
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

A Formal Framework For Data
Flow Diagrams With Control

Extensions

A dissertation presented
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Computer Science at Massey University

Robert Bertrand France

1989

Abstract

In this thesis a formal foundation for data flow diagrams (DFDs) with control

extensions is developed. The DFD is the primary specification tool of the Structured

Analysis (SA) approach to requirements analysis and specification.

In recent times, a number of extensions to DFDs, which enhance their use in

the specification of behaviour of complex applications (i.e. applications with

concurrent or real-time aspects), have been proposed. Such extensions tend to

concentrate on increasing the descriptive power of DFDs, while paying less

attention to providing the extended DFDs with a formal foundation. Such a

foundation would facilitate the generation of formal specifications from DFDs,

which could then be used to rigorously validate the DFDs and the behavioural

properties they capture, and could also be used as the basis of formal verification

activities where subsequent specifications are verified against the formal

specifications generated from DFDs. Also, the simple, graphical nature of DFDs,

supported by a formal foundation, facilitates their use in formal development

strategies. Their use in this respect achieves a level of understandability not usually

associated with formal specification tools.

The formal foundation introduced in this thesis consists of two parts: the

Picture Level (PL) and the Specification Level (SL). The PL is an algebraic

specification characterizing the syntactic aspects of DFDs. The specification is

associated with an operational semantics which provides an effective means for

investigating the syntactic properties of DFDs with the PL.

The SL consists of tools and techniques for describing control aspects of

applications, and for formally specifying the data, functional, and control aspects of

the control-extended DFDs. The control-extended DFDs are called Extended DFDs

(ExtDFDs). An ExtDFD depicts the types of interactions that can take place between

DFD components, as well as the events that affect the mode of operation of the

application it models. A formal specification, called the Behavioural Specification

(BS), is generated from an ExtDFD and supporting specifications characterizing the

data objects and primitive processing components of the ExtDFD. The role of the

BS in formal validation and verification activities is discussed in this thesis.

I I

Acknowledgements

I would like to thank Thomas Docker for starting me on this research and for

his support during the investigative parts of the research, as well as for his much

appreciated efforts in creating an environment conducive to my research in New

Zealand. I would also like to thank Professor Mark Apperley, my chief supervisor,

for his support during the preparation of this thesis, especially in the latter stages,

and to Dr. John Hudson, my second supervisor, for his valuable comments, and

efforts in reviewing the more technical aspects of this thesis. The reviewing of this

thesis has not been an easy task, given the volume of technical notation and detail,

and my own failure to write in a clearer manner in some cases, and I am grateful to

the above three persons for their efforts in this respect. Thanks also to the entire

staff of the Department of Computer Science at Massey University for making

study far from home bearable.

iii

Contents

Chapter O : Introduction
0.1 The context .. 1

0.1.1 The requirements specification problem 1

0.1.2 Formal requirements specification .: 2

0.1.3 Thesis objectives ... 3

0.2 Formal specifications from data flow diagrams 4

0.3 Overview of thesis ... 5

Chapter 1: Data Flow-Orientated Requirements
Specification Techniques

1.0 Introduction .. 7

1.1 Structured Analysis (SA) specification techniques 8

1.1.1 Data flow diagrams (DFDs) .. 8

1.1.2 The data dictionary and process specifications 14

1.1.3 SA and design ... 15

1.1.4 Limitations of SA specification tools and techniques 17

1.2 Extensions to SA .. 20

1.2.1 Yourdon's Structured Method (YSM) 20

1.2.2 Hatley's extensions ... 25

1.2.3 ADISSA .. 28

1.2.4 DARTS ... 31

1.2.5 Tse's extensions: Formal DFDs (FDFDs) 33

1.2.6 Extended DFDs (EXT-DFDs) ... 35

1.3 Conclusion .. 36

Chapter 2: Syntactic and Semantic Aspects of DFDs
2.0 Introduction .. 38

2.1 A computer-based library application ... 38

2.2 Syntactic aspects of DFDs ... 39

2.2.1 Syntactic aspects of flat DFDs ... 44

2.2.2 Syntactic aspects of hierarchies of DFDs46

2.3 Semantics aspects of DFDs .. 53

2. 3 .1 Flattening hierarchies of D FDs .. 54

iv

2.3.2 Describing the control aspects of applications 56

2.3.3 Semantics aspects of data flows and data stores 60

2.3.4 Semantic aspects of processes ... 64

2.3.5 Specifying the interactions in a DFD 67

2.4 Summary ... 71

Chapter 3: Positive-Negative Relational Specifications:
An Algebraic Approach to Specification

3.0 Introduction ... 72

3.1 Positive-negative relational specifications (RSs) 73

3. I. I Specifications and algebras .. 73

3.1.2 Hierarchical RSs .. 79

3.1.3 RS schemas ... 83

3.2 Model-theoretic interpretation of RSs .. 84

3 .2.1 Equality and inequality assumptions 84

3.2.2 Negated relation assumptions 87

3.3 An operational semantics for RSs .. 87

3.3.1 Relational conditional term rewriting systems (R-CTRSs) 88

3.3.2 Sufficient conditions for termination and

confluence of R-CTRSs ... 91

3.3.3 Correctness of R-CTRSs .. 94

3.4 Summary .. 95

Chapter 4: The Picture Level:
Characterizing the syntactic aspects of DFDs

4.0 Introduction ... 96

4.1 Characterizing the syntactic aspects of flat DFDs 97

4.1.1 Characterizing structurally correct flat data flows 98

4.1.2 Characterizing structurally correct flat processes 98

4.1.3 Characterizing structurally correct flat external entities and

data stores .. 100

4.1.4 Characterizing structurally correct process structures 101

4.1.5 The RS characterizing structurally correct flat DFDs 106

4.2 Characterizing the syntactic aspects of hierarchical DFDs (H_DFDs) 107

4.2.1 Characterizing structurally correct hierarchical data flows ... 107

4.2.2 Characterizing structurally correct hierarchical processes 113

4.2.3 The RS characterizing H_DFDs 117

V

4.3 Model and operational semantics for the PL 118

4.3.1 The PL R-CTRS .. 120

4.4 Limitations of the PL .. 122

Chapter 5: The Specification Level: Deriving
Behavioural

Specifications from DFDs
5.0 Introduction .. 124

5.1 The Data Environment (DE) ... 126

5 .1. 1 Characterizing the object classes associated with

data entities .. 126

5.1.2 Characterizing the structure of data entities 131

5.2 The Behavioural Specification (BS) .. 133

5.2.1 Algebraic state transition systems (ASTSs) 134

5.2.2 Specifying the behaviour of ExtDFD processes 135

5.2.3 Specifying ExtDFD actions 137

5.2.4 Characterizing the behaviour of data flows and data stores .. 141

5.2.5 Deriving the BS ... 143

5.3 The BS as a formal basis for reasoning with ExtDFDs 147

5. 3 .1 Investigating behavioural properti~s of ExtDFD

with the BS .. 147

5.3.2 Proving implementations of the BS 148

5.4 Conclusion ... 150

Chapter 6: Two Examples of Deriving Behavioural
Specifications from ExtDFDs

6.0 Introduction .. 151

6.1 The automobile cruise application ... 151

6.2 The computer-based university library application 170

6.3 Conclusion ... 194

Chapter 7: Conclusion
7 .1 Thesis summary and achievements .. 196

7 .1.1 Achievements ... 197

7.1.2 Comments ... 198

7 .2 Further work ... 199

7.3 Conclusion ... 200

Bibliography .. 201

vi

CHAPTER 0

Introduction

0.1 The context
This section outlines the context in which the research described in this thesis

should be placed.

0.1.1 The requirements specification problem

The increasing size and cost of software have been major concerns of

software developers since the late sixties. These concerns are especially relevant

today given the growing demand for, and scope of software in diverse application

areas, and the widening influence of software on human welfare.

While there is no general concensus on the central problems afflicting

software development, there is increasing evidence that the lack of thorough

attention to the requirements analysis and specification phase of software

development is a major contributor [YZCC84]. The evidence usually cited takes the

form of extensive rewriting of the software and cancellations of projects whose

completion was found to be unfeasible as a consequence of inadequate or

inappropriate requirements analysis and specification [Boe76, Boe81]. The

importance of the requirements analysis and specification stage as the first stage of

software development should be self-evident. The result of this phase, the

requirements specification, as well as being the basis for further development,

provides the means by which the quality and applicability of the software can be

measured [FREQ79]. In order to adequately support such a role in development,

requirements specifications should have the following properties:

• Understandability : It is important that a requirements specification be

understandable by users and implementors, as well as the specifiers, in order for

effective communication to take place. This property is considered as being of

prime importance by Balzer and Goldman [BG87]. Tse and Pong [TP86a]

identify two main aspects of understandability - complexity and clarity of

description. The reduction of complexity in an application can be achieved by the

use of abstraction, and partition [YZCC84]. The use of abstraction allows one to

suppress certain detail while concentrating on other essential detail, while

partitioning permits one to represent the whole as the sum of its parts. The use of

abstraction results in hierarchies of specifications, where a specification at a

1

Chapter 0: Introduction 2

lower level in the hierarchy presents detail ignored at the higher levels. For this

reason, abstraction is viewed as a vertical decomposition tool. Partitioning

allows for the modular building of specifications, and can be viewed as a

horizontal decomposition tool. On the clarity of description, it is generally felt

that graphic-based languages with few constructs are easier to understand than

mainly textual languages.

• Precision : The requirements specification, as the basis of further development,

must be stated in a precise, and unambiguous manner. This characteristic is

necessary to reduce confusion or misunderstandings arising from information

obtained from the specification.

• Testability : A requirements specification is said to be testable if it can be used to

establish in an effective manner that an implemented application is, in some well

defined sense, "equivalent" to it. In general, a notion of equivalence is based on

a mapping from information in the requirements specification to information in

the implemented application. If it can be proved that an implemented application

is equivalent to a specification, then the implementation is said to be correct with

respect to the specification. The activity of determining the equivalence of an

implementation and its specification is called verification. As a prerequisite to

verification, it must be possible to determine whether the different parts of the

specification are consistent with each other. Such an activity is called validation.

• Modifiability: It is foolhardy to assume that requirements once given remain

fixed throughout the development life of the software. Requirements can, and

often do, change over time, thus it should be possible to modify a requirements

specification without undue difficulty.

Currently, there is no single requirements specification language in which

specifications possessing all the above characteristics can be expressed.

0.1.2 Formal requirements specifications

Requirements specification languages can be classified as being formal or

informal. Formal specification languages have strict syntax and semantics. The

specifications that are expressible by them are calledformal specifications. Formal

specification languages are seen by many reserachers as being necessary for

expressing in a precise and unambiguous manner the requirements of applications

(see for example [YZCC84, TP86a, BG87, FREQ79, Goo84, Zav82, ZY81, FP]).

The use of formal specifications also permits validation of the specification by

formal means, for example, by logical proof, automatic checks, or simulation.

Formal verification is also facilitated by the use of formal specification

languages. Currently, there are two approaches to the formal verification of

Chapter 0: Introduction 3

software. In the first approach the software is developed independently of the

specification, and showing that the software implements the specification means

developing a formal proof that the program implements the specification in some

well defined sense. After two decades of work on this approach it is now generally

accepted that such an approach is not feasible for realistically sized applications

[San88]. In the second approach, called the transformation approach, software is

developed from requirements specifications via a series of refinement steps. The

result of each step is a specification which incorporates the design decisions the step

encapsulates. Such an approach can be pictorially depicted as a sequence of

specifications as shown below:

SP0 --> SPl --> ... --> S

where SP0 is the requirements specification and S is the implemented application.

Each specification in the sequence can be thought of as an implementation of its

predecessor, for example SPl can be thought of as an implementation of SP0. If

each individual step can be proved correct, that is, if it can be proved that SPi

implements SPi-1, then S itself is guarantied to be correct with respect to SP0. As a

formal development method, this approach offers more promise than the first,

though it is not without its problems. For example, when applied to large and

complex applications the individual specifications SPi can become large and

unwieldy resulting in some difficulty in proving the correctness of refinement steps

[San88]. This problem can be solved by appropriately partitioning the specifications

and refining them independently. Deriving an appropriate partitioning strategy is

still an area of active research.

A number of formal specification languages have been developed since the

early seventies, but their use in industry is limited despite their potential usefulness.

Both technical and sociological reasons can account for this lack of use. On the

sociological side, the proper use of formal specification languages requires a degree

of mathematical maturity not previously required by software developers.

Furthermore, formal specifications are difficult to read, even by the trained eye. On

the technical side, the lack of a firm method addressing the entire development of

software, which unifies at least some of the techniques is lacking. Current work on

the transformation approach is directed at deriving such a total method for software

development.

0.1.3 Thesis objectives

In the wider context, this thesis investigates an approach to integrating formal

and informal specification techniques, in order to come up with a specification

language which is both understandable, and formal. The approach involves

Chapter 0: Introduction 4

associating with informal specification tools and associated techniques a formal

framework, thus enabling the generation of formal specifications from the

(informal) specifications built using the tools and techniques. The informal

specifications can thus be viewed as 'fronts' to the formal specifications, and

should provide intuitive insight consistent with the formal interpretation it seeks to

hide. A developer could then develop a specification in terms of the (seemingly)

informal language, which could then be translated into a specification expressed in

terms of the underlying formal language. Such an approach is based on a proposal

put forward by Naur [Nau82, Nau85], which essentially states that formal

expressions are extensions of informal expressions.

In the narrower context, this thesis provides a formal framework for

structured analysis specification tools, mainly the data flow diagram, and also

extends the notation so that aspects other than the data flow through an application

can be specified. Most current languages provide support only for the specification

of what the application does, ignoring other non-functional aspects such as timing,

performance, and security. This is mainly because there is at present no

comprehensive theory or methodology for specifying such requirements

[YZCC84]. In this thesis attention is also paid to the specification of the time

depenedent (or control) aspects of applications.

0.2 Fonnal specifications from data flow diagrams
Structured Analysis (SA) is a methodology which addresses the requirements

analysis and specification phase of software development [DeM78]. The primary

tool of SA is the data flow diagram (DFD), which is a simple graphical language

used for describing the required structure of an application in terms of the data

flowing through it. At the time of its inception, SA was hailed as a radical approach

to requirements analysis and specification because of its use of graphical

specification tools as an aid to understanding. Less attention was paid to the lack of

a firm conceptual basis for the tools and techniques until much later when the

resulting problems reared their heads. Problems arose mainly from the different

uses of the tools and techniques amongst practitioners, a direct result of the lack of

a firm conceptual basis for them [Woo78]. This, inevitably, led to disagreements

over the "proper" use of the tools and techniques, and encouraged many

practitioners to incorporate customized extensions. Added to this, the irreversible

nature of the transition from SA specifications to initial Structured Design (SD)

specifications [YC78] limited their use in other than the requirements analysis and

specification phase of software development [Pet88, Ric86]. Such transitions have

also proved difficult to carry out in some cases, and require considerable experience

Chapter 0: Introduction 5

and skill on the part of the developer carrying out the transition [Ric86, Sho88]. A

further problem with the SA approach is that it specifies applications in terms of a

single aspect: the data flowing through it. For data processing applications this may

have been adequate, but for other types of applications, for example embedded or

real-time systems, other aspects are equally important.

Providing SA with a mathematical foundation may solve some of the

problems associated with its use, if one can be found. It is this author's view that

requirements analysis involves sociological processes which cannot be formalized

in terms of any mathematical theory. For this reason this thesis does not attempt to

provide an all-encompassing mathematical basis for SA, rather it restricts itself to

developing a formal framework for its specification tools, primarily the DFD. The

objective is to alleviate the problems associated with the use of SA specifications

discussed above, and at the same time provide a specification language which is

understandable, precise, and testable.

The formal framework consists of two parts: the Picture Level (PL), and the

Specification Level (SL). The PL provides formal support for constructing DFDs

by giving formal rules for building the syntactic entities involved. Specifically, the

PL is a system for abstractly characterizing and formally reasoning about the

syntactic structures of DFDs. The characterizations are abstract in the sense that

they are representation independent. An effective, sound and complete deduction

system can be associated with the PL, enabling its use as the formal basis for

automated DFD syntax-checking tools which are based on the rules expressed by

the PL.

The SL can be viewed as the part of the formal foundation which is used to

specify the semantic aspects of DFDs. Specifically, the SL is a set of techniques for

formally specifying the data, functional, and control aspects of control-extended

DFDs. The data aspects concern the structure of the data depicted in DFDs, and the

relationships between them, while the functional aspects concern the input/output

behaviour of the processing components of DFDs. The control aspects of DFDs

concern the interactions between the processing and data components of DFDs. The

primary product of the SL is the Behavioural Specification (BS), which is a formal

specification characterizing the behaviour of applications depicted by control­

extended DFDs. Such a specification facilitates formal validation and verification

activities, as is shown in this thesis.

0.3 Overview of thesis
Chapter 1 surveys some of the major extensions made to SA tools and

techniques- over the years since the inception of the methodology. It describes the

Chapter 0: Introduction 6

early SA approach of DeMarco [DeM78] and discusses the problems associated

with it, and the manner in which some of these problems are tackled by other

researchers. Chapter 2 introduces, in an informal setting, the formal basis for

DFDs. This chapter can be viewed as the informal 'front' to the more formal parts

of the thesis. Chapter 3 details the mathematical and operational foundations of the

algebraic specification technique underlying the formal framework. The technique is

based on the work of Broy and Wirsing on partial algebraic specifications [WB82],

the work of Astesiano et al on relational specifications [ARW86], and the work of

Mohan et al on inequational assumptions [MS87].-Chapter 4 describes the PL,

while Chapter 5 describes the techniques in the SL. Chapter 6 applies the

techniques described in Chapter 5 to both a data intensive application, and a control

intensive application. The data-intensive example is a computer-based library

application for a university, and the control-intensive example is an automobile

cruise-control application. Chapter 7 discusses the merits and the limitations of the

formal framework and pinpoints areas which require further research.

CHAPTER 1

Data Flow-Orientated Requirements
Specification Techniques

1.0 Introduction
Data flow-orientated specification techniques (DSTs) provide mechanisms for

representing the flow and transformation of data in an application. Using DSTs,

applications are specified in terms of flows, representing data flow through the

application, and processes, representing the components of the application which

transform data.

The earliest indications of the use of DSTs in requirements analysis methods

appeared in 1977, with the publication of the definitive papers on SofTech's

Structured Analysis and Design Technique (SADT) [Ros77, RS77], which

introduced a DST based on two diagraming tools called the activity and data

diagram. During the next two years DeMarco, Weinberg, and Gane and Sarson

published seminal books on structured analysis (SA) approaches [DeM78, Wei78,

GS79], which used a DST based on a diagraming tool called the data flow diagram

(DFD). The activity diagrams of SADT can be viewed as an early form of the DFD.

Y ourdon and Constantine, during the same period, published a second edition of an

earlier book on Structured Design (SD), which included a technique for translating

SA products into initial SD specifications [YC79]. The combined use of DeMarco's

SA approach and SD is popularly known as the Yourdon SA/SD approach. The

publications of these easy to read works on SA, coupled with the relatively informal

style of the approaches, helped to establish the use of SA/SD as a viable method in

the software industry.

The popularity of the SA/SD method stems mainly from its emphasis on

creating clear, understandable specifications via the use of graphical notation, rather

than text. The lack of an experience base and the novelty of a graphical language,

led to the failure of authors to provide a firm conceptual basis for the tools and

techniques [Woo88]. This led to variations in the use of SA tools and techniques

amongst practitioners. This has been more evident in recent times, with the

publication of papers and books which have extended SA/SD method in order to

cope with the special nature of certain types of software, or to solve general

problems related to the lack of a conceptual basis (see for example [Doc86, Doc87,

Pet88, HP87, War86, Gom84, Sho88, TP86b, CTL87]).

7

Chapter 1: Requirements Specification Techniques 8

This chapter presents an overview of the early SA specification techniques,

and surveys some of the notable extensions made to it. The overview of the early

SA techniques is based on the published work of DeMarco [DeM78], since it

provides a comprehensive description of the tools and techniques.

1.1 Structured analysis (SA) specification techniques

The following are the specifications produced as a result of the use of SA

techniques:

• Data flow diagrams (DFDs): Pictorial representations of the flow of data in an

application. An application is usually represented by a hierarchy of DFDs.

• A Data dictionary: A repository containing descriptions of the data objects

depicted in DFDs.

• Process specifications: Functional descriptions of the bottom level (primitive)

processes in a hierarchy of DFDs.

The central specification tool of SA is the DFD. A DFD depicts the data flow

relationships between the processing, data storage, and external components of the

application. Definitions of the data structures associated with the data flows, and

data storage components, are kept in an organized manner in a data dictionary.

Process specifications are used to describe the procedural logic of the processing

components depicted at the bottom level of a hierarchy of DFDs representing an

application.

1.1.1 Data flow diagrams (DFDs)

A DFD is built using the following types of constructs:

• data flow - a construct representing the path on which data is conducted from

one part of the application to another.

• process -

• data store -

a construct representing a component which transforms data.

a construct representing a repository of data.

• external entity - a construct representing components on the periphery of the

application which send data to, or receive data from the

application. External entities can thus be viewed as sources

and sinks of data flowing through an application.

The symbolic representations of the above constructs differ amongst the major

proponents of SA, as illustrated in Figure 1. 1. A brief description of the above

constructs follows.

Chapter 1: Requirements Specification Techniques

Construct DeMarco Gane and
name constructs Sarson

constructs

Process 0 0
Data store I
External • • entity

Figure 1.1 A comparison of DFD constructs

Data Flow

9

A data flow is associated with a unique name, a direction, and a data type.

Instances of the data type of a data flow are transmitted on the data flow in the

direction associated with it. Notationally, data flows are depicted as named vectors.

Data flows are not associated with any physical limits, nor is there any constraint on

how the data flows through them. All that is of concern is what data is passed

through them. Data passing through a data flow cannot be lost, modified, or

destroyed during transmission. Also, data flows cannot create data.

Data flows are not meant to be representations of flow of control, nor are they

meant to be associated with any control related interpretations (for example, as

activators of processes). Data flows simply depict the data paths between the

components of a DFD.

Different perspectives on data flows can be taken, depending on the aspect of

data movement emphasized [TePi85]. From the standpoint of a process or an

external entity, a data flow is an input or output, depending on whether the direction

of movement is inwards or outwards with respect to the process. From the

standpoint of a data store, a data flow represents an update if the direction of

movement is inwards, or it represents a retrieval if the direction is outwards with

respect to the data store. A data flow representing an update contains data which is

to be written to the data store, while a data flow representing a retrieval contains

data read from the data store. From the standpoint of a data flow connecting two

constructs, the data flow is viewed as a data interface between the constructs. In

what follows, the construct from which a data flow is directed away is called its

generator, while the constructs it is directed towards are called its receivers. A data

flow can have only one generator, though it may have many receivers. The case

where a data flow has more than one destination is depicted by a branching data

flow. One can view the point where the branching occurs as representing a copy

function which creates copies of data on the data flow to be sent on all branches.

Chapter 1: Requirements Specification Techniques 1 0

Process

A process is associated with a name, a non-empty set of inputs, and a non­

empty set of outputs. Processes simply depict data transformations, thus issues

related to their initiation and the manner in which they exchange data (via data

flows) are not of concern. In other words, processes are not associated with any

operational interpretation.

Transformations carried out by a process can be classified as being logical or

physical [Pet88]. A process which logically transforms data does not change the

physical appearance of the data. That is, subsequent-use of the data is affected by

the way in which the process classifies it, and not by any physical change. For

example, a process in an order processing application, which determines whether

an order is valid or not, transforms the order logically. A process which physically

transforms data, changes it in such a way that it is no longer recognizable. For

example, a process which produces an invoice given a valid order and information

on the parts needed to the fill the order, transforms its inputs physically in order to

create the invoice which is its output.

Data Store

A data store is associated with a name, and two sets of data flows

representing retrievals and updates. Data stores are often likened to files in the SA

literature to provide a more concrete view of what they represent, but can be used to

represent other types of repositories of data which do not create or destroy data.

Details of data organization, access mechanisms, and storage medium, are not

depicted by data stores.

Data flows directed towards data stores are always generated by processes,

while data flows directed away from data stores are always directed towards

processes. The data flows representing retrievals and updates are the net data flows

resulting from read and write accesses made by processes on the data store. Thus, a

data flow representing a retrieval contains data retrieved as a result of a read access

made by a process on the data store, while a data flow representing an update

contains data to be written to a data store as a result of a write access by a process

on the data store.

Chapter i: Requirements Specification Techniques i i

External Entity

An external entity is associated with a name, a set of inputs and a set of

outputs. The external entities of a DFD represent the components of the

environment with which the application must interface with. Such peripheral

components may be persons, systems, or other applications, which generate data to

and/or accept data from the application. External entities represent components that

lie outside the scope of the application, thus details concerning the manner in which

they derive or obtain data, and the way such data is used by the component are not

depicted.

The inputs of external entities are always directed away from processes, while

their outputs are always directed towards processes, thus external entities are

always connected to other external entities and data store via processes.

Constructing and interpreting DFDs

A DFD is a structural description of an application in the sense that it depicts

the data flows and transformations in an application without showing how the

flows and transformations are actually achieved. Flows of control, relationships

involving time, and any notion of a process execution or execution precedence,

should not be inferred from DFDs. More importantly DFDs are not associated with

any operational interpretation. A DFD is essentially a docwnentation tool [CTL87],

used to depict the data paths in an application.

There are few strict rules guiding the construction of DFDs, permitting a great

deal of flexibility in how they are built and used. The early work of DeMarco

[DeM78] provides the following major guidelines:

1. Identify all net inputs and outputs, where a net input is an input whose

generator is not a component in the DFD and a net output has at least one

receiver which is not a component of the DFD. The net inputs represent the

inputs to the application while the net outputs represent the outputs of the

application

2. Derive the data paths from the inputs of the application to its outputs. This can

be done either in a forward manner starting from the inputs, in a backward

manner starting from the outputs, or in a middle-out manner starting from a

set of internal data flows.

3. Label the data flows and processes in such a manner that their meanings are

reflected in the labels.

4. Do not depict information related to the initialization and termination of the

application. In other words, a DFD depicts an application in a "steady state",

that is, when it is up and running.

Chapter 1: Requirements Specification Techniques 1 2

5. Do not depict flow of control or control information.

6. Omit trivial error-handling details. DeMarco feels that one should get the "big

picture" right first before paying attention to "odds and ends" like error­

handling details.

Some of the above guidelines are open to interpretation, for example,

practitioners have found it difficult to decide on what should be viewed as a control

flow or a data flow in guideline 5 [Gom84, Ric86], also it is not clear what

constitutes a "trivial" error-handling procedure in guideline 6.

Decomposing DFDs

It is easy to see that large and relatively uncomplicated applications, could

result in large, complicated DFDs. Hierarchy is the abstraction mechanism used in

SA to control complexity. The application of hierarchy to DFDs is provided via the

decomposition activity associated with processes and data flows. The

decomposition activity involves examining each process in a DFD to see if it can be

broken down into simpler processes which act in concert to transform the inputs of

the process to its outputs. If a process of the DFD is felt to be simple enough, that

is, it is not necessary to break it down to simpler parts, the process is called

primitive. The use of hierarchy enables the structured presentation of detail by

DFDs.

The decomposition of a process is represented as a diagram, called the child

diagram, consisting of process, data store, and data flow constructs. The process

which is decomposed is called the parent process with respect to its child diagram,

while the diagram containing the parent process is called the parent diagram, with

respect to the child diagram. The net inputs of a child diagram are the data flows

whose receivers are processes in the child diagram, but whose generators are

processes not in the child diagram. The processes in a child diagram may be further

decomposed, and so on, resulting in a hierarchy of diagrams.

In SA, an application's data flow structure is specified by a hierarchy of

DFDs, resulting from successive process decompositions, made up of a top,

bottom, and middle levels. The top, or level O of the hierarchy, is a single DFD

called the context diagram which consists of a single process, whose inputs are the

net inputs of the application, and whose outputs are the net outputs of the

application. The context diagram serves to delineate the boundaries of the

application. The bottom level consists of DFDs containing only primitive processes,

while the middle levels consist of the intermediate DFDs in the hierarchy.

Chapter 1: Requirements Specification Techniques 1 3

In order for child diagrams to be interpreted correctly within the context of their

parent diagram the following conditions must be satisfied:

• Data flows into and out of a process in a parent diagram correspond to the net

inputs to and a subset of the set of all outputs from its child diagram. A child

diagram satisfying this rule is said to be balanced with respect to its parent

diagram. Decomposition of data flows, resulting in data flows representing the

constituent parts of the decomposed data flow, is also allowed in parallel with

process decomposition. The matching of data flows in such a case depends on

the existence of information from which relationships between the different

levels of data flows can be established. Such information is kept in the data

dictionary.

• Data stores introduced in child diagrams are accessed only by the processes in

the child diagram.

Again, few formal rules exist for constructing a leveled set of DFDs, though

guidelines do exist. The guidelines are concerned mainly with labeling conventions,

data flow balancing, and considerations to be made when deciding on when to stop

process decomposition.

Evaluating DFDs

The development of hierarchies of DFDs may lead to DFDs of poor quality.

The lack of a firm conceptual basis for DFDs, as reflected in the lack of formal rules

for constructing DFDs, makes it difficult to formally state criteria for determining

the quality of a DFD. Guidelines and techniques for evaluating the quality of DFDs

are provided by DeMarco, and can be classified as follows:

• Completeness criteria are concerned with whether they are any missing parts in

DFDs. For example, data stores which are read-only or write-only, or processes

which do not transform data warrant further questioning.

• Consistency criteria are concerned with the compatibility of DFD constructs and

their child diagrams. Within a hierarchy of DFDs, consistency is maintained

through appropriate connectivity, decomposition, consistent naming of

constructs, and through the balancing of data flows.

• Correctness criteria are concerned with the use of DFD constructs. For example,

a DFD is incorrect if it depicts control flows or flows of control.

• Communicability criteria are concerned with the complexity and conceptual

clarity of DFDs. These criteria usually emphasize graphic organization,

legibility, reproducibility, and presentation quality.

Chapter 1: Requirements Specification Techniques 1 4

1.1.2 The data dictionary and process specifications

DFDs, as described above depict only the paths of data through an

application. It does not provide descriptions of the content of its data flows and data

stores, henceforth called the data objects of the DFD, nor does it provide details of

how the inputs of processes are related to their outputs. Thus, by themselves,

DFDs do not provide adequate specifications of an application's requirements.

Descriptions of the data objects are provided by a data dictionary, while procedural

descriptions of processes are expressed by process specifications associated with

the primitive processes of a hierarchy of DFDs.

The data dictionary

A data dictionary provides descriptions of the data objects (data flows and

data stores) in a hierarchy of DFDs depicting an application. Three levels of data

descriptions can be identified [GS79]:

• data elements are items of data which are not usefully decomposed into their

components, for example, an age;

• data structures are composites of data elements and other data structures; and

• data flows and data stores as described in the previous sections. Data flows and

data stores are made up of data structures, while data structures are composed of

data elements.

The languages used by data dictionaries to express data definitions are

essentially quasi-formal, providing constructs which enable developers to define

data objects in terms of their components. For example, a particular language may

have notation for representing data sequences, a selection of data, and repeated

groups of data. An example of a portion of a data dictionary entry is shown in

Figure 1.2.

cust_order = cust_name + cust_addr + order_detail_line
order_detail_line = list(part_number + quantity)
part_number = 00011 ... 199999
cust_addr = house_number + street_name + city + country +
zip_code

Figure 1.2 An example of data dictionary entries

In the figure the "=" symbol means "is composed of", while the"+" symbol

builds data structures which are sequences of data items and/or other data

structures. For example, cust_order consists is a data structure which is defined as

a sequence of cust_name, cust_addr, and order_detail_line data structures. The data

structure order_detail_line is a list of data structures which are sequences of

Chapter 1: Requirements Specification Techniques 1 5

part_number and quantity data structures. The data structure part_number is a data

item which can take any integer value between 0001 and 99999.

As well as storing data definitions, a data dictionary may also contain

information about the frequency of occurrence, volume of data, size of data stores,

security considerations, priorities, and any other information pertaining to the use

of the data objects that is needed to gain an understanding of the requirements of an

application. For large applications the data dictionary can become complex, thus

making it difficult to manually maintain, and to relate DFD data objects with their

definitions. This makes the automation of their maintenance and cross referencing

activities essential. A number of automated data dictionary systems supporting

such activities are commercially available.

Process specifications

Process specifications describe the procedural logic of the primitive processes

in a hierarchy of DFDs. Decision tables and trees are used to describe processes

with complex branching conditions, while languages such as Structured English or

pseudocode are used to specify less complex processes. Such languages

incorporate the basic procedural constructs, sequence, selection, and repetition,

with a limited set of natural language phrases. An example of a portion of a process

specification in Structured English is shown in Figure 1.3. The process

Check_order determines whether an input order is invalid or not, by checking

whether the customer is on the files, and checking whether the ordered parts are

available.

PROCESS: Check_order
select a cust_order, check that customer is in the customer file
if customer not on file then classify cust_order as "INVALID"
else

for each order_detail_line
check that the part is in the part file
if part not in part file then classify cust_order as "INVALID"
else

check that there is sufficient parts in stock to satisfy order
if not sufficient parts then classify cust_order as "INVALID"

Figure 1.3 An example of a process specification in Structured English

1.1.3 SA and design

SA is based on a lifecycle model, where requirements analysis and

specification phase is followed by application design and implementation.

Methodologies incorporating SA tools and techniques, usually employ structured

design (SD) tools and techniques [YC79], together with techniques for

Chapter 1: Requirements Specification Techniques 1 6

transforming SA specifications to initial SD specifications, in order to cover the

requirements analysis and design phases of software development [DeM78, YC79].

SD is a strategy for producing modular, top-down designs. As originally

conceived, SD was concerned with the systematic derivation of specifications of

program structures which were maintainable and easily tested. Using SD to derive

designs for applications entails viewing applications as collections of functions.

This view permits applications to be specified as a hierarchy of logical functional

units, called modules. The primary specification tool of SD is the Structure Chart

(SC), which depicts the architecture of an application in terms of hierarchically

structured modules. Positions in the hierarchy are determined by the modules'

calling relationships, and the data exchanged by them [YC79]. SD also provides a

number of heuristics and guidelines for evaluating designs.

The transition from SA to SD is dependent on the type of application

represented by the DFDs. Applications can be classified as follows:

• Applications in which the same input data values always produces the same

output data values are said to be transform-oriented.

• Applications in which the same input data values do not necessarily produce the

same output data values are said to be transaction-oriented.

The outputs in a transform-oriented application are functions of the inputs

alone. Batch-type applications, where the user enters the data then initiates the

system, and where the results are always the same if the input values are the same,

are examples of transform-oriented applications.

In a transaction-oriented application the output values cannot be regarded as

functions of the input values alone, since the application is also associated with

different modes of operation, which affect how the input values are used by the

application. The modes of operation of an application are called its states. Input

values received when an application is in a particular state may cause the application

to change its mode of operation, that is, move to another state. How data is

transformed is dependent on the current state of the application, since information

valid in one state may be invalid in another. Thus, the output depends, not only on

the inputs, but also on the current state of the application. Alternatively stated, the

output from a transaction-oriented application is a function of the series of prior

inputs to the application which can cause the application to change its state [Pet88].

Transform-oriented applications may be viewed as transaction-oriented

applications having only a single state. Transaction-oriented applications can also be

viewed as a combination of transform-oriented sub applications under the control of

a 'master' process or module.

Chapter "1: Requirements Specification Techniques 1 7

The transition from the data flow representations of SA to SD specifications

can be carried out in a five-steps [Pre87]:

1. The type of application, with respect to its information flow, is established.

2. The centre or 'master' process in the DFD is identified.

3. The DFD is mapped into an initial program structure specification.

4. The control hierarchy is defined by factoring.

5. The resultant structure is evaluated and refined using SD measures and

heuristics.

In order to transform a set of DFDs to an initial SC, the type of the

application, as represented by the DFD at level 1 (i.e. the child diagram to the

Context diagram), is first determined in step 1, then the process in the DFD which

is to act as the 'master' module (called the centre of the application) in the initial

SC, is determined in step 2. Techniques exist for determining the centres for both

transform, and transaction-oriented applications [DeM78, YC79], but this step

usually requires a great deal of experience and insight in order to come up with a

centre which would lead to a good initial SC [Pet88, Sho88]. Once the centre of an

application is chosen, then the surrounding processes become subordinate modules,

with their decompositions defining subordinate levels in the hierarchy of modules

as is done in step 3. Step 4 defines the control hierarchy by factoring, which results

in a structure where the top modules perform only control operations, the bottom

level performs the input/output, and computational operations, and the middle levels

carry out a mixture of operations. In step 5, the derived SC is refined according to

the measures and heuristics associated with SD.

1.1.4 Limitations of SA tools and techniques

The SA approach to requirements analysis generates mainly descriptive

specifications of applications. DFDs, for example, are no more than documentation

tools, while data dictionary definitions and process specifications rely mainly on

quasi-formal textual descriptions [Doc87, CTL87]. The limitations of SA tools and

techniques stem mainly from the quasi-formal, descriptive nature of the generated

specifications, and their sole emphasis on the data flow aspects of an application.

On the other hand, the informal nature and simplicity of the tools, coupled with the

use of graphic notation supported by hierarchy, are often cited as the major

strengths of the tools. These qualities make the approach easy to learn and use but

suggest a lack of expressive power, which, together with the lack of a firm

conceptual basis for the tools, encourages extensions to the notation and

Chapter 1: Requirements Specification Techniques 1 8

disagreements over interpretations, making comprehension of the specifications

apparent rather than actual [Woo88].

The limitations of the SA tools and techniques for requirements specification

identified here are grouped into the following two classes :

1. limitations associated with the use of SA tools and techniques for constructing

and validating requirements specification; and

2. limitations associated with the use of SA specifications as a basis for

verification.

Limitations on the construction and validation of SA specifications

The lack of a theory formalizing the conceptual basis of SA tools and

techniques places limitations on their use in the construction and validation of

requirements specifications. In the construction of specifications, the lack of a firm

conceptual basis allows a fair degree of flexibility in the manner in which the

specifications are created. Such flexibility can lead to apparent misuse and/or

disagreements over the "correct" interpretation of specifications. For example,

Docker lists the following as the most common forms of misuse of DFDs [Doc87]:

• Structurally inaccurate DFDs, for example, "simplified DFDs" in which external

entities communicate directly with data stores, or in which external entities are

not shown.

• Viewing and specifying the application at too low a level of abstraction. This

usually manifests itself as an overuse of data stores, for example using a data

store to hold transactions which are later processed sequentially.

• Over abstraction, where the analysis of an application is finished at too high a

level of abstraction.

• Textual glueing, where parts of the application which are not easily expressible

in the quasi-formal languages of SA are described in natural language.

• Regarding DFDs as a functional decomposition tool.

Some practitioners may not view some of the above as misuses. Whether the

above are actually misuses or not will remain a judgemental issue without a firm

conceptual basis for the tools and techniques. Creating such a basis for SA is not an

easy task since it requires detailed knowledge of the processes involved in

structured analysis and specification. Such processes are currently not well enough

understood thus more research, and a larger experience base, are needed before a

useful conceptual basis covering all aspects of SA can be developed [Doc87].

Another factor which limits the use of SA tools and techniques for

requirements specification is their sole emphasis on data flow aspects of

applications. The SA approach ignores other aspects of applications such as the

Chapter 1: Requirements Specification Techniques 1 9

relationships between data objects of the applications (data aspects), and time­

related relationships between processes (control aspects). The emphasis on data

flows, and the resulting functional view of processes can be traced to the early use

of the SA approach for specifying data processing applications. Such applications

are usefully viewed as information processing systems, making the SA approach

appropriate. In more recent times application areas have become more diverse,

requiring aspects other than data flow to be specified in their requirements

specifications. For example, the control aspects of real-time and embedded

applications need to be specified in the analysis phase since such aspects are

inherent parts of the applications. The insistence that no control detail be specified

in the SA approach seriously limits its use for specifying such applications.

Validation of requirements in the SA approach takes the form of user reviews

of the generated specifications. As pointed out earlier, the lack of a conceptual basis

can make comprehension of such specifications apparent rather than actual. The

absence of a formal syntax and semantics for the specification languages also makes

it difficult to prove the absence or presence of desired properties in specifications.

For these reasons rigorous validation of specifications is difficult.

Limitations on the use of SA specifications as a basis for verification

The specifications produced from SA are of a logical nature, thus no

operational model can be consistent with them. This seriously inhibits the use of SA

specifications as a base for verification, since detailed designs and implementations

are expressed in operational terms. Formal verification of designs and

implementations against SA specifications are impossible for this reason. The best

that can be done is an intuitive form of verification, which may be inadequate for

some complex applications, and not healthy for certain critical applications where

software failures could have drastic effects socially or economically.

The SA/SD approach provides techniques for transforming SA specifications

to initial SD specifications. The quasi-formal nature of SA specifications means that

at best such techniques are themselves quasi-formal. This has led to a number of

problems in applying the techniques in practice, with some practitioners actually

reporting that the techniques were not applicable in some cases [Ric86, Sho88].

Using the techniques require a great deal of skill and experience, especially when

the application has both transaction and transformation characteristics [Sho88].

Furthermore, the transition from SA to SD is an irreversible process, thus changes

made in the design phases are not easily reflected in SA specifications [Pet88]. This

is because a shift in perspective is made when going from SA specifications, which

are concerned mainly with the data flow relationships in an application, to SD

Chapter "1: Requirements Specification Techniques 20

specifications, which are concerned with the operational structure of the application.

Once SA specifications are transformed into SD specifications they are of limited

use in the subsequent stages of software development.

1.2 Extensions to SA tools and techniques

The limitations discussed in the previous section seriously hamper the use of

SA tools and techniques in the specification of complex applications. To address

these limitations a number of authors have suggested extensions to SA tools and

techniques. Some notable extensions are reviewed in this section.

1.2.1 Yourdon's Structured Method (YSM)

The early work of DeMarco on SA has been extended by the Y ourdon group

to create a method, called the Yourdon Structured Method (YSM) [MW86a,

MW86b, Woo88, MP84]. YSM improves upon the earlier SA approach in three

ways [Woo88]:

• The emphasis in YSM is on the modelling of behaviour, rather than just

function.

• YSM introduces tools and new notation for modeling particular aspects of

applications ignored in the original approach. Data relationships are expressed

via entity-relationship diagrams (ERDs), while time-dependent behaviour is

expressed with the aid of additional DFD notation and state transition diagrams

(STDs).

• YSM is divided into three distinct phases. The first is the feasibility study which

involves the study of any current application and its environment. The second

phase is essential modeling [MP84] which produces a logical specification called

the essential model. The third phase is implementation modeling which involves

incorporating into the essential model aspects of a user's requirements which are

dependent on technology. The resulting specification, called the implementation

model, can be viewed as an initial design specification.

The essential model of an application describes the context in which an

application is to exist, and the behaviour of the application. Three aspects of

behaviour are described by the essential model: functional, data and control. The

functional aspects, which are also modeled in the earlier versions of SA, are

concerned with how applications transform their inputs to outputs, while the data

aspects are concerned with the structure, and use of data in applications and the

relationships between them. The control aspects of an application are concerned

with its time-dependent behaviour.

Chapter 1: Requirements Specification Techniques 21

The essential model consists of an extended form of DFDs called

Transformation Schemas (TSs), ERDs for modeling data relationships, and a data

dictionary for defining data objects. TSs depict both data and control dependencies,

using additional constructs for depicting control aspects on DFDs. The constructs

used in TSs are shown in Figure 1.4.

Processes 0
Data

• Data flows Discrete data

• Event flows Signal

Stores

Data store

0
Control

Continuous data

Activation

Buffer

•• Deactivation

Figure 1.4 Transaction schema constructs

In TSs, flows crossing the boundary between the application and its

environment are representations of events. Such events are changes in the

environment which lead to sets of actions by the application called responses. Data

flows depict events which are associated with data, while control flows depict

events which are not associated with data. Data flows which depict events that

occur at discrete points in time are called discrete, while those depicting events that

occur frequently are called continuous. In a TS a data flows can be combined to

form a single data flow representing the combined data flows, or a data flow may

be split into other data flows, where the data flows resulting from the split represent

constituent parts of the split data flow. Such data flows are said to be composite,

and they eliminate the need for processes whose sole purposes are to combine or

split data flows. Labeling conventions are used to distinguish split and combined

data flows from branching data flows which carry the same data on each branch.

Each branch in a split or combined data flow is uniquely named. If the branches of

a branching data flow are not named then it means that the branches represent the

same data flow, and thus carry the same data instances on all branches.

TSs utilize two kinds of processes: data and control processes. A data process

transforms data inputs into outputs. A control process represents aspects of the

Chapter 1: Requirements Specification Techniques 22

control logic associated with part of an application. Control flows are used to

control data processes. They can affect the behaviour of processes in three ways:

• Enable - to enable a process means to allow it to be activated by a data flow.

• Disable - to disable a process means to prevent it from being activated.

• Trigger - to trigger a process is to activate a process in such a way that it

deactivates itself when it has completed its task.

Control flows representing the above events are called prompts.

Control flows coming in from the environment are interpreted by control

processes. The manner in which events depicted by control flows from the

environment affect the application is specified by STDs. The effect the occurrence

of an event in the environment has on the behaviour of an application is dependent

on the current state of the application. The state of an application is a mode of

operation that is externally observable. That is, if the application's behaviour was

monitored, each state, or mode of operation, would be distinguishable. Information

pertaining to the state of an application is kept by the control process. The

occurrence of an event in the environment may cause a change in the current state of

an application, which may in turn cause certain data processes to be enabled,

disabled, and/or triggered. The events which may cause changes in the state of an

application are depicted by control flow inputs of control processes, while the

outputs of control processes depict the manner in which the control processes affect

the behaviour of associated data processes. The behaviour of control processes is

specified by state transition diagrams (STDs). An example of a STD is shown in

Figure 1.5. The rectangular boxes represent the states of the application, while the

labeled arrows represent state changes, where the labels specify the event causing

the transition and the actions resulting from the occurrence of the event.

IDLE

engine engine_
on/off on/off

RUNNING engine_
on/off

cruise cruise
on/off on/off, disable

trigger Select- less 30 Cale -
Desired- disable Speed,

Speed; Cale - Maintain-

enable Cale- Speed, Speed

Speed, Maintain-

Maintain- Speed

Speed

CRUISING

Figure 1.5 An example of a state transition diagram

Chapter 1: Requirements Specification Techniques 23

Data stores in a TS, like data stores in traditional SA, are abstractions over

files. TSs also use a special kind of data store called the event store or buffer.

Buffers are abstractions over stacks and queues, and are used to represent delays

between the occurrence and recognition of events by data processes.

The following summarizes the formation rules and interpretations associated

with TSs:

Data processes

• A data process may have at most one input flow which arrives independently of

any action carried out by the data process. Such a flow is called active and can

be a discrete data flow from an external entity, another data or control process,

or a buffer, or a control flow from a control process or buffer [War86]. Data

processes with active inputs are not allowed to have continuous outputs. When

the active input is a triggering prompt then the process must also be associated

with an input from a data store. A data process's enabling and disabling input

prompts, and flows from data stores are not considered to be active inputs.

• Data processes with only continuous input and output data flows accept inputs

and produce outputs continuously. Enabling and disabling prompts may be

associated with such processes, in which case the processes continuously

produce outputs only when they are enabled. Data processes with continuous

inputs and discrete outputs can only occur when there is also an active input to

the process, in which case only the value on the continuous flow at the time an

event occurs on the active flow is used to produce the values on the discrete

outputs.

• A data process may have zero or more active outputs, where an active output is

an output created by the process which can be an active input for another process

[War86]. An active output can be a discrete data flow or a control flow to a

control process, buffer, or external entity. A data process with two or more

active outputs can produce output on only one in a single activation.

• A data process can have any number of continuous data flows, and discrete data

flows to and from data stores.

• A data process with discrete output flows and no active inputs produces output

via one of the following ways: forced by a triggering prompt; upon the

occurrence of some significant value of a continuous input; or on the occurrence

of a specific time retained and read in from a data store [War86].

Control processes

• Inputs and outputs to control processes are restricted to control flows. A control

process must not have data flow inputs or output.

Chapter 1: Requirements Specification Techniques 24

Flows

• Each discrete data flow must be connected to a data process at one end while at

the other end may be a data store, buffer, external entity, or another data

process.

• Each continuous data flow must be connected to a data process at one end while

at the other end may be another data process, or an external entity.

• Control flows may connect any pair of processes, a data process and a buffer, or

a process and an external entity. Control flows emanating from control processes

to data processes are prompts.

Data stores

• A data store must be connected by a discrete data flow to at least one data

process.

Buffers

• A buffer must be connected by a discrete input (data or control flow) to at least

one data process, and by a discrete output (data or control flow) to at least one

data process. Types of flows for a single buffer are not mixed [W ar86].

• Every buffer is associated with a capacity, which may be finite or not. This is

interpreted as the number of units that can be stored in the buffer.

Essential modeling [MP84, Woo88] entails identifying the events in the

environment that affect the application, and then developing a TS reflecting how the

application responds to each identified event. In parallel, the control processes are

specified by STDs, and data relationships by ERDs. The TS is then restructured

into a leveled set of DFDs following the guidelines of the original SA approach.

Implementation modeling extends the essential model with technology-dependent

detail, such as performance and size constraints, and also provides specifications of

the software structure, derived from the TS, in the form of Structure Charts (SCs)

[YC79]. It is carried out in three phases:

• Model the physical processors associated with the application. This involves

grouping processes according to the physical processors they are to be

implemented on.

• Model the software environment in which the application i.s to exist, for

example, some functions of an application may be carried uut by operating

systems and/or database management systems.

• Model the structure of the software to be produced. This involves translating the

TS to an initial SC.

Chapter 1: Requirements Specification Techniques 25

Limitations of YSM

YSM does tackle some of the problems associated with the use of SA tools

and techniques for specifying requirements. It permits the specification of aspects

other than the data flowing through an application, and provides a finner conceptual

basis for the tools and techniques than that provided in the original SA approach.

Constructs are provided for representing control elements, together with a set of

formation rules, which, if adhered to, permits a logical interpretation of the

specifications. Such logical interpretation can be used as the basis for informal

analysis of, and reasoning about, the specifications [Woo88].

The specifications generated by YSM are still descriptive in nature. The

difference between SA and YSM in this respect is that YSM provides descriptions

of other aspects of applications. The logical model implied by the descriptions is not

consistent with any operational model thus formal verification of implementations is

not possible. Furthermore, the approach is still reliant on the techniques for

transforming DFDs to SCs, which, as discussed earlier, is problematic, and, when

it can be done, is irreversible. Thus the specifications generated from YSM, like SA

specifications, have limited use in other than the requirements analysis phase.

1.2.2 Hatley's Extensions

Harley's extensions to SA [HP87], like YSM, were borne out of the need to

model aspects other than the data flowing through an application. The extensions to

the specification techniques mainly concern the modeling of control aspects in

parallel with the processing aspects of applications. Hatley also extends SA by

providing techniques for building an architectural design for the application. Such a

design is similar in purpose to the implementation model of YSM.

Hatley provides techniques for building two types of models: the

requirements model (RM) and the architecture model (AM). The RM specifies the

required processing behaviour of an application. It is a description of the functional

and control requirements of an application. The AM assigns the processes of the

RM to physical modules that make up the application and establishes the

relationships between them. The AM is thus an architectural design of the

application whose required behaviour is specified by the corresponding RM. Below

a description of these two models are given.

Requirements Model

The RM specifies what an application is to do in terms of its functional and

control aspects. The functional aspects of an application are captured by the process

model which consists of a leveled set of DFDs supported by a requirements

Chapter 1: Requirements Specification Techniques 26

dictionary (RD), process specifications (PSPECs) and response time specifications

for the primitive processes of the DFD. The leveled set of DFDs are constructed

using the leveling and balancing. principles associated with DFDs in the SA

approach. Data flows, as in YSM, are events that are associated with data

components which may also be split and combined as in YSM.

The control aspects of an application are captured by the control model, which

consists of a leveled set of control flow diagrams (CFDs) supported by control

specifications (CSPECs) and the RD. CFDs depict the flow of control signals

(events not associated with data) while the CSPECs indicate how the signals affect

the behaviour of the application. For each DFD in a leveled set of DFDs

representing the functional aspects of an application, there is a corresponding CFD

showing the control dependencies amongst the processes and external entities of the

DFD. Thus, there is a direct correspondence between the levels in the leveled set of

DFDs and the leveled set of CFDs for an application, where level O DFDs are

associated with level O CFDs, level 1 DFDs with level 1 CFDs, and so on. CFDs

consist of the processes, external entities, and data stores in their corresponding

DFDs. CFDs, though, do not show data flows but control flows depicted by

dashed directed arcs which obey the same routing rules as data flows. CFDs also

utilize an additional construct, a bar, representing the control processing part of the

application. A CFD may have a number of such bars with control flows going into

and from them, all representing the single control processing unit of the CFD.

