of the following form: 

p1--11-->p1', ... , pj--lj-->pj', cond(l1, ... ,Ii) • 

<P1, ... , pj, pk, ... , pn>==SYNCH({l1, ... , li})==><P1 ', ... , pj', pk, ... , pn> 

The above is interpreted as follows: if an ExtDFD process's state pi is capable 

of being transformed into pi' by an event labeled by Ii, 1:s;i:s;j, and the condition on 

the labels cond(l1, ... , lj), holds, then the state of the action <p1, ... , pj, pk, ... , 

pn> can be transformed by the synchronized events, represented by the 

synchronous event label SYNCH({l1, ... , lj}), to the state <p1', ... , pj', pk, ... , 

pn>. 

Certain DFD process events also become action events, called single events of 

the action, for example the read and send events of ExtDFD processes in an action. 

The effect of these events on the state of an action are expressed in their ASTS in 

the following manner: 

pk--lk-->pk', cond(lk) • <P1, ... , pk, ... , pn>==Pk(lk)==><P1, ... , pk', ... , pn> 

Pk is a coercion function, which converts an ExtDFD process label to an 

action label. In the ASTSs that follow, such coercion is left implicit so as to 

simplify the presentation of the ASTSs. 

Internal action events which affect mutually exclusive parts of an action's 

state can occur in parallel. This is expressed by the laws of the form: 

<P1, ... , pi, pj, ... , pn>==l1 ==><<P1 ', ... , pi', pj, ... , pn>, 

<P1, ... , pi, pj, ... , pn>==l2==><P1, ... , pi, pj', ... , pn'> • 

<P1, ... , pi, pj, ... , pn>==PAR(l1,l2)==><p1', ... , pi', pj', ... , pn'> 

Internal action events which affect the same process state, but mutually 

exclusive parts of such states, can also occur in parallel, for example, some 

ExtDFD processes may be allowed to generate some of their outputs in parallel. 

Actions are also associated with termination events which cause all its DFD 

processes to revert to the idle state. The resulting state is also called the idle state of 

the action. An action can only be invoked if it is in the idle state, thus parallel 

invocations of an action are not allowed. 
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Example 5.4 gives the ASTS characterizing the behaviour of the action 

Checkout Book. 

Example 5.4 
Characterizing the behaviour of the action CheckoutBook 

The DFD processes of the action CheckoutBook (A4) are associated with the 
following abbreviated names: CheckBook - P5, GetOverdueBooks - P6, 
CalculateFine - P7, VettBorrower - P8, CheckoutUpdate - P9. 

The following auxiliary functions are needed in order to characterize the transition 
relation for CheckoutBook: 

FinesRec = Out_borr + Borrower_book_detail + List(Number) + Time + 
Signature 

auxiliary function 
getfinesrec : list(borrower_book_detail), time • list(number) 

Laws \::/ bid:book_id; lb:borrower_book_detail; bbs:bb_status; 
t1 ,t2:tlme 

1. t2>t1 • getfinesrec (mkbdet(bid, t1, bbs)llb, t2) = 
(Rate*(t2-t1)))1getfinesrec (lb, t2) 

2. t2<t1 • getfinesrec (mkbdet(bid, t1, bbs)llb, t2) = getfinesrec (lb, t2) 

Fines Rec characterizes the functional relationship between the objects of the 
list(borrower_book_detail) sub class of out_borr and the data objects 
associated with the data flow fines_record. The class time is simply treated as 
an integer line, with successive integers representing successive days. 

Sumlist = List(Number) + 
Signature 

auxiliary function 
sum : list(number) • number 

Laws \::/ n:number; ln:llst(number) 
1. sum(njln) = n+sum(ln) 

Sum list defines the functional relationship between the input fines record 
and the output fine of the process CalculateFine. 

A4_ TS = A4state + A41abel + 
Signature 

transition relation 
_ == _ ==> _: a4state, a41abel, a4state 

Laws \::/ bld:book_ld; borrid:borrower_id; t:tlme; vbk:vetted_book; 
p1 ,p1 ':statep1 ; ... ; p5,p5':statep5; A1 ,A2:a4Iabel; 
vbr:vetted_borrower; ln:llst(number); f:number; bflag:borr_flag; 
obk:out_book; obr:out_borrower; upbk:out_updated_book; 
upbr:out_updated_borr; mess :checkout_message 

Synchronized Events: process/process communication (via synchronized data 
~ 
1. p5--Receivep5(bid)-->p5', p6--Receive1 p6(borrid)-->p6' • 

<PS, p6, p7, p8, p9> 
==SYNCH( {Receivep5(bid), Receive1 p2(borrid)} )==> 

<p5', p6', p7, p8, p9> 

Example 5.4 continued 
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Example 5.4 ( continued) 
Characterizing the behaviour of the action CheckoutBook 

2. p5--Sendp5(vbk)-->p5', p9--Receive1 p9(vbk)-->p9' => 
<PS, p6, p7, p8, p9> 

==SYNCH({SendpS(vbk), Receive1p9(vbk)})==> 
<PS', p6, p7, p8, p9'> 

3. p6--Send1 p6(1n)-->p6', p7--Receivep7(1n)-->p7' => 
<PS, p6, p7, p8, p9> 

==SYNCH({Send1p6(1n), Receivep7(1n)})==> 
<PS, p6', p7', p8, p9> 

4. p6--Send2p6(bflag)-->p6', p8--Receive2p8(bflag)-->p8' => 
<PS, p6, p7, p8, p9> 

==SYNCH({Send2p6(bflag), Receive2p8(bflag)})==> 
<PS, p6', p7, p8', p9> 

5. p7--Sendp7(f)-->p7', p8--Receive1 p8(f)-->p8' => 
<PS, p6, p7, p8, p9> 

==SYNCH({Sendp?(f), Receive1 p8(f)})==> 
<PS, p6, p7', p8', p9> 

6. p8--Sendp8(vbr)-->p8', p9--Receive2p9(vbr)-->p9' => 
<PS, p6, p7, p8, p9> 

==SYNCH({Sendp8(vb), Receive2p8(vbr)})==> 
<p5, p6, p7, p8', p9'> 

Single Events: input and output (including read/write} events of the action 
7. p5--Readp1 (bid, obk)-->p5' => 

<PS, p6, p7, p8, p9>==Readp1 (bid, obk)==><p5', p6, p7, p8, p9> 
8. p5--Erreadp1 (bid)-->p5' => 

<PS, p6, p7, p8, p9>==Erreadp1 (bid)==><P5', p6, p7, p8, p9> 
9. p6--Receive2p2(t)-->p6' => 

<p5, p6, p7, p8, p9>==Receive2p2(t)==><P5, p6', p7, p8, p9> 
10. p6--Readp2(borrid, obr)-->p6' => 

<PS, p6, p7, p8, p9>==Readp2(borrid, obr)==><P5, p6', p7, p8, p9> 
11 . p6--Erreadp2(borrid)-->p6' => 

<PS, p6, p7, p8, p9>==Erreadp2(borrid)==><P5, p6', p7, p8, p9> 
12. p9--Send1 (bid, upbk)-->p9' => 

<PS, p6, p7, p8, p9>==Update1 (bid, upbk)==><P5, p6, p7, p8, p9'> 
13. p9--Send2(borrid, upbr)-->p9' => 

<PS, p6, p7, p8, p9>==Update2(borrid, upbr)==><P5, p6, p7, p8, p9'> 
14. p9--Send3(mess)-->p9' => 

<PS, p6, p7, p8, p9>==Send(mess)==><p5, p6, p7, p8, p9'> 
15. p9--Receive3p5(t)-->p9' => 

<PS, p6, p7, p8, p9>==Receive3p5(t)==><P5, p6, p7, p8, p9'> 
Parallel Events 
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--- Events which affect separate parts of an action can be carried out in parallel ---
16. <PS, p6, p7, p8, p9>==A1==><P5', p6, p7, p8, p9>, 

<p5, p6, p7, p8, p9>==A2==><P5, p6', p7', p8', p9'> => 
<<PS, p6, p7, p8, p9>==PAR(A1, A2)==><p5', p6', p7', p8', p9'> 

17. <PS, p6, p7, p8, p9>==A1==><p5', p6', p7, p8, p9>, 
<PS, p6, p7, p8, p9>==A2==><p5, p6, p7', p8', p9'> => 

<PS, p6, p7, p8, p9>==PAR(A1, A2)==><P5', p6', p7', p8', p9'> 
18. <PS, p6, p7, p8, p9>==A1==><p5', p6', p7', p8, p9>, 

<PS, p6, p7, p8, p9>==A2==><p5, p6, p7, p8', p9'> => 
<PS, p6, p7, p8, p9>==PAR(A1, A2)==><p5', p6', p7', p8', p9'> 

19. <PS, p6, p7, p8, p9>==A1==><p5', p6', p7', p8', p9>, 
<PS, p6, p7, p8, p9>==A2==><P5, p6, p7, p8, p9'> => 

<D5, D6, D7, p8, P9>==PAR(A1, A2)==><P5', p6', p7', p8', p9'> 
Example 5.4 continued 
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Example 5.4 ( continued) 
Characterizing the behaviour of the action CheckoutBook 

Termination event 
--- Nullpi, S:;;i:;;9, is the abbreviated form for the idle state of Pi ---
20. <PS, p6, p7, p8, <ini p9(vbk}, in2p9(vbr}, timep9(t}, outi p9(omess}, 

out2p9(ubr), out3p9(ubk}>> 
== Terminatea4==> 

<NullpS, Nullp6, Nullp7, Nullp8, Nullp9> 
2i. <PS, p6, p7, p8, <inip9(Notborr}, in2, Nu11Timep9, outip9(omess}, 

Nullout2p9, Nullout3p9>> 
== Terminatea4==> 

<NullpS, Nullp6, Nullp7, Nullp8, Nullp9> 
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22. <PS, p6, p7, p8, <inip9(CheckedOut), in2, Nu11Timep9, outip9(omess), 
Nullout2p9, Nullout3p9>> 

== Terminatea4==> 
<NullpS, Nullp6, Nullp?, Nullp8, Nullp9> 

23. <PS, p6, p7, p8, <inip9(Bknotinfile), in2, Nu11Timep9, outip9(omess), 
Nullout2p9, Nullout3p9» 

== Terminatea4==> 
<NullpS, Nullp6, Nullp7, Nullp8, Nullp9> 

24. <PS, p6, p7, p8, <in1, in2p9(NoBorr), Nu11Timep9, outip9(omess), 
Nullout2p9, Nullout3p9» 

== Terminatea4==> 
<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9> 

25. <P5, p6, p7, p8, <in1, in2p9(mkerrvborr(f}), NulITimep9, out1 p9(omess), 
Nullout2p9, Nullout3p9» 

== Terminatea4==> 
<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9> 

26. <PS, p6, p7, p8, <in1p9(mkvbk(bid, Per)}, 
in2p9(mkvetborr(mkoutb(lb, Undergrad, n), borrid}), Nu11Timep9, 
out1p9(omess), Nullout2p9, Nullout3p9>> 

== Terminatea4==> 
<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9> 

5.2.4 Characterizing the behaviour of data flows and data stores 

The dynamic aspects of synchronous data flows are implicit in the 

mechanisms used in specifying synchronous interactions amongst processes. 

Behaviorally, data stores and asynchronous data flows are treated as processes, and 

are associated with states, events, and transition relations defining state transitions. 

In what follows, data stores and asynchronous data flows are collectively called 

store processes. 

The state of a store process is the state of its structure, for example, a state of 

an asynchronous data flow is a state of its queue structure. The event labels 

correspond to the access functions specified in the RSs characterizing the structures 

of the store processes, in the following manner: 
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For a data store with structure struct :-

• A read access function read : struct, key • readval is associated with the 

class of labels READ(id, val), where id:key, val:readval. 

• An update function write : struct, key, data • struct is associated with the 

class of labels WRITE(id, d), where id:key, d:data. 

• An add function add : struct, data • struct is associated with the class of 

labels ADD(d), where d:data. 

• A delete function delete : struct, key • struct is associated with the class of 

labels DELETE(id), where id:key. 

For an asynchronous data flow with structure asynch:-

• The function addq : elem, asynch • asynch is associated with the class of 

labels ADD(e), where e:elem. 

• The function deleteq : asynch • asynch is associated with the class of labels 

DEL(top(q)), where q:asynch is the state of the data flow before the deletion is 

effected. 

The ASTS for an asynchronous data flow is given in Figure 5.4. The 

primitive RS Asynchlabels(Element) characterizes the labels, of sort aslabel, 

associated with the data flow. 

BehAsynch = Asynch(Element) + Asynchlabel(Element) + 
Signature 

transition relation 
_ == _ ==> _ : asynch, aslabel, asynch 

Laws V e, e':elem; q:asynch 
1. emptyq==ADD(e)==>addq(e, emptyq) 
2. addq(e, q)==ADD(e')=>addq(e', addq(e, q)) 
3. q =t- emptyq • q==DEL(top(q))==>deleteq(q) 

Figure 5.4 The ASTS characterizing the behaviour of an asynchronous data flow 

Example 5.5 gives the ASTS for the data store BOOK whose static aspects are 

defined in Example 5.3. 

Example 5.5 
Characterizing the behaviour of the data store BOOK 

Book_ TS = Bookstore + Booklabels + 
Signature 

transition relation 
_ == _==> _ : list(book), booklabel, list(book) 

Laws 'v bid:book_id; lb:list(book); bind:borrower_indicator 
1. lb==READBOOK2(bid, readbook2(1b, bid))==>lb 
2. lb==UPDATEBK2(bid, bind)==>updatebk2(1b, bind) 
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5.2.5 Deriving the BS 
ExtDFDs, like actions, are associated with state transition systems which 

characterize their behaviour. The BS is the ASTS characterizing the transition 

system of an ExtDFD, and is derived from the ASTSs characterizing the behaviour 

of the ExtDFD's actions, data stores, and asynchronous data flows. 

The states of an ExtDFD with actions, Al, ... , An, data stores, DSl, ... , 

DSp, and asynchronous data flows, ASl, ... , ASq, are of the form <Sp, dsl, ... , 

dsp, asl, ... , asq, mode>, where sp = {a1, ... , an} is a set of action states, called 

the action state set of the ExtDFD, dsi is a state of DSi, for l~i~p, and asi is a state 

of ASi, for 1~~, and mode is a mode of operation of the ExtDFD. 

Actions which are disabled cannot be affected by events during the period 

they are disabled, thus disabled actions need not be represented in the state of an 

ExtDFD during the periods they are disabled. This means that one need only 

represent enabled states (any state other than a disabled state) in the action state set 

of an ExtDFD. 

The event labels of ExtDFDs represent the effects of the following classes of 

events: 

• synchronized communication between actions and data stores, and between 

actions and the receive (ADD) and send (DEL) access mechanisms of 

asynchronous data flows, 

• events depicted by signals (control flows generated by external entities and 

actions), 

• parallel events composed of the above events. 

Synchronized events are represented by synchronous event labels, and are 

characterized in the same manner as synchronous labels in actions. For example, 

the effect of a synchronous communication event between an action and a data store 

is characterized in the BS by a law of the form below (in the RSs that follow 

insert(a, sp) is abbreviated to {alsp}): 

a==Read(bid, val)==>a', dsi==READ(bid, val)==>dsi', cond(I, s) • 

<{a, sp}, ds1, ... , dsi, ... , dsp, as1 , ... , asq, mode> 

===SYNCH({Read(bid, val), READ(bid, val)})===> 

<{a', sp}, ds1, ... , dsi', ... , dsp, as1 , ... , asq, mode> 

The following sections detail the interactions that can be specified in the BS. 
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Monitored access to data stores 

The ExtDFD events which access data stores may need to be monitored, for 

example, an action may read an object from a data store, modify the object, and 

subsequently update the data store with the modified object. Such accesses are 

called read/update accesses. In such cases, another action which reads and updates 

the same object in parallel may cause the data store to move into an inconsistent 

state. To aviod such situations, read/update accesses to data stores need to be 

monitored. Static analysis of an ExtDFD, and examination of its data type 

definitions, can determine which pair of output and input data flows of a data store 

represent read/update accesses. Data stores in an ExtDFD associated with such pairs 

are said to be monitored. 

A solution to the problem described above would be for the data store to 

prohibit access to objects which are being updated. The approach used here 

associates with monitored data stores a list of identifiers (or keys) which identify 

the objects in the data store on which monitored accesses are prohibited. An action 

wishing to access a monitored data store for a read/update, or deletion (the 

monitored accesses), can only do so if the object's identifier is not in the list. There 

is no need to check such lists if an action simply reads objects without subsequently 

updating the monitored data stores, nor if the action simply adds new objects to the 

data store. A synchronized update (of a read/update access) between a monitored 

data store and an action results in the updated object's identifier being removed 

from the list. 

In the case where an action with a read/update pair, reads in data from the data 

store but does not subsequently update the data store, then the termination event of 

the action is synchronized with the event that removes the identifier of the object 

read in from the list. This is to avoid an object being permanently prohibited from 

being accessed. 

The laws characterizing monitored interactions with data stores, under the 

simple scheme described above, are of the following form: 

The read part 

a==Read(id, val)==>a', dS==READ(id, val)==>ds', contains(id, blist) =false=> 

<{alsp}, ds1, ... , <ds,blist>, ... , dsp, as1 , ... , asq, mode> 

===SYNCH({Read(id, val), READ(id, val)})===> 

<{a'lsp}, ds1, ... , <ds,add(id, blist)>, ... , dsp, as1 , ... , asq, mode> 

where contains is a function which takes an object, and a list of objects and 

returns true if the object is in the list, otherwise it returns the value false, and the 

function add inserts an object into a given list. 
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The update part 

a==Send(id, val)==>a', dS==UPDATE(id, val)==>ds' • 

<{alsp}, ds1, ... , <ds,blist>, ... , dsp, as1, ... , asq, mode> 

===SYNCH({Send(id, val), UPDATE(id, val)})===> 

<{a'lsp}, ds1, ... , <ds', delete(id, blist)>, ... , dsp, as1, ... , asq, mode> 

where delete is a function which deletes a given object from a list. 
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Laws are also needed to check whether an action associated with a read/update pair 

has terminated without updating a data store. These laws are of the form: 

terminated(a), Noupdate(a) • 

<{alsp}, ds1, ... , <ds,blist>, ... , sdsp, as1 , ... , asq, mode> 

=== Terminatea===> 

<{ajsp}, ds1, ... , <ds, delete(id, blist)>, ... , dsp, as1, ... , asq, mod&> 

where terminated is a function which return true if a process can revert to an idle 

state (i.e. it has finished transforming its inputs to outputs), and Noupdate checks 

whether, for a particular pair or read/updates, a read and subsequent update has 

been carried out, returning true if a read has been made on an object identified by 

bid, but no subsequent update has been carried out, and false otherwise. 

Specifying state dependent behaviour in the BS 

Signals in an ExtDFD depict event classes whose instances (event 

occurrences) can affect the current mode of operation of the ExtDFD. As described 

in Chapter 2, changes in the mode of operation of an ExtDFD can affect the 

behaviour of its actions in three ways: they can be initiated, enabled, or disabled. 

