
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Dependencies in

C omplex-value Databases

Sebastian Link

A dissertation presented in partial fulfilment of the requirements for the

degree of Doctor of Philosophy in Information Systems at Massey

University

Supervisor:
Prof. Dr. Klaus-Dieter Schewe

Co-Su pervisor:
Prof. Dr. Mike Hendy

Internal Examiner:
Associate Prof. Dr. Sven Hartmann

New Zealand Examiner:
Prof. Dr. Robert Goldblatt

Overseas Examiner:
Prof. Dr. Joachim Biskup

Date of Examination:
15 . 12 .2004

Abstract

The relational data model has been the dominant model in database design for more than three decades.
It considers data to be stored in matrices where rows correspond to individuals, columns correspond to

attributes, and every cell constains a single atomic value. However, today's database technology trends, e.g.

spatial, genetic or web-based data, require extended data models. Within the last decade new, complex­

value data models such as the higher-order entity-relationship model, object-oriented data models, semi­
structured data models, and XML have evolved which allow cells to contain lists, sets, multisets, trees,
matrices or even more complex type constructors, references to other cells (which lead to infinite structures),
and null values (indicating missing, unknown or vague data).

Matrices as such allow the storage of inconsistent data, invalid in the semantic sense. As this is not
acceptable, additional requirements called dependencies have to be formulated when designing a database.

The correct specification and use of dependencies needs a sound mathematical basis. For the relational

data model more than 90 different classes of dependencies have been defined and studied intensively. The

major problems in dependency theory are the axiomatisability of classes of dependencies, determination
of the closure of a chosen set of dependencies (as certain dependencies can be implied by others) and

the characterisation of semantically desirable properties for well-designed databases (such as absence of
redundancies or abnormal update behavior) by syntactic properties on closed sets of dependencies.

With few exceptions research has only dealt with dependencies for the relational data model. Only
recently, the emergence of XML as the standard format for web-based data and the rapidly increasing
usage of persistent XML databases revealed the lack of a sound mathematical basis for complex-value data

models. If they are expected to serve as first class data models they require a theoretical investigation

of issues like integrity, consistency, data independence, recovery, redundancy, access rights, views and

integration. The goal of this thesis is to develop a dependency theory for complex-value databases that
is independent from any individual data model. Therefore, an abstract algebraic approach is taken that
can be adapted to the presence of different combinations of type constructors such as records, lists, sets

and multisets. Data models are classified according to the data types they support. In this framework the
major objective is to initiate research on the following problems

investigate the axiomatisation of important dependency classes, relevant to complex-value data mod­
els, by sound and complete sets of inference rules that permit the determination of all dependencies
implied by some chosen set of dependencies.
characterise semantically desirable properties by normal forms for complex-value data models and
investigate whether these normal forms can always be achieved without violating other desirable

properties.

develop efficient algorithms for determining the closure of a chosen set of dependencies and for re­

structuring databases such that normal forms are satisfied and no information is lost.

In a single thesis it is impossible to consider all classes of relational dependencies in all different com­

binations of type constructors. Therefore the focus is put on extending two popular classes of relational
dependencies: functional and multi-valued dependencies. The axiomatisation and implication of functional
dependencies is investigated for all combinations of record, list, set and multiset type. Furthermore, a
normal form with respect to functional dependencies in the presence of records and lists is proposed and

semantically justified. It is also shown how to obtain databases which are in this normal form. F inally,
axiomatisation and implication for the class of multi-valued dependencies and the class of functional and

multi-valued dependencies are studied in the context of records and lists. The work of this thesis may lead
to a unified dependency theory for complex-value data models.

IV

Acknowledgement

I would like to thank Klaus-Dieter Schewe for giving me the opportunity

to pursue an academic career under his supervision. Klaus-Dieter intro­

duced me to theoretical computer science, and in particular to the topic

of databases. His enthusiastic attitude towards research has motivated me

since the beginning of my studies. Klaus-Dieter suggested to look at depen­

dencies in the Higher-Order Entity-Relationship model, and it was later on

that the investigations resulted in a more general treatment. The idea of

classifying data models according to the data types they support is simi­

lar to the idea from [243] where object-oriented data models are classified

according to different type systems. I also like to thank Klaus-Dieter for

showing me how to work scientifically and for supporting decisions to re­

duce my teaching workload at critical times.

My thank also goes to Mike Hendy who kindly agreed to act as eo­

supervisor of this thesis.

Special thanks go to Sven H artmann for having numerous fruitful dis­

cussions on the subject of this work. Sven made a lot of suggestions for

improving the outcome, in particular on the mathematical rigorousness of

various notions and proof arguments. Sven has always been prepared to talk

about any issues, even in times he was very busy. I have learned a great

deal from him.

I would further like to acknowledge Bernhard Thalheim and Joachim

Biskup whose great experiences in the field of databases I have benefited

from a lot.

Finally, I would like to thank my parents K arla and H ans-Jiirgen Link

who have always been there for me and supported me in every way possible.

Moreover, I am very thankful to my partner Toni Floyd who can always

solve all my problems at once just by being who she is.

V

I dedicate this thesis to my parents,
K arla and H ans-Jurgen Link.

Vl

Table of Contents

1 Introduction
1 . 1 Relational Dependency Theory

1 . 1 . 1 Relational Dependencies
1 . 1 . 2 Functional Dependencies

Axiomatisation.
Implication Problem. . .
Boyce-Codd Nor mal Form. .

1 . 1 .3 Multi-valued Dependencies .
Axiomatisation.
Implication Problem.
Minimality and Complementation Rule.

1 . 1 . 4 Additional Remarks and Literature . . .
1 . 2 Challenges with Complex-value Databases . . .

1 . 2 . 1 Extensions to the Relational Data Model
Semantic Data Models.
The Nested Relational Data Model
Object-Oriented and Object-Relational Data Models.
Hypertext Datamodels.
Complex Objects in other Fields of Application.

1 . 2 .2 Real-World Examples for Complex Constraints
Bioinformatics. . .
Image Processing. .
Retailers.

1 .3 Contributions
1 .4 Outline

2 The Algebra of Nested Attributes
2 . 1 Brouwerian Algebras
2 .2 Nested Attributes

2 . 2 . 1 Subattributes
2 .2 .2 The Brouwerian algebra of Subattributes
2 .2 .3 Notation, Examples and Intuition

2 .3 Formalisation of Real-World Examples

1

5
5
7
8
9

10
1 1
13
13
14
15
1 5
17
17
18
1 9
20
2 1
22
24
24
28
29
30
32

35
35
38
40
41
44
48

2 .4 Brouwerian algebras in the Literature 0 0 0 0 0 0 0 0

3 Functional Dependencies in the Presence of Lists
301 Axiomatisation 0 0 0 0 0 0 0 0 0 0 0

301 . 1 Definition of FDs 0 0 0 0 0 0 0 0 0 0
301 . 2 Implication and Derivation 0 0 0 0 0
301 . 3 The generalised Armstrong Axioms
301 .4 Completeness 0 0 0 0 0
301 . 5 Dependencies for Keys

302 Implication Problem 0 0
30201 The Closure 0 0 0 0 0 0
30202 A first Approach 0 0 0
30203 A different Perspective
302 .4 A linear time Algorithm
30205 Applications 0 0 0 0

303 Nested List Normal Form 0 0 0
30301 Trivial FDs 0 0 0 0 0 0 0
30302 The Notion of Redundancy
30303 Boyce-Codd and Nested List Normal Form
303.4 NLNF - The same fact is only stored once
30305 Characterising NLNF 0
30306 Update Anomalies 0 0 0 0

304 Decomposition into NLNF 0 0 0 0
30401 FDs and Decompositions 0
3 .402 The Decomposition Algorithm 0
3 .403 Problems with NLNF decomposition

Sebastian Link

49

51
52
52
53
56
59
62
63
63
64
66
68
71
72
73
73
76
77
78
80
85
85
86
90

4 Functional and Multi-valued Dependencies in the Presence of Lists 93
401 Axiomatisation 0 0 0 0 0 0 0 0 0 0 0 94

401 . 1 Definition and First Results 0 0 0 0 0 94
401 .2 Trivial MVDs 0 0 0 0 0 0 0 0 0 0 0 0 0 96
401 .3 MVDs are Binary Join Dependencies
401 .4 Sound Inference Rules
401 .5 Dependency Basis 0
401 .6 Completeness 0 0 0 0 0

402 Minimality 0 0 0 0 0 0 0 0 0 0 0
403 Brouwerian-Complement Rule
4.4 Implication Problem 0

4.401 The Algorithm
4.402 Correctness 0
4 .403 Complexity 0 0
4.4.4 Applications 0 0

405 The Class of Multi-valued Dependencies

2

96
97

103
104
108
1 14
1 17
1 17
120
128
130
131

4 .5 . 1 Axiomatisation . . .
4 .5 .2 Minimality
4 .5 .3 Implication Problem
4 .5 .4 A different Perspective for MVDs

4 .6 Related and Future Work

Sebastian Link

13 1
133
135
136
137

5 Functional Dependencies in the Presence of Lists, Sets and Multisets 139
5 .1 Axiomatisation 140

5 . 1 . 1 The Failure of the Extension Rule 140
5 . 1 . 2 Reconcilable Attributes 14 1
5 . 1 .3 Soundness and some useful Inference Rules . 143
5 . 1 .4 Completeness 144

Technical Lemmata. . 145
The Case of Sets. . . . 147
The Case of Multisets . 148
The Main Lemma. . . 152
The Main Theorem. . 1 53

5 . 1 . 5 A Note on Reconcilability
5 .2 Minimality
5 .3 Minimal Axiomatisations for all Combinations
5 .4 Implication Problem

5 .4 . 1 The Closure
5 .4 .2 Units of Nested Attributes
5 .4 .3 Computing the Closure .
5 .4 .4 Correctness
5 .4 .5 Complexity
5 .4 .6 Some Applications . . .

5 .5 The Implication Problem for all Combinations
5 .6 Related Work

6 Summary
6 . 1 Main Results
6 .2 Open Problems

3

1 54
155
158
1 59
1 59
160
163
1 64
167
169
170
1 70

176
1 76
1 78

List of F igures

1 . 1 Research on Dependency Theory 31
1 .2 The Boolean algebra of Type Constructors 34

2 . 1 A Brouwerian algebra that is not an algebra of any nested attribute. . 44
2 .2 The Brouwerian algebra B of K{L(A, M[N(B, C)]) } 45
2.3 The poset (J, ::::;) of the join-irreducible elements of B. 45
2.4 Brouwerian algebra of closed subsets of PO-space on (J, ::=:;). 46
2 .5 The Brouwerian algebra of K {M(O{A} , P {B}) } 47
2.6 Mathematical Concepts and Physics. 49

3 . 1 NLNF decomposition Tree of Example 3.22. 88
3.2 NLNF decomposition Tree of Example 3.23. 90

4 . 1 The Boolean algebra of L (A) M 104
4 .2 The subattribute basis of K[L(M[N(A, B)] , C)] 105
4 .3 Initialisation for DepBa1g (X) 1 19
4.4 DepBa1g (X) after its first Update. 120
4 .5 DepBa1g (X) after its second Update. 120
4 .6 Final State for DepBa1g (X) from Example 4.9. 121

5 . 1 Identifying Terms of the Algebra K{L (A, M[N(B , C)]) } 145
5.2 The closure x+ of X = K {L(A) } 148
5 .3 Illustration of Lemma 5 . 1 2 149
5 .4 Illustration of Lemma 5 . 13 151
5 .5 The structure of M = K (J [A] , O{P(B, Q{C})}) 152
5 .6 The structure of Subalgebras in Example 5 .4 . . 152
5 .7 Upper Complexity Bounds for the Implication Problem in the Presence of

various Types . 170
5 .8 An XML data tree carrying some functional dependency. 173
5 .9 An XML document corresponding to the XML data tree in Fig. 5 .8 . 173

5 . 1 0 Another XML data tree still carrying some functional dependency. . 174

6 . 1 Subattribute Lattice of a Union-valued Attribute 181

4

Chapter 1

Int roduct ion

The first goal of this chapter is to provide an informal overview of achievements in research
on dependency theory in the context of the relational data model (RDM) . The aim is not
to give a complete overview, but to keep focus on those results which are relevant for
this thesis. The second major objective is to motivate the need for an extension of these
achievements to deal with complex objects that cannot be described by purely relational
structures . The introduction has been inspired to great parts by [158, 181 , 264] .

1 . 1 Relational Dependency Theory

Commercial database management systems have been around for more than three decades
now, at the beginning in the form of hierarchical and network models. It was in the early
seventies when two opposing trends in database research started . The development of
semantic data models was mostly influenced by semantic networks. These are generally
object-oriented and provide at least four types of primitive relationships between objects:
classification (instance of) , aggregation (part of) , generalisation (is-a) , and association
(member of) . On the other hand , the RD M revolutionised the field by strictly separating
data representation from the underlying implementation. Most significantly, the inherent
simplicity of the model admitted the development of powerful, non-procedural query lan­
guages and a lot of useful theoretical results.

Generalised database management systems are considered as basic tools for program­
ming languages, translators and operating systems. Much effort is devoted to establish a
definite foundation of database technology in order to design more efficient and transpar­
ent systems and to enable optimisation methods. With such an improved understanding
of the systems application will be improved as well . The philosophy behind database tech­
nology is sometimes not quite understood because many users are unaware of the goals
of database management systems. Consequently, these systems are often used incorrectly.
The first step towards a solid foundation of database theory is a precise definition of data
models . Without a precise definition, a data model cannot be understood for purposes of
design, analysis, and implementation of schemata, transaction and databases. A database
model is a collection of mathematically sound concepts defining the intended structural

5

1 . 1 . RELATIONAL DEPENDENCY THEORY Sebastian Link

and behavioral properties of objects involved in a database application. In the axiomatic
approach, a database model is defined by the properties of its structures and operators.
By the axiomatic approach conventional mathematics and logic were used to define the
structural and behavioral properties of objects within the database model. Properties of
data structures are given by axioms which are formal statements simple enough to be self­
evident . Behavioral or dynamic properties are the operations that together with the data
structures form the data model. Behavioral properties are given by inference rules which
permit the deduction of the resulting properties for each meaningful database operation. In
terms of logic, the semantics of each database within the database model can be deduced
precisely by the application of valid inference rules to the set of axioms. Alternatively, the
semantics of a syntactically correct schema are given by the axioms which characterise the
databases to be accepted.

One of the most important database models is the RDM . One of the major advantages
of the RDM is its uniformity. All data are seen being stored in tables, with each row in the
table having the same format . Each row in the table represents some object or relationship
in the real world. The benefits and aims of the RDM are: to provide data schemata which
are very simple and easy to use, to improve logical and physical independence without
references to the means of access to data, to provide users with high level languages which
could be used by non-specialists in computing, to optimise access to the database, to
improve integrity and confidentiality, to take into account a wide variety of applications,
to provide a methodological approach for schema design and database design.

These benefits are based on a powerful theory the core of which is the theory of depen­
dencies. Database dependencies can be regarded as a language for specifying the semantics
of databases. They specify which of the databases are meaningful for the application and
which of them are meaningless. Thus, the syntactic specification is joined with semantic
specification . Dependencies constitute an inherent property of database systems. They ex­
press the different ways by that data are associated with one another. Since many different
associations of data exist , a lot of different classes of dependencies (more than 90) are
considered in more than one thousand papers. For some classes the implication problem
is solved. By studying their respective properties it can be shown how different types of
dependencies interact with one another. These properties may be considered as inference
rules which allow the deduction of new dependencies as well as the generation of the closure
of all dependencies. Solving this problem we can test whether two given sets of dependen­
cies are equivalent or whether a given set of dependencies is redundant . A solution for
these problems seems to be a significant step towards automated database schema design,
towards automated solution of the seven aims mentioned above and towards recognising
computationally-feasible problems and the infeasible ones.

At least five fields of applying dependency theory are known:

- normalisation for a more efficient storage, search and modification,
- reduction of relations to subsets with the same information together with the semantic

constraints,
- utilisation of dependencies for deriving new relations from basic relations in the view

6

1 . 1 . RELATIONAL DEPENDENCY THEORY Sebastian Link

concept or in so-called deductive databases,
- verification of dependencies for a more powerful and user-friendly, nearly natural lan­

guage design of databases,
- transformation of queries into more efficient search strategies.

Other important applications of the relational database theory are in other branches of
computer science, in discrete mathematics, in most of other database models , in optimisa­
t ion, in pattern recognition and in algebra.

1 . 1 . 1 Relational Dependencies

Relational dependencies, in general, are semantically meaningful and syntactically re­
stricted sentences of the predicate calculus that must be satisfied by any legal database.
Their presence remedies some of the semantic poverty of relations, e .g . , with pure relations
one has trouble representing the fact that some relationships are one-to-one or one-to-many.
Since the topic of this thesis is dependency theory, at least the definition of relational de­
pendencies should be given. For details we refer to [264].

A relation schema R is given by a finite set R of so-called attributes, a set 1J of domains,
and by a domain function dam : R---+]) which associates a domain with every attribute. If
]) and dam are obvious or defined by the context or arbitray or not of importance for the
topic under consideration then]) and dam are omitted , and a relation schema is simply a
finite set R of attributes.

A tuple on R = (R, 'D, dam) is a function t : R ---+ U D with t (A) E dam(A) for all
DE'D

A E R. If an order is defined on R, say R = {A 1 , . . . , An} , the tu ple t can be represented
by (t (A1) , . . . , t (An)) . For X � R let t [X] denote the restriction of the function t to X.
The set of all tuples on R is denoted by T(R) . Any subset r of T(R) is called a relation
on R.

A given sequence S = 1?1 , . . . , Rn of relation schemata is compatible if dami(A) =
damj (A) holds for all A E � n Rj where Ri = (�, Vi , dami) · For a compatible sequence
of relation schemata, a common function dam with dam(A) = dami (A) for A E � can
be defined. For a given compatible sequence S = 1?1, . . . , Rn of relation schemata and a
function C : P(T(R1) x · · · x T(Rn)) ---+ {0 , 1 } where P(S) denotes the powerset of S,
the pair (S, C) i s called database schema, and the function C i s called integrity constraint .
For a given database schema (S = 1?1 , . . . , Rn, C) a relational database is given by the
sequence r1 , . . . , rn where the ri are relations on Ri for 1 :::; i :::; n and C(r1, . . . , rn) = 1 .

The function C can be made more concrete, i .e . , defined using a purely relational
first-order language with equality over a compatible sequence S = 1?1 , . . . , Rn of relation
schemata [264, p. 10] . A database schema is then a pair (S, E) where E denotes a set
of well-formed formulae over that language. If not stated otherwise we will assume from
now on that E is always finite. Only such databases are considered for (S, E) in which all
integrity constraints in E are valid, i .e . , for a given database schema (S = 1?1, . . . , Rn, E)
a database is given by the family (r1 , . . . , rn) where the ri are relations on Ri for 1 :::; i :::; n
and the formulae from E are valid. Validity is defined in the usual way, see [264, pp. 1 1 , 12].

7

1 . 1 . RELATIONAL DEPENDENCY THEORY Sebastian Link

The class of dependencies is a class of integrity constraints that must be satisfied by the
database of interest . Suppose two compatible sequences Si = RiP . . . , Rik with j E { 1 , 2}
of relation schemata Rj; = (Rj;, 'Dj; , domiJ with Rj; = { Aip . . . , AiJ for i = 1 , . . . , k are
given. A database (rl , . . . ' rk) over sl and a database (s l , . . . ' Sk) over s2 are said to be
similar if they have exactly the same relations, i .e. , ri = si for 1 :::; i :::; k. A well-formed
formula rp is said to be domain-independent, if for all similar databases r = (r1 , . . . , rk) and
s = (s1, . . . , sk) it is true that r satisfies rp if and only if s satisfies cp. The aim of this special
class of formulae is to be able to determine the satisfiability of a formula in a database by
merely taking into consideration the values that appear in one of the tuples given by the
relations. One can say that domain-independent formulae guarantee that the elements of a
response constitute elementary information actually contained in the relation. A database
(r1 , . . . , rn) is called trivial if I ri 1:::; 1 , for 1 :::; i :::; n.

Doma in- independent formulae wh ich hold in any triv ial relat ional database are called
relat ional dependenc ies.

The main property of dependencies, the domain-independence can be considered as the
independence of formulae from the domains used by the database schema. If we consider
only dependencies, the formulae can be considered for a class of languages which are using
the same attribute sets and the same predicates, but which are independent from the
underlying domains. The formula :Jx1, ... , 3xnP(x1, ... , Xn, c) called existence constraint
in [168] is not domain-independent and therefore not a dependency.

In what follows, we consider different classes of dependencies, but not from a logical
point of view. For a classification and systematic study of relational dependencies see
[109, 158, 264] .

In the following, we will focus on two of the most important classes of relational depen­
dencies: functional dependencies (FDs) and multi-valued dependencies (MVDs) . According
to a study in [87] , FDs make up approximately two thirds of uni-relational dependencies
(dependencies defined over a single relation schema) in use. Moreover and according to the
same study, the class of FDs and MVDs together constitutes around 75 percent of uni­
relational dependencies used in practical applications. It is therefore the goal of the next
section to give an overview of some results on these two classes of relational dependencies.
The overview will focus on those results which will be extended to complex-value databases
in this thesis.

1 . 1 . 2 Functional Dependencies

Dependencies constitute an inherent property of database systems. They express the differ­
ent ways that data are associated with each other and therefore, the semantics in relational
database schemata. Functional dependence is an important property of a relation. In a re­
lation which satisfies some FD, there is a functional connection between parts of tuples .
FDs can be defined like functions f : X --t Y which are mappings satisfying the conditions:

- for each element x E X there is an element y E Y with j(x) = y ,

8

1 . 1 . RELATIONAL DEPENDENCY THEORY Sebastian Link

- for all x , x' E X: if x = x' , then f (x) = f (x') .
The second property of functions is used for the definition of FDs.

A functional dependency (FD) , defined on some relation schema R, is an expression
X --+ Y where X, Y � R. A relation r over R satisfies the FD X --+ Y, denoted by
Fr X --+ Y, if and only if for every t1 , t2 E r the following condition is satisfied: if
t i [X] = t2 [X] , then also t i [Y] = t2 [Y] . That is, the values on X uniquely determine the
values on Y.

Axiomatisation. Functional dependencies are not independent from one another. If a
relation exhibits certain FDs, then there are usually other FDs which are satisfied by that
relation as well . This applies to dependencies in general and leads ultimately to the notion
of logical implication.

That is, a dependency CJ is implied by a set E of dependencies, denoted by E f= CJ, if CJ
is satisfied by every relation which already satisfies all dependencies in E. In general , this
notion is different from finite implication where E finitely implies CJ, denoted by E f= 1 CJ,
if every finite relation satisfying all dependencies in E also satisfies CJ.

However, in the case of FDs, finite and unrestricted implication problem coincide and
are therefore decidable. Although finite implication is the relevant notion from a practical
standpoint , implication is also important because it is closely related to unsatisfiability of
logical sentences.

If a database designer chooses several FDs to be satisfied by every meaningful relation
over the relation schema analysed, then all implied FDs have to be determined. This allows
to gain complete knowledge about all consequences of the semantics defined , and may avoid
inconsistencies and undesired behavior. In practice, however, it is not possible to study all
relations and determine whether a dependency is implied by some given set of dependen­
cies. Therefore, one is much more interested in syntactical inference rules which may allow

to solve this implication problem. Such inference rules have the form
A1 ' · � 'An (3 with pa­

rameterised dependencies A1 , . . . , An called premises, a further parameterised dependency
C called the conclusion, and a constraint (3 on A1 , . . . , An , C which needs to be satisfied in
order to apply the rule. Let E be a set of dependencies and CJ a further dependency. Then
CJ is derivable from E using a set 91. of such inference rules, if there is a finite sequence
CJ1 , . . . , CJn = CJ of dependencies such that every CJi is an element of E or an instantiation
of a conclusion in any of the rules in 91. where the instantiations of all the premises in
that rule must be among { CJj : 1 � j < i} and the constraint (3 is satisfied. 91. is called
sound for the implication of dependencies, if every dependency which can be derived from
E using only inference rules in 91., is also implied by E. The set 91. is called complete for
the implication of dependencies if every dependency implied by E must also be derivable
from E using only rules in 91..

A sound and complete set of inference rules for the implication of FDs in the RDM was
discovered by Armstrong in [15] (see also [16]) . Note that the union X U Y of two attribute
sets X and Y is abbreviated by simply writing XY.

9

1 . 1 . RELATIONAL DEPENDENCY THEORY

Theorem 1 . 1 (Armstrong, 197 4) . The following inference rules

X -+ Y
X ---+ Y y � X' X ---+ XY'

(reflexivity axiom) (extension rule)

X -+ Y, Y -+ Z
X -+ Z

(transitivity rule)

form a sound and complete set for the implication of FDs in the RDM.

Sebastian Link

0

In the context of the RD M such inference rules are easily available, the reason being a
well-founded algebraic, yet simple foundation. The set of all attribute sets for some relation
schema forms a Boolean algebra with respect to set inclusion, set union, set intersection
and set complement . This solid foundation is one of the key reasons for the success of the
RDM.

Implication Problem. Consider the following example taken from [1 58, p . 1093] . As was
observed by Nicolas [21 2] , FDs can be represented as sentences of first-order logic with
equality. Let us demonstrate how this is done for a relation schema R = {A, B, C} and the
FD a = A---+ B. The vocabulary in the logic will be {R} , where the arity of R is 3 and A
corresponds to the first argument of relation symbol R etc. The FD a is expressed by the
sentence

<fJu = VxVyVzVy1 Vz1 (R(x, y, z) 1\ R(x, Y1 , zt)):::} (y = Yl)

It follows from the definition of FDs that the set of finite relational structures satisfying
<{Ju and the set of relations satisfying a are the same. This is also true for infinite relations.
Similar arguments show that any set of FDs can be expressed by a set of sentences in
first-order logic with equality. Note, however, that the database notation for FDs is often
preferable, because it is less cumbersome to use and it intuitively captures the meaning of
FDs.

The identification of a dependency a with a sentence <fJu is true for FDs and for many
other dependencies. One of its consequences is the reduction of the (finite) implication
problem to the (finite) unsatisfiability problem of first-order logic. For E = {0"1, . . . , ak }
let <p E = <{Ju1 1\ · · · 1\ <{Juk. Then E F(f) a if and only if we have that the sentence <p E 1\ '<fJu
is (finitely) unsatisfiable.

Recall that a sentence is (finitely) unsatisfiable if it has no (finite) models. Also, unsat­
isfiability for first-order logic with equality is recursively enumerable (r.e.) , by the Godel
Completeness Theorem [1 27] , and finite unsatisfiability is co-r.e., by enumerating and test­
ing all finite structures. From unsatisfiability we can infer finite unsatisfiability, from finite
satisfiability we can infer satisfiability and from implication we can infer finite implication
(but the converses do not always hold) . From this discussion it follows that if a set of depen­
dencies is identified with a set of sentences, for which satisfiability and finite satisfiability
coincide, then dependency implication and finite implication coincide and are decidable.

Theorem 1 .2 . For FDs implication and finite implication are the same and decidable. 0

1 0

1 . 1. RELATIONAL DEPENDENCY THEORY Sebastian Link

The following argument for this theorem is somewhat of an overkill, since the theorem
can be shown without an excursion into satisfiability. However, it is quite instructive since
it may be used for many non-trivial extensions of FDs.

Let us look at the structure of the sentence I.(Ja1 1\ · · · 1\ 'Pak 1\ ''Pa in the FD case. This can
be written as a :J*V* -sentence, that is, a sentence in prenex normal form whose quantifier
prefix consists of a string of :Js followed by a string of Vs. This is known as a sentence of the
initially extended Bernays-Schonfinkel class, for which satisfiability and finite satisfiability
coincide [52].

The computational complexity of FD implication was considered by Beeri and Bernstein
in [29, 40, 1 91] , who demonstrated that implication can be performed optimally in linear
time. This required a more detailed analysis than the decidability property, which follows
from the equality of implication and finite implication.

Theorem 1 .3 . (Finite) Implication of FDs is decidable in linear time. 0

Extensive use of this algorithm [29, 40] has been made in database schema design .
Polynomial time algorithms for deciding the equivalence of two given sets of FDs [35] and
deriving minimal covers for FDs [191] have been developed. A solution to these problems
was a big step towards automated database schema design [35, 41] which some researchers
see as the ultimate goal in dependency theory [30] .

From the relationship of dependency (finite) implication and (finite) unsatisfiability
it follows that E FU) CJ if and only if 'PE FU) 'Pa where the second F(J) is (finite)
implication for sentences of first-order logic with equality. This is not the only relationship
with mathematical logic, FDs have a number of elegant algebraic properties. See [158, pp.
1096-1098] for a detailed discussion and further references.

Boyce-Codd Normal Form. Relational database systems have evolved to the de-facto
industry standard since their invention by E.F. Codd in 1 970 [68]. This is a result of the
simplicity and the sound theoretical basis of the RDM . One important issue associated
with the use of relational databases is the correct structure or design of data to be used .
Several criteria, referred to as normal forms, have been proposed as conditions for rela­
tion schemata that a database design should satisfy to ensure an absence of processing
difficulties with the database. These normal forms give a database designer unambiguous
guidelines in deciding which database schemata are good in the quest to avoid bad designs
that have redundancy problems and update anomalies . Such normal forms have already
been introduced in [70] by Codd. In general, they are dependent on the type of integrity
constraints which apply to data items within the database. FDs cause difficulties such as
redundancy in the representation of data and update anomalies. Codd proposed the Boyce­
Codd normal form (BCNF) in [72] to overcome these difficulties. Recall that a dependency
is called trivial if and only if it is satisfied by every relation over the schema it is defined
on . An FD X --t Y is trivial if and only if Y � X holds. A subset X � R is called a
superkey for R with respect to a given set E of FDs on R if and only if E f= X --t R. The
values on any superkey are therefore sufficient to uniquely identify any tuple in a relation.

1 1

1 . 1 . RELATIONAL DEPENDENCY THEORY Sebastian Link

A relation schema is in BCNF with respect to a given set E of FDs if and only if the left­
hand side of each non-trivial FD implied by E is a superkey for the relation schema with
respect to E. Codd conjectured that BCNF is an exact condition on a relation schema that
avoids redundancies and update anomalies. Later on, after the notions of redundancy and
update anomaly had been clarified and formalised (see for instance [280]) , it was shown in
[42, 105, 279, 280] that this is indeed the case.

Theorem 1 .4. Let R be a relation schema and E a set of FDs on R. R is in BCNF

- i .ff the left-hand side of every non-trivial FD in E is a superkey for R,
i.ff every relation r over R that satisfies all key dependencies implied by E already
satisfies all dependencies in E,
i .ff R is non-redundant with respect to E,
i .ff R does not have any insertion anomalies,
i .ff R does not have any replacement anomalies of type 1,
i .ff R does not have any replacement anomalies of type 2,
only if R does not have any replacement anomalies of type 3. 0

The formal proofs of these statements make use of Armstrong's axioms. It follows
that BCNF is a completely justified normal form in that sense. This is a big step towards
automatically verifying whether a relation schema is well-designed. Since BCNF is a simple
syntactic condition, the results above show that the relation schema is indeed well-designed
in the sense that no redundancies and no update anomalies in terms of FDs can occur,
and integrity checking reduces to the simple problem of verifying whether any two tuples
deviate on a certain set of attributes.

A good database decomposition ought to have both the lossless join property and the
dependency-preserving property. Informally, a decomposition { R1 , . . . , Rn } of a relation
schema R is called lossless if every relation that satisfies all dependencies on R is the
natural join of its projections on the subschemata [4, i .e . , r = 7rR1 (r) C><J • • • C><J 7rRJr)
where 7rx(r) = { t [X] I t E r} denotes the projection of r � dom(R) to X� R,
and r1 C><J r2 = { t E dom(R1 U R2) I :Jt1 E r1 , t2 E r2 .t [R1] = t 1 and t [R2] = t2 }
denotes the natural join of r1 � dom (R1) and r2 � dom(R2) . Note that 1r0(r) is the 0-
ary relation { () } which is also the left and right identity for the natural join operator.
The process of decomposition does therefore neither add nor remove any information. A
decomposition {R1, ... , Rn} of a relation schema R is dependency-preserving with respect
to E if the closure of the union of all projected dependencies from E on the subschemata
[4 coincides with the closure of E, and where closure refers to logical implication. That is,
no semantic information is lost or added in terms of the dependencies that are given. For
formal definitions see for example [181] . Furthermore and in terms of FDs, each relation
schema in a well-designed database schema should be in BCNF.

Having answered the question what a good database schema constitutes , the next ques­
tion is how to find such a good schema. The answer to this question is not as easy as the
answer to the first question. In fact , it has been shown in [26, 29, 273] that there may be
no decomposition of a relation schema into BCNF that is dependency-preserving. Thus,

1 2

1 . 1 . RELATIONAL DEPENDENCY THEORY Sebastian Link

obtaining a lossless join and dependency-preserving decomposition into BCNF is an unre­
alistic goal . However, it is always possible to achieve a lossless-join decomposition where
each subschema is in BCNF. A semi-naive approach to this problem resulted first in an
algorithm which runs in exponential time in the size of R and E, see for example [181] .
The inefficiency results from the intractability of computing sets of projected dependen­
cies. However, in [270] a polynomial time algorithm in the sizes of R and E that outputs
a lossless join decomposition in BCNF with respect to E was given.

1 . 1 .3 Multi-valued Dependencies

Multi-valued dependencies (MVDs) have been independently introduced by Fagin [103] ,
Zaniolo [303] and Delobel [86] . They subsume the class of FDs as a special case. In par­
ticular, any relation r over R that satisfies the FD X ---t Y can be decomposed without
loss of information, i . e . , satisfies r = nxy(r) [X] nx(R-Y) (r) . Thus, satisfaction of an FD
is a sufficient condition for a relation to be decomposed into its projections without los­
ing information. The condition, however, is not necessary, i .e . , there are relations r with
r = nxy (r) [X] 1fx(R-Y)(r), but �r X ---t Y.

A multi-valued dependency, defined on some relation schema R, is an expression X -tt Y
with X, Y � R . A relation r over R satisfies the MVD X -tt Y on R, denoted by Fr X -tt Y,
if and only if for all t 1 , t2 E r with t i [X] = t2 [X] there is some t E r with t [XY] = t i[XY]
and t [X (R - Y)] = t2 [X (R - Y)] . It turns out that the satisfaction of MVDs is an exact
condition for a relation to be decomposable without loss of information. More precisely,
Fr X -tt Y if and only if r = nxy (r) [X] nx(R-Y) (r). This gives an equivalent definition of
MVDs and means that MVDs coincide with so-called binary join dependencies, see [103] .
This fact is a key reason for the interest in the study of MVDs.

Axiomatisation. As it was the case with FDs, finite and unrestricted implication coincide
for the class of MVDs. In fact , this is true for so-called full dependencies which subsumes
the classes of FDs and MVDs [38] . In [32] , Beeri , Fagin and Howard proposed sound and
complete sets of inference rules for the implication of MVDs, and the implication of FDs
and MVDs. The following sets are slightly different from the original proposal and are
taken from [204] and [220] .

Theorem 1 .5 . The following set of inference rules

X-ttY Y � X
(reflexivity)

X-ttY, X-ttZ
X-ttYZ
(union)

X-ttY
XU -tt YV V � U

(augmentation)

X-ttY, X-ttZ
X-ttZ - Y
(difference)

X-ttY, Y-ttZ
X-ttZ - Y

(pseudo-transitivity)

X-ttY, X-ttZ
X-ttYnZ
(intersection)

is sound and complete for the implication of MVDs in the RDM.

13

X-ttY
X-ttR-Y

(complementation)

D

1 . 1 . RELATIONAL DEPENDENCY THEORY Sebastian Link

It should be stressed at this point that the inference rules for MVDs take advantage
of the full expressive power of the Boolean algebra (P(R) , �' U, n, (-)c , 0, R). The comple­
mentation rule makes use of the complement operation, and also union, intersection and
difference are applied.

