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Abstract

In this thesis a formal foundation for data flow diagrams (DFDs) with control
extensions is developed. The DFD is the primary specification tool of the Structured
Analysis (SA) approach to requirements analysis and specification.

In recent times, a number of extensions to DFDs, which enhance their use in
the specification of behaviour of complex applications (i.e. applications with
concurrent or real-time aspects), have been proposed. Such extensions tend to
concentrate on increasing the descriptive power of DFDs, while paying less
attention to providing the extended DEDs with a formal foundation. Such a
foundation would facilitate the generation of formal specifications from DFDs,
which could then be used to ngorously validate the DFDs and the behavioural
properties they capture, and could also be used as the basis of formal verification
activities where subsequent specifications are verified against the formal
specifications generated from DFDs. Also, the simple, graphical nature of DEDs,
supported by a formal foundation, facilitates their use in formal development
srategies. Their use in this respect achieves a level of understandability not usually
associated with formal specification tools.

The formal foundation introduced in this thesis consists of two parts: the
Picture Level (PL) and the Specification Level (SL). The PL s an algebraic
specification characterizing the syntactic aspects of DFDs. The specification is
associated with an operational semantics which provides an effective means for
investigaiing the syntactic properties of DEDs with the PL.

The SL consists of tools and techniques for describing control aspects of
applications, and for formally specifying the data, functional, and control aspects of
the control-extended DFDs. The control-extended DEDs are called Extended DEDs
(ExtDFDs). An ExtDFD depicts the types of interactions that can take place between
DFD components, as well as the events that affect the mode of operation of the
application it models. A formal specification, called the Behavioural Specification
(BS), is generated from an ExtDFD and supporting specifications characterizing the
data objects and pnimitive processing components of the ExtDFD. The role of the
BS in formal validation and verification activities is discussed in this thesis.
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CHAPTER 0

Introduction

0.1 The context

This section outlines the context in which the research described in this thesis
should be placed.

0.1.1 The requirements specification problem

The increasing size and cost of software have been major concerns of
software developers since the late sixties. These concerns are especially relevant
today given the growing demand for, and scope of software in diverse application
areas, and the widening influence of software on human welfare.

While there is no general concensus on the central problems afflicting
software development, there is increasing evidence that the lack of thorcugh
attention to the requirements analysis and specification phase of software
development is a major contributor [ YZCC84]. The evidence usually cited takes the
form of extensive rewriting of the software and cancellations of projects whose
completion was found to be unfeasible as a consequence of inadequate or
inappropriate requirements analysis and specification [Boe76, Boe81]. The
importance of the requirements analysis and specification stage as the first stage of
software development should be self-evident. The result of this phase, the
requirements specification, as well as being the basis for further development,
provides the means by which the quality and applicability of the software can be
measured [FREQ79]. In order to adequately support such a role in development,
requirements specifications should have the following properties:

« Understandability : It is important that a requirements specification be
understandable by users and implementors, as well as the specifiers, in order for
effective communication to take place. This property is considered as being of
prime importance by Balzer and Goldman {BG87]. Tse and Pong [TP86a]
identify two main aspects of understandability - complexity and clarity of
description. The reduction of complexity in an application can be achieved by the
use of abstraction, and partition [YZCC84]. The use of abstraction allows one to
suppress certain detail while concentrating on other essential detail, while
partitioning permits one to represent the whole as the sum of its parts. The use of

abstraction results in hierarchies of specifications, where a specification at a
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lower level in the hierarchy presents detail ignored at the higher levels. For this
reason, abstraction 15 viewed as a vertical decomposition tool. Partitioning
allows for the modular building of specifications, and can be viewed as a
horizontal decomposition tool. On the clarity of description, it is generally feit
that graphic-based languages with few constructs are easier to understand than
mainly textual languages.

« Precision : The requirements specification, as the basis of further development,
must be stated in a precise, and unambiguous manner. This characteristic is
necessary to reduce confusion or misunderstandings arising from information
obtained from the specification.

» Testability : A requirements specification is said to be restable if it can be used to
establish in an effective manner that an implemented application is, in some well
defined sense, "equivalent” to it. In general, a notion of equivalence is based on
a mapping from information in the requirements specification to information in
the implemented application. If it can be proved that an implermented application
is equivalent to a specification, then the implementation is said to be correcr with
respect to the specification. The activity of determining the equivalence of an
implementation and its specification is called verification. As a prerequisite to
venfication, it must be possible to determine whether the different parts of the
specification are consistent with each other. Such an activity is called validation.

+ Modifiabiliry: It is foolhardy to assume that requirements once given remain
fixed throughout the development life of the software. Requirements can, and
often do, change over time, thus it should be possible to modify a requirements
specification without undue difficulty.

Currently, there is no single requirements specification language in which
specifications possessing all the above characteristics can be expressed.

0.1.2 Formal requirements specifications

Requirements specification languages can be classified as being formal or
informal. Formal specification languages have strict syntax and semantics. The
specifications that are expressible by them are called formal specifications. Formal
specification languages are seen by many reserachers as being necessary for
expressing in a precise and unambiguous manner the requirements of applications
(see for example [YZCC84, TP86a, BG&7, FREQ79, Goo84, Zav82, ZY 81, FP]).
The use of formal specifications also permits validation of the specification by
formal means, for example, by logical proof, automatic checks, or sirnulation.

Formal venfication is also facilitated by the use of formal specification

languages. Currently, there are two approaches to the formal verification of
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software. In the first approach the software i1s developed independently of the
specification, and showing that the software implements the specification means
developing a formal proof that the program implements the specification in some
well defined sense. After two decades of work on this approach it is now generally
accepted that such an approach is not feasible for realistically sized applications
[San88]. In the second approach, called the rransformarion approach, software is
developed from requirements specifications via a series of refinement steps. The
result of each step is a specification which incorporates the design decisions the step
encapsulates. Such an approach can be pictorially depicted as a sequence of
specifications as shown below:

SPO -->» SP1 --> ... -->§
where SPO is the requirements specification and S is the implemented applicartion.
Each specification in the sequence can be thought of as an implementation of its
predecessor, for example SP1 can be thought of as an implementation of SPQ. If
each individual step can be proved correct, that is, if it can be proved that SPi
implements SPi-1, then S itself is guaranted to be correct with respect to SPO. As a
formal development method, this approach offers more promise than the first,
though it is not without its problems. For example, when applied to large and
complex applications the individual specifications SPi can become large and
unwieldy resulting in some difficulty in proving the correctness of refinement steps
[San88]. This problem can be solved by appropniately partitioning the specifications
and refining them independently. Deriving an appropriate partitioning strategy is
still an area of active research.

A number of formal specification languages have been developed since the
early seventies, but their use in industry is limited despite their potential usefulness.
Both technical and sociological reasons can account for this lack of use. On the
sociological side, the proper use of formal specification languages requires a degree
of mathematical maturity not previously required by software developers.
Furthermore, formal specifications are difficult to read, even by the trained eye. On
the technical side, the lack of a firm method addressing the entire development of
software, which unifies at least some of the techniques is lacking. Current work on
the ransformation approach is directed at deriving such a total method for software
development.

0.1.3 Thesis objectives
In the wider context, this thesis investgates an approach to integrating formal
and informal specification techniques, in order to come up with a specification

language which is both understandable, and formal. The approach involves
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associating with informal specification tools and associated techniques a formal
framework, thus enabling the generation of formai specifications from the
(informal) specifications built using the tools and techniques. The informal
specifications can thus be viewed as 'fronts’ to the formal specifications, and
should provide intuitive 1nsight consistent with the formal interpretation it seeks to
hide. A developer could then develop a specification in terms of the (seemingly)
informal language, which could then be translated into a specification expressed in
terms of the underlying formal language. Such an approach is based on a proposal
put forward by Naur (Nau82, Nau85], which essentially states that formal
expressions are extensions of informal expressions.

In the narrower context, this thesis provides a formal framework for
structured analysis specification tools, mainly the data flow diagram, and also
extends the notation so that aspects other than the data flow through an application
can be specified. Most current languages provide support only for the specification
of what the application does, ignoring other non-functional aspects such as timing,
performance, and security. This is mainly because there is at present no
comprehensive theory or methodology for specifying such requirements
[YZCCB84]. In this thesis attention is also paid to the specification of the time
depenedent (or control) aspects of applications.

0.2 Formal specifications from data flow diagrams

Structured Analysis (SA}) is a methodology which addresses the requirements
analysis and specification phase of software development (DeM78]. The primary
tool of SA is the data flow diagram (DFD), which is a simple graphical language
used for describing the required structure of an application in terms of the data
flowing through it. At the time of its inception, SA was hailed as a radical approach
to requirements analysis and specification because of its use of graphical
specification tools as an aid to understanding. Less attention was paid to the lack of
a firm conceptual basis for the tools and techniques until much later when the
resulting problems reared their heads. Problems arose mainly from the different
uses of the tools and techniques amongst practitioners, a direct result of the lack of
a firm conceptual basis for them [Woo078). This, inevitably, led to disagreements
over the "proper” use of the tools and techniques, and encouraged many
practitioners to incorporate customized extensions. Added to this, the irreversible
nature of the transition from SA specifications to initial Structured Design (SD)
specifications [YC78] limited their use in other than the requirements analysis and
specification phase of software development [Pet88, Ric86]. Such transitions have

also proved difficult to carry out in some cases, and require considerable experience
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and skill on the part of the developer carrying out the transition [Ric86, Sho88]. A
further problem with the SA approach is that it specifies applications in terms of a
single aspect: the data flowing through it. For data processing applications this may
have been adequate, but for other types of applications, for example embedded or
real-time systems, other aspects are equally important.

Providing SA with a mathematical foundation may solve some of the
problems associated with its use, if one can be found. It is this author's view that
requirements analysis involves sociological processes which cannot be formalized
in terms of any mathematical theory. For this reason this thesis does not attempt to
provide an all-encompassing mathematical basis for SA, rather it restricts itself to
developing a formal framework for its specification tools, primarily the DFD. The
objective is to alleviate the problems associated with the use of SA specifications
discussed above, and at the same time provide a specification language which is
understandable, precise, and testable.

The formal framework consists of two parts: the Picture Level (PL), and the
Specification Level (SL). The PL provides formal support for constructing DFDs
by giving formal rules for building the syntactic entities involved. Specifically, the
PL is a system for abstractly characterizing and formally reasoning about the
syntactic structures of DFDs. The characterizations are abstract in the sense that
they are representation independent. An effective, sound and complete deduction
systemn can be associated with the PL, enabling its use as the formal basis for
automated DFD syntax-checking tools which are based on the rules expressed by
the PL.

The SL can be viewed as the part of the formal foundation which is used to
specify the semantic aspects of DFDs. Specifically, the SL is a set of techniques for
formally specifying the data, functional, and control aspects of control-extended
DFDs. The data aspects concern the structure of the data depicted in DFDs, and the
relationships between them, while the functional aspects concern the input/output
behavicur of the processing components of DFDs. The control aspects of DFDs
concem the interactions between the processing and data components of DFDs. The
primary product of the SL is the Behavioural Specification (BS), which is a formal
specification characterizing the behaviour of applications depicted by control-
extended DFDs. Such a specification facilitates formal validation and verification
activities, as is shown in this thesis.

0.3 Overview of thesis
Chapter 1 surveys some of the major extensions made to SA tools and

techniques- over the years since the inception of the methodology. It describes the
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early SA approach of DeMarco [DeM78] and discusses the problems associated
with it, and the manner in which some of these problems are tackled by other
researchers. Chapter 2 introduces, in an informal seiting, the formal basis for
DFDs. This chapter can be viewed as the informal ‘front' to the more formal parts
of the thesis. Chapter 3 details the mathematical and operattonal foundations of the
algebraic specification technique underlying the formal framework. The technique is
based on the work of Broy and Wirsing on partial algebraic specifications [WB&2],
the work of Astesiano et al on relational specifications [ARWS86], and the work of
Mchan et al on inequational assumptions {MS87].-Chapter 4 describes the PL,
while Chapter 5 describes the techniques in the SL. Chapter 6 applies the
techniques described in Chapter 5 to both a data intensive application, and a control
intensive application. The data-intensive example is a computer-based library
application for a university, and the control-intensive example is an automobile
cruise-control application. Chapter 7 discusses the merits and the limitations of the
formal framework and pinpoints areas which require further research.



CHAPTER 1

Data Flow-Orientated Requirements
Specification Techniques

1.0 Introduction

Data flow-orientated specification techniques (DSTs) provide mechanisms for
representing the flow and transformation of data in an application. Using DSTs,
applications are specified in terms of flows, representing data flow through the
application, and processes, representing the compenents of the application which
transform data.

The earliest indications of the use of DSTs in requirernents analysis methods
appeared in 1977, with the publication of the definitive papers on SofTech's
Structured Analysis and Design Technique (SADT) [Ros77, RS77], which
introduced a DST based on two diagraming tools called the activity and data
diagram. During the next two years DeMarco, Weinberg, and Gane and Sarson
published seminal books on structured analysis (SA) approaches [DeM78, Wei78,
GS79], which used a DST based on a diagraming tool called the dara flow diagram
(DFD). The activity diagrams of SADT can be viewed as an early form of the DFD.
Yourdon and Constantine, during the same period, published a second edition of an
earlier book on Structured Design (SD), which included a technique for translating
SA products into initial SD specifications { YC79]. The combined use of DeMarco's
SA appreach and SD is popularly known as the Yourdon SA/SD approach. The
publications of these easy to read works on SA, coupled with the relatively informal
style of the approaches, helped to establish the use of SA/SD as a viable method in
the software industry.

The popularity of the SA/SD method stems mainly from its emphasis on
creating clear, understandable specifications via the use of graphical notation, rather
than text. The lack of an experience base and the novelty of a graphical language,
led to the failure of authors to provide a firm conceptual basis for the tools and
techniques [Woo88]. This led to vanations in the use of SA tools and techniques
amongst practitioners. This has been more evident in recent times, with the
publication of papers and books which have extended SA/SD method in order to
cope with the special nature of certain types of software, or to solve general
problems related to the lack of a conceptual basis {see for example [Doc86, Doc87,
Pet88, HP87, Warl6, Gom84, Sho88&, TP86b, CTL87]).
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This chapter presents an overview of the early SA specification techniques,
and surveys some of the notable extensions made to it. The overview of the early
SA technigues is based on the published work of DeMarco {DeM78], since it
provides a comprehensive description of the tools and techniques.

1.1 Structured analysis (SA) specification techniques

The following are the specifications produced as a result of the use of SA
techniques:

+ Data flow diagrams (DFDs): Pictorial representations of the flow of data in an
application. An application is usually represented by a hierarchy of DFDs.

» A Data dictionary: A repository containing descriptions of the data objects
depicted in DFDs.

«  Process specifications: Functional descriptions of the bottom level (primitive)
processes in a hierarchy of DFDs.

The ceniral specification tool of SA is the DFD. A DFD depicts the data flow
relationships between the processing, data storage, and external components of the
application. Definitions of the data structures associated with the data flows, and
data storage components, are kept in an organized manner in a data dictionary.
Process specifications are used to describe the procedural logic of the processing
components depicted at the bottom level of a hierarchy of DFDs representing an
application.

1.1.1 Data flow diagrams (DFDs)

A DFD is built using the following types of constructs:

* data flow - a construct representing the path on which data is conducted from
one part of the application to another,

* process - a construct representing a component which ransforms data.

* data store - a construct representing a repository of data.

» external entity - a construct representing components on the periphery of the
application which send data to, or receive data from the
application. External entities can thus be viewed as sources
and sinks of data flowing through an application.

The symbolic representations of the above consiructs differ amongst the major

proponents of SA, as illustrated in Figure 1.1. A brief description of the above

constructs follows.
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Construct DeMarco Gane and
NAITE construcls Sarson
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Process

Data store l

Exiemal
enlity

Figure 1.1 A comparison of DFD constructs
Data Flow

A data flow is associated with a unique name, a direction, and a data type.
Instances of the data type of a data flow are transmitted on the data flow in the
direction associated with 1t. Notationally, data flows are depicted as named vectors.
Data flows are not associated with any physical limits, nor is there any constraint on
how the data flows through them. All that is of concern is what data is passed
through them. Data passing through a data flow cannot be lost, modified, or
destroyed during transmission. Also, data flows cannot create data.

Data flows are not meant to be representations of flow of contrel, nor are they
meant to be associated with any contrel related interpretations (for example, as
activators of processes). Data flows simply depict the data paths between the
components of a DFD.

Different perspectives on data flows can be taken, depending on the aspect of
data movement emphasized [TePi85]. From the standpoint of a process or an
external entity, a data flow is an input or ourput, depending on whether the direction
of movement 1s inwards or outwards with respect to the process. From the
standpoint of a data store, a data flow represents an update if the direction of
movement is inwards, or it represents a retrieval if the direction is outwards with
respect to the data store. A data flow representing an update contains data which is
to be written to the data store, while a data flow representing a retrieval contains
data read from the data store. From the standpoint of a data flow connecting two
constructs, the data flow is viewed as a data inzerface beiween the constructs. In
what follows, the construct from which a data flow is directed away is called its
generator, while the constructs it is directed towards are called its receivers. A data
flow can have only one generator, though it may have many receivers. The case
where a data flow has more than one destination is depicted by a branching data
flow. One can view the point where the branching occurs as representing a copy
function which creates copies of data on the data flow to be sent on all branches.
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Process

A process is associated with a name, a non-empty set of inputs, and a non-
empty set of outputs. Processes simply depict data transformations, thus issues
related to their inttiation and the manner in which they exchange data (via data
flows) are not of concern. In other words, processes are not associated with any
operational interpretation.

Transformations carried out by a process can be classified as being logical or
physical [Pet88). A process which logically transforms data does not change the
physical appearance of the data. That is, subsequent-use of the data 1s affected by
the way in which the process classifies it, and not by any physical change. For
example, a process in an order processing application, which determines whether
an order is valid or not, transforms the order logically. A process which physically
transforms data, changes it in such a way that it is no longer recognizable. For
example, a process which produces an invoice given a valid order and information
on the parts needed to the fill the order, transforms its inputs physically in order to
create the invoice which is its output.

Data Store

A data store is associated with a name, and two sets of data flows
representing retrievals and updates. Data stores are often likened to files in the SA
literature to provide a more concrete view of what they represent, but can be used to
represent other types of repositories of data which do not create or destroy data.
Details of data organization, access mechanisms, and storage medinm, are not
depicted by data stores.

Data flows directed towards data stores are always generated by processes,
while data flows directed away from data stores are always directed towards
processes. The data flows representing retrievals and updates are the net data flows
resulting from read and write accesses made by processes on the data store. Thus, a
data flow representing a retrieval contains data retrieved as a result of a read access
made by a process on the data store, while a data flow representing an update
contains data to be written to a data store as a result of a write access by a process
on the data store.
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External Entity

An external entity is associated with a name, a set of inputs and a set of
outputs. The external entities of a DFD represent the components of the
environment with which the application must interface with. Such peripheral
components may be persons, systems, or other applications, which generate data to
and/or accept data from the application. External entities represent components that
lie outside the scope of the application, thus details concerning the manner in which
they derive or obtain data, and the way such data is used by the component are not
depicted.

The inputs of external entities are always directed away from processes, while
their outputs are always directed towards processes, thus external entities are
always connected to other external entities and data store via processes.

Constructing and interpreting DFDs

A DFD is a structural description of an application in the sense that it depicts
the data flows and transformations in an application without showing how the
flows and transformations are actually achieved. Flows of control, relationships
involving time, and any notion of a process execution or execution precedence,
should not be inferred from DFDs. More impertantly DFDs are not associated with
any operational interpretation. A DFD is essendally a documentarion tool [CTLE7],
used to depict the data paths in an application.

There are few swict rules guiding the construction of DFDs, permitting a great
deal of flexibility in how they are built and used. The early work of DeMarco
[DeM78] provides the following major guidelines:

1. Identify all net inputs and outpurs, where a net input is an input whose
generator 1s not a component in the DFD and a net output has at least one
receiver which is not a component of the DFD. The net inputs represent the
inputs to the application while the net outputs represent the outputs of the
application

2.  Denve the data paths from the inputs of the application to its outputs. This can
be done either in a forward manner starting from the inputs, in a backward
manner starting from the outputs, or in a middle-out manner starting from a
set of internal data flows.

3. Label the data flows and processes in such a manner that their meanings are
reflected in the labels.

4. Do not depict information related to the initialization and termination of the
appiication. In other words, a DFD depicts an application in a "steady state”,

that 1s, when it is up and running,.
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L

Do not depict flow of control or controi information.

Omit trivial error-handling details. DeMarco feels that one should get the "big
picture” right first before paying attention tc "odds and ends" like error-
handling details.

Some of the above guidelines are open to interpretation, for example,
practitioners have found it difficult to decide on what should be viewed as a control
flow or a data flow in guideline 5 [Gom&84, Ric86], also it is not clear what
constitutes a "trivial” error-handling procedure in guideline 6.

Decomposing DEDs

it is easy to see that large and relatively uncomplicated applications, could
result in large, complicated DFDs. Hierarchy is the abstraction mechanism used in
SA to control complexity. The application of hierarchy to DFDs is provided via the
decomposition activity associated with processes and data flows. The
decomposition activity involves examining each process in a DFD to see if it can be
broken down into simpler processes which act in concert to transform the inputs of
the process to its outputs. If a process of the DFD is felt to be simple enough, that
is, it is not necessary to break it down to simpler parts, the process is called
primitive. The use of hierarchy enables the structured presentation of detail by
DFDs.

The decomposition of a process is represented as a diagram, called the child
diagram, consisting of process, data store, and data flow constructs. The process
which is decomposed is called the parent process with respect to its child diagram,
while the diagram containing the parent process is called the parent diagram, with
respect to the child diagram. The ner inputs of a child diagram are the data flows
whose receivers are processes in the child diagram, but whose generators are
processes not in the child diagram. The processes in a child diagram may be further
decomposed, and so on, resulting in a hierarchy of diagrams.

In SA, an application's data flow structure is specified by a hierarchy of
DFDs, resuiting from successive process decompositions, made up of a top,
bottom, and middle levels. The top, or level 0 of the hierarchy, is a single DFD
called the context diagram which consists of a single process, whose inputs are the
net inputs of the application, and whose outputs are the net outputs of the
application. The context diagram serves to delineate the boundaries of the
application. The bottom level consists of DEDs containing only primitive processes,
while the middle levels consist of the intermediate DFDs in the hierarchy.
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In order for child diagrams to be interpreted correctly within the context of their

parent diagram the following conditions must be satisfied:

+ Data flows into and out of a process in a parent diagram correspond to the net
inputs to and a subset of the set of all cutputs from its child diagram. A child
diagram satisfying this rule is said to be balanced with respect to its parent
diagram. Decomposition of data flows, resulting in data flows representing the
constituent parts of the decomposed data flow, is also allowed in parallel with
process decomposition. The matching of data flows in such a case depends on
the existence of information from which relationships between the different
levels of data flows can be established. Such information is kept in the data
dictionary.

» Data stores introduced in child diagrams are accessed only by the processes in
the child diagram.

Again, few formal rules exist for constructing a leveled set of DFDs, though
guidelines do exist. The guidelines are concermed mainly with labeling conventions,
data flow balancing, and considerations to be made when deciding on when to stop
process decomposition.

Evaluating DFDs
The development of hierarchies of DFDs may lead to DFDs of poor quality.

The lack of a firm conceptual basis for DFDs, as reflected in the lack of formal rules

for constructing DFDs, makes it difficult to formally state criteria for determining

the quality of a DFD. Guidelines and techniques for evaluating the quality of DFDs
are provided by DeMarco, and can be classified as follows:

« Completeness criteria are concemed with whether they are any missing parts in
DFDs. For example, data stores which are read-only or write-only, or processes
which do not transform data warrant further questioning.

» Consistency ctiteria are concerned with the compatibility of DFD constructs and
their child diagrams. Within a hierarchy of DFDs, consistency is maintained
through appropriate connectivity, decomposition, consistent naming of
constructs, and through the balancing of data flows.

« Correctness criteria are concerned with the use of DFD constructs. For exampile,
a DFD is incorrect if it depicts control flows or flows of control.

« Communicability criteria are concerned with the complexity and conceptual
clarity of DFDs. These criteria usually emphasize graphic organization,
legibility, reproducibility, and presentation quality.
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1.1.2 The data dictionary and process specifications

DFDs, as described above depict only the paths of data through an
application. It does not provide descripticns of the content of its data flows and data
stores, henceforth called the data objects of the DFD, nor does it provide details of
how the inputs of processes are related to their outputs. Thus, by themselves,
DFDs do not provide adequate specifications of an application’s requirements.
Descriptions of the data objects are provided by a data dictionary, while procedural
descriptions of processes are expressed by process specifications associated with
the primitive processes of a hierarchy of DFDs.

The data dictionary

A data dictionary provides descriptions of the data objects (data flows and
data stores) in a hierarchy of DEDs depicting an application. Three levels of data
descriptions can be identified [GS79]:

- data elements are items of data which are not usefully decomposed into their
compoenents, for example, an age;

« dara structures are composites of data elements and other data structures; and

+ data flows and data stores as described in the previous sections. Data flows and
data stores are made up of data structures, while data structures are composed of
data elements.

The languages used by data dictionaries to express data definitions are
essentially quasi-formal, providing constucts which enable developers to define
data objects in terms of their compenents. For example, a particular language may
have notation for representing data sequences, a selection of data, and repeated
groups of data. An example of a portion of a data dictionary entry is shown in
Figure 1.2.

cust_order = cust_name + cust_addr + order_detail line
order_detail line = list(part_number + quantity)
part_number = 0001[...159559

cust_addr = house_number + street_name + city + country +
zip_code

Figure 1.2 An example of data dictionary entries
In the figure the "=" symbol means "is composed of", while the "+" symbol
builds data structures which are sequences of data items and/or other data
structures. For example, cust_order consists is a data structure which is defined as
a sequence of cust_name, cust_addr, and order_detail_line data structures. The data

structure order_detail_line is a list of data structures which are sequences of
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part_number and quantity data structures. The data structure part_number is a data
item which can take any integer value between 0001 and 99999,

As well as storing data definitions, a data dictionary may also contain
information about the frequency of occurrence, volume of data, size of data stores,
security considerations, pricrities, and any other information pertaining to the use
of the data objects that is needed to gain an understanding of the requirements of an
application. For large applicanions the data dictionary can become complex, thus
making it difficult to manually maintain, and to relate DFD data objects with their
definitions. This makes the automation of their maintenance and cross referencing
activities essential. A number of automated data dictionary systems supporting
such activities are comunercially available.

Process specifications

Process specifications describe the procedural logic of the primitive processes
in a hierarchy of DFDs. Decision tables and trees are used to describe processes
with complex branching conditions, while languages such as Structured English or
pseudocode are used to specify less complex processes. Such languages
incorporate the basic procedural constructs, seqience, selection, and repetition,
with a limited set of natural language phrases. An example of a portion of a process
specification in Structured English is shown in Figure 1.3. The process
Check_order determines whether an input order is invalid or not, by checking
whether the customer 1s on the files, and checking whether the ordered parts are
available.

PROCESS: Check_order
select a cust_order, check that customer is in the customer file
if customer not on file then classify cust_order as "INVALID"
else
for each order_detail_line
check that the part is in the part file
if part not in part file then classify cust_order as "INVALID"
else
check that there is sufficient parts in stock to satisfy order
if not sufficient parts then classify cust_order as "INVALID"

Figure 1.3 An example of a process specification in Structured English

1.1.3 SA and design

SA is based on a lifecycle model, where requirements analysis and
specification phase is followed by application design and implementation.
Methodologies incorporating SA tools and techniques, usually employ structured
design (SD) tools and technmiques [YC79], together with techniques for
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transforming SA specifications to initial SD specifications, in order to cover the
requirements analysis and design phases of software development [DeM78, YC79].

SD is a swategy for producing modular, top-down designs. As originally
conceived, SD was concerned with the systematic derivation of specifications of
program structures which were maintainable and easily tested. Using SD to derive
designs for applications entails viewing applications as collections of functions.
This view permits applications o be specified as a hierarchy of logical functional
units, called modules. The primary specification tool of SD is the Structure Chart
{SC), which depicts the architecture of an application in terms of hierarchically
structured modules. Positions in the hierarchy are determined by the modules'
calling relationships, and the data exchanged by them [YC79]. SD also provides a
nurmber of heuristics and guidelines for evaluating designs.

The transition from SA to SD is dependent on the type of application
represented by the DFDs. Applications can be classified as follows:

» Applications in which the same input data values always produces the same
output data values are said to be transform-oriented.

+ Applications in which the same input data values do not necessarily produce the
same output data values are said to be transaction-oriented.

The outputs in a transform-oriented application are functions of the inputs
alone. Batch-type applications, where the user enters the data then initiates the
system, and where the results are always the same if the input values are the same,
are exarnples of transform-oriented applications.

In a transaction-oriented application the output values cannot be regarded as
functions of the input values alone, since the application is also associated with
different modes of operation, which affect how the input values are used by the
application. The modes of operation of an application are called its stares. Input
values received when an application is in a particular state may cause the application
to change its mode of operation, that is, move to another state. How data is
wansformed is dependent on the current state of the application, since information
valid 1n one state may be invalid in another. Thus, the output depends, not only on
the inputs, but also on the current state of the application. Alternatively stated, the
output from a transaction-oriented application is a function of the series of prior
inputs to the application which can cause the application to change its state [Pet88].

Transform-oriented applications may be viewed as transaction-oriented
applications having only a single state. Transaction-oriented applications can also be
viewed as a combination of transform-oriented sub applications under the control of

a 'master’ process or module.
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The wansition from the data flow representations of SA to SD specifications
can be carried out in a five-steps [Pre871:

The type of application, with respect to its information flow, is established.
The centre or ‘master’ process in the DFD is identified.

The DFD is mapped into an initial program structure specification.

The control hierarchy is defined by factoring.

U I T TCR -

The resultant structure is evaluated and refined using SD measures and
heuristics.

In order to transform a set of DFDs to an initial SC, the type of the
application, as represented by the DED at level 1 (i.e. the child diagram to the
Context diagram), is first determined in step i, then the process in the DFD which
is to act as the 'master’ module (called the centre of the application) in the initial
SC, is determined in step 2. Techniques exist for determining the centres for both
transform, and transaction-oriented applications [DeM78, YC79], but this step
usually requires a great deal of experience and insight in order to come up with a
centre which would lead to a good initial SC [Pet&8, Sho88]. Once the centre of an
application is chosen, then the surrounding processes become subordinate modules,
with their decompositions defining subordinate levels in the hierarchy of modules
as is done in step 3. Step 4 defines the control hierarchy by factoring, which resuits
in a structure where the top modules perform only conirol operations, the bottom
level performs the input/output, and computational operations, and the middle levels
carty out a mixture of operations. In step 5, the derived SC is refined according to
the measures and heuristics associated with SD.

1.1.4 Limitations of SA tools and techniques

The SA approach to requirements analysis generates mainly descriptive
specifications of applications. DFDs, for example, are no more than docurmentation
tools, while data dictionary definitions and process specifications rely mainly on
quasi-formal textual descriptions [Doc87, CTL87]. The limitations of SA toois and
techniques stem mainly from the quasi-formal, descriptive nature of the generated
specifications, and their scle emphasis on the data flow aspects of an application.
On the other hand, the informal nature and simplicity of the tools, coupled with the
use of graphic notation supporied by hierarchy, are often cited as the major
strengths of the tools. These qualines make the approach easy to learn and use but
suggest a lack of expressive power, which, together with the lack of a firm

conceptual basis for the tools, encourages extensions to the notation and
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disagreements over interpretations, making comprehension of the specifications
apparent rather than actual [Woo&8].
The limitations of the SA tools and techniques for requirements specification
identified here are grouped into the following two classes :
1. limitations associated with the use of SA tools and techniques for constructing
and validating requirements specification; and
2. limitations associated with the use of SA specifications as a basis for
verification.

Limitations on the construction and validation of SA specifications
The lack of a theory formalizing the conceptual basis of SA tools and

techniques places limitations on their use in the construction and validation of

requirements specifications. In the construction of specifications, the lack of a firm

conceptual basis allows a fair degree of flexibility in the manner in which the
specifications are created. Such flexibility can lead to apparent misuse and/or
disagreements over the "correct” interpretation of specifications. For example,

Docker lists the following as the most common forms of misuse of DFDs [Doc87]:

+ Structuraily inaccurate DFDs, for example, "simplified DFDs" in which external
entities communicate directly with data stores, or in which external entities are
not shown.

+ Viewing and specifying the application at too low a level of abstraction. This
usually manifests 1tself as an overuse of data stores, for example using a data
store to hold transactions which are later processed sequentially.

» Qver abstraction, where the analysis of an application is finished at too high a
level of abstraction.

+ Textual glueing, where parts of the application which are not easily expressible
in the quasi-formal languages of SA are described in natural language.

« Regarding DFDs as a functional decomposition tool.

Some practitioners may not view some of the above as misuses. Whether the
above are actually misuses or not will remain a judgemental issue without a firm
conceptual basis for the tools and techniques. Creating such a basis for SA is not an
easy task since it requires detailed knowledge of the processes involved in
structured analysis and specification. Such processes are currently not well encugh
understood thus more research, and a larger experience base, are needed before a
useful conceptual basis covering all aspects of SA can be developed [Doc87].

Another factor which limits the use of SA tools and techniques for
requirements specification is their sole emphasis on data flow aspects of

applications. The SA approach ignores other aspects of applications such as the
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relationships between data objects of the applications {data aspects), and time-
related relationships between processes (control aspects). The emphasis on data
flows, and the resulting functional view of processes can be traced to the early use
of the SA approach for specifying data processing applications. Such applications
are usefully viewed as information processing systems, making the SA approach
appropriate. In more recent times application areas have become more diverse,
requiring aspects other than data flow to be specified in their requirements
specifications. For example, the control aspects of real-time and embedded
applications need to be specified in the analysis phase since such aspects are
inherent parts of the applications. The insistence that no control detail be specified
in the SA approach sericusly limits its use for specifying such applications.
Validation of requirements in the SA approach takes the form of user reviews
of the generated specificatons. As pointed out earlier, the lack of a conceptual basis
can make comprehension of such specifications apparent rather than actual. The
absence of a formal syntax and semantics for the specification languages also makes
it difficult to prove the absence or presence of desired properties in specifications.

For these reasons rigorous validation of specifications is difficult.

Limitations on the use of SA specifications as a basis for venfication
The specifications produced from SA are of a logical nature, thus no

operational model can be consistent with them. This seriously inhibits the use of SA
specifications as a base for verification, since detailed designs and implementations
are expressed in operational terms. Formal verification of designs and
implementations against SA specifications are impossible for this reason. The best
that can be done is an intuitive form of verification, which may be inadequate for
some complex applications, and not healthy for certain critical applications where
software failures could have drastic effects socially or econcmically.

The SA/SD approach provides techniques for ransforming SA specifications
to initial SD specifications. The quasi-formal nature of SA specifications means that
at best such techniques are themselves quasi-formal. This has led to a number of
problems in applying the techniques in practice, with some practitioners actually
reporting that the techniques were not applicable in some cases {Ric86, Sho88].
Using the techniques require a great deal of skill and experience, especially when
the application has both transaction and transformation characteristics [Sho88].
Furthermore, the ransition from SA to SD is an irreversible process, thus changes
made in the design phases are not easily reflected in SA specifications [Pet88]. This
is because a shift in perspective is made when going from SA specifications, which

are concerned mainly with the data flow relationships in an application, to SD
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specifications, which are concemned with the operational structure of the application.
Once SA specifications are wansformed inte SD specifications they are of limited
use in the subsequent stages of software development.

1.2 Extensions to SA tools and techniques

The limitations discussed in the previous section seriously hamper the use of
SA tools and techniques in the specification of complex applications. To address
these limitations a number of authors have suggested extensions to SA tools and

techniques. Some notable extensions are reviewed in this section.

1.2.1 Yourdon's Structured Method {YSM)

The early work of DeMarco on SA has been extended by the Yourdon group
to create a method, called the Yourdon Structured Method (YSM) [MW86a,
MW86b, Woo88, MP84]. YSM improves upon the earlier SA approach in three
ways [Woo88]:

« The emphasis in YSM is on the modelling of behaviour, rather than just
function.

+ YSM introduces tools and new notation for modeling particular aspects of
applications ignored in the original approach. Data relationships are expressed
via entity-relationship diagrams (ERDs), while time-dependent behaviour is
expressed with the aid of additional DFD notation and state transition diagrams
(STDs).

« YSMis divided inte three distinct phases. The first is the feasibility study which
involves the study of any current application and its environment. The second
phase is essential modeling [MP84] which produces a logical specification called
the essential model. The third phase is implementation modeiing which involves
incorporating into the essential model aspects of a user's requirernents which are
dependent on technology. The resulting specification, called the implementation
model, can be viewed as an initial design specification.

The essential model of an application describes the context in which an
application is to exist, and the behaviour of the application. Three aspects of
behaviour are described by the essential model: funcrional, data and control. The
functional aspects, which are also modeled in the earlier versions of SA, are
concerned with how applications transform their inputs to outputs, while the data
aspects are concerned with the structure, and use of data in applications and the
relationships between them. The conwol aspects of an application are concerned

with its time-dependent behaviour.
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The essential model consists of an extended form of DFDs calied
Transformarion Schemas (TSs), ERDs for modeling data relationships, and a data
dictionary for defining data objects. TSs depict both data and control dependencies,
using additional constructs for depicting control aspects on DFDs. The constructs

used in TSs are shown in Figure 1.4.
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Figure 1.4 Transaction schema constructs

In TSs, flows crossing the boundary between the application and its
environment are representations of events. Such events are changes in the
environment which lead to sets of actions by the application called responses. Data
flows depict events which are associated with data, while control flows depict
events which are not associated with data. Data flows which depict events that
occur at discrete points in time are called discrete, while those depicting events that
occur frequently are called continuous. In a TS a data flows can be combined to
form a single data flow representing the combined data flows, or a data flow may
be split into other data flows, where the data flows resulting from the split represent
constituent parts of the split data flow. Such data flows are said to be composite,
and they eliminate the need for processes whose sole purposes are to combine or
split data flows. Labeling conventions are used to distinguish split and combined
data flows from branching data flows which carry the same data on each branch.
Each branch in a split or combined data flow is uniquely named. If the branches of
a branching data flow are not named then it means that the branches represent the
same data flow, and thus carry the same data instances on all branches.

TSs utilize two kinds of processes: data and control processes. A data process

transforms data inputs into outputs. A control process represents aspects of the
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control logic associated with part of an application. Control flows are used to

contro} data processes. They can affect the behaviour of processes in three ways:

« Enable - to enable a process means to allow it to be activated by a data flow.

« Disable - 1o disable a process means to prevent it from being activated.

« Trigger - to trigger a process is to activate a process in such a way that it
deactivates itself when it has completed its task.

Control flows representing the above events are called prompts.

Control flows coming in from the environment are interpreted by control
processes. The manner in which events depicted by control flows from the
environment affect the application is specified by STDs. The effect the occurrence
of an event in the environment has on the behaviour of an application is dependent
on the current szare of the application. The state of an application is a mode of
operation that is externally observable. That is, if the application’s behaviour was
monitored, each state, or mode of operation, would be distinguishabie. Information
pertaining to the state of an application is kept by the control process. The
occurrence of an event in the environment may cause a change in the current state of
an application, which may in turn cause certain data processes to be enabled,
disabled, and/or triggered. The events which may cause changes in the state of an
application are depicted by control flow inputs of contol processes, while the
outputs of control processes depict the manner in which the control processes affect
the behaviour of associated data processes. The behaviour of control processes is
specified by state ransition diagrams (STDs). An example of a STD is shown in
Figure 1.5. The rectangular boxes represent the states of the application, while the
labeled arrows represent state changes, where the labels specify the event causing
the wransition and the actions resulting from the occurrence of the event.
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Figure 1.5 An example of a state transition diagram
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Data stores in a TS, like data stores in traditionat SA, are abstractions over

files. TSs also use a special kind of data store called the event store or buffer.

Buffers are abstractions over stacks and queues, and are used to represent delays

between the occurrence and recognition of events by data processes.

The following summarizes the formation rniles and interpretations associated

with TSs:
Data processes

A data process may have at most one input flow which arrives independently of
any action carried out by the data process. Such a flow is called active and can
be a discrete data flow from an external entity, another data or control process,
or a buffer, or a control flow from a control process or buffer {War863. Data
processes with active inputs are not allowed to have continuous outputs. When
the active input is a triggering prompt then the process must also be associated
with an input from a data store. A data process's enabling and disabling input
prompts, and flows from data stores are not considered to be active inputs.

Data processes with only continuous input and output data flows accept inputs
and produce outputs continuously. Enabling and disabling prompts may be
associated with such processes, in which case the processes continuously
produce outputs only when they are enabled. Data processes with continuous
inputs and discrete outputs can only occur when there is also an active input to
the process, in which case only the value on the continuous flow at the time an
event occurs on the active flow is used to produce the values on the discrete
outputs.

A data process may have zero or more active outputs, where an active output 1s
an output created by the process which can be an active input for another process
[War86]. An active output can be a discrete data flow or a control flow w0 a
control process, buffer, or external entity. A data process with two or more
active outputs can produce output on only one in a single activation.

A data process can have any number of continuous data flows, and discrete data
flows to and from data stores.

A data process with discrete output flows and no active inputs produces output
via one of the following ways: forced by a triggering prompt; upon the
occurrence of some significant value of a continuous input; or on the occurrence

of a specific time retained and read in from a data store {War86].

Control processes

*

Inputs and outputs to control processes are restricted to control flows. A control

process must not have data flow inputs or output.
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Flows

+ Each discrete data flow must be connected to a data process at one end while at
the other end may be a data store, buffer, external entity, or another data
process.

« Each continuous data flow must be connected to a data process at one end while
at the other end may be another data process, or an external entity.

» Conuol flows may connect any pair of processes, a data process and a buffer, or
a process and an external entity. Control flows emanating from control processes
to data processes are prompts.

Data stores

» A data store must be connected by a discrete data flow to at least one data
process.

Buffers

+ A buffer must be connected by a discrete input (data or control flow) to at least
one data process, and by a discrete output (data or control flow) to at least one
data process. Types of flows for a single buffer are not mixed [War86].

« Every buffer is associated with a capacity, which may be finite or not. This is
interpreted as the number of units that can be stored in the buffer.

Essential modeling [MP84, Woo88] entails identifying the events in the
environment that affect the application, and then developing a TS reflecting how the
application responds to each identified event. In parallel, the control processes are
specified by STDs, and data relationships by ERDs. The TS is then restructured
into a leveled set of DFDs following the guidelines of the original SA approach.
Implementation modeling extends the essential model with technology-dependent
detail, such as performance and size constraints, and also provides specifications of
the software structure, derived from the TS, in the form of Structure Charts (SCs)
[YC79]. It is carried out in three phases:

+ Model the physical processors associated with the application. This involves
grouping processes according to the physical processors they are to be
implemented on.

+ Model the software environment in which the application is to exist, for
example, some functions of an application may be carried out by operating
systems and/or database management systems.

»  Model the structure of the software to be produced. This involves translating the
TS to an initial SC.
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Limitations of YSM

YSM does tackle some of the problems associated with the use of SA tools
and techniques for specifying requirements. It permits the specification of aspects
other than the data flowing through an application, and provides a firmer conceptual
basis for the tools and techniques than that provided in the criginal SA approach.
Constructs are provided for representing control elements, together with a set of
formation rules, which, if adhered to, permits a logical interpretation of the
specifications. Such logical interpretation can be used as the basis for informal
analysis of, and reasoning about, the specifications (Woo88}.

The specifications generated by YSM are still descriptive in nature. The
difference between SA and YSM in this respect is that YSM provides descriptions
of other aspects of applications. The logical mode! implied by the descriptions is not
consistent with any operational mode! thus formal verification of implementations is
not possibie. Furthermore, the approach is still reliant on the techniques for
transforming DFDs to SCs, which, as discussed earlier, is problematic, and, when
it can be done, is irreversible. Thus the specifications generated from YSM, like SA

specifications, have limited use in other than the requirements analysis phase.

1.2.2 Hatley's Extensions

Hatley's extensions to SA [HP&7], like YSM, were bomme out of the need to
model aspects other than the data flowing through an application. The extensions to
the specification techniques mainly concern the modeling of control aspects in
parallel with the processing aspects of applications. Hatley also extends SA by
providing techniques for building an architectural design for the application. Such a
design is similar in purpose to the implementation model of YSM.

Hatley provides techniques for buvilding two types of models: the
requirements model (RM) and the architecture model (AM). The RM specifies the
required processing behaviour of an application. It is a description of the functional
and control requirements of an application. The AM assigns the processes of the
RM to physical modules that make up the application and establishes the
relationships between them. The AM is thus an architectural design of the
application whose required behaviour is specified by the corresponding RM. Below
a description of these two models are given.

Requirements Model

The RM specifies whar an application is to do in terms of its functional and
controf aspects. The functional aspects of an application are captured by the process
model which consists of a leveled set of DFDs supported by a requirements
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dictionary (RD), process specifications (PSPECs) and response time specifications
for the primitive processes of the DFD. The leveled set of DFDs are constructed
using the leveling and balancing. principles associated with DFDs in the SA
approach. Data flows, as in YSM, are events that are associated with data
components which may also be split and combined as in YSM.

The control aspects of an application are captured by the control model, which
consists of a leveled set of control flow diagrams (CFDs) supported by control
specifications (CSPECs) and the RD. CFDs depict the flow of control signals
{(events not associated with data) while the CSPECs indicate how the signals affect
the behaviour of the application. For each DFD in a leveled set of DFDs
representing the functional aspects of an application, there is a corresponding CED
showing the control dependencies amongst the processes and external entities of the
DED. Thus, there is a direct correspondence between the levels in the leveled set of
DEDs and the leveled set of CFDs for an application, where level 0 DFDs are
associated with level O CFDs, level 1 DFDs with level 1 CFDs, and so on. CFDs
consist of the processes, external entities, and data stores in their corresponding
DFEDs. CEDs, though, do not show data flows but control flows depicted by
dashed directed arcs which obey the same routing rules as data flows. CFDs also
utilize an additional construct, a bar, representing the control processing part of the
application. A CFD may have a number of such bars with control flows going into
and from them, all representing the single control processing unit of the CFD.

Control processing in a CFD is specified by a CSPEC. Control behaviour is
modeled by viewing applications as finite state machines whose inputs and outputs
are control flows. Diagrammatic and tabular representations of finite state machines
are contained in CSPECs. State transition diagrams (STDs), as in YSM, are used to
show states of the application and how they are influenced by control flows. Events
and actions are shown on STDs as "Event/Action” labels on each arrow depicting a
state mansition. The events on these labels are the control flows directed towards the
bars in the corresponding CFD. Process activation tables (PAT), give the
conditions under which processes are activated. The actions shown in the STD are
entered into the PAT and associated with the processes they activate or deactivate.
Processes which are not controlled in this way are "data triggered”, that is they are
activated each time there is sufficient data on their inputs to perform the specified
function.

The RD provides definitions for the data and control flows in the process
model. Flows are classified as being either primitive or non-primitive, where non-
primitive flows are groups of primitive flows. Primitive flows are defined in terms

of their attributes. The process model for an application also consists of a
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specification of the timing requirements, stating the required recomputation rates for
interface outputs and the required input/output response times for the signals at the
application's interface. Recomputation rates are specified in the RD, while response
times can be given in a tabular form.

The process model is a logical model of an application’s processing
behaviour. Operationally, the process model can be viewed as an idealized,
infinitely fast machine. Thus processes transform their inputs instantaneously,
while control flows are interpreted instantaneously by the control processing
components of the model. The process model, though, is not intended to represent
an actual machine, rather, like SA specifications, it is merely a description of the

processing requirements of an application.

Architecture Model (AM)
The AM shows the physical entities making up an application, defines the

information flowing between these physical entities, and specifies the channels on
which this information flows. The primary tool of the AM is the architecture flow
diagram (AFD) which depicts the physical structure, or architecture, of the
application in terms of its physical entities, called modules, and the information
flow between them. The main purpose of the AFD is to allocate the processes given
in the RM to physical units of the application. Additional processes may also be
required in the AFD to support the new physical interfaces. Modules provide four
additional perspectives to applications: input processing, output processing, user
interface, and maintenance or seif-test processing. The processes making up the
input and output processing aspects represent the processes needed for the module
to comrmunicate with other modules, and to wransform information to and from an
internally usable form. Such processes are not shown in the RM. The user interface
aspect is a special case of the input/output processing aspects. It is separated
because of the special considerations, such as human factors, that affect the
definition of the user interface, but have little to do with the interfaces between
modules. The maintenance and self-test processing aspects concern the processes
required to perform the self-monitoring, redundancy management, and data
collection for maintenance purposes. The AFD itself is treated as a physical module,
and depicts the modules modeling the above four aspects as well as the processing
and control aspects specified in the RM. The modules in AFDs may also be
"decomposed" into AFDs showing the modules modeling their six aspects. In this
way hierarchies of AFDs are created.