Thus the occurrence of events associated with signals, as well as changing the 

mode component of an ExtDFD state, also affects the action state set of the 

ExtDFD. A signal which causes an action to be disabled causes the action's state to 

be removed from the action state set, while a signal which causes an action to be 

enabled causes the action's idle state to be added to the action state set of the 

ExtDFD. Thus removing and adding action states to the action state set of an 

ExtDFD corresponds to the disabling and enabling of actions, respectively. 

Initiation signals are associated with enable and disable components, where the 

disable component takes effect when the corresponding actions have gone through a 

single invocation. 

The laws in the BS characterizing the effects of events associated with signals 

are of the following form: 

<SP, st1, ... , stp, as1, ... , asq, mode>===Sig===><SP', st1, ... , stp, as1, ... , asq, mode'> 
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The above is interpreted as follows: the occurrence of the event whose effect 

is denoted by the label Sig, when the ExtDFD is in the mode mode, causes the 

mode to change to mode', where such change causes changes in the state of some 

of the actions in sp, represented by sp'. 

Parallel events and an example 

The ExtDFD events which can affect disjoint parts of an ExtDFD can occur in 

parallel. Example 5.6 gives a BS for the diagram in Figure 5.1, viewed as a simple 

ExtDFD consisting of a single action. 

Example 5.6 
The BS for the ExtDFD shown in Figure 5.1 

Beh = Book_TS + Borrower_TS + Behstate + Behlabel + 
Sig nature 

transition relation 
_ ===_ ===> _ : beh, lbeh, beh 

Laws V bid:book_id; lb:list(book); out:out_updated_book; 
bklist:list(book_id); brlist:list(borrower_id); borrid :borrower _id; 
ckinfo:asynch(checkout_info); indic:borrower_indicator; a, a':p5state; 
obk:out_book; obr:out_borr; asynch(checkout_message); 
ck:checkout_info; outmess:checkout_message 

Synchronized events: accesses to data stores 
1. lb==READBOOK2(bid, mkreadval(obk))==>lb, 

readbook2(1b, bid) = mkreadval(obk), 
a==Readp5(bid, obk)==>a', contains(bid, bklist) =false=> 

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess> 
===SYNCH( {READBOOK2(bid, mkreadval( obk)), 
Readp5(bid, obk)})===> 

<{a'}, <lb,add(bid, bklist)>, <lbr, brlist>, ckinfo, ckmess> 
2. lbr==READBORR2(borrid, mkrdborr(obr))==>lbr, 

a==Readp6(borrid, obr)==>a', 
contains(borrid, brlist) = false, readborr2(1br, borid) = mkrdborr(obr) • 

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess> 
===SYNCH({READBORR2(borrid, mkrdborr(obr)), 
Readp6(borrid, obr)})===> 

<{a'}, <lb, bklist)>, <lbr, add(borrid, brlist)>, ckinfo, ckmess> 
3. lb==READBOOK2(bid, Nullval)==>lb, readbook2(1b, bid)= Nullval, 

a==Erreadp5(bid)==>a' => 
<{a}, <lb,bklist>, <lbr, brlist>, ckinfo> 

===SYNCH({READBOOK2(bid, Nullval), Erreadp5(bid)})===> 
<{a'}, <lb, bklist>, <lbr, brlist>, ckinfo, ckmess> 

4. lbr==READBORR2(borrid, Nullbrval)==>lbr, readborr2(1br, borid) = Nullbrval, 
a==Erreadp6(borrid)==>a' => 

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess> 
===SYNCH({READBORR2(borrid, Nullbrval), Erreadp6(borrid)})===> 
<{a'}, <lb, bklist>, <lbr, brlist>, ckinfo, ckmess> 

5. lb==UPDATEBK(bid, indic)==>lb', 
a==Send1 p9(bid, indic)==>a' => 

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess> 
===SYNCH({UPDATEBK(bid, indic), Send3p9(bid, indic)})===> 

<(a'}, <lb', delete(bid, bklist)>, <lbr, brlist>, ckinfo, ckmess> 
Example 5.6 continued 
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Example 5.6 
The BS for the ExtDFD shown in Figure 5.1 

6. lbr==UPDATEBR(borrid, blist)==>lbr', 
a==Send2p9(borrid, blist)==>a' => 

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess> 
===SYNCH ( { U PDA TEBR(borrid, blist), Send2p9(borrid, blist)} )===> 

<{a'}, <lb, bklist>, <lbr', delete(borrid, brlist)>, ckinfo, ckmess> 

Synchronized events: interactions with asynchronous data flows 
7. ckinfo==DEL(mkoutinfo(bid, borrid))==>Ckinfo', 

top( ck info) = mkoutinfo(bid, borrid), 
a==SYNCH({Receivep5(bid), Receiveip6(borrid)})==>a' => 

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess> 
===SYNCH({DEL(mkoutinfo(bid, borrid)), 
SYNCH({Receivep5(bid), Receivei p6(borrid)})})===> 

<{a'}, <lb, bklist>, <lbr, brlist>, ckinfo', ckmess> 
8. ckinfO==ADD(ck)==>Ckinfo' => 

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess> 
===SYNCH({ADD(ck)})===> 

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo', ckmess> 
9. ckmess==ADD(outmess)==>Ckmess', a==Send3p9(outmess)==>a' • 

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess> 
===SYNCH({ADD(outmess), Send3p9(outmess)})===> 

<{a'}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess'> 
; o. ckmess==DEL(outmess)==>ckmess' => 

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmeSS> 
===SYNCH({DEL(outmess)})===> 

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess'> 
Parallel events 
Events which affect mutually exclusive parts of the state can be carried out in 
parallel 

5.3 The BS as a formal basis for reasoning with ExtDFDs 
The BS of an ExtDFD can be used to support the following activities: 

• Investigating behavioural properties captured by the BS (validation). 

• Proving that a specification implements the BS (verification). 

In the following, the use and limitations of the BS for validation and 

verification are described. 

5.3.1 Investigating behavioural properties of ExtDFDs with the BS 

The state transition system characterized by the BS can be used to 

investigate properties, called safety properties, which concern what applications are 

allowed to do, or equivalently, not allowed to do. An example of a required safety 

property for the library application is that a book cannot be checked out and 

available at the same time, that is, there should be no transition to a state in which a 

book is both checked out and available. Safety properties can be investigated 
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directly with the BS, since its laws explicitly express what the system is allowed to 

do. 

Properties related to what an application must do, called liveness properties 

[Lam86], are sometimes implicit in the BS of ExtDFDs. An example of a liveness 

property which can be implied from the BS is termination of an action. To facilitate 

the investigation of liveness properties the labeled sequences of states representing 

invocations need to be made explicit. To do this requires the addition of functions 

and relations to those already present in the BS. A useful relation for analysis 

purposes is the reachability relation,_---_--->_ : state, list(label), state, which is 

defined on process states and lists of labels as follows: 

state===A===>State' => state---Alemptylist--->state' 

state---L--->state', state'===A===>State" => state---AIL--->state" 

The reachability relation is an extension of the transition relation which 

represents state transitions resulting from a sequence of event occurences. Used 

naively, the reachability relation is not of much use, since there are, in general, an 

infinite number of states reachable from a given state. State transition trees (STTs), 

described in Chapter 2, provide finite representations of reachability relations, 

where the nodes represent classes of states, while their edges represent classes of 

event labels. Such trees can be used to check whether certain states, or classes of 

states, are reachable from a given state, or a class of states. In particular such trees 

can be used to investigate whether inconsistent states are reachable from consistent 

states. Even so, the STT for a BS can be very large, making the automatic 

generation of such trees from ASTSs desirable. 

An automated system which, given an ASTS, would generate STTs, and 

provide functions for analyzing such trees is needed in order for the framework to 

be of practical use in this respect. Such automated system can also be used to 

exercise (test) the behavioural specification under various control and/or data 

inputs. This would involves substituting appropriate values to obtain instances of 

the state and event classes in the STTs. 

5.3.2 Proving implementations of the BS 

The hiding of states of a process is sometimes desirable when attempting to 

establish its equivalence to another process under some criteria for equivalence. For 

example, two processes which behave identically as far as there inputs and outputs 

are concerned, but which differ in their internal workings, are equivalent under a 

criterion which makes two processes equivalent if and only if they generate the 

same results (output data) given the same inputs. Such equivalences are usually 
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called observational [ST87]. An observational equivalence can be used as the basis 

for determining whether a specification implements the BS. 

The notion of a specification implementing the BS developed here depends 

on the ability to hide some of the states it specifies. Observation specifications are 

used for this purpose. An observation specification is a tuple <B, S>, where B is 

an ASTS, and S is an ASTS specifying states, called observable states, and their 

allowable transitions, called observable transitions. The states specified in S are 

derived from the states of B by hiding some components of the states in B. 

A particular observation specification, called an In/Out (I/O) specification, is 

used to carry out observations on actions. An I/O specification, <A, S> where A is 

an ASTS characterizing an action with states of the form <pinit1, ... , pinitq, 

p1 , ... , pn, pter1 , ... , pterm>, and Sis an ASTS characterizing observations on the 

invokers, pinit1, ... , pinitq, and terminators, pter1, ... pterm, of the action. The 

states specified in S, called //0 states, are of the form <pinit1, ... , pinitq, 

pter1 , ... , pterm>. State ransitions in Sare characterized by laws of the form: 

<Pinit1, ... , pinitq, p1, ... , pn, pter1, ... , pterm>==A==><pinit1', ... , pinitq', p1', ... , pn', 

pter1 ', ... , pterm'> • <pinit1, ... , pinitq, pter1 , ... , pterm>==A==><pinit1 ', ... , pinitq', 

pter1', ... , pterm'> 

The transition system characterized by S is called the 1/0 transition system of the 

action characterized by A. 

An ASTS, Beh 1, characterizing the behaviour. of an action, is said to 

implement an ASTS, Beh2, if there exists a function from the 1/0 states of Beh1 

to the 1/0 states of T2, which preserves the 1/0 transition system of Be h 2. 

Intuitively, the above definition captures the notion of action equivalence as 

determined by their external behaviours, encapsulated by their I/O specifications. 

The above notion of a specification implementing another is similar to that of 

Lamport's, which states that a "specification S1 implements a specification S2 if 

every externally visible behaviour allowed by S 1 is allowed by S2" [AL88]. 

Lamport's behaviours are sequences of states, which are implicit in the ASTSs 

defined here. 

An action implementing another action A, may be a result of further 

decomposition of A's processes, or may consist of a totally different process 

structure. In each case the action must have the same interface inputs and outputs 

(but which may be further decomposed). The decomposition approach can be used 

as the basis of a transformation development strategy, where a transformation 

occurs when an action's process is decomposed. In verifying whether an action, 
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A2, resulting from the decomposition of a process in another action, A 1, 

implements A 1 involves viewing the decomposed process and its decomposed 

system of processes as actions and proving that the decomposed system implements 

the process. This is the situation in the latter verification approach mentioned above. 

The implementation of a BS by another specification is based on the above 

notion of an action's specification implementing another action's specification. 

Formally, a specification, S, implements the BS of an ExtDFD, B, if there exists a 

function from the actions specified in S to the actions specified in B, such that the 

action of S which is mapped to the action in B, implements the action in B. 

5.4 Conclusion 
In this chapter it is shown how a formal specification of behaviour for 

ExtDFDs, in the form of a BS, can be derived given specifications in the DE 

characterizing the structure and object classes of data flows and data stores, and 

specifications of behaviour for the DFD processes within actions. The BS can be 

viewed as an initial design specification, and alleviates some of the problems 

associated with generating such specifications from DFDs in the SA approach. 

Transition to design involves creating the ExtDFD from the DFD and then deriving 

the BS, which is a characterization of the formal interpretations associated with the 

ExtDFD. Such a transition is less likely to be as problematic as the transition from 

SA specifications to SD since it involves extending the DFDs themselves to 

incorporate control information. 

The BS can be used to formally validate behaviour of ExtDFDs, either by 

associating with ExtDFDs a concrete operational model which is consistent with the 

state transition system it characterizes, thus making the ExtDFDs executable, or by 

analyzing the BS itself. Automated tools for analyzing the BS are desirable, given 

the volume of detail that may be involved in such analyses. The BS also provides a 

basis for verifying subsequent designs, via the notion of a specification 

implementing the BS introduced in this chapter. 



CHAPTER 6 

Two Examples of 
Specifications 

6.0 Introduction 

Deriving Behavioural 
from ExtDFDs 

The tools and techniques described in Chapter 5 are applied to two different 

types of applications in this chapter. The first example, adapted from an example 

given in Hatley and Piribhai [HP87], is concerned with the specification of 

requirements for a automobile cruise control application. This application is control­

intensive in the sense that its behaviour is determined by the current mode of 

operation in which it is in. A change in the current mode is determined by the 

occurrence of external stimuli. The structures of data occurring in the application, 

and the relationships between them, are simple, thus the example serves to focus on 

the use of the tools and techniques for specifying the control aspects of 

applications. 

The second example is the library application introduced in Chapter 2. This 

application is data-intensive in the sense that the structures of the data, and the 

relationships between them play an important role in the specification of its 

requirements. Furthermore, the application has one mode of operation, thus the 

control aspects of the application of the application are relatively simple. The 

example thus serves to focus on the use of the tools and techniques for specifying 

the processing and data aspects of the application. 

In Section 6.1 the tools and techniques are applied the automobile cruise 

control application and in Section 6.2 they are applied to the library example. 

6.1 The Automobile Cruise System 
The function of the cruise control application is to maintain an automobile at a 

constant speed when commanded to do so by the driver. The driver must be able to 

enter the following commands: 

• cruise on - activate the cruise control application. 

• cruise off- deactivate the cruise control application. 

• start accelerating - causes the automobile to accelerate at a comfortable rate. 

• stop accelerating - stops the acceleration initiated by a start accelerating 

command. 

• resume - causes the application to return the automobile to the speed selected 

prior to braking or gear shifting. 
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The cruise control application can only be activated while the engine is 

running and the automobile is in top gear. When activated the application selects the 

current speed as the desired speed only if it is at least 30 miles per hour. If the 

speed is less than 30 miles per hour then the application is automatically 

deactivated. Deactivation of the application by the driver returns control to the driver 

regardless of any other commands issued to the application. The start accelerating 

command causes the application to accelerate the car at a comfortable rate until the 

stop accelerating command is issued, at which time the application holds the car at 

the new speed. The driver is permitted to reduce speed by depressing the brake 

pedal while the application is active. Depressing the brake pedal or shifting out of 

top gear temporarily disables the application. Issuing the resume command after the 

brake is released and the automobile is in top gear causes the application to maintain 

the speed at the speed prior to braking or gear shifting, while issuing the start 

accelerating command after brake release and a return to top gear causes the 

application to accelerate the automobile. However, if a decativate application 

command is issued in the intervening time then the resume and start accelerating 

commands do nothing. 

The ExtDFD for the cruise control application is shown in Figure 6.1, and the 

supporting state transition diagram (STD) is shown in Figure 6.2. In the approach 

used here the driver commands are modeled as toggle signals, for example, the 

cruise on and off commands are represented as a single signal, called cruise_on/off, 

acting like a toggle switch, as is made clear in the STD for the application. It is also 

assumed that the shaft is interfacing with a system that can detect and pass on its 

pulse rate and rate of change to the application. Such a system is assumed to be part 

of the external entity shaft. 

There are five actions in the ExtDFD, all consisting of single processes. The 

specification of behaviour is concerned mainly with the conditions under which 

these actions are enabled and disabled. In the relational specifications (RSs) 

characterizing states, labels and transition systems, the processes (actions) are 

identified by the following short forms: CalcAcc is Pl, CalcSpeed is P2, 

SelectDesiredSpeed is P3, MaintainSpeed is P4, and MaintainAcc is 

P5. A RS called Number, specifying floating point numbers and arithmetic on 

such numbers, is assumed to be available. Throughout, the RSs are interspersed 

with informal textual annotations to enhance their readability. 
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Figure 6.1 The ExtDFD for the Cruise Control Application 
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All the data flows in the ExtDFD transmit objects of type number. 

Furthermore the constant MileCount, the number of shaft rotations in a single 

mile, is assumed to be defined in the RS Number. For clarity, numbers are written 

in their numeric form, for example the element representing the number two in 

Number is written as '2'. 

The auxiliary functions needed to define the transition relations of the 

application's processes essentially define the functional relationship between their 

inputs and outputs. The RSs characterizing the auxiliary functions are given below. 

Functional relationship between the input and out;put of CalcAcc 

CalcAcc = Number + 

Signature 

derivor 

calcacc : number • number 

Laws \:/ c:number 

1. calcacc(c) = c/MileCount 

Functional relationship between the input and output of CalcSpeed 

CalcSpeed =Number+ 

Signature 

derivor 

calcspeed : number • number 

Laws \:/ c:number 

1. calcspeed(c) = c/MileCount 

Functional relationship between the input and out;put of MaintainSpeed 

MaintainSpeed = Number + 

Signature 

derivor 

calcposn : number, number • number 

Laws \:/ n1 ,n2:number 

1. n1-n2>2 • calcposn(n1, n2) = O 

2. n1-n2 2::-2, n1 -n2:S:2 • calcposn(n1 ,n2) = 2*(n1 -n2+2) 

3. n1-n2<-2 • calcposn(n1, n2) = 8 

--- Varies throttle opening from closed to fully open as speed varies from 

2 mph above desired speed, to 2 mph below it ---
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Functional relationship between the input and out_put of MaintainAcc 

MaintainAcc = Number + 

Signature 

derlvor 

calcthposn : number • number 

Laws V n:number 

1. n> 1.2 • calcthposn(n) = 0 

2. n ~0.8, n$:1.2 • calcthposn(n) = 20*(1.2-n) 

3. n<0.8 • calcthposn(n) = 0.8 

--- Varies throttle opening from closed to fully open as acceleration 

varies from 1.2 mph/sec to 0.8 mph/sec ---
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Since the actions of the ExtDFD all consist of single processes, the states, labels 

and transition systems for the processes are specified as actions. 