Theorem 1 .6 . The following set of inference rules

X-tY
Y�X

(reflexivity)

X--»Y

X--»R-Y
(complementation)

X-tY

X--»Y
(implication)

X --» Y, X --» Z

X--»Z-Y
(difference)

X-tY

X-tXY
(extension)

X--»Y

X U --» YV
V � U

(augmentation)

X--»Y,Y-tZ

X-tZ-Y
(mixed pseudo-transitivity)

X --» Y, X --» Z

X--»YnZ
(intersection)

X-tY,Y-tZ

X-tZ
(transitivity)

X --» Y, Y --» Z

X--»Z-Y
(pseudo-transitivity)

X --» Y, X --» Z

X--»YZ
(union)

is sound and complete set for the implication of FDs and MVDs in the RDM. 0

Implication Problem. As was already pointed out before, FDs and MVDs are both
subsets of so-called full dependencies, also called total dependencies in [38] . For full de­
pendencies, however, implication and finite implication coincide and are decidable [5, 38] .
Consider the following example from [2 12] where R ={A, B, C, D} and a = A--» C. The
MVD a is expressed by the first-order sentence

\fw1\fw2\fw3\fw4 (3w;3w�R(w1 , w;, w3 , w�) 1\ 3w;R(wl , w2, w;, w4)) =* R(w1 , w2 , w3 , w4)

Note that the existential quantifiers only appear in the antecedent of the implication. This
means again that implication of MVDs is equivalent to the validity of sentences in the
initially extended Bernays-Schonfinkel class (see above) .
Theorem 1 . 7. For M VDs implication and finite implication are the same and decidable.

0

Let E be a set of MVDs and a = X--» Y. The implication problem E f= a was solved
in O(n4) in [27] where n denotes the total number of occurrences of attributes in E, and
further analysed in [98, 1 18, 135 , 152, 173, 223, 239, 277] . The computational behavior is
due in large part to the algebraic properties of what is called in [32] a dependency basis.
The best current bound for solving E f= a is 0((1 + min{s , logp}) · n) from [1 18] where
s denotes the number of dependencies in E and p the number of sets in the dependency
basis of X that have non-empty intersection with Y.

14

1 . 1 . RELATIONAL DEPENDENCY THEORY Sebastian Link

Theorem 1 .8 . The implication problem for the class of MVDs and class of FDs and MVDs
can be solved in almost linear time. 0

Minimality and Complementation Rule. Theorems 1 . 5 and 1 .6 bring up questions
about the independence of inference rules in the respective axiomatisations. The impor­
tance of FDs and MVDs for relational database design suggests that the behavior of these
dependencies is worth investigating in full detail. It is therefore interesting to study which
inference rules are implied by others and which are independent . Further motivation for
this study is given by Mendelzon in [204] who determines all minimal complete subsets of
inference rules from Theorem 1 .5 . Essentially, there is only one such minimal subset .

Theorem 1.9. Reflexivity axiom, pseudo-transitivity rule and complementation rule from
Theorem 1. 5 form a minimal set of inference rules for the implication of MVDs in the
RDM.

Reflexivity axiom, extension rule, transitivity rule, pseudo-transitivity rule, complemen­
tation rule, implication rule and mixed pseudo-transitivity rule from Theorem 1 . 6 form a
minimal set of inference rules for the implication of FDs and MVDs in the RDM. 0

The complementation rule has a distinguished role among the rules of Theorem 1 .9 .
There are a few papers [32, 46 , 204] which point out the significance of this rule . The
complementation rule is the only rule that does not have a direct analogue in the axioma­
tisation of functional dependencies, since it is the only rule that takes into account the
context of the dependencies, that is, the underlying relation schema R, while all others
apply independently of whatever relation schema the attributes are embedded in. It is
therefore interesting to study whether one can obtain a (minimal) sound and complete set

of inference rules that does not include the complementation rule. The R-axiom 0 __ R'
introduced in [46] , is a very weak form of the complementation rule. The following result
was shown in [46] .

Theorem 1 .10 . R-axiom, augmentation rule and pseudo-transitivity rule form a minimal
set of inference rules for the implication of MVDs. 0

In this thesis an attempt is made to extend the majority of the previous results from
relational databases to complex-value databases which support several type constructors.

1 . 1 .4 Additional Remarks and Literature

As said before, it is not intended to give a complete summary of results on FDs and MVDs.
Instead the previous section was more a reminder of those results which are to be extended
to complex-value databases in this thesis . Therefore, there are many interesting topics in
dependency theory which have not yet been mentioned at all .

First of all, the book [264] identifies more than 90 different classes of relational depen­
dencies, and axiomatisations and remarks on the implication problem for many of these

15

1 . 1 . RELATIONAL DEPENDENCY THEORY Sebastian Link

classes are discussed. The papers [109 , 1 58 , 278] all provide excellent surveys on the moti­
vations and history of research into relational dependencies.

Research on general integrity constraints considered from the perspective of first-order
logic is presented in [1 19] . Other early work in this framework includes [212] which observes
that FDs and MVDs have a natural representation in logic, and [213] which considers
incremental maintenance of integrity constraints under updates to the underlying state.

FDs were introduced by Codd [71] . The axiomatisation is due to Armstrong [15 , 16] .
The implication problem was studied in [29, 191] . Several alternative formulations of FD
implication, including formulation in terms of the prepositional calculus perspective, are
mentioned in [1 58] . They are due to [74, 75, 240] .

Armstrong relations, i .e . relations which precisely satsify a given set of FDs and its im­
plications, were introduced and studied in [31 , 106, 107] . Interesting practical applications
of Armstrong relations are proposed in [196 , 251] . The idea is that , given a set E of FDs,
an Armstrong relation for E with natural column entries is presented to a user, who can
then determine whether E includes all of the desired restrictions.

The structure of Armstrong relations specified by a set of FDs is studied in [125 ,
147] . Interesting results on the combinatorial structures that arise from certain classes of
dependencies can be found in [89, 90, 9 1 , 92, 93, 94, 95, 96] .

FDs on linear-ordered data domains are introduced and axiomatised in [2 1 1] . Order
dependencies are studied in [124] which extend FDs to incorporate information involving
partial order. A sound and complete set of inference rules is proposed and the implication
problem of order dependencies is shown to be coNP-complete.

Multi-valued dependencies were discovered independently in [86, 103, 303] . They were
generalised in [7, 2 12, 234] . The axiomatisation of FDs and MVDs is from [32] . The con­
struction of Armstrong databases for FDs and MVDs can be found in [32, 288] . A proba­
bilistic view of MVDs in terms of conditional independence is presented in [227, 228] . This
provides an alternative motivation for the study of such dependencies.

The book [1 97] provides an in-depth coverage of relational schema design, including
both the theoretical underpinnings and other, less formal factors that go into good design .
Extensive treatments of the topic are also found in [81 , 1 15 , 1 8 1 , 274 , 292] . References
[161 , 162, 163] illustrate the many difficulties that arise in schema design, primarily with a
host of intriguing examples that show how skilled the human mind is at organising diverse
information and how woefully limiting data models are.

The area of normal forms and relational database design was studied intensively in the
1970s and early 1980s. Much more complete coverage of this topic than presented here
may be found in [8 1 , 181 , 192, 274, 292] . Some of the most important papers in this area
should be mentioned here. First normal form [68] is actually fundamental to the relational
data model : a relation is in first normal form if each column contains only atomic values.
This restriction shall be relaxed in this thesis. References [69, 70] raised the issue of update
anomalies and initiated the search for normal forms that prevent them by introducing
second and third normal forms. The mostly used definition for third normal form is from
[304] . Boyce-Codd normal form was introduced in [72] to provide a normal form simpler
than third normal form. Another improvement of third normal form is proposed in [186] .

1 6

1 .2 . CHALLENGES WITH COMPLEX-VALUE DATABASES Sebastian Link

Fourth normal form was introduced in [103] . Even richer normal forms include project-join
normal form [104] and domain-key normal form [105] .

Relational database design is a good example of how theory can have an important and
direct influence on practice. Recent work on providing semantic justification for various
normal forms is of fundamental importance, since it can provide us with an explanation of
what we actually achieve by the process of database design [280] .

In addition to introducing second and third normal form, [70] initiated the search for
normalisation algorithms by proposing the first decomposition algorithms. This spawned
other research on decomposition [88 , 221 , 236] and synthesis [41 , 43, 293] . The fact that
these two criteria are not equivalent was stressed in [234] where it is proposed that both
be attempted. Early surveys on these approaches to relational design include [30, 102 ,
235] . Algorithms for synthesis into third normal form include [4 1 , 49] , for decomposition
into BCNF include [270] , and for decomposition into fourth normal form include [103,
133] . Computational issues raised by decompositions are studied in [29, 1 12 , 190, 270] and
elsewhere. Reference [132] presents a good heuristic for finding covers of the projection
of a set of FDs. The third normal form synthesis algorithm begins with a minimal cover
of a set of FDs. Maier [191] shows that minimal covers can be found in polynomial time.
Investigations on minimal covers of sets of MVDs can be found in [2 16] .

The more formal study of decompositions and their properties was initiated by [234] ,
which considered decompositions into two-element sets and proposed the notion of indepen­
dent components; and [17] , which studied decompositions that are lossless and dependency­
preserving. This was extended independently to arbitrary decompositions over FDs by [37]
and [193] . Lossless join was further investigated in [276] .

The idea that not all integrity constraints specified in a schema should be considered for
the design process was implicit in the works on semantic data models (e.g. [63, 184, 1 85]) .
It was stated explicitly in connection with relational schema design in [108, 247] . An exten­
sive application of this approach towards schema design that incorporated both FDs and
MVDs is in [34] . A very different form of decomposition , called horizontal decomposition ,
is introduced in [85] . This involves splitting a relation into pieces, each of which satisfies a
given set of FDs.

Finally, the reader is referred to [47, 48] for a critique on the overall achievements and
prospects of database design.

1 . 2 Challenges with Complex-value Databases

The second part of the introduction starts with a brief overview of data models that have
been used for extending the RDM. For each class of these data models it is highlighted
which types of complex objects are supported .

1 .2 . 1 Extensions to the Relational Data Model

The relational data model has gained acceptance in the market place to such a degree that
many database users expect their database systems to be relational by default. However,

17

1 .2 . CHALLENGES WITH COMPLEX-VALUE DATABASES Sebastian Link

users are demanding new facilities which are not directly supported by the model . Such
facilities include support for deduction mechanisms, complex non-first normal form data,
object-oriented features and production rules. The availability of database systems on a
wide variety of computer platforms has meant that there is a growing demand for the use of
databases in non-business applications, such as office automation, computer-aided design,
multimedia, text retrieval, expert systems and scientific applications such as geographical
and statistical analysis. This demand is a motivating factor for extending the relational
model to provide such new facilities .

Semantic Data Models. Relational database management systems represent informa­
tion in a simple record-based format. Semantic data models provide richer data structuring
capabilities for database applications. Research in this area has articulated a number of
constructs that provide mechanisms for representing structurally complex interrelations
among data typically arising in commercial applications. Semantic models were developed
to provide a higher level of abstraction for modelling data, allowing database designers
to think of data in ways that correlate more directly to how data arises in the world
[25, 64, 269] . The primary components of semantic models are the explicit representation
of objects, attributes of and relationships among objects, type constructors for building
complex types, ISA relationships, and derived schema components. Commonly, semantic
data models support at least two constructed types: aggregation and grouping. An exam­
ple for aggregation is for instance a type Address which is composed out of Street, City
and Zip. It allows the user to focus on the abstract notion of Address while ignoring its
component parts . Grouping is used to build sets of elements of an existing type, for exam­
ple the atomic type Language can be used to construct the type spoken Language which
represents the set of languages a particular person speaks. In general, three advantages of
semantic data models over traditional, record-oriented systems are observed [149] :

- increased separation of conceptual and physical components,
- decreased semantic overloading of relationship types,
- availability of convenient abstraction mechanisms.

Historically, almost all semantic data models have focused almost exclusively on aggre­
gation and grouping. Primary examples of such data models are the Entity-Relationship
model [63] , the functional data model [164, 250] and the semantic data model [136] . The
Entity-Relationship model was the first semantic data model centered around relation­
ships , not attributes. It views the world as consisting of entities and relationships among
entities. The functional data model was the first of a number of semantic data models
based on explicit representation of attributes. It is a simple, elegant model with easily
understood visual representation. One of the major benefits of this model is the capacity
to reference functions directly when manipulating properties of objects. Further examples
of semantic data models include the semantic association model SAM* [259] , which is ori­
ented in part to scientific and statistical applications and supports sets, vectors, ordered
sets and matrices, IFO [4] and SHM+ [54] . An excellent overview of semantic database
modelling is [149] . Over the last years there have been several attempts to improve the

18

1 .2 . CHALLENGES WITH COMPLEX-VALUE DATABASES Sebastian Link

original Entity-Relationship model from [63] . A theoretically well-founded extension with
proven applicability is the Higher-Order Entity-Relationship model [264, 265] . It introduces
complex attributes, entity-, relationship- and cluster types of higher order which enhance a
natural modelling process. Cluster types represent the disjoint union of relationship types.

The Nested Relational Data Model. If we interpret a domain as a data type, which
can have potentially arbitrary complexity, then we should also allow relation-valued at­
tributes as a special kind of data type. This argument from [82] becomes quite convincing
realising that SQL supports domains such as character strings and dates, which can be
viewed as aggregates of simpler data types, i . e . , single characters and day, month and year,
respectively.

The original proposal for generalising the relational model to allow entries in relations
to be sets is often attributed to Makinouchi [195] . An extensive coverage of the field can
be found in [148] . The nested relational data model is studied in [156 , 179, 238, 267] .

The nested relational data model distinguishes between atomic attributes such as
PName, and relation-valued attributes such as (Hobby) * or (Child, Age) * . Values over
PName are atomic, while (Hobby) *-values are relations over a relation schema with at­
tribute Hobby and (Child, Age) *-values are relations over a relation schema with attributes
Child and Age. Relation-valued attribute values can be empty, i .e . , their value can be the
empty set 0. In the following nested relation r, Kane does not have any hobbies and Se­
bastian does not have any children.

PName (Hobby)* (Child Age)*
Kane Jill 8

Jacob 10
John 1 1

Sebastian tennis
movies

Jeff photography M aria 4
reading

Besides the common relational algebra operators from the relational data model, the
nested relational algebra extends the relational algebra with NEST and UNNEST which
restructure relations, and empty which creates a nested relation with a single relation­
valued attribute which is empty. The NEST operator transforms a nested relation into a
"more deeply" nested relation while the UNNEST operator transforms a nested relation
into a "flatter" nested relation. As an example, the following table shows the unnesting of
the previous nested relation r with respect to (Hobby) * .

PName Hobby (Child Age)*
Sebastian tennis
Sebastian movies

Jeff photography M aria 4
Jeff reading M aria 4

19

1 .2 . CHALLENGES WITH COMPLEX-VALUE DATABASES Sebastian Link

Due to a result in [222] , the power of the nested relational algebra is equivalent to
that of the fiat relational algebra. So the power of the nested relational algebra lies in its
ability to represent and manipulate nonfiat data rather than in its ability to pose additional
queries that cannot be expressed in the fiat relational algebra.

Nested relations can be viewed in the wider context of complex object types. It is
assumed that a collection of atomic object types are available, where the values of each
such atomic type are taken from an atomic domain . An object type can now be defined as
a tree whose leaves represent atomic object types, and whose internal nodes represent the
application of either the tuple construct, which aggregates its children object types into
a tuple, or the set construct, which groups its single child object type into a set . Thus a
nested relation type is a special case of a complex object type, where the root of the tree
represents a tuple construct , each child node of a node representing a tuple construct either
represents a set construct or an atomic object type , and the single child node of a node
representing a set construct represents a tuple construct.

Normal form proposals within the Nested Relational Data Model have been based on
the appropriate nesting of a fiat relation schema with respect to a given set of functional
and multi-valued dependencies defined on the fiat schema. Examples for such normal form
proposals include [187, 207, 215 , 217, 237, 238, 262] . A comparison of the various normal
forms proposed in [207, 215 , 2 17, 237, 238] can be found in [206] . The work in [284]
characterises data equivalence of nested relation schemata in partitioned normal form.
One major result is that two schemata in partitioned normal form are data equivalent if
and only if the sets of multi-valued dependencies induced by the corresponding schema
trees are equivalent . A further reference for many topics on nested relations in databases
is [3] .

Object-Oriented and Object-Relational Data Models. The main characteristics of
object-oriented database systems are described in the database manifesto [20] . It is pro­
posed that the first mandatory feature of any object-oriented database shall be the support
of complex objects with orthogonal behavior: "Thou shalt support complex objects" . Com­
plex objects mentioned are records, sets, bags (multisets) and lists. As a minimum set of
supported complex objects they consider records, sets and lists. The work in [243] proposes
to classify data models according to the underlying type system which may include records,
sets, lists, bags, unions, and recursion . It is in fact this approach that will be followed in
this thesis.

Collections of papers on object-oriented databases can be found in [22 , 166, 306] .
An influential discussion of some foundational issues around the object-oriented database
paradigm is [28] . An important survey of subtyping and inheritance from the perspective
of programming languages, including the notion of domain-inclusion semantics, is [62] .
Further examples of object-oriented data models are [1 14, 121] .

Object-oriented databases are, of course, closely related to object-oriented programming
languages. The first of these is Smalltalk (128] , and C++ [257] is fast becoming the most
widely used object-oriented programming language. Several commercial object-oriented
database systems are essentially persistent versions of C++. Several object-oriented ex-

20

1 .2 . CHALLENGES WITH COMPLEX-VALUE DATABASES Sebastian Link

tensions of Lisp have been proposed; the article [50] introduces a rich extension called
CommonLoops and surveys several others.

There have been a number of approaches to provide a formal foundation [6 , 28, 150,
165, 243] for object-oriented databases . We can also cite as precursors attempts to formalise
semantic data models [4] and object-based models [15 1 , 172] . Recent graph-oriented models,
although they do not stress object orientation, are similar in spirit (e.g. [134]) .

The paper [262] proposes an object normal form, but is mainly dealing with semantic
issues as opposed to removing redundancy. Further papers that consider path functional
dependencies in pointer-based data models are [51 , 1 53] .

The book [256] specifically explores the marriage of relational databases with object
technology resulting in object-relational database systems. A further example for such a
proposal is [244] . An object-relational database can be defined as one which supports SQL3
[83, 203] . Four fundamental characteristics of object-relational DBMSs are identified in
[256] : (i) the ability to add to the database system user-defined data types and functions
operating on these types (this can be viewed as an abstract data type facility) , (ii) the
ability to construct complex object types via general purpose type constructors, (iii) the
ability to define supertypes and subtypes together with the support of inheritance from
supertype to subtype, and (iv) support for active database rules or alternative triggers.

Hypertext Datamodels . An emerging field in the broad area of information systems is
that of hypertext (or more generally hypermedia) , whose aim is to provide database sup­
port for networks of "electronic documents" which are logically linked together. Hypertext
is concerned with authoring, managing, designing and navigating through the electronic
documents of such networks. The vision of virtual electronic libraries is becoming a reality
and hence there is a strong need for a formal data model of hypertext. Although it would
be naive to consider a data model of such an electronic library to be an extension of the
relational model , relational database theory can provide inspiration for the development of
such a data model . A hypertext database can be viewed as an instance of a semistructured
database in the sense that such a database does not come with a separate schema, since it
does not have a regular structure. Although the digraph representing a hypertext database
is unstructured , individual pages may have some structure attached to them. For instance,
pages which are HTML documents have some structure attached to them in the form of
informational tags, but these are insufficient for the purpose of constructing a relation
schema over the document space. Semistructured data is often self-describing in the sense
that its internal structure , when it exists, can be inferred from the data itself.

The eXtensible Markup Language (XML, [53]) has emerged as the standard for infor­
mation exchange between Web applications. It offers a convenient syntax for represent­
ing data from heterogeneous sources, but provides little semantic information. To specify
the semantics of XML data, a variety of approaches have been proposed: type systems
[36, 67, 84, 177, 268] , description logics [61] , meta-data descriptions [200] etc. As some of
these proposals [84, 177, 268] point out, integrity constraints are important for semantic
specifications of XML data. In addition, they are useful for query optimisation [97, 1 16] ,
update anomaly prevention [5] , and for information preservation in data integration [2, 67] .

21

1 .2 . CHALLENGES WITH COMPLEX-VALUE DATABASES Sebastian Link

The emergence of XML has recently led to a revival of dependency theory and resulted in
many research papers on that topic.

The work in [1 1 1] proposes an extension of XML DTDs (document type definitions)
that specifies both syntactic structure and integrity constraints for XML data. The authors
investigate keys, foreign keys, inverse constraints and ID constraints for capturing the se­
mantics of object identities in the framework of XML. Some complexity and axiomatisation
results for the (finite) implication problems for these constraints are established. In [1 10]
the consistency problem whether there is an XML document that conforms to a DTD and
satisfies a given set of keys and foreign keys is studied. In general , this problem turns out
to be undecidable, but it is proven to be NP-complete for unary keys and foreign keys.
Arenas and Libkin define functional dependencies in terms of paths in DTDs and propose
a normal form for XML documents in [14] . They show, in particular, that the implication
problem for their class of functional dependencies is not finitely axiomatisable. For so­
called simple DTDs, however, the implication problem is shown to be solvable in quadratic
time. For relational DTDs the implication problem is NP-complete, for disjunctive DTDs
it is shown to be coNP-complete. The authors continue their work on normalisation in the
context of XML in [13] . Here, they use techniques of information theory to define a mea­
sure of information content of elements in a database with respect to a set of constraints.
The papers [1 1 , 1 2] demonstrate the costly effect of slightly changing the semantics of
keys, foreign keys and uniqueness constraints in XML schema design. In particular, known
hardness results on consistency checking extend to XML schemata, but tractability results
do not . It is shown that even without foreign keys, and with very simple DTD features,
checking consistency of XML schemata is intractable. The papers [56, 57, 58, 59] investi­
gate integrity constraints in XML and semistructured data as well , and particularly focus
on different proposals for XML keys and foreign keys, path and inclusion constraints. The
work in [285] extends the definition of functional dependencies in incomplete relations to
XML documents. The authors argue that their approach overcomes difficulties with the
approach in [14] . In particular, they give a precise syntactic definition of strong satisfaction
of an XFD in XML documents and do not require the existence of a DTD as opposed to
[14] . In [286] , the same authors consider multi-valued dependencies in the context of XML.
They justify their definition of an XMVD by showing that for a very general class of map­
pings from relations to XML, a relation satisfies an MVD if and only if the corresponding
XML document satisfies the corresponding XMVD. In [287] , a normal form based on XFDs
and XMVDs is proposed and formally justified by showing the absence of redundancy in
those XML documents which are in the normal form proposed.

Complex Objects in other Fields of Application. Complex values have been subject
to studies in the deductive and temporal database community for some time. An overview
of integrity constraints in deductive databases is provided in [19] . Unique key constraints
for deductive databases are proposed in [305] . Dependency theory has also been extended
to deal with future and past, i . e . , to temporal databases in [123, 169, 296] . One approach in
temporal databases is to express integrity constraints as essentially arbitrary sentences in
some temporal logic [10 , 65, 66, 188] . An alternative approach examines restricted classes

22

1 .2. CHALLENGES WITH COMPLEX-VALUE DATABASES Sebastian Link

of temporal integrity constraints, which may be called temporal dependencies [294] . This
approach is also used in [297] to explore temporal functional dependencies in the context
of complex objects, i .e . temporal databases that include object identity.

The papers [208, 233] emphasise the importance of including a list constructor in de­
ductive database models. Trees, lists, finite sets and multisets are considered in [80 , 291]
where the complexity of checking whether a query defines a nonempty set is studied for
nonrecursive queries. Logic programming with sets is considered in [170, 171] .

The need for lists arises from applications that store ordered relations, time-series data,
meteorological and astronomical data streams, runs of experimental data, multidimensional
arrays, textual information, voices, sound , images, video, etc. Recently, bioinformatics has
become a very important field of research . Of course, lists and sets occur naturally in
genomic sequence databases [55 , 183, 248] .

Set-valued attributes appear in several application domains, e .g. in retail databases
they can represent the set of different products purchased by a customer, in multimedia
databases they can be used to represent the set of objects contained in an image, in web
server logs they correspond to web pages and links visited by a user. Finally, in data mining
applications set-valued attributes are commonly used to store time-series and market basket
data.

The multiset is a notion that has appeared again and again in many areas of mathemat­
ics and computer science, sometimes called a bag. As a data structure this notion stands
"in-between" strings/lists, where a linear ordering of symbols/items is present , and sets ,
where no ordering and no multiplicity is considered ; in a multiset only the multiplicity of
elements matters, not their ordering. Actually, in between lists and multisets we also have
pomsets, partially ordered multisets.

Confining ourselves to computer science, we may mention many areas where multisets
are used: formal power series, Petri nets , databases, logics, formal language theory (in
relation with Parikh mapping, commutative grammars, etc.) , concurrency and so on . In the
last few years, the notion has occurred in a rather natural way in the molecular computing
area. An aqueous solution of chemical compounds, swimming together in a given space,
without any given spatial relation between individual elements, is just a multiset . Actually,
chemical metaphor was used several years before the occurrence of what is now called
molecular computing, as the basic ingredient of the Gamma language [21] and the Chemical
Abstract Machine [44] . Then , multisets were used in relation with DNA computing [8, 159,
224] , especially in the context of computing by splicing (H systems) : taking into account
the number of DNA molecules proved to be a very powerful feature of H systems, leading
to computational completeness .

In the prolongation of the chemical metaphor, the membrane computing area has re­
cently emerged [99, 225, 226] , as an abstraction of the living cell structure and biochemistry:
in the compartments defined by a membrane structure, one processes multisets of chemical
compounds, denoted by symbols or by strings over a given alphabet.

For a recent survey on the use of multisets in various areas of logic and computer science
see [60] , in which [174] specifically focuses on database systems. Multisets also appear in
logic [23] , linguistics [73, 131] , artificial life [260, 261] , etc. Several papers have considered

23

1 .2 . CHALLENGES WITH COMPLEX-VALUE DATABASES Sebastian Link

fuzzy variants of multisets ([182, 299]) while [126] and [24] deal with pomsets.

1 .2 .2 Real-World Examples for Complex Constraints

This section shall be used to give a few typical "real-world" examples in which constraints
among complex data types appear. The descriptions of the various applications as well as
the description of the constraints are all informal in this section. Later on, the examples
will be formalised and used as illustrations for several notions and algorithms.

Bioinformatics. According to [209] , GenBank is the NCBI genetic sequence database,
an annotated collection of all publicly available DNA sequences. There are approximately
28,507,990, 166 bases in 22,318,883 sequence records as of January 2003. GenBank is part of
the International Nucleotide Sequence Database Collaboration, which comprises the DNA
DataBank of Japan (DDBJ) , the European Molecular Biology Laboratory (EMBL) , and
GenBank at NCBI. These three organisations exchange data on a daily basis.

A detailed description of every field in a GenBank record can be found in [210] . For the
purposes of this thesis, a simplified description of such a GenBank record shall suffice.

The record starts with a nucleotide sequence, i .e . , a sequence of A, C, G, T representing
the four nucleotide bases adenine, cytosine, guanine and thymine, respectively. The total
number of each of these bases is recorded as well . Regions of biological interest within the
original nucleotide sequence are known as genes. The information of such a gene consists of
the start and end position of the subsequence within the original sequence, the subsequence
itself and a translation of this subsequence into a sequence of amino acids. An amino acid
is represented by a letter and is encoded by a triplet of nucleotide bases.

The following nucleotide sequence belongs to the organism Saccharomyces cerevzszae
(budding yeast) and is taken from [2 1 0] .

1 gatcctccat atacaacggt atctccacct caggtttaga tctcaacaac ggaaccattg

61 ccgacatgag acagttaggt atcgtcgaga gttacaagct aaaacgagca gtagtcagct
121 ctgcatctga agccgctgaa gttctactaa gggtggataa catcatccgt gcaagaccaa

181 gaaccgccaa tagacaacat atgtaacata tttaggatat acctcgaaaa taataaaccg
241 ccacactgtc attattataa ttagaaacag aacgcaaaaa ttatccacta tataattcaa
301 agacgcgaaa aaaaaagaac aacgcgtcat agaacttttg gcaattcgcg tcacaaataa

361 attttggcaa cttatgtttc ctcttcgagc agtactcgag ccctgtctca agaatgtaat

421 aatacccatc gtaggtatgg ttaaagatag catctccaca acctcaaagc tccttgccga

481 gagtcgccct cctttgtcga gtaattttca cttttcatat gagaacttat tttcttattc

541 tttactctca catcctgtag tgattgacac tgcaacagcc accatcacta gaagaacaga
601 acaattactt aatagaaaaa ttatatcttc ctcgaaacga tttcctgctt ccaacatcta

661 cgtatatcaa gaagcattca cttaccAtga cacagcttca gatttcatta ttgctgacag

721 ctactatatc actactccat ctagtagtgg ccacgcccta tgaggcatat cctatcggaa
781 aacaataccc cccagtggca agagtcaatg aatcgtttac atttcaaatt tccaatgata
841 cctataaatc gtctgtagac aagacagctc aaataacata caattgcttc gacttaccga
901 gctggctttc gtttgactct agttctagaa cgttctcagg tgaaccttct tctgacttac

961 tatctgatgc gaacaccacg ttgtatttca atgtaatact cgagggtacg gactctgccg
1021 acagcacgtc tttgaacaat acataccaat ttgttgttac aaaccgtcca tccatctcgc

24

1 .2 . CHALLENGES WITH COMPLEX-VALUE DATABASES Sebastian Link

1081 tatcgtcaga tttcaatcta ttggcgttgt taaaaaacta tggttatact aacggcaaaa
1 141 acgctctgaa actagatcct aatgaagtct tcaacgtgac ttttgaccgt tcaatgttca

1201 ctaacgaaga atccattgtg tcgtattacg gacgttctca gttgtataat gcgccgttac

1261 ccaattggct gttcttcgat tctggcgagt tgaagtttac tgggacggca ccggtgataa

1321 actcggcgat tgctccagaa acaagctaca gttttgtcat catcgctaca gacattgaag

1381 gattttctgc cgttgaggta gaattcgaat tagtcatcgg ggctcaccag ttaactacct

1441 ctattcaaaa tagtttgata atcaacgtta ctgacacagg taacgtttca tatgacttac
1501 ctctaaacta tgtttatctc gatgacgatc ctatttcttc tgataaattg ggttctataa

1561 acttattgga tgctccagac tgggtggcat tagataatgc taccatttcc gggtctgtcc
1621 cagatgaatt actcggtaag aactccaatc ctgccaattt ttctgtgtcc atttatgata

1681 cttatggtga tgtgatttat ttcaacttcg aagttgtctc cacaacggat ttgtttgcca

1 741 ttagttctct tcccaatatt aacgctacaa ggggtgaatg gttctcctac tattttttgc

1801 cttctcagtt tacagactac gtgaatacaa acgtttcatt agagtttact aattcaagcc
1861 aagaccatga ctgggtgaaa ttccaatcat ctaatttaac attagctgga gaagtgccca

1921 agaatttcga caagctttca ttaggtttga aagcgaacca aggttcacaa tctcaagagc
1981 tatattttaa catcattggc atggattcaa agataactca ctcaaaccac agtgcgaatg
2041 caacgtccac aagaagttct caccactcca cctcaacaag ttcttacaca tcttctactt
2101 acactgcaaa aatttcttct acctccgctg ctgctacttc ttctgctcca gcagcgctgc
2161 cagcagccaa taaaacttca tctcacaata aaaaagcagt agcaattgcg tgcggtgttg

2221 ctatcccatt aggcgttatc ctagtagctc tcatttgctt cctaatattc tggagacgca

2281 gaagggaaaa tccagacgat gaaaacttac cgcatgctat tagtggacct gatttgaata
2341 atcctgcaaa taaaccaaat caagaaaacg ctacaccttt gaacaacccc tttgatgatg

2401 atgcttcctc gtacgatgat acttcaatag caagaagatt ggctgctttg aacactttga
2461 aattggataa ccactctgcc actgaatctg atatttccag cgtggatgaa aagagagatt

2521 ctctatcagg tatgaataca tacaatgatc agttccaatc ccaaagtaaa gaagaattat
2581 tagcaaaacc cccagtacag cctccagaga gcccgttctt tgacccacag aataggtctt

2641 cttctgtgta tatggatagt gaaccagcag taaataaatc ctggcgatat actggcaacc

2701 tgtcaccagt ctctgatatt gtcagagaca gttacggatc acaaaaaact gttgatacag

2761 aaaaactttt cgatttagaa gcaccagaga aggaaaaacg tacgtcaagg gatgtcacta
2821 tgtcttcact ggacccttgg aacagcaata ttagcccttc tcccgtaaga aaatcagtaa

2881 caccatcacc atataacgta acgaagcatc gtaaccgcca cttacaaaat attcaagact
2941 ctcaaagcgg taaaaacgga atcactccca caacaatgtc aacttcatct tctgacgatt

3001 ttgttccggt taaagatggt gaaaattttt gctgggtcca tagcatggaa ccagacagaa
3061 gaccaagtaa gaaaaggtta gtagattttt caaataagag taatgtcaat gttggtcaag

3121 ttaaggacat tcacggacgc atcccagaaa tgctgtgAtt atacgcaacg atattttgct

3181 taattttatt ttcctgtttt attttttatt agtggtttac agatacccta tattttattt
3241 agtttttata cttagagaca tttaatttta attccattct tcaaatttca tttttgcact
3301 taaaacaaag atccaaaaat gctctcgccc tcttcatatt gagaatacac tccattcaaa
3361 attttgtcgt caccgctgat taatttttca ctaaactgat gaataatcaa aggccccacg
3421 tcagaaccga ctaaagaagt gagttttatt ttaggaggtt gaaaaccatt attgtctggt

3481 aaattttcat cttcttgaca tttaacccag tttgaatccc tttcaatttc tgctttttcc
3541 tccaaactat cgaccctcct gtttctgtcc aacttatgtc ctagttccaa ttcgatcgca

3601 ttaataactg cttcaaatgt tattgtgtca tcgttgactt taggtaattt ctccaaatgc

3661 ataatcaaac tatttaagga agatcggaat tcgtcgaaca cttcagtttc cgtaatgatc
3721 tgatcgtctt tatccacatg ttgtaattca ctaaaatcta aaacgtattt ttcaatgcat

3781 aaatcgttct ttttattaat aatgcagatg gaaaatctgt aaacgtgcgt taatttagaa

3841 agaacatcca gtataagttc ttctatatag tcaattaaag caggatgcct attaatggga
3901 acgaactgcg gcaagttgaa tgactggtaa gtagtgtagt cgaatgactg aggtgggtat
3961 acatttctat aaaataaaat caaattaatg tagcatttta agtataccct cagccacttc

402 1 tctacccatc tattcataaa gctgacgcaa cgattactat tttttttttc ttcttggatc
4081 tcagtcgtcg caaaaacgta taccttcttt ttccgacctt ttttttagct ttctggaaaa

25

1 . 2 . CHALLENGES WITH COMPLEX-VALUE DATABASES Sebastian Link

4141 gtttatatta gttaaacagg gtctagtctt agtgtgaaag ctagtggttt cgattgactg
4201 atattaagaa agtggaaatt aaattagtag tgtagacgta tatgcatatg tatttctcgc
4261 ctgtttatgt ttctacgtac ttttgattta tagcaagggg aaaagaaata catactattt
4321 tttggtaaag gtgaaagcat aatgtaaaag ctagaataaa atggacgaaa taaagagagg
4381 cttagttcat cttttttcca aaaagcaccc aatgataata actaaaatga aaaggatttg
4441 ccatctgtca gcaacatcag ttgtgtgagc aataataaaa tcatcacctc cgttgccttt
4501 agcgcgtttg tcgtttgtat cttccgtaat tttagtctta tcaatgggaa tcataaattt
4561 tccaatgaat tagcaatttc gtccaattct ttttgagctt cttcatattt gctttggaat
4621 tcttcgcact tcttttccca ttcatctctt tcttcttcca aagcaacgat ccttctaccc
4681 atttgctcag agttcaaatc ggcctctttc agtttatcca ttgcttcctt cagtttggct
4741 tcactgtctt ctagctgttg ttctagatcc tggtttttct tggtgtagtt ctcattatta
4801 gatctcaagt tattggagtc ttcagccaat tgctttgtat cagacaattg actctctaac
4861 ttctccactt cactgtcgag ttgctcgttt ttagcggaca aagatttaat ctcgttttct
4921 ttttcagtgt tagattgctc taattctttg agctgttctc tcagctcctc atatttttct
4981 tgccatgact cagattctaa ttttaagcta ttcaatttct ctttgatc

All over, there are 1510 As, 1074 Cs, 835 Gs and 1609 Ts. The subsequence that starts
with the first underlined bold upper-case A and finishes with the second underlined bold
upper-case A encodes the so-called plasma membrane glycoprotein. It starts at position 687
and finishes at position 3158 within the original sequence. The subsequence contains 2472
bases. The encoded protein consists therefore of 824 amino acids:

MTQLQISLLLTATISLLHLVVATPYEAYPIG KQYPPVARVNESFTFQISNDTYKSSVD

KTAQITYNCFDLPSWLSF DSSSRTF SGEPSSDLLSDANTTLYFNVILEGTDSADSTSL

NNTYQFVVTNRPSISLSSDFNLLALLKNYGYTNGKNALKLDPNEVFNVTFDRSMFTNE
ESIVSYYGRSQLYNAPLPNWLFF DSGELKFTGTAPVINSAIAPETSYSFVIIATDIEG
FSAVEVEF ELVIG AHQLTTSIQNSLIINVTDTG NVSYDLPLNYVYLDDDPISSDKLGS

INLLDAPDWVALDN ATISGSVPDELLGKNSNPANFSVSIYDTYG DVIYFNF EVVSTTD
LFAISSLPNINATRGEWF SYYFLPSQFTDYVNTNVSLEFTNSSQDHDWVKFQSSNLTL

AGEVPKNF DKLSLG LKAN QGSQSQELYFNIIGMDSKITHSNHSAN ATSTRSSHHSTST
SSYTSSTYTAKISSTSAAATSSAPAALPAANKTSSHNKKAVAIACGVAIPLGVILVAL

ICF LIFWRRRRENPDDENLPHAISGPDLNNPANKPNQENATPLNNPFDDDASSYDDTS

IARRLAALNTLKLDNHSATESDISSVDEKRDSLSGMNTYNDQFQSQSKEELLAKPPVQ
P PESP F F DP QNRSSSVYMDSEPAVNKSWRYTGNLSPVSDIVRDSYGSQKTVDTEKLFD

LEAPEKEKRTSRDVTMSSLDPWNSNISPSPVRKSVTPSPYNVTKHRNRHLQNIQDSQS

GKNGITPTTMSTSSSDDFVPVKDGENFCWVHSMEPDRRPSKKRLVDFSNKSNVNVGQV
KDIHGRIPEML.