The physical means, or channels, by which modules communicate with each

other are depicted by the architecture interconnect diagram (AID), supported by
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architecture interconnect specifications (AISs) which are textual characterizations of
the channels. The AID and the AFD for an application may be combined in a single
diagram if the result is not tco complex.

An AFD is supported by architecture module specifications (AMSs), and an
architecture dictionary {AD). AMSs define the inputs, outputs, and processes
allocated from the RM for each module in the AFD. The AD contains the data and
control flow definitions in the RD, plus the allocation of these flows to modules in
the AFD.

Limitations of Hatley's extensions

Hatley's extensions, like YSM provide notation and concepts for modeling
aspects other than the data flowing through an application. Furthermore, it provides
tools and techniques for creating an initial architectural design from the specification
of the required behaviour of an application, which is similar in form to a DED, This
means that while there may be a shift in emphasis in geing from analysis to design,
there 1s a straightfoward relationship between the initial design specification and the
requirements specification, thus facilitating traceability, and consistency checking,

Like YSM, Hatley's extensions suffer from their reliance on quasi-formal
notation for definitions and the descriptive nature of the graphical specifications.
Thus, like SA, the tools and techniques lack a formal basis for supporting rigorous
validation and verificanon.

1.2.3 ADISSA

ADISSA (Architectural Design of Information Systems based on Structured
Analysis) is an architectural design method that is compatible with and forming a
direct continuurn with SA [Sho88]. This is essentally achieved by viewing external
entities as event triggers. Shoval argues that taking such a view does not require
additional notation to represent control and timing detail as in YSM, which results
in a change in the appearance of DFDs which may reduce their conceptual clarity
[(Sho88].

ADISSA takes a transaction-orientated view of applications, where a
transaction consists of one or more processes performing specific functions in
response to stimuli from the environment. The view of applications by ADISSA is
based on Wasserman's and Stinson's view of interactive applications as consisting
of: (1} a user interface, (2) operations on data, and (3) a database [WS579]. The
related concepts in ADISSA are: (1) a menu tree describing the external architecture
of the system; (2) transactions, describing the internal architecture; and (3) a
database schema of normalized records.
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A system of menus, organized as a hierarchy of menn screens, forms the
external archirecture of the system from the user's point of view. Menu screens
consist of selection lines providing access to other menu screens in the system, and
terminal lines, which invoke procedures in the application. The system of menus is
called a menu tree, and is derived from a hierarchy of DEFDs specifying the
application, where the menu lines are generated from the processes connected to
external entities by data flows. Primitive processes generate terminal lines, while
other processes generate selection lines.

Transactions consist of primitive processes which form a data dependency
chain, and of data stores and external entities which are connected to these
processes. A hierarchy of DFDs, in general, consists of more than one transaction.
These transactions make up the internal architecture of the system. ADISSA's
design objectives as concerns transactions are given below.

For each transaction identified:

- identify what activates it;

« determine the order in which the component processes are executed; and

+ determine the input/output operations carried out, and the data store accesses
made by it.

Transactions are activated by events, and are ciassified by the types of their
activation event, given below:

» User event - generated by a user (represented by an external entity) of the
system, usually via the menu tree. Data flows between external entities, known
as user entities (UEs), and primitive processes identify user-rransactions: a data
flow from an external entity to a primitive process signifies a user event that
causes an application user to trigger a transaction which inputs data, while a data
flow from a primitive process to an external entity signifies an user event which
causes an application user to trigger a user-transaction which provides data on
the darta flow.

+ Time events - generated by a special kind of external entity, called a time enzity
(TE). Time events are used to mode! events that activate a transaction at a
predetermined point in time or time interval. TES trigger transactions, called
time-transactions, in much the same way as UEs tmgger user-transactions.

» Real-time events - generated by a special kind of external entity, called a real-
time entity (RTE), which is an abstraction of a senser/detector device. The type
of informaton generated by RTEs are represented by the flows connecting them
and processes. RTEs trigger real-time-transactions.

« Communication events - generated by communication entities (CEs), which

represent abstractions of comrmunication mechanisms between the system being
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modeled and other systems. Communication events occur when a message is
received, and the message wiggers a communication-transaction.

A "chain effect” occurs when two or more primitive processes within a
transaction sequentially activate each other. The chain effect terminates when the
data generated by a process is sent to a data store or an external entity.

The trigger of a transaction is the process connected to the external entity that
activates it. The wigger 1s not necessarily the first process of a transaction to be
executed, since it may be located anywhere in the chain of processes making up the
transaction. If it is the first then the chain effect proceeds forward; if in any other
position then it is necessary for the preceding processes to execute before the trigger
can be executed. Thus, the event generated by the external entity is seen as
activating the ransaction from the start of the chain in all cases, even though the
gvent entity may be at the end (or middle) of the transaction.

Structured descriptions of transactions replace the process specifications of
SA. Shoval argues that it is more useful to specify the behaviour of transactions,
rather than individual primitive processes, since the interrelationships among the
processes, and data stores of the transaction can also be specified. Transaction
specifications consist of a top- and a bottom-level description of a transaction. The
top-level specification describes the externally observable behaviour of the
processes making up the transaction. Specifically, the following four primitive
functions are used in the top-level specification language:

+ execute process, performs a primitive process, whose detailed specification is
given in the bottom-level specification;

+ readiwrite wansfers data from data stores to processes;

+ input/output ransfer data between external entities and primitive processes; and

+ move ransfers data between primitive processes.

The above functions are used together with the control structures of structured
programming in order to derive a top-level "skeleton” specification for transactions.
The bottom-level description details the internal logic for each process in the
transaction, and can be stated in the same manner as process specifications in SA,
for example, using Structured English, or Decision trees.
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Shoval provides a methodology for developing ADISSA specifications which

consists of the following steps:

1.  Functional analysis, producing hierarchical DFDs and a data dictionary; and
includes analysis of events and external entity types.

2.  Menu ree design, resulting in a menu tree for the application represented by
the hierarchy of DFDs.

3. Transaction design, involving identification of transactions, finding their
triggers, and determining their order of execution.

4.  Transaction specification, resulting in structured descriptions of ransactions.

LA

Database schema design.

Inputiowtput schema design, which associates input/output descriptions to the

inputs and outputs described in the top-level transaction specification.

7. Design of the ADISSA data dictionary, which is an extension of the data
dictionary derived in step 1, consisting of a menu tree dictionary containing
details of all screens and their lines, and the transactions dictionary containing
details of the transactions.

In [SP88] the use of ADISSA in a prototyping environment is described. The
aim is to enhance user-analyst communication to enhance validation of the
requirements specification by the user. The following are the types of prototypes
that can be generated from ADISSA products:

« Interface prototype - a hierarchy of menu screens generated from the menu tree
using a menu generator module. The user is allowed to navigate through these
screens and make comments on the user interface of the application.

« Data prototype - a database schema created using the database management
module of an application generator and its definition language.

+ Process prototype - a collection of program moedules based on the transaction
specifications.

+ Application prototype - a program based on the top-level descriptions of
transactions, and on the previous prototypes.

ADISSA provides limited support for the specification of control
requirements, in the form of specialized types of external entities. Control signals
are not depicted, thus limiting the means for specifying conditions under which a
process or transaction is can execute. Furthermore, the lack of a formal basis for
ADISSA means that there 1s little support for rigorous validation or verification.

1.2.4 DARTS
DARTS [Gom&84, Gom86] is a software design method for real-time systems

which utilizes the DFD tool. The method can be viewed as an extension to the
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SA/SD method which also provides mechanisms for structuring processes into

tasks and for defining interfaces between them. The following phases are identified
by the method:

Data flow analysis - DFDs are used in DARTS to analyse the functional
requirements of an application. This phase utilizes the tools and techniques of
SA.

Decomposition into tasks - The processes identified in the data flow analysis
phase are structured into concurrent tasks in this phase. Tasks may consist of a
single process or a group of processes. Criteria for deciding whether a process
can act as a task or can be grouped with other processes to form a single task are
provided by Gomaa [Gom84]. The result of this phase is a DFD whose
processes are tasks.

Defining task interfaces - Task interfaces determine how tasks communicate with
gach other, and are defined by two classes of interface modules: the Task
Communication Module (TCM), which handles all communication between
tasks and typically consists of a (concurrently accessed) data structure with
access functions; and the Task Synchronization Module (TSM), which handles
synchronization between tasks.

Structured design of tasks - Each task represents a sequential program, and its
design specification is derived by first representing it as a DFD, then
transforming the DFD into an initial SC. The transition from DFDs to SCs is
carried out in the same manner as in the SA/SD method. DARTS also provides a
State Transition Manager (STM) for specifying transaction-oriented applications.
The STM module maintains the current state of the application and a state
transition table defining legal and illegal state transitions. A task that needs to
process a transaction calls the STM with the desired action as input and the STM
determines whether the action can be carried out or not, updating the current state
if a valid transition is determined.

DARTS extends DFDs by expanding the notion of a data flow to include

control signal flow, and allowing constraints on the interface between tasks to be

specified. A data flow between two tasks is interpreted in one of the following

ways:

1.

A loosely coupled message queue containing synchronization mechanisms for
suspending generators when the queue becomes full and receivers when the
queue is empty. Such an interface is used when two tasks need to pass
information to each other, and still proceed at possibly differing speeds.

A closely coupled message communication channel on which only cone item of

data can exist at any time. These channels are modeled as two uni-directional
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channels with single-item queue structures. The two channel are orientated in

opposite directions, representing the sending of messages and subsequent

replies. Such an interface is used when information needs to be passed

between two tasks, but the sending task cannot proceed until it has received a

reply from the task it has sent infermation to.

3. an event signal used to notify tasks about event occurrences and does not
involve transmission of data.

Interpretations 1 and 2 are defined in terms of a special TCM called a Message
Communication Module (MCM), while interpretation 3 is defined in terms of the
TSM. Interactions with data stores are defined by a special TCM called an
information hiding module (IHM), which is a data structure with access functions
which can be concurrently accessed. DARTS provides special notation for the
above types of interfaces, enabling them to be depicted on DFDs.

State dependent behaviour of an application is described in DARTS by a
module called a state transition manager (STM). The STM maintains both the
current state of the application, as well as a state ransition table which defines ail
legal and illegal state transitions. A task that needs to carry out an action calls the
STM with the desired action. The STM then determines whether the action can be
carried out given the current state of the system. If the action can be carried out the
STM changes the state of the application, if required, and notifies the task that it can
carry out the action, otherwise the STM netifies the task that the action ¢cannot be
carried out. DARTS provides a central state mode! for the application. The STM is a
data structure.

DARTS, as its name implies, is intended as a design tool, but its use of SA
and the techniques used for converting DFDs into diagrams depicting types of
communication interfaces, and partitions of processes solves some of the problems
associated with the representation of control in DFDs. In particular, the method is
especially useful for the specification of applications with complex interactions.
Furthermore, the transition to specifications of program structure has the potential
to be less contentious than the SA/SD approach, since structured charts are
associated with individual tasks, rather than with the entire DFD.

DARTS though seems to lack a formal basis, thus suffers from the problems
associated with the lack of such a basis.

1.2.5 Tse's extensions: Formal DFDs (FDFDs)

Tse recognizes the need for a formal framework for the tools of SA, and has
carried out a series of studies into possible formalisms ranging from the very
abstract (initial algebras) to the more operational (Petri nets) {Tse85a, Tse&5b,
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Tse86, Tse87, TP8Gb]. The work of Tse on the abstract representation of the
syntactic structure of DFDs [Tse86], in terms of algebraic specifications, is the
inspiration for the part of the formal framework presented in this thesis that
formalizes the syntactic aspects of DFDs.

Formal DFDs (FDEDs) [Pong86, TP86b] is a language created by Tse and
Pong which provides DFDs with a theoretical framework in the form of extended
Peiri nets. In recognition of the need to preserve understandability, the language has
both graphic and symbolic aspects, which allow for the creation of graphical and
formal symbolic representations in one-to-one correspondence. The formal
symbolic description is needed since graphical descriptions cannot be analysed by
cormputers. The one-to-one correspondence between the two descriptions enables
traceability and consistency between the two.

The graphical descriptions take the form of DFDs consisting of only two
constructs: data flows, and processes. The symbolic representations take the form
of algebraic expressions of Petrl nets acting as the formal operational models of the
DFDs. A Petri net ([Pete81]) interpretation of a DFD is obtained by viewing
processes as transitions, and data flows as places. Tokens placed on data flows
mean that data on the data flows are available to the processes needing them. The
firing of a process causes the removal of tokens on some of its input data flows and
the addition of tokens on some of its outputs data flows. In order to avoid
ambiguities that may arise in deciding which inputs may fire and which outputs to
place tokens on as a result of a process being fired, the Petri net model 1s extended
with input and output and functicns, which are derived from explicit relationships
amongst the inputs and outputs of processes expressed in the DFD.

Analysis of FIDFDs is carried out using analysis techniques based on the Peiri
net interpretation of DEDs. Tse identifies three types of analysis:

1. Global consistency analysis, which concerns the consistency of the
hierarchical structure of DFDs, for example, the directed graph derived as a
result of the decomposition of processes should contain no cycles (i.e.
recursive decomposition is not allowed);

2. Structural consistency analysis, which concerns the input/output relationship
between parent and child processes; and

3. Behavioural consistency analysis, which concerns the preservation of
behavioural properties, as modeled by Petn nets, during decomposition.

Tse and Pong provides algorithms for carrying out the above types of
analysis above [TP86b].

While Tse's objectives are similar to the objectives of the formal framework

presented in this thesis, his work is carried out at the syntactic level. He does not
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provide formal definitions for the data objects in the DFD (in fact data stores are
ignored), nor does his work provide support for the formal specification of a
process's logic, except in terms of other DFDs. While Petri nets do provide an
operational basis from which executable specifications can be derived, one has to be
careful about what aspects of the application are actually being made executable. A
Petri net essentially provides a simulation of the control flow of an application, and
are useful tools for representing applications with synchronous interactions. Data
objects, and their relationships are not modeled explicitly, while the internal
structure of processes are invisible.

Petri nets provide formal operational models, but lack an associated
mathematical basis. This limits the use of tools and techniques based on Petri nets

in a formal development methed.

1.2.6 Extended DFDs {EXT-DFDs)

Petri nets are also used as an operational basis for the visual language
extensions to DFDs provided by extended data flow diagram (EXT-DFD) [CTLE7].
The primary objectives of EXT-DFD are to provide a non-procedural, easy to use,
graphical environment, with high processing power, for creating and validating
DFDs. The visual aspects of EXT-DFD consist of DEDs, and eniry-reiation (ER)
graphs which are transformed into user-interface forms for specifying database
manipulation. The symbols of EXT-DFD are icons, associated with properties,
which may be composed of cther (sub) icons. Icons communicate by message
passing interpreted as data flow. There are four types of icons in EXT_DFDs:

1.  Object icons represent entities with an associated set of operations or actions.
Data store icons are classed as object icons.

2. Acrion icons represent a specific operation (action) of the system. Process
icons are classed as action icons. Forms are also action icons which
manipulate the database. An action icon is associated with input and output
data icons (see 3. below). It acts on the input data icons to produce the output
data icons. The behaviour of an action icon acts as its sernantics.

3.  Data icons represent data flow elements. They define the data type of a data
flow, and may contain a value during execution of the EXT-DFD.

4.  External icons represent components lying outside the scope of an application,
that is the external entities of a DFD. They are used to initiate and terminate the
execution of EXT-DFDs. No processing is catried out by these icons.

DFDs are viewed, in EXT-DFDs, as being composed of separate, interacting
components, where each component has its own state which may change over time.

The components can exhibit concurrency, and may require synchronization of
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constituent actions. Petri nets are used as the operational basis because of their
demonstrated usefulness in the modelling, analysing, and simulation of such
concurrent Components.

When viewed as Peiri nets the data flows, data stores and external entities of
an EXT-DFD are treated as places, while the processes (action icons) are treated as
transitions. Three types of Petrl net places are distinguished: initial/terminal, store,
and dara places, corresponding to external entities, data stores, and data flows.
Tokens, representing the presence or absence of data, are stored in places. Initial
places initiate the execution of EXT-DFDs, given an external command to "run” the
DFD. Terminal places terminate the execution of a DFD in an execution path. Rules
governing the firing of transitions, and their effects on the tokens in places are also
provided by the operational model (CTL87].

In order to support the decomposition of DFEDs grouped transitions are used.
A grouped transition is an abstraction of a Petrl net model. Grouped transitions
correspond to non-primitive processes, while single transitions correspond to
primitive processes.

EXT-DFDs are validated by analysing their components. Each component
must satisfy a set of rules, called integrity constraints, which determine how
components can be related.

EXT-DFDs, improve upon FDFDs by incorporating abstraction concepts for
structuring complexity in their modified Petri nets, and by considering data stores.
EXT-DFDs also have the potential of further enhancing communication amongst
developers and users through their use of a graphical language. The executable
nature of EXT-DFDs also makes them potentially useful for validating behaviour
with users, though, as pointed out, only the aspects related to the types of
interactions between components are actually demonstrated.

EXT-DFDs, while having a formal operational model, lack an associated
mathematical basis thus limiting their use in formal development methods.

1.3 Conclusion

The methods reviewed above provide extensions to DFDs to alleviate
problems associated with various aspects of their use. Some of the methods provide
extensions to the descriptive power of the tools while few seek to provide formal
operational frameworks for them. The need to provide a formal basis for the tools
of SA is evident in the lack of automated tools for checking not only the syntactic
aspects of the generated specifications, but the semantic, or behavioural aspects
captured by the specifications. Formal frameworks which associate formal
operational models interpretations for DFDs in terms of Petri nets can be seen as a
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first step towards providing a basis for DFDs. Such operational models are useful
for rigorously validating specifications with users. Petri nets, though, are not
assoclated with any mathematical foundations, and this limits their use in formal
development methods in which it is required that implementations be proven against

the requirements specification.



CHAPTER 2

Syntactic and Semantic Aspects of Data
Flow Diagrams

2.0 Introduction

This chapter serves as an informal introduction to the syntactic and sermantic
aspects of DFDs which are formalized in later chapters of this thesis. The syatactic
aspects of DFDs are concerned with the building of their syntactic objects while the
sernantic aspects are concerned with the behavioural interpretations associated with

the syntactic objects.

2.1 A computer-based library application example

This section introduces the example which will be used to illustrate the
concepts and techniques used in this and other chapters. It is based on a problem set
for the Fourth International Workshop on Software Specification and Design
[SSD87].

The requirements for a university computer-based library application, in terms
of the basic actions it is required to support, are as follows! :

Al. Add and remove copies of books to and from the library.
A2. Borrow and return books.

A3. Update borrower's record on full or part payment of fines.
Ad. Add and delete borrowers.

The above actions can only be invoked by the library staff. There are three
types of borrowers: undergraduates, postgraduates, and academic staff. There are
also three types of books: references, general (access) books, and periodicals.
References cannot be checked out. Periodicals can be checked out only by
postgraduates and academic staff, and only for a period of two weeks. General
books can be checked out by any type of borrower for the following periods:
undergraduates - 2 weeks, postgraduates - 4 weeks, academic staff - 6 weeks.

A fine of 20c¢ per day is incurred for overdue bocks. The fine is accurnulated
starting from the day after the beok is to be returned until the book 1s actually
returned. If a borrower's accumulated fines for all books exceeds $30.00 the
borrower 1s barred from checking out books unti! the fine is reduced to $30.00 or

less.

TReferences 1o the library are actually references to the library data base.

38
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The following constraints must also be satisfied by the library application:
A.  All borrowable copies in the library must be available for checkout, or be
checked out.

B. No copy of a book may be both checked out and available at the same time.

2.2 Syntactic aspects of DFDs

The syntactic aspects of DFDs are characterized by the formal framework in
terms of abstract syntactc objects. Abstract here means representation independent,
that is, no particular concrete representations are implied by the definitions of the
objects. This is to allow various graphical and textual representations to be used in
conjunction with the formal framework. The abstract objects are defined in terms of
their attributes and are associated with formation rules which characterize their
structure. Syntactic objects which adhere to their formation rules are said to be
structurally correct. Figure 2.1 shows the graphical representations of the basic
syntactic structures {constructs) of DFDs used in this thesis.

Process Extarnal Entity
Data Storas Data Flowa
—

[ —

2 branching
data flow

symizol for a data store
that is repeaced

in a diagram
-
- ¢

a decomposed input a composed output
Figure 2.1 Graphical representations of DFD constructs

In the SA approach, applications are represented by a hierarchy of DFDs,
made up of a top level DFD called the context diagram consisting of a single
process, a bottom level consisting of DFDs of primitive processes, and
intermediary levels consisting of DFDs describing the processes and data flows at
the higher levels in more detail ({DeM78], see also Chapter 1). Such a hierarchy of
DFDs can alternatively be viewed in terms of a process hierarchy, where the top
level consists of the single process in the context diagram, and the bottom and
intermediary levels are the bottom and intermediary levels of the hierarchy of DEDs.
Processes at the intermediary levels of a hierarchy of DFDs can similarly be viewed
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as hierarchical structures. Also, data flow hierarchies can be associated with a
hierarchy of DEDs in which process decomposition involves parallel data flow
decomposition. The structures for decomposed inputs and composed outputs
shown in Figure 2.1 are used to depict the decomposition of data flows. The
processes and data flows in a hierarchy of DFDs are syntactically treated as
hierarchical objects with structures conforming to rules governing the
decomposition of processes and data flows provided by the formal framework.
When the hierarchical nature of processes and data flows in a DFD are to be
ignored, the DED and its components are referred to as flar.
Example 2.1 shows a hierarchy of DEDs representing the library application.

Example 2.1
Hierarchy of DFDs for library application
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Example 2.1 continued
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Example 2.1 (continued)
Hierarchy of DEDs for library application
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In the Level 1 DFD the data store BORROWER contains information about borrowers
for example, personal details and fines paid, and information accessed via the
borrower, for example, details of books borrowed. Similarly the data store BOOK
contains information about copies of books, such as copy details (authors, ttle,
etc.), and a borrower flag indicating whether a book is available or not. The clock

external entity provides the current time to processes needing it.

Example 2.1 continued
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Example 2.1 (continued)
Hierarchy of DFDs for library application

Level 2

CheckoutBoock
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CheckoutBook is decomposed into three processes: CheckBook determines
whether the book to be checked out can be checked out; CheckBorrower
determines whether the borrower is permitted to borrow any books; and
CheckOutUpdate updates the BOOK and BORROWER, provided that the check
out is possible, and generates a check out message indicating the status of the check
out action.
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RetunBook is decomposed into two processes: CheckReturnBook determines
whether the book is a library copy; ReturnUpdate updates BORROWER and
BOOK, if the book is a copy of the library, and generates a message indicating the
status of the return book action.

Example 2.1 continued
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Example 2.1 (continued)
Hierarchy of DFDs for library application
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UpdateBorrStatus is decomposed into two processes:
GenerateFinesRecord calculates the fine on each overdue book possessed by
a borrower; UpdateBorrRecord updates BORROWER with the amount paid.

Level 3
Check_Borrower

et

s vebbad
Bors

checkour
Eime

The level 2 process CheckBoxrrower consists of three processes:
GetOverdueBooks calculates the fines for each overdue book possessed by the

borrower; CalculateFine sums the fines; VettBorrower determines

whether the borrower is permitted to borrow books.

In what follows the syatactic aspects of flat DFDs are described and then
extended to incorporate concepts related to the decomposition of processes and data
flows. The result is a set of abstract syntactic objects which encapsulate the
syntactic aspects of hierarchies of DFDs. Formalization of the syntactic aspects of
hierarchies of DFDs is thus achieved by providing formal definitions of the abstract
objects introduced here, which is dene in Chapter 4.
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2.2.1 Syntactic aspects of flat D¥Ds

Syntactically, a flat DFD is an abstract object consisting of an external
environment {(EE} and a process structure (PS). The EE of a flat DFD consists of
external entities with their associated data flows, while the PS of a flat DFD
consists of processes and data stores with their associated data flows. Syntactically,
data flows have two attributes: a name and a direction. In what follows a data flow
directed towards a construct is called an input of the construct, while a data flow
directed away from a construct is called an output of the construct. Processes, data
stores and external entities have the following syntactic attributes: a set of inputs,
and a set of outputs.

The following are the formation rules characterizing the syntactic aspects of
flat DFDs.

Definition 2.1
Characterizing the syntactic aspects of DFDs

Processes

F1. A structurally correct process has a non-empty set of inputs, and a non-
empty set outputs. Furthermore, the set of inputs and the set of outputs are
disjoint, that is, an input of a process cannot be an output of the same
process.

Data stores

F2. A structurally correct data store has a non-empty set of inputs or a non-empty
set of outputs. Its set of inputs and set of outputs are also disjoint.

Process structures

F3. A structurally correct process structure has at least one process. All processes
in a structurally correct process structure are structurally correct and are
uniquely identified by their inputs and outputs.

F4. All data stores in a structurally correct process structure are structurally
correct. All the inputs of a data store in a structurally correct process structure
are also outputs of processes in the process structure. Also all the outputs of a
data store must also be inputs of processes in the process structure,
Furthermore, the set of data flows (inputs and outputs) of a data store in a
structurally correct process structure is disjoint from the set of data flows of
any other data store in the process structure. This means that data stores are
not directly connected by data flows in a structurally correct process stucture.
Data stores in a structurally correct process structure are uniquely identified

by their inputs and outputs.

Definition 2.1 continued
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Definition 2.1 (continued)

Characterizing the syntactic aspects of DEDs

F5. Anoutput of a process in a structurally correct process
structure is either associated with another process and/or data store in the
process structure as an input, or 1s not associated with any process or data
store in the process structure. An input of a process in a structurally correct
process structure, on the other hand, may be associated with more than one
process and/or data store in a process structure as an input,

F6. The net or boundary inpurs of a process structure are the inputs associated
with the processes and data stores in the process structure which are not also
outputs of processes and data stores in the process structure. A structurally
COITeCt process structure has at least one net input.

External entities

F7. A structurally correct external entity has a non-empty set of inputs or a non-
empty set of outputs. Its set of inputs and the set of cutputs are also disjoint.

External environments (EEs)

F8. A structurally correct EE consists only of structurally correct external entities.
Furthermore, there is at least one external entity in the EE with a non-empty
set of inputs, and at least one external entity with a non-empty set of outputs.
All external entities in a structurally correct EE are uniquely identified by the
set of their data flows.

F9. Aninput of an external entity in a structurally correct EE is never an output of
another external entity in the EE. An input, on the other hand may be
associated with more than one external entity in the EE as an input, provided
that it is not also an output of an external entity in the EE. The sets of outputs
associated with the external entities in a structurally correct EE are all disjoint.

Flat DFDs

A flat DFD consists of a structurally correct process structure and a structurally

correct EE (possibly empty) satisfying the following rule:

F10. The set of all outputs in the EE is equal to the set of the net inputs of the
process structure. Also, the set of all inputs in the EE is a subset of the set of
all outputs in the process structure. For a DFD with a non-empty EE the result
18 that each data flow in the DFD is associated with a unique generator, and a

non-empty set of Teceivers.
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Level 1 of the hierarchy of DEDs shown in Example 2.1 can be viewed as a
flat DFD by ignering the lower levels of the hierarchy. The EE of this DFD consists
of the structurally correct external entities staff and clock, while the process
structure consists of the structurally correct processes AddCopy, DeleteCopy,
ReturnBook, CheckoutBock, UpdateBorrStatus, AddBorrower, and
DeleteBorrower. In the EE, no two external entities are directly connected to
each other, and all outputs are unique. Furthermore, the set of inputs to, and the set
of outputs from the EE are non-empty. The EE is thus structurally correct. Within
the process structure, the data store inputs (outputs) are all associated with process
outputs (inputs). Furthermore, all outputs in the process structure are associated
with unique generators. The net inputs of the process structure, new book,
delete book,checkout info,checkout _time,return time,
return info, new borr, del borr, borr update_ info, and
update time, are exactly the outputs of the EE, also the set of inputs of the EE
1s a subset of the set of outputs of the process structure. The process structure of
the DFD and the DFED itself are thus structurally correct.

2.2.2 Syntactic aspects of hierarchies of DFDs

Hierarchies of DFDs are syntactically treated as objects consisting of
hierarchical representations of processes and data flows. The objects can be viewed
as extensions of the syntactic objects representing flat DFDs, characterized in the
previous section, where the extensions take the form of additional attributes
reflecting the hierarchical nature of processes and data flows. Processes and data
flows so extended are referred to as hierarchical. Formation rules for hierarchical
data flows and processes are given below.

Hierarchical data flows

Decomposition of data flows in a DFD results in the revelation of their
component data flows. The cornponent data flows so obtained either fitlly define the
data flow, in which case they are all necessary and sufficient components of the
data flow, or they may partially define the data flow, in which case they may not be
sufficient to fully define the data flow. Decomposition of data flows whose
structures consist of alternative components is not permitted here. Also, recursively
defined data flows are not permitted, since such definitions are not consistent with
the view of decomposition as an activity which results in the revelation of detail not
provided at the previous level. These restrictions enable the representation of
hierarchies resulting from successive decomposition of data flows, as tree

structures, in which nodes are data flows and edges represent the "is a component
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of" relationship between data flows. Such trees are called dara flow trees. The data
flow at the oot of a data flow tree is called the root data flow, while the data flows
with no components {i.e. the leaf, or bottom level, nodes of the tree) are called
primitive data flows. Semantically, primitive data flows are associated with data
types (with possibly alternative structures), which can then be used to generate the
composite data types for the higher level data flows. An example of a data flow tree
is given in Example 2.2.

The syntactic aspects associated with the decomposition of data flows are
captured by an object called a hierarchical data flow, with the following attributes:
+ aname, and
+ a set of hierarchical data flows, called the child decomposition set of the

hierarchical data flow, representing the structure of the hierarchical data flow.

Data flow trees are concrete representations of hierarchical data flows. The
name of a hierarchical data flow is the name of the data fiow at the root of its data
flow tree representation, while its child decomposition set is the set of sub trees
whose roots have an edge connecting them to the root data flow. For example the
child decomposition set of the hierarchical data flow shown in Example 2.2 are the
sub trees with roots book id and borr id. The nodes of a data flow tree are
called the sub data fiows of the hierarchical data flow, while the sub trees whose set
of leaf nodes are a subset of the set of leaf nodes of the data flow tree are called the
sub hierarchical data flows of the hierarchical data flow. The rule characterizing
structurally correct hierarchical data flows, given in Definition 2.2, is essentially a
rule for building data flow tree structures.

Definition 2.2

Characterizing structurally correct hierarchical data flows

Each sub data flow of a structurally correct hierarchical data flow is unique.

In order to express the relationship between a data flow at a particular level of
a hierarchy of DFDs and its decomposed data flows at the next level, the notiens of
full and partial decomposition sets are needed.
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Definition 2.3

Full and partial decomposition sets

A full decomposition set, F, of a hierarchical data flow D, is a set of sub

hierarchical data flows of D, satisfying the following conditions:

1. no two hierarchical data flows in F have common sub data flows; and

2.  the set of all primitive data flows in the hierarchical data flows in F is equal to
the set of primitive data flows in D.

A partial decomposition set of a hierarchical data flow is simply a subset of its sub

hierarchical data flows.

A full decomposition set of a data flow fully defines the data flow. Examples
of full and partial decomposition sets can be found in Example 2.2.

Example 2.2

Data flow tree for the hierarchical data flow checkout info

checkout _info

book id porr id

copyd ISBN

The above data flow tree is a concrete representation of the hierarchical data flow
checkout info. The child decomposition set of checkout info is the set
consisting of the hierarchical data flows book_id and borx_id. The set consisting
only of the hierarchical data flows book id and borr idis a full decomposition
ser of checkout _info, so also is the set consisting of the hierarchical data flows
copy#, ISBN, and borr_id. The set consisting only of the data flows book _id
and copy# is a partial decomposition set of book id as well as of
checkout info.

In describing the syntactic aspects of hierarchies of DFDs, the use of
hierarchical data flows parallels the use of flat data flows in describing flat DFDs.
External entities and data stores associated with hierarchical data flows as inputs
and outputs are referred to as hierarchical. Processes are also associated with

hierarchical data flows in a2 manner described in the next sub secticn.
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In a hierarchy of DFDs all data flows are uniquely named (see Definition
2.2). To express this uniqueness property, the notions of a distinguished pair and
set of hierarchical data flows are used.

Definition 2.4

Distinguished sets of hierarchical data flows

Two hierarchical data flows are said to be distinguished if they do not have any
commeoen sub data flows. A set of hierarchical data flows in which every pair is
distinguished is called a distinguished set.

Hierarchical processes

The syntactic aspects of a hierarchy of processes, resulting from successive
process decomposition, are concerned mainly with the relationships between high
level processes and their more detailed descripdon at the lower levels. Such aspects
are captured by an abstract syntactic object called a Aierarchical process, with the
following attributes.

+ aset of hierarchical data flows, called the inputs of the hierarchical process;

+ a set of hierarchical data flows, called the outputs of the hierarchical process;
and

« astructure of (sub) hierarchical processes and hierarchical data stores, called the
body of the hierarchical process.

The body of a hierarchical process represents the hierarchical structure of the
process arising from successive decompositions. As in hierarchies of data flows,
recursive descriptions of processes are not permitted. Successive decomposition of
a process can be concretely represented by a tree. In such a wee, here called a
process tree, the nodes are flat processes (with their inputs and outputs), and the
edges represent the "is a sub process of" relationship between processes. Each level
of the tree 1s associated with a set of data stores, where the set of data stores at a
particular level is disjoint from any cther set associated with the other levels of the
tree. The root of a process tree is called the roor process, while the processes at the
bottom level are called prirmitive. Primitive processes have empty bodies. The nodes
of a process tree are called the sub processes of the corresponding hierarchical
process, while the sub trees of a process tree whose leaf nodes are subsets of the
set of leaf nodes of the process tree represent sub hierarchical processes of the
hierarchical process corresponding to the process tree. An example of a process tree

is given in Example 2.3 (data stores are not shown in the example).
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Example 2.3

Process tree for the library application

The hierarchy of DFDs shown in Example 2.1 can be viewed as a tree of processes
as 1s illustrated below:

LibrarxyaApplicaticn
Checkout— RELUrM— hdd— Remove- Add= Remove— Updata—
Book Boak forr-— Borr— Capy Copy Bors—
oWeY awer Etatus
Chack- check= gh:fk" Check | Update- Gen— Update-
Book Borr- u Return— Records Fines— Borr—
ower Update Boak Record Record

Get~ Calculate~ Vett—
Qverdue- Fine Borower
Books

The hierarchical process corresponding to CheckouBook 1$ the sub tree of the
above tree with CheckoutBook as its root. The body of CheckoutBook, thus
consists of the hierarchical processes CheckBook, CheckBorrower, and
CheckOutUpdate, where both CheckBook and CheckQutUpdate are
primitive, and their associated data stores (not shown in the tree diagram).

The following definitions are needed to express the rules characterizing
structurally correct hierarchical processes. The net inputs of a hierarchical process
are the inputs in its body which are not also outputs in the body. For example, the
net inputs of the hierarchical process CheckoutBook are the data flows
out book,out book id,out borr id, checkout time, and
out_borr. The set of all inputs (outputs) in the body of a hierarchical process is
called the internal input (output) set of the body. For example, the internal output
set of the hierarchical process CheckoutBook is {fvetted book,
vetted borr,checkout_message,out_updated book,
out updated borr}

Definition 2.5 gives the rules characterizing structurally correct hierarchical

processes.
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Definition 2.5

Characterizing structurally correct hierarchical processes

Hierarchical data stores

P1.

The
P2.

P3.

P4.

P5.

P6.

A structurally correct (hierarchical) data store has a non-empty set of
hierarchical inputs or a non-empty set of hierarchical outputs. The union

of inputs and outputs of a data store is a distinguished set.

body

A structurally correct body is either empty or contains at least one
structurally correct (sub) hierarchical process. All data stores in & body are
structurally correct.

No two hierarchical processes in a structurally correct body must have
common sub processes.

The set of all data store inputs in a structurally correct body is a subset of the
intemal output set of the body, and the set of all data store outputs is a subset
of the internal input set of the bedy. Furthermore, the receiver of a hierarchical
data flow whose generator is a data store is never a data store,

Each hierarchical data flow in the internal output set has a unique generator in
the body. The internal output set of a structurally correct body is a
distinguished set.

There is at least one net input in a non-empty structuraily correct body.

Hierarchical processes

P7.

P8.

The set of inputs and the set of outputs of a structurally correct hierarchical
process are both non-empty. Furthermore, the union of the inputs and the
outputs of a hierarchical process is a distinguished set.

The body of a structurally correct hierarchical process is structurally correct.
In a structurally correct hierarchical process with a non-empty bedy, an input
corresponds to a subset of the net inputs in the body, called its decomposition
set, which is a partial decomposition set of the input. The decomposition sets
of any two hierarchical data flows in the input interface are disjoint, and the
union of the decomposition sets associated with the inputs of the hierarchical
process is exactly the set of the net inputs of the body.

Definition 2.5 conanued
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Definition 2.5 (continued)

Characterizing structurally correct hierarchical processes

P9. For a structurally correct hierarchical process with a non-empty body, an
output corresponds to a subset of the internal output set, called its
decomposition set, which is a full decomposition set of the cutput. The
decomposition sets of any two outputs is disjoint. If a hierarchical data flow in
the internal output set of the body of a structurally correct hierarchical process
is not in any decomposition set then it is directed towards hierarchical
processes in the body.

The ruies determining the structure of the body of a hierarchical process can
be viewed as extensions of the rules characterizing the PSs of flat DFDs, which
take into consideration the hierarchical nature of data flows and processes.
Similarly, the rules for hierarchical processes can be viewed as extensions to the
rules characterizing structurally correct flat processes.

Hierarchical DFDs
The syntactic aspects of a hierarchy of DFDs are captured by an abstract
syntactic object called a hierarchical DFD (H_DFD). A structurally correct H_DFD

consists of a structurally correct hierarchical process and a structurally correct

external environment (EE)}, where the EE of a H_DFD is a set of'._external entities
with hierarchical inputs and outputs. The hierarchical process of a H_DFD
represents the hierarchy of DFDs resulting from successive process
decompositions, and can be viewed as a hierarchical representation of the single
process in the context diagram of the corresponding hierarchy of DEDs. The rules
characterizing structurally correct H_DFDs, given in Definition 2.6, can be viewed
as extensions of the rules characterizing structurally correct flat DFDs.

The abstract syntactic objects introduced above capture the desired syntactic
aspects associated with hierarchies of DFDs. Formalizing the above definitons for
the abstract objects results in the formalizauon of the syntactic aspects they capture,
thus providing a basis for validating the syntactic structure of (hierarchies of)
DEDs. Chapter 4 provides the formal counterparts of the rules characterizing
structurally correct objects stated in this chapter.
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Definition 2.6

Charactenizing structurally correct hierarchical DFDs

Hierarchical exfernal entities

H1. A structurally correct external entity has a non-empty set of inputs or a non-
empty set of outputs. Also, the sets of inputs and outputs are disjoint,
and their union is a distinguished set.

External environments

H2. A stmucturally correct EE consists of structurally correct external entities or no
external entities. Furthermore, there is at least one external entity in the EE
with a non-empty set of inputs, and at least one extemal entity in the EE with a
non-empty set of outputs. All external entities in a structurally correct EE are
uniquely identified by their inputs and cutputs.

H3. Aninput of an external entity in a structurally correct EE is never an output of
ancther external entity in the EE. The sets of cutputs of any two external
entities in a sructurally correct EE are disjoint and are distinguished sets.

H DFDs

H4. A structurally correct H_DFD consists of a structurally correct EE and a
structurally correct hierarchical process. The set of all inputs {outputs) in the
EE of a strneturally correct H_DFD is equal to the set of inputs (outputs) of
the hierarchical process of the H DFD,

In the remainder of this chapter the semantic aspects of DFEDs are introduced
in an informal setting. Concrete representations of the absiract objects described
above will be used for illustration purposes in what follows.

2.3 Semantic aspects of DFDs
In the SA/SD approach a data dictionary contains definitions of the structure
and content of the data flows and data stores in a hierarchy of DFDs, while process
specifications describe the functional behaviour of its primitive processes. The
definitions provided by the data dictionary and process specifications are quasi-
formal, and thus provide little support for the rigorous validation and verification of
behaviour. Furthermore, the transition from SA specifications to an initial design is
problematic ([Sho8§, Pet88], see also Chapter 1). Formal interpretations of the
syntactic structures in DFDs facilitate the derivation of formal specifications of
behaviour for DFDs, which can be viewed as initial designs of the applications
described by the DFDs.
The semantic aspects of hierarchical DFDs concern the interpretations

associated with their syntactic structures. Two types of semantic aspects are
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specifiable in the formal framework:behavioural and data . Behaviour refers to the
manner in which components interact with each other. Two aspects of behaviour
are emphasized: functional and control. Functional aspects concern the relationship
between the input values and output values of a process while control aspects
concern the time-telated interactions between processes. Specifications of the
functional aspects of a DFD are supported by specifications of its data aspecis,
which are concerned with the structure of the data objects in the DFD.

To support the specification of the behavioural aspects of applications
additional constructs for describing interactions in an application which cannot be
described using the traditional DFD constructs are introduced. Diagrams created
using these additional constructs are called Extended DFDs (ExtDFDs). In the
formal framework, the behaviour of an ExtDFD is characterized by all the possible
interactions that can take place amongst its components. Such interactions are
determined by the occurrences of events which may or may not have data associated
with them. The characterization is expressed as a formal specification derivable
from the ExtDFD. The dervation of the formal specification of behaviour from a
hierarchy of DFDs goes through the following steps:

1. Generating a flat representation of the hierarchy of DFDs. Such a
representation, called the primirive DFD, consists of the primitive processes,
and all the data stores and external entitics in the hierarchy of DFDs,

2. Introducing notation for describing state dependent behaviour into the
primitive DFD, specifying the state dependent behaviour, and identifying
actions, and state and asynchronous data flows to and from the external
environment {EE). The result of this step is an ExtDFD.

3.  Specifying the data types associated with the ExtDFD's data flows and data
stores.

Specifying the behaviour of the ExtDFD's primitive processes and data stores.

5. Derving the specifications of behaviours of the ExtDFD's actions from the
specifications of behaviours of their constituent processes.

6. Deriving the specification of behaviour of the ExtDFD from the specifications
of behaviour of its actions, data stores, and asynchronous data flows, and the
specification of its state dependent behaviour. The resuliing specification is
called the Behavioural Specification (BS).

An overview of these steps is given in the following sections.

2.3.1 Flattening hierarchies of DFDs
In deriving a formal specification of behaviour from a hierarchy of DFDs it

is sufficient to consider the interactions amongst its primitive processes and data
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stores, and their interactions with the EE. The structure consisting only of the
primitive processes, data stores and EE of a hierarchy of DFDs is called the
primitive DFD of the hierarchy, and can be viewed as a flat representation of the
hierarchy.

The data flow relationships between structures in a primitive DFD are not
simple, since data flows associated with structures in one part of the DFD may be
decomposed in other parts of it. The relationships between such data flows are
depicted by splirter and binder symbols, shown in Figure 2.2. A splitter takes an
incoming data flow, called its input, and generates a subset of its sub data flows,
called the outputs of the splitter. A binder takes a set of incoming data flows, called
its inputs, and combines them to form a single outgoing data flow, called its ouzput.
The input of a splitter may emanate from a binder, data store, external entity, or a
process, while 1ts outputs can be directed to processes and or binders. The inputs of
binders may emanate from splitters and/or processes while its output may be
directed towards processes, data stores, external entities, and/or splitters. Later it
will be shown how splitters and binders force their associated processes to

synchronize their receive and send events.

Splitter Binder

outl inl

outp

Figure 2.2 Splitter and binder symbols

Example 2.4 shows the primitive DFD for the H_DFD for the library
application depicted in Example 2.1.
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Example 2.4
The primitive DFD for the library application
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Henceforth, the term process will refer te a primitive process, and the term

DFD refers to the primaave DFD.

2.3.2 Describing the control aspects of applications
Sitnations in which the required behaviour of an application is dependent on

the current state, or mode of operation, of the application often occur in certain
types of applications, for example real-time applications. Additional notation is
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required in order to describe state dependent behaviour with DFDs. Two types of
consiructs are used here in this respect: a state entity and control flows. The state
entity encapsulates information about the current state of the DFD affecting the
behaviour of the application, while control flows represent the events which cause
changes in the mode of operation. Syntactically, a state entity has the following
attributes: a name, a set of control flows called the inpuzs of the state entity, and
another set of control flows called the outputs of the state entity. Semantically, a
state entity can be viewed as an interpreter of events represented by its inputs,
which may generate other events, represented by its outputs, as a result of
interpretations. A state entity can affect the behaviour of processes via its outputs,
in three ways:
» It can enable processes. An enabled process is permitted to transform its inputs
to outputs when required to do so.
+ It can disable processes. A disabled process is not allowed to transform its
inputs to cutputs.
« It can initiate processes. A process that is initiated is enabled for only a single
transformation after which it disables itself.

Control flows are either directed from external entities or processes to a state
entity or to other processes, or are directed from a state entity to processes. A
control flow, like a data flow, may be directed towards more than one construct,
called the receivers of the control flow, but emanate only from a single construct,
called the gereraror of the control flow. Control flows differ from data flows in that
they represent events which are not associated with data. Control flows generated
by external entities and processes are called signals. Control flows from the state
entity to processes are associated with one of the following type of events,
reflecting the manner in which the state entity can affect the behaviour of processes.
» Enablers: events which enable processes.

« Disablers: events which disable processes.
« [nitiators: events which initate processes.

Enablers, disablers, and initiators are events extended in time, whose
occurrences last for the periods of time that the associated processes are enabled,
disabled, and initiated respectively. Control flows emanating from other than the
state entity can also be input to processes. Such control flows depict events that
affect only the behaviour of the process, and behave as initiators.

The constructs depicting control information are shown in Figure 2.3,
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State Entity

v,

Enabler Disabler Signal/Initiator

Figure 2.3 State entity and control flow symbols

The approach described above is similar to that used in YSM for describing
state dependent behaviour [War6, Woo88]. The state entity corresponds to the
control process in YSM, while control flows play similar roles in both approaches.
Asin YSM, the state dependent behaviour of an application can be described by a
state diagram, associated with the state entity, defining the manner in which the
state entity interprets its inputs. The differences between YSM and the SL lie in
their use of the control extended DFDs. Here, such DFDs are associated with a
theoretical basis enabling the derivation of formal specifications characterizing the
class of behavioural models for the DFDs, while in YSM, the diagrams, together
with their associated state diagrams, are used as descriptions of an application's
behaviour. The control extended DFDs used in this thesis can be viewed as
informal, pictorial representations of the derived formal specifications. An example
of a control extended DFD is given in Example 2.5.

Example 2.5

A control-extended DFD for a cruise-control system

A cruise-control system, when active, maintains the speed of a vehicle at a constant
level. In the system, depicted below, the driver sends signals to the system which
activates and deactivates it. The system can only be activaied when the engine is
running. When activated the system maintains the current speed of the vehicle, if 1t
is greater than 30 miles per hour, undl the system is deactivated. A more detailed
version of this example is presented in Chapter 6.

Example 2.5 continued
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Example 2.5 (continued)

A control-extended DFD for a cruise-control system
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2.3.3 Semantic aspects of data flows and data stores

There are two aspects to the semantics associated with data flows and data
stores: static and dynamic. The static aspects are concerned with the specification
of the structure and data content of data flows and data stores, while the dynamic
aspects are concerned with the manner in which the data stores and data flows
interact with other DFD constructs. Below an overview of the static and dynamic
aspects of data flows and data stores is given.

Data flows

Data flows represent data interfaces between processes, or between a process
and a data store or external entity. The static aspects of a data flow concerns the
definition of the data type associated with the interface it represents, and the
structure of the interface, where the structure of an interface is determined by the
relationships between the data present in the interface. The data types and structures
associated with data flows are treated as abstract data types {ADTs) to avoid
premature consideration of representation issues. Instances of the types associated
with data flows (and data stores) will be called objects, or simply data where it does
not cause confusion.

Whether a data flow is associated with a structure or not is dependent on the
type of interface it provides, which in turn is determined by the dynamic aspects of
data flows. Dynamically, a data flow is associated with either a state variable or data
communication events. A state variable is an entity that is persistently present, that
is, it is always associated with a value representing its current state. An event, on
the other hand, is intermittently present, thus one speaks about an event occurrence.
An occurrence may be instantaneous or may be extended in time.

A data flow associated with a state variable is called a state flow. State flows
always have external entities as their generators. For example, the data flow
checkout time is associated with a state variable with a value representing the
current state of the extemal entity clock (i.e. the current time). State flows have
simple dynamic interpretations: state values are simply read by their receivers
whenever they are required to do so. Such flows are not associated with a structure
since only one value (representing the current state) is associated with it at any time.