State, label, and transition system specification for CalcAcc 

CalcAcc_State = Number+ P1 substate + 

Signature 

sorts p1 state, inp1, outp1 

constructors 

Nullinp1 : • inp1 

Nulloutp1 : • outp1 

inchangerate: number • inp1 

outacc : number • outp1 

<_,_> : inp1, outp1 • p1 state 

CalcAcc_Labels = Number+ 

Signature 

sort p1 label 

constructors 

Readchrate : number • p1 label 

Sendp1 : number • p1 label 

Terminatep1 : • p1 label 
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CalcAcc_TS = CalcAcc_State + CalcAcc_Label + CalcAcc + 

Siganture 

transition relation 

_ == _ ==> _: p1 state, p1 label, p1 state 

Laws V a,c:number 

1. <Nullinp2, Nulloutp2>==Readchrate(c)==><inchangerate(c), Nulloutp2> 

2. calcacc(c) = a • 

<inchangerate(c), Nulloutp2> 

==Sendp1 (a)==> 

<inchangerate( c), outacc( a)> 

3. <inchangerate(c), outacc(a)>== Terminatep2==><Nullinp1, Nulloutp1 > 

State, label, and transition system specification for CalcSpeed 

CalcSpeed_State =Number+ 

Signature 

sorts p2state, inp2, outp2 

constructors 

Nullinp2 : • inp2 

Nulloutp2 : • outp2 

inrate: number • inp2 

outspeed : number • outp2 

<_,_> : inp2, outp2 • p2state 

CalcSpeed_Labels = Number+ 

Signature 

sort p2Iabel 

constructors 

Readprate : number • p2Iabel 

Sendp2 : number • p2Iabel 

Terminatep2: • p2Iabel 

CalcSpeed_ TS = CalcSpeed_State + CalcSpeed_Label + CalcSpeed + 

Signature 

transition relation 

_==_==>_: p2state, p2Iabel, p2state 

Laws V n,cs:number 

1. <Nullinp2, Nulloutp2>==Readprate(n)==><inrate(n), Nulloutp2> 
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2. calcspeed(n) =cs • 

<inrate(n), Nulloutp2> 

==Se ndp2 (cs)==> 

<inrate(n), outspeed(cs)> 

3. <inrate(n), outspeed(cs)>== Terminatep2==><Nullinp2, Nulloutp2> 

State, label, and transition system specification for Select Desi redS:peed 

SelectDesiredSpeed_State =Number+ 

Signature 

sorts p3state, inp3, outp3, outsig 

constructors 

Nullinp3: • inp3 

Nulloutp3: • outp3 

Nullsig: • outsig 

incspeed : number • inp3 

outdspeed: number • outp3 

less30: • outsig 

<_,_,_> : inp3, outp3, outsig • p3state 

SelectDesiredSpeed_Labels = Number + 

Signature 

sort p31abel 

constructors 

Readp3 : number • p31abel 

Sendp3 : number • p31abel 

Less30: • p31abel 

Terminatep3 : • p31abel 
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SelectDesiredSpeed_ TS = SelectDesiredSpeed_State + SelectDesiredSpeed_Label + 

Slganture 

transition relation 

_==_==>_: p3state, p31abel, p3state 

Laws V cs:number 

1. <Nullinp3, Nulloutp3, Nullsig>==Readp3(cs)==><incspeed(cs), Nulloutp3, Nullsig> 

2. ~(cs < 30) • 

<incspeed(cs), Nulloutp2, Nullsig> 

==Sendp3( cs)==> 

<incspeed(cs), outdspeed(cs), Nullsig> 
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3. cs< 30 • 

dncspeed(cs), Nulloutp3, Nullsig> 

==Less30==> 

<incspeed(cs), Nulloutp3, less30> 

4. <incspeed(cs), outdspeed(cs), Nullsig> 

== Terminatep3==> 

<Nullinp3, Nulloutp3, Nullsig> 

5. dncspeed(cs), Nulloutp3, less30> 

== Terminatep3==> 

<Nullinp3, Nulloutp3, Nullsig> 

State, label, and transition system specification for MaintainSpeed 

MaintainSpeed_State = Number+ 

Signature 

sorts p4state, in1p4, in2p4, outp4 

constructors 

Nullin1p4: • in1p4 

Nullin2p4 : • in2p4 

Nulloutp4 : • outp4 

in1dspeed : number • in1p4 

in2cspeed : number • in2p4 

outposn : number • outp4 

<_,_,_> : in1 p4, in2p4, outp4 • p4state 

MaintainSpeed_Labels = Number+ 

Signature 

sorts p41abel 

constructors 

Read1 p4, Read2p4 : number • p41abel 

Sendp4 : number • p41abel 

Terminatep4 : • p41abel 
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MaintainSpeed_ TS = MaintainSpeed_State + MaintainSpeed_Label + MaintainSpeed + 

Signature 

transition relation 

_== _ ==> _: p4state, p41abel, p4state 

Laws V ln1 :in1 p4; in2:in2p4; s1 ,s2,pos:Number 

1. <Nullin1 p4, in2, Nulloutp4>-Read1 p4(s1 )-><in1 dspeed(s), in2, Nulloutp4> 
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2. <in1, Nullin2p4, Nulloutp4>-Read2p4(s1)-><in1, in2cspeed(s), Nulloutp4> 

3. calcposn(s1 ,s2) = pos • 

<in1 dspeed(s1), in2dspeed(s2), Nulloutp4> 

==Sendp4(pos)==> 

<in1dspeed(s1 ), in2dspeed(s2), outposn(pos)> 

4. <in1 dspeed(s1 ), in2dspeed(s2), outposn(pos)> 

== Terminatep4==> 

<Nullin1 p4, Nullin2p4, Nulloutp4> 

State, label, and transition system specification for MaintainAcc 

MaintainAcc_State = Number+ 

Signature 

sorts p5state, inp5, outp5 

constructors 

Nullinp5 : • inp5 

Nulloutp5 : • outp5 

inacc : number • inp5 

throtposn : number • outp5 

<_,_> : inp5, outp5 • p5state 

MaintainAcc_Labels = Number+ 

Signature 

sorts p51abel 

constructors 

Readp5 : number • p51abel 

Sendp5 : number • p51abel 

Terminatep5: • p51abel 

MaintainAcc_ TS= MaintainAcc_State + MaintainAcc_Label + MaintainAcc + 

Signature 

transition relation 

_-_-> _: p5state, p51abel, p5state 

Laws V a,pos:number 

1. <Nullinp5, Nulloutp5>==Readp5(a)==><inacc(a), Nulloutp5> 

2. calcthposn(a) = pos • 

<inacc(a), Nulloutp5>==Sendp5(pos)==><inacc(a), throtposn(pos)> 

3. <inacc(a),throtposn(pos)>== Terminatep5==><Nullinp5, Nulloutp5> 
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The data stores CURRENTSPEED, DESIREDSPEED, and CURRENTACC, behave 

like variables in the sense that they contain a single value which is overwritten when 

the data store is written into. The transition systems characterizing the effects of 

reads and writes on the data store states are given below. 

State, label, and transition system specification for CURRENTSPEED 

CurrentSpeed_ TS = Number + 

Signature 

sorts currspeed, cslabel 

constructors 

Nullspeed : • currspeed 

vales: number • currspeed 

Putcs : number • cslabel 

Getcs : number • cslabel 

transition relation 

_==_==>_: currspeed, cslabel, currspeed 

Laws \:/ s:number; cs:currspeed 

1. cs==Putcs(s)==>valcs(s) 

2. valcs(s)==Getcs(s)==>Valcs(s) 

State, label, and transition system specification for DESIREDSPEED 

DesiredSpeed_ TS = Number+ 

Signature 

sorts despeed, dslabel 

constructors 

Nulldspeed : • despeed 

valds : number • despeed 

Putds : number • dslabel 

Getds : number • dslabel 

transition relation 

_==_==>_: despeed, dslabel, despeed 

Laws 'i s:number; ds:despeed 

1. dS==Putds(S)==>Valds(s) 

2. valds(s)==Getds(s)==>Valds(s) 
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State, label, and transition system specification for CURRENTACC 

Ace_ TS = Number + 

Signature 

sorts ace, alabel 

constructors 

Nullacc : • ace 

valacc : number • ace 

Puta: number • calabel 

Geta: number • alabel 

transition relation 

_ == _ ==> _ : ace, alabel, ace 

Laws V a:number; da:acc 

1. da==Puta(a)==>valacc(a) 

2. valacc(a)==Geta(a)==>valacc(a) 

Specification of application states 
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CruiseSys_State = CalcAcc_State + CalcSpeed_State + SelectDesiredSpeed_State + 

MaintainSpeed_State + MaintainAcc_State + CurrentSpeed_ TS + DesiredSpeed_ TS + 

Acc_TS + 

Signature 

sorts state, systate, sysflag 

constructor 

IDLE, RUN1, RUN2, RUN3, RUN4, RUNS, CRUISE, ACCEL, BRAKING : • sysflag 

--- modes of operation ---

P1 : p1 state • pstate 

PS : p5state • pstate 

--- state coercion functions, that is, functions which make states of actions into 

ExtDFD process states ---

<_,_,_,_> : set(pstate), ace, currspeed, despeed, asynch1, asynch2, 

sysflag • systate 

--- the state of an ExtD FD ---

o k- pre d I cat e 

okstate: systate 

Laws V ac:acc; cs:currspeed; ds:despeed; p1 :p1state; p2:p2state; 

p3:p3state; p4:p4state; p5:p5state; as1 :asynch1, as2:asynch2 

1. okstate(<0, Nullacc, Nullspeed, Nulldspeed, as1, as2, IDLE>) 



Chapter 6: Examples 163 

2. okstate(<{P1, p2}, ac, cs, Nulldspeed, as1, as2, RUN1>) 

3. okstate(<{P1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2>) 

4. okstate(<{P1, p2, p3, p4}, ac, cs, ds, as1, as2, CRUISE>) 

5. okstate(<{P1, p2, p5}, ac, cs, ds, as1, as2, ACCEL>) 

6. okstate(<{P1, p2}, ac, cs, ds, as1, as2, BRAKING>) 

7. okstate(<{P1, p2}, ac, cs, ds, as1, as2, RUN3>) 

8. okstate(<{P1, p2}, ac, cs, ds, as1, as2, RUN4>) 

9. okstate(<{P1, p2}, ac, cs, ds, as1, as2, RUNS>) 

Specification of action labels 

Cruise_Label = CalcAcc_Label + CalcSpeed_Label + SelectDesiredSpeed_Label + 

MaintainSpeed_Label + MaintainAcc_Label + CurrentSpeed_ TS + DesiredSpeed_ TS + 

Acc_TS + 

Signature 

sort label 

L 1 : p1 label • label 

L5 : p41abel • label 

Les : cslabel • label 

Lds: dslabel • label 

La : alabel • label 

Specification of application labels 

CruiseSys_Label = Set(Cruise_Label) + 

Signature 

sort syslabel 

LJ : label • syslabel 

SYNCH : set(label) • syslabel 

_II_ : syslabel, syslabel • syslabel 

The following shorthand notation will be used in the laws that follow. 

• { p 1, p2, ... , pn} denotes the finite set consisting of the elements p 1 to pn. 

• insert(p, sp) will be written as { p, sp} 

• Coercion functions for both states and labels will be left implicit, where doing so 

causes no confusion. For example, the systate <{Pl(pl), ... ,P5(p5) }, ... > will 

simply be writen as <{pl, ... ,p5}, ... >. 
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Specification of the application's transition system 

CruiseSys_ TS = CalcAcc_ TS + CalcSpeed_ TS + SelectDesiredSpeed_ TS + 

MaintainSpeed_ TS + MaintainAcc_ TS + CurrentSpeed_ TS + DesiredSpeed_ TS + 

Acc_TS + 

Signature 

transition relation 

_ === _ ===> _ : systate, syslabel, systate 

Laws V a,s,c:number; ac,ac':acc; cs,cs':currspeed; ds,ds':despeed; 

f:sysflag; 

sp,sp1 ,sp1 ',sp2,sp2' :set(pstate); p1 ,p1 ':p1 state; p2,p2':p2state; 

p3,p3':p3state; p4,p4':p4state; p5,p5':p5state 

Synchronized events: data store/action interactions 

1. p1 ==Sendp1 (a)==>P1 ', ac==Puta(a)==>ac' • 

<{P1, sp}, ac, cs, ds, as1, as2, f> 

===SYNCH({Sendp1 (a), Puta(a)})===> 

<{p1', sp}, ac', cs, ds, as1, as2, f> 

--- synchronized write to data store CURRENTACC by CalcACC ---

2. p5==Readp5(a)==>p5', aC==Geta(a)==>ac • 

<{p5, sp}, ac, cs, ds, as1, as2, f> 

===SYNCH( { Readp5( a), Geta( a)})===> 

<{p5', sp}, ac, cs, ds, as1, as2, f> 

-- synchronized read from data store CURRENTACC by MaintainAcc --

3. p2==Sendp2(S)==>P2', CS==Putcs(s)==>CS' • 

<{P2, sp}, ac, cs, ds, as1, as2, f> 

===SYNCH({Sendp2(s), Putcs(s)})===> 

<{p2', sp}, ac, cs', ds, as1, as2, f> 

-- synchronized write to CURRENT SPEED by CalcSpeed --

4. p3==Readp3(S)==>p3', CS==Getcs(S)==>CS • 

<{P3, sp}, ac, cs, ds, as1, as2, f> 

===SYNCH({Readp3(S), Getcs(s)})===> 

<{p3', sp}, ac, cs, ds, as1, as2, f> 

-- synchronized read on CURRENTSPEED by SelectDesiredSpeed --

5. p3==Sendp3(S)==>P3', dS==Putds(S)==>dS' • 

<{p3, sp}, ac, cs, ds, as1, as2, f> 

===SYNCH({Sendp3(s), Putds(s)})===> 

<{p3', sp}, ac, cs, ds', as1, as2, f> 

-- synchronized write to DESIREDSPEED by SelectDesiredSpeed --
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Chapter 6: Examples 

6. p4==Read1 p4(S)==>P4', dS==Getds(s)==>dS • 

<{p4, sp}, ac, cs, ds, as1, as2, f> 

===SYNCH({Read1p4(s), Getds(s)})===> 

<{p4', sp}, ac, cs, ds, as1, as2, f> 

-- synchronized read on DESIREDSPEED by MaintainSpeed --

7. p4==Read2p4(cs)==>P4', CS==Getcs(S)==>CS • 

<{p4, sp}, ac, cs, ds, as1, as2, f> 

===SYNCH({Read2p4(s), Getcs(s) })===> 

<{p4', sp}, ac, cs, ds, as1, as2, f> 

-- synchronized read on CURRENTSPEED by MaintainSpeed --

8. p4==Sendp4(pos)==>p4', as1 ==ADD1 (pos)==>as1' 

<{P4, sp}, ac, cs, ds, as1, as2, f> 

===SYNCH({Sendp4(pos), ADD1 (pos)})===> 

<{p4', sp}, ac, cs, ds, as1', as2, f> 
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--- synchronized add access to data flow throttle_position1 by MaintainSpeed ---

9. p4==Sendp5(pos)==>p5', as2==ADD2(pos)==>as2' 

<{PS, sp}, ac, cs, ds, as1, as2, f> 

===SYNCH({SendpS(pos), ADD2(pos)})===> 

<{PS', sp}, ac, cs, ds, as1, as2', f> 

--- synchronized add access to data flow throttle_position2 by MaintainAcc --­

Control events 
-- The following transitions are derived directly from the STD for the application 

(see Figure 6.2) --

10. <0, Nullacc, Nullspeed, Nulldspeed, as1, as2, IDLE> 

===engine_on/off===> 

<{<Nullinp1, Nulloutp1>, <Nullinp2, Nulloutp2>}, 

Nullacc, Nullspeed,Nulldspeed, as1, as2, RUN1 > 

11. <{P1, p2}, ac, cs, Nulldspeed, as1, as2, RUN1> 

===trans_in/out===> 

<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2> 

12. f:t=IDLE • 

<Sp,ac,cs,ds, as1, as2, f> 

===engine_on/off===> 

<0, Nullacc, Nullspeed, Nulldspeed, as1, as2, IDLE> 

13. f:t=RUN1, f:tRUN2, f:t=RUN4, f:t=IDLE • 

<Sp,ac, cs,ds, as1, as2, f> 

===cruise_on/off===> 

<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2> 
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14. <{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2> 

===Cruise_ on/off===> 

<{P1, p2, <Nullinp3, Nulloutp3>, <Nullin1p4, Nullin2p4, Nulloutp4>}, 

ac, cs, Nulldspeed, as1, as2, CRUISE> 

15. <{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2> 

===trans_in/out===> 

<{P1, p2}, ac, cs, Nulldspeed, as1, as2, RUN1> 

16. <{p1, p2, p3, p4}, ac, cs, valds(s), as1, as2, CRUISE> 

===acc_on/off===> 

<{p1, p2, <Nullinp5, Nulloutp5>}, ac, cs, valds(s), as1, as2, ACCEL> 

17. <{p1, p2, p3, p4}, ac, cs, valds(s), as1, as2, CRUISE> 

===brake_on===> 

<{p1, p2}, ac, cs, valds(s), as1, as2, BRAKING> 

18. <{p1, p2, p3, p4}, ac, cs, valds(s), as1, as2, CRUISE> 

===trans_in/out===> 

<{P1, p2}, ac, cs, valds(s), as1, as2, RUN4> 

19. <{p1, p2, p3, p4}, ac, cs, Nulldspeed, as1, as2, CRUISE> 

===(Less30)===> 

<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2> 

20. <{p1, p2, p5}, ac, cs, ds, as1, as2, ACCEL> 

==brake_on==> 

<{p1, p2}, ac, cs, ds, as1, as2, BRAKING> 

21. <{p1, p2, p5}, ac, cs, ds, as1, as2, ACCEL> 

====acc_on/off===> 

<{p1, p2, <Nullinp3, Nulloutp3>, <Nullin1 p4, Nullin2p4, Nulloutp4>}, 

ac, cs, Nulldespeed, as1, as2, CRUISE> 

22. <{p1, p2}, ac, cs, ds, as1, as2, BRAKING> 

===brake_off===> 

<{p1, p2}, ac, cs, ds, as1, as2, RUN3> 

23. <{p1, p2}, ac, cs, ds, as1, as2, RUN3> 

===acc_on/off===> 

<{P1, p2, <Nullinp5, Nulloutp5>}, ac, cs, ds, as1, as2, ACCEL> 

24. <{p1, p2}, ac, cs, ds, as1, as2, RUN3> 

===trans_in/out===> 

<{p1, p2}, ac, cs, ds, as1, as2, RUN4> 

25. <{p1, p2}, ac, cs, ds, as1, as2, RUN3> 

===resume_speed===> 
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<{P1, p2, <Nullin1p4, Nullin2p4, Nulloutp4>}, ac, cs, ds, as1. as2. CRUISE> 
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26. <<{p1, p2,}, ac, cs, ds>, as1, as2, RUN4> 

===cruise_ on/off===> 

<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN1> 

27. <{p1, p2}, ac, cs, ds, as1, as2, RUN4> 

===trans_in/out===> 

<{p1, p2}, ac, cs, ds, as1, as2, RUNS> 

28. <{P1, p2}, ac, cs, ds, as1, as2, RUNS> 

===acc_on/off===> 

<{p1, p2, <NullinpS, NulloutpS>}, ac, cs, ds, as1, as2, ACCEL> 

29. <{p1, p2}, ac, cs, ds, as1, as2, RUNS> 

===resume_speed===> 
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<{p1, p2, <Nullin1 p4, Nullin2p4, Nulloutp4>}, ac, cs, ds, as1, as2, CRUISE> 

30. p3== Terminatedp3==<Nullinp3, Nulloutp3, Nullsig> 

<{p1, p2, p3, p4}, ac, cs, ds, as1, as2, CRUISE> 

=== Killp3===> 

<{p1, p2, p4}, ac, cs, ds, as1, as2, CRUISE> 

Synchronized events; asynchronous data flow/action interactions 

31. p4==Sendp4(pos)==>p4', as1==ADD1(pos)==>as1' • 

<{p4, sp}, ac, cs, ds, as1, as2, f> 

===SYNCH({Sendp4(pos), ADD1 (pos)})===> 

<{p4', sp}, ac, cs, ds, as1 ', as2, f> 

32. p5==SendpS(pos)==>p5', as2==ADD2(pos)==>as2' • 

<{p5, sp}, ac, cs, ds, as1, as2, f> 

==SYNCH{ Sendp5 (pos), AD D2(pos) }==> 

<{pS', sp}, ac, cs, ds, as1, as2', f> 

Action/state data flow interactions 

33. p1 ==Readchrate==>P1' • 

<{p1, sp}, ac, cs, ds, as1, as2, f> 

===Readchrate===> 

<{p1 ', sp}, ac, cs, ds, as1, as2, f> 

34. p2==Readprate==>P2' • 

<{P2, sp}, ac, cs, ds, as1, as2, f> 

===Readprate===> 

<{p2', sp}, ac, cs, ds, as1, as2, f> 
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Parallel events 
35. <{p1, p5, sp}, ac, cs, ds, asi, as2, f> 