We list a number of constraints that a database designer may choose to specify for this
(simplified) application:

1 . The original nucleotide sequence determines the total number of each of the four bases.
2. All four total numbers of bases determine the length of the original nucleotide sequence.
3. The length of the original nucleotide sequence together with the total numbers of any

three bases determines the total number of the remaining base.
4. The original nucleotide sequence together with start and end position of the subse­

quence determines the subsequence itself.
5. The nucleotide subsequence determines the sequence of amino acids.
6. The length of the nucleotide subsequence determines the length of the amino acid

sequence and vice versa.

26

1 .2 . CHALLENGES WITH COMPLEX-VALUE DATABASES Sebastian Link

7. The start position of the subsequence together with the length of the subsequence
determine the end position of the subsequence.

8. The end position of the subsequence together with the length of the subsequence de­
termine the start position of the subsequence.

9. Start and end position of the subsequence together determine the length of the subse­
quence.

Note that the length of the amino acid sequence is simply one third of the length of
the nucleotide subsequence. The database schema for this example will be formalised in
Example 2 .2 on page 48, the constraints in Example 3.3 on page 53.

In order to explain a different kind of constraint we look at a further example of nu­
cleotide sequences. Suppose one would like to compare two nucleotide sequences each of
which has a certain characteristic, say a fixed starting sequence and a certain number of
occurrences of a particular base. Apart from the two starting sequences and from the two
numbers of occurrences of a certain base, the database stores a list of pairs of nucleotide
bases. First and second component in the kth pair of that list are the kth element of the
first and second nucleotide sequence, respectively. Such a database might be helpful to find
good alignments of nucleotide sequences.

As an example we compare the candidates AACGA and AATGA for a sequence with
starting sequence AA and three occurrences of an A with the candidates AATCT and
AATTC for a sequence with starting sequence AAT and two occurrences of a T. Moreover,
we compare the candidates CGGC and CGCG for a sequence with starting sequence CG
and two occurrences of a G with the candidates CATT, CTAT and CCAC for a sequence
with starting sequence C and one occurrence of an A. The first comparison results in the
first four tuples of the following database, the second comparison in the last six tuples:

([A,A] , [A,A,T] , (3,A) , (2,T) , [(A,A) , (A,A) , (C ,T) , (G,C) , (A ,T)]) ,
([A,A] , [A,A,T] , (3,A) , (2 ,T) , [(A,A) , (A,A) , (C,T) , (G ,T) , (A,C)]) ,
([A,A] , [A,A,T] , (3 ,A) , (2 ,T) , [(A,A) , (A,A) , (T, T) , (G ,C) , (A,T)]) ,
([A,A] , [A,A,T] , (3,A) , (2 ,T) , [(A,A) , (A,A) , (T,T) , (G,T) , (A,C)]) ,

([C,G] , [C] , (2 ,G) , (1 ,A) , [(C,C) , (G ,A) , (G ,T) , (C,T)]) ,
([C,G] , [C] , (2 ,G) , (1 ,A) , [(C,C) , (G ,T) , (G ,A) , (C,T)]) ,
([C,G] , [C] , (2 ,G) , (1 ,A) , [(C,C) , (G ,C) , (G,A) , (C,C)]) ,
([C,G] , [C] , (2 ,G) , (1 ,A) , [(C,C) , (G ,A) , (C,T) , (G,T)]) ,
([C,G] , [C] , (2 ,G) , (1 ,A) , [(C,C) , (G ,T) , (C,A) , (G ,T)]) ,
([C,G] , [C] , (2 ,G) , (1 ,A) , [(C,C) , (G ,C) , (C,A) , (G ,C)]) .

A constraint that a database designer of this database may want to specify is the fol­
lowing. Both starting sequences together with both numbers of occurrences of a nucleotide
base determine the set of lists of the first component , independently from the set of lists
of the second component . That is, if there are two elements of the database which have
the same starting sequences and the same number of occurrences of the two particular
nucleotide bases, then there is another element in that database which is coincident with
the first element on the first nucleotide sequence (and the starting sequences and number

27

1 .2 . CHALLENGES WITH COMPLEX-VALUE DATABASES Sebastian Link

of occurrences of nucleotides) and coincident with the second element on the second nu­
cleotide sequence. Take for instance the second and third element of the snapshot above.
They have the same starting sequences and the same number of occurrences of the two
nucleotide bases. The first element of the database is the witness for the satisfaction of the
constraint above: its list of first components is the list of first components of the second
element , and its list of second components is the list of second components of the third
element . The database schema for this example will be formalised in Example 2 .3 on page
48, the constraints in Example 4 .2 on page 95.

Image Processing. Halftoning is one of the oldest applications of image processing,
since it is essential for the printing process. With the evolution of computers and their
gradual introduction to typesetting, printing, and publishing, the field of halftoning that
was previously limited to the so-called halftoning screen [271] evolved into its successor:
digital halftoning. Today, digital halftoning plays a keyrole in almost every discipline that
involves printing and displaying. All newspapers, magazines, and books are printed with
digital halftoning. It is used in image display devices capable of reproducing two-level
outputs such as scientific workstations, laser printers, and digital typesetters. It is also
important for facsimile transmission and compression.

There are many methods to perform digital halftoning. They can be grouped in three
major categories :

1 . dithering [205, 245, 271 , 272] ,
2 . error diffusion [1 1 7, 1 55 , 160, 254, 258] , and
3. direct binarisation [219, 246] .

Error diffusion revolutionised the digital halftoning field and has given the spark for the
development of a great number of new methods. Error diffusion is based on the simple
principle that once a pixel has been quantised, thus introducing some error, this error
should affect the quantisation of the pixels in the region of its neighbors.

Digital halftoning is an application of the matrix rounding problem [18] . The problem is
to convert a continuous-tone image into a binary one that looks similar. The input matrix
A represents a digital (gray) image, where aij represents the brightness level of the (i, j)­
pixel in the N x N pixel grid. Typically, N is between 256 and 4096, and aij is an integral
multiple of 2;6 : this means that we use 256 brightness levels. If we want to send an image
using fax or print it out by a dot or ink-jet printer, brightness levels available are limited.
Instead, we replace the input matrix A by an integral matrix B so that each pixel uses
only two brightness levels, i .e . , black or white. Here, it is important that B looks similar to
A; in other words, B should be a good approximation of A. A typical family of regions is
given by the set of all submatrices of a certain form. In this sense, a good approximation of

input matrix A is a {0 , 1 }-matrix B that minimises the distance L: ai,j - L.:: bi,j for
(i ,j)ER (i,j)ER

all R E R. Herein, R denotes the set of regions, for instance the set of all pairs of indices
that denote 2 x 1 , 1 x 2 and 2 x 2 submatrices. A region has therefore one of the following

28

1 .2 . CHALLENGES WITH COMPLEX-VALUE DATABASES

forms
�
@.@]

Sebastian Link

and can be represented as a list of either two or four elements. Of course, the regions
can have all different kinds of shapes in practice . In order to make the example more
illustrative, we assume from now on that the input matrix has entries in {0 , � ' 1 } , i . e . , uses
three brightness levels. Input regions can be best approximated by a number of different
output regions. All inputs with overall brightness � and length two, i . e . [0 , �] or [� , 0] ,
could be mapped to any of [0, 1] , [1 ,0] or [0,0] , each of which has distance � · In this sense,
the set of input regions ({ [0 , �] , [� , 0] }) is determined by the overall brightness of the input
region (�) and the length of the input region (2) , independently of the set of output regions
({ [0 , 1] , [1 , 0] , [0 , 0] }) . This is true for any inputs and outputs, e.g. , all inputs with overall
brightness � and length four such as [0, 0, 1 , �] can be mapped to any of [0 ,0 ,0 , 1] , [0 ,0 , 1 ,0] ,
[0 , 1 ,0 ,0] , [1 ,0 ,0 ,0] , [0 ,0 , 1 , 1] , [0, 1 ,0 , 1] , [1 ,0 ,0 , 1] , [0 , 1 , 1 ,0] , [1 ,0 , 1 ,0] , [1 , 1 ,0 ,0] .

Consider a database which stores input and output regions as lists together with the
overall brightness of the input region. It is then desirable to find a { 0 , 1 }-matrix B that has
for every of the possible regions of input matrix A a corresponding output region that is

stored in the database. The input matrix A = (� �) has for instance the approximation

B = (� �) . Every 2 x 2 matrix has five input regions and the mappings that produce

B from A are as follows: [0 , 0] H [0, 0] , [� , �] H [0, 1] , [0 , �] H [0, 0] (left column) , [0, �] H
[0, 1] (right column) and [0 , 0 , � ' �] H [0 , 0 , 0 , 1] .

The matrix (� �) , however, is not an approximation of A as the region [� , �] should

not be mapped to [0 , 0] .
Constraints that a database designer may choose to specify for this application are the

following:

1 . The length of the input region determines the length of the output region, and vice
versa.

2 . The overall brightness and length of the input region together determine the set of all
input regions independently from the set of the output regions .

In practice, the amount of information that needs to be stored depends on the set
of regions considered and the brightness levels available. The database schema for this
example will be formalised in Example 2 .4 on page 48, the constraints in Example 4.3 on
page 95.

Retailers. Consider a retailer which keeps track of its sales on a daily basis. For each day
the sequence of incoming orders is stored. Every order consists of information about the
customer who places the order, the collection of articles ordered, and the total value of the
order . A customer is described by its name, address and payment details . Every article in

29

1 .3 . CONTRIBUTIONS Sebastian Link

that order has a title, a description and a price. Besides the sequence of incoming orders,
the retailer stores the different products which were sold that day. In fact, not only the
title of the sold item is stored but also the name of the customer who bought it. Moreover,
the company keeps information about the total value of sales, the total number of orders,
the total number of products sold and the total number of shippings for each day. A few
reasonable constraints that a database designer may specify for this application are the
following.

1 . As the information is stored on a daily basis, the day determines the rest of the infor­
mation.

2 . The list of multisets of article titles determines the set of those items that were sold.
3 . The list of multisets of individual article prices determines the list of total values of

each order.
4 . The list of total values of each order determines the total value of sales.
5. The list of customer names that placed an order determines the set of customer names

that bought an item.
6 . The list of multisets of article titles together with the name of the customer placing

that order determines the set of sold item/customer information .
7. The length of the list of orders determines the number of orders and vice versa. In fact,

these values are equal .
8 . The list of individual numbers of articles in each order determines the total number of

products .
9 . Moreover, the list of individual numbers of articles together with the address of the

customer who placed that order determines the total number of shippings.

The database schema for this example will be formalised in Example 2 . 5 on page 48, the
constraints in Example 5 .2 on page 141 .

1 . 3 Contributions

Apart from a few approaches, the support of complex object types by several data models
has not led to investigations about the new expressive power for certain classes of depen­
dencies . Research has rather focused on how to appropriately represent flat data using the
types supported. The fact that the introduction of complex types results in constraints
among the complex objects has more or less been neglected. Some approaches which do
consider the new expressiveness will be discussed later on.

A further problem is given by the great amount of different data models. A key problem
is to develop dependency theories (or preferably a unified theory) for most of these advanced
data models. Biskup [47, 48] 1ists in particular two challenges for database design theory:
finding a unifying framework and extending achievements to deal with advanced database
features such as complex object types.

As in [243] we propose to classify data models according to the type constructors which
are supported by the model. The RDM, for instance, is completely captured by the record

30

1 .3 . CONTRIBUTIONS Sebastian Link

type, the nested relational data model and most of the semantic data models by the record
and finite set type. The Higher-Order Entity-Relationship model [264, 265] is captured by
record, set and disjoint union type . According to the object-oriented database manifesto
[20] , at least record , set , list and multiset type need to be supported by any object-oriented
database model . Union and reference type are also important for object-oriented database
models and hypertext data models such as XML.

This view of data models allows to study problems in dependency theory for various
classes of dependencies in the presence of various combinations of types, and gives a clear
outline of future research, as illustrated in Figure 1 . 1 .

Dependencies

Join

Inclusion

Problems
. .

Synthesis/Decomposition

Justification of Normal Forms
MVDs

FDs Implication

Axiomatisation

records lists sets bags umons references • • • Data Types

Fig. 1 . 1 . Research on Dependency Theory

It is of course not proposed that this is the ultimate line of future research as it cannot
be assumed that dependency theory will be exactly the same in the future as today except
with more type constructors. However, whenever a new data model arises that supports a
certain complex data type, then the need to deal with these problems in the presence of
this type does become apparent for that data model.

The goal of this thesis is to examine some of these problems along the data type dimen­
sion, and to extend current knowledge to that direction. In doing so, we are much more
interested in the constraints among complex objects than in the appropriate representa­
tion of the flat data using the complex objects. Typical examples of constraints we are
interested in are those from the previous section. The contributions of this thesis are as
follows:

- proposal of a mathematically sound framework for the study of various dependency

31

1 .4 . OUTLINE Sebastian Link

classes in complex-value databases that is independent from any specific data model
but classifies data models according to the data types that are supported,

- definition of functional dependencies in the presence of all combinations of record, list ,
set and multiset type that include at least the record type ,

- definition of multi-valued dependencies in the presence of record and list type,
- complementary expressiveness to those dependency classes that have previously been

studied in other data models ,
- illustration of the relevance by real-world examples for complex constraints (e.g. genetic

data bases and retailer data bases) ,
- minimal axiomatisations of functional dependencies in the presence of all combinations

of record, list, set and multiset type that include at least the record type,
- provably-correct and polynomial-time algorithms that decide the implication problem

of functional dependencies in the presence of all combinations of record, list , set and
multiset type that include at least the record type,

- minimal axiomatisations for the class of multi-valued dependencies and the class of
functional and multi-valued dependencies in the presence of records and lists,

- provably-correct and polynomial-time algorithms that decide the implication problem
for the class of multi-valued dependencies and the class of functional and multi-valued
dependencies in the presence of records and lists,

- the applicability of efficiently solving the various implication problems is demonstrated
by proposing efficient algorithms for computing non-redundant covers of sets of depen­
dencies and deciding whether a (set of) nested attribute(s) is a superkey with respect
to a given set of dependencies,

- differences to the relational data model are highlighted and explained, for instance that
MVDs imply non-trivial FDs in the presence of records and lists,

- proposal of the Nested List normal form (NLNF) for nested attributes with respect to
functional dependencies in the presence of records and lists, including several semantic
justifications and a provably-correct lossless NLNF decomposition algorithm,

- several open problems for future research are identified.

1 .4 O utline

The first goal of this thesis is to introduce a theoretically well-founded data model which
is sufficiently flexible to support different complex object types. The data model that will
be introduced in Chapter 2 is algebraic in nature. Flat attribute names can be nested in
various ways using for instance a record, list, set or multiset constructor. These nested
attributes can be partially ordered according to the amount of information they represent .
Having fixed a nested attribute it becomes interesting to study the structure that the set
of all its subattributes carries. It turns out that in the presence of list , set or multiset
constructor, the full toolbox of a Boolean algebra cannot be applied. Instead, the set of
all subattributes of a fixed nested attribute carries the structure of a Brouwerian algebra
(co-Heyting algebra) .

32

1 .4 . OUTLINE Sebastian Link

In Chapter 3 and 4 the list type and its impact on two important uni-relational de­
pendency classes is investigated in detail . Chapter 3 studies various problems for FDs. As
it turns out, FDs can still be captured by a generalisation of Armstrong's axioms in the
presence of lists. Next the implication problem of FDs is studied, using a representation
theorem for Brouwerian algebras which provides a different , topological view on this class
of dependencies. This view allows to extend a provably-correct and linear-time algorithm
for deciding implication of FDs in the presence of lists. Next, the problem of syntactically
describing well-designed nested attributes with respect to a given set of FDs is addressed .
The Nested List Normal Form is proposed and semantically justified in several ways. It is
proven that a nested attribute is in Nested List Normal Form if and only if this nested
attribute is free from redundancies with respect to the given set of FDs. Moreover, the
equivalence of this normal form to the absence of various types of update anomalies is
formally shown. Nested List Normal Form is strictly weaker than a simple generalisation
of Boyce-Codd Normal Form due to a slight adaption of the notion of redundancy. Finally,
the question how to obtain nested attributes in Nested List Normal Form is addressed.

Chapter 4 extends the notion of MVDs to the presence of lists. It is shown that MVDs
are still equivalent to binary join dependencies, even in this extended context . This means
that an instance satisfies an MVD exactly if this instance can be decomposed without loss
of information. Next up, sound inference rules for the implication of FDs and MVDs are
introduced. When attempting to show the completeness of these rules it becomes necessary
to include a further rule which is trivial in the context of the RDM, but no longer trivial
in the presence of lists. This rule allows to infer non-trivial FDs from MVDs, something
that is impossible in the RDM. Given this rule, the completeness proof from the RDM can
be generalised. A further difference to the RDM is revealed when the independence of the
inference rules is studied. The relational counterpart of the join rule for MVDs is implied
by other rules in the RDM, and is therefore not contained in the standard minimal set
of inference rules. In the presence of lists, however, this join rule is independent from the
counterparts of these rules in the minimal set . The Brouwerian complement rule plays a
similar role as the complementation rule in the RDM. Finally, the implication problem for
the class of FDs and MVDs is studied . A membership algorithm for computing the depen­
dency basis of a nested attribute with respect to some set of FDs and MVDs is proposed
for solving this problem, proven to work correctly and shown to work in polynomial time
in the size of the input . In conclusion to this chapter the class of MVDs is studied. Minimal
axiomatisations and a polynomial-time algorithm for solving the implication problem are
provided, and a different , topological view on MVDs proposed.

In Chapter 5 , the number of complex object types that are considered is increased. FDs
are studied in all combinations of record, list , set and multiset type that contain at least
the record type, see Figure 1 . 2 .

33

1 . 4 . OUTLINE Sebastian Link

Records, Lists, Sets, Multisets

Records, Lists, Sets Records, Lists, Multisets Records, Sets, Multisets

Records, Lists Records, Sets Records, Multisets

Records

Fig. 1 . 2 . The Boolean algebra of Type Constructors

First of all, the introduction of set or multiset type results in the failure of the exten­
sion rule for FDs. This means that the projection of a tuple on two subattributes does not
determine the projection of that tuple on the join of these two subattributes. As a con­
sequence, sets of subattributes need to be considered since they are semantically different
from the join of these subattributes. This is a fundamental difficulty and results in a more
sophisticated axiomatisation of FDs. There are situations, however, when the projection
of a tuple on two subattributes still determines the projection of that tuple on the join
of these two subattributes. A condition that implies the presence of such a situation is
proposed. As a matter of fact, this condition turns out to characterise those situations pre­
cisely. Two new axioms are necessary to capture FDs in the presence of records, lists , sets
and multisets. The completeness proof follows the lines of the traditional proof but requires
deeper arguments. In fact , the proof remains still constructive , i . e . , a two element instance
is constructed where the elements are coincident exactly on the closure of a subattribute
with respect to the set of FDs given. The construction of this two element instance is done
inductively for fiat, record and list type, but separate and direct arguments are given for
set- and multiset case. The case of multisets involves some combinatorial arguments and
takes advantage of some further facts on the structure of subattributes. The main result
is a minimal axiomatisation for FDs in the presence of all combinations of record, list , set
and multiset type that contain at least the record type , i .e . at least capture the RDM.
Furthermore, the implication problem of FDs is studied in the same type contexts. An al­
gorithm for deciding these problems is proposed, proven correct and to work in polynomial
time in the number of subattributes and the number of FDs given.

34

C hapter 2

The Algebra of Nested Attributes

In this chapter the data model is introduced which all further studies in this thesis will be
based on . The data model is abstract in the sense that it can be adapted to the particular
data types of current interest , for instance lists, sets, multisets, unions , references etc. The
record type by itself captures the RDM . Therefore, the record type will be present in each
of the different type systems we are interested in.

The fundamental , yet simple, observation that led to this data model is based on the
algebraic nature of the RDM. A relation schema R forms a Boolean algebra with respect
to set inclusion , union, intersection and complement. The RDM is a fiat data model in the
sense that any value in a relational database is a single value from the domain of the cor­
responding attribute. Nested attributes result from fiat attributes by recursively applying
various type constructors. These nested attributes can be partially ordered according to
the level of information they represent . Thus, a subattribute represents at most as much
information as any of its superattributes does . Therefore, the notion of a subattribute
generalises the notion of a subset from the RDM.

The main objective of this chapter i s the study of the algebraic structure of the set
of subattributes for some fixed nested attribute. It turns out that even in the presence
of various type constructors a powerful algebraic toolbox can still be applied . Although
the structure of a Boolean algebra can no longer be maintained in general, a slightly less
powerful framework can be utilised.

Short versions of the contents of this chapter have appeared as introductory sections in
[139, 140, 141 , 142, 143, 145, 146] .

2 . 1 Brouwerian Algebras

Familiarity is assumed with such notions as partially-ordered set (P, ::;) , lattice (L , ::; , U , n)
and Boolean algebra (B, ::; , U , n , (-)c , 0, 1) . The fundamental algebraic objects in this thesis
are so-called Brouwerian algebras. These algebras have been introduced and studied by
McKinsey and Tarski in [202] to establish precise connections with closure algebras in
topology. We repeat the basic notions and results that will be important for our further
studies. At the end of this chapter, some areas are listed which Brouwerian algebras have

35

2 . 1 . BROUWERIAN ALGEBRAS Sebastian Link

been applied to. We start off with the basic definition of a Brouwerian algebra as it was
introduced in [202] .

Definition 2 . 1 . An algebra (B, ::; , u, n, -"- , 1) is called Brouwerian algebra if and only if

1 . (B, ::; , u, n) is a lattice with top element 1 , and
2. B is closed under -"- , and
3. for all a, b, c E B the formulae a-"-b ::::; c and a ::::; b U c are equivalent .

The operation -"- is called pseudo-difference. 0

According to Definition 2 . 1 , the pseudo-difference a-"-b of b relative to a is the smallest
c such that a ::::; b U c. Of special interest is the pseudo-difference when its first argument is
the top element 1 . For this case, a special notion and notation is introduced.

Definition 2 .2 . If (B, ::=; , U, n, -"- , 1) is a Brouwerian algebra and a is any element of B,
the element •a defined by •a = 1 -"-a is called the Brouwerian complement of a. o

It follows by the third property of Brouwerian algebras in Definition 2 . 1 that for all
b, c E B, the formulae ·b ::::; c and b U c = 1 are equivalent. Consequently, the Brouwerian
complement ·b of b is the smallest c with b U c = 1 . Next, we list some important and
fundamental properties of Brouwerian algebras. They will be used in what follows, and
have already been proven in [202, Theorem 1 .3 .] .

Theorem 2.3. Let B = (B, ::; , U , n , -"-, 1) be a Brouwerian algebra. Then

1. B has a bottom element 0 determined by the formula 0 = 1 -"- 1 .
2. B is a distributive lattice, i. e . , for all a , b, c E B we have

a u (b n c) = (a u b) n (a u c) and a n (b u c)

3. If a ::::; b, then a-"-c ::::; b-"-c, c-"-b ::::; c-"-a, and ·b ::::; •a.
4 . a ::::; b is equivalent to a-"-b = 0.
5. a ::::; b U (a-"-b) .
6. (a U b) -"- b ::::; a .
7. a-"-c ::::; (a U b) -"-c.
8. c U (a-"-b) = c U [(c U a) -"- (c U b)] .
9. c-"- (a n b) = (c-"-a) u (c-"-b) .

1 0. (a U b) -"-c = (a-"-c) U (b-"-c) .
1 1 . ••a ::::; a .
12. •••a = •a.
13. •0 = 1 and •1 = 0 .
14. a U • a = 1 .

(a n b) u (a n c) .

0

Next we are concerned with special constructions of Brouwerian algebras. Interesting
for our purposes are finite direct products and augmentation of a new minimum. In fact ,
the next result shows that Brouwerian algebras are closed under finite direct products. The
proof is immediate.

36

2 . 1 . BROUWERIAN ALGEBRAS Sebastian Link

Theorem 2.4. Let (Bi , :S i , ui , ni , --=-i , 1i) be a Brouwerian algebra for i = 1 , . . . , k . Let
B = (B, ::; , U, n , --=-, 1) be the algebra defined as fol lows:

- B = Bl X . . . X Bk = { (bl , . . . , bk) : bi E Bi} ,
- (b1 , . . . , bk) ::; (b� , . . . , b�) , if bi :::; b� for i = 1 , . . . , k , and
- (b1 , . . . , bk) o (b� , . . . , b�) = (b1 o1 b� , . . . , bk ok b�) for o E {U , n , --=- } .

Then B is a Brouwerian algebra. D

The following definition is again due to [202, Definition 1 .6 .] .

Definition 2.5 . If B = (B, ::; , U , n , --=- , 1) i s a Brouwerian algebra and a i s an element of
B, then we put Ba = (Ba , ::; , U, n, -=-a, 1) where Ea is the set of all elements b of B such
that a ::; b and b--=-ac = a U (b--=-c) for arbitrary elements b and c of Ba . Ba is referred to as
the relativised subalgebra of B with respect to a . D

If B is a Brouwerian algebra and a is any element of B, then Ba is also a Brouwerian
algebra, see [202, Theorem 1 .7.] . The next result shows that Brouwerian algebras are closed
under the augmentation of a new bottom element . This is proven as Theorem 1 .9 . in [202] .

Theorem 2.6 . If B be a Brouwerian algebra, then there exists a Brouwerian algebra B'
with the following properties:

- The bottom element 0' of B' is the only element of B' which is not in B,
- B = (B') a where a = 0 is the bottom element of B . D

ot every Brouwerian algebra is necessarily a Boolean algebra. The following result
[202 , Theorem 1 . 12 .] describes the connection more precisely.

Theorem 2 . 7. Let (B, ::; , u , n , --=-, 1) be a Brouwerian algebra. (B , ::; , u , n , -. , 0, 1) zs a
Boo lean algebra if and only if a n •a = 0 holds for every a E B . D

The condition a n -.a = 0 of the last theorem can be replaced by the formula a = -.-.a
which holds in arbitrary Boolean algebras, but not in arbitrary Brouwerian algebras.

A Brouwerian algebra is also called a co-Heyting algebra or a dual Heyting algebra.
While in a Heyting algebra the join of an element and its complement is not necessarily
the top element , in a Brouwerian algebra the meet of an element and its Brouwerian
complement is not necessarily the bottom element. The system of all closed subsets of a
topological space is a well-known Brouwerian algebra. To illustrate this a bit further we
define a topological space with respect to a closure operation as in [100, 201] .

Definition 2 .8 . A topological space T is a structure (S, Q:) where S is a set and Q: an
operation that maps subsets of S to subsets of S satisfying, for all A, B � S:

- A � Q:A,
- Q:A = Q:Q:A,
- Q:(A u B) = Q:A u Q:B,

37

2 .2 . NESTED ATTRIBUTES Sebastian Link

- ([J/J = 0.
A subset A of S is closed just in case ItA = A. D

The closed elements of Definition 2 .8 have the usual properties: 0, S are both closed,
the set union of any pair of closed elements is closed, and the set intersection of arbitrarily
many closed sets is closed as well .

As mentioned before, every family of closed subsets of a topological space carries the
structure of a Brouwerian algebra [100, 201 , 255, 263] .

Theorem 2.9 . Let (S, 1!:) be a topological space, and let C be the family of closed subsets
of S. Then (C , � ' U , n , -=- , S) is a Brouwerian algebra, where � denotes set-inclusion, U
set-union, n set-intersection, and -=- is given by A-=-B = lt{x I x E A and x � B } . D

There is a representation theorem for Brouwerian algebras due to Stone, McKinsey
and Tarski [202, 255] . In fact , every Brouwerian algebra is isomorphic to a subalgebra of
the algebra of closed sets of a topological space. We will state this theorem only for finite
Brouwerian algebras.

Given a poset (S, ::::;) , we define for A � S, ItA = {b E S I b ::::; a for some a E A} . That
means ItA closes A downwards with respect to ::::; . The topological space (S, 1!:) is called a
PO-space.

In order to prove the representation theorem it can be shown that for any finite Brouw­
erian algebra (B, :Ss , U , n, -=- , 1) there is some poset (S, :Ss) such that the Brouwerian
algebra of closed sets of the corresponding PO-space is isomorphic to the original Brouw­
erian algebra. It is not possible to simply take S to be B and :Ss to be :Ss, since this
PO-space will in general have more closed sets than there are elements in B.

Definition 2 . 10. An element a of a lattice (L , ::::; , U, n) with bottom element 0 i s called
join-irreducible if and only if a =J 0 and, for all b, c E L, if a = b U c, then a = b or a = c. D

· We are now prepared to state the representation theorem. For a proof of the dual
statement see [100] . The interested reader may also consult [45] for more details.

Theorem 2 . 1 1 . Let B = (B, ::::; , u, n, -=- , 1) be a finite Brouwerian algebra, and (C, �
, U, n, -=-c , J) the Brouwerian algebra of closed sets of the PO-space on the set J of
join-irreducible elements of B under the restriction of the partial order ::::; to J . Then,
19(a) = {d E J I d ::::; a } , defines an isomorphism between B and (C, � ' U, n, -=-c , J) , and for
all a , b E B , '!9(a-=- b) = '!9(a) -=-c 19 (b) . D

2 . 2 Nested Attributes

We will follow the same approach as the RDM by trying to capture the characteristics of
objects in the target database by attribute names. Starting point is the definition of flat
attributes and values for them.

38

2 .2. NESTED ATTRIBUTES Sebastian Link

Definition 2 .12 . A universe is a finite set U together with domains (i .e . sets of values)
dom(A) for all A E U. The elements of U are called fiat attributes. 0

For the sake of convenience we will make the assumption that for every A E U the
domain dom(A) contains at least two different elements . For the relational data model a
universe was sufficient . That is, a relation schema is defined as a finite and non-empty subset
R � U. For data models supporting complex object types, however, nested attributes are
needed. In the following definition we use a set £ of labels, and assume that the symbol
). is neither a fiat attribute nor a label, i . e . ,). � U U £ . Moreover, fiat attributes are not
labels and vice versa, i .e . , U n £ = 0.

Definition 2 .13 . Let U be a universe and £ a set of labels. The set N A (U , £) of nested
attributes over U and £ is the smallest set satisfying the following conditions:

1 .). E N A(U, £) ,
2. U � NA(U, £) ,
3. for L E .C and N1 , . . . , Nk E N A(U, .C) with k � 1 we have L(N1 , . . . , Nk) E N A(U, £) ,
4 . for L E .C and N E N A(U, £) we have L[N] E N A(U, .C) ,
5. for L E .C and N E N A (U, £) we have L{N} E N A (U, £) ,
6. for L E .C and N E N A(U, £) we have L(N) E N A (U, £) .

We call). null attribute, L(N1 , . • • , Nk) record-valued attribute, L[N] list-valued attribute,
L{ N} set-valued attribute, and L(N) multiset-valued attribute. 0

From now on we assume that a universe U and a set .C of labels have been fixed, and
we usually drop the index simply writing N A instead of N A(U, .C) .

We can now extend the mapping dom from fiat attributes to nested attributes, i . e . , we
define a set dom(N) of values for every nested attribute N E N A. We denote empty set ,
empty multiset , and empty list by 0, () , [] , respectively.

Definition 2 .14. For a nested attribute N E N A we define the domain dom(N) as follows:

1. dom(_A.) = {ok} ,
2. dom(A) as above for all A E U,
3. dom(L(N1 , . • . , Nk)) = { (v1 , . . . , vk) I Vi E dom(Ni) for i = 1 , . . . , k } , i .e . , the set of all

k-tuples (v1 , . . . , vk) with vi E dom(Ni) for all i = 1 , . . . , k ,
4 . dom(L[N]) = { [v1 , . . . , vn] I vi E dom(N) for i = 1 , . . . , n} U { [] } , i .e . , dom(L[N]) is

the set of all finite lists with elements in dom(N) ,
5. dom(L{N}) = { {v 1 , . . . , vn } I vi E dom(N) for i = 1 , . . . , n} U {0} , i .e . , dom(L{N}) is

the set of all finite subsets of dom(N) ,
6. dom(L(N)) = { (v1 , . . . , vn) I Vi E dom(N) for i = 1 , . . . , n} U { () } , i .e . , dom(L(N)) is

the set of all finite multisets with elements in dom(N) . 0

Note that a relation schema R = {A 1 , . . . , An } is captured by the record-valued at­
tribute R (A 1 , . . . , An) with label R, i .e . , by a single application of the record constructor.
Instead of relation schemata R we will now consider a nested attribute N. An R-relation
r is then replaced by some set r � dom(N) .

39

2 .2 . NESTED ATTRIBUTES Sebastian Link

2 .2 .1 Subattributes

Dependency theory in the relational data model is based on the powerset P(R) for a
relation schema R. In fact , P(R) is a powerset algebra with partial order � ' set union
U, set intersection n and set difference - . We will generalise these operations for nested
attributes starting with a partial order :::; .

Definition 2 .15 . The subattribute relation :::; on the set of nested attributes N A over U
and .C is defined by the following rules, and the following rules only:

1. N :::; N for all nested attributes N E N A,
2 . A :::; A for all flat attributes A E U,
3. A :::; N for all set-valued, multiset-valued and list-valued attributes N E N A,
4. L (N1 , . . . , Nk) :::; L (M1 , . . . , Mk) whenever Ni :::; Mi for all i = 1 , . . . , k ,
5 . L [N] :::; L [MJ whenever N :::; M ,
6 . L {N} :::; L{M} whenever N :::; M,
7. L (N) :::; L (M) whenever N :::; M.

For N, M E N A we say that M i s a subattribute of N i f and only i f M :::; N holds. We
write M '1 N if and only if M is not a subattribute of N. 0

Given the relation schema R = {A, B, C} the attribute set {A, C} can be viewed as
the subattribute R(A, A, C) of the record-valued attribute R(A, B , C) .

The subattribute relation :::; on nested attributes is reflexive, anti-symmetric and tran­
sitive.

Lemma 2 . 16 . The subattribute relation is a partial order on nested attributes.