A data communication event is an event which is associated with data. The
occurrence of a data communication event signifies the transmission of the data
associated with the event. A data flow associated with data commumcation events is
called a data event flow. A data event flow can either be synchronous or
asynchronous. A synchronous data event flow 1s one which requires its generator
and receivers to cooperate in order for data communication to take place. That is the
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generator cannot proceed after sending data on the data flow until the receiver has
acknowledged receipt of the data sent. When no such cooperation is required in
order to transmit data, the data event flow is said to be asynchronous. In such cases
the generators do not require acknowledgement from receivers in order to proceed
after sending data on the data flow. A synchronous data event flow is associated
with a single communication event, representing the synchronized generation and
receipt of data. Synchronized data event flows have no structure associated with
thern since at most a single itern of data {i.e. the data being ransmitted) is associated
with the flow at any time.

The uncooperative interaction associated with an asynchronous data event
flow is obtained by associating with it a data structure and two communication
events: send and receive. The send event of an asynchronous data flow passes on a
single item of data from the data flow to all its receivers, while the receive event
accepts a single itemn of data from its generator and 'stores' it in the the data
structure awaiting transmission to its receivers. The data structures associated with
asynchronous flows are queues. The send event of an asynchronous flow thus
takes a data object from the top of its queue, while the receive event puts a data
value at the end of the queue. The symbols used for depicting state and data event
flows on a DFD are shown in Figure 2.4.

Asynchronous Synchronous
Data Flow Data PFlow State Flow
e s —— 3

Figure 2.4 Symbols for asynchronous, synchronous and state flows

Data stor

The static aspects of data stores concemn the specification of the type of data
held in the data store, and the data store's structure, ang are treated in the same way
as the static aspects of data flows in the formal framework.

Dynamically, data stores are associated with access events which observe
and/or modify the data store. The following are the classes of access events
associated with data stores:

+ Read accesses, for example the access events associated with the data flows
copy# list,out book,return detail of the data store BOOK. A read
access event retumns cither a data object (or a sub structure of a data object), or a
structure of {sub structures of) data objects in a data store. Some access schemes
may require that the access event be supplied with data which identify the
particular object in the data store to be accessed. The object returned by a read
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access is of the type associated with its data flow. For example, the read access
associated with copy# 1list returns a list of the copy# atiributes of the data
objects in BOOK.

» Updates, for example the access events associated with the data flows
ret updated book, and out _updated book of the data store BOOK.
An update changes the values of a subset of the atmbutes of a select set of data
objects in a data store. The objects to be updated are identified by data supplied
to the event.

» Addirions, for example the access event associated with the data flow
new book_rec of the data store BOOK. Additions simply add new objects to
a data store.

» Deletions, for example the access event associated with the data flow
deleted book of the data store BOOK. Deletions remove objects from a data
store. Some access schemes may require information on the the objects to be
deleted to be supplied to the event,

In the formal treatment, data stores are treated as ADTs on which concurrent
accesses can be carried out. Such a treatment of data stores provides flexibility in
the type of interactions possible between processes and data stores.

Exampie 2.6 gives type definitions for the data objects in the library
application. Such definitions can be viewed as an informal front to the formal
specifications characterizing the data objects. Base rypes are predefined classes of
indivisible objects, or list or set structures of such objects, while non-base rypes
are classes of composite objects based on the base types. The type definitions are
expressed in the form typename 1= typedefinition, where t ypename isa
name, and typedefinition is either another name or a structure of names
enclosed within <, >. Structures consist of mandatory types identified by names
separated by commas, and/or alternative sub structures separated by 'I'. Particular
instances of a type may also be included in a structure in place of type names, for
example, the message/flag types of the library application are defined in terms of
their instances which are text strings of the form "message”, reflecting the
condition which the message/flag reports on. In the definitions of the non-base
types, base components are written in bold. The indivisible base types used for the
library application are:
number - the class of floating point numbers,
time - the class of time points,
character - the class of characters, and

message/flag types within the application.
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Aliases for base types, reflecting their use in the composite objects, are used
to aid readability.

Example 2.6
Type definitions for the library application

List structures are enclosed within [, ], for example, [number] is a list of objects
of type number.

Non-base data types
bb status ::= <time_returned | *"Not returned">
book ::= <bock_id, title, subject, author,
copy_type, borrower_indicator>
book_id 1:= <ISBHN, copyf>
borr detail ::= <{borrower_book_detail), number>
borr_fine record 1= <<number, borrower id> | "Not in file®
borr flag ::= <«<"Not in file"” | <out borr,
borrower_id>>
borr_update_info 1:= <borrower id, number>
borrower ::= <borrower_id, borrower name,
borrower_addr, borrower_type,
[borrower book_detail],
payment_ to_date>
borrower hook detail ::= <book_id, due time, bb_status>
borrower id = < [character]>
borrower indicator ::= <"Available" | borrower id>
checkout_info 1:= <book_id, borrowar_id>

checkout _message H
del borr :
delete book -
deleted borr :
deleted bock

<vetted borr, vetted book>
borrower_id

bock_id
(borrower_bock_detail]

= borrower indicator

T T

ISBN := <[integer]>

new book ::= <ISBM, title, subject, author,
copy_type>

new book rec t:= bock

new_borr 1= <borrower_id, borrower_ name,
borrower addr>

new_borr_ rec ::= borrower

other borr ::= borrower id

out_book ::= <borrower_indicatcr, copy type>

out_book_id ::= book_id

ocut_borr ::= <[borrower_boock_detaill],

borrower_type, payment_ to_date>
borrower id

: borrower indicator

out_updated borr Tt [(borrower bock_detail]

ret borr list : [borrower book detail)

ret updated book M borrower_indicator

ret_updated borr : [borrower bock_detail]

return_detail borrower indicator

i

cut_borr id
out updated book

II

It

return_info 1= book id

update id 1:= borrower_id

update_status ::= <outstanding_fine | excess_number
"Net in file" | "No fines" | “Cleared">

vetted book 1:= <<pock_id, copy_type> | "book not in
£ile"| "book already checked out™

| “"not borrowable®>

Example 2.6 continued
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Example 2.6 (continued)
Type definitions for the library application

vetted borr 1:= <<"Fines over limit®, number>|
"borrower not in file™ |

<out_borx, borxrower_ id>>

<"WNot in file" | "Already returned" |
<book_id, borrower id> >

vetted_return_book

Base data Lvpes

add_message r1= <"OK" | "Borrower already in file">
amount_paid ::= number
author r1= [character]
borrower addr ::= [character]
borrower_name 1= [character)
borrower type = <"undergrad" | postgrad"” | "staff">
checkout:ﬁime 1= time
cCoOpyY¥ = integer
copy#_ list = [integer]
copy type = <"book"™ | "reference” | "pericdical®">
del Borr_mess 1= <YOK" | "Not in file"™ ! "Has books cut">
delete message ::= <"delete-OK"| "Not in file" |
- "Not available™>
due time 1= time
excess_number ! 1= number
fine 1= number
fines record r:1=  [number]
new copy# = integer

1

outstanding_fine H number

paidup_amount = number

payment_to_date = number

return_message 1:= <"Already in® | "Not in file™ |
"Ok returnT>

return_time 1= time

subject ::= [character]

time returned ri1= time

title := [character]

update time 1= time

updated borr_detail := npumber

2.3.4 Semantic aspects of processes

Unlike the usual logical approaches to interpreting process behaviour in DFDs
(eg. see [War86, Woo88, Hat88]), the transformation from inputs to outputs is not
assumed, within the formal framework, to be instantaneous. Such a logical view
may be helpful as a first approximation of behaviour, but is of little use to further
development since no operational view can be consistent with it [KK88]. The
behaviour of a process is characterized by its class of invocations (or p-
invocations), where an invocation represents a particular transformation of single
instances of the types associated with some of the inputs of the process, to single
instances of the types associated with some of its outputs. Formally, an invocation

is a labeled sequence of srares, where the labels represent the effects of events




Chapter 2: Syntactic and Semantic Aspecis of DFDs 65

occurring within the transformation represented by the invocation. Such a labeled
sequence can be depicted as follows: s0-10-s1-11-s2-...-sn-In-sn+1, where si
(1<i<n) is a state, and i1 (1<i<n) is its associated label. The states of an invocation
reflect the observable effects of events thus far in an invocation. Such states are said
to be observable. An event represented by a label in an invocation causes a change
from its associated state in the sequence to the next state in the sequence, The first
state of a process invocation 1s called its idle state, and represents the situation
where no inputs of the process are being transformed into outputs. The event which
causes a change frorm an idle state to another state is called an invocation event of
the process, and a process is said to be invoked when it occurs.

Operational models of behaviour can be associated with DFD processes, since
transformations are interpreted as sequences of observable states rather than
instantaneous conversions of inputs to outputs. The class of operational models
associated with a DFD process is abstractly characterized by an algebraic
specification of the labeled state transitions that can take place in its invocations.
The class of invocations characterizing a process's behaviour can be pictorially
represented by a state transition tree (STT), with classes of states as nodes and
classes of labels as edges. Example 2.7 shows the STT for the process
CheckBook. Conditions under which certain transitions can take place can be
included in STTs by associating such conditions, expressed in an appropriate
language, with the respective edges. STTs can thus be made to show all
information necessary for characterizing the invocation cliass of a process.

Example 2.7

State transition tree for the process CheckBook

A state of CheckBook is of the form <Book _id, Status, Vett Book>,
where Book 1d is either an object communicated via the data flow

out book_id, or a null object, Null1l, representing the situation where no such
communication has occurred, Status is either an object communicated via the data
flow out_status, or a null object, Null2, representing the situation where no
such communication has occurred, and Vett_Book is either an object to be sent
for communication via the data flow vetted book, ora null value, Null3,
representing the situation where no object is available for communication on
vetted book.<Nulll, Null2, Null3>is thus the idle state of the process.

Example 2.7 continued
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Example 2.7 (continued)

State transition tree for the process CheckBook

The classes of event labels associated with CheckBook are the following:
Receive (bid) - representing a receive communication event which receives a
book_id object, bid, from the data flow out _book id;

Read (bid, wval) - representing aread event to the data store BOOK, which
accesses a book object identified by 2 a book id object bid, and retrieves the
out_ book object, val, associated with the bock object.

Erread (bid) - representing an unsuccessful read access to BOOK. This may
occur, for example, when the book object identified by bid is not in BOOK.
Send {vbook) - representing a send communication event, which sends a
vetted book object, vbook, on the data flow vetted book. The function
vett returns a vetted book object given a book _id object and an out_book
object. This function checks whether the book can be borrowed.

The STT for CheckBook is shown below:

<Nulll, Null2, Null3i>
Receivaibid)

<bid, Noll2, Hull3>

Raad(kid, val) Erraad({bid)

<bid, wval, Null3> <bid, ERR, Null3>»
Sand{vett{bid, val}} Send{"Notinfila"}
<bid, val, vettibid,vall> <pid, wval, "Notinfile">

The above STT can be intnitively interpreted as follows: A particular ransformation
of CheckBook would first receive data from the data flow cut_book id,
represented by the occurrence of the receive event (the invocation event) whose
effect is labeled by Receive (bid), and then attempt a read access to the data
store BOOK. The effect of a successful read attempt is represented by a label of the
form Read (bid, wal), while an unsuccessful read attempt is represented by the
label Erread (bid). The next externally observable event is the send event which
sends data on the data flow vetted book, the value of which is dependent on

whether a successful or unsuccessful read attempt was made.

Example 2.7 continued
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Example 2.7 (continued)

State transition tree for the process CheckBook

An exarmple of a CheckBook invocation is the labeled sequence: <Nulll,
Null2, Null3>»-Receive({(bid}-—-<bid, Null2, Null3>-
Erread{bid}-<bid, ERR, HNull3>-Send{"Notinfile")-<bid,

val, "Notinfile">.

The quasi-formal specifications associated with processes in the SA approach
are replaced by formal specifications of behaviour created using the techniques of
the formal framework. The formal specifications are algebraic characterizations of
all the possible state transitions that can occur as a result of the occurrences of

events.

2.3.5 Describing the interactions in a DFD

A DFD is interpreted as a system of processes and data stores interacting with
an external environment. The environment interacts with the system in an
uncooperative manner, thus allowing the system and the environment to proceed at
different speeds, without the need to synchronize for communication. Such
interaction often occurs in real-time applications and is sometimes a desirable
feature of some non real-time applications [KK88]. Uncooperative interaction
between the environment and the application is represented by asynchronous data
flows or state flows in extended DFDs, thus data flows between external entities
and processes are either state flows or asynchronous data flows.

In describing the interactions in the system of processes and data stores of a
DFD the processes of the DFD are partitioned into actions, aillowing a modular
description of interactions. An action is a system of related processes in which
certain processes are designated as inveker, and in which each process which is not
an invoker:

+ depends only on the other processes in the action for its data inputs; and
» is not associated with control inputs.

The invokers of an action are the processes that must be invoked before any
of the other processes in the action can be invoked. The invocation events of
invokers are synchronized with each other, thus an action can be thought of as
being invoked by a single synchronization event. Only the invokers of a process
can be associated with input control flows. Since the invocation events of the

invokers of an action are synchronized, an initiator associated with a particular
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invoker of an action must also be associated with all the invokers of the action. An
action whose invokers have disablers as inputs cannot be invoked when at least one
of its invokers is disabled, in which case the action itself is said to be disabled.
Similarly, an action whose invokers have enabiers as inputs can only be invoked
when a/! of its invokers are enabled, in which case the action itself is said to be
enabled,

The rerminators of an action are the processes in the action which have
outputs to external entities, data stores, and/or invokers of other actions. Once
invoked an action transforms the data inputs of its invokers to data outputs on its
terminators. An action can thus be viewed as a high level process, where the inputs
of its invokers are referred to as the inputs of the action, and the outputs of the
terminators directed towards data stores, external entities and other actions are
referred to as the outputs of the action, and each disabler to its invokers is referred
to as an action disabler, while an enabler representing the conjunction of ail the
enablers associated with its invokers is called the enabler of the action.

In Figure 2.5, a DFD is partitioned into the actions A1, A2 and A3. Al and
A2 together cannot form an action since the process p2 has an input from p4, which
is notin Al or A2,

eel celd

Figure 2.5 Actions in a DFD

Actions are also associated with a terminarion event which causes all its
constituent processes to revert o the idle state. Such an event occurs when an action
has transformed its inputs to outputs. An action is said to be rerminated, or in an
idle state, when all its processes are in the idle state. Notice that the behavioural
semantics associated with processes implies that an action, once invoked, cannot be
invoked again until it has terminated.

The behaviour of an invoked action is determined by the behaviour of its
processes. Within an action, all data flows which are not also inputs to or outputs

from the action, are synchronous. Intuitively, actions are systems of processes
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which cooperate, via synchronization, to transform single instances of its inputs to
outputs.

Splitters and binders occur only in actions, and force their associated
processes to synchronize. The processes associated with the outputs of a splitter are
the processes to which the outgoing data flows are directed to, while the processes
associated with the inputs of a binder are the processes from which the incoming
data flows emanate. The processes associated with the outputs of a splitter, and the
processes associated with the inputs of a binder, are forced to synchronize the
receipt and generation of data on the respective data flows. Figure 2.6 illustrates the
different situations in which binders and splitters may occur. In Figure 2.6(a) a
binder takes p inputs, all of which must be synchronous data flows, from
processes, and generates a synchronous data flow, called its output, directed
towards other processes and/or splitters. This situation is interpreted as a
synchronization of the send events of the processes associated with the inputs of the
binder and the receive events of the processes associated with the output of the
binder, either directly or indirectly via splitters. In Figure 2.6(b) the output of the
binder is an asynchronous data flow. This situation is interpreted as a
synchronization of the send events of the processes associated with the inputs of the
binder, and the receive event of the asynchronous data flow. Figure 2.6(¢) shows a
splitter with p outputs directed towards processes, and an incoming synchronous
data flow, called its input, emanating from a process or a binder, This situation is
interpreted as a synchronization of the send event of the process from which the
data flow emanates, or in the case that the input emanates from a binder, the send
events of the processes assoclated with the inputs of the binder, and the receive
events of the processes associated with the outputs of the splitter. In Figure 2.6(d),
the input to the splitter is an asynchronous data flow. This situation is interpreted as
a synchronization of the send event of the asynchronous data flow and the receive
event of the processes associated with the outputs of the splitter.

inl
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Figure 2.6 Communication situations invelving binders and splitters
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The specification of behaviour of an action is derived from the specifications
of its processes. An action is viewed as a system of synchronously interacting
processes, thus, provided the specification of the processes are given, together with
specifications of the data transmitted by the processes, the action's specification can
be generated.

A class of labeled sequences of states can be associated with actions, in the
same way they can be associated with processes. Such sequences, called a-
invocations, represent the sequence of states an action passes through when
transforming a particular data on a subset of its inputs to data on some of its
outputs. The states of an action is a tuple of states of its DFD processes, while the
events represented by the labels of an a-invocation are occurrences of action events
arising from the interactions of its DFD processes.

All communication between actions are uncooperative (represented by
asynchronous data flows), while communication between actions and data stores
are always cooperative (represented by synchronous data flows). The output flows
of a data store may be associated with splitters, representing the situation where the
decomposed parts of the data flows are needed in different parts of a action. In such
a situation, the read events of the processes associated with the outputs of the
splitter are synchronized. Similarly an input to a data store may be the output of a
binder, in which case the write events of the processes associated with the inputs of
the binder must be synchronized. These situations are illustrated in Figure 2.7.

cuTH inp

ds ds

Figure 2.7 Relationships between the extractors and data stores, and between

binders and data stores

Actions interact with asynchronous data flows in a synchronized manner,
where the send event of an action which is a generator of the asynchronous data
flow is synchronized with the receive event of the asynchronous data flow, while
the receive event of an action which is a receiver of an asynchronous data flow is

synchronized with the send event of the asynchronouns data flow.
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The DFD resulting from the identification of actions, synchronous and
asynchronous data flows, and state flows, in a possibly control-extended DFD is
called an Extended DFD (ExtDFD). An ExtDFD is interpreted as a system of
interacting actions. The view of actions as high-level processes permits the
technique used for specifying the behaviour of processes to be used to specify the
behaviour of actions. The specification of an ExtDFD's behaviour is derived from
the specifications of its actions and the specifications of the dynamic and static
aspects of its data stores and asynchronous data flows, and from a specification of
the effects of events on the mode of operation (depicted by control flows directed
towards the state entity).

The BS characterizes the behaviour of ExtDFDs in the same way as processes
and actions are characterized. The state of an ExtDFD consists of the states of its
actions and data stores, as well as a flag indicating the current mode of operation the
ExtDFD is in (this can be omitted when the ExtDFD has only one mode). The set of
events associated with an ExtDFD consists of action events, and the events arising
from the interaction amongst actions, data stores and external entities, and events
associated with control flows.

2.4 Summary

This chapter presented, in an informal setting, the syntactic and semantic
aspects of DFDs on which the formal framework developed in this thesis is
founded. The syntactic aspects of DFDs are concerned with the building of correct
syntactic structures, and hierarchies of such structures, and are encapsulated by
abstract objects. The part of the formal framework concerned with formalizing the
syntactic aspects of DFDs is called the Picture Level (PL), and is described in
Chapter 4.

The semantic aspects concern the building of a specification of behaviour for
suitably extended DFDs called ExtDFDs. Dynamically, an ExtDFD is a system of
interacting processes with an uncooperative interface to its environment. The formal
specification of behaviour for an ExtDFD characterizes what the ExtDFD is allowed
to do in terms of the possible interactions amongst its components, The building of
such a specification requires that the syntactic structures are associated with
dynamic, as well as static interpretations. The part of the formal framework which
provides support for specifying the semantic aspects of DFDs is called the
Specification Level (SL), and is described in Chapter 5.



CHAPTER 3

Positive-Negative Relational
Specifications: An Algebraic Approach
to Specification

3.0 Introduction

Specification techniques based on data abstraction have been developed by
many researchers (see, for example [GTW78, GHM78, LZ75, LZ77]), and the use
of such techniques for specifying applications has shown promising results. The
data abstraction approach to specifying applications entails viewing applications as
consisting of groups of related functions, acting upon particular classes of objects,
with the constraint that the behaviour of the objects can only be observed through
application of the functions [L.Z75].

Algebraic specification techniques are a class of techniques based on the data
abstraction approach, which have firm mathematical foundations based on concepts
from universal algebra and mathematical logic {GTW78, WB&2]. Such techniques
provide implicit definitions of classes of objects and their functions in terms of
algebraic relations. The resulting (algebraic) specifications, are syntactic entities,
consisting of a declaration part, called the signature, and a set of relations, called
laws, between terms formed using the symbols declared in the signature. An
algebraic specification is associated with a model semantics in the form of a class of
algebras. The mathematical foundations for algebraic specification techniques
enables the generated specifications to be used in the investigation of formal
properties of the objects they characterize. Also, some researchers provide formal
criteria for establishing whether an algebraic specification implements another.

Considerable research has also gone into providing an operaticnal semantics
for algebraic specifications based on term rewriting systems [Hue80, Kap84,
Kap87, Jou87]. Under suitable conditions, such operational semantics provide
effective deduction systems, which can be used to investigate properties of the
specifications in a computational manner. The conditions under which decidable
deduction systems can be obtained can place serious restrictions on the form of
laws which, inevitably, affects their expressiveness. Research in this area has
progressed from algebraic specifications consisting only of unconditional equational
laws (see, for example [Hue80, Der87, HO8O]) to specifications consisting of
conditional equational laws (see for example [Kap84, Jou87, Dro84, RZ&4, BK82,

CTRS87]). Conditional laws are more expressive than their unconditional
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counterparts, but are stitl not expressive enough to specify some objects maturally’.
Recent research, in this area, which introduce inequalities into the condition parts of
conditional laws, look promising in this respect [Kap87, MS&71.

Current algebraic specification techniques are well supported by firm
mathematical and operational foundations, but no single such technique provides
the expressive power needed to support for range of specifications required by the
formal framework developed in this thesis. In this chapter a specialized algebraic
technique, together with its mathematical foundations, is introduced. The technique
unifies and extends techniques based on partial functions [WB82], relations
[ARWSE6], and conditional term rewriting with inequalities [MS87}. In what
follows, concepts and notations from the works of Goguen et al [GTW78], and
Wirsing and Broy [WB82] are freely used.

3.1 Positive-Negative Relational Specifications (RSs)

A positive-negative relational specification, or simply called a relational
specification (RS), is a partial conditional algebraic specification with relations. In
this section, the concepts and notation used for building RSs are discussed. In
particular, it is shown how the notions of hierarchy and schema help reduce the
complexity in building and understanding large RSs.

3.1.1 Specifications and algebras

A RS consisis of a signature and a set of laws. The signature is the
declaration part of the RS while the laws are refations between terms formed by the
symbois declared in the signature. The formal definition of a RS signature given in
Defintion 3.1, utilizes the following notion of an indexed set: a S-indexed set, A, is
a family of component sets A; for each index sin S.

Function symbols can be partitioned into two sets:
+ The set of function symbols called constructors, C, representing functions which

create new objects of a sort.

+ The set of all other function symbols, called non-constructors.

The signature of a RS is assoctated with a class of algebraic models, called 2-
RS algebras, or simply X-algebras. A Y.-algebra, defined in Defintion 3.2,
provides representations for the objects of each sort, and interpretations for the
function and relation symbols in the signature.
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Definition 3.1

RS Signature

A RS signature Y, = <S, F, R> consists of:

+ anon-empty set S of sorts (S* denotes the set of all finite swings from S,
including the empty string denoted by A);

+ anon-empty S"x § indexed set, F= {Fyslwe 8%, se S}, where Fy, ¢ is the
set of function symbols with ariry w, a string made up of the domain sorts of the
functions, and sort s, the sort of the object returned by the functions (a function
symbol fin the set Fy, s where w = s1...8,, will be written as {: sy ...,sy, — s); and

» anon-empty S*-indexed setR = {Ry, | w € S*}, where Ry, is a set of relation
symbols of sort w (a relation symbol r in Ry, where w = s1...5,, will be written
as I: $i,...,8q).

Definition 3.2
Y-RS Algebra

For a RS signature 2, = <S8, F, R>, an algebra with relations, A = <{A;lse S},

A, Ag>, is called a J-RS algebra if it consists of:

+ a S-indexed set, {Asls e S}, called the carrier sets;

» aS$*x S-indexed family of functions Ap= {Ays: Fys = [Ay! = Adlwe ST,
s € S}, which consists of functions mapping function symbols in F to partial
functions, where {Ay — A;] denotes the set of all partial functions from Ay to
Ag; and

+ an S*-indexed family of functions Ag = {ARw: Rw — Atupy ! w € S}, which
consists of functions mapping the relation symbols in R to elements in Atup,,
where Atup,, is the set of all sets whose elements are A, tuples.

The interpretation of a function or relation symbol, t, in an algebra, A, is
denoted by ta. Relation symbols are interpreted as sets of tupies, where each tuple
of the set signifies that the relation represented by the symbol hoids amongst the
objects in the tuple.

Example 3.1 gives an example of a signature and an algebra for the signature.

1 Aw, where w=(s1...sn) € S*, represents the cartesian product Agix ...x Agp.
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Example 3.1

A signature for natural numbers

X {Natnum} =
Signature
sorxts nat
constructors
0: — nat
succ: nakt — nat
auxiliary functions
_+ : nat, nat —nat
relations
_< : nat, nat

An algebra, A, for 2(Natnum) can be defined where Ap,; is the set of natural
numbers, + is mapped to the addition function on natural numbers, and < is
mapped to the relation "is less than” defined on natural numbers.

Every signature, 2., defines a set of syntactically correct expressions, called
well-formed rerms, built using the function and relation symbols of 2. Such terms
can be partitioned into two sets: a set of function terms, called F-rerms, and a set of
relation terms, called R-terms.

Definition 3.3
Well-formed F-terms

For a signature 2 = <§, F, R>, and an S-sorted set {X;!s €S} of symbols called

variables, the set of well-formed function terms, called F-terms, of sort s in S with

variables is defined as the least set, T(F, X)s, having the following properties :

» all variables x in X; are F-terms of sort s,

» all constant symbols, f : — s (i.e. funcdon symbols with arity A, and sort s), in
F are F-terms of sort s,

« for all function symbols f: s ..., sp = s in F (n >0} and all F-terms ty...,t, of
SOITS §i ..., Sp respectively, f(t;....,tn) is a F-term of sort s.

A ground F-term is a F-term containing no variables (i.e. elements in X). The
set of ground F-terms of sort s is denoted by T(F)s. A constructor term is a term
which consists only of constructor symbols and variables. Thus a constructor term
is of the form c{cy,...,cn) where c is a constructor and c¢;,..., ¢, are constructor

terms. The set of all ground constructor terms of sort s is denoted by Tc(F)s.
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Definition 3.4
Well-formed R-terms

Given a signature 2, = <S,F,R>, the set of well-formed relation rerms, called R-

terms , of type w € S, with free variables from an S-sorted set {X;1s eS) of

symbols called variables, is defined as the least set, T(R,X)y, having the following

property:

+ for all relation symbols r : 51 ...,8, in R (n>0}, and all F-terms 13, ...In Of SOTtS
S1,..s8n respectively, r{ty ...,I,) is a R-term of type w = s,...5,,.

A ground relational term is a R-term containing no variables. The set of
ground R-terms of type w € S*, is denoted by T(R),,. The union of the set of F-
and R-terms will be denoted by T(2,,X), and the terms are collectively called X-
terms. The set of ground > -terms is denoted by T(X).

Example 3.2

Examples of F- and R-terms

Examples of F-terms from the signature in Example 3.1 are succ{succ{()),
succ{x)+succ(succ{suce(x))), where succ(succ(0)) 1s a ground constructor term.
Examples of R-terms from the same signature are succ(x)+succ(succ(x})<succ(0)
and succ{()<0, where succ(d)<0is a ground relation term.

The 'evaluation’ of a 2-term in a 2-algebra is intuitively captured by the
notion of an interpretation. For a X-algebra, A = <{A;lse S}, Ap, Agr>, a S-
indexed set of variables {Xs1s €8S}, and a S-indexed family of partial functions V
= {vslvg: Xs = Ag), an interpreration with respect to V, of a 2~term t in A,
denoted by V,(1), is defined as follows :

(1) V,.(x¢) = vi(x) for x; € Xi.

(2) V. (f(ty,....t0)) = (V. t1),..., V(tn)) for f € F, provided that every V, (1),
1<i<n, is defined and the n-tuple (V,(11)...V(ty)) is in the domain of f,.
Otherwise V,(f(tl,..., tn)) is undefined.

(3)  V.{r(ty,....ta)) = (Va(t1)... V(tn)) for r € Rel (the set of relation symbols in
>}, provided that every V,(t;), 1<i<n, is defined, and (V. (t1)... V. (t,)) € ra.
Otherwise V(r(ty,...,tn)) is undefined.

The interpretation of a ground term t' in an algebra A does not depend on V,
and its unique interpretation is denoted by t',.

Every 2-algebra, A, contains a least sub algebra A' which is finitely
generated by the constants in 2. If A does not contain a proper sub algebra (i.e. A
= A") then A is called a finitely generated algebra [WB82]. Ground terms define a
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special finitely generated X-algebra called the J.-rerm algebra, denoted by Ty, with
the carrier sets T(F); for s € S, functions f: T(F)g, ..., T(F)ss = T(F)s mapping
(ty,...,tn) to the term f(t; ...,ty), for f € F, and a set {r{t,...,tn) | T(t3 ..., 1n) €
T(R)y} for each relation symbol, r € R with type w =31,...,8,.

An interpretation, V,, from T(2, X) into a 2.-algebra A induces a congruence
on the F-terms, =4, called the strong equality of A, defined as follows:
t=at'ifand only if ty =t's
that is the F-terms t and t' are congruent with respect to the algebra A if and only if
either both F-terms are undefined in A or both F-terms are defined in A and their
interpretations are equal.

The definedness of 2.-terms in an algebra A is determined by asseciating a
predicate, called an ok-predicate, with each sort in >, defined over the terms of the
sort as follows:

Da(t) = true if V4(t) is defined, and
DA(t) = false if V(1) is not defined, where t is a term of sort s, and D is the ok-
predicate associated with the sort.

Properties of the objects declared in a 2 -signature are implicitly expressed by
statements, called {gws, in a first-order language of X-terms. Such laws
characterize the behaviour of the functions and relations on the objects by
establishing relationships between them. Well-formed X-laws are defined in
Definition 3.5.

Definition 3.5

Well-formed positive-negative conditional X-laws

A well-formed positive-negative conditional 2-law has the following form :
. (/\'pl...j O-kci(ti)) I (/\i=1...| (Okaj(l.li) A OI(Hj(Vi) Al = Vi)) I (/\i:l...n (okb;(u'i) ~

okpi(v'i) A Ui # Vi) A (Ao Tai(W)) A (Nimp ~Tei(W)) = C,
where t;, W, v, U, V' are F-terms in T, X), ok, ok,; and oky; are ok-predicates,
ai, bi, ci, di, and ei are sorts, and rg;{w)and r'¢;(w"} are R-terms in T(2,X). Cis
either of the form ok(t), z, or x = y, where zis a R-term and t, x, and y are F-terms
in T(3.,X). Cis called the consequence, while the expression to the left of the
implication symbol, =, is called the antecedent of the law. A literal of the form ~r,
where r is a R-term, is called a negared relation (n-relation).
A closed law is a formula having no free variables, while a ground law is one
which has no variables.
Well-formed 2.-laws are assumed to be universally quantified on defined terms

only.
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A Z-algebra, A, satisfies a >-law, C of the form given in Definition 3.5,
denoted by A I= C, if and only if for all interpretations Va:
* okgaltp,1=110], and
o 0Kaia(u) A okyalv) Ay =4 vy, =110, and
o okpia(u'y) A okpia(vi} AUy 24 Vi, i=1ton (ie. vjand v do not have equal
interpretations), and
» Tgi(Ww) € rgia,1=11to o0, and
¢ Ie(wW) € T'eia, 1= 1 top,
implies that oka(t), or x =4 vy, or, for z = r{t), z € ra, depending on the form of the
conseguence.

A formal definition of the structure of a RS can now be given.

Definition 3.6

Positive-negative relational specification (RS)

A positive-negarive relational specification (RS) PR = <2+0K, E> consists of a
signature, 2>+0K, where QK is a set of ok-predicate symbols for each sort in 2,
and a set E of well-formed > -laws.

The class of algebras satisfying the laws of a RS is denoted by Algsz In
presenting the laws of an RS a comma is vsed in place of the symbol A, and the
follewing short form is used:

+ A law u = v, where y are the free variables cccurring in u = v, is the short

form for {(Am..; 0k¢i(t)) A u = v, for example a law f(x1, x2) = g(x3) is the
short form for ok1{x1) A ok2{x2) A ok3(x3) = f(x1, x2) = g(x3), where oki is
the ok-predicate associated with the sort of xi, 1<i<3.

RS laws are derived and presented in a modular fashion, with each non-
constructor and relation symbol, of the RS being associated with a unique set of
laws, called its characterizing set, which characterizes the function or relation.
Characterizing sets are presented so that they are distinguishable: the characterizing
set for a function symbol, f, consists of all laws in which f appears in the
consequence as the outermost symbol on the left hand side of the equality, while the
characterizing set of a relation symbol, r, consists of all the laws in which r appears
as the outermost symbol of the consequence. Example 3.3 has examples of
characterizing sets.

The defined objects of a sort are characterized in an RS by the set of laws
whose consequences have ok-predicate symbols of the sort as the outermost
symbols (the charactenizing set of the ok-predicate),
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Example 3.3

An RS characterizing natural numbers

Natnum =
Signature
sorts nat
constructors
0: — nat
sugcc: nat — nat
auxiliary functicns
_+ : nat, nat — nat
ok-predicates
oknat: nat
relations
< 1 nat, nat

Laws ¥V =x, =1, =2:nat

} - - |

1. oknakt {0}

2. oknat {succ (x) )

Characterizing set for +

3. x+0 = x

4, xl+succ (x2) = succ(xl+xl)
Characterizing set for <

S. O<succ{x) = true

6. x1<x2 = true = succixl)<succ{x2) = true

The modular approach for presenting laws is not enough to control the
complexity in large RSs. Two syntactic concepts which have proved useful in this
respect are hierarchy [WB82] and schemas. The aim is to control complexity by
permitting complex specifications to be built up from simpler and/or generic
specifications.

3.1.2 Hierarchical RSs

A hierarchical RS provides a leveled view of a specification, where each
lower ievel contains RSs that are simpler than those at the higher levels. Thus an
understanding of the RS is based on an understanding of its simpler components.
Hierarchical RSs are defined in Defintion 3.7.

Note that every primitive term is of primitive sort but a term of primitive sort
is not necessarily primitive. A hierarchical RS, HS, based on primitive hierarchical
RSs, HS1, ..., HSn, is presented in the following manner: HS = HS1 + ... + HSn
+ Signature Sig Laws E, where Sig is the signature declaring the non-primitive
sorts and symbols, and E is a set of laws.
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Definition 3.7
Hierarchical RSs

A hierarchical RS BS is a wiple <2, E, {Py,...,P,}>, where the hierarchical RS, P;
(1<i<n), with signature ):pi and a set of laws Eyp;, is contained in HS, 1.e. Zpi is a
subset of 2, and Ey; is a subset of E. P; is called a primitive RS of HS, and HS is
said to be based on the RSs in {Py,...,P,}. A ground term t is called primirive if t
is built solely from symbols declared in the primitive RSs (primitive symbols). A F-
term t' is said to be of primitive sort if T 1s of sort s and s is a sort declared in a
primitive RS (primitive sort).

In order to preserve the algebraic interpretations of primitive RSs within the
context of hierarchical RSs the notion of hierarchy-constraints s used. An algebra
satisfies the hierarchy-constraints if the pnimitive carrier sets are built only by
interpretations on the primitive ground terms [WB&2]. Intuitively, this means that
non-primidve constructors cannot create new objects of a primitive sort.

Definition 3.8

Reducts and hierarchy constraints

Let A be a 2-RS algebra, and let 2 be a sub signature of 2. (i.e. the set of sorts
and symbols of 2 is a subset of the set of sorts and symbols of 2.). The 3" reduct
of A, denoted by AlY/, is the ¥ '-algebra whose carriers, functions and relations are
those of A named in ). The X'-sub algebra of A generated by the relation, and
function symbols in 3, is denoted by <A>v. An algebra A satisfies the hierarchy
constraints with respect to 3 if and only if AlY' = <A>y, that is the ¥'-reduct of
A is a finitely generated algebra.

The above can be extended to hierarchy-constraints with respect to a set of
signatures by considering all hierarchy constraints with respect to the signatures in
the set. For any hierarchical RS <3,, E, {Py,...,Pp}>, the class of all finitely-
generated 2 -algebras which satisfy the hierarchy constraints with respect to { Zpi I
1<i<n}, and the laws of E, is denoted by HAlg(2, E, SP), where SP =
{Pi,...,Pqa}. In Section 3.4 it is shown that a sufficient completeness condition,
derived from an operational interpretation of RSs, ensures the existence of such
algebras.

The hierarchical and modular approach to presenting RS functions determines
a relationship on the function symbols, <y, defined as follows:




Chapter 3: An Algebraic Approach to Specification 81

Definition 3.9

The relation <, on function symbols

For a hierarchical RS, <2, E, SP>, f <, g , where f, g e Z, if and only if:

+ {is a primitive function symbol and g is a non-primitive function symbol; or

+ f1is a constructor and g is a non-constructor at the same level as f; or

» [ and g are function symbols at the same level and f appears as the cutermost
symbol of a sub term in the characterizing set of g, and g does not appear as the
outermost symbol of any sub term in the characterizing set of f,

The above relation is used as part of a syntactic check on the sufficient
completeness property mentioned above, given later in this chapter.

Example 3.4

Characterizing the natural numbers by a hierarchical RS

Setnum=Boolean + Natnum +
Signature
sorts setnum
constructors
@ : = setnum
-—— constant symbol for an empty set -—-

insert : nat, setnum— setnum
--- symbol for the function which adds a natural number to a
set -~

auxiliary functions
isempty : setnum — boolean
--~ symbol for the function which returns the wvalue true if
and only if the set is empty ---

isin : nat, setnum — boolean
~-— sgymbol for the function which returns the wvalue true if
and only if the natural number is in the set ——-

Example 3.4 continued
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Example 3.4 (continued)

Characterizing the natural numbers by 2 hierarchical RS

issubset : setnum, setnum — boclean

—--- symbol for the function which returns the value true if
and only if the leftmost set of the argument is a subset of
the rightmest set ---

-int- , _+ : se&tnum, setnum — set
——— int is the symbol for the function which returns set
which is an intersection of the two sets, and + is the symbol
for the function which returns the union of the two sets ——-
ck-predicate

okset : setnum
Laws Y n,nl,n2:nat; 8,81,s82:setnum
L .
51 isempty (@) = true
s2 isempty{insert{n,s)} = false
L U
53 nl = n2 = isin{nl, insert{n2, s)) = true
34 nl # n2=isin{nl, insert{n?2,s})) = isin{nl, s}
35 isin{n, @) = false
56 issubset (@F,s8) = true
57 isin{n,s2) = true =
issubset {insert {n,sl}),s52) = issubset(sl,s2)
s8 isin{n,s2) = false = issubset {(insert{n,sl),s2}) = false
Laws characterizing +

59 insert{n, sl)+s2 = insert{n, {sl+s2})
510 @+s = s

. .
511 @-int-s = @
312 isin{n,s2) = true =
insert{n,sl)-int-s2 = insert{n, sl-int-s2)
813 4isin(n,s2) = false=>insert(n,sl)-int-s2 = sl-int-s2
: .. |
514 okset (@)
S15 4isin(n,s) = false = okset{insert(n,s})

The non-primitive sort is setnum, representing sets of natural numbers, and the
primitive sorts are the sorts of Boolean and Natnum (i.e. nat for Natnum, and
boolean for Boolean). The symbols isempty, isin, and issubset are
non-primitive symbols of primitive sort boolean.Characterizing sets are preceded
by headings (eg. the characterizing set for —int—1is {S11, 312, 513}). The
following are examples of relations in <p: succ<pf and <<, f, where £ is 2 non-
primitive symbol, isin<yissubset, isin<pisempty, and isin<p—~int-
The following points about the above RS are made briefly here, but will be
extended upon in later sections of this chapter.

« The left hand side of the consequences of each law are of the form f(cl, ..., cn)
where ci (1<i<n) is a constructor term. The form of the laws is in keeping with
the notion of constructors as the only creators of new objects of the sort,
implying that all terms of a sort should be expressible as a constructor term. This
notion is formalized when the model and operational semantics for RSs are
discussed.

» Note that the RS does not contain any iaws expressing the commutativity of the
functions + and —int-. Such laws are left imptlicit in the RS. How such laws
are made explicit is described in Section 3.2
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3.1.3 RS Schemas

Example 3.4 illustrates a RS characterizing the set of natural numbers. A
similar characterization for sets of other objects can be made. Rather than build
separate RSs for each such characterization, the similarity in the structure of the

RSs can be used to derive a generic specification, from which particular RSs can be

generated when provided with parameters. A RS schema is such a generic

specification, and can have one of the following structures:

» PS(P; with {¥1; Li},....Pywith {X; L)) = Primy +...+ Primgy,+ Signature
Sig Laws E, where P; is a RS name, called a paramerer name, ¥; (1<i<n)is a
signature, and L; (1<i<n) is a set of laws, called constraints, Prim; is a primitive
RS, Sig is the signature declaring the non-primitive sorts and symbols, E is a set
of laws. An RS is generated from a schema of the above form by providing an
RS, Parj = <Xy, Epj, SPp; > for each Py, such that 3; is a subset of ¥, and
L;is a subset of Ep;, for 1<i<n. Such RSs are called RS parameters of the
schema. The result is an RS which is the smallest extension of the RS
parameters and the hierarchical specification on the right of the = symbol.

+ PS( Pary, ..., Par, where Paryis {P11,...,Pip], ..., Parnis [Pyy,...,Ppgl) =
Prim; +...+ Prim,+ Signature Sig Laws E, where Par; (1<i<n) is a parameter
name, and Pj; (1<i<n) is a hierarchical RS. This is a more restrictive form of a
schema than the cne given above since only the hierarchical RSs associated with
the parameter names by is can be used as RS parameters for the names. The

result, as in the previous case, is an RS which is the smallest extension of the
RS parameters and the hierarchical specification on the right of the = symbol.

Example 3.5
A RS schema for sets, based on the primitive RS, Boolean, characterizing a two-
valued boolean algebra

Set (Element with {Signature sorts elem}} =Boolean +
Signature
sorts set
constructors
g : — set
insert : elem, set — set
auxiliary functions
isempty : set — booglean
isin : elem, set — boolean
issubset : set, set — booclean
_~int-_, _+ : set, set — set
Laws V e,el,el2:elem; s,s8l,s2:s3et
w ] S .
51 isempty (@) = true
S2 isempty(inserti{e,s)) = false

Example 3.5 continued
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Example 3.5 (continued)
A RS schema for sets, based on the primitive RS, Boolean, characterizing a two-
valued boolean algebra

53 isin{e,insert (e, s}) = true
S4 el # e2 = isin{el,insert{e2,s)) = isin{el,s)
55 isin{e,@d = false
S6 issubset {#,s8) = true
57 isin{e, 52} = true =
issubset {insert{e,sl},s52) = issubset(sl,sZ)
58 isin{e,s2) = false = issubset{insert{e,sl),s2) = false
Laws characterizing 4+
59 insert {e,s5l}+52 = insert(e, (s1+s52))
510 @+s = s
311 @-int-s = @
512 isin{e,s2) = true =
insert(e,sl)-int-s2 = insert{e, sl-int-s52)
513 isinf{e,s2) = false =2 insert{e,sl)—-int-s2 = sl-int-s2
W h A
514 okset {&)
815 isinie,s) = false = okset {insertin, s)}

3.2 Model-theoretic interpretation of RSs

In formulating the laws of a RS, certain information, in the form of assumed
inequalities and equalities between ground constructor terms, and n-relations, is left
implicit. The set of inequations, equations, and n-relations that are left implicit in
RS laws are called assumptions. Of the models which satisfy the laws of an RS,
only those that also satisfy the assumptions of the RS are of interest. Of these
algebras, the finitely generated algebras which satisfy the hierarchy-constraints are
considered as useful semantic models of RSs. Specifically, algebras whose
elements are all generated by constructors only, are desirable, since they provide a
formalization of the intuitive notion of a constructor as the sole creators of objects.

For a hierarchical RS, <2, E, SP>, one is thus interested in the algebras in
HAlg(Y, E, SP) which also satisfy the assumptions. Let o = u+i'+n, where U
represents the inequality assumptions, y' represents the equality assumptions, and
1 represents the n-relation assumptions. My g represents the subclass of algebras
in HAlg(2, E, SP) that also satisfy the assumptions c.. The algebras in My g4 are
called the models of the associated RS.

3.2.1 Equality and inequality assumptions
The approach to specifying inequality and equality assumptions is adapted
from the work of Mohan et al [MS&7]. In their work, inequality assumptions are
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inequalities between all ground constructor terms, that is, 4 = {<x,y> | x =
cl(x1,...,xn); y = c2(y1l,...,yn); cl, c2 € Cg x1,..., xn, yl,..., yn € Tc(F)},
where C;is the set of constructors of sort s, and Te(F) is the set of ground
constructor terms derived from the symbols in F. This approach assumes a sub
language of constructor terms which is 'free’ in the sense that all constructor terms
are assumed distinct.

The approach used here assumes a sub language of defined ground
constructor terms2 which are not all distinct. In such a sub language the constructor
terms are not all distinct, for example, In a specification of sets, not all set
constructor terms should be assumed distinet. In order to determine which ground
constructor terms are equal, and which are distinct, a well-defined mapping, called
a hormalizing function, is associated with each sort of a RS. A normalizing function
for a sort s takes a ground constructor term of sort s and returns a ground
constructor term of sort s, called its normal term.

All normal terms of a sort are considered distinct, This provides the basis for
generating equality and inequality assumptions as follows:

+ ground constructor terms which map into the same normal term are equal, while
« ground constructor terms which map into different normal terms are distinct.
Normalizing functions are defined below.

Definition 3.10

Normalizing functions

For any hierarchical RS, HS = <2, E, SP>, where X=<§, F>, there is associated a
S-indexed family of normalizing functions, N = {N; : Tc(F)s = Tc(F),is e §}. Ng
is a mapping from defined ground constructor terms of sort s to defined ground
constructor terms of sort s, such that for any ground constructor term, ¢(x4,...,Xn),
of sort s, where Xx,,..., x, are defined ground constructor terms (primitive or non-
primitive} of sorts sl,..., sn respectively, N¢(c(xi,....Xp)) =
N{e(Ns{x1)y- . ,Na (X))

Normalizing functions can be based on a total ordering on defined constructor
terms, in which case they simply order the sub terms of their ground constructor
term arguments in order to derive a unigue normal term. An example of a

normalizing functions is given in Example 3.6.

2 All subsequent references to constructor terms in this section are aciually
references to defined constructor terms. Undefined constructor terms are
considered equal.
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Example 3.6

Normalizing functions for sets

Consider two defined constructor terms of sort setnum given in Exampie 3.4:
insert{e,insert(d,insert(f,empty)}) and insert{f,insert{d.insert{e empty})),
where e, d, and f are of sort natnum. They should have equal interpretations in
any model for Setnum, since they represent sets with the same elements, thus they
should be mapped to the same normal term by the normalizing function for the sort
setnum. The ordering < characterized in Natnum can be used as a basis for the
normalizing function for set. Thus, if d<e<f, and a normal term of setnum is
defined as a set of natural numbers in ascending order, the two ground constructor

terms are mapped into the normal term insert(d,insernt(e,insert(f, empty))) by the

normalizing function for setnum.

The equality and inequality assumptions for a RS are made explicit in the
manner defined in Definition 3.1 1.

Definition 3.11

Inequality and equality assumptions

Given a hierarchical RS, <2, E, SP>, where X = <S, F>, the equaliry assumption
ser associated with the RS is the set Q = Wpi+...+lW'pn+l', where Wi+, .. +l'pn is
the union of the equality assumption sets of the primitive RSs Py,...,P, in SP, and
[L' is the union of a family of S-indexed sets consisting of sets l's = {<x,y> | Ng(x)
= N,(y); X, vy € s}, where Nj is the normalizing function for s € S, The inequality
assumption set associated with the RS is the set | = Lpi+...+lpa+U, where
Hpi+...+pn is the union of the inequality assumption sets of the primitive RSs
Py,...,Pnin SP, and U is the union of a S-indexed family of sets consisting of the
sets g = {<x,y> | Ny(x) # Ny(y): X, ¥y € s}, where Nj is the normalizing function

forse S.