Control processing in a CFD is specified by a CSPEC. Control behaviour is

modeled by viewing applications as finite state machines whose inputs and outputs

are control flows. Diagrammatic and tabular representations of finite state machines

are contained in CSPECs. State transition diagrams (STDs), as in YSM, are used to

show states of the application and how they are influenced by control flows. Events

and actions are shown on STDs as "Event/Action" labels on each arrow depicting a

state transition. The events on these labels are the control flows directed towards the

bars in the corresponding CFD. Process activation tables (PAT), give the

conditions under which processes are activated. The actions shown in the STD are

entered into the PAT and associated with the processes they activate or deactivate.

Processes which are not controlled in this way are "data triggered", that is they are

activated each time there is sufficient data on their inputs to perform the specified

function.

The RD provides definitions for the data and control flows in the process

model. Flows are classified as being either primitive or non-primitive, where non­

primitive flows are groups of primitive flows. Primitive flows are defined in terms

of their attributes. The process model for an application also consists of a

Chapter i: Requirements Specification Techniques 27

specification of the timing requirements, stating the required recomputation rates for

interface outputs and the required input/output response times for the signals at the

application's interface. Recomputation rates are specified in the RD, while response

times can be given in a tabular form.

The process model is a logical model of an application's processing

behaviour. Operationally, the process model can be viewed as an idealized,

infinitely fast machine. Thus processes transform their inputs instantaneously,

while control flows are interpreted instantaneously by the control processing

components of the model. The process model, though, is not intended to represent

an actual machine, rather, like SA specifications, it is merely a description of the

processing requirements of an application.

Architecture Model (AM)

The AM shows the physical entities making up an application, defines the

information flowing between these physical entities, and specifies the channels on

which this information flows. The primary tool of the AM is the architecture flow

diagram (AFD) which depicts the physical structure, or architecture, of the

application in terms of its physical entities, called modules, and the information

flow between them. The main purpose of the AFD is to allocate the processes given

in the RM to physical units of the application. Additional processes may also be

required in the AFD to support the new physical interfaces. Modules provide four

additional perspectives to applications: input processing, output processing, user

inteiface, and maintenance or self-test processing. The processes making up the

input and output processing aspects represent the processes needed for the module

to communicate with other modules, and to transform information to and from an

internally usable form. Such processes are not shown in the RM. The user interface

aspect is a special case of the input/output processing aspects. It is separated

because of the special considerations, such as human factors, that affect the

definition of the user interface, but have little to do with the interfaces between

modules. The maintenance and self-test processing aspects concern the processes

required to perform the self-monitoring, redundancy management, and data

collection for maintenance purposes. The AFD itself is treated as a physical module,

and depicts the modules modeling the above four aspects as well as the processing

and control aspects specified in the RM. The modules in AFDs may also be

"decomposed" into AFDs showing the modules modeling their six aspects. In this

way hierarchies of AFDs are created.

The physical means, or channels, by which modules communicate with each

other are depicted by the architecture interconnect diagram (AID), supported by

Chapter 1: Requirements Specification Techniques 28

architecture interconnect specifications (AISs) which are textual characterizations of

the channels. The AID and the AFD for an application may be combined in a single

diagram if the result is not too complex.

An AFD is supported by architecture module specifications (AMSs), and an

architecture dictionary (AD). AMSs define the inputs, outputs, and processes

allocated from the RM for each module in the AFD. The AD contains the data and

control flow definitions in the RD, plus the allocation of these flows to modules in

theAFD.

Limitations of Hatley's extensions

Hatley's extensions, like YSM provide notation and concepts for modeling

aspects other than the data flowing through an application. Furthermore, it provides

tools and techniques for creating an initial architectural design from the specification

of the required behaviour of an application, which is similar in form to a DFD. This

means that while there may be a shift in emphasis in going from analysis to design,

there is a straightfoward relationship between the initial design specification and the

requirements specification, thus facilitating traceability, and consistency checking.

Like YSM, Hatley's extensions suffer from their reliance on quasi-formal

notation for definitions and the descriptive nature of the graphical specifications.

Thus, like SA, the tools and techniques lack a formal basis for supporting rigorous

validation and verification.

1.2.3 ADISSA

AD ISSA (Architectural Design of Information Systems based on Structured

Analysis) is an architectural design method that is compatible with and forming a

direct continuum with SA [Sho88]. This is essentially achieved by viewing external

entities as event triggers. Shoval argues that taking such a view does not require

additional notation to represent control and timing detail as in YSM, which results

in a change in the appearance of DFDs which may reduce their conceptual clarity

[Sho88].

ADISSA takes a transaction-orientated view of applications, where a

transaction consists of one or more processes performing specific functions in

response to stimuli from the environment. The view of applications by ADISSA is

based on Wasserman's and Stinson's view of interactive applications as consisting

of: (1) a user interface, (2) operations on data, and (3) a database [WS79]. The

related concepts in ADISSA are: (1) a menu tree describing the external architecture

of the system; (2) transactions, describing the internal architecture; and (3) a

database schema of normalized records.

Chapter 1: Requirements Specification Techniques 29

A system of menus, organized as a hierarchy of menu screens, forms the

external architecture of the system from the user's point of view. Menu screens

consist of selection lines providing access to other menu screens in the system, and

terminal lines, which invoke procedures in the application. The system of menus is

called a menu tree, and is derived from a hierarchy of DFDs specifying the

application, where the menu lines are generated from the processes connected to

external entities by data flows. Primitive processes generate terminal lines, while

other processes generate selection lines.

Transactions consist of primitive processes which form a data dependency

chain, and of data stores and external entities which are connected to these

processes. A hierarchy of DFDs, in general, consists of more than one transaction.

These transactions make up the internal architecture of the system. ADISSA's

design objectives as concerns transactions are given below.

For each transaction identified:

• identify what activates it;

• determine the order in which the component processes are executed; and

• determine the input/output operations carried out, and the data store accesses

made by it.

Transactions are activated by events, and are classified by the types of their

activation event, given below:

• User event - generated by a user (represented by an external entity) of the

system, usually via the menu tree. Data flows between external entities, known

as user entities (UEs), and primitive processes identify user-transactions: a data

flow from an external entity to a primitive process signifies a user event that

causes an application user to trigger a transaction which inputs data, while a data

flow from a primitive process to an external entity signifies an user event which

causes an application user to trigger a user-transaction which provides data on

the data flow.

• Time events - generated by a special kind of external entity, called a time entity

(TE). Time events are used to model events that activate a transaction at a

predetermined point in time or time interval. TEs trigger transactions, called

time-transactions, in much the same way as UEs trigger user-transactions.

• Real-time events - generated by a special kind of external entity, called a real­

time entity (RTE), which is an abstraction of a sensor/detector device. The type

of information generated by RTEs are represented by the flows connecting them

and processes. RTEs trigger real-time-transactions.

• Communication events - generated by communication entities (CEs), which

represent abstractions of communication mechanisms between the system being

Chapter 1: Requirements Specification Techniques 30

modeled and other systems. Communication events occur when a message is

received, and the message triggers a communication-transaction.

A "chain effect" occurs when two or more primitive processes within a

transaction sequentially activate each other. The chain effect terminates when the

data generated by a process is sent to a data store or an external entity.

The trigger of a transaction is the process connected to the external entity that

activates it. The trigger is not necessarily the first process of a transaction to be

executed, since it may be located anywhere in the chain of processes making up the

transaction. If it is the first then the chain effect proceeds forward; if in any other

position then it is necessary for the preceding processes to execute before the trigger

can be executed. Thus, the event generated by the external entity is seen as

activating the transaction from the start of the chain in all cases, even though the

event entity may be at the end (or middle) of the transaction.

Structured descriptions of transactions replace the process specifications of

SA. Shoval argues that it is more useful to specify the behaviour of transactions,

rather than individual primitive processes, since the interrelationships among the

processes, and data stores of the transaction can also be specified. Transaction

specifications consist of a top- and a bottom-level description of a transaction. The

top-level specification describes the externally observable behaviour of the

processes making up the transaction. Specifically, the following four primitive

functions are used in the top-level specification language:

• execute process, performs a primitive process, whose detailed specification is

given in the bottom-level specification;

• read/write transfers data from data stores to processes;

• input/output transfer data between external entities and primitive processes; and

• move transfers data between primitive processes.

The above functions are used together with the control structures of structured

programming in order to derive a top-level "skeleton" specification for transactions.

The bottom-level description details the internal logic for each process in the

transaction, and can be stated in the same manner as process specifications in SA,

for example, using Structured English, or Decision trees.

Chapter 1: Requirements Specification Techniques 31

Shoval provides a methodology for developing AD ISSA specifications which

consists of the following steps:

l. Functional analysis, producing hierarchical DFDs and a data dictionary; and

includes analysis of events and external entity types.

2. Menu tree design, resulting in a menu tree for the application represented by

the hierarchy of DFDs.

3. Transaction design, involving identification of transactions, finding their

triggers, and determining their order of execution.

4. Transaction specification, resulting in structured descriptions of transactions.

5. Database schema design.

6. Input/output schema design, which associates input/output descriptions to the

inputs and outputs described in the top-level transaction specification.

7. Design of the ADISSA data dictionary, which is an extension of the data

dictionary derived in step 1, consisting of a menu tree dictionary containing

details of all screens and their lines, and the transactions dictionary containing

details of the transactions.

In [SP88] the use of ADISSA in a prototyping environment is described. The

aim is to enhance user-analyst communication to enhance validation of the

requirements specification by the user. The following are the types of prototypes

that can be generated from AD ISSA products:

• Interface prototype - a hierarchy of menu screens generated from the menu tree

using a menu generator module. The user is allowed to navigate through these

screens and make comments on the user interface of the application.

• Data prototype - a database schema created using the database management

module of an application generator and its definition language.

• Process prototype - a collection of program modules based on the transaction

specifications.

• Application prototype - a program based on the top-level descriptions of

transactions, and on the previous prototypes.

ADISSA provides limited support for the specification of control

requirements, in the form of specialized types of external entities. Control signals

are not depicted, thus limiting the means for specifying conditions under which a

process or transaction is can execute. Furthermore, the lack of a formal basis for

AD ISSA means that there is little support for rigorous validation or verification.

1.2.4 DARTS

DARTS [Gom84, Gom86] is a software design method for real-time systems

which utilizes the DFD tool. The method can be viewed as an extension to the

Chapter "1: Requirements Specification Techniques 32

SA/SD method which also provides mechanisms for structuring processes into

tasks and for defining interfaces between them. The following phases are identified

by the method:

• Data flow analysis - DFDs are used in DARTS to analyse the functional

requirements of an application. This phase utilizes the tools and techniques of

SA.

• Decomposition into tasks - The processes identified in the data flow analysis

phase are structured into concurrent tasks in this phase. Tasks may consist of a

single process or a group of processes. Criteria for deciding whether a process

can act as a task or can be grouped with other processes to form a single task are

provided by Gomaa [Gom84]. The result of this phase is a DFD whose

processes are tasks.

• Defining task inteifaces - Task interfaces determine how tasks communicate with

each other, and are defined by two classes of interface modules: the Task

Communication Module (TCM), which handles all communication between

tasks and typically consists of a (concurrently accessed) data structure with

access functions; and the Task Synchronization Module (TSM), which handles

synchronization between tasks.

• Structured design of tasks - Each task represents a sequential program, and its

design specification is derived by first representing it as a DFD, then

transforming the DFD into an initial SC. The transition from DFDs to SCs is

carried out in the same manner as in the SNSD method. DARTS also provides a

State Transition Manager (STM) for specifying transaction-oriented applications.

The STM module maintains the current state of the application and a state

transition table defining legal and illegal state transitions. A task that needs to

process a transaction calls the STM with the desired action as input and the STM

determines whether the action can be carried out or not, updating the current state

if a valid transition is determined.

DARTS extends DFDs by expanding the notion of a data flow to include

control signal flow, and allowing constraints on the interface between tasks to be

specified. A data flow between two tasks is interpreted in one of the following

ways:

1. A loosely coupled message queue containing synchronization mechanisms for

suspending generators when the queue becomes full and receivers when the

queue is empty. Such an interface is used when two tasks need to pass

information to each other, and still proceed at possibly differing speeds.

2. A closely coupled message communication channel on which only one item of

data can exist at any time. These channels are modeled as two uni-directional

Chapter 1: Requirements Specification Techniques 33

channels with single-item queue structures. The two channel are orientated in

opposite directions, representing the sending of messages and subsequent

replies. Such an interface is used when information needs to be passed

between two tasks, but the sending task cannot proceed until it has received a

reply from the task it has sent information to.

3. an event signal used to notify tasks about event occurrences and does not

involve transmission of data.

Interpretations 1 and 2 are defined in terms of a special TCM called a Mes sage

Communication Module (MCM), while interpretation 3 is defined in terms of the

TSM. Interactions with data stores are defined by a special TCM called an

information hiding module (IHM), which is a data structure with access functions

which can be concurrently accessed. DARTS provides special notation for the

above types of interfaces, enabling them to be depicted on DFDs.

State dependent behaviour of an application is described in DARTS by a

module called a state transition manager (STM). The STM maintains both the

current state of the application, as well as a state transition table which defines all

legal and illegal state transitions. A task that needs to carry out an action calls the

STM with the desired action. The STM then determines whether the action can be

carried out given the current state of the system. If the action can be carried out the

STM changes the state of the application, if required, and notifies the task that it can

carry out the action, otherwise the STM notifies the task that the action cannot be

carried out. DARTS provides a central state model for the application. The STM is a

data structure.

DARTS, as its name implies, is intended as a design tool, but its use of SA

and the techniques used for converting DFDs into diagrams depicting types of

communication interfaces, and partitions of processes solves some of the problems

associated with the representation of control in DFDs. In particular, the method is

especially useful for the specification of applications with complex interactions.

Furthermore, the transition to specifications of program structure has the potential

to be less contentious than the SA/SD approach, since structured charts are

associated with individual tasks, rather than with the entire DFD.

DARTS though seems to lack a formal basis, thus suffers from the problems

associated with the lack of such a basis.

1.2.5 Tse's extensions: Formal DFDs (FDFDs)

Tse recognizes the need for a formal framework for the tools of SA, and has

carried out a series of studies into possible formalisms ranging from the very

abstract (initial algebras) to the more operational (Petri nets) [Tse85a, Tse85b,

Chapter 1: Requirements Specification Techniques 34

Tse86, Tse87, TP86b]. The work of Tse on the abstract representation of the

syntactic structure of DFDs [Tse86], in terms of algebraic specifications, is the

inspiration for the part of the formal framework presented in this thesis that

formalizes the syntactic aspects of DFDs.

Formal DFDs (FDFDs) [Pong86, TP86b] is a language created by Tse and

Pong which provides DFDs with a theoretical framework in the form of extended

Petri nets. In recognition of the need to preserve understandability, the language has

both graphic and symbolic aspects, which allow for the creation of graphical and

formal symbolic representations in one-to-one correspondence. The formal

symbolic description is needed since graphical descriptions cannot be analysed by

computers. The one-to-one correspondence between the two descriptions enables

traceability and consistency between the two.

The graphical descriptions take the form of DFDs consisting of only two

constructs: data flows, and processes. The symbolic representations take the form

of algebraic expressions of Petri nets acting as the formal operational models of the

DFDs. A Petri net ([Pete81]) interpretation of a DFD is obtained by viewing

processes as transitions, and data flows as places. Tokens placed on data flows

mean that data on the data flows are available to the processes needing them. The

firing of a process causes the removal of tokens on some of its input data flows and

the addition of tokens on some of its outputs data flows. In order to avoid

ambiguities that may arise in deciding which inputs may fire and which outputs to

place tokens on as a result of a process being fired, the Petri net model is extended

with input and output and functions, which are derived from explicit relationships

amongst the inputs and outputs of processes expressed in the DFD.

Analysis of FDFDs is carried out using analysis techniques based on the Petri

net interpretation of DFDs. Tse identifies three types of analysis:

1. Global consistency analysis, which concerns the consistency of the

hierarchical structure of DFDs, for example, the directed graph derived as a

result of the decomposition of processes should contain no cycles (i.e.

recursive decomposition is not allowed);

2. Structural consistency analysis, which concerns the input/output relationship

between parent and child processes; and

3. Behavioural consistency analysis, which concerns the preservation of

behavioural properties, as modeled by Petri nets, during decomposition.

Tse and Pong provides algorithms for carrying out the above types of

analysis above [TP86b].

While Tse's objectives are similar to the objectives of the formal framework

presented in this thesis, his work is carried out at the syntactic level. He does not

Chapter , : Requirements Specification Techniques 35

provide formal definitions for the data objects in the DFD (in fact data stores are

ignored), nor does his work provide support for the formal specification of a

process's logic, except in terms of other DFDs. While Petri nets do provide an

operational basis from which executable specifications can be derived, one has to be

careful about what aspects of the application are actually being made executable. A

Petri net essentially provides a simulation of the control flow of an application, and

are useful tools for representing applications with synchronous interactions. Data

objects, and their relationships are not modeled explicitly, while the internal

structure of processes are invisible.

Petri nets provide formal operational models, but lack an associated

mathematical basis. This limits the use of tools and techniques based on Petri nets

in a formal development method.

1.2.6 Extended DFDs (EXT-DFDs)

Petri nets are also used as an operational basis for the visual language

extensions to DFDs provided by extended data flow diagram (EXT-DFD) [CTL87].

The primary objectives of EXT-DFD are to provide a non-procedural, easy to use,

graphical environment, with high processing power, for creating and validating

DFDs. The visual aspects of EXT-DFD consist of DFDs, and entity-relation (ER)

graphs which are transformed into user-interface forms for specifying database

manipulation. The symbols of EXT-DFD are icons, associated with properties,

which may be composed of other (sub) icons. Icons communicate by message

passing interpreted as data flow. There are four types of icons in EXT_DFDs:

1. Object icons represent entities with an associated set of operations or actions.

Data store icons are classed as object icons.

2. Action icons represent a specific operation (action) of the system. Process

icons are classed as action icons. Forms are also action icons which

manipulate the database. An action icon is associated with input and output

data icons (see 3. below). It acts on the input data icons to produce the output

data icons. The behaviour of an action icon acts as its semantics.

3. Data icons represent data flow elements. They define the data type of a data

flow, and may contain a value during execution of the EXT-DFD.

4. External icons represent components lying outside the scope of an application,

that is the external entities of a DFD. They are used to initiate and terminate the

execution of EXT-DFDs. No processing is carried out by these icons.

DFDs are viewed, in EXT-DFDs, as being composed of separate, interacting

components, where each component has its own state which may change over time.

The components can exhibit concurrency, and may require synchronization of

Chapter 1: Requirements Specification Techniques 36

constituent actions. Petri nets are used as the operational basis because of their

demonstrated usefulness in the modelling, analysing, and simulation of such

concurrent components.

When viewed as Petri nets the data flows, data stores and external entities of

an EXT-DFD are treated as places, while the processes (action icons) are treated as

transitions. Three types of Petri net places are distinguished: initial/terminal, store,

and data places, corresponding to external entities, data stores, and data flows.

Tokens, representing the presence or absence of data, are stored in places. Initial

places initiate the execution of EXT-DFDs, given an external command to "run" the

DFD. Terminal places terminate the execution of a DFD in an execution path. Rules

governing the firing of transitions, and their effects on the tokens in places are also

provided by the operational model [CTL87].

In order to support the decomposition of DFDs grouped transitions are used.

A grouped transition is an abstraction of a Petri net model. Grouped transitions

correspond to non-primitive processes, while single transitions correspond to

primitive processes.

EXT-DFDs are validated by analysing their components. Each component

must satisfy a set of rules, called integrity constraints, which determine how

components can be related.

EXT-DFDs, improve upon FDFDs by incorporating abstraction concepts for

structuring complexity in their modified Petri nets, and by considering data stores.

EXT-DFDs also have the potential of further enhancing communication amongst

developers and users through their use of a graphical language. The executable

nature of EXT-DFDs also makes them potentially useful for validating behaviour

with users, though, as pointed out, only the aspects related to the types of

interactions between components are actually demonstrated.

EXT-DFDs, while having a formal operational model, lack an associated

mathematical basis thus limiting their use in formal development methods.

1.3 Conclusion
The methods reviewed above provide extensions to DFDs to alleviate

problems associated with various aspects of their use. Some of the methods provide

extensions to the descriptive power of the tools while few seek to provide formal

operational frameworks for them. The need to provide a formal basis for the tools

of SA is evident in the lack of automated tools for checking not only the syntactic

aspects of the generated specifications, but the semantic, or behavioural aspects

captured by the specifications. Formal frameworks which associate formal

operational models interpretations for DFDs in terms of Petri nets can be seen as a

Chapter 1: Requirements Specification Techniques 37

first step towards providing a basis for DFDs. Such operational models are useful

for rigorously validating specifications with users. Petri nets, though, are not

associated with any mathematical foundations, and this limits their use in formal

development methods in which it is required that implementations be proven against

the requirements specification.

CHAPTER 2

Syntactic and Semantic Aspects
Diagrams Flow

2.0 Introduction

of Data

This chapter serves as an informal introduction to the syntactic and semantic

aspects of DFDs which are formalized in later chapters of this thesis. The syntactic

aspects of DFDs are concerned with the building of their syntactic objects while the

semantic aspects are concerned with the behavioural interpretations associated with

the syntactic objects.

2.1 A computer-based library application example
This section introduces the example which will be used to illustrate the

concepts and techniques used in this and other chapters. It is based on a problem set

for the Fourth International Workshop on Software Specification and Design

[SSD87].

The requirements for a university computer-based library application, in terms

of the basic actions it is required to support, are as follows 1 :

A 1. Add and remove copies of books to and from the library.

A2. Borrow and return books.

A3. Update borrower's record on full or part payment of fines.

A4. Add and delete borrowers.

The above actions can only be invoked by the library staff. There are three

types of borrowers: undergraduates, postgraduates, and academic staff. There are

also three types of books: references, general (access) books, and periodicals.

References cannot be checked out. Periodicals can be checked out only by

postgraduates and academic staff, and only for a period of two weeks. General

books can be checked out by any type of borrower for the following periods:

undergraduates - 2 weeks, postgraduates - 4 weeks, academic staff - 6 weeks.

A fine of 20c per day is incurred for overdue books. The fine is accumulated

starting from the day after the book is to be returned until the book is actually

returned. If a borrower's accumulated fines for all books exceeds $30.00 the

borrower is barred from checking out books until the fine is reduced to $30.00 or

less.

1 References to the library are actually references to the library data base.

38

Chapter 2: Syntactic and Semantic Aspects of DFDs 39

The following constraints must also be satisfied by the library application:

A. All borrowable copies in the library must be available for checkout, or be

checked out.

B. No copy of a book may be both checked out and available at the same time.

2.2 Syntactic aspects of DFDs
The syntactic aspects of DFDs are characterized by the formal framework in

terms of abstract syntactic objects. Abstract here means representation independent,

that is, no particular concrete representations are implied by the definitions of the

objects. This is to allow various graphical and textual representations to be used in

conjunction with the formal framework. The abstract objects are defined in terms of

their attributes and are associated with formation rules which characterize their

structure. Syntactic objects which adhere to their formation rules are said to be

structurally correct. Figure 2.1 shows the graphical representations of the basic

syntactic structures (constructs) of DFDs used in this thesis.

Process

0
Data stores

11 11
symbol for a data store
that is repeated
in a diagram

External Entity

•
Data Flows

:
a branching
data flow

a decomposed input a composed output

Figure 2.1 Graphical representations of DFD constructs

In the SA approach, applications are represented by a hierarchy of DFDs,

made up of a top level DFD called the context diagram consisting of a single

process, a bottom level consisting of DFDs of primitive processes, and

intermediary levels consisting of DFDs describing the processes and data flows at

the higher levels in more detail ([DeM78], see also Chapter 1). Such a hierarchy of

DFDs can alternatively be viewed in terms of a process hierarchy, where the top

level consists of the single process in the context diagram, and the bottom and

intermediary levels are the bottom and intermediary levels of the hierarchy of DFDs.

Processes at the intermediary levels of a hierarchy of DFDs can similarly be viewed

Chapter 2: Syntactic and Semantic Aspects of DFDs 40

as hierarchical structures. Also, data flow hierarchies can be associated with a

hierarchy of DFDs in which process decomposition involves parallel data flow

decomposition. The structures for decomposed inputs and composed outputs

shown in Figure 2.1 are used to depict the decomposition of data flows. The

processes and data flows in a hierarchy of DFDs are syntactically treated as

hierarchical objects with structures conforming to rules governing the

decomposition of processes and data flows provided by the formal framework.

When the hierarchical nature of processes and data flows in a DFD are to be

ignored, the DFD and its components are referred to as flat.

Example 2.1 shows a hierarchy of DFDs representing the library application.

Example 2.1
Hierarchy of DFDs for library application

Level O The Context Diagram

staff

do late book

new book

t ,
return info --

checkout info Library-

borr update_ info
Application

dol borr i . j~ •• '

,__ _______ ___. update_

new_borr

return_
timQ

time

clock

dolete mQ.Ssaqo

return mos.saqo

checkout message

updatG status

dol -borr~mess

add me:i:saqo

checkout

timo

~

i r

staff

Example 2.1 continued

Chapter 2: Syntactic and Semantic Aspects of DFDs

Level 1

Example 2.1 (continued)
Hierarch of DFDs for libr

staff

now_

now_book

_roe

ret:urn
detail

AddCopy

rot_
updatod

borr_ ot:hor_ borr

Delete­
Copy

lication

chockout_mes:,:aqo

chockout_1nfo

clock

borr
Update­
Borr-

updato_1n o

staff

roe borr
Status updato_statu.s - --- 1---------......

add

Add­
Borrower

mGssaqo now -
borr

Delete­
Borrower

dgl

borr gl

orr
oss

staff

detail

-

41

In the Level 1 DFD the data store BORROWER contains information about borrowers

for example, personal details and fines paid, and information accessed via the

borrower, for example, details of books borrowed. Similarly the data store BOOK

contains information about copies of books, such as copy details (authors, title,

etc.), and a borrower flag indicating whether a book is available or not. The clock

external entit rovides the current time to rocesses neeclin it.

Example 2.1 continued

Chapter 2: Syntactic and Semantic Aspects of DFDs 42

Level 2

Example 2.1 (continued)
Hierarch of DFDs for libr

out_book

chockout

info

out
borr

chgckout

time

CheckoutBook

:::::\ ?Z:~-l,f: ::::::::p~:::::::: ~~;~::a
i.'. .. '.,f ··'. .. >r\··.Y;· .. \Jt

CheckoutBook is decomposed into three processes: CheckBook determines

whether the book to be checked out can be checked out; CheckBorrower

determines whether the borrower is permitted to borrow any books; and

CheckOutUpdate updates the BOOK and BORROWER, provided that the check

out is possible, and generates a check out message indicating the status of the check

out action.

rot borr list

roturn info

return detail

raturn_t1me

ReturnBook

updat.od_
borr

RetunBook is decomposed into two processes: CheckReturnBook determines

whether the book is a library copy; ReturnUpdate updates BORROWER and

BOOK, if the book is a copy of the library, and generates a message indicating the

status of the return book action.

Example 2.1 continued

Chapter 2: Syntactic and Semantic Aspects of DFDs 43

Example 2.1 (continued)
Hierarch of DFDs for libr lication

UpdateBorrStatus

~~::te :::;:-:::;:;:;:;:;;:::/ ~enera,te- -:~:~:;~ine_··. 'Update- =::,,:::::,:::: ~~~~~:
Fines- -:::•:•.•.•:::2, .. :-:•·······•. ·· Borr-

'(i;:):):i:j:(~:({:[:):):)\:]:jf Record

::;;,._ y::w: ····t~~;~'~,,c0I~;:!;~ :;:::;-
UpdateBorrStatus is decomposed into two processes:

GenerateFinesRecord calculates the fine on each overdue book possessed by

a borrower; UpdateBorrRecord updates BORROWER with the amount paid.

Level 3

CheckBorrower

~"'.,::: -~;~s,~~:::: "~ ::::"'-
..;;t,;;;;1m;;;..e _-;,;:; Overdue- ':·:TJC::-i:. ~~~ulate Borrowe1"',:,:,,.,:,:,•""··•:,:;;..,: -=-•

~}····;:::f······· .. ········· ... · ·.···•·:.).l_:.:;_:.:;_l.1; __ '_i:_i:_,:f' ... ,.: ... : :.:.:.:.:.:.:.:.: ... •.··,\:,,,~g,,:,~'J': ·:· '.':·.·:,:·······

·,·:·;J:'i';;::~::) ::::,::z=~i·'.(··:•,::··:·:"f ~'.~pi,_.,J(;i\i\(~.:\·•,•'•'•)" .:,·,::\:'":::;;::·'::,:,:•~~;•::,:,:::::::::,:

out

The level 2 process CheckBorrower consists of three processes:

GetOverdueBooks calculates the fines for each overdue book possessed by the

borrower; CalculateFine sums the fines; VettBorrower determines

whether the borrower is ermitted to borrow books.

In what follows the syntactic aspects of flat DFDs are described and then

extended to incorporate concepts related to the decomposition of processes and data

flows. The result is a set of abstract syntactic objects which encapsulate the

syntactic aspects of hierarchies of DFDs. Formalization of the syntactic aspects of

hierarchies of DFDs is thus achieved by providing formal definitions of the abstract

objects introduced here, which is done in Chapter 4.

Chapter 2: Syntactic and Semantic Aspects of DFDs 44

2.2.1 Syntactic aspects of flat DFDs

Syntactically, a flat DFD is an abstract object consisting of an external

environment (EE) and a process structure (PS). The EE of a flat DFD consists of

external entities with their associated data flows, while the PS of a flat DFD

consists of processes and data stores with their associated data flows. Syntactically,

data flows have two attributes: a name and a direction. In what follows a data flow

directed towards a construct is called an input of the construct, while a data flow

directed away from a construct is called an output of the construct. Processes, data

stores and external entities have the following syntactic attributes: a set of inputs,

and a set of outputs.

The following are the formation rules characterizing the syntactic aspects of

flatDFDs.

Processes

Definition 2.1
Characterizing the syntactic aspects of DFDs

Fl. A structurally correct process has a non-empty set of inputs, and a non­

empty set outputs. Furthermore, the set of inputs and the set of outputs are

disjoint, that is, an input of a process cannot be an output of the same

process.

Data stores
F2. A structurally correct data store has a non-empty set of inputs or a non-empty

set of outputs. Its set of inputs and set of outputs are also disjoint.

Process structures

F3. A structurally correct process structure has at least one process. All processes

in a structurally correct process structure are structurally correct and are

uniquely identified by their inputs and outputs.

F4. All data stores in a structurally correct process structure are structurally

correct. All the inputs of a data store in a structurally correct process structure

are also outputs of processes in the process structure. Also all the outputs of a

data store must also be inputs of processes in the process structure.

Furthermore, the set of data flows (inputs and outputs) of a data store in a

structurally correct process structure is disjoint from the set of data flows of

any other data store in the process structure. This means that data stores are

not directly connected by data flows in a structurally correct process structure.

Data stores in a structurally correct process structure are uniquely identified

by their inputs and outputs.

Definition 2.1 continued

Chapter 2: Syntactic and Semantic Aspects of DFDs

Definition 2.1 (continued)
Characterizing the syntactic aspects of DFDs

F5. An output of a process in a structurally correct process

45

structure is either associated with another process and/or data store in the

process structure as an input, or is not associated with any process or data

store in the process structure. An input of a process in a structurally correct

process structure, on the other hand, may be associated with more than one

process and/or data store in a process structure as an input.

F6. The net or boundary inputs of a process structure are the inputs associated

with the processes and data stores in the process structure which are not also

outputs of processes and data stores in the process structure. A structurally

correct process structure has at least one net input.

External entities

F7. A structurally correct external entity has a non-empty set of inputs or a non­

empty set of outputs. Its set of inputs and the set of outputs are also disjoint.

External environments (EEs)

F8. A structurally correct EE consists only of structurally correct external entities.

Furthermore, there is at least one external entity in the EE with a non-empty

set of inputs, and at least one external entity with a non-empty set of outputs.

All external entities in a structurally correct EE are uniquely identified by the

set of their data flows.

F9. An input of an external entity in a structurally correct EE is never an output of

another external entity in the EE. An input, on the other hand may be

associated with more than one external entity in the EE as an input, provided

that it is not also an output of an external entity in the EE. The sets of outputs

associated with the external entities in a structurally correct EE are all disjoint.

Flat DFDs

A flat DFD consists of a structurally correct process structure and a structurally

correct EE (possibly empty) satisfying the following rule:

Fl 0. The set of all outputs in the EE is equal to the set of the net inputs of the

process structure. Also, the set of all inputs in the EE is a subset of the set of

all outputs in the process structure. For a DFD with a non-empty EE the result

is that each data flow in the DFD is associated with a unique generator, and a

non-empty set of receivers.

Chapter 2: Syntactic and Semantic Aspects of DFDs 46

Level 1 of the hierarchy of DFDs shown in Example 2.1 can be viewed as a

flat DFD by ignoring the lower levels of the hierarchy. The EE of this DFD consists

of the structurally correct external entities staff and clock, while the process

structure consists of the structurally correct processes AddCopy, DeleteCopy,

ReturnBook,CheckoutBook,UpdateBorrStatus,AddBorrower, and

DeleteBorrower. In the EE, no two external entities are directly connected to

each other, and all outputs are unique. Furthermore, the set of inputs to, and the set

of outputs from the EE are non-empty. The EE is thus structurally correct. Within

the process structure, the data store inputs (outputs) are all associated with process

outputs (inputs). Furthermore, all outputs in the process structure are associated

with unique generators. The net inputs of the process structure, new_book,

delete_book,checkout info,checkout time,return time,

return info, new_borr, del_borr, borr_update_info, and

update_ time, are exactly the outputs of the EE, also the set of inputs of the EE

is a subset of the set of outputs of the process structure. The process structure of

the DFD and the DFD itself are thus structurally correct.

2.2.2 Syntactic aspects of hierarchies of DFDs

Hierarchies of DFDs are syntactically treated as objects consisting of

hierarchical representations of processes and data flows. The objects can be viewed

as extensions of the syntactic objects representing flat DFDs, characterized in the

previous section, where the extensions take the form of additional attributes

reflecting the hierarchical nature of processes and data flows. Processes and data

flows so extended are referred to as hierarchical. Formation rules for hierarchical

data flows and processes are given below.

Hierarchical data flows

Decomposition of data flows in a DFD results in the revelation of their

component data flows. The component data flows so obtained either fully define the

data flow, in which case they are all necessary and sufficient components of the

data flow, or they may partially define the data flow, in which case they may not be

sufficient to fully define the data flow. Decomposition of data flows whose

structures consist of alternative components is not permitted here. Also, recursively

defined data flows are not permitted, since such definitions are not consistent with

the view of decomposition as an activity which results in the revelation of detail not

provided at the previous level. These restrictions enable the representation of

hierarchies resulting from successive decomposition of data flows, as tree

structures, in which nodes are data flows and edges represent the "is a component

Chapter 2: Syntactic and Semantic Aspects of DFDs 47

of' relationship between data flows. Such trees are called data flow trees. The data

flow at the root of a data flow tree is called the root data flow, while the data flows

with no components (i.e. the leaf, or bottom level, nodes of the tree) are called

primitive data flows. Semantically, primitive data flows are associated with data

types (with possibly alternative structures), which can then be used to generate the

composite data types for the higher level data flows. An example of a data flow tree

is given in Example 2.2.

The syntactic aspects associated with the decomposition of data flows are

captured by an object called a hierarchical data flow, with the following attributes:

• a name, and

• a set of hierarchical data flows, called the child decomposition set of the

hierarchical data flow, representing the structure of the hierarchical data flow.

Data flow trees are concrete representations of hierarchical data flows. The

name of a hierarchical data flow is the name of the data flow at the root of its data

flow tree representation, while its child decomposition set is the set of sub trees

whose roots have an edge connecting them to the root data flow. For example the

child decomposition set of the hierarchical data flow shown in Example 2.2 are the

sub trees with roots book id and borr id. The nodes of a data flow tree are - -

called the sub data flows of the hierarchical data flow, while the sub trees whose set

of leaf nodes are a subset of the set of leaf nodes of the data flow tree are called the

sub hierarchical data flows of the hierarchical data flow. The rule characterizing

structurally correct hierarchical data flows, given in Definition 2.2, is essentially a

rule for building data flow tree structures.

Definition 2.2
Characterizing structurally correct hierarchical data flows

Each sub data flow of a structurally correct hierarchical data flow is unique.

In order to express the relationship between a data flow at a particular level of

a hierarchy of DFDs and its decomposed data flows at the next level, the notions of

full and partial decomposition sets are needed.

Chapter 2: Syntactic and Semantic Aspects of DFDs

Definition 2.3
Full and partial decomposition sets

Afull decomposition set, F, of a hierarchical data flow D, is a set of sub

hierarchical data flows of D, satisfying the following conditions:

1. no two hierarchical data flows in F have common sub data flows; and

48

2. the set of all primitive data flows in the hierarchical data flows in F is equal to

the set of primitive data flows in D.

A partial decomposition set of a hierarchical data flow is simply a subset of its sub

hierarchical data flows.

A full decomposition set of a data flow fully defines the data flow. Examples

of full and partial decomposition sets can be found in Example 2.2.

Example 2.2
Data flow tree for the hierarchical data flow checkout info

~
book id borr id - -

/\
copy# ISBN

The above data flow tree is a concrete representation of the hierarchical data flow

checkout_info. The child decomposition set of checkout_info is the set

consisting of the hierarchical data flows book_id and borr id. The set consisting

only of the hierarchical data flows book_ id and borr _ id is a full decomposition

set of checkout_ info, so also is the set consisting of the hierarchical data flows

copy#, ISBN, and borr _id.The set consisting only of the data flows book_ id

and copy# is a partial decomposition set of book id as well as of

checkout info.

In describing the syntactic aspects of hierarchies of DFDs, the use of

hierarchical data flows parallels the use of flat data flows in describing flat DFDs.

External entities and data stores associated with hierarchical data flows as inputs

and outputs are referred to as hierarchical. Processes are also associated with

hierarchical data flows in a manner described in the next sub section.

Chapter 2: Syntactic and Semantic Aspects of DFDs 49

In a hierarchy of DFDs all data flows are uniquely named (see Definition

2.2). To express this uniqueness property, the notions of a distinguished pair and

set of hierarchical data flows are used.

Definition 2.4
Distinguished sets of hierarchical data flows

Two hierarchical data flows are said to be distinguished if they do not have any

common sub data flows. A set of hierarchical data flows in which every pair is

distinguished is called a distinf.?uished set.

Hierarchical processes

The syntactic aspects of a hierarchy of processes, resulting from successive

process decomposition, are concerned mainly with the relationships between high

level processes and their more detailed description at the lower levels. Such aspects

are captured by an abstract syntactic object called a hierarchical process, with the

following attributes.

• a set of hierarchical data flows, called the inputs of the hierarchical process;

• a set of hierarchical data flows, called the outputs of the hierarchical process;

and

• a structure of (sub) hierarchical processes and hierarchical data stores, called the

body of the hierarchical process.

The body of a hierarchical process represents the hierarchical structure of the

process arising from successive decompositions. As in hierarchies of data flows,

recursive descriptions of processes are not permitted. Successive decomposition of

a process can be concretely represented by a tree. In such a tree, here called a

process tree, the nodes are flat processes (with their inputs and outputs), and the

edges represent the "is a sub process of' relationship between processes. Each level

of the tree is associated with a set of data stores, where the set of data stores at a

particular level is disjoint from any other set associated with the other levels of the

tree. The root of a process tree is called the root process, while the processes at the

bottom level are called primitive. Primitive processes have empty bodies. The nodes

of a process tree are called the sub processes of the corresponding hierarchical

process, while the sub trees of a process tree whose leaf nodes are subsets of the

set of leaf nodes of the process tree represent sub hierarchical processes of the

hierarchical process corresponding to the process tree. An example of a process tree

is given in Example 2.3 (data stores are not shown in the example).

Chapter 2: Syntactic and Semantic Aspects of DFDs 50

Example 2.3
Process tree for the libra

The hierarchy of DFDs shown in Example 2.1 can be viewed as a tree of processes

as is illustrated below:

Book

/,6.,-
Check- Borr- Out-
Book ower Update

~
Get- Calculate- Vett-

LibraryApplication

Return­
Book

Records

Borr­
ower

Overdue- Fine Borower
Books

Copy copy Borr­
Status

~
Gen­
Flnes­
Record

Update­
Borr­
Record

The hierarchical process corresponding to CheckouBook is the sub tree of the

above tree with CheckoutBook as its root. The body of CheckoutBook, thus

consists of the hierarchical processes CheckBook, CheckBorrower, and

CheckOutUpdate, where both CheckBook and CheckOutUpdate are

primitive, and their associated data stores (not shown in the tree diagram).

The following definitions are needed to express the rules characterizing

structurally correct hierarchical processes. The net inputs of a hierarchical process

are the inputs in its body which are not also outputs in the body. For example, the

net inputs of the hierarchical process CheckoutBook are the data flows

out_book,out_book_id,out_borr_id,checkout_time, and

out_borr. The set of all inputs (outputs) in the body of a hierarchical process is

called the internal input (output) set of the body. For example, the internal output

set of the hierarchical process Checkout Book is {vet t e d _book,

vetted_borr,checkout message,out updated book,

out_updated_borr}

Definition 2.5 gives the rules characterizing structurally correct hierarchical

processes.

Chapter 2: Syntactic and Semantic Aspects of DFDs

Definition 2.5
Characterizing structurally correct hierarchical processes

Hierarchical data stores

Pl. A structurally correct (hierarchical) data store has a non-empty set of

hierarchical inputs or a non-empty set of hierarchical outputs. The union

of inputs and outputs of a data store is a distinguished set.

The body

P2. A structurally correct body is either empty or contains at least one

structurally correct (sub) hierarchical process. All data stores in a body are

structurally correct.

P3. No two hierarchical processes in a structurally correct body must have

common sub processes.

51

P4. The set of all data store inputs in a structurally correct body is a subset of the

internal output set of the body, and the set of all data store outputs is a subset

of the internal input set of the body. Furthermore, the receiver of a hierarchical

data flow whose generator is a data store is never a data store.

P5. Each hierarchical data flow in the internal output set has a unique generator in

the body. The internal output set of a structurally correct body is a

distinguished set.

P6. There is at least one net input in a non-empty structurally correct body.

Hierarchical processes

P7. The set of inputs and the set of outputs of a structurally correct hierarchical

process are both non-empty. Furthermore, the union of the inputs and the

outputs of a hierarchical process is a distinguished set.

P8. The body of a structurally correct hierarchical process is structurally correct.

In a structurally correct hierarchical process with a non-empty body, an input

corresponds to a subset of the net inputs in the body, called its decomposition

set, which is a partial decomposition set of the input. The decomposition sets

of any two hierarchical data flows in the input interface are disjoint, and the

union of the decomposition sets associated with the inputs of the hierarchical

process is exactly the set of the net inputs of the body.

Definition 2.5 continued

Chapter 2: Syntactic and Semantic Aspects of DFDs

Definition 2.5 (continued)
Characterizing structurally correct hierarchical processes

52

P9. For a structurally correct hierarchical process with a non-empty body, an

output corresponds to a subset of the internal output set, called its

decomposition set, which is a full decomposition set of the output. The

decomposition sets of any two outputs is disjoint. If a hierarchical data flow in

the internal output set of the body of a structurally correct hierarchical process

is not in any decomposition set then it is directed towards hierarchical

processes in the body.

The rules determining the structure of the body of a hierarchical process can

be viewed as extensions of the rules characterizing the PSs of flat DFDs, which

take into consideration the hierarchical nature of data flows and processes.

Similarly, the rules for hierarchical processes can be viewed as extensions to the

rules characterizing structurally correct flat processes.

Hierarchical DFDs

The syntactic aspects of a hierarchy of DFDs are captured by an abstract

syntactic object called a hierarchical DFD (H_DFD). A structurally correct H_DFD

consists of a structurally correct hierarchical process and a structurally correct

external environment (EE), where the EE of a H_DFD is a set o~.external entities

with hierarchical inputs and outputs. The hierarchical process of a H_DFD

represents the hierarchy of DFDs resulting from successive process

decompositions, and can be viewed as a hierarchical representation of the single

process in the context diagram of the corresponding hierarchy of DFDs. The rules

characterizing structurally correct H_DFDs, given in Definition 2.6, can be viewed

as extensions of the rules characterizing structurally correct flat DFDs.

The abstract syntactic objects introduced above capture the desired syntactic

aspects associated with hierarchies of DFDs. Formalizing the above definitions for

the abstract objects results in the formalization of the syntactic aspects they capture,

thus providing a basis for validating the syntactic structure of (hierarchies of)

DFDs. Chapter 4 provides the formal counterparts of the rules characterizing

structurally correct objects stated in this chapter.

Chapter 2: Syntactic and Semantic Aspects of DFDs 53

Definition 2.6
Characterizing structurally correct hierarchical DFDs

Hierarchical external entities

H 1. A structurally correct external entity has a non-empty set of inputs or a non­

empty set of outputs. Also, the sets of inputs and outputs are disjoint,

and their union is a distinguished set.

External environments

H2. A structurally correct EE consists of structurally correct external entities or no

external entities. Furthermore, there is at least one external entity in the EE

with a non-empty set of inputs, and at least one external entity in the EE with a

non-empty set of outputs. All external entities in a strncturally correct EE are

uniquely identified by their inputs and outputs.

H3. An input of an external entity in a strncturally correct EE is never an output of

another external entity in the EE. The sets of outputs of any two external

entities in a structurally correct EE are disjoint and are distinguished sets.

H DFDs

H4. A structurally correct H_DFD consists of a structurally correct EE and a

structurally correct hierarchical process. The set of all inputs (outputs) in the

EE of a structurally correct H_DFD is equal to the set of inputs (outputs) of

the hierarchical process of the H DFD.

In the remainder of this chapter the semantic aspects of DFDs are introduced

in an informal setting. Concrete representations of the abstract objects described

above will be used for illustration purposes in what follows.

2.3 Semantic aspects of DFDs
In the SA/SD approach a data dictionary contains definitions of the structure

and content of the data flows and data stores in a hierarchy of DFDs, while process

specifications describe the functional behaviour of its primitive processes. The

definitions provided by the data dictionary and process specifications are quasi­

formal, and thus provide little support for the rigorous validation and verification of

behaviour. Furthermore, the transition from SA specifications to an initial design is

problematic ([Sho88, Pet88], see also Chapter 1). Formal interpretations of the

syntactic structures in DFDs facilitate the derivation of formal specifications of

behaviour for DFDs, which can be viewed as initial designs of the applications

described by the DFDs.

The semantic aspects of hierarchical DFDs concern the interpretations

associated with their syntactic structures. Two types of semantic aspects are

Chapter 2: Syntactic and Semantic Aspects of DFDs 54

specifiable in the formal framework:behavioural and data . Behaviour refers to the

manner in which components interact with each other. Two aspects of behaviour

are emphasized:functional and control. Functional aspects concern the relationship

between the input values and output values of a process while control aspects

concern the time-related interactions between processes. Specifications of the

functional aspects of a DFD are supported by specifications of its data aspects,

which are concerned with the structure of the data objects in the DFD.

To support the specification of the behavioural aspects of applications

additional constructs for describing interactions in an application which cannot be

described using the traditional DFD constructs are introduced. Diagrams created

using these additional constructs are called Extended DFDs (ExtDFDs). In the

formal framework, the behaviour of an ExtDFD is characterized by all the possible

interactions that can take place amongst its components. Such interactions are

determined by the occurrences of events which may or may not have data associated

with them. The characterization is expressed as a formal specification derivable

from the ExtDFD. The derivation of the formal specification of behaviour from a

hierarchy of DFDs goes through the following steps:

1. Generating a flat representation of the hierarchy of DFDs. Such a

representation, called the primitive DFD, consists of the primitive processes,

and all the data stores and external entities in the hierarchy of DFDs.

2. Introducing notation for describing state dependent behaviour into the

primitive DFD, specifying the state dependent behaviour, and identifying

actions, and state and asynchronous data flows to and from the external

environment (EE). The result of this step is an ExtDFD.

3. Specifying the data types associated with the ExtDFD's data flows and data

stores.

4. Specifying the behaviour of the ExtDFD's primitive processes and data stores.

5. Deriving the specifications of behaviours of the ExtDFD's actions from the

specifications of behaviours of their constituent processes.

6. Deriving the specification of behaviour of the ExtDFD from the specifications

of behaviour of its actions, data stores, and asynchronous data flows, and the

specification of its state dependent behaviour. The resulting specification is

called the Behavioural Specification (BS).

An overview of these steps is given in the following sections.

2.3.1 Flattening hierarchies of DFDs

In deriving a formal specification of behaviour from a hierarchy of DFDs it

is sufficient to consider the interactions amongst its primitive processes and data

Chapter 2: Syntactic and Semantic Aspects of DFDs 55

stores, and their interactions with the EE. The structure consisting only of the

primitive processes, data stores and EE of a hierarchy of DFDs is called the

primitive DFD of the hierarchy, and can be viewed as a flat representation of the

hierarchy.

The data flow relationships between structures in a primitive DFD are not

simple, since data flows associated with structures in one part of the DFD may be

decomposed in other parts of it. The relationships between such data flows are

depicted by splitter and binder symbols, shown in Figure 2.2. A splitter takes an

incoming data flow, called its input, and generates a subset of its sub data flows,

called the outputs of the splitter. A binder takes a set of incoming data flows, called

its inputs, and combines them to form a single outgoing data flow, called its output.

The input of a splitter may emanate from a binder, data store, external entity, or a

process, while its outputs can be directed to processes and or binders. The inputs of

binders may emanate from splitters and/or processes while its output may be

directed towards processes, data stores, external entities, and/or splitters. Later it

will be shown how splitters and binders force their associated processes to

synchronize their receive and send events.

Splitter

_i_n - •c
outp

Binder

inl

. ' inp

Figure 2.2 Splitter and binder symbols

out

Example 2.4 shows the primitive DFD for the H_DFD for the library

application depicted in Example 2.1.

Chapter 2: Syntactic and Semantic Aspects of DFDs

Example 2.4
The rirnitive DFD for the library a lication

doleta messaqe

ete_book

out_
updated_
borr

out_
updatod
book Checkout-

l~-------~Update
chock

out
ti!':'!Q

return_
dot ail

update_
status

updated_
borr_
dot ail

rat_
updated_
book

rot_
borr_
list

Update­
Borr­
Record

borr_
fine
record

amount
paid

update_

info

updato_

id

out

book

borr_
detail

updatQ
timg

clock

vottod_
book

out_

votted_
borr

Vett­
Borrower

fine

book_id ------~

Calculate­
Fine

ch0ckout
info

staff

fim;is
rocord

out
borr

BORROWER

chock

out
timg

8

56

Henceforth, the term process will refer to a primitive process, and the term

DFD refers to the primitive DFD.

2.3.2 Describing the control aspects of applications

Situations in which the required behaviour of an application is dependent on

the current state, or mode of operation, of the application often occur in certain

types of applications, for example real-time applications. Additional notation is

Chapter 2: Syntactic and Semantic Aspects of DFDs 57

required in order to describe state dependent behaviour with DFDs. Two types of

constructs are used here in this respect: a state entity and control flows. The state

entity encapsulates information about the current state of the DFD affecting the

behaviour of the application, while control flows represent the events which cause

changes in the mode of operation. Syntactically, a state entity has the following

attributes: a name, a set of control flows called the inputs of the state entity, and

another set of control flows called the outputs of the state entity. Semantically, a

state entity can be viewed as an interpreter of events represented by its inputs,

which may generate other events, represented by its outputs, as a result of

interpretations. A state entity can affect the behaviour of processes via its outputs,

in three ways:

• It can enable processes. An enabled process is permitted to transform its inputs

to outputs when required to do so.

• It can disable processes. A disabled process is not allowed to transform its

inputs to outputs.

• It can initiate processes. A process that is initiated is enabled for only a single

transformation after which it disables itself.

Control flows are either directed from external entities or processes to a state

entity or to other processes, or are directed from a state entity to processes. A

control flow, like a data flow, may be directed towards more than one construct,

called the receivers of the control flow, but emanate only from a single construct,

called the generator of the control flow. Control flows differ from data flows in that

they represent events which are not associated with data. Control flows generated

by external entities and processes are called signals. Control flows from the state

entity to processes are associated with one of the following type of events,

reflecting the manner in which the state entity can affect the behaviour of processes.

• Enablers: events which enable processes.

• Disablers: events which disable processes.

• Initiators: events which initiate processes.

Enablers, disablers, and initiators are events extended in time, whose

occurrences last for the periods of time that the associated processes are enabled,

disabled, and initiated respectively. Control flows emanating from other than the

state entity can also be input to processes. Such control flows depict events that

affect only the behaviour of the process, and behave as initiators.

The constructs depicting control information are shown in Figure 2.3.

Chapter 2: Syntactic and Semantic Aspects of DFDs

Enabler

~

State Entity

0
Disabler Signal/Initiator

---:~

Figure 2.3 State entity and control flow symbols

58

The approach described above is similar to that used in YSM for describing

state dependent behaviour [War86, Woo88]. The state entity corresponds to the

control process in YSM, while control flows play similar roles in both approaches.