Proof. Reflexivity is given by the first rule of Definition 2 . 15 , i . e . , N :::; N for every nested
attribute N over U and .C.

Let N, M E N A (U , .C) with N :::; M and M :::; N. We show that M = N by induction
on the structure of N. If N = A, then the only rule in Definition 2 . 1 5 that gives M :::; A is
the first one, i .e . , M = A and therefore M = N. If M = A, then N :::; A is again implied
by the first rule, and N = A follows. If N E U is a flat attribute, then the only rule that
gives N :::; M is again the first one, and therefore M = N. If N = L(N1 , . . . , Nk) is a
record-valued attribute, then the hypothesis tells us for i = 1 , . . . , k that if Mi :::; Ni and
Ni :::; Mi , then Ni = Mi . From M :::; N follows M = L(M1 , . . . , Mk) and we have Mi :::; Ni
for i = 1 , . . . , k . From N :::; M follows Ni :::; Mi for i = 1 , . . . , k , and consequently Ni = Mi
for i = 1 , . . . , k by hypothesis. This shows again N = M. If N = L [N'] is a list-valued
attribute, then the hypothesis is that M' :::; N' and N' :::; M' imply N' = M' . Since
M :::; N it remains to consider the case where M = L [M'] , i .e . M' :::; N' . On the other
hand, N :::; M shows also N' :::; M' . Consequently, N = M since M' = N' by hypothesis.
The arguments for the cases where N is a set-valued or multiset-valued attribute are the
same as for list-valued attributes. This shows the antisymmetry of :::; .

Let N, M, K E N A (U, .C) with N :::; M and M :::; K. We show that N :::; K by induction
on the structure of K. If K = A, then the only rule in Definition 2 . 15 that gives M :::; A is

40

2 .2 . NESTED ATTRIBUTES Sebastian Link

the first one, i .e . , M = A. As N ::; M holds as well, we have N = A and therefore N ::; K
by the first rule . If K E U is a flat attribute, then M ::; K means M = A by the second
rule or M = K by the first rule. If M = A, then N = A since N ::; M, and N ::; K by the
second rule. If M = K, then N ::; K as N ::; M. Let K = L(K1 , . . . , K1) be a record-valued
attribute. The hypothesis says for every i = 1 , . . . , l that if Ni ::; Mi and Mi ::; Ki , then
Ni ::; Ki · Since N ::; M and M ::; K we have M = L(M1 , . . . , M1) and N = L(N1 , . . . , Nz)
with Ni ::; Mi and Mi ::; Ki for i = 1 , . . . , l . We therefore conclude by hypothesis that
Ni ::; Ki for i = 1 , . . . , l. This shows N ::; K by the fourth rule. Let K = L[K'] be a
list-valued attribute. We know by hypothesis that if N' ::; M' and M' ::; K' , then N' ::; K'.
If N = A, then N ::; K by rule three. From M ::; K follows M = A, which implies N = A
and N ::; K by rule three, or M = L [M'] with M' ::; K'. From N ::; M follows N = A and
N ::; K by rule three, or N = L [N'] with N' ::; M' . We apply hypothesis to the remaining
case where N' ::; M' and M' ::; K' , obtaining N' ::; K' . An application of rule five shows
N ::; K. The arguments for the cases where N is a set-valued or multiset-valued attribute
are the same as for list-valued attributes. This shows the transitivity of ::; . 0

Informally, M ::; N for N, M E N A means that M represents at most as much in­
formation as N does. The informal description of the subattribute relation is formally
documented by the existence of a projection function 1r� : dom(N) --+ dom(M) in case
M ::; N holds.

Definition 2 .17. Let N, M E N A with M ::; N. The projection function 1rft : dom(N) --+
dom(M) is defined as follows:

1 . if N = M, then 1rft = iddam(N) is the identity on dom(N) ,
2 . if M = A, then 1rf : dom(N) --+ { ok} is the constant function that maps every

v E dom(N) to ok,
3 . if N = L(N1 , . . . , Nk) and M = L(M1 , . . . , Mk) , then 1r� = 1rZt� x · · · x 1rZt: which

maps every tuple (v1 , . . . , vk) E dom(N) to (7rZt� (vl) , . . . , 7fZt: (vk)) E dom(M) ,
4. if N = L[N'] and M = L [M'] , then 1rft : dom(N) --+ dom(M) maps every list

[v1 , . . . , vn] E dom(N) to the list [7rft', (vl) , . . . , 7rft', (vn)] E dom(M) ,
5. if N = L{N'} and M = L{M'} , then 1rft : dom(N) --+ dom(M) maps every set

S E dom(N) to the set {7rft', (s) : s E S} E dom(M) , and
6. if N = L(N') and M = L(M') , then 1rft : dom(N) --+ dom(M) maps every multiset

S E dom(N) to the multiset (7rft', (s) : s E S) E dom(M) . 0

It follows, in particular, that 0, () , [] are always mapped to themselves, except when
projected on the null attribute A in which each of them is mapped to ok. For X, Y E Sub(N)
with Y ::; X we have that 1rf = 1r9 o 1r1 where o denotes the composition of functions.

2 .2 .2 The Brouwerian algebra of Subattributes

We will now fix a nested attribute and study the structure of the set of all its subattributes.

41

2 .2 . NESTED ATTRIBUTES Sebastian Link

Definition 2 .18 . Let N E N A be a nested attribute. The set Sub(N) of subattributes of
N is Sub(N) = {M I M ::; N} . o

Lemma 2 . 16 indicates that the restriction of ::; to Sub(N) is a partial order on Sub(N) .
We investigate the algebraic structure of (Sub(N) , ::;) 0 In the following we will define oper­
ations of join, meet and pseudo-difference on (Sub(N) , ::;) . Obviously, the nested attribute
N is the top element of (Sub(N) , ::;) . What is the bottom element?

Definition 2 .19 . The bottom element AN of Sub(N) is given by AN = L(AN1 , • • • , ANk)
whenever N = L(N1 , . . . , Nk) , and AN = A whenever N is not a record-valued attribute.

0

According to Definition 2 . 15 , AN is indeed the bottom element of (Sub(N) , ::;) . There­
fore, (Sub(N) , ::; , AN, N) is a bounded poset with bottom element AN and top element
N.

Definition 2.20. Let N E N A and X, Y E Sub(N) . The join X UN Y, meet X nN Y and
pseudo-difference X --'-N Y of X and Y in Sub(N) are inductively defined as follows:

1 . if X ::; Y, then X UN Y = Y, X nN Y = X and X-'-NY = AN,
2 . X -'-NAN = X,
3 . if N = L(N1 , . . 0 , Nk) , X = L(X1 , . . . , Xk) and Y = L(Y1 , . . . , Yk) , then X oN Y =

L(Xl ON! Yl , . 0 . ' xk ONk Yk) for 0 E {u , n,:... } ,
4 . if N = L[M] , X = L[X'] , Y = L[Y'] , then X o N Y = L[X' o M Y'] for o E { u , n} and if

X i Y, then X -'-NY = L[X'-'-MY'] ,
5 . if N = L{M} , X = L{X' } , Y = L{Y'} , then X oN Y = L{X' oM Y'} for o E {u , n}

and i f X i Y, then X:... Ny = L{X'-'-MY' } ,
6 . if N = L(M) , X = L(X') , Y = L (Y') , then X oN Y = L(X' oM Y') for o E {u , n } and

if X i Y, then X -'-NY = L(X'-'-MY') . 0

We are now going to show that the operations in Definition 2 .20 are well-defined, i .e . ,
(Sub(N) , ::; , UN , nN, -'-N , N) is a Brouwerian algebra. It is obvious that join, meet and
pseudo-difference are closed. It therefore remains to show that (Sub(N) , ::; , UN, nN) is a
lattice, and that:... N is indeed the pseudo-difference operation.

Lemma 2.21 . (Sub(N) , ::; , UN, nN) is a lattice.

Proof. It remains to show that UN and nN indeed define join and meet, respectively. Let
X, Y E Sub(N) . If X :S Y, then X, Y :S Y = X UN Y and X nN Y = X :S X, Y. If
Z E Sub(N) with X, Y :S Z, then X UN Y = Y :S Z. If Z E Sub(N) with Z :S X, Y, then
Z :S X = X nN Y.

Let N = L(N1 , . . . , Nk) · Consequently, X = L(X1 , . . . , Xk) and Y = L(Y1 , . . . , Yk)
with xi , }i ::; Ni for i = 1 , . . . ' k . X, y ::; X UN y by rule four of Definition 2 . 1 5 as
xi , }i ::; xi UN; }i for i = 1 , . . . ' k . Similarly, X nN y ::; X, y as xi nN; }i ::; xi , }i for
z = 1 , . . . , k . Let Z E Sub(N) with X, Y ::; Z. It follows that Z = L(Z1 , . . 0 , Zk) and

42

2 .2 . NESTED ATTRIBUTES Sebastian Link

xi , Yi � zi for i = 1 , 0 0 0) k. We conclude that xi UN; Yi � zi holds for i = 1 , 0 0 0) k, and
therefore X UN Y � Z by rule four of Definition 2 . 15 . Let Z E Sub(N) with Z � X, Y .
I t follows that Z = L(Z1 , . . . , Zk) and Zi � Xi , Yi for i = 1 , . . . , k . We conclude that
zi � xi nN; Yi holds for i = 1 , 0 0 0) k, and therefore z � X nN Y.

Let N = L [N'] . I t remains to consider the case where X = L [X'] and Y = L[Y']
with X', Y' � N' . It follows that X' , Y' � X' UN' Y' and X' nN' Y' � X', Y' . This shows
X, Y � X UN Y and X nN Y � X, Y by rule five of Definition 2 . 15 . Let Z E Sub(N) with
X, Y � Z. It follows that Z = L[Z'] with X', Y' � Z'. Consequently, X' UN' Y' � Z' and
X UN Y � Z by rule five of Definition 2 . 15 . Let Z E Sub(N) with Z � X, Y. If Z = A,
then Z � X nN Y by rule three of Definition 2 . 1 5 . Otherwise, Z = L [Z'] with Z' � X', Y' .
This shows Z' � X' nN' Y' and we conclude that Z � X nN Y by rule five of Definition
2 . 15 .

The cases where N is a set-valued or multiset-valued attribute follow the same argu-
ments that have been used for list-valued attributes. 0

Lemma 2.22. For all X, Y, Z E Sub(N) the formulae X:... N Y � Z and X � Y UN Z are
equivalent.

Proof. We proceed by induction on the structure of N. If X � Y, then X:... N Y = AN and
both formulae are true. If Y = AN, then both formulae reduce to X � Z. In what follows,
we can therefore assume that X 1:. Y, and X and Y are both distinct from AN .

I f N = L(N1 , . . . , Nk) , X = L(X1 , . . . , Xk) , Y = L(Y1 , . . . , Yk) and Z = L(Z1 , . . . , Zk) ,
then the formulae Xi....:... N; Yi � zi and xi � Yi u zi are equivalent for all i = 1 , 0 0 0) k .
According to Definition 2.20 this shows the equivalence of X:... N Y � Z and X � Y U N Z.

Let N = L [N'] , X = L[X'] and Y = L [Y'] . If Z = A, then both formulae are equivalent
to X � Y according to Definition 2 .20 . Let Z = L[Z'] . The formulae X:... Ny � Z is then
equivalent to X'....:... N' Y' � Z' , which itself is equivalent to X' � Y' UN' Z' . The last formula,
however, is equivalent to X � Y UN Z.

The cases of set-valued and multiset-valued attributes follow again the same line of
reasoning as the case of list-valued attributes. 0

Lemma 2 .21 and Lemma 2 .22 show the following result. It generalises the fact that
(P (R) , � ' U, n, - , 0, R) is a Boolean algebra for a relation schema R in the RDM.

Theorem 2.23. (Sub(N) , � , UN , nN,:...N , N) forms a Brouwerian algebra for every N E
NA. o

An alternative way of showing that (Sub(N) , �) carries the structure of a Brouwe­
rian algebra is the following. Sub(AN) is isomorphic to the Boolean algebra of order 0,
and Sub(A) , A a fiat attribute, is isomorphic to the Boolean algebra of order 1 (second
rule) . Furthermore, Sub(L(N)) is isomorphic to Sub(N) , Sub(L(N1 , . . . , Nk)) isomorphic
to the direct product of Sub(NI) , . . . , Sub(Nk) (fourth rule) , and Sub(L[N]) , Sub(L{N}) ,
Sub(L(N)) are all isomorphic to Sub(N) augmented by a new minimum (rule three and
five, six, seven, correspondingly) . Theorem 2 .4 and Theorem 2 .6 show that Brouwerian

43

2 .2 . NESTED ATTRIBUTES Sebastian Link

algebras are closed under (finite) direct products and augmentations of a new bottom el­
ement , respectively. This shows that (Sub(N) , �) carries the structure of a Brouwerian
algebra. Given some nested attribute N E NA and Y, Z E Sub (N) , we use Y� = N..!..Y to
denote the Brouwerian complement of Y in Sub(N) . Consequently, for all X E Sub(N) the
formulae ye � X and X U Y = N are equivalent . Note that AN = N� holds in particular.

Corollary 2 .24. The algebra (Sub (N) , � ' U, n, (-) c , >..N , N) is in general not Boolean.

Proof. Take N = L [A] and Y = L [A] . Then Y� = N and Y n Y� = Y =!= A. Furthermore,
(Y�)� = A =/= Y. The corollary follows from Theorem 2.7 . D

It might be interesting to note that not every finite Brouwerian algebra is isomorphic
to a Brouwerian algebra of nested attributes. In fact, Figure 2 . 1 shows the structure of a
Brouwerian algebra which cannot be a Brouwerian algebra of any nested attribute. The
structure in this figure is not the structure of a null or fiat attribute. Neither does it result
from a direct product of two substructures, and is therefore not the structure of a record­
valued attribute. It cannot be the structure of a list-valued nor set-valued nor multiset­
valued attribute since such a structure has a bottom element with a single superattribute.

Fig. 2 . 1 . A Brouwerian algebra that is not an algebra of any nested attribute.

2.2 .3 Notation, Examples and Intuition

In this section we make some remarks on notation, in particular that of nested attributes.
First of all , if the context allows we will omit the index N from the operations UN, nN,
..!.. N and from AN as well as Y�. In order to simplify the notation for subattributes, oc­
currences of A in a record-valued attribute are usually omitted if this does not cause any
ambiguities. That is, the subattribute L (M1 , • • . , Mk) E Sub(L (N1 , . . . , Nk)) is abbreviated
by L (Mi1 , • • • , Mi1) where

{Mip . . . , Mi1 } = {Mj : Mj =/= ANi and 1 � j � k} and i1 < · · · < i 1 .

If Mj =)..Ni for all j = 1 , . . . , k , then we write A instead of L(ANp . . . , ANk) .

44

2 .2 . NESTED ATTRIBUTES Sebastian Link

EXAMPLE 2 . 1 . The subattribute L1 (A, A, L2 [L3 (>., >.)]) of L1 (A, B, L2 [L3 (C, D)]) is abbre­
viated by L1 (A, £2 [>.]) . However, the subattribute L (A, >.) of L(A, A) will not be abbrevi­
ated by L(A) since this may also refer to L(>. , A) . 0

Next , we give some examples for Brouwerian algebras of nested attributes. The algebra
B for K{L(A, M[N(B, C)]) } is illustrated in Figure 2 .2 .

K { L(A,M[N(B,C)]) }

K { L(A,M[N(C)]) }

Fig. 2 .2 . The Brouwerian algebra B of K {L(A, M[N(B, C)]) }

We will now give an example of Theorem 2 . 1 1 . In Figure 2 .2 , the join-irreducible
subattributes of B are circled. Let V = K{L(M[N(B)]) } , W = K{L(M[N(C)]) } ,
X = K{L(M[>.]) } , Y = K{L(A) } and Z = K{>.} . The set C of all closed subsets of
the PO-space on the poset (J, �) in Figure 2 .3 consists of the following elements 0 , { Z} ,
{X, Z} , {Y, Z} , {V, X, Z} , {W, X, Z} , {X, Y, Z} , {V, W, X, Z} , {V, X, Y, Z} , {W, X, Y, Z} ,
{V, W, X, Y, Z} .

V w

y
X

z

Fig. 2.3. The poset (J, �) of the join-irreducible elements of B.

45

2 .2 . NESTED ATTRIBUTES Sebastian Link

The Brouwerian algebra of these closed subsets of the PO-space on (J, :S) is illus­
trated in Figure 2 .4 . Take for instance the subattributes S = K{L(M[N(B, C)]) } and

{ V,W,X,Y,Z}

{ W,X,Y,Z}

{ V,X,Z }

Fig. 2.4. Brouwerian algebra of closed subsets of PO-space on (J, :S) .

T = K{L(M[N(C)]) } . The pseudo-difference S-'-T equals K{L(M[N(B)]) } . If {) denotes
the isomorphism of Theorem 2 . 1 1 , then fJ(S) = {V, W, X, Z} and fJ(T) = {W, X, Y, Z} .
Consequently, fJ (S)-'-cfJ(T) = <!:{V} = { V, X, Z} , and {J-1 ({V, X, Z}) = K {L(M[N(B)]) } .

We conclude with a further example. The Brouwerian algebra for K {M(O{A} , P{B}) }
is illustrated in Figure 2 .5 .

Finally, some intuitive information about the null attribute). shall be given. Generally,
it can be interpreted as: some information exists, but is currently not of interest . Take for
example the attribute

Postcard(Person (First,Last) ,Address(Street , Town,Zip,Country)) ,

The subattribute Postcard(Person(A ,Last) ,Address(Street ,Town,A,Country)) neglects the
information about the first name and about the ZIP code of the town. Elements of the
corresponding domain contain the value ok on those attributes which indicates that some
information exists but is not made explicit .

We will now look at the intuitive interpretations of the null attribute in pres­
ence of the various constructors. In case of the record type, the null attribute main­
tains the structural information of the fixed nested attribute. If we take again Post­
card(Person(First ,Last) ,Address (Street ,Town,Zip,Country)) , then the corresponding bot-

46

2 .2 . NESTED ATTRIBUTES Sebastian Link

K{M(O{A},P{B }) }

K{M(O{A},P{A.})} K{M(O{A.},P{B }) }

K{M(O{A},A.) } K{M(A.,P{B})}

K{M(O{A.},A.)} K { M(A.,P{A.})}

K { M(A.,/..)}

Fig. 2.5. The Brouwerian algebra of K{M(O{A} , P{B}) }

tom element is Postcard (Person (>. ,>.) ,Address(>. ,>. ,A)) and the corresponding element of its
domain is ((ok, ok) , (ok , ok, ok)) .

I n case of the set type, the subattribute K { >.} of K {A} indicates whether a set is
inhabited or uninhabited , i .e . non-empty or empty. Suppose we take the nested attribute

Person(Name,Speaks{Foreign-Language})

to store the set of spoken languages with every person, then the subattribute
Person (Name,Speaks{ .>.}) still indicates whether a person speaks a foreign language or
not . Take for instance the elements (Bernhard, {English, Russian}) and (John ,0) . Their
projections on Person(Name,Speaks{>.}) are (Bernhard , {ok}) and (John,0) , respectively.
One can conclude that Bernhard speaks at least one foreign language, but John does not
speak any foreign language at all . This interpretation is due to the fact that sets do not
have duplicates.

The interpretation of the null attribute changes in case of list and multiset type . Here,
the null attribute actually counts the elements in the list or multiset. Take for instance the
nested attribute

Person (N ame,Speaks[Foreign-Language])

to store a list of foreign languages spoken by a person. The languages may be ordered ac­
cording to the abilities of its speaker. The projections of (Bernhard , [Russian,English]) and
(John, []) on Person(Name,Speaks[>.]) are (Bernhard, [ok,ok]) and (John , []) , respectively.
One can conclude that Bernhard speaks two foreign languages (assuming that no language
had been listed twice before) and John does not speak any foreign language at all . This
interpretation is due to the fact that lists and multisets allow the duplication of data.

47

2 .3 . FORMALISATION OF REAL-WORLD EXAMPLES Sebastian Link

2 . 3 Formalisation of Real-World Examples

In this section an illustration shall be given of how to formalise informal descriptions of
real-world situations using nested attributes. For this purpose each of the examples from
Section 1 .2 .2 is considered in turn.

EXAMPLE 2 . 2 . Consider the simplified GenBank record format from Subsection 1 .2 . 2 . We
use Origin [Base] to represent the original nucleotide sequence, Count (A,C,G,T) to represent
the total numbers of adenine, cytosine, guanine, and thymine, respectively, Sub [Nucleo] to
represent the subsequence of the original nucleotide sequence, Start and End to denote
start and end position of the subsequence, and finally Translation [Amino] to represent the
translated amino acid sequence. This results in the following nested attribute:

DNA (Origin [Base] ,Count (A,C,G,T) ,Gene (Start ,End,Sub [Nucleo] ,Translation [Amino]))
which i s generated from fiat attributes using record and list constructor only. 0
EXAMPLE 2 . 3 . Consider the example of the comparison of two nucleotide sequences with
specific characteristics from Subsection 1 .2 .2 . We use Sti [Seqi] to capture the start of nu­
cleotide sequence Seqi and Numi(Occi,Nuci) gives us the number of occurrences Occi of nu­
cleotide base Nuci in the nucleotide sequence Seqi for i = 1 , 2. Finally, Comp [Pair (Nl ,N2)]
i s the list in which the pair (Nl,N2) i s stored at position k , whenever Ni i s the nucleotide
in position k of nucleotide sequence Seqi. The nested attribute

Align (Stl [Seql] ,St2 [Seq2] ,Numl (Occl ,Nucl) ,Num2 (0cc2,Nuc2) ,Comp [Pair (Nl ,N2)])
i s again generated from fiat attributes using record and list constructor only. 0
EXAMPLE 2 . 4 . Consider the example of halftoning from Subsection 1 . 2 . 2 . We use In­
put [Level] to represent the list of the input region, Output [Bit] to denote the list of the
output region and Brightness to describe the overall brightness of the input region. This
results in the nested attribute

Halftoning (Brightness,Input [Level] ,Output [Bit])
which i s again generated from fiat attributes using record and list constructor only. 0

EXAMPLE 2 . 5 . Consider the example of a retailer from Subsection 1 .2 .2 . In order to capture
database instances of this retailer the following nested attribute might be used as a schema.
An order can be described by

Order(Cart (Article(Title,Description,Price)) , Customer(N ame,Address,Payment) ,SubTotal)

in which a cart is used to collect a multiset of articles, and SubTotal is used to denote
the total value of the order. In what follows, we will use the label Order to abbreviate the
nested attribute above. The final nested attribute itself may look as follows

Sales (Day,List [Order] ,Sold{Product (Item,CustName) } ,Total,NOrd,NProd,NShip) .
Product (Item,CustName) denotes an item together with the name of the customer who
bought it . Total denotes the total value of sales, NOrd the total number of orders, NProd
the total number of products and NShip the total number of shippings. 0

48

2 .4 . BROUWERIAN ALGEBRAS IN THE LITERATURE Sebastian Link

2 .4 Brouwerian algebras in the Literature

Some references are given to other fields which Brouwerian algebras have been applied to.
Brouwerian algebras have been studied in the context of topology by Stone, McKinsey and
Tarski [201 , 202, 255, 263] . McKinsey and Tarski use Brouwerian algebras to study closed
elements in closure algebras [202] extending previously-established results from [201] .

Lawvere in [175, 176] pointed out the role that the Brouwerian complement plays in
grasping the geometrical notion of boundary as well as the physical concepts of sub-body
and essential core of a body. In [175] it is claimed that a part a may be considered a sub­
body if and only if -,-,a = a, i .e . a is a regular element according to [202] . Lawvere points
out that the notion of boundary is definable by means of the Brouwerian complement --,
in the following manner:

6(a) = a n -,a.

Moreover, Lawvere notices that any element a in a Brouwerian algebra is the join of its
core and its boundary: a = -,-,a U 6 (a) .

Figure 2 .6 is used in [194] to comment on the mathematical nature of physics.

Fig. 2 .6. Mathematical Concepts and Physics.

The following paragraph of [194] comments on the possible future roles of Brouwerian
algebras in theoretical physics . "We take the view that the simplest theories of physics are
based on classical logic or, roughly speaking, Boolean algebras. It appears that the relevant
duality here may be provided by complementation with Boolean algebras considered self­
dual according to De Morgan's theorem. The situation is summarised on the right in the
figure. Going above the axis to Heyting algebras and beyond takes us into intuitionistic
logic and ultimately into an axiomatic framework for quantum field theory. A Heyting

49

2 .4 . BROUWERIAN ALGEBRAS IN THE LITERATURE Sebastian Link

algebra describes logic in which one drops the familiar ' law of the excluded middle' that
either a proposition or its negation is true. This generalisation is also the essential feature
of the logical structure of quantum mechanics. Dual to this is the notion of co-Heyting
algebra and co-intuitionistic logic in which one drops the axiom that the intersection of a
proposition and its negation is empty. It has been argued by F.W. Lawvere and his school
that this intersection is like the 'boundary' of the proposition, and , hence, that these co­
Heyting algebras are the 'birth' of geometry. The long-term programme at this end of
physics is to develop this geometrical interpretation of co-intuitionistic logic further into
the notion of metric spaces and ultimately into Riernannian or Lorentzian geometry."

Various papers on dual-intuitionistic logic have been written. Besides the work of McK­
insey and Tarski in [20 1 , 202] , Curry [78] presents what he called absolute implicational
lattices and absolute subtractive lattices. Rauszer [230, 231] uses algebraic, Hilbert-style and
relational methods to study intuitionistic logic with dual operators where the connective of
pseudo-difference is the dual to intuitionistic implication. Czermak [79] investigates dual
intuitionistic logic by restricting Gentzen's sequent calculus LK to singletons on the left
which is the natural dual notion to Gentzen's singletons on the right restriction for the
sequent calculus LJ. Goodman [129] uses Brouwerian algebras to investigate logic of con­
tradictions. Goodman mentions that Kripke semantics also exist in which "any formula,
once false, remains false" , but he fails to give the crucial clause for satisfiability for his
pseudo-difference connective. He also gives a sequent calculus for his logic but does not
investigate cut-elimination. Urbas [275] highlights several deficiencies of Goodman's anal­
ysis and defines several Gentzen calculi with the singletons on the left restriction, but adds
rules for incorporating both implication and its dual connective. The works in [77, 130, 298]
deliver display calculi for dual intuitionistic logic and some of its extensions.

Pagliani [2 18] argues that rough set analysis adequately and elegantly grasps the notion
of boundary in incomplete information analysis via the algebraic features provided by
Brouwerian algebras.

The work in [253] shows that Heyting algebras, Brouwerian algebras and Bi-Heyting
algebras have considerable potential for building the theoretical basis of ontologies for
spatial entities in spatial information theory. Ganascia points out in [1 20] that Brouwerian
algebras are useful for generalising and comparing many machine learning algorithms. The
paper [232] studies algebraic properties in the context of program integration. Therefore,
a program-integration algorithm is reformulated as an operation in a Brouwerian algebra
constructed from sets of a program dependence graph. An application of Brouwerian logic
to medical diagnosis can be found in [241] . Another application of closure algebras is
proposed in [249] where a systematic approach to maintaining geometric representations
is developed.

50

C hapter 3

Funct ional D ependencies in t he

Presence of Lists

In this chapter we will investigate the impact of the list constructor on the perhaps most
common class of relational dependencies . Functional dependencies are introduced in the
context of null, flat, record-valued and list-valued attributes. The goal of this chapter is
to extend the solution to such problems as axiomatisation , implication, normalisation and
its justification and decomposition algorithms for the class of FDs from the RDM to the
presence of lists.

It turns out that Armstrong's original axioms, when generalised to the presence of lists ,
are still sound . We will prove that these generalised Armstrong's axioms are also complete.

Based on this axiomatisation we investigate the implication problem for the class of
FDs in the presence of lists. Therefore, an alternative view of FDs is proposed first , which
is based on the representation theorem for Brouwerian algebras. The main result is a linear
time, provably-correct algorithm for deciding implication.

Finally, we turn to normalisation issues in the presence of lists. The Nested List normal
form (NLNF) is proposed as a normal form for nested attributes and the class of FDs in the
presence of lists. NLNF is strictly weaker than a simple extension of Boyce-Codd normal
form. The key reason is an argument that non-maximal join-irreducible subattributes do
not cause redundancies. NLNF is characterised and thereby justified in many ways, for
instance by the absence of redundancies, simpler integrity checking and the absence of many
forms of update anomalies. The results generalise well-known results from the relational
data model, thus giving a formal semantic justification for the normal form proposal.

To conclude, a lossless decomposition of nested attributes into subattributes in NLNF is
considered . A provably-correct algorithm is proposed that works, in general, in exponential
time in the size of the underlying nested attribute and the number of FDs given.

Some results of this chapter can be found in the literature. The axiomatisation of FDs
appears in [146] , and the Nested List normal form proposal and its semantic justification
are published in [143] .

5 1

3 . 1 . AXIOMATISATION Sebastian Link

3 . 1 Axiomatisation

We define FDs, introduce a generalisation of Armstrong's axioms and prove that these
rules are sound and complete for the implication of FDs in the presence of lists.

3 . 1 . 1 Definition of FDs

Given that a nested attribute N generalises the notion of a relation schema, the subat­
tribute relationship extends the subset relationship and the projection function subsumes
the restriction of tuples, we obtain the following definition.

Definition 3 . 1 . Let N E N A be a nested attribute. A functional dependency on N is an
expression of the form X ---+ Y where X, Y E Sub(N) . A set r � dom(N) satisfies the
functional dependency X ---+ Y on N, denoted by Fr X ---+ Y, if and only if 1rf (t1) = 1rf (t2)
whenever 7r� (t1) = 7r� (t2) for any t 1 , t2 E r holds . 0

Given the relation schema R = {A , B, C} the FD A ---+ B on R can be read as the
FD R(A,)., .X) ---+ R(.X , B, .X) on the record-valued attribute R(A, B, C) . We consider the
following examples to become more acquainted with FDs defined on nested attributes .

EXAMPLE 3 . 1 . Suppose the nested attribute Pubcrawl(Person,Visit [Drink(Beer,Pub)]) is
used to store sequences of beers consumed by a person together with the pub in which the
person had that beer. A snapshot r of such a database may look as follows:

{ (Sven, [(Liibzer, Deanos) , (Kindl, Highflyers)]) ,
(Sven, [(Kindl, Deanos) , (Liibzer, Highflyers)]) ,
(Klaus-Dieter, [(Guiness, Irish Pub) , (Speights, 3Bar) , (Guiness, Irish Pub)]) ,
(Klaus-Dieter, [(Kolsch, Irish Pub) , (Bonnsch, 3Bar) , (Guiness, Irish Pub)]) ,
(Sebastian , []) }

It is then obvious that Fr Pubcrawl (Person) ---+ Pubcrawl (Visit [Drink(Pub)]) holds. This
means that in this particular snapshot, the same person always visits the same pubs in the
same order. 0

EXAMPLE 3 . 2 . Suppose we have a database for storing the prime factorisation of positive
integers n. The nested attribute

Factor(Integer,Prime[Number] ,Exponent [Number])

would be suitable where Prime[Number] is the list of different prime factors of n in in­
creasing order, and Exponent [Number] the list of exponents for each corresponding prime
factor in Prime[Number] . A small snapshot of the database could be

{ (1 2 , [2,3] , [2 , 1]) ,
(35, [5 , 7] , [1 ' 1]) '
(37, [37] , [1]) ,
(936, [2,3, 13] , [3,2 , 1]) }

52

3 . 1 . AXIOMATISATION Sebastian Link

The fundamental theorem of number theory states that every positive integer
has a unique prime factorisation. This means that the nested attribute Fac­
tor(Integer,Prime[Number] ,Exponent [Number]) carries the following semantic information
in terms of functional dependencies:

- Factor(Integer) -+ Factor(Prime [Number] , Exponent [Number]) ,
- Factor(Prime[Number] , Exponent [Number]) -+ Factor (Integer) .

Further examples of FDs which every snapshot of this database satisfies are

- Factor(Prime[.A]) -+ Factor(Exponent [.A]) and
- Factor(Exponent [.A]) -+ Factor(Prime[.A]) .

Informally, they state that the number of different prime factors determines the number of
exponents, and vice versa. 0

EXAMPLE 3 . 3 . Consider the nested attribute N for the GenBank in Example 2 .2 . The set
E of FDs that were informally described in Section 1 .2 .2 can now be specified formally as
follows:

1 . DNA(Origin [Base]) -+ DNA(Count(A,C,G ,T)) ,
2 . DNA(Count(A,C,G,T)) -+ DNA(Origin [-A]) ,
3 . DNA(Origin [.A] ,Count (A,C,G)) -+ DNA(Count(T)) ,

DNA(Origin[-A] ,Count(A,C,T)) -+ DNA(Count(G)) ,
DNA(Origin[-A] ,Count (A,G,T)) -+ D A(Count(C)) ,
DNA(Origin [-A] ,Count(C,G,T)) -+ DNA(Count(A)) ,

4 . DNA(Origin [Base] ,Gene(Start ,End)) -+ DNA(Gene(Sub [Nucleo])) ,
5 . DNA(Gene(Sub[Nucleo])) -+ DNA(Gene(Translation[Amino])) ,
6 . D A(Gene(Sub[.A])) -+ D A(Gene(Translation [-A])) ,

DNA(Gene(Translation [-A])) -+ DNA(Gene(Sub[.A]))
7. DNA(Gene(Start ,Sub [.A])) -+ DNA(Gene(End)) ,
8. DNA(Gene(End,Sub [.A])) -+ DNA(Gene(Start)) ,
9 . DNA(Gene(Start ,End)) -+ DNA(Gene(Sub[.A])) .

3 .1 .2 Implication and Derivation

0

We will use this section to introduce the notions of semantic implication and syntactical
derivation for classes of data dependencies (and with respect to a given set of inference
rules) . In what follows, C denotes a certain class of dependencies, for example functional
dependencies in the presence of null , fiat , record- and list-valued attributes.

Definition 3.2. Let N be some nested attribute, E be a finite set of dependencies in C
whose elements are all defined on N, and 1 a dependency of class C on N. We say that 1
is implied by E (E implies 1, or 1 follows from E) , denoted by E f= 1, if and only if every
r � dom(N) satisfying all a E E also satisfies 7 . We say that 1 is implied by E (E implies
1, or 1 follows from E) in the finite sense, denoted by E FJ 1, if and only if every finite
r � dom(N) satisfying all a E E also satisfies 1 . The (finite) semantic hull Ec (Efin,c) of

53

3. 1 . AXIOMATISATION Sebastian Link

E in C on N is the set of all dependencies T in C on N implied by E (in the finite sense) ,
i .e . Ec = { T E C I E F= T} (Efin,c = {T E C I E F=1 T}) . o

In order to capture the semantic notion of (finite) implication syntactically, one is
interested in the notion of inference using certain inference rules.

Definition 3 .3 . An inference rule consists of a finite set 1-lJ = { cp1 , ... , 'Pn} of parame­
terised dependencies, another non-empty, finite set <!: = { ?/;1 , . . . , 1/Jm} of parameterised
dependencies and a finite set Con = { C1, ... , Ck} of constraints on the parameters in 1-lJ
and <!:. The 'Pi (i = 1 , . . . , n) are called the premises of the rule; the 1/Ji (i = 1 , . . . , m) are
called the conclusions of the rule. An inference rule with no premises (P = 0) is called an
axiom. The notation

'Pl , · · · ' 'Pn

1/J 1/J
c1 , . . . , ck

1 , . . · ' m

is used to denote inference rules . D
I I

Given some inference rule :11 ' . . . ':; C1, . .. , Ck the intention is to formalise derivation. 1 ' · . . , m
Whenever we have dependencies r.p1 , . . . 'Pn arising from the premises r.p� , . . . , r.p� by su bsti-
tuting the parameters, then we can derive the dependencies ?/;1 , .. . , 'l/Jm which result from
the conclusions ?/;� , . . . ' 1/J'm by the same substitution provided all the conditions cl , . . . ' ck

are satisfied. In such a case we speak of an instantiation :1 ' · · · ':n
of this inference rule.