To summarize, RSs are formulated partially based on assumptions made on
the equality and inequality of terms in a sub language of ground constructor terms.
To make such assumptions explicit, each RS is associated with a set of normalizing
functions which generate normal rerms. A pair of defined ground constructor terms
which map to the same normal term is called an equality assumption, while a pair of
defined ground constructor terms of the same sort mapping to different normal
terms is called an inequality assumption. The set of all equality (inequality)

assumptions of a RS is called the equality (inequality) assumption set of the RS,
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3.2.2 Negated relation assumptions

N-relation assumptions concern the relationships that must hold amongst
defined ground terms. They are based on an implicit operational interpretation for
relations, where relations on ground terms whose truth cannot be 'deduced' are
false. Deduction is based on an operational semantics for RSs detailed in the next
section. The generation of these assumptions thus depends on the operational
semantics of RSs.

3.3 An operational semantics for RSs

A useful operational semantics, in terms of conditional term rewriting systems
(CTRSs), can be associated with RSs, provided the RSs satisfy certain syntactic
conditions. The operational semantics is useful in the sense that it provides
computationally effective representations of the objects abstractly characterized by
the laws and assumptions of the RS. In this section it is shown that for any RS,
<2, E>, satisfying the syntactic conditions referred to above, rewriting in the
derived CTRS is sound and complete with respect to My E+q where o are the
assumptions associated with the RS. Furthermore, such rewriting determines a
canonical algebra in My g, consisting exactly of the normal terms generated by
the normalizing functions (the "effective representaton”). When such an operational
semantics can be associated with a RS, the canonical algebra is taken as the
semantic model for the RS. Note, however, that if an operational semantics cannot
be associated with the RS, then a model-theoretic interpretation, in terms of
My E+q is not possible, since the n-relation assumptions in o cannot be made
explicit.

The particular type of CTRSs and the sufficient conditions ensuring
soundness and completeness, are detailed in the following sections. Some
preliminary concepts and definitions are introduced here. A more detailed account
of the following definitions, together with an introducton to CTRSs, can be found
in Appendix L

Let T(2., X) be the set of all well-formed terms formed from the symbols in
the signature 2. = <S, F>, and the elements in X {(called variables).

« The function Var takes a term in T(2,, X) and returns the set of variables
occurring in it.

» A substitution, o, is a mapping from X to T(F, X), with 6(x) = x almost
everywhere. A defined substitution is a mapping from X to defined terms in
T(F, X) only. Substitutions are extended to morphisms of T(2,, X) as follows:
o{f(ty,...,tn)) = f(oty,...,Gta).
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+ The relative occurrence (or position) of a sub term in a term is represented by a
sequence of positive integers, where the empty sequence is denoted by A. Let
O(t) denote the set of all sub term occurrences in the term t. The sub term of t at
w, where & is a sequence of positive integers, denoted by tix is defined as
follows:

« Ift=xe X,the O(t) = A, and A = ¢.
» Ift=1f(ty,...,t), then O} = {A}+{ix ] 1<ign, n € OQi)}, tIA =t, and dir
= t;Ix.

+ The replacement of a sub term at an occurrence & in t, by another term ¢, is

denoted by t[m<-t']}.

3.3.1 Relational conditional term rewriting systems (R-CTRSs)

A relational conditional term rewriting system (R-CTRS), that can be
associated with RSs is defined in Definition 3.12,

Normatizing functions and ok-predicates play the same roles in R-CTRSs as
they do in RSs. A RS law can be transformed into a R-CTRS rule if the
consequences of the laws can be oriented and the antecedents satisfy the condidons
on R-CTRS rules given in Definition 3.12.

—r induces a relationship, called a rewrite relation, on the terms in T3, X),
which can be informally described as follows: t rewrites to t', or t—gt' if there is a
rule in the R-CTRS, with a consequence whose left hand side matches a sub term
of t, after suitable substitution, and whose premises hold under the substitutions
resulting from the match, such that t' is the result of replacing the matching sub
term in t by the substituted rhs of the rule. Before a formal definition of rewriting is
given, some notation is introduced.

Rewriting in zero or more steps, or the transitive closure of —p, is denoted
by —*g. If a term t is minimal with respect to =™ {i.e. there is no t' such that
t—rt') then tis called a normal form. The set of all normal forms is denoted by N.
t—o~Ngt if and only if t' is a normal form and t' is called a normal form of t. The
following relationships are derived from —g:

» tIt' if and only if 3 t1 such that t—="gtl and { —"gt1.
« tTt' if and only if 3 t1 such that t1—*gt and t1 = gt
Rewriting in a R-CTRS is formally defined in Definition 3.13.



Chapter 3: An Algebraic Approach to Specification 89

Definition 3.12

Relational conditional term rewritng systems

A relational conditional term rewriting system (R-CTRS) is a triple <2, RR, N>
consisting of:

» asignature, 2, = <8, F, R, OK>, where S is a set of sorts, F is a set of function
symbols, with a special subset of symbols called constructors, R is a set of
relation symbols, and OK is a set of predicate symbols, one each for the sorts in
S, called ok-predicates;

+ aset of rules, RR, of the form
;= Vi, (U 2 Vidictn, @)isto, (7T = C,
where C (called the consequence) is one of the following forms:

(1) an orented pair of F-terms, t—gt), t,t' € T(F, X), where t is called the
left hand side (lhs) and t' is called the right hand side (rhs), such that
(Var(uy), Var(vy))ii..a, (Var(u'y), Var(v') e .o, Var{rir.o, Var(r'ir..p,
Yar(t") are all subsets of Var(t);

(2) an onented pair, ro>rTT, where r € T(R, X), such that {Var(u;),
Var(v;) )i, (Var(u'y), Var(v'y))ei..., Var(riei .o, Var{r';sa..» are ali
subsets of Var(r); or

(3) an onented pair ok(t) —=rTT, where ck € OK and t € T(F, X), such
that (Var(u;), Var(vi))e..,, (Var(u'y), Var(v';))i..», Var(r;)e. o,
Var{r';)=1..p are all subsets of Var(t)

+ a set of partial functions, N, called normalizing functions, which map ground
constructor terms to ground constructor terms. The set contains exactly one
function for each sortin S.

Definition 3.13

Rewrite relation

A ground term t is said to rewrize to a ground term t' under a relational conditional

term rewriting system (R-CTRS), R, denoted by t—gt, if and only if there is a Tule

in T (U; = Vy)ie, (U # Vi)isten, Tyisto, (~T'i}in..p = lhs—grhs in R such that:

Match and replace

+ there exists a defined substitution ¢, and an occurrence & in t such that tix = olhs
and t' = t[m<-orhs],

Convergence of R-terms
. (or;—"RT )y,

Definition 3.13 continued
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Definition 3.13 (continued)

Rewrite relation

Non-convergence of R-terms

« (NOT(or'i>"RTT ..o

Convergence of F-terms

¢ (0kai(ou)—="rTT, 0kai(0V) =" RT Ty and ((Cuzdov;), or (Ou—*Rel,
Gvi—="rc2, and Ny(cl) = Ny(c2); ¢, ¢2 € Te(F)ap))n, » Where Ny, is the

normalizing function for the sort ai, and

Non-convergence of F-terms
»  (Okpi{ouy) > RTT, okpi(ov')—="RT D). and (NOT(ou'd6V' )iy, .o and
(cu'i="rel, oV re2 = Npi(cl) # Nyile2); ¢1, e2 € Te(F)uii=1...n,

where Ny; is the normalizing function for the sort bi.

A ground term t, of sort s, is said to be defined in R, if and only if oks{t})—>"rTT,

where ok i3 the ok-predicate for s.

Note that rewriting under a R-CTRS is defined only on ground terms. It can
be extended to terms with variables by treating the variables as constants in the
rewriting relationship. In such a situation the rewriting relationship is not closed
since t—gt' does not imply ot—grot’ {Kap87]. For this reason, only term rewriting
on ground terms is considered here.

To show the non-convergence of a R-term it is necessary to have a finite
number of reduction steps starting from the R-term. Non-convergence then occurs
when the final term in the reduction sequence is not TT. Similarly, to show the non-
convergence of a pair of F-terms, t and t, it is necessary to have a finite number of
reduction steps starting each from { and t'. Non-convergence then occurs when the
reducts generated by t are all distinct from the reducts generated by t', and for any
ground constructor term reducts ¢l generated by t and ¢2 gencrated by t', the
normal terms corresponding to them are distinct. Thus there may be cases where it
cannot be determined that t—gt in a R-CTRS, R, as illustrated in Example 3.7.
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Example 3.7
Examples of situations where convergence and non-convergence of rewriting
cannot be determined

The example CTRS given below is taken from [MS87]. In the R-CTRS R = {f(x) =
g(y) = hix,y)—c; fla)—>gla); g(a)—f(a)}, it is not possible to conclude that
h(a,b)—c since there is an infinite reduction sequence starting from f(a) thus
reduction from h{a,b) does not terminate. It is not also possible to conclude that
NOT(h(a,b)-—¢) since f(a) and g(b) cannot be shown to converge.

—y is said to be noetherian, or terminating, if and only if there is no infinite
sequence tl—grt2— g ... 2 rtn—>r ... (i.e. when — g is well-founded). An
important property of term rewriting systems is confluence. —p is said to be
confiuent if and only if, Vi,¢ tit' = tTt". In a confluent and terminating CTRS

every term is rewritten to a unique normal form.

3.3.2 Sufficient conditions for termination and confluence of R-
CTRSs

Termination and confluence are properties R-CTRSs need to have in order to
be sound and complete, as is shown later, In what follows, sufficient conditions for
ensuring termination, and confluence are given.

In unconditional term rewriting systems, one-siep rewriting obviously
terminates. This is not the case for CTRSs, since one-step rewriting also involves
recursive calls to the evaluation procedure for evaluating the premises of the rule.
Infinite calls to the evaluating procedure are thus possible. In order to avoid such
infinite calls Kaplan suggests the use of a simplification ordering on terms, which
makes the literals in the antecedents of rules, in some sense, "simpler” than their
consequences [Kap84]. A similar type of ordering, based on the relationship <p on
function symbols, defined in Definition 3.8, is used here. The following
proposition states how such an ordering can be used to check for termination of
rewriting in a R-CTRS.

Proposition 3.1 An R-CTRS, R, is terminating if:
(1) <y is a partial ordering on T(F)
(2) for every rule with consequent f(s)—rhs, every sub term of rhs and every sub
term of the terms appearing in the premises, g(t), is either:
» g<pf, or
» NOT(f<ug), and t«s, where «, is the multi-set ordering on terms based on
<. (See Appendix )
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The proof of Proposition 3.1 can be found in Appendix II.

Example 3.8

An example of termination

The set of rules {O<succ(x) = mue; x<y = rue = succ(x)<succ(y) = rue}, taken
from the RS Natnum in Example 3.3, is terminating since true<y<, and {x,

y }«n{suce(x), succ(y)}

A very strong sufficient condition for confluence is used here, somewhat
similar to the one used in [MS887]. The condition ensures that two rules of a R-
CTRS cannot be simultanecously applied to the same occurrence of a ground term
resuiting in two distinct terms. The severity of the above condition has the
advantage that implementations of R-CTRSs are easier to design since, at any
particular time, the rule to be used for reducing a given ground term is decidable.
Furthermore, as will be seen later, the resiriction provides a useful guideline for
writing R-CTRSs (hence RSs) which are sufficiently complete. The above
condition requires that arguments of the left hand sides of consequences must all be
constructor terms only. This prevents overlaps between non-unifiable left hand
sides. The cendition alse requires that if the left hand sides of two rules are
unifiable and the corresponding instantiated right hand sides are distinct, then the
antecedents of the rules cannot hold simultanecusly. The conditions for confluence
are formally stated below.
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Proposition 3.2 A R-CTRS is confluent if the following conditions hold:

(1) The consequences of a rule must have left hand sides with only constructor
terms as proper sub terms (i.e. a [Ths must be of the form f(cl,...,cn) where
cl,...,cn are constructor terms); and

(2) Let Al = lhsl—prhsi and A2 = lhs2—grhs2, be any tworules ina R
CTRS such that there is a defined substitution, o, which unifies ths1 and lhs2
(i.e. olhsl = olhs2 where = symbolizes syntactic equality). Then either:

« orhsl =, oths2; or

« there exists u#v' € AI+A2 such that cu' and ov' have a common reduct,
or cu'—=*grel, okg'{cl), ov'—*re2, okg'(c2), and Ng'{cl) = Ng'(c2),
where c1 and ¢2 are ground constructor terms of sort §', and Ng' is the
normalizing function for the sort; or

» there exists u = ve Al+A2 such that NOT{(culov), and if cu—*gel,
okg(cl), ov—*Re2, okg(c2), then Ng(cl) # Ng(c2), where cl and c2 are
ground constructor terms of sort s, and Ng is the normalizing function for
the sort; or

+ there exists r € A1+A2 such that NOT(cr—*gTT); or

+ there exists ~r' € A1+A2 such that or »*g TT.

The proof of Proposition 3.2 can be found in Appendix IL

Example 3.9

Example of ground confluence

The RS Natoum, repeated below from Example 3.3, 15 ground confluent since the
left hand sides of each rule contain only constructor terms or variables as proper
sub terms, and at any time only one rule can be applied to a ground term.

Natnum =
Signature
sorts nat
constructors
0: = nat
succ: nat — nat
auxiliary functions
_* ! nat, nat — nat
ok-predicates
acknat: nat
relations
< @ nat, nat

Laws ¥ x, xl1, x2:nat

1. oknat {0}

2. oknat {(succ {x)}

3. *+0D = x

4. xl+succ{x2) = succ{xl+x2)

S. O<succ{x) = true

6. x<y = true = succ{x)<succiy} = true
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3.3.3 Correctness of R-CTRSs

A R-CTRS determines a RS where the normalizing functions of the R-CTRS
become the normalizing functions of the derived RS. The n-relation assumption set,
N, of the RS is defined as follows: 1 = ({ri(tii,...,ta1) VO,
NOT(ori(l1,. .., tni) =" "RTT); (Okj(;)="RTT, tji € T(F)py._.}, Where ok is the ok-
predicate for the sort of the ground constructor term ¢j;. The conditions under which
rewriting in a R-CTRS is sound and complete, with respect to the derived RS, or
COITectness Criteria, are now given.

An R-CTRSs, R, are said to be correct if rewriting with R is sound and
complete in the following sense.

Definition 3.14

Soundness and completeness of rewriting with R-CTRSs

Rewriting with a R-CTRS, R is sound and complete with respect to a set of
assumptions ¢, if the following conditions hold:

s Soundness : for all relational terms r € T(R), rI=*pTT = My piod=r, and for all
F-terms t, t' € T(F), ok(t) and ok(t'} and t—>*gt = My gegl=t =1

+ Completeness : for all relational terms 1 € T(R), My piol=1 =3 r—¥RTT, and for
all F-terms t, t' € T(F), My o= ok(t) = (My gial=t =t' = t— g1,

In general termination and confluence are not sufficient conditions to ensure
the correctness of a R-CTRS. An additional criteria, which supports the intuitive
interpretation of constructors as generators of carrier sets, is that every defined non-
constructor term in a R-CTRS, R, is reducible to a unique defined ground
censtructor term.

Definition 3.15
Sufficient completeness of R-CTRSs

A R-CTRS, R, is said to be sufficiently complete if and only if the following
conditions hold:

+ R is terminating and confluent; and

+ for every non-constructor term, f & T(F), ok(f)=*rTT = f—"*ge, where cis a

constructor term and ok(c)—*RTT.

Proposition 3.3 An R-CTRS is correct if it is sufficiently complete.
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The proof of Proposition 3.3 can be found in Appendix II. A sufficiently
complete R-CTRS generates a canonical algebra in My p.q, Whose carrier sets are
exactly the defined ground constructor terms. A hierarchical RS which can be
rransformed into a sufficiently complete R-CTRS is called a reducing RS, and, has
maodels which reflect its hierarchical structure (i.e. the models satisfy the hierarchy-
constraints) since all defined terms are reducible to ground constructor terms, thus
terms of a primitive sort, s, are reducible to constructor terms of sort s. This means
that non-primitive functions do not create objects of primitive sorts.

3.4 Summary

This chapter detailed a new algebraic specification technique which forms the
cornerstone of the formal framework developed in this thesis. The specifications
generated by the technique are called positive-negative relational conditional
specifications (RSs), since they involve conditional equations with relations,
inequalities, and negated relations {n-refations). Inequalities and n-relations are
provided with operational interpretations, from which a model interpretation can be
derived based on the notion of an assumption. In the model-theoretic sense,
assumptions are equations that are not explicitly stated in the presented form, but
are implicit in the formulation of the RS. Inequality and equality assumptions are
based on a sub language of defined ground constructor termns generated from
normalizing functions associated with the RS, while n-relation assumptions are
derived from the operational interpretation of RSs. Only the algebraic models in
which the RS laws and the assumptions are true, and whose structure matches the
hierarchical structure of the RS (i.e. they satisfy the hierarchy-constraints) are
considered as useful models of a RS. The class of such algebras, for a RS <2, E>,
is denoted by My g4q, where o is the set of assumptions.

The operational semantics is given in terms of a conditional term rewriting
system (CTRS) called a relational CTRS (R-CTRS). Inequalities and n-relations are
interpreted as the non-convergence of the terms involved. The sufficient
completeness condition ensures that rewriting in a R-CTRS is sound and complete.
The algebra of defined ground constructor terms generated by the R-CTRS can be
taken as the model semantics for the RS,



CHAPTER 4

The Picture Level:
Characterizing The Syntactic Aspects
of DFDs

4.0 Introduction

The Piciure Level (PL) is an algebraic theory characterizing the syntactic
aspects of hierarchies of DFDs. The algebraic treatment of the syntactic aspects of
DFDs entails viewing syntactic DFD structures as objects. The obiects capturing the
syntactic aspects of hierarchies of DFDs are called a hierarchical data flow diagrams
(H_DFDs). H_DFDs and their components were introduced in Chapter 2, together
with rules characterizing their structure. Such objects are said to be siructurally
correct.if they satisfy their associated rules. The PL is a formalization of the rules
charactenizing structurally correct objects, stated in Chapter 2.

Specifically, the PL is a {positive-negative) relational specification (RS)
named H_PLapplic, characterizing functions that construct, modify, or carry out
observations on the syntactic objects. The laws of H_PLapplic are formal
expressions of the rules characterizing H_DFDs and their components given in
Chapter 2. The term representation of a syntactic object is called its P L
representation and is taken as the formal textual representation of the object. Such
formal representations, unlike graphical representations, are capable of being
automatically analysed, for example, by term rewriting systems.

In this chapter, the structure of H_PLapplic and its model and operational
semantics are described. Section 4.1 details the building of a RS, called
SimpleApplic, which characterizes the syntactic aspects of flat DEDs. This section
provides the essential flavour of the approach to characterizing the syntactic aspects
of DFDs without the complexity introduced by hierarchies. In Section 4.2,
SimpieApplic is extended to H_PLapplic by incorporating RSs characterizing
hierarchies of data flows and processes into SimpleApplic.

H_PLapplic has an operational semantics in the form of a relational
conditional rewriting system (R-CTRS) which is sufficiently complete (see Chapter
3). The cancnical model generated by the operational interpretation provides the
model semantics for H_PLappiic. The model consists of the PL representations of
structurally correct DFD structures. Section 4.3 describes the operational and model

semantics for H_PLapplic. Section 4.4 discusses the limitations of the PL.

96
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The flat DED at level 1 of the hierarchy of DFEDs representing the library
application shown in Example 2.1 in Chapter 2, is repeated here as Figure 4.1, and
wiil be used for illustration purposes in this chapter.
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Figure 4.1 Level 1 of the hierarchy of DFDs describing the library
applicaton

4.1 Characterizing the syntactic aspects of flat DFDs

The RS characterizing structurally correct flat DFDs is based on primitive RSs
characterizing structurally correct external environments (EEs) and process
structures. In turn, the RS characterizing stoucturally correct EEs is based on a RS
characterizing structurally correct external entities, while the RS characterizing
structurally correct process structures is based on RSs characterizing structurally
correct processes and data stores.

The following RSs are assumed availabie in what follows:
» Boolean : A RS characterizing truth values, with sort boolean, and

constant functions {rue and false, where true = false.

« Flowname: A RS defining a finite set of data flow names of sort flowname.
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+ Set : A RS schema characterizing sets with the functions, insert, _+_
(set union)!, _-diff-_ (set difference), _-int-_ (set intersection),
isempty, isin, and the constant function & (see Example 3.5 in
Chapter 3).

The non-constructors of the RSs used by the PL can be categorized as
observation and auxiliary functions, Observation functions are functions which
return sub structures of their arguments, that is, they carry out observations on the
objects in the arguments. All other functdons are called auxiliary functions.

4.1.1 Characterizing structurally correct flat data flows
The syntactic aspects of data flows are characterized by the RS PLflow,
shown in Figure 4.2. PLflow characterizes the type plilow? whose objects capture
the syntactic aspects of data flows. The single law of the RS states that all plflows
created from defined flownames are defined. For example, the PL representation
of the structurally correct data flow new book in Figure 4.1 1is
mkflow("new_book"), where "new_book" is a structurally correct flowname.
PLflow = Flowname +
Slgnature
sort plflow
constructor
mkflow: fiowname — plfiow
ok-predicate
okflow - plftow

Laws ¥V f:flowname
Fi. okfiow{mkflow(f))

Figure 4.2 The RS characterizing structurally correct data flows

4.1.2 Characterizing structurally correct flat processes

The syntactic aspects of processes are characterized by the RS PLprocess,
shown in Figure 4.3. PLprocess characterizes the type plprocess whose objects
encapsulate the syntactic aspects of processes. The constructor, mkpiprocess,
creates a plprocess from two sets of plflows representing the inputs and outputs of
the process. For example, the PL representation of the process ReturnBook 1n
Figure 4.1 is given in Example 4.1.

The law characterizing the ok-predicate, okproc, formally states the rule that
a process is structurally correct if and only if its sets of inputs and outputs are
disjoint and are both non-empty. The observation functions getpinputs and
getpoutputs respectively return the set of input plflows and the set of output

! _ marks the position of the argument for infix functions
2 the "pl" stands for picture level and indicates that only the syntactic aspects of the data flow is of interest.
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plflows of a plprocess. The effects of these observation functions on the PL

representation of ReturnBook are given in Example 4.1.

PLprocess = Set(PLflow) +
Sighature
sort plprocess
constructor
mkplprocess: set{plflow), set{plflow) — plprocess
observation functions
getpinpuis, getpoutputs: plprocess — set{plflow)
ok-predicate
okproc : plprocess
Laws VvV in,out:set{plflow)
Law ¢char: rizing the ok-predi
PR1. isempty(in-ini-out) = true, isempty(in) = false, isempty(out) = false =
okproc{mkpiprocess{in,out})
Laws char, rizin rvgtion function
PR2. getpinputs{mkplprocess{in,out)) = in
PR3. getpoutputs(mkplprocess{in,out}) = out

Figure 4.3 The RS, PLprocess, characterizing structurally correct
processes

Example 4.1

PL representation for the process ReturnBook

ReturnBook =
mkplprocess{ {mkflow("return_info"), mkflow("return_time"), mkilow{"return_detaii"),
mkflow("ret_borr_list}},
{mkflow("return_message"), mkflow{"ret_updated_book"),
mkflow("ret_updated_borr")})

The effects of the observation functions on RerurnBook are as follows:
getpinputs{ReturnBook} = {mkflow("return_info"), mkilow("return_time"},

mkflow{"return_detaii"), mkilow{"ret_borr_list}}

getpoutputs(P1} = {{mkflow{"return_message"}, mkflow{"ret_updated_book"),
mkflow{"ret_updated_borr")}
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4.1.3 Characterizing structurally correct flat external entities and data
stores

The syntactic aspects of external entities and data stores are characterized by
the RSs PLentity and PLstore shown in Figure 4.4 and Figure 4.5. PLentity
characterizes the type plentity whose objects encapsulate the syniactic aspects of
external entities, while PLstore characterizes the type pistore whose objects
encapsulate the syntactic aspects of data stores. The constructors of these types
create objects consisting of a set of input plflows and a set of output piflows
respectively representing the inputs and outputs of the corresponding external
entities and data stores. Like PLprocess, both PLentity and PLstore have
observation functions which return the input plflows and output plflows of
plentities and plstores. Example 4.2 gives the PL representations for the external
entity clock and the data store BOCK.

The laws characterizing the ok-predicates for the PLentity and PLstore
classes formally state the rules characterizing structurally correct external entities
and data stores given in Chapter 2. These rules are repeated below.

F1l. A structurally correct data store has a non-empty set of inputs or a non-empty
set of outputs. Its set of inputs and set of outputs are also disjoint.

F7. A structurally correct external entity has a non-empty set of inputs or 2 non-
empty set of outputs. Its set of inputs and the set of outputs are also disjoint.

F1 is expressed by the laws EE1 and EE2, while F7 is expressed by the laws
DS1 and DS2.

PLentity = Set{PLflow) +
Signature
sort plentity
constructor
mkplentity: set{piflow), set{plflow) — plentity
observation functions
geteinpuis, getecutputs: plentity — set{pifiow)
ok-predicate
okentity : plentity
Laws ¥V in,out:set(pifiow)
ws char rizing the ol i
EE1. isempty{in-int-out) = true, isempty{in) = false = okproc{mkplentity{in,cut})
EE2. isempty(in-int-out} = frue, isempty{out} = false = okproc{mkplentity(in,out))
ws char: izin nvati i
EE3. geteinputs{mkplentity(in,out}) = in
EE4. geteoutputs{mkpientity{in,out)} = cut

Figure 4.4 The RS PLentity characterizing structurally correct external entities
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PlLstore = Set{PLflow) +
Signature
sort pistore
constructor
mkplstore: set{pliiow), setipllow) — plstore
observation functions
getsinputs, getsoutputs: plstore — set{plfiow)
ok-predicate
okstore : plstore
Laws ¥ in,out:set{plilow)
Law characierizing the ok-predicate
D31, isempty{in-int-out), isempty(in} = false = okproc{mkplstore{in,out))
D82, isempiy(in-int-out), isempty(out) = false = okproc(mkplstore{in,out})
Laws characterizing the ebservation functions
DS3. getsinputs(imkplstore(in,out)) = in
DS4. getsoutputs{mkplstore(in,out)) = out

Figure 4.5 The RS PLstore characterizing structurally correct data stores

Example 4.2
PL representations for clock and BOOK

clock =

mkpientity(@, {mkfiow("update_time"}, mkfiow{"checkout_time"),
mkflow("return_time"}})

book =
mkpistore( {mkilow{"new_book_rec"], mkilow{"out_updated_book"),
mkflow("ret_updated_book"}}
{mkflow("copy# list"), mkflow("deleted_book"), mkilow("out_book"),
mkflow{"return_detail"}})

4.1.4 Characterizing structuraily correct process structures

Process structures are characterized by the RS Struct, shown in Figure 4.6.
The objects of sort struct are process structures, and are built using three
constructors: initstruct builds the simplest process structure consisting of exactly
one plprocess; mkstruct1 builds a new process structure by adding a plprocess to a
given process structure; and mkstruct? builds a new process siructure by adding a
plstore to a given process smructure. An example of the PL representation of a
process structure is given in Example 4.3.

The laws, ST1, ST2, and ST3, characterizing the ok-predicate okstruct, are
formal expressions of the rules governing the construction of structurally correct
process structures given in Chapter 2 and repeated below:
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F3.

F4.

F5.

F6.

A structurally correct process structure has at least one process. All processes
in a structurally correct process structure are structurally cormrect and are
uniquely identified by their inputs and outputs.

All data stores in a structurally correct process structure are structurally
correct. All the inputs of a data store in a structurally correct process structure
are also outputs of processes in the process structure, and all the outputs of a
data store are also inputs of processes in the process structure. Furthermore,
the set of data flows (inputs and outputs} of a data store in a structurally
cotrect process structure is disjoint from the set of data flows of any other
data store in the process structure. Data stores in a structurally correct process
structure are uniquely identified by their inputs and outputs.

An output of a process in a structurally correct process structure 1s either
associated with another process and/or data store in the process structure as
an input, or is not associated with any process or data store in the process
structure. An input of a process in a structurally correct process structure, on
the other hand, may be associated with more than one process andfor data
StoTe in a process structure as an input.

A net or boundary inputs of a smucturally correct process structure is an input
associated with processes and data stores in the process structure that is not
an cutput of process or data store in the process structure. A structurally
correct process structure has at least one net input.

The observation functions getinflows and getouttiows return the set of

inputs and the set of outputs, respectively, in a process structure, while

getininterface returns the set of net inputs of a process smucture. The function

getprocs returus the set of plprocesses in a process structure, while getstores

returns the set of plstores in a process structure. Examples of the application of the

observaton functions on a process structure are given in Example 4.3.
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Struct utilizes two RSs, characterizing sets of processes and data stores,
which are the resuits of instantiations of an RS schema, PLset shown in Figure
4.6. PLset extends the RS schema, Set, with functions which return the set of all
inputs, cutputs, and names of the parameter where the parameter is restricted to
being one of PLentity, PLstore, and PLprocess.

PLset{Set{PLelem) where PlLelem is [PLentity, PLstore, PLprocess]) =
Signature
observation functions
getallinputs, getalloutputs: set{plelem) — set{piflow)
Laws Vv e:plelem; se:set(plelem)
S51. getalioutpuis{insert(e,se})) = getoutputs{e}+getalloutputs(se)
52. getalloutputs{@) = &
33. getallinputs{inseri({e,se})) = getinputs(e)+getallinputs{se)
S4. getaliinputs(@) =9

Struct = PLset{PLprocess) + PLset(PLstore) +
Signature
sort struct
constructors
initstruct: plprocess — struct
mkstruct1: piprocess, struct — struct
mkstruct2: plstore, struct — struct
observation functions
getinflows, getoutflows, getininterface: struct — set{plilow)
getprocs : struct — set{plprocess)
getstores: siruct — sei{plsiore}
ok-predicate
okstruct : struct
Laws Vv p,p1:plprocess; ds:plstore; st:struct
ws char rizing the ok-predi

ST1. okstruct({initstruct(p)}

8T2. isempty(getpoutputs(p}-int-getouifiows{st}) = true =
okstruct{mkstruct1{p,st})

8T3. isempty({getsoutputs{ds)-int-getoutflows(st)) = true,

issubset{getsinputs({ds),getoutfiows(st)) = true,
issubset{getsoutputs{ds) getinflows{st}} = true =
okstruct{mkstruct1(ds,st))

Laws characterizing the observation fungtions:

gelprocs, getstores

ST4. geiprocs(initstruct(p)) = insert{p,V)

ST5. getstores(initstruct{p}) = ©

STs. getprocsimkstructt{p1,st)) = pi+getprocs(st)

ST7. getprocs{mikstruct2(ds,st)) = getprocs{s?)

ST8. getstores{mkstruct1{p1,st)} = geistores(st)

ST9. getstores{mkstruct2(ds,st}) = ds+getstores{st)

getoutfiows, getinflows

S5T10.  getoutflows(mkstruct1{p1,st)) = getpoutpuis{p1)+getoutfiows{st)

ST11. geloutflows{mkstruct2(ds,st)) = getsoutputs{ds)+getoutflows{st)

8Ti12.  getoutfiows(initstruci{p)) = getpoutputs{p)

ST13.  getinflows{mkstruct1{p,st)) = getpinputs(p)+getinflows(st)

5T14. getinflows{mkstruct2{ds,st)) = getsinputs{ds)+getinflows(st)

5T15.  getinflows(initstruct(p)) = getpinputs{p)

getinintedace

STi6.  getininterface{st} = getinflows{st)-diff-getouflows(st)

Figure 4.6 The RS characterizing structuraily correct process structures
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Example 4.3
The PL representation of the process struct for the level 1 DED of the library
application

To enhance readability the constructors associated with plflows will be left implicit,

for example, new_book = mkflow("new_boak ™).

The names of the PL representations for the processes are as follows:

AddCopy = mkplprocess{{new_boaok, copy#_list}, {[new_book_rec})

DeleteCopy = mkplprocess{{delete_book, deleted book}, {delete_message})

ReturnBook = mkplprocess{{return_info, return_time,, ret_borr_list, return_detail},
{ret_updated_boak, ret_updated_baorr, return_message})

CheckoutBoek = mkpiprocess{{out_borr, checkout_infe, checkout_time, out_book},
{checkoui_message, out_updated_borr, out_updated_book})

UpdateBorrStatus = mkplprocess{{borr_updatie_info, update_time, borr_detail},
{updated_borr_detail, update_status})

DeleteBorrower = mkplprocess({de! borr, deleted_borr}, {del_borr_mess})

AddBorrower = mkplprocess{{new_borr, other_borr}, {new_borr_rec, add_message}}

The names of the PL representations for the data stores are as follows:

book = mkplstore({new_book_rec, out_updated_book, ret_updated_book}, {copy# list,
deleted_book, out_book, return_detail})

borrower = mkplstore{fret_updated_borr, new_borr_rec, updated bosr_detail,
out_updated_borr}, {ret_borr_list, other_borr, deleted_borr,
borr_detail, out_borr})

Example 4.3 continued
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Example 4.3 (continued)
The PL representation of the process struct for the level 1 DFD of the library
application

The PL representation, PSiib, for the process structure of the level 1 library DFD
is:
PSlib = mkstruct2{book, mkstruct2(borrower, mkstruct1{AddCopy,
mkstruct1{DeleteCopy,
mkstruct1{ReturnBook, mkstruct1(CheckoutBook, mkstruct1{UpdateBorrSiatus,
mkstructi{AddBorrower, initstruct{DeleteBorrower 1NN

The effects of the observadon functions on PSlib are as follows:
getinflows{PSlib) = {new_book, copy# list, delete_book, deleted_book, return_info,
return_time,, ret_borr_list, return_detail, out_borr, checkout_info,
chieckout_time, out_book, borr_update_info, updaie_time,
porr_detail, del_borr, deleted_borr, new_borr, other_borr,
new_book_rec, out_updated_book, ret_updated_book,
ret_updated_borr, new_borr_rec, updated_borr_detai,
out_updated_borr }
getinflows(PSlib) = { new_book_rec, delete_message,
ret_updated_book, ret_updated_borr,
return_message, checkout_message, out_updated_borr,
out_undated_book, updated_borr_detail, update_status,
del_borr_mess, new_borr_rec, add_message, copy#_list,
deleted_book, out_book, return_detail, ret_borr_list, other borr,
geleted _borr, borr_deiail, out_borr}
getininterface(PSlib) = {new_book, delete_book, return_info,
return_time, checkout_time,
update_time, del_borr, new_borr, checkout_info, borr_update_info}
getprocs(PSlib) = {AddCopy, DeleteCopy, ReturnBook,
CheckoutBook, UpdateBorrStatus,
AddBorrower, DeleieBorrower}

| getstores(PSlib) = {book, borrower}
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4.1.5 The RS characterizing structurally correct flat DFDs
The RS, SimpleAppilic, characterizing structurally correct flat DFDs is based

on the RSs characterizing process structures, Struct, and sets of external entities,

PLset(PLentity), as is shown in Figure 4.7. The objects of type plapplic,

characterized by SimpleApplic, encapsulate the syniactic aspects of flat DFDs, and

are built, via the constructor mkapplic, from a struct (process structure) and a set
of plentities (the EE).

The rule F10 characterizing structurally correct flat DFDs given in Chapter 2
is repeated below, and is formally expressed by the laws of SimpleApplic.
Example 4.4 gives the PL representation of the DFD in Figure 4.1. Tt is easily
verified that it is structurally correct.

A flat DFD consists of a structurally correct process structure and a structurally

correct EE (possibly empty) satisfying the following rule:

F10. The set of ali outputs in the EE is equal to the set of the net inputs of the
process structure, while the set of all inputs in the EE is a subset of the set of
all outputs in the process structure. For a DFD with a non-empty EE, the
result is that each data flow in the DFD is associated with a unique generator,
and a non-empty set of receivers.

SimpleApplic = Struct + PLset{PLentity) +
Signature
sort piapplic
constructor
mkapplic: struct, set{plentity} — plappiic
ok-predicate
okapplic : plapplic — boclean
Laws: V se:set{plentity); st:struct
Al isempty{se} = false, isempty(getallinputs(se)-int-getallouipuis(se)) = true,
getalloutputs{se) = getininterface(st), issubset{getallinputs{se},
getouttiows{st)) = okapplic{mkapplic{st,se}}
A2, isempty(se) = true = okapplic{mkapplic{st,se})

Figure 4.7 The RS SimpleApplic characterizing non-hierarchical DFDs
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Example 4.4
The PL representation of the DED at level 1 of the library DED

The PL representations of the external entities in the EE are:
staff = mkplentity{{delete_message, return_message,
checkout_message, update_status,
del_borr_mess, add_message},
{return_info, delete_book, checkout_info,
borr_update_info, del_borr,
new_book, new_borr})

clock = mkplentity(@, {update_time, checkout_time, return_time})

The PL representation for the DED is:
Lib = mkapplic{PSlib, {staff, clock})

4.2 Characterizing the syntactic aspects of hierarchical

DFDs (H_DFDs)

In this section, the RS SimpleApplic is modified to a RS characterizing
syntactically correct H_DFDs, called H_PLapplic. The modifications concern the
characterization of the hierarchical structures of data flows and processes ignored in
SimpieAppiic.

4.2.1 Characterizing structurally correct hierarchical data flows

Decomposition of data flows results in the revelation of their component data
flows, as described in Chapter 2. Tree structures of data flows result from the
successive decompositions of data flows. Hierarchical data flows encapsulate the
syntactic aspects of such structures, and are formally characterized by the RS
Flowstruct shown in Figure 4.8. The objects of type flowstruct characterized by
Flowstruct are hierarchical data flows. Such objects are built up using three
constructors: Nilfstruct, _+_, and _|_. Nilfstruct and _|_ create objects of type
fstruct, which, intuitively, are lists of hierarchical dats flow, where Niifsiruct
corresponds to an empty list. _+_ creates objects of type flowstruct from a
flowname and a fstruct representing the child decomposition set of the hierarchical
data flow. An example of the PL. representation for a hierarchical data flow is given
in Example 4.5,

In Chapter 2 structurally correct hierarchical data flows were characterized by
a single rule:

+ Each sub data flow of a structurally correct hierarchical data flow is unique.
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Flowstruct = Set{Flowname)} +
sors fstruct, flowstruct
constructors
Nilfstruct: — fstruct
_»_: flowname, fstruct— flowstruct
_I :flowstruct, fstruct— fstruct
observation functions
getfstruct: flowstruct— fstruct
getilow: flowstruct— flowname
flat: istruct— set{flowname)
ok-predicates
okfstruct: fstruct
okflowstruct: flowstruct
Laws ds:fstruct; d:flowstruct: f:flowname
Laws char rizing th rvation function
D1. getfstruct{f-ds) = ds
D2. getflow(f«ds) =1
03. flat{Nilfstruct) = ©
D4, flat(d|ds) = insert{getflow(d} flat(getistruct(d)))+flat{ds)

har rizin f
D5. okistruct{Nilfstruct)
D6, isempty{inseri{getfiow(d) flat{getistruci(d)))-int-flat(ds)) = true = okistruct(d|ds)

Laws ¢har rizing okflowstr
D7. isin{f, flat{ds)) = false = okflowstruct{f-ds)

Figure 4.8 The RS Flowstruct characterizing structurally correct hierarchical data
flows

The laws defining the ok-predicates for fstruct and flowstruct, D5 to D7, are
formal expressions of the above rule for structural correctness. The following
observation functions are used to express these laws:

« getfstruct: Returns the child decomposition set of a hierarchical data flow.
« getflow: Retrns the flowname of a hierarchical data flow.
« flat: Returns the set of all sub data flows in a hierarchical data flow.

Law D35 states that an empty fstruct object is structurally correct, while D6
states that a non-empty fstruct 1s structurally correct if the flow names are all
unique. D7 states that a flowstruct (hierarchical data flow) is structurally correct if
its fstruct is structurally correct and the flowname of the flowstruct is not repeated
in the fstruct.
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Example 4.5

PL representation of the hierarchical data flow checkout info

checkout info

boaok_id borr id

copy# ISBN#

The PL representation for hierarchical depicted above is:
checkoutinfo = checkout_infos{
(book_ids(
{copy#=Nilfstruct)|
(ISBN-Nilfstruct))|
Nitfstruct))|
{borr_id=Nilfstruct)|
Niifstruct)

The effects of the observation functions on ¢heckoutinfo are given below:

getflowi{checkoutinfo} = checkout_info

getistruct{checkoutinfo} =
(book_id«{copy#-Nilistruct)|(ISBN=Nilfstruct)|Nilfstruct)|{borr_id-Nilfstruct)|
Nilfstruct)

flat{getfstruct{checkoutinto)) = {book_id, copy#, ISBN, borr_id}

In order to characterize the syntactic aspects of external entities, data stores,
and (hierarchical) processes associated with hierarchical data flows, additional
functions on flowstructs and sorts based on flowsiructs are needed. The additional
functions and sorts are provided by a RS named ExtFlowstruct shown in Figure
4.9.

The sorts ininterface, and outinterface, introduced by ExtFlowstruct are
types whose objects are of the form <df, {fl,...,fn}>, where df is a flowstruct,




Chapter 4: The Picture Level 110

called the paren: flow, and f1,...,fn are flowstructs called descendant flows. These

objects are used later, in the characterization of hierarchical processes, to relate the

inputs and outputs of hierarchical processes to the decomposed flows in their

bodies. An ininterface represents the partial decomposition relationship between an

input (represented by the parent flow) of a hierarchical process and its

decomposition set (whose clements are represented by the descendant flows). An

outinterface represents the full decomposition relationship between an output

(represented by the parent flow) of a hierarchical process and its decomposition set

(whose elements are represented by the descendant flows). The relation |, in

ExtFlowstruct, represents the "is a full decomposition set of"” relationship between

a hierarchical data flow and a set of hierarchical data flows, and is defined by law

E7. The definitions of full and partial decomposition sets given in Chapter 2 are

repeated below:

A full decomposition set, F, of a hierarchical data flow D, is a set of sub

hierarchical data flows of D satisfying the following conditions:

1. no two hierarchical data flows in F have common sub data flows; and

2.  the set of all the primitive data flows in the hierarchical data flows in F is

equal to the set of primitive data flows in D.
A partial decomposition set of a hierarchical data flow is simply a subset of its sub
hierarchical data flows.
The following auxiliary and observation functions are also defined in

ExtFlowstruct:

» getleaves: Returns the set of primitive data flows of a set of hierarchical
data flows.

- getflowstructs:  Returns the child decomposition set of a hierarchical data
flow.

+ getsubstructs:  Returns the set of all sub hierarchical data flows in a
hierarchical data flow.

« disting: Returns the value true if a set of hierarchical data flows is a
distinguished set, else it returns the value false.

« getinrhs: Returns the set of descendant flows of an ininterface.

s getoutrhs: Retums the set of descendant flows of an outinterface.

» getinihs: Returns the parent flow of an ininterface.

+ getoutlhs: Retums the parent flow of an outinterface.

« getaliflows: Returns the set of all sub data flows in a set of hierarchical

data flows.
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ExiFlowstruct = Set(Flowstruct) +
Signature
sors ininterface, outinterface
construciors
mkin: flowstruct, set({flowstruct) — ininterface
mkout: flowstruct, set(flowstruct} — outinterface
relations
U: flowstruct, set(flowstruct)
observation functions
getinrhs: ininterface — set(flowstruct)
getouirhs: outinterface — sei{flowstruct)
getinlhs: ininterface — flowstruct
getoutlhs: outinierlace — flowsiruct
auxiliary functions
getleaves, getallflows : set{flowstruct) — set(flowname)
getflowstrucis ; fstruclt — set{flowstruct)
getsubstrucis: set(flowstruct) — set{flowstruct)
disting: set{flowstruct)— bootean
ok-predicates
okin: ininterface
okout: outinterface
Laws d,d1:flowstruct; ds,ds':fstruct; sd:set{flowstruct); f:piflow
Laws characterizing getleaves
Ei. getleaves(@)=0
E2. getleaves{inser{{f-Niifstruct},sd}) =
insert(f,getleaves{getflowstrucis{ds)}+getleaves{sd))
£3. ds: Niffstrucl=
getleaves{insert{f-ds,sd}) = getleaves(getilowstrucis{ds))+getleaves(sd)
Laws characterizing getflowstructs
E4. getfiowstructs{dids) = insert(d, getflowstructs{ds))
E5. getflowstructs{Nilistruct} = @
ws ¢char rizin r
EB. getsubstructs{inseri(f-ds,sd) =
insert{f-ds,getsubstructs{getflowstructs{ds}))+getsubsiructs(sd)
Laws charagterizing 4
E7. disting(sd), getleaves(getilowsiructs{ds))} = getleaves(sd) = f+dsllsd
Laws char. rizi k-predi K ng_okin
ES. dlUsd = okout{mkout{d,sd))
ES. issubset{sd,getsubstructs(insert{d,@))) = true = okin{mkin{d,sd))
Laws characierizing getinrhs, getoutrhs, getinihs, and getouilhs
E£10. getinrhs{mkin(d,sd)) = sd
Et1. getoutrhs{mkout(d,ds)} = getfiowstructs(ds)
Ei2. getinlhs{mkin{d,sd)) =d
E13. getouilhs{mkoui{d,ds)) = d
Laws char rizi Hflow
Ei4. getalliflows{insert{f-ds, sd)) = inseri(f, flat(ds))+getalflows(sd)
E15. getaliflows(@) = @
Laws characterizing disting
Ei6. isempty(inseri(f, fiat{ds))-int-getaliflows(sd)) = true =
disting{insen{f~ds,sd}) = disting(sd)
E17. isempty(insert(f, flat{ds)}-int-getallfiows(sd)) = false =
disting{inseri{f-ds,sd)) = false
E18. disting{) = true

Figure 4.9 The RS ExiFlowstruct characterizing additional sorts and functions

associated with the use of hierarchical data flows

The modified RSs characterizing the syntactic aspects of external entities and

data stores with hierarchical inputs and outputs are given in Figure 4.10. The laws
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of these RSs are formal expressions of the rules for hierarchical external entities and

data stores given in Chapter 2 and repeated below.

Pl. A structurally correct (hierarchical) data store has a non-empty set of
hierarchical inputs or a non-empty set of hierarchical outputs. The union of
inputs and outputs of a data store is a distinguished set.

H1. A structurally correct external entity has a non-empty set of inputs or a non-
empty set of outputs. The union of inputs and outputs of an external entity is
a distinguished set.

H_PLentity = Set{Flowstruct} +
Signature
sorts hplentity
constructor
mkhplentity: set{flowstruct), set{flowstruct) — hplentity
observation functions
geteinputs, geteoutputs: hplentity — set(flowstruct)
ok-predicate
okhplentity: hplentity
Laws V¥ in, out:set(flowstruct)
1. disting{in+out) = true, isempty{in) = false = okhplentity(mkhplentity{in, out))
2. disting{in+out) = true, isempty{out} = false = okhplentity(mkhplentity(in, out})
3. geteinputs{mkhplentity({in, out)) = i
4. geteoutputs{mkhplentity(in, out)) = out

Set_HPLentity = Set{(H_PLentity) +
Sighature
observation functions
getalleinputs, getalieoutputs: set{hplentity) — set{flowstruct)
Laws ¥ he:hpientity; se: set(hplentity)
1. getalleinpuis{he, se} = geteinpuis(he)+getalleinpuis(se)
2. getalleoutputs(he, se) = geteoutputs{he)+getalleoutputs(se)

H_Plstore = Set(Flowstruct) +
Signature
sorts hpistore
constructor
mkhpistore: set(flowstruct}, set{flowstruct) — hplstore
observation functions
geteinputs, geteoutputs: hpistore— set{flowstruct)
ok-predicate
okhplstore: hplstore
Laws V¥ in, out:set(flowstruct)
1. disting{in+out) = true, isempty(in) = false = okhplstore(mkhp!store(in, out))
2. disting{in+out) = true, isempty(out) = false = okhplentity{mkhplstore(in, out})
3. geteinputs{mkhplstore(in, out}) = in
4. geteoutputs{mkhplstore{in, out}) =

Figure 4.10 The RSs characterizing external entities and data stores with
hierarchical inputs and outputs
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4.2.2 Characterizing structurally correct hierarchical processes
Hierarchical processes encapsulate the syntactic aspects of process hierarchies

resulting from successive process decompositions. from Chapter 2, a hierarchical

process consists of a body, a set of inputs and a set of outputs. The body of a

hierarchical process is a structure of (sub) hierarchical processes and data stores.

The RS characterizing hierarchical processes Procsiruct is shown in Figure 4.11.