===SYNCH({Sendpi (a), Puta(a)})===> 

<{pi', p5, sp}, ac', cs, ds, as1, as2, f>, 

<{pi, p5, sp}, ac', cs, ds, as1, as2, f> 

===SYNCH({Readp5(a), Get(a)})===> 

<{pi, p5', sp}, ac', cs, ds, as1, as2, f> • 

<{p1, p5, sp}, ac, cs, ds, asi, as2, f> 
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===SYNCH({Sendpi(a), Puta(a)})IISYNCH({Readp5(a), Get(a)})===> 

<{p1', p5', sp}, ac', cs, ds, asi, as2, b 

-- parallel access to the data store CURRENTACC gives priority to the 

write access --

36. <{p2, p3, sp}, ac, cs, ds, asi, as2, f> 

===SYNCH({Sendp2(s), Putcs(s)})===> 

<{p2', p3, sp}, ac, cs', ds, asi, as2, f>, 

<{p2, p3, sp}, ds, cs', ds, asi, as2, f> 

===SYNCH({Readp3(s), Getcs(s)})===> 

<{p2, p3', sp}, ds, cs', ds, asi, as2, b • 

<{P2, p3, sp},ds,cs,ds, as1, as2, f> 

===SYNCH({Sendp2(s), Putcs(s)})IISYNCH({Readp3(s), Getcs(s)})===> 

<{p2', <inspeed(s1), Nulloutp3>, sp}, ac, cs', ds, as1, as2, f> 

-- parallel access to the data store CURRENTS PEED gives priority to the 

write access --

3 7. <{p4, sp}, ac, cs, ds, as1, as2, f> 

===SYNCH({Read1 p4(s), Getds(s)})===> 

<{<indspeed(s1), Nullin2p4, Nulloutp4>, sp}, ac, cs, ds, as1, as2, f>, 

<{p4, sp}, ac, cs, ds, asi, as2, f> 

===SYNCH({Read2p4(s2), Getcs(s2)})===> 

<{<Nullini p4, incspeed(s2), Nulloutp4>, sp}, ac, cs, ds, asi, as2, f> • 

<{p4, sp}, ac, cs, ds, asi, as2, f> 

===SYNCH({Readi p4(si ), Getds(si )})II 

SYNCH( {Read2p4( s2), Getcs(s2)} )===> 

<{<indspeed(si), incspeed(s2), Nulloutp4>, sp}, ac, cs, ds, asi, as2, f> 

-- parallel access to the data store DESIRED SPEED gives priority to the 

write access --
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38. <Sp1+sp2, ac,cs,ds,as1, as2,f> 

===A1===> 

<Sp1 '+sp2, ac', cs, ds, as1, as2, f>, 

<Sp1+sp2, ac,cs,ds,as1,as2, f> 

===A2===> 

<SP1+sp2', ac, cs', ds', as1', as2', f> • 

<Sp1+sp2, ac,cs,ds, as1,as2, f> 

===A1 IIA2===> 

<SP1 '+sp2', ac', cs', ds', as1 ', as2', f> 

39. <Sp1+sp2,ac,cs,ds,as1,as2, f> 

===A1===> 

<Sp1'+sp2, ac', cs', ds, as1, as2, f>, 

<SP1+sp2, ac,cs,ds, as1, as2,f> 

===A2===> 

<SP1+sp2', ac, cs, ds', as1', as2', f> • 

<Sp1+sp2,ac,cs,ds,as1,as2,f> 

===A1 IIA2===> 

<Sp1 '+sp2', ac', cs', ds', as1 ', as2', f> 

40. <Sp1+sp2, ac,cs,ds,as1, as2,f> 

===A1===> 

<Sp1'+sp2, ac', cs', ds', as1, as2, f>, 

<Sp1+sp2, ac,cs,ds,as1, as2,f> 

===A2===> 

<Sp1+sp2', ac, cs, ds, as1', as2', f> • 

<Sp1+sp2,ac,cs,ds,as1, as2,f> 

===A 1 I IA2===> 

<Sp1'+sp2', ac', cs', ds', as1', as2', f> 

41.<sp1+sp2, ac,cs,ds,as1, as2,f> 

===A1===> 

<Sp1'+sp2, ac', cs', ds', as1', as2, f>, 

<Sp1+sp2, ac,cs,ds,as1, as2,f> 

===A2===> 

<Sp1+sp2', ac, cs, ds, as1, as2', f> • 

<Sp1+sp2, ac,cs,ds, as1,as2,f> 

===A1 IIA2===> 

<Sp1'+sp2', ac', cs', ds', as1', as2', f> 

-- Events that affect mutually exclusive parts of the application can occur in parallel --
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6.2 Computer-based University Library Application 
The ExtDFD for the library application is shown in Figure 6.3. The 

application is partitioned into seven actions namely DeleteCopy (Al), 

AddCopy (A2), ReturnBook (A3), CheckoutBook (A4), 

UpdateBorrStatus (A5),AddBorrower (A6),andDeleteBorrower 

(A 7) . The actions communicate with the external entity staff via asynchronous 

data flows, while communication with the clock external entity is via state flows. 

Actions are activated solely by the occurence of data events as is evident by the lack 

of control flows in the ExtDFD. Figure 6.4 gives the type definitions associated 

with the data flows in the ExtDFD. 

Figure 6.4 defines, in a semi-formal manner, the type defintions of the data 

flows in the ExtDFD for the library application shown in Figure 6.3. Base types are 

classes of indivisible objects, or list or set structures of indivisible objects, while 

non-base types are classes of composite objects. In the definitions for the non-base 

types, the base components are written in bold. The base types used for the library 

application are: 

number - the class of floating point numbers, 

time - the class of time points, 

character - the class of characters, 

and list and set structures of the above. 

Aliases for the base types are also defined in Figure 6.4, where the base types 

are diffrentiated from their aliases by writing them in italics. The names of the 

constructors in the RSs formally defining the types are enclosed within () in the 

definitions given in Figure 6.4. Constructors starting with a capital letter are 

constants. 
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Figure 6.3 The ExtDFD for the library application 
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Non-base data types 
bb status <time (mkbbstatus)) I "Not returned" 

(NotRet) > 
book 

book id 
borr detail 

borr fine record 

borr_flag 

borr_update_info 
borrower 

borrower book detail 

borrower id 

<book_id, title, subject, author, 
copy type, borrower indicator> 
(mkbook) 
<ISBN, copy#> (mkbkid) 
<[borrower_book_detail], number> 
mkborrdet 
<<number, borrower id> (mkbfrec) I "Not 
in file" (NoRec) > -
<"Not in file" (Bflag) I <borrower_id, 
out borr> (mkbflag) > 
<bo~rower_id, number> (mkupinfo) 
<borrower_id, borrower_name, 
borrower addr, borrower type, 
[borrower-book detail], -
payment to date> (mkborr) 
<book id, due time, bb status> 
(mkbdet) - -
<[character]> (mkborrid) 

borrower indicator ··= <"Available" (Available) I <borrower_id> 
(mkbind) > 

checkout info 
checkout_message 

<book id, borrower id> (mkoutinfo) 
<vetted borr, vetted book> (mkoutmess) 

del borr ··= borrowe~ id -
delete book 
deleted borr 
deleted book 
ISBN 
new book 

new book rec 
new borr 

new borr rec - -
other borr 
out book 

out book id 
out borr 

out borr id - -
out_updated_book 
out_updated_borr 
ret borr list - -
ret_updated_book 
ret_updated_borr 
return_detail 
return info 
update_id 
update_status 

vetted book 

book id 
[borrower book_detail] 

· ·= borrower indicator 
<[integer]> 
<ISBN, title, subject, author, 
copy_type> (mknewbk) 
book 
<borrower_id, borrower name, 
borrower addr, borro;er_type> 
( mknewborrT 

· ·= borrower 
borrower id 
<borrower indicator, copy_type> 
(mkoutbk) -
book id 
<[borrower_book_detail], 
borrower_type, payment to date> 
(mkoutbr) 
borrower id 
borrower indicator 
[borrower_book_detail] 
[borrower_book_detail] 
borrower indicator 
[borrower_book_detail] 

· ·= borrower indicator 
book id 
borrower id 
<"Outstanding" number (mkupstatus1) I 
"Excess" number (mkupstatus2) I "Not in 
file" (Norec) I "No fines" (Nofines) 
I "Fines cleared" (Cleared)> 
<<book id, copy type> (mkvbk) I "book 
not in -file" (Bkr!Otinfile) I "book already 
checked out" (CheckedOut) I "not 
borrowable" (NotBorr) > 
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vetted borr 

vetted return book 

Base data types 
add_message 

amount_paid 
author 
borrower_addr 
borrower name 
borrower_type 

checkout time 
copy# 
copy#_list 
copy_type 

del borr mess 

delete_message 

fine 
fines record 
ISBN 
new_copy# 
paidup_amount 
payment_to_date 
return_message 

return time 
subject 
title 
update_time 
updated_borr_detail 
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<"Fines over limit" number (mkerrvborn I 
"borrower not in file" (NoBorr) I 
<out borr, borrower id> (mkvetborn > 
<"Not in file" (Retnotinfile) I "Already 
returned" (Retin) I <book id, 
borrower id> (mkvetret) > -

"OK" (OKadd) I "Borrower already in 
file" (Alreadyinfile) 
number 
[ character] 
[ character] 
[ character] 
"undergrad" (Undergrad) I postgrad" 
(Postgrad) I "staff" (Staff) 

· ·= time 
· ·= integer 

[integer] 
"book" (Book) I "reference" (Ref) I 
"periodical" (Per) 

· ·= "OK" (OKdel) I "Not in file" (Delnotinfile) 
"Has books out" (Booksout) 
<"delete-OK" (OKdel) I "Not in file" 
(Nobk) I "Not available" (Notavailable) 

· ·= number 
· · = [ number] 

[integer] 
integer 
number 
number 

· ·= "Already in" (Alreadyin) I "Not in file" 
(Retnotin) 
time 

· · = [ character] 
· ·= [character] 

time 
number 

Figure 6.4 Type defintions for the library application 

The ASTS for the action DeleteCopy (Al) 

The states of Al are of the form <inp1, delp1, outp1 >, where inp1 is the 

state associated with the action's interaction with delete book, delp1 is the 

state associated with the action's interaction with the data store BOOK, and outp1 is 

the state associated with the action's interaction with delete message. The type 

of the state, p 1 state, is characterized by the RS P 1 state. 

The labels of Al, of sort p1 label characterized by P1 label, are: 

• Receivep1 (d1) - receive d1 from delete book. 

• Readp1 (id, d2) - read in d2 from BOOK. 

• Erreadp1 (id) - unsuccessful read on BOOK. 

• Sendp1 (d3) - generate d3 for output on delete_message. 

• Deletep1 (id) - delete object with key id from BOOK. 
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• Terminatep1 - terminate action. 

The ASTS for A 1 is given below: 

DeleteCopy _ TS = Pi state + Pi label + 

Signature 

transition relation 

_==_==>_: pistate, pilabel, pistate 

Laws V borrid:borrower_id; bid:book_id; dmess:delete_message; 

bind:borrower_indicator 

i. <Nullinpi, Nulldelpi, Nulloutpi > 

==Receivepi (bid)==> 

<inpi (bid), Nulldelpi, Nulloutpi > 

2. <inpi (bid), Nulldelpi, Nulloutpi> 

==Readpi (bid, bind)==> 

<inpi (bid), delpi (bind), Nulloutpi> 

3. <inpi (bid), Nulldelpi, Nulloutpi> 

==Erreadpi (bid)==> 

<inpi (bid), errdelpi, Nulloutpi > 

4. <inpi (bid), delpi (mkbind(borrid)), Nulloutpi > 

==Sendpi (NotAvailable)==> 

<inpi (bid), delpi (mkbind(borrid)), outpi (NotAvailable)> 

5. <inpi (bid), delpi (Available), Nulloutpi> 

==Deletepi (bid)==> 

<inpi (bid), deleted, Nulloutpi> 

6. <inpi (bid), deleted, Nulloutpi> 

==Sendpi (OKdel)==> 

<inpi (bid), deleted, outpi (OKdel)> 

7. <inpi (bid), errdelpi ,Nulloutp1 > 

==Sendpi (Delnotin)==> 

<inpi (bid), errdelpi, outpi (Delnotin)> 

8. <inpi (bid), errdelpi, outp1 (dmess)> 

== Terminatepi ==> 

<Nullinpi, Nulldelpi, Nulloutpi > 

9. <inpi (bid), deleted, outpi (OKdel)> 

== Terminatepi ==> 

<Nullinpi, Nulldelpi, Nulloutpi> 
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The ASTS for the action AddCo:py (A2) 

The states of A2 are of the form <inp2, rdp2, outp2>, where inp2 is the 

state associated with the action's interaction with return info, rdp2 is the state 

associated with the action's interaction with the data store BOOK, and outp2 is the 

state associated with the action's interaction with vetted return book. A2 

states are of sort p2state characterized by the RS P2state. 

The labels of A2, of sort p2Iabel characterized by P2Iabel, are: 

• Receivep2(di) - receive d1 from return info. 

• Readp2(id, d2) - read in d2 from BOOK. 

• Erreadp2(id) - unsuccessful read on BOOK. 

• Sendp2(d3) - generate d3 for output on vetted_ return_ book. 

• Terminatep2 - terminate action. 

The ASTS for A2 is given below: 

Add Copy_ TS = P2state + P21abel + 

Signature 

transition relation 

_ == _ ==> _: p2state, p21abel, p2state 

Laws 'ii nbk:new_book; i:ISBN; t,s,a:list(character}; ln:list(integer); 

ty:copy_type; bkrec:new_book_rec; n1 :integer 

1. <Nullinp2, Nullrdp2, Nulloutp2> 

==Receivep2(nbk)==> 

<inp2(nbk), Nullrdp2, Nulloutp2> 

2. <inp2(mknewbk(i,t,s,a,ty)), Nullrdp2, Nulloutp2> 

==Readp2(i, In)==> 

<inp2(mknewbk(i,t,s,a,ty)), rdp2(1n), Nulloutp2> 

3. succ(max(ln)) = n1 • 

<inp2(mknewbk(i,t,s,a,ty)), rdp2(1n), Nulloutp2> 

==Sendp2(mkbook(mkbkid(i, n1), t, s, a, ty, Available))==> 

<inp2(mknewbk(i, t, s, a, ty)), rdp2(1n), 

outp2(mkbook(mkbkid(i, n1 ), t, s, a, ty, Available))> 

4. <inp2(nbk), rdp2(1n), outp2(bkrec)> 

== Terminatep2==> 

<Nullinp2, Nullrdp2, Nulloutp2> 

The ASTS for the action A3 

The action A3 consists of the processes CheckRet urnBook (P3), and 

Return Update (P4).The states and labels of these processes are specified in the 

same manner as the states and labels of proceses in previous examples, and thus are 
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not explicitly characterized in what follows. Such characterization should be 

obvious from their use in the specification of the processes' ASTSs. 

The auxiliary functions needed to express the characterization of the 

processes' transition systems are characterized by the RS BorrBookFns. The 

functions characterized by this RS are: 

• getbk: book_id, list(borrower_book_detail) • borrower_book_detail -

returns an object of sort borrower_book_detail in the list argument with key 

matching the book_id argument. 

• getime: borrower_book_detail • time - returns the time attribute of a 

borrower_book_detail object. 

• deletebk: book_id, list(borrower_book_detail) • 

list(borrower_book_detail) - deletes the borrower_book_detail object with 

the key given by the book_id argument from the list argument. 

To simplify the presentation, BorrBookFns is not given here. The ASTSs 

for the processes follow: 

CheckReturnBook_ TS = P3state + P31abel + 

Signature 

transition relation 

_-_->_: p3state, p31abel, p3state 

Laws V borrid:borrower_id; bid:book_id; bind:borrower_indicator 

1. <Nullinp3, Nullrdp3, Nulloutp3> 

-Receivep3(bid)-> 

<inp3(bid), Nullrdp3, Nulloutp3> 

2. <inp3(bid), Nullrdp3, Nulloutp3> 

-Readp3(bid, bind)-> 

<inp3(bid), rdp3(bind), Nulloutp3> 

3. <inp3(bid), rdp3(Available), Nulloutp3> 

-Sendp3(Retin)-> 

<inp3(bid), rdp3(bind), outp3( Retin)> 

4. <inp3(bid), rdp3(mkbind(borrid)),Nulloutp3> 

-Sendp3(mkvetret(bid, borrid))-> 

<inp3(bid), rdp3(mkbind(borrid)), outp3(mkvetret(bid, borrid))> 

5. <inp3(bid), Nullrdp3, Nulloutp3> 

-Erreadp3(bid)-> 

<inp3(bid), errdp3, Nulloutp3> 

6. <inp3(bid), errdp3, Nulloutp3> 

-Sendp3( Retnotinfile )-> 

<inp3(bid), errdp3, outp3( Retnotinfile )> 
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ReturnUpdate = P4state + P4Iabel + Retup + BorrBookFns + 

Signature 

transition relation 

_-_-> _: p4state, p4Iabel, p4state 

Laws V borrid:borrower_id; t,t':time; bid:book_id; o3:out3p4; 

o2:out2p4; vetbk:vetted_return_book; 

lb,lb' :list(borrower _book_detai I); 

1. <Nullinp4, Nulltimep4, Nullrdp4, Nullout1 p4, Nu·11out2p4, Nullout3p4> 

-Receivep4(vetbk)-> 

dnp4(vetbk), Nulltimep4, Nullrdp4, Nullout1 p4, Nullout2p4, Nullout3p4> 
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2. dnp4(Retnotinfile), Nulltimep4, Nullrdp4, Nullout1 p4, Nullout2p4, Nullout3p4> 

-Send1 p4( Retnotin)-> 

<inp4(Retnotinfile), Nulltimep4, Nullrdp4, out1p4(Retnotin), 

Nullout2p4, Nullout3p4> 

3. dnp4(Retin), Nulltimep4, Nullrdp4, Nullout1 p4, Nullout2p4, Nullout3p4> 

-Send1 p4(Alreadyin)-> 

<inp4(Retin), Nulltimep4, Nullrdp4, out1 p4(Alreadyin), Nullout2p4, Nullout3p4> 

4. dnp4(mkvetret(bid, borrid)), Nulltimep4, Nullrdp4, 

Nullout1 p4, Nullout2p4, Nullout3p4> 

-Readp4(borrid,lb)-> 

dnp4(mkvetret(bid, borrid)), Nulltimep4, rdp4(Ib), Nullout1 p4, 

Nullout2p4, Nullout3p4> 

5. <inp4(mkvetret(bid, borrid)), Nulltimep4, rdp4(Ib), Nullout1p4, 

Nullout2p4, Nullout3p4> 

-Timep4(t)-> 

<inp4(mkvetret(bid, borrid)), timep4(t), rdp4(Ib), Nullout1 p4, 

Nullout2p4, Nullout3p4> 

6. ~(getime(getbk(bid,lb))> t), deletebk(bid,lb) = lb' • 

<inp4(mkvetret(bid, borrid)), timep4(t), rdp4(1b), Nullout1 p4, Nullout2p4, o3> 

-Send2p4(bid, lb')-> 

<inp4(mkvetret(bid, borrid)), timep4(t), rdp4(Ib), Nullout1 p4, out2p4(Ib'), o3> 

7. getime(getbk(bid,lb)) = t', t'> t • 

dnp4(mkvetret(bid, borrid)), timep4(t), rdp4(Ib}, Nullout1p4, Nullout2p4, o3> 

-Send2p4(bid, mkbdet(bid ,t' ,t) Jdeletebk(bid ,lb))-> 

<inp4(mkvetret(bid, borrid)), timep4(t), rdp4(Ib), Nullout1 p4, 

mkbdet(bid,t',t)Jdeletebk(bid,lb), 03> 
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8. <inp4(mkvetret(bid, borrid)), int, rdp4(Ib), Nullout1 p4, 02, Nullout3p4> 