1 , . . · , m

Definition 3.4. Let 9\ be a set of inference rules and let E be a set of dependencies in C
whose elements are all defined on the nested attribute N. A derivation tree over 9\ and E
is a directed tree satisfying the following conditions:

- each node in the tree has an attached dependency in C that is defined on N;
- whenever a node with attached dependency ?/; has successor nodes with attached de-

pendencies r.p1 , . . . , 'Pn, then

'PI, · · · , 'Pn
• either there exists an instantiation

?/;1 , . . . , 1/Jm
of a rule

9\ such that 1/Ji = ?/; holds for some i
• or the node is a leaf and ?/; E E holds. D

Examples of derivation trees can be found in the proof of Lemma 3. 1 1 on page 58. Please
note that these derivation trees really "grow" from bottom to top. Instead of drawing edges
between the parent node and every of its successors, we will draw one single horizontal line
between all the successor nodes and the parent node.

We are now prepared to define the derivation of dependencies from a given set E of
dependencies using a particular underlying set of inference rules.

54

3 . 1 . AXIOMATISATION Sebastian Link

Definition 3.5. Let 91: be a set of inference rules and let E be a set of dependencies in C
whose elements are defined on the nested attribute N. A dependency T is derivable from
E using 91: if and only if there exists a derivation tree over 91: and E with root T (notation:
E f-91 T) . The syntactic hull E� of E under 91: is the set of all dependencies that are
derivable from E using 91:, i . e . , E; = {T I E f-91 T} . 0

One is interested in meaningful sets 91: of inference rules for deriving dependencies . That
is , every dependency that is derivable from E using 91: should also be implied by E. In
order to capture the semantic notion of implication by the syntactical notion of inference
the set 91: must have a further property. Every dependency implied by E must also be
derivable from E by using only inference rules from 91:.

Definition 3.6. A set 91: of inference rules is called sound for the (finite) implication of
dependencies in C if and only if for every nested attribute N and for every set E of
dependencies in C on N we have E; � Ec (E� � Efin,c) . A set 91: of inference rules is
called complete for the (finite) implication of dependencies in C if and only if for every
nested attribute N and for every set E of dependencies in C on N we have Ec � E�
(Efin,c � E;) . The class C is called (finitely) axiomatisable if and only if there is a (finite)
sound and complete set of inference rules for the implication of dependencies in C . 0

Sound and complete sets of inference rules for the implication of dependencies in C
are sometimes called C-sound or C-complete. A further interesting question deals with the
independence of inference rules.

Definition 3. 7. Let 91: denote some set of inference rules. An inference rule R is C­
independent from 91: if and only if there is a nested attribute N and a set E of dependencies
in C on N as well as some dependency a with a � E� but a E E;u{R} . A C-sound and
C-complete set 91: of inference rules is called minimal for the implication of dependencies
in C if and only if every R E 91: is C-independent from 91: - {R} , i . e . , there is no 91:' c 91:
which is C-complete as well. 0

Strictly speaking, the notion of minimality should also take the set Con of constraints
of every inference rule into consideration. It may well be that all the rules are independent
from one another but some constraint in Con can still be weakened.

EXAMPLE 3 . 4 . The following set of inference rules is sound and complete for the implica­
tion of FDs in the RDM.

X ---+ y y � X,
X -+ Y

XW ---+ YV
V � W,

X --+ Y, Y -+ Z

X -+ Z

None of the rules can be omitted without losing completeness. However, the reflexivity

axiom
X ---+

y Y � X can be replaced by the weaker axiom 0 ---+ 0 as the second inference

rule allows to derive the reflexivity axiom from the weaker axiom. 0

55

3. 1 . AXIOMATISATION Sebastian Link

However, in this thesis we will focus on the notion of minimality as introduced in
Definition 3 . 7, and study the stricter version in the future.

Usually, once a class C has been fixed, the index C is dropped from Et, L'c and L'fin c · ,
In this chapter, we will consider the class C of functional dependencies in the presence of
null, flat , record- and list-valued attributes. The index m. is dropped from L'� once the set
of inference rules has been fixed.

3 .1 .3 The generalised Armstrong Axioms

Let L' be a set of FDs, and CJ an FD, all defined on some nested attribute N. Real life
databases are inherently finite. Therefore, our attention should be firstly directed towards
the finite implication problem L' FJ CJ. However, in the case of FDs the finite implication
problem coincides with the unrestricted implication problem L' f= CJ. Interpreting F(J) as
relations, it is immediate that f= � f= 1 holds. If there is an infinite r � dom(N) with Fr E
and �r CJ, i .e . , (L', CJ) � f=, then there are t 1 , t2 E r with �{tt h} CJ. However, F{t1 ,t2 } E
follows directly from Fr E, and thus (E, CJ) � f= f . This shows that also f= f � f= holds, i .e. ,
unrestricted and finite implication coincide for the class C of FDs. Consequently, L'* = L'fin
for any set L' of FDs defined on any nested attribute. Next , we introduce extensions of
Armstrong's axioms to the presence of records and lists.

Definition 3.8. The generalised Armstrong axioms for functional dependencies are

X-+_Y_ y � X,
X -+ Y, Y -+ Z

X -+ Z
These rules are called the reflexivity axiom, the extension rule and the transitivity rule. D

In what follows m. denotes the generalised Armstrong axioms for FDs. Consider the
following example as an illustration for some inferences of FDs .

EXAMPLE 3 . 5 . Consider Example 3.2 again. The reflexivity axiom tells us that

Factor (Integer,Prime [Number] ,Exponent [Number])
carries FDs such as

Factor (Prime [Number]) --+ Factor (Prime [-A]) .
The extension rule allows to infer the FD

from

From

Factor (Integer) --+ Factor (Integer, Prime [Number] , Exponent [Number])

Factor (Integer) --+ Factor (Prime [Number] , Exponent [Number]) .

Factor (Integer) --+ Factor (Prime [Number]) and
Factor (Prime [Number]) --+ Factor(Prime [-A])

56

3 . 1 . AXIOMATISATION Sebastian Link

we infer the FD

Factor(Integer) -+ Factor(Prime[>.])

using the transitivity rule. 0

We show the fundamental fact that , in the presence of lists, the projection of some
t E dom(N) on two subattributes X and Y of N determines its projection on X U Y.

Lemma 3 .9 . Let N E N A, X, Y E Sub(N) and t 1 , t 2 E dom(N). If 1r� (t1) = 1r� (t2) and
1rP'(tr) = 1rP' (t2) , then 7r�uy (tr) = 7r�uy (t2) ·

Proof. We proceed by induction on the structure of N.
If X � Y, then

7rf"uy (tr) = 1rf (tr) = 1rf (t2) = 7rf"uy (t2)
and similar in the case when Y � X holds. This covers the lemma for the cases where N
is the null attribute A or a fiat attribute.

Let N = L(N1 , . . . , Nk) · The hypothesis says for every i = 1 , . . . , k that for all Xi , Yi E
Sub(Ni) and all ti , t� E dom(Ni) such that 1r�; (tl) = 1r�; (t�) and 1r�; (ti) = 1r�; (t�) , we also

N · N ·
have 7rx:uY; (ti) = 7rx:uY; (t�) . From N . L(N1 , . . . , Nk) and

_
X, Y E Sub(N) foll�ws X ;: L(X1 , . . . , Xk) and Y = L(Y1 , . . . , Yk) · Smce t1 , t2 E dom(N) 1t follows that t 1 = (t1 , . . . , t 1)

and t2 = (t� , . . . , t�) with tL t� E dom(Ni) for i = 1 , . . . , k . From 7r� (tr) = 1r� (t2) and
1rP' (t1) = 1rP' (t2) follow 1r�; (ti) = 1r�; (t�) and 1r�; (ti) = 1r�i (t�) for i = 1 , . . . , k . We
conclude by hypothesis that' 1r�;uY; (ti) � 1r�;uY; (t�) 'holds for i � 1 , . . . , k . Then we have

It remains to consider the case where N = L[N'] . The hypothesis tells us that for all
X' , Y' E Sub(N') and all a, a' E dom(N') such that 1r�; (a) = 1r�; (a') and 1rpr; (a) = 1rf; (a') ,
we also have 7r�;uY' (a) = 7r�;uY' (a') . It remains to consider the case where X = L[X'] and
Y = L [Y'] . Since t 1 , t2 E dam(N) it follows that t1 = [a1 , . . . , an] and t2 = [a� , . . . , a;]
with ai , aj E dom(N') for i = 1 , . . . , n and j = 1 , . . . , l . From 7r� (h) = 1r� (t2) and
1rP' (t1) = 1rP' (t2) follow n = l and 7r�; (ai) = 1r�; (aD and 1rf; (ai) = 1rpr; (aD for i = 1 , . . . , n .
We conclude by hypothesis that also 7r�;uY' (ai) = 7rf";uY' (aD hold for i = 1 , . . . , n. Then
we have

7rf"uy (tl) = [7rf";uY' (ai) , . . . , 7r�;uY' (an)]
= [7r�;UY' (a�) , . . . , 7r�;UY' (a�)]
= 7r�uy (t2) ·

This concludes the proof of this lemma. 0

We will now argue that the Armstrong axioms are sound , i .e. , everything that is deriv­
able from E by using any of these rules is also implied by E.

57

3 . 1 . AXIOMATISATION Sebastian Link

Proposition 3 . 10. The generalised Armstrong axioms are sound for the implication of
functional dependencies in the presence of records and lists.

Proof. For the soundness of the reflexivity rule take X, Y E Sub(N) with Y � X and let
r � dom(N) . Let t1 , t2 E r with 1r�(tl) = 1r�(t2) . Recall that for Y � X follows 1r� =
1r9 o 1r� where o denotes the composition of functions. We conclude that 1r� (t r) = 1r� (t2)
holds as well, and therefore Fr X ---+ Y.

For the soundness of the extension rule assume X, Y E Sub(N) and let r � dom(N)
with Fr X ---+ Y . Let t1 , t2 E r with 1r�(t1) = 1r�(t2) . Since Fr X ---+ Y we also know that
1rf (tl) = 1r� (t2) . Lemma 3.9 shows that 7r�uy (tl) = 7r�uy (t2) . This means Fr X ---+ X U Y
and concludes the proof for the soundness of the extension rule.

For the soundness of the transitivity rule take X, Y, Z E Sub(N) and let r � dom(N)
with Fr X ---+ Y and Fr Y ---+ Z. Let t1 , t2 E r with 1r�(t1) = 1r� (t2) . From Fr X ---+ Y
follows 1rf(t1) = 1r�(t2) , and applying Fr Y ---+ Z shows 7rf (t 1) = 7rf(t2) . Consequently,
Fr X ---+ Z. 0

Next, we derive some more sound inference rules for FDs. They will enable faster
inferences.

Lemma 3 . 1 1 . The following inference rules are derivable from the generalised Armstrong
axioms, and hence are sound:

X ---+ Y, X ---+ Z
X ---+ Y U Z
(join rule)

X ---+ Y
X ---+ Y _,_X

(reduction rule)

X ---+ y X < U - ,
u ---+ V V � XUY

(general extension rule)

X ---+ Y, X ---+ Z
X ---+ Y n Z
(meet rule)

X ---+ Y
X ---+ Z

Z � Y

(subattribute rule)

X ---+ Y, u ---+ V U<XUYX<W - , - '
w ---+ z z�vuw

(general transitivity rule)

Proof. Every application of an inference rule above can be replaced by an application of one
of the following inference schemata which make use of the generalised Armstrong axioms
only. This shows the soundness of each inference rule of this lemma.
join rule:

X ---+ Y
X ---+ X U Y

X u y ---+ XX �XUY X ---+ z
X U Y ---+ Z

X U Y ---+ X U Y U Z X U Y U Z ---+ Y U Z
X U Y ---+ Y U Z

X ---+ Y U Z

58

3 . 1 . AXIOMATISATION Sebastian Link

meet rule:
X ---+ Y Y ---+ Y n Zynz:::;y

X -+ Y n Z

reduction rule: In order to prove this rule we recall that Y _,__X S Y holds.

subattribute rule:

general extension rule:

x ---+ Y Y ---+ Y _,__xY-'--x:::;Y

x ---+ y_,__x

x ---+ Y Y ---+ zz::sY

X -+ Z

X -+ Y
u ---+ xx ::s u -=-x=---+-----=x-=--u---=y'"""

U ---+ X U Y X U Y ---+ V v :::;xuY

general transitivity rule:

X -+ Y

W ---+ Xx :::;w X ---+ X U Y

U -+ V

W ---+ X U Y X U Y ---+ Uu :::;xuY

W -+ U U -+ V
W -+ V

W -+ V U W
W -+ Z

3 . 1 .4 Completeness

V u W ---+ Zz:::;vuw

0

The idea for the completeness proof follows the lines of the original proof for the RDM [15] .
A two-element instance r with Fr E* and �r X ---+ Y is constructed for any X ---+ Y � E+ .
The proof needs a bit more effort than its original but still remains constructive.
Lemma 3 .12 . Let N E N A . There are t 1 , t2 E dom(N) such that 1r� (t1) -=/:- 1r� (t2) holds
on all X with AN -=/:- X S N.

Proof. We prove this lemma by induction on N. For N = A there is nothing to show. If
N = A is a fiat attribute, then the only A =I= X S N is X = A. In this case, t 1 = a and
t2 = a' with a , a' E dom(A) and a -=/:- a' are chosen. If N = L(N1 , . • • , Nk) , then there are
ti , t� E dom(Ni) with 1r�; (ti) -=/:- 1r�; (t�) on all AN; -=/:- Xi S Ni for all i = 1 , . . . , k. Define
t1 = (tL . . . , t�) , t2 = (t� , . . . , t�) E dom(N) . For AN =/= X S N we have X = L(X1 , . . . , Xk)

59

3 . 1 . AXIOMATISATION Sebastian Link

with Xi f.)..N; for some i E { 1 , . . . , k } . This implies that 1rf (t 1) = (1r�� (ti) , . . . , 1r�: (tn) f.

(1r�� (t�) , . . . , 1r�: (t�)) = 1r�(t2) . It remains to consider the case where N = L[N'] . In this
case we define t1 = [] , t2 = [n'] E dom(N) with n' E dom(N') . For).. f. X :::; N follows
X = L[X'] with X' :::; N' and 1rf (t1) = [] f. [1rf: (n')] = 1rf (t2) . This concludes the
proof. D

EXAMPLE 3 . 6 . Suppose N = L(A, K[B] , M[>.]) . In this case, t1 = (a , [] , []) and t2 =
(a' , [b] , [ok]) with different a, a' E dom(A) , b E dom(B) have different projections on all
subattributes of N different from L(>., >., >.) =)..N · D

The following lemma shows how to find two elements of dom(N) that have exactly
coincident projections on an arbitrary, but fixed subattribute X of N.

Lemma 3 .13 . Let N E N A. For each X E Sub(N) there are t 1 , t2 E dom(N) such that
1r: (t1) = 1r: (t2) holds for Y E Sub(N) if and only if Y :::; X .

Proof. If X =)..N , then we apply Lemma 3 . 12 . We assume that X f.)..N from now on
and proceed by induction on N. If N = A is a flat attribute, then X = A and we define
t1 = a = t2 with some a E dom(A) . Consider the case where N = L(N1 , . . . , Nk) and
let X = L(X1 , . . . , Xk) with Xi :::; Ni for i = 1 , . . . , k. For i = 1 , . . . , k there are ti , t� E
dom(Ni) with 1r�i (ti) = 1r�i (t�) if and only if Yi :::; Xi holds, by hypothesis. We define
t1 = (tL . . . , tn and t2 = (t� , . . . , t�) with t 1 , t2 E dom(N) . It follows that Y :::; X if and
only if Y = L(Y1 , . . . , Yk) with Yi :::; Xi for i = 1 , . . . , k if and only if 1r�i (ti) = 1r�i (t�)
for i = 1 , . . . , k if and only if 1r:(t1) = 1r: (t2) . It remains to consider the case where
N = L[N'] . Consequently, X = L[X'] with X' :::; N' . Then there are some t� , t� E dom(N')
such that 1r:: (tD = 1r:: (t�) if and only if Y' :::; X' by hypothesis. Defining t1 = [t�] , t2 =
[t�] E dom (N) we infer that).. f. Y :::; X if and only if Y = L[Y'] with Y' :::; X' if and only
if 1r:: (t�) = 1r:: (t�) if and only if [1r:: (tDJ = [1r:: (t�)] if and only if 1r: (t i) = 1r: (t2) . The
case Y =).. is trivial . D

EXAMPLE 3 . 7 . Suppose N = L(A, K[M(B, O [C])]) and X = L(>., K[M(B, 0[>.])]) .
Choose t 1 = (a , [(b , [c])]) and t2 = (a' , [(b , [c'])]) with different a , a' E dom(A) , b E dom (B)
and different c, c ' E dam(C) . In this case, the projections 1rf (t 1) and 1rf (t 2) are both equal
to (ok, [(b, [ok])]) , but projections of t 1 and t2 on any proper superattribute of X are dif­
ferent from one another. D

The following result shows that FDs in the presence of records and lists can be captured
by a natural generalisation of Armstrong's well-known axioms.

Theorem 3.14 . The generalised Armstrong axioms are sound and complete for the impli­
cation of functional dependencies in the presence of records and lists.

Proof. It remains to show the completeness. Let N be a nested attribute, E a set of FDs
defined on N. We need to show that E* � E+ holds. Let X ----t Y � E+ . We will show
that X ----t Y � E* by defining some r � dom(N) with Fr E* and �r X ----t Y. Let

60

3 . 1 . AXIOMATISATION Sebastian Link

x+ = U{Z I X --+ z E IJ+ } . It follows that y 1:. x+ . Otherwise we had x+ --+ y E E+
by the reflexivity axiom, X --+ x+ E IJ+ by the join rule and also X --+ Y E IJ+ by the
transitivity rule. Using Lemma 3 . I3 we choose r = {t1 , t 2 } � dom(N) such that

if and only if z < x+ (I)

Since X :::; x+ and Y 1: x+ we have 1r�(t1) = 1r�(t2) , but 1rP'(ti) # 1rP' (t2) . This shows
that �r X --+ Y. Let U --+ V E E. If U 'f: x+, then 1r{j (t1) # 1r{j (t2) by equation
(I) , and Fr u --+ V. If u :::; x+, then Jr{j (tl) = 7r{j (t2) by equation (I) . It follows that
x+ --+ U E IJ+ by the reflexivity axiom. From X --+ x+, x+ --+ U, U --+ V E IJ+ follows
X --+ V E IJ+ which means that V :::; x+ by definition of x+ . Again, equation (I) implies
that Jr� (tl) = Jr� (t2) holds. This shows Fr U --+ V. From Fr E follows immediately
Fr E* which completes the proof. 0

EXAMPLE 3 . 8 . Take again Factor(Integer,Prime[Number] ,Exponent [Number]) , X =
Factor(Prime[A]) and x+ = Factor (Prime[A] ,Exponent [A]) . The two tuples t 1
(I 2 , [2, 3] , [2 , I]) and t 2 = (I 5 , [3, 5] , [I , I]) have projections which are equal on exactly
x+. o

Similar to the RDM, the generalised Armstrong axioms are also minimal for the impli­
cation of FDs in the presence of records and lists .

Theorem 3 .15 . The generalised Armstrong axioms are minimal for the implication of
functional dependencies in the presence of records and lists.

Proof. Let R be the reflexivity axiom, and let 91 consist of the extension and transitivity
rule. Let N = A, E = 0 and a = A --+ A. Then E� = 0, but a can be inferred by R.

Let R be the extension rule, and let 91 consist of the reflexivity axiom and the transi­
tivity rule. Let N = L(A, B) , E = {L(A, A) --+ L(A , B) } and a = L(A, A) --+ L(A, B) . We
present E� by the following table where the row names denote the left-hand side X , and
the column names denote the right-hand side Y of an FD X --+ Y. An FD X --+ Y belongs
to E� if and only if the entry at row X and column Y is a cross x . We compute

IIL(A, A)IL(A, A)IL(A, B)IL(A, B) I
L(A , A) X
L(A, A) X X X
L(A, B) X X
L(A, B) X X X X

and see that a tf. E�. However, as L(A, A) U L(A , B) = L(A, B) we conclude that a can be
inferred from E using the extension rule.

Let R be the transitivity rule, and let 91 consist of the reflexivity axiom and the extension
rule. Let N = L(A, B) , E = {L(A , A) --+ L (A, A) , L(A, A) --+ L(A, B) } and a = L(A, A) --+

61

3. 1 . AXIOMATISATION Sebastian Link

L(>.. , B) . We compute

jjL(>.. , >..)jL(A, >..)jL(>.. , B)jL(A, B)j
L (>.. , >..) X X
L(A, >..) X X X X
L(>.. , B) X X
L(A, B) X X X X

and see that a tj:. E� . However, a can be inferred from E using the transitivity rule. 0

3 .1 .5 Dependencies for Keys

As an application of Theorem 3 . 14 we consider keys which are an important concept in
databases. In relational databases, a key is a set of attributes on which no pair of tuples of
a legal instance coincides. That is, values on the key attributes determine a tuple uniquely.
We write X < Y if and only if X ::::; Y and X =J Y. In this case, X is called a proper
subattribute of Y .
Definition 3 . 16 . Let N E N A b e a nested attribute and E a set of FDs on N . A subat­
tribute X E Sub(N) is called a superkey for N with respect to E if and only if E f= X -+ N
holds. In case there is not any proper subattribute X' of X which is also a superkey for N
with respect to E we call X a minimal key for N with respect to E.

An FD X -+ N E E* is called a key dependency for N with respect to E if and only if
X is a minimal key for N with respect to E. The set of all key dependencies for N with
respect to E is denoted by Ekey · 0

We obtain the following characterisation as a consequence of Theorem 3. 14. The gen­
eralised Armstrong axioms are again denoted by 91..

Corollary 3 . 1 7. Let N be a nested attribute, X E Sub(N) , and E a set of FDs on N.
The following statements are equivalent.
1 . X is a superkey for N with respect to E,
2. for each r � dom(N) with Fr E and for every two t1 , t2 E r with 1r� (t1) = 1r� (t2) we

have t 1 = t2 ,
3. X -+ N E E* ,
4 - X -+ N E .r;+,
5. the semantic closure X * = U{Y I X -+ Y E E* } of X with respect to E is N, i. e . ,

X* = N,
6. the syntactic closure X� = U{Y I X -+ Y E E�} of X with respect to E and 91. is

N, i. e . , X� = N. o

An FD X -+ N, defined on the nested attribute N, is called a superkey dependency for
N. We can then consider the implication for the class C of superkey dependencies. Given
some nested attribute N and a set E of superkey dependencies for N we might ask which
other superkey dependencies are implied by E? The next result shows that once the keys
have been specified there are only trivial extensions derivable.

62

3 . 2 . IMPLICATION PROBLEM Sebastian Link

Theorem 3.18 . The following inference rules

X -+ N
N -+ N

(key axiom) {key augmentation)

are minimal, sound and complete for the implication of superkey dependencies in the pres­
ence of records and lists.

Proof. Let N be a nested attribute and E a set of superkey dependencies for N. The
soundness of the rules is immediate . For the completeness, take some X -+ N tf:. E+ and
choose r = {t1 , t2 } � dom(N) such that

if and only if Y < X (2)

according to Lemma 3. 13 . If N � X, then X = N and X -+ N E E+ by the key axiom.
It follows that t1 and t2 are different and �r X -+ N. It remains to show that Fr K -+ N
for all superkey dependencies K -+ N E E. Suppose K � X. Then X = K U X and
from K -+ N E E follows X -+ N E E+ by the key augmentation rule, a contradiction .
Therefore, K is not a subattribute of X, and 1rji (t1) f 1rji (t2) by equation (2) , and thus
Fr K -+ N.

The minimality of the rules is also straightforward . For the independence of the key
axiom let 9t consist of the key augmentation rule only, N =). and E = 0. Consequently,
). -+). tf:. E� , but). -+). can be derived using the key axiom. For the independence of the
key augmentation rule let 9t consist of the key axiom and take for instance N = L (A, B) ,
and E = { L(A , ..\) -+ N} . It follows that L(A, ..\) -+ N t/:. E� , but L (A, ..\) -+ N can be
derived using the key augmentation rule. 0

3 . 2 Implication P roblem

The implication problem for FDs is to decide whether for an arbitrary nested attribute N,
an arbitrary set E of FDs on N and an arbitrary FD (J on N, E f= (J holds. For functional
dependencies, the problem coincides with the finite implication problem E f= 1 (J. According
to Theorem 3 . 14 the FD (J is implied by E if and only if (J is derivable from E using the
generalised Armstrong axioms. However, finding a derivation is arduous. The goal of this
section is to solve the implication problem efficiently.

3.2 . 1 The Closure

Similar as in the RDM [29] we introduce the notion of syntactic closure for a nested
attribute with respect to a given set of functional dependencies and a set of inference rules.
This notion has already been used in the proof of Theorem 3 . 14 and in Corollary 3 . 17.

63

3 .2 . IMPLICATION PROBLEM Sebastian Link

Definition 3 . 19 . Let N be a nested attribute, X E Sub(N) , E a set of FDs defined on
N, and 9'\ a set of inference rules. The syntactic closure Xi}{ E Sub(N) of X with respect
to E and 9'\ is Xi}{ = U{Y I X � Y E Ei}{} . 0

As usual, once the set 9'\ of inference rules has been fixed the index 9'\ can be dropped
from Xi}{, i . e . , we simply write x+ . For the remainder of this chapter 9'\ denotes the
generalised Armstrong axioms from Definition 3 .8 .

In order to solve the implication problem E F X -+ y i t is sufficient to determine x+ .

Lemma 3.20. Let E be a set of FDs, all defined on some nested attribute N, and X � Y
an FD on N. Then X � Y E .r;+ if and only if Y :::; x+ .

Proof. If X � y E .r;+ ' then y E { z I X -+ z E E+ } . Consequently, y :::; x+ by the
property of a join.

Suppose Y :::; x+. According to the join rule from Lemma 3 . 1 1 we have X -+ x+ E .r;+ .
Reflexivity implies x+ � Y E .r;+ , and transitivity results in X � Y E .r;+ . 0

3.2 .2 A first Approach

We will now present a first algorithm which determines the closure x+ of a given X E
Sub(N) with respect to a set E of FDs on N. The algorithm generalises the one proposed
in [29] for solving the implication problem in the RDM.

Algorithm 3 .2 . 1 (Nested Attribute Closure I)

Input: X E Sub(N) , set .E of FDs on N
Output : closure Xj"g of X with respect to .E
Method:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(1 1)

VAR Xo!d , Xnew E Sub(N) ;
Xnew := X;
REPEAT

Xold := Xnew ;
FOR each U � V E E DO

IF U :::; Xnew THEN
Xnew := Xnew UN V;

END IF;
END DO;

UNTIL Xnew := Xold ;
X+ ·- X . alg .- new ,
RETURN (X;jg) ;

We illustrate Algorithm 3 . 2 . 1 with an example.

64

D

3 .2 . IMPLICATION PROBLEM Sebastian Link

EXAMPLE 3 . 9 . Let N = L (K [A] , B, C, M[D] , O[P (E, F)]) , X = L(K[.A] , B, O[P(E)]) , and
E given by

1 . L (M [.A]) ---t L(M [D]) ,
2 . L (O[.A]) ---t L(K[.A]) ,
3 . L (O[P (F)]) ---t L (K [A]) ,
4. L(B ,C) ---t L(O[P (E,F)]) , and
5 . .A ---t L(C) .

Suppose that in each run through the REPEAT loop between lines (2) and (9) of Algorithm
3 .2 . 1 the FDs are processed in the order listed above. While this order has a direct impact
on the intermediate results, the final result X�g is independent from the order the FDs
are processed . After the first run, Xnew = L(K[.A] , B, C, O [P(E)]) . The second run yields
Xnew = L(K[.A] , B, C, O[P(E, F)]) and the third run Xnew = L(K[A] , B , C, O[P(E, F)]) .
The fourth run does not change anything, i .e . , X�g = L (K [A] , B, C, O[P(E, F)]) . D

It is the first objective to show that Algorithm 3 .2 . 1 works correctly.

Theorem 3.21 . Algorithm 3. 2. 1 is correct, i. e . , X�9 = x+ .

Proof. We show first that X�g :S x+ holds . We proceed by induction on the number j of
runs through the REPEAT loop from line (2) to (9) . If j = 0, then we have Xnew := X by
line (1) . However, X ::; X+ holds in any case as X ---t X E E+ by the refiexi vi ty axiom.

Let j > 0 . The hypothesis says that after j runs through the REPEAT loop we have
X new :::; x+. Consider now the j + 1-st run through line (2) to (9) which computes the
join of Xnew and V in line (6) whenever U ---t V E E and U :S Xnew hold. From U :S Xnew
and the hypothesis Xnew :S x+ we know that U :S x+ holds as well . Lemma 3 .20 implies
X ---t U E E+ . We conclude that X ---t V E E+ by transitivity. Consequently, V :S x+
and thus Xnew = Xnew U V :S x+ after the j + 1-st run . We have shown that Xnew :S x+
i s invariant under the REPEAT loop, hence X�g :S x+ .

Since ::; is a partial order, it remains to show that x+ ::; X�g holds as well . Since the
definition of x+ depends on E+ , we assume that there is a chain

E = E0 c E1 c . . . c Ek = E+

where every Ei results from Ei-l by application of a single inference rule of the generalised
Armstrong axioms. We will use induction on i to show the following:

if Y ---t Z E Ei and Y :S X�g ' then Z :::; X�g · (3)

Then we conclude for i = k that Z :S X�g follows from Y ---t Z E E+ and Y :S X�g ·
Hence x+ < x+ for Y = X and Z = x+ ' - alg ·

It remains to show (3) . If i = 0, we assume that Y ---t Z E E. If Y ::; X� , then
Y :S Xnew at some point . The REPEAT loop computes Xnew := Xnew U Z in line (6) and
we obtain Z ::; X�g as stated. If i > 0, then Ei - Ei-l contains exactly one Y ---t Z. There
is nothing to show for any functional dependencies in Ei-l (hypothesis) . Thus, we consider
only Y ---+ Z and distinguish between three cases.

65

3 .2 . IMPLICATION PROBLEM Sebastian Link

- If Y ---+ Z results from applying the reflexivity axiom, then Z :::; Y. Since Y :::; X,!g
holds by assumption, we obtain Z :::; X,!g by the transitivity of :::; .

- If Y ---+ Z results from applying the extension rule, then Z = YUU with Y ---+ U E Ei_1 .
However, Y :::; X,!g implies U :::; X,!g by hypothesis, and therefore also Z :::; X,!g as Z
is the join of Y and U.

- If Y ---+ Z results from applying the transitivity rule, then there is some U E Sub(N)
with Y ---+ U E Ei-1 and U ---+ Z E Ei_1 . If Y :::; X,!g, then we conclude U :::; X,!g, and
subsequently Z :::; X,!g by hypothesis. D

EXAMPLE 3 . 1 0 . Consider Example 3 . 2 again. As input for Algorithm 3.2 .1 we choose X =
Factor(Integer) and E as the set of four FDs given in Example 3 .2 . The only FD U ---+ V E
E with U :::; X is Factor (Integer) ---+ Factor(Prime[Number] , Exponent [Number]) . There­
fore, Xnew becomes Factor(Integer, Prime[Number] , Exponent [Number]) already. Since
Xnew is already maximal , further runs through the REPEAT loop cannot add anything
new. The output is therefore Factor(Integer, Prime[Number] , Exponent [Number]) . D

We continue our example of the GenBank database.

EXAMPLE 3 . 1 1 . Suppose that nested attribute N and the set E of FDs on N are specified
as in Example 3 .3 . Suppose further that one is interested in the closure of the subattribute

X = DNA(Origin [Base] ,Gene(Start ,End)) .

We use Algorithm 3 .2 . 1 to determine x+. The following sequence contains the updates of
Xnew by the FDs in E. We choose to select the FDs in the exact order they are given in
Example 3 .3 .

- FD1 gives Xnew = DNA(Origin[Base] ,Count(A,C,G,T) ,Gene(Start ,End)) ,
- the FDs o f the second and third item do not add anything new to Xnew ,
- FD4 gives Xnew = DNA(Origin [Base] ,Count(A,C,G,T) ,Gene(Start ,End,Sub[Nucleo])) ,

and
- FD5 results in Xnew = N, i . e . , there cannot be any more changes

As it turns out , DNA(Origin [Base] ,Gene(Start,End)) is a minimal key for N with respect
to E. A further minimal key is given by DNA(Origin [Base] ,Gene(Start ,Translation [>.]))
since DNA(Gene(Translation [>.])) ---+ DNA(Gene(Sub[>.])) and DNA(Gene(Start,Sub[>.]))
---+ DNA(Gene(Start ,End)) are i n E. D

3.2 .3 A different Perspective

FDs on some nested attribute N have been defined as expressions X ---+ Y with X, Y E
Sub(N) . Alternatively, we can view FDs on N as expressions X ---+ Y where X, Y E CN
and (CN , � ' U , n,:....eN , JN) is the Brouwerian algebra of closed subsets of the PO-space on
the join-irreducible elements JN of Sub(N) . A set r � dom(N) satisfies the functional
dependency X ---+ Y on N, denoted by Fr X ---+ Y, if and only if 1rfj (t1) = 1rfj (t2) for
all B E Y whenever 1r!4 (t 1) = 1r!4 (t2) for all A E X holds for any t 1 , t2 E r . This view

66

3 .2 . IMPLICATION PROBLEM Sebastian Link

can be justified in the following sense. Lemma 3.9 shows that for all r s::;; dom (N) we have
Fr X -----* y for X, y E eN if and only if Fr u X -----* u y in terms of Definition 3 . 1 . For the
remainder of our investigations on the implication problem we will consider FDs from the
perspective of closed subsets of eN. The generalised Armstrong axioms are then given by

X -----* y
y S:":;; X,

X ---* Y
X ---* X U Y '

X -----* Y, Y -----* Z
x ---* z

These inference rules use set inclusion and set union and look exactly like Armstrong's
original axioms. However, they are defined on (eN , s::;; , u , n, --'-cN , JN) · The closure x+ of
some X E eN with respect to a given set of FDs on N is then U{Y I X -----* Y E E+ } .
Algorithm 3 . 2 . 1 translates to the following algorithm.

Algorithm 3.2 .2 (Nested Attribute Closure II)

Input: X E CN , set E of FDs on N
Output : closure Xj"g of X with respect to E
Method:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(1 1)

VAR Xo!d , Xnew E eN ;
Xnew := X;
REPEAT

Xold := Xnew ;
FOR each U -----* V E E DO

IF U S:":;; Xnew THEN
Xnew := Xnew U V;

END IF;
END DO;

UNTIL Xnew := Xotct ;
X+ ·- X . alg .- new ,
RETURN(X�g) ;

0

The correctness of Algorithm 3 .2 .2 follows immediately from Theorem 3 .21 and 2 . 1 1 .
We will now study the time complexity of Algorithm 3 .2 .2 in terms of the size of the input
N and E. The size of N, denoted by n, is defined as the number of join-irreducible elements
of N, i .e . , n = I JN 1 . The size s of E is defined as the number of its elements, i .e . , s = I E I ·

Theorem 3 .22. Algorithm 3. 2. 2 terminates in time O(n · s · min{ n , s }) .

Proof. In each step of the REPEAT loop between line (2) and (9) , the inner FOR loop
between line (4) and (8) is executed exactly s times. The inclusion test U s::;; X new takes at
most n operations. The same holds for all operations within the IF branch in line (5) to
(7) . Therefore, O(n · s) operations are necessary for the inner FOR loop.

67

3 .2 . IMPLICATION PROBLEM Sebastian Link

The REPEAT loop between line (2) and (9) itself is executed at most n + 1 times since
Xnew cannot have more than n elements and at least one element is added in each step.
Moreover, the loop is executed at most s + 1 times as every element in E can contribute
to the extension of Xnew at most once. It follows that Algorithm 3.2 .2 indeed terminates
in time O (n · s · min{n, s}) . D

3 .2 .4 A linear time Algorithm

The time complexity of Algorithm 3.2 .2 can be improved. Every FD in E is used at most
once but every run through the REPEAT loop considers all FDs in E again . Therefore,
Algorithm 3 .2 . 2 can be optimised.

The idea of the optimised Algorithm 3 .2 .3 is the following: for every A E J N the set
of FDs U --+ V E E with A E U is stored as In(A) in an array In. Initially, In(A) =
{ U --+ V E E I A E U} in line (1 1) . Moreover, one considers for every dependency
U --+ V the number of elements in U which have not been added to the closure X:Jg · This
is done using an array Ar with Ar(U --+ V) = I U I initially in line (6) . The set Xq contains
join-irreducible subattributes A which will be added to the closure, and Ar(U --+ V) is
decremented whenever A E U, see line (20) . If Ar(U --+ V) becomes 0, every element of V
that is not already in the closure is added to Xq in line (22) .