Hierarchical processes are objects of type procstruct, and are associated with four

constructors: Nilstruct, mkstruct, mkpstructi, and mkpstruct2. Nilstruct,

mkpstruct?, and mkpstruct2 create objects of type pstruct which are bodies of
hierarchical processes. Nilstruct creates an empty body, mkpstruct1 creates a new
body from a given body by adding a hierarchical process to the body, and
mkpstruct2 creates a new body from a given body by adding a data store to it. The
constructor mkstruct builds a hierarchical process given a pstruct {a body), a set of
ininterfaces, and a set of outinterfaces. The ininterfaces and the outinterfaces
explicitly state the relationships between the inputs and outputs of a hierarchical
process and its internal data flows.

The rules characterizing structurally correct hierarchical processes given in

Chapter 2 are repeated below:

P2. A structurally correct body is either empty or contains at least one structurally
correct (sub) hierarchical process. All data stores in a body are structurally
correct.

P3. No two hierarchical processes in a structurally correct body must have
common sub processes.

P4. The set of all data store inputs in a structurally correct body is a subset of the
internal output set of the body, and the set of all data store outputs is a subset
of the internal input set of the body. Furthermore, the receiver of a
hierarchical data flow whose generator is a data store is never a data store.

P5. Each hierarchical data flow in the internal output set has a unique generator in
the body. The internal output set of a structurally correct body is a
disunguished set.

P6. There is at least one net input in a non-empty structurally correct body.

P7. The set of inputs and the set of outputs of a structurally correct hierarchical
process are both non-empty. Furthermore, the union of the inputs and the
outputs of a hierarchical process is a disanguished set.

P8. The body of a structurally correct hierarchical process is structurally correct.
In a structurally correct hierarchical process with a non-empty body, an input
corresponds to a subset of the net inputs in the body, called its decomposition

set, which is a partial decomposition set of the input. The decomposition sets
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of any two hierarchical data flows in the input interface are disjoint, and the

union of the decomposition sets associated with the inputs of the hierarchical

process is exactly the set of the net inputs of the body.

P9. For a structurally correct hierarchical process with a non-empty body, an
output corresponds to a subset of the internal output set, called its
decomposition set, which is a full decomposition set of the output. The
decomposition sets of any two outputs is disjoint. If a hierarchical data flow
in the internal output set of the body of a structurally correct hierarchical
process is not in any decomposition set then it is directed towards hierarchical
processes in the body.

Laws PS1 to PS3 express the rules P2 to P6 given above, where law PS1
states that an empty body is structurally correct, and law PS2 states that a
structurally correct hierarchical process can only be added to a structurally correct
body if:

+ the outputs of all the sub processes and sub data stores of the hierarchical
process are not also outputs in the body or outputs of sub processes and data
stores of the hierarchical processes in the body; and

+ the data flows generated by the sub processes of the hierarchical process which
are not also outputs of the hierarchical process, are not sub data flows of the net
inputs of the body.

Law PS3 states that a structurally correct data store can only be added to a
structurally correct body if the data store is not already in the body, nor in the
hierarchical processes of the body, and if the inputs of the data store are also
outputs of hierarchical processes in the body, and outputs of the data store are also
inputs of hierarchical processes in the body.

Laws PS4 and PS5 express the rules characterizing structurally correct
hierarchical processes, where law PS4 states that a hierarchical process with an
empty body (a primitive process) is structurally correct, and law PS5 expresses the
rule characterizing swucturally correct hierarchical processes with non-empty
bodies.

The observation functions of Procstruct are informally described below:

+ getinflows : Returns the set of all inputs in a body.

« getoutflows : Returns the set of all outputs in a body.

« getnetinputs  : Returns the net inputs of a body.

+ geistores : Returns the set of data stores in a process structure.

+ getinslhs : Returns the set of parent flows in a set of ininterfaces.

+ getinsrhs : Returns the set of descendant flows in a set of ininterfaces.

» getoutslhs . Returns the set of parent flows in a set of outinterfaces.
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- getoutsrhs : Returns the set of descendant flows in a set of outinterfaces.

s getinputs : Returns the set of inputs of a hierarchical process (the parent
flows of the ininterfaces of the hierarchical process).

+ getoutputs : Returns the set of outputs of a hierarchical process (the parent
flows of the outinterfaces of the hierarchical process).

« getalloutflows : Returns the set of flownames of all the outputs in the
hierarchical processes of a body. In concrete terms, the
function retumns all the outputs of processes in the process
tree representations of the hierarchical processes in a body.

Example 4.6 is an example of the PL representation of a structurally correct
hierarchical process, and the effects of the observation functions on it.

Procstruct = ExtFlowstruct + H_PLstore +
Signature
sorts procstruct, pstruct
constructors
Nilstruct; — pstruct
mkstruct: set{ininterface), set{outinterlace), pstruct — procstruct
mkpstruct!: procstruct, pstruct — pstruct
mkpstruct2: hplstore, pstruct — pstruct
observation functions
getinflows, getoutflows, getnetinputs: pstruct — set{flowstruct)
getstores: pstruct — set(plstore)
getoutputs, getinputs: procstruct — set{flowstruct)
getinslhs, getinsrhs: set(ininterface} — set{flowstruct)
getoutsihs,getoutsrhs: set{outintarface) — set{flowstruct)
getalloutilows : pstruct — set(flowname)
ok-predicate
okpstruct : pstruct — boolean
okproestruct: proestruct —» boolean
lLaws ¥V p:procstruct; st,sp:pstruct; ds:plstore; in, i1:set(ininterface);
out,01:set(outinterface); n:prochame

W rizj kpstr
PS1. okpstruct{Nilstruct)
Ps2. isempty{getalloutilows{st)-int-

{getaliflows(getoutslhs{out})+getalloutilows(sp))) = true,
isempty{getnetinputs(st)-int-(getalloutflows(sp)-difi-
getaliflows{getoutsihs{out)})} = true = okpstruct{mkpstructt{mkstruct(in,
out, sp), st))

PS3. isempty(getalioutflows{st)-int-getsoutputs(ds)) = true,
issubset{getsinputs{ds),getoutflows(st)) = true,
issubset{getsoutpuis(ds) getinflows(st)) = frue =
okpstruct(mkpstruct2{ds,st)}

Laws characterizing okprogstruct

PS4. isempty(getinsihs(in)) = false, isempty(getoutslhs(out)) = false,
disting(getinslhs{in}+getouisihs{out}) = true, getinsrhs{in} = &,
getoutsrhs{out) = @ = okprocstruct{mkstruct{in,out,Nilstruct))

PS5, sp = Nilstruct, isempty(getinsths{in}) = {alse, isempty{getoutslhs{out}) =
false, disting(getinsihs(in)+getoutslhs{out)) = true, getinsrhs{in) =
getnetinputs{sp), issubset{getoutsrhs{out) getoutflows(sp}) = true =
okprocstruct{mkstruct{in,out,sp})

Laws characterzing getstores
PS8E. getstoresiNilstruct) = @
PS7. getstores{mkstruct1{mkstruct{n,in,out,sp),st)) =

geisiores({sp+getstores(st))
PS8. getstores(mkstruct2{ds,st)) = ds+getstores(st)



Chapter 4: The Picture Level 116

ws char. rizi insrh insth Ihg, an rh
PS9. getinsths{insert{i1,in)) = insert{getinlhs(i1},getinslhs(in))
PS10. getinshhs{@) =@
PS11. getinsrhs{insert{i1,in)} = insert(getinrhs{i1),getinsrhs(in})
PS12. getinsrhs{@) =&
PS13. getoutslhs({insert{o1,0ut}) = inseni{getoutlhs{cl).getoutsihs{out))
PS14, getoutslhs(@) =&
PS15. getoutsrhs(inser{o1,out)) = insert{getoutrhs{oc1).getoutsrhs{out))
PS816. getoutsrhs(@) =&

Law ¥ rizin n in
P17. getoutputs{mkstruct{in, out, sp}) = getoutslhs{out)
P18. getinputs(mkstruct(in, out, sp}) = getinsihs(in)

W [ rizin lows an inflow

P519. getoutflows_{mkstructi{p,st)) = getoutputs(p)+getoutflows_(st)
PS20. getoutflows_(mkstruct2{ds,sf)) = getsoutpuis(ds)+getoutfiows_{sf)
PS21. getoutflows_(Nilstruct) = &
PS22. getinflows{mksiructi({p,st}} = getinputs{p)+getinfiows(st)
PS23. getinflows{mkstruct2(ds,st)) = getsinputs{ds}+getinflows(st)
PS24. getinflows(Nilstruct} = @

gws characterizing getnetinpuis
PS25. getnetinputs(Nilstruct) = @
PS26. getnetinputs{st} = getinflows(st)-getoutlows(st)
Laws ¢har: rizin lloutflow
PS27. getalloutflows{mkpstructi{mkstruct{in, out, sp}, st)) =

{getallflows(getoutsihs{out)}+getalloutilows{sp)) +getalioutfiows(st)

PS28. getalloutflows{Nilstruct) = @

Figure 4.11 The RS Procstruct characterizing hierarchical processes

Example 4.6

The PL representation for the hierarchical process UpdateBorrStatus

The process UpdateBorrStatus is decomposed into two primitive processes,

UpdateBorrRecord and GenerateFinesRecord (see Chapter 2). The only

non-primitive hierarchical data flow is borr_update_info which has the following

PL representation:

borrinfo = borr_update_inf+{{amount_paid-Nilistruct)|{update_id-Nilfstruct)INilfstruct)

The PL representations of the primitive processes are:

UpdateBorrRecord = mkstruct({<amount_paid, &=, <borr_fine_record, @},
{<update_status, @, <updated_borr_detail, @}, Nilstruct}

GenFinesRecord = mkstruct{{«update_id, @>, <update_time, @, <borr_detail, >},
{<borr_fine_record, @=}, Nilstrugt)

The PL representation of the body consisting of the above two primitive processes
1s:

UpdateBody = mkpstructi(GenFinesRecord, mkpstruct1{UpdateBorrRecord, Nilstruct))

Example 4.6 continued
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Example 4.6 (continued)
The PL representation for the hierarchical process UpdateBorrStatus

The PL representation of the hierarchical processes is:
UpdateBorrStatus =
mkstruct{{<berrinfo, {amount_paid-Nilfstruct, update_id-Nilfstruct}=>,
<update_time=*Niifstruct, {update_time+Nilfstruct}>,
<borr_detail-Nilfstruct, {borr_detaii-Nilistruct}>}, {<updaie_status=Niifstruct,
{update_status=Nilistruct}>, <updated_borr_detail*Nilfstruct,
fupdated_borr_detail-Nilfstruct}>, Nilstruct}

The effects of the observation functions on the above hierarchical process are given
below:
geiinflows(UpdaieBody) =
{borr_fine_record-Niifsiruct, amount_paid«Niifstruct, update_id«Nilistruct,
update_time~Nilfstruct, borr_detaii=Nilistruct}
getoutflows{UpdateBody) =
{update_status«Niltstruct, updated_borr_detail*Niifstruct, borr_fine_record«Nilfstruct}
getnetinputs{UpdateBody)} =
{amount_paid+Nilfstruct, update_id-Nilfstruct, borr_detaii=Niiistruct,
update_time=Nilfstruct}
getstores(UpdaieBody) = @
getoutpuis(UpdateBorrStatus) = {update_staius=Niifstruct,
updated_porr_detaii+Nilfstruct}
getinputs{UpdateBorrStatus) = {borrinfo, update_timesNilfstruct, borr_detaii-Nilfstruct}
getallouiflows{UpdateBody} = {update_status, updated_borr_detail, borr_fine_record}

4.2.3 The RS characterizing H_DFDs

H_PLapplic, the RS characterizing structurally correct H_DFDs shown in
Figure 4.11, is obtained from SimpleApplic, by replacing the primitive RS
PLilow by Flowstruct, replacing the RS Struct by Procstruct, and by replacing
PLentity and PLstore by H_PLentity and H_PLstore, respectively.

Objects of the type h_dfd characterized by H_PLapplic are H_DFDs. The
type is associated with a constructor mkapplic, which creates a H._DFD given a
hierarchical process (procstruct) and an EE (set(hplentity}). The laws of the RS
formally express the rule characterizing swucturally correct H_DEFDs given in
Chapter 2 and repeated below:
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H4. A structuraily correct H_DFD consists of a structurally correct EE and a
structurally correct hierarchical process. The set of all inputs (outputs) in the
EE of a structurally correct H_DFD is equal to the set of inputs (outputs) of
the hierarchical process of the H_DFD.

H_PLapplic = Procstruct + Sei(H_PLentity} +
Signature
sort h_did
constructor
mkapplic: procstruct, set(hpientity) — h_gfd
ok-predicate
okappiic : h_dfd — boolean
Laws: ¥V se:set(hplentity); p € procstruct
Al. isempty(se) = false, isempty(getalieinputs{se)-int-getalieoutputs{se)} =
true, getalieinputs(se) = geloutputs(p), getalleoutpuis({se} = getinputs{p)
= okapplic(mkapplic{p,se)}
A2, okapplicimkapplic{p,@})

Figure 4.12 The RS H_PLapplic characterizing H DFDs

4.3 Model and operational semantics for the PL

The models associated with the RS, as well as satisfying the explicit laws of
the RS, also satisfy certain implicit laws arising from equality, inequality
assurmptions, and assumptions on relations, made when formulating the laws of the
RS. Nommalizing functions which transform terms to normal terms, where equal
terms are transformed to the same normal term, and unequal terms are transformed
to unequal normal terms, are used to express equality and inequality assumptions
(see Chapter 3). A description of the normalizing functions associated with
H_PLapplic follows.

Normalizing function for flowname
The RS characterizing flowname consists only of constructors for strings of

alphanumeric characters. All ground constructor terms are assumed unique (i.e. two
names are equal if and only if they are built in exactly the same way). Thus the
identity function is the normalizing function for flownames. Flowames are also
associated with an ordering based on an alphabetic and numeric ordering, in which
alphabetic characters are less than numeric characters. Two sirings are compared
from left to right in the following manner: if the current churucter being checked in
the first string is greater than the corresponding character in the second string then
the first string 1s greater than the second string; if the two characters are the same
then the next characters in the two sirings are compared. For example,
ap23d>apf5Sh since 2>f. This ordering is used by normalizing functions for some of
the other sorts of H_PLapplic.
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Normalizing functions for flowstruct

Two hierarchical data flows are equal if they have the same name and their
child decomposition sets are equal. The normalizing function for flowstruct orders
the flownames at each level of a flowstruct using the ordering on flownarnes
described earlier. For example the two flowstructs:
fle(

(f22+(
(f221+Nilfstruct)l
(f222+Nilfstruct)l
Nilfstruct)l
(f21sNilfstruct)l
(f23+Nilfsruct)!
Nilfstruct), and f1+(
(f23«Nilfstruct)l
(f21+Nilfsruct)l
(f22+(
(f222+Nilfstruet)i
(f221+Nilfstruct)!
Nilfstruct)l
Nilfstruct)
where 21«22«23, and {221<f222, are both transformed to the normal term:
fle(
(f21«Nilfstruct)l
(f22+(
(f221Nilfstruct)l
(f222«Nilfstruct)!
Nilfstruct)l
(f23+Nilfstruct)l
Nilfstruct)

Normalizing functions for hplentity and hplstore
Two hierarchical external entities (data stores) are equal if their sets of inputs

and outputs are equal. The normalizing functions for hplentities and hplstores
simply normalize their input and output sets of flowstructs.
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Normalizing functions for ininterface and outinterface
Two in(out)interfaces are equal if and only if their parent flows are equal and

their sets of descendant flows are equal. The normalizing functions for these sorts
simply normalize the set of descendant flows,

Normalizing function for pstruct
Two bedies are equal if they contain the same hierarchical processes and data

stores. The normalizing function for pstruct simply normalize the hierarchical
processes (see below) and data stores in the body.

Normmalizing function for Procstruct

Two hierarchical processes are equal if they have equal ininterfaces,
outinterfaces and bodies. The normalizing function for procstruct simply normalizes
the in(out)interfaces and bodies of hierarchical processes.

The assumptions on negated relations are derived from the operational
interpretation of H_PLapplic, described in the following section.

4.3.1 The PL R-CTRS
H_PLapplic can be converted to a R-CTRS by replacing the "=" symbol in
the consequences of the laws to "— ", This is possible since, in each law, the sets
of variables of the literals in the antecedent are all a subset of the set of variables in
the term on the left hand side of the equality symbol (or relation or ok-predicate) of
the consequence, and the set of variables in the term on the right hand side of the
equality symbol of the consequence is a subset of the set of variables in the term on
the left hand side of the equality symbol.
Recall from Chapter 3 that a R-CTRS is sufficiently complete if and only if:
it is ground terminatng and ground confluent; and
2. every defined non-constructer term rewrites {in one or more steps) to a ground
constructor term (i.e. for a defined non-constructor term, f € T(F),
ok(N—*TT = f—™¢, where c is a constructor term).

Since ok-predicates are characterized in terms of constructor terms only in the
laws of H_PLapplic (see D5 to D7 of Flowstruct; E8, E9 of ExtFlowstruct; HE1,
HE2 of H_PLentity; HS1, HS2 of H_PLstore; PS1 to PS5 of Procstruct; and Al,
A2 of H_PLapplic), then if ok(f)—*TT, where f is a non constructor term, then f is
reducible to a ground constructor term, ¢, such that ok(c)—TT. Thus condition 2
above is satisfied Chapter 3 gives conditions for termination and confluence, which

are repeated below:
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An R-CTRS, R, is terminating if:

(1) <pisapartial ordering on T(F)

(2) for every rule with consequence f(s)-orhs, every sub term of rhs and every
sub term of the terms appearing in the premises, g(t), is either:

+ g<pf, or
« NOT(f<,g), and t«ys, where «y is the multi-set ordering on terms based on
<pe

A R-CTRS is confluent if the following conditions hold:

(1) The consequences of a rule must have left hand sides with only constructor
terms as proper sub terms {i.e. a lhs must be of the form f(c1,...,cn) where
cl,...,cn are constructor terms); and

(2) Let Al = lhsl—grhsl and A2 = Ths2—grhs2, be any two rulesin a R
CTRS such that there is a defined substitution, ¢, which unifies lhsl and lhs2
(i.e. olhsl =; olhs2 where =, symbolizes syntactic equality). Then either:

+ o¢rhsl =, crhs2; or

+ there exists u'2v' € A1+A2 such that ou' and ov' have a common reduct,
or gu'—"*gretl, okg'{cl), ov'—*re2, okg'(c2), and Ng'(cl) = Ng'(c2),
where ¢l and c2 are ground constructor terms of sort s', and Ng' is the
normalizing function for the sort; or

« there exists u = v e Al+A2 such that NOT(culov), and if cu—"gel,
oks(cl), av—"re2, okg(c2), then Ng(c1) # Ng(c2), where ¢l and ¢2 are
ground constructor terms of sort s, and Ns is the normalizing function for
the sort; or

» there existsr € A1+A2 such that NOT(or—"rTT); or

+ there exists ~r' € A1+A2 such that or'—*RTT.

An inspection of the laws would show that the characterizing sets of non-
construetors use only function and relation symbeols that are already characterized in
terms of other non-constructors at the same level or at lower levels (i.e. primitive
non-constructors; see for example, the characterizing set of getflowstructs {E4,
ES}, and the characterizing set for getnetinputs {PS25, PS26}). Also, primitive
non-constructors are not characterized in terms of non-primitive function symbols.
In the case of ok-predicates, recursive definifions, in terms of other ok-predicates at
the same level are permitted (for example, see the characterizing sets for the
constructors of data flow, {D5, D6, D7}, and process hierarchies, {PS1, PS2,
PS3, PS4, PS5}). In such cases, inspection of the characterizing sets will reveal
that the arguments of the constructors in the antecedents of the laws are simpler than
the arguments on the left hand side of the equality symbol in the conseguence, for

example, in the law PS5, implicit in the antecedent is the literal okpstruct{sp),
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where okpstruct and okprocstruct are incomparable, but the arguments of okpstruct

are simpler than the arguments of okprocstruct, since {sp}<<,{mkstruct(in, out,

sp)}. The relation <, on the function symbols of H_PLapplic is thus a partial order
and determines a simplification order on its ground terms. Thus termination of the

R-CTRS corresponding to the H_PLapplic is guaranteed.

The laws in the characterizing sets of the non-constructors and ok-predicates all
have consequences whose left hand sides are have only constructor terms as
arguments, thus sadsfying condition (1) of the confluence conditions. Furthermore,
no two rules may be applied to the same term, such that the left hand sides of the
consequences of the rules match, but not their right hand sides. Thus H_PLapplic is
also ground confluent.

The R-CTRS generated from H_PLapplic is thus sufficiently complete,
providing an effective means by which the syntactic properties of DFDs can be
invesdgated.

The following steps may be carried out in an investigation of the structural
comrectness of DFD structures:

1. Transform the construct to its PL representation, say C.

2. Find the set of laws characterizing the ok-predicate for the construct, ok,
whose consequences can be matched with ¢. If the set is empty then the
construct is not structurally correct. If the set i1s not empty then apply each rule
to ¢, unal either

a. a law is found such that ok{c)—>TT, in which case the construct is
structurally correct; or

b. all laws in the set have been applied and none reduces ok(C) to T1, in
which case the construct is not structurally correct.

The operational interpretation of H_PLapplic in terms of the R-CTRS, provides
a formal basis for syntax analysis tools. Builders of such tools can use the PL to
formally validate their tools.

4.4 Limitations of the PL

The PL provides a formal characterization of the syntactic aspects of DFD
hierarchies and supports automated reasoning about such aspects via an operational
interpretation. It has the potential to act as the formal basis for syntax analysis tools
which take DFD structures and transform them into formal representations capable
of being analysed. The PL in its present form though provides only a very basic
foundation for an autornated environment supporting the analysis of the syntactic
aspects of DFDs. One notable limitation is that the PL provides very little support

for the analysis of syntactic structure still undergoing development. For example, if
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one decomposes the primitive processes of a hierarchy of DFDs further, it is
viewed as the creation of a new hierarchical stucture in the PL with no formal
relationship to the hierarchy it was developed from. To enhance the use of the PL in
this respect it would be useful to have a sub system of RSs in the PL which
characterize modification functions {€g. adding, and deleting syntactic structures),
and "is a refinement of” relationships between syntactic structures which have been
decomposed further.

Another limitation related to the one above, is that currently the PL can only
be used to reason about the structural correctness of complete structures. In the
actual construction of DFDs one might also like to reason about incomplete
syntactic structures, as well as reason about other properties of correct structures.
By adding a special defined object, called a veid object, in each sort, syntactic
structures which are incomplete as a result of missing parts can be represented by
placing the void objects of the appropriate sorts in the missing parts of the syntactic
structures. The void objects indicate that the omissions were intentional, and
'completes’ the syntactic structures so that the functions and relations which act
only on complete syntactic structures, can also be applied to the incomplete
CONSEIucts.

Relations, other than the ok-predicates characterizing structurally correct DFD
structures can be added to express additional properties which may be of interest to
tool developers and users. Such laws may be expressed using the observation, and
auxiliary functions that already exist in the PL, or they may require additional
functions to be added to the current PL.

The PL is useful only for the investigation of syntactic properties of DFDs,. It
does not provide semantic interpretations for the data objects in the DFD, nor does
it provide behavioural interpretations for the processing components. Such
interpretations are needed in order to fully specify the data and behavioural aspects
of an application. Chapter 5 provides semantic interpretations for the structurally
correct structures characterized in this chapter.
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The Specification Level:
Deriving Behavioural Specifications
from DFDs

5.0 Introduction
A number of researchers have proposed extensions to DFDs to support the

specification of time-dependent behaviour. The tools and techniques based on such

extensions lack the degree of formality required to support their use in the rigorous
validation and verification of behavioural properties. The Specification Level (SL)
of the formal framework for SA provides tools and techniques for pictorially
describing and formally specifying the behaviour of applications, based on such
formal foundations.

The derivation of the formal specification of behaviour from a hierarchy of

DFDs goes through the following steps, as outlined in Chapter 2:

1. Generating a flat representation of the hierarchy of DFDs. Such a
representation, called the primitive DFD, consists of the primitive processes,
and ali the data stores and external entities in the hierarchy of DFDs.

2. Introducing notation for describing state dependent behaviour into the
primitive DFD, specifying the state dependent behaviour, and identifying
actions, and state and asynchronous data flows to and from the external
environment (EE). The result of this step is an ExtDED.

3. Specifying the data types associated with the ExtDFD’s data flows and data
stores.

Specifying the behaviour of the ExtDFD's primitive processes and data stores.
5. Deriving the specifications of behaviours of the ExtDFD's actions from the

specifications of behaviours of their constituent processes.

6. Deriving the specificadon of behaviour of the ExtDFD from the specifications
of behaviour of its actions, data stores, and asynchronous data flows, and the
specification of its state dependent behaviour.

This chapter describes the tools and techniques of the SL which are used in
steps 3, 4, 5, and 6 above. Steps 1 and 2 were covered in Chapter 2. The use of the
derived formal specification in the formal validation and verificaton of behavioural
properties is also discussed in this chapter.

The SL consists of tools and techniques for formally specifying:

124
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(A) the static aspects of data flows and data stores in an ExtDFD, and
(B) the dynamic aspects of data flows, data stores, processes and actions, in an

ExtDED.

The use of these technique results in two types of specifications for ExtDFDs:
the Data Environment (DE), and the Behavioural Specification (BS}. The DE of an
ExtDFD is the set of RSs resulting from the use of the techniques in (A). Such RSs
characterize the object classes associated with the data flows and data stores in an
ExtDFD, and their structures. In SA, such definitions were expressed quasi-
formaily in the data dictionary. The DE can be viewed as the formal counterpart of
the data dictionary.

The BS of an ExtDFD is derived as a result of using the techniques in (B). It
integrates specifications of the data aspects of an ExtDFD, provided by the DE,
with specifications of the functional and control aspects of the ExtDFD.
Behaviourally, actions and their constituent processes, data stores and
asynchronous data flows are treated in the same manner, thus, allowing their
specifications to be integrated in a "natural” way, that is, without resorting to
techniques for bridging different specification tools. When only their behavioural
aspects are of concern actions, ExtDFD processes, data stores and data flows are
collectively called processes. To distinguish this use of the term process from its
use in describing places of transformations in an ExtDFD, the latter use is qualified
by the term ExtDFD, as is done in the previous sentence.

Furthermore, processes are treated as abstract data types (ADTs), thus
permitting the integration of data specifications with specifications of behaviour.
The BS of an ExtDFD is an algebraic characterization of an ADT representing the
class of behaviours of the ExtDFD. A similar treatment of data and processes is
used in the SMoLCS approach [AGR88]. Another approach to integrating data and
process specifications based on ADTs can be found in Kaplan and Pnueli [KP&7].

The SL techniques described in this chapter are demonstrated with the aid of
the action CheckoutBook and its associated data stores, asynchronous data flows

and state flows. The diagram is shown in Figure 5.1.
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Figure 5.1 The ExtDFD for CheckoutBook

5.1 The Data Environment (DE)

When only the static aspects of data stores and data flows are of concern they
are collectively called data enrities. A deta entity is associated with a class of
objects, and data stores and asynchronous data flows are also associated with
structures. The DE provides algebraic characterizations of the class of objects and
structures of data entities, in the form of RSs. The RSs characterizing the object
class of a data entity also include functions for 'splitting' objects into sub objects.
Such functions are needed, for example, to establish the relationships between the
input and outputs of splitters.

The algebraic characterizations of the structures associated with data entities
include functions which observe and modify the structures.

5.1.1 Characterizing the object classes associated with data entities
The function symbols in a RS characterizing the object class of a data entity
can be categorized as follows:
» Constructors : A constructor is a function which builds new objects of an object
class.
» Observation functions: An observation function returns a sub object of an object.
« Awxiliary functions: Non-constructors which are not observaton functions.
The RSs characterizing the object class of the data entities asseciated with
CheckoutBook are given in Example 5.1. The characterizations are based on the
type definitions given in Example 2.7 of Chapter 2, and repeated in Example 5.1.
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Example 5.1

Characterizing the object classes of the data entities assoclated with the action

CheckoutBook

Type definitions for the data entities assoclated with the action CheckoutBook on
which the specificatons given in this example are based:

Non-base data types
bb status :
book -
book_id

borr detail
borr_fine_record

borr_flag -

out borr>>
borr update_info
borrower

payment_to_date’>
borrower book_detail
borrower id
borrower indicator
checkout_info
checkout_message
ISBN

out_book

out book_id

out borr
borroewer_ type.

cut updated_book HH

out_updated borr
vetted book

vetted_borr -

Base data types

amount paid

author HH

borrower addr
borrower_name
borrower type
checkout time
copv#
CoOpY_type
fine

fines record
out_borr_id
payment_to_date
subject

title H

i

i

I

i

i

1l

<time returned | *Not returned">
<book_id, title, subject, author,
copy_type, borrower_indicator>
<ISBN, copy#>
[borrower book detaill
<<number, borrower id> |
<"Not in file™

"Not in file™

| <borrower_id,

<borrower id, number>
<borrower_id, borrower name,
borrower_addr, borrower_type,
{borrower book detaill,

<book_1id, due_time,
<fcharacter]>
<"Available” | borrower_id>
<book_id, borrower id>
<vetted_borr, vetted_book>
<f[integer]>
<borrower_indicator,
book_id
<[borrower book detaill,
paymeﬂE_toZdate)
borrower_indicator
(borrower_book_detaill
<<book_id, copy_type> | "book not in
file™ | "book already checked out™ |
"not borrowable™>
<<"Fines over limit", number>|
"borrower not in file" |
<out_borr, borrower id>>

bb_status>

copy_type>

number
[character]
{character]
{character]
<"undergrad" |
time
integer
<I!b00kl! !
number
[number]
borrower_id
number
fcharacter]
[character]

postgrad"” | "staff">

"reference” | “periodical®>»

Example 5.1 continued
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Example 5.1 (continued)
Characterizing the object classes of the data entities associated with the action

CheckoutBook

The RSs characterizing the object classes associated with the data store BOOK

Copy_type =
Signature

sort copy_type

constructors
Book : — copy_type
--- corresponds te the "book" option in the type definition for copy_type ---
Ref . — copy_type
- corresponds {0 the "reference” option in the type definition for copy_type ---
Per : — copy_type
--- corresponds to the "pericdical” opticn in the type definition for copy_type ---

Book_id = ISBN_code + Integer +
Signature
sort book_id
constructor
mkbkid : ISBN, integer — book_id

Borrower_indic = Borrower_id +
Signature

sort borrower_indicator

constructors
mkbind : borrower_id — borrower indicator
Available ;: —» borrower_indicator
--- corresponds to the “Availakle” option in the type definition for
borrower_indicator ---

Book = Borrower_indic + Book_id + List{Character) +Time + Copy_type +
Signature
sorts book
constructor
mkbook : book_id, list{char), list{char), list(char}, copy_type,
borrower_indicator — book

Book characterizes the object class, book, of the data store BOOK. The three lists of
characters in the domain of the constructor mkbook represent the title, subject, and
author of the book, respectively.

The RSs characterising the cbhiect classes associated with the data store
BORROWER

An RS Borrower_id, characterising the class of borrower_id objects, is assumed
available in what follows.

Example 5.1 continued
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Example 5.1 (continued)

Characterizing the object classes of the data entities associated with the action

CheckoutBook
Berrower _book_detail = Book_id + Time +
Signature
sorts borrower_book_detail, bb_status
constructors

mkbbstatus : time — bb_status

NotRet ; — bb_staius

--- corresponds to the "Not returned ” option in the type definition for
bt_status ---

Borrower _type =
Signature
sort borrower_type
constructors
Undergrad : — borrower_type
Postgrad : —» borrower_type
Staff | » borrower_type

Borrower = Borrower_id + List{Borrower_Book_Detail) + Number + List{Character) +
Borrower_type +
Signature
sort borrower
constructor
mkborr: borrower_id, list{char), list{char), borrower_type,
list{tborrower_book_detaily, number — borrower

Borrower characterizes the class of objects stored in the data store BORROWER.
The two lists of characters in the constructor mkborrower represent the borrower's
name and address, respectively, while the number represents the amount paid on
fines by the borrower.

RSs characterizing the obiect classes associated with the data flows of
CheckoutBook

Checkout_info = Bock_id + Borrower_id +
Signature
sort checkout_info
constructor
mkoutinfo : book_id, borrower_id — checkout_info
observation functions
getbookid : checkout_info — book_id
getborrid : checkout_info — borrower_id
Laws Vv bk:book_id; borr:borrower_id
1. getbookid{mkoutinfo(bk, borr)} = bk
2. getborrid(mkoutinfe(bk, borr)) = borr

Checkout_into defines the object class of the data flow checkout_info. The
observeration functions are associated with the splitting of the data flow into the sub
data flows out book id (getbookid) and out borr id (getborrid).

Example 5.1 continued
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Example 5.1 (continued)

Characterizing the object classes of the data entities associated with the action

CheckoutBook
Qut_book = Copy_type + Borrower_indic +
Signature
sort out_book
constructor

mkoutbk : borrower_indic, copy_type — out_book

Out_book characterizes the object class of the data flow out_book,

Vetted_book = Book_id + Copy_type +
Signature

sort vetted_book

constructors
mkvbk : book_id, copy_type — veited_book
Bknotinfite © — vetted_book
--- corresponds to the "book not in file” option in the type definition for
vetted_book ---
CheckedQui : —» vetted_book
--- gorresponds to the "book already checked out” option in the type
definition for vetted_book ---
NoiBorr :» vetted_book
--- gofresponds to the “not borrowable” option in the type definition for
vetted_book ---

Vetted bocok characterizes the object class for the data flow vetted_book.

Qut_borr = Borrower_type + List{Borrower_book_detail) + Number +
Signature
sort ouf_botrr
constructor
mkouthr ; fist{borrower_book_detail}, borrower_type, number — out_borr

Out_borr characterizes the object class of the data flow out_borr.

Borr_flag = List(Borrower_bock_detail} +
Signature

sorts borr_flag

constructors
Bftag : —» borr_flag
--- corresponds to the "Not in file" option in the type definition for
borr_flag ---
mkbflag : borrower_id, out_borr — borr_tiag

Borrower_flag defines the object class of the data flow borr_flag.

Example 5.1 continued
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Example 5.1 {(continued)
Characterizing the object classes of the data entities associated with the action

CheckoutBook

Vetied_borr = Borrower_flag + Number +
Signature

sorts vetted_borr

constructors
mketrvborr : number — vetted borr
--- corresponds fo the "Fines over limit" option in the type definition for
vetted_borr ---
NoBorr : — vetted_borr
--- corresponds to the "borrower not in file” option of the type definition for
vetted borr ---
mkvetborr @ cut_borr, borrower_id — vetted_borr

Vetted borower defines the object class of the data flow vetied_borrower.

Checkout_message = Vetied_book + Vetted_borr +
Signatutre
sonts checkout_message
constructar
mkoutmess ; vetted_borr, vetted_book — checkoui_message

Checkout_message defines the object class of the data flow
checkout_message.

5.1.2 Characterizing the structure of data entities

Asynchronous data flows and data stores may be associated with more than
one object at any particular point in time. The stoucture of data stores and
asynchronous data flows define the relationships between the objects asociated with
them. Structures are characterized in terms of gccess functions which modify and

observe them,

Asynchronous Data Flows

Asynchronous data flows are associated with queue structures. The receivers
of an asynchronous data flow receive objects from the top of the queue associated
with the data flow, while the generator places an object at the bottom of the queue.
The RS schema characterzing the generic structure of asynchronous data flows is
given in Figure 5.2. The specification of the structure of a particular asynchronous
flow is obtained by instantiating the schema with the RS characterizing the object

class of the data flow.
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Asynch(Element) =

Signature
sort asynch
constructors
emptyg : — asynch
addg : etem, asynch — asynch
observeration function
top : asynch — elem
auxiliary function
deleteq : asynch — asynch

Laws V e:elem; g:asynch

1. deleteq{addg{e.emptyq)) = emptyq

2. q = emptyq = deleteq{addq(e,q)) = add{e,deleteg{a))
3. top(addqg({e,emptyq)) = e

4. g # emptyq = top{addq(e,q)) = top(q)

Figure 5.2 The RS schema characterizing the generic structure of
asynchronous data flows

Data Stores

"‘The access functions in a RS characterizing the structure of a data store can be

classified as follows:

Read access finctions : funcrions which carry out observations on the structure.
Such functions usually return an object in the structure, or an object indicating
that a requested object s not in the structure.

Update functions : functions which modify an existing object in the structure.
Add functions : functions which add new objects to the structure,

Delete functions : functions which delete existing objects from a structure.

Update and add functions are collectively referred to as write access

functions. The access functions associated with the structure of a data store is
determined by its inputs and outputs. Each input of a data store is associated with a
write access function in the RS characterizing the structure of the data store, while
each output is associated with a read and/or delete function in the RS. Example 5.2
gives the RS characterizing the structure of the data store BOOK, associated with the
data flows shown in Figure 5.1,
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Example 5.2

Characterizing the structure of the data store BOOK, shown in Figure 5.1

The data store BOCK has a single input, out updated book, and a single
output, out book, in Figure 5.1. The input out updated book represents an
update on the data store and is associated with an update access function called
updatebk? in the RS BookStore characterizing the structure of the data store
BOOK. The output out_book represents a read access, and is associated with a
read access function in BookStore called readbook?2.

BOOK is a list of book objects. The type readval is the class of objects
representing the status of a read access on the data store. Thus, if the read access is
successful, that is, if the desired ebject 1s in the data store, then the readval object
returned reflects the object retrieved otherwise the readval object returned, Nullval,
reflects an error situation.

BookStore = List(Book) + Qut_book + Borrowe_indic +
Signature
sort readval
constructors
Nullval 1 — readval
mkreadval : out_book — readval
read-access function
readbook?2 : list{book), book_id — readval
update function
updatebk2 : list{hook), borrower_indicator, hook_id — list{book}
Laws ¥ bid, bid":book_id; t,s,a:list{char); ct:copy_type; ib:list{book};
indic, indic":borrower_indicator
Laws characterizing the read function gssocigted with the output out_book
1. bid = bid' = readbook2{mkbook{bid, 1, s, a, ct, indic)|lb, bid"y =
mkreadval{mkoutbk{indic, ct))
2. bid = bid' = readbook2{mkbookibid, {, s, a, ct, indic}|ib, bid") =

readbook2(lb,bid")
3. readbook{emptyiist, bid} = Nuilval
Laws char rizing {h functi i with the in
out_updated book

4. bid = bid' =
updatebk2{mkbook{bid, t, s, a, ct, indic){lb, indic', bid")
= mkbook(bid, t, s, a, ¢t, indic|Ib
5. bid #bid' =
updatebk2{mkbook{bid, {, s, a, ct, indic}|lb, indic’, bid'}
= mkbook(bid, 1, s, a, ct, ¢s', indic") jupdatebk2(lb, indic', bid")
8. updatebk2{emptylist, indic, bid} = emptylist

5.2 The Behavioural Specification (BS)

An ExtDFD is interpreted as a system of asynchronously interacting actions,
where actions are themselves systems of synchronously interacting ExtDFD
processes. The BS characterizing the behaviour of an ExtDFD, is derived from the
specifications of the behaviour of its actions, data stores and asynchronous data

flows, and the specifications of its state dependent behaviour.
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Process behaviour is characterized in terms of labeled stare transition systems.
The particular technique, algebraic specification of labeled transition systems, was
chosen for the following reasons: '

» the abstract nature of the derived specifications means that they are more likely
not to specify detail which may unduly constrain subsequent development,

+ it provides a framework for integrating specifications of the data, functional, and
control aspects of an application; and

+ its formal foundaton can be used to support rigorous validation and venfication
activites.

Labeled transition systems have been used to specify complex interactions at
various specification levels. At the program specification level the work of Milner
and Hoare {Mil80, Hoa85] are outstanding examples, while the work of Lamport
{Lam86, Lam88&] is an example of the use of such systems at both the design and
program specification levels. An algebraic characterization of labeled transition
systems defining program behaviours was introduced by Broy and Wirsing
[BW83], and further developed by Astesiano et al. in the SMoLCS approach
[AR87, AGR88]. The characterizations are based on an operational interpretation of
processes as labeled transition systems, and of systems of processes as the
composition of their sub systems [AGR87]. The aigebraic technique used here is
based, in principie, on the work of Astesiano et al. [AGRE8&], but applied to a
higher specification level.

5.2.1 Algebraic state trapsition systems {ASTSs)

A labeled state transition system is a triple <S§, L, T> where S is a set of
states, L is a set of event labels, and T is the labeled transition relation [S, L, 8],
whose elements are called transitions. A transition [s1, 11, s2], where s1 and s2 are
in S and 11 is in L, intuitively means that the effect of an event, represented by 11,
on the state sl is a change to the state s2.

In the SL, state transition systems are characterized algebraically by RSs of
the form shown in Figure 5.3. The primitive RS STATE characterizes a set of
states, LABEL characterizes a set of labels, and AUXS characterizes the additional
functions and/or relations needed to characterize the transition relation, denoted by
the symbol _= =>_ and characterized by the set of equations TRANSEQS. Such
algebraic specifications of state transition systems are called algebraic state
transition systems (ASTSs).
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TS = STATE + LABEL + AUXS +
transition relation
_=_=x»_ state, label, state
laws TRANSEQS

Figure 5.3 Algebraic specification of a state transition system

The BS of an ExtDFD is an ASTS with the primitive RSs, STATE
characterizing the states of the ExtDFD, and LABEL characterizing the event labels
of the ExtDFD. The BS is compositional in the sense that it is buiit up from ASTSs
characterizing the behaviour of asynchronous data flows, data stores, and actions.
The ASTS for action are in turn built up from ASTSs characterizing their
constituent ExtDFD processes.

5.2.2 Specifying the behaviour of ExtDFD processes
An ExtDED process is characterized by its class of behaviours called
invocations, where an invocation is a labeled sequence of process states. The class
of invocations assoclated with a DFD process is characterized implicitly by a labeled
state transition system, <S, L, T>, where S is a set of ExtDFD process states, L is
a set of ExtDFD process labels, and T is the transition relation defining the
allowable state transition. For an ExtDFD process with n data inputs and m control
and data outputs, a state in S is a (n+m)-tuple, where each place of the tuple reflects
the effect of event occurrences, represented by the labels in L, related to the receipt
of data on the corresponding input or the genertation of data or signals on the
corresponding output.
The following types of event labels may be associated with an ExtDFD
process:
« Receive : Labels representing the observable effects of events which take data
off the inputs of the process which are not emanating from data stores.
+ Read/Delete : Labels representing the observable effects of successful read or
delete events on data stores.
« Erread/Errdel . Labels representing the observable effects of unsuccessful read
or delete events on data stores.
» Send:. Labels representing the observable effects of send events on data flows.
The behavicur of ExtDFDprocesses, as defined here, 1s determined by the
events related to the receipt of data on their inputs and the generation of data and/or
signals on their outputs. ASTSs specifying processes in the above manner can be
said to characterize the exrernally observable behaviour of the processes. Details
concerning the internal structure of processes, in the form of state changes
occurring as the result of inputs being transformed into outputs, are not

characterized by the ASTSs used here. The high level nature of these specifications
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1s appropriate at the requirements specification/initial design stages, for which the
SL is intended, since they do not overly constrain subsequent development with
internal details of a process's activities.

The ASTS for the process CheckBook is given in Example 5.3.

Example 5.3

Characterizing the state transitions of CheckBook

The DFD process CheckBook is associated with an abbreviated name PS5, which is
used in the names of the RSs charactenizing its states, labels, and wansition system.

P5labels = Vetted _book + Out_book + Book_id +
Signature

sort pbiabel

constructors
Receivep5 : book_id — pblabel
Readpb : book_id, cut_becok — pblabel
Erreadpb : book_id — pblabel
Sendps : vetted_book — p5label

P5labels gives the labels associated with CheckBook.

PSstate= Vetted_book + Book_id + Out_book +
Sighature
sorts receivep’d, readp5, sendpb, pbstate
constructors
Nullinps : — receiveps
inp& : boek_id — receivepb
Nullrdp5 : — readp15
erps : — readps
rdp5 : out_book -» readpd
Nulloutps : — sendpb
outps ; vetted_beook — sendpb
<_,_,_» . receivepd, readps, sendp5 — pbstate

The state of CheckBook is a tuple of sorts receiveps, readpb, sendp5 which
represent the states of the accesses associated with the data flows out_book id,
out_ book, and vetted book respectively. The states Nullinp5, Nulirdp5,
and Nulloutp5 represent the situation where no accesses via the associated data
flows have been attempted. errpb denotes an unsuccessful read attempt to the data
store BOOK,

CheckBook TS = PSstate + P5label +
Signature
transition relation
_-_-»_: pbstate, pblabel, p5state
Laws ¥ outbk:out_book; ty:copy_type; bid:book_id
1. <Nullinp, Nullrdpb, Nulloutpb>
-Receivep5(bid)->
<inp5{bid), Nullrdpb, Nulloutps>
2. <inpS{bid), Nulirdp5, NulloutpS=
-Readp5{bid, outbk}->
<inp5(bid), rdp5{outbk), Nulloutp5s>

Example 5.3 continued
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Example 5.3 (continued)
Characterizing the state transitions of CheckBook

3. ty=Ref =
<inp5(bid}, rdp5{mkoutbk{Available, ty)}, Nulioutp5>
-Sendp5{mkvbk(bid, ty})->
<inp5(bid), rdpb({mkoutbk{Available, ty}), cutpS{mkvbk(bid, ty)}>
4. <Inp5(bid), rdp5{mkoutbk({Available, Ref}}, Nulloutp5>
-Sendp5{MNotborr)->»
<inp5(bid), rdpb{mkoutbk{Available, ty}}, outp5(Notborr)>
5. inp5({bid}, rdp&({mkoutbk{mkbind{borrid}), Nulloutp5>
-Sendp5{Checkedout}-»
<inp5{bid}, rdp5{mkoutbk{mkbind{borrid)), outp&({Checkedout)>
8. <inp5{bid), Nullrdp5, NulloutpS>
-Erreadp5{bid)-=
<inpb(bid}, errp5, Nulloutpb>
7. <inp5({bid}, errp5, Nulloutpb>
-Sendp5(Bknotinfile}->
<inp5(bid}, errpb, outp5{Bknotinfile)=

Law 1 defines the transition caused by an access event on out book_id.Law 2
defines the transition resulting from a successful read access to the data store BOOK,
while law 6 defines the transition resulting from an unsuccessful read access to the
same data store. Laws 3, 4, 5, and 7 define the ransition resulting from the
occurrence of the send event, under different conditions on the input data. Law 6
defines the transition resuldng from the occurrence of the send error event which
occurs after an unsucessful read has been made.

5.2.3 Specifying ExtDFD actions

The actions of an ExtDFD are associated with states and event labels derived
from the states and labels of their constituent ExtDFD processes. For an action
consisting of n ExtDFD processes, P1, ..., Pn, a state of the action is of the form
<pl, ..., pn>, where pi is a state of Pi, 1<isnh.

The event labels of an action represent:

« synchronized send/receive events for for each data flow between ExtDFD
processes, where such events are called internal action events,

» synchronized receive events associated with the inputs of its initiators,

+ read and/or delete events associated with its ExtDFD processes,

+ send events associated with its ferminators,

+ parallel events composed of intemal action events,

- a termination event whose effect is to revert all the DFD processes to their idie
state,

All data flows between DFD processes in an action are synchronous thus the
send and receive events of DFD processes connected by data flows in an action are
synchronized. Also the invocation events of the invokers of an action are all
synchronized. Labels representing the effect of synchronized sets of events of an

action are called synchronous labels. Such labels are generated by the function
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SYNCH which takes a set of labels and returns a synchronous label representing
the effect of the synchronized set of events. In an ASTS characterizing the
behaviour of an action with n ExtDFD processes, the laws characterizing the effect
of synchronized events on the state of an action, are of the fellowing form:

pi--H-->pT", ..., pi-l~>pi', cond{l1, ..., lj} =
<p1, ..., 0} pK, ..., pn>==SYNCH({{I1, ..., [})==><p1", ..., B]", PK...., pn>

The above is interpreted as follows: if an ExtDFD process's state pi is capable
of being transformed into pi’ by an event labeled by li, 1<i<j, and the condition on

the labels cond(l1, ..., Ij}, holds, then the state of the action <p1, ..., pj, pk, ...,
pn> can be transformed by the synchronized events, represented by the
synchronous event label SYNCH({{I1, ..., Ij}}, to the state <p1', ..., pj, pk,...,
pN>,

Certain DFD process events also become action events, called single evenis of
the action, for example the read and send events of ExtDFD processes in an action.
The effect of these events on the state of an action are expressed in their ASTS in

the following manner:

pk--tk-->pk’, cond({lk} = <p1, ..., pk, ..., pie==Pk{iK)==><p1, ..., pK', ..., pn>

Pk is a coercion function, which converts an ExtDFD process label to an
action label. In the ASTSs that follow, such coercion is left implicit so as to
simplify the presentation of the ASTSs.