As in YSM, the state dependent behaviour of an application can be described by a

state diagram, associated with the state entity, defining the manner in which the

state entity interprets its inputs. The differences between YSM and the SL lie in

their use of the control extended DFDs. Here, such DFDs are associated with a

theoretical basis enabling the derivation of formal specifications characterizing the

class of behavioural models for the DFDs, while in YSM, the diagrams, together

with their associated state diagrams, are used as descriptions of an application's

behaviour. The control extended DFDs used in this thesis can be viewed as

informal, pictorial representations of the derived formal specifications. An example

of a control extended DFD is given in Example 2.5.

Example 2.5
A control-extended DFD for a cruise-control system

A cruise-control system, when active, maintains the speed of a vehicle at a constant

level. In the system, depicted below, the driver sends signals to the system which

activates and deactivates it. The system can only be activated when the engine is

running. When activated the system maintains the current speed of the vehicle, if it

is greater than 30 miles per hour, until the system is deactivated. A more detailed

version of this example is presented in Chapter 6.

Example 2.5 continued

Chapter 2: Syntactic and Semantic Aspects of DFDs

Example 2.5 (continued)
A control-extended DFD for a cruise-controls stem

engine_
on/otr

I driver I
\

on/ot.r
cruhe_ \

\
enoine i--------1>1

throt:.tJ.o
posJ.. t ion -

d_speod

curr_
sp•ed

CURRENT SPEED

puJ.so_rato

shaft

The state transition diagram for the state entity in the above diagram.

IDLE

engine_ engine_
on/off on/off

RUNNING engine_
on/off

cruise cruise
on/off on/off, disable

invoke Select- less 30 Cale

Desired- disable Speed,

Speed; Cale Maintain-

enable Cale- Speed, Speed

Speed, Maintain-

Maintain- Speed

Speed

CRUISING

59

Chapter 2: Syntactic and Semantic Aspects of DFDs 60

2.3.3 Semantic aspects of data flows and data stores

There are two aspects to the semantics associated with data flows and data

stores: static and dynamic. The static aspects are concerned with the specification

of the structure and data content of data flows and data stores, while the dynamic

aspects are concerned with the manner in which the data stores and data flows

interact with other DFD constructs. Below an overview of the static and dynamic

aspects of data flows and data stores is given.

Data flows

Data flows represent data interfaces between processes, or between a process

and a data store or external entity. The static aspects of a data flow concerns the

definition of the data type associated with the interface it represents, and the

structure of the interface, where the structure of an interface is determined by the

relationships between the data present in the interface. The data types and structures

associated with data flows are treated as abstract data types (ADTs) to avoid

premature consideration of representation issues. Instances of the types associated

with data flows (and data stores) will be called objects, or simply data where it does

not cause confusion.

Whether a data flow is associated with a structure or not is dependent on the

type of interface it provides, which in turn is determined by the dynamic aspects of

data flows. Dynamically, a data flow is associated with either a state variable or data

communication events. A state variable is an entity that is persistently present, that

is, it is always associated with a value representing its current state. An event, on

the other hand, is intermittently present, thus one speaks about an event occurrence.

An occurrence may be instantaneous or may be extended in time.

A data flow associated with a state variable is called a state flow. State flows

always have external entities as their generators. For example, the data flow

checkout time is associated with a state variable with a value representing the

current state of the external entity clock (i.e. the current time). State flows have

simple dynamic interpretations: state values are simply read by their receivers

whenever they are required to do so. Such flows are not associated with a structure

since only one value (representing the current state) is associated with it at any time.

A data communication event is an event which is associated with data. The

occurrence of a data communication event signifies the transmission of the data

associated with the event. A data flow associated with data communication events is

called a data event flow. A data event flow can either be synchronous or

asynchronous. A synchronous data event flow is one which requires its generator

and receivers to cooperate in order for data communication to take place. That is the

Chapter 2: Syntactic and Semantic Aspects of DFDs 61

generator cannot proceed after sending data on the data flow until the receiver has

acknowledged receipt of the data sent. When no such cooperation is required in

order to transmit data, the data event flow is said to be asynchronous. In such cases

the generators do not require acknowledgement from receivers in order to proceed

after sending data on the data flow. A synchronous data event flow is associated

with a single communication event, representing the synchronized generation and

receipt of data. Synchronized data event flows have no structure associated with

them since at most a single item of data (i.e. the data being transmitted) is associated

with the flow at any time.

The uncooperative interaction associated with an asynchronous data event

flow is obtained by associating with it a data structure and two communication

events: send and receive. The send event of an asynchronous data flow passes on a

single item of data from the data flow to all its receivers, while the receive event

accepts a single item of data from its generator and 'stores' it in the the data

structure awaiting transmission to its receivers. The data structures associated with

asynchronous flows are queues. The send event of an asynchronous flow thus

takes a data object from the top of its queue, while the receive event puts a data

value at the end of the queue. The symbols used for depicting state and data event

flows on a DFD are shown in Figure 2.4.

Asynchronous
Data Flow

:::EJ •

Synchronous
Data Flow

•
State Flow

Figure 2.4 Symbols for asynchronous, synchronous and state flows

Data stores

The static aspects of data stores concern the specification of the type of data

held in the data store, and the data store's structure, and are treated in the same way

as the static aspects of data flows in the formal framework.

Dynamically, data stores are associated with access events which observe

and/or modify the data store. The following are the classes of access events

associated with data stores:

• Read accesses, for example the access events associated with the data flows

copy#_list, out_book, return_detail of the data store BOOK. A read

access event returns either a data object (or a sub structure of a data object), or a

structure of (sub structures of) data objects in a data store. Some access schemes

may require that the access event be supplied with data which identify the

particular object in the data store to be accessed. The object returned by a read

Chapter 2: Syntactic and Semantic Aspects of DFDs 62

access is of the type associated with its data flow. For example, the read access

associated with copy# list returns a list of the copy# attributes of the data

objects in BOOK.

• Updates, for example the access events associated with the data flows

ret_updated_book, and out_updated_book of the data store BOOK.

An update changes the values of a subset of the attributes of a select set of data

objects in a data store. The objects to be updated are identified by data supplied

to the event.

• Additions, for example the access event associated with the data flow

new_ book_ rec of the data store BOOK. Additions simply add new objects to

a data store.

• Deletions, for example the access event associated with the data flow

deleted_ book of the data store BOOK. Deletions remove objects from a data

store. Some access schemes may require information on the the objects to be

deleted to be supplied to the event.

In the formal treatment, data stores are treated as ADTs on which concurrent

accesses can be carried out. Such a treatment of data stores provides flexibility in

the type of interactions possible between processes and data stores.

Example 2.6 gives type definitions for the data objects in the library

application. Such definitions can be viewed as an informal front to the formal

specifications characterizing the data objects. Base types are predefined classes of

indivisible objects, or list or set structures of such objects, while non-base types

are classes of composite objects based on the base types. The type definitions are

expressed in the form typename ::= typedefinition, where typename is a

name, and typedefinition is either another name or a structure of names

enclosed within <, >. Structures consist of mandatory types identified by names

separated by commas, and/or alternative sub structures separated by 'I'. Particular

instances of a type may also be included in a structure in place of type names, for

example, the message/flag types of the library application are defined in terms of

their instances which are text strings of the form "message", reflecting the

condition which the message/flag reports on. In the definitions of the non-base

types, base components are written in bold. The indivisible base types used for the

library application are:

number - the class of floating point numbers,

time - the class of time points,

character - the class of characters, and

message/flag types within the application.

Chapter 2: Syntactic and Semantic Aspects of DFDs 63

Aliases for base types, reflecting their use in the composite objects, are used

to aid readability.

Example 2.6
Type definitions for the librarv application

List structures are enclosed within[,], for example, [number] is a list of objects
of type number.

Non-base data types
bb status
book

book id
borr detail
borr fine record - -
borr_flag

borr_update_info
borrower

borrower book detail
borrower id
borrower indicator
checkout info
checkout_message
del borr
delete book
deleted borr
deleted book
ISBN
new book

new book rec
new borr

new borr rec
other borr
out book
out book id
out borr

out borr id - -
out_updated_book
out updated borr
ret-borr list - -
ret_updated_book
ret_updated_borr
return detail
return info
update_id
update_status

vetted book

<time returned I "Not returned">
<book-id, title, subject, author,
copy type, borrower indicator>
<ISBN, copy#> -
<[borrower_book_detail], number>
<<number, borrower_id> I "Not in file"
<"Not in file" I <out borr,
borrower id>> -
<borrower_id, number>
<borrower_id, borrower_name,
borrower addr, borrower type,
[borrower=book_detail], -
payment to date>
<book_id-; due_time, bb_status>
<[character]>
<"Available" I borrower id>
<book_id, borrower_id> -
<vetted_borr, vetted_book>
borrower id
book id

··= [borrower book_detail]
borrower indicator
<[integer]>
<ISBN, title, subject, author,
copy_type>
book
<borrower_id, borrower name,
borrower addr>
borrower
borrower id
<borrower_indicator, copy_type>
book id
<[borrower_book_detail],
borrower type, payment to date>
borrower id - -

· · = borrower indicator
[borrower book detail]
[borrower=book=detail]

· · = borrower indicator
[borrower_book_detail]
borrower indicator
book id
borrower id
<outstanding fine I excess_number
"Not in file" I "No fines" I "Cleared">

· · = <<book_id, copy_type> I "book not in
file"! "book already checked out"
I "not borrowable">

Example 2.6 continued

Chapter 2: Syntactic and Semantic Aspects of DFDs

Example 2.6 (continued)
Type definitions for the library application

vetted borr

vetted return book - -

Base data types
add_message
amount_paid
author
borrower addr
borrower name
borrower type
checkout-time
copy#
copy#_list
copy_type

<<"Fines over limit", number>\
"borrower not in file" I
<out_borr, borrower_id>>
<"Not in file" I "Already returned" I
<book_id, borrower id>>

<"OK" I "Borrower already in file">
number
[character]
[character]
[character]

· ·= <"undergrad" I postgrad" I "staff">
time
integer
[integer]

· ·= <"book" I "reference" I "periodical">

64

del borr mess
delete_message

· ·= <"OK" I "Not in file" I "Has books out">
<"delete-OK"\ "Not in file" I

due time
excess number
fine
fines record
new copy#
outstanding_fine
paidup_amount
payment_to_date
return_message

return time
subject
time returned
title
update_time
updated_borr_detail

"Not available">
time
number
number
[number]
integer
number
number
number
<"Already in"
"Ok return">
time
[character]
time
[character]
time
number

I "Not in file" I

2.3.4 Semantic aspects of processes

Unlike the usual logical approaches to interpreting process behaviour in DFDs

(eg. see [War86, Woo88, Hat88]), the transformation from inputs to outputs is not

assumed, within the formal framework, to be instantaneous. Such a logical view

may be helpful as a first approximation of behaviour, but is of little use to further

development since no operational view can be consistent with it [KK88]. The

behaviour of a process is characterized by its class of invocations (or p­

invocations), where an invocation represents a particular transformation of single

instances of the types associated with some of the inputs of the process, to single

instances of the types associated with some of its outputs. Formally, an invocation

is a labeled sequence of states, where the labels represent the effects of events

Chapter 2: Syntactic and Semantic Aspects of DFDs 65

occurring within the transformation represented by the invocation. Such a labeled

sequence can be depicted as follows: s0-10-sl-ll-s2- ... -sn-ln-sn+l, where si

(lg:s:n) is a state, and li (lg:S:n) is its associated label. The states of an invocation

reflect the observable effects of events thus far in an invocation. Such states are said

to be observable. An event represented by a label in an invocation causes a change

from its associated state in the sequence to the next state in the sequence. The first

state of a process invocation is called its idle state, and represents the situation

where no inputs of the process are being transformed into outputs. The event which

causes a change from an idle state to another state is called an invocation event of

the process, and a process is said to be invoked when it occurs.

Operational models of behaviour can be associated with DFD processes, since

transformations are interpreted as sequences of observable states rather than

instantaneous conversions of inputs to outputs. The class of operational models

associated with a DFD process is abstractly characterized by an algebraic

specification of the labeled state transitions that can take place in its invocations.

The class of invocations characterizing a process's behaviour can be pictorially

represented by a state transition tree (STT), with classes of states as nodes and

classes of labels as edges. Example 2.7 shows the STT for the process

CheckBook. Conditions under which certain transitions can take place can be

included in STTs by associating such conditions, expressed in an appropriate

language, with the respective edges. STTs can thus be made to show all

information necessary for characterizing the invocation class of a process.

Example 2.7
State transition tree for the process CheckBook

A state of CheckBook is of the form <Book_id, Status, Vett_Book>,

where Book_ id is either an object communicated via the data flow

out_book_id, or a null object, Null 1, representing the situation where no such

communication has occurred, Status is either an object communicated via the data

flow out status, or a null object, Nu 112, representing the situation where no

such communication has occurred, and Vett_Book is either an object to be sent

for communication via the data flow vetted_ book, or a null value, Nu 113,

representing the situation where no object is available for communication on

vetted book. <Null 1, Nu 112, Null3> is thus the idle state of the process.

Example 2.7 continued

Chapter 2: Syntactic and Semantic Aspects of DFDs 66

Example 2. 7 (continued)
State transition tree for the rocess CheckBook

The classes of event labels associated with CheckBook are the following:

Receive (bid) - representing a receive communication event which receives a

book_ id object, bid, from the data flow out_ book_ id;

Read (bid, val) - representing a read event to the data store BOOK, which

accesses a book object identified by a a book id object bid, and retrieves the

out_book object, val, associated with the book object.

Er read (bid) - representing an unsuccessful read access to BOOK. This may

occur, for example, when the book object identified by bid is not in BOOK.

Send (vbook) - representing a send communication event, which sends a

vetted_ book object, vbook, on the data flow vetted_ book. The function

vet t returns a vetted_ book object given a book_ id object and an out_ book

object. This function checks whether the book can be borrowed.

The STT for CheckBook is shown below:

<Nulll, Null2, Null3>

Receive (bid)

<bid, Null2, Null3>

Read (bid,

<bid, val, Null3> <bid, ERR, Null3>

Send(vett(bid,val)) Send("Notinfile")

<bid, val, vett(bid,val)> <bid, val, "Notinfile">

The above STT can be intuitively interpreted as follows: A particular transformation

of CheckBook would first receive data from the data flow out_ book_ id,

represented by the occurrence of the receive event (the invocation event) whose

effect is labeled by Receive (bid) , and then attempt a read access to the data

store BOOK. The effect of a successful read attempt is represented by a label of the

form Read (bid, val), while an unsuccessful read attempt is represented by the

label Erread (bid). The next externally observable event is the send event which

sends data on the data flow vetted_ book, the value of which is dependent on

whether a successful or unsuccessful read attem twas made.

Example 2.7 continued

Chapter 2: Syntactic and Semantic Aspects of DFDs

Example 2.7 (continued)
State transition tree for the process CheckBook

An example of a Che ckBook invocation is the labeled sequence: <Nu 111,

Null2, Null3>-Receive(bid)-<bid, Null2, Null3>­

Erread(bid)-<bid, ERR, Null3>-Send("Notinfile")-<bid,

val, "Notinfile">.

67

The quasi-formal specifications associated with processes in the SA approach

are replaced by formal specifications of behaviour created using the techniques of

the formal framework. The formal specifications are algebraic characterizations of

all the possible state transitions that can occur as a result of the occurrences of

events.

2.3.5 Describing the interactions in a DFD

A DFD is interpreted as a system of processes and data stores interacting with

an external environment. The environment interacts with the system in an

uncooperative manner, thus allowing the system and the environment to proceed at

different speeds, without the need to synchronize for communication. Such

interaction often occurs in real-time applications and is sometimes a desirable

feature of some non real-time applications [KK88]. Uncooperative interaction

between the environment and the application is represented by asynchronous data

flows or state flows in extended DFDs, thus data flows between external entities

and processes are either state flows or asynchronous data flows.

In describing the interactions in the system of processes and data stores of a

DFD the processes of the DFD are partitioned into actions, allowing a modular

description of interactions. An action is a system of related processes in which

certain processes are designated as invoker, and in which each process which is not

an invoker:

• depends only on the other processes in the action for its data inputs; and

• is not associated with control inputs.

The invokers of an action are the processes that must be invoked before any

of the other processes in the action can be invoked. The invocation events of

invokers are synchronized with each other, thus an action can be thought of as

being invoked by a single synchronization event. Only the invokers of a process

can be associated with input control flows. Since the invocation events of the

invokers of an action are synchronized, an initiator associated with a particular

Chapter 2: Syntactic and Semantic Aspects of DFDs 68

invoker of an action must also be associated with all the invokers of the action. An

action whose invokers have disablers as inputs cannot be invoked when at least one

of its invokers is disabled, in which case the action itself is said to be disabled.

Similarly, an action whose invokers have enablers as inputs can only be invoked

when all of its invokers are enabled, in which case the action itself is said to be

enabled.

The terminators of an action are the processes in the action which have

outputs to external entities, data stores, and/or invokers of other actions. Once

invoked an action transforms the data inputs of its invokers to data outputs on its

terminators. An action can thus be viewed as a high level process, where the inputs

of its invokers are referred to as the inputs of the action, and the outputs of the

terminators directed towards data stores, external entities and other actions are

referred to as the outputs of the action, and each disabler to its invokers is referred

to as an action disabler, while an enabler representing the conjunction of all the

enablers associated with its invokers is called the enabler of the action.

In Figure 2.5, a DFD is partitioned into the actions Al, A2 and A3. Al and

A2 together cannot form an action since the process p2 has an input from p4, which

is not in Al or A2.

ee3

Figure 2.5 Actions in a DFD

Actions are also associated with a termination event which causes all its

constituent processes to revert to the idle state. Such an event occurs when an action

has transformed its inputs to outputs. An action is said to be terminated, or in an

idle state, when all its processes are in the idle state. Notice that the behavioural

semantics associated with processes implies that an action, once invoked, cannot be

invoked again until it has terminated.

The behaviour of an invoked action is determined by the behaviour of its

processes. Within an action, all data flows which are not also inputs to or outputs

from the action, are synchronous. Intuitively, actions are system? of processes

Chapter 2: Syntactic and Semantic Aspects of DFDs 69

which cooperate, via synchronization, to transform single instances of its inputs to

outputs.

Splitters and binders occur only in actions, and force their associated

processes to synchronize. The processes associated with the outputs of a splitter are

the processes to which the outgoing data flows are directed to, while the processes

associated with the inputs of a binder are the processes from which the incoming

data flows emanate. The processes associated with the outputs of a splitter, and the

processes associated with the inputs of a binder, are forced to synchronize the

receipt and generation of data on the respective data flows. Figure 2.6 illustrates the

different situations in which binders and splitters may occur. In Figure 2.6(a) a

binder takes p inputs, all of which must be synchronous data flows, from

processes, and generates a synchronous data flow, called its output, directed

towards other processes and/or splitters. This situation is interpreted as a

synchronization of the send events of the processes associated with the inputs of the

binder and the receive events of the processes associated with the output of the

binder, either directly or indirectly via splitters. In Figure 2.6(b) the output of the

binder is an asynchronous data flow. This situation is interpreted as a

synchronization of the send events of the processes associated with the inputs of the

binder, and the receive event of the asynchronous data flow. Figure 2.6(c) shows a

splitter with p outputs directed towards processes, and an incoming synchronous

data flow, called its input, emanating from a process or a binder. This situation is

interpreted as a synchronization of the send event of the process from which the

data flow emanates, or in the case that the input emanates from a binder, the send

events of the processes associated with the inputs of the binder, and the receive

events of the processes associated with the outputs of the splitter. In Figure 2.6(d),

the input to the splitter is an asynchronous data flow. This situation is interpreted as

a synchronization of the send event of the asynchronous data flow and the receive

event of the processes associated with the outputs of the splitter.

inl inl

+

'

?~ ··-:.

inp

ou: •
inp

(a) (b)

in

outl

(c)
outp
~

(d) outp

Figure 2.6 Communication situations involving binders and splitters

Chapter 2: Syntactic and Semantic Aspects of DFDs 70

The specification of behaviour of an action is derived from the specifications

of its processes. An action is viewed as a system of synchronously interacting

processes, thus, provided the specification of the processes are given, together with

specifications of the data transmitted by the processes, the action's specification can

be generated.

A class of labeled sequences of states can be associated with actions, in the

same way they can be associated with processes. Such sequences, called a­

invocations, represent the sequence of states an action passes through when

transforming a particular data on a subset of its inputs to data on some of its

outputs. The states of an action is a tuple of states of its DFD processes, while the

events represented by the labels of an a-invocation are occurrences of action events

arising from the interactions of its DFD processes.

All communication between actions are uncooperative (represented by

asynchronous data flows), while communication between actions and data stores

are always cooperative (represented by synchronous data flows). The output flows

of a data store may be associated with splitters, representing the situation where the

decomposed parts of the data flows are needed in different parts of a action. In such

a situation, the read events of the processes associated with the outputs of the

splitter are synchronized. Similarly an input to a data store may be the output of a

binder, in which case the write events of the processes associated with the inputs of

the binder must be synchronized. These situations are illustrated in Figure 2.7.

outl
inl

in +
%
❖X

out

outp inp

ds ds

Figure 2. 7 Relationships between the extractors and data stores, and between

binders and data stores

Actions interact with asynchronous data flows in a synchronized manner,

where the send event of an action which is a generator of the asynchronous data

flow is synchronized with the receive event of the asynchronous data flow, while

the receive event of an action which is a receiver of an asynchronous data flow is

synchronized with the send event of the asynchronous data flow.

Chapter 2: Syntactic and Semantic Aspects of DFDs 71

The DFD resulting from the identification of actions, synchronous and

asynchronous data flows, and state flows, in a possibly control-extended DFD is

called an Extended DFD (ExtDFD). An ExtDFD is interpreted as a system of

interacting actions. The view of actions as high-level processes permits the

technique used for specifying the behaviour of processes to be used to specify the

behaviour of actions. The specification of an ExtDFD's behaviour is derived from

the specifications of its actions and the specifications of the dynamic and static

aspects of its data stores and asynchronous data flows, and from a specification of

the effects of events on the mode of operation (depicted by control flows directed

towards the state entity).

The BS characterizes the behaviour of ExtDFDs in the same way as processes

and actions are characterized. The state of an ExtDFD consists of the states of its

actions and data stores, as well as a flag indicating the current mode of operation the

ExtDFD is in (this can be omitted when the ExtDFD has only one mode). The set of

events associated with an ExtDFD consists of action events, and the events arising

from the interaction amongst actions, data stores and external entities, and events

associated with control flows.

2.4 Summary

This chapter presented, in an informal setting, the syntactic and semantic

aspects of DFDs on which the formal framework developed in this thesis is

founded. The syntactic aspects of DFDs are concerned with the building of correct

syntactic structures, and hierarchies of such structures, and are encapsulated by

abstract objects. The part of the formal framework concerned with formalizing the

syntactic aspects of DFDs is called the Picture Level (PL), and is described in

Chapter 4.

The semantic aspects concern the building of a specification of behaviour for

suitably extended DFDs called ExtDFDs. Dynamically, an ExtDFD is a system of

interacting processes with an uncooperative interface to its environment. The formal

specification of behaviour for an ExtDFD characterizes what the ExtDFD is allowed

to do in terms of the possible interactions amongst its components. The building of

such a specification requires that the syntactic structures are associated with

dynamic, as well as static interpretations. The part of the formal framework which

provides support for specifying the semantic aspects of DFDs is called the

Specification Level (SL), and is described in Chapter 5.

CHAPTER 3

Positive-Negative Relational
Specifications: An Algebraic Approach

to Specification

3.0 Introduction
Specification techniques based on data abstraction have been developed by

many researchers (see, for example [GTW78, GHM78, LZ75, LZ77]), and the use

of such techniques for specifying applications has shown promising results. The

data abstraction approach to specifying applications entails viewing applications as

consisting of groups of related functions, acting upon particular classes of objects,

with the constraint that the behaviour of the objects can only be observed through

application of the functions [LZ7 5].

Algebraic specification techniques are a class of techniques based on the data

abstraction approach, which have firm mathematical foundations based on concepts

from universal algebra and mathematical logic [GTW78, WB82]. Such techniques

provide implicit definitions of classes of objects and their functions in terms of

algebraic relations. The resulting (algebraic) specifications, are syntactic entities,

consisting of a declaration part, called the signature, and a set of relations, called

laws, between terms formed using the symbols declared in the signature. An

algebraic specification is associated with a model semantics in the form of a class of

algebras. The mathematical foundations for algebraic specification techniques

enables the generated specifications to be used in the investigation of formal

properties of the objects they characterize. Also, some researchers provide formal

criteria for establishing whether an algebraic specification implements another.

Considerable research has also gone into providing an operational semantics

for algebraic specifications based on term rewriting systems [Hue80, Kap84,

Kap87, Jou87]. Under suitable conditions, such operational semantics provide

effective deduction systems, which can be used to investigate properties of the

specifications in a computational manner. The conditions under which decidable

deduction systems can be obtained can place serious restrictions on the form of

laws which, inevitably, affects their expressiveness. Research in this area has

progressed from algebraic specifications consisting only of unconditional equational

laws (see, for example [Hue80, Der87, HO80]) to specifications consisting of

conditional equational laws (see for example [Kap84, Jou87, Dro84, RZ84, BK82,

CTRS87]). Conditional laws are more expressive than their unconditional

72

Chapter 3: An Algebraic Approach to Specification 73

counterparts, but are still not expressive enough to specify some objects 'naturally'.

Recent research, in this area, which introduce inequalities into the condition parts of

conditional laws, look promising in this respect [Kap87, MS87].

Current algebraic specification techniques are well supported by firm

mathematical and operational foundations, but no single such technique provides

the expressive power needed to support for range of specifications required by the

formal framework developed in this thesis. In this chapter a specialized algebraic

technique, together with its mathematical foundations, is introduced. The technique

unifies and extends techniques based on partial functions [WB82], relations

[ARW86], and conditional term rewriting with inequalities [MS87]. In what

follows, concepts and notations from the works of Goguen et al [GTW78], and

Wirsing and Broy [WB82] are freely used.

3.1 Positive-Negative Relational Specifications (RSs)
A positive-negative relational specification, or simply called a relational

specification (RS), is a partial conditional algebraic specification with relations. In

this section, the concepts and notation used for building RSs are discussed. In

particular, it is shown how the notions of hierarchy and schema help reduce the

complexity in building and understanding large RSs.

3.1.1 Specifications and algebras

A RS consists of a signature and a set of laws. The signature is the

declaration part of the RS while the laws are relations between terms formed by the

symbols declared in the signature. The formal definition of a RS signature given in

Defintion 3.1, utilizes the following notion of an indexed set: a S-indexed set, A, is

a family of component sets As for each index s in S.

Function symbols can be partitioned into two sets:

• The set of function symbols called constructors, C, representing functions which

create new objects of a sort.

• The set of all other function symbols, called non-constructors.

The signature of a RS is associated with a class of algebraic models, called 1:­
RS algebras, or simply Ii-algebras. A Ii-algebra, defined in Defintion 3.2,

provides representations for the objects of each sort, and interpretations for the

function and relation symbols in the signature.

Chapter 3: An Algebraic Approach to Specification

Definition 3.1
RS Sienature

A RS signature I= <S, F, R> consists of:

• a non-empty set S of sorts (S* denotes the set of all finite strings from S,

including the empty string denoted by A);

74

• a non-empty S*x S indexed set, F = {Fw,s I w E S*, s E S}, where Fw,s is the

set of function symbols with arity w, a string made up of the domain sorts of the

functions, and sorts, the sort of the object returned by the functions (a function

symbol fin the set Fw,s where w = s1 ... sn, will be written as f: s1,. .. ,sn • s); and

• a non-empty S*-indexed set R = {Rw I w E S*}, where Rw is a set ofrelation

symbols of sort w (a relation symbol r in Rw, where w = s1 ... sn, will be written

as r: S1 ... ,Sn).
'

Definition 3.2
I-RS Algebra

For a RS signature I= <S, F, R>, an algebra with relations, A= <{As I s E S},

Ap, AR>, is called a I',-RS algebra if it consists of:

• a S-indexed set, {As Is E S}, called the carrier sets;

• a S* x S-indexed family of functions Ap = { Aw,s : Fw,s • [Aw 1 • As] I w E S*,

s E S}, which consists of functions mapping function symbols in F to partial

functions, where [Aw • As] denotes the set of all partial functions from Aw to

As; and

• an S*-indexed family of functions AR= {ARw: Rw • Atupw I w E S*}, which

consists of functions mapping the relation symbols in R to elements in Atupw,

where Atupw is the set of all sets whose elements are Aw tuples.

The interpretation of a function or relation symbol, t, in an algebra, A, is

denoted by tA. Relation symbols are interpreted as sets of tuples, where each tuple

of the set signifies that the relation represented by the symbol holds amongst the

objects in the tuple.

Example 3.1 gives an example of a signature and an algebra for the signature.

1Aw, where W=(sL.sn) ES*, represents the cartesian product A51x ... x Asn•

Chapter 3: An Algebraic Approach to Specification

L(Natnum) =
Signature

sorts nat
constructors

0: • nat

Example 3.1
A signature for natural numbers

succ: nat • nat
auxiliary functions

+ : nat, nat • nat
rel.-ations

<: nat, nat

An algebra, A, for I,(Natnum) can be defined where Anat is the set of natural
numbers, + is mapped to the addition function on natural numbers, and < is
mapped to the relation "is less than" defined on natural numbers.

75

Every signature, I,, defines a set of syntactically correct expressions, called

welljormed terms, built using the function and relation symbols of I,. Such terms

can be partitioned into two sets: a set of function terms, called F-terms, and a set of

relation terms, called R-terms.

Definition 3.3
Well-formed F-terms

For a signature I,= <S, F, R>, and an S-sorted set {Xs Is e S} of symbols called

variables, the set of welljormedfunction terms, called F-terms, of sorts in S with

variables is defined as the least set, T(F, X)s, having the following properties:

• all variables x in Xs are F-terms of sorts,

• all constant symbols, f : • s (i.e. function symbols with arity A, and sort s), in

F are F-terms of sort s,

• for all function symbols f: s1, ... , Sn • sin F (n >0) and all F-terms t1, ... ,tn of

sorts s1 ... , Sn respectively, f(t1, ... ,tn) is a F-term of sort s.

A ground F-term is a F-term containing no variables (i.e. elements in X). The

set of ground F-terms of sorts is denoted by T(F)s. A constructor term is a term

which consists only of constructor symbols and variables. Thus a constructor term

is of the form c(c1 ... ,cn) where c is a constructor and c1 ... , Cn are constructor , '
terms. The set of all ground constructor terms of sort s is denoted by Tc(F)s-

Chapter 3: An Algebraic Approach to Specification

Definition 3.4
Well-formed R-terms

Given a signature I,= <S,F,R>, the set of well-formed relation terms, called R­
terms , of type w E S* , with free variables from an S-sorted set {Xs I s ES) of

76

symbols called variables, is defined as the least set, T(R,X)w, having the following

property:

• for all relation symbols r : s1, ... ,sn in R (n>0), and all F-terms t1,. .. ,tn of sorts

s1, ... ,sn respectively, r(t1. ... ,tn) is a R-term of type w = s1 ... sn,

A ground relational term is a R-term containing no variables. The set of

ground R-terms of type w E S*, is denoted by T(R)w. The union of the set of F-

and R-terms will be denoted by T(I,,X), and the terms are collectively called 1:­
terms. The set of ground I,-terms is denoted by T(I,).

Example 3.2
Examples of F- and R-terms

Examples of F-terms from the signature in Example 3.1 are succ(succ(0)),

succ(x)+succ(succ(succ(x))), where succ(succ(0)) is a ground constructor term.

Examples of R-terms from the same signature are succ(x)+succ(succ(x))<succ(0)

and succ(0)<0, where succ(0)<0 is a ground relation term.

The 'evaluation' of a I,-term in a I,-algebra is intuitively captured by the

notion of an interpretation. For a I,-algebra, A = < { As I s E S), Ap, AR>, a S­

indexed set of variables { Xs I s E S) , and a S-indexed family of partial functions V

= {vs I Vs: Xs ~ As), an interpretation with respect to V, of a I,-term tin A,

denoted by V it), is defined as follows :

(1) VA(Xs) = Vs(Xs) for Xs E Xs.

(2) VA(f(t1, ... ,tn)) = fA(VA(t1), ... , VA(tn)) for f E F, provided that every VA(ti),

1:s;i:s;n, is defined and the n-tuple (VA(t1) ... V A(tn)) is in the domain of fA.

Otherwise Vif(tl, ... , tn)) is undefined.

(3) VA(r(t1, .. ,,tn)) = (VA(t1) ... VA(tn)) forr E Rel (the set of relation symbols in

I,), provided that every VA(ti), 1:s;i:s;n, is defined, and (VA(t1) ... VA(tn)) E rA.

Otherwise V A(r(t1, .. ,,tn)) is undefined.

The interpretation of a ground term t' in an algebra A does not depend on V,

and its unique interpretation is denoted by t'A-

Every I,-algebra, A, contains a least sub algebra A' which is finitely

generated by the constants in I,. If A does not contain a proper sub algebra (i.e. A

= A') then A is called afinitely generated algebra [WB82]. Ground terms define a

Chapter 3: An Algebraic Approach to Specification 77

special finitely generated I.-algebra called the };-term algebra, denoted by T:1:, with

the carrier sets T(F)5 for s E S, functions f: T(F)s1, ... , T(F)sn • T(F)s mapping

(t1, ... ,tn) to the term f(t1, .. ,,tn), for f E F, and a set {r(t1, .. ,,tn) I r(t1, .. ,,tn) E

T(R)w} for each relation symbol, r E R with type w = s1, .. ,,sn,

An interpretation, VA• from T(I., X) into a I,-algebra A induces a congruence

on the F-terms, =A, called the strong equality of A, defined as follows:

t =At' if and only if tA = t'A

that is the F-terms t and t' are congruent with respect to the algebra A if and only if

either both F-terms are undefined in A or both F-terms are defined in A and their

interpretations are equal.

The definedness of I.-terms in an algebra A is determined by associating a

predicate, called an ok-predicate, with each sort in I., defined over the terms of the

sort as follows:

DA(t) = true if VA(t) is defined, and

D A(t) = false if V A(t) is not defined, where tis a term of sort s, and D is the ok­

predicate associated with the sort.

Properties of the objects declared in a I.-signature are implicitly expressed by

statements, called laws, in a first-order language of I.-terms. Such laws

characterize the behaviour of the functions and relations on the objects by

establishing relationships between them. Well-formed I.-laws are defined in

Definition 3.5.

Definition 3.5
Well-formed positive-negative conditional I.-laws

A well-formed positive-negative conditional I:-law has the following form :

• (/\i=l...j okciCtD) /\ (/\i=l ... l (Okai(Ui) /\ okai(vi) /\ Ui = vi)) /\ (/\i=l...n (okbiCu\) /\

okbi(v'i) /\ u\ :;t: v'i)) /\ (/\i=1...o rdi(w)) /\ (/\i=l...p ~r'eiCw')) • C,

where ti, Ui, Vi, u\, v'i are F-terms in T(I.,X), okci, okai and okbi are ok-predicates,

ai, bi, ci, di, and ei are sorts, and rdi(w)and r'eiCw') are R-terms in T(I,,X). C is

either of the form ok(t), z, or x = y, where z is a R-term and t, x, and y are F-terms

in T(I,,X). C is called the consequence, while the expression to the left of the

implication symbol, •, is called the antecedent of the law. A literal of the form ~r,

where r is a R-term, is called a negated relation (n-relation).

A closed law is a formula having no free variables, while a ground law is one

which has no variables.

Well-formed I,-laws are assumed to be universally quantified on defined terms

only.

Chapter 3: An Algebraic Approach to Specification 78

A Ii-algebra, A, satisfies a I-law, <; of the form given in Definition 3.5,

denoted by A I=<;, if and only if for all interpretations VA:

• okciA(ti), i = 1 to j, and

• okaiACuD /\ okaiA(vi) /\ Ui =A Vi, i = 1 to 1, and

• okbiACu'i) /\ okbiA(v'i) /\ u'i :f::A v'i , i = 1 ton (i.e. u'i and v'i do not have equal

interpretations), and

• rdi(w) E rdiA, i = 1 too, and

• r'eiCw') e r'eiA, i = 1 to p,

implies that okA(t), or x =A y, or, for z = r(t), z e rA, depending on the form of the

consequence.

A formal definition of the structure of a RS can now be given.

Definition 3.6
Positive-negative relational specification (RS)

A positive-negative relational specification (RS) PR = <Ii+OK, E> consists of a

signature, I,+OK, where OK is a set of ok-predicate symbols for each sort in I,,

and a set E of well-formed I-laws.

The class of algebras satisfying the laws of a RS is denoted by Alg ;E.E. In

presenting the laws of an RS a comma is used in place of the symbol/\, and the

following short form is used:

• A law u • v, where ti are the free variables occurring in u • v, is the short

form for (J\i=l. .. j okciCti)) /\ u • v, for example a law f(xl, x2) = g(x3) is the

short form for okl(xl) /\ ok2(x2) /\ ok3(x3) • f(xl, x2) = g(x3), where oki is

the ok-predicate associated with the sort of xi, 1:s;i::;;3.

RS laws are derived and presented in a modular fashion, with each non­

constructor and relation symbol, of the RS being associated with a unique set of

laws, called its characterizing set, which characterizes the function or relation.

Characterizing sets are presented so that they are distinguishable: the characterizing

set for a function symbol, f, consists of all laws in which f appears in the

consequence as the outermost symbol on the left hand side of the equality, while the

characterizing set of a relation symbol, r, consists of all the laws in which r appears

as the outermost symbol of the consequence. Example 3.3 has examples of

characterizing sets.

The defined objects of a sort are characterized in an RS by the set of laws

whose consequences have ok-predicate symbols of the sort as the outermost

symbols (the characterizing set of the ok-predicate).

Chapter 3: An Algebraic Approach to Specification

Example 3.3
An RS characterizing natural numbers

Natnum =
Signature

sorts nat
constructors

0: • nat
succ: nat • nat

auxiliary functions
+: nat, nat • nat

ck-predicates
oknat: nat

relations
< : nat, nat

Laws °9 x, xl, x2:nat
Characterizing set for oknat
1. oknat(O)
2. oknat(succ(x))
Characterizing set for+
3. x+O = x
4. xl+succ(x2) = succ(xl+x2)
Characterizing set for<
5. O<succ(x) = true
6. xl<x2 =true • succ(xl)<succ(x2) true

79

The modular approach for presenting laws is not enough to control the

complexity in large RSs. Two syntactic concepts which have proved useful in this

respect are hierarchy [WB82] and schemas. The aim is to control complexity by

permitting complex specifications to be built up from simpler and/or generic

specifications.

3.1.2 Hierarchical RSs

A hierarchical RS provides a leveled view of a specification, where each

lower level contains RSs that are simpler than those at the higher levels. Thus an

understanding of the RS is based on an understanding of its simpler components.

Hierarchical RSs are defined in Defintion 3.7.

Note that every primitive term is of primitive sort but a term of primitive sort

is not necessarily primitive. A hierarchical RS, HS, based on primitive hierarchical

RSs, HSI, ... , HSn, is presented in the following manner: HS= HSI+ ... + HSn

+ Signature Sig Laws E, where Sig is the signature declaring the non-primitive

sorts and symbols, and E is a set of laws.

Chapter 3: An Algebraic Approach to Specification

Definition 3. 7
Hierarchical RSs

80

A hierarchical RS HS is a triple <I, E, {P1, ... ,Pn}>, where the hierarchical RS, Pi

(1:'.5;i:'.5;n), with signature Lpi and a set of laws Er,i, is contained in HS, i.e. Lpi is a

subset of I,, and Epi is a subset of E. Pi is called a primitive RS of HS, and HS is

said to be based on the RSs in {P1, ... ,Pn}. A ground term t is called primitive if t

is built solely from symbols declared in the primitive RSs (primitive symbols). A F­

term t' is said to be of primitive sort if t' is of sort s and s is a sort declared in a

primitive RS (primitive sort).

In order to preserve the algebraic interpretations of primitive RSs within the

context of hierarchical RSs the notion of hierarchy-constraints is used. An algebra

satisfies the hierarchy-constraints if the primitive carrier sets are built only by

interpretations on the primitive ground terms [WB82]. Intuitively, this means that

non-primitive constructors cannot create new objects of a primitive sort.

Definition 3.8
Reducts and hierarchy constraints

Let A be a I,-RS algebra, and let I,' be a sub signature of I, (i.e. the set of sorts

and symbols of I,' is a subset of the set of sorts and symbols of I,). The J;' reduct

of A, denoted by AII,', is the I,'-algebra whose carriers, functions and relations are

those of A named in I,'. The I,'-sub algebra of A generated by the relation, and

function symbols in I,', is denoted by <A>2;. An algebra A satisfies the hierarchy

constraints with respect to I;' if and only if AII,' = <A>:r:, that is the I,'-reduct of

A is a finitely generated algebra.

The above can be extended to hierarchy-constraints with respect to a set of

signatures by considering all hierarchy constraints with respect to the signatures in

the set. For any hierarchical RS <I, E, {P1, ... ,Pn}>, the class of all finitely­

generated I-algebras which satisfy the hierarchy constraints with respect to { Lpi I

l:'.5;i:'.5;n}, and the laws of E, is denoted by HAlg(I,, E, SP), where SP =
{ P1, ... ,P n}. In Section 3.4 it is shown that a sufficient completeness condition,

derived from an operational interpretation of RSs, ensures the existence of such

algebras.

The hierarchical and modular approach to presenting RS functions determines

a relationship on the function symbols, <h, defined as follows:

Chapter 3: An Algebraic Approach to Specification 81

Definition 3.9
The relation <h on function symbols

For a hierarchical RS, <I.. E, SP>,f <hg , where f, g E I, if and only if:

• f is a primitive function symbol and g is a non-primitive function symbol; or

• f is a constructor and g is a non-constructor at the same level as f; or

• f and g are function symbols at the same level and f appears as the outermost

symbol of a sub term in the characterizing set of g, and g does not appear as the

outermost symbol of any sub term in the characterizing set off.

The above relation is used as part of a syntactic check on the sufficient

completeness property mentioned above, given later in this chapter.

Example 3.4
Characterizing the natural numbers by a hierarchical RS

Setnum = Boolean + Natnum +
Signature

sorts setnum
constructors

0 : • setnum
--- constant symbol for an empty set

insert : nat, setnum • setnum
--- symbol for the function which adds a natural number to a
set -

auxiliary functions
isempty : setnum • boolean

symbol for the function which returns the value true if
and only if the set is empty

isin : nat, setnum • boolean
symbol for the function which returns the value true if

and onlv if the natural number is in the set ---
Example 3.4 continued

Chapter 3: An Algebraic Approach to Specification

Example 3.4 (continued)
Characterizing the natural numbers by a hierarchical RS

issubset : setnum, setnum • boolean

82

--- symbol for the function which returns the value true if
and only if the leftmost set of the argument is a subset of
the rightmost set ---

-int-, + : setnum, setnum • set
--- int is the symbol for the function which returns set
which is an intersection of the two sets, and+ is the symbol
for the function which returns the union of the two sets ---

ck-predicate
okset : setnum

Laws Vn,nl,n2:nat; s,sl,s2:setnum
Laws characterizing isempty
Sl isempty(0) = true
S2 isempty(insert(n,s)) = false
Laws characterizing isin
S3 nl = n2 =>isin(nl,insert(n2, s)) = true
S4 nl c.c n2=>isin(nl,insert(n2,s)) = isin(nl,s)
S5 isin(n,0) = false
Laws characterizing issubset
S6 issubset(0,s) = true
S7 isin (n, s2) = true=>

issubset(insert(n,sl),s2) = issubset(sl,s2)
S8 isin(n,s2) = false=>issubset(insert(n,sl),s2) = false
Laws characterizing+
S9 insert (n, sl) +s2 = insert (n, (sl+s2))
S1O 0+s = s
Laws characterizing int
S11 0-int-s = 0
S12 isin(n,s2) =true=>

insert(n,sl)-int-s2 = insert(n, sl-int-s2)
S13 isin(n,s2) = false=>insert(n,sl)-int-s2 = sl-int-s2
Laws characterizing okset
S14 okset (0)
S15 isin (n, s) = false => okset (insert (n, s))

The non-primitive sort is setnum, representing sets of natural numbers, and the
primitive sorts are the sorts of Boolean and Natnum (i.e. nat for Natnum, and
boolean for Boolean). The symbols isempty, isin, and is subset are
non-primitive symbols of primitive sort boolean.Characterizing sets are preceded
by headings (eg. the characterizing set for - int - is { s 11, s 12, s 13}). The
following are examples of relations in <h: succ<hf and <<hf, where f is a non­
primitive symbol, isin<hissubset, isin<hisempty, and isin<h-int-.
The following points about the above RS are made briefly here, but will be
extended upon in later sections of this chapter.
• The left hand side of the consequences of each law are of the form f(cl, ... , en)

where ci (1~:s;n) is a constructor term. The form of the laws is in keeping with
the notion of constructors as the only creators of new objects of the sort ,
implying that all terms of a sort should be expressible as a constructor term. This
notion is formalized when the model and operational semantics for RSs are
discussed.

• Note that the RS does not contain any laws expressing the commutativity of the
functions+ and -int-. Such laws are left implicit in the RS. How such laws
are made explicit is described in Section 3.2

Chapter 3: An Algebraic Approach to Specification 83

3.1.3 RS Schemas

Example 3.4 illustrates a RS characterizing the set of natural numbers. A

similar characterization for sets of other objects can be made. Rather than build

separate RSs for each such characterization, the similarity in the structure of the

RSs can be used to derive a generic specification, from which particular RSs can be

generated when provided with parameters. A RS schema is such a generic

specification, and can have one of the following structures:

• PS(P1 with {I,1; Li}, .. ,,Pn with {I,n; Ln}) = Prim1 + ... +Primm+ Signature

Sig Laws E, where Pi is a RS name, called a parameter name, L (l;S;i;S;n) is a

signature, and Li (lsisn) is a set of laws, called constraints, Primi is a primitive

RS, Sig is the signature declaring the non-primitive sorts and symbols, Eis a set

of laws. An RS is generated from a schema of the above form by providing an

RS, Pari = <Lpi, Epi, SPpi > for each Pi, such that L-i is a subset of Lpi, and

Li is a subset of Epi, for l;S;i;S;n. Such RSs are called RS parameters of the

schema. The result is an RS which is the smallest extension of the RS

parameters and the hierarchical specification on the right of the = symbol.

• PS(Par1, ... , Parn where Par1 is [P11, ... ,P1pL ... , Parn is [Pn1, .. ,,PnqD =
Prim1 + ... + Primm+ Signature Sig Laws E, where Pari (1::;i;S;n) is a parameter

name, and Pij (1::;i;S;n) is a hierarchical RS. This is a more restrictive form of a

schema than the one given above since only the hierarchical RSs associated with

the parameter names by is can be used as RS parameters for the names. The

result, as in the previous case, is an RS which is the smallest extension of the

RS parameters and the hierarchical specification on the right of the = symbol.

Example 3.5
A RS schema for sets, based on the primitive RS, Boolean, characterizing a two­

valued boolean algebra

Set (Element with { Signature sorts elem)) = Boolean +
Signature

sorts set
constructors

0 : • set
insert : elem, set • set

auxiliary functions
isempty : set • boolean
isin : elem, set • boolean
issubset : set, set • boolean
-int-, + : set, set • set

Laws -V e;-el ~e2: el.em; s, sl, s2: set
Laws characterizing isempty
Sl isempty(0) = true
S2 isemotv (insert (e, s)) = false

Example 3.5 continued

Chapter 3: An Algebraic Approach to Specification 84

Example 3.5 (continued)
A RS schema for sets, based on the primitive RS, Boolean, characterizing a two­

valued boolean algebra

Laws characterizing 1s1n
S3 isin(e,insert(e, s)) = true
S4 el # e2 • isin (el, insert (e2, s))
S5 isin(e,0) = false
Laws characterizing issubset
S6 issubset(0,s) = true
S7 isin (e, s2) = true •

isin(el,s)

issubset(insert(e,sl),s2) = issubset(sl,s2)
S8 isin (e, s2) = false • issubset (insert (e, sl), s2) false
Laws characterizing+
S9 insert(e,sl)+s2 = insert(e, (sl+s2))
S1O 0+s = s
Laws characterizing int
S11 0-int-s = 0
S12 isin(e,s2) =true •

insert(e,sl)-int-s2 = insert(e, sl-int-s2)
S13 isin(e,s2) =false • insert(e,sl)-int-s2 = sl-int-s2
Laws characterizing okset
S14 okset (0)
S15 isin (e, s) = false • okset (insert (n, s))

3.2 Model-theoretic interpretation of RSs
In formulating the laws of a RS, certain information, in the form of assumed

inequalities and equalities between ground constructor terms, and n-relations, is left

implicit. The set of inequations, equations, and n-relations that are left implicit in

RS laws are called assumptions. Of the models which satisfy the laws of an RS,

only those that also satisfy the assumptions of the RS are of interest. Of these

algebras, the finitely generated algebras which satisfy the hierarchy-constraints are

considered as useful semantic models of RSs. Specifically, algebras whose

elements are all generated by constructors only, are desirable, since they provide a

formalization of the intuitive notion of a constructor as the sole creators of objects.

For a hierarchical RS, <L E, SP>, one is thus interested in the algebras in

HAlg(I,, E, SP) which also satisfy the assumptions. Let a= µ+µ'+ri, where µ

represents the inequality assumptions, µ' represents the equality assumptions, and

ri represents then-relation assumptions. MI,,E+a represents the subclass of algebras

in HAlg(I,, E, SP) that also satisfy the assumptions a. The algebras in MI,,E+a are

called the models of the associated RS.

3.2.1 Equality and inequality assumptions

The approach to specifying inequality and equality assumptions is adapted

from the work of Mohan et al [MS87]. In their work, inequality assumptions are

Chapter 3: An Algebraic Approach to Specification 85

inequalities between all ground constructor terms, that is, µ = { <x,y> I x =
cl(xl, ... ,xn); y = c2(yl, ... ,yn); cl, c2 E C 5 ; xl, ... , xn, yl, ... , yn E Tc(F)},

where Cs is the set of constructors of sort s, and Tc(F) is the set of ground

constructor terms derived from the symbols in F. This approach assumes a sub

language of constructor terms which is 'free' in the sense that all constructor terms

are assumed distinct.

The approach used here assumes a sub language of defined ground

constructor terms2 which are not all distinct. In such a sub language the constructor

terms are not all distinct, for example, in a specification of sets, not all set

constructor terms should be assumed distinct. In order to determine which ground

constructor terms are equal, and which are distinct, a well-defined mapping, called

a normalizing function, is associated with each sort of a RS. A normalizing function

for a sort s takes a ground constructor term of sort s and returns a ground

constructor term of sort s, called its normal term.

All normal terms of a sort are considered distinct. This provides the basis for

generating equality and inequality assumptions as follows:

• ground constructor terms which map into the same normal term are equal, while

• ground constructor terms which map into different normal terms are distinct.

Normalizing functions are defined below.

Definition 3.10
Normalizing functions

For any hierarchical RS, HS= <2,, E, SP>, where I.=<S, F>, there is associated a

S-indexed family of normalizing functions, N = {N5 : Tc(F)s • Tc(F)5 I s E S}. N8

is a mapping from defined ground constructor terms of sort s to defined ground

constructor terms of sorts, such that for any ground constructor term, c(x1, ... ,xn),

of sorts, where x1, ... , Xn are defined ground constructor terms (primitive or non­

primitive) of sorts sl, ... , sn respectively, N 5 (c(x1, ... ,xn)) =

NsC c(Ns1 (x 1), ... ,Ns2Cxn))).

Normalizing functions can be based on a total ordering on defined constructor

terms, in which case they simply order the sub terms of their ground constructor

term arguments in order to derive a unique normal term. An example of a

normalizing functions is given in Example 3.6.

2 All subsequent references to constructor terms in this section are nctually
references to defined constructor terms. Undefined constructor terms are
considered equal.

Chapter 3: An Algebraic Approach to Specification

Example 3.6
Normalizing functions for sets

86

Consider two defined constructor terms of sort setnum given in Example 3.4:

insert(e,i nsert(d,insert(f ,empty))) and insert(f ,insert(d,insert(e,empty))),

where e, d, and fare of sort natnum. They should have equal interpretations in

any model for Setnum, since they represent sets with the same elements, thus they

should be mapped to the same normal term by the normalizing function for the sort

setnum. The ordering< characterized in Natnum can be used as a basis for the

normalizing function for set. Thus, if d<e<f, and a normal term of setnum is

defined as a set of natural numbers in ascending order, the two ground constructor

terms are mapped into the normal term insert(d,insert(e,insert(f,empty))) by the

normalizing function for setnum.

The equality and inequality assumptions for a RS are made explicit in the

manner defined in Definition 3.11.

