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Abstract

Between April 2003 and April 2004 a project, funded by Technology New Zealand, was undertaken to
develop a computer model of a wood burning heater for use at Applied Research Services Ltd. Applied
Research Services Ltd is a science and engineering research company that specialises in the testing of
wood burning heaters. The computer model will be owned by Applied Research Services Ltd and will be
used to improve the design of their customers™ heaters so that they may pass the particulate emissions and

efficiency standards of AS/NZS 4013:1999.

The computer model used the software program, Engineering Equation Solver as a platform to solve the
model equations. EES was particularly easy to use and more emphasis was able to be placed on the
actual modelling. The final model included over eight hundred variables and equations. It included
radiant, convective and conductive heat flows, over thirty heat balances, Arrhenious based rate
expressions and many empirical equations derived from experiments and data acquired at Applied

Research Services Ltd.

At the beginning of this project the objective was for the model to match the test results to within 10%.
This has been met for the tests on the high airflow setting where the model error is 4% for flue
temperature, 8% for heater output and 16% for flue oxygen. Unfortunately on low airflow setting, the
model does not reach this target with model errors of 18% for flue temperature, 25% for heat output and
13% for flue temperature. The excellent results for the high flow setting are partially attributed to the use
of calibration factors. The calibration factors model the processes in wood combustion that could not be
modelled by this project, due to lack of time and resources. Some of these factors are the proportion of
air that flows onto the charcoal ember bed or logs, radiation shape factor changes due to firebox
geometry, convection heat transfer coefficients changing with turbulence. The calibration of the model
only has to be completed once for each heater. The reason why the model does not work as well on low
airflow setting is that with less airflow the proportion of air to the charcoal bed opposed to the logs would

decrease, therefore decreasing the burn-rate.

This model can be used to determine the changes to a heater’s performance from changes to air inlet
areas, insulation type and thickness, wetback size, baffle size, primary vs secondary air, air bypass ratio
and door size. The model provides all the results that are obtained from an emissions test plus extra
information such as the amount of excess air, smoke conversion in each combustion zone, flame
temperatures and distribution of heat output. The smoke conversions for each combustion zone are
particularly helpful in diagnosing where problems with the combustion occur. The reasons for
incomplete combustion, lack of temperature or oxygen, can be found and fixed by increasing either

insulation or air areas.

The model can be used by Applied Research Services Ltd to improve heater designs. For the short term
this will involve the author working as a part-time consultant. The project could be built on by another
student by using CFD modelling for the sections of the wood burning process not modelled by this model

and adding a graphical user interface to make the model easier to use.
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Nomenclature

Variables

A Surface area [m?]

be Burn energy release rate  [kW]

br Burn-rate [kg/s]

D Diameter [m]

DP Pressure drop [Pa]

DT Temperature difference  [°C]

e Reaction extent or emissivity [kmol],[-]
E Energy of reaction (Arrhenious term [KkJ]
F Mass flow-rate  [kg/s|

FV Volumetric flow-rate [m3/s]

h Heat transfer coefficient  [kW/ m? C]

k Rate constants ~ Many different units
m Mass  [kg]

MM Molar mass [kg/mol]

Q Heat content [KJ]

qr Heat flow-rate kW]

sf Radiation shape factor [-]

i Temperature [°€]

\Y Volume [m?]

XA Cross-sectional arca [m?]

X Fractions, concentrations or distance [--.m]
y Stoichiometric factors [-]

z Stoichiometric factors [-]
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Heater Sections

b Baffle
ba Baffle air (Firebox air above baffle)

Charcoal (Charcoal bed at the base of the firebox. assumed to cover entire floor)
d Door

[ Flame

b Firebrick

fl Floor

flhs Floor heat shield

fluel Lower half of the air inside the flue, below 2m
flue Upper half of the air inside the flue, below 2m
flue2 From 2m to the top of the flue, 4.7m high
fluew Wall surrounding flue air

fluelw Wall surrounding fluel air

Flue2 wall Wall surrounding flue2 air

fw Front wall

hs Heat shield

hsa Air between heater walls and heat shield

i Inside (Closest to the logs)

1 Log

Iw Lower wall (Wall behind fircbricks)

0 Outside (Furthest from the logs)

pa Primary air (Lower half of the firebox air)

r Calorimeter room air

W Calorimeter room walls

s Secondary air (Upper half of the firebox air)
sh Shell of heater

sha Air between heat shield and heater shell

st Stand

w Top wall

uw Upper wall (Wall above firebricks)

The variables can then be combined with the heater sections. For example:

The heat flow from the logs to the door is grldi
The cross sectional area of the flue is XAflue
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Figure 1: Air section naming convention for the final model
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Figure 2: Heater solid sections naming convention for the final model
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