-Send3p4(bid, Available)-> 

178 

<inp4(mkvetret(bid, borrid)), int, rdp4(Ib), Nullout1p4, 02, out3p4(Available)> 

The ASTS for A3 can now be given. The characterization of the action's states and 

labels should be obvious from their use in the ASTS below: 

A3_TS = A3state + A3Iabel + 

Signature 

transition relation 

_==_==>_: a3state, a3Iabel, a3state 

Laws '<:/ p3,p3':p3state; p4,p4':p4state; vbk:vetted_return_book; 

rmess:return_message; rubr:ret_updated_borr; 

rubk:ret_updated_book; 

bind:book_indicator; bid:book_id; t:time; borrld:borrower_id; 

lb :llst(bo rrower _book_detail) 

1. p3-Sendp3(vbk)->p3', p4-Receivep4(vetbk)->p4' • 

<P3, p4>==SYNCH({Sendp3(vbk), Receivep4(vetbk)})==><p3' p4'> 

--- synchronized communication between P3 and P4 via the data flow 

vetted_return_book ---

2. p3-Receivep3(bid)->p3' • <P3, p4>==Receivep3(bid)==><p3' p4> 

--- an input event of the action ---

3. p3-Readp3(bid, bind)->p3' • <P3, p4>==Readp3(bid, bind)==><p3' p4> 

--- a successful read by the action on BOOK ---

4. p3-Erreadp3(bid)->p3' • <P3, p4>==Erreadp3(bid)==><P3', p4> 

--- an unsuccessful read by the action on BOOK ---

5. p4-Send1 p4(rmess)->p4' • <P3, p4>==Send1 p4(rmess)==><p3, p4'> 

--- an output event of the action ---

6. p4-Send2p4(rubr)->p4' • <P3, p4>==Send2p4(rubr)==><P3, p4'> 

--- an output event of the action ---

7. p4-Send3p4(rubk)->p4' • <P3, p4>==Send3p4(rubk)==><P3, p4'> 

--- an output event of the action ---

8. p4-Readp4(borrid, lb)->p4' • <P3, p4>==Readp4(borrid, lb)==><p3, p4'> 

--- a successful read by the action on BORROWER ---

9. p4-Erreadp4(borrid)->p4' • <P3, p4>==Erreadp4(borrid)==><P3, p4'> 

--- an unsuccessful read by the action on BORROWER ---

10. p4-Timep4(t)->p4' • <P3, p4>== Timep4(t)==><P3, p4'> 

--- a state read on return_time by the action ---
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The ASTS for the action A4 

The action A4 consists of the processes Check Book (PS), 

GetOverdueBooks (P6), CalculateFine (P7), VettBorrower (PS), and 

Checkout Update (P9).The states and labels of these processes are specified in 

the same manner as the states and labels of proceses in previous examples, and thus 

are not explicitly characterized in what follows. Such characterization should be 

obvious from their use in the specification of the processes' ASTSs. 

The ASTSs for the processes follow: 

CheckBook = P5state + P51abel + 

Signature 

transition relation 

_- -> _: p5state, p51abel, p5state 

Laws V outbk:out_book; ty:copy_type; bid:book_id 

1. <Nullinp5, Nullrdp5, Nulloutp5> 

-Receivep5(bid)-> 

<inp5(bid), Nullrdp5, Nulloutp5> 

2. <inp5(bid), Nullrdp5, Nulloutp5> 

-Readp5(bid, outbk)-> 

<inp5(bid), rp5(outbk), Nulloutp5> 

3. ty:;t:Ref => 

<inp5(bid), rp5(mkoutbk(Available, ty)), Nulloutp5> 

-Sendp5(mkvbk(bid, ty) )-> 

<inp5(bid), rp5(mkoutbk(Available, ty)), outp5(mkvbk(bid, ty))> 

4. <inp5(bid), rp5(mkoutbk(Available, Ref)), Nulloutp5> 

-Sendp5( Notborr)-> 

<inp5(bid), rp5(mkoutbk(Available, Ref)), outp5(Notborr)> 

5. inp5(bid), rp5(mkoutbk(mkbind(borrid), ty), Nulloutp5> 

-Sendp5(Checked0ut)-> 

<inp5(bid), rp5(mkoutbk(mkbind(borrid), ty), outp5(Checked0ut)> 

6. <inp5(bid), Nullrdp5, Nulloutp5> 

-Erreadp5(bid)-> 

<inp5(bid), errp5, Nulloutp5> 

7. <inp5(bid), errp5, Nulloutp5> 

-Sendp5(Bknotinfile )-> 

<inpS(bid), errp5, outp5(Bknotinfile)> 
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The ASTS characterizing the transition system for P6 utilizes the RS FinesRec 

which characterizes the function 

getfinesrec: list(borrower_book_detail), time • list(number) 

which derives a list of fines given a list of borrower_book_detail objects and the 

current time. 

GetOverdueBooks = P6state + P6label + FinesRec + 

Signature 

transition relation 

_-_->_: p6state, p6label, p6state 

Laws V borrld:borrower_ld; outb:out_borrower; t:tlme; 01 :01 p6; 

o2:o2p6; lb:list(borrower_book_detail); bt:borrower_type; n:number; 

In: list(integer) 

1. <Nullinp6, Nullrdp6, Nulltimep6, Nullout1 p6, Nullout2p6> 

-Receivep6(borrid)-> 

<inp6(borrid), Nullrdp6, Nulltimep6, Nullout1 p6, Nullout2p6> 

2. <inp6(borrid), Nullrdp6, Nulltimep6, Nullout1p6, Nullout2p6> 

-Readp6(borrid, outb)-> 

dnp6(borrid), rp6(outb), Nulltimep6, Nullout1p6, Nullout2p6> 

3. <inp6(borrid), rp6(outb), Nulltimep6, Nullout1p6, Nullout2p6> 

Timep6(t)-> 

<inp6(borrid), rp6(outb), timep6(t), Nullout1 p6, Nullout2p6> 

4. getfinesrec(lb, t) = In • 

<inp6(borrid), rp6(mkoutbr(lb, bt, n)), timep6(t), Nullout1p6, o2> 

-Send1 p6(1n)-> 

dnp6(borrid), rp6(mkoutb(lb), bt, n)), timep6(t), out1p6(ln), o2> 

5. dnp6(borrid), rp6(outb), timep6(t), 01, Nullout2p6> 

-Send2p6( mkbflag(borrid,outb) )-> 

dnp6(borrid), rp6(outb), timep6(t), 01, out2p6(mkbflag(borrid,outb))> 

6. dnp6(borrid), Nullrdp6, Nulltimep6, Nullout1p6, Nullout2p6> 

-Erreadp6(borrid)-> 

<inp6(borrid), errp6, Nulltimep6, Nullout1 p6, Nullout2p6> 

7. dnp6(borrid), errp6, Nulltimep6, Nullout1 p6, Nullout2p6> 

-Send2p6(Bflag)-> 

<inp6(borrid), errp6, Nulltimep6, Nullout1 p6, out2p6(Bflag)> 

fY7 utilizes an RS, Sum list, which charactvri 1cs the auxiliary function 

sum: list(integer) • integer 

which returns the sum of a list of integers. 
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GetOverdueBooks = P7state + P71abel + Sumlist + 

Signature 

transition relation 

_-_->_: p7state, p71abel, p7state 

Laws V ln:list{integer); n:integer 

1. <Nullinp7, Nulloutp7> 

-Receivep7(1n)-> 

dnp7(ln), Nulloutp7> 

2. sum(ln) = n • 

dnp7(ln), Nulloutp7> 

-Sendp7(n)-> 

<inp7(ln), outp?(n)> 

VettBorrower = P8state + P8label + 

Signature 

transition relation 

_-_->_: p8state, p8label, p8state 
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Laws V n,n',f:number; t:tlme; borrid:borrower_id; in1 :I1p8; in2:i2p8; 

lb:list{borrower _book_detail); bt:copy _type; bf lag :borr_flag 

1. <Nullin1 p8, in2, Nulloutp8> 

-Receive1 p8(n)-> 

dn1 p8(n), in2, Nulloutp8> 

2. <in1, Nullin2p8, Nulloutp8> 

-Receive2p8(bflag)-> 

dn1, in2p8(bflag), Nulloutp8> 

3. <in1, in2p8(Bflag), Nulloutp8> 

-Sendp8(NoBorr)-> 

dn1, in2p8(Bflag), outp8(NoBorr)> 

4. n-n'!S:limit • 

<in1p8(n), in2p8(mkbflag(borrid, mkoutb(lb, bt, n'))), Nulloutp8> 

-Sendp8(mkvetborr(mkoutb(lb, bt, n'), borrid))-> 

<in1p8(n), in2p8(mkbflag(borrid, mkoutb(lb, bt, n'))), 

outp8(mkvetborr(mkoutb(lb, bt, n'), borrid))> 

5. n-n' = f, f>Limit • 

<in1p8(n), in2p8(mkbflag(borrid, mkoutb(lb, bt, n'))), Nulloutp8> 

-Sendp8(mkerrvborr(f))-> 

<in1p8(n), in2p8(mkbflag(borrid, mkoutb(lb, bt, n'))), outp8(mkerrvborr(f))> 
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The function week used in the ASTS for P9, given below, is assumed to be 

characterized by the RS Time characterizing time, where the basic unit of time is a 

day. The function takes a day, t, and a number, n, and returns the day n weeks (a 

week is seven days) in the future from t. 

CheckoutUpdate = P9state + P9Iabel + 

Signature 

transition relation 

_-_->_: p9state, p9Iabel, p9state 

Laws V vbk:vetted_book; vbr:vetted_borr; in1 :11 p9; in2:i2p9; 

tlme:tp9; out1:o1p9; out2:o2p9; out3:o3p9 

1. <Nullin1 p9, in2, Nu11Timep9, Nullout1 p9, Nullout2p9, Nullout3p9> 

-Receive1 p9(vbk)-> 

<in1p9(vbk), in2, Nu11Timep9, Nullout1 p9, Nullout2p9, Nullout3p9> 

2. <in1, Nullin2p9, Nu11Timep9, Nullout1 p9, Nullout2p9, Nullout3p9> 

-Receive2p9(vbr)-> 

<in1, in2p9(vbr), Nu11Timep9, Nullout1p9, Nullout2p9, Nullout3p9> 

3. <in1p9(vbk), in2p9(vbr), time, Nullout1p9, out2, out3> 

-Send1 p9(mkoutmess(vbr, vbk))-> 

<in1p9(vbk), in2p9(vbr), time, out1p9(mkoutmess(vbr, vbk)), out2, out3> 

4. <in1p9(mkvbk(bid, ty)), in2p9(mkvetborr(ob, borrid)), 

Nu11Timep9, out1, Nullout2p9, Nullout3p9> 

-Timep9(t)-> 

<in1p9(mkvbk(bid, ty)), in2p9(mkvetborr(ob, borrid)), 

timep9(t), out1, Nullout2p9, Nullout3p9> 

5. week(t, 2) = t' • 
<in1 p9(mkvbk(bid, Book)), 

in2p9(mkvetborr(mkoutb(lb, Undergrad, n), borrid)), 

timep9(t), out1, Nullout2p9, Nullout3p9> 

-Send2p9(borrid, (mkbdet(bid, t', Notret))llb)-> 

<in1p9(mkvbk(bid, Book)), 

in2p9(mkvetborr(mkoutb(lb, Undergrad, n), borrid)), 

timep9(t), out1, out2p9(mkbdet(bid, t', Notret))llb), Nullout3p9> 

6. week(t, 4) = t' • 

<in1 p9(mkvbk(bid, Book)), 

in2p9(mkvetborr(mkoutb(lb, Postgrad, n), borrid)), 

timep9(t), out1, Nullout2p9, Nullout3p9> 

-Send2p9(borrid, (mkbdet(bid, t', Notret))llb)-> 

<in1 p9(mkvbk(bid, Book)), 
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in2p9(mkvetborr(mkoutb(lb, Postgrad, n), borrid)), 

timep9(t), out1, out2p9(mkbdet(bid, t', Notret))llb), Nullout3p9> 

7. week(t, 6) = t' • 
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<in1p9(mkvbk(bid, Book)), in2p9(mkvetborr(mkoutb(lb, Staff, n), borrid)), 

timep9(t), out1, Nullout2p9, Nullout3p9> 

-Send2p9(borrid, (mkbdet(bid, week(6,t), Notret))llb)-> 

<in1p9(mkvbk(bid, Book)), in2p9(mkvetborr(mkoutb(lb, Staff, n), borrid)), 

timep9(t), out1, out2p9(mkbdet(bid, t', Notret))llb), Nullout3p9> 

8. week(t, 2) = t' • 

<in1p9(mkvbk(bid, Per)), in2p9(mkvetborr(mkoutb(lb, Postgrad, n), borrid)), 

timep9(t), out1, Nullout2p9, Nullout3p9> 

-Send2p9(borrid, (mkbdet(bid, t', Notret))llb)-> 

<in1p9(mkvbk(bid, Per)), in2p9(mkvetborr(mkoutb(lb, Postgrad, n), borrid)), 

timep9(t), out1, out2p9(mkbdet(bid, t', Notret))llb), Nullout3p9> 

9. week(t, 4) = t' • 

<in1p9(mkvbk(bid, Per)), in2p9(mkvetborr(mkoutb(lb, Staff, n), borrid)), 

timep9(t), out1, Nullout2p9, Nullout3p9> 

-Send2p9(borrid, (mkbdet(bid, t', Notret))llb)-> 

<in1 p9(mkvbk(bid, Per)), 

in2p9(mkvetborr(mkoutb(lb, Staff, n), borrid)), timep9(t), 

out1, out2p9(mkbdet(bid, t', Notret))llb), Nullout3p9> 

10. <in1p9(mkvbk(bid, ty)), in2p9(mkvetborr(ob, borrid)), t9, out1, 

out2p9(borrid, lb), Nullout3p9> 

-Send3p9(bid, mkbind(borrid))-> 

<in1 p9(mkvbk(bid, ty)), in2p9(mkvetborr(ob, borrid)), t9, out1, 

out2p9(borrid, lb), out3p9(mkbind(borrid))> 

The ASTS for the action A4 follows: 

A4_ TS = A4state + A41abel + 

Signature 

transition relation 

_ == _ ==> _ : a4state, a41abel, a4state 
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Laws v' bld:book_ld; borrid:borrower_ld; t:tlme; vbk:vetted_book; 

p1 ,p1 ':statep1; ... ; p5,p5' :stateps; A 1,A2 :a4Iabel; 

vbr:vetted_borrower; ln:list(number); f:number; bflag:borr_flag; 

obk:out_book; obr:out_borrower; upbk:out_updated_book; 

upbr:out_updated_borr; mess:checkout_message 
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Synchronized Events: process/process communication /via synchronized data 

1lmY.fil 
i . p5--Receivep5(bid)-->p5', p6--Receivei p6(borrid)-->p6' • 

<P5, p6, p7, p8, p9> 

==SYNCH({Receivep5(bid), Receivei p2(borrid)})==> 

<p5', p6', p7, p8, p9> 

2. p5--Sendp5(vbk)-->p5', p9--Receivei p9(vbk)-->p9' • 

<P5, p6,p7, p8, p9> 

==SYNCH( {Sendp5(vbk), Receive i p9(vbk)} )==> 

<P5', p6, p7, p8, p9'> 

3. p6--Sendi p6(1n)-->p6', p7--Receivep7(1n)-->p7' • 

<P5, p6, p?, p8, p9> 

==SYNCH({Sendip6(1n), Receivep7(1n)})==> 

<P5, p6', p7', p8, p9> 

4. p6--Send2p6(bflag)-->p6', p8--Receive2p8(bflag)-->p8' • 

<P5, p6, p7, p8, p9> 

==SYNCH({Send2p6(bflag), Receive2p8(bflag)})==> 

<P5, p6', p?, p8', p9> 

5. p7--Sendp7(f)-->p7', p8--Receivei p8(f)-->p8' • 

<p5, p6, p7, p8, p9> 

==SYNCH({Sendp7(f), Receivei p8(f)})==> 

<p5, p6, p7', p8', p9> 

6. p8--Sendp8(vbr)-->p8', p9--Receive2p9(vbr)-->p9' • 

<P5, p6, p7, p8, p9> 

==SYNCH({Sendp8(vb), Receive2p8(vbr)} )==> 

<P5, p6, p7, p8', p9'> 

Single Events: input and output (including read/write) events of the action 

7. p5--Readpi (bid, obk)-->p5' • 

<P5, p6, p7, p8, p9>==Readpi (bid, obk)==><p5', p6, p7, p8, p9> 

8. p5--Erreadpi (bid)-->p5' • 

<P5, p6, p?, p8, p9>==Erreadpi (bid)==><p5', p6, p7, p8, p9> 

9. p6--Receive2p2(t)-->p6' • 

<p5, p6, p7, p8, p9>==Receive2p2(t)==><P5, p6', p7, p8, p9> 
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10. p6--Readp2(borrid, obr)-->p6' • 

<P5, p6, p?, p8, p9>==Readp2(borrid, obr)==><P5, p6', p?, p8, p9> 

11. p6--Erreadp2(borrid)-->p6' • 

<p5, p6, p?, p8, p9>==Erreadp2(borrid)==><P5, p6', p?, p8, p9> 

12. p9--Update1 (bid, upbk)-->p9' • 

<P5, p6, p?, p8, p9>==Update1 (bid, upbk)==><P5, p6, p?, p8, p9'> 

13. p9--Update2(borrid, upbr)-->p9' • 

<P5, p6, p?, p8, p9>==Update2(borrid, upbr)==><P5, p6, p?, p8, p9'> 

14. p9--Send(mess)-->p9' • 

<P5, p6, p?, p8, p9>==Send(mess)==><P5, p6, p?, p8, p9'> 

15. p9--Receive3p5(t)-->p9' • 

<P5, p6, p?, p8, p9>==Receive3p5(t)==><p5, p6, p?, p8, p9'> 

parallel Events 
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--- Events which affect separate parts of an action can be carried out in parallel ---