Definition 3.11
Inequality and equality assumptions

Given a hierarchical RS, <I. E, SP>, where~= <S, F>, the equality assumption

set associated with the RS is the set Q = µ'p1+ ... +µ'pn+µ', where µ'p1+ ... +µ'pn is

the union of the equality assumption sets of the primitive RSs P1, ... ,Pn in SP, and

µ' is the union of a family of S-indexed sets consisting of sets µ's = { <x,y> I N5(x)

= Ns(y); x, y E s}, where N5 is the normalizing function for s E S. The inequality

assumption set associated with the RS is the set I = µpl+ ... +µpn+µ, where

µP 1 + ... +µpn is the union of the inequality assumption sets of the primitive RSs

P1, ... ,Pn in SP, andµ is the union of a S-indexed family of sets consisting of the

sets µs = { <x,y> I Ns(x) * N5(y); x, y E s}, where Ns is the normalizing function

for s E S.

To summarize, RSs are formulated partially based on assumptions made on

the equality and inequality of terms in a sub language of ground constructor terms.

To make such assumptions explicit, each RS is associated with a set of normalizing

functions which generate normal terms. A pair of defined ground constructor terms

which map to the same normal term is called an equality assumption, while a pair of

defined ground constructor terms of the same sort mapping to different normal

terms is called an inequality assumption. The set of all equality (inequality)

assumptions of a RS is called the equality (inequality) assumption set of the RS.

Chapter 3: An Algebraic Approach to Specification 87

3.2.2 Negated relation assumptions

N-relation assumptions concern the relationships that must hold amongst

defined ground terms. They are based on an implicit operational interpretation for

relations, where relations on ground terms whose truth cannot be 'deduced' are

false. Deduction is based on an operational semantics for RSs detailed in the next

section. The generation of these assumptions thus depends on the operational

semantics of RSs.

3.3 An operational semantics for RSs
A useful operational semantics, in terms of conditional term rewriting systems

(CTRSs), can be associated with RSs, provided the RSs satisfy certain syntactic

conditions. The operational semantics is useful in the sense that it provides

computationally effective representations of the objects abstractly characterized by

the laws and assumptions of the RS. In this section it is shown that for any RS,

<L E>, satisfying the syntactic conditions referred to above, rewriting in the

derived CTRS is sound and complete with respect to MI,E+a. where a are the

assumptions associated with the RS. Furthermore, such rewriting determines a

canonical algebra in MI,,E+a. consisting exactly of the normal terms generated by

the normalizing functions (the "effective representation"). When such an operational

semantics can be associated with a RS, the canonical algebra is taken as the

semantic model for the RS. Note, however, that if an operational semantics cannot

be associated with the RS, then a model-theoretic interpretation, in terms of

MI,E+a. is not possible, since the n-relation assumptions in a cannot be made

explicit.

The particular type of CTRSs and the sufficient conditions ensuring

soundness and completeness, are detailed in the following sections. Some

preliminary concepts and definitions are introduced here. A more detailed account

of the following definitions, together with an introduction to CTRSs, can be found

in Appendix I.

Let T(I,, X) be the set of all well-formed terms formed from the symbols in

the signature I,= <S, F>, and the elements in X (called variables).

• The function Var takes a term in T(I,, X) and returns the set of variables

occurring in it.

• A substitution, a, is a mapping from X to T(F, X), with cr(x) = x almost

everywhere. A defined substitution is a mapping from X to defined terms in

T(F, X) only. Substitutions are extended to morphisms of T(I,, X) as follows:

cr(f(t1, ... ,tn)) = f(crt1, ... ,crtn).

Chapter 3: An Algebraic Approach to Specification 88

• The relative occurrence (or position) of a sub term in a term is represented by a

sequence of positive integers, where the empty sequence is denoted by A. Let

O(t) denote the set of all sub term occurrences in the term t. The sub term oft at

1t, where 1t is a sequence of positive integers, denoted by tin is defined as

follows:

• If t = x E X, the O(t) = A, and tlA = t.
• If t = f(t1, ... ,tn), then O(t) = {A}+{i1t I ls;is;n, 1t E O(ti)}, tlA = t, and tli1t

= til1t.

• The replacement of a sub term at an occurrence 1t in t, by another term t', is

denoted by t[n<-t'].

3.3.1 Relational conditional term rewriting systems (R-CTRSs)

A relational conditional term rewriting system (R-CTRS), that can be

associated with RSs is defined in Definition 3.12.

Normalizing functions and ok-predicates play the same roles in R-CTRSs as

they do in RSs. A RS law can be transformed into a R-CTRS rule if the

consequences of the laws can be oriented and the antecedents satisfy the conditions

on R-CTRS rules given in Definition 3.12.

• R induces a relationship, called a rewrite relation, on the terms in T(LX),

which can be informally described as follows: t rewrites tot', or t• Rt' if there is a

rule in the R-CTRS, with a consequence whose left hand side matches a sub term

oft, after suitable substitution, and whose premises hold under the substitutions

resulting from the match, such that t' is the result of replacing the matching sub

term in t by the substituted rhs of the rule. Before a formal definition of rewriting is

given, some notation is introduced.

Rewriting in zero or more steps, or the transitive closure of • R, is denoted

by • * R • If a term t is minimal with respect to • * R (i.e. there is no t' such that

t• Rt') then tis called a normal form. The set of all normal forms is denoted by :N.

t• NRt' if and only if t' is a normal form and t' is called a normal form oft. The

following relationships are derived from • R:

• tJ,t' if and only if 3 tl such that t• *Rtl and t' • *Rtl.

• tit' if and only if 3 tl such that tl • *Rt and tl • *Rt'.

Rewriting in a R-CTRS is formally defined in Definition 3.13.

Chapter 3: An Algebraic Approach to Specification

Definition 3.12
Relational conditional term rewriting systems

A relational conditional term rewriting system (R-CTRS) is a triple <2,, RR, N>

consisting of:

89

• a signature, I= <S, F, R, OK>, where S is a set of sorts, Fis a set of function

symbols, with a special subset of symbols called constructors, R is a set of

relation symbols, and OK is a set of predicate symbols, one each for the sorts in

S, called ok-predicates;

• a set of rules, RR, of the form

(Ui = Vi)i=l...l, (u\ * v\)i=l...n, (rJi=l...o, (~r\)i=l. .. p • C,

where C (called the consequence) is one of the following forms:

(1) an oriented pair of F-terms, t• Rt', t,t' E T(F, X), where tis called the

left hand side (lhs) and t' is called the right hand side (rhs), such that

(Var(ui), Var(vi))i=1...1, (Var(u'i), Var(v\))i=1. .. n, Var(ri);=1...o, Var(r\);=1. .. p,

Var(t') are all subsets of Var(t);

(2) an oriented pair, r• R TT, where r E T(R, X), such that (V ar(ui),

Var(vi))i=!. .. l, (Var(u\), Var(v\)}=1...n, Var(ri)i=l. .. o, Var(r\)i=l...p are all

subsets of V ar(r); or

(3) an oriented pair ok(t) • R TT, where ok E OK and t E T(F, X), such

that (Var(ui), Var(vi));=1...1, (Var(u\), Var(v\));=1...n, Var(ri)i=l. .. o,

Var(r\);=1. .. p are all subsets ofVar(t)

• a set of partial functions, N, called normalizing functions, which map ground

constructor terms to ground constructor terms. The set contains exactly one

function for each sort in S.

Definition 3.13
Rewrite relation

A ground term t is said to rewrite to a ground term t' under a relational conditional

term rewriting system (R-CTRS), R, denoted by t• Rt', if and only if there is a rule

in r: (ui = Vj)i=1. .. 1, (u'i-# v'j)i=1 ... n, (ri);=1 ... o, (~r\);=1. .. p • lhs• Rrhs in R such that:

Match and replace

• there exists a defined substitution cr, and an occurrence 1t in t such that tin = crlhs

and t' = t[n<-crrhs],

Convergence of R-terms

('""'"·-----'-* TT). • V.L1---, R 1=1. .• o,

Definition 3.13 continued

Chapter 3: An Algebraic Approach to Specification

Definition 3.13 (continued)
Rewrite relation

Non-convergence of R-terms

• (NOT(crr'i• *RTT)L1...p,

Convergence of F-terms

• (okai(O"lli)• *RTT, okaiCcrvi)• *RTT)i=1...1, and ((crui.J,crvi), or (O"lli• *Rcl,

crvi• *Rc2, and Nai(cl) = NaiCc2); cl, c2 E Tc(F)aD)i=i. .. 1, where Nai is the

normalizing function for the sort ai, and

Non-convergence of F-terms

• (okbiCcru\)• *RTT, okbiCcrv\)• *RTT\=1. .. n and (NOT(cru\.J,crv\));.1. .. n, and

(011\• *Rcl, crv\• *Rc2 • Nbi(cl) -:t:- Nbi(c2); cl, c2 E Tc(F)bi)i=l...n,

where Nbi is the normalizing function for the sort bi.

90

A ground term t, of sorts, is said to be defined in R, if and only if oks(t)• *RTT,

where oks is the ok-predicate for s.

Note that rewriting under a R-CTRS is defined only on ground terms. It can

be extended to terms with variables by treating the variables as constants in the

rewriting relationship. In such a situation the rewriting relationship is not closed

since t• Rt' does not imply crt• Rcrt' [Kap87]. For this reason, only term rewriting

on ground terms is considered here.

To show the non-convergence of a R-term it is necessary to have a finite

number of reduction steps starting from the R-term. Non-convergence then occurs

when the final term in the reduction sequence is not TT. Similarly, to show the non­

convergence of a pair of F-terms, t and t', it is necessary to have a finite number of

reduction steps starting each from t and t'. Non-convergence then occurs when the

reducts generated by t are all distinct from the reducts generated by t', and for any

ground constructor term reducts c 1 generated by t and c2 generated by t', the

normal terms corresponding to them are distinct. Thus there may be cases where it

cannot be determined that t• Rt' in a R-CTRS, R, as illustrated in Example 3.7.

Chapter 3: An Algebraic Approach to Specification 9 1

Example 3.7
Examples of situations where convergence and non-convergence of rewriting

cannot be determined

The example CTRS given below is taken from [MS87]. In the R-CTRS R = (f(x) -:,t.

g(y) • h(x,y) • c; f(a) • g(a); g(a) • f(a)}, it is not possible to conclude that

h(a,b) • c since there is an infinite reduction sequence starting from f(a) thus

reduction from h(a,b) does not terminate. It is not also possible to conclude that

NOT(h(a,b)• c) since f(a) and g(b) cannot be shown to converge.

• R is said to be noetherian, or terminating, if and only if there is no infinite

sequence tl • Rt2 • R ... • Rtn• R ... (i.e. when • R is well-founded). An

important property of term rewriting systems is confluence. • R is said to be

confluent if and only if, Vt,t' tJ,t' = tit'. In a confluent and terminating CTRS

every term is rewritten to a unique normal form.

3. 3. 2 Sufficient conditions for termination and confluence of R­

CTRSs

Termination and confluence are properties R-CTRSs need to have in order to

be sound and complete, as is shown later. In what follows, sufficient conditions for

ensuring termination, and confluence are given.

In unconditional term rewriting systems, one-step rewriting obviously

terminates. This is not the case for CTRSs, since one-step rewriting also involves

recursive calls to the evaluation procedure for evaluating the premises of the rule.

Infinite calls to the evaluating procedure are thus possible. In order to avoid such

infinite calls Kaplan suggests the use of a simplification ordering on terms, which

makes the literals in the antecedents of rules, in some sense, "simpler" than their

consequences [Kap84]. A similar type of ordering, based on the relationship <h on

function symbols, defined in Definition 3.8, is used here. The following

proposition states how such an ordering can be used to check for termination of

rewriting in a R-CTRS.

Proposition 3.1 An R-CTRS, R, is terminating if:

(1) <h is a partial ordering on T(F)

(2) for every rule with consequent f(s) • rhs, every sub term of rhs and every sub

term of the terms appearing in the premises, g(t), is either:

• g<hf, or

• NOT(f<hg), and t%S, where % is the multi-set ordering on terms based on

<h· (See Appendix I)

Chapter 3: An Algebraic Approach to Specification 92

The proof of Proposition 3.1 can be found in Appendix II.

Example 3.8
An example of termination

The set of rules { O<succ(x) = true; x <y = true => succ(x)<succ(y) = true}, taken

from the RS Natnum in Example 3.3, is terminating since true<h<, and {x,

Y}«h{succ(x), succ(y)}

A very strong sufficient condition for confluence is used here, somewhat

similar to the one used in [MS87]. The condition ensures that two rules of a R­

CTRS cannot be simultaneously applied to the same occurrence of a ground term

resulting in two distinct terms. The severity of the above condition has the

advantage that implementations of R-CTRSs are easier to design since, at any

particular time, the rule to be used for reducing a given ground term is decidable.

Furthermore, as will be seen later, the restriction provides a useful guideline for

writing R-CTRSs (hence RSs) which are sufficiently complete. The above

condition requires that arguments of the left hand sides of consequences must all be

constructor terms only. This prevents overlaps between non-unifiable left hand

sides. The condition also requires that if the left hand sides of two rules are

unifiable and the corresponding instantiated right hand sides are distinct, then the

antecedents of the rules cannot hold simultaneously. The conditions for confluence

are formally stated below.

Chapter 3: An Algebraic Approach to Specification 93

Proposition 3.2 A R-CTRS is confluent if the following conditions hold:

(1) The consequences of a rule must have left hand sides with only constructor

terms as proper sub terms (i.e. a lhs must be of the form f(cl, ... ,en) where

cl, ... ,en are constructor terms); and

(2) Let Al • lhsl • Rrhsl and A2 • lhs2• Rrhs2, be any two rules in a R

CTRS such that there is a defined substitution, cr, which unifies lhsl and lhs2

(i.e. crlhsl =s crlhs2 where =s symbolizes syntactic equality). Then either:

• crrhs 1 =s crrhs2; or

• there exists u':;t:v' E Al+A2 such that cru' and crv' have a common reduct,

or cru' • *Rcl, oks•(cl), crv' • *Rc2, oks'(c2), and Ns•(cl) = Ns•(c2),

where c 1 and c2 are ground constructor terms of sort s', and N s' is the

normalizing function for the sort; or

• there exists u = v E Al+A2 such that NOT(cruJ.crv), and if cru• *Rcl,

oks(cl), crv• *Rc2, oks(c2), then Ns(cl) :;t: Ns(c2), where cl and c2 are

ground constructor terms of sorts, and Ns is the normalizing function for

the sort; or

• there exists r E Al+A2 such that NOT(crr• *RTT); or

• there exists ~r' E Al+A2 such that crr'• *RTT.

The proof of Proposition 3.2 can be found in Appendix IL

Example 3.9
Example of ground confluence

The RS Natnum, repeated below from Example 3.3, is ground confluent since the
left hand sides of each rule contain only constructor terms or variables as proper
sub terms, and at any time only one rule can be applied to a ground term.

Natnum =
Signature

sorts nat
constructors

0: • nat
succ: nat • nat

auxiliary functions
+: nat, nat • nat

ok-predicates
oknat: nat

relations
< : nat, nat

Laws-V x, xl, x2:nat
1. oknat (0)
2. oknat(succ(x))
3. x+O = x
4. xl+succ(x2) = succ(xl+x2)
5. O<succ(x) = true
6. x<v = true • succ (x) <succ (y) true

Chapter 3: An Algebraic Approach to Specification 94

3.3.3 Correctness of R-CTRSs

A R-CTRS determines a RS where the normalizing functions of the R-CTRS

become the normalizing functions of the derived RS. Then-relation assumption set,

Tl, of the RS is defined as follows: Tl= {ri(t1i, .. ,,tni) I Va,

NOT(crri(tli, .. ,,tni)• *RTT); (okj(tji)• *RTT, tji e T(F)j\=i, ... ,n}, where okj is the ok­

predicate for the sort of the ground constructor term Cji· The conditions under which

rewriting in a R-CTRS is sound and complete, with respect to the derived RS, or

correctness criteria, are now given.

An R-CTRSs, R, are said to be correct if rewriting with R is sound and

complete in the following sense.

Definition 3.14
Soundness and completeness of rewriting with R-CTRSs

Rewriting with a R-CTRS, R is sound and complete with respect to a set of

assumptions a, if the following conditions hold:

• Soundness : for all relational terms re T(R), r• *R TT • MI,E+a.l= r, and for all

F-terms t, t' e T(F), ok(t) and ok(t') and t• *Rt' • MI,E+aJ= t = t';

• Completeness: for all relational terms r E T(R), MI.E+a.l= r • r• *RTT, and for

all F-terms t, t' E T(F), MI,E+al= ok(t) • (Mt,E+a.l= t = t' • t• *Rt'),

In general termination and confluence are not sufficient conditions to ensure

the correctness of a R-CTRS. An additional criteria, which supports the intuitive

interpretation of constructors as generators of carrier sets, is that every defined non­

constructor term in a R-CTRS, R, is reducible to a unique defined ground

constructor term.

Definition 3.15
Sufficient completeness of R-CTRSs

A R-CTRS, R, is said to be sufficiently complete if and only if the following

conditions hold:

• R is terminating and confluent; and

• for every non-constructor term, f e T(F), ok(f)• *RTT • f• *Rc, where c is a

constructor term and ok(c)• *RTT,

Proposition 3.3 An R-CTRS is correct if it is sufficiently complete.

Chapter 3: An Algebraic Approach to Specification 95

The proof of Proposition 3.3 can be found in Appendix II. A sufficiently

complete R-CTRS generates a canonical algebra in MI,E+a, whose carrier sets are

exactly the defined ground constructor terms. A hierarchical RS which can be

transformed into a sufficiently complete R-CTRS is called a reducing RS, and, has

models which reflect its hierarchical structure (i.e. the models satisfy the hierarchy­

constraints) since all defined terms are reducible to ground constructor terms, thus

terms of a primitive sort, s, are reducible to constructor terms of sort s. This means

that non-primitive functions do not create objects of primitive sorts.

3.4 Summary
This chapter detailed a new algebraic specification technique which forms the

cornerstone of the formal framework developed in this thesis. The specifications

generated by the technique are called positive-negative relational conditional

specifications (RSs), since they involve conditional equations with relations,

inequalities, and negated relations (n-relations). Inequalities and n-relations are

provided with operational interpretations, from which a model interpretation can be

derived based on the notion of an assumption. In the model-theoretic sense,

assumptions are equations that are not explicitly stated in the presented form, but

are implicit in the formulation of the RS. Inequality and equality assumptions are

based on a sub language of defined ground constructor terms generated from

normalizing functions associated with the RS, while n-relation assumptions are

derived from the operational interpretation of RSs. Only the algebraic models in

which the RS laws and the assumptions are true, and whose structure matches the

hierarchical structure of the RS (i.e. they satisfy the hierarchy-constraints) are

considered as useful models of a RS. The class of such algebras, for a RS <LE>,
is denoted by MI,E+a, where a is the set of assumptions.

The operational semantics is given in terms of a conditional term rewriting

system (CTRS) called a relational CTRS (R-CTRS). Inequalities and n-relations are

interpreted as the non-convergence of the terms involved. The sufficient

completeness condition ensures that rewriting in a R-CTRS is sound and complete.

The algebra of defined ground constructor terms generated by the R-CTRS can be

taken as the model semantics for the RS.

CHAPTER 4

The Picture Level:
Characterizing The Syntactic Aspects

of DFDs

4.0 Introduction
The Picture Level (PL) is an algebraic theory characterizing the syntactic

aspects of hierarchies of DFDs. The algebraic treatment of the syntactic aspects of

DFDs entails viewing syntactic DFD structures as objects. The objects capturing the

syntactic aspects of hierarchies of DFDs are called a hierarchical data flow diagrams

(H_DFDs). H_DFDs and their components were introduced in Chapter 2, together

with rules characterizing their structure. Such objects are said to be structurally

correct.if they satisfy their associated rules. The PL is a formalization of the rules

characterizing structurally correct objects, stated in Chapter 2.

Specifically, the PL is a (positive-negative) relational specification (RS)

named H_Plapplic, characterizing functions that construct, modify, or carry out

observations on the syntactic objects. The laws of H_PLapplic are formal

expressions of the rules characterizing H_DFDs and their components given in

Chapter 2. The term representation of a syntactic object is called its PL

representation and is taken as the formal textual representation of the object. Such

formal representations, unlike graphical representations, are capable of being

automatically analysed, for example, by term rewriting systems.

In this chapter, the structure of H_PLapplic and its model and operational

semantics are described. Section 4.1 details the building of a RS, called

SimpleApplic, which characterizes the syntactic aspects of flat DFDs. This section

provides the essential flavour of the approach to characterizing the syntactic aspects

of DFDs without the complexity introduced by hierarchies. In Section 4.2,

SimpleApplic is extended to H_Plapplic by incorporating RSs characterizing

hierarchies of data flows and processes into SimpleApplic.

H_Plapplic has an operational semantics in the form of a relational

conditional rewriting system (R-CTRS) which is sufficiently complete (see Chapter

3). The canonical model generated by the operational interpretation provides the

model semantics for H_Plapplic. The model consists of the PL representations of

structurally correct DFD structures. Section 4.3 describes the operational and model

semantics for H_PLapplic. Section 4.4 discusses the limitations of the PL.

96

Chapter 4: The Picture Level 97

The flat DFD at level 1 of the hierarchy of DFDs representing the library

application shown in Example 2.1 in Chapter 2, is repeated here as Figure 4.1, and

will be used for illustration purposes in this chapter.

Add­
Borrower

a.dd_
m.osaqo new

borr

c::heckout_moseaqe

chockout_info

clock

borr_
Update- upo.ate_l.n o

,__ _ _. Borr-

Status update etatue ,__-"==-

Delete­
Borrower

del
borr

staff

staff

Figure 4.1 Level 1 of the hierarchy of DFDs describing the library

application

4.1 Characterizing the syntactic aspects of flat DFDs
The RS characterizing structurally correct flat DFDs is based on primitive RSs

characterizing structurally correct external environments (EEs) and process

structures. In tum, the RS characterizing structurally correct EEs is based on a RS

characterizing structurally correct external entities, while the RS characterizing

structurally correct process structures is based on RSs characterizing structurally

correct processes and data stores.

The following RSs are assumed available in what follows:

• Boolean : A RS characterizing truth values, with sort boolean, and

constant functions true and false, where true * false.

• Flowname: A RS defining a finite set of data flow names of sort flowname.

Chapter 4: The Picture Level 98

•Set: A RS schema characterizing sets with the functions, insert,_+_

(set union)1, _-diff-_ (set difference), _-int-_ (set intersection),

isempty, isin, and the constant function 0 (see Example 3.5 in

Chapter 3).

The non-constructors of the RSs used by the PL can be categorized as

observation and auxiliary functions. Observation functions are functions which

return sub structures of their arguments, that is, they carry out observations on the

objects in the arguments. All other functions are called auxiliary functions.

4.1.1 Characterizing structurally correct flat data flows

The syntactic aspects of data flows are characterized by the RS Plflow,

shown in Figure 4.2. Plflow characterizes the type plflow2 whose objects capture

the syntactic aspects of data flows. The single law of the RS states that all plflows

created from defined flownames are defined. For example, the PL representation

of the structurally correct data flow new_ book in Figure 4.1 is

mkflow("new_book"), where "new_book" is a structurally correct flowname.

Plflow = Flowname +
Signature

sort plflow
constructor

mkflow: flowname • plflow
ok-predicate

okflow : plflow
Laws 'ii f:flowname

F1. okflow(mkflow(f))

Figure 4.2 The RS characterizing structurally correct data flows

4.1.2 Characterizing structurally correct flat processes

The syntactic aspects of processes are characterized by the RS Plprocess,

shown in Figure 4.3. Plprocess characterizes the type plprocess whose objects

encapsulate the syntactic aspects of processes. The constructor, mkplprocess,

creates a plprocess from two sets of plflows representing the inputs and outputs of

the process. For example, the PL representation of the process ReturnBook in

Figure 4.1 is given in Example 4.1.

The law characterizing the ok-predicate, okproc, formally states the rule that

a process is structurally correct if and only if its sets of inputs and outputs are

disjoint and are both non-empty. The observation functions getpinputs and

getpoutputs respectively return the set of input plflows and the set of output

1 _ marks the position of the argument for infix functions
2 the "pl" stands for picture level and indicates that only the syntactic aspects of the data flow is of interest.

Chapter 4: The Picture Level 99

plflows of a plprocess. The effects of these observation functions on the PL

representation of ReturnBook are given in Example 4.1.

PLprocess = Set(Plflow) +
Signature

sort plprocess
constructor

mkplprocess: set(plflow), set(plflow) • plprocess
observation functions

getpinputs, getpoutputs: plprocess • set(plflow)
ok-predicate

okproc : plprocess
Laws V in,out:set(plflow)

Law characterizino the ok-predicate
PR 1. isempty(in-int-out) = true, isempty(in) = false, isempty(out) =false •

okproc(mkplprocess(in,out))
Laws characterizino the observation functions
PR2. getpinputs(mkplprocess(in,out)) = in
PR3. getpoutputs(mkplprocess(in,out)) = out

Figure 4.3 The RS, Plprocess, characterizing structurally correct
processes

Example 4.1
PL representation for the process Ret urnBook

ReturnBook =

mkplprocess({mkflow("return_info"), mkflow("return_time"), mkflow("return_detail"),

mkflow("ret_borr_list)},

{mkflow("return_message"), mkflow("ret_updated_book"),

mkflow("ret_updated_borr")})

The effects of the observation functions on ReturnBook are as follows:

getpinputs(ReturnBook) = {mkflow("return_info"), mkflow("return_time"),

mkflow("retu rn_ detail"), mkflow("ret_borr _list)}

getpoutputs(P1) = { { mkflow("retu rn_message"), mkflow("ret_updated_book"),

mkflow("ret_updated_bo rr")}

Chapter 4: The Picture Level 100

4.1.3 Characterizing structurally correct flat external entities and data

stores

The syntactic aspects of external entities and data stores are characterized by

the RSs Plentity and Plstore shown in Figure 4.4 and Figure 4.5. Plentity
characterizes the type plentity whose objects encapsulate the syntactic aspects of

external entities, while Plstore characterizes the type plstore whose objects

encapsulate the syntactic aspects of data stores. The constructors of these types

create objects consisting of a set of input plflows and a set of output plflows

respectively representing the inputs and outputs of the corresponding external

entities and data stores. Like Plprocess, both Plentity and Plstore have

observation functions which return the input plflows and output plflows of

plentities and plstores. Example 4.2 gives the PL representations for the external

entity clock and the data store BOOK.

The laws characterizing the ok-predicates for the Plentity and Plstore
classes formally state the rules characterizing structurally correct external entities

and data stores given in Chapter 2. These rules are repeated below.

Fl. A structurally correct data store has a non-empty set of inputs or a non-empty

set of outputs. Its set of inputs and set of outputs are also disjoint.

F7. A structurally correct external entity has a non-empty set of inputs or a non­

empty set of outputs. Its set of inputs and the set of outputs are also disjoint.

Fl is expressed by the laws EEl and EE2, while F7 is expressed by the laws

DSl and DS2.

Plentity = Set(Plflow) +
Signature

sort plentity
constructor

mkplentity: set(plflow), set(plflow) • plentity
observation functions

geteinputs, geteoutputs: plentity • set(plflow)
ok-predicate

okentity : plentity
Laws V in,out:set(plflow)

Laws characterizing the ok-predicate
EE1. isempty(in-int-out) = true, isempty(in) =false • okproc(mkplentity(in,out))
EE2. isempty(in-int-out) = true, isempty(out) =false • okproc(mkplentity(in,out))
Laws characterizing the observation functions
EE3. geteinputs(mkplentity(in,out)) = in
EE4. geteoutputs(mkplentity(in,out)) = out

Figure 4.4 The RS PLentity characterizing structurally correct external entities

Chapter 4: The Picture Level

PLstore = Set(Plflow) +
Signature

sort plstore
constructor

mkplstore: set(plflow), set(plflow) • plstore
observation functions

getsinputs, getsoutputs: plstore • set(plflow)
ok-predicate

okstore : plstore
Laws V in,out:set(plflow)

Law characterizing the ok-predicate
OS1. isempty(in-int-out), isempty(in) =false=> okproc(mkplstore(in,out))
OS2. isempty(in-int-out), isempty(out) = false • okproc(mkplstore(in,out))
Laws characterizing the observation functions
OS3. getsinputs(mkplstore(in,out)) = in
OS4. getsoutputs(mkplstore(in,out)) = out

101

Figure 4.5 The RS PLstore characterizing structurally correct data stores

Example 4.2
PL representations for clock and BOOK

clock=

mkplentity(0, {mkflow("update_time"), mkflow("checkout_time"),

mkflow("return_time")})

book=

mkplstore({ mkflow("new _book_rec"), mkflow("out_updated_book"),

mkflow("ret_updated_book")}

{mkflow("copy#_list"), mkflow("deleted_book"), mkflow("out_book"),

mkflow("return_detail")})

4.1.4 Characterizing structurally correct process structures

Process structures are characterized by the RS Struct, shown in Figure 4.6.

The objects of sort struct are process structures, and are built using three

constructors: initstruct builds the simplest process structure consisting of exactly

one plprocess; mkstruct1 builds a new process structure by adding a plprocess to a

given process structure; and mkstruct2 builds a new process structure by adding a

plstore to a given process structure. An example of the PL representation of a

process structure is given in Example 4.3.

The' laws, ST1, ST2, and ST3, characterizing the ok-predicate okstruct, are

formal expressions of the rules governing the construction of structurally correct

process structures given in Chapter 2 and repeated below:

Chapter 4: The Picture Level 102

F3. A structurally correct process structure has at least one process. All processes

in a structurally correct process structure are structurally correct and are

uniquely identified by their inputs and outputs.

F4. All data stores in a structurally correct process structure are structurally

correct. All the inputs of a data store in a structurally correct process structure

are also outputs of processes in the process structure, and all the outputs of a

data store are also inputs of processes in the process structure. Furthermore,

the set of data flows (inputs and outputs) of a data store in a structurally

correct process structure is disjoint from the set of data flows of any other

data store in the process structure. Data stores in a structurally correct process

structure are uniquely identified by their inputs and outputs.

FS. An output of a process in a structurally correct process structure is either

associated with another process and/or data store in the process structure as

an input, or is not associated with any process or data store in the process

structure. An input of a process in a structurally correct process structure, on

the other hand, may be associated with more than one process and/or data

store in a process structure as an input.

F6. A net or boundary inputs of a structurally correct process structure is an input

associated with processes and data stores in the process structure that is not

an output of process or data store in the process structure. A structurally

correct process structure has at least one net input.

The observation functions getinflows and getoutflows return the set of

inputs and the set of outputs, respectively, in a process structure, while

getininterface returns the set of net inputs of a process structure. The function

getprocs returns the set of plprocesses in a process structure, while getstores

returns the set of plstores in a process structure. Examples of the application of the

observation functions on a process structure are given in Example 4.3.

Chapter 4: The Picture Level 103

Struct utilizes two RSs, characterizing sets of processes and data stores,

which are the results of instantiations of an RS schema, Plset shown in Figure

4.6. Plset extends the RS schema, Set, with functions which return the set of all

inputs, outputs, and names of the parameter where the parameter is restricted to

being one of Plentity, Plstore, and Plprocess.

PLset(Set(PLelem) where Plelem is [Plentity, Plstore, Plprocess]) =
Signature

observation functions
getallinputs, getalloutputs: set(plelem) • set(plflow)

Laws v' e:plelem; se:set(plelem)
S1. getalloutputs(insert(e,se)) = getoutputs(e)+getalloutputs(se)
S2. getalloutputs(0) = 0
S3. getallinputs(insert(e,se)) = getinputs(e)+getallinputs(se)
S4. getallinputs(0) = 0

Struct = PLset(PLprocess) + PLset(PLstore) +
Signature

sort struct
constructors

initstruct: plprocess • struct
mkstruct1: plprocess, struct • struct
mkstruct2: plstore, struct • struct

observation functions
getinflows, getoutflows, getininterface: struct • set(plflow)
getprocs : struct • set(plprocess)
getstores: struct • set(plstore)

Ok-predicate
okstruct : struct

Laws v' p,p1 :plprocess; ds:plstore; st:struct
Laws characterizino the ok-predjcate
ST1. okstruct(initstruct(p))
ST2. isempty(getpoutputs(p)-int-getoutflows(st)) = true •

okstruct(mkstruct1 (p,st))
ST3. isempty(getsoutputs(ds)-int-getoutflows(st)) = true,

issubset(getsinputs(ds) ,getoutflows(st)) = true,
issubset(getsoutputs(ds),getinflows(st)) = true •
okstruct(mkstruct1 (ds,st))

Laws characterizino the observation functions:
oetprocs. oetstores
ST 4. getprocs(initstruct(p)) = insert(p,0)
ST5. getstores(initstruct(p)) = 0
ST6. getprocs(mkstruct1 (p1 ,st)) = p1 +getprocs(st)
ST?. getprocs(mkstruct2(ds,st)) = getprocs(st)
ST8. getstores(mkstruct1 (p1 ,st)) = getstores(st)
ST9. getstores(mkstruct2(ds,st)) = ds+getstores(st)
oetoutflows, oetinflows
ST1O. getoutflows(mkstruct1 (p1 ,st)) = getpoutputs(p1)+getoutflows(st)
ST11. getoutflows(mkstruct2(ds,st)) = getsoutputs(ds)+getoutflows(st)
ST12. getoutflows(initstruct(p)) = getpoutputs(p)
ST13. getinflows(mkstruct1 (p,st)) = getpinputs(p)+getinflows(st)
ST14. getinflows(mkstruct2(ds,st)) = getsinputs(ds)+getinflows(st)
ST15. getinflows(initstruct(p)) = getpinputs(p)
oetininterface
ST16. getininterface(st) = getinflows(st)-diff-getouflows(st)

Figure 4.6 The RS characterizing structurally correct process structures

Chapter 4: The Picture Level 104

Example 4.3
The PL representation of the process struct for the level 1 DFD of the library

application

To enhance readability the constructors associated with plflows will be left implicit,

for example, new_book = mkflow("new_book ").

The names of the PL representations for the processes are as follows:

AddCopy = mkplprocess({new_book, copy#_list}, {new_book_rec})

DeleteCopy = mkplprocess({delete_book, deleted_book}, {delete_message})

ReturnBook = mkplprocess({return_info, return_time,, ret_borr_list, return_detail},

{ret_updated_book, ret_updated_borr, return_message})

CheckoutBook = mkplprocess({out_borr, checkout_info, checkout_time, out_book},

{ checkout_message, out_updated_borr, out_updated_book})

UpdateBorrStatus = mkplprocess({borr_update_info, update_time, borr_detail},

{updated_borr_detail, update_status})

DeleteBorrower = mkplprocess({del_borr, deleted_borr}, {del_borr_mess})

AddBorrower = mkplprocess({new_borr, other_borr}, {new_borr_rec, add_message})

The names of the PL representations for the data stores are as follows:

book = mkplstore({new_book_rec, out_updated_book, ret_updated_book}, {copy#_list,

deleted_book, out_book, return_detail})

borrower = mkplstore({ret_updated_borr, new_borr_rec, updated_borr_detail,

out_updated_borr}, {ret_borr_list, other_borr, deleted_borr,

borr_detail, out_borr})

Example 4.3 continued

Chapter 4: The Picture Level i05

Example 4.3 (continued)
The PL representation of the process struct for the level 1 DFD of the library

application

The PL representation, PSlib, for the process structure of the level I library DFD

is:

PSlib = mkstruct2(book, mkstruct2(borrower, mkstruct1 (AddCopy,

mkstruct1 (DeleteCopy,

mkstruct1 (ReturnBook, mkstruct1 (CheckoutBook, mkstruct1 (UpdateBorrStatus,

mkstruct1(AddBorrower, initstruct(DeleteBorrower)))))))))

The effects of the observation functions on PSlib are as follows:

getinflows(PSlib) = {new_book, copy#_list, delete_book, deleted_book, return_info,

return_time,, ret_borr_list, return_detail, out_borr, checkout_info,

checkout_time, out_book, borr_update_info, update_time,

borr_detail, del_borr, deleted_borr, new_borr, other_borr,

new_book_rec, out_updated_book, ret_updated_book,

ret_updated_borr, new_borr_rec, updated_borr_detail,

out_updated_borr }

getinflows(PSlib) = { new_book_rec, delete_message,

ret_updated_book, ret_updated_borr,

return_message, checkout_message, out_updated_borr,

out_updated_book, updated_borr_detail, update_status,

del_borr_mess, new_borr_rec, add_message, copy#_list,

deleted_book, out_book, return_detail, ret_borr_list, other_borr,

deleted_borr, borr_detail, out_borr}

getininterface(PSlib) = {new_book, delete_book, return_info,

return_time, checkout_time,

update_time, del_borr, new_borr, checkout_info, borr_update_info}

getprocs(PSlib) = {AddCopy, DeleteCopy, ReturnBook,

CheckoutBook, UpdateBorrStatus,

AddBorrower, DeleteBorrower}

qetstores(PSlib) = {book, borrower}

Chapter 4: The Picture Level 106

4.1.5 The RS characterizing structurally correct flat DFDs

The RS, SimpleApplic, characterizing structurally correct flat DFDs is based

on the RSs characterizing process structures, Struct, and sets of external entities,

PLset(PLentity), as is shown in Figure 4.7. The objects of type plapplic,

characterized by SimpleApplic, encapsulate the syntactic aspects of flat DFDs, and

are built, via the constructor mkapplic, from a struct (process structure) and a set

of plentities (the EE).

The rule FlO characterizing structurally correct flat DFDs given in Chapter 2

is repeated below, and is formally expressed by the laws of SimpleApplic.

Example 4.4 gives the PL representation of the DFD in Figure 4.1. It is easily

verified that it is structurally correct.

A flat DFD consists of a structurally correct process structure and a structurally

correct EE (possibly empty) satisfying the following rule:

FlO. The set of all outputs in the EE is equal to the set of the net inputs of the

process structure, while the set of all inputs in the EE is a subset of the set of

all outputs in the process structure. For a DFD with a non-empty EE, the

result is that each data flow in the DFD is associated with a unique generator,

and a non-empty set of receivers.

SimpleApplic = Struct + PLset(PLentity) +
Signature

sort plapplic
constructor

mkapplic: struct, set(plentity) • plapplic
ck-predicate

okapplic : plapplic • boolean
Laws: V se:set(plentity); st:struct

A1. isempty(se) = false, isempty(getallinputs(se)-int-getalloutputs(se)) = true,
getalloutputs(se) = getininterface(st), issubset(getallinputs(se),
getoutflows(st)) • okapplic(mkapplic(st,se))

A2. isempty(se) =true • okapplic(mkapplic(st,se))

Figure 4.7 The RS SimpleApplic characterizing non-hierarchical DFDs

Chapter 4: The Picture Level

Example 4.4
The PL representation of the DFD at level 1 of the library DFD

The PL representations of the external entities in the EE are:

staff = mkplentity({delete_message, return_message,

checkout_message, update_status,

del_borr_mess, add_message},

{return_info, delete_book, checkout_info,

borr_update_info, del_borr,

new_book, new_borr})

clock= mkplentity(0, {update_time, checkout_time, return_time})

The PL representation for the DFD is:

Lib= mkaoolic(PSlib, {staff, clock})

4. 2 Characterizing the syntactic aspects of hierarchical
DFDs (H_DFDs)

107

In this section, the RS SimpleApplic is modified to a RS characterizing

syntactically correct H_DFDs, called H_Plapplic. The modifications concern the

characterization of the hierarchical structures of data flows and processes ignored in

SimpleApplic.

4.2.1 Characterizing structurally correct hierarchical data flows

Decomposition of data flows results in the revelation of their component data

flows, as described in Chapter 2. Tree structures of data flows result from the

successive decompositions of data flows. Hierarchical data flows encapsulate the

syntactic aspects of such structures, and are formally characterized by the RS

Flowstruct shown in Figure 4.8. The objects of type flowstruct characterized by

Flowstruct are hierarchical data flows. Such objects are built up using three

constructors: Nilfstruct, _•_, and _J_. Nilfstruct and _J_ create objects of type

fstruct, which, intuitively, are lists of hierarchical data flow, where Nilfstruct

corresponds to an empty list. _• _ creates objects of type flowstruct from a

flowname and a fstruct representing the child decomposition set of the hierarchical

data flow. An example of the PL representation for a hierarchical data flow is given

in Example 4.5.

In Chapter 2 structurally correct hierarchical data flows were characterized by

a single rule:

• Each sub data flow of a structurally correct hierarchical data flow is unique.

Chapter 4: The Picture Level

Flowstruct = Set(Flowname) +
sorts fstruct, flowstruct
constructors

Nilfstruct: • fstruct
• : flowname, fstruct• flowstruct

=i=: flowstruct, fstruct• fstruct
observation functions

getfstruct: flowstruct• fstruct
getflow: flowstruct• flowname
flat: fstruct• set(flowname)

ok-predicates
okfstruct: fstruct
okflowstruct: flowstruct

Laws ds:fstruct; d:flowstruct; f:flowname
Laws characterizino the observation functions
D1. getfstruct(f•ds) = ds
D2. getflow(f•ds) = f
D3. flat(Nilfstruct) = 0
D4. flat(dlds) = insert(getflow(d) ,flat(getfstruct(d)))+flat(ds)

Laws characterizino okfstruct
D5. okfstruct(Nilfstruct)

108

D6. isempty(insert(getflow(d) ,flat(getfstruct(d)))-int-flat(ds)) = true • okfstruct(dlds)

Laws characterizino okflowstruct
D7. isin(f, flat(ds)) =false • okflowstruct(f•ds)

Figure 4.8 The RS Flowstruct characterizing structurally correct hierarchical data
flows

The laws defining the ok-predicates for fstruct and flowstruct, D5 to D7, are

formal expressions of the above rule for structural correctness. The following

observation functions are used to express these laws:

• getfstruct: Returns the child decomposition set of a hierarchical data flow.

• getflow: Returns the flowname of a hierarchical data flow.

• flat: Returns the set of all sub data flows in a hierarchical data flow.

Law D5 states that an empty fstruct object is structurally correct, while D6

states that a non-empty fstruct is structurally correct if the flow names are all

unique. D7 states that a flowstruct (hierarchical data flow) is structurally correct if

its fstruct is structurally correct and the flowname of the flowstruct is not repeated

in the f struct.

Chapter 4: The Picture Level

Example 4.5
PL re resentation of the hierarchical data flow checkout info

checkout info

book id borr id

copy# ISBN#

The PL representation for hierarchical depicted above is:

checkoutinfo = checkout_info•(

(book_id•(

(copy#• N ilfstruct) I
(ISBN•Nilfstruct) I

Nilfstruct))I

(bo rr _id• Nilfstruct) I

Nilfstruct)

The effects of the observation functions on checkoutinfo are given below:

getflow(checkoutinfo) = checkout_info

getfstruct(checkout info) =

(book_id•(copy#•Nilfstruct) I(ISBN·Nilfstruct) I Nilfstruct) l(borr_id•Nilfstruct) I

Nilfstruct)

flat(getfstruct(checkoutinfo)) = {book_id, copy#, ISBN, borr_id}

i09

In order to characterize the syntactic aspects of external entities, data stores,

and (hierarchical) processes associated with hierarchical data flows, additional

functions on flowstructs and sorts based on flowstructs are needed. The additional

functions and sorts are provided by a RS named ExtFlowstruct shown in Figure

4.9.

The sorts ininterface, and outinterface, introduced by ExtFlowstruct are

types whose objects are of the form <df, {fl, ... ,fn}>, where df is a flowstruct,

Chapter 4: The Picture Level 1 1 0

called the parent flow, and fl, ... ,fn are flowstructs called descendant flows. These

objects are used later, in the characterization of hierarchical processes, to relate the

inputs and outputs of hierarchical processes to the decomposed flows in their

bodies. An ininterface represents the partial decomposition relationship between an

input (represented by the parent flow) of a hierarchical process and its

decomposition set (whose elements are represented by the descendant flows). An

outinterface represents the full decomposition relationship between an output

(represented by the parent flow) of a hierarchical process and its decomposition set

(whose elements are represented by the descendant flows). The relation .U., in

Extf lowstruct, represents the "is a full decomposition set of" relationship between

a hierarchical data flow and a set of hierarchical data flows, and is defined by law

E7. The definitions of full and partial decomposition sets given in Chapter 2 are

repeated below:

A full decomposition set, F, of a hierarchical data flow D, is a set of sub

hierarchical data flows of D satisfying the following conditions:

1. no two hierarchical data flows in F have common sub data flows; and

2. the set of all the primitive data flows in the hierarchical data flows in F is

equal to the set of primitive data flows in D.

A partial decomposition set of a hierarchical data flow is simply a subset of its sub

hierarchical data flows.

The following auxiliary and observation functions are also defined in

Extflowstruct:

• getleaves: Returns the set of primitive data flows of a set of hierarchical

data flows.

• getflowstructs: Returns the child decomposition set of a hierarchical data

flow.

• getsubstructs: Returns the set of all sub hierarchical data flows in a

hierarchical data flow.

• disting:

• getinrhs:

• getoutrhs:

• getinlhs:

• getoutlhs:

• getallflows:

Returns the value true if a set of hierarchical data flows is a

distinguished set, else it returns the value false.

Returns the set of descendant flows of an ininterface.

Returns the set of descendant flows of an outinterface.

Returns the parent flow of an ininterface.

Returns the parent flow of an outinterface.

Returns the set of all sub data flows in a set of hierarchical

data flows.

Chapter 4: The Picture Level

ExtFlowstruct = Set(Flowstruct) +
Signature

sorts ininterface, outinterface
constructors

mkin: flowstruct, set(flowstruct) • ininterface
mkout: flowstruct, set(flowstruct) • outinterface

relations
lJ-: flowstruct, set(flowstruct)

observation functions
getinrhs: ininterface • set(flowstruct)
getoutrhs: outinterface • set(flowstruct)
getinlhs: ininterface • flowstruct
getoutlhs: outinterface • flowstruct

auxiliary functions
getleaves, getallflows : set(flowstruct) • set(flowname)
getflowstructs : fstruct • set(flowstruct)
getsubstructs: set(flowstruct) • set(flowstruct)
disting: set(flowstruct)• boolean

ok-predicates
okin: ininterface
okout: outinterface

Laws d,d1 :flowstruct; ds,ds':fstruct; sd:set(flowstruct); f:plflow
Laws characterizing getleaves
E 1 . getleaves(0) = 0
E2. getleaves(insert((f•Nilfstruct),sd)) =

insert(f ,getleaves(getflowstructs(ds))+getleaves(sd))
E3. ds * Nilfstruct•

1 1 1

getleaves(insert(f•ds,sd)) = getleaves(getflowstructs(ds))+getleaves(sd)
Laws characterizing getflowstructs
E4. getflowstructs(dlds) = insert(d, getflowstructs(ds))
E5. getflowstructs(Nilfstruct) = 0
Laws characterizing getsubstructs
E6. getsubstructs(insert(f•ds,sd) =
insert(f •ds,getsubstructs(getf lowstructs(ds))) +getsu bstructs(sd)
Laws characterizing lJ,
E7. disting(sd), getleaves(getflowstructs(ds))) = getleaves(sd) • f•dslJ-sd
Laws characterizing ck-predicates okout and okin
Ea. dlJ-sd • okout(mkout(d,sd))
E9. issubset(sd,getsubstructs(insert(d,0))) =true • okin(mkin(d,sd))
Laws characterizing getinrhs. getoutrhs. getinlhs. and getoutlhs
E1O. getinrhs(mkin(d,sd)) = sd
E11. getoutrhs(mkout(d,ds)) = getflowstructs(ds)
E12. getinlhs(mkin(d,sd)) = d
E13. getoutlhs(mkout(d,ds)) = d
Laws characterizing getallflows
E14. getallflows(insert(f•ds, sd)) = insert(f, flat(ds))+getallflows(sd)
E 15. getallflows(0) = 0
Laws characterizing distjng
E16. isempty(insert(f, flat(ds))-int-getallflows(sd)) =true •

disting(insert(f•ds,sd)) = disting(sd)
E 17. isempty(insert(f, flat(ds))-int-getallflows(sd)) = false •
disting(insert(f•ds,sd)) = false
E18. disting(0) = true

Figure 4.9 The RS ExtFlowstruct characterizing additional sorts and functions

associated with the use of hierarchical data flows

The modified RSs characterizing the syntactic aspects of external entities and

data stores with hierarchical inputs and outputs are given in Figure 4.10. The laws

Chapter 4: The Picture Level 11 2

of these RS s are formal expressions of the rules for hierarchical external entities and

data stores given in Chapter 2 and repeated below.

P 1. A structurally correct (hierarchical) data store has a non-empty set of

hierarchical inputs or a non-empty set of hierarchical outputs. The union of

inputs and outputs of a data store is a distinguished set.

H 1. A structurally correct external entity has a non-empty set of inputs or a non­

empty set of outputs. The union of inputs and outputs of an external entity is

a distinguished set.

H_Plentity = Set(Flowstruct) +
Signature

sorts hplentity
constructor

mkhplentity: set(flowstruct), set(flowstruct) • hplentity
observation functions

geteinputs, geteoutputs: hplentity • set(flowstruct)
ok-predicate

okhplentity: hplentity
Laws 'ii in, out:set(flowstruct)

1. disting(in+out) = true, isempty(in) = false => okhplentity(mkhplentity(in, out))
2. disting(in+out) = true, isempty(out) =false=> okhplentity(mkhplentity(in, out))
3. geteinputs(mkhplentity(in, out)) = in
4. geteoutputs(mkhplentity(in, out)) = out

Set_HPLentity = Set(H_Plentity) +
Signature

observation functions
getalleinputs, getalleoutputs: set(hplentity) • set(flowstruct)

Laws 'ii he:hplentlty; se: set(hplentity)
1. getalleinputs(he, se) = geteinputs(he)+getalleinputs(se)
2. getalleoutputs(he, se) = geteoutputs(he)+getalleoutputs(se)

H_PLstore = Set(Flowstruct) +
Signature

sorts hplstore
constructor

mkhplstore: set(flowstruct), set(flowstruct) • hplstore
observation functions

geteinputs, geteoutputs: hplstore• set(flowstruct)
ok-predicate

okhplstore: hplstore
Laws 'ii in, out:set(flowstruct)

1. disting(in+out) = true, isempty(in) = false => okhplstore(mkhplstore(in, out))
2. disting(in+out) = true, isempty(out) =false=> okhplentity(mkhplstore(in, out))
3. geteinputs(mkhplstore(in, out)) = in
4. geteoutputs(mkhplstore(in, out)) = out

Figure 4.10 The RSs characterizing external entities and data stores with

hierarchical inputs and outputs

Chapter 4: The Picture Level 11 3

4.2.2 Characterizing structurally correct hierarchical processes

Hierarchical processes encapsulate the syntactic aspects of process hierarchies

resulting from successive process decompositions. from Chapter 2, a hierarchical

process consists of a body, a set of inputs and a set of outputs. The body of a

hierarchical process is a structure of (sub) hierarchical processes and data stores.

The RS characterizing hierarchical processes Procstruct is shown in Figure 4.11.

Hierarchical processes are objects of type procstruct, and are associated with four

constructors: Nilstruct, mkstruct, mkpstruct1, and mkpstruct2. Nilstruct,

mkpstruct1, and mkpstruct2 create objects of type pstruct which are bodies of

hierarchical processes. Nilstruct creates an empty body, mkpstruct1 creates a new

body from a given body by adding a hierarchical process to the body, and

mkpstruct2 creates a new body from a given body by adding a data store to it. The

constructor mkstruct builds a hierarchical process given a pstruct (a body), a set of

ininterfaces, and a set of outinterfaces. The ininterfaces and the outinterfaces

explicitly state the relationships between the inputs and outputs of a hierarchical

process and its internal data flows.

The rules characterizing structurally correct hierarchical processes given in

Chapter 2 are repeated below:

P2. A structurally correct body is either empty or contains at least one structurally

correct (sub) hierarchical process. All data stores in a body are structurally

correct.

P3. No two hierarchical processes in a structurally correct body must have

common sub processes.

P4. The set of all data store inputs in a structurally correct body is a subset of the

internal output set of the body, and the set of all data store outputs is a subset

of the internal input set of the body. Furthermore, the receiver of a

hierarchical data flow whose generator is a data store is never a data store.

PS. Each hierarchical data flow in the internal output set has a unique generator in

the body. The internal output set of a structurally correct body 1s a

distinguished set.

P6. There is at least one net input in a non-empty structurally correct body.

P7. The set of inputs and the set of outputs of a structurally correct hierarchical

process are both non-empty. Furthermore, the union of the inputs and the

outputs of a hierarchical process is a distinguished set.

P8. The body of a structurally correct hierarchical process is structurally correct.

In a structurally correct hierarchical process with a non-empty body, an input

corresponds to a subset of the net inputs in the body, called its decomposition

set, which is a partial decomposition set of the input. The decomposition sets

Chapter 4: The Picture Level 11 4

of any two hierarchical data flows in the input interface are disjoint, and the

union of the decomposition sets associated with the inputs of the hierarchical

process is exactly the set of the net inputs of the body.

P9. For a structurally correct hierarchical process with a non-empty body, an

output corresponds to a subset of the internal output set, called its

decomposition set, which is a full decomposition set of the output. The

decomposition sets of any two outputs is disjoint. If a hierarchical data flow

in the internal output set of the body of a structurally correct hierarchical

process is not in any decomposition set then it is directed towards hierarchical

processes in the body.