Internal action events which affect mutually exclusive parts of an action's
state can occur in parallel. This is expressed by the laws of the form:

<pi, ..., pLDj ..., pv==lt==x<<pt’, ..., pi', Pj, ..., pN>,
<p1, ..., pi. pj, ..., pi>==2==x<p1, ..., pi, P, ..., pN'> =
<p1, ..., Pi. Ply ..., PR===PAR{1,2)==><pt’, ..., pI', P}, ..., pN'>

Internal action events which affect the same process state, bat mutually
exclusive parts of such states, can aiso occur in paraliel, for example, some
ExtDFD processes may be allowed to generate some of their outputs in parailel.

Actions are also associated with termination events which cause all its DFD
processes to revert to the idle state. The resulting state is also called the idle state of
the action. An action can only be invoked if it is in the idle state, thus parallel

invocations of an action are not allowed.
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Example 3.4 gives the ASTS characterizing the behaviour of the action
CheckoutBook.

Example 5.4

Characterizing the behaviour of the action CheckoutBook

The DFD processes of the action CheckoutBook (A4) are associated with the
following abbreviated names: CheckBook - P5, GetOverdueBooks - P6,
CalculateFine - F7, VettBorrower - P8, CheckoutUpdate - P9.

The following auxiliary functions are needed in order to characterize the transition
relation for CheckoutBook:

FinesRec = Qut_borr + Borrower_book_detail + List{Number) + Time +

Signature

auxiliary function

getfinesrec : list(borrower_bock_detail), time — list(number)

Laws V bid:book_id; [b:borrower_book_detail; bbs:bb_status;
t1,t2:time

1. 12-11 = getfinesrec (mkbdet(bid, t1, bbs)|ib, t2) =

(Rate*{t2-t1)))igetfinesrec (ib, t2)
2. 12«11 = getfinesrec (mkbdet{bid, t1, bbs)|ib, t2} = getfinesrec (Ib, i2)

FinesRec characterizes the functional relationship between the objects of the
list{borrower_book_detail) sub class of out_borr and the data objects

associated with the data flow fines record. The class time is simply treated as
an integer line, with successive integers representing successive days.

SumList = List{Number) +
Signature
auxillary function
sum : list{number) - number
Laws ¥V n:number; in:list{(humber)
1. sum(n|in} = n+sumin)

SumList defines the functional relatonship between the input fines record
and the output £ine of the process CalculateFine.

A4 TS = Adstate + Adlabel +
Signature
transition reiation
_==_==>_a4dslate, adlabel, a4state
Laws ¥ bld:book_id; bhorrid:borrower_id; t:time; vbk:vetted book;
p1,p1':statepi;...; p5,p5':statep5; A1,A2:adlabel;
vhrivetted _borrower; In:listi{hnumber); f:number; bflag:borr_flag;
obk:out_hook; obr:oui_borrower; upbk:out_updated_book;

upbr:out_updated_borr; mess:checkout_message
n i venis: icati Vi
flows)

1. p5--ReceivepS{bid)--»pb’, p6--Receive1pt(borrid)--»p8’ =
<p5, ps, p7, p8, p9>
==SYNCH{{Receivep5(bid}, Receive1p2(borrid)})==>
<p5', p&', p7, P8, p9>

Example 5.4 continued




Chapter 5: The Specification Leval 140

Example 5.4 (continued)

Characterizing the behaviour of the action CheckoutBook

2. p5--Sendp5{vbk)--=p5’, p9--Receive1p9(vbk)-->p9' =
<pb, p6, p7, p8, p9>
==5YNCH({Sendp5{vbk), Receive1p3{vbk)})==x
<p%', p6, p7, p8, p9'>
3. p6--Send1pé{ln)-->p&', p7--Receivep?{In)--=p7 =
<pb, p8, p7, p8, p9>
==5YNCH({Send1p6&{In}, Receivep7(in)}j==>
<p5, p8&', p7', p8, p9>
4. p6--Send2psibflag)--=p6&', p8--Receive2ps(bflag)-->p8’ =
<p5, p8, p7, P8, p9>
==SYNCH{{Send2pé(btlag), Receive2p8{bilag)})===>
<p5, p&', p7, p8', p9>
5. p7--Sendp7{f)-->p7', p8--Receive1p8(f)-->p8' =
<p5, p6, p7, p8, p9>
==8YNCH({Sendp7({{}, Receiveip8{f)}i==>
<pb, p6, p7', p8', p9>
6. p8--Sendp8{vbr)-->p8’, p9--Receive2pa(vbr)-->p?’ =
<p5, p6, p7, p8, p9>
==8YNCH({Sendp8{vb}, Receive2p8{vbr}})==>
<p5, p6, p7, p8', p9'>
I ol inciudi 1] v
7. p5--Readpiibid, obk}--»=p5' =
<p5, p6, p7, p8, p9>==Readpi(bid, obk)==>«p%’, p6, p7, p8, p9>
8. p5--Erreadpi(bid}-->p5' =
<pb, p8, p7, p8, p9»>==Erreadpi(bid)==><p5', p6, p7, p8, p9>
9. p6--Receive2p2{t)-->p8’' =
<p5, p6, p7, P8, p9>==Receive2p2it)==><p5, p&', p7, p8, p9>
10. p6--Readp2{borrid, obr)--»p6’ =
<p5, p8, p7. p8, p9>==Readp2(borrid, obrj==><«p5, p&’, p7, p8, p9>
11. p6--Erreadp2({botrid}-->p6' =
<p5, p6, p7, p8, p9>==Erreadp2{borrid}==»<p5, p&', p7, p8, p>
12, p9--Send1i(bid, upbk)--»p9' =
<p5, p8, p7, p8, p9>==Update1{bid, upbk}==»«p5, p6, p7, p8, p9'>
13. p9--Send2({borrid, upbr}-->p9’ =
<p5, p6, p7, p8, p9===Updatez2{borrid, upbs)==><p5, p6&, p7, p8, p9'>
14. p9--Send3{mess)-->p9" =
<p5, p6, p7, p8, pP9===Send{mess)==><p5, pb, p7, p8, po'>
15. p9--Receive3p5{t)-->p9' =
<pb, p6, p7. p8, p9>==Receive3p5(t)==»«p5, ps, p7, p8, p9'>
Paralle| Events
--- Events which affect separate pans of an action can be carried out in paralief ---
16. <p5, p6, p7, p8, p9>==A1==><pb5’, p6, p7, p8, p9=,
<p5, p6, p7, 08, p9>==A2==><p5, p&', p7', p8', P> =
<<p5, p6, p7, p8, p9>==PAR(A1, A2)==><p5’, p6&', p7', p8', p9'>
17. <p5, p6, p7, p8, p9>==Al==><p5’, p&', p7, p8, p9>,
<pb, p6, p7, P8, p9=>==A2==><p5, ps, p7', p8', p9'> =
<pb, pb, p7, p8, p9>==PAR{A1, A2)==><p5’, p6', p7', p8’, p9'>
18. <p5, p8, p7. p8, p9>==A1==><p5', p8', p7', p8, p%>,
<p5, p6, p7, p8, PO9»==A2==><p5, p6, p7, p&', po'> =
<p5, p6, p7, p8, p9>==PAR(A1, A2)==»<p5', p6&', p7', p8', p9'>
19. <p5, p8, p7, p8, p9»==Al==><pd', p6', p7', p8', p9>,
<p5, p6, p7, p8, pSr==A2==><p5, p6, p7, p8§, p9'> =
<pS, p6, P7, p8, PY>==PARB(A1, A2)==><p5', p&’, p7’, p8', p8'>

Example 5.4 continued
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Example 5.4 (continued)

Characterizing the behaviour of the action CheckoutBook

Termingtion event
--- Nullpi, b<i<g, is the abbreviatad form for the idie state of Pi ---
20. «p5, p6, p7, p8, «<in1p8(vbk), in2pS(vbr}, timepa(t), out1p8{omess),
out2p9{ubr), out3pS(ubkl>>
==Terminatead==>
<Nullp5, Nullpg, Nullp7, Nulipd, Nulfpg>
21. <p5, p8, p7, p8, <inip8{Notborr), in2, NullTimep9, out1p9{omess),
Nullout2pg, Nulloui3p9>x
==Terminatead==>
<Nulip5, Nullpg, Nulip7, Nullp8, Nullp§>
22.  «p5, p6, p7, p8, «<in1p9{CheckedOut), in2, NuliTimep9, outipS{omess),
Nullout2p9, Nuliout3pS>»
==Terminatead==»
<Nuilp5, Nullpg, Nullp7, Nullp8, Nulip9>
23. «<pb, p6, p7. p8, <in1p9(Bknotinfile}, in2, NullTimep9, outtp9{omess),
Nullout2p9, Nuliout3p9>>
==Terminatead==>
<Nullp5, Nullpg, Nulip7, Nullp8, NullpS:
24. <p5, p6B, p7, p8, <ini, in2p9{NaBoarr}, NullTimep9, cut1ipg{omess),
Nulloui2p9, Nullout3p9>=
==Terminatead==>
<Nulip5, Nullpg, Nulip7, Nulip8, Nullp9>
25. <pb, p8, p7, p8, <in1, m2p3{mkerrvborr(f)}, NuliTimep$s, out1p9(omess},
Nullout2p9, Nullout3p9>>
==Terminatead==>
<Nuilp5, Nullpg, Nulip7, Nulip8, NullpS>
26. <p5, pd, p7, p8, <in1p9{mkvbk(bid, Per)},
in2p9{mkvetborr{imkouib(lb, Undergrad, n}, borrid)), NuliTimep9,
out1p&{omess), Nullout2p9, Nullout3p9s:
==Terminatead==>
<Nullp5, Nullp6, Nulip7, Nulip8, NullpS=

5.2.4 Characterizing the behaviour of data flows and data stores

The dynamic aspects of synchronous data flows are implicit in the
mechanisms used in specifying synchrenous interactions amongst processes.
Behaviorally, data stores and asynchronous data flows are treated as processes, and
arg associated with states, events, and transition relations defining state transitions.
In what follows, data stores and asynchronous data flows are collectively called
store processes.

The state of a store process is the state of its structure, for example, a state of
an asynchronous data flow is a state of its queue structure. The event labels
correspond to the access functions specified in the RSs characterizing the structures

of the store processes, in the following manner:
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For a data store with structure struct :-

A read access function read : siruct, key — readval is associated with the
class of labels READ(id, val), where id:key, vai:readval.

An update function write : struct, key, data — struct is associated with the
class of 1abels WRITE(id, d}, where id:key, d:data.

An add function add : struct, data — struct is associated with the class of
labels ADD({d), where d:data.

A delete function delete : struct, key — struct is associated with the class of
labels DELETE(id), where id:key.

For an asynchronous data flow with structure asynch:-

The function addq : elem, asynch — asynch is associated with the class of
labeis ADD(e)}, where g:elem.

The function deleteq : asynch — asynch is associated with the class of labels
DEL(top(qg}), where q:asynch is the state of the data flow before the deletion is
effected.

The ASTS for an asynchronous data flow i1s given in Figure 5.4. The

primitive RS Asynchlabeis(Elemenit) characterizes the labels, of sort aslabel,
associated with the data flow.

BehAsynch = Asynch{Element) + AsynchLabel{Element) +

Signature
transition relation
_==_==>_asynch, aslabel, asynch
Laws V e, e:elem; q:asynch
1. emptyg==ADD{(e)==>addg{e, emptyq)
2. addg{e, qi==ADD({e")=>addq({e’, addgie, q))
3. q # emplyq = g==DEL {iop{q})==>deleteq(q}

Figure 5.4 The ASTS characterizing the behaviour of an asynchronous data flow

Example 5.5 gives the ASTS for the data store BOOK whose static aspects are

defined in Example 5.3.

Example 5.5
Characterizing the behaviour of the data siore BOOK

Book_TS = BookStore + BookLabels +

Signature
transition relation
_== ==»_ list{book}, hooklabel, lisi(book)
Laws V hid:book_id; 1b:list(book}; bind:borrower_indicator
1. Ib==READBQOKZ2(bid, readbock2(Ib, bid})===Ib
2. Ib==UPDATEBKZ2{bid, bind}==>updatebk2(ib, bind)
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5.2.5 Deriving the BS

ExtDFDs, like actions, are associated with state transition systems which
characterize their behaviour. The BS is the ASTS characterizing the transition
system of an ExtDFD, and is derived from the ASTSs characterizing the behaviour
of the ExtDFD's actions, data stores, and asynchronous data flows.

The states of an ExtDFD with actions, Al, ..., An, data stores, DS1, ...,
DSp, and asynchronous data flows, AS1,..., ASq, are of the form <sp, dsl, ...,
dsp, asl,..., asq, mode>, where Sp = {al, ..., an} is a set of action states, called

the acrion state set of the ExtDFD, dsi is a state of DSi, for 1<i<p, and asi is a state

of ASi, for 1<i<q, and mode is a mode of operation of the ExtDFD.

Actions which are disabled cannot be affected by events during the period
they are disabled, thus disabled actions need not be represented in the state of an
ExtDFD during the periods they are disabled. This means that one need only
represent enabled states (any state other than a disabled state) in the action state set
of an ExtDFD.

The event labels of ExtDFDs represent the effects of the {ollowing classes of
events:

+ synchronized communication between actions and data stores, and between
actions and the receive (ADD) and send (DEL) access mechanisms of
asynchronous data flows,

+ events depicted by signals {control flows generated by external entities and
actions),

+ parallel events composed of the above events.

Synchronized events are represented by synchronous event labels, and are
characterized in the same manner as synchronous labels in actions. For example,
the effect of a synchronous communication event between an action and a data store
is characterized in the BS by a law of the form below (in the RSs that follow

insert(a, sp) is abbreviated to {alsp}):

==Read(bid, val)==>a’, dsi==READ(bid, val)==>dsf’, cond(l, s) =
<{a, sp}, ds1, ..., dsi, ..., dsp, as1,..., asg, modex
===8YNCH({Read(bid, val), READ(bid, valj}}===x>

<{a, sp}, dst, ..., dsi', ..., dsp, as1,..., asg, modex>

The following sections detail the interactions that can be specified in the BS.
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Monitored access to data stores

The ExtDFD events which access data stores may need to be monitored, for
example, an action may read an object from a data store, modify the object, and
subsequently update the data store with the modified object. Such accesses are
called read/update accesses. In such cases, another action which reads and updates
the same object in parallel may cause the data store to move into an inconsistent
state. To aviod such situations, read/update accesses to data stores need to be
monitored. Static analysis of an ExtDFD, and examination of its data type
definitions, can determine which pair of output and input data flows of a data store
represent read/update accesses. Data stores in an ExtDFD associated with such pairs
are said to be monitored.

A solution to the problem described above would be for the data store to
prohibit access to objects which are being updated. The approach used here
associates with monitored data stores a list of identifiers (or keys) which identify
the objects in the data store on which monitored accesses are prohibited. An action
wishing to access a monitored data store for a read/update, or deletion (the
monitored accesses), can only do so if the object's identifier is not in the list. There
is no need to check such lists if an action simply reads objects without subsequently
updating the monitored data stores, nor if the action simply adds new objects to the
data store. A synchronized update (of a read/update access) between a monitored
data store and an action results in the updated object's identifier being removed
from the list.

In the case where an action with a read/update pair, reads in data from the data
store but does not subsequently update the data store, then the termination event of
the action is synchronized with the event that removes the identifier of the object
read in from the list. This is to avoid an object being permanently prohibited from
being accessed.

The laws characterizing monitored interactions with data stores, under the
simple scheme described above, are of the following form:

The read part
==Read(id, val)==>a', ds==READ({id, val)==>ds', contains{id, blist) = false =
<{alsp}, ds1, ..., <ds blist>, ..., dsp, as1,..., asq, modex>
===SYNCH({Read(id, val), READ(id, val)}}===>
<{a'lsp}, ds1, ..., <ds,add{id, blist)», ..., dsp, ast,..., asq, mode =
where contains is a function which takes an object, and a list of objects and
returns true if the object is in the list, otherwise it returns the value false, and the

function add inserts an object into a given list.
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The update part

a==Send(id, vai)==>a', ds==UPDATE(id, val}==>ds' =
<{a|sp}, ds1, ..., <ds,biist>, ..., dsp, as1,..., asq, mode>
===SYNCH({{Send(id, va!), UPDATE(id, vai)})===>

<{a'|sp}, ds1, ..., <ds', delete{id, blist)>, ..., dsp, ast,..., asq, mode »

where delete is a function which deletes a given object from a list.
Laws are also needed to check whether an action associated with a read/update pair
has terminated without updating a data store, These laws are of the form:
terminated{a), Noupdate(a) =

<{a|sp}, ds1, ..., <ds,blist», ..., sdsp, asi,..., asq, modex

===lerminatea===x

<{aispl, dst, ..., <ds, delete{id, blist)>, ..., dsp, ast,..., asg, mode »
where terminated is a function which return true if a process can revert to an idle
state (i.e. it has finished transforming its inputs to outputs), and Noupdate checks
whether, for a particular pair or read/updates, a read and subsequent update has
been carried out, returning true if a read has been made on an object identified by
bid, but no subsequent update has been carried out, and false otherwise.

Specifving state dependent behaviour in the BS

Signals in an ExtDFD depict event classes whose instances {event
occurrences) can affect the current mode of operation of the ExtDFD. As described
in Chapter 2, changes in the mcde of operation of an ExtDFD can affect the
behaviour of its actions in three ways: they can be initiated, enabled, or disabled.
Thus the occurrence of events associated with signals, as well as changing the
mode component of an ExtDFD state, also affects the action state set of the
ExtDFD. A signal which causes an action to be disabled causes the action's state to
be removed from the action state set, while a signal which causes an action to be
enabled causes the action's idle state to be added to the action state set of the
ExtDFD. Thus removing and adding action states to the action state set of an
ExtDFD corresponds to the disabling and enabling of actions, respectively.
Initiation signals are associated with enable and disable components, where the
disable component takes effect when the corresponding actions have gone through a
single invocation.

The laws in the BS characterizing the effects of events associated with signals
are of the following form:

<sp, st1, ..., stp, as1,..., asq, mode»===Sig===><sp’, st1, ..., stp, ast,..., asq, mode'»
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The above is interpreted as follows: the occurrence of the event whose effect
is denoted by the label Sig, when the ExtDFD is in the mode mode, causes the
mode to change to mode’, where such change causes changes in the state of some

of the actions in Sp, represented by sp'.

Parallel events and an example

The ExtDFD events which can affect disjoint parts of an ExtDFD can occur in
parallel. Example 5.6 gives a BS for the diagram in Figure 5.1, viewed as a simple

ExtDFD consisting of a single action,

Example 5.6
The BS for the ExtDEFD shown in Figure 5.1

Beh = Book_TS + Borrower_TS + Behstate + BehlLabel +
Signature
transition reiation
=== ===>_ beh, Ibeh, beh
Laws ¥ bid:book_id; Ib:list{book); out:out_updated_boak;
bklist:list(book_id); brilist:list(borrower_id); borrid:borrower_id;
ckinfo:asynch({checkout_info); indic:borrower_indicator; a, a':p5state;
obk:out_book; obr:iout_borr; asynch{checkout mmessage);
ck:checkout_info; outmess:checkout_message
hroniz venis: r
1. Ib==READBOOKZ({bid, mkreadval{obk})==xIb,
readbook2(Ib, bid) = mkreadval{obk},
a==Readp5{bid, obk}==>a’", contains(bid, bkiist) = false =
<{a}, <Ib,bklist>, <lbr, brlist=, ckinfo, ckmess>
===3YNCH{{READBOOK2(bid, mkreadval{obk)},
Readp5(bid, obk}})===x>
<{a'l, <Ib,add{bid, bklist)>, <lbr, brlist=, ckinfo, ckmess>
2. Ibr==READBORR2(borrid, mkrdborr{obr}j==>Ibr,
==Readpé(borrid, obr)==>a',
contains{borrid, brlist) = false, readborr2(lbr, borid) = mkrdborr{cbr} =
<{a}, <lb bklist>, <lbr, briist>, ckinfo, ckmess>
===SYNCH({{READBORR2(borrid, mkrdborr{obr)},
Readpé{bortid, obr)})====>
<{a'}, <lb, bkiist}>, <ibr, add{borrid, brlist)>, ckinfo, ckmess>
3. Ib==READBOOK2(bid, Nullval)==>Ib, readbook2(ib, bid) = Nullval,
a==Frreadpb(bid)==>-a" =
<{a}, <lp,bklist>, <lbr, briist>, ckinfo>
===SYNCH({READBOOK2(bid, Nullval}, Erreadp5(bid)}}===>
<{a'}, <Ib, bklist>, <lbr, brlist=, ckinfo, ckrness>
4. lbr==READBORR2(borrid, Nullbrval)==>lbr, readborr2(lbr, borid) = Nuilbrval,
==Erreadpb(borfid)==>3" =
<{a}, <lp,bkiist>, <lbr, brlist>, ckinfo, ckmess>
===SYNCH({{READBORR2(borrid, Nullbrval}, Erreadp6&(borrid)})====
<{a’}, <lb, bklist>, <lbr, brlist>, ckinfo, ckmess:»
5. b==UUPDATEBK(bid, indic)==>lb',
a==5end1p2{bid, indic)==>a' =
<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess>
===SYNCH{{UPDATEBK(bid, indic), Send3p9(bid, indic}})===>
<{a'l, <Ib', delete{bid, bklist}», <ibr, brlist>, ckinfo, ckmess>

Example 3.6 continued
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Example 5.6
The BS for the ExtDFD shown in Figure 5.1

6. Ibr==UPDATEBR({borrid, blist)==xIbr",
a==5end2pg(borrid, blist}==>a" =
<{a}, <Ib,bklist>, <lbr, brlist=, ckinfo, ckmess>
===8YNCH{{UFPDATEBR(borrid, biist), Send2p3(borrid, blist)}}===>
<{a'}, <lb, bklist=, <lbt’, delete(borrid, brlist)>, ckinfo, ckmess>

nchroniz vents: inferaclions wi nchron flow
7. ckinfo==DEL{mkoutinfo{bid, beorrid))==>ckinfo',
fop{ckinfo) = mkoutinfo(bid, borrid},
a==8YNCH({Receivep5(bid), Receiveipé({borrid}j)==>a'=
<{a}, <Ib,bklist>, <lbr, brlist>, ckinfo, ckmessx
===3YNCH{{DEL{mkoutinfo{bid, borrid}},
SYNCH({Receivep5(bid), Receiveips{borrid)}}}j===x
<{a'}, «lb, bklist>, <lbr, brlist>, ckinfo', ckmess:
8. ckinfo==ADD{ck)==>ckinfo’ =
<{a}, <Ib,bklist>, <lbr, briist>, ckinfo, ckmess
===8YNCH{{ADD(ck)})===>
<{a}, <Ib,bklist>, <Ibr, brlist>, ckinfe', ckmess:
9. ckmess==ADD{outmess)==>ckmess’, a==Send3p9(outmess)==>a' =
<{a}, <Ib,bklist>, <lbr, briist>, ckinfo, ckmess>
===8YNCH{{ADD{ouimess}, Send3pS{outmess)}j===>
<{a'}, <lb,bklist», <lbr, brlist», ckinfo, ckmess'>
10. ckmess==DElL.(outmess}==>ckmess' =
<{a}, <Ib,bklist>, <lbr, brlist>, ckinfo, ckmess
===8YNCH{{DEL(outmess}}}===>
<{a}, «Ib,bklist>, <lbr, brlist>, ckinfo, ckmess'>
Paraliel evenis
Events which affect mutually exclusive parls of the state can be carried out in
parailel

5.3 The BS as a formal basis for reasoning with ExtDFDs
The BS of an ExtDFD can be used te support the following activities:
+ Investigating behavioural properties captured by the BS (validation).
+ Proving that a specification implements the BS (verification).
In the following, the use and limitations of the BS for validation and
verification are described.

5.3.1 Investigating behavioural properties of ExtDFDs with the BS
The state transition system characterized by the BS can be used to
investigate properties, called safery properties, which concern what applications are
allowed to do, or equivalently, not allowed to do. An example of a required safety
property for the library application is that a book cannot be checked out and
available at the same time, that is, there should be no transition to a state in which a
book is both checked out and available. Safety properties can be investigated
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directly with the BS, since its laws explicitly express what the system is allowed to
do.

Properties related to what an application must do, called liveness properties
[Lam®&6], are sometimes implicit in the BS of ExtDFDs. An example of a liveness
property which can be implied from the BS is termination of an action. To facilitate
the investigation of liveness properties the labeled sequences of states representing
invocations need to be made explicit. To do this requires the addition of functions
and relations to those already present in the BS. A useful relation for analysis
purposes is the reachability relation, _---_--->__: state, list(label), state, which is
defined on process states and lists of labels as follows:

state===A===>5{ale' = state---Alemptylist--->state'

The reachability relation is an extension of the transition relation which
represents state transitions resulting from a sequence of event occurences. Used
naively, the reachability relation is not of much use, since there are, in general, an
infinite number of states reachable from a given state, State transition trees (STTS),
described in Chapter 2, provide finite representations of reachability relations,
where the nodes represent classes of states, while their edges represent classes of
event labels. Such trees can be used to check whether certain states, or classes of
states, are reachable from a given state, or a class of states. In particular such trees
can be used to investigate whether inconsistent states are reachable from consistent
states. Even so, the STT for a BS can be very large, making the automatic
generation of such trees from ASTSs desirable.

An automated system which, given an ASTS, would generate STTs, and
provide functions for analyzing such trees is needed in order for the framework to
be of practical use in this respect. Such automated system can also be used to
exercise (test) the behavioural specification under various control and/or data
inputs. This would involves substituting appropriate values to obtain instances of
the state and event classes in the STTs.

5.3.2 Proving implementations of the BS

The hiding of states of a process is sometimes desirable when attempting to
establish its equivalence to another process under some criteria for equivalence. For
example, two processes which behave identically as far as there inputs and outputs
are concemmned, but which differ in their internal workings, are equivalent under a
criterion which makes two processes equivalent if and only if they generate the

same results (output data) given the same inputs. Such equivalences are usually
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called observational {ST87]. An observational equivalence can be used as the basis
for determining whether a specificadon implements the BS.

The notdon of a specification implementing the BS developed here depends
on the ability to hide some of the states it specifies. Observation specifications are
used for this purpose. An observation specification is a tuple <B, S>>, where B is
an ASTS, and S is an ASTS specifying states, called observable states, and their
allowable transitions, called observable transitions. The states specified in S are
derived from the states of B by hiding some components of the states in B.

A particular observation specification, called an /n/Out (I/O) specification, is
used to carry out observations on actions. An I/O specification, <A, S> where A is
an ASTS characterizing an action with states of the form <pinitl, ..., pinitq,
pl,..., pn, pterl,..., pterm=>, and S is an ASTS characterizing observations on the
invokers, pinit1, ..., pinitq, and terminators, pter1,...pterm, of the action. The
states specified in S, called /O states, are of the form <pinit1, ..., pinitq,
ptert,..., pterm>. State ransitions in S are characterized by laws of the form:

<pinit1, ..., pinitg, p1,..., pn, pteri,..., pterm>==A==><pinit’, ..., pinitq', p1°,..., pn’,
ptert’,..., pterm'> = <pinit1, ..., pinitg, pter1,..., pterm>==A==><pinit1’, ..., pinitq',
ptert’,..., pterm's

The transition system characterized by S is called the [/O transition system of the
action characterized by A.

An ASTS, Beh1, characterizing the behaviour of an action, is said to
implement an ASTS, Beh2, if there exists a function from the I/O states of Beh1
to the I/O states of T2, which preserves the [/O transition system of Beh2.
Intuitively, the above definition captures the notion of action equivalence as
determined by their external behaviours, encapsulated by their I/O specifications.
The above notion of a specification implementing another is similar to that of
Lamport's, which states that a "specification S; implements a specification S if
every externally visible behaviour allowed by S;is allowed by S," [ALSSE].
Lamport's behaviours are sequences of states, which are implicit in the ASTSs
defined here.

An action implementing another action A, may be a result of further
decomposition of A's processes, or may consist of a totally different process
structure. In each case the action must have the same interface inputs and cutputs
(but which may be further decomposed). The decomposition approach can be used
as the basis of a transformation development strategy, where a transformation

occurs when an action's process is decomposed. In verifying whether an action,
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A2, resulting from the decomposition of a process in another action, Al,
implements Al involves viewing the decomposed process and its decomposed
system of processes as actions and proving that the decomposed system implements
the process. This is the situation in the latter verification approach mentioned above.

The implementation of a BS by another specification is based on the above
notion of an action's specification implementing another action's specification.
Formally, a specification, S, implements the BS of an ExtDFD, B, if there exists a
function from the actions specified in S to the actions specified in B, such that the
action of § which is mapped to the action in B, implements the action in B.

5.4 Conclusion

In this chapter it is shown how a formal specification of behavicur for
ExtDFDs, in the form of a BS, can be derived given specifications in the DE
characterizing the sructure and object classes of data flows and data stores, and
spectfications of behaviour for the DFD processes within actions. The BS can be
viewed as an initial design specification, and aileviates some of the problems
associated with generating such specifications from DFDs in the SA approach.
Transition to design involves creating the ExtDFD from the DFD and then deriving
the BS, which is a characterization of the formal interpretations associated with the
ExtDFD. Such a transition is less likely to be as problematic as the transition from
SA specifications to SD since it involves extending the DFDs themselves to
incorporate control informadon.

The BS can be used to formally validate behaviour of ExtDFDs, either by
associating with ExtDFDs a concrete operatonal model which is consistent with the
state transition system it characterizes, thus making the ExtDFDs executable, or by
analyzing the BS itself. Automated tools for analyzing the BS are desirable, given
the volume of detail that may be involved in such analyses. The BS also provides a
basis for verifying subsequent designs, via the notion of a specification
implementing the BS introduced in this chapter.



CHAPTER 6

Two Examples of Deriving Behavioural
Specifications from ExtDFDs

6.0 Introduction

The tools and techniques described in Chapter 5 are applied to two different
types of applications in this chapter. The first example, adapted from an example
given in Hatley and Piribhai [HP87], is concerned with the specification of
requirements for a automobile cruise control application. This application is control-
intensive in the sense that its behaviour is determined by the current mode of
operation in which it is in. A change in the current mode 1s determined by the
occurrence of external stimuli. The structures of data occurring in the application,
and the relationships between them, are simple, thus the example serves to focus on
the use of the tools and techniques for specifying the conirol aspects of
applications.

The second example is the library application introduced in Chapter 2. This
application is data-intensive in the sense that the structures of the data, and the
relationships between them play an important role in the specification of its
requirements. Furthermore, the application has one mode of operation, thus the
control aspects of the application of the application are relatively simple. The
exampie thus serves to focus on the use of the tocls and techniques for specifying
the processing and data aspects of the application.

In Section 6.1 the tools and techniques are applied the automebile cruise

conirol application and in Section 6.2 they are applied to the library example.

6.1 The Automobile Cruise System

The function of the cruise control application is to maintain an automobile at a
constant speed when commanded to do so by the driver. The driver must be able to
enter the following commands:

» cruise on - activate the cruise contol application.

» cruise off - deactivate the cruise control application.

« start acceleraring - causes the automobile to accelerate at a cornfortable rate.

+ stop accelerating - stops the acceleration initiated by a start accelerating
command.

+ resume - causes the application to return the automobile to the speed selected
prior to braking or gear shifting.

151
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The cruise control application can only be activated while the engine is
running and the autemobile is 1n top gear. When actuvated the application selects the
current speed as the desired speed only if it is at least 30 mites per hour. If the
speed is less than 30 miles per hour then the application is automatically
deacnvated. Deactivation of the application by the driver retums control to the driver
regardiess of any other commands issued to the application. The start accelerating
command causes the application to accelerate the car at a comfortable rate until the
stop accelerating command is issued, at which time the application holds the car at
the new speed. The driver is permitied to reduce speed by depressing the brake
pedal while the application is active. Depressing the brake pedal or shifting out of
top gear temporarily disabies the applicaton. Issuing the resume command after the
brake is released and the automobile is in top gear causes the application to maintain
the speed at the speed prior to braking or gear shifting, while issuing the start
accelerating command after brake release and a return to top gear causes the
application to accelerate the automobile. However, if a decativate application
command is issued in the intervening time then the resume and start accelerating
commands do nothing.

The ExtDFD for the cruise control application is shown in Figure 6.1, and the
supporting state transition diagram {(STD) is shown in Figure 6.2. In the approach
used here the driver commands are modeled as toggle signals, for example, the
cruise on and off commands are represented as a single signal, called cruise_on/off,
acting like a toggle switch, as is made clear in the STD for the application. It is also
assumed that the shaft is interfacing with a system that can detect and pass on its
pulse rate and rate of change to the application. Such a systemn is assumed to be part
of the external entity shaft.

There are five actions in the ExtDFD, all consisting of single processes. The
specification of behaviour is concerned mainly with the conditions under which
these actions are enabled and disabled. In the relational specifications (RSs)
characterizing states, labels and transition systems, the processes (actions) are
identified by the following short forms: Calcacc is Pl, CalcSpeed is P2,
SelectDesiredSpeedis P3,MaintainSpeed is P4, and MaintainAcc is
P5. A RS called Number, specifying floating point numbers and arithmetic on
such numbers, is assumed to be available. Throughout, the RSs are interspersed
with informal textual annotations to enhance their readability.
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Figure 6.1 The ExtDFD for the Cruise Control Application
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All the data flows in the ExtDFD transmit objects of type number.
Furthermore the constant MileCount, the number of shaft rotations in a single
mile, is assumed to be defined in the RS Number. For clarity, numbers are written
in their numeric form, for example the element representing the number two in
Number is written as '2'.

The auxiliary functions needed to define the transition relations of the
application's processes essentially define the functional relationship between their
inputs and outputs. The RSs characterizing the auxiliary functions are given below.

Functional relationship between the input and output of Calcace
CalcAcc = Number +
Signature
derivor
calcacc : number — numbet
Laws V c¢:number

1. calcace(c) = ¢/MileCount

Functional relationship between the input and cutput of CalcSpeead

CalcSpeed = Number +
Signature
derivor
calcspeed : number — number
Laws V c:number

1. calcspeedic) = ¢/MileCount

Functional relationship between the input and cutput of MaintainSpeed

MaintainSpeed = Number +
Signature

derivor

calcposn : number, number — number

Laws V¥V ni,n2:number
1. n1-n2>2 = calgposn(ni, n2) =0
2. n1-n2 =2, n1-n2<€2 = calcposn{ni,n2} = 2*(n1-n2+2)
3. n1-n2<-2 = caicposn{ni, n2} =8
- Varies throttle opening from closed to fully open as speed varies from
2 mph above desired speed, to 2 mph below it ---
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Functional relationship between the input and output of MaintainAcc

MaintainAcc = Number +
Slgnature

derivor

calcthposn : number — number

Laws ¥V n:number
1. n»1.2 = calclthpesn{n) = 0
2. n>0.8, ng1.2 = calcthposn{n) = 20*{1.2-n)
3. n<0.8 = calcthposn(n) = 0.8
--- Varies throttle opening from closed to fully cpen as acceleration
varies from 1.2 mpht/sec to 0.8 mph/seg ---

Since the actions of the ExtDFD all consist of single processes, the states, labels
and transition systems for the processes are specified as actions.
State. label, and transition system specification for Calchce
CalcAcc_State = Number + P1substate +
Slgnature
sorts pistate, inp1, outp1
constructors
Nullinp1 : — inp1
Nulloutp1 : -5 outp1
inchangerate: number — inp1
outacc : number — outp1

<_, > .inp1, ouip1 — pistate

CalcAcc { abeis = Number +
Signature
sort pilabel
constructors
Readchrate : number — p1label
Sendp1 : number — pilabel
Terminatep1 : - pilabel
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CalcAcc_TS = CalcAcc_State + CalcAcc_Label + CalcAce +
Siganture

transition relation
==_==>_. plstate, pliabel, pistate
Laws V¥ a,c:number
1. <Nullinp2, Nulloutp2>==Readchrate{c}==><inchangerate{c}, Nulloutp2>
2. calcaccic) =a =

<inchangerate(c), Nulioutp2>

==Sendpl{aj==>

<inchangerate{c), cutacc{a)>

3. <inchangerate{c), outacc(a)>==Terminatep2==><Nullinp1, Nulloutp1>

Stare, label. and transition system specification for CalcSpeed
CaleSpeed_State = Number +
Signature
soris p2staie, inp2, outp2
constructors
Nuillinp2 : — inp2
Nulioutp2 : — outp2
inrate: number — inp2
outspeed : number — outp2
<_,_» :inp2, outp2 — p2state

CalcSpeed [abels = Number +
Signature
sort p2iabel
constructors
Readprate : number — p2label
Sendp?2 : number — p2labet
Terminatep2 : — p2label

CalcSpeed_TS = CalcSpeed_State + CalcSpeed_Label + CalcSpeed +
Signature
transition relation
_==_==>_: p2siate, p2label, p2state
Laws ¥V n,cs:number

1. <Nullinp2, Nulioutp2>==Readprate{n)==><inrate{n), Nulloutp2=
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2. calcspeed(n) = cs =
<inrate(n), Nulloutp2:
==8endp2{cs)==>
<inrate(n), outspeed{cs)>
3. «<inrate{n), outspeed(cs)>==Terminatep2==»<Nuilinp2, Nulloutp2>

State, label, and wansition svstem specification for SelectDesiredSpeed

SelectDesiredSpeed_State = Number +
Signature
sorts p3state, inp3, ocutp3d, outsig
constructors
MNullinp3: — inp3
Nulloutp3: — outp3
Nuilsig: — outsig
incspeed : number — inp3
outdspeed: number — outp3
less30: — outsig
<_,_, > :inp3, outp3, outsig — p3state
SelectDesiredSpeed Labels = Number +
Signature
sort p3labe!
constructors
Readp3 : number — p3label
Sendp3 : number — p3label
Less30 : — p3label
Terminatep3 : — p3label

SelectDesiredSpeed_TS = SelectDesiredSpeed_State + SelectDesiredSpeed Label +
Siganture
transition relation

_==_==>_: p3state, p3iabel, p3state
Laws ¥V c¢s:humber
1. <Nullinp3, Nulloutp3, Nulisig===Readp3(cs)==><incspeed{cs}, Nulloutp3, Nullsig>
2. ~(cs <« 30) =

<incspeed(cs), Nulloutp2, Nullsig=

==3endp3{cs)==>

<incspeed(cs), outdspeed(cs}, Nulisig>»
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3.¢8<30=
<incspeed(cs), Nuilouip3, Nulisig>
==Less30==>
<incspeed(cs), Nuiloutp3, less30>
4. <incspeed{cs), outdspeed{cs), Nullsig>
==Terminatep3==x>
<Nullinp3, Nulloutp3, Nuilsig>
5. «incspeed{cs}, Nulloutp3, less30s>
==Terminatep3==x>
<Nullinp3, Nulloutp3, Nullsig>

State. label, and transition system specification for MaintainSpeed
MaintainSpeed_State = Number +
Signature
sorts pdstate, in1p4, in2p4, outpd
constructors
Nullintp4 : - inip4
Nullin2p4 : - in2p4
Nulloutp4d : — ouipd
infdspeed : number — in1p4
in2cspeed : number — in2p4
outpesn : number — ouip4
<_, , > .in1p4, in2p4, outp4 — p4state

MaintainSpeed_Labels = Number +
Signature
sorts pdlabel
constructors
Readip4, Read2pd : number — pdlabel
Sendp4 : number — p4iabel

Terminatep4 . — p4dlabel

MaintainSpeed_T8 = MaintainSpeed_State + MaintainSpeed_Label + MaintainSpeed +
Signature
transition relation
==_==>_; p4state, pdiabel, p4state
Laws V int:in1p4; in2:in2p4; s1,52,pos:Number
1. <Nullin1p4, in2, Nulioutp4>-Readip4{si}-><inidspeed(s), in2, Nuiloutp4>
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2. <in1, Nullin2p4, Nulloutp4>-Read2p4(s1)-><in1, in2cspeed(s), Nulloutp4>
3. calcposn(s1,s2) = pos =
<intdspeed{si)}, in2dspeed{s2), Nulioutp4>
==8endp4({pos}==»
<inidspeed(s1), in2dspeed(s2}, outposn{pos)>
4, <in1dspeed(s1), in2dspeed{s2)}, ouiposn(pes)>
==Terminatep4==»
<Nullin1p4, Nullin2p4, Nulloutp4s

State, label, and mansition system specification for Maintainaceo

MaintainAcc State = Number +
Signature
sorts p5state, inp5, outps
constructors
Nullinp5 : — inp5
Nulloutp5 : - outp5
inace : number — inp5
throtposn : number — outps
<_,_> . inp5, cutp5 — pbstate
MaintainAcc_Labels = Number +
Signature
sors p5Siabel
constructors
Readp$ : number — pblabel
Sendpb : number — pbiabel
Terminatep5 : — p5label

MaintainAcc_TS = MaintainAcc_State + MaintainAcc_Label + MaintainAce +
Sighature

transition relation

_~_-~»_! p5state, p5label, pbstate

Laws Y a,pos:number
1. «Nullinp5, Nuiloutp5»==Readp5{a)==><inacc{a), Nulloutp5:
2. calcthposn{a) = pos =

<inacc(a), Nulloutp5>==Sendp5(pos)==><inacc(a), throtposn{pos)>

3. <inacc{a},throtposn{pos)»==Terminatepb==><Nuliinp5, Nufloutp5>
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The data stores CURRENTSPEED, DESIREDSPEED, and CURRENTACC, behave
like variables in the sense that they contain a single value which is overwritten when
the data store is written into. The transition systems characterizing the effects of
reads and writes on the data store states are given below.,

State, lahel, and transition system specification for CURRENTSPEED

CurrentSpeed TS = Number +
Signhature
sorts currspeed, cslabel
constructors
Nullspeed : — currspeed
valcs : number — currspeed
Putcs : number — cslabel
Gelcs :number — cslabel
transition relation
_==_==>_ cufrspeed, cslabel, currspeed
Laws V s:number; cs:currspeed
1. cs==Pulcs(s)==>vaics(s)

2. vales(s)==CGetcs(s)==>valcs(s)

State, label, and transition system specification for DESIREDSPEED
DesiredSpeed TS = Number +
Signature
sorts despeed, dslabel
constructors
Nulldspeed : — despeed
valds : number — despeed
Putds : number — dslabel
Getds : number — dslabel
transition reiation
_==_==»_ . (despeed, dslabel, despeed
Laws ¥ s:number; ds:despeed
1. ds==Putds{s)==>valds(s)

2. valds({s)==Getds(s)==>valds(s)
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State. label, and ransition system specification for CURRENTACC
Acc_TS = Number +
Slgnature
sornts acc, alabel
constructors
Nullace : — ace
valacc : number — acc
Puta : number — calabel
Geta : number — alzbel
transition relation
_==_==>_acC, alabel, acc
Laws ¥V a:number; da:acc
1. da==Puta(a)==>valacc({a}
2. valacc(a)==Geta{a)==>valacc({a)

Specification of application states

CruiseSys_State = CalcAcc_State + CalcSpeed_State + SelectDesiredSpeed_State +
MaintainSpeed_State + MaintainAcc_State + CurrentSpeed_TS + DesiredSpeed_TS +
Acc_TS +
Signature
sorts state, systate, sysflag
constructor
IDLE, RUN1, RUN2, RUNS, RUN4, RUNS, CRUISE, ACCEL, BRAKING : — sysiflag
--- modes of operation ---
P1 : pistate — pstate

P5 : pbstate — pstate
--- state coercion functions, that is, functions which make states of actions into
ExtDFD process states ---

< > . set{pstate), acc, currspeed, despeed, asynch1, asynchz,

sysflag — systate
--- the state of an ExtDFD -
ck-predicate
okstate: systate
Laws V ac:acec; cs:currspeed; ds:despeed; pil:pistate; p2:p2state;
p3:p3state; p4:pdstate; p5:pSstate; ast:asynchi, as2:asynch2

1. okstate(<d, Nullace, Nullspeed, Nulldspeed, as1, as2, IDLE>)
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. okstate{<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN1>}
. okstate(<{p1, p2}, ac, cs, Nulidspeed, as1, as2, RUN2>}
. okstate(<{p1, p2, p3, p4}, ac, ¢s, ds, as1, as2, CRUISE>)
. okstate{<{p1, p2, p5}, ac, ¢s, ds, as1, as2, ACCEL>)

. okstate(<{p1, p2}, ac, ¢s, ds, as1, as2, BRAKING=)

. okstate{<{p1, p2}, ac, ¢s, ds, as1, as2, RUN3»)

. okstate{<{p1, p2}, ac, cs, ds, as1, as2, RUN4»)

Wl o~ 3N kWM

. okstaie{<{p1, p2}, ac, cs, ds, as1, as2, RUN5:)

Specification of action labels

Cruise_lLabel = CalcAcc_Label + CalcSpeed_Label + SeleciDesiredSpeed_Label +
MaintainSpeed_Label + MaintainAcc_Label + CurrentSpeed_TS + DesiredSpeed_TS +
Acc_TS +
Signature
sor label
L1 :pllabel — label

L5 : pdiabet — fabel
Lcs : ¢cslabel — label
Lds : dslabel — label
La : alabel — label

Specification of application labels

CruiseSys_Label = Set{Cruise_Label) +
Signature
sor sysiabel
[L] : tabel — sysiabel
SYNCH : set{label} — syslabel

_lL_ : syslabel, syslabe! — syslabel

The following shorthand notation will be used in the laws that follow.

« {pl,p2, ..., pn} denotes the finite set consisting of the elements p1 to pn.

» insert(p, sp) will be written as {p, sp}

+ Coercion functions for both states and labels will be left implicit, where doing so
causes no confusion. For example, the systate <{P1(p1),...,P5(p5)},...> will
simply be writen as <{pl,...,p5},...>.
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Specification of the application's ransition system
CruiseSys_TS = CalcAcc_TS + CaicSpeed TS + SelectDesiredSpeed_TS +
MaintainSpeed TS + MaintainAcc_TS + CurrentSpeed_TS + DesiredSpeed_TS +
Acc TS +
Signature

transition relation

_===_m=x>_ | §ySlate, syslabel, systate

Laws V a,s,c:humber; ac,ac':ace; c¢s,cs':icurrspeed; ds,ds:despeed;
t:sysflag;
sp,spt.spt',sp2,sp2':set{pstate}; p1,pt-:pistate; p2,p2':p2state;
p3,p3 :p3state; pd,pd’:pdsiate; pS,p5':pSstate

Synchronized events: data store/action interactions

1. pt==8endpi{a)==>p1’, ac==Putala)==>ac' =
<{p1, sp}, ac, cs, ds, asi, as2, 1>
===SYNCH{{Sendp1(a), Puta(a}})===>
<{p1‘, sp}, ac', ¢cs, ds, asl, asz, >
--- synchronized write to data store CURRENTACC by CalcACC -
2. pb==Readpb{a}==>p5', ac==Geta{a)==»ac =
<{p5, sp}, ac, ¢s, ds, asi, as2, >
===8SYNCH({Readp5(a), Gela(a)})===>
<{p5', sp}, ac, ¢s, ds, ast, as2, f»
- synchronized read from data store CURRENTACC by Maintainacc --
3. p2==8endp2(s)==>p2’, cs==Puics(s)==>c5' =
<{p2, sp}, ac, ¢s, ds, as1, as2, f>
===SYNCH({{Sendp2(s), Putcs(s)})===>
<{p2', sp}, ac, cs', ds, as1, asz, i»
-- synchronized write 10 CURRENTSEEED by CalcSpeed -
4, p3==Readp3({s)==>p3', cs==Getcs(§)==>Cs =
<{p3, sp}, ac, ¢s, ds, as1, as2, f»
===SYNCH{{Readp3(s), Getcs(s)})===x>
<{p3', sp}, ac, cs, ds, as1, as2, >
-- synchronized read oh CURRENTSPEED by SelectDesiredSpeed --
5. p3==Sendp3(s)==>p3', ds==Putds{s)==>ds' =
<{p3, spi, ac, ¢s, ds, as1, as2, f»
===8YNCH({Sendp3(s), Putds(s)}j===>
<{p3', sp}, ac, cs, ds', ast, ase, i»

-- synchronized write {0 DESIREDSPEED by SelectDesiredSpeed --
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6. p4==Read1p4(s)==>p4’, ds==Gelds{s)==>ds =
<{p4, sp}, ac, ¢s, ds, ast, as2, f>
===SYNCH({Read1p4(s), Getds(s)})===>
<{p4, sp}, ac, ¢s, ds, asi, asz, f>
-- synchronized read on DESIREDSFEED by MaintainSpeed --
7. p4==Read2p4(cs)==>p4', c5==Gelcs(s)==>C5 =
<{p4, sp}, ac, ¢s, ds, asti, asz, f>
===SYNCH({{Read2p4(s), Getcs(s)}}===>»
<{p4’, sp}, ac, ¢s, ds, ast, as2, f»
-- synchronized read on CURRENTSPEED by MaintainSpeed -
8. p4==Sendp4{pos)==>p4’, as1==ADD1{pos)==>as1’
<{p4, sp}, ac, cs, ds, asl1, as2, f»
===8SYNCH{{Sendp4{pos}, ADD1{pos}}j====
<{p4', sp}, ac, ¢s, ds, as1’, as2, f>
-~ synchronized add access to daia flow throitle_position1 by MaintainsSpeed --
8. pd==5Sendp5{pos)==>pb', as2==ADD2({pos)==>as2’
<{pb, sp}, ac, cs, ds, ast, asz, f>
===SYNCH({{Sendpb(pos}, ADD2{pos}}i===x>
<{p5', sp}, ac, ¢s, ds, ast, as2', >
-~ synchronized add access to data flow throtile_position2 by Maintainacce -
ng“il’g}l events
-- The following transitions are derived directly from the STD for the application
(see Figure 6.2) -
10. <, Nullace, Nulispeed, Nulldspeed, ast, as2, IDLE>
===engine_on/offz===x
<{<Nullinp1, Nulioutp1>, <Nullinp2, Nulloutp2>},
Nutlace, Nultspeed,Nulldspeed, as1, as2, RUN1>
11. <{p1, p2}, ac, cs, Nulldspeed, ast, as2, RUN1=>
==={raNs_in/out===x>
<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2»
12.1=|DLE=
<8P, ac, ¢, ds, asi, as2, f>
===@ngine_on/off===x>
<@, Nullacc, Nullspeed, Nulldspeed, as1, as2, IDLE>
13. f2RUN1, RUN2, ixRUN4, =IDLE =
<8p, ac, ¢s, ds, as1, as2, i
===¢ruise_on/off===>
<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2>
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14.