16. <P5, p6,p7, p8,p9>==A1==><p5', p6,p7, p8, p9>, 

<P5, p6, p?, p8, p9>==A2==><P5, p6', p?', p8', p9'> • 

<<P5, p6, p?, p8, p9>==PAR(A1, A2)==><P5', p6', p?', p8', p9'> 

17. <P5, p6, p?, p8, p9>==A1==><P5', p6', p?, p8, p9>, 

<P5, p6, p?, p8, p9>==A2==><P5, p6, p?', p8', p9'> • 

<P5, p6, p?, p8, p9>==PAR(A1, A2)==><p5', p6', p?', p8', p9'> 

18. <P5, p6, p?, p8, p9>==A1==><p5', p6', p?', p8, p9>, 

<P5, p6, p?, p8, p9>==A2==><P5, p6, p?, p8', p9'> • 

<p5, p6, p?, p8, p9>==PAR(A1, A2)==><P5', p6', p?', p8', p9'> 

19. <P5, p6, p?, p8, p9>==A1==><p5', p6', p?', p8', p9>, 

<P5, p6, p?, p8, p9>==A2==><P5, p6, p7, p8, p9'> • 

<P5, p6, p7, p8, p9>==PAR(A1, A2)==><p5', p6', p?', p8', p9'> 

Termination event 

--- Nullpi, 5s:is:9, is the abbreviated form for the idle state of Pi ---

20. <P5, p6, p?, p8, <in1 p9(vbk), in2p9(vbr), timep9(t), 

out1 p9(omess), out2p9(ubr), out3p9(ubk)>> 

== Terminatea4==> 

<Nullp5, Nullp6, Nullp?, Nullp8, Nullp9> 

21. <P5, p6, p?, p8, <in1p9(Notborr), in2, Nu11Timep9, out1p9(omess), 

Nullout2p9, Nullout3p9» 

== Terminatea4==> 

<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9> 
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22. <P5, p6, p7, p8, <in1p9(CheckedOut), in2, Nu11Timep9, out1p9(omess), 

Nullout2p9, Nullout3p9>> 

== Terminatea4==> 

<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9> 

23. <P5, p6, p7, p8, <in1p9(Bknotinfile), in2, Nu11Timep9, out1p9(omess), 

Nullout2p9, Nullout3p9>> 

== Terminatea4==> 

<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9> 

24. <P5, p6, p7, p8, <in1, in2p9(NoBorr), Nu11Timep9, out1p9(omess), 

Nullout2p9, Nullout3p9>> 

== Terminatea4==> 

<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9> 

25. <P5, p6, p7, p8, <in1, in2p9(mkerrvborr(f)), Nu11Timep9, out1 p9(omess), 

Nullout2p9, Nullout3p9>> 

== Terminatea4==> 

<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9> 

26. <P5, p6, p7, p8, <in1p9(mkvbk(bid, Per)), 

in2p9(mkvetborr(mkoutb(lb, Undergrad, n), borrid)), Nu11Timep9, 

out1p9(omess), Nullout2p9, Nullout3p9>> 

== Terminatea4==> 

<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9> 

The ASTS for the action A5 

The action A5 consists of the processes GenerateF inesRecord (PlO), 

and UpdateBorrRecord (Pl 1). As in the specification of the ASTS for A4 

given above, the states and labels of these processes are not explicitly characterized 

in what follows, as such characterization should be obvious from their use in the 

specification of the processes' ASTSs. 

The ASTSs for the processes follow: 

GenerateFinesRecord = P10state + P101abel + FinesRec + Sumlist + 

Signature 

transition relation 

_-_-> _: p1 0state, p1 0label, p1 0state 

Laws Y borrid:borrower_ld; t:time; lb:llst(borrower_book_detail); 

bd:borr_detail; n,n':number 

1. <Nullinp10, Nullrdp10, Nu11Timep10, Nulloutp10> 

-Receivep1 0(borrid)-> 

<inp1 0(borrid), Nullrdp10, Nu11Timep10, Nulloutp10> 
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2. <inp10(borrid), Nullrdp10, Nu11Timep10, Nulloutp10> 

-Readp1 0(borrid, bd)-> 

<inp10(borrid), rdp10(bd), Nu11Timep10, Nulloutp10> 

3. dnp1 0(borrid), rdp10(bd), Nu11Timep10, Nulloutp10> 

-Timep1 0(t)-> 

<inp1 0(borrid), rdp1 0(bd), timep1 0(t), Nulloutp10> 

4. sum(getfinesree(lb, t))-n) = n' • 

<inp1 0(borrid), rdp1 0(mkborrdet(lb, n) ), timep1 0(t), Nulloutp10> 

-Sendp1 0(mkbfree(n', borrid) )-> 

<inp1 0(borrid), rdp1 0(mkborrdet(lb, n) ), timep1 0(t), outp10(n', borrid)> 

5. <inp10(borrid), Nullrdp10, Nu11Timep10, Nulloutp10> 

-Erreadp1 0(borrid)-> 

<inp1 0(borrid), errdp10, Nu11Timep10, Nulloutp10> 

6. <inp10(borrid), errdp10, Nu11Timep10, Nulloutp10> 

-Sendp1 0(NoRee)-> 

dnp1 0(borrid), errdp1 0, Nu11Timep10, outp1 0(NoRee)> 

UpdateBorrReeord = P11 state + P11 label + 

Signature 

transition relation 

_-_ -> _: p11 state, p11 label, p11 state 
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Laws \:/ borrld:borrower_id; t:time; n,n',f:number; 

frec:borr_fine_record; in1 :11 p11; in2:l2p11; out1 :01 p11; out2:o2p11 

1. <Nullin1 p11, in2, Nullout1 p11, Nullout2p11 > 

-Reeeive1 p11 (n)-> 

<in1p11(n), in2, Nullout1p11, Nullout2p11> 

2. <in1, Nullin2p11, Nullout1 p11, Nullout2p11 > 

-Reeeive2p11 (free)-> 

<in1, in2p11 (free), Nullout1 p11, Nullout2p11 > 

3. <in1, in2p11 (NoRee), Nullout1 p11, Nullout2p11> 

-Send2p11 (Noree)-> 

<in1, in2p11 (No Ree), Nullout1 p11, out2p11 (Noree)> 

4. <in1 p11 (n), in2p11 (mkbfree(0, borrid)), Nullout1 p11, Nullout2p11> 

-Send2p11 (Nofines)-> 

<in1 p11 (n), in2p11 (mkbfree(0, borrid)), Nullout1 p11, out2p11 (Nofines)> 
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5. n'>n, n'-n = f • 

<in1 p11 (n), in2p11 (mkbfrec(n', borrid)), out1, Nullout2p11> 

-Send2p11 (f)-> 

<in1 p11 (n), in2p11 (mkbfrec(n', borrid)), out1, out2p11 (f)> 

6. n'<n, n-n' = f • 

<in1 p11 (n), in2p11 (mkbfrec(n', borrid)), out1, Nullout2p11> 

-Send2p11 (f)-> 

<in1 p11 (n), in2p11 (mkbfrec(ln, borrid)), out1, out2p11 (f)> 

7. n'=n • 

<in1 p11 (n), in2p11 (mkbfrec(n', borrid)), out1, Nullout2p11> 

-Send2p11(Cleared)-> 

<in1 p11 (n), in2p11 (mkbfrec(n', borrid)), out1, out2p11 (Cleared)> 

8. n' =t= 0, n+n' = f • 

<in1 p11 (n), in2p11 (mkbfrec(n', borrid)), Nullout1 p11, out2> 

-Send1 p11 (borrid, f)-> 

<in1p11(n), in2p11(mkbfrec(n', borrid)), out1p11(f), out2> 

The ASTS for the action A5 is given below: 

A5_TS = A5state + A51abel + 

Signature 

transition relation 

_==_==>_: a5state, a51abel, a5state 

Laws 'v borrid:borrower_id; t:tlme; n:number; 

Synchronized events 
1. p1 0-Receivep10(borrid)->P10, p11-Receive1 p11 (n)->p11' • 

<P10, p11> 

==SYNCH({Receivep1 0(borrid), Receive1 p11 (n)})==> 

<P10', p11'> 

--- synchronized invocation of action ---

2. p1 0-Sendp1 0(n)->p1 0', p11-Receive2p11 (n)->p11' • 

<p10, p11> 

==SYNCH({Sendp1 0(n), Receive2p11 (n)})==> 

<P10', p11'> 

--- synchronized communication via the data flow borr_fine_record --­

Sjngle events 
{Ail events of P1 0 and P11 that are not synchronized in 1 and 2} 

"188 
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Parallel events 
{All action events that affect mutual exclusive parts of the state of A4 are allowed to 

occur in parallel} 

The ASTS for the action DeleteBorr (P 12) 

DeleteBorr_ TS = P12state + P12Iabel + 

Signature 

transition relation 

_==_==>_: p12state, p12label, p12state 

Laws V borrid:borrower_id; lb:list(borrower_book_detail) 

1. <Nullinp12, Nullrdp12, Nulloutp12> 

==Receivep12(borrid)==> 

<inp12(borrid), Nullrdp12, Nulloutp12> 

2. <inp12(borrid), Nullrdp12, Nulloutp12> 

==Readp12(borrid, lb)==> 

<inp12(borrid), rdp12(Ib), Nulloutp12> 

3. lb = emptylist • 

<inp12(borrid), rdp12(Ib), Nulloutp12> 

==Deletebr(borrid)==> 

<inp12(borrid), delbr, Nulloutp12> 

4. <inp12(borrid), delbr, Nulloutp12> 

==Sendp12(0Kdelbr)==> 

<inp12(borrid), delbr, outp12(0Kdelbr)> 

4. lb -:t:. emptylist • 

<inp12(borrid), rdp12(Ib), Nulloutp12> 

==Sendp12(Booksout)==> 

dnp12(borrid), rdp12(Ib), outp12(Booksout)> 

5. <inp12(borrid), Nullrdp12, Nulloutp12> 

==Errdelbr(borrid)==> 

<inp12(borrid), errdel, Nulloutp12> 

6. <inp12(borrid), errdel, Nulloutp12> 

==Sendp12(Delnotinfile)==> 

<inp12(borrid), errdel, outp12(Delnotinfile)> 

7. <inp12(borrid), rdp12(Ib), outp12(dmess)> 

== Terminatep12==> 

<Nullinp12, Nullrdp12, Nulloutp12> 
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8. <inp12(borrid), errdel, outp12(dmess)> 

== Terminatep12==> 

<Nullinp12, Nullrdp12, Nulloutp12> 

9. <inp12(borrid), delbr, outp12(dmess)> 

== Terminatep12==> 

<Nullinp12, Nullrdp12, Nulloutp12> 

The ASTS for the action AddBorr (P13} 

AddBorr_TS = P13state + P13Iabel + 

Signature 

transition relation 

_==_==>_: p13state, p13Iabel, p13state 

Laws 'i borrid:borrower_id;nborr:new_borr; n,a:list(character); 

t:borrower_type; out1 :o1p13, out2:o2p13 

1. <Nullinp13, Nullrdp13, Nullout1p13, Nullout2p13> 

==Receivep1 (nborr)==> 

<inp13(nborr), Nullrdp13, Nullout1p13, Nullout2p13> 

2. <inp13(mknewborr(borrid, n, a, t)), Nullrdp13, Nullout1p13, Nullout2p13> 

==Readp13(borrid)==> 

<inp13(mknewborr(borrid, n, a, t)), rdp13(borrid), Nullout1p13, Nullout2p13> 

3. <inp13(mknewborr(borrid, n, a, t)), Nullrdp13, Nullout1p13, Nullout2p13> 

==Erreadp13(borrid)==> 

<inp13(mknewborr(borrid, n, a, t)), erreadp13, Nullout1p13, Nullout2p13> 

4. <inp13(mknewborr(borrid, n, a, t)), rdp13(borrid), Nullout1p13, Nullout2p13> 

==Send1p13(Alreadyinfile)==> 

<inp13(mknewborr(borrid, n, a, t)), rdp13(borrid), 

out1p13(Alreadyinfile), Nullout2p13> 

5. <inp13(mknewborr(borrid, n, a, t)), dp13(borrid), 

out1p13(Alreadyinfile), Nullout2p13> 

== Terminatep 13==> 

<Nullinp13, Nullrdp13, Nullout1p13, Nullout2p13> 

6. <inp13(nborr), erreadp13, Nullout1p13, out2> 

==Send1p13(OKadd)==> 

<inp13(nborr), erreadp13, out1p13(OKadd), out2> 

7. <inp13(mknewborr(borrid, n, a, t)), erreadp13, out1, Nullout2p13> 

==Send2p13(mkborr(borrid, n, a, t, emptylist, 0))==> 

<inp13(mknewborr(borrid, n, a, t)), erreadp13, out1, 

out2p13(mkborr(borrid, n, a, t, emptylist, 0))> 
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8. <inp13(mknewborr(borrid, n, a, t}}, erreadp13, out1p13(OKadd}, 

out2p13(mkborr(borrid, n, a, t, emptylist, 0}}> 

== Terminatep13==> 

<Nullinp13, Nullrdp13, Nullout1p13, Nullout2p13> 

1 91 

The asyncronous data flows of the library application are associated with 

queue structures each having an ADD access function, which puts objects on the 

queue, and a DEL access function, which removes the object at the top of the 

queue. The RSs specifying the asynchronous flows are not given here since they 

are merely instantiations of the queue RS given in Chapter 5. Below is a brief 

description of the RSs characterizing these data flows: 

Data flow RS name Access events 

new_book Asynchl ADDl,DELl 

delete_book Asynch2 ADD2,DEL2 

delete_message Asynch3 ADD3,DEL3 

return_info Asynch4 ADD4,DEL4 

return_message Asynch5 ADD5,DEL5 

checkout_info Asynch6 ADD6,DEL6 

checkout_message Asynch7 ADD7,DEL7 

borr_update_info Asynch8 ADD8,DEL8 

update_status Asynch9 ADD9,DEL9 

del_borr AsynchlO ADDlO, DELIO 

del_borr_mess Asynchll ADDll, DELll 

new_borr Asynch12 ADD12, DEL12 

add_message Asynch13 ADD13, DEL13 

The RSs characterising the behaviour of the data stores are given below: 

Borr_ TS= BorrStore + Borrlabel + 

Signature 

transition relation 

_ == _ ==> _: list(borrower}, borrlabel, list(borrower} 

Laws V bo rrid :borrower _id; lbr: I ist(borrower); rub :ret_updated_borr; 

oub:out_updated_borr; brec:borrower 

1. lbr==READBORR1 (borrid, readborr1 (lbr, borrid}}==>lbr 

--- read associated with ret_borr ---

2. lbr==READBORR2(borrid, readborr2(1br, borrid}}==>lbr 

--- read associated with out_borr ---
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3. lbr==READBORR3(borrid, readborr3(Ibr, borrid))==>lbr 

--- read associated with borr_detail ---

4. lbr==DELBORR(borrid, readborr4(Ibr, borrid))==>delborr(lbr, borrid) 

--- read associated with deleted_borr ---

5. lbr==READBORR5(borrid, readborr5(Ibr, borrid))==>lbr 

--- read associated with other_borr ---

6. lbr==UPDATEBR1 (borrid, rub)==>updatebr1 (lbr, borrid, rub) 

--- update associated with ret_updated_borr ---

7. lbr==UPDATEBR2(borrid, oub)==>Update2(lbr, borrid, oub) 

--- update associated with out_updated_borr ---

8. lbr==UPDATEBR3(borrid, ubd)==>Updatebr3(Ibr, borrid, ubd) 

--- update associated with updated_borr_detail ---

9. lbr==PUTBR(brec)==>brecpbr 

--- update associated with new_borr_rec ---

Book_TS = BookStore + Booklabel + 

Signature 

transition relation 

_ == _ ==> _: list(book), booklabel, list(book) 
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Laws 'r/ bld:book_ld; lbk:list(book); i:ISBN; rub:ret_updated_book; 

oub:out_updated_book; bkrec:book 

1. lbk==READBOOK1 (bid, readbk1 (lbk, bid))==>lbk 

--- read associated with return_detail ---

2. lbk==READBOOK2(bid, readbk2(Ibk, bid))==>lbk 

--- read associated with out_book ---

3. lbk==DELBOOK(bid, readbk3(Ibk, bid))==>delbook(lbk, bid) 

--- read associated with deleted_book ---

4. lbk==READBOOK3(i, readbk3(Ibk, i))==>lbk 

--- read associated with copy#_list ---

5. lbk==PUTBK(bkrec)==>bkrecjlbk 

--- addition associated with new_book_rec ---

6. lbk==UPDATEBK1 (bid, rub)==>updatebk1 (lbk, rub) 

--- update associated with ret_updated_book ---

7. lbk==UPDATEBK2(bid, oub)==>updatebk2(Ibk, oub) 

--- update associated with out_updated_book ---

The state of the ExtDFD representing the library application is of the form<{ a 1, ... , 

a?}, as1, ... , as13, <ds1, 11 >, <ds2, 12>>, where ai is a state of action Ai, asi 
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is an asynchi object, representing a state of its corresponding asynchronous data 

flow, <ds1, 11 > is a state of the monitored data store BOOK, (ds1 is the state of the 

data store while 11 contains information about which objects in BOOK cannot be 

updated), and <ds2, 12> is the state of the monitored data store BORROWER, (ds2 

is the state of the data store while 11 contains information about which objects in 

BORROWER cannot be updated). 

The outline of the BS for the library ExtDFD is given below: 

Lib_BS = Libstate + Liblabel + 

Signature 

transition relation 

_ === _ ===> _: libstate, liblabel, libstate 

Laws 

Synchronized Events 
A. Synchronized events between the receiving events of actions and the 

remove events (DEL) of asynchronous data flows. These laws are of the form 

below: 

ai==Receivepi(data)==>ai', asj==DELj(data)==>asj' • 

<{ai, sp}, as1, ... , asj, ... , as13, <ds1, 11>, <ds2, 12>> 

===SYNCH({Receivepi(bid), DELj(bid)})===> 

<{ai', sp}, as1, ... , asj', ... , as 13, <ds1, 11>, <ds2, 12>> 

For example, the synchronized interaction between the action AS and the 

asynchronous data flow borr_update_info is defined by the law: 

{borrid:borrower_id; n:integer} 

a5==SYNCH({Receivep1 O(borrid), Receive1 p11 (n)})==>a5', 

as8==DEL8(mkupinfo(borrid, n))==>as8' • 

<{a5, sp}, as1, ... , ass, ... , as13, <ds1, 11>, <ds2, 12>> 

===SYNCH({SYNCH({Receivep1 O(borrid), Receive1 p11 (n)}), 

DEL8(mkupinfo(borrid, n))})===> 

<{a5', sp}, as1, ... , as8', ... , as13, <ds1, 11>, <ds2, 12» 

B. Synchronized events between actions and data stores. For example, the law 

characterizing the interaction between the action A3 and the data store BOOK 

via the data flow ret_updated_book is: 

{rub:ret_updated_book; bid:book_id} 

a3==Send2p4(bid, rub)==>a3', ds1 ==UPDATEBK1 (bid, rub)==>ds1' • 

<{a3, sp}, as1, ... , as13, <ds1, 11>, <ds2, 12>> 

===SYNCH({Send2p4(bid, rub), UPDATEBK1(bid, rub)})===> 

<{a3', sp}, as1, ... , as13, <ds1', delete(bid, 11)>, <ds2, 12>> 
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Single Events 
C. All action events which are concerned with the reading of state flows from 

external entities. Such events are of the form: 

ai==l==>ai' • 

<{ai, sp}, as1, ... , as13, <ds1, 11>, <ds2, 12>> 

===I===> 

<{ai', sp}, as1, ... , as13, <ds1, 11>, <ds2, 12» 

where I is an event label encapsulating the observable effect of a read from a 

state flow event. 