Laws PS1 to PS3 express the rules P2 to P6 given above, where law PS1

states that an empty body is structurally correct, and law PS 2 states that a

structurally correct hierarchical process can only be added to a structurally correct

body if:

• the outputs of all the sub processes and sub data stores of the hierarchical

process are not also outputs in the body or outputs of sub processes and data

stores of the hierarchical processes in the body; and

• the data flows generated by the sub processes of the hierarchical process which

are not also outputs of the hierarchical process, are not sub data flows of the net

inputs of the body.

Law PS3 states that a structurally correct data store can only be added to a

structurally correct body if the data store is not already in the body, nor in the

hierarchical processes of the body, and if the inputs of the data store are also

outputs of hierarchical processes in the body, and outputs of the data store are also

inputs of hierarchical processes in the body.

Laws PS4 and PS5 express the rules characterizing structurally correct

hierarchical processes, where law PS4 states that a hierarchical process with an

empty body (a primitive process) is structurally correct, and law PS5 expresses the

rule characterizing structurally correct hierarchical processes with non-empty

bodies.

The observation functions of Procstruct are informal I~ described below:

• getinflows Returns the set of all inputs in a body.

• getoutflows Returns the set of all outputs in a body.

• getnetinputs

• getstores

• getinslhs

• getinsrhs

• getoutslhs

Returns the net inputs of a body.

Returns the set of data stores in a process structure.

Returns the set of parent flows in a set of ininterf aces.

Returns the set of descendant flows in a set of ininterfaces.

Returns the set of parent flows in a set of outinterfaces.

Chapter 4: The Picture Level 11 5

• getoutsrhs

• getinputs

Returns the set of descendant flows in a set of outinterfaces.

Returns the set of inputs of a hierarchical process (the parent

flows of the ininterfaces of the hierarchical process).

• getoutputs

• getalloutflows

Returns the set of outputs of a hierarchical process (the parent

flows of the outinterfaces of the hierarchical process).

Returns the set of flownames of all the outputs in the

hierarchical processes of a body. In concrete terms, the

function returns all the outputs of processes in the process

tree representations of the hierarchical processes in a body.

Example 4.6 is an example of the PL representation of a structurally correct

hierarchical process, and the effects of the observation functions on it.

Procstruct = ExtFlowstruct + H_PLstore +
Signature

sorts procstruct, pstruct
constructors

Nilstruct: • pstruct
mkstruct: set(ininterface), set(outinterface), pstruct • procstruct
mkpstruct1 : procstruct, pstruct • pstruct
mkpstruct2: hplstore, pstruct • pstruct

observation functions
getinflows, getoutflows, getnetinputs: pstruct • set(flowstruct)
getstores: pstruct • set(plstore)
getoutputs, getinputs: procstruct • set(flowstruct)
getinslhs, getinsrhs: set(ininterface) • set(flowstruct)
getoutslhs,getoutsrhs: set(outinterface) • set(flowstruct)
getalloutflows : pstruct • set(flowname)

ok-predlcate
okpstruct : pstruct • boolean
okprocstruct: procstruct • boolean

Laws V p:procstruct; st,sp:pstruct; ds:plstore; In, i1 :set(lnlnterface);
out,o1 :set(outinterface); n:procname

Laws characterizing okpstruct
PS1. okpstruct(Nilstruct)
PS2. isempty(getalloutflows(st)-int-

(getallflows(getoutslhs(out))+getalloutflows(sp))) = true,
isempty(getnetinputs(st)-int-(getalloutflows(sp)-diff­
getallflows(getoutslhs(out)))) = true => okpstruct(mkpstruct1 (mkstruct(in,
out, sp), st))

PS3. isempty(getalloutflows(st)-int-getsoutputs(ds)) = true,
issubset(getsinputs(ds) ,getoutflows(st)) = true,
issubset(getsoutputs(ds),getinflows(st)) = true =>
okpstruct(mkpstruct2(ds,st))

Laws characterizing okprocstruct
PS4. isempty(getinslhs(in)) = false, isempty(getoutslhs(out)) = false,

disting(getinslhs(in)+getoutslhs(out)) = true, getinsrhs(in) = 0,
getoutsrhs(out) = 0 => okprocstruct(mkstruct(in,out,Nilstruct))

PS5. sp -:1: Nilstruct, isempty(getinslhs(in)) = false, isempty(getoutslhs(out)) =
false, disting(getinslhs(in)+getoutslhs(out)) = true, getinsrhs(in) =
getnetinputs(sp), issubset(getoutsrhs(out),getoutflows(sp)) =true=>
okprocstruct(mkstruct(in ,out,sp))

Laws characterizing getstores
PS6. getstores(Nilstruct) = 0
PS?. getstores(mkstruct1 (mkstruct(n,in,out,sp),st)) =

getstores(sp+getstores(st))
PSS. getstores(mkstruct2(ds,st)) = ds+getstores(st)

Chapter 4: The Picture Level 11 6

Laws characterizing getinsrhs. getinslhs. getoutslhs, and getoutrhs
PS9. getinslhs(insert(i1 ,in)) = insert(getinlhs(i1),getinslhs(in))
PS10. getinslhs(0) = 0
PS11. getinsrhs(insert(i1 ,in)) = insert(getinrhs(i1),getinsrhs(in))
PS12. getinsrhs(0) = 0
PS 13. getoutslhs(insert(o1,out)) = insert(getoutlhs(01) ,getoutslhs(out))
PS 14. getoutslhs(0) = 0
PS 15. getoutsrhs(insert(o1,out)) = insert(getoutrhs(o1) ,getoutsrhs(out))
PS16. getoutsrhs(0) = 0
Laws characterizing getoutputs and getinputs
P17. getoutputs(mkstruct(in, out, sp)) = getoutslhs(out)
P18. getinputs(mkstruct(in, out, sp)) = getinslhs(in)
Laws characterizing getouttlows and getintlows
PS 19. getoutflows_(mkstruct1 (p,st)) = getoutputs(p)+getoutflows_(st)
PS2O. getoutflows_(mkstruct2(ds,st)) = getsoutputs(ds)+getoutflows_(st)
PS21. getoutflows_(Nilstruct) = 0
PS22. getinflows(mkstruct1 (p,st)) = getinputs(p)+getinflows(st)
PS23. getinflows(mkstruct2(ds,st)) = getsinputs(ds)+getinflows(st)
PS24. getinflows(Nilstruct) = 0
Laws characterizing getnetinputs
PS25. getnetinputs(Nilstruct) = 0
PS26. getnetinputs(st) = getinflows(st)-getouflows(st)
Laws characterizing getalloutf lows
PS27. getalloutflows(mkpstruct1 (mkstruct(in, out, sp), st))=

(getal If lows(getoutsl hs (out))+getalloutflows (sp)) +get al !outflows(st)
PS28. getalloutflows(Nilstruct) = 0

Figure 4.11 The RS Procstruct characterizing hierarchical processes

Example 4.6
The PL representation for the hierarchical process UpdateBorrStatus

The process UpdateBorrStatus is decomposed into two primitive processes,

UpdateBorrRecord and GenerateFinesRecord (see Chapter 2). The only

non-primitive hierarchical data flow is borr_update_info which has the following

PL representation:

borrinfo = borr_update_inf•((amount_paid•Nilfstruct)l(update_id•Nilfstruct)INilfstruct)

The PL representations of the primitive processes are:

UpdateBorrRecord = mkstruct({<amount_paid, 0>, <borr_fine_record, 0>},

{<update_status, 0>, <Updated_borr_detail, 0>}, Nilstruct)

GenFinesRecord = mkstruct({<update_id, 0>, <Update_time, 0>, <borr_detail, 0>},

{<borr_fine_record, 0>}, Nilstruct)

The PL representation of the body consisting of the above two primitive processes

is:

UpdateBody = mkpstruct1 (GenFinesRecord, mkpstruct1 (UpdateBorrRecord, Nilstruct))

Example 4.6 continued

Chapter 4: The Picture Level

Example 4.6 (continued)
The PL representation for the hierarchical process UpdateBorrStatus

The PL representation of the hierarchical processes is:

UpdateBorrStatus =
mkstruct({ <borrinfo, { amount_paid•Nilfstruct, update_id•Nilfstruct}>,

<Update_time•Nilfstruct, {update_time•Nilfstruct}>,

<borr_detail•Nilfstruct, {borr_detail•Nilfstruct}> }, { <Update_status• Nilfstruct,

{update_status•Nilfstruct}>, <updated_borr_detail•Nilfstruct,

{updated_borr_detail•Nilfstruct}>, Nilstruct}

11 7

The effects of the observation functions on the above hierarchical process are given

below:

getinflows(UpdateBody) =

{borr_fine_record•Nilfstruct, amount_paid•Nilfstruct, update_id•Nilfstruct,

update_time•Nilfstruct, borr_detail•Nilfstruct}

getoutflows(UpdateBody) =

{update_status•Nilfstruct, updated_borr_detail•Nilfstruct, borr_fine_record•Nilfstruct}

getnetinputs(UpdateBody) =

{amount_paid•Nilfstruct, update_id•Nilfstruct, borr_detail•Nilfstruct,

update_time•Nilfstruct}

getstores(UpdateBody) = 0

getoutputs(UpdateBorrStatus) = {update_status•Nilfstruct,

updated_borr_detail•Nilfstruct}

getinputs(UpdateBorrStatus) = {borrinfo, update_time•Nilfstruct, borr_detail•Nilfstruct}

getalloutflows(UpdateBody) = {update_status, updated_borr_detail, borr_fine_record}

4.2.3 The RS characterizing H_DFDs

H_Plapplic, the RS characterizing structurally correct H_DFDs shown in

Figure 4.11, is obtained from SimpleApplic, by replacing the primitive RS

Plflow by Flowstruct, replacing the RS Struct by Procstruct, and by replacing

Plentity and Plstore by H_Plentity and H_Plstore, respectively.

Objects of the type h_dfd characterized by H_Plapplic are H_DFDs. The

type is associated with a constructor mkapplic, which creates a H_DFD given a

hierarchical process (procstruct) and an EE (set(hplentity)). The laws of the RS

formally express the rule characterizing structurally correct H_DFDs given in

Chapter 2 and repeated below:

Chapter 4: The Picture Level 11 8

H4. A structurally correct H_DFD consists of a structurally correct EE and a

structurally correct hierarchical process. The set of all inputs (outputs) in the

EE of a structurally correct H_DFD is equal to the set of inputs (outputs) of

the hierarchical process of the H_DFD.

H_PLapplic = Procstruct + Set(H_PLentity) +
Signature

sort h_dfd
constructor

mkapplic: procstruct, set(hplentity) • h_dfd
ok-predicate

okapplic : h_dfd • boolean
Laws: V se:set(hplentity); p E procstruct

A 1. isempty(se) = false, isempty(getalleinputs(se)-int-getalleoutputs(se)) =
true, getalleinputs(se) = getoutputs(p), getalleoutputs(se) = getinputs(p)
• okapplic(mkapplic(p,se))

A2. okapplic(mkapplic(p,0))

Figure 4.12 The RS H_PLapplic characterizing H_DFDs

4.3 Model and operational semantics for the PL
The models associated with the RS, as well as satisfying the explicit laws of

the RS, also satisfy certain implicit laws arising from equality, inequality

assumptions, and assumptions on relations, made when formulating the laws of the

RS. Normalizing functions which transform terms to normal terms, where equal

terms are transformed to the same normal term, and unequal terms are transformed

to unequal normal terms, are used to express equality and inequality assumptions

(see Chapter 3). A description of the normalizing functions associated with

H_Plapplic follows.

Normalizing function for flowname

The RS characterizing flowname consists only of constructors for strings of

alphanumeric characters. All ground constructor terms are assumed unique (i.e. two

names are equal if and only if they are built in exactly the same way). Thus the

identity function is the normalizing function for flownames. Flowames are also

associated with an ordering based on an alphabetic and numeric ordering, in which

alphabetic characters are less than numeric characters. Tv..o \Lrings are compared

from left to right in the following manner: if the current character being checked in

the first string is greater than the corresponding character in the second string then

the first string is greater than the second string; if the t\l,, o characters are the same

then the next characters in the two strings are compared. For example,

ap23d>apf5h since 2>f. This ordering is used by normalizing functions for some of

the other sorts of H_Plapplic.

Chapter 4: The Picture Level 11 9

Normalizing functions for flowstruct

Two hierarchical data flows are equal if they have the same name and their

child decomposition sets are equal. The normalizing function for flowstruct orders

the flownames at each level of a flowstruct using the ordering on flownames

described earlier. For example the two flowstructs:

fl•(

(f22•(

(f221 • Nilfstruct)I

(f222• Nilfstruct)I

Nilfstruct)I

(f21 • Nilfstruct)I

(f23• Nilfstruct)I

Nilfstruct), and fl•(

(f23• Nilfstruct)I

(f21 • Nilfstruct) I

(f22•(

(f222• Nilfstruct)I

(f221 • Nilfstruct)I

Nilfstruct)I

Nilfstruct)

where f21<f22<f23, and f221<f222, are both transformed to the normal term:

fl•(

(f21 • Nilfstruct)I

(f22•(

(f221 •Nilfstruct)I

(f222• Nilfstruct)I

Nilfstruct)I

(f23• Nilfstruct)I

Nilfstruct)

Normalizing functions for hplentity and hplstore

Two hierarchical external entities (data stores) are equal if their sets of inputs

and outputs are equal. The normalizing functions for hplentities and hplstores

simply normalize their input and output sets of flowstructs.

Chapter 4: The Picture Level i20

Normalizing functions for ininterface and outinterface

Two in(out)interfaces are equal if and only if their parent flows are equal and

their sets of descendant flows are equal. The normalizing functions for these sorts

simply normalize the set of descendant flows.

Normalizing function for pstruct

Two bodies are equal if they contain the same hierarchical processes and data

stores. The normalizing function for pstruct simply normalize the hierarchical

processes (see below) and data stores in the body.

Normalizing function for Procstruct

Two hierarchical processes are equal if they have equal ininterfaces,

outinterfaces and bodies. The normalizing function for procstruct simply normalizes

the in(out)interfaces and bodies of hierarchical processes.

The assumptions on negated relations are derived from the operational

interpretation of H_PLapplic, described in the following section.

4.3.1 The PL R-CTRS

H_Plapplic can be converted to a R-CTRS by replacing the "=" symbol in

the consequences of the laws to "•". This is possible since, in each law, the sets

of variables of the literals in the antecedent are all a subset of the set of variables in

the term on the left hand side of the equality symbol (or relation or ok-predicate) of

the consequence, and the set of variables in the term on the right hand side of the

equality symbol of the consequence is a subset of the set of variables in the term on

the left hand side of the equality symbol.

Recall from Chapter 3 that a R-CTRS is sufficiently complete if and only if:

1 . it is ground terminating and ground confluent; and

2. every defined non-constructor term rewrites (in one or more steps) to a ground

constructor term (i.e. for a defined non-constructor term, f E T(F),

ok(f)• *TT • f• *c, where c is a constructor term).

Since ok-predicates are characterized in terms of constructor terms only in the

laws of H_PLapplic (see D5 to D7 of Flowstruct; E8, E9 of ExtFlowstruct; HEl,

HE2 of H_PLentity; HS 1, HS2 of H_PLstore; PS 1 to PSS of Procstruct; and A 1,

A2 of H_PLapplic), then if ok(f)• *TT, where f is a non constructor term, then f is

reducible to a ground constructor term, c, such that ok(c)• TT. Thus condition 2

above is satisfied Chapter 3 gives conditions for termination and confluence, which

are repeated below:

Chapter 4: The Picture Level

An R-CTRS, R, is terminating if:

(1) <his a partial ordering on T(F)

121

(2) for every rule with consequence f(s) • rhs, every sub term of rhs and every

sub term of the terms appearing in the premises, g(t), is either:

• g<hf, or

• NOT(f<hg), and t%S, where% is the multi-set ordering on terms based on

<h.

A R-CTRS is confluent if the following conditions hold:

(1) The consequences of a rule must have left hand sides with only constructor

terms as proper sub terms (i.e. a lhs must be of the form f(cl, ... ,en) where

cl, ... ,en are constructor terms); and

(2) Let Al • lhsl • Rrhsl and A2 • lhs2• Rrhs2, be any two rules in a R

CTRS such that there is a defined substitution, a, which unifies lhsl and lhs2

(i.e. alhsl =s alhs2 where =s symbolizes syntactic equality). Then either:

• arhs 1 =s arhs2; or

• there exists u':;t:v' E Al+A2 such that au' and av' have a common reduct,

or au' • *Rcl, oks'(cl), av' • *Rc2, oks'(c2), and Ns•(cl) = Ns•(c2),

where c 1 and c2 are ground constructor terms of sort s', and N s' is the

normalizing function for the sort; or

• there exists u = v E Al+A2 such that NOT(auJ.av), and if au• *Rcl,

oks(cl), av• *Rc2, oks(c2), then Ns(cl) :;t: Ns(c2), where cl and c2 are

ground constructor terms of sort s, and N s is the normalizing function for

the sort; or

• there exists r E Al+A2 such that NOT(ar• *RTT); or

• there exists ~r' E Al+A2 such that ar'• *RTT.

An inspection of the laws would show that the characterizing sets of non­

constructors use only function and relation symbols that are already characterized in

terms of other non-constructors at the same level or at lower levels (i.e. primitive

non-constructors; see for example, the characterizing set of getflowstructs {E4,

ES}, and the characterizing set for getnetinputs {PS2S, PS26}). Also, primitive

non-constructors are not characterized in terms of non-primitive function symbols.

In the case of ok-predicates, recursive definitions, in terms of other ok-predicates at

the same level are permitted (for example, see the characterizing sets for the

constructors of data flow, {DS, D6, D7}, and process hierarchies, {PSl, PS2,

PS3, PS4, PSS}). In such cases, inspection of the characterizing sets will reveal

that the arguments of the constructors in the antecedents of the laws are simpler than

the arguments on the left hand side of the equality symbol in the consequence, for

example, in the law PSS, implicit in the antecedent is the literal okpstruct(sp),

Chapter 4: The Picture Level 122

where okpstruct and okprocstruct are incomparable, but the arguments of okpstruct

are simpler than the arguments of okprocstruct, since { sp} <<h { mkstruct(in, out,

sp)}. The relation <hon the function symbols of H_Plapplic is thus a partial order

and determines a simplification order on its ground terms. Thus termination of the

R-CTRS corresponding to the H_PLapplic is guaranteed.

The laws in the characterizing sets of the non-constructors and ok-predicates all

have consequences whose left hand sides are have only constructor terms as

arguments, thus satisfying condition (1) of the confluence conditions. Furthermore,

no two rules may be applied to the same term, such that the left hand sides of the

consequences of the rules match, but not their right hand sides. Thus H_PLapplic is

also ground confluent.

The R-CTRS generated from H_Plapplic is thus sufficiently complete,

providing an effective means by which the syntactic properties of DFDs can be

investigated.

The following steps may be carried out in an investigation of the structural

correctness of DFD structures:

1. Transform the construct to its PL representation, say c.

2. Find the set of laws characterizing the ok-predicate for the construct, ok,

whose consequences can be matched with c. If the set is empty then the

construct is not structurally correct. If the set is not empty then apply each rule

to c, until either

a. a law is found such that ok(C) • TT, in which case the construct is

structurally correct; or

b. all laws in the set have been applied and none reduces ok(c) to TT, in

which case the construct is not structurally correct.

The operational interpretation of H_PLapplic in terms of the R-CTRS, provides

a formal basis for syntax analysis tools. Builders of such tools can use the PL to

formally validate their tools.

4.4 Limitations of the PL
The PL provides a formal characterization of the syntactic aspects of DFD

hierarchies and supports automated reasoning about such aspects via an operational

interpretation. It has the potential to act as the formal basis for syntax analysis tools

which take DFD structures and transform them into formal representations capable

of being analysed. The PL in its present form though provides only a very basic

foundation for an automated environment supporting the analysis of the syntactic

aspects of DFDs. One notable limitation is that the PL provides very little support

for the analysis of syntactic structure still undergoing development. For example, if

Chapter 4: The Picture Level 123

one decomposes the primitive processes of a hierarchy of DFDs further, it is

viewed as the creation of a new hierarchical structure in the PL with no formal

relationship to the hierarchy it was developed from. To enhance the use of the PL in

this respect it would be useful to have a sub system of RSs in the PL which

characterize modification functions (eg. adding, and deleting syntactic structures),

and "is a refinement of" relationships between syntactic structures which have been

decomposed further.

Another limitation related to the one above, is that currently the PL can only

be used to reason about the structural correctness of complete structures. In the

actual construction of DFDs one might also like to reason about incomplete

syntactic structures, as well as reason about other properties of correct structures.

By adding a special defined object, called a void object, in each sort, syntactic

structures which are incomplete as a result of missing parts can be represented by

placing the void objects of the appropriate sorts in the missing parts of the syntactic

structures. The void objects indicate that the omissions were intentional, and

'completes' the syntactic structures so that the functions and relations which act

only on complete syntactic structures, can also be applied to the incomplete

constructs.

Relations, other than the ok-predicates characterizing structurally correct DFD

structures can be added to express additional properties which may be of interest to

tool developers and users. Such laws may be expressed using the observation, and

auxiliary functions that already exist in the PL, or they may require additional

functions to be added to the current PL.

The PL is useful only for the investigation of syntactic properties of DFDs. It

does not provide semantic interpretations for the data objects in the DFD, nor does

it provide behavioural interpretations for the processing components. Such

interpretations are needed in order to fully specify the data and behavioural aspects

of an application. Chapter 5 provides semantic interpretations for the structurally

correct structures characterized in this chapter.

CHAPTER 5

The Specification Level:
Deriving Behavioural Specifications

from DFDs

5.0 Introduction
A number of researchers have proposed extensions to DFDs to support the

specification of time-dependent behaviour. The tools and techniques based on such

extensions lack the degree of formality required to support their use in the rigorous

validation and verification of behavioural properties. The Specification Level (SL)

of the formal framework for SA provides tools and techniques for pictorially

describing and formally specifying the behaviour of applications, based on such

formal foundations.

The derivation of the formal specification of behaviour from a hierarchy of

DFDs goes through the following steps, as outlined in Chapter 2:

1. Generating a flat representation of the hierarchy of DFDs. Such a

representation, called the primitive DFD, consists of the primitive processes,

and all the data stores and external entities in the hierarchy of DFDs.

2. Introducing notation for describing state dependent behaviour into the

primitive DFD, specifying the state dependent behaviour, and identifying

actions, and state and asynchronous data flows to and from the external

environment (EE). The result of this step is an ExtDFD.

3. Specifying the data types associated with the ExtDFD's data flows and data

stores.

4. Specifying the behaviour of the ExtDFD's primitive processes and data stores.

5. Deriving the specifications of behaviours of the ExtDFD's actions from the

specifications of behaviours of their constituent processes.

6. Deriving the specification of behaviour of the ExtDFD from the specifications

of behaviour of its actions, data stores, and asynchronous data flows, and the

specification of its state dependent behaviour.

This chapter describes the tools and techniques of the SL which are used in

steps 3, 4, 5, and 6 above. Steps 1 and 2 were covered in Chapter 2. The use of the

derived formal specification in the formal validation and verification of behavioural

properties is also discussed in this chapter.

The SL consists of tools and techniques for formally specifying:

124

Chapter 5: The Specification Level '125

(A) the static aspects of data flows and data stores in an ExtDFD, and

(B) the dynamic aspects of data flows, data stores, processes and actions, in an

ExtDFD.

The use of these technique results in two types of specifications for ExtDFDs:

the Data Environment (DE), and the Behavioural Specification (BS). The DE of an

ExtDFD is the set of RSs resulting from the use of the techniques in (A). Such RSs

characterize the object classes associated with the data flows and data stores in an

ExtDFD, and their structures. In SA, such definitions were expressed quasi­

formally in the data dictionary. The DE can be viewed as the formal counterpart of

the data dictionary.

The BS of an ExtDFD is derived as a result of using the techniques in (B). It

integrates specifications of the data aspects of an ExtDFD, provided by the DE,

with specifications of the functional and control aspects of the ExtDFD.

Behaviourally, actions and their constituent processes, data stores and

asynchronous data flows are treated in the same manner, thus, allowing their

specifications to be integrated in a "natural" way, that is, without resorting to

techniques for bridging different specification tools. When only their behavioural

aspects are of concern actions, ExtDFD processes, data stores and data flows are

collectively called processes. To distinguish this use of the term process from its

use in describing places of transformations in an ExtDFD, the latter use is qualified

by the term ExtDFD, as is done in the previous sentence.

Furthermore, processes are treated as abstract data types (ADTs), thus

permitting the integration of data specifications with specifications of behaviour.

The BS of an ExtDFD is an algebraic characterization of an ADT representing the

class of behaviours of the ExtDFD. A similar treatment of data and processes is

used in the SMoLCS approach [AGR88]. Another approach to integrating data and

process specifications based on ADTs can be found in Kaplan and Pnueli [KP87].

The SL techniques described in this chapter are demonstrated with the aid of

the action CheckoutBook and its associated data stores, asynchronous data flows

and state flows. The diagram is shown in Figure 5.1.

Chapter 5: The Specification Level

checkout
info

.:::r::J • .. :

checkout

BOOK

out book id

out_

borr_id

Get-

ouc_updated_
book

_c;;.;;.1;;..;.mo __ -C=:J----+tOverdue-
Books

out
borr

BORROWER

checkout
mQ:,aaqg

ouc_updated_

borr

Figure 5.1 The ExtDFD for CheckoutBook

5.1 The Data Environment (DE)

'126

When only the static aspects of data stores and data flows are of concern they

are collectively called data entities. A data entity is associated with a class of

objects, and data stores and asynchronous data flows are also associated with

structures. The DE provides algebraic characterizations of the class of objects and

structures of data entities, in the form of RSs. The RSs characterizing the object

class of a data entity also include functions for 'splitting' objects into sub objects.

Such functions are needed, for example, to establish the relationships between the

input and outputs of splitters.

The algebraic characterizations of the structures associated with data entities

include functions which observe and modify the structures.

5.1.1 Characterizing the object classes associated with data entities

The function symbols in a RS characterizing the object class of a data entity

can be categorized as follows:

• Constructors : A constructor is a function which builds new objects of an object

class.

• Observation functions: An observation function returns a sub object of an object.

• Auxiliary functions: Non-constructors which are not observation functions.

The RSs characterizing the object class of the data entities associated with

CheckoutBook are given in Example 5.1. The characterizations are based on the

type definitions given in Example 2.7 of Chapter 2, and repeated in Example 5.1.

Chapter 5: The Specification Level 127

Example 5.1
Characterizing the object classes of the data entities associated with the action

CheckoutBook

Type definitions for the data entities associated with the action CheckoutBook on
which the specifications given in this example are based:

Non-base data types
bb status
book

book id
borr detail
borr fine record - -
borr_flag
out borr>>
borr_update_info
borrower

payment to date>
borrower-be~ detail
borrower id
borrower indicator
checkout info
checkout_message
ISBN
out book
out book id
out borr
borrower_type,
out_updated_book
out_updated_borr
vetted book

vetted borr

Base data types
amount_paid
author
borrower addr
borrower name
borrower_type
checkout time -
copy#
copy_type
fine
fines record
out borr id - -
payment_to date
subject
title

.. -

<time returned I "Not returned">
<book=id, title, subject, author,
copy type, borrower indicator>
<ISBN, copy#> -
[borrower_book_detail]
<<number, borrower_id> I "Not in file"
<"Not in file" I <borrower id,

<borrower id, number>
<borrower id, borrower name,
borrower-addr, borrower type,
[borrower book_detail], -

<book id, due_time, bb status>
< [character]>
<"Available" I borrower id>
<book id, borrower_id> -
<vetted_borr, vetted book>
<[integer]>
<borrower_indicator, copy_type>
book id
<[borrower_book_detail],

payment to date>
borrower indicator
[borrower_book_detail]
<<book id, copy type> I "book not in
file" I "book al~eady checked out" I
"not borrowable">
<<"Fines over limit", number> I
"borrower not in file" I
<out_borr, borrower_id>>

number
[character]
[character]
[character]
<"undergrad" I postgrad" I "staff">
time
integer
<"book" I "reference" I "periodical">
number
[number]
borrower id -
number
[character]
[character]

Example 5.1 continued

Chapter 5: The Specification Level 128

Example 5.1 (continued)
Characterizing the object classes of the data entities associated with the action

CheckoutBook

The RSs characterizing the object classes associated with the data store BOOK

Copy_type =
Signature

sort copy_type
constructors

Book: • copy_type
--- corresponds to the "book" option in the type definition for copy_type --­
Ref : • copy_type
--- corresponds to the "reference" option in the type definition for copy_type --­
Per: • copy_type
--- corresponds to the "periodical" option in the type definition for copy_type ---

Book_id = ISBN_code + Integer+
Signature

sort book_id
constructor

mkbkid: ISBN, integer • book_id

Borrower_indic = Borrower_id +
Signature

sort borrower_indicator
constructors

mkbind : borrower_id • borrower_indicator
Available : • borrower_indicator
--- corresponds to the "Available" option in the type definition for
borrower_indicator ---

Book= Borrower_indic + Book_id + List(Character) +Time+ Copy_type +
Signature

sorts book
constructor

mkbook: book_id, list(char), list(char), list(char), copy_type,
borrower_indicator • book

Book characterizes the object class, book, of the data store BOOK. The three lists of
characters in the domain of the constructor mkbook represent the title, subject, and
author of the book, respectively.

The RSs characterising the object classes associated with the data store
BORROWER

An RS Borrower_id, characterising the class of borrower_id objects, is assumed
available in what follows.

Example 5.1 continued

Chapter 5: The Specification Level 129

Exa1nple 5.1 (continued)
Characterizing the object classes of the data entities associated with the action

CheckoutBook
Borrower_book_detail = Book_id + Time +

Sig nature
sorts borrower_book_detail, bb_status
constructors

mkbbstatus : time • bb_status
NotRet : • bb_status
--- corresponds to the "Not returned " option in the type definition for
bb_status ---

Borrower_type =
Signature

sort borrower_type
constructors

Undergrad : • borrower_type
Postgrad : • borrower_type
Staff: • borrower_type

Borrower= Borrower_id + List(Borrower_Book_Detail) +Number+ List(Character) +
Borrower_type +

Signature
sort borrower
constructor

mkborr: borrower_id, list(char), list(char), borrower_type,
list(borrower_book_detail), number • borrower

Borrower characterizes the class of objects stored in the data store BORROWER.
The two lists of characters in the constructor mkborrower represent the borrower's
name and address, respectively, while the number represents the amount paid on
fines by the borrower.

RSs characterizing the object classes associated with the data flows of
CheckoutBook

Checkout_info = Book_id + Borrower_id +
Sig nature

sort checkout_info
constructor

mkoutinfo : book_id, borrower_id • checkout_info
observation functions

getbookid : checkout_info • book_id
getborrid : checkout_info • borrower_id

Laws V bk:book_id; borr:borrower_id
1. getbookid(mkoutinfo(bk, borr)) = bk
2. getborrid(mkoutinfo(bk, borr)) = borr

Checkout_info defines the object class of the data flow checkout_info. The
observeration functions are associated with the splitting of the data flow into the sub
data flows out book id (getbookid) and out borr id (getborrid).

Example 5.1 continued

Chapter 5: The Specification Level 130

Example 5.1 (continued)
Characterizing the object classes of the data entities associated with the action

CheckoutBook
Out_book = Copy_type + Borrower_indic +

Signature
sort out_book
constructor

mkoutbk : borrower_indic, copy_type • out_book

Out_book characterizes the object class of the data flow out_book.

Vetted_book = Book_id + Copy_type +
Signature

sort vetted_book
constructors

mkvbk: book_id, copy_type • vetted_book
Bknotinfile : • vetted_book
--- corresponds to the "book not in file" option in the type definition for
vetted_book ---
CheckedOut : • vetted_book
--- corresponds to the "book already checked out" option in the type
definition for vetted_book ---
NotBorr :• vetted_book
--- corresponds to the "not borrowable" option in the type definition for
vetted_book ---

Vetted_ book characterizes the object class for the data flow vetted_book.

Out_borr = Borrower_type + List(Borrower_book_detail) + Number +
Signature

sort out_borr
constructor

mkoutbr : list(borrower_book_detail), borrower_type, number • out_borr

Out_borr characterizes the object class of the data flow out_borr.

Borr_flag = List(Borrower_book_detail) +
Signature

sorts borr_flag
constructors

Bflag : • borr_flag
--- corresponds to the "Not in file" option in the type definition for
borr_flag ---
mkbflag : borrower_id, out_borr • borr_flag

Borrower flaQ defines the object class of the data flow borr flag.
Example 5.1 continued

Chapter 5: The Specification Level "1 3 "1

Example 5.1 (continued)
Characterizing the object classes of the data entities associated with the action

CheckoutBook

Vetted_borr = Borrower_flag + Number+
Signature

sorts vetted_borr
constructors

mkerrvborr : number • vetted_borr
--- corresponds to the "Fines over limit" option in the type definition for
vetted_borr ---
NoBorr : • vetted_borr
--- corresponds to the "borrower not in file" option of the type definition for
vetted_borr ---
mkvetborr: out_borr, borrower_id • vetted_borr

Vetted_borower defines the object class of the data flow vetted_borrower.

Checkout_message = Vetted_book + Vetted_borr +
Signature

sorts checkout_message
constructor

mkoutmess : vetted_borr, vetted_book • checkout_message

Checkout_message defines the object class of the data flow
checkout_message.

5.1.2 Characterizing the structure of data entities

Asynchronous data flows and data stores may be associated with more than

one object at any particular point in time. The structure of data stores and

asynchronous data flows define the relationships between the objects asociated with

them. Structures are characterized in terms of access functions which modify and

observe them.

Asynchronous Data Flows

Asynchronous data flows are associated with queue structures. The receivers

of an asynchronous data flow receive objects from the top of the queue associated

with the data flow, while the generator places an object at the bottom of the queue.

The RS schema characterzing the generic structure of asynchronous data flows is

given in Figure 5.2. The specification of the structure of a particular asynchronous

flow is obtained by instantiating the schema with the RS characterizing the object

class of the data flow.

Chapter 5: The Specification Level

Asynch(Element) =
Signature

sort asynch
constructors

emptyq : • asynch
addq : elem, asynch • asynch

observeration function
top : asynch • elem

auxiliary function
deleteq : asynch • asynch

Laws V e:elem; q:asynch
, . deleteq(addq(e,emptyq)) = emptyq
2. q -f:. emptyq • deleteq(addq(e,q)) = add(e,deleteq(q))
3. top(addq(e,emptyq)) = e
4. q -f:. emptyq • top(addq(e,q)) = top(q)

132

Figure 5.2 The RS schema characterizing the generic structure of
asynchronous data flows

Data Stores

, The access functions in a RS characterizing the structure of a data store can be

classified as follows:

• Read access functions : functions which carry out observations on the structure.

Such functions usually return an object in the structure, or an object indicating

that a requested object is not in the structure.

• Update functions : functions which modify an existing object in the structure.

• Add functions: functions which add new objects to the structure.

• Delete functions : functions which delete existing objects from a structure.

Update and add functions are collectively referred to as write access

functions. The access functions associated with the structure of a data store is

determined by its inputs and outputs. Each input of a data store is associated with a

write access function in the RS characterizing the structure of the data store, while

each output is associated with a read and/or delete function in the RS. Example 5.2

gives the RS characterizing the structure of the data store BOOK, associated with the

data flows shown in Figure 5.1.

Chapter 5: The Specification Level 133

Example 5.2
Characterizin_g the structure of the data store BOOK, shown in Figure 5.1

The data store BOOK has a single input, out updated book, and a single
output, out book, in Figure 5.1. The inputout updated book represents an
update on the data store and is associated with an update access function called
updatebk2 in the RS BookStore characterizing the structure of the data store
BOOK. The output out book represents a read access, and is associated with a
read access function in BookStore called readbook2.
BOOK is a list of book objects. The type readval is tl)e class of objects
representing the status of a read access on the data store. Thus, if the read access is
successful, that is, if the desired object is in the data store, then the read val object
returned reflects the object retrieved otherwise the readval object returned, Nullval,
reflects an error situation.

Bookstore = List(Book) + Out_book + Borrowe_indic +
Signature

sort readval
constructors

Nullval : • readval
mkreadval : out_book • readval

read-access function
readbook2 : list(book), book_id • readval

update function
updatebk2 : list(book), borrower_indicator, book_id • list(book)

Laws V bid, bid':book_id; t,s,a:list(char); ct:copy_type; lb:list(book);
indic, indic':borrower_indicator

Laws characterizing the read function associated with the output out book
1. bid= bid' • readbook2(mkbook(bid, t, s, a, ct, indic)jlb, bid')=

mkreadval(mkoutbk(indic, ct))
2. bid :t bid' • readbook2(mkbook(bid, t, s, a, ct, indic)jlb, bid') =

readbook2(1b,bid')
3. readbook(emptylist, bid)= Nullval
Laws characterizing the update function associated with the input
out updated book
4. bid = bid' •

updatebk2(mkbook(bid, t, s, a, ct, indic)jlb, indic', bid')
= mkbook(bid, t, s, a, ct, indic')llb

5. bid :t bid' •
updatebk2(mkbook(bid, t, s, a, ct, indic)jlb, indic', bid')

= mkbook(bid, t, s, a, ct, cs', indic')Jupdatebk2(1b, indic', bid')
6. updatebk2(emptylist, indic, bid) = emptylist

5.2 The Behavioural Specification (BS)
An ExtDFD is interpreted as a system of asynchronously interacting actions,

where actions are themselves systems of synchronously interacting ExtDFD

processes. The BS characterizing the behaviour of an ExtDFD, is derived from the

specifications of the behaviour of its actions, data stores and asynchronous data

flows, and the specifications of its state dependent behaviour.

Chapter 5: The Specification Level 134

Process behaviour is characterized in terms of labeled state transition systems.

The particular technique, algebraic specification of labeled transition systems, was

chosen for the following reasons:

• the abstract nature of the derived specifications means that they are more likely

not to specify detail which may unduly constrain subsequent development;

• it provides a framework for integrating specifications of the data, functional, and

control aspects of an application; and

• its formal foundation can be used to support rigorous validation and verification

activities.

Labeled transition systems have been used to specify complex interactions at

various specification levels. At the program specification level the work of Milner

and Hoare [Mil80, Hoa85] are outstanding examples, while the work of Lamport

[Lam86, Lam88] is an example of the use of such systems at both the design and

program specification levels. An algebraic characterization of labeled transition

systems defining program behaviours was introduced by Broy and Wirsing

[BW83], and further developed by Astesiano et al. in the SMoLCS approach

[AR87, AGR88]. The characterizations are based on an operational interpretation of

processes as labeled transition systems, and of systems of processes as the

composition of their sub systems [AGR87]. The algebraic technique used here is

based, in principle, on the work of Astesiano et al. [AGR88], but applied to a

higher specification level.

5.2.1 Algebraic state transition systems (ASTSs)

A labeled state transition system is a triple <S, L, T> where S is a set of

states, Lis a set of event labels, and Tis the labeled transition relation [S, L, SJ,

whose elements are called transitions. A transition [sl, 11, s2], where sl and s2 are

in S and 11 is in L, intuitively means that the effect of an event, represented by 11,

on the state sl is a change to the state s2.

In the SL, state transition systems are characterized algebraically by RSs of

the form shown in Figure 5.3. The primitive RS ST A TE characterizes a set of

states, LABEL characterizes a set of labels, and AUXS characterizes the additional

functions and/or relations needed to characterize the transition relation, denoted by

the symbol_=_=>_ and characterized by the set of equations TRANSEQS. Such

algebraic specifications of state transition systems are called algebraic state

transition systems (ASTSs).

Chapter 5: The Specification Level

TS= STATE+ LABEL+ AUXS +
transition relation

==>_: state, label, state
laws TRANSEQS

Figure 5.3 Algebraic specification of a state transition system

"135

The BS of an ExtDFD is an ASTS with the primitive RSs, ST A TE

characterizing the states of the ExtDFD, and LABEL characterizing the event labels

of the ExtDFD. The BS is compositional in the sense that it is built up from ASTSs

characterizing the behaviour of asynchronous data flows, data stores, and actions.

The ASTS for action are in turn built up from ASTSs characterizing their

constituent ExtDFD processes.

5.2.2 Specifying the behaviour of ExtDFD processes

An ExtDFD process is characterized by its class of behaviours called

invocations, where an invocation is a labeled sequence of process states. The class

of invocations associated with a DFD process is characterized implicitly by a labeled

state transition system, <S, L, T>, where S is a set of ExtDFD process states, L is

a set of ExtDFD process labels, and T is the transition relation defining the

allowable state transition. For an ExtDFD process with n data inputs and m control

and data outputs, a state in Sis a (n+m)-tuple, where each place of the tuple reflects

the effect of event occurrences, represented by the labels in L, related to the receipt

of data on the corresponding input or the genertation of data or signals on the

corresponding output.

The following types of event labels may be associated with an ExtDFD

process:

• Receive : Labels representing the observable effects of events which take data

off the inputs of the process which are not emanating from data stores.

• Read/Delete : Labels representing the observable effects of successful read or

delete events on data stores.

• Erread!Errdel: Labels representing the observable effects of unsuccessful read

or delete events on data stores.

• Send: Labels representing the observable effects of send events on data flows.

The behaviour of ExtDFDprocesses, as defined here, is determined by the

events related to the receipt of data on their inputs and the generation of data and/or

signals on their outputs. ASTSs specifying processes in the above manner can be

said to characterize the externally observable behaviour of the processes. Details

concerning the internal structure of processes, in the form of state changes

occurring as the result of inputs being transformed into outputs, are not

characterized by the ASTSs used here. The high level nature of these specifications

Chapter 5: The Specification Level 136

is appropriate at the requirements specification/initial design stages, for which the

SL is intended, since they do not overly constrain subsequent development with

internal details of a process's activities.

The ASTS for the process CheckBook is given in Example 5.3.

Example 5.3
Characterizing the state transitions of CheckBook

The DFD process CheckBook is associated with an abbreviated name PS, which is
used in the names of the RSs characterizing its states, labels, and transition system.

P5Iabels = Vetted_book + Out_book + Book_id +
Sig nature

sort p5Iabel
constructors

Receivep5 : book_id • p5Iabel
Readp5 : book_id, out_book • p5Iabel
Erreadp5 : book_id • p5Iabel
Sendp5 : vetted_book • p5Iabel

P5Iabels gives the labels associated with CheckBook.

P5state= Vetted_book + Book_id + Out_book +
Signature

sorts receivep5, readp5, sendp5, p5state
constructors

Nullinp5 : • receivep5
inp5 : book_id • receivep5
Nullrdp5 : • readp15
errp5 : • readp5
rdp5 : out_book • readp5
Nulloutp5 : • sendp5
outp5 : vetted_book • sendp5
<_,_,_> : receivep5, readp5, sendp5 • p5state

The state of CheckBook is a tuple of sorts receivep5, readp5, sendp5 which
represent the states of the accesses associated with the data flows out book id,
out book, and vetted book respectively. The states Nullinp5, Nullrdp5,
and Nulloutp5 represent the situation where no accesses via the associated data
flows have been attempted. errp5 denotes an unsuccessful read attempt to the data
store BOOK.

CheckBook_ TS = P5state + P5Iabel +
Sig nature

transition relation
--> _: p5state, p5Iabel, p5state

Laws V outbk:out_book; ty:copy_type; bid:book_id
1. <Nullinp5, Nullrdp5, Nulloutp5>

-Receivep5(bid)->
<inp5(bid), Nullrdp5, Nulloutp5>

2. <inp5(bid), Nullrdp5, Nulloutp5>
-Readp5(bid, outbk)->

<inp5(bid), rdp5(outbk), Nulloutp5>

Example 5.3 continued

Chapter 5: The Specification Level

3. ty:;t:Ref •

Example 5.3 (continued)
Characterizing the state transitions of CheckBook

<inp5(bid), rdp5(mkoutbk(Available, ty)), Nulloutp5>
-Sendp5(mkvbk(bid, ty))->

<inp5(bid), rdp5(mkoutbk(Available, ty)), outp5(mkvbk(bid, ty))>
4. <inp5(bid), rdp5(mkoutbk(Available, Ref)), Nulloutp5>

-Sendp5(Notborr)->
<inp5(bid), rdp5(mkoutbk(Available, ty)), outp5(Notborr)>

5. inp5(bid), rdp5(mkoutbk(mkbind(borrid)), Nulloutp5>
-Sendp5(Checkedout)->

<inp5(bid), rdp5(mkoutbk(mkbind(borrid)), outR5(Checkedout)>
6. <inp5(bid), Nullrdp5, Nulloutp5>

-Erreadp5(bid)->
<inp5(bid), errp5, Nulloutp5>

7. <inp5(bid), errp5, Nulloutp5>
-Sendp5(Bknotinfile)->

<inp5(bid), errp5, outp5(Bknotinfile)>

137

Law 1 defines the transition caused by an access event on out book id. Law 2
defines the transition resulting from a successful read access to the datastore BOOK,
while law 6 defines the transition resulting from an unsuccessful read access to the
same data store. Laws 3, 4, 5, and 7 define the transition resulting from the
occurrence of the send event, under different conditions on the input data. Law 6
defines the transition resulting from the occurrence of the send error event which
occurs after an unsucessful read has been made.

5.2.3 Specifying ExtDFD actions

The actions of an ExtDFD are associated with states and event labels derived

from the states and labels of their constituent ExtDFD processes. For an action

consisting of n ExtDFD processes, Pl, ... , Pn, a state of the action is of the form

<pl, ... , pn>, where pi is a state of Pi, l:S::i::;n.

The event labels of an action represent:

• synchronized send/receive events for for each data flow between ExtDFD

processes, where such events are called internal action events,

• synchronized receive events associated with the inputs of its initiators,

• read and/or delete events associated with its ExtDFD processes,

• send events associated with its terminators,

• parallel events composed of internal action events,

• a termination event whose effect is to revert all the DFD processes to their idle

state,

All data flows between DFD processes in an action are synchronous thus the

send and receive events of DFD processes connected by data flows in an action are

synchronized. Also the invocation events of the invokers of an action are all

synchronized. Labels representing the effect of synchronized sets of events of an

action are called synchronous labels. Such labels are generated by the function

Chapter 5: The Specification Level 138

SYNCH which takes a set of labels and returns a synchronous label representing

the effect of the synchronized set of events. In an ASTS characterizing the

behaviour of an action with n ExtDFD processes, the laws characterizing the effect

of synchronized events on the state of an action, are of the following form:

p1--11-->p1', ... , pj--lj-->pj', cond(l1, ... ,Ii) •

<P1, ... , pj, pk, ... , pn>==SYNCH({l1, ... , li})==><P1 ', ... , pj', pk, ... , pn>

The above is interpreted as follows: if an ExtDFD process's state pi is capable

of being transformed into pi' by an event labeled by Ii, 1:s;i:s;j, and the condition on

the labels cond(l1, ... , lj), holds, then the state of the action <p1, ... , pj, pk, ... ,

pn> can be transformed by the synchronized events, represented by the

synchronous event label SYNCH({l1, ... , lj}), to the state <p1', ... , pj', pk, ... ,

pn>.

Certain DFD process events also become action events, called single events of

the action, for example the read and send events of ExtDFD processes in an action.

The effect of these events on the state of an action are expressed in their ASTS in

the following manner:

pk--lk-->pk', cond(lk) • <P1, ... , pk, ... , pn>==Pk(lk)==><P1, ... , pk', ... , pn>

Pk is a coercion function, which converts an ExtDFD process label to an

action label. In the ASTSs that follow, such coercion is left implicit so as to

simplify the presentation of the ASTSs.

Internal action events which affect mutually exclusive parts of an action's

state can occur in parallel. This is expressed by the laws of the form:

<P1, ... , pi, pj, ... , pn>==l1 ==><<P1 ', ... , pi', pj, ... , pn>,

<P1, ... , pi, pj, ... , pn>==l2==><P1, ... , pi, pj', ... , pn'> •

<P1, ... , pi, pj, ... , pn>==PAR(l1,l2)==><p1', ... , pi', pj', ... , pn'>

Internal action events which affect the same process state, but mutually

exclusive parts of such states, can also occur in parallel, for example, some

ExtDFD processes may be allowed to generate some of their outputs in parallel.

Actions are also associated with termination events which cause all its DFD

processes to revert to the idle state. The resulting state is also called the idle state of

the action. An action can only be invoked if it is in the idle state, thus parallel

invocations of an action are not allowed.

Chapter 5: The Specification Level 139

Example 5.4 gives the ASTS characterizing the behaviour of the action

Checkout Book.

Example 5.4
Characterizing the behaviour of the action CheckoutBook

The DFD processes of the action CheckoutBook (A4) are associated with the
following abbreviated names: CheckBook - P5, GetOverdueBooks - P6,
CalculateFine - P7, VettBorrower - P8, CheckoutUpdate - P9.

The following auxiliary functions are needed in order to characterize the transition
relation for CheckoutBook:

FinesRec = Out_borr + Borrower_book_detail + List(Number) + Time +
Signature

auxiliary function
getfinesrec : list(borrower_book_detail), time • list(number)

Laws \::/ bid:book_id; lb:borrower_book_detail; bbs:bb_status;
t1 ,t2:tlme

1. t2>t1 • getfinesrec (mkbdet(bid, t1, bbs)llb, t2) =
(Rate*(t2-t1)))1getfinesrec (lb, t2)

2. t2<t1 • getfinesrec (mkbdet(bid, t1, bbs)llb, t2) = getfinesrec (lb, t2)

Fines Rec characterizes the functional relationship between the objects of the
list(borrower_book_detail) sub class of out_borr and the data objects
associated with the data flow fines_record. The class time is simply treated as
an integer line, with successive integers representing successive days.

Sumlist = List(Number) +
Signature

auxiliary function
sum : list(number) • number

Laws \::/ n:number; ln:llst(number)
1. sum(njln) = n+sum(ln)

Sum list defines the functional relationship between the input fines record
and the output fine of the process CalculateFine.