Algorithm 3.2 .3 (Optimised Nested Attribute Closure)

Input : N E NA, set E of FDs on N, X E CN
Output: the closure Xj"g of X with respect to E
Method:

VAR Xq , X' <;;; JN,
Ar: Array E of INTEGER,
In: Array J N of sets of FDs;

(1) X' := 0; Xq := X ;
(2) FOR each A E JN DO
(3) In(A) := 0 ;
(4) ENDDO;
(5) FOR each U --+ V E E DO
(6) Ar (U --+ V) := I U I ;
(7) IF U = 0 THEN
(8) Xq := Xq U V;
(9) ELSE
(10) FOR each A E U DO
(1 1) In(A) := In(A) U { U --+ V } ;
(1 2) ENDDO;
(13) ENDIF;
(14) ENDDO;

68

3 .2 . IMPLICATION PROBLEM

(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)

WHILE Xq -=/= 0 DO
SELECT A E Xq;
Xq := Xq - {A} ;
X' := X' u {A} ;
FOR each U -+ V E In(A) DO

Ar(U -+ V) := Ar(U -+ V) - 1 ;
IF Ar(U -+ V) = 0 THEN

Xq := Xq u (V - X') ;
END IF;

END DO;
END DO;
X+ ·- X' · alg .- '
RETURN(X�g) ;

Sebastian Link

0

We will prove that Algorithm 3.2 .3 works correctly and in linear time in the size n · s
of the input .

Theorem 3.23. Algorithm 3. 2. 3 is correct and terminates in time O(n · s) .

Proof. We argue first that X�g is indeed a closed set in the PO-space on (JN , �) . Therefore,
we must show that X' E eN in line (26) of Algorithm 3 .2 .3 . X' inherits all the attributes
from Xq at some point . However, Xq is initialised as X E eN , and if some new attributes
are added to Xq , then these are attributes in V - X' where V E eN as the right-hand side
of an FD. In line (26) , X' is therefore the finite union of closed subsets, i .e . , closed as well .

For the correctness proof itself we show X�g � x+ and x+ � X�g · The first inclusion
follows from the initialisation of X�g and Xq E eN. In fact, only subattributes from Xq are
added to X�g· On the other hand Xq is extended in case Ar(U --+ V) = 0. This, however,
is only possible if every subattribute in U is already included in Xq , i . e . , U � x+. An
application of the transitivity rule shows V � x+ .

For the inverse inclusion x+ � X�g we consider, as in the proof of Theorem 3 .21 , the
chain

E = Eo c E1 c . . . c Ek = E+

where every Ei results from Ei-l by application of a single inference rule of the generalised
Armstrong axioms. If Ei is such a set and Y -+ Z E Ei with Y � X�g' we show Z � X�g ·
The claim x+ � X�g follows then as in the proof of Theorem 3.2 1 .

We proceed by induction on i . If i = 0 , then we assume that Y -+ Z E E. If Y � X',
then every subattribute in Y belongs to Xq at some point in time. This means, every
subattribute in Y will be selected during the WHILE loop and Ar(Y -+ Z) will eventually
become 0. In this case Z - X' is added to Xq and indirectly to X'. This implies Z � X'
as claimed . For i > 0 the set Ei - Ei-l contains exactly one Y --+ Z. The statement can
then be proven as in the proof of Theorem 3.2 1 .

69

3 .2 . IMPLICATION PROBLEM Sebastian Link

In order to prove the complexity, we first look at the initialisation loop between line
(5) and line (14) . This FOR loop is executed s times. The inner FOR loop between line
(10) and line (12) is executed exactly I U I times. Since adding a functional dependency
to In(A) can be done in constant time if In(A) is represented in an appropriate way as a
list , and since I U I :::;; n we obtain a complexity of 0(n · s) for the initialisation.

The WHILE loop between line (15) and line (25) is executed at most n times since every
join-irreducible subattribute can be selected at most once. The inner FOR loop between
line (19) and (24) is executed at most s times. Clearly, if Ar(U ---t V) = 0, then all the
subattributes in U have been considered and U ---t V cannot occur any further in the
algorithm. Hence, the IF test evaluates to true at most s times. Since the union operation
on Xq takes O(n) time, it follows that the statement Xq := Xq U (V - X') takes on the
whole also O(n · s) time. Hence the algorithm has time complexity O(n · s) . D

We illustrate Algorithm 3.2 .3 with an example.

EXAMPLE 3 . 12 . We use the same input as in Example 3 .9 , i . e . , N
L (K[A] , B, C, M[D] , O [P(E, F)]) , X = L(K[-A] , B, O[P(E)]) , and E is given by

- L(M[.A]) ---t L (M [D]) ,
- L(O[.A]) ---t L(K[-A]) ,
- L(O[P (F)]) ---t L(K[A]) ,
- L(B,C) ---t L(O [P (E,F)]) , and
- .\ ---t L(C) .

We would like to compute x+ by means of Algorithm 3.2 .3 . Therefore, we translate the
instance above into an input instance for Algorithm 3.2 .3 . The set JN of join-irreducible
subattributes of N consists of

Y1 = L (K [A]) , Y2 = L(K[-A]) , Y3 = L (B) , Y4 = L(C) , Y5 = L (M[D]) ,
Y6 = L (M [-A]) , Y7 = L(O[P (E)]) , Y8 =L(O[P (F)]) and Y9 = L (O [.A]) .

The instance above is then translated into the following input for Algorithm 3.2 .3 , using
Theorem 2 . 1 1 .

- JN = Y1 Y2Y3Y4Y5Y6Y7YsYg ,
- X = Y2Y3Y7Yg ,
- E consists of

• Y6 ---t Y5Y6 ,
• Y9 ---t Y2 ,
• Y8Yg ---t Y1Y2 ,
• Y3 Y4 ---t Y7 Ys Y9 , and
• 0 ---t y4 ·

The precomputations yield the following:

- X' = 0, Xq = Y2Y3Y7Yg

70

3 .2 . IMPLICATION PROBLEM Sebastian Link

- Ar(Y6 --+ Y5Y6) = 1 , Ar(Y9 --+ Y2) = 1 , Ar(Y8Yg --+ Y1Y2) = 2, Ar(Y3Y4 --+ Y1YsYg) = 2 ,
and Ar(0 --+ Y4) = 0 implies Xq = Y2Y3Y4Y7Y9

- Jn(Y3) = {Y3Y4 --+ Y7YsY9} , In (Y4) = {Y3Y4 --+ Y7}8Yg} , In(Y6) = {Y6 --+ YsY6} ,
In (Y8) = {Y8Y9 --+ Y1Y2 } and Jn(Y9) = {Y9 --+ Y2 , Y8Y9 --+ Y1Y2 } .

We show the respective values for every run through the WHILE loop:

1 . A = Y2 : Xq = Y3Y4Y7Yg, X' = Y2 ,
2. A = Y3 : Xq = Y4Y7Yg , X' = Y2Y3 , Ar (Y3Y4 --+ Y1YsYg) = 1 ,
3 . A = Y4 : Xq = Y7Y9 , X' = Y2Y3}4, Ar(Y3Y4 --+ Y7Y8Y9) = 0 , and therefore Xq = Y1YsYg
4. A = Y7 : Xq = YsYg , X' = Y2Y3l4Y7,
5. A = Ys : Xq = Yg , X' = Y2Y3Y4Y7Ys , Ar(YsYg --+ Y1Y2) = 1 ,
6 . A = Y9 : Xq = 0 , X' = Y2Y3}4Y7Y8Y9 , Ar (Y9 --+ Y2) = 0 causes no change to Xq,

Ar(Y8Y9 --+ Y1 Y2) = 0 implies Xq = Y1 ,
7. A = Y1 : Xq = 0 , X' = Y1Y2Y3Y4Y7YsYg

We have output X.!g = Y1}2Y3}4Y7Y8Y9 which corresponds to L (K [A] ,B,C,O[P (E,F)]) . D

In the literature, O(n · s) is usually considered as the order of the input . From this point
of view, Algorithm 3 .2 .3 is a linear time algorithm for the computation of the closure of a
nested attribute.

Theorem 3.24. The implication problem for functional dependencies in the presence of
records and lists is decidable in linear time. D

3.2 . 5 Applications

Algorithm 3 .2 .3 can be applied to other problems important for database design, for in­
stance to eliminate redundant FDs. Let E be a set of FDs on some nested attribute N.
An FD CJ E E is redundant in E if and only if (E - {a})+ = E+. A non-redundant cover
of E is a set 8 of FDs on N where e+ = E+ and 8 does not contain any redundant FD.
In order to determine if CJ is redundant in E one can test whether CJ E (E - {a})+ holds.
The following algorithm finds a subset e � E that is a non-redundant cover of E.

Algorithm 3.2.4 (Non-Redundant Covers)

Input : N E N A, set E of FDs on N
Output: a non-redundant cover B of E
Method:

(1) e := E;
(2) FOR each CJ E E DO
(3) IF CJ E (8 - { CJ}) + THEN 8 : = 8 - { CJ } ;
(4) ENDDO;
(5) RETURN(B) ;

71

0

3 .3 . NESTED LIST NORMAL FORM Sebastian Link

Note that G will always be a subset of E although this is not required by the definition of
a non-redundant cover. The result is dependent on the selection order of a in line (2) of
Algorithm 3 . 2 .4 .

Theorem 3.25. Algorithm 3. 2.4 computes a non-redundant cover for a set E of FDs on
some nested attribute N in time O(n · s2) . 0

Recall that X E Sub(N) is called a superkey for N with respect to a given set E of
FDs on N if and only if E f= X ---+ N holds. This means that X is a superkey for N if and
only if N ::; x+. From the view of closed subsets, X E eN is called a superkey for N with
respect to a given set E of FDs on N if and only if E f= X ---+ J N holds. This is equivalent
to the condition J N � x+.

Algorithm 3 .2 .5 (Superkey)
Input : N E NA, set E of FDs on N, X E CN

Out ut :
{ yes , if X is a superkey for N with respect to E

p
no , else

Method:
(1)
(2)
(3)

Compute X,;tg using Algorithm 3 .2 .3 with input (N, E , X) ;
IF J N � X,;tg THEN RETURN (yes)

ELSE RETURN (No) ;
D

Theorem 3.26. Algorithm 3. 2. 5 decides in time O(n · s) whether X E eN is a superkey
for N with respect to a set E of FDs defined on N. 0

3 . 3 Nested List Normal Form

We will now return to the view of FDs as given by Definition 3 . 1 . One key objective in
the research on dependency theory is the development of well-designed database schema
proposals, and justification of these proposals by formally proving the equivalence to de­
sirable semantic properties, for instance the absence of certain processing difficulties. In
this section we will propose the Nested List normal form for nested attributes, defined
in terms of FDs. We will show that this proposal can be characterised by the absence of
redundancies and abnormal update behavior as well as simplified integrity checking.

In the context of nested attributes join-irreducible subattributes will be called basis
attributes.

Definition 3.27. Let N be a nested attribute. The subattribute basis SubB(N) of N is
the set of join-irreducible elements of (Sub(N) , ::; , U, n, -'- , N) . Every attribute in SubB(N)
is called a basis attribute of N. Let M axB(N) denote the maximal basis attributes of N
with respect to ::; , and N M axB(N) the non-maximal basis attributes of N with respect
to ::; . 0

72

3.3 . NESTED LIST NORMAL FORM Sebastian Link

3.3 . 1 Trivial FDs

Suppose we are given some nested attribute N. As in the RDM, there are some FDs on N
which are satisfied by every r � dom (N) . We call these FDs trivial.

Lemma 3.28. Let N be a nested attribute. An FD X --+ Y on N is trivial if and only if
Y ::; X holds.

Proof. If Y ::; X holds, then the soundness of the reflexivity axiom from Definition 3 . 8
shows that every r � dom (N) satisfies the FD X --+ Y.

Let X --+ Y be a trivial dependency on N and suppose Y i X holds. Define r =
{h , t2 } � dom (N) by

if and only if (4)

according to Lemma 3.13 . Since X ::; X and Y i X hold, it follows that �r X --+ Y by
equation (4) . This , however, contradicts the triviality of X --t Y. Hence, Y ::; X must hold
indeed. D

EXAMPLE 3 . 1 3 . Examples for trivial FDs on Factor(Integer, Prime[Number] , Expo­
nent [Number]) from Example 3 .2 are

Factor(Prime[Number]) --+ Factor(Prime[>.]) ,
Factor(Integer,Prime[Number] , Exponent [>.]) --+ Factor(Integer, Exponent [>.]) , or

Factor (Prime[Number] ,Exponent [Number]) --t Factor(Exponent [Number]) . D

3.3 .2 The Notion of Redundancy

In the RDM, the definition of redundancy is based on viewing FDs not only as integrity
constraints on a relation , but also as representing the fundamental units of information
for retrieving and updating the data in a relation. This interpretation of the semantics of
the information stored in a relation was implicit in the original study of normalisation by
Codd [70] , and has since been used in many aspects of database theory. A relation schema
is defined to be redundant with respect to a given set of FDs if there exists a relation
over the schema which satisfies all these FDs and which has at least two tuples which are
identical on a fact . If we formalise this notion of redundancy, which goes back to [30] , in
the framework of nested attributes, then we obtain the following definition. Let N be a
nested attribute and E a set of FDs on N. We call N redundant with respect to E if and
only if there is some r � dom (N) with Fr E and there are some t 1 , t2 E r with t1 # t2
and 7f�uy (t 1) = 7r�uy (t2) for some non-trivial FD X --+ Y E E. Intuitively, this notion of
redundancy seems to make perfect sense.

ExAMPLE 3 . 1 4 . Take a look at the FD

Factor(Prime[>.]) --t Factor(Exponent [>.])

from Example 3 .2 . This is obviously a non-trivial FD. The elements

73

3 .3 . NESTED LIST NORMAL FORM

(72, [2 ,3] , [3 ,2]) and
(108, [2,3] , [2 ,3])

Sebastian Link

coincide on Factor(Prime[>.] , Exponent [>.]) , i .e . , the FD above causes some redundancy ac­
cording to the definition above. 0

The last example shows that our current definition of redundancy is not really appro­
priate anymore. That is, the FD

Factor(Prime[>.]) -+ Factor(Exponent [Number])

is not satisfied by the instance of Example 3 . 14 and, consequently, redundancy would
need to be defined in terms of the non-maximal basis attribute Factor(Exponent [>.]) . This,
however, appears to be impossible as the fact represented by Factor(Exponent [>.]) will
always be implicitly represented by Factor(Exponent[Number]) . The point here is that the
information in a non-maximal basis attribute Y cannot be separated from the information
in any (maximal) basis attribute Z with Y ::; Z. This motivates the following definition.

Definition 3.29. Let N E N A be a nested attribute and E a set of FDs on N. Let
Einev � E+ denote the set of all X -+ Y E E+ where

- Y ::; X holds or
- Y is a non-maximal basis attribute of N.

The elements of the closure Ei�ev of Einev under derivation with respect to the generalised
Armstrong axioms are called inevitable FDs on N with respect to E. 0

In the same way that trivial FDs were not considered as redundancy-causing dependen­
cies in the RDM, inevitable FDs will not be considered as redundancy-causing dependencies
in our framework. The following lemma characterises inevitable FDs which are derivable
from a given set of FDs.

Lemma 3.30. Let N E N A, E a set of FDs on N and X -+ Y E E+ . We have X -+ Y E
E�ev if and only if every M E M axE (N) with M ::; Y also satisfies M ::; X .

Proof. Let X -+ Y E Ei�ev · Consider the proper chain

where Ej results from Ej_1 , for 1 ::; j ::; k , by single application of one of the generalised
Armstrong axioms from Definition 3 .8 . We proceed by induction on j. If j = 0 and X -+
Y E Einev , then Y ::; X or Y E NMaxB(N) . In both cases the claim follows immediately.

Assume now that this property holds for all elements in Ej for some j � 0. Consider the
single X -+ Y E Ej+l - Ej . If X -+ Y has been inferred using the reflexivity axiom, then
Y ::; X and the property holds again. If the extension rule was used, then Y = X U Y' and
X -+ Y' E Ei . If M E MaxB(N) n MaxB(Y) , then M E MaxB(X) or M E MaxB(Y') .
In the latter case we can apply hypothesis and conclude that M E M axB(X) as well . It

74

3.3 . NESTED LIST NORMAL FORM Sebastian Link

remains to consider the case where X ---+ Y has been inferred using the transitivity rule,
i .e , from X ---+ Z, Z ---+ Y E E1 . If M E MaxB(N) n MaxB(Y) , then M E MaxB(Z) by
hypothesis applied to Z ---+ Y E E1 , and then M E M axB(X) by hypothesis applied to
X ---+ Z E E1 .

Conversely, we show that X ---+ Y E L\�ev ' if X ---+ Y E E+ and for all M E M axB(N)
with M :::; Y also M :::; X holds. Let Y1 = u(MaxB(Y) n MaxB(N)) . Since (MaxB(Y) n
MaxB(N)) � (MaxB(X) n MaxB(N)) , it follows that Y1 ::; X and therefore X ---+
Y1 E Einev · Note that MaxB(Y) - MaxB(N) � NMaxB(N) holds. This implies X ---+
Y' E Einev for every Y' E MaxB(Y) - MaxB(N) . This gives X ---+ Y2 E Ei�ev for Y2 =
u(M axB(Y) - M axB(N)) by the join rule. Applying the join rule again gives X ---+ Y E
Ei�ev where Y = Y1 U Y2 . D

Note that in Lemma 3.30 , the condition that every M E M axB(N) with M :::; Y
implies that M :::; X holds is equivalent to ycc :::; X. We are now prepared to define a
better notion of redundancy for nested attributes in terms of FDs. Informally, every FD
which is not inevitable may cause redundancies.

Definition 3 .31 . Let N be a nested attribute and E a set of FDs on N. We call N
redundant with respect to E if and only if there is some r � dom(N) with Fr E and there
are some t 1 , t2 E r with t1 =j:. t2 and 7r�uy (t1) = 7r�uy (t2) for some FD X ---+ Y E E which
is not inevitable on N with respect to E . D

EXAMPLE 3 . 1 5 . According to Definition 3 .31 of redundancy, the FD

Factor(Prime [>.]) ---+ Factor(Exponent [>.])

from Example 3 . 14 does not cause redundancies anymore. In fact, this FD is inevitable . D

Definition 3 .31 considers only FDs in E itself. As in the RDM one might define redun­
dancy with respect to all logical consequences of E, i . e . , E* . That is, N is called redundant
with respect to E* if and only if there is some r � dom(N) with Fr E* and there are some
t 1 , t2 E r with t 1 =j:. t2 and 7r�uy (tl) = 7r�uy (t2) for some FD X ---+ Y E E* which is not
inevitable on N with respect to E. It can be proven, as in the RDM, that both notions
are in fact the same. Note that according to Theorem 3 . 14 redundancy with respect to E*
means redundancy with respect to E+ .

Theorem 3.32 . Let N be a nested attribute and E a set of FDs on N. Then N is redundant
with respect to E if and only if N is redundant with respect to E* .

Proof. It is easy to see that redundancy of N with respect to E is sufficient for the
redundancy of N with respect to E* since Fr E implies Fr E* and E � E* . It remains
to show that redundancy of N with respect to E is also a necessary condition for N to
be redundant with respect to E* . Therefore, we assume that N is non-redundant with
respect to E. This means that for all r � dom(N) with Fr E and for all t1 , t2 E r with

75

3.3 . NESTED LIST NORMAL FORM Sebastian Link

7r�uy (t 1) = 7r�uy (t2) for some X -+ Y E E, which is not inevitable on N with respect to
E, follows t 1 = t2 . We will show that N is non-redundant with respect to E+ . Let therefore

be a chain where Ej results from Ej_1 by application of one of the generalised Armstrong
axioms. What we show, in fact, is that E can be replaced by Ej . We proceed by induction
on j. For j = 0 there is nothing to show. Let j > 0, i .e. , Ej - Ej_1 consists of exactly one
dependency X -+ Y. If X -+ Y has been inferred using the reflexivity axiom, then Y :S X
which means that X -+ Y is trivial and, therefore, also inevitable. The non-redundancy of
N with respect to Ej follows therefore from the hypothesis that N is non-redundant with
respect to Ej_ 1 since there is nothing to show for X -+ Y. Consider the case where X -+ Y
has been inferred using the extension rule, i .e . , Y = XUY' with X -+ Y' E Ej_ 1 . If X -+ Y
is inevitable, the statement follows from the hypothesis. Assume therefore that X -+ Y is
not inevitable and suppose 7r�uy (t l) = 7r�uy (t2) for some t 1 , t2 E r with r � dom(N) and
Fr Ej · It follows that 1r� (t 1) = 1r� (t2) and since Fr Ej_1 , and in particular Fr X -+ Y',
we obtain that 7r�uY' (t1) = 7r�uY' (t2) holds. If X -+ Y' was inevitable, the extension rule
would imply that X -+ Y is inevitable, too. Therefore, X -+ Y' is not inevitable. Now,
we can apply the hypothesis and conclude that t1 = t2 holds. It follows that N is non­
redundant with respect to Ej . Finally, consider the case where X -+ Y has been derived
using the transitivity rule with X -+ Z, Z -+ Y E Ej_1 . Again, we assume that Fr Ej
for some r � dom(N) and 7r�uy (t 1) = 7r�uy (t2) holds with X -+ Y not being inevitable.
Since Fr Ej-1 , we conclude that 7r�uz (t 1) = 7r�uz (t2) and 7rfuy (t1) = 7rfuy (t2) hold as
well . If X -+ Z and Z -+ Y were both inevitable, then X -+ Y would be inevitable, too.
It follows that at least one of X -+ Z or Z -+ Y is not inevitable. In either case we can
apply hypothesis, and consequently t1 = t2 . Again, N is not redundant with respect to Ej ·
This concludes the proof. D

Note that by Definition 3.29 an FD a, defined on some nested attribute, is inevitable
with respect to E if and only if a is inevitable with respect to E* = E+ (Ej for any
j = O, . . . , k) .

The last theorem shows that the notion of redundancy is invariant under the choice of
equivalent sets of FDs.

3.3 .3 Boyce-Codd and Nested List Normal Form

The Boyce-Codd Normal Form has been introduced in [72] and intensively studied since
then. A relation schema R is in BCNF if and only if it is non-redundant with respect to the
set of FDs on R. One might therefore say that a well-designed relation schema should be
in BCNF. The following definition extends BCNF to the framework of nested attributes.

Definition 3.33. Let N be some nested attribute and E a set of FDs on N. We say that N
is in Boyce-Codd Normal Form (BCNF) with respect to E if and only if every X -+ Y E E*
is trivial or X is a superkey for N with respect to E. D

76

3.3. NESTED LIST NORMAL FORM Sebastian Link

We might now ask whether BCNF for a nested attribute is a sufficient and necessary con­
dition for the non-redundancy of N. Clearly, a nested attribute in BCNF is non-redundant
in the sense of Definition 3 .31 . The converse, however, is false .

EXAMPLE 3 . 1 6 . Consider Example 3.2 again. We have seen that, according to Definition
3.31 , the nested attribute N = Factor (Integer,Prime [Number] ,Exponent [Number]) is non­
redundant with respect to the FDs given in Example 3 . 2 . That is, every FD has a superkey
on the left-hand side or is inevitable. On the other hand, however, N is not in BCNF with
respect to the FDs given. That is, the FD Factor (Prime [>.]) --+ Factor (Exponent [>.]) is not
trivial nor is Factor (Prime [>.]) a superkey for N. 0

Example 3 . 16 shows that BCNF is not a necessary property for non-redundant nested
attributes . Thus, BCNF is too strong to characterise non-redundant nested attributes and,
therefore, we would like to find a weaker normal form.

Definition 3.34. Let N be some nested attribute and E a set of FDs on N. We say that N
is in Nested List Normal Form (NLNF) with respect to E if and only if every X --+ Y E E*
is an inevitable dependency on N with respect to E or X is a superkey for N with respect
to E . 0

Corollary 3.35. Nested List Normal Form zs strictly weaker than Boyce-Codd Normal
Form.

Proof. Every nested attribute that is in BCNF with respect to E, is also in NLNF with
respect to E. This is due to the fact that every trivial FD is also inevitable . Since there
are inevitable FDs which are not trivial, there are examples of nested attributes which are
in NLNF, but not in BCNF with respect to some E. Such an example is given in Example
3 .2 . 0

3.3.4 NLNF - The same fact is only stored once

We show that NLNF captures exactly those nested attributes which are non-redundant in
the sense of Definition 3 .31 . This is a first and important semantic justification for NLNF.

Theorem 3.36. Let N be a nested attribute and E a set of FDs on N. Then is N non­
redundant with respect to E* if and only if N is in NLNF with respect to E.

Proof. Assume that N is in NLNF with respect to E. If N was redundant with respect
to E* , then there would be some r � dom (N) with Fr E* and t 1 , t2 E r, t1 =J. t2 with
7r�uy (t1) = 7r�uy (t2) for some FD X --+ Y E E* which is not inevitable. In particular,
1r�(t1) = 1r�(t2) holds as X :::; X U Y. Since N is in NLNF and X --+ Y is not inevitable it
follows that X is a superkey for N. This implies t1 = t2 which is a contradiction . Therefore,
N must be non-redundant with respect to E* .

Assume N is non-redundant with respect to E* . Let X --+ Y E E* be an FD which
is not inevitable . Non-redundancy of N with respect to E* implies that t1 = t2 for all

77

3 .3 . NESTED LIST NORMAL FORM Sebastian Link

t 1 , t2 E r � dom(N) with Fr E* and 7r�uy (t 1) = 7r�uy (t2) . This means that X U Y is a
superkey for N. If 7r� (t1) = 7r� (t2) holds for some t1 , t2 E r , then 7r� (t1) = 7r� (t2) holds as
well since Fr X -+ Y. According to the extension rule we then have Fr X -+ X U Y. This
implies 7r�uy (t1) = 7r�uy (t2) and h = t2 follows. In other words, X is already a superkey
for N. Since this is true for every X -+ Y E E* which is not inevitable we conclude that
N is in NLNF with respect to E. o

3 .3.5 Characterising NLNF

Given some nested attribute N and some set E of FDs on N, how can we decide whether
N is in NLNF? According to Definition 3.34 one needs to examine whether every X -+ Y
implied by E, i .e . every X -+ Y in E*, is inevitable or whether X is a superkey for N
with respect to E. This is not very practical, although the implication problem for FDs is
efficiently decidable . However, we will show now that inspecting every FD in E suffices.

Theorem 3.37. Let N be a nested attribute and E a set of FDs on N. N is in NLNF
with respect to E if and only if every X -+ Y E E is inevitable on N with respect to E or
X is a super key for N with respect to E.

Proof. Obviously, i f every X -+ Y i n E* i s an inevitable dependency o r X i s a superkey,
then the same is true for every FD in E since E � E* . It is therefore sufficient to show
that every X -+ Y in E+ has superkey X or is an inevitable dependency, if the same is
true for every FD in E. Consider again the proper chain

E = E0 c E1 c · · · c Ek = E+

where Ej results from Ej- l , j > 0, by a single application of one of the generalised
Armstrong axioms. We show that there is already some FD in Ej- l which is not inevitable
and where X is not a superkey, if there is some X' -+ Y' in Ej which is not inevitable and
where X' is not a superkey. Let j > 0 and X -+ Y E Ej - Ej-l not inevitable and X not a
superkey. Since X -+ Y is not inevitable, it is in particular not a trivial dependency. This
means X -+ Y has not been derived by the reflexivity rule according to Lemma 3.28.

Assume that X -+ Y has been derived by means of the extension rule, i .e . , Y = X U Y'
and X -+ Y' E Ej- l · Obviously, X -+ Y' cannot be inevitable since X -+ Y would
immediately be inevitable too. Moreover, X is not a superkey by assumption. Hence,
X -+ Y' E Ej-l is not inevitable and X is not a superkey.

Assume that X -+ Y has been derived by means of the transitivity rule, i .e . , X -+
Z, Z -+ Y E Ej- l · By definition of inevitable dependencies, at least one of X -+ Z, Z -+ Y
cannot be inevitable . On the other hand, neither X nor Z are superkeys . X is not a
superkey by assumption. If Z was a superkey, then X -+ Z, Z -+ N E E+ and therefore
also X -+ N E E+ by transitivity. This means that X would be superkey, a contradiction.
It is now immediate that one of X -+ Z, Z -+ Y E Ej-l is neither inevitable nor has a
superkey on the left-hand side.

We have therefore shown that if there is an FD in E+ which is not inevitable and where
the left-hand side is not a superkey, then there is already an FD in E with this property.
This concludes the proof. 0

78

3.3 . NESTED LIST NORMAL FORM Sebastian Link

Theorem 3.37 tells us that NLNF is invariant under derivation (implication) of FDs, and
therefore also invariant under different choices of equivalent sets of FDs. This guarantees
that one is able to check efficiently whether a given nested attribute is non-redundant with
respect to E* .

EXAMPLE 3 . 1 7 . The nested attribute Factor (Integer ,Prime[N umber] ,Exponent [N umber])
is in NLNF with respect to the set E of FDs that are given in Example 3 .2 . Ev­
ery functional dependency X -+ Y E E is inevitable or X is a superkey for Fac­
tor(Integer,Prime [Number] ,Exponent [Number]) with respect to E. 0

EXAMPLE 3 . 1 8 . The nested attribute

DNA(Origin [Base] ,Count(A,C,G,T) ,Gene(Start ,End,Sub[Nucleo] ,Translation[Amino]))

is not in NLNF with respect to the set E of FDs given i n Example 3 .3 . The FD

DNA(Origin [Base]) -+ DNA(Count (A,C,G,T))

is neither inevitable nor is DNA(Origin[Base]) a superkey for the underlying nested at­
tribute with respect to E. 0

We will now give yet another characterisation of NLNF which will, in particular, give
us a different proof of Theorem 3.37. The result extends a well-known result from [105]
for relational databases. In order to verify whether a nested attribute N in NLNF satisfies
all FDs given, one simply needs to check whether N satisfies all key dependencies and all
inevitable FDs. This makes integrity checking more efficient and is another justification why
nested attributes in L F are well-designed. Unlike the RDM where one simply needs to
inspect all key dependencies for relation schemata in BCNF, one still needs to deal with all
inevitable FDs when a nested attribute in NLNF is given. This is the price for introducing
lists .

Theorem 3.38. Let N be a nested attribute and E a set of FDs on N. N is in NLNF
with respect to E if and only if every r � dom (N) with Fr Ekey U E�ev implies Fr E.

Proof. Assume there is some r � dom(N) with Fr Ekey U Ei�ev ' but �r E . Then there
is some X -+ Y E E which cannot be inevitable and where X is not a superkey. Since
E � E* , N cannot be in NLNF with respect to E.

Vice versa, assume that N is not in NLNF with respect to E. Then there is some
X -+ Y E E+ which is not inevitable and where X is not a superkey. We show that there
is some r � dom(N) with Fr Ekey U Ei�ev ' but �r E. We define the closure xi�ev = U{Z I
X -+ Z E Ei�ev } of X with respect to inevitable FDs. According to Lemma 3 . 1 3 we define
some r � dom(N) with r = {t , t'} by

7r{X, (t') = 7r{:{r (t) if and only i f w ::; xi�ev

We show first that Fr Ekey · Let K be an arbitrary minimal key for N. Since X is not
a superkey for N we have Xi�ev :S x+ < N. This implies that Xi�ev cannot be a superkey
neither. Consequently, K 1:. Xi�ev ' and therefore 1rj'I (t') =!= 1rfi(t) by definition of r.

79

3.3 . NESTED LIST NORMAL FORM Sebastian Link

We show that Fr L\�ev holds. Let u --+ V E L\�ev · If u 1:. xi�ev l then 7r{f (t') =I 7r{f (t)
and Fr u --+ V. Suppose u ::; xi�ev and, therefore, 7r{f (t') = 7r{f (t) . It follows from the
soundness of the join rule that X --+ Xi�ev E Ei�ev · We have Xi�ev --+ U E Ei�ev by
reflexivity. Consequently, X --+ U E Ei�ev by transitivity, too. S ince U --+ V E Ei�ev ' we
derive X --+ V E Ei�ev as well. This means V :S Xi�ev and we conclude 7r� (t') = 1r� (t) .
Hence, Fr U --+ V.

We show finally that �r E. If Y ::S Xi�ev held we would infer Xi�ev --+ Y E Ei�ev by
reflexivity, and X --+ Y E Ei�ev by transitivity since also X --+ Xi�ev E Ei�ev holds. This,
however, is a contradiction. Therefore, Y 1:. Xi�ev and as X ::S Xi�ev holds as well , it follows
that 1rf (t') = 1rf (t) and 1rP' (t') # 1rP' (t) . We conclude �r E* and consequently �r E. 0

According to Theorem 3.38, if N is not in NLNF with respect to E, then there is some
r � dom(N) with Fr Ekey U Ei�ev ' but �r E. This means there is some FD in E which
is not inevitable and where the left-hand side is not a superkey. This gives an alternative
proof for Theorem 3.37.

3.3 .6 Update Anomalies

In the RDM , a relation schema in BCNF does not have any update anomalies. This is
another justification why relation schemata should be in BCNF [42] . We will demonstrate
that nested attributes in NLNF behave very similar. However, the next example reveals a
fundamental difference.

EXAMPLE 3 . 1 9 . Reconsider Example 3 .2 with

Factor (Integer,Prime[Number] ,Exponent [Number]) .

Recall that this nested attribute is non-redundant with respect to the FDs given. Say our
database simply consists of the tuple

(1 2 , [2,3] , [2, 1])

and the tuple (35 , [5, 7] , [1 , 1 , 0]) is about to be inserted. Then obviously all key dependencies
are still satisfied by the new relation, but the FD

Factor(Prime[-\]) --+ Factor(Exponent [-\])

is not satisfied. Hence, it is insufficient to examine key dependencies only. 0

Example 3 . 1 9 shows that, in general, the absence of redundancy for a nested attribute
does not imply the absence of insertion anomalies. Therefore, it cannot be expected that
nested attributes in NLNF do not have update anomalies. We define, however, strong
update anomalies in the context of nested attributes. The main difference to the RDM
is that updated relations which define any strong anomaly do not only satisfy all key
dependencies on the nested attribute, but also all inevitable FDs. Deletion anomalies cannot
occur with FDs and are therefore not defined.

80

3.3 . NESTED LIST NORMAL FORM Sebastian Link

Definition 3.39. Let N be a nested attribute and E a set of FDs on N.

1 . We say that N has a strong insertion anomaly if and only if there is some r � dam (N)
with Pr E and some t t/:. r with Pru{t} Ekey U Ei�ev ' but Fru{t} E.

2 . We say that N has a strong replacement anomaly
- of type 1 if and only if there is some r � dom(N) with Pr E and some t E r and

t' E dom(N) with nfi(t) = nfi (t') for some minimal key K on N and Pr-{t}u{t' }
Ekey u Ei�ev and Fr-{t}U{t' } E hold.

- of type 2 if and only if there is some r � dom (N) with Pr E and some t E r and
t' E dom(N) with nfi (t) = nfi (t') for some distinguished minimal key K on N and
Pr-{t}u{t' } Ekey u Ei�ev and Fr-{t}U{t' } E hold.

- of type 3 if and only if there is some r � dom(N) with Fr E and some t E r and
t' E dom(N) with nfi (t) = nfi (t') for all minimal keys K on N and Pr-{t}u{ t' }
Ekey U Ei�ev and Fr-{t}u{t' } E hold.

Vve say that N has a strong update anomaly if and only if N has a strong insertion or a
strong replacement anomaly of some type. 0

EXAMPLE 3 . 2 0 . Consider the nested attribute

Paper(Lecturer, Course, Textbook)

together with the FDs

Paper(Lecturer, Course) -t Paper (Textbook) and
Paper(Textbook) -t Paper(Course) .

A small snapshot over this nested attribute is the following:

(Kleene, Model Theory, Handbook of Mathematical Logic) ,
(Mostowski , Model Theory, Handbook of Mathematical Logic) .