Parallel Events 

D. All ExtDFD events that affect mutually exclusive parts of the ExtDFD state 

can be carried out in parallel. These laws are of the form: 

<{sp1, sp2}, as1, ... , asi-1, asi, ... , as 13, <ds1, 11>, <ds2, 12>> 

===12===> 

<{sp1', sp2}, as1, ... , asi-1, asi', ... , as13', <ds1', 11'>, <ds2, 12», 

<{sp1, sp2}, as1, ... , asi-1, asi, ... , as 13, <ds1, 11>, <ds2, 12>> 

===12===> 

<{sp1, sp2'}, as1', ... ,asi-1', asi, ... , as13, <ds1, 11>, <ds2', 12'» • 

<{sp1, sp2}, as1, ... , asi-1, asi, ... , as13, <ds1, 11>, <ds2, 12» 

===11112===> 

<{sp1', sp2'}, as1', ... , asi-1', asi', ... , as13', <ds1', 11'>, <ds2', 12'>> 

Also all ExtDFD events which affect mutually exclusive substates of an action 

can be carried out in parallel. For example, the output events of the action A4 

may occur in parallel, that is the synchronized update interactions between 

A4 and the data stores BOOK and BORROWER and the synchronized 

interaction between A4 and the asynchronous data flow checkout_message 

can occur in parallel. 

6.3 Conclusion 
The examples presented in this chapter illustrate how formal specifications 

can be derived from DFDs extended with notation for depicting control 

relationships. The two different types of applications used show that the techniques 

are equally applicable to data, and control-intensive applications. The formal 

specifications derived are, admittedly, not easy to read or understand, nor are they 

easy to produce manually. In this respect, the examples highlight the need for 

powerful specification building and derivation tools in the practical application of 

the framework. 
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Once produced, the formal specifications can be used to rigorously validate 

and verify behavioural properties, and in this respect, they serve to establish 

confidence in the software product and the activities involved in building the 

product. 



CHAPTER 7 

Conclusions and Further Work 

7.1 Thesis Summary and Achievements 
In this thesis a formal framework for developing and interpreting DFDs was 

developed. The framework provides DFDs with a mathematical basis, and consists 

of two parts: the Picture Level (PL) and the Specification Level (SL). The PL is a 

mathematical theory characterizing the syntactic properties of DFDs. The theory can 

be used to investigate the absence or presence of syntactic properties in DFDs. The 

operational interpretation associated with the PL takes the form of a relational 

conditional term rewriting system (R-CTRS), and provides an effective means for 

carrying out the investigation of the syntactic properties. Structural correctness is a 

useful syntactic property that can be investigated in the PL. A DFD construct, or a 

structure of DFD constructs, is said to be structurally correct if it satisfies the 

formation rules associated with it. Such rules are directly stated as laws of the PL. 

The SL provides support for specifying control in DFDs and for deriving 

initial design from DFDs. It consists of tools and techniques for describing state 

dependent behaviour and control relationships in DFDs, and for deriving formal 

specifications, called Behavioural Specifications (BSs), from control-extended 

DFDs, called ExtDFDs. An ExtDFD is derived from a hierarchy of DFDs, in the 

following manner: 

1 Generate the primitive DFD of the hierarchy. The primitive DFD consists of the 

primitive processes of the hierarchy, and the external entities and data stores of 

the hierarchy. Decomposed and combined data flows are depicted in the 

primitive DFD via splitters and binders. 

2 Add control flows and a state entity to the primitive DFD to pictorially describe 

the state dependent behaviour of the application. Specify the behaviour of the 

state entity in terms of a state transition diagram (STD). 

3 Partition the primitive processes into actions, and identify the asynchronous and 

state flow interfaces between actions and the external entities. The internal data 

flows of actions are all synchronous, as well as the data flows between actions 

and data stores. The data flows between actions are all asynchronous. 

An ExtDFD is viewed in the formal framework as a system of actions which 

interacts with its environment (depicted by external entities) in an uncooperative 

manner (depicted by asynchronous and/or state interfaces between external entities 

and the ExtDFD). The BS of an ExtDFD characterizes the behaviour of the BS in 

terms of its allowable state transitions, and is generated from information 
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concerning the relationships between ExtDFD components, explicitly depicted in 

the ExtDFD (for example, via the use of special symbols for synchronous, 

asynchronous, state, and control flows), formal specifications of behaviour of the 

processes, data stores, and asynchronous flows, in terms of labeled state transition 

systems, and specifications of the data structures associated with the data objects in 

the ExtDFD. The BS is derived in a modular manner: 

1 the static and dynamic aspects of data stores and data flows are formally 

specified; 

2 the behaviour of processes are formally specified; 

3 the specifications of actions are generated from specifications of their constituent 

processes, and the synchronous relationships between them (which are explicitly 

depicted in the ExtDFD); 

4 The BS is generated from the specifications generated in 1 and 3, and from the 

types of interactions between actions, data stores, and external entities depicted 

in the ExtDFD. 

The BS can be used to formally validate behavioural properties of ExtDFDs, 

and can also be used as the basis for formal verification of subsequent 

implementations. 

7.1.1 Achievements 

The formal framework described in this thesis provides a firm mathematical 

foundation for DFDs which can be used as a basis for formally evaluating the 

structure of DFDs, and which facilitates the generation of formal specifications 

from them. Earlier work in this respect [TP86b, Tse85a, Tse85b] provide only 

formal foundations for the syntactic aspects of DFDs. The framework developed 

here provides a formal basis for both the syntactic and semantic aspects of DFDs, 

and thus can be viewed as extensions of these earlier works. 

The formal framework also provides facilities for depicting and formally 

specifying control information in DFDs. The work on this aspect of the formal 

framework improves upon other popular approaches to introducing control 

information in DFDs [HP87, Woo88], by associating formal interpretations with 

DFD structures built up with the additional control constructs. As above, this 

facilitates the generation of formal specifications from the control-extended DFDs. 

The use of the formal specifications for formally investigating behavioural 

properties of applications, and as bases for formal verification activities, is 

discussed in Chapter 5. 

Once the BS is generated from an ExtDFD, the ExtDFD can be viewed as the 

informal 'front' of the BS. This provides the BS with a more visually appealing 
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front, which abstracts away from its detail but still provides insight, via the 

graphical notation, consistent with such detail. This approach supports Naur's view 

of formalisms as extensions of informal expressions. 

The formal framework thus facilitates the generation of specifications which 

are understandable, by providing a graphical 'front' in the form of ExtDFDs, 

precise, by facilitating the generation of formal specifications from ExtDFDs, and 

testable, by providing formal notions of specifications implementing the BS. 

The specification technique used by the framework extends and combines 

current algebraic specification techniques in order to derive a more expressive 

specification system. The extensions made in this respect concern the derivation of 

model-theoretic and operational interpretations for specifications with partial 

functions, negated relations (predicates), and inequalities. This work builds upon 

the work of Wirsing and Broy on partial algebraic specifications [WB82], 

Astesiano et al on relational specifications [ARW86], and Mohan and Srivas on 

model-theoretic and opertaional interpretations of specifications with inequalities 

[MS87]. 

7.1.2 Comments 

It is this author's op1mon that the number of useful automated tools 

supporting the use of SA tools and techniques will gradually level out if no formal 

basis for the tools and techniques are developed. Too often have practical tools been 

built without first establishing a formal foundation for the techniques they support. 

Many such tools are of superficial use only, for example, most tools for DFDs 

currently available have relatively firm foundations for the syntactic aspects, but 

provide little or no foundation for the semantic aspects, thus limiting their use in 

formally specifying and investigating behavioural properties. Yet, it is the 

investigation of these behavioural properties that will have a bearing on subsequent 

development. This thesis attempts to change matters by providing a formal 

framework which can be used as the basis for the building of automated tools 

supporting the use of DFDs in software development. No attempt has been made in 

the thesis to suggest particular tools based on the framework, but the mathematical 

theories have been developed in a manner that does not preclude practical 

implementation. Thus conditions under which sound and complete rewriting 

systems can be generated from RSs (the theories) are provided, and can be used as 

guidelines in constructing the RSs. 
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7.2 Further Work 
The PL of the formal framework can be extended in many directions as 

indicated in Chapter 4. Support for formally reasoning about the syntactic 

properties of incomplete structures, as well as support for modifying DFDs, and for 

reasoning about such modifications are some of the more useful extensions that can 

be made to the PL. Such extensions are simply exercises in building theories of 

well-defined syntactic manipulations. Further work is also needed in making 

practical use of the SL. In this respect, computer-aided tools for interrogating BSs, 

and for analyzing the behavioural properties they capture are essential. Work by this 

author and Docker on a practical environment for the formal framework is currently 

in progress [DF89, FD89]. The structure of the proposed environment is shown in 

Figure 7.1. 

Figure 7.1 The structure of an environment incorporating the formal 

framework 

The proposed environment consists of two sub systems: the Requirements 

Analysis Support System (RASS), and the Behavioural Analysis Support System 

(BASS). The two sub systems are supported by a system dictionary which is a 

stores the representations generated by them, and facilitates the sharing of such 

representations. 

In the RASS DFDs are developed informally using SAME [Doc88], which is 

an executable DFD specification system. The PL-Analyzer, a DFD syntax checking 

tool based on the PL theory, is used to check the syntactic consistency of the DFDs 

constructed in SAME. SAME acts as the informal 'front' of the RASS, providing 

tools for drawing diagrams, for entering semi-formal descriptions of DFD 
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components, and for building executable data dictionaries for the DFDs. The 

executable nature of SAME specifications essentially makes the RASS a 

prototyping system. 

The BASS provides support for the specification and analysis of behavioural 

properties of application with DFDs, and is based on the SL. The SL-system is the 

front end of the BASS and consists of automated tools for extending DFDs with 

control information, and for entering process specifications, and specifications of 

the static and dynamic aspects of data stores and data flows. From these, the SL­

system generates the BS. The SL-Analyzer provides tools for analyzing the BS. 

Work on the BASS is still in the initial stages. 

Further research is needed in incorporating the formal framework in a formal 

devlopment method. An evolutionary method, somewhat similar to the 

transformation approach described in Chapter 0, where a program is derived from a 

sequence of specifications, with the BS as the start of the sequence, and where each 

specification in the sequence implements the specification prior to it in the sequence, 

is a possibilty that warrants further investigation. The criteria for establishing 

implementation described in Chapter 5 can be used in such a method. 

7.3 Conclusion 
To conclude, further research and work is needed in order to make practical 

use of the formal framework via automated support environments for formally 

specifying applications with DFDs. The framework, though, has the potential to 

initiate research into a new generation of 'semantically-based' automated tools for 

DFDs, which could see their use as specification tools in formal development 

methods. Furthermore, the graphical nature of DFDs, coupled with the formal 

foundation developed here, makes for a formal specification method which does not 

sacrifice understandability for formality. 
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APPENDIX I 

Conditional Term Rewriting Systems 

This appendix is an introduction to term rewriting systems, in particular, 

conditional term rewriting systems. 

Properties of terms 

Let T be the set of terms generated by a signature I,= <S, F>, where S is a 

set of sorts and F is a set of function symbols, and let X be a countable set of 

elements, called variables, which are denoted by x, y, z. The function Var on terms 

returns the set of variables occurring in a term and is defined as follows : 

Var: Var(x) = {x} where XE X 

Var(f(tl, ... , tn)) = Var(tl)+ ... +Var(tn) where fe F and tie T (lsisn) 

If V(t) = 0 then tis called a ground term. 

An occurrence of a sub term in a term is defined in terms of a set of sequences 

of integers, N*, including the empty sequence A, and a concatenation operation, ., 

on sequences. The elements of N* are called occurrences. An orderings, called the 

prefix ordering, is defined on occurrences as follows: 

usv if and only if there exists w such that v = u.w, where u, v, w E N*. Also v/u 

= w if and only if v = u.w, where u, v, w EN*. 

Intuitively usv if u can be made equal to v by appending a sequence to it. 

Two occurences, u, v, are said to be disjoint, denoted by u\v, if and only if 

NOT(usv) and NOT(vsu), that is neither u or v can be made equal by appending 

sequences to them. Also u<v if and only if usv and u 1:- v, where u and v are 

occurrences. 

The set of occurrences of a term, t, denoted by O(t), and the sub term oft at 

occurrence u, denoted by tlu, are defined as follows: 

1. If t = x then O(t) = {A} and tlA = t. 
2. If t = f(tl, ... , tn) then O(t) = {'A}+{iu I isn, u E O(ti)}, tl'A = t, and tliu = 

tilu. 

For example, a term t = f(g(x, h(y)), k(x, z)), has an occurrence set O(t) = 

{A, 1, 11, 12, 121, 2, 21, 22}, where tll = g(x, h(y)), tl12 = h(y), tl121 = y, and 

tl2 = k(x, z). Also lsl 1, ls12, lsl21, and 12s121. 

Replacement of a sub term at occurrence u of a term, t, by another term, t', 

denoted by t[u~t'], is defined as follows: 

1. t['A~t'] = t'. 

2. If t = f(tl, ... , tn), t[iu~t'] = f(tl, ... , ti-1, ti[u~t'], ... , tn), isn. 

207 



Replacements have the following properties. 

\/ t, tl, t' E T; u E O(t), VE O(tl): 

• Embedding: t[u<-t']lu.v = t'lv, 

• Associativity: t[uf--t'][u.v<-tl] = t[uf--t'[vf--tl]]. 

\/ t, tl, t' E T; u, v E O(t), with u\v: 

• Persistence: t[uf--t']lv = tlv, 

• Commutativity: t[uf--t'][vf--tl] = t[vf--tl][uf--t']. 

\/ t, tl, t' E T; u, v E O(t), with u~v: 

• Distributivity: t[uf--t']lv = (tlv)[u/vf--t'], 

• Dominance: t[uf--t'][vf--tl] = t[vf--tl]. 

Substitution of variables in a term is defined as follows: 

A substitution is a mapping, CY, from X, the set of variables, to T, the set of terms, 

with CY(x) = x almost everywhere. They are extended to morphisms of T by CY(f(tl, 

... , tn)) = f(CY(tl), ... , CY(tn)). The domain of a substitution CY is the finite set D(CY) = 
{xEX I CY(x) -:1:- x}. 

The match of a term t by another term t', denoted by t::t', is defined as 

follows: 

t::t' if and only if there exists a substitution CY such that t = CY(t'). Any such 

substitution is denoted by CY= t::t' in what follows. 

Intuitively, the match of a term t by another term t' occurs when a substitution 

exists that when applied to t' makes it identical to the term t. 

Term rewriting systems 

Term rewriting systems are formally defined below: 

A term rewriting system (TRS) is a set R of pairs of terms <t• t'>, such that Var(t) 

is a subset of Var( t'). The pairs of terms are called (rewrite) rules. 

The following are definitions associated with TRSs. 

An occurence, u, in a term t in a TRS, R, is called a redex occurence of R in t if and 

only if there exists a rule <tl • t2> in R such that tl~tlu. 

A term t reduces (or rewrites) tot' in a TRS R, denoted by t• Rt', if there exists a 

rule <tl • t2> in R, and a substitution CY= (tlu)::tl (i.e. u is a redex occurence of R 

int), and t' = t[uf--CY(t2)]. 

If • is a relation over T, then • is 

(a) stable if and only if\/ CY; Vt, t' E T; t• t' • CY(t)• CY(t'); 

(b) compatible if and only if V t, t', tlE T, \/ UE O(tl); t• t' • 
tl [uf--t] • tl [uf--t']. 

The reduction relation • R is the smallest compatible and stable relation 

containing R (see Huet [Hue80]). For a relation on terms let: 
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• • *R denotes the transitive closure of • R, 

• ttt' ¢::> :3 tl such that t• *Rtl and t'• *Rtl, 

• tit'¢::> :3 tl such that tl • *Rt and tl • *Rt' 

If tis minimal with respect to • R i.e. there is not' such that t• Rt', then tis 

called a • R-normal form. For a term t, if there exists a • R-normal form t' such 

that t• *Rt' then t' is called a normal form oft. 

Two important properties of • R are termination and confluence. 

A relation, • R, is terminating (noetherian) if and only if there is no infinite 

sequence t 1 • R t2• R ... • R tn, that is, • * R is well founded. 

A relation, • R, is confluent if and only if Vt, t' E T; tlt'• ttt'. 

Every term in a terminating and confluent relation possesses a unique normal 

form (see Huet [Hue80]). Rewriting systems which generate a terminating and 

confluent relation on terms provide an effective procedure for determining the 

equality of terms. In such systems, if two terms, t, t' reduce to the same normal 

term, then the terms are equal, also two equal terms in the equational theory 

corresponding to the TRS ( obtained by replacing the symbol • by = ), reduce to the 

same normal form in the TRS. Proof of this can be found in Huet [Hue80]. 

Conditional term rewriting systems 
Conditional term rewriting systems (CTRSs) are extensions to TRSs which 

allow conditions to be associated with reductions. 

A conditional term rewriting system is a finite set of rules, called conditional rewrite 

rules, of the following form: ul = vl /\ ... /\ un = vn • Lhs• Rhs where Var(ui) 

is a subset of Var(Lhs), Var(vi) is a subset of Var(Lhs), and Var(Rhs) is a subset of 

Var(Lhs), for 1:::;i:s;n [Kap84]. The formula before the implication symbol, •, is 

called the condition part or antecedent, while the reduction after the • is called the 

consequence. 

Rewriting in a CTRS is defined as follows: 

Given a CTRS, R, a term t reduces (or rewrites) tot', denoted by t• Rt', if and 

only if there is a rule in R, ul = vl /\ ... /\ un = vn • Lhs• Rhs in R such that: 
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Match and replace 
there exists an occurrence u in t and a substitution cr == (tlu)::Lhs, and t' == 

t[uf--cr(Rhs)], and 

Convergence of terms in antecedent 

uitvi, where 1~'.:ill, that is ui and vi have a common reduct. 

Thus rewriting in a CTRS involves verifying the condition, which involves 

further rewriting to determine common reducts. Such verification may give rise to 

infinite loops if the form of the laws are left unconstrained. For this reason Kaplan 

[Kap84] introduced the notion of a simplification ordering on terms which, ensures 

that conditions are simpler in some sense than their consequences, thus eliminating 

infinite loops in the evaluation of conditions. 

A simplification ordering is a well founded ordering (terminating)< on terms in T 

such that: 

• Subterm property - f( ... t ... )>t 

• Compatability- if t>t' then f( ... t ... )>f( ... t' ... ). 

The following theorem, given in Kaplan [Kap84], states how simplification 

orderings are used to eliminate infinite loops. 

Theorem 1 

Given a CTRS, and a simplification ordering <, such that for every rule ul == v 1 /\ 

•.• I\ un == vn • Lhs• Rhs in R, cr(Lhs)>cr(Rhs) and cr(Lhs)>cr(ui), Lhs>cr(vi) for 

i == 1 to n, and for all substitutions cr, then: 

1. -+R is terminating, 

2. when -+R is confluent, -+R is decidable. 