A4_ TS = A4state + A41abel +
Signature

transition relation
_ == _ ==> _: a4state, a41abel, a4state

Laws \::/ bld:book_ld; borrid:borrower_id; t:tlme; vbk:vetted_book;
p1 ,p1 ':statep1 ; ... ; p5,p5':statep5; A1 ,A2:a4Iabel;
vbr:vetted_borrower; ln:llst(number); f:number; bflag:borr_flag;
obk:out_book; obr:out_borrower; upbk:out_updated_book;
upbr:out_updated_borr; mess :checkout_message

Synchronized Events: process/process communication (via synchronized data
~
1. p5--Receivep5(bid)-->p5', p6--Receive1 p6(borrid)-->p6' •

<PS, p6, p7, p8, p9>
==SYNCH({Receivep5(bid), Receive1 p2(borrid)})==>

<p5', p6', p7, p8, p9>

Example 5.4 continued

Chapter 5: The Specification Level

Example 5.4 (continued)
Characterizing the behaviour of the action CheckoutBook

2. p5--Sendp5(vbk)-->p5', p9--Receive1 p9(vbk)-->p9' =>
<PS, p6, p7, p8, p9>

==SYNCH({SendpS(vbk), Receive1p9(vbk)})==>
<PS', p6, p7, p8, p9'>

3. p6--Send1 p6(1n)-->p6', p7--Receivep7(1n)-->p7' =>
<PS, p6, p7, p8, p9>

==SYNCH({Send1p6(1n), Receivep7(1n)})==>
<PS, p6', p7', p8, p9>

4. p6--Send2p6(bflag)-->p6', p8--Receive2p8(bflag)-->p8' =>
<PS, p6, p7, p8, p9>

==SYNCH({Send2p6(bflag), Receive2p8(bflag)})==>
<PS, p6', p7, p8', p9>

5. p7--Sendp7(f)-->p7', p8--Receive1 p8(f)-->p8' =>
<PS, p6, p7, p8, p9>

==SYNCH({Sendp?(f), Receive1 p8(f)})==>
<PS, p6, p7', p8', p9>

6. p8--Sendp8(vbr)-->p8', p9--Receive2p9(vbr)-->p9' =>
<PS, p6, p7, p8, p9>

==SYNCH({Sendp8(vb), Receive2p8(vbr)})==>
<p5, p6, p7, p8', p9'>

Single Events: input and output (including read/write} events of the action
7. p5--Readp1 (bid, obk)-->p5' =>

<PS, p6, p7, p8, p9>==Readp1 (bid, obk)==><p5', p6, p7, p8, p9>
8. p5--Erreadp1 (bid)-->p5' =>

<PS, p6, p7, p8, p9>==Erreadp1 (bid)==><P5', p6, p7, p8, p9>
9. p6--Receive2p2(t)-->p6' =>

<p5, p6, p7, p8, p9>==Receive2p2(t)==><P5, p6', p7, p8, p9>
10. p6--Readp2(borrid, obr)-->p6' =>

<PS, p6, p7, p8, p9>==Readp2(borrid, obr)==><P5, p6', p7, p8, p9>
11 . p6--Erreadp2(borrid)-->p6' =>

<PS, p6, p7, p8, p9>==Erreadp2(borrid)==><P5, p6', p7, p8, p9>
12. p9--Send1 (bid, upbk)-->p9' =>

<PS, p6, p7, p8, p9>==Update1 (bid, upbk)==><P5, p6, p7, p8, p9'>
13. p9--Send2(borrid, upbr)-->p9' =>

<PS, p6, p7, p8, p9>==Update2(borrid, upbr)==><P5, p6, p7, p8, p9'>
14. p9--Send3(mess)-->p9' =>

<PS, p6, p7, p8, p9>==Send(mess)==><p5, p6, p7, p8, p9'>
15. p9--Receive3p5(t)-->p9' =>

<PS, p6, p7, p8, p9>==Receive3p5(t)==><P5, p6, p7, p8, p9'>
Parallel Events

'140

--- Events which affect separate parts of an action can be carried out in parallel ---
16. <PS, p6, p7, p8, p9>==A1==><P5', p6, p7, p8, p9>,

<p5, p6, p7, p8, p9>==A2==><P5, p6', p7', p8', p9'> =>
<<PS, p6, p7, p8, p9>==PAR(A1, A2)==><p5', p6', p7', p8', p9'>

17. <PS, p6, p7, p8, p9>==A1==><p5', p6', p7, p8, p9>,
<PS, p6, p7, p8, p9>==A2==><p5, p6, p7', p8', p9'> =>

<PS, p6, p7, p8, p9>==PAR(A1, A2)==><P5', p6', p7', p8', p9'>
18. <PS, p6, p7, p8, p9>==A1==><p5', p6', p7', p8, p9>,

<PS, p6, p7, p8, p9>==A2==><p5, p6, p7, p8', p9'> =>
<PS, p6, p7, p8, p9>==PAR(A1, A2)==><p5', p6', p7', p8', p9'>

19. <PS, p6, p7, p8, p9>==A1==><p5', p6', p7', p8', p9>,
<PS, p6, p7, p8, p9>==A2==><P5, p6, p7, p8, p9'> =>

<D5, D6, D7, p8, P9>==PAR(A1, A2)==><P5', p6', p7', p8', p9'>
Example 5.4 continued

Chapter 5: The Specification Level

Example 5.4 (continued)
Characterizing the behaviour of the action CheckoutBook

Termination event
--- Nullpi, S:;;i:;;9, is the abbreviated form for the idle state of Pi ---
20. <PS, p6, p7, p8, <ini p9(vbk}, in2p9(vbr}, timep9(t}, outi p9(omess},

out2p9(ubr), out3p9(ubk}>>
== Terminatea4==>

<NullpS, Nullp6, Nullp7, Nullp8, Nullp9>
2i. <PS, p6, p7, p8, <inip9(Notborr}, in2, Nu11Timep9, outip9(omess},

Nullout2p9, Nullout3p9>>
== Terminatea4==>

<NullpS, Nullp6, Nullp7, Nullp8, Nullp9>

141

22. <PS, p6, p7, p8, <inip9(CheckedOut), in2, Nu11Timep9, outip9(omess),
Nullout2p9, Nullout3p9>>

== Terminatea4==>
<NullpS, Nullp6, Nullp?, Nullp8, Nullp9>

23. <PS, p6, p7, p8, <inip9(Bknotinfile), in2, Nu11Timep9, outip9(omess),
Nullout2p9, Nullout3p9»

== Terminatea4==>
<NullpS, Nullp6, Nullp7, Nullp8, Nullp9>

24. <PS, p6, p7, p8, <in1, in2p9(NoBorr), Nu11Timep9, outip9(omess),
Nullout2p9, Nullout3p9»

== Terminatea4==>
<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9>

25. <P5, p6, p7, p8, <in1, in2p9(mkerrvborr(f}), NulITimep9, out1 p9(omess),
Nullout2p9, Nullout3p9»

== Terminatea4==>
<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9>

26. <PS, p6, p7, p8, <in1p9(mkvbk(bid, Per)},
in2p9(mkvetborr(mkoutb(lb, Undergrad, n), borrid}), Nu11Timep9,
out1p9(omess), Nullout2p9, Nullout3p9>>

== Terminatea4==>
<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9>

5.2.4 Characterizing the behaviour of data flows and data stores

The dynamic aspects of synchronous data flows are implicit in the

mechanisms used in specifying synchronous interactions amongst processes.

Behaviorally, data stores and asynchronous data flows are treated as processes, and

are associated with states, events, and transition relations defining state transitions.

In what follows, data stores and asynchronous data flows are collectively called

store processes.

The state of a store process is the state of its structure, for example, a state of

an asynchronous data flow is a state of its queue structure. The event labels

correspond to the access functions specified in the RSs characterizing the structures

of the store processes, in the following manner:

Chapter 5: The Specification Level 142

For a data store with structure struct :-

• A read access function read : struct, key • readval is associated with the

class of labels READ(id, val), where id:key, val:readval.

• An update function write : struct, key, data • struct is associated with the

class of labels WRITE(id, d), where id:key, d:data.

• An add function add : struct, data • struct is associated with the class of

labels ADD(d), where d:data.

• A delete function delete : struct, key • struct is associated with the class of

labels DELETE(id), where id:key.

For an asynchronous data flow with structure asynch:-

• The function addq : elem, asynch • asynch is associated with the class of

labels ADD(e), where e:elem.

• The function deleteq : asynch • asynch is associated with the class of labels

DEL(top(q)), where q:asynch is the state of the data flow before the deletion is

effected.

The ASTS for an asynchronous data flow is given in Figure 5.4. The

primitive RS Asynchlabels(Element) characterizes the labels, of sort aslabel,

associated with the data flow.

BehAsynch = Asynch(Element) + Asynchlabel(Element) +
Signature

transition relation
_ == _ ==> _ : asynch, aslabel, asynch

Laws V e, e':elem; q:asynch
1. emptyq==ADD(e)==>addq(e, emptyq)
2. addq(e, q)==ADD(e')=>addq(e', addq(e, q))
3. q =t- emptyq • q==DEL(top(q))==>deleteq(q)

Figure 5.4 The ASTS characterizing the behaviour of an asynchronous data flow

Example 5.5 gives the ASTS for the data store BOOK whose static aspects are

defined in Example 5.3.

Example 5.5
Characterizing the behaviour of the data store BOOK

Book_ TS = Bookstore + Booklabels +
Signature

transition relation
_ == _==> _ : list(book), booklabel, list(book)

Laws 'v bid:book_id; lb:list(book); bind:borrower_indicator
1. lb==READBOOK2(bid, readbook2(1b, bid))==>lb
2. lb==UPDATEBK2(bid, bind)==>updatebk2(1b, bind)

Chapter 5: The Specification Level 143

5.2.5 Deriving the BS
ExtDFDs, like actions, are associated with state transition systems which

characterize their behaviour. The BS is the ASTS characterizing the transition

system of an ExtDFD, and is derived from the ASTSs characterizing the behaviour

of the ExtDFD's actions, data stores, and asynchronous data flows.

The states of an ExtDFD with actions, Al, ... , An, data stores, DSl, ... ,

DSp, and asynchronous data flows, ASl, ... , ASq, are of the form <Sp, dsl, ... ,

dsp, asl, ... , asq, mode>, where sp = {a1, ... , an} is a set of action states, called

the action state set of the ExtDFD, dsi is a state of DSi, for l~i~p, and asi is a state

of ASi, for 1~~, and mode is a mode of operation of the ExtDFD.

Actions which are disabled cannot be affected by events during the period

they are disabled, thus disabled actions need not be represented in the state of an

ExtDFD during the periods they are disabled. This means that one need only

represent enabled states (any state other than a disabled state) in the action state set

of an ExtDFD.

The event labels of ExtDFDs represent the effects of the following classes of

events:

• synchronized communication between actions and data stores, and between

actions and the receive (ADD) and send (DEL) access mechanisms of

asynchronous data flows,

• events depicted by signals (control flows generated by external entities and

actions),

• parallel events composed of the above events.

Synchronized events are represented by synchronous event labels, and are

characterized in the same manner as synchronous labels in actions. For example,

the effect of a synchronous communication event between an action and a data store

is characterized in the BS by a law of the form below (in the RSs that follow

insert(a, sp) is abbreviated to {alsp}):

a==Read(bid, val)==>a', dsi==READ(bid, val)==>dsi', cond(I, s) •

<{a, sp}, ds1, ... , dsi, ... , dsp, as1 , ... , asq, mode>

===SYNCH({Read(bid, val), READ(bid, val)})===>

<{a', sp}, ds1, ... , dsi', ... , dsp, as1 , ... , asq, mode>

The following sections detail the interactions that can be specified in the BS.

Chapter 5: The Specification Level 144

Monitored access to data stores

The ExtDFD events which access data stores may need to be monitored, for

example, an action may read an object from a data store, modify the object, and

subsequently update the data store with the modified object. Such accesses are

called read/update accesses. In such cases, another action which reads and updates

the same object in parallel may cause the data store to move into an inconsistent

state. To aviod such situations, read/update accesses to data stores need to be

monitored. Static analysis of an ExtDFD, and examination of its data type

definitions, can determine which pair of output and input data flows of a data store

represent read/update accesses. Data stores in an ExtDFD associated with such pairs

are said to be monitored.

A solution to the problem described above would be for the data store to

prohibit access to objects which are being updated. The approach used here

associates with monitored data stores a list of identifiers (or keys) which identify

the objects in the data store on which monitored accesses are prohibited. An action

wishing to access a monitored data store for a read/update, or deletion (the

monitored accesses), can only do so if the object's identifier is not in the list. There

is no need to check such lists if an action simply reads objects without subsequently

updating the monitored data stores, nor if the action simply adds new objects to the

data store. A synchronized update (of a read/update access) between a monitored

data store and an action results in the updated object's identifier being removed

from the list.

In the case where an action with a read/update pair, reads in data from the data

store but does not subsequently update the data store, then the termination event of

the action is synchronized with the event that removes the identifier of the object

read in from the list. This is to avoid an object being permanently prohibited from

being accessed.

The laws characterizing monitored interactions with data stores, under the

simple scheme described above, are of the following form:

The read part

a==Read(id, val)==>a', dS==READ(id, val)==>ds', contains(id, blist) =false=>

<{alsp}, ds1, ... , <ds,blist>, ... , dsp, as1 , ... , asq, mode>

===SYNCH({Read(id, val), READ(id, val)})===>

<{a'lsp}, ds1, ... , <ds,add(id, blist)>, ... , dsp, as1 , ... , asq, mode>

where contains is a function which takes an object, and a list of objects and

returns true if the object is in the list, otherwise it returns the value false, and the

function add inserts an object into a given list.

Chapter 5: The Specification Level

The update part

a==Send(id, val)==>a', dS==UPDATE(id, val)==>ds' •

<{alsp}, ds1, ... , <ds,blist>, ... , dsp, as1, ... , asq, mode>

===SYNCH({Send(id, val), UPDATE(id, val)})===>

<{a'lsp}, ds1, ... , <ds', delete(id, blist)>, ... , dsp, as1, ... , asq, mode>

where delete is a function which deletes a given object from a list.

"145

Laws are also needed to check whether an action associated with a read/update pair

has terminated without updating a data store. These laws are of the form:

terminated(a), Noupdate(a) •

<{alsp}, ds1, ... , <ds,blist>, ... , sdsp, as1 , ... , asq, mode>

=== Terminatea===>

<{ajsp}, ds1, ... , <ds, delete(id, blist)>, ... , dsp, as1, ... , asq, mod&>

where terminated is a function which return true if a process can revert to an idle

state (i.e. it has finished transforming its inputs to outputs), and Noupdate checks

whether, for a particular pair or read/updates, a read and subsequent update has

been carried out, returning true if a read has been made on an object identified by

bid, but no subsequent update has been carried out, and false otherwise.

Specifying state dependent behaviour in the BS

Signals in an ExtDFD depict event classes whose instances (event

occurrences) can affect the current mode of operation of the ExtDFD. As described

in Chapter 2, changes in the mode of operation of an ExtDFD can affect the

behaviour of its actions in three ways: they can be initiated, enabled, or disabled.

Thus the occurrence of events associated with signals, as well as changing the

mode component of an ExtDFD state, also affects the action state set of the

ExtDFD. A signal which causes an action to be disabled causes the action's state to

be removed from the action state set, while a signal which causes an action to be

enabled causes the action's idle state to be added to the action state set of the

ExtDFD. Thus removing and adding action states to the action state set of an

ExtDFD corresponds to the disabling and enabling of actions, respectively.

Initiation signals are associated with enable and disable components, where the

disable component takes effect when the corresponding actions have gone through a

single invocation.

The laws in the BS characterizing the effects of events associated with signals

are of the following form:

<SP, st1, ... , stp, as1, ... , asq, mode>===Sig===><SP', st1, ... , stp, as1, ... , asq, mode'>

Chapter 5: The Specification Level 146

The above is interpreted as follows: the occurrence of the event whose effect

is denoted by the label Sig, when the ExtDFD is in the mode mode, causes the

mode to change to mode', where such change causes changes in the state of some

of the actions in sp, represented by sp'.

Parallel events and an example

The ExtDFD events which can affect disjoint parts of an ExtDFD can occur in

parallel. Example 5.6 gives a BS for the diagram in Figure 5.1, viewed as a simple

ExtDFD consisting of a single action.

Example 5.6
The BS for the ExtDFD shown in Figure 5.1

Beh = Book_TS + Borrower_TS + Behstate + Behlabel +
Sig nature

transition relation
_ ===_ ===> _ : beh, lbeh, beh

Laws V bid:book_id; lb:list(book); out:out_updated_book;
bklist:list(book_id); brlist:list(borrower_id); borrid :borrower _id;
ckinfo:asynch(checkout_info); indic:borrower_indicator; a, a':p5state;
obk:out_book; obr:out_borr; asynch(checkout_message);
ck:checkout_info; outmess:checkout_message

Synchronized events: accesses to data stores
1. lb==READBOOK2(bid, mkreadval(obk))==>lb,

readbook2(1b, bid) = mkreadval(obk),
a==Readp5(bid, obk)==>a', contains(bid, bklist) =false=>

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess>
===SYNCH({READBOOK2(bid, mkreadval(obk)),
Readp5(bid, obk)})===>

<{a'}, <lb,add(bid, bklist)>, <lbr, brlist>, ckinfo, ckmess>
2. lbr==READBORR2(borrid, mkrdborr(obr))==>lbr,

a==Readp6(borrid, obr)==>a',
contains(borrid, brlist) = false, readborr2(1br, borid) = mkrdborr(obr) •

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess>
===SYNCH({READBORR2(borrid, mkrdborr(obr)),
Readp6(borrid, obr)})===>

<{a'}, <lb, bklist)>, <lbr, add(borrid, brlist)>, ckinfo, ckmess>
3. lb==READBOOK2(bid, Nullval)==>lb, readbook2(1b, bid)= Nullval,

a==Erreadp5(bid)==>a' =>
<{a}, <lb,bklist>, <lbr, brlist>, ckinfo>

===SYNCH({READBOOK2(bid, Nullval), Erreadp5(bid)})===>
<{a'}, <lb, bklist>, <lbr, brlist>, ckinfo, ckmess>

4. lbr==READBORR2(borrid, Nullbrval)==>lbr, readborr2(1br, borid) = Nullbrval,
a==Erreadp6(borrid)==>a' =>

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess>
===SYNCH({READBORR2(borrid, Nullbrval), Erreadp6(borrid)})===>
<{a'}, <lb, bklist>, <lbr, brlist>, ckinfo, ckmess>

5. lb==UPDATEBK(bid, indic)==>lb',
a==Send1 p9(bid, indic)==>a' =>

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess>
===SYNCH({UPDATEBK(bid, indic), Send3p9(bid, indic)})===>

<(a'}, <lb', delete(bid, bklist)>, <lbr, brlist>, ckinfo, ckmess>
Example 5.6 continued

Chapter 5: The Specification Level 147

Example 5.6
The BS for the ExtDFD shown in Figure 5.1

6. lbr==UPDATEBR(borrid, blist)==>lbr',
a==Send2p9(borrid, blist)==>a' =>

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess>
===SYNCH ({ U PDA TEBR(borrid, blist), Send2p9(borrid, blist)})===>

<{a'}, <lb, bklist>, <lbr', delete(borrid, brlist)>, ckinfo, ckmess>

Synchronized events: interactions with asynchronous data flows
7. ckinfo==DEL(mkoutinfo(bid, borrid))==>Ckinfo',

top(ck info) = mkoutinfo(bid, borrid),
a==SYNCH({Receivep5(bid), Receiveip6(borrid)})==>a' =>

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess>
===SYNCH({DEL(mkoutinfo(bid, borrid)),
SYNCH({Receivep5(bid), Receivei p6(borrid)})})===>

<{a'}, <lb, bklist>, <lbr, brlist>, ckinfo', ckmess>
8. ckinfO==ADD(ck)==>Ckinfo' =>

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess>
===SYNCH({ADD(ck)})===>

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo', ckmess>
9. ckmess==ADD(outmess)==>Ckmess', a==Send3p9(outmess)==>a' •

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess>
===SYNCH({ADD(outmess), Send3p9(outmess)})===>

<{a'}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess'>
; o. ckmess==DEL(outmess)==>ckmess' =>

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmeSS>
===SYNCH({DEL(outmess)})===>

<{a}, <lb,bklist>, <lbr, brlist>, ckinfo, ckmess'>
Parallel events
Events which affect mutually exclusive parts of the state can be carried out in
parallel

5.3 The BS as a formal basis for reasoning with ExtDFDs
The BS of an ExtDFD can be used to support the following activities:

• Investigating behavioural properties captured by the BS (validation).

• Proving that a specification implements the BS (verification).

In the following, the use and limitations of the BS for validation and

verification are described.

5.3.1 Investigating behavioural properties of ExtDFDs with the BS

The state transition system characterized by the BS can be used to

investigate properties, called safety properties, which concern what applications are

allowed to do, or equivalently, not allowed to do. An example of a required safety

property for the library application is that a book cannot be checked out and

available at the same time, that is, there should be no transition to a state in which a

book is both checked out and available. Safety properties can be investigated

Chapter 5: The Specification Level 148

directly with the BS, since its laws explicitly express what the system is allowed to

do.

Properties related to what an application must do, called liveness properties

[Lam86], are sometimes implicit in the BS of ExtDFDs. An example of a liveness

property which can be implied from the BS is termination of an action. To facilitate

the investigation of liveness properties the labeled sequences of states representing

invocations need to be made explicit. To do this requires the addition of functions

and relations to those already present in the BS. A useful relation for analysis

purposes is the reachability relation,_---_--->_ : state, list(label), state, which is

defined on process states and lists of labels as follows:

state===A===>State' => state---Alemptylist--->state'

state---L--->state', state'===A===>State" => state---AIL--->state"

The reachability relation is an extension of the transition relation which

represents state transitions resulting from a sequence of event occurences. Used

naively, the reachability relation is not of much use, since there are, in general, an

infinite number of states reachable from a given state. State transition trees (STTs),

described in Chapter 2, provide finite representations of reachability relations,

where the nodes represent classes of states, while their edges represent classes of

event labels. Such trees can be used to check whether certain states, or classes of

states, are reachable from a given state, or a class of states. In particular such trees

can be used to investigate whether inconsistent states are reachable from consistent

states. Even so, the STT for a BS can be very large, making the automatic

generation of such trees from ASTSs desirable.

An automated system which, given an ASTS, would generate STTs, and

provide functions for analyzing such trees is needed in order for the framework to

be of practical use in this respect. Such automated system can also be used to

exercise (test) the behavioural specification under various control and/or data

inputs. This would involves substituting appropriate values to obtain instances of

the state and event classes in the STTs.

5.3.2 Proving implementations of the BS

The hiding of states of a process is sometimes desirable when attempting to

establish its equivalence to another process under some criteria for equivalence. For

example, two processes which behave identically as far as there inputs and outputs

are concerned, but which differ in their internal workings, are equivalent under a

criterion which makes two processes equivalent if and only if they generate the

same results (output data) given the same inputs. Such equivalences are usually

Chapter 5: The Specification Level 149

called observational [ST87]. An observational equivalence can be used as the basis

for determining whether a specification implements the BS.

The notion of a specification implementing the BS developed here depends

on the ability to hide some of the states it specifies. Observation specifications are

used for this purpose. An observation specification is a tuple <B, S>, where B is

an ASTS, and S is an ASTS specifying states, called observable states, and their

allowable transitions, called observable transitions. The states specified in S are

derived from the states of B by hiding some components of the states in B.

A particular observation specification, called an In/Out (I/O) specification, is

used to carry out observations on actions. An I/O specification, <A, S> where A is

an ASTS characterizing an action with states of the form <pinit1, ... , pinitq,

p1 , ... , pn, pter1 , ... , pterm>, and Sis an ASTS characterizing observations on the

invokers, pinit1, ... , pinitq, and terminators, pter1, ... pterm, of the action. The

states specified in S, called //0 states, are of the form <pinit1, ... , pinitq,

pter1 , ... , pterm>. State ransitions in Sare characterized by laws of the form:

<Pinit1, ... , pinitq, p1, ... , pn, pter1, ... , pterm>==A==><pinit1', ... , pinitq', p1', ... , pn',

pter1 ', ... , pterm'> • <pinit1, ... , pinitq, pter1 , ... , pterm>==A==><pinit1 ', ... , pinitq',

pter1', ... , pterm'>

The transition system characterized by S is called the 1/0 transition system of the

action characterized by A.

An ASTS, Beh 1, characterizing the behaviour. of an action, is said to

implement an ASTS, Beh2, if there exists a function from the 1/0 states of Beh1

to the 1/0 states of T2, which preserves the 1/0 transition system of Be h 2.

Intuitively, the above definition captures the notion of action equivalence as

determined by their external behaviours, encapsulated by their I/O specifications.

The above notion of a specification implementing another is similar to that of

Lamport's, which states that a "specification S1 implements a specification S2 if

every externally visible behaviour allowed by S 1 is allowed by S2" [AL88].

Lamport's behaviours are sequences of states, which are implicit in the ASTSs

defined here.

An action implementing another action A, may be a result of further

decomposition of A's processes, or may consist of a totally different process

structure. In each case the action must have the same interface inputs and outputs

(but which may be further decomposed). The decomposition approach can be used

as the basis of a transformation development strategy, where a transformation

occurs when an action's process is decomposed. In verifying whether an action,

Chapter 5: The Specification Level 150

A2, resulting from the decomposition of a process in another action, A 1,

implements A 1 involves viewing the decomposed process and its decomposed

system of processes as actions and proving that the decomposed system implements

the process. This is the situation in the latter verification approach mentioned above.

The implementation of a BS by another specification is based on the above

notion of an action's specification implementing another action's specification.

Formally, a specification, S, implements the BS of an ExtDFD, B, if there exists a

function from the actions specified in S to the actions specified in B, such that the

action of S which is mapped to the action in B, implements the action in B.

5.4 Conclusion
In this chapter it is shown how a formal specification of behaviour for

ExtDFDs, in the form of a BS, can be derived given specifications in the DE

characterizing the structure and object classes of data flows and data stores, and

specifications of behaviour for the DFD processes within actions. The BS can be

viewed as an initial design specification, and alleviates some of the problems

associated with generating such specifications from DFDs in the SA approach.

Transition to design involves creating the ExtDFD from the DFD and then deriving

the BS, which is a characterization of the formal interpretations associated with the

ExtDFD. Such a transition is less likely to be as problematic as the transition from

SA specifications to SD since it involves extending the DFDs themselves to

incorporate control information.

The BS can be used to formally validate behaviour of ExtDFDs, either by

associating with ExtDFDs a concrete operational model which is consistent with the

state transition system it characterizes, thus making the ExtDFDs executable, or by

analyzing the BS itself. Automated tools for analyzing the BS are desirable, given

the volume of detail that may be involved in such analyses. The BS also provides a

basis for verifying subsequent designs, via the notion of a specification

implementing the BS introduced in this chapter.

CHAPTER 6

Two Examples of
Specifications

6.0 Introduction

Deriving Behavioural
from ExtDFDs

The tools and techniques described in Chapter 5 are applied to two different

types of applications in this chapter. The first example, adapted from an example

given in Hatley and Piribhai [HP87], is concerned with the specification of

requirements for a automobile cruise control application. This application is control­

intensive in the sense that its behaviour is determined by the current mode of

operation in which it is in. A change in the current mode is determined by the

occurrence of external stimuli. The structures of data occurring in the application,

and the relationships between them, are simple, thus the example serves to focus on

the use of the tools and techniques for specifying the control aspects of

applications.

The second example is the library application introduced in Chapter 2. This

application is data-intensive in the sense that the structures of the data, and the

relationships between them play an important role in the specification of its

requirements. Furthermore, the application has one mode of operation, thus the

control aspects of the application of the application are relatively simple. The

example thus serves to focus on the use of the tools and techniques for specifying

the processing and data aspects of the application.

In Section 6.1 the tools and techniques are applied the automobile cruise

control application and in Section 6.2 they are applied to the library example.

6.1 The Automobile Cruise System
The function of the cruise control application is to maintain an automobile at a

constant speed when commanded to do so by the driver. The driver must be able to

enter the following commands:

• cruise on - activate the cruise control application.

• cruise off- deactivate the cruise control application.

• start accelerating - causes the automobile to accelerate at a comfortable rate.

• stop accelerating - stops the acceleration initiated by a start accelerating

command.

• resume - causes the application to return the automobile to the speed selected

prior to braking or gear shifting.

151

Chapter 6: Examples 152

The cruise control application can only be activated while the engine is

running and the automobile is in top gear. When activated the application selects the

current speed as the desired speed only if it is at least 30 miles per hour. If the

speed is less than 30 miles per hour then the application is automatically

deactivated. Deactivation of the application by the driver returns control to the driver

regardless of any other commands issued to the application. The start accelerating

command causes the application to accelerate the car at a comfortable rate until the

stop accelerating command is issued, at which time the application holds the car at

the new speed. The driver is permitted to reduce speed by depressing the brake

pedal while the application is active. Depressing the brake pedal or shifting out of

top gear temporarily disables the application. Issuing the resume command after the

brake is released and the automobile is in top gear causes the application to maintain

the speed at the speed prior to braking or gear shifting, while issuing the start

accelerating command after brake release and a return to top gear causes the

application to accelerate the automobile. However, if a decativate application

command is issued in the intervening time then the resume and start accelerating

commands do nothing.

The ExtDFD for the cruise control application is shown in Figure 6.1, and the

supporting state transition diagram (STD) is shown in Figure 6.2. In the approach

used here the driver commands are modeled as toggle signals, for example, the

cruise on and off commands are represented as a single signal, called cruise_on/off,

acting like a toggle switch, as is made clear in the STD for the application. It is also

assumed that the shaft is interfacing with a system that can detect and pass on its

pulse rate and rate of change to the application. Such a system is assumed to be part

of the external entity shaft.

There are five actions in the ExtDFD, all consisting of single processes. The

specification of behaviour is concerned mainly with the conditions under which

these actions are enabled and disabled. In the relational specifications (RSs)

characterizing states, labels and transition systems, the processes (actions) are

identified by the following short forms: CalcAcc is Pl, CalcSpeed is P2,

SelectDesiredSpeed is P3, MaintainSpeed is P4, and MaintainAcc is

P5. A RS called Number, specifying floating point numbers and arithmetic on

such numbers, is assumed to be available. Throughout, the RSs are interspersed

with informal textual annotations to enhance their readability.

Chapter 6: Examples

engine

trans­
mission

brake

current
ace

c_acc Maintain-._ ___ _.. Ace

throttle

desired

speed

throttle
position

less_30

rate_of_
change

shaft

pulse rate

Select­
Desired­
Speed

c_speed
curr_
speed

CURRENTS PEED

Figure 6.1 The ExtDFD for the Cruise Control Application

153

Chapter 6: Examples 154

IDLE I
enqine - • engine -
on/off on/off
Enable
CalcAcc Disable CalcAcc

CalcSpeed ,, CalcSpeed

RUNNINGl I
'~ trans -

in/out
trans -
in/out

,,
-1

RUNNING2 - I
cruise cruise - - • cruise on/off on/off -
Disable Enable on/off

MaintainAcc Maintain- Disable
Speed; Maintain-
Activate Speed
Select-
Desired-
Speed ,
~ CRUISING I

ace ace - ,lresume brake - on/off - -on/off speed on
Enable Enable trans

Maintain- Enable Disable -
Maintain- Maintain- 1' MaintainSpeed

in/out

Ace; Speed; Disable
Activate Speed

Maintain-Disable
Maintain- Select- BRAKING Speed

Speed Desired-
Speed;

brake Disable -
Maintain-

off

,,. Ace r trans u

YACCELERATING
I

RUNNING3
lin/out~I

RUNNING4 I I brake I I - I
engine - 4~ • ~n cruise - enqine - engine - cruise
on/off Disable on/off on/off on/off -

trans on/off
OFF MaintainAcc OFF OFF in/out

ace - 1, ~, '~ ,,
, on/off I IDLE* I IRUNNINGl* I RUNNING2*

I I
Enable

IDLE* MaintainAcc 1,
I RUNNINGS ~ crusie ace I --

on/off on/off
enqine resume speed - , ,

Enable on/off Enable
MaintainAcc

Maintain-,RUNNING2 * I , , OFF
Speed

I IDLE* I , ~ I CRUISING*

NOTE: OFF denotes the deactivation of all actions currently active

Figure 6.2 State Transition Diagram for the Cruise Control Application

Chapter 6: Examples 155

All the data flows in the ExtDFD transmit objects of type number.

Furthermore the constant MileCount, the number of shaft rotations in a single

mile, is assumed to be defined in the RS Number. For clarity, numbers are written

in their numeric form, for example the element representing the number two in

Number is written as '2'.

The auxiliary functions needed to define the transition relations of the

application's processes essentially define the functional relationship between their

inputs and outputs. The RSs characterizing the auxiliary functions are given below.

Functional relationship between the input and out;put of CalcAcc

CalcAcc = Number +

Signature

derivor

calcacc : number • number

Laws \:/ c:number

1. calcacc(c) = c/MileCount

Functional relationship between the input and output of CalcSpeed

CalcSpeed =Number+

Signature

derivor

calcspeed : number • number

Laws \:/ c:number

1. calcspeed(c) = c/MileCount

Functional relationship between the input and out;put of MaintainSpeed

MaintainSpeed = Number +

Signature

derivor

calcposn : number, number • number

Laws \:/ n1 ,n2:number

1. n1-n2>2 • calcposn(n1, n2) = O

2. n1-n2 2::-2, n1 -n2:S:2 • calcposn(n1 ,n2) = 2*(n1 -n2+2)

3. n1-n2<-2 • calcposn(n1, n2) = 8

--- Varies throttle opening from closed to fully open as speed varies from

2 mph above desired speed, to 2 mph below it ---

Chapter 6: Examples

Functional relationship between the input and out_put of MaintainAcc

MaintainAcc = Number +

Signature

derlvor

calcthposn : number • number

Laws V n:number

1. n> 1.2 • calcthposn(n) = 0

2. n ~0.8, n$:1.2 • calcthposn(n) = 20*(1.2-n)

3. n<0.8 • calcthposn(n) = 0.8

--- Varies throttle opening from closed to fully open as acceleration

varies from 1.2 mph/sec to 0.8 mph/sec ---

156

Since the actions of the ExtDFD all consist of single processes, the states, labels

and transition systems for the processes are specified as actions.

State, label, and transition system specification for CalcAcc

CalcAcc_State = Number+ P1 substate +

Signature

sorts p1 state, inp1, outp1

constructors

Nullinp1 : • inp1

Nulloutp1 : • outp1

inchangerate: number • inp1

outacc : number • outp1

<_,_> : inp1, outp1 • p1 state

CalcAcc_Labels = Number+

Signature

sort p1 label

constructors

Readchrate : number • p1 label

Sendp1 : number • p1 label

Terminatep1 : • p1 label

Chapter 6: Examples

CalcAcc_TS = CalcAcc_State + CalcAcc_Label + CalcAcc +

Siganture

transition relation

_ == _ ==> _: p1 state, p1 label, p1 state

Laws V a,c:number

1. <Nullinp2, Nulloutp2>==Readchrate(c)==><inchangerate(c), Nulloutp2>

2. calcacc(c) = a •

<inchangerate(c), Nulloutp2>

==Sendp1 (a)==>

<inchangerate(c), outacc(a)>

3. <inchangerate(c), outacc(a)>== Terminatep2==><Nullinp1, Nulloutp1 >

State, label, and transition system specification for CalcSpeed

CalcSpeed_State =Number+

Signature

sorts p2state, inp2, outp2

constructors

Nullinp2 : • inp2

Nulloutp2 : • outp2

inrate: number • inp2

outspeed : number • outp2

<_,_> : inp2, outp2 • p2state

CalcSpeed_Labels = Number+

Signature

sort p2Iabel

constructors

Readprate : number • p2Iabel

Sendp2 : number • p2Iabel

Terminatep2: • p2Iabel

CalcSpeed_ TS = CalcSpeed_State + CalcSpeed_Label + CalcSpeed +

Signature

transition relation

====>_: p2state, p2Iabel, p2state

Laws V n,cs:number

1. <Nullinp2, Nulloutp2>==Readprate(n)==><inrate(n), Nulloutp2>

157

Chapter 6: Examples

2. calcspeed(n) =cs •

<inrate(n), Nulloutp2>

==Se ndp2 (cs)==>

<inrate(n), outspeed(cs)>

3. <inrate(n), outspeed(cs)>== Terminatep2==><Nullinp2, Nulloutp2>

State, label, and transition system specification for Select Desi redS:peed

SelectDesiredSpeed_State =Number+

Signature

sorts p3state, inp3, outp3, outsig

constructors

Nullinp3: • inp3

Nulloutp3: • outp3

Nullsig: • outsig

incspeed : number • inp3

outdspeed: number • outp3

less30: • outsig

<_,_,_> : inp3, outp3, outsig • p3state

SelectDesiredSpeed_Labels = Number +

Signature

sort p31abel

constructors

Readp3 : number • p31abel

Sendp3 : number • p31abel

Less30: • p31abel

Terminatep3 : • p31abel

158

SelectDesiredSpeed_ TS = SelectDesiredSpeed_State + SelectDesiredSpeed_Label +

Slganture

transition relation

====>_: p3state, p31abel, p3state

Laws V cs:number

1. <Nullinp3, Nulloutp3, Nullsig>==Readp3(cs)==><incspeed(cs), Nulloutp3, Nullsig>

2. ~(cs < 30) •

<incspeed(cs), Nulloutp2, Nullsig>

==Sendp3(cs)==>

<incspeed(cs), outdspeed(cs), Nullsig>

Chapter 6: Examples

3. cs< 30 •

dncspeed(cs), Nulloutp3, Nullsig>

==Less30==>

<incspeed(cs), Nulloutp3, less30>

4. <incspeed(cs), outdspeed(cs), Nullsig>

== Terminatep3==>

<Nullinp3, Nulloutp3, Nullsig>

5. dncspeed(cs), Nulloutp3, less30>

== Terminatep3==>

<Nullinp3, Nulloutp3, Nullsig>

State, label, and transition system specification for MaintainSpeed

MaintainSpeed_State = Number+

Signature

sorts p4state, in1p4, in2p4, outp4

constructors

Nullin1p4: • in1p4

Nullin2p4 : • in2p4

Nulloutp4 : • outp4

in1dspeed : number • in1p4

in2cspeed : number • in2p4

outposn : number • outp4

<_,_,_> : in1 p4, in2p4, outp4 • p4state

MaintainSpeed_Labels = Number+

Signature

sorts p41abel

constructors

Read1 p4, Read2p4 : number • p41abel

Sendp4 : number • p41abel

Terminatep4 : • p41abel

159

MaintainSpeed_ TS = MaintainSpeed_State + MaintainSpeed_Label + MaintainSpeed +

Signature

transition relation

_== _ ==> _: p4state, p41abel, p4state

Laws V ln1 :in1 p4; in2:in2p4; s1 ,s2,pos:Number

1. <Nullin1 p4, in2, Nulloutp4>-Read1 p4(s1)-><in1 dspeed(s), in2, Nulloutp4>

Chapter 6: Examples

2. <in1, Nullin2p4, Nulloutp4>-Read2p4(s1)-><in1, in2cspeed(s), Nulloutp4>

3. calcposn(s1 ,s2) = pos •

<in1 dspeed(s1), in2dspeed(s2), Nulloutp4>

==Sendp4(pos)==>

<in1dspeed(s1), in2dspeed(s2), outposn(pos)>

4. <in1 dspeed(s1), in2dspeed(s2), outposn(pos)>

== Terminatep4==>

<Nullin1 p4, Nullin2p4, Nulloutp4>

State, label, and transition system specification for MaintainAcc

MaintainAcc_State = Number+

Signature

sorts p5state, inp5, outp5

constructors

Nullinp5 : • inp5

Nulloutp5 : • outp5

inacc : number • inp5

throtposn : number • outp5

<_,_> : inp5, outp5 • p5state

MaintainAcc_Labels = Number+

Signature

sorts p51abel

constructors

Readp5 : number • p51abel

Sendp5 : number • p51abel

Terminatep5: • p51abel

MaintainAcc_ TS= MaintainAcc_State + MaintainAcc_Label + MaintainAcc +

Signature

transition relation

--> _: p5state, p51abel, p5state

Laws V a,pos:number

1. <Nullinp5, Nulloutp5>==Readp5(a)==><inacc(a), Nulloutp5>

2. calcthposn(a) = pos •

<inacc(a), Nulloutp5>==Sendp5(pos)==><inacc(a), throtposn(pos)>

3. <inacc(a),throtposn(pos)>== Terminatep5==><Nullinp5, Nulloutp5>

160

Chapter 6: Examples 161

The data stores CURRENTSPEED, DESIREDSPEED, and CURRENTACC, behave

like variables in the sense that they contain a single value which is overwritten when

the data store is written into. The transition systems characterizing the effects of

reads and writes on the data store states are given below.

State, label, and transition system specification for CURRENTSPEED

CurrentSpeed_ TS = Number +

Signature

sorts currspeed, cslabel

constructors

Nullspeed : • currspeed

vales: number • currspeed

Putcs : number • cslabel

Getcs : number • cslabel

transition relation

====>_: currspeed, cslabel, currspeed

Laws \:/ s:number; cs:currspeed

1. cs==Putcs(s)==>valcs(s)

2. valcs(s)==Getcs(s)==>Valcs(s)

State, label, and transition system specification for DESIREDSPEED

DesiredSpeed_ TS = Number+

Signature

sorts despeed, dslabel

constructors

Nulldspeed : • despeed

valds : number • despeed

Putds : number • dslabel

Getds : number • dslabel

transition relation

====>_: despeed, dslabel, despeed

Laws 'i s:number; ds:despeed

1. dS==Putds(S)==>Valds(s)

2. valds(s)==Getds(s)==>Valds(s)

Chapter 6: Examples

State, label, and transition system specification for CURRENTACC

Ace_ TS = Number +

Signature

sorts ace, alabel

constructors

Nullacc : • ace

valacc : number • ace

Puta: number • calabel

Geta: number • alabel

transition relation

_ == _ ==> _ : ace, alabel, ace

Laws V a:number; da:acc

1. da==Puta(a)==>valacc(a)

2. valacc(a)==Geta(a)==>valacc(a)

Specification of application states

162

CruiseSys_State = CalcAcc_State + CalcSpeed_State + SelectDesiredSpeed_State +

MaintainSpeed_State + MaintainAcc_State + CurrentSpeed_ TS + DesiredSpeed_ TS +

Acc_TS +

Signature

sorts state, systate, sysflag

constructor

IDLE, RUN1, RUN2, RUN3, RUN4, RUNS, CRUISE, ACCEL, BRAKING : • sysflag

--- modes of operation ---

P1 : p1 state • pstate

PS : p5state • pstate

--- state coercion functions, that is, functions which make states of actions into

ExtDFD process states ---

<_,_,_,_> : set(pstate), ace, currspeed, despeed, asynch1, asynch2,

sysflag • systate

--- the state of an ExtD FD ---

o k- pre d I cat e

okstate: systate

Laws V ac:acc; cs:currspeed; ds:despeed; p1 :p1state; p2:p2state;

p3:p3state; p4:p4state; p5:p5state; as1 :asynch1, as2:asynch2

1. okstate(<0, Nullacc, Nullspeed, Nulldspeed, as1, as2, IDLE>)

Chapter 6: Examples 163

2. okstate(<{P1, p2}, ac, cs, Nulldspeed, as1, as2, RUN1>)

3. okstate(<{P1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2>)

4. okstate(<{P1, p2, p3, p4}, ac, cs, ds, as1, as2, CRUISE>)

5. okstate(<{P1, p2, p5}, ac, cs, ds, as1, as2, ACCEL>)

6. okstate(<{P1, p2}, ac, cs, ds, as1, as2, BRAKING>)

7. okstate(<{P1, p2}, ac, cs, ds, as1, as2, RUN3>)

8. okstate(<{P1, p2}, ac, cs, ds, as1, as2, RUN4>)

9. okstate(<{P1, p2}, ac, cs, ds, as1, as2, RUNS>)

Specification of action labels

Cruise_Label = CalcAcc_Label + CalcSpeed_Label + SelectDesiredSpeed_Label +

MaintainSpeed_Label + MaintainAcc_Label + CurrentSpeed_ TS + DesiredSpeed_ TS +

Acc_TS +

Signature

sort label

L 1 : p1 label • label

L5 : p41abel • label

Les : cslabel • label

Lds: dslabel • label

La : alabel • label

Specification of application labels

CruiseSys_Label = Set(Cruise_Label) +

Signature

sort syslabel

LJ : label • syslabel

SYNCH : set(label) • syslabel

II : syslabel, syslabel • syslabel

The following shorthand notation will be used in the laws that follow.

• { p 1, p2, ... , pn} denotes the finite set consisting of the elements p 1 to pn.

• insert(p, sp) will be written as { p, sp}

• Coercion functions for both states and labels will be left implicit, where doing so

causes no confusion. For example, the systate <{Pl(pl), ... ,P5(p5) }, ... > will

simply be writen as <{pl, ... ,p5}, ... >.

Chapter 6: Examples

Specification of the application's transition system

CruiseSys_ TS = CalcAcc_ TS + CalcSpeed_ TS + SelectDesiredSpeed_ TS +

MaintainSpeed_ TS + MaintainAcc_ TS + CurrentSpeed_ TS + DesiredSpeed_ TS +

Acc_TS +

Signature

transition relation

_ === _ ===> _ : systate, syslabel, systate

Laws V a,s,c:number; ac,ac':acc; cs,cs':currspeed; ds,ds':despeed;

f:sysflag;

sp,sp1 ,sp1 ',sp2,sp2' :set(pstate); p1 ,p1 ':p1 state; p2,p2':p2state;

p3,p3':p3state; p4,p4':p4state; p5,p5':p5state

Synchronized events: data store/action interactions

1. p1 ==Sendp1 (a)==>P1 ', ac==Puta(a)==>ac' •

<{P1, sp}, ac, cs, ds, as1, as2, f>

===SYNCH({Sendp1 (a), Puta(a)})===>

<{p1', sp}, ac', cs, ds, as1, as2, f>

--- synchronized write to data store CURRENTACC by CalcACC ---

2. p5==Readp5(a)==>p5', aC==Geta(a)==>ac •

<{p5, sp}, ac, cs, ds, as1, as2, f>

===SYNCH({ Readp5(a), Geta(a)})===>

<{p5', sp}, ac, cs, ds, as1, as2, f>

-- synchronized read from data store CURRENTACC by MaintainAcc --

3. p2==Sendp2(S)==>P2', CS==Putcs(s)==>CS' •

<{P2, sp}, ac, cs, ds, as1, as2, f>

===SYNCH({Sendp2(s), Putcs(s)})===>

<{p2', sp}, ac, cs', ds, as1, as2, f>

-- synchronized write to CURRENT SPEED by CalcSpeed --

4. p3==Readp3(S)==>p3', CS==Getcs(S)==>CS •

<{P3, sp}, ac, cs, ds, as1, as2, f>

===SYNCH({Readp3(S), Getcs(s)})===>

<{p3', sp}, ac, cs, ds, as1, as2, f>

-- synchronized read on CURRENTSPEED by SelectDesiredSpeed --

5. p3==Sendp3(S)==>P3', dS==Putds(S)==>dS' •

<{p3, sp}, ac, cs, ds, as1, as2, f>

===SYNCH({Sendp3(s), Putds(s)})===>

<{p3', sp}, ac, cs, ds', as1, as2, f>

-- synchronized write to DESIREDSPEED by SelectDesiredSpeed --

'1 64

Chapter 6: Examples

6. p4==Read1 p4(S)==>P4', dS==Getds(s)==>dS •

<{p4, sp}, ac, cs, ds, as1, as2, f>

===SYNCH({Read1p4(s), Getds(s)})===>

<{p4', sp}, ac, cs, ds, as1, as2, f>

-- synchronized read on DESIREDSPEED by MaintainSpeed --

7. p4==Read2p4(cs)==>P4', CS==Getcs(S)==>CS •

<{p4, sp}, ac, cs, ds, as1, as2, f>

===SYNCH({Read2p4(s), Getcs(s) })===>

<{p4', sp}, ac, cs, ds, as1, as2, f>

-- synchronized read on CURRENTSPEED by MaintainSpeed --

8. p4==Sendp4(pos)==>p4', as1 ==ADD1 (pos)==>as1'

<{P4, sp}, ac, cs, ds, as1, as2, f>

===SYNCH({Sendp4(pos), ADD1 (pos)})===>

<{p4', sp}, ac, cs, ds, as1', as2, f>

165

--- synchronized add access to data flow throttle_position1 by MaintainSpeed ---

9. p4==Sendp5(pos)==>p5', as2==ADD2(pos)==>as2'

<{PS, sp}, ac, cs, ds, as1, as2, f>

===SYNCH({SendpS(pos), ADD2(pos)})===>

<{PS', sp}, ac, cs, ds, as1, as2', f>

--- synchronized add access to data flow throttle_position2 by MaintainAcc --­

Control events
-- The following transitions are derived directly from the STD for the application

(see Figure 6.2) --

10. <0, Nullacc, Nullspeed, Nulldspeed, as1, as2, IDLE>

===engine_on/off===>

<{<Nullinp1, Nulloutp1>, <Nullinp2, Nulloutp2>},

Nullacc, Nullspeed,Nulldspeed, as1, as2, RUN1 >

11. <{P1, p2}, ac, cs, Nulldspeed, as1, as2, RUN1>

===trans_in/out===>

<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2>

12. f:t=IDLE •

<Sp,ac,cs,ds, as1, as2, f>

===engine_on/off===>

<0, Nullacc, Nullspeed, Nulldspeed, as1, as2, IDLE>

13. f:t=RUN1, f:tRUN2, f:t=RUN4, f:t=IDLE •

<Sp,ac, cs,ds, as1, as2, f>

===cruise_on/off===>

<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2>

Chapter 6: Examples

14. <{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2>

===Cruise_ on/off===>

<{P1, p2, <Nullinp3, Nulloutp3>, <Nullin1p4, Nullin2p4, Nulloutp4>},

ac, cs, Nulldspeed, as1, as2, CRUISE>

15. <{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2>

===trans_in/out===>

<{P1, p2}, ac, cs, Nulldspeed, as1, as2, RUN1>

16. <{p1, p2, p3, p4}, ac, cs, valds(s), as1, as2, CRUISE>

===acc_on/off===>

<{p1, p2, <Nullinp5, Nulloutp5>}, ac, cs, valds(s), as1, as2, ACCEL>

17. <{p1, p2, p3, p4}, ac, cs, valds(s), as1, as2, CRUISE>

===brake_on===>

<{p1, p2}, ac, cs, valds(s), as1, as2, BRAKING>

18. <{p1, p2, p3, p4}, ac, cs, valds(s), as1, as2, CRUISE>

===trans_in/out===>

<{P1, p2}, ac, cs, valds(s), as1, as2, RUN4>

19. <{p1, p2, p3, p4}, ac, cs, Nulldspeed, as1, as2, CRUISE>

===(Less30)===>

<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN2>

20. <{p1, p2, p5}, ac, cs, ds, as1, as2, ACCEL>

==brake_on==>

<{p1, p2}, ac, cs, ds, as1, as2, BRAKING>

21. <{p1, p2, p5}, ac, cs, ds, as1, as2, ACCEL>

====acc_on/off===>

<{p1, p2, <Nullinp3, Nulloutp3>, <Nullin1 p4, Nullin2p4, Nulloutp4>},

ac, cs, Nulldespeed, as1, as2, CRUISE>

22. <{p1, p2}, ac, cs, ds, as1, as2, BRAKING>

===brake_off===>

<{p1, p2}, ac, cs, ds, as1, as2, RUN3>

23. <{p1, p2}, ac, cs, ds, as1, as2, RUN3>

===acc_on/off===>

<{P1, p2, <Nullinp5, Nulloutp5>}, ac, cs, ds, as1, as2, ACCEL>

24. <{p1, p2}, ac, cs, ds, as1, as2, RUN3>

===trans_in/out===>

<{p1, p2}, ac, cs, ds, as1, as2, RUN4>

25. <{p1, p2}, ac, cs, ds, as1, as2, RUN3>

===resume_speed===>

166

<{P1, p2, <Nullin1p4, Nullin2p4, Nulloutp4>}, ac, cs, ds, as1. as2. CRUISE>

Chapter 6: Examples

26. <<{p1, p2,}, ac, cs, ds>, as1, as2, RUN4>

===cruise_ on/off===>

<{p1, p2}, ac, cs, Nulldspeed, as1, as2, RUN1>

27. <{p1, p2}, ac, cs, ds, as1, as2, RUN4>

===trans_in/out===>

<{p1, p2}, ac, cs, ds, as1, as2, RUNS>

28. <{P1, p2}, ac, cs, ds, as1, as2, RUNS>

===acc_on/off===>

<{p1, p2, <NullinpS, NulloutpS>}, ac, cs, ds, as1, as2, ACCEL>

29. <{p1, p2}, ac, cs, ds, as1, as2, RUNS>

===resume_speed===>

1 67

<{p1, p2, <Nullin1 p4, Nullin2p4, Nulloutp4>}, ac, cs, ds, as1, as2, CRUISE>

30. p3== Terminatedp3==<Nullinp3, Nulloutp3, Nullsig>

<{p1, p2, p3, p4}, ac, cs, ds, as1, as2, CRUISE>

=== Killp3===>

<{p1, p2, p4}, ac, cs, ds, as1, as2, CRUISE>

Synchronized events; asynchronous data flow/action interactions

31. p4==Sendp4(pos)==>p4', as1==ADD1(pos)==>as1' •

<{p4, sp}, ac, cs, ds, as1, as2, f>

===SYNCH({Sendp4(pos), ADD1 (pos)})===>

<{p4', sp}, ac, cs, ds, as1 ', as2, f>

32. p5==SendpS(pos)==>p5', as2==ADD2(pos)==>as2' •

<{p5, sp}, ac, cs, ds, as1, as2, f>

==SYNCH{ Sendp5 (pos), AD D2(pos) }==>

<{pS', sp}, ac, cs, ds, as1, as2', f>

Action/state data flow interactions

33. p1 ==Readchrate==>P1' •

<{p1, sp}, ac, cs, ds, as1, as2, f>

===Readchrate===>

<{p1 ', sp}, ac, cs, ds, as1, as2, f>

34. p2==Readprate==>P2' •

<{P2, sp}, ac, cs, ds, as1, as2, f>

===Readprate===>

<{p2', sp}, ac, cs, ds, as1, as2, f>

Chapter 6: Examples

Parallel events
35. <{p1, p5, sp}, ac, cs, ds, asi, as2, f>

===SYNCH({Sendpi (a), Puta(a)})===>

<{pi', p5, sp}, ac', cs, ds, as1, as2, f>,

<{pi, p5, sp}, ac', cs, ds, as1, as2, f>

===SYNCH({Readp5(a), Get(a)})===>

<{pi, p5', sp}, ac', cs, ds, as1, as2, f> •

<{p1, p5, sp}, ac, cs, ds, asi, as2, f>

168

===SYNCH({Sendpi(a), Puta(a)})IISYNCH({Readp5(a), Get(a)})===>

<{p1', p5', sp}, ac', cs, ds, asi, as2, b

-- parallel access to the data store CURRENTACC gives priority to the

write access --

36. <{p2, p3, sp}, ac, cs, ds, asi, as2, f>

===SYNCH({Sendp2(s), Putcs(s)})===>

<{p2', p3, sp}, ac, cs', ds, asi, as2, f>,

<{p2, p3, sp}, ds, cs', ds, asi, as2, f>

===SYNCH({Readp3(s), Getcs(s)})===>

<{p2, p3', sp}, ds, cs', ds, asi, as2, b •

<{P2, p3, sp},ds,cs,ds, as1, as2, f>

===SYNCH({Sendp2(s), Putcs(s)})IISYNCH({Readp3(s), Getcs(s)})===>

<{p2', <inspeed(s1), Nulloutp3>, sp}, ac, cs', ds, as1, as2, f>

-- parallel access to the data store CURRENTS PEED gives priority to the

write access --

3 7. <{p4, sp}, ac, cs, ds, as1, as2, f>

===SYNCH({Read1 p4(s), Getds(s)})===>

<{<indspeed(s1), Nullin2p4, Nulloutp4>, sp}, ac, cs, ds, as1, as2, f>,

<{p4, sp}, ac, cs, ds, asi, as2, f>

===SYNCH({Read2p4(s2), Getcs(s2)})===>

<{<Nullini p4, incspeed(s2), Nulloutp4>, sp}, ac, cs, ds, asi, as2, f> •

<{p4, sp}, ac, cs, ds, asi, as2, f>

===SYNCH({Readi p4(si), Getds(si)})II

SYNCH({Read2p4(s2), Getcs(s2)})===>

<{<indspeed(si), incspeed(s2), Nulloutp4>, sp}, ac, cs, ds, asi, as2, f>

-- parallel access to the data store DESIRED SPEED gives priority to the

write access --

Chapter 6: Examples

38. <Sp1+sp2, ac,cs,ds,as1, as2,f>

===A1===>

<Sp1 '+sp2, ac', cs, ds, as1, as2, f>,

<Sp1+sp2, ac,cs,ds,as1,as2, f>

===A2===>

<SP1+sp2', ac, cs', ds', as1', as2', f> •

<Sp1+sp2, ac,cs,ds, as1,as2, f>

===A1 IIA2===>

<SP1 '+sp2', ac', cs', ds', as1 ', as2', f>

39. <Sp1+sp2,ac,cs,ds,as1,as2, f>

===A1===>

<Sp1'+sp2, ac', cs', ds, as1, as2, f>,

<SP1+sp2, ac,cs,ds, as1, as2,f>

===A2===>

<SP1+sp2', ac, cs, ds', as1', as2', f> •

<Sp1+sp2,ac,cs,ds,as1,as2,f>

===A1 IIA2===>

<Sp1 '+sp2', ac', cs', ds', as1 ', as2', f>

40. <Sp1+sp2, ac,cs,ds,as1, as2,f>

===A1===>

<Sp1'+sp2, ac', cs', ds', as1, as2, f>,

<Sp1+sp2, ac,cs,ds,as1, as2,f>

===A2===>

<Sp1+sp2', ac, cs, ds, as1', as2', f> •

<Sp1+sp2,ac,cs,ds,as1, as2,f>

===A 1 I IA2===>

<Sp1'+sp2', ac', cs', ds', as1', as2', f>

41.<sp1+sp2, ac,cs,ds,as1, as2,f>

===A1===>

<Sp1'+sp2, ac', cs', ds', as1', as2, f>,

<Sp1+sp2, ac,cs,ds,as1, as2,f>

===A2===>

<Sp1+sp2', ac, cs, ds, as1, as2', f> •

<Sp1+sp2, ac,cs,ds, as1,as2,f>

===A1 IIA2===>

<Sp1'+sp2', ac', cs', ds', as1', as2', f>

-- Events that affect mutually exclusive parts of the application can occur in parallel --

169

Chapter 6: Examples 170

6.2 Computer-based University Library Application
The ExtDFD for the library application is shown in Figure 6.3. The

application is partitioned into seven actions namely DeleteCopy (Al),

AddCopy (A2), ReturnBook (A3), CheckoutBook (A4),

UpdateBorrStatus (A5),AddBorrower (A6),andDeleteBorrower

(A 7) . The actions communicate with the external entity staff via asynchronous

data flows, while communication with the clock external entity is via state flows.