An insertion of the tuple

(Church , Recursion Theory, Handbook of Mathematical Logic)

leads to a new snapshot which satisfies all key dependencies and all inevitable dependencies
(there are none) , but the FD

Paper(Textbook) -t Paper(Course)

is now violated. This defines an insertion anomaly. Consider now the snapshot

(Kleene, Axiomatic Set Theory, A course in Mathematical Logic) ,
(Church, Recursion Theory, Handbook of Mathematical Logic) .

Replacing the element (Kleene, Axiomatic Set Theory, A course in Mathematical Logic)
by (Kleene, Axiomatic Set Theory, Handbook of Mathematical Logic) leads to another
snapshot which satisfies all key dependencies , but the FD

81

3 .3 . NESTED LIST NORMAL FORM Sebastian Link

Paper(Textbook) --+ Paper(Course)

is again violated. This defines therefore a replacement anomaly of type 1 . If the minimal
key Paper (Lecturer, Course) is the distinguished minimal key, then we even have a type-2
replacement anomaly. 0

The next theorem generalises a result from [105] . It shows that NLNF is an exact
condition for the absence of strong insertion anomalies.

Theorem 3 .40. Let N be a nested attribute and E a set of FDs on N. Then is N m
NLNF if and only if N does not have any strong insertion anomaly.

Proof. This follows from the proof of Theorem 3 .38. In fact , if N has a strong insertion
anomaly, then there must be some X --+ Y E E � E+ which is not inevitable and where X
is not a superkey. Consequently, N cannot be in NLNF. Vice versa, if N is not in NLNF,
then there is some X --+ Y E E+ which is not inevitable and where X is no superkey. We
can now define t , t' E dom(N) exactly as we did in the proof of Theorem 3.38. Take then
for instance r = { t' } which obviously satisfies Fr E. The proof of Theorem 3.38 shows
then that Fru{t} Ekey U Ei�ev ' but �ru{t} E. 0

NLNF is also an exact condition for the absence of type-1 replacement anomalies. This
is an extension of a well-known result in relational databases [279] .

Theorem 3.41 . Let N be a nested attribute and E a set of FDs on N. Then is N m
NLNF if and only if N does not have any strong replacement anomaly of type 1 .

Proof. Obviously is N not in NLNF if N has a strong replacement anomaly of type 1 .
Let u s assume that N is not i n NLNF. Then there is some X --+ Y E E+ which is not
inevitable and where X is not a superkey. It follows by Lemma 3 .30 that there is some
M E MaxB(N) with M E MaxB(Y) and M f/-. MaxB(X) . That means X --+ M E E+
and X --+ M f/-. Ei�ev ' again by Lemma 3 .30. Let Xf:r = U({ Z E SubB(N) : X --+ Z E
E+ } - {M}) . Define t0 , t' E dam (N) with

1r� (to) = 1r� (t') if and only if

Moreover, define t E dom(N) by 1r$j (t) = 1r$j (t0) and 1rf (t) = 1rf (t') for all Z E
MaxB(N) - {M} . Since M E MaxB(N) the element t is well-defined. It follows then
that

1r� (to) = 1r� (t) if and only if z ::; x+.

Let r = {to , t } . We show first that Fr E. Let u --+ V E E, and suppose u ::; x+. We
need to show that V ::; x+ as well. We obtain x+ --+ U E E+ by the reflexivity axiom,
and X --+ x+ E E+ by the join rule . Applying the transitivity rule a few times shows
X --+ V E E+ . This means, by definition of x+, that V ::; x+.

Show next that Fr-{t}u{t' } Ekey U Ei�ev · Let K be some minimal key for N. From K ::;
Xf:r follows K ::; x+, but X is not a superkey. This is a contradiction, i .e . , K 't Xf:r which

82

3.3 . NESTED LIST NORMAL FORM Sebastian Link

means that 1rfi (t0) =/= 1rfi (t') . Let U ---+ V E Ei�ev . Assume further that 1r{j (t0) = 1r{j (t') .
If M :S V , then M :S U by Lemma 3 .30 which is a contradiction as 1r�(t0) =/= 1r� (t') .
Consequently, M 'L V and therefore V :S Xf.1 . This shows 7r� (to) = 1r� (t') , i .e . , P{ta ,t' }
U ---+ V.

It is obvious that �r-{t}u{t' } E since X :S Xt (M � MaxB(X)) , but M 'i Xt, i .e . ,
�r-{t}U{t' } X ---+ M.

It remains to show that there is some minimal key K such that 7rfi (t) = 1rfi (t') . Let
NM = u(MaxB (N) - {M}) . From X ---+ M E E+ follows X u NM ---+ M u NM E E+ .
This is equivalent to NM ---+ N E E+ since X :S NM and M U NM = N. It follows that
N M is a superkey, i .e . , there is some minimal key K :S NM· As 1r�M (t) = 1r�M (t') holds by
definition of t it follows that 7rfi (t) = 1rfi (t') .

Consequently, there is some r = { t0 , t } � dom(N) with f=r E and there are t E
r, t' E dom(N) with 7rfi(t) = 1rfi (t') for some minimal key K for N such that f=r-{t}u{ t' }
Ekey U Ei�ev and �r-{t}u{t' } E hold . This means that N has a replacement anomaly of type
1 . D

The following theorem also generalises a well-known result from [279] .

Theorem 3.42. Let N be a nested attribute and E a set of FDs on N. Then is N in
NLNF if and only if N does not have any strong replacement anomaly of type 2.

Proof. Obviously is N not in NLNF if N has a strong replacement anomaly of type 2 .
Let 's assume that N i s not in L F . The existence of some X ---+ M E E+ - Ei�ev with
M E MaxB(N) , M � MaxB(X) and where X is not a superkey for N follows as in the
proof of Theorem 3.41 . Let K be some distinguished minimal key for N.

If M � M axB(K) , then we can proceed exactly as in the proof of Theorem 3.41 . It
remains to consider the case where M E MaxB(K) . Let Q :S u(SubB(K) - MaxB(N))
maximal with respect to :S and the property that X U Q is not a superkey. ote that). is
not a super key since K is a minimal key and M :S K. Further define G = ((X n K) U Q)+ .
Define t0 , t , t' E dom(N) with

1 . 1r� (t) = 1r� (to) if and only if Z :S G,
2 . 1r� (t') = 1r� (to) if and only if Z :S (X U G)�ev '
3 . nfi (t) = 1rfi (t') .

We show that t0 , t , t' are well-defined , and in particular that t and t ' can be chosen to
coincide on K. The first two properties imply that 1r� (t) = n�(t') , in particular 1rfnK (t) =
1rfnK (t') and 1rZ (t) = 1rZ (t') . We show that SubB((X U G)�eJ - SubB(G) is disjoint to
SubB(K) . Assume there is some B E SubB((X U G)�eJ - SubB(G) with B E SubB(K) .
It follows immediately that B � SubB(X) - SubB(G) since X n K :S G. This leaves us
with B E SubB(K) - SubB(G) and B E NMaxB (N) , or equivalently B E SubB (K) ­
MaxB(N) and B � SubB(G) . By definition of Q follows that X U Q U B is a superkey.
From B E SubB((XuG)�ev) follows B :S (XUQ)+ . Therefore, XUQ is already a superkey,
a contradiction to the choice of Q.

83

3 .3 . NESTED LIST NORMAL FORM Sebastian Link

The claim is that t 0 , t, t' define a replacement anomaly of type 2. It is rather easy to
show that F{to ,t} E and F{to ,t' } Ei�ev hold (the tuples coincide on closed sets , respectively) .

Assume t0 and t' coincide on some minimal key K'. Then K' :::; (X U G)�ev ' and
X u G -t K' E E+. This implies that XUQ -t K' E J;+ holds, i .e . , XUQ is some superkey,
a contradiction to the choice of Q. Consequently, t0 and t' differ on every minimal key K'.

It remains to show that �{to ,t' } X -t M holds. First of all , 1r� (t0) = 1r�(t') since
X :S (X u G)�ev · Recall that M :S K, M rj: SubB(X), and M E MaxB(N) . From
M E MaxB(N) follows M 1:: Q and therefore M 1:: (X n K) u Q. Moreover, if (X n
K) U Q -t M E J;+ held, then K would not be a minimal key. It follows that M 1:: G.
From M E MaxB(N) , M rj: M axE(G), M rj: MaxB(X) and X U G -t M E J;+ follows
immediately X U G -t M rJ. Ei�ev by Lemma 3 .30. This means M 1:: (X U G)�ev and
therefore 1rZ. (t') i= 1rZ. (t0) . This concludes the proof. 0

It remains to study strong type 3 replacement anomalies.

Lemma 3.43. Let N be a nested attribute and E a set of FDs on N. If N is in NLNF,
then N does not have any strong replacement anomaly of type 3. 0

Unlike the case of strong type 1 and strong type 2 replacement anomalies, the converse
of Lemma 3.43 does not hold in general.

ExAMPLE 3 . 2 1 . Consider again the nested attribute

Paper (Lecturer, Course, Textbook)
together with the FDs

Paper (Lecturer, Course) -t Paper (Textbook) and
Paper(Textbook) -t Paper (Course) .

This nested attribute is not in NLNF with respect to the FDs given . However, the nested at­
tribute does not have any strong replacement anomalies of type 3. In fact , Paper (Lecturer,
Course) and Paper (Lecturer, Textbook) are both minimal keys. Consequently, every (mod­
ified) tuple t' with 7rf (t) = 1rf (t') for all minimal keys K must be equal to t . This implies
immediately that r - { t } U { t' } = r cannot satisfy both Fr E and �r E simultaneously. 0

The final result follows immediately from the previous theorems.

Theorem 3.44. A nested attribute in NLNF does not have any strong update anomalies.
Strong replacement anomalies of type 1 coincide with strong replacement anomalies of type
� 0

The results for strong update anomalies and NLNF are the same as for update anomalies
and BCNF in the RDM. In summary, the results obtained for NLNF generalise all results
from Theorem 1 .4 for BCNF in the RDM.

84

3.4. DECOMPOSITION INTO NLNF Sebastian Link

3.4 Decomposition into NLNF

So far we have presented the Nested List Normal Form as a goal that is desirable to
achieve in the database design process. We now tackle the problem how to actually obtain
NLNF. This is an important problem since, in general , it cannot be expected that the
first design of a large and complex database schema is already optimised. Having achieved
an agreement on a suitable database schema that meets the requirements of all parties
involved in the lengthy design process, one wants to avoid starting all over again just to
satisfy design criteria. It is much more desirable to provide automatic tools that transform
a first design into an equivalent database schema which is in normal form. Of couse, it
cannot be expected at all that such tools exist.

There are two competing approaches to relational database design: the decomposition
approach [70] and the synthesis approach [4 1 , 49] . For a discussion and comparison of these
two approaches see [102 , 181] . In this section , we will focus on applying the decomposition
approach to NLNF.

3.4. 1 FDs and Decompositions

The first desirable property of a decomposition in relational databases is that it be a
lossless join decomposition with respect to the given set of FDs. Informally, a decomposition
{R1 , . . . , Rn } of a relation schema R is called lossless with respect to a given set E of FDs
on R if every relation that satisfies all FDs in E is the natural join of its projections on
the subschemata Ri , i . e . , r = 7rR1 (r) l><l • • • l><l nRJr) . This implies that one can project
a relation onto the subschemata and then join the projections without losing or adding
any information . In order to generalise this desirable property, we define the generalised
natural join within our framework.

Definition 3.45. Let N E NA and X, Y E Sub(N) . Let r1 <;: dom(X) and r2 <;: dom (Y) .
Then r1 l><l r2 = { t E dam(X U Y) I :3t1 E r1 , t2 E r2 .1r�uY (t) = t 1 and n9uY (t) = t2 } is
called the generalised natural join r1 l><l r2 of r1 and r2 . D

We will now show that any instance r <;: dom (N) that satisfies an FD X -+ Y on N
can be decomposed into its projections on X U Y and X U ye without loss of information .
The projection 1r x (r) of r <;: dam (N) on X E Sub(N) is defined as { 1r� (t) I t E r } .
Theorem 3.46. Let N E N A , r <;: dom (N) and X -+ Y an FD on N . If Fr X -+ Y,
then r = nxuy (r) l><l nxuyc (r) .
Proof. One can see that r <;: nxuy (r) l><l nxuyc (r) is always satisfied. Let t E nxuy (r) l><l
nxuyc (r) and Fr X -+ Y. We show that t E r. There are t� E nxuy (r) and t; E nxuyc (r)
with t� = n�uy (t) and t; = nfuyc (t) . That means there are t1 , t2 E r with t� = 7r�uy (tl)
and t; = nfuyc (t2) , i . e . , 7r�uy (t) = 7r�uy (ti) and nfuyc (t) = nfuyc (t2) . In particular,
1r�(t i) = 1r� (t2) and as t 1 , t2 E r with Fr X -+ Y holds, we conclude 1r: (t 1) = nP' (t2) as
well . Therefore, n�uy (ti) = 7f�uy (t2) by Lemma 3.9 and therefore also n�uy (t) = 7r�uy (t2) ·
Since also nfuyc (t) = nfuyc (t2) holds we conclude t = t2 by Lemma 3 .9 . This means, t E r .

D

85

3 .4 . DECOMPOSITION INTO NLNF Sebastian Link

Theorem 3 .46 suggests that the decomposition approach may be successfully applied
to the class of FDs in the context of lists. It is important to note that the converse of
Theorem 3.46 is wrong. Consider N = L(A, B , C) with r = { (a, b, c) , (a, b' , c) } and different
b, b' E dom(B) . Obviously, �r L(A) --+ L(B) , but 1f£(A,B) (r) = { (a , b, ok) , (a , b' , ok) } and
1fL(A,c) (r) = { (a , ok , c) } , i . e . , r = 1f£(A,B) (r) txJ 1f£(A,c) (r) .

3.4.2 The Decomposition Algorithm

Given some nested attribute N and a set E of FDs defined on N, the decomposition
approach aims at finding a set of subattributes of N each of which is in NLNF with respect
to the corresponding set of all implied FDs on that subattribute. Moreover, any instance
of N that satisfies all the FDs in E is the generalised natural join of its projections on
all the subattributes, i .e . , every valid database on N can be decomposed without loss of
information.

Definition 3.47. Let N E N A, N1 , . . . , Nk E Sub(N) , and E a set of FDs defined on N.
The set { N1 , . . . , Nk } is called a loss less join decomposition of N with respect to E if and
only if N = U{N1 , . . . , Nk } and r = 7rN1 (r) txJ · • · txJ 7rNk (r) holds for all r � dom (N)
with Fr E. The set {N1 , . . . , Nk} is called a lossless NLNF decomposition of N with
respect to E if and only if { N1 , . . . , Nk} is a lossless join decomposition of N with respect
to E and Ni is in NLNF with respect to 1fN; (E+) for every i = 1 , . . . , k, and where
1rM (E) = {X --+ y E E I X u y :S M}. D

The lossless join property guarantees that the information of any legal instance over
the original nested attribute can be obtained by joining the information on all decomposed
subattributes. An NLNF decomposition guarantees moreover that every decomposed sub­
attribute is in NLNF with respect to the projected sets of dependencies.

We will now show that it is possible to obtain a lossless NLNF decomposition for any
given nested attribute N and any given set of FDs on N. Whenever an FD in the current
state of the output schema violates NLNF, the decomposition algorithm removes the cause
for this violation of NLNF by replacing the offending parent subattribute by two of its
proper child subattributes which can be joined losslessly to reconstruct their parent.

Algorithm 3.4. 1 (Lossless NLNF decomposition)
Input : N E N A, set E of FDs on N
Output: set S = { (N1 , E1) , • • • , (Nk, Ek) } where Ei is set of FDs on Ni E Sub(N)
and {N1 , • • • , Nk} is lossless NLNF decomposition of N with respect to E
Method:

VAR X, Y E Sub(N)

DECOMPOSE (N,E)

86

3 .4 . DECOMPOSITION INTO NLNF

(1) BEGIN
(2) IF N in NLNF with respect to E, THEN S : = { (N, E) } ;
(3) ELSE

Sebastian Link

(4) LET X � Y E E be not inevitable on N with respect to E and E � X � N;
(5) N1 := X u Y;
(6) S := DECOMPOSE(N1 , 7rN1 (E+)) ;
(7) N2 := X u ye ;
(8) S := S U DECOMPOSE(N2 , 7rN2 (E+)) ;
(9) ENDIF;
(10) RETURN(S) ;
(1 1) END;

Theorem 3.48. Algorithm 3.4 . 1 is correct.

0

Proof. The algorithm terminates with an NLNF decomposition. In each decomposition step
N1 U N2 = N, i .e . , N = U{N1 , . . . , Nk} upon termination of the algorithm. Moreover, the
algorithm continues the decomposition process whenever Ni is not in NLNF with respect
to 1fNi (L'+) . Therefore, {N1 , . . . , Nk} is an NLNF decomposition.

It remains to show that r = 1fN1 (r) [X] · · · [X] 1fNk (r) holds for any r � dom(N) with
Fr E as well. Therefore, we consider the case where X � Y is some FD on M which is not
inevitable on M with respect to 7rM(E+) and where X is not a superkey for M with respect
to 7rM(E+) . Since F1rM(r) X � Y, it follows that 7rM (r) = 7rxuy (7rM (r)) [X] 1fxuyc (7rM (r))
by Theorem 3 .46. This, however, is equivalent to 7rM (r) = Jrxuy (r) [X] 7rxuyc (r) . This shows
that the NLNF decomposition { N1 , . . . , Nk} is indeed lossless. D

One may replace line (5) of Algorithm 3.4 . 1 by N1 := X U yee . This would eliminate
those non-maximal basis attributes of N in Y which do not have a superattribute in Y
that is also a maximal basis attribute of N. Such non-maximal basis attributes are also
subattributes of ye , anyway. Since X � Y is not inevitable, at least one maximal basis
attribute of N is a subattribute of Y by Lemma 3.30, i .e . , yee =!= >.. The resulting algorithm
is still correct as yee U ye = N and Fr X � Y implies Fr X � yee by the subattribute
rule as yee :S Y. We illustrate Algorithm 3 .4 . 1 with the following abstract example. We
say that a set E of FDs is covered by another set fJ of FDs, if every FD in E is implied
by e.

ExAMPLE 3 .22 . Suppose N = L(A, K[M(B, C, D)] , P [Q[R(E, F)]]) with E = {L(A) �
L (K [M(B, C)] , P [.A]) , L(K[M(D)]) � L (P[Q [R(E)]]) } . Obviously, N is not in NLNF
with respect to E. Neither of the two given FDs is inevitable nor are the two left­
hand sides superkeys for N with respect to E. We choose to decompose along L (A) �
L (K[M(B, C)] , P[.A]) and obtain new nested attributes N1 = L(A, K[M(B, C, .A)] , P [.A])
and N' = L (A, K[M(.A , .A , D)] , P[Q[R(E, F)]]) . The projection of E on N1 is covered
by L(A) � L(K[M(B, C)] , P [.A]) , the projection on N' covered by {L (K[M(D)]) �
L (P[Q[R(E)]]) ; L(A) � L (K[.A] , P[.A]) } . One can see that N1 is in NLNF with respect

87

3 .4 . DECOMPOSITION INTO NLNF Sebastian Link

to 7rN1 (E+) as L (A) is a superkey for N1 . However, N' is not in NLNF with respect
to 7rN' (E+) since L(K[M(D)]) ---+ L (P[Q[R(E)]]) is not inevitable and L (K[M(D)])
is not a superkey for N' with respect to 7rN{E+) . The next decomposition step gives
N2 = L(>., K[M(>., >., D)] , P[Q[R(E, >.)]]) and N3 = L(A, K[M(>., >., D)] , P[Q[R(A, F)]]) .
Now, 7rN2 (E+) is covered by L(K[M(D)]) ---+ L(P[Q[R(E)]]) , i . e . , N2 is in NLNF with
respect to 7rN2 (E+) . Furthermore,7rN3 (E+) is covered by L(A) ---+ L(K[>.] , P[>.]) which is
inevitable on N3 with respect to 7rN3 (E+) , i .e . , N3 is in NLNF with respect to 7rN3 (E+) .
The output of Algorithm 3.4 . 1 is therefore { (N1 , 7rN1 (E+)) , (N2 , 7rN2 (E+)) , (N3 , 7rN3 (.E+)) } .
See Figure 3 . 1 for an illustration. D

L(A, K[M(B, C, D)] , P[Q[R(E, F)]])

/ �
L (A, K [M(B, C, >.)] , P[>.]) L (A, K[M(>., >., D)] , P[Q[R(E, F)]])

� �
L (>. , K [M(>., >. , D)] , P[Q[R(E, >.)]]) L(A, K [M(>. , >., D)] , P[Q[R(>., F)]])

Fig. 3 . 1 . NLNF decomposition Tree of Example 3 .22.

EXAMPLE 3 . 2 3 . Example 3 . 18 has shown that the nested attribute N =

DNA(Origin [Base] ,Count (A,C,G,T) ,Gene(Start ,End,Sub[Nucleo] ,Translation[Amino]))

i s not i n NLNF with respect to the set E of FDs from Example 3 .3 . Since

DNA(Origin [Base]) ---+ DNA(Count(A,C,G,T))

is neither inevitable nor is DNA(Origin [Base]) a superkey for N with respect to E, we de­
compose N into N{ = DNA(Origin[Base] ,Count (A,C,G,T)) and N� = DNA(Origin [Base] ,
Gene(Start ,End,Sub [Nucleo] ,Translation[Amino])) . The FD

DNA(Origin [>.] ,Count(A,C,G)) ---+ DNA(Count (T))

1s m 7rNf (E+) , but is neither inevitable nor is DNA(Origin [>.] ,Count (A,C,G)) a su­
perkey for N{ with respect to 7rNf (E+) . Therefore, we decompose N{ into N1 =
DNA(Origin [>.] ,Count (A,C,G,T)) and N2 = DNA(Origin[Base] ,Count(A,C,G)) . The pro­
jected FDs 7fN1 (E+) are covered by the set E1 with the following FDs:

- DNA(Origin [>.] ,Count(A,C,G)) ---+ DNA(Count(T)) ,
- DNA(Origin [>.] ,Count(A,C,T)) ---+ DNA(Count(G)) ,
- DNA(Origin [>.] ,Count(A,G,T)) ---+ DNA(Count (C)) ,

88

3.4. DECOMPOSITION INTO NLNF Sebastian Link

- DNA(Origin[>.] ,Count(C,G,T)) -+ DNA(Count(A)) , and
- DNA(Count(A,C,G,T)) -+ DNA(Origin [>.]) .

The projected FDs 1fN2 (E+) are covered by E2 {DNA(Origin [Base]) -+
DNA(Count(A,C,G)) } . N1 is in NLNF with respect to E1 and N2 is in NLNF with re­
spect to E2 . The FD

DNA(Gene(Sub[Nucleo])) -+ DNA(Gene(Translation [Amino]))

is an element of 1fN� (E+) , but is neither inevitable nor i s DNA(Gene(Sub [Nucleo]))
a superkey for N� with respect to 1fN� (E+) . Therefore, we decompose
N� into N3 DNA(Gene(Sub[Nucleo] ,Translation[Amino])) and N�
DNA(Origin [Base] ,Gene(Start ,End,Sub [Nucleo])) . The projected FDs 1fN3 (E+) are
covered by the set E3 with the following FDs:

- DNA(Gene(Sub[Nucleo])) -+ DNA(Gene(Translation [Amino])) ,
- DNA(Gene(Sub[>.])) -+ DNA(Gene(Translation[>.])) , and
- DNA(Gene(Translation [>.])) -+ DNA(Gene(Sub[>.])) .

N3 is again in NLNF with respect to E3 . The FD

DNA(Gene(Start ,Sub [>.])) -+ DNA(Gene(End))

i s in 1fN� (E+) , but is neither inevitable nor is DNA(Gene(Start,Sub [>.])) a superkey for
N� with respect to 1fN� (E+) . We decompose N� into N4 = D A(Gene(Start ,End ,Sub[>.]))
and N5 = DNA(Origin [Base] ,Gene(Start ,Sub[Nucleo])) . The projected FDs 1fN4 (E+) are
covered by the set E4 with the following FDs:

- DNA(Gene(Start ,Sub[>.])) -+ DNA(Gene(End)) ,
- DNA(Gene(End ,Sub[>.])) -+ DNA(Gene(Start)) , and
- DNA(Gene(Start ,End)) -+ DNA(Gene(Sub[>.])) .

N4 is in NLNF with respect to E4 . The projected FDs 7rN5 (E+) are covered by
the set E5 = {DNA(Origin [Base] ,Gene(Start,Sub [>.])) -+ DNA(Gene(Sub[Nucleo])) } .
N5 is in NLNF with respect to E5 . The output o f Algorithm 3.4 . 1 is therefore
{ (N1 , E1)) , (N2 , E2) , (N3 , E3)) , (N4 , E4)) , (N5 , E5) } . See Figure 3.2 for an illustration. 0

For relational databases it is well-known that any relation schema with any set of FDs
defined on it can be decomposed into subschemata that are all in BCNF with respect to
the projected sets of FDs. In the presence of lists, however, the situation is different . Of
course, one can modify Definition 3.47 of lossless NLNF decomposition to lossless BCNF
decomposition for any nested attributes. Consider the nested attribute N = L[A] where
the set E of FDs on N simply consists of the single FD >. -+ L[>.] . The FD is not trivial
and >. is not a superkey for N with respect to E. Consequently, N is not in BCNF with
respect to E. However, any decomposition of L[A] must contain the nested attribute L[A]
itself. Therefore, no lossless BCNF decomposition of L [A] with respect to E exists.

89

3.4 . DECOMPOSITION INTO NLNF Sebastian Link

DNA(Origin (Base) ,Count(A,C,G,T),Gene(Start,End,Sub(Nucleo),Translation(Amino)))

DNA(Origin (Base),Count(A,C,G,T))

I --------
DNA(Origin(>.),Count(A,C,G,T)) DNA(Origin(Base) ,Count(A,C,G))

DNA(Origin(Base) ,Gene(Start,End,Sub(Nucleo) ,Translation(Amino)))

DNA(Gene(Sub(Nucleo) ,Translation(Amino))) DNA(Origin(Base) ,Gene(Start,End,Sub(N ucleo)))

DNA(Gene(Start,End ,Sub(>.))) DNA(Origin(Base) ,Gene(Start,Sub(Nucleo)))

Fig. 3 .2 . NLNF decomposition Tree of Example 3.23.

3.4.3 Problems with NLNF decomposition

Algorithm 3.4 . 1 generalises the well-known BCNF decomposition algorithm for relational
databases, see for instance [181 , p .270] . It follows that the NLNF decomposition algorithm
causes at least as many problems as its relational counterpart. The first problem is that
Algorithm 3 .4 . 1 does not execute in time polynomial in the sizes of N and E since com­
puting a cover of 1fN; (E+) is intractable [33] . Changing the computations of 7rN1 (E+) and
7rN2 (E+) in lines (6) and (8) of Algorithm 3.4 . 1 , respectively, to polynomial-time compu­
tations of 7rN1 (E) and 7rN2 (E) in the size of E leads to an algorithm which may not always
output an NLNF decomposition. For example, let E = {L (A) ---+ L(B) , L(B) ---+ L(C) }
be a set of FDs defined on N = L(A, B , C, D) . Then, 7rM(E) contains only trivial FDs
for M = L(A, C, D) , but the FDs in 7rM(E+) are covered by {L(A) ---+ L(C) } . It follows
that if the FD, L(A) ---+ L(B) is chosen at line (4) of Algorithm 3.4 . 1 , then M, which is
not in NLNF with respect to 7rM (E+) , is in the output decomposition. Furthermore, the
cardinality of the decomposition returned by Algorithm 3.4 . 1 may be exponential in the
cardinality of N [181 , p . 271] . While checking whether N itself is in NLNF with respect
to E can be done in polynomial time in the size of N and E (Theorem 3 .37 and Lemma
3 .30) , checking whether a proper subattribute Ni E Sub(N) is in NLNF with respect to
1fN; (E+) is harder. The following theorem follows from Corollary 3 in [29] .

Theorem 3.49. Let N E N A and E a set of FDs on N. The problem of deciding whether
an arbitrary Ni E Sub(N) is in NLNF with respect to 1fN; (E+) is coNP-complete.

Proof (Sketch) . The problem of deciding whether an arbitrary Ni E Sub(N) is not in
NLNF with respect to 1fN; (E+) is in NP. According to Theorem 3.37 one guesses non-

90

3.4 . DECOMPOSITION INTO NLNF Sebastian Link

deterministically an FD X ------+ Y E 1r N; (E+) and verifies in polynomial time that X ------+ Y
is not inevitable on Ni with respect to 1rN; (E+) and that X is not a super key for Ni with
respect to 1rN; (E+) . Following Lemma 3.30, X ------+ Y is not inevitable , if there is some
Y' E MaxB(Ni) with Y' ::; Y and Y' 1:_ X.

I t remains to show that the problem of deciding whether an arbitrary Ni E Sub(N)
is not in NLNF with respect to 1rN; (E+) is NP-hard. One can use the polynomial-time
reduction of the hitting set problem [1 22] in [29, p.55-57] to the decision problem whether
an arbitrary subschema of a relation schema is not in BCNF with respect to the corre­
sponding projected set of given FDs. This is possible since every relational subschema can
be represented using only null , flat and record-valued attributes, and NLNF and BCNF are
equivalent in the absence of lists. Note that in this case inevitable FDs are simply trivial
FDs. D

For relational databases a polynomial-time algorithm in the sizes of a relation schema
R and E that outputs a lossless BCNF decomposition with respect to E has been proposed
in [270] . It is the subject of future research to generalise this algorithm to the context of
lists .

We have seen that it is always possible to achieve a lossless NL TF decomposition. Un­
fortunately, losslessness is not the only desirable property of a decomposition. An output
{ (N1 , EI) , . . . , (Nk , Ek) } should only be considered equivalent to (N, E) in case the seman­

k
tic information in U Ei is equivalent to the semantic information in E. This means that

i=l
it is not only necessary not to lose any information regarding the database itself, but also
not to lose any information regarding the semantic properties that this database carries. In
other words, the dependencies must have been preserved at the end of the decomposition
process.

Definition 3.50. Let N E N A and E a set of FDs on N. A lossless join decomposition
{ N1 , . . . , Nk } of N is called dependency-preserving with respect to E if and only if E* =

(�1 7rN, (E*)) * D

We can see that the lossless NLNF decomposition in Example 3 .22 is indeed
dependency-preserving. What about the decomposition of our GenBank example?

EXAMPLE 3 . 2 4 . Consider the decomposition of the GenBank database from Example 3 .23.
5

Define 8 as U 1rN; (E+) . The decomposition is dependency-preserving if and only if E+ �
i=l

e+. All FDs in E are also in e except

DNA(Origin [Base]) ------+ DNA(Count(A,C,G,T))

and

DNA(Origin[Base] ,Gene(Start ,End)) ------+ DNA(Gene(Sub [Nucleo])) .

91

3.4 . DECOMPOSITION INTO NLNF Sebastian Link

The closure of DNA(Origin [Base]) with respect to e+ 1s
DNA(Origin [Base] ,Count(A,C,G,T)) , i .e . , the first FD is also in e+. The closure of
DNA(Origin [Base] ,Gene(Start ,End)) with respect to e+ is again N, i .e . , the second FD
is in e+, too. Consequently, E+ � e+ holds and the decomposition of the GenBank
example is dependency-preserving. D

Unfortunately, our examples are exceptions. For relational databases it has been shown
in [26, 29, 273] that there may be no decomposition of a relation schema into BCNF that
is dependency-preserving. This negative result carries immediately over to the framework
of lists, see Theorem 3 of [29] .

Theorem 3 .51 . There are nested attributes N and sets E of FDs on N for which no
dependency-preserving and lossless NLNF decomposition exists.

Proof. Let N = L(A, B , C) and E = {L(A, B) -+ L(C) , L(C) -+ L(B) } . By a brute force
examination of E+ it can be shown that L(A, B) -+ L(C) is in every non-redundant cover
of E. Therefore, in any dependency-preserving and lossless join decomposition of N with
respect to E, one of the subattributes of N must be L(A, B, C) , but this nested attribute
is not in NLNF. D

Following [29] , and using the same polynomial-time reduction of the hitting set problem
[122] as in the proof of Theorem 3.49 it can be shown that the problem whether there
exists a dependency-preserving and lossless NLNF decomposition for an arbitrary nested
attribute is NP-hard.

For relational databases, an exponential algorithm in the size of E which decides the
problem whether there is a dependency-preserving and lossless BCNF decomposition can
be found in [214] . A method of guaranteeing a dependency-preserving decomposition which
is in BCNF was proposed in [157] , wherein it was shown that by adding attributes to R and
FDs to E it is always possible to obtain a BCNF dependency-preserving decomposition of
the augmented schema with respect to the augmented set of FDs.

In summary, obtaining a dependency-preserving and lossless NLNF decomposition is in
general an unrealistic goal. In relational database theory, research on the third normal form
(3NF) [186, 304] has shown that a lossless join decomposition that preserves dependencies
can always be found [41 , 49] . Note, however, that 3NF cannot guarantee the absence of
redundancies. It is again subject of future research to extend these results to the framework
of lists.

Further open problems that warrant future research are discussed in Section 6 .2 .

92

Chapter 4

Functional and Multi-valued

D ep endencies in t he Presence of Lists

According to [87] , functional dependencies constitute about two thirds of all uni-relational
dependencies used in practical applications. A further important class of relational de­
pendencies are so called multi-valued dependencies (MVDs) . The class of FDs and MVDs
covers around 75 percent of all uni-relational dependencies in practice [87] . It is the goal of
this chapter to extend the theory of MVDs from the relational data model to the presence
of null, fiat, record- , and list-valued attributes.

We have seen in the previous chapter that an instance satisfying the FD X -t Y can
be decomposed into X U Y and X U ye without losing information. Since such a lossless
decomposition of some instance does not always imply that this instance satisfies a respec­
tive FD the question arises whether there is a class of dependencies that precisely captures
this property. For relational databases, an affirmative answer to that question is given
by the class of MVDs. They subsume the class of FDs and may also cause redundancies
in the representation of data and abnormal update behavior. It is therefore desirable to
investigate the impact of the list constructor on the class of MVDs as well .

In this chapter we will formally introduce MVDs in the presence of lists . We will show
that an instance satisfies the MVD X --* Y precisely when this instance is the generalised
natural join of X UY and X u yc . Then we study axiomatisability and implication problem
for the class C of FDs and MVDs in the presence of records and lists. Here, a surprising
difference to the RDM is revealed . MVDs imply non-trivial FDs in the context of lists which
is impossible in relational databases. Using this fact and the algebraic framework from
Chapter 2 the theory of FDs and MVDs can be generalised from the RD M to the presence
of lists. Next , the independence of the inference rules is studied, and further interesting
differences to the RDM are revealed. Subsequently, the role of the Brouwerian complement
rule is investigated. This rule is special because it does not have a counterpart in the
context of FDs. Finally, a provably-correct and polynomial-time algorithm for deciding
implication of FDs and MVDs in the presence of lists is proposed. The algorithm naturally
extends the well-known membership algorithm of Beeri [27] .

The axiomatisation of FDs and MVDs is published in [146] , the axiomatisation of MVDs

93

4. 1 . AXIOMATISATION Sebastian Link

in [142] , and the membership algorithm for FDs and MVDs appears in [141] .

4. 1 Axiomatisation

Multi-valued dependencies have been independently introduced in [86, 103, 303] . They
have been axiomatised in [32] . In this section we will extend the generalised Armstrong
axioms to obtain a finite axiomatisation for the class C of FDs and MVDs in the presence
of null, flat, record- and list-valued attributes. This axiomatisation is a natural extension
of the axiomatisation in the relational case (compare for instance to [220, pp. 80,81]) . A
fundamental difference will be the fact that the non-trivial FD X --+ Y n ye is implied by
the MVD X ----* Y .

4. 1 . 1 Definition and First Results

As it was the case for FDs, the algebraic framework from Chapter 2 allows to naturally
extend the definition of multi-valued dependencies from the RDM .