15.

18.

17.

18.

19.

20.

21.

22.

23.

24.

25,

<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2>

===Cryise_on/ofi===x»

<{p1, p2, <Nullinp3, Nufloutp3>, «Nullin1p4, Nullin2p4, Nulloutp4=},

ac, cs, Nulldspeed, as1, as2, CRUISE>
<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2=>
==={rans_in/ouUi===x=
<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN1>
<{p1, p2, p3, p4}, ac, cs, valds(s), as1, as2, CRUISE>

===3cC_on/0ff===x

<{p1, p2, <Nullinp5, Nulloutp5=), ac, cs, valds(s), as1, as2, ACCEL>

<{p1, p2, p3, p4}. ac, cs, valds(s), as1, as2, CRUISE>
===brake_on===>
<{p1, p2}, ac, cs, valds(s), ast, as2, BERAKING=>
<{p%, p2, p3, p4}, ac, cs, valds(s), as1, asz, CRUISE>
===trans_in/out===»
<{p1, p2}, ac, ¢s, valds{s), as1, as2, RUN4>
<{p1, p2, p3, p4}, ac, cs, Nulldspeed, as1, as2, CRUISE=
===(Less30)===>
<{p1, p2}, ac, c¢s, Nulldspeed, as1, as2, RUN2»
<{pt, p2, p&l, ac, cs, ds, asl, as2, ACCEL>
==brake_on==»
<{p1, p2}, ac, cs, ds, asi, as2, BRAKING>
<{p1, p2, p5}, ac, ¢s, ds, as1, as2, ACCEL>

====30¢_0N/0f{f===x

<{p1, p2, <Nullinp3, Nulloutp3=, <Nuilin1p4, Nullin2p4, Nulioutp4=},

ac, cs, Nulldespeed, as1, as2, CRUISE>
<{p1, p2}, ac, cs, ds, as1, as2, BRAKING=>
===Drake_off===»
<{p1, p2}, ac, cs, ds, ast, as2, RUN3»
<{p1, p2}, ac, ¢s, ds, asi, as2, RUN3=>

===acC_on/off===x

<{p1, p2, <Nullinp5, Nulloutp5=}, ac, cs, ds, as1, as2, ACCEL>

<{p1, p2}, ac, s, ds, ast, as2, RUN3=>
===trans_in/Out===>
<{p1, p2}, ac, cs, ds, as1, as2, RUN4»
<{p1, p2}, ac, ¢s, ds, as1, as2, RUN3>

===fesume_speed==x=x

<{p1, p2, <Nullin1p4, Nullin2p4, Nulloutp4>}, ac, cs, ds, as1. as2. CRUISE>
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26. <<{p1, p2.}, ac, cs, ds>, ast, as2, RUN4»
===¢ruise_on/off===»
<{p1, p2}, ac, cs, Nuildspeed, as1, as2, RUN1»
27. <{p1, p2}, ac, cs, ds, as1, as2, RUN4>
==={rans_in/out===>
<{p1, p2}, ac, ¢s, ds, asi, as2, RUNS:»
28. «<{p1, p2}, ac, cs, ds, as1, as2, RUN5G>
===a0C_on/off===>
<{p1, p2, <Nullinpb, Nullouipb>}, ac, ¢s, ds, as1, as2, ACCEL>
29, <{p1, p2}, ac, cs, ds, asi, as2, RUNS>
===fgsume_speed===x
<{p1, p2, <Nullinip4, Nullin2p4, Nulloutp4>}, ac, cs, ds, asl, as2, CRUISE>
30. p3==Terminatedp3==<Nullinp3, Nulloutp3, Nullsig>
<{p1, pe, p3, p4}, ac, cs, ds, as1, as2, CRUISE>
===Kilip3===>
<{p1, p2, p4}, ac, ¢s, ds, asi, as2, CRUISE>
nchroniz nts: nghron flow/gclion intergction
31. p4==Sendp4{pos)==>pd’, a81==ADD1(pos)==>as!' =
<{p4, sp}, ac, cs, ds, as1, as2, >
===SYNCH({Sendp4(pos), ADD1{pas)})===>
<{p4', spl, ac, cs, ds, asi’, as2, &
32. p5==Sendp5(pos}==>p&’, as2==ADD2{pos)==»a82' =
<{p5, sp}, ac, cs, ds, ast, as2, 1>
==8YNCH{Sendp5({pos), ADD2{pos)}==>
<{p5', sp}, ac, ¢s, ds, asti, as2, f>
33. p1==Readchrate==>p1' =
<{pi, sp}, ac, ¢s, ds, as1, as2, >
===Readchrate===»
<{p1', sp}, ac, ¢s, ds, asl, as2, f>
34. p2==Readpratge==>p2" =
<{p2, sp}, ac, cs, ds, as1, as2, f»
===Readprate===>

<{p2', sp}, ac, cs, ds, asi, as2, i»
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Parailel events
35. «{p1, p5, sp}, ac, ¢s. ds, asi, as2, >
===SYNCH{{Sendp1(a), Puta(a)})===>
<{p1’, p5, sp}, ac', ¢s, ds, ast, asz, f»,
<{p1, p5, sp}, ac', cs, ds, as1, as2, i»
===SYNCH{{Readp5(a), Get(a)})===>
<{p1, p5', sp}, ac', ¢cs, ds, ast, as2, f> =
<{pi, p5, sp}, ac, cs, ds, asi, as2, f>
===8YNCH({{Sendp1(a), Puta{a)}}||SYNCH({Readp5(a}, Get(@)})===>
<{p1', p5', sp}, ac', cs, ds, as1, as2, f»
-- parallel access to the daia store CURRENTACC gives priority to the
write access —~
36. <{p2, p3, sp}, ac, cs, ds, as1, as2, f>
===SYNCH{{Sendp2(s}, Putcs{s}})===>
<{p2', p3, sp}, ac, cs', ds, as1, as2, {>,
<{p2, p3, sp}, ds, cs’, ds, as1, as2, f»
===3YNCH({{Readp3(s}, Geics{s)})===>
<{p2, p3', sp}, ds, ¢cs', ds, as1, as2, f> =
<{p2, p3, sp}, ds, cs, ds, asi, as2, i»
===8YNCH({{Sendp2(s), Putcs(s)}}||SYNCH({Readp3(s), Getcs{s)}}===>
<{p2', <inspeed({s1), Nulloutp3>, sp}, ac, ¢s', ds, asi, as2, >
-- parallel access fo the data store CURRENTSPEED gives priority to the
write access --
37. <{p4,sp}, ac, cs, ds, as1, as2, >
===SYNCHI{{Read1p4(s), Getds{s)}}===>
<{«indspeed{s1}, Nullin2p4, Nulloutp4=, sp}, ac, c¢s, ds, ast, as2, f>,
<{p4, sp}, ac, cs, ds, asi, as2, 1>
===8YNCH{{Read2p4(s2), Gelcs{s2)}}===>
<{«Nullinip4, incspeed(s2}, Nullouip4>, sp}, ac, ¢s, ds, ast, as2, f> =
<{p4, sp}, ac, cs, ds, ast, as2, >
===8YNCH{{Read1p4{s1}, Getds(s1)})i]
SYNCH({Read2p4(s2), Getcs(s2)}i===>
<{<indspeed{s1}, incspeed(s2}, Nulloutp4=, sp}, ac, cs, ds, asl, as2, {>
-- parallel access to the data store DESIREDSPEED gives priority to the

write access --
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38. <spl148p2, ac, ¢s, ds, asi, as2, >

<sp1°+sp2, ac', ¢s, ds, ast, as2, i»,
<spl1+sp2, ac, ¢s, ds, asi, ase, {»
R e
<spl1+5p2’, ac, cs', ds’, ast’, as2', f> =
<s5p1+8p2, ac, ¢s, ds, as1, asz, {»
===A1||A2===>
<8p1'+sp2', ac', ¢s', ds', ast', as2’, >
39. <spi+sp2, ac, cs, ds, ast, as2, f»
===Alz==n
<sp1'+sp2, ac', ¢s', ds, asl, as2, f>,
<5pi1+4s5p2, ac, cs, ds, ast, asa, f»
===Al=m=>
<spl+sp2, ac, cs, ds', as1’, as2', f> =
<Sp1+sp2, ac, ¢s, ds, asi, as2, f»
===A1||A2===>
<spt’+sp2', ac', ¢s', ds', ast', as2’, >
40. <spl+8p2, ac, ¢s, ds, ast, as2, i»
===Af===x
<sp1'+5p2, ac’, cs', ds', as1i, as2, f»,
<sp1+5p2, ac, ¢s, ds, as’, as2, f»
===AZ2===>
<spl+sp2', ag, ¢s, ds, as1’, as2', > =
<spi+sp2, ac, ¢s, ds, asi, as2, f»
===A1[|A2===>
<sp1’+sp2', ac', ¢s', ds', ast’, as2', i»
41, «spi+spe, ac, ¢s, ds, asl, as2, i»
===Atmean
<sp1'+sp2, ac', cs’, ds’, as1', as2, >,
<$pi+5p2, ac, ¢s, ds, ast, as2, >
===Al===x>
<$pl+sp2', ag, cs, ds, asl, as2', f> =
<sp1+spe, ac, cs, ds, as1, as2, f>
===A1[|A2===>

<sp1°+5p2’, ac’, cg', dg', ast’, as2’, f»

-- Events that affect mutuaily exclusive parts of the application can occur in parallef --



Chapter 6: Examples 170

6.2 Computer-based University Library Application

The ExtDFD for the library application is shown in Figure 6.3. The
application is partitioned into seven actions namely DeleteCopy (A1),
AddCopy {(AZ), ReturnBook (A3}, CheckoutBook (Ad),
UpdateBorrStatus (A5), AddBorrower (A6),and DeleteBorrower
(A7) . The actions communicate with the external entity sta£f via asynchronous
data flows, while communication with the clock external entity is via state flows.
Actions are activated solely by the occurence of data events as is evident by the lack
of control flows in the ExtDFD. Figure 6.4 gives the type definitions associated
with the data flows in the ExtDFD.

Figure 6.4 defines, in a semi-formal manner, the type defintions of the data
flows in the ExtDFD for the library application shown in Figure 6.3. Base types are
classes of indivisible objects, or list or set structures of indivisible objects, while
non-base types are classes of composite objects. In the definitions for the non-base
types, the base components are written in bold. The base types used for the library
application are:
number - the class of floating point numbers,
rime - the class of nme points,
character - the class of characters,
and list and set structures of the above.

Aliases for the base types are also defined in Figure 6.4, where the base types
are diffrentiated from their aliases by writing them in italics. The names of the
constructors in the RSs formally defining the types are enclosed within () in the
definitions given in Figure 6.4. Constructors starting with a capital letter are
constants.
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Non-bage data types

bk atatus 1:= <time (mkbbstatus)) | "Not returned®

B (NotRet) >

book = <book_id, title, subject, author,
copy_type, borrower_indicator>
{mkbook)

pook_id = <ISBN, copy#> (mkbkid)

borr:detail = < [borrower bock detail}, number:>
mkborrdet

borr fine record = <<number, borrower_id> (mKbfrec) | "“Not

B in file™ (NoRec)>

borr flag

borr_update_info
borrower

borrower_book_detail

borrower_id
borrower indicator

checkout_info
checkout message
del borr

delete book
deleted borr
deleted book
ISEN

new_book

new_book_rec :
new_borr :

new borr rec
other borr
ocut bock

out_book_ id
out borr

out_borr id
cut_updated_book
out _updated borr
ret borr list
ret_updated book

ret updated_borr -

return_detail
return_info
update_id
update_ status

vetted_book

it

Il

<"Not in file" (Bflag) ! <borrower_id,
out_borr> (mkbilag) >

<borrower id, number> (mkupinfo)
<borrower_id, borrower_ name,
borrewer_addr, borrower_type.,
[berrower book detail],
payment_to_date> (mkborr)
<bock_id, due_time, bb_status>
{mkbdet)
<[character]>
<"available™
{mkbind) >
<book_id, borrower_id>»

¢mkborrid)
(Availakle) | <borrower id>

tmkoutinfo)

<vetted borr, vetted book> (mkoutmess)
borrower_id

book_id

{borrower_book detail]
borrower_indicator

<[integer]>

<ISBN, title, subject, author,
copy_type> (mknewbk)

book

<borrower_id, borrower_name,
borrower_addr, bhorrower_type>
(mknewborr)

borrower

borrower_id
<borrower indicator,
{mkoutbk)

bock_id

<{borrower book detail],
borrower_type? raymaent to_date>
(mkoutbr)

borrower id

borrower_indicator

[borrower book_detail]
[borrower_book_detail]

borrower indicator

[borrower book_detail]

borrower indicator

book_id
borrower id
<"Qutstanding”
"Excess" number
file™ (Norec) |
i*Fines cleared” (Cleared)>

<<book_id, copy_type> (mkvbk})| "book
not in file™ (Bknotinfile) 1 "book already
checked out™ (CheckedQut){ "not
borrowable” (NotBorn >

copy_typer

number (mkupstatusi) |
(mkupstatus2) | "Not in
"o fines™ (Nofines)
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vetted borr

vetted return book

B es
add _message

amount paid
author
borrower addr
borrower name
borrower_type

checkout time
copy#
copy#_list
copy type

del borr_mess
delete message

fine
fines_record
ISBN

new_copy#
paidup amount
payment_ to date
return_message

return_time

subject

title

update time
updated_borr_detail

[

<"Fines over limit" number {(MKerrvborr) |
"horrower not in file"™ (NoBomm !
<cut_borr, borrower_id> (mkvetborr)>
<"Not in file"™ (Relnotinfile) | "Already
returned” (Retin){ <book_id,
borrower id> {(mkveiret)>

tIOK"
filer
number

[character]

[character]

[character] )

"undergrad" (Undergrad) | postgrad"
(Postgrady t “statff" (Staff)
time

integer

[integer]

"book® (Booky| "reference™
"periodical" (Per)

vort (OKdely | "Not in file™
“"Has books out” (Booksout)
<'delete-0K" (OKdeh | "Not in file™
{(Nobk) | "Not available® (Notavailabie)
number
[number]
{integer]
integer
number
number
"Already in"
{Retnotin)
time
{character]
{character]
time

number

(OKadd) | "Borrower already in
{ Alreadyinfile)

{Ref) |

{Delnotinfiley |

(Alreadyin) | "Not in file®

Figure 6.4 Type defintions for the library application

The ASTS for the action DeleteCopy (A1)

The states of A1 are of the form «inp1, delp1, cutp1>, where inp1 is the

state associated with the action's interaction with delete book, delpl isthe

state associated with the action's interaction with the data store BOOK, and outp1 is

the state associated with the action's interaction with delete message. The type
of the state, p1state, is characterized by the RS Pistate.
The labels of A1, of sort p1label characterized by P1label, are:
« Receivepi{dl) - receive d1 from delete book.
+ Readpi(id, d2) - read in d2 from BOOK.
+ Erreadpi(id) - unsuccessful read on BOOK.

» Sendpi(d3) - generate d3 for output on delete message.
» Deletep1(id) - delete object with key id from BOOK.
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» Terminatepl - terminate action.
The ASTS for Al is given below:
DeleteCopy_TS = Pistate + Pilabsi +
Signature
transition relation
== ==»_: pistate, p1label, pistate
Laws V borrid:borrower_id; bid:book_id; dmess:delete_message;
bind:borrower_indicator
1. <Nullinp1, Nulidelp1, Nulloutpi>
==Receivep1(bid)==>
<inp1{bid}, Nulldelp1, Nulioutpi>»
2. <inp1(bid), Nulldelpi, Nulloutp1>
==Readp1(bid, bind)==>
<inp1{bid), delp1{bind), Nutloutp1>
3. <inpt{bid), Nulidelp1, Nulloutp1>
==Erreadp1{bid}===
<inp1(bid}, errdelpt, Nullouipi=>
4. <inpiibid}, delpt{mkbind({borrid}}, Nulloutp1>
==8endp1{NotAvailable)==>
<inp1(bid}, delp1{mkbind{borrid}), cutp1(NotAvaitabie)>
5. <inp1{bid), delp1(Available}, Nulloutp1>
==Deletep1{bid)==>
<inpi{bid}, deleted, Nulloutp1>
6. <inpt{bid), deleted, Nullouip1>
==Sendp1(OKdel)==>
<inp1{bid), deleted, outp1{CKdei}>
7. <inpi{bid), errdeip1,Nulloutp1>
==8endp1({Delnotin)==x»
<inpi(bid), errdelpi, outp1(Delnotin)>
8. <inpi{bid), errdelpt, outpi(dmess)»
==lerminatepl ===
<Nullinp1, Nuildelp1, Nulloutpi>
9. <inpt(bid), deleted, outpt{OKdel)=
==Terminatept==»
<Nullinp1, Nullde!p1, Nulloutpts
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The ASTS for the action AddCopy (A2)
The states of A2 are of the form <inp2, rdp2, outp2:>, where inp2 is the
state associated with the action's interaction with return_info, rdp2 is the state

associated with the action's interaction with the data store BOCK, and outp2 is the
state associated with the action’s interaction with vetted return book. A2
states are of sort p2state characterized by the RS P2state.
The tabels of A2, of sort p2label characterized by P2label, are:
« Receivep2(d1) - receive d1 from return_info.
« Readp2{id, d2) - read in d2 from BOOK.
+ Erreadp2(id} - unsuccessful read on BOOK.
» Sendp2(d3) - generate d3 for output on vetted return book.
» Terminatep?2 - terminate action.
The ASTS for A2 is given below:
AddCopy_TS = P2state + P2label +
Signature
transition relation
_==>»_. p2state, p2label, p2state
Laws ¥V nbk:new_book; EISBN; t,s,a:list{character); I[n:list{integer);
ty:copy_type; bkrec:new_book_rec; nil:integer
1. <Nullinp2, Nullrdp2, Nulloutp2:»
==Receivep2{nbk)==x»
<inp2(nbk), Null-dp2, Nulloutp2>
2. «inp2{mknewbk({it,s,a,ly)), Nulirdp2, Nulloutp2:>
==Readp2(i, In)==>
<inp2(mknewbk(it,s,a,ty)). rdp2(in), Nulioutp2>
3. succ{max{ln}}=n1 =
<inp2{mknewbk{it,s,a,ty}), rap2(In), Nulloutp2>
==Sendp2{mkbook{mkbkid{i, n1), i, s, g, ty, Available}}==»
<cinp2{mknewbk(i, t, s, a, ty)), rdp2(in),
outp2{mkbook{mkbkid(i, n1), t, s, a, ty, Available})»
4. «<inp2{nbk}, rdp2({In}, cutp2{bkrec)>
==Terminatep2==>
<Nuliinp2, Nullrdp2, Nulloutp2=

The ASTS for the acrion A3
The action A3 consists of the processes CheckReturnBook (P3), and

ReturnUpdate (P4).The states and labels of these processes are specified in the

same manner as the states and labels of proceses in previous examples, and thus are
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not explicitly characterized in what follows. Such characterization should be

obvious from their use in the specification of the processes’ ASTSs.

The auxiliary functions needed to express the characterization of the
processes' transition systems are characterized by the RS BorrBookFns, The
functions characterized by this RS are:

- getbk: book_id, list{borrower_book_detail}) — borrower book_detail -
returns an object of sort borrower_book_detail in the list argument with key
matching the book_id argument.

» getime: borrower_book_detail — time - returns the time atmibute of a
borrower_book_detail object.

» deletebk: book_id, list(borrower_book_detail) —
list(borrower_book_detail) - deletes the borrower_book_detail object with
the key given by the book_id argument from the list argument.

To simplify the presentation, BorrBookFns is not given here, The ASTSs
for the processes follow:

CheckReturnBook_TS = P3state + P3label +
Signature

transition relation

_- -»_:p3statie, p3label, p3state
Laws ¥ borrid:borrower_id; bid:book_id; bind:borrower_indicator
1. <Nullinp3, Nulirdp3, Nufloutp3>
-Receivep3(bid)->
<inp3(bid), Nulirdp3, Nulloutp3=»
2. <inp3{bid), Nullrdp3, Nulloutp3>
-Readp3{bid, bind)-»
<inp3({bid}, rdp3{bind}), Nulioutp3»
3. <inp3{bid), rdp3{Available), Nulioutp3>
-Sendp3(Retin)-»
<inp3(bid), rdp3(bind), outp3(Retin)>
4. <inp3{bid}, rdp3{mkbind(borrid}},Nullouip3>
-Sendp3(mkyvetret{bid, borrid})-»
<inp3({bid}, rdp3{mkbind({borrid}}, outp3{mkvetret{bid, borrid)}>
5. <inp3(bid), Nulirdp3, Nulioutp3>
-Erreadp3(bid}->
<inp3{bid}, errdp3, Nulloutp3=
6. <inp3(bid), errdp3, Nulioutp3>
-Sendp3{Retnotinfile)-»
<inp3(bid}, errdp3, cutp3{Retnotinfile}>
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Returnllpdate = P4state + Pdlabel + Betup + BorrBookFns +
Signature
transition reiation
_-_-»_. pdstate, p4label, pdstate
Laws V borrid:borrower_id; t,t":time; bid:book_id; 03:out3p4;
o02:o0ut2p4; veibk:vetted return_book;
Ib,Ib":list(borrower_book_detail};
1. <Nullinpd4, Nulitimep4, Nuilrdp4, Nulloutip4, Nullout2p4, Nullout3pd=>
-Receivep4({vetbk)-»
<inp4{vetbk}, Nuiltimep4, Nullrdp4, Nullout1p4, Nullout2p4, Nullout3p4:»
2. <inp4{Retnotinfile), Nulitimep4, Nullrdp4, Nullout1p4, Nullout2p4, Nullout3pd:
-Sendip4(Retnotin)->
<inp4{Retnotinfife), Nulltimep4, Nullrdp4, outip4{Retnotin)},
MNuliocutzp4, Nullout3p4=
3. <inp4(Retin), Nulitimep4, Nuflrdp4, Nulloutip4, Nullout2p4, Nullout3p4=
-Sendip4{Alreadyin)-»
<inp4(Retin), Nultimep4, Nullrdp4, ouil p4{Alreadyin), Nullout2p4, Nullout3p4d:
4. <inp4{mkvetret(bid, borrid}}, Nulltimep4, Nullrdp4,
Nullout1p4, Nullout2p4, Nullout3p4:>
-Readp4({borrid,Ib}->
<inp4{mkvetret(bid, borrid)), Nulitimep4, rdp4{ib), Nuliout1p4,
Nutiocutep4, Nullout3p4>
5. <inp4{mkvetret(bid, borrid)), Nulltimep4, rdp4(lb), Nulloutip4,
Nullout2p4, Nullout3pd=
-Timep4{t}->
<inp4{mkvetret{bid, borrid}}, timep4(t), rdp4(lb), Nullout1p4,
Nullout2p4, Nullout3pd-
6. ~(getime{getbk(bid,Ib)}> 1), deletebk(bid,Ib) = Ib’ =
<inp4{mkvetret{bid, borrid)}, timep4 (1), rdp4(ib}, Nutlout1p4, Nullout2p4, 03>
-Send2p4(bid, Ib')->
<inp4{mkvetret{bid, borrid}), timep4(1), rdp4{Ib), Nullout1p4, out2p4({lb", 03>
7. getime{getbkibid,Ib)) =t t>1 =
<inp4{mkveiret(bid, borrid}), timep4(1}, rap4{Ib), Nullsut1p4, Nullout2p4, 03>
-Send2p4(bid, mkbdet{bid,t'1)|deletebk{bid,1b))->
<inp4{mkvetret{bid, borrid)}, timep4(t). rdp4{lb}, Nullout1p4,
mkbdet(bid,t' t}|deletebk{bid,Ib), 03>
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8. <inp4{mkvetret(bid, borrid}}, int, rdp4{lb}, Nullout1p4, 02, Nullout3p4:>»
-Send3p4(bid, Available}-»
<inpd{mkvetret{bid, borrid}}, int, rdp4(ib}, Nullout1p4, o2, cut3p4{Available)>

The ASTS for A3 can now be given. The characterization of the action's states and
labels should be cbvicus from their use in the ASTS below:
A3 TS = A3siate + A3fabel +
Signature
transition relation
_==_ ==>_: a3state, a3label, a3state
Laws V p3,p3":p3state; p4,pd’:pdstate; vbk:vetted_return_book;
rmess:return_message; rubr:ret_updated_borr;
rubk:ret_updated_book;
bind:book_indicator; bid:book_id; t:time; horrid:borrower_id;
ib:list(borrower_book_detail)
1. p3-Sendp3{vbk)->p3', p4-Receivepd(vetbk)-»pd' =
«p3, pd>==0YNCH({{Sendp3{vbk), Receivep4(vetbk)}}==><p3’ p4'>
--- gynchronized communication between P3 and P4 via the data flow
vetted return_book ---
2. p3-Receivep3(bid)->p3* = <p3, pd>==Receivep3(bid)==><p3’ pd>
--- an input event of the action ---
3. p3-Readp3{bid, bind)->p3' = <p3, p4>==Readp3(bid, bind}==><p3' p4d>
--- a successful read by the action on BOOK ---
4. p3-Erreadp3(bid)->p3’ = <p3, pd>==Erreadp3(bid)==><p3’, p4>
--- an unsuccessful read by the action on BOOK ---
5. p4-Sendip4{rmess)-»pd' = «p3, p4>==Sendip4{rmess)==><p3, pd'>
--- an output event of the action ---
6. p4-Send2p4{rubr)->p4' = <p3, pd>==Send2p4{rubrj==><p3, pd'>
--- an output event of the action ---
7. p4-Send3p4{rubk}->p4’ = <p3, pd>==5end3p4{rubk)==><p3, p4'>
--- an output event of the action ---
8. p4-Readp4(borrid, Ib)->p4” = <p3, p4>==Readpa(borrid, b)==><p3, p4'>
--- a successtul read by the action on BORROWER ---
9. p4-Erreadp4(borrid)->p4' = <p3, pd>==Erreadp4{borrid)==><p3, p4'>
--- an unsuccessful read by the action on BORROWER ---
10, pa-Timep4(l)->p4’ = <p3, pd»==Timep4{t}==><p3, pd'>

--- a state read on return_time by the action ---
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The ASTS for the acion A4

The action A4 consists of the processes CheckBook (P5),
GetOverdueBooks (P6), CalculateFine (P7), VettBorrower (PR), and
CheckoutUpdate (P9).The states and labels of these processes are specified in

the same manner as the states and labels of proceses in previous examples, and thus
are not explicitly characterized in what follows. Such characterization should be
obvious from their use in the specification of the processes’ ASTSs.
The ASTSs for the processes follow:
CheckBock = P5state + PSlabel +
Signature
transition relation
_-_-»_: pbstate, p5Slabel, p5state
Laws ¥V outbk:out_book; ty:copy_type; bid:book_id
1. <Nullinp5, Nullrdp3, Nulloutp5>
-Receivep5(bid)->
<inp5{bid), Nullrdps, Nulloutp5>
2. <inp5(bid), Nulirdps, Nulloutp5>
-Readp5{bid, outbk)->
<inp5({bid), rp5(outbk}), Nulloutp5:
3. ty#Ref =
<inp5{bid), rpS(mkoutbk({Avaitable, ty}}, Nulloutp5:
-Sendp5({mkvhk{bid, ty}}->
<inp5{bid), rpS{mkoutbk(Available, ty)}, outpS{mkvbkibid, ty))>
4. <inp5(hid}, rp5S{mkoutbk(Available, Ref)}, Nulloutp5=
-Sendp5({Notborr}->
<inp5(bid), m5{mkoutbk{Available, Ref}), outp5({Nothorr)=
5. inp5(bid), rp5{mkoutbk({mkbind(borrid), ty}, Nulioutp5=
-Sendp5{CheckedCut}-»
<inp5{bid}, rpS{mkoutbk{mkhind{beorria}, ty), cutp5(CheckedQut)=>
8. «inp5(hid), Nullrdp5, Nulloutp5=
-Erreadp5{bid)->
<inp5{bid}, errp5, Nulloutp5=
7. <inp5(bid), errp5, Nulloutp5>
-Sendp5(Bknotintile}->
<inp5(bid), errp5, outp5(Bknotinfile)>
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The ASTS characterizing the transition system for P6 utilizes the RS FinesRec
which characterizes the function
getfinesrec: list(borrower_book_detail), time — list(number)
which derives a list of fines given a list of borrower_book_detail objects and the
current time.
GetOverdueBooks = P6state + P6iabel + FinesRec +
Signature
transition relation
_-_-»_. p8state, pslabel, ptstate
Laws V borrid:borrower_id; outb:out_borrower; t:itime; o1:01p6;
02:02p6; Ib:list(borrower_book_detall}; bit:borrower_type; n:number;
fn:list{integer}
1. <Nullinp6, Nulirdp6, Nulltimepg, Nullouttp8, Nullout2p6
-Receivep6(borrid)->
<inp8{borrid}, Nullrdp8, Nuiliimeps, Nullout1ps, Nullout2ps>

. «inp&{borrid}, Nullrdp8, Nuikimep6, Nuliout1p6, Nuilout2p6=

-Readp6(borrid, outb}->

<inp6{borrid}, rp&{outb), Nulltimep6, Nulloutips, Nuilout2pé:

. <inp6{borrid), rp6(outb), Nuiltimeps6, Nulloutips, Nullout2ps=>

Timeps(t)->

™o

o)

<inp6&({borrid}, m6(outb), timep6&(t), Nullout1ps, Nullout2p6s>

i

. getfinesrec(lb, ) =In=
<inp6(borrid}, rp6{mkoutbr({ib, bt, n)}, timep6(t), Nullout1ps, o2
-Send1p6iin}->
<inp6{borrid), rpé{mkoutb(lb}, bt, n}), timeps{t), out1p6{in), 02>
5. <inp6{berrid), rp6{outh)}, timep6(t}, o1, Nullout2p6=
-Send2p6{mkbfiag{borrid,outb})->
<inp6{borrid), re6{outb), timeps(t), o1, cut2ps{mkbfiag(borrid,outb})>
6. <inp6{barrid), Nulirdps, Nuiltimeps, Nulioutips, Nuliout2p6:
-Erreadp6({borrid)-»
<inp6{porrid}, errps, Nulitimeps, Nuflout1ps, Nullout2p6>
7. <inp6{borrid}, errp8, Nulltimeps, Nuilout1ps, Nuliout2pg>
-Send2p6(Bflag}->
<inpB{borrid}, errp6, Nulltimeps, Nullcut1ps, out2ps{Bfiag)-

P7 utilizes an RS, SumList, which characici ses the auxiliary function
sum: list{integer) — integer

which returns the sum of a list of integers.
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GetOverdueBooks = P7state + P7label + SumlList +
Slgnature
transition relation
_-_==_: p7staie, p7iabel, p7/state
Laws V¥ In:list{integer}; n:integer
1. <Nullinp?, Nulloutp?=>
-Receivep7{In)->
<inp7{In}, Nulloutp7>
2. sumfln} = n=
<inp7{In}, Nulloutp7>
-Sendp7{nj->
<inp7{in}, outp7{n)>

VettBorrower = P8state + Pglabet +
Signature
transition relation
_-_-»_: p8state, pBlabel, p8state
Laws ¥V n,n.f:number; t:time; borrid:borrower_id; in1:11p8; in2:i2p8;
Ib:list(borrower_book_detail); bt:copy_type; bflag:borr_flag
1. <Nullin1p8, in2, Nulloutp8>
-Receive1p8(n)-=
<in1p8{n), in2, Nulloutp8=>
2. <in1, Nullin2pg, Nulloutp8>
-Receive2pg(bflag)->
<ini, in2p8(bfiag), Nulloutp8>
3. <in1, in2p8&{Bfiag), Nuiloutps>
-Sendp8{NoBorr}-»
<int, in2p8(Biiag), outp8(NoBorr)>
4. n-n'sLimit =
<in1p8{n}, in2p8(mkbilag(borrid, mkoutb{ib, bt, n'})), Nulloutp8>
-Sendp8{mkvetborr(mkoutb(lp, bt, nY), borrid}))->
<in1p8in}, in2p8{mkoflag{borrid, mkouth{lb, bt, N}y,
outp8{mkvetborr{mkouth{lb, bt, n'}, borrid))>
5 n-n'={ f=Limit=
<ini1p8&{n}, in2p&{mkbilag{borrid, mkoutb{lb, bt, n})}, Nulicutp8=
-Sendp8(mkerrvborr(f)}-»
<in1p8(n), in2p8(mkhilag{borrid, mkoutb(ik, bt, n')}}, outp8(mkerrvhorr{fil>
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The function week used in the ASTS for P9, given below, is assumed to be
characterized by the RS Time characterizing time, where the basic unit of time is a
day. The function takes a day, t, and a number, n, and returns the day n weeks (a
week is seven days) in the future from t.
CheckoutUpdate = P9state + PSlabel +
Signature
transition relation
_-_-»_: p9state, pSiabel, p9state
Laws V vbk:vetted book; vbrivetted borr; ini:i1p9; in2:i2p9:
time:tp9; outt:01p9; oui2:02p9; out3:03p9
1. «Nuilin1p9, in2, NullTimepS, Nullout1p8, Nullout2pg, Nuillout3p9=-
-Receive1p9{vbk)-»
<in1p8{vbk), in2, NuilTimep9, Nuillout1pg, Nuiloui2p9, Nuliout3pg-
2. <int, Nullin2pg, NullTimep9, Nuliout!pS, Nullout2pg, Nullout3p9s>
-Receive2pa(vbr)-»
<ini, in2p8(vbr), NullTimep?9, Nullout1pg, Nullout2p9, Nulloui3pa=
3. <in1p9{vbk), in2p9({vbr), time, Nulloutip9, out2, out3>
-Send1p8{mkoutmess{vbr, vbk}}->
<in1p9{vbk), in2p9{vbr), time, outip9{mkoutmess(vbr, vblk}), out2, outlds
4. <in1p9{mkvbk{bid, ty)}, in2p9{mkvetborr{cb, borrid}},
NullTimep9, outt, Nullout2pg, Nulloui3p9>
-Timep9(t)->
<in1p9{mkvbk{bid, ty})}, in2p9{mkvethorr{ob, borrid}},
timeps(t), cut1, Nullout2p9, Nuliout3pg>
B. week{t, 2)=t'=
<in1p8{mkvbk({bid, Book)),
in2p9{mkvetborr{mkoutb{ib, Undergrad, n), borrid)},
fimep9i(t}, ocutl, Nuilout2p9, Nullout3p9>
-Send2pg(borrid, {mkbdet(bid, t', Notret}}|lb)->
<in1p9{mkvbk(bid, Book)),
in2p9{mkvetborr{mkeouth{lb, Undergrad, n}, borrid}),
timep9(1), out, out2p9{mkbdet{bid, 1, Notret))|ib}, Nuliout3p9s
8. weekit, 4) =t =
<in1p9{mkvibk(bid, Book}},
in2p9(mkvetborr{mkoutb({lb, Postgrad, n), borrid)),
timepa(t}, outt, Nullout2p3, Nullout3p9:=>
-Send2p9{borrid, {mkbdet({bid, ', Notret)}}ib}>
<in1p9{mkvbk(bid, Book}},
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in2p3{mkvetborr(mkoutb{lb, Postgrad, n), borrid)},
timep9(i), outt, outepd{mkbdet(bid, t', Notret)){Ib}, Nullout3p9x
7. week{t, ) =t'=
<in1p3{mkvbk{bid, Book}}), in2p9{mkvetborr{mkoutb{ib, Staff, n}, borrid}},
timepa(t), out1, Nuilout2ps, Nullout3p9>
-Send2p9{borrid, {mkbdet(bid, week{6,t}, Noiret}}|ib)->
<in1p9{mkvbk(bid, Book)}, in2p3{mkvetborr{mkouib(lb, Staff, n), borrid)),
timep8{t), cutt, cut2p3{mkbdet({bid, ', Notret})|ib}, Nullout3p9=
8. week{t,2)=t'=
<in1p8{mkvbk{bid, Per}}, in2p3{mkvetborr{imkoutb{lb, Posigrad, n}, borrid)),
timep9(1), out1, Nuiloui2p9, Nullout3p9d=
-Send2p3{borrid, (mkbdet(bid, t", Notret))jlib)->
<intp9{mkvbk(bid, Per};, in2p9({mkveiborr{mkeoutb(iz, Postgrad, n}, borrid)),
timeps(t), outt, out2pg{mkbdet{bid, t', Notret}}|lb}, Nullocut3p9=
9. week{t, 4=t >
<in1p9{mkvbk(bid, Per)}, in2ps{mkvetborr{mkoutb{lb, Staff, n}, borrid)},
timeps(t), outt, Nulloui2p9, Nullout3p9=
-Send2p9(borrid, {mkbdet{bid, t', Notret}}jib}-»
<in1p8{mkvbkibid, Per}},
in2p9{mkvetborr(mkoutb(lb, Staif, n), borrid}}), timep9(1},
out1, out2p9{mkbdet(bid, t', Notret))|Ib), Nuilout3pg:
10. <in1p9{mkvbkibid, ty)}, in2p8(mkveiborr{cb, borrid)), 19, outt,
out2pg(borrid, ib), Nuliout3p9=
-Send3p9(bid, mkbind{borrid}}->
<in1p9{mkvbk(bid, ty}), in2p9{mkvetborr{ob, berrid)}, 19, out1,
out2p9(borrid, Ib), out3p9(mkbind(borrid)}>

The ASTS for the action A4 follows:
Ad TS = Adstate + Adlabel +
Signature
transition relation
==_==>_ . a4slate, adlabel, adstate
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Laws Vv blid:book_Id; borrid:borrower_id; t:lime; vbk:vetted_book;
p1,p1:statep1;...; p&,p5':statep5; A1,A2:adlabel;
vbr:vetted_borrower; in:list{humber); f:number; bflag:borr_flag;
obk:out_book; obr:out_borrower; upbk:out_updated_book;
upbr:out_updated_borr; mess:checkout_message
roniz v . pr munication {vi ni
flows)
1. p5--Receivep5(bid)--=p5', p6--Receiveip6{borrid)-->p6’ =
<pb, P8, P7, P8, p9=
==SYNCH({{Receivep5(bid}, Receiveip2(borsrid}}}===
<p5', p&', p7, p8, p9>
2. p5--Sendp5(vbk)-->p5', p9--Receive1p{vbk)->pg' =
<p5, p6, p7, p8, p9>
==SYNCH({Sendp5(vbk), Receive1pS{vbk)}}==>
<pb', p6, p7, p8, p9'>
3. p6--Sendipé{In)-->p6’, p7--Receivep7(in)-->p7’ =
<pb, p6, p7, p8, P9>
==8YNCH{Send1p6&(in}, Receivep7(In}}}==>
<pb, pe', p7', p8, p9=>
4. p6--Send2pé{bflag)-->p6', p8--Receive2p8(bflag)-->p8’ =
<pb, p6, £7, p8, p9>
=SYNCH({Send2p6(bflag), Receive2p8{bflag)}}==>
<p5, p6', p7, p8’, p9>
5. p7--Sendp7{{}-->p7', p8--Receive1p8{f)-->p8' =
<p5, pb, p7, p8. p9>
==SYNCH({Sendp7{{}, Receive1p8()})===
<p5, p6, p7', p8', p9>
8. p8--Sendp8{vbr)-->p8', p9--Receive2pd{vbr-->pg' =

<p5, pé, p7, p8, p9>
==SYNCH{{Sendp8{vb}, Receive2p8(vhr)})===
<p5, p8, p7, p8', p9'>

7. p5--Readp1(bid, obk}-->p5' =

<pb, p8, p7, p8, p9>==Readpi(bid, obk)==><p&', p6, p7, p8, P9>
8. p5--Erreadp1{bid)-—->p5s’ =

<p8, p8, p7, p8, p9>==FErreadpi{bid)==><p5', p6, 7, p8, p3>»
9. p6--Receive2p2(t)-->p6' =

<pb, p6, p7, p8, p9===Receive2p2{t}==><p5, p€’, p7, p8, p9>
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10. p6--Readp2(borrid, obr)-->p6' =
<p5, p6, p7, p8, p9»==Readp2{borrid, obr)==»<p5, p6', p7, p8, pS>
11. p6--Erreadp2({borrid}--—>p8&’' =
<p5, p6, p7, 08, p9>==Erreadp2(borrid)==»<p5, p6', p7, p8, p9>
12. p9--Update1(bid, upbk}-->p9' =
<p5, pB, p7. p8, p9===Updatet(bid, upbk}==><p5, p&, p7, p8, pa'=
13. p9--Update2(borrid, upbr)->pg8’' =
«<p5, p6, p7. p8, p9>==Update2(borrid, upbrj==><p5, p6, p7, p8, p9'>
14, p8--Send{mess)--»p9' =
<p5, p6, p7, p8, p9===Send{mess)==><p5, p6, p7, p8, p9>
15, p9--Receive3p5(t)--=p9' =
<p5, pB, p7, p8, p9===Receivedp5{)==><p5, p6, p7, p&, po'>
Pargilel Events
--- Events which affect separate parls of an action can be carried out in parallef -
16. <p5, p6, p7, p8, pO9»==Al==><p5’, p6, p7. p8, Po>,
<p5, p6, p7, P8, p9»==A2==><p5, P&, p7', pg', P> =
<<p5, p6, p7, P8, pI9»==PAR(A1, A2)==><p5', p6", p7’, p8’, p9>
17. <p5, p6, p7, P8, pPY»==Al==><p5', p6', p7, p8, p9>,
<p5, p6, p7, p8, p9>==A2===<p5, p§, p7, pg', pS'> =
<p5, p&, p7, p8, p9>==PAR(A1, A2)==><pb', p6', p7’, p8&', po">
18. <pb, p6, p7, p8, p9r==Al==»<p5', p&', p7', p8, p9>,
<p5, p6, p7, p8, p9>==A2==><p5, p6, p7, p8', pe'> =
<p5, p6, p7. p8, p9>==PAR(A1, A2)==><p5', p6', p7', p8', p9'>
19. <p5, p6, p7, p8, pA>==Al==><p¥', p6', p7', p8', p9>,
<p5, pB, p7, pB, p9>==A2==»<pb, pb, p7, p8, p9'> =
<p5, p6, p7, p8, pO9>==PAR{A1, A2)==><pb5', p6&', p7', p8', p9'>

ingfion even
--- Nullpi, 5=i<9, is the abbreviated form for the idle state of Pi ---
20. <p5, p6, p7, p8, <in1pd{vbk), in2p9{vbr), timep9(i},
out1p@{omess), out2pQ{ubr), out3pe(ubk)>>
==Terminatead==x»
<Nullp5, Nullpg, Nullp?7, Nullp8, Nullpg>
21.  <p5, p6, p7, p8, <in1p@{Notborr}, in2, NullTimep?, out1p9{omess},
Nultout2p?, Nuiloutdpfs>>
==Terminatead==>»
<Nulip5, Nulips, Nulip?, Nuilp8, Nullp9>
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22.  <pb, p6, p7, P8, <in1p9{CheckedOut}, in2, NullTimepy, out1p9{omess),
Nullout2pg, Nullout3p9>»
==Terminatead==>
<Nullp5, Nuilps, Nullp7, Nulip8, NulipS>
23. <p5, p8, p7, p8, <in1pS{Bknoiinfile}, in2, NullTimep9, outip9{omess),
Nullout2pd, Nullout3p9s>
==Terminatead==»
<Nulip5, Nullps, Nulip7, Nulip8, Nulip9>
24. <p5, p6, p7, p8, <int, iN2p9(NoBorr), NullTimep?, out1p9(omess),
Nullout2p9, Nullout3p9sx>
==Terminatead==x
<Nulipb, Nulipg, Nullp7, Nulip8, Nullp9>
25. <p5, p6, p7, p8, <inl, in2p9{mkerrvborr(f}i, NuliTimep9, out1p9{omess),
Nullout2p9, Nullout3p9>x>
==Terminatead==»
<Nullps, Nullpé, Nulip7, Nulipg, Nulip9x
26. <pb, p6, p7, p8, <in1p9(mivbkibid, Per},
in2pS{mkvetborr{mkouib(lb, Undergrad, n), borrid}}, NullTimep9,
outip9{emess), Nullout2p9, Nuilout3p9s>
==Terminatead==x
<Nullp5, Nullps, Nullp7, Nulip8, Nulip9=>

The ASTS for the action AS
The action A5 consists of the processes GenerateFinesRecord (P10),
and UpdateBorrRecord (P11). As in the specification of the ASTS for A4

given above, the states and labels of these processes are not explicitly characterized
in what follows, as such characterization should be obvious from their use in the
specification of the processes’ ASTSs.
The ASTSs for the processes follow:
GenerateFinesRecord = P10state + P10label + FinesRec + SumList +
Signature
transition relation
_-_-»_: p10state, pi0label, p10state
Laws V borrid:barrower_id; t:time; ib:list{borrower_book_detail);
bd:borr_detail; n,n:number
1. <Nullinp10, Nulirdp10, NullTimep10, Nuiloutp10>
-Receivep10(borrid)->
<inp10{borrid), Nullrdp10, NuilTimep10, Nulloutp10>
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2. <inp10(borrid), Nulirdp10, NullTimepi0, Nulioutp10x>
-Readp10(borrig, bd}->
<inp10{berrid), rdp10{bd}, NuliTimep10, Nulloutp10>
3. <inp10(borrid), rdp10{kd}), NullTimep10, Nulloutp10>
-Timep10(t)->
<inp10({borrid}, rdp10{bd), timep10{t}, Nulloutp10=
4. sum{getfinesrec{ib, t}}-n) = n'=
<inp10{borrid), rdp10{mkborrdet(lb, n)}, timep10(t}), Nulloutpt0=>
-Sendp1¢{mkbfrec{n’, borrig)}-»
<inp10{berrid), rdp10{mkboarrdet{lb, n}}, timep10{t}, outp1O{(n', borrid)>
5. <inp10{borrid), Nullrdpt0, NullTimep10, Nutioutp10>
-Erreadp10{borrid)->
<inp10(borrid}, errdp10, NullTimep10, Nullouip10>
6. <inp10{borrid}, errdp10, NullTimep10, Nulioutpi0>
-Sendpi0{NoRec)-»
<inp10{borrid), errdp10, NuliTimep10, outp10(NoRec)>

UpdateBorrBecord = P11state + Pitlabel +
Signature
transition relation
_-_->_: ptistate, pillabel, pi1istate
Laws ¥ borrid:borrower_id; t:time; n,n',f:number;
frec:borr_fine_record; int:1pt1; in2:i2p11; outl:oipi1; out2:02pi1
1. <Nullin1p11, in2, Nullouttpt1, Nullout2pii=
-Receive1pii(n)-»
<in1p11{n}, in2, Nulloutip11, Nuliout2pii=
2. <int, Nullin2p11, Nullout1pt1, Nullout2pii>
-Receive2piiffrec)-»
<in1, in2p11{frec), Nulloutip11, Nutiout2p1 1>
3. <int, in2p11{NcRec), Nulicutip11, Nuilout2pti=
-Send2p11{Norec)->
<in1, in2p11{NoRec}, Nulioutipil, out2pi1{Norec)>
4. <in1p11{n), in2p11(mkbfrec(0, borrid}}, Nulloutipi1, Nulioutepii=
-Send2p11{Nofines)-»
<in1p11(n}, in2p11{mkbfrec(0, borrid)}, Nulioutip11, out2p1 1{Nofines)>
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S.n'=n,n-n=1=
<inip11{n}, in2p11{mkbfrec{n’, borrid)}, ouit, Nuliout2p1 1>
-Send2p11(f)-»
<in1pi1{n}, in2p11(mkbfrec{n’, borrid)}, outt, out2p11{fi»
6.n<n, NN ==
<in1p11(n), in2p11{mkbfrec{n', borrid)), ouit, Nullout2p1 1>
-Send2p11(f)->
<in1p11{n), in2p11(mkbirec(in, borrid)), outt, out2p11{f)>
.n=n=
<in1p11{n}, in2p11{mkbirec(n’, borrid)}, outt, Nullout2p1 1>
-Send2p11{Cleared)->
<in1pit{n}, in2p11{mkbfrec{n’, borrid}), out1, oui2p11{Cleared)>
B.n=0, NN =f=
<intp11{n}, in2p11{mkbfrec{n’, borrid}}, Nullcut1p11, out2>
-Sendipii{borrid, f}-»
<intp11i({n}, in2p1t{mkbfreci{n’, borrid)}, outip1t1(f}, out2>