Actions are activated solely by the occurence of data events as is evident by the lack

of control flows in the ExtDFD. Figure 6.4 gives the type definitions associated

with the data flows in the ExtDFD.

Figure 6.4 defines, in a semi-formal manner, the type defintions of the data

flows in the ExtDFD for the library application shown in Figure 6.3. Base types are

classes of indivisible objects, or list or set structures of indivisible objects, while

non-base types are classes of composite objects. In the definitions for the non-base

types, the base components are written in bold. The base types used for the library

application are:

number - the class of floating point numbers,

time - the class of time points,

character - the class of characters,

and list and set structures of the above.

Aliases for the base types are also defined in Figure 6.4, where the base types

are diffrentiated from their aliases by writing them in italics. The names of the

constructors in the RSs formally defining the types are enclosed within () in the

definitions given in Figure 6.4. Constructors starting with a capital letter are

constants.

Chapter 6: Examples i 71

- delete message - - l I delete_book - i staff

I new_book I~ r Al " BORROWER

I Delete-
1

,a.
staff ·:- Add-

,.
checkout

clock I out - -
Copy I ~opy ./ updated message .. - .i,. /

...,...., ... _

~ \ new_book - ••copy# deleted A4 - -
rec list book Olt r - r "I u;dated_ check

~ BOOK - b<ok Checkout-- Update - out -
~ t.ime , .. lo. ~ -

•
ret , ..

return -- updated_ vetted detail -
book borr

Ol t. vetted - -
be ok book

return/' A3 " info "check- "' r " - vetted - ~ Return- r - Return- rec.urn - - 1F " - Update -
~ook book r " Vett- -

~ /) Check- Borrower borr -
return m~sane ,.; flag Book \... ~

ret - \.. ~ ...
clock

return_time ret - updat ad_ ,,.
borr borr fine -
list out -

new borr ~ new borr rec book id - -- _....other borr i
r ...,

Add-- Borr l C~lculate- I
.~add

,, Fine
message I I

\.. .)

BORROWER '. staff I tdeleted_borr
del

, .. fines -
I bor; r A6 "' updated_ record

' .
\ -- borr -~ Delete- -

detail bor r r "I
Borr

det ail out borr Get-
'- ~ - -

del_borr f,11 id - Overdue- ,--- / AS
,..,

mess r "'
~ .. Books

Update- ,Generate-"' '. \.. ~-- ~ ~ Borr- Fines- ,h
borr

\...Record - Record

H
out] .) fine \...

-- ~ borr ... record t ..
\.,.

amount._ checkout -

t~
paid ou~date_

info

I BORROWER
update_ tirne

- id

--i,.f-::,1 check
update_ • out
status borr _

1

-
time

update_

EJ info staff
clock

- staff

Figure 6.3 The ExtDFD for the library application

Chapter 6: Examples 172

Non-base data types
bb status <time (mkbbstatus)) I "Not returned"

(NotRet) >
book

book id
borr detail

borr fine record

borr_flag

borr_update_info
borrower

borrower book detail

borrower id

<book_id, title, subject, author,
copy type, borrower indicator>
(mkbook)
<ISBN, copy#> (mkbkid)
<[borrower_book_detail], number>
mkborrdet
<<number, borrower id> (mkbfrec) I "Not
in file" (NoRec) > -
<"Not in file" (Bflag) I <borrower_id,
out borr> (mkbflag) >
<bo~rower_id, number> (mkupinfo)
<borrower_id, borrower_name,
borrower addr, borrower type,
[borrower-book detail], -
payment to date> (mkborr)
<book id, due time, bb status>
(mkbdet) - -
<[character]> (mkborrid)

borrower indicator ··= <"Available" (Available) I <borrower_id>
(mkbind) >

checkout info
checkout_message

<book id, borrower id> (mkoutinfo)
<vetted borr, vetted book> (mkoutmess)

del borr ··= borrowe~ id -
delete book
deleted borr
deleted book
ISBN
new book

new book rec
new borr

new borr rec - -
other borr
out book

out book id
out borr

out borr id - -
out_updated_book
out_updated_borr
ret borr list - -
ret_updated_book
ret_updated_borr
return_detail
return info
update_id
update_status

vetted book

book id
[borrower book_detail]

· ·= borrower indicator
<[integer]>
<ISBN, title, subject, author,
copy_type> (mknewbk)
book
<borrower_id, borrower name,
borrower addr, borro;er_type>
(mknewborrT

· ·= borrower
borrower id
<borrower indicator, copy_type>
(mkoutbk) -
book id
<[borrower_book_detail],
borrower_type, payment to date>
(mkoutbr)
borrower id
borrower indicator
[borrower_book_detail]
[borrower_book_detail]
borrower indicator
[borrower_book_detail]

· ·= borrower indicator
book id
borrower id
<"Outstanding" number (mkupstatus1) I
"Excess" number (mkupstatus2) I "Not in
file" (Norec) I "No fines" (Nofines)
I "Fines cleared" (Cleared)>
<<book id, copy type> (mkvbk) I "book
not in -file" (Bkr!Otinfile) I "book already
checked out" (CheckedOut) I "not
borrowable" (NotBorr) >

Chapter 6: Examples

vetted borr

vetted return book

Base data types
add_message

amount_paid
author
borrower_addr
borrower name
borrower_type

checkout time
copy#
copy#_list
copy_type

del borr mess

delete_message

fine
fines record
ISBN
new_copy#
paidup_amount
payment_to_date
return_message

return time
subject
title
update_time
updated_borr_detail

173

<"Fines over limit" number (mkerrvborn I
"borrower not in file" (NoBorr) I
<out borr, borrower id> (mkvetborn >
<"Not in file" (Retnotinfile) I "Already
returned" (Retin) I <book id,
borrower id> (mkvetret) > -

"OK" (OKadd) I "Borrower already in
file" (Alreadyinfile)
number
[character]
[character]
[character]
"undergrad" (Undergrad) I postgrad"
(Postgrad) I "staff" (Staff)

· ·= time
· ·= integer

[integer]
"book" (Book) I "reference" (Ref) I
"periodical" (Per)

· ·= "OK" (OKdel) I "Not in file" (Delnotinfile)
"Has books out" (Booksout)
<"delete-OK" (OKdel) I "Not in file"
(Nobk) I "Not available" (Notavailable)

· ·= number
· · = [number]

[integer]
integer
number
number

· ·= "Already in" (Alreadyin) I "Not in file"
(Retnotin)
time

· · = [character]
· ·= [character]

time
number

Figure 6.4 Type defintions for the library application

The ASTS for the action DeleteCopy (Al)

The states of Al are of the form <inp1, delp1, outp1 >, where inp1 is the

state associated with the action's interaction with delete book, delp1 is the

state associated with the action's interaction with the data store BOOK, and outp1 is

the state associated with the action's interaction with delete message. The type

of the state, p 1 state, is characterized by the RS P 1 state.

The labels of Al, of sort p1 label characterized by P1 label, are:

• Receivep1 (d1) - receive d1 from delete book.

• Readp1 (id, d2) - read in d2 from BOOK.

• Erreadp1 (id) - unsuccessful read on BOOK.

• Sendp1 (d3) - generate d3 for output on delete_message.

• Deletep1 (id) - delete object with key id from BOOK.

Chapter 6: Examples

• Terminatep1 - terminate action.

The ASTS for A 1 is given below:

DeleteCopy _ TS = Pi state + Pi label +

Signature

transition relation

====>_: pistate, pilabel, pistate

Laws V borrid:borrower_id; bid:book_id; dmess:delete_message;

bind:borrower_indicator

i. <Nullinpi, Nulldelpi, Nulloutpi >

==Receivepi (bid)==>

<inpi (bid), Nulldelpi, Nulloutpi >

2. <inpi (bid), Nulldelpi, Nulloutpi>

==Readpi (bid, bind)==>

<inpi (bid), delpi (bind), Nulloutpi>

3. <inpi (bid), Nulldelpi, Nulloutpi>

==Erreadpi (bid)==>

<inpi (bid), errdelpi, Nulloutpi >

4. <inpi (bid), delpi (mkbind(borrid)), Nulloutpi >

==Sendpi (NotAvailable)==>

<inpi (bid), delpi (mkbind(borrid)), outpi (NotAvailable)>

5. <inpi (bid), delpi (Available), Nulloutpi>

==Deletepi (bid)==>

<inpi (bid), deleted, Nulloutpi>

6. <inpi (bid), deleted, Nulloutpi>

==Sendpi (OKdel)==>

<inpi (bid), deleted, outpi (OKdel)>

7. <inpi (bid), errdelpi ,Nulloutp1 >

==Sendpi (Delnotin)==>

<inpi (bid), errdelpi, outpi (Delnotin)>

8. <inpi (bid), errdelpi, outp1 (dmess)>

== Terminatepi ==>

<Nullinpi, Nulldelpi, Nulloutpi >

9. <inpi (bid), deleted, outpi (OKdel)>

== Terminatepi ==>

<Nullinpi, Nulldelpi, Nulloutpi>

174

Chapter 6: Examples ;75

The ASTS for the action AddCo:py (A2)

The states of A2 are of the form <inp2, rdp2, outp2>, where inp2 is the

state associated with the action's interaction with return info, rdp2 is the state

associated with the action's interaction with the data store BOOK, and outp2 is the

state associated with the action's interaction with vetted return book. A2

states are of sort p2state characterized by the RS P2state.

The labels of A2, of sort p2Iabel characterized by P2Iabel, are:

• Receivep2(di) - receive d1 from return info.

• Readp2(id, d2) - read in d2 from BOOK.

• Erreadp2(id) - unsuccessful read on BOOK.

• Sendp2(d3) - generate d3 for output on vetted_ return_ book.

• Terminatep2 - terminate action.

The ASTS for A2 is given below:

Add Copy_ TS = P2state + P21abel +

Signature

transition relation

_ == _ ==> _: p2state, p21abel, p2state

Laws 'ii nbk:new_book; i:ISBN; t,s,a:list(character}; ln:list(integer);

ty:copy_type; bkrec:new_book_rec; n1 :integer

1. <Nullinp2, Nullrdp2, Nulloutp2>

==Receivep2(nbk)==>

<inp2(nbk), Nullrdp2, Nulloutp2>

2. <inp2(mknewbk(i,t,s,a,ty)), Nullrdp2, Nulloutp2>

==Readp2(i, In)==>

<inp2(mknewbk(i,t,s,a,ty)), rdp2(1n), Nulloutp2>

3. succ(max(ln)) = n1 •

<inp2(mknewbk(i,t,s,a,ty)), rdp2(1n), Nulloutp2>

==Sendp2(mkbook(mkbkid(i, n1), t, s, a, ty, Available))==>

<inp2(mknewbk(i, t, s, a, ty)), rdp2(1n),

outp2(mkbook(mkbkid(i, n1), t, s, a, ty, Available))>

4. <inp2(nbk), rdp2(1n), outp2(bkrec)>

== Terminatep2==>

<Nullinp2, Nullrdp2, Nulloutp2>

The ASTS for the action A3

The action A3 consists of the processes CheckRet urnBook (P3), and

Return Update (P4).The states and labels of these processes are specified in the

same manner as the states and labels of proceses in previous examples, and thus are

Chapter 6: Examples 176

not explicitly characterized in what follows. Such characterization should be

obvious from their use in the specification of the processes' ASTSs.

The auxiliary functions needed to express the characterization of the

processes' transition systems are characterized by the RS BorrBookFns. The

functions characterized by this RS are:

• getbk: book_id, list(borrower_book_detail) • borrower_book_detail -

returns an object of sort borrower_book_detail in the list argument with key

matching the book_id argument.

• getime: borrower_book_detail • time - returns the time attribute of a

borrower_book_detail object.

• deletebk: book_id, list(borrower_book_detail) •

list(borrower_book_detail) - deletes the borrower_book_detail object with

the key given by the book_id argument from the list argument.

To simplify the presentation, BorrBookFns is not given here. The ASTSs

for the processes follow:

CheckReturnBook_ TS = P3state + P31abel +

Signature

transition relation

-->_: p3state, p31abel, p3state

Laws V borrid:borrower_id; bid:book_id; bind:borrower_indicator

1. <Nullinp3, Nullrdp3, Nulloutp3>

-Receivep3(bid)->

<inp3(bid), Nullrdp3, Nulloutp3>

2. <inp3(bid), Nullrdp3, Nulloutp3>

-Readp3(bid, bind)->

<inp3(bid), rdp3(bind), Nulloutp3>

3. <inp3(bid), rdp3(Available), Nulloutp3>

-Sendp3(Retin)->

<inp3(bid), rdp3(bind), outp3(Retin)>

4. <inp3(bid), rdp3(mkbind(borrid)),Nulloutp3>

-Sendp3(mkvetret(bid, borrid))->

<inp3(bid), rdp3(mkbind(borrid)), outp3(mkvetret(bid, borrid))>

5. <inp3(bid), Nullrdp3, Nulloutp3>

-Erreadp3(bid)->

<inp3(bid), errdp3, Nulloutp3>

6. <inp3(bid), errdp3, Nulloutp3>

-Sendp3(Retnotinfile)->

<inp3(bid), errdp3, outp3(Retnotinfile)>

Chapter 6: Examples

ReturnUpdate = P4state + P4Iabel + Retup + BorrBookFns +

Signature

transition relation

--> _: p4state, p4Iabel, p4state

Laws V borrid:borrower_id; t,t':time; bid:book_id; o3:out3p4;

o2:out2p4; vetbk:vetted_return_book;

lb,lb' :list(borrower _book_detai I);

1. <Nullinp4, Nulltimep4, Nullrdp4, Nullout1 p4, Nu·11out2p4, Nullout3p4>

-Receivep4(vetbk)->

dnp4(vetbk), Nulltimep4, Nullrdp4, Nullout1 p4, Nullout2p4, Nullout3p4>

177

2. dnp4(Retnotinfile), Nulltimep4, Nullrdp4, Nullout1 p4, Nullout2p4, Nullout3p4>

-Send1 p4(Retnotin)->

<inp4(Retnotinfile), Nulltimep4, Nullrdp4, out1p4(Retnotin),

Nullout2p4, Nullout3p4>

3. dnp4(Retin), Nulltimep4, Nullrdp4, Nullout1 p4, Nullout2p4, Nullout3p4>

-Send1 p4(Alreadyin)->

<inp4(Retin), Nulltimep4, Nullrdp4, out1 p4(Alreadyin), Nullout2p4, Nullout3p4>

4. dnp4(mkvetret(bid, borrid)), Nulltimep4, Nullrdp4,

Nullout1 p4, Nullout2p4, Nullout3p4>

-Readp4(borrid,lb)->

dnp4(mkvetret(bid, borrid)), Nulltimep4, rdp4(Ib), Nullout1 p4,

Nullout2p4, Nullout3p4>

5. <inp4(mkvetret(bid, borrid)), Nulltimep4, rdp4(Ib), Nullout1p4,

Nullout2p4, Nullout3p4>

-Timep4(t)->

<inp4(mkvetret(bid, borrid)), timep4(t), rdp4(Ib), Nullout1 p4,

Nullout2p4, Nullout3p4>

6. ~(getime(getbk(bid,lb))> t), deletebk(bid,lb) = lb' •

<inp4(mkvetret(bid, borrid)), timep4(t), rdp4(1b), Nullout1 p4, Nullout2p4, o3>

-Send2p4(bid, lb')->

<inp4(mkvetret(bid, borrid)), timep4(t), rdp4(Ib), Nullout1 p4, out2p4(Ib'), o3>

7. getime(getbk(bid,lb)) = t', t'> t •

dnp4(mkvetret(bid, borrid)), timep4(t), rdp4(Ib}, Nullout1p4, Nullout2p4, o3>

-Send2p4(bid, mkbdet(bid ,t' ,t) Jdeletebk(bid ,lb))->

<inp4(mkvetret(bid, borrid)), timep4(t), rdp4(Ib), Nullout1 p4,

mkbdet(bid,t',t)Jdeletebk(bid,lb), 03>

Chapter 6: Examples

8. <inp4(mkvetret(bid, borrid)), int, rdp4(Ib), Nullout1 p4, 02, Nullout3p4>

-Send3p4(bid, Available)->

178

<inp4(mkvetret(bid, borrid)), int, rdp4(Ib), Nullout1p4, 02, out3p4(Available)>

The ASTS for A3 can now be given. The characterization of the action's states and

labels should be obvious from their use in the ASTS below:

A3_TS = A3state + A3Iabel +

Signature

transition relation

====>_: a3state, a3Iabel, a3state

Laws '<:/ p3,p3':p3state; p4,p4':p4state; vbk:vetted_return_book;

rmess:return_message; rubr:ret_updated_borr;

rubk:ret_updated_book;

bind:book_indicator; bid:book_id; t:time; borrld:borrower_id;

lb :llst(bo rrower _book_detail)

1. p3-Sendp3(vbk)->p3', p4-Receivep4(vetbk)->p4' •

<P3, p4>==SYNCH({Sendp3(vbk), Receivep4(vetbk)})==><p3' p4'>

--- synchronized communication between P3 and P4 via the data flow

vetted_return_book ---

2. p3-Receivep3(bid)->p3' • <P3, p4>==Receivep3(bid)==><p3' p4>

--- an input event of the action ---

3. p3-Readp3(bid, bind)->p3' • <P3, p4>==Readp3(bid, bind)==><p3' p4>

--- a successful read by the action on BOOK ---

4. p3-Erreadp3(bid)->p3' • <P3, p4>==Erreadp3(bid)==><P3', p4>

--- an unsuccessful read by the action on BOOK ---

5. p4-Send1 p4(rmess)->p4' • <P3, p4>==Send1 p4(rmess)==><p3, p4'>

--- an output event of the action ---

6. p4-Send2p4(rubr)->p4' • <P3, p4>==Send2p4(rubr)==><P3, p4'>

--- an output event of the action ---

7. p4-Send3p4(rubk)->p4' • <P3, p4>==Send3p4(rubk)==><P3, p4'>

--- an output event of the action ---

8. p4-Readp4(borrid, lb)->p4' • <P3, p4>==Readp4(borrid, lb)==><p3, p4'>

--- a successful read by the action on BORROWER ---

9. p4-Erreadp4(borrid)->p4' • <P3, p4>==Erreadp4(borrid)==><P3, p4'>

--- an unsuccessful read by the action on BORROWER ---

10. p4-Timep4(t)->p4' • <P3, p4>== Timep4(t)==><P3, p4'>

--- a state read on return_time by the action ---

Chapter 6: Examples 179

The ASTS for the action A4

The action A4 consists of the processes Check Book (PS),

GetOverdueBooks (P6), CalculateFine (P7), VettBorrower (PS), and

Checkout Update (P9).The states and labels of these processes are specified in

the same manner as the states and labels of proceses in previous examples, and thus

are not explicitly characterized in what follows. Such characterization should be

obvious from their use in the specification of the processes' ASTSs.

The ASTSs for the processes follow:

CheckBook = P5state + P51abel +

Signature

transition relation

_- -> _: p5state, p51abel, p5state

Laws V outbk:out_book; ty:copy_type; bid:book_id

1. <Nullinp5, Nullrdp5, Nulloutp5>

-Receivep5(bid)->

<inp5(bid), Nullrdp5, Nulloutp5>

2. <inp5(bid), Nullrdp5, Nulloutp5>

-Readp5(bid, outbk)->

<inp5(bid), rp5(outbk), Nulloutp5>

3. ty:;t:Ref =>

<inp5(bid), rp5(mkoutbk(Available, ty)), Nulloutp5>

-Sendp5(mkvbk(bid, ty))->

<inp5(bid), rp5(mkoutbk(Available, ty)), outp5(mkvbk(bid, ty))>

4. <inp5(bid), rp5(mkoutbk(Available, Ref)), Nulloutp5>

-Sendp5(Notborr)->

<inp5(bid), rp5(mkoutbk(Available, Ref)), outp5(Notborr)>

5. inp5(bid), rp5(mkoutbk(mkbind(borrid), ty), Nulloutp5>

-Sendp5(Checked0ut)->

<inp5(bid), rp5(mkoutbk(mkbind(borrid), ty), outp5(Checked0ut)>

6. <inp5(bid), Nullrdp5, Nulloutp5>

-Erreadp5(bid)->

<inp5(bid), errp5, Nulloutp5>

7. <inp5(bid), errp5, Nulloutp5>

-Sendp5(Bknotinfile)->

<inpS(bid), errp5, outp5(Bknotinfile)>

Chapter 6: Examples 180

The ASTS characterizing the transition system for P6 utilizes the RS FinesRec

which characterizes the function

getfinesrec: list(borrower_book_detail), time • list(number)

which derives a list of fines given a list of borrower_book_detail objects and the

current time.

GetOverdueBooks = P6state + P6label + FinesRec +

Signature

transition relation

-->_: p6state, p6label, p6state

Laws V borrld:borrower_ld; outb:out_borrower; t:tlme; 01 :01 p6;

o2:o2p6; lb:list(borrower_book_detail); bt:borrower_type; n:number;

In: list(integer)

1. <Nullinp6, Nullrdp6, Nulltimep6, Nullout1 p6, Nullout2p6>

-Receivep6(borrid)->

<inp6(borrid), Nullrdp6, Nulltimep6, Nullout1 p6, Nullout2p6>

2. <inp6(borrid), Nullrdp6, Nulltimep6, Nullout1p6, Nullout2p6>

-Readp6(borrid, outb)->

dnp6(borrid), rp6(outb), Nulltimep6, Nullout1p6, Nullout2p6>

3. <inp6(borrid), rp6(outb), Nulltimep6, Nullout1p6, Nullout2p6>

Timep6(t)->

<inp6(borrid), rp6(outb), timep6(t), Nullout1 p6, Nullout2p6>

4. getfinesrec(lb, t) = In •

<inp6(borrid), rp6(mkoutbr(lb, bt, n)), timep6(t), Nullout1p6, o2>

-Send1 p6(1n)->

dnp6(borrid), rp6(mkoutb(lb), bt, n)), timep6(t), out1p6(ln), o2>

5. dnp6(borrid), rp6(outb), timep6(t), 01, Nullout2p6>

-Send2p6(mkbflag(borrid,outb))->

dnp6(borrid), rp6(outb), timep6(t), 01, out2p6(mkbflag(borrid,outb))>

6. dnp6(borrid), Nullrdp6, Nulltimep6, Nullout1p6, Nullout2p6>

-Erreadp6(borrid)->

<inp6(borrid), errp6, Nulltimep6, Nullout1 p6, Nullout2p6>

7. dnp6(borrid), errp6, Nulltimep6, Nullout1 p6, Nullout2p6>

-Send2p6(Bflag)->

<inp6(borrid), errp6, Nulltimep6, Nullout1 p6, out2p6(Bflag)>

fY7 utilizes an RS, Sum list, which charactvri 1cs the auxiliary function

sum: list(integer) • integer

which returns the sum of a list of integers.

Chapter 6: Examples

GetOverdueBooks = P7state + P71abel + Sumlist +

Signature

transition relation

-->_: p7state, p71abel, p7state

Laws V ln:list{integer); n:integer

1. <Nullinp7, Nulloutp7>

-Receivep7(1n)->

dnp7(ln), Nulloutp7>

2. sum(ln) = n •

dnp7(ln), Nulloutp7>

-Sendp7(n)->

<inp7(ln), outp?(n)>

VettBorrower = P8state + P8label +

Signature

transition relation

-->_: p8state, p8label, p8state

181

Laws V n,n',f:number; t:tlme; borrid:borrower_id; in1 :I1p8; in2:i2p8;

lb:list{borrower _book_detail); bt:copy _type; bf lag :borr_flag

1. <Nullin1 p8, in2, Nulloutp8>

-Receive1 p8(n)->

dn1 p8(n), in2, Nulloutp8>

2. <in1, Nullin2p8, Nulloutp8>

-Receive2p8(bflag)->

dn1, in2p8(bflag), Nulloutp8>

3. <in1, in2p8(Bflag), Nulloutp8>

-Sendp8(NoBorr)->

dn1, in2p8(Bflag), outp8(NoBorr)>

4. n-n'!S:limit •

<in1p8(n), in2p8(mkbflag(borrid, mkoutb(lb, bt, n'))), Nulloutp8>

-Sendp8(mkvetborr(mkoutb(lb, bt, n'), borrid))->

<in1p8(n), in2p8(mkbflag(borrid, mkoutb(lb, bt, n'))),

outp8(mkvetborr(mkoutb(lb, bt, n'), borrid))>

5. n-n' = f, f>Limit •

<in1p8(n), in2p8(mkbflag(borrid, mkoutb(lb, bt, n'))), Nulloutp8>

-Sendp8(mkerrvborr(f))->

<in1p8(n), in2p8(mkbflag(borrid, mkoutb(lb, bt, n'))), outp8(mkerrvborr(f))>

Chapter 6: Examples 182

The function week used in the ASTS for P9, given below, is assumed to be

characterized by the RS Time characterizing time, where the basic unit of time is a

day. The function takes a day, t, and a number, n, and returns the day n weeks (a

week is seven days) in the future from t.

CheckoutUpdate = P9state + P9Iabel +

Signature

transition relation

-->_: p9state, p9Iabel, p9state

Laws V vbk:vetted_book; vbr:vetted_borr; in1 :11 p9; in2:i2p9;

tlme:tp9; out1:o1p9; out2:o2p9; out3:o3p9

1. <Nullin1 p9, in2, Nu11Timep9, Nullout1 p9, Nullout2p9, Nullout3p9>

-Receive1 p9(vbk)->

<in1p9(vbk), in2, Nu11Timep9, Nullout1 p9, Nullout2p9, Nullout3p9>

2. <in1, Nullin2p9, Nu11Timep9, Nullout1 p9, Nullout2p9, Nullout3p9>

-Receive2p9(vbr)->

<in1, in2p9(vbr), Nu11Timep9, Nullout1p9, Nullout2p9, Nullout3p9>

3. <in1p9(vbk), in2p9(vbr), time, Nullout1p9, out2, out3>

-Send1 p9(mkoutmess(vbr, vbk))->

<in1p9(vbk), in2p9(vbr), time, out1p9(mkoutmess(vbr, vbk)), out2, out3>

4. <in1p9(mkvbk(bid, ty)), in2p9(mkvetborr(ob, borrid)),

Nu11Timep9, out1, Nullout2p9, Nullout3p9>

-Timep9(t)->

<in1p9(mkvbk(bid, ty)), in2p9(mkvetborr(ob, borrid)),

timep9(t), out1, Nullout2p9, Nullout3p9>

5. week(t, 2) = t' •
<in1 p9(mkvbk(bid, Book)),

in2p9(mkvetborr(mkoutb(lb, Undergrad, n), borrid)),

timep9(t), out1, Nullout2p9, Nullout3p9>

-Send2p9(borrid, (mkbdet(bid, t', Notret))llb)->

<in1p9(mkvbk(bid, Book)),

in2p9(mkvetborr(mkoutb(lb, Undergrad, n), borrid)),

timep9(t), out1, out2p9(mkbdet(bid, t', Notret))llb), Nullout3p9>

6. week(t, 4) = t' •

<in1 p9(mkvbk(bid, Book)),

in2p9(mkvetborr(mkoutb(lb, Postgrad, n), borrid)),

timep9(t), out1, Nullout2p9, Nullout3p9>

-Send2p9(borrid, (mkbdet(bid, t', Notret))llb)->

<in1 p9(mkvbk(bid, Book)),

Chapter 6: Examples

in2p9(mkvetborr(mkoutb(lb, Postgrad, n), borrid)),

timep9(t), out1, out2p9(mkbdet(bid, t', Notret))llb), Nullout3p9>

7. week(t, 6) = t' •

"183

<in1p9(mkvbk(bid, Book)), in2p9(mkvetborr(mkoutb(lb, Staff, n), borrid)),

timep9(t), out1, Nullout2p9, Nullout3p9>

-Send2p9(borrid, (mkbdet(bid, week(6,t), Notret))llb)->

<in1p9(mkvbk(bid, Book)), in2p9(mkvetborr(mkoutb(lb, Staff, n), borrid)),

timep9(t), out1, out2p9(mkbdet(bid, t', Notret))llb), Nullout3p9>

8. week(t, 2) = t' •

<in1p9(mkvbk(bid, Per)), in2p9(mkvetborr(mkoutb(lb, Postgrad, n), borrid)),

timep9(t), out1, Nullout2p9, Nullout3p9>

-Send2p9(borrid, (mkbdet(bid, t', Notret))llb)->

<in1p9(mkvbk(bid, Per)), in2p9(mkvetborr(mkoutb(lb, Postgrad, n), borrid)),

timep9(t), out1, out2p9(mkbdet(bid, t', Notret))llb), Nullout3p9>

9. week(t, 4) = t' •

<in1p9(mkvbk(bid, Per)), in2p9(mkvetborr(mkoutb(lb, Staff, n), borrid)),

timep9(t), out1, Nullout2p9, Nullout3p9>

-Send2p9(borrid, (mkbdet(bid, t', Notret))llb)->

<in1 p9(mkvbk(bid, Per)),

in2p9(mkvetborr(mkoutb(lb, Staff, n), borrid)), timep9(t),

out1, out2p9(mkbdet(bid, t', Notret))llb), Nullout3p9>

10. <in1p9(mkvbk(bid, ty)), in2p9(mkvetborr(ob, borrid)), t9, out1,

out2p9(borrid, lb), Nullout3p9>

-Send3p9(bid, mkbind(borrid))->

<in1 p9(mkvbk(bid, ty)), in2p9(mkvetborr(ob, borrid)), t9, out1,

out2p9(borrid, lb), out3p9(mkbind(borrid))>

The ASTS for the action A4 follows:

A4_ TS = A4state + A41abel +

Signature

transition relation

_ == _ ==> _ : a4state, a41abel, a4state

Chapter 6: Examples

Laws v' bld:book_ld; borrid:borrower_ld; t:tlme; vbk:vetted_book;

p1 ,p1 ':statep1; ... ; p5,p5' :stateps; A 1,A2 :a4Iabel;

vbr:vetted_borrower; ln:list(number); f:number; bflag:borr_flag;

obk:out_book; obr:out_borrower; upbk:out_updated_book;

upbr:out_updated_borr; mess:checkout_message

184

Synchronized Events: process/process communication /via synchronized data

1lmY.fil
i . p5--Receivep5(bid)-->p5', p6--Receivei p6(borrid)-->p6' •

<P5, p6, p7, p8, p9>

==SYNCH({Receivep5(bid), Receivei p2(borrid)})==>

<p5', p6', p7, p8, p9>

2. p5--Sendp5(vbk)-->p5', p9--Receivei p9(vbk)-->p9' •

<P5, p6,p7, p8, p9>

==SYNCH({Sendp5(vbk), Receive i p9(vbk)})==>

<P5', p6, p7, p8, p9'>

3. p6--Sendi p6(1n)-->p6', p7--Receivep7(1n)-->p7' •

<P5, p6, p?, p8, p9>

==SYNCH({Sendip6(1n), Receivep7(1n)})==>

<P5, p6', p7', p8, p9>

4. p6--Send2p6(bflag)-->p6', p8--Receive2p8(bflag)-->p8' •

<P5, p6, p7, p8, p9>

==SYNCH({Send2p6(bflag), Receive2p8(bflag)})==>

<P5, p6', p?, p8', p9>

5. p7--Sendp7(f)-->p7', p8--Receivei p8(f)-->p8' •

<p5, p6, p7, p8, p9>

==SYNCH({Sendp7(f), Receivei p8(f)})==>

<p5, p6, p7', p8', p9>

6. p8--Sendp8(vbr)-->p8', p9--Receive2p9(vbr)-->p9' •

<P5, p6, p7, p8, p9>

==SYNCH({Sendp8(vb), Receive2p8(vbr)})==>

<P5, p6, p7, p8', p9'>

Single Events: input and output (including read/write) events of the action

7. p5--Readpi (bid, obk)-->p5' •

<P5, p6, p7, p8, p9>==Readpi (bid, obk)==><p5', p6, p7, p8, p9>

8. p5--Erreadpi (bid)-->p5' •

<P5, p6, p?, p8, p9>==Erreadpi (bid)==><p5', p6, p7, p8, p9>

9. p6--Receive2p2(t)-->p6' •

<p5, p6, p7, p8, p9>==Receive2p2(t)==><P5, p6', p7, p8, p9>

Chapter 6: Examples

10. p6--Readp2(borrid, obr)-->p6' •

<P5, p6, p?, p8, p9>==Readp2(borrid, obr)==><P5, p6', p?, p8, p9>

11. p6--Erreadp2(borrid)-->p6' •

<p5, p6, p?, p8, p9>==Erreadp2(borrid)==><P5, p6', p?, p8, p9>

12. p9--Update1 (bid, upbk)-->p9' •

<P5, p6, p?, p8, p9>==Update1 (bid, upbk)==><P5, p6, p?, p8, p9'>

13. p9--Update2(borrid, upbr)-->p9' •

<P5, p6, p?, p8, p9>==Update2(borrid, upbr)==><P5, p6, p?, p8, p9'>

14. p9--Send(mess)-->p9' •

<P5, p6, p?, p8, p9>==Send(mess)==><P5, p6, p?, p8, p9'>

15. p9--Receive3p5(t)-->p9' •

<P5, p6, p?, p8, p9>==Receive3p5(t)==><p5, p6, p?, p8, p9'>

parallel Events

185

--- Events which affect separate parts of an action can be carried out in parallel ---

16. <P5, p6,p7, p8,p9>==A1==><p5', p6,p7, p8, p9>,

<P5, p6, p?, p8, p9>==A2==><P5, p6', p?', p8', p9'> •

<<P5, p6, p?, p8, p9>==PAR(A1, A2)==><P5', p6', p?', p8', p9'>

17. <P5, p6, p?, p8, p9>==A1==><P5', p6', p?, p8, p9>,

<P5, p6, p?, p8, p9>==A2==><P5, p6, p?', p8', p9'> •

<P5, p6, p?, p8, p9>==PAR(A1, A2)==><p5', p6', p?', p8', p9'>

18. <P5, p6, p?, p8, p9>==A1==><p5', p6', p?', p8, p9>,

<P5, p6, p?, p8, p9>==A2==><P5, p6, p?, p8', p9'> •

<p5, p6, p?, p8, p9>==PAR(A1, A2)==><P5', p6', p?', p8', p9'>

19. <P5, p6, p?, p8, p9>==A1==><p5', p6', p?', p8', p9>,

<P5, p6, p?, p8, p9>==A2==><P5, p6, p7, p8, p9'> •

<P5, p6, p7, p8, p9>==PAR(A1, A2)==><p5', p6', p?', p8', p9'>

Termination event

--- Nullpi, 5s:is:9, is the abbreviated form for the idle state of Pi ---

20. <P5, p6, p?, p8, <in1 p9(vbk), in2p9(vbr), timep9(t),

out1 p9(omess), out2p9(ubr), out3p9(ubk)>>

== Terminatea4==>

<Nullp5, Nullp6, Nullp?, Nullp8, Nullp9>

21. <P5, p6, p?, p8, <in1p9(Notborr), in2, Nu11Timep9, out1p9(omess),

Nullout2p9, Nullout3p9»

== Terminatea4==>

<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9>

Chapter 6: Examples 186

22. <P5, p6, p7, p8, <in1p9(CheckedOut), in2, Nu11Timep9, out1p9(omess),

Nullout2p9, Nullout3p9>>

== Terminatea4==>

<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9>

23. <P5, p6, p7, p8, <in1p9(Bknotinfile), in2, Nu11Timep9, out1p9(omess),

Nullout2p9, Nullout3p9>>

== Terminatea4==>

<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9>

24. <P5, p6, p7, p8, <in1, in2p9(NoBorr), Nu11Timep9, out1p9(omess),

Nullout2p9, Nullout3p9>>

== Terminatea4==>

<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9>

25. <P5, p6, p7, p8, <in1, in2p9(mkerrvborr(f)), Nu11Timep9, out1 p9(omess),

Nullout2p9, Nullout3p9>>

== Terminatea4==>

<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9>

26. <P5, p6, p7, p8, <in1p9(mkvbk(bid, Per)),

in2p9(mkvetborr(mkoutb(lb, Undergrad, n), borrid)), Nu11Timep9,

out1p9(omess), Nullout2p9, Nullout3p9>>

== Terminatea4==>

<Nullp5, Nullp6, Nullp7, Nullp8, Nullp9>

The ASTS for the action A5

The action A5 consists of the processes GenerateF inesRecord (PlO),

and UpdateBorrRecord (Pl 1). As in the specification of the ASTS for A4

given above, the states and labels of these processes are not explicitly characterized

in what follows, as such characterization should be obvious from their use in the

specification of the processes' ASTSs.

The ASTSs for the processes follow:

GenerateFinesRecord = P10state + P101abel + FinesRec + Sumlist +

Signature

transition relation

--> _: p1 0state, p1 0label, p1 0state

Laws Y borrid:borrower_ld; t:time; lb:llst(borrower_book_detail);

bd:borr_detail; n,n':number

1. <Nullinp10, Nullrdp10, Nu11Timep10, Nulloutp10>

-Receivep1 0(borrid)->

<inp1 0(borrid), Nullrdp10, Nu11Timep10, Nulloutp10>

Chapter 6: Examples

2. <inp10(borrid), Nullrdp10, Nu11Timep10, Nulloutp10>

-Readp1 0(borrid, bd)->

<inp10(borrid), rdp10(bd), Nu11Timep10, Nulloutp10>

3. dnp1 0(borrid), rdp10(bd), Nu11Timep10, Nulloutp10>

-Timep1 0(t)->

<inp1 0(borrid), rdp1 0(bd), timep1 0(t), Nulloutp10>

4. sum(getfinesree(lb, t))-n) = n' •

<inp1 0(borrid), rdp1 0(mkborrdet(lb, n)), timep1 0(t), Nulloutp10>

-Sendp1 0(mkbfree(n', borrid))->

<inp1 0(borrid), rdp1 0(mkborrdet(lb, n)), timep1 0(t), outp10(n', borrid)>

5. <inp10(borrid), Nullrdp10, Nu11Timep10, Nulloutp10>

-Erreadp1 0(borrid)->

<inp1 0(borrid), errdp10, Nu11Timep10, Nulloutp10>

6. <inp10(borrid), errdp10, Nu11Timep10, Nulloutp10>

-Sendp1 0(NoRee)->

dnp1 0(borrid), errdp1 0, Nu11Timep10, outp1 0(NoRee)>

UpdateBorrReeord = P11 state + P11 label +

Signature

transition relation

- -> _: p11 state, p11 label, p11 state

"187

Laws \:/ borrld:borrower_id; t:time; n,n',f:number;

frec:borr_fine_record; in1 :11 p11; in2:l2p11; out1 :01 p11; out2:o2p11

1. <Nullin1 p11, in2, Nullout1 p11, Nullout2p11 >

-Reeeive1 p11 (n)->

<in1p11(n), in2, Nullout1p11, Nullout2p11>

2. <in1, Nullin2p11, Nullout1 p11, Nullout2p11 >

-Reeeive2p11 (free)->

<in1, in2p11 (free), Nullout1 p11, Nullout2p11 >

3. <in1, in2p11 (NoRee), Nullout1 p11, Nullout2p11>

-Send2p11 (Noree)->

<in1, in2p11 (No Ree), Nullout1 p11, out2p11 (Noree)>

4. <in1 p11 (n), in2p11 (mkbfree(0, borrid)), Nullout1 p11, Nullout2p11>

-Send2p11 (Nofines)->

<in1 p11 (n), in2p11 (mkbfree(0, borrid)), Nullout1 p11, out2p11 (Nofines)>

Chapter 6: Examples

5. n'>n, n'-n = f •

<in1 p11 (n), in2p11 (mkbfrec(n', borrid)), out1, Nullout2p11>

-Send2p11 (f)->

<in1 p11 (n), in2p11 (mkbfrec(n', borrid)), out1, out2p11 (f)>

6. n'<n, n-n' = f •

<in1 p11 (n), in2p11 (mkbfrec(n', borrid)), out1, Nullout2p11>

-Send2p11 (f)->

<in1 p11 (n), in2p11 (mkbfrec(ln, borrid)), out1, out2p11 (f)>

7. n'=n •

<in1 p11 (n), in2p11 (mkbfrec(n', borrid)), out1, Nullout2p11>

-Send2p11(Cleared)->

<in1 p11 (n), in2p11 (mkbfrec(n', borrid)), out1, out2p11 (Cleared)>

8. n' =t= 0, n+n' = f •

<in1 p11 (n), in2p11 (mkbfrec(n', borrid)), Nullout1 p11, out2>

-Send1 p11 (borrid, f)->

<in1p11(n), in2p11(mkbfrec(n', borrid)), out1p11(f), out2>

The ASTS for the action A5 is given below:

A5_TS = A5state + A51abel +

Signature

transition relation

====>_: a5state, a51abel, a5state

Laws 'v borrid:borrower_id; t:tlme; n:number;

Synchronized events
1. p1 0-Receivep10(borrid)->P10, p11-Receive1 p11 (n)->p11' •

<P10, p11>

==SYNCH({Receivep1 0(borrid), Receive1 p11 (n)})==>

<P10', p11'>

--- synchronized invocation of action ---

2. p1 0-Sendp1 0(n)->p1 0', p11-Receive2p11 (n)->p11' •

<p10, p11>

==SYNCH({Sendp1 0(n), Receive2p11 (n)})==>

<P10', p11'>

--- synchronized communication via the data flow borr_fine_record --­

Sjngle events
{Ail events of P1 0 and P11 that are not synchronized in 1 and 2}

"188

Chapter 6: Examples 189

Parallel events
{All action events that affect mutual exclusive parts of the state of A4 are allowed to

occur in parallel}

The ASTS for the action DeleteBorr (P 12)

DeleteBorr_ TS = P12state + P12Iabel +

Signature

transition relation

====>_: p12state, p12label, p12state

Laws V borrid:borrower_id; lb:list(borrower_book_detail)

1. <Nullinp12, Nullrdp12, Nulloutp12>

==Receivep12(borrid)==>

<inp12(borrid), Nullrdp12, Nulloutp12>

2. <inp12(borrid), Nullrdp12, Nulloutp12>

==Readp12(borrid, lb)==>

<inp12(borrid), rdp12(Ib), Nulloutp12>

3. lb = emptylist •

<inp12(borrid), rdp12(Ib), Nulloutp12>

==Deletebr(borrid)==>

<inp12(borrid), delbr, Nulloutp12>

4. <inp12(borrid), delbr, Nulloutp12>

==Sendp12(0Kdelbr)==>

<inp12(borrid), delbr, outp12(0Kdelbr)>

4. lb -:t:. emptylist •

<inp12(borrid), rdp12(Ib), Nulloutp12>

==Sendp12(Booksout)==>

dnp12(borrid), rdp12(Ib), outp12(Booksout)>

5. <inp12(borrid), Nullrdp12, Nulloutp12>

==Errdelbr(borrid)==>

<inp12(borrid), errdel, Nulloutp12>

6. <inp12(borrid), errdel, Nulloutp12>

==Sendp12(Delnotinfile)==>

<inp12(borrid), errdel, outp12(Delnotinfile)>

7. <inp12(borrid), rdp12(Ib), outp12(dmess)>

== Terminatep12==>

<Nullinp12, Nullrdp12, Nulloutp12>

Chapter 6: Examples

8. <inp12(borrid), errdel, outp12(dmess)>

== Terminatep12==>

<Nullinp12, Nullrdp12, Nulloutp12>

9. <inp12(borrid), delbr, outp12(dmess)>

== Terminatep12==>

<Nullinp12, Nullrdp12, Nulloutp12>

The ASTS for the action AddBorr (P13}

AddBorr_TS = P13state + P13Iabel +

Signature

transition relation

====>_: p13state, p13Iabel, p13state

Laws 'i borrid:borrower_id;nborr:new_borr; n,a:list(character);

t:borrower_type; out1 :o1p13, out2:o2p13

1. <Nullinp13, Nullrdp13, Nullout1p13, Nullout2p13>

==Receivep1 (nborr)==>

<inp13(nborr), Nullrdp13, Nullout1p13, Nullout2p13>

2. <inp13(mknewborr(borrid, n, a, t)), Nullrdp13, Nullout1p13, Nullout2p13>

==Readp13(borrid)==>

<inp13(mknewborr(borrid, n, a, t)), rdp13(borrid), Nullout1p13, Nullout2p13>

3. <inp13(mknewborr(borrid, n, a, t)), Nullrdp13, Nullout1p13, Nullout2p13>

==Erreadp13(borrid)==>

<inp13(mknewborr(borrid, n, a, t)), erreadp13, Nullout1p13, Nullout2p13>

4. <inp13(mknewborr(borrid, n, a, t)), rdp13(borrid), Nullout1p13, Nullout2p13>

==Send1p13(Alreadyinfile)==>

<inp13(mknewborr(borrid, n, a, t)), rdp13(borrid),

out1p13(Alreadyinfile), Nullout2p13>

5. <inp13(mknewborr(borrid, n, a, t)), dp13(borrid),

out1p13(Alreadyinfile), Nullout2p13>

== Terminatep 13==>

<Nullinp13, Nullrdp13, Nullout1p13, Nullout2p13>

6. <inp13(nborr), erreadp13, Nullout1p13, out2>

==Send1p13(OKadd)==>

<inp13(nborr), erreadp13, out1p13(OKadd), out2>

7. <inp13(mknewborr(borrid, n, a, t)), erreadp13, out1, Nullout2p13>

==Send2p13(mkborr(borrid, n, a, t, emptylist, 0))==>

<inp13(mknewborr(borrid, n, a, t)), erreadp13, out1,

out2p13(mkborr(borrid, n, a, t, emptylist, 0))>

190

Chapter 6: Examples

8. <inp13(mknewborr(borrid, n, a, t}}, erreadp13, out1p13(OKadd},

out2p13(mkborr(borrid, n, a, t, emptylist, 0}}>

== Terminatep13==>

<Nullinp13, Nullrdp13, Nullout1p13, Nullout2p13>

1 91

The asyncronous data flows of the library application are associated with

queue structures each having an ADD access function, which puts objects on the

queue, and a DEL access function, which removes the object at the top of the

queue. The RSs specifying the asynchronous flows are not given here since they

are merely instantiations of the queue RS given in Chapter 5. Below is a brief

description of the RSs characterizing these data flows:

Data flow RS name Access events

new_book Asynchl ADDl,DELl

delete_book Asynch2 ADD2,DEL2

delete_message Asynch3 ADD3,DEL3

return_info Asynch4 ADD4,DEL4

return_message Asynch5 ADD5,DEL5

checkout_info Asynch6 ADD6,DEL6

checkout_message Asynch7 ADD7,DEL7

borr_update_info Asynch8 ADD8,DEL8

update_status Asynch9 ADD9,DEL9

del_borr AsynchlO ADDlO, DELIO

del_borr_mess Asynchll ADDll, DELll

new_borr Asynch12 ADD12, DEL12

add_message Asynch13 ADD13, DEL13

The RSs characterising the behaviour of the data stores are given below:

Borr_ TS= BorrStore + Borrlabel +

Signature

transition relation

_ == _ ==> _: list(borrower}, borrlabel, list(borrower}

Laws V bo rrid :borrower _id; lbr: I ist(borrower); rub :ret_updated_borr;

oub:out_updated_borr; brec:borrower

1. lbr==READBORR1 (borrid, readborr1 (lbr, borrid}}==>lbr

--- read associated with ret_borr ---

2. lbr==READBORR2(borrid, readborr2(1br, borrid}}==>lbr

--- read associated with out_borr ---

Chapter 6: Examples

3. lbr==READBORR3(borrid, readborr3(Ibr, borrid))==>lbr

--- read associated with borr_detail ---

4. lbr==DELBORR(borrid, readborr4(Ibr, borrid))==>delborr(lbr, borrid)

--- read associated with deleted_borr ---

5. lbr==READBORR5(borrid, readborr5(Ibr, borrid))==>lbr

--- read associated with other_borr ---

6. lbr==UPDATEBR1 (borrid, rub)==>updatebr1 (lbr, borrid, rub)

--- update associated with ret_updated_borr ---

7. lbr==UPDATEBR2(borrid, oub)==>Update2(lbr, borrid, oub)

--- update associated with out_updated_borr ---

8. lbr==UPDATEBR3(borrid, ubd)==>Updatebr3(Ibr, borrid, ubd)

--- update associated with updated_borr_detail ---

9. lbr==PUTBR(brec)==>brecpbr

--- update associated with new_borr_rec ---

Book_TS = BookStore + Booklabel +

Signature

transition relation

_ == _ ==> _: list(book), booklabel, list(book)

192

Laws 'r/ bld:book_ld; lbk:list(book); i:ISBN; rub:ret_updated_book;

oub:out_updated_book; bkrec:book

1. lbk==READBOOK1 (bid, readbk1 (lbk, bid))==>lbk

--- read associated with return_detail ---

2. lbk==READBOOK2(bid, readbk2(Ibk, bid))==>lbk

--- read associated with out_book ---

3. lbk==DELBOOK(bid, readbk3(Ibk, bid))==>delbook(lbk, bid)

--- read associated with deleted_book ---

4. lbk==READBOOK3(i, readbk3(Ibk, i))==>lbk

--- read associated with copy#_list ---

5. lbk==PUTBK(bkrec)==>bkrecjlbk

--- addition associated with new_book_rec ---

6. lbk==UPDATEBK1 (bid, rub)==>updatebk1 (lbk, rub)

--- update associated with ret_updated_book ---

7. lbk==UPDATEBK2(bid, oub)==>updatebk2(Ibk, oub)

--- update associated with out_updated_book ---

The state of the ExtDFD representing the library application is of the form<{ a 1, ... ,

a?}, as1, ... , as13, <ds1, 11 >, <ds2, 12>>, where ai is a state of action Ai, asi

Chapter 6: Examples 193

is an asynchi object, representing a state of its corresponding asynchronous data

flow, <ds1, 11 > is a state of the monitored data store BOOK, (ds1 is the state of the

data store while 11 contains information about which objects in BOOK cannot be

updated), and <ds2, 12> is the state of the monitored data store BORROWER, (ds2

is the state of the data store while 11 contains information about which objects in

BORROWER cannot be updated).