Definition 4 . 1 . Let N E N A be a nested attribute. A multi-valued dependency on N is an
expression of the form X ----* Y where X, Y E Sub(N) . A set r � dom (N) satisfies the multi­
valued dependency X ----* Y on N if and only if for all values t1, t2 E r with 1r� (tl) = 1r� (t2)
there is a value t E r with 7r�uy (t) = 7r�uy (tl) and 7r�uyc (t) = 7r�uyc (t2) · D

Intuitively, an instance r exhibits the MVD X ----* Y whenever the value on X determines
the set of values on Y independently from the set of values on ye . If there are two elements
t1, t2 in r with the same projections on X, then there is also an element in r which has the
same projection on X U Y as t1 and the same projection on X U ye as t2 . We will illustrate
the concept of an MVD by the following example.

EXAMPLE 4 . 1 . Consider Example 3 . 1 where Pubcrawl (Person,Visit [Drink(Beer,Pub)]) was
the nested attribute. Suppose the snapshot r is now extended to

{ (Sven, [(Liibzer, Deanos) , (Kindl, Highflyers)]) ,
(Sven, [(Kindl, Deanos) , (Liibzer, Highflyers)]) ,
(Klaus-Dieter, [(Guiness, Irish Pub) , (Speights, 3Bar) , (Guiness, Irish Pub)]) ,
(Klaus-Dieter, [(Kolsch, Irish Pub) , (Bonnsch, 3Bar) , (Guiness, Irish Pub)]) ,
(Klaus-Dieter, [(Guiness, Highflyers) , (Speights, Dean os) , (Guiness, 3Bar)]) ,
(Klaus-Dieter, [(Kolsch, High flyers) , (Bonnsch, Dean os) , (Guiness, 3Bar)]) ,
(Sebastian, []) } .

Obviously, the FD Pubcrawl(Person) --+ Pubcrawl (Visit [Drink(Pub)]) is not satisfied by
r , and neither is the FD Pubcrawl(Person) --+ Pubcrawl(Visit [Drink(Beer)]) . However,
Fr Pubcrawl (Person) ----* Pubcrawl(Visit [Drink(Pub)]) . This MVD says informally that a
person has preferred lists of pubs, e.g. according to the weekday, and preferred lists of
beers, e .g. according to the mood that person is in . Since a weekday is independent from

94

4. 1 . AXIOMATISATION Sebastian Link

the mood of a person, all possible combinations of these lists can occur. That is, the lists
of pubs a person visits is independent from the lists of beers that person drinks. It appears
that Fr Pubcrawl (Person) � Pubcrawl(Visit [,.\]) holds as well. This means informally that
in this snapshot each person visits a fixed number of pubs (and drinks a fixed number of
beers) . D

The intuitive meaning of satisfaction of an MVD from the RDM is here naturally
extended to more complex objects, in this case any nesting that involves null , flat, record­
or list-valued attributes.

EXAMPLE 4 . 2 . Consider Example 2.3 where the nested attribute

Align(Stl [Seql] ,St2 [Seq2] ,Numl (Occl ,Nucl) ,Num2 (0cc2 ,Nuc2) ,Comp[Pair(Nl ,N2)])

was used as a description of a database that compares two nucleotide sequences each having
a certain characteristic. The constraint that was informally described in Section 1 .2 .2 is
now formally specified as

Align(Stl [Seql] ,St2 [Seq2] ,Numl(Occl ,Nucl) , um2(0cc2,Nuc2)) �

Align(Comp[Pair(Nl ,A)]) .

Note that neither the FD

Align(St l [Seql] ,St2 [Seq2] , uml (Occl ,Nucl) ,Num2(0cc2,Nuc2)) �
Align(Comp[Pair(Nl ,A)])

nor the FD

Align(Stl [Seql] ,St2 [Seq2] ,Numl (Occl ,Nu cl) ,Num2 (Occ2 ,Nuc2)) �
Align(Comp[Pair(,.\ ,N2)])

hold in general .

EXAMPLE 4 . 3 . Consider Example 2 .4 where the nested attribute

Halftoning(Brightness,Input [Level] , Output [Bit])

D

was used to represent a database that stores possible output regions for input regions of
a certain brightness. The constraints that were informally described in Section 1 .2 .2 are
formally specified as

and

Halftoning(Input [,.\]) � Halftoning(Output [,.\]) , and
Halftoning(Output [,.\]) � Halftoning(Input[,.\]) ,

Halftoning(Brightness,Input [,.\]) � Halftoning(Input [Level]) .

95

D

4. 1 . AXIOMATISATION Sebastian Link

4 .1 .2 Trivial MVDs

We would like to describe MVDs that are satisfied by every instance in a syntactically
convenient form. Recall that a dependency e7 on some nested attribute N is called trivial
if and only if Fr e7 for every r � dom(N) . We characterise trivial MVDs.

Lemma 4.2 . Let N E N A and X --* Y a multi-valued dependency on N. Then is X --* Y
trivial if and only if Y :::; X or X U Y = N.

Proof. We show first that X --* Y is trivial, if Y :::; X or X U Y = N. Let r � dom (N)
and t1 , t2 E r with n� (t1) = n� (t2) . If there is some t E r with 7r�uy (t) = 7r�uy (t1) and
7r�uyc (t) = 7r�uyc (t2) , then Fr X --* Y. If Y :::; X, then take t = t2 . If X U Y = N, or
equivalently ye :::; X, then take t = t1 .

Let now be Y 1:. X and X U Y =j:. N, i .e . , ye 1:. X . We show that there is some
r � dom (N) with �r X --* Y. Define r = {t1 , t2 } by

if and only if Z < X

using Lemma 3 . 13 . For Fr X --* Y there must be some t E r with 7r�uy (t) = n�uy (ti)
and 7r�uyc (t) = n�uyc (t2) . If t = t 1 , then the second condition is violated since ye 1:. X .
If t = t2 , then the first condition is violated since Y 1:. X . Hence, � r X --* Y. D

4. 1 .3 MVDs are Binary Join Dependencies

Fagin proves in [103] that MVDs "provide a necessary and sufficient condition for a relation
to be decomposable into two of its projections without loss of information (in the sense
that the original relation is guaranteed to be the join of the two projections) . "

We will now prove that MVDs still have the same property in the presence of null, flat,
record- and list-valued attributes. In this sense, r � dom(N) satisfies the MVD X --* Y
exactly when r is the lossless generalised join of its projections on X U Y and X U ye , i .e . ,
r = nxuy (r) 1><1 7rxuyc (r) .

Theorem 4.3 . Let N E N A, r � dom(N) and X --* Y a multi-valued dependency on N.
Then is X --* Y satisfied by r if and only if r = nxuy (r) 1><1 7rxuyc (r) .

Proof. Let r1 = nxuy (r) and r2 = nxuyc (r) . Note that r � r1 txl r2 is always satisfied.
First , let Fr X --* Y . We show that r1 1><1 r2 � r . Let t E r1 txl r2 . Then there are

t1 , t2 E r with
7r�uy (t) = 7r�uy (t l) and 7r�uyc (t) = 7r�uyc (t2) ·

From 1r� (t 1) = 1r� (t2) and Fr X --* Y follows the existence of some t3 E r with 7r�uy (t3) =
7r�uy (ti) and 7r�uyc (t3) = 7r�uyc (t2) . Consequently, 7r�uy (t) = nfuy (t3) and 7r�uyc (t) =
n�uyc (t3) . It follows that t = t3 E r by Lemma 3.9 and, therefore, r1 1><1 r2 � r .

Let now r = r1 1><1 r2 and t1 , t2 E r with 1r� (t1) = 1r� (t2) . Let t� E r1 with t� = 7r�uy (ti)
and t; E r2 with t; = 7r�uyc (t2) . Since r1 1><1 r2 = r , there is some t E r with 7r�uY (t) = t�
and 7r�uyc (t) = t; . This shows Fr X --* Y . D

96

4. 1 . AXIOMATISATION Sebastian Link

Theorem 4.3 shows that the class of MVDs characterises precisely the situation when
an instance over a nested attribute is decomposable into two of its projections without loss
of information.

EXAMPLE 4 . 4 . If one applies Theorem 4.3 to Example 4 . 2 and the snapshot r that was
given in Section 1 .2 . 2 , then the nested attribute

Align(St1 [Seq1] ,St2 [Seq2] ,Num1 (Occl ,Nuc1) ,Num2(Occ2 ,Nuc2) ,Comp[Pair(N1 ,N2)])

is decomposed into

Align(St1 [Seq1] ,St2 [Seq2] ,Num1 (Occl ,Nuc1) ,Num2(Occ2,Nuc2) ,Comp[Pair(N1 ,>.)])

and

Align(St1 [Seq1] ,St2 [Seq2] , um1 (Occl ,Nu cl) ,Num2(Occ2 ,Nuc2) ,Comp[Pair(>. ,N2)]) .

The snapshot r is then the generalised natural join of

and

([A,A] , [A,A,T] , (3 ,A) , (2 ,T) , [(A,ok) , (A,ok) , (C ,ok) , (G ,ok) , (A,ok)]) ,
([A,A] , [A,A,T] , (3 ,A) , (2 ,T) , [(A,ok) , (A,ok) , (T,ok) , (G ,ok) , (A,ok)]) ,

([C ,G] , [C] , (2 ,G) , (1 ,A) , [(C,ok) , (G ,ok) , (G ,ok) , (C,ok)]) ,
([C ,G] , [C] , (2 ,G) , (1 ,A) , [(C,ok) , (G ,ok) , (C ,ok) , (G,ok)]) ,

([A,A] , [A,A,T] , (3 ,A) , (2 ,T) , [(ok,A) , (ok,A) , (ok, T) , (ok,C) , (ok ,T)]) ,
([A,A] , [A,A,T] , (3 ,A) , (2 ,T) , [(ok,A) , (ok,A) , (ok,T) , (ok,T) , (ok,C)]) ,

([C ,G] , [C] , (2 ,G) , (1 ,A) , [(ok,C) , (ok,A) , (ok,T) , (ok,T)]) ,
([C ,G] , [C] , (2 ,G) , (1 ,A) , [(ok,C) , (ok,T) , (ok,A) , (ok,T)]) ,
([C ,G] , [C] , (2 ,G) , (1 ,A) , [(ok,C) , (ok,C) , (ok,A) , (ok,C)]) .

4. 1 .4 Sound Inference Rules

0

Before introducing inference rules for FDs and MVDs we will prove the correctness of some
algebraic formulae that will be useful in proving the soundness of some of the rules .

Lemma 4.4. Let N E N A and X, Y E Sub(N) . Then the following equations hold:
1 . X u (Y -=-X) = X u Y,
2. X = xcc u (X n xc) ,
3. (X n Y)C = Xc u yc , and
4 - (X U Y)c :S Xc n ye _

Proof. Firstly, (Y-=-X) ::; X U Y is equivalent to Y ::; X U Y which is certainly true. As
also X ::; X U Y holds we conclude X U (Y -=-X) ::; X U Y. Vice versa, Y ...:..X ::; Y ...:..X is
equivalent to Y ::; X U (Y ...:..X) . This implies X U Y ::; X U (Y -=-X) and the first equation
follows.

97

4 . 1 . AXIOMATISATION Sebastian Link

Recall that xee ::; X and X U xe = N hold. Furthermore, every Brouwerian algebra
is distributive . From

X = X n N
= (xee u X) n (xee u xc)
= Xee u (x n xe)

follows then the second equation.
Since X n Y ::; X and X n Y ::; Y hold, we conclude xe ::; (X nY)e and ye ::; (X n Y)e .

Consequently, xe U ye ::; (X n Y)e . On the other hand, (X n Y)e ::; xc u ye as

(X n Y) u xe u ye = (X u xe u ye) n (Y u xe u ye) = N

holds. The third law follows.
Finally, (X U Y)e ::; xe n ye follows from

and this concludes the proof of this lemma. 0

Note that the proofs of Lemma 4 .4 hold in any Brouwerian algebra, i .e . , the laws are
also satisfied by any Brouwerian algebra.

A sound and complete set of inference rules for FDs and MVDs has been provided in
[32] . We will show in this section that natural extensions of the (sound and complete) rules
from [220 , p.80,81 J are also sound in the presence of record and list type. Apart from these
rules there is a further sound rule which allows to derive the non-trivial FD X --t Y n ye
from the MVD X - Y.

Proposition 4.5 . The following inference rules

X --t Y
Y ::; X

(reflexivity axiom)
X --t Y
x - Y

(implication rule)
X - Y, Y - Z
X - (Z-=-Y)

(pseudo-transitivity rule)
x - Y, x - z

X - (Z-=-Y)
(pseudo-difference rule)

X --t Y
X --t X U Y

(extension rule)
x - Y
x - ye

(Brouwerian complement rule)
X - Y, Y --t Z
X --t (Z-=-Y)

(mixed pseudo-transitivity rule)
x - Y

X --t Y n ye
(mixed meet rule)

X --t Y, Y --t Z
X --t Z

(transitivity rule)
x - Y

------ V < W
w u x - v u Y -

(augmentation rule)
x - Y, x - z
X - (Y u Z)

(multi-valued join rule)
x - Y, x - z
X - (Y n Z)

(multi-valued meet rule)

are sound for the implication of FDs and MVDs in the presence of records and lists.

98

4 . 1 . AXIOMATISATION Sebastian Link

Proof. The correctness of the first three rules has already been proven in Proposition 3 . 10 .
For a proof of the implication rule let t1 , t 2 E r with nf (t1) = nf (t2) . One has to

show that there is a t E r with nfuy (t) = nfuy (tl) and 7r�uyc (t) = 7r�uyc (t2) . The
premise implies nP' (t1) = nP' (t2) and, therefore, nfuy (t 1) = nfuy (t2) holds as well . Since
also 7r�uyc (t2) = n�uyc (t2) holds we can choose t = t2 . Another proof argument goes as
follows. From Fr X -t Y follows r = nxuy (r) t><1 7rxuyc (r) by Theorem 3.46. However,
Theorem 4 .3 implies that Fr X � Y holds as well .

In order to prove the Brouwerian complement rule let h , t2 E r with nf (tl) =
nf (t2) . The premise implies that there is some t E r with nfuy (t) = nfuy (tl) and
7r�uyc (t) = 7r�uyc (t2) · As yce � Y holds, we obtain 7r�uycc (t) = 7r�uycc (tl) and
7r�uyc (t) = 7r�uyc (t2) . This shows Fr X � ye .

As to the augmentation rule, take t1 , t2 E r with n{X,ux (ti) � n{X,ux (t2) · Since, in
particular, nf (t1) = nf (t2) holds, the premise tells us that there is some t E r with

N () (b) N () d N () (c) N () 7r xuY t = 7r xuY t 1 an 7r xuyc t = 7r xuyc t2 ·

Obviously, both W ---=- (X U Y) � X U ye and W ---=- (X U Y) � W hold . Using first (c) and
then (a) we infer

7r�-'- (XUY) (t) = 7r�-'-(XUY) (t2) = 7r�-'- (XUY) (tl) ·

From (X U Y) U (W---=- (X U Y)) = W U X U Y and V � W follows

Moreover, W -=-(X U ye) � X U Y and W ---=- (X U ye) � W hold . Using now first (b) and
then (a) we infer

7r�-'-(XuYc) (t) = 7r�-'-(XuYc) (tl) = 7r�---=- (xuYc) (t2) ·

Due to (c) and the last equation we conclude 7r�uxuyc (t) = 7r�uxuyc (t2) · Since (VUY)c �
ye holds as well, we obtain

7r�uxu(VuY)C (t) = 7r�uxu(VuY)c (t2) ·

This proves Fr W U X � V U Y.
For a proof of the pseudo-transitivity rule consider t 1 , t2 E r with nf(t1) = nf (t2) ·

Since Fr X � Y holds, there is some t E dom(r) with

N (-) N (N -) (d) N 7rxuY t = 7rxuY ti) and 7rxuyc (t = 7rxuyc (t2) ·

In particular, nP' (t) = nP' (t i) since Y � X U Y. As Fr Y � Z we conclude that there is
some t E r with

N () (e) N (-) N (!) N 1ryuz t = 1ryuz t and 1ryuzc (t) = 1ryuzc (h) .

99

4 . 1 . AXIOMATISATION Sebastian Link

Furthermore, 1rf (t) = 1rf (t 1) = 1rf (t2) together with (e) and (!) implies 1rf (t) = 1rf (ti) =
1rf (t2) . Therefore, we conclude from (!) and (Z....:...Y)e ::; Y U ze that

7r�u(z....:... Y)c (t) = 7r�u(z....:... y)c (t1) holds.

Applying Z....:... Y ::; ye to (d) and Z....:... Y ::; Z to (e) results in

7r�u(z....:... y) (t) = 7r�u(z....:... y) (t2) and 7r�....:...y (t) = 7r�....:... y (t) .

Altogether, this yields

and proves Fr X -* (Z....:...Y) .
In order to prove the mixed pseudo-transitivity rule we take again t1 , t2 E r with

1rf(t1) = 1rf(t2) . Since Fr X -* Y holds, there is a t E r with

7rfuy (t) = 7r�uy (tl) and 7r�uyc (t) (g) 7r�uyc (t2) ·

In particular, 7rpr (t) = 1rpr (ti) implies 1rf(t) (!:) 1rf(ti) as Fr Y ---t Z holds. Applying first
z....:...y ::; Z to (h) and then Z....:...Y ::; ye to (g) shows

7r�....:...y (tl) = 7r�....:...y (t) = 7r�....:...y (t2)

and, therefore, Fr X ---t (Z....:... Y) .
As to the multi-valued join rule, take t 1 , t2 E r with 7r� (t1) = 1rf(t2) . Since Fr X -* Y,

there i s some t' E r with

N (') (i) N () d N (') (
j) N () 7r xuY t = 7r xuY t1 an 7r xuyc t = 7r xuyc t2 ·

According to the soundness of the augmentation rule Fr X -* Z implies Fr XUY -* YUZ.
Equation (i) guarantees the existence of some t E r with

and
N () (

k) N (') 7r XUYU(YUZ)C t = 7r XUYU(YUZ)C t ·

Since X u (Y u z)e ::; X u Y u (Y u z)e holds, we infer

N () (l) N (') 7r XU(Yuz)C t = 7r XU(YUZ)C t ·

from (k) . Moreover, (Y u z)e ::; ye and (j) imply

N (') (m) N () 7r XU(Yuz)C t = 7r XU(YUZ)C t2 ·

100

4. 1 . AXIOMATISATION Sebastian Link

Therefore, (l) and (m) together result in

7r�U(YUZ)C (t) = 7r�U(YUZ)C (t2)

which proves Fr X ---* Y U Z.
For a proof of the pseudo-difference rule let t1 , t2 E r with 1rf (t i) = 1rf (t2) . From

Fr X ---* Y follows the existence of some t E r with

N - N 1rxuy (t) = 1fxuy (ti)

Equation (n) and z....:...y � ye result in

N (-) (n) N () and 7r xuyc t = 7r xuyc t2 .

N (-) (o) N () 7r XU(Z-'-Y) t = 7r XU(Z--'-Y) t2 ·

Since also 1rf (t) = 1rf (t1) and Fr X ---* Z hold, there is some t E r with

N () (p) N (-) d N () (q) N () 1fxuz t = 7rxuz t an 7r xuzc t = 7r xuzc t 1 ·

Applying z_,_y :S Z to (p) and applying (o) subsequently gives

1f;u(Z-'- Y) (t) = 7r;U(Z-'-Y) (t2) ·

Due to 1r}Y (t) = 1r}Y (t1) and the construction of t we derive 1r})' (t) = 7r}Y(h) and
7r�uYuzc (t) = 7r�uYuzc (t i) by equation (q) . As also (Z _,_ Y)e � Y U ze holds, this finally
leads to

1f;U(Z-'-Y)C (t) = 1f;U(Z--'-Y)C (tl)

and this proves Fr X ---* (Z--'-Y) .
For a proof of the mixed meet rule let t 1 , t 2 E r with 1rf (t 1) = 1rf (t2) . Applying the

premise gives us some t E r with 7rfuy (t) = 7rfuy (t i) and 7r�uyc (t) = 1f�uyc (t2) · As
Y n ye � Y, ye holds by definition of the meet we derive

7r�nyc (ti) = 7r�nyc (t) = 7r�nyc (t2)

which proves Fr X -+ y n ye .
Finally, for a proof of the multi-valued meet rule let t1 , t2 E r with 1rf (t1) = 7rf (t2) .

From the soundness of the implication rule, Brouwerian complement rule , multi-valued join
rule and mixed meet rule follows

Fr X ---* (Ye u ze(u (Y n ye) u (z n ze) .
--..--

=(Ynz)CC
=W

Consequently, there is some t E r with

and

101

(5)

4 . 1 . AXIOMATISATION

Now Y n Z ::; W holds since

Y n z = (Y n z)ee u ((Y n Z) n (Y n z)e)
= (Y n z)ee u ((Y n Z) n (Ye u ze))
= (Y n z)ee u (Y n z n ye) u (Z n Y n ze)
< W.

Herein, the first equation follows from Lemma 4.4. Consequently,

7r�u(YnZ) (t 1) = 7r�u(YnZ) (t) ·

Sebastian Link

Moreover, we ::; (Ynz)e since Wu (Ynz)c = N holds. We show that also (Ynz)e ::; we ,
i .e . , (Y n Z) U we = N holds. It suffices to show that every V E M axB(N) satisfies
V ::; (Y n Z) u we . If V ::; Y n Z there is nothing to show. If V 1:. Y n Z, then also V 1:. W
as V E M axB(N) and (Y n ye) U (Z n ze) contains only non-maximal basis attributes of
N. Consequently, V ::; we. It follows that (Y n z)e = we, and

7r�u(Ynz)c (t2) = 7r�u(Ynz)c (t) ·

This shows that Fr X --* (Y n Z) holds. 0

Unless stated otherwise fR denotes the set of inference rules from Proposition 4 .5 . It
is easy to see that all these rules , except the mixed meet rule, are natural extensions of
rules in the RDM (compare [220, p. 80,81]) . Interpreting the mixed meet rule in relational
data bases means that the trivial FD X --+ 0 can be derived from the MVD X --* Y, and is
therefore not needed. As YnY� is in general different from AN in a Brouwerian algebra, the
mixed meet rule is no longer trivial. In fact , it gives the set of inference rules a distinctive
Brouwerian flavour.

In what follows, it is important to emphasise the importance of the mixed meet rule .
It says informally that Fr X --* Y implies that two elements of r which are coincident on
X will also coincide on all non-maximal basis attributes of N that are in SubB(Y) .

EXAMPLE 4 . 5 . Consider again Example 4 . 1 . The r given there satisfies the MVD

Pubcrawl (Person) --* Pubcrawl(Visit[Drink(Pub)]) .

According to the mixed meet rule this implies also that r satisfies the FD

Pubcrawl (Person) --+ Pubcrawl (Visit [Drink(Pub)]) n Pubcrawl(Visit [Drink(Beer)])

which i s Pubcrawl (Person) --+ Pubcrawl(Visit [A.]) . This shows that each person visits a
fixed number of pubs (and drinks a fixed number of beers) , as Visit[>..] represents the
length of the list of visits . D

The example indicates how the mixed meet rule might help a database de­
signer to specify or not specify MVDs. If the corresponding FD Pubcrawl(Person) --+
Pubcrawl (Visit [A.]) is not considered meaningful for the application in mind , then the MVD
Pubcrawl(Person) --* Pubcrawl (Visit [Drink(Pub)]) cannot be meaningful neither.

102

4 . 1 . AXIOMATISATION Sebastian Link

4 .1 .5 Dependency Basis

We generalise the notion of a dependency basis from the RDM [32] to our framework.
Therefore, we repeat first the notion of a dependency basis of an attribute set X � R
with respect to a given set E of FDs and MVDs on the relation schema R. The family
Dep(X) = {Y I X --* Y E E+} is closed under Boolean operations according to the
union, intersection and difference rule from Theorem 1 .6 . Therefore, it contains a unique
subfamily with the following properties:

1 . The empty set is not an element of the subfamily.
2 . Each pair of sets in the subfamily is disjoint .
3 . Each set in Dep(X) is a union of sets from the subfamily.

This subfamily consists of all atoms in (Dep(X) , � , 0) , and is called the dependency basis
of X with respect to E .

We will now extend this notion to our framework. Let N E N A, X E Sub(N) and
E be a set of FDs and MVDs on N. Let Dep(X) be the set of all Y E Sub(N) with
X --* y E E+ and x+ = U{Y I X -t y E E+ } . Consider the set Dep' (X) = {Y I y E
Dep(X) and ycc = Y} which consists of all those subattributes Y E Dep(X) which are
a join of maximal basis attributes of N. According to [202] such subattributes are called
regular. (Dep(X) , :=:; , U , n,:... , N) is a Brouwerian algebra according to the multi-valued
join , multi-valued meet and pseudo-difference rule. The regular elements of a Brouwerian
algebra form a Boolean algebra [202, Theorem 4 . 5] . Thus (Dep' (X) , :=:; , U , n' , (-)c , AN , N) is
a Boolean algebra where n' is defined by Y n' Z = (Y n z)cc for all Y, Z E Dep' (X) . For
Y, Z E Dep' (X) we have Y = (Y n' Z) u (Y:...Z) since Y:... Z = Y n' zc holds. Moreover,
there is no maximal basis attribute of N that is a subattribute of both Y n' Z and Y:...Z,
i . e . , (Y n' Z) n' (Y:...Z) = AN · This shows that there is a unique subset XM � Dep' (X)
with the following properties:

1 . AN rJ_ XM .
2 . For all distinct Y, Z E XM we have Y n' Z = AN.
3 . For all W E Dep(X) we have W = U Y for some Y � XM.

Consequently, XM consists of all :=:;-minimal elements of (Dep' (X) - {AN }) , i . e . , XM is the
set of all atoms of (Dep' (X) , :=:; , AN) · Note that {MaxB(W) I W E XM} is the partition
of MaxB(N) which is generated by {MaxB(Ycc) I Y E Dep(X)} .

Definition 4 .6 . Let N E N A, X E Sub(N) and E be a set of FDs and MVDs on N. The
dependency basis of X with respect to E is DepB(X) = SubB(X+) U XM. 0

We will illustrate the notion of a dependency basis by the following example.

EXAMPLE 4 . 6 . Let N = L(A, K[M(B, C, D)]) and E = { L(A) --* L(K[M(B)]) } . The
Boolean algebra carried by Dep' (L(A)) is shown in Figure 4 . 1 . The set XM consists of
L(A) , L(K[M(B)]) , and L(K[M(C, D)]) which are the atoms of the Boolean algebra. The
dependency basis of L (A) consists of L(A) , L(K[A]) , L (K[M(B)]) , and L(K[M(C, D)]) .

0

103

4 . 1 . AXIOMATISATION

L(A,K[M(B,C,D)])

____- I -------
L(A.K[M(B)]) L(A,K[M(C,D)]) L(K[M(B,C,D)])

I >< >< I
L(A) L(K[M(B)]) L(K[M(C,D)])

-------_ I ____-
L(A. . A.)

Fig. 4 . 1 . The Boolean algebra of L(A)M

Sebastian Link

Lemma 4.7. Let N E N A, E a set of FDs and MVDs on N, and X E Sub(N) . If
W E XM, then W E Dep(X) .

Proof. This is immediate as XM � Dep' (X) and Dep' (X) � Dep(X) . 0

We can now show that an MVD X --* Y is derivable from E if and only if the right­
hand side Y is the join over some elements of the dependency basis of X with respect to
E. This extends a result from [32] .

Proposition 4.8 . Let N E N A and E as set of functional and multi-valued dependencies
on N. Then
1. X --* Y E E+ if and only if Y = UZ for some Z � DepB(X)
2. X ---+ Y E E+ if and only if Y � x+.

Proof. The second property is obvious. Let Y E Dep(X) . Lemma 4 . 4 shows that Y
ycc U (Y n ye) holds. From Y E Dep(X) follows ycc E Dep' (X) and therefore ycc =
uzl for some zl � XM . Moreover, y E Dep(X) means that X --* y E _E+ and thus
X ---+ Y n ye E E+ by the mixed meet rule. It follows that Y n ye � x+ and, therefore,
Y n ye = UZ2 for some Z2 � SubB(X+) . Hence, Z = Z1 U Z2 � DepB(X) and Y = uz.

Assume now that Y = uz holds for some Z � DepB (X) . Then Z = Z1 U Z2 with
zl � SubB(x+) and z2 � XM. It follows that uzl = yl � x+, and the reflexivity rule
gives x+ ---+ Y1 E _E+ . According to the join rule for FDs we have X ---+ x+ E _E+ and the
transitivity rule implies X ---+ Y1 E _E+ . Finally, the implication rule gives X --* Yi E _E+ .
Furthermore, if z2 = {Vl , . . . ' Vm} � XM , then X - Vi E _E+ for 1 � i � m by Lemma
4.7. Applying the multi-valued join rule gives X --* Y E _E+ . 0

4 .1 .6 Completeness

Proving the completeness result for functional and multi-valued dependencies will involve
the construction of some finite instance rx which satisfies all dependencies in E but does not
satisfy any FD or MVD a � E+ with left-hand side X. This instance will initially contain
two elements t 1 , t2 which are coincident on exactly all attributes which are functionally
determined by X . Afterwards new elements are generated and added to r x by exhaustively
combining values from t 1 on the join of some W � XM and the values from t2 on the join of

104

4. 1 . AXIOMATISATION Sebastian Link

XM - W. Note, however, that for different W, W' E XM the meet Wn W' is not necessarily
equal to AN . The construction above becomes possible , if one can show that W n W' s; x+
for any different W, W' E X M .

Definition 4.9. Let N E N A, X' � MaxB(N) and X = UX'. A basis attribute Y E
SubB(X) is possessed by X if and only if every basis attribute Z E SubB(N) with Y s; Z
is also a subattribute of X (Z s; X) . D

It follows that SubB(WnW') with different W, W' E XM contains only basis attributes
of vV or W' which are neither possessed by W nor by W'.

ExAMPLE 4 . 7 . Let K[L(M[N(A, B)] , C)] E N A, and X = K[L(M[N(A, B)])] . Then X
does possess K[L(M[N(>.. , >..] , >..)] , but does not possess K[L(>.. , >..)] . For an illustration see
also Figure 4 .2 . D

K[L(M[N(A, J..)] ,A.)] K[L(M[N(J.. ,B)],J,.)] K[L(J.. ,C)]

K[L(M[N(J.. , J..)] ,J..)]

K[L(J.. , J..)]

Fig. 4 .2 . The subattribute basis of K[L (M[N(A, B)] , C)]

A basis attribute of N is not possessed by some X exactly if it is also a subattribute
of XCjy. According to the mixed meet rule it follows that basis attributes which are not
possessed by any element in X M are functionally determined by X.

Lemma 4.10. Let N E N A, X' � MaxB(N) , X = UX' and Y E SubB(X) . Then is Y
possessed by X if and only if Y rf- SubB(Xc) .

Proof. Let Y be possessed by X. Assume that Y E SubB(Xc) . It follows that there is
some Z E MaxB(Xc) � MaxB(N) with Y s; Z. Since Y is possessed by X we also
have Z E SubB(X) , and as Z E MaxB(N) also Z E MaxB(X) . This is a contradiction
since MaxB(X) n MaxB(Xc) = 0 (note that X = xcc in this case) . Consequently,
Y rf- SubB(Xc) .

If Y is not possessed by X , then there is some Z E SubB(N) with Y s; Z and Z rf­
SubB(X) . Since SubB(N) = SubB(X) U SubB(Xc) we must have that Z E SubB(Xc) ,
and therefore also Y E SubB(Xc) . D

Corollary 4 .11 . Let N E N A, X E Sub(N) , and E a set of functional and multi-valued
dependencies on N. Then for every W E XM and every Y E SubB(W) that is not possessed
by w follows that y s; x+ .

105

4 . 1 . AXIOMATISATION Sebastian Link

Proof. Since Y is not possessed by W, we have Y E SubB(We) by Lemma 4 . 10 and
therefore Y :S W n we. Lemma 4. 7 implies that X - W E E+ holds, and using the mixed
meet rule we infer X ---+ W n we E E+ . The reflexivity rule implies W n we ---+ Y E E+
since Y ::; W n we. Consequently, X ---+ Y E E+ by the transitivity rule. This means
Y ::; x+ . o

Suppose DepB(X) = SubB(X+) U {W0,1 , . . . , Wo,m , W1 , . . . , Wk} with Wo,i ::; x+ for
i = 1 , . . . , m and W1 , . . . , Wk i. x+ . We have seen that SubB(Wi n Wj) , i # j, contains
only basis attributes of wi or wj neither possessed by wi nor by wj. It follows that
X ---+ Wi n Wj E E+ holds.

Assume now that there are two elements t 1 , t2 E dom(N) which coincide on at least all
subattributes of x+. It is then easy to see that one can substitute the values of t1 on all
subattributes of some given Wi E X M for the corresponding values of t2 and end up with
an element in dom(N) .

Lemma 4 .12 . Let N E N A, E a set of functional and multi-valued dependencies on N and
X E Sub(N) . Let DepB(X) = SubB(X+) uXM with XM = {W0,1 , . . . , Wo,m , W1 , . . . , Wk}
and Wo,i :S x+ for 1 :S i :S m and W1 , . . . , Wk i. x+ . Let t 1 , t2 E dom(N) with 1rf'{, (t 1) =
1r{t (t2) , if W ::; x+ . Then for all W = uW' with W' � {W1 , . . . , Wk} there is some
t E dom (N) with 1r{t (t) = 1r{t (t1) and 1f{[,c (t) = 1f{[,c (t2) · 0

Corollary 4. 1 1 shows that every basis attribute which is not possessed by any Wi E XM
is functionally determined by X, i .e . , elements in dom(N) with the same value on X will also
coincide on all basis attributes which are not possessed by any Wi E XM. The statement
from Lemma 4 . 12 is therefore equivalent to the fact that there is some t E dom(N) with

, if A is possessed by some Wi E W'
, else

and where A is any element of SubB(N) . We are now prepared to prove the main result
of this section.

Theorem 4 . 13 . The set of rules from Proposition 4 . 5 is complete for the finite implication
of FDs and MVDs in the presence of records and lists.

Proof. Let N be an arbitrary nested attribute and E an arbitrary set of FDs and
MVDs on N. Due to Proposition 4 .5 it remains to show completeness in the finite sense,
i . e . , Efin � E+ . Let X E Sub(N) . Let DepB(X) = SubB(X+) U XM with XM =
{W0,1 , . . . , Wo,m , W1 , . . . , Wk} and Wo,i :S x+ for i = 1 , . . . , m and W1 , . . . , Wk i. x+.
Take it , t2 E dom(N) defined by

if and only if w < x+.

Recall that such t 1 , t2 exist according to Lemma 3. 13 . Define an instance r <;;: dom(N) with
t 1 , t2 E r and add for every W = UW' with W' <;;: {W1 , . . . , Wk} the t E dom(N) with

106

4. 1 . AXIOMATISATION Sebastian Link

1r{'ir (t) = 1r{'t, (t1) and 7r�c (t) = 7r�c (t2) from Lemma 4 . 12 to r. Obviously, r has exactly 2k
elements, and if 1r{'ir1 (ti) =I= 1r{'ir1 (tj) , then also 1r{'t, (ti) i= 1r{'ir (tj) on all W :S W1 which are
possessed by Wl .
We will show that Fr E. Then, for X ----+ Y E Efin we have Fr X ----+ Y. Since all elements
of r coincide on x+, r can only satisfy X ----+ Y if all elements of r also coincide on Y.
I t follows by construction of r that Y :S x+. Proposition 4 .8 implies X ----+ Y E E+ . For
X --» Y E Efin we have Fr X --» Y. Again by construction, r can only satisfy X --» Y
if Y = X0 u Wi 1 U · · · u Wim with X0 :S x+ and 1 :S i1 < · · · < im :S k . Therefore,
X --» Y E E+ by Proposition 4 .8 .

It remains to show that Fr E holds.

1. Suppose U ----+ V E E. Define

w = u{wi I 3U' .U' :S u and U' is possessed by Wi} ·

It follows that U :S x+ u W since every subattribute of U that is possessed by some
Wi is also a subattribute of W and every subattribute of U that is not possessed by
any Wi is a subattribute of x+. The reflexivity rule implies x+ U W ----+ U E E+ . Using
the transitivity rule gives x+ U W ----+ V E E+ .
Take ti , tj E r with 1r{j (ti) = 1r{j (tj) · All elements of r are equal on x+. Assume
1r{'ir (ti) i= 1r{'ir (tj) . Then there is some W1 with 1r{'ir1 (ti) i= 1r{'ir1 (tj) and some subattribute
U' :S U