The ASTS for the action A5 is given below:
A5 TS = Abstate + ASlabel +
Signature
transition reiation
==_==x>_ ' abstate, ablabel, abstate

Laws ¥ borrid:borrower_id; t:time; n:number; ...
Synchronized events
1. p10-Receivep10{borrid)->p10, p11-Receiveipii{n}->pii' =
<pl10, pli=>
==SYNCH({{ReceivepiC{borrid), Receivelp11{n}})===
<pil, pit>
--- synchronized invocation of action ---
2. p10-Sendp10{n)->p10’, pi1-Receive2pi1{n)->p11’ =
<p10, p11>
==SYNCH{{Sendp10(n}, Receive2pii(n}}}==>
<pl10’, pit'>
--~ synchronized communication via the data flow borr_fine_record ---
Single evenis
{All events of P10 and P11 that are not synchronized in 1 and 2}
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Paralle! events
{All action events that affect mutual exciusive paris of the state of A4 are allowed to
oceur in parallel)

The ASTS for the action DeleteBorr (P12)
DeleteBorr_TS = P12state + P12label +
Signature

transition refation
== ==» :pil2state, pi2iabel, p12state
Laws V borrid:borrower_id; I[b:list(borrower_book_detail)
1. <Nullinp12, Nulirdp12, Nuiloutp12>
==Receivepl12(borrid)==>
<inp12(borrid), Nuilrdp12, Nullouip12=>
2. <inp12(borrid), Nullrdp12, Nulfloutpi2s
==Readp12{borrid, Ib)==x>
<tnp12(barrid), rdp12(lb}, Nulioutp12x
3. b = emptylist =
<inp12(borrid), rdp12{lb}, Nulloutp12x>
==Deletebr{borrid)===
<inp12{borrid), deibr, Nulloutp12>
4. <inp12(berrid), deibr, Nulloutp12=
==5endp12{0OKdelbr)==»
<inp12{barrid}, delbr, outp12{OKdelbr)>
4. Ib =+ emptylist =
<inp12(borrid), rdp12{Ib}, Nulloutp12x>
==Sendpi12{Booksout)==>
<inp12({borrid), rdp12(lb), cutp12({Booksout}>
5. <inp12(borrid), Nullrdp12, Nulloutp12»
==Errdelbr(borrid)==»
<inp12{borrid), errdel, Nuliouip12x>
6. <inp12{borrid}, errdel, Nulloutp12=»
==Sendp12{Delnotinfile)==>
<inp12(borrid), errdel, outp12{Pelnotintile)=
7. <inpt2(borrid}, rdp12({ib), outpi2{dmess)>
==Terminatep12==x>
<Nullinp12, Nulirdp12, Nulioutp12>
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8. <inp12(borrid), errdel, outp12{dmess)>
==1erminatep12==x»
<Nullinp12, Nulirdp12, Nuilouipi 2>
9. <inp12(borrid), delbr, outp12{dmess)>
==1erminatep12==x
<Nullinp12, Nullrdp12, Nulloutpi2x>

The ASTS for the action AddBorr (P13}
AddBorr_TS = P13state + P13label +
Signature

transition relation

_==_==>»_. p13state, p13iabel, p13state
Laws V borrid:borrower_id;nborr:new_borr; n,a:list{character);
t:borrower_type; outi:01p13, out2:o2p13
1. <Nullinp13, Nullrdp13, Nullout1p13, Nullout2p13=
==Receivepi{nborr)==x
<inp13{nborr), Nullrdp13, Nulicut1p13, Nullout2p13»>
2, <inp13{mknewborr(borrid, n, a, 1)}, Nulirdp13, Nullout1p13, Nullout2p13=
==Readp13(borrid)==x
<inp13{mknewborr(borrid, n, a, 1}}, rdp13{berrid}, Nulloutip13, Nullout2pi3-
3. <inp13(mknewborr{borrid, n, a, t)), Nulirdp13, Nullout1p13, Nullout2p13=
==Erreadp13{borrid)==>
<inp13{mknewborr(borrid, n, a, 1)), erreadp13, Nullout1p13, Nuliout2p13>
4, «inp13{mknewborr{borrid, n, a, t}}, rdp13(borrid), Nullout1p13, Nuilout2p13=>
==8end1p13(Alreadyiniilg)==>
<inp13{mknewborr(borrid, n, a, t}}, rdp13(borrid),
out?pi3(Alreadyinfile), Nullout2pi3=
5. <inp13(mknewborr(borrid, n, &, t}}, dp13(borrid),
out1p13(Alreadyintile), Nullout2p13=>
==Terminatep13==x
<Nullinp13, Nullrdp13, Nullout1p13, Nullout2pi3=
6. «<inp13{nborr), erreadp13, Nullout1p13, cui2>
==3end1p13(0OKadd)==x>
<inp13(nbarr), erreadp13, out1p13({0OKadd), oui2>
7. <inpt3{mknewborr{borrid, n, a, t}}, erreadp13, out1, Nullout2p13=>
==8end2p13{mkborr{borrid, n, g, 1, emptylist, 0))==>
<inp13(mknewborr{borrid, n, a, t}}, erreadp13, outt,
out2p13({mkborr{borrid, n, a, t, emptylist, 0))>
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8. <inp13{mknewborr{borrid, n, a, t}), erreadp13, out1p13{OKadd),
out2p13{mkborr{borrid, n, a, t, emptylist, 0))>
==Terminatep13==»

<Nullinp13, Nulirdp13, Nulioutip13, Nullout2pi 3>

The asyncronous data flows of the library application are associated with
queue structures each having an ADD access function, which puts objects on the
queue, and a DEL access function, which removes the object at the top of the
queue. The RSs specifying the asynchronous flows are not given here since they
are merely instantiations of the queue RS given in Chapter 5. Below i3 a brief
description of the RSs characterizing these data flows:

Data flow RS name Access events
new_book : Asynchl ADDI1, DEL1
delete_book : Asynch2 ADD?2, DEL?2
delete_message : Asynch3 ADD3, DEL3
return_info : Asynch4 ADD4, DELA4
return_message : Asynch5 ADDS5, DELS
checkout_info : Asynch6 ADDG6, DEL6
checkout_message Asynch7 ADD7, DEL7
borr_update_info : Asynch8 ADDS, DELS
update_status : Asynch9 ADD9, DEL9
del borr : Asynch10 ADDI10, DEL10
del_borr_mess : Asynchll ADDI11, DEL11
new_borr : Asynchl12 ADDI12, DEL12
add_message : Asynch13 ADDI13, DEL13

The RSs characterising the behaviour of the data stores are given below:
Borr_TS = BorrStore + Borrlabel +
Signature
transition relation
_==_==x_!lisl{borrower), borriabei, list{borrower)
Laws ¥ borrid:borrower_id; Ibr:list(borrower}; rub:ret_updated_borr;
oub:out_updated_borr; brec:borrower
1. Ibr==READBORR1{borrid, readborri{lbr, borrid}))===Ibr
--- read associated with ret_borr ---
2. lbr==READBORR2(borrid, readborr2(lbr, borrid))==>Ibr

--- read asscciated with out_borr -
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3. Ibr==READBORR3(borrid, readborr3{lbr, borrid})===Ibr
--- read associated with borr_detail ---

4, Ibr==DELBORR(borrid, readborr4(lbr, borrid))==>delborr{lbr, borrid)
--- read associated with deleted_borr ---

5. lbr==READBORRS5{borrid, readborr5({lbr, borrid)}==>lor
--- read associated with other_borr -

6. Ibr==UPDATEBR1{borrid, rub)==>updatebri(lbr, borrid, rub)
--- update associated with ret_updated_borr ---

7. br==UPDATEBR2(borrid, cub)==>update2{lbr, borrid, oub)
--- update associated with out_updated_borr ---

8. lbr==UPDATEBRS3(borrid, ubd)==>updatebr3{ibr, borrid, ubd)
--- update associated with updated_borr_detait ---

9. Ibr==PUTBR(brec)==»brec|lbr

-- update associated with new_borr_rec ---

Book_TS = BookStore + Booklabel +
Signature
transition relation
==_==»_. list{book}, booklabel, list{book)
Laws V¥ bld:book_id; Ibk:list(book); i:ISBN; rub:ret_updated_book;
oub:out_updated_book; bkrec:book
1. Ibk==READBQOK1(bid, readbk1{lbk, bid}))==»Ibk
--- read associated with return_detail ---
2. Ibk==READBCOK2(bid, readbk2{lbk, bid})==»Ibk
--- read associated with out_book ---
3. Ibk==DELBCOKIkid, readbk3(ibk, bid}}==>delbook({lbk, bid}
--- read associated with deleted_book ---
4. Ibk==READBOOK3(i, readbk3(lbk, i})==>lbk
--- read associated with copy#_list ---
5. Ibk==PUTBK({bkrec)==>bkrec|ibk
--- addition associated with new_book_rec ---
8. Ibk==UPDATEBK1(bid, rub)==>updatebk1(Ibk, rub}
--- update associated with ret_updated_book -
7. Ibk==UPDATEBK2(bid, oub}==>updatebk2(ibk, oub)

--- update associated with out_updated_book -

The state of the ExtDFD representing the library application is of the form <{aft, ...,
a7}, ast, ..., as13, <ds1, 11>, <ds2, [2>>, where al is a state of action Al, asi
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is an asynchi object, representing a state of its corresponding asynchronous data
flow, <ds1, [1> is a state of the monitored data store BOCK, {(ds1 is the state of the
data store while !1 contains informaton about which objects in BOOK cannot be
updated), and <ds2, 2> is the state of the monitored data store BORROWER, (ds2
is the state of the data store while |1 contains information about which objects in
BORROWER cannot be updated).
The outline of the BS for the library ExtDFD is given below:
Lib_BS = Libstate + Liblabel +

Signature

transition relfation

===_===x>_: libstate, liblabel, iibsiate

A.  Synchronized events between the receiving events of actions and the
remove events (DEL) of asynchronous data fiows. These laws are of the form
below:

ai==Receivepi(data)==>al’, asj==DELj({data)==>as] =
<{ai, sp}, as1, ..., asj, ..., as13, «gst, 1>, <ds2, 12>>
===8YNCH({{Receivepi(bid}, DELj(bid)}}===>
<{af’, sp}, as1, ..., as{, ..., as13, «dsi, I1>, «ds2, 2»>»
For example, the synchronized interaction between the action A5 and the
asynchronous daia flow borr_update_info is defined by the law:
{porrid:borrower_id; niinteger}
a5==SYNCH({Receivepi0(borrid), Receive1p11(n}})==>a5",
as8==DEL8{mkupinto(borrid, n}}==»as8' =
<{ab, sp}, as1, ..., as8, ..., as13, <dsi, I1>, <ds2, 12>>
===8YNCH{{SYNCH({{Receivep10{borrid), Receive1pi1(n}}},
DELS{mkupinfo{borrid, n})}}===>
<{ab', sp}, ast, ..., asf’, ..., as13, «ds1, >, «ds2, i2>>

B. Synchronized events between actions and data stores. For example, the law
characterizing the interaction between the action A3 and the data store BOOK
via the data flow ret_updated_book is:

{rubzret_updated_book; bid:book_id}
a3==5end2p4(bid, rub)==>a3', ds1==UPDATEBK1(bid, rub)==>ds1’ =
<{a3, sp}, ast, ..., as13, <dsi, Ii>, <ds2, 12>>»
===8YNCH{{Send2p4{bid, rub}, UPDATEBK1(bid, rub}})===x
<{ad', sp}, as1, ..., as13, «dst’, delete(bid, I1)=, «ds2, [2>>
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Single Events
C.  All action events which are concerned with the reading of state flows {rom
external entities. Such events are of the form:
di==l==>ai' =

<{ai, sp}, asi, ..., as13, «dsi, >, «ds2, 125>

<{al’, sp}, as1, ..., as13, <dsi, 11>, «ds2, (2>
where | is an event label encapsulating the observable effect of a read from a
state flow event.
Paralle] Ev
D. Al ExtDFD events that affect mutually exclusive parns of the ExtDFD state
can be carried out in parallel. These laws are of the form:
<{sp1, sp2}, as1, ..., asi-1, asi,..., as13, «ds1, 11>, <ds2, 12>>
===[2maa
<{spt’, sp2}, ast, ..., asi-1, asi',..., as13', <dst', 11'>, «ds2, (2=,
<{sp1, sp2}, as1, ..., asi-1, asi,..., as13, «ds1, 11>, <ds2, 12>
==={2===x»
<{spl1, 5p2%}, as1', ...,asi-1', asi, ..., a513, «ds1, N>, <ds2', 125> =
<{sp1, sp2}, as1, ..., asi-1, asi,..., as13, <ds1, 1>, <ds2, [2>x>
===|1]{2===x>
<{sp1’, sp2'}, ast’, ..., asi-1', asi',..., as13', «ds1', [1'>, «ds2’, 12'>>
Also all ExIDFD events which affect mutually exclusive substates of an action
can be carried cut in paraliel. For example, the output events of the action A4
may occur in parallel, that is the synchronized update interactions between
A4 and the data stores BOOK and BORROWER and the synchronized
interaction between A4 and the asynchronous data flow checkout_message
can occur in parailel.

6.3 Conclusion

The examples presented in this chapter illustrate how formal specifications
can be derived from DFDs extended with notation for depicting control
relationships. The two different types of applications used show that the techniques
are equally applicable to data, and control-intensive applications, The formal
specifications derived are, admittedly, not easy to read or understand, nor are they
easy to produce manually. In this respect, the examples highlight the need for
powerful specification building and derivation tools in the practical application of

the framework.
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Once produced, the formal specifications can be used to rigorously validate
and verify behavioural properties, and in this respect, they serve to establish
confidence in the software product and the activities involved in building the

product.



CHAPTER 7

Conclusions and Further Work

7.1 Thesis Summary and Achievements

In this thesis a formal framework for developing and interpreting DFDs was
developed. The framework provides DFDs with a mathematical basis, and consists
of two parts: the Picture Level (PL) and the Specification Level (SL). The PL is a
mathematical theory characterizing the syntactic properties of DFDs, The theory can
be used to investigate the absence or presence of syntactic properties in DFDs. The
operational interpretation associated with the PL takes the form of a relational
conditional term rewrnting system (R-CTRS), and provides an effective means for
carrying out the investigation of the syntactic properties. Structural correctness is a
useful syntactic property that can be investigated in the PL. A DFD construct, or a
structure of DFD consmucts, 18 said to be structurally correct if it satisfies the
formation rules associated with it. Such rules are directly stated as laws of the PL.

The SL provides support for specifying control in DFDs and for deriving
initial design from DFDs. It consists of tools and techniques for describing state
dependent behaviour and contrel relationships in DFDs, and for deriving formal
specifications, called Behavioural Specifications (BSs), from control-extended
DFDs, called ExtDFDs. An ExtDFD is derived from a hierarchy of DEDs, in the
following manner:

1 Generate the primitive DFD of the hierarchy. The primitive DFD consists of the
primitive processes of the hierarchy, and the external entities and data stores of
the hierarchy. Decomposed and combined data flows are depicted in the
primitive DFD via splitters and binders.

2 Add control flows and a state entity to the primitive DED to pictorially describe
the state dependent behaviour of the application. Specify the behaviour of the
state entity in terms of a state transition diagram (STD).

3 Partition the primitive processes into actions, and identify the asynchronous and
state flow interfaces between actions and the external entities. The internal data
flows of actions are all synchronous, as well as the data flows between actions
and data stores. The data flows between actions are all asynchronous.

An ExtDFD is viewed in the formal framework as a system of actions which
interacts with its environment (depicted by external entities) in an uncooperative
manner (depicted by asynchronous and/or state interfaces between external entities
and the ExtDFD). The BS of an ExtDFD characterizes the behaviour of the BS in

terms of its allowable state transitions, and is generated from information

196
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concerning the relationships between ExtDFD components, explicitly depicted in
the ExtDFD (for example, via the use of special symbols for synchronous,
asynchronous, state, and control flows), formal specifications of behaviour of the
processes, data stores, and asynchronous flows, in terms of labeled state transition
systems, and specifications of the data structures gssociated with the data objects in
the ExtDFD. The BS is derived in a modular manner:

I the static and dynamic aspects of data stores and data flows are formally
specified;

2 the behaviour of processes are formally specified;

3 the specifications of actions are generated from specifications of their constituent
processes, and the synchronous relatienships between themn (which are explicitly
depicted in the ExtDEFD);

4 The BS is generated from the specifications generated in 1 and 3, and from the
types of interactions between actions, data stores, and external entities depicted
in the ExtDFD.

The BS can be used to formally validate behavioural properties of ExtDFDs,
and can also be used as the basis for formal verification of subsequent

implementations.

7.1.1 Achievements

The formal framework described in this thesis provides a firm mathematical
foundation for DFDs which can be used as a basis for formally evaluating the
structure of DFDs, and which facilitates the generation of formal specifications
from them. Earlier work in this respect [TP86b, Tse85a, Tse85b] provide only
formal foundations for the syntactic aspects of DFDs. The framework developed
here provides a formal basis for both the syntactic and semantic aspects of DFDs,
and thus can be viewed as extensions of these earlier works.

The formal framework also provides facilities for depicting and formally
specifying control information in DFDs. The work on this aspect of the formal
framework improves upon other popular approaches to introducing control
information in DFDs [HP87, Woo88j, by associating formal interpretations with
DFD structures built up with the additional control constructs. As above, this
facilitates the generaton of formal specifications from the control-extended DFDs.
The use of the formal specifications for formally investigating behavioural
properties of applications, and as bases for formal verification activities, is
discussed in Chapter 5.

Once the BS is generated from an ExtDFD, the ExtDFD can be viewed as the
informal ‘front’ of the BS. This provides the BS with a more visually appealing
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front, which abswacts away from its detail but still provides insight, via the
graphical notation, consistent with such detail. This approach supperts Naur's view
of formalisms as extensions of informal expressions.

The formal framework thus facilitates the generation of specifications which
are understandable, by providing a graphical 'front’ in the form of ExtDFDs,
precise, by facilitating the generation of formal specifications from ExtDFDs, and
testable, by providing formal notions of specifications implementing the BS.

The specification technique used by the framework extends and combines
current algebraic specification techniques in order te derive a more expressive
specification system. The extensions made in this respect concern the derivation of
model-theoretic and operational interpretations for specifications with partial
functions, negated relations (predicates), and inequalities. This work builds upon
the work of Wirsing and Broy on partial algebraic specifications [WB82],
Astesiano et al on relational specifications [ARWB86], and Mohan and Srivas on
model-theoretic and opertaional interpretations of specifications with inequalities
{MSB7].

7.1.2 Comments

It is this author's opinion that the number of useful automated tools
supporting the use of SA tools and techniques will gradually level cut if no formal
basis for the tools and techniques are developed. Too often have practical tools been
built without first establishing a formal foundation for the techniques they support.
Many such tools are of superficial use only, for example, most tools for DFDs
currently available have relatively firm foundations for the syntactic aspects, but
provide little or no foundation for the semantic aspects, thus limiting their use in
formally specifying and investigating behavioural properties. Yet, it is the
investigation of these behavioural properties that will have a bearing on subsequent
development. This thesis attempts to change matters by providing a formal
framework which can be used as the basis for the building of automated tools
supporang the use of DFDs in software development. No atternpt has been made in
the thesis to suggest particular tools based on the framework, but the mathematical
theories have been developed in a manner that does not preclude practical
implementation. Thus conditions under which sound and complete rewriting
systems can be generated from RSs (the theories) are provided, and can be used as

guidelines in constructing the RSs.
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7.2 Further Work

The PL of the formal framework can be extended in many directions as
indicated in Chapter 4. Support for formally reasoning about the syntactic
properties of incomplete structures, as well as support for modifying DFEDs, and for
reasoning about such medifications are some of the more useful extensions that can
be made to the PL. Such extensions are simply exercises in building theories of
well-defined syntactic manipulations. Further work is also needed in making
practical use of the SL. In this respect, computer-aided tools for interrogating BSs,
and for analyzing the behavioural properties they capture are essential. Work by this
author and Docker on a practical environment for the formal framework is currently
in progress [DF89, FD89]. The structure of the proposed environment is shown in
Figure 7.1.

ANALYSIS

SYSTEM

PL-Analyzer

s

YSTEM D

) ICTIONARY :

Jﬁ,- i

i1 S

EREER

3IL-System SL-Analyzer

BEHAVIOURAL ANALYSIS SUPPORT

Figure 7.1 The structure of an environment incorporating the formal

framework

The proposed environment consists of two sub systems: the Requirements
Analysis Support System (RASS), and the Behavioural Analysis Support System
(BASS). The two sub systems are supported by a system dictionary which is a
stores the representations generated by them, and facilitates the sharing of such
representations.

In the RASS DFDs are developed informally using SAME [Doc88], which is
an executable DFD specificadon system. The PL-Analyzer, a DFD syntax checking
too! based on the PL theory, is used to check the syntactic consistency of the DFDs
constructed in SAME. SAME acts as the informal 'front’ of the RASS, providing

tools for drawing diagrams, for entering semi-formal descriptions of DFD
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components, and for building executable data dictionaries for the DFDs. The
executable nature of SAME specifications essentially makes the RASS a
prototyping system.

The BASS provides support for the specification and analysis of behavioural
properties of application with DFDs, and is based on the SL. The SL-system is the
front end of the BASS and consists of automated tools for extending DFDs with
control information, and for entering process specifications, and specifications of
the static and dynamic aspects of data stores and data flows. From these, the SL-
system generates the BS. The SL-Analyzer provides tools for analyzing the BS.
Work on the BASS 1is still in the initial stages.

Further research is needed in incorpeorating the formal framework in a formal
devlopment method. An evolutionary method, somewhat similar to the
rransformation approach described in Chapter 0, where a program is derived from a
sequence of specifications, with the BS as the start of the sequence, and where each
specification in the sequence implements the specification prior to if in the sequence,
is a possibilty that warrants further investigation. The criteria for establishing

implementation described in Chapter 5 can be used in such a method.

7.3 Conclusion

To conclude, further research and work is needed in order to make practical
use of the formal framework via automated support environments for formally
specifying applications with DFDs. The framework, though, has the potential to
initiate research into a new generation of 'semantically-based’ automated tools for
DFDs, which could see their use as specification tools in formal development
methods. Furthermore, the graphical nature of DFDs, coupled with the formal
foundation developed here, makes for a formal specification method which does not
sacrifice understandability for formality.
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APPENDIX 1

Conditional Term Rewriting Systems

This appendix is an introduction to term rewriting systems, in particular,

conditional term rewriting systems.

Properties of terms _

Let T be the set of terms generated by a signature 2, = <S, F>, where S is a
set of sorts and F is a set of function symbols, and let X be a countable set of
elements, called variables, which are denoted by x, y, z. The function Var on terms
returns the set of variables occurming in a term and is defined as follows :

Var: Var(x) = {x} where xe X
Var(f(tl, ..., n)} = Var(t1)+.. .+ Var(tn) where feF and tie T (1<i<n)
If V(1) = O then t is called a ground rerm.

An occurrence of a sub term in a term is defined in terms of a set of sequences
of integers, N*, including the empty sequence A, and a concatenation operation, .,
on sequences. The elements of N* are called occurrences. An ordering <, called the
prefix ordering, is defined on occurrences as follows:
u<v if and only if there exists w such that v = u.w, where u, v, w € N*, Also v/u
= w if and only if v = u.w, where u, v, w € N¥,

Intuitively u<v if u can be made equal to v by appending a sequence to it.
Two occurences, u, v, are said to be disjoint, denoted by u\v, if and only if
NOT(u<sv) and NOT(v<u), that is neither u or v can be made equal by appending
sequences to them. Also u<v if and only if u<v and u # v, where u and v are
OCCUITences,

The set of occurrences of a term, t, dencted by O(t), and the sub term of t at
occurrence u, denoted by tlu, are defined as follows:

1. Ift=xthenO()={A}and A =1
2. Ift=f(ul, .., m) then O@) = {A}+{iu | i€n, u € O}, th =, and thu =
tilu.

For example, a term t = f(g(x, h(y)), k{x, z)), has an occurrence set O(t) =
(A, 1,11,12,121, 2,21, 22}, where tI1 = g(x, h(y)), 112 = h(y), tl121 =y, and
112 = k(x, z). Also 111, 1£12, 1121, and 12<121.

Replacement of a sub term at occurrence u of a term, t, by another term, t',
denoted by t{uet'], is defined as follows:

1. tfAet}=1t.
2. Ift=f(t1, ..., tn), tlluet] = f(t1, ..., -1, tifuet], ..., tn), i<n.
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Replacements have the following properties.
Vitl,te Tue O®), ve OGl):
» Embedding : tlu<-t']lu.v = tlv,
« Associativity : tlue—t'][u.v<-tl] = tlue-t'[vetl]].
Yi,tl,t' e T;u, ve O), with u\w:
o Persistence : tluetlv = tlv,
« Commurativiry : tluet'][ve-tl] = tive—tl]fuet].
Vitl,te T;u, ve O, with uv:
o Disoributiviry : tffuet']lv = (thv)[u/vert],
+ Dominance : tfuet]ivetl] = t[vetl].

Subsritution of variables in a term is defined as follows:
A substitution is a mapping, G, from X, the set of variables, to T, the set of terms,
with o(x) = x almost everywhere. They are extended to morphisms of T by o(f(t1,
.., ) =f(otl), ..., o(tn)). The domain of a substitution ¢ is the finite set D(c) =
{xe X | o(x) = x}.

The match of a term t by another term t', denoted by t::t', is defined as
follows:
t::t' if and only if there exists a substitution ¢ such that t = g(t'). Any such
substitution is denoted by ¢ = t::it' in what follows.

Intuitively, the match of a term t by another term t' occurs when a substitution
exists that when applied to t' makes it identical to the term t.

Term rewriting systems

Term rewriting systems are formally defined below:
A term rewriting system (TRS) is a set R of pairs of terms <t—t">, such that Var(1)
is & subset of Var(t"). The pairs of terms are called (tewrite)} rules.

The following are definitions associated with TRSs.
An occurence, u, in a term tin 8 TRS, R, is called a redex occurence of R in tif and
only if there exists a rule <t1—t2>in R such that t1<tlu.
A term t reduces (or rewrites) to t' in a TRS R, denoted by t-—>gt', if there exists a
rule <t1—t2> in R, and a substitution ¢ = (thy)::t1 (i.e. u is a redex occurence of R
in t), and t' = tlueo(t2)].
If — is a relattion over T, then — is
(a) stable if and only if Vo, Vi, t' € T, t—=t = o()—>a(t);
(b) compatible if and only if ¥V t, t, tle T, ¥V ue O(t]); tot =
tl[uet]—tlfuetT.

The reduction relation —g is the smallest compatible and stable relation

containing R (see Huet [Hue80]). For a relation on terms let:
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+  —*pdenotes the transitive closure of —5g,
+ tlt' & 3 tl such that t—>*gtl and t—*gt1,
« tTt & 3 tl such that t1 —*gt and t1—>*xt’

If t is minimal with respect to —g i.e. there is no t' such that t—gt, then t is
called a —»z-normal form. For a term t, if there exists a —g-normal form t' such
that t—*rt then t' is called a normal form of t.

Two impertant properties of —g are termination and confluence.

A relation, —R, is ferminating (noetherian) if and only if there is no infinite
sequence t1 9 Rrt2—g...—Rin, that is, —> g is well founded.
A relation, —g, is confluent if and only if V t, t' e T; tTr=tlr.

Every term in a terminating and confluent relation possesses a unique normal
form (see Huet [Hue80]). Rewriting systems which generate a terminating and
confluent relation on terms provide an effective procedure for determining the
equality of terms. In such systems, if two terms, t, t' reduce to the same normal
term, then the terms are equal, also two equal terms in the equational theory
corresponding to the TRS (obtained by replacing the symbol — by =), reduce to the

same normal form in the TRS. Proof of this can be found in Huet [Hue80].

Conditional term rewriting systems

Conditional term rewriting systems (CTRSs) are extensions to TRSs which
allow conditions to be associated with reductions.
A conditional term rewriting system is a finite set of rules, called conditional rewrite
rules, of the following form: ul = vl A ... Aun = vn = Lhs—Rhs where Var(ui)
is a subset of Var(Lhs), Var{vi) is a subset of Var(L.hs), and Var{(Rhs) is a subset of
Var(Lhs), for 1<i<n [Kap8&4]. The formula before the implication symbol, =, is
called the condition part or antecedent, while the reduction after the = is called the
consequence.

Rewriting in a CTRS is defined as follows:
Given a CTRS, R, a term t reduces (or rewrites) to t', denoted by t—gt, if and
only if there is arule in R, ul = vl A ... Aun =vn = Lhs—Rhs in R such that:
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Match and replace

there exists an occurrence u in t and a substitution ¢ = (tlu)::Lhs, and t' =
tlueg(Rhs)], and

Convergence of terms in antecedent

uilvi, where 1<i<n, that is ui and vi have a common reduct.

Thus rewriting in a CTRS involves verifying the condition, which involves
further rewriting to determine common reducts. Such verification may give rise to
infinite loops if the form of the laws are left unconstrained. For this reason Kaplan
[Kap84] introduced the notion of a simplification ordering on terms which, ensures
that conditions are simpler in some sense than their consequences, thus eliminating
infinite loops in the evaluation of conditons.

A simplification ordering is a well founded ordering (terminating) < on terms in T
such that:

« Subterm property - f(...t...)>t

« Compatability - if t>t' then f(...t.. )>f(...1'...).

The following theorem, given in Kaplan {Kap&4], states how simplification

orderings are used to eliminate infinite loops.

Theorem 1

Given a CTRS, and a simplificaticn ordering <, such that for every rule ul =v1 A
... Aun = vn = Lhs—Rhs in R, o{Lhs)>o(Rhs) and a(Lhs)>g(ui), Lhs>o(vi) for
i=1to n, and for all subsutudons ¢, then:

1. —pR is terminating,

2. when —p is confluent, —r is decidable.

Proof of theorem 1 can be found in [Kap84]. The rules in the CTRSs defined
above are usually called positive conditional equations, since only egualities
between terms are allowed in the conditions. Both Kaplan [Kap&7}, and Mohan and
Srivas [MS87] provide treatments of CTRSs which allow inequalities in the
condition parts. The approach of Mohan and Srivas is used as the basis for the
relational CTRS introduced in this thesis. An overview of their approach follows.

Conditional rewriting systems with inequational assumptions

Mohan and Srivas define Equational-Inequational CTRSs (EI-CTRSs) as
follows:
An EI-CTRS is a set of rules of the form (ul =vl A... Aun=vn) A (sl #11 A ...
A sp # p) = Lhs—Rhs, where Var(ui) is a subset of Var(Lhs) and Var{vi) is a
subset of Var(Lhs), fori =1 ton, Var(si) is a subset of Var{Lhs) and Var(rl) is a
subset of Var(Lhs), fori= 1 to p, and Var(Rhs) is a subset of Var(Lhs).

Rewriting in an EI-CTRS, called El-reduction, is defined as follows:
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A ground term t El-reduces to another term t' using an EI-CTRS R, denoted by
togt, if thereisamle (ul =vliA...Aun=vn) A(si #1rl A ... ASp#1p) =
Lhs-->Rhs in R such that:

Match and replace

there exists an occurrence u in t and a substitution ¢ = (tlu)::Lhs, and t' =
tfue—c(Rhs)], and

Demonstable convergence of terms in antecedent

it can be demonsirated that uidvi, where 1<i<n, in a finite number of steps, and

Demonsuable non-convergence of terms in antecedent

it can be demonstrated that NOT(silti), where 1<i<p, that is si and ri have no
common reducts, in a finite number of steps.

Demonsirable non-convergence implies that every sequence of El-reductions
from si to 11 terminates and the set of all reducts from si is disjoint from that of ri,
thus terminadon of El-reduction is very desirable property of EI-CTRSs.

An EI-CTRS can be viewed as an equational theory by replacing - by = in
the rules, and taking the derived rules to be universally quantified formulas. Given
an EI-CTRS R, the derived equational theory is denoted by E(R). The model
semantics for the derived equational theory is based on determining a set of
inequalities between ground terms called inequational assumptions. These
assumptions state which inequalities hold in all desirable models of the equational
theory, and are appended to the equational theory, thus the models satisfying with
the theory must also satisfy the inequational assumptions. Reduction in an EI-
CTRS, R, is sound and complete with respect to a set of inequational assumptions,
i, if:

Soundness : t—=rt = ERM+ul=t=1¢,
Completeness : ER)+pi=t =1 = tlt.

The inequational assumptions made by Mohan and Srivas concern ground
constructor terms, that is terms built solely from the construcrors of a signature,
where constructors are symbols for functions which create new objects of a sort in
the signature. All other functions are said to be defined functions. All ground
constructor terms are assumed to be distinct, thus the set of inequational
assurnptions consists of all inequalities between ground constructor terms. In
general confluence is not a sufficient condition for soundness and completeness of
El-reduction, requiring another property, sufficient completeness.

Let s(i) be a set of ground terms such that ¥V cl, ¢2 € s(y); cl#c2 € L. An EI-
CTRS R is sufficiently complete with respect to L if every ground term t has a
reduct t' € s(jL).

1 + denotes set union
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The following theorem establishes the importance of the sufficient
completeness property.
Theorem 2
El-rewriting is sound and complete if R is sufficiendy complete with respect to (1.
Proof of theorem 2 can be found in [MS87]. Mohan and Srivas give a
number of syntactic condition on EI-CTRSs which ensures that they are sound and
complete. Such conditions are based on the notion of a function being fully defined
by an EI-CTRS.
A function is fully defined by an EI-CTRS R if and only if every term of the form
f(t1, ..., tn), where ti is a ground term, is reducible by R to a unique constructor
term.
Proposition 1
If every defined function is fully defined by R then El-rewriting is sound and
complete with respect to U, where [ is the set of all inequalities between ground
CONSLTUCtor terms.
Proposition 2
Every defined function is fully defined by R if
El-rewriting is ground terminating,
El-rewriting is ground confluent, and
gvery ground non-constructor term is reducible.
Syntactic conditions which ensure that an EI-CTRS is sound and compiete,
together with the proofs of the above theorems and propositions, are given in
[MS87].
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Appendix 11

Proof of completeness and soundness of
sufficiently complete R-CTRSs

Proof of Proposition 3.1 in Chapter 3 [MS87]:

1. < is obviously a partial ordering on F, the set of function symbols in a
signature.

2. The ordering <yinduces a partial, well-founded ordering, <z, on T(F), the set
of ground F-terms, defined as follows: g(t)<;h(t") if and only if g<y h or
t<<yt', where g(t), h{the T(F), and t and t' are tuples of ground terms.
Rewriting of a term in a R-CTRS can be represented by a tree of terms, where
the root is the term from which rewriting starts, and the children of each term
in the tree are the suitably instantiated terms in the antecedent and the right
hand side of the consequence of a rule whose consequence has a left hand
side which matches with the term. Assume that there is a term, t, for which
rewriting in the R-CTRS does not terminate. This means that the tree is either
of infinite width or of infinite depth. It cannot be of infinite width since each
rule has a finite number of terms in its antecedent. If the tree is of infinite
depth this means that there is an infinite sequence of ground terms t, t1, ...,
tn, starting from ¢, such that t<gtl <. . <t Since <gis a well-founded
ordering, this is impossible. Thus there can be no infinite sequence of
rewritings of a ground term in a R-CTRS.

Proof of Proposition 3.2 [MS87]:

Since constructors are distinct from all other function symbols in a signature,
condition 1 of the proposition ensures that in testing for confluence one only has to
consider overlaps between rules whose consequences contain left hand sides with
the same outermost symbols. If a ground term t, matches with the left hand side of
the consequences of two rules, then either the suitably instantiated right hand sides
are equal, or at most one of the rules can be used to reduce the term, from
condition 2. Thus if t—t1 and t—t2, where t1 and 12 are ground terms, then either
tl is the same terms as t2, or the reductions were carried out on distinct sub terms
of t, in which case the rules wnen applied in opposite order to t1 and 2 result in

them being reduced to the same term.
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Proof of proposition 3.3:

It 1s first shown that one step rewriting is sound, that is, for two defined
ground terms, t, t', t=opt' => VM e My giq, M I=t =t in a R-CTRS, R, where
My g is the class of finitely-generated models for the RS, E(R}, which satisfy the
laws in E+a. The proof is by induction on the number of reduction steps needed to
verify the antcedents of R-CTRS rules. The induction base is taken as the case
where only one reduction step is needed in order to determine the definedness of
ground terms in order to carry out a cne-step reduction of a term tto t' in an R-
CTRS, R. In such a case, an unconditional rule, ok(t1}—>TT, where ok is the ok-
predicate for the ground constructor term tl, in an R-CTRS, R, means that ok(t1)
holds in all the algebraic models of the corresponding RS, denoted by E(R), that is,
ok(t1)—=rTT = ¥V M € My g4y, M I= 0k(t), where My g4 is the class of finitely-
generated models for the RS, E(R), which satisfy the laws in E+ct. If a term
rewrites in one step to t' in R, that is t—gt', using a rule t1—12 where tin = otl,
and t' = t{rect2], then ok{(ctl)>RTT, and ok(c12)—>rTT. Thus there are
unconditional rules in R, ok(t1}—>TT, and ok(t2)—TT, which imply that ok(t1) and
ok(12) hold 1n all models in My giq. Since the law ok(tl), ok(t2) = ti= (2 is in
E(R), and each instantiated literal, ok{ctl) and ok{ot2), in the antecedent holds in
all models of My g+, then by modus ponens otl = ot2 holds in all models of
MY E+a, thus t = ([t 0t2] = t' holds in all models of My giq. If a relation
r(ctl,...,otn) rewrites to TT in one step in R, by a rule r(t1,...,tn)—>TT, then
ok(otl)—RrTT, ..., ok(otn)—RrTT, via unconditional ok-predicate rules. Thus
ok(otl), ..., ok(otn) hold in all models of My g, q. Since ok{tl), ..., ok(tn} = r(tl,
..., tn) is in E(R), and each instantiated literal, ok{ctl), ..., ok(ctn), in the
antecedent holds in all models of My g.q, then by modus ponens r(atl, ..., Gtn}
holds 1n all models of My Eq.

Suppose a ground term, t rewrites in one step to a term t', by a rule (ui =
vi)i=1l...m, {u'l # v1)i=1...n, (f)i=1...0, (~rDi=l...p = t1l—12, where tix = ot1,
' = t[reot2]. For each equality in the antecedent, ui = vi, ok(O'ui)—)*RTT,
ok(cvi)—>*RTT, and either Gui—%*Ru and O‘Vi—-)*RLl, or Gui—)'*Rcl and Gvi—:-*Rch,
and N(cl) = N(c2), where cl and c¢2 are ground constructor terms. By the
induction hypothesis, ok(gui}, ok(ovi), and either gui = u, andovi = u, or gul = ¢l
= ¢2 = ovi, hold in all models of My .4, (N(c1) = N(c2) means that c1 = ¢2 holds
in all models of My g.q) thus gui = u = ovi holds in all models of My g+q. For each
inequality, u'i # v'i ,ok(cu'i)—* g TT, ok(cv'1)—= g TT, and every finite sequence
of rewrites starting from ou'i and ¢v't resulted in no common reducts. Since every
defined term is reducible to ground constructor term, then cu'i— “grcl and
Gv‘i—)*RCZ where N(cl) # N(c2), thus ¢l # c2 holds in all models of M5 g.n. By
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the induction hypothesis cu'i = ¢l # ¢2 = ¢v'i holds in all models of My g.q. For
each relation, ri = r(tl,...,tn), ok{cil)— *RTT, ..., ok{ctn)> ¥R TT, and
th—)*Rtl' or Gt1—+*Rcl, th‘—a*Rcl' and N{cl1) = N(c1"), and ...,th—e*Rtn‘ or
th—>*p_cn, th‘—}*ch' and N{cn) = N{cn), and r(t1',...,tn)y>rTT. By the
induction hypothesis 11 = t1', ..., tn = tn’, and r{(t1',...,tn") holds in all models of
My g+q. Thus r{tl,...,tn} holds in all models of My g.. For each n-relation ~1'i =
r'{sl,...,sn), ck(osl)— * rRTT, ..., ok{csn)— * rRTT and thus
0’sl—>*p_cl,...,crsn—>*ch, where ¢1 (1<i<n) is a ground constructor term, and
NOT(r'(cl,...,cn)>TT), thus ~r'(cl,...,cn) is a n:relation assumption. By the
induction hypothesis t1 =cl, ..., tn = cn, and ~r(cl,...,cn) holds in all models of
My E4a. thus ~r(tl,...,tn) holds in all models of My g.q. Since the rule {ui =
vi)i=1l...m, (u'1 # v'i=1...n, (r)i=1...0, (~r'i=1...p = tl =12 is in E(R), and
the instantiated antecedent holds in all models of , then, by modus ponens, ctl =
ct2 holds in all models of My g1a, and thus t = t{nt«—12] = t' holds in all models of
My E+a-

It is now shown that for any defined ground term, t, V M € My gig, M=t
= ¢, where ¢ is a ground constructor term and t—>*Rc. This done by induction on
the depth of the rewrite relation from a defined ground term to a ground constructor
term. The base case is the case where the depth is 0.

Consider the case where a defined ground term t rewrites to a ground
constructor term, t—}Rt'—}*Rc. By the induction hypothesis, t'—>*Rc =VMe
M7z E+a, M |= 1 = ¢, and by the soundness of one step rewriting t—rt' > VM €
Ms Etoo M=t =t. Thus topt > rR¢ @ VM € My g, M=t =c.

A homorphism, h, from the set oif defined ground terms to elements in the
carrier sets of the models in My g.q can be defined as follows: for a model M in
M5z E+a, h(t) = cM, where t—>*Rc. This homomorphism is well-defined from above,
and is unique since the models in My g, are finitely generated. Thus ground
rewriting in is sound and compiete.
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Errata

This section lists the errors identified in this thesis. Page numbers are preceded by "p."
followed by line numbers. A negative line number indicates that counting is from the
bottom up, for example line -3 is the third line from the bottom of the page. Ommissions

are underlined.

CHAPTER O
p-1, line 14
"nfeasible” should be "infeasible”.

p.2, line -5
The reference "FP" should be "FP86".

p. 3, line 16
"guaranted” should be "gnaranteed".

p.4, line -7

The reference "[Woo78]” should read "[WcoKE]".
line -3

The reference "[YC78]" should read "[YC79]".

p.7, line 9

The reference "Ros77" should read "Ross77".
line 10

"diagraming” should be "diagramming".

line 11

"diagram"” should be "diagrams”.

CHAPTER 1
p. 14, line -3
Delete "consists” after "cust_order".

p. 15, line -8
Should read "there are sufficient parts".

p- 21, line 4
Should read "control aspects of DFDs".



line -12
Should read "In a TS data flows can be combined"”,

p- 28, lines 10, 11
Should read "Hatley's extensions ... Furthermore, they provide tools".

p. 29, lines -5, -4
Should read "The types of informatdon”.

p. 35, lines 5,7
Should read "A Petri net ... is a useful tool for™.

CHAPTER 2
p- 42, line -3
“if the book is a copy of the library"” should read "if the book belongs to the fibrary”.

p. 50, line -17
Replace "CheckouBook™ by “CheckoutBook”

p-64, line -9

The reference "Hat88" should read "HP87".
line -6

The reference "KK88" should read "KKZ88",

p. 67, line -17
The reference "KKE88" should read "KKZ88".

p. 69, line 5
Should read "processes which the outgoing data flows™.

CHAPTER 3
p-73,line 6
Should read "to support the range”.

p- 76, line -8

Valr(ty vutn)) = (Va(t1)... VA(ts)) should read V,(r(ty,...,tn)) = TT, where TT is a special
value indicating the validity (equivalently, definedness) of the predicate. Relations are
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associated with default semantics where it is assumed that if an interpretation does not
evaluate to TT then the relation does not hold (that is, it is undefined).

p. 77, line 15
Should read " and D, is the™.

p.78, line7
"rai(w) € raia” should read "V, (tqi(w)) = TT".

line 8
"T'ei(W) € I'eia” should read "V, (r'ei{w)) = TT".

p. 81, line 12
Should read "Example 3.4 defines sets of natural numbers”

p.82, line -19
Delete law §15. This situation can be handled using a normalizing function which gets rid

of any duplicates.

p. 83, line 5
insert below line 5 the following:
ok-predicate

okset : set

p. 84, line 23
Delete law S15 (see erratta for p. 82, line -19 above).

CHAPTER 4
p. 96, line 8

LI b

Remove "." after "correct”.

p. 111, line -25

Insert below line -25 the following law:

getsubstructs(@) = &

(This error also causes an obvious change in the law numbering).

p- 116, line 21
Delete law PS25.
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CHAPTER 5
p- 126, line -2
"Example 2.7" should be "Example 2.6".

p. 132, line 7

"observeration"” should read "observation”,

line 13

"add(e,deleteq(q))" shouid read "addq(e,deleteq{q))"”
line -6

Should read "access functions ... are determined".

p. 134, line 12

The reference Hoa85 should read Hoa78.
line 13

The reference Lam88 should read ALSS.
line 17

The reference AGR87 shouid read AGRSS.

p. 138, line 5
The form of the law is actually more general than is expressed. Any events which affect a

disjoint subset of states may be synchronized.

p- 139, line 18

Insert below line 18 the following law:
3. getfinesrec(emptylist, t1) = emptylist
line 28

Insert below line 28 the following law:
2. sum(ernptylist) =0

ling -2

Should read "Receivelp6(borrid)”.

p. 140, line 21
Should read "Receive2p9(borrid}".

p. 142, line -1, -2
Replace laws 1. and 2. by g==ADD(e)==>addqg(e,q)
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p. 144, line 9
Should read "can determine wich pairs”,

p. 146, 19

Add "; ckmess:asynch(checkout_mess)" to line
line -13

Insert ", ckmess" after "ckinfo".

p. 148, line -11

Should read "Such an automated system".
line -9

Should read "This would involve".

line -4

Should read "as far as their inputs”.

p. 149, line 15
Should read "State transitions”,

CHAPTER 6

p. 154, Figure 6.2

Redirect the arrow emanating from the state ACCELERATING and directed to the state
RUNNING3 (labeled brake_on), to the state BRAKING.

Insert an arrow from CRUISING to RUNNING?2 labeled less_30.

Insert an arrow from BRAKING to IDLE labeled engine_on/off.

Insert an arrow from BRAKING to RUNNING?2 labeled cruise_on/off.

Insert an arrow from RUNNING?2 to IDLE labeled engine_on/off.

Insert an arrow from CRUISING to IDLE labeled engine_on/off.

p. 156, line 15
Delete "+ Plsubstate .

p. 157, line 2
Replace "Siganture” by "Signature”.

p. 158, line -9
Replace "Siganture"” by "Signature”.



p. 162, line 18

Add *; + Asynch(Number) +" to line.

line 30

Replace "<, , , >" by "<, , ,.,.,., >", and replace "asynch2" by "asynchl".

line 36
Replace "asl: asynchl, asZ:asynch2” by "asl, as2: asynchl™.

p. 164, line 4

Add "+ Syslabel” to line.

line 11

Add ", Al, A2: syslabel” to line,

p. 165, lines 11 to 20

Delete laws 8 and 9.

line 16

Should read "pS==Sendp5{pos}".

p. 167, line -2, -4

Replace "Readprate” by "Readprate{c)".
line -6, -8

Replace "Readchrate™ by "Readchrate(c)".

p. 169
Laws 38 to 41 handle only some cases in which parallel events can occur. In general,

events which affect mutually exclusive parts of an application's state can be carried out in

paraliel.

CHAPTER 7
p. 196, line -2
Shouid read “characterizes the behaviour of the ExtDED".

p. 197, line -15

Should read " Earlier work ... provides”.

lines -8, -9

Should read “which stores the representations generated by".

p- 199, line -5
The reference "Doc88" should read "Doc87".
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p. 211, line 14

Should read "is a very desirable property".
lines 21, 22

Should read "satisfying the theory".
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