Proof of theorem 1 can be found in [Kap84]. The rules in the CTRSs defined 

above are usually called positive conditional equations, since only equalities 

between terms are allowed in the conditions. Both Kaplan [Kap87], and Mohan and 

Srivas [MS87] provide treatments of CTRSs which allow inequalities in the 

condition parts. The approach of Mohan and Srivas is used as the basis for the 

relational CTRS introduced in this thesis. An overview of their approach follows. 

Conditional rewriting systems with inequational assumptions 

Mohan and Srivas define Equational-Inequational CTRSs (EI-CTRSs) as 

follows: 
An EI-CTRS is a set of rules of the form (ul == vl /\ ... /\ un = vn) /\ (sl :;t: r1 /\ ... 

/\ sp :;t: rp) • Lhs• Rhs, where Var(ui) is a subset of Var(Lhs) and Var(vi) is a 

subset of Var(Lhs), for i = 1 ton, Var(si) is a subset of Var(Lhs) and Var(ri) is a 

subset ofVar(Lhs), fori = 1 top, and Var(Rhs) is a subset of Var(Lhs). 

Rewriting in an EI-CTRS, called EI-reduction, is defined as follows: 
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A ground term t El-reduces to another term t' using an EI-CTRS R, denoted by 

t• Rt', if there is a rule (ul = vl /\ ... /\ un = vn) /\ (sl * r1 /\ ... /\ sp * rp) • 
Lhs• Rhs in R such that: 

Match and replace 

there exists an occurrence u in t and a substitution <J = (tlu)::Lhs, and t' = 

t[uf-cr(Rhs)], and 

Demonstrable convergence of terms in antecedent 

it can be demonstrated that uitvi, where 1~!:ill, in a finite number of steps, and 

Demonstrable non-convergence of terms in antecedent 

it can be demonstrated that NOT(sitri), where l~i~p, that is si and ri have no 

common reducts, in a finite number of steps. 

Demonstrable non-convergence implies that every sequence of EI-reductions 

from si to ri terminates and the set of all reducts from si is disjoint from that of ri, 

thus termination of EI-reduction is very desirable property of EI-CTRSs. 

An EI-CTRS can be viewed as an equational theory by replacing • by= in 

the rules, and taking the derived rules to be universally quantified formulas. Given 

an EI-CTRS R, the derived equational theory is denoted by E(R). The model 

semantics for the derived equational theory is based on determining a set of 

inequalities between ground terms called inequational assumptions. These 

assumptions state which inequalities hold in all desirable models of the equational 

theory, and are appended to the equational theory, thus the models satisfying with 

the theory must also satisfy the inequational assumptions. Reduction in an EI­

CTRS, R, is sound and complete with respect to a set of inequational assumptions, 

µ, if: 
Soundness: t• Rt' • E(R)+ 1 µ I= t = t', 

Completeness: E(R)+µ I= t = t' • ttt'. 

The inequational assumptions made by Mohan and Srivas concern ground 

constructor terms, that is terms built solely from the constructors of a signature, 

where constructors are symbols for functions which create new objects of a sort in 

the signature. All other functions are said to be defined functions. All ground 

constructor terms are assumed to be distinct, thus the set of inequational 

assumptions consists of all inequalities between ground constructor terms. In 

general confluence is not a sufficient condition for soundness and completeness of 

EI-reduction, requiring another property, sufficient completeness. 

Lets(µ) be a set of ground terms such that V cl, c2 e s(µ); cl-::;=c2 e µ. An EI-

CTRS R is sufficiently complete with respect to µ if every ground term t has a 

reduct t' e s(µ). 

1 + denotes set union 
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The following theorem establishes the importance of the sufficient 

completeness property. 

Theorem2 

EI-rewriting is sound and complete if R is sufficiently complete with respect toµ. 

Proof of theorem 2 can be found in [MS87]. Mohan and Srivas give a 

number of syntactic condition on EI-CTRSs which ensures that they are sound and 

complete. Such conditions are based on the notion of a function being fully defined 

by an EI-CTRS. 

A function is fully defined by an EI-CTRS R if and only if every term of the form 

f(tl, ... , tn), where ti is a ground term, is reducible by R to a unique constructor 

term. 

Proposition 1 

If every defined function is fully defined by R then EI-rewriting is sound and 

complete with respect to µ, where µ is the set of all inequalities between ground 

constructor terms. 

Proposition 2 

Every defined function is fully defined by R if 

EI-rewriting is ground terminating, 

EI-rewriting is ground confluent, and 

every ground non-constructor term is reducible. 

Syntactic conditions which ensure that an EI-CTRS is sound and complete, 

together with the proofs of the above theorems and propositions, are given in 

[MS87]. 
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Appendix II 

Proof of completeness and 
sufficiently complete 

Proof of Proposition 3.1 in Chapter 3 [MS87]: 

soundness 
R-CTRSs 

of 

1. <h is obviously a partial ordering on F, the set of function symbols in a 

signature. 

2. The ordering <hinduces a partial, well-founded ordering, <g, on T(F), the set 

of ground F-terms, defined as follows: g(t)<gh(t') if and only if g<h h or 

t<<ht', where g(t), h(t')E T(F), and t and t' are tuples of ground terms. 

Rewriting of a term in a R-CTRS can be represented by a tree of terms, where 

the root is the term from which rewriting starts, and the children of each term 

in the tree are the suitably instantiated terms in the antecedent and the right 

hand side of the consequence of a rule whose consequence has a left hand 

side which matches with the term. Assume that there is a term, t, for which 

rewriting in the R-CTRS does not terminate. This means that the tree is either 

of infinite width or of infinite depth. It cannot be of infinite width since each 

rule has a finite number of terms in its antecedent. If the tree is of infinite 

depth this means that there is an infinite sequence of ground terms t, tl, ... , 

tn, starting from t, such that t<gtl <g ... <gtn. Since <g is a well-founded 

ordering, this is impossible. Thus there can be no infinite sequence of 

rewritings of a ground term in a R-CTRS. 

Proof of Proposition 3 .2 [MS 87]: 

Since constructors are distinct from all other function symbols in a signature, 

condition 1 of the proposition ensures that in testing for confluence one only has to 

consider overlaps between rules whose consequences contain left hand sides with 

the same outermost symbols. If a ground term t, matches with the left hand side of 

the consequences of two rules, then either the suitably instantiated right hand sides 

are equal, or at most one of the rules can be used to reduce the term, from 

condition 2. Thus if t• tl and t• t2, where tl and t2 are ground terms, then either 

tl is the same terms as t2, or the reductions were carried out on distinct sub terms 

of t, in which case the rules wnen applied in opposite order to tl and t2 result in 

them being reduced to the same term. 
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Proof of proposition 3. 3: 

It is first shown that one step rewriting is sound, that is, for two defined 

ground terms, t, t', t• Rt' • \;/ME MI,E+a, MI= t = t', in a R-CTRS, R, where 

MI,E+a is the class of finitely-generated models for the RS, E(R), which satisfy the 

laws in E+cx. The proof is by induction on the number of reduction steps needed to 

verify the antcedents of R-CTRS rules. The induction base is taken as the case 

where only one reduction step is needed in order to determine the definedness of 

ground terms in order to carry out a one-step reduction of a term t to t' in an R­

CTRS, R. In such a case, an unconditional rule, ok(tl)• TT, where ok is the ok-

predicate for the ground constructor term tl, in an R-CTRS, R, means that ok(tl) 

holds in all the algebraic models of the corresponding RS, denoted by E(R), that is, 

ok(tl)• RTT • \;/ME MI,E+a, MI= ok(t), where MI,E+a is the class of finitely­

generated models for the RS, E(R), which satisfy the laws in E+cx. If a term 

rewrites in one step tot' in R, that is t• Rt', using a rule tl • t2 where tin:= crtl, 

and t' = t[n:f--crt2], then ok(crtl) • RTT, and ok(crt2) • RTT. Thus there are 

unconditional rules in R, ok(tl)• TT, and ok(t2)• TT, which imply that ok(tl) and 

ok(t2) hold in all models in MI,E+a• Since the law ok(tl), ok(t2) • tl= t2 is in 

E(R), and each instantiated literal, ok(crtl) and ok(crt2), in the antecedent holds in 

all models of MI,E+a, then by modus ponens crtl = crt2 holds in all models of 

MI,E+a, thus t = t[n:f--crt2] = t' holds in all models of MI,E+a• If a relation 

r(crtl, ... ,crtn) rewrites to TT in one step in R, by a rule r(tl, ... ,tn)• TT, then 

ok(crtl)• RTT, ... , ok(crtn) • RTT, via unconditional ok-predicate rules. Thus 

ok(crtl), ... , ok(crtn) hold in all models of MI,E+a• Since ok(tl), ... , ok(tn) • r(tl, 

... , tn) is in E(R), and each instantiated literal, ok(crtl), ... , ok(crtn), in the 

antecedent holds in all models of MI,E+a, then by modus ponens r(crtl, ... , crtn) 

holds in all models of MI,E+a· 

Suppose a ground term, t rewrites in one step to a term t', by a rule (ui = 

vi)i=l. .. m, (u'i -:t:- v'i)i=l. .. n, (ri)i=l. .. o, (~r'i)i=l. .. p • tl • t2, where tin:= crtl, 

t' = t[n:f--crt2]. For each equality in the antecedent, ui = vi, ok(crui) • *RTT, 

ok(crvi)• * RTT, and either crui• * RU and crvi• * RU, or crui• * RCl and crvi• * RC2, 

and N(cl) = N(c2), where cl and c2 are ground constructor terms. By the 

induction hypothesis, ok(crui), ok(crvi), and either crui = u, andcrvi = u, or crui = cl 

= c2 = crvi, hold in all models of MI,E+a, (N(cl) = N(c2) means that cl = c2 holds 

in all models of MI,E+a) thus crui = u = crvi holds in all models of MLE+a• For each 

inequality, u'i-:t:- v'i ,ok(cru'i) • *RTT, ok(crv'i)• *RTT, and every finite sequence 

of rewrites starting from cru'i and crv'i resulted in no common reducts. Since every 

defined term is reducible to ground constructor term, then cru'i • * R c 1 and 

crv'i• * Rc2 where N(cl) -:t:- N(c2), thus cl -:t:- c2 holds in all models of MI,E+a• By 

214 



the induction hypothesis cm'i = cl ¢ c2 = ov'i holds in all models of MI,,E+a• For 

each relation, ri = r(tl, ... ,tn), ok(crtl) • *RTT, ... , ok(crtn) • *RTT, and 
* * * * crtl • Rtl' or crtl • Rel, crtl'• Rel' and N(cl) = N(cl'), and ... ,crtn• Rtn' or 

crtn• * Ren, crtn' • * Ren' and N(cn) = N(cn'), and r(tl', ... ,tn')• RTT. By the 

induction hypothesis tl = tl', ... , tn = tn', and r(tl', ... ,tn') holds in all models of 

MI,,E+a.• Thus r(tl, ... ,tn) holds in all models of MI,E+a• For each n-relation ~r'i = 
* * r'(sl, ... ,sn), ok(crsl) • RTT, ... , ok(crsn) • · RTT and thus 

crsl • *Rcl, ... ,crsn• *Rcn, where ci (lsisn) is a ground constructor term, and 

NOT(r'(cl, ... ,cn) • TT), thus ~r'(cl, ... ,cn) is a n-::relation assumption. By the 

induction hypothesis tl = cl, ... , tn = en, and ~r(cl, ... ,en) holds in all models of 

MI,E+a., thus ~r(tl, ... ,tn) holds in all models of MI,E+a.• Since the rule (ui = 

vi)i=l. .. m, (u'i ¢ v'i)i=l. .. n, (ri)i=l. .. o, (~r'i)i=l. .. p • tl = t2 is in E(R), and 

the instantiated antecedent holds in all models of, then, by modus ponens, crtl = 

crt2 holds in all models of MI,,E+a, and thus t = t[m-crt2] = t' holds in all models of 

MI,E+a.• 

It is now shown that for any defined ground term, t, V ME MI,,E+a, MI= t 

= c, where c is a ground constructor term and t• * RC. This done by induction on 

the depth of the rewrite relation from a defined ground term to a ground constructor 

term. The base case is the case where the depth is 0. 

Consider the case where a defined ground term t rewrites to a ground 

constructor term, t• Rt' • * RC. By the induction hypothesis, t'• *RC • V Me 

MI,,E+a., MI= t' = c, and by the soundness of one step rewriting t• Rt' • V Me 

MI,,E+a., MI= t = t'. Thus t• Rt'• *RC • V ME MI,,E-ra, MI= t = c. 

A homorphism, h, from the set oif defined ground terms to elements in the 

carrier sets of the models in MI,,E+a. can be defined as follows: for a model Min 

MI,,E+a, h(t) = cM, where t• * RC, This homomorphism is well-defined from above, 

and is unique since the models in MI,E+a. are finitely generated. Thus ground 

rewriting in is sound and complete. 
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Errata 

This section lists the errors identified in this thesis. Page numbers are preceded by "p." 

followed by line numbers. A negative line number indicates that counting is from the 

bottom up, for example line -3 is the third line from the bottom of the page. Ommissions 

are underlined. 

CHAPTERO 

p.1, line 14 

"nfeasible" should be "infeasible". 

p.2, line -5 

The reference "FP" should be "FP86". 

p. 3, line 16 

"guaranted" should be "guaranteed". 

p.4, line -7 

The reference "[Woo78]" should read "[Woo88]". 

line -3 

The reference "[YC78]" should read "[YC79]". 

p.7, line 9 

The reference "Ros77" should read "Ross77". 

line 10 

"diagraming" should be "diagramming". 

line 11 

"diagram" should be "diagrams". 

CHAPTER 1 

p. 14, line -3 

Delete "consists" after "cust_order". 

p. 15, line -8 

Should read "there are sufficient parts". 

p. 21, line 4 

Should read "control aspects of DFDs". 

I 



line -12 

Should read "In a TS data flows can be combined". 

p. 28, lines 10, 11 

Should read "Hatley's extensions ... Furthermore, they provide tools". 

p. 29, lines -5, -4 

Should read "The types of information". 

p. 35, lines 5,7 

Should read "A Petri net ... is a useful tool for". 

CHAPTER2 

p. 42, line -3 

"if the book is a copy of the library" should read "if the book belongs to the library". 

p. 50, line -17 

Replace "CheckouBook" by "CheckoutBook" 

p.64, line -9 

The reference "Hat88" should read "HP87". 

line -6 

The reference "KK88" should read "KKZ88". 

p. 67, line -17 

The reference "KK88" should read "KKZ88". 

p. 69, line 5 

Should read "processes which the outgoing data flows". 

CHAPTER3 

p. 73, line 6 

Should read "to support the range". 

p. 76, line -8 

V A(r(t1,. .. ,tn)) = (VA(t1) ... V A(tn)) should read V A(r(t1,. .. ,tn)) = TT, where TT is a special 

value indicating the validity (equivalently, definedness) of the predicate. Relations are 
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associated with default semantics where it is assumed that if an interpretation does not 

evaluate to TT then the relation does not hold (that is, it is undefined). 

p. 77, line 15 

Should read" and DA is the". 

p.78, line? 

"rdi(w) E rdiA" should read "VA(rdi(w)) = TT". 

line 8 

"r'ei(W) E r'eiA" should read "VA(r'ei(w)) = TT". 

p. 81, line 12 

Should read "Example 3.4 defines sets of natural numbers" 

p.82, line -19 

Delete law Sl5. This situation can be handled using a normalizing function which gets rid 

of any duplicates. 

p. 83, line 5 

insert below line 5 the following: 

ok-predicate 

okset: set 

p. 84, line 23 

Delete law S15 (see erratta for p. 82, line -19 above). 

CHAPTER4 

p. 96, line 8 

Remove"." after "correct". 

p.111,line-25 

Insert below line -25 the following law: 

getsubstructs(0) = 0 

(This error also causes an obvious change in the law numbering). 

p. 116, line 21 

Delete law PS25. 
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CHAPTERS 

p. 126, line -2 

"Example 2.7" should be "Example 2.6". 

p. 132, line 7 

"observeration" should read "observation". 

line 13 

"add(e,deleteq(q))" should read "addq(e,deleteq(q))" 

line -6 

Should read "access functions ... are determined". 

p. 134, line 12 

The reference Hoa85 should read Hoa 78. 

line 13 

The reference Lam88 should read AL88. 

line 17 

The reference AGR87 should read AGR88. 

p. 138, line 5 

The form of the law is actually more general than is expressed. Any events which affect a 

disjoint subset of states may be synchronized. 

p. 139, line 18 

Insert below line 18 the following law: 

3. getfinesrec(emptylist, tl) = emptylist 

line 28 

Insert below line 28 the following law: 

2. sum(emptylist) = 0 

line -2 

Should read "Receivelp6(borrid)". 

p. 140, line 21 

Should read "Receive2p9(borrid)". 

p. 142, line -1, -2 

Replace laws 1. and 2. by q==ADD(e)==>addq(e,q) 

IV 



p. 144, line 9 

Should read "can determine wich pairs". 

p. 146, 19 

Add"; ckmess:asynch(checkout_mess)" to line 

line -13 

Insert", ckmess" after "ckinfo". 

p. 148, line -11 

Should read "Such an automated system". 

line -9 

Should read "This would involve". 

line -4 

Should read "as far as their inputs". 

p. 149, line 15 

Should read "State transitions". 

CHAPTER6 

p. 154, Figure 6.2 

Redirect the arrow emanating from the state ACCELERATING and directed to the state 

RUNNING3 (labeled brake_on), to the state BRAKING. 

Insert an arrow from CRUISING to RUNNING2 labeled less_30. 

Insert an arrow from BRAKING to IDLE labeled engine_on/off. 

Insert an arrow from BRAKING to RUNNING2 labeled cruise_on/off. 

Insert an arrow from RUNNING2 to IDLE labeled engine_on/off. 

Insert an arrow from CRUISING to IDLE labeled engine_on/off. 

p. 156, line 15 

Delete"+ Plsubstate ". 

p. 157, line 2 

Replace "Siganture" by "Signature". 

p. 158, line -9 

Replace "Siganture" by "Signature". 
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p. 162, line 18 

Add";+ Asynch(Number) +" to line. 

line 30 

Replace"<_,_,_,_>" by"<_,_,_,_,_,_,_>", and replace "asynch2" by "asynchl". 

line 36 

Replace "asl: asynchl, as2:asynch2" by "asl, as2: asynchl". 

p. 164, line 4 

Add"+ Syslabel" to line. 

line 11 

Add"; Al, A2: syslabel" to line. 

p. 165, lines 11 to 20 

Delete laws 8 and 9. 

line 16 

Should read "p5==Sendp5(pos)". 

p. 167, line -2, -4 

Replace "Readprate" by "Readprate(c)". 

line -6, -8 

Replace "Readchrate" by "Readchrate(c)". 

p. 169 

Laws 38 to 41 handle only some cases in which parallel events can occur. In general, 

events which affect mutually exclusive parts of an application's state can be carried out in 

parallel. 

CHAPTER 7 

p. 196, line -2 

Should read "characterizes the behaviour of the ExtDFD". 

p. 197, line -15 

Should read" Earlier work ... provides". 

lines -8, -9 

Should read "which stores the representations generated by". 

p. 199, line -5 

The reference "Doc88" should read "Doc87". 
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p. 211, line 14 

Should read "is i! very desirable property". 

lines 21, 22 

Should read "satisfying the theory". 

Addition to bibliography 
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