The outline of the BS for the library ExtDFD is given below:

Lib_BS = Libstate + Liblabel +

Signature

transition relation

_ === _ ===> _: libstate, liblabel, libstate

Laws

Synchronized Events
A. Synchronized events between the receiving events of actions and the

remove events (DEL) of asynchronous data flows. These laws are of the form

below:

ai==Receivepi(data)==>ai', asj==DELj(data)==>asj' •

<{ai, sp}, as1, ... , asj, ... , as13, <ds1, 11>, <ds2, 12>>

===SYNCH({Receivepi(bid), DELj(bid)})===>

<{ai', sp}, as1, ... , asj', ... , as 13, <ds1, 11>, <ds2, 12>>

For example, the synchronized interaction between the action AS and the

asynchronous data flow borr_update_info is defined by the law:

{borrid:borrower_id; n:integer}

a5==SYNCH({Receivep1 O(borrid), Receive1 p11 (n)})==>a5',

as8==DEL8(mkupinfo(borrid, n))==>as8' •

<{a5, sp}, as1, ... , ass, ... , as13, <ds1, 11>, <ds2, 12>>

===SYNCH({SYNCH({Receivep1 O(borrid), Receive1 p11 (n)}),

DEL8(mkupinfo(borrid, n))})===>

<{a5', sp}, as1, ... , as8', ... , as13, <ds1, 11>, <ds2, 12»

B. Synchronized events between actions and data stores. For example, the law

characterizing the interaction between the action A3 and the data store BOOK

via the data flow ret_updated_book is:

{rub:ret_updated_book; bid:book_id}

a3==Send2p4(bid, rub)==>a3', ds1 ==UPDATEBK1 (bid, rub)==>ds1' •

<{a3, sp}, as1, ... , as13, <ds1, 11>, <ds2, 12>>

===SYNCH({Send2p4(bid, rub), UPDATEBK1(bid, rub)})===>

<{a3', sp}, as1, ... , as13, <ds1', delete(bid, 11)>, <ds2, 12>>

Chapter 6: Examples 194

Single Events
C. All action events which are concerned with the reading of state flows from

external entities. Such events are of the form:

ai==l==>ai' •

<{ai, sp}, as1, ... , as13, <ds1, 11>, <ds2, 12>>

===I===>

<{ai', sp}, as1, ... , as13, <ds1, 11>, <ds2, 12»

where I is an event label encapsulating the observable effect of a read from a

state flow event.

Parallel Events

D. All ExtDFD events that affect mutually exclusive parts of the ExtDFD state

can be carried out in parallel. These laws are of the form:

<{sp1, sp2}, as1, ... , asi-1, asi, ... , as 13, <ds1, 11>, <ds2, 12>>

===12===>

<{sp1', sp2}, as1, ... , asi-1, asi', ... , as13', <ds1', 11'>, <ds2, 12»,

<{sp1, sp2}, as1, ... , asi-1, asi, ... , as 13, <ds1, 11>, <ds2, 12>>

===12===>

<{sp1, sp2'}, as1', ... ,asi-1', asi, ... , as13, <ds1, 11>, <ds2', 12'» •

<{sp1, sp2}, as1, ... , asi-1, asi, ... , as13, <ds1, 11>, <ds2, 12»

===11112===>

<{sp1', sp2'}, as1', ... , asi-1', asi', ... , as13', <ds1', 11'>, <ds2', 12'>>

Also all ExtDFD events which affect mutually exclusive substates of an action

can be carried out in parallel. For example, the output events of the action A4

may occur in parallel, that is the synchronized update interactions between

A4 and the data stores BOOK and BORROWER and the synchronized

interaction between A4 and the asynchronous data flow checkout_message

can occur in parallel.

6.3 Conclusion
The examples presented in this chapter illustrate how formal specifications

can be derived from DFDs extended with notation for depicting control

relationships. The two different types of applications used show that the techniques

are equally applicable to data, and control-intensive applications. The formal

specifications derived are, admittedly, not easy to read or understand, nor are they

easy to produce manually. In this respect, the examples highlight the need for

powerful specification building and derivation tools in the practical application of

the framework.

Chapter 6: Examples 195

Once produced, the formal specifications can be used to rigorously validate

and verify behavioural properties, and in this respect, they serve to establish

confidence in the software product and the activities involved in building the

product.

CHAPTER 7

Conclusions and Further Work

7.1 Thesis Summary and Achievements
In this thesis a formal framework for developing and interpreting DFDs was

developed. The framework provides DFDs with a mathematical basis, and consists

of two parts: the Picture Level (PL) and the Specification Level (SL). The PL is a

mathematical theory characterizing the syntactic properties of DFDs. The theory can

be used to investigate the absence or presence of syntactic properties in DFDs. The

operational interpretation associated with the PL takes the form of a relational

conditional term rewriting system (R-CTRS), and provides an effective means for

carrying out the investigation of the syntactic properties. Structural correctness is a

useful syntactic property that can be investigated in the PL. A DFD construct, or a

structure of DFD constructs, is said to be structurally correct if it satisfies the

formation rules associated with it. Such rules are directly stated as laws of the PL.

The SL provides support for specifying control in DFDs and for deriving

initial design from DFDs. It consists of tools and techniques for describing state

dependent behaviour and control relationships in DFDs, and for deriving formal

specifications, called Behavioural Specifications (BSs), from control-extended

DFDs, called ExtDFDs. An ExtDFD is derived from a hierarchy of DFDs, in the

following manner:

1 Generate the primitive DFD of the hierarchy. The primitive DFD consists of the

primitive processes of the hierarchy, and the external entities and data stores of

the hierarchy. Decomposed and combined data flows are depicted in the

primitive DFD via splitters and binders.

2 Add control flows and a state entity to the primitive DFD to pictorially describe

the state dependent behaviour of the application. Specify the behaviour of the

state entity in terms of a state transition diagram (STD).

3 Partition the primitive processes into actions, and identify the asynchronous and

state flow interfaces between actions and the external entities. The internal data

flows of actions are all synchronous, as well as the data flows between actions

and data stores. The data flows between actions are all asynchronous.

An ExtDFD is viewed in the formal framework as a system of actions which

interacts with its environment (depicted by external entities) in an uncooperative

manner (depicted by asynchronous and/or state interfaces between external entities

and the ExtDFD). The BS of an ExtDFD characterizes the behaviour of the BS in

terms of its allowable state transitions, and is generated from information

196

Chapter 7: Conclusions and Further Work 197

concerning the relationships between ExtDFD components, explicitly depicted in

the ExtDFD (for example, via the use of special symbols for synchronous,

asynchronous, state, and control flows), formal specifications of behaviour of the

processes, data stores, and asynchronous flows, in terms of labeled state transition

systems, and specifications of the data structures associated with the data objects in

the ExtDFD. The BS is derived in a modular manner:

1 the static and dynamic aspects of data stores and data flows are formally

specified;

2 the behaviour of processes are formally specified;

3 the specifications of actions are generated from specifications of their constituent

processes, and the synchronous relationships between them (which are explicitly

depicted in the ExtDFD);

4 The BS is generated from the specifications generated in 1 and 3, and from the

types of interactions between actions, data stores, and external entities depicted

in the ExtDFD.

The BS can be used to formally validate behavioural properties of ExtDFDs,

and can also be used as the basis for formal verification of subsequent

implementations.

7.1.1 Achievements

The formal framework described in this thesis provides a firm mathematical

foundation for DFDs which can be used as a basis for formally evaluating the

structure of DFDs, and which facilitates the generation of formal specifications

from them. Earlier work in this respect [TP86b, Tse85a, Tse85b] provide only

formal foundations for the syntactic aspects of DFDs. The framework developed

here provides a formal basis for both the syntactic and semantic aspects of DFDs,

and thus can be viewed as extensions of these earlier works.

The formal framework also provides facilities for depicting and formally

specifying control information in DFDs. The work on this aspect of the formal

framework improves upon other popular approaches to introducing control

information in DFDs [HP87, Woo88], by associating formal interpretations with

DFD structures built up with the additional control constructs. As above, this

facilitates the generation of formal specifications from the control-extended DFDs.

The use of the formal specifications for formally investigating behavioural

properties of applications, and as bases for formal verification activities, is

discussed in Chapter 5.

Once the BS is generated from an ExtDFD, the ExtDFD can be viewed as the

informal 'front' of the BS. This provides the BS with a more visually appealing

Chapter 7: Conclusions and Further Work 198

front, which abstracts away from its detail but still provides insight, via the

graphical notation, consistent with such detail. This approach supports Naur's view

of formalisms as extensions of informal expressions.

The formal framework thus facilitates the generation of specifications which

are understandable, by providing a graphical 'front' in the form of ExtDFDs,

precise, by facilitating the generation of formal specifications from ExtDFDs, and

testable, by providing formal notions of specifications implementing the BS.

The specification technique used by the framework extends and combines

current algebraic specification techniques in order to derive a more expressive

specification system. The extensions made in this respect concern the derivation of

model-theoretic and operational interpretations for specifications with partial

functions, negated relations (predicates), and inequalities. This work builds upon

the work of Wirsing and Broy on partial algebraic specifications [WB82],

Astesiano et al on relational specifications [ARW86], and Mohan and Srivas on

model-theoretic and opertaional interpretations of specifications with inequalities

[MS87].

7.1.2 Comments

It is this author's op1mon that the number of useful automated tools

supporting the use of SA tools and techniques will gradually level out if no formal

basis for the tools and techniques are developed. Too often have practical tools been

built without first establishing a formal foundation for the techniques they support.

Many such tools are of superficial use only, for example, most tools for DFDs

currently available have relatively firm foundations for the syntactic aspects, but

provide little or no foundation for the semantic aspects, thus limiting their use in

formally specifying and investigating behavioural properties. Yet, it is the

investigation of these behavioural properties that will have a bearing on subsequent

development. This thesis attempts to change matters by providing a formal

framework which can be used as the basis for the building of automated tools

supporting the use of DFDs in software development. No attempt has been made in

the thesis to suggest particular tools based on the framework, but the mathematical

theories have been developed in a manner that does not preclude practical

implementation. Thus conditions under which sound and complete rewriting

systems can be generated from RSs (the theories) are provided, and can be used as

guidelines in constructing the RSs.

Chapter 7: Conclusions and Further Work 199

7.2 Further Work
The PL of the formal framework can be extended in many directions as

indicated in Chapter 4. Support for formally reasoning about the syntactic

properties of incomplete structures, as well as support for modifying DFDs, and for

reasoning about such modifications are some of the more useful extensions that can

be made to the PL. Such extensions are simply exercises in building theories of

well-defined syntactic manipulations. Further work is also needed in making

practical use of the SL. In this respect, computer-aided tools for interrogating BSs,

and for analyzing the behavioural properties they capture are essential. Work by this

author and Docker on a practical environment for the formal framework is currently

in progress [DF89, FD89]. The structure of the proposed environment is shown in

Figure 7.1.

Figure 7.1 The structure of an environment incorporating the formal

framework

The proposed environment consists of two sub systems: the Requirements

Analysis Support System (RASS), and the Behavioural Analysis Support System

(BASS). The two sub systems are supported by a system dictionary which is a

stores the representations generated by them, and facilitates the sharing of such

representations.

In the RASS DFDs are developed informally using SAME [Doc88], which is

an executable DFD specification system. The PL-Analyzer, a DFD syntax checking

tool based on the PL theory, is used to check the syntactic consistency of the DFDs

constructed in SAME. SAME acts as the informal 'front' of the RASS, providing

tools for drawing diagrams, for entering semi-formal descriptions of DFD

Chapter 7: Conclusions and Further Work 200

components, and for building executable data dictionaries for the DFDs. The

executable nature of SAME specifications essentially makes the RASS a

prototyping system.

The BASS provides support for the specification and analysis of behavioural

properties of application with DFDs, and is based on the SL. The SL-system is the

front end of the BASS and consists of automated tools for extending DFDs with

control information, and for entering process specifications, and specifications of

the static and dynamic aspects of data stores and data flows. From these, the SL­

system generates the BS. The SL-Analyzer provides tools for analyzing the BS.

Work on the BASS is still in the initial stages.

Further research is needed in incorporating the formal framework in a formal

devlopment method. An evolutionary method, somewhat similar to the

transformation approach described in Chapter 0, where a program is derived from a

sequence of specifications, with the BS as the start of the sequence, and where each

specification in the sequence implements the specification prior to it in the sequence,

is a possibilty that warrants further investigation. The criteria for establishing

implementation described in Chapter 5 can be used in such a method.

7.3 Conclusion
To conclude, further research and work is needed in order to make practical

use of the formal framework via automated support environments for formally

specifying applications with DFDs. The framework, though, has the potential to

initiate research into a new generation of 'semantically-based' automated tools for

DFDs, which could see their use as specification tools in formal development

methods. Furthermore, the graphical nature of DFDs, coupled with the formal

foundation developed here, makes for a formal specification method which does not

sacrifice understandability for formality.

Bibliography

* LNCS is the abbreviated form for Lecture Notes in Computer Science

[AL88] Abadi, M., & Lamport, L., 'The Existence of Refinement Mappings',

Digital Systems Research Centre Report, Aug 1988.

[AGR88] Astesiano, E., Giovini, A., & Reggio, G., 'Data in a Concurrent

[AR87]

Environment', in Proceedings of the International Conference on

Concurrency, LNCS 335, Springer-Verlag, 1988, 140-159.

Astesiano, E., & Reggio, G., 'SMoLCS-Driven Concurrent Calculi',

in TAPSOFT '87, Eds H. Ehrig, R. Kowalski, G. Levi, & U.

Montanari, Vol.I, LNCS 249, Springer-Verlag, 1987, 169-201.

[ARW86] Astesiano, E., Reggio, G., & Wirsing, M., 'Relational Specifications

[BG87]

[BK82]

[Boe76]

[Boe81]

[BW83]

and Observational Semantics', in Mathematical Basis for Computer

Science, Eds G. Goos & J. Hartmanis, LNCS 233, 1986, 209-217.

Balzer, R., & Goldman, N., 'Principles of Good Software

Specification and their Implications for Specification Languages', in

Software Specification Techniques, Eds N. Gehani, & A. D.

McGettrick, 25-39.

Bergstra, J.A., & Klop, J.W., 'Conditional Rewrite Rules: Confluency

and Termination', Research Report IW 198/82, Mathematical Centre of

Amsterdam, 1982.

Boehm, B. W., 'Software Engineering', IEEE Transactions on

Computers, Vol. C-25, No. 12, Dec. 1976, 1226-1241.

Boehm, B. W., Software Engineering Economics, Prentice Hall, 1981.

Broy, M., & Wirsing, M., 'On The Algebraic Specification Of Finitary

Infinite Communicating Sequential Processes', in Formal Description

of Programming Concepts-II, Eds D. Bjorner, North-Holland, IFIP,

1983, 171-198.

[CTL87] Chua, T.S., Tan, K.P., & Lee, P.T., 'EXT-DFD: A Visual Language

for Extended DFD', Technical Report, Department of Information

Systems and Computer Science, National University of Singapore,

1987.

[CTRS87] Proceedings of the 1st International Workshop on Conditional Term

Rewriting Systems, Eds S. Kaplan, & J.P. Jouannaud, LNCS 308,

Springer-Verlag, 1987.

201

Bibliography 202

[DF89] Docker, T.W.G., & France, R.B., 'Flexibility and Rigour in

Structured Analysis', in Information Processing 89, Ed G.X. Ritter,

Elsevier Science Publishers (North-Holland), 1989, 89-94.

[DeM78] DeMarco, T., Structured Analysis and System Specification, Prentice­

Hall, 1978.

[Der87] Dershowitz, N., 'Termination of Rewriting', Journal of Symbolic

Computation, Vol 3, 1987, 69-116.

[Doc86] Docker, T. W. G., & Tate, G., 'Executable Data Flow Diagrams', in

Software Engineering '86, Eds D. Barnes, & P. Brown, Peter

Peregrinus, 1986, 352-370.

[Doc87] Docker, T. W. G., 'A Flexible Software Analysis Tool', Information

and Software Technology, Vol 29, No 1, Jan/Feb 1987.

[Dro84] Drosten, K., 'Towards Executable Specifications Using Conditional

Axioms', in Symposium on Theoretical Aspects of Computer Science,

LNCS 166, Springer-Verlag, 1984, 85-96.

[FD89]

[FP86]

France, R.B., & Docker, T.W.G., 'Formal Specification using

Structured Analysis', in ESEC '89, Eds C. Ghezzi, & J.A. McDermid,

LNCS 387, Springer-Verlag, 1989, 292-310.

Finkelstein, A.C.W., &_ Potts, C., 'Structured Common Sense: The

elicitation and formalization of system requirements', in Software

Engineering '86, Eds P.J. Brown, & D.J. Barnes, Peter Peregrinus,

1986.

[FREQ79] Position papers for panel session: 'What is a Formal Requirements

Specification? What does it contain, How is it Structured and For What

is it Useful', in Formal Models and Practical Tools for Information

Systems Design, IFIP, Ed H. -J. Schneider, North-Holland, 1979,

281-287.

[Gom84] Gomaa, H., 'A Software Design Method for Real-Time Systems',

Communications of the ACM, Vol 27, No 9, Sept 1984, 938-949.

[Gom86] Gomaa, H., 'Software Development of Real-Time Systems',

Communications of the ACM, Vol 29, No 7, Julv 1986, 657-668.

[Goo84] Good, D.I., 'Mechanical Proofs About Comrutcr Programs', in

Proceedings of the Philosophical Transactions of the Royal Society,

Mathematical Logic and Programming Languages, Eds Sir Michael

Atiyah, C.A.R. Hoare, & J.C. Shepherdson, Royal Society, 1984.

[GS79] Gane, C., & Sarson, T., Structured Systems Analysis: Tools and

Techniques, Prentice-Hall, 1979.

Bibliography 203

[GHM78] Guttag, J. V., Horowitz, E., & Musser, D. R., 'The Design of Data

Type Specifications', in Current Trends in Programming Methodology,

Vol 4, Ed R. Yeh, Prentice-Hall, 1978, 60-79.

[GTW78] Goguen, J. A., Thatcher, J. W., & Wagner, E. G., 'An Initial Algebra

Approach to the Specification, Correctness, and Implementation of

Abstract Data Types', in Current Trends in Programming Methodology,

Vol 4, Ed R. Yeh, Prentice-Hall, 1978, 80-149.

[HO80] Huet, G., & Oppen, D.C., 'Equations and Rewrite Rules: a survey', in

Formal Languages: Perspectives and Open Problems, Ed R. Book,

Academic Press, 1980.

[Hoa78] Hoare, C. A. R., 'Communicating Sequential Processes',

Communications ACM, Vol 21, No 8, Aug 1978, 666-677.

[HP87] Hatley, D., & Pirbhai, I., Strategies for Real-Time System

Specification, Dorset House, 1987.

[Hue80] Huet, G., 'Confluent Reductions: Abstract Properties and Applications

to Term Rewriting Systems', Journal of the ACM, Vol 27, No 4, Oct

1980, 797-821.

[Jou87] Jouannaud, J. P., 'Reductive Conditional Term Rewriting Systems', in

Formal Descriptions of Programming Concepts-III, IFIP, Ed M.

Wirsing, North-Holland, 1987, 223-244.

[Kap84] Kaplan, S., 'Fair Conditional Term Rewriting Systems: Unification,

Termination and Confluence', Research Report, Universite de Paris­

Sud, 1984.

[Kap87] Kaplan, S., 'Positive/Negative Conditional Rewriting', in [CTRS87],

129-141.

[KKZ88] Koymans, R., Kuiper, R., & Zijlstra, E., 'Paradigms for Real-Time

Systems', in Formal Techniques in Real-Time and Fault-Tolerant

Systems, LNCS 331, 1988, 159-174.

[KP87] Kaplan, S., Pnueli, A., 'Specification and Implementation of

Concurrently Accessed Data Structures: An Abstract Data Type

Approach', in Proceedings of 4th Annual Symposium on Theoretical

Aspects of Computer Science, LNCS 247, 1987.

[Lam86] Lamport, L., 'A Simple Approach to Specifying Concurrent Systems',

[LZ75]

Digital Systems Research Center Report, Dec 1986.

Liskov, B. H., & Zilles, S., 'Specification Techniques for Data

Abstractions', EEE Transactions on Software Engineering, Vol SE-1,

Jan 1975, 7-19.

Bibliography 204

[LZ77] Liskov, B. H., & Zilles, S., 'An Introduction to Formal Specifications

of Data Abstractions', in Current Trends in Programming

Methodology, Vol 1, Ed R. Yeh, Prentice-Hall, 1977, 1-32.

[Mi180] Milner, R., 'A Calculus of Communicating Systems', Springer-Verlag,

1980.

[MP84] McMenamin, S.M., & Palmer, J.F., Essential Systems Analysis,

Yourdon Press, 1984.

[MS87] Mohan, C., & Srivas, M.K., 'Conditional Specifications with

Inequational Assumptions', in [CTRS87], 161-178.

[MW86a] Mellor, S. J., & Ward, P. T., Structured Development for Real-Time

Systems Vol I: Introduction and Tools, Y ourdon Press, 1986.

[MW86b] Mellor, S. J., & Ward, P. T., Structured Development for Real-Time

Systems Vol 2: Essential Modeling Techniques, Yourdon Press, 1986.

[Nau82] Naur, P., 'Formalization in Program Development', Bit 22, 1982, 437-

453.

[Nau85] Naur, P., 'Intuition in Software Development', in Formal Methods and

Software Development, LNCS 186, Springer, 1985, 60-79.

[Pet88] Peters, L., Advanced Structured Analysis and Design, Prentice-Hall,

1988.

[Pete81] Peterson, J. L., Petri Net Theory and the Modeling of Systems,

Prentice-Hall, 1981.

[Pong86] Pong, L., 'Formal Data Flow Diagrams (FDFD): A Petri Net Based

Requirements Specification Language', M.Phil. thesis, Centre of

Computer Studies and Applications, University of Hong Kong, 1986

[Pre87]

[Ric86]

Pressman, R. S., Software Engineering: A Practitioner's Approach,

McGraw-Hill, 1987.

Richter, C. A., 'An Assessment of Structured Analysis and Structured

Design', ACM SIGSOFT Software Engineering Notes, Vol 11, No 4,

Aug 1986, 41-45.

[Ross77] Ross, D. T., 'Structured Analysis (SA): A Language For

Communicating Ideas', IEEE Transactions on Software Engineering,

Vol. SE-3, No. 1, Jan. 1977, 16-34.

[RS77]

[RZ84]

Ross, D. T., & Schoman, K. E., 'Structured Analysis for

Requirements Definition', IEEE Transactions on Software Engineering,

Vol SE-3, No 1, Jan 1977, 6-15.

Remy, J.-L, & Zhang, H., 'Reveur4: A System for Validating

Conditional Algebraic Specification of Parameterized Abstract Data

Types', in Proceedings of the 2nd ECAI Conference, 1984.

Bibliography 205

[Sho88] Shoval, P., 'ADISSA: Architectural Design of Information Systems

Based on Structured Analysis', Information Systems, Vol. 13, No. 2,

1988, 193-210.

[SPSS] Shoval, P., & Pliskin, N, 'Structured Prototyping: Integrating

Prototyping into Structured System Development', Information &

Management, 14, 1988, 19-30.

[SSD87] Proceedings of the Fourth International Workshop on Software

[ST87]

Specification and Design, IEEE Computer Society Press, 1987.

Sannella, D.T., & Tarlecki, A., 'On Observational Equivalence and

Algebraic Specification', Journal of Computer and System Sciences,

Vo134, 1987, 150-178.

[TePi85] Teague, L. C., & Pidgeon, C. W., Structured Analysis Methods For

Computer Information Systems, Science Research Associates, 1985.

[TP86a] Tse, T. H., Pong, L., 'An Examination of System Requirements

Specification Languages', Technical Report, Centre of Computer

Studies and Applications, University of Hong Kong, 1986.

[TP86b] Tse, T. H., Pong, L., 'Towards a Formal Foundation for DeMarco

Data Flow Diagrams', Technical Report, Centre of Computer Studies

and Applications, University of Hong Kong, 1986.

[Tse85a] Tse, T. H., 'An Algebraic Formulation for Structured Analysis Design

and Models', Technical Report, Centre of Computer Studies and

Applications, University of Hong Kong, 1985.

[Tse85b] Tse, T. H., 'Towards a Unified Algebraic View of the Structured

Analysis and Design Models', Technical Report, Centre of Computer

Studies and Applications, University of Hong Kong, 1985.

[Tse86]

[Tse87]

Tse, T. H., 'Integrating the Structured Analysis and Design Models: An

Initial Algebra Approach', Australian Computer Journal, Vol 18, No 3,

1986, 121-127.

Tse, T. H., 'Integrating the Structured Analysis and Design Models: A

Category-Theoretic Approach', Australian Computer Journal, Vol 19,

No 1, 1987, 25-31.

[War86] Ward, T., 'The Transformation Schema: An Extension Of The Data

Flow Diagram To Represent Control And Timing', IEEE Transactions

on Software Engineering, Vol. SE-12, No.2, February 1986, 198-210.

[WB82] Wirsing, M., & Broy, M., 'An Analysis of Semantic Models For

Algebraic Specifications', in Theoretical Foundations of Programming

Methodology, Eds M. Broy, & G. Schmidt, NATO Advanced Study

Series, Series C, Vol. 91, D. Reidel, 1982, 351-412.

Bibliography 206

[Wei78] Weinberg, V., Structured Analysis, Prentice-Hall, 1978.

[Woo88] Woodman, M., 'Yourdon Dataflow Diagrams: A tool for disciplined

requirements analysis', Information and Software Technology, Vol 30,

No 9, Nov 1988, 515-533

[WS79] Wasserman, A., & Stinson, S., 'A Specification Method for Interactive

Information Systems', in Proceedings of the Symposium on the

Specification of Reliable Software, IEEE, 1979, 68-79.

[YC79] Yourdon, E., Constantine, L., Structured Design: Fundamentals of a

Discipline of Computer Program and System Design, Second Edition,

Y ourdon Press, 1979.

[YZCC84] Yeh, R. T., Zave, P., Conn, A.P., & Cole, G. E., 'Software

Requirements: New Directions and Perspectives', in Handbook of

Software Engineering, Eds C.R. Vick, & C.V. Ramamoorthy, Van

Norstrand Reinhold, 1984, 519-543.

[Zav82] Zave, P., 'An Operational Approach to Requirements Specification for

Embedded Systems', IEEE Transactions on Software Engineering, Vol

8, No 3, May 1982, 250-269.

[zy81] Zave, P., & Yeh, R., 'Executable Requirements for Embedded

Systems', in Proceedings of the 5th IEEE Conference on Software

Engineering, IEEE Press, 1981, 285-304.

APPENDIX I

Conditional Term Rewriting Systems

This appendix is an introduction to term rewriting systems, in particular,

conditional term rewriting systems.

Properties of terms

Let T be the set of terms generated by a signature I,= <S, F>, where S is a

set of sorts and F is a set of function symbols, and let X be a countable set of

elements, called variables, which are denoted by x, y, z. The function Var on terms

returns the set of variables occurring in a term and is defined as follows :

Var: Var(x) = {x} where XE X

Var(f(tl, ... , tn)) = Var(tl)+ ... +Var(tn) where fe F and tie T (lsisn)

If V(t) = 0 then tis called a ground term.

An occurrence of a sub term in a term is defined in terms of a set of sequences

of integers, N*, including the empty sequence A, and a concatenation operation, .,

on sequences. The elements of N* are called occurrences. An orderings, called the

prefix ordering, is defined on occurrences as follows:

usv if and only if there exists w such that v = u.w, where u, v, w E N*. Also v/u

= w if and only if v = u.w, where u, v, w EN*.

Intuitively usv if u can be made equal to v by appending a sequence to it.

Two occurences, u, v, are said to be disjoint, denoted by u\v, if and only if

NOT(usv) and NOT(vsu), that is neither u or v can be made equal by appending

sequences to them. Also u<v if and only if usv and u 1:- v, where u and v are

occurrences.

The set of occurrences of a term, t, denoted by O(t), and the sub term oft at

occurrence u, denoted by tlu, are defined as follows:

1. If t = x then O(t) = {A} and tlA = t.
2. If t = f(tl, ... , tn) then O(t) = {'A}+{iu I isn, u E O(ti)}, tl'A = t, and tliu =

tilu.

For example, a term t = f(g(x, h(y)), k(x, z)), has an occurrence set O(t) =

{A, 1, 11, 12, 121, 2, 21, 22}, where tll = g(x, h(y)), tl12 = h(y), tl121 = y, and

tl2 = k(x, z). Also lsl 1, ls12, lsl21, and 12s121.

Replacement of a sub term at occurrence u of a term, t, by another term, t',

denoted by t[u~t'], is defined as follows:

1. t['A~t'] = t'.

2. If t = f(tl, ... , tn), t[iu~t'] = f(tl, ... , ti-1, ti[u~t'], ... , tn), isn.

207

Replacements have the following properties.

\/ t, tl, t' E T; u E O(t), VE O(tl):

• Embedding: t[u<-t']lu.v = t'lv,

• Associativity: t[uf--t'][u.v<-tl] = t[uf--t'[vf--tl]].

\/ t, tl, t' E T; u, v E O(t), with u\v:

• Persistence: t[uf--t']lv = tlv,

• Commutativity: t[uf--t'][vf--tl] = t[vf--tl][uf--t'].

\/ t, tl, t' E T; u, v E O(t), with u~v:

• Distributivity: t[uf--t']lv = (tlv)[u/vf--t'],

• Dominance: t[uf--t'][vf--tl] = t[vf--tl].

Substitution of variables in a term is defined as follows:

A substitution is a mapping, CY, from X, the set of variables, to T, the set of terms,

with CY(x) = x almost everywhere. They are extended to morphisms of T by CY(f(tl,

... , tn)) = f(CY(tl), ... , CY(tn)). The domain of a substitution CY is the finite set D(CY) =
{xEX I CY(x) -:1:- x}.

The match of a term t by another term t', denoted by t::t', is defined as

follows:

t::t' if and only if there exists a substitution CY such that t = CY(t'). Any such

substitution is denoted by CY= t::t' in what follows.

Intuitively, the match of a term t by another term t' occurs when a substitution

exists that when applied to t' makes it identical to the term t.

Term rewriting systems

Term rewriting systems are formally defined below:

A term rewriting system (TRS) is a set R of pairs of terms <t• t'>, such that Var(t)

is a subset of Var(t'). The pairs of terms are called (rewrite) rules.

The following are definitions associated with TRSs.

An occurence, u, in a term t in a TRS, R, is called a redex occurence of R in t if and

only if there exists a rule <tl • t2> in R such that tl~tlu.

A term t reduces (or rewrites) tot' in a TRS R, denoted by t• Rt', if there exists a

rule <tl • t2> in R, and a substitution CY= (tlu)::tl (i.e. u is a redex occurence of R

int), and t' = t[uf--CY(t2)].

If • is a relation over T, then • is

(a) stable if and only if\/ CY; Vt, t' E T; t• t' • CY(t)• CY(t');

(b) compatible if and only if V t, t', tlE T, \/ UE O(tl); t• t' •
tl [uf--t] • tl [uf--t'].

The reduction relation • R is the smallest compatible and stable relation

containing R (see Huet [Hue80]). For a relation on terms let:

208

• • *R denotes the transitive closure of • R,

• ttt' ¢::> :3 tl such that t• *Rtl and t'• *Rtl,

• tit'¢::> :3 tl such that tl • *Rt and tl • *Rt'

If tis minimal with respect to • R i.e. there is not' such that t• Rt', then tis

called a • R-normal form. For a term t, if there exists a • R-normal form t' such

that t• *Rt' then t' is called a normal form oft.

Two important properties of • R are termination and confluence.

A relation, • R, is terminating (noetherian) if and only if there is no infinite

sequence t 1 • R t2• R ... • R tn, that is, • * R is well founded.

A relation, • R, is confluent if and only if Vt, t' E T; tlt'• ttt'.

Every term in a terminating and confluent relation possesses a unique normal

form (see Huet [Hue80]). Rewriting systems which generate a terminating and

confluent relation on terms provide an effective procedure for determining the

equality of terms. In such systems, if two terms, t, t' reduce to the same normal

term, then the terms are equal, also two equal terms in the equational theory

corresponding to the TRS (obtained by replacing the symbol • by =), reduce to the

same normal form in the TRS. Proof of this can be found in Huet [Hue80].

Conditional term rewriting systems
Conditional term rewriting systems (CTRSs) are extensions to TRSs which

allow conditions to be associated with reductions.

A conditional term rewriting system is a finite set of rules, called conditional rewrite

rules, of the following form: ul = vl /\ ... /\ un = vn • Lhs• Rhs where Var(ui)

is a subset of Var(Lhs), Var(vi) is a subset of Var(Lhs), and Var(Rhs) is a subset of

Var(Lhs), for 1:::;i:s;n [Kap84]. The formula before the implication symbol, •, is

called the condition part or antecedent, while the reduction after the • is called the

consequence.

Rewriting in a CTRS is defined as follows:

Given a CTRS, R, a term t reduces (or rewrites) tot', denoted by t• Rt', if and

only if there is a rule in R, ul = vl /\ ... /\ un = vn • Lhs• Rhs in R such that:

209

Match and replace
there exists an occurrence u in t and a substitution cr == (tlu)::Lhs, and t' ==

t[uf--cr(Rhs)], and

Convergence of terms in antecedent

uitvi, where 1~'.:ill, that is ui and vi have a common reduct.

Thus rewriting in a CTRS involves verifying the condition, which involves

further rewriting to determine common reducts. Such verification may give rise to

infinite loops if the form of the laws are left unconstrained. For this reason Kaplan

[Kap84] introduced the notion of a simplification ordering on terms which, ensures

that conditions are simpler in some sense than their consequences, thus eliminating

infinite loops in the evaluation of conditions.

A simplification ordering is a well founded ordering (terminating)< on terms in T

such that:

• Subterm property - f(... t ...)>t

• Compatability- if t>t' then f(... t ...)>f(... t' ...).

The following theorem, given in Kaplan [Kap84], states how simplification

orderings are used to eliminate infinite loops.

Theorem 1

Given a CTRS, and a simplification ordering <, such that for every rule ul == v 1 /\

•.• I\ un == vn • Lhs• Rhs in R, cr(Lhs)>cr(Rhs) and cr(Lhs)>cr(ui), Lhs>cr(vi) for

i == 1 to n, and for all substitutions cr, then:

1. -+R is terminating,

2. when -+R is confluent, -+R is decidable.

Proof of theorem 1 can be found in [Kap84]. The rules in the CTRSs defined

above are usually called positive conditional equations, since only equalities

between terms are allowed in the conditions. Both Kaplan [Kap87], and Mohan and

Srivas [MS87] provide treatments of CTRSs which allow inequalities in the

condition parts. The approach of Mohan and Srivas is used as the basis for the

relational CTRS introduced in this thesis. An overview of their approach follows.

Conditional rewriting systems with inequational assumptions

Mohan and Srivas define Equational-Inequational CTRSs (EI-CTRSs) as

follows:
An EI-CTRS is a set of rules of the form (ul == vl /\ ... /\ un = vn) /\ (sl :;t: r1 /\ ...

/\ sp :;t: rp) • Lhs• Rhs, where Var(ui) is a subset of Var(Lhs) and Var(vi) is a

subset of Var(Lhs), for i = 1 ton, Var(si) is a subset of Var(Lhs) and Var(ri) is a

subset ofVar(Lhs), fori = 1 top, and Var(Rhs) is a subset of Var(Lhs).

Rewriting in an EI-CTRS, called EI-reduction, is defined as follows:

210

A ground term t El-reduces to another term t' using an EI-CTRS R, denoted by

t• Rt', if there is a rule (ul = vl /\ ... /\ un = vn) /\ (sl * r1 /\ ... /\ sp * rp) •
Lhs• Rhs in R such that:

Match and replace

there exists an occurrence u in t and a substitution <J = (tlu)::Lhs, and t' =

t[uf-cr(Rhs)], and

Demonstrable convergence of terms in antecedent

it can be demonstrated that uitvi, where 1~!:ill, in a finite number of steps, and

Demonstrable non-convergence of terms in antecedent

it can be demonstrated that NOT(sitri), where l~i~p, that is si and ri have no

common reducts, in a finite number of steps.

Demonstrable non-convergence implies that every sequence of EI-reductions

from si to ri terminates and the set of all reducts from si is disjoint from that of ri,

thus termination of EI-reduction is very desirable property of EI-CTRSs.

An EI-CTRS can be viewed as an equational theory by replacing • by= in

the rules, and taking the derived rules to be universally quantified formulas. Given

an EI-CTRS R, the derived equational theory is denoted by E(R). The model

semantics for the derived equational theory is based on determining a set of

inequalities between ground terms called inequational assumptions. These

assumptions state which inequalities hold in all desirable models of the equational

theory, and are appended to the equational theory, thus the models satisfying with

the theory must also satisfy the inequational assumptions. Reduction in an EI­

CTRS, R, is sound and complete with respect to a set of inequational assumptions,

µ, if:
Soundness: t• Rt' • E(R)+ 1 µ I= t = t',

Completeness: E(R)+µ I= t = t' • ttt'.

The inequational assumptions made by Mohan and Srivas concern ground

constructor terms, that is terms built solely from the constructors of a signature,

where constructors are symbols for functions which create new objects of a sort in

the signature. All other functions are said to be defined functions. All ground

constructor terms are assumed to be distinct, thus the set of inequational

assumptions consists of all inequalities between ground constructor terms. In

general confluence is not a sufficient condition for soundness and completeness of

EI-reduction, requiring another property, sufficient completeness.

Lets(µ) be a set of ground terms such that V cl, c2 e s(µ); cl-::;=c2 e µ. An EI-

CTRS R is sufficiently complete with respect to µ if every ground term t has a

reduct t' e s(µ).

1 + denotes set union

211

The following theorem establishes the importance of the sufficient

completeness property.

Theorem2

EI-rewriting is sound and complete if R is sufficiently complete with respect toµ.

Proof of theorem 2 can be found in [MS87]. Mohan and Srivas give a

number of syntactic condition on EI-CTRSs which ensures that they are sound and

complete. Such conditions are based on the notion of a function being fully defined

by an EI-CTRS.

A function is fully defined by an EI-CTRS R if and only if every term of the form

f(tl, ... , tn), where ti is a ground term, is reducible by R to a unique constructor

term.

Proposition 1

If every defined function is fully defined by R then EI-rewriting is sound and

complete with respect to µ, where µ is the set of all inequalities between ground

constructor terms.

Proposition 2

Every defined function is fully defined by R if

EI-rewriting is ground terminating,

EI-rewriting is ground confluent, and

every ground non-constructor term is reducible.

Syntactic conditions which ensure that an EI-CTRS is sound and complete,

together with the proofs of the above theorems and propositions, are given in

[MS87].

212

Appendix II

Proof of completeness and
sufficiently complete

Proof of Proposition 3.1 in Chapter 3 [MS87]:

soundness
R-CTRSs

of

1. <h is obviously a partial ordering on F, the set of function symbols in a

signature.

2. The ordering <hinduces a partial, well-founded ordering, <g, on T(F), the set

of ground F-terms, defined as follows: g(t)<gh(t') if and only if g<h h or

t<<ht', where g(t), h(t')E T(F), and t and t' are tuples of ground terms.

Rewriting of a term in a R-CTRS can be represented by a tree of terms, where

the root is the term from which rewriting starts, and the children of each term

in the tree are the suitably instantiated terms in the antecedent and the right

hand side of the consequence of a rule whose consequence has a left hand

side which matches with the term. Assume that there is a term, t, for which

rewriting in the R-CTRS does not terminate. This means that the tree is either

of infinite width or of infinite depth. It cannot be of infinite width since each

rule has a finite number of terms in its antecedent. If the tree is of infinite

depth this means that there is an infinite sequence of ground terms t, tl, ... ,

tn, starting from t, such that t<gtl <g ... <gtn. Since <g is a well-founded

ordering, this is impossible. Thus there can be no infinite sequence of

rewritings of a ground term in a R-CTRS.

Proof of Proposition 3 .2 [MS 87]:

Since constructors are distinct from all other function symbols in a signature,

condition 1 of the proposition ensures that in testing for confluence one only has to

consider overlaps between rules whose consequences contain left hand sides with

the same outermost symbols. If a ground term t, matches with the left hand side of

the consequences of two rules, then either the suitably instantiated right hand sides

are equal, or at most one of the rules can be used to reduce the term, from

condition 2. Thus if t• tl and t• t2, where tl and t2 are ground terms, then either

tl is the same terms as t2, or the reductions were carried out on distinct sub terms

of t, in which case the rules wnen applied in opposite order to tl and t2 result in

them being reduced to the same term.

213

Proof of proposition 3. 3:

It is first shown that one step rewriting is sound, that is, for two defined

ground terms, t, t', t• Rt' • \;/ME MI,E+a, MI= t = t', in a R-CTRS, R, where

MI,E+a is the class of finitely-generated models for the RS, E(R), which satisfy the

laws in E+cx. The proof is by induction on the number of reduction steps needed to

verify the antcedents of R-CTRS rules. The induction base is taken as the case

where only one reduction step is needed in order to determine the definedness of

ground terms in order to carry out a one-step reduction of a term t to t' in an R­

CTRS, R. In such a case, an unconditional rule, ok(tl)• TT, where ok is the ok-

predicate for the ground constructor term tl, in an R-CTRS, R, means that ok(tl)

holds in all the algebraic models of the corresponding RS, denoted by E(R), that is,

ok(tl)• RTT • \;/ME MI,E+a, MI= ok(t), where MI,E+a is the class of finitely­

generated models for the RS, E(R), which satisfy the laws in E+cx. If a term

rewrites in one step tot' in R, that is t• Rt', using a rule tl • t2 where tin:= crtl,

and t' = t[n:f--crt2], then ok(crtl) • RTT, and ok(crt2) • RTT. Thus there are

unconditional rules in R, ok(tl)• TT, and ok(t2)• TT, which imply that ok(tl) and

ok(t2) hold in all models in MI,E+a• Since the law ok(tl), ok(t2) • tl= t2 is in

E(R), and each instantiated literal, ok(crtl) and ok(crt2), in the antecedent holds in

all models of MI,E+a, then by modus ponens crtl = crt2 holds in all models of

MI,E+a, thus t = t[n:f--crt2] = t' holds in all models of MI,E+a• If a relation

r(crtl, ... ,crtn) rewrites to TT in one step in R, by a rule r(tl, ... ,tn)• TT, then

ok(crtl)• RTT, ... , ok(crtn) • RTT, via unconditional ok-predicate rules. Thus

ok(crtl), ... , ok(crtn) hold in all models of MI,E+a• Since ok(tl), ... , ok(tn) • r(tl,

... , tn) is in E(R), and each instantiated literal, ok(crtl), ... , ok(crtn), in the

antecedent holds in all models of MI,E+a, then by modus ponens r(crtl, ... , crtn)

holds in all models of MI,E+a·

Suppose a ground term, t rewrites in one step to a term t', by a rule (ui =

vi)i=l. .. m, (u'i -:t:- v'i)i=l. .. n, (ri)i=l. .. o, (~r'i)i=l. .. p • tl • t2, where tin:= crtl,

t' = t[n:f--crt2]. For each equality in the antecedent, ui = vi, ok(crui) • *RTT,

ok(crvi)• * RTT, and either crui• * RU and crvi• * RU, or crui• * RCl and crvi• * RC2,

and N(cl) = N(c2), where cl and c2 are ground constructor terms. By the

induction hypothesis, ok(crui), ok(crvi), and either crui = u, andcrvi = u, or crui = cl

= c2 = crvi, hold in all models of MI,E+a, (N(cl) = N(c2) means that cl = c2 holds

in all models of MI,E+a) thus crui = u = crvi holds in all models of MLE+a• For each

inequality, u'i-:t:- v'i ,ok(cru'i) • *RTT, ok(crv'i)• *RTT, and every finite sequence

of rewrites starting from cru'i and crv'i resulted in no common reducts. Since every

defined term is reducible to ground constructor term, then cru'i • * R c 1 and

crv'i• * Rc2 where N(cl) -:t:- N(c2), thus cl -:t:- c2 holds in all models of MI,E+a• By

214

the induction hypothesis cm'i = cl ¢ c2 = ov'i holds in all models of MI,,E+a• For

each relation, ri = r(tl, ... ,tn), ok(crtl) • *RTT, ... , ok(crtn) • *RTT, and
* * * * crtl • Rtl' or crtl • Rel, crtl'• Rel' and N(cl) = N(cl'), and ... ,crtn• Rtn' or

crtn• * Ren, crtn' • * Ren' and N(cn) = N(cn'), and r(tl', ... ,tn')• RTT. By the

induction hypothesis tl = tl', ... , tn = tn', and r(tl', ... ,tn') holds in all models of

MI,,E+a.• Thus r(tl, ... ,tn) holds in all models of MI,E+a• For each n-relation ~r'i =
* * r'(sl, ... ,sn), ok(crsl) • RTT, ... , ok(crsn) • · RTT and thus

crsl • *Rcl, ... ,crsn• *Rcn, where ci (lsisn) is a ground constructor term, and

NOT(r'(cl, ... ,cn) • TT), thus ~r'(cl, ... ,cn) is a n-::relation assumption. By the

induction hypothesis tl = cl, ... , tn = en, and ~r(cl, ... ,en) holds in all models of

MI,E+a., thus ~r(tl, ... ,tn) holds in all models of MI,E+a.• Since the rule (ui =

vi)i=l. .. m, (u'i ¢ v'i)i=l. .. n, (ri)i=l. .. o, (~r'i)i=l. .. p • tl = t2 is in E(R), and

the instantiated antecedent holds in all models of, then, by modus ponens, crtl =

crt2 holds in all models of MI,,E+a, and thus t = t[m-crt2] = t' holds in all models of

MI,E+a.•

It is now shown that for any defined ground term, t, V ME MI,,E+a, MI= t

= c, where c is a ground constructor term and t• * RC. This done by induction on

the depth of the rewrite relation from a defined ground term to a ground constructor

term. The base case is the case where the depth is 0.

Consider the case where a defined ground term t rewrites to a ground

constructor term, t• Rt' • * RC. By the induction hypothesis, t'• *RC • V Me

MI,,E+a., MI= t' = c, and by the soundness of one step rewriting t• Rt' • V Me

MI,,E+a., MI= t = t'. Thus t• Rt'• *RC • V ME MI,,E-ra, MI= t = c.

A homorphism, h, from the set oif defined ground terms to elements in the

carrier sets of the models in MI,,E+a. can be defined as follows: for a model Min

MI,,E+a, h(t) = cM, where t• * RC, This homomorphism is well-defined from above,

and is unique since the models in MI,E+a. are finitely generated. Thus ground

rewriting in is sound and complete.

215

Errata

This section lists the errors identified in this thesis. Page numbers are preceded by "p."

followed by line numbers. A negative line number indicates that counting is from the

bottom up, for example line -3 is the third line from the bottom of the page. Ommissions

are underlined.

CHAPTERO

p.1, line 14

"nfeasible" should be "infeasible".

p.2, line -5

The reference "FP" should be "FP86".

p. 3, line 16

"guaranted" should be "guaranteed".

p.4, line -7

The reference "[Woo78]" should read "[Woo88]".

line -3

The reference "[YC78]" should read "[YC79]".

p.7, line 9

The reference "Ros77" should read "Ross77".

line 10

"diagraming" should be "diagramming".

line 11

"diagram" should be "diagrams".

CHAPTER 1

p. 14, line -3

Delete "consists" after "cust_order".

p. 15, line -8

Should read "there are sufficient parts".

p. 21, line 4

Should read "control aspects of DFDs".

I

line -12

Should read "In a TS data flows can be combined".

p. 28, lines 10, 11

Should read "Hatley's extensions ... Furthermore, they provide tools".

p. 29, lines -5, -4

Should read "The types of information".

p. 35, lines 5,7

Should read "A Petri net ... is a useful tool for".

CHAPTER2

p. 42, line -3

"if the book is a copy of the library" should read "if the book belongs to the library".

p. 50, line -17

Replace "CheckouBook" by "CheckoutBook"

p.64, line -9

The reference "Hat88" should read "HP87".

line -6

The reference "KK88" should read "KKZ88".

p. 67, line -17

The reference "KK88" should read "KKZ88".

p. 69, line 5

Should read "processes which the outgoing data flows".

CHAPTER3

p. 73, line 6

Should read "to support the range".

p. 76, line -8

V A(r(t1,. .. ,tn)) = (VA(t1) ... V A(tn)) should read V A(r(t1,. .. ,tn)) = TT, where TT is a special

value indicating the validity (equivalently, definedness) of the predicate. Relations are

II

associated with default semantics where it is assumed that if an interpretation does not

evaluate to TT then the relation does not hold (that is, it is undefined).

p. 77, line 15

Should read" and DA is the".

p.78, line?

"rdi(w) E rdiA" should read "VA(rdi(w)) = TT".

line 8

"r'ei(W) E r'eiA" should read "VA(r'ei(w)) = TT".

p. 81, line 12

Should read "Example 3.4 defines sets of natural numbers"

p.82, line -19

Delete law Sl5. This situation can be handled using a normalizing function which gets rid

of any duplicates.

p. 83, line 5

insert below line 5 the following:

ok-predicate

okset: set

p. 84, line 23

Delete law S15 (see erratta for p. 82, line -19 above).

CHAPTER4

p. 96, line 8

Remove"." after "correct".

p.111,line-25

Insert below line -25 the following law:

getsubstructs(0) = 0

(This error also causes an obvious change in the law numbering).

p. 116, line 21

Delete law PS25.

III

CHAPTERS

p. 126, line -2

"Example 2.7" should be "Example 2.6".

p. 132, line 7

"observeration" should read "observation".

line 13

"add(e,deleteq(q))" should read "addq(e,deleteq(q))"

line -6

Should read "access functions ... are determined".

p. 134, line 12

The reference Hoa85 should read Hoa 78.

line 13

The reference Lam88 should read AL88.

line 17

The reference AGR87 should read AGR88.

p. 138, line 5

The form of the law is actually more general than is expressed. Any events which affect a

disjoint subset of states may be synchronized.

p. 139, line 18

Insert below line 18 the following law:

3. getfinesrec(emptylist, tl) = emptylist

line 28

Insert below line 28 the following law:

2. sum(emptylist) = 0

line -2

Should read "Receivelp6(borrid)".

p. 140, line 21

Should read "Receive2p9(borrid)".

p. 142, line -1, -2

Replace laws 1. and 2. by q==ADD(e)==>addq(e,q)

IV

p. 144, line 9

Should read "can determine wich pairs".

p. 146, 19

Add"; ckmess:asynch(checkout_mess)" to line

line -13

Insert", ckmess" after "ckinfo".

p. 148, line -11

Should read "Such an automated system".

line -9

Should read "This would involve".

line -4

Should read "as far as their inputs".

p. 149, line 15

Should read "State transitions".

CHAPTER6

p. 154, Figure 6.2

Redirect the arrow emanating from the state ACCELERATING and directed to the state

RUNNING3 (labeled brake_on), to the state BRAKING.

Insert an arrow from CRUISING to RUNNING2 labeled less_30.

Insert an arrow from BRAKING to IDLE labeled engine_on/off.

Insert an arrow from BRAKING to RUNNING2 labeled cruise_on/off.

Insert an arrow from RUNNING2 to IDLE labeled engine_on/off.

Insert an arrow from CRUISING to IDLE labeled engine_on/off.

p. 156, line 15

Delete"+ Plsubstate ".

p. 157, line 2

Replace "Siganture" by "Signature".

p. 158, line -9

Replace "Siganture" by "Signature".

V

p. 162, line 18

Add";+ Asynch(Number) +" to line.

line 30

Replace"<_,_,_,_>" by"<_,_,_,_,_,_,_>", and replace "asynch2" by "asynchl".

line 36

Replace "asl: asynchl, as2:asynch2" by "asl, as2: asynchl".

p. 164, line 4

Add"+ Syslabel" to line.

line 11

Add"; Al, A2: syslabel" to line.

p. 165, lines 11 to 20

Delete laws 8 and 9.

line 16

Should read "p5==Sendp5(pos)".

p. 167, line -2, -4

Replace "Readprate" by "Readprate(c)".

line -6, -8

Replace "Readchrate" by "Readchrate(c)".

p. 169

Laws 38 to 41 handle only some cases in which parallel events can occur. In general,

events which affect mutually exclusive parts of an application's state can be carried out in

parallel.

CHAPTER 7

p. 196, line -2

Should read "characterizes the behaviour of the ExtDFD".

p. 197, line -15

Should read" Earlier work ... provides".

lines -8, -9

Should read "which stores the representations generated by".

p. 199, line -5

The reference "Doc88" should read "Doc87".

VI

p. 211, line 14

Should read "is i! very desirable property".

lines 21, 22

Should read "satisfying the theory".

Addition to bibliography

[San88] Sanella, D., 'A Survey of Formal Software Development Methods', Expository

Report, Department of Computer Science, University of Edinburgh, July 1988.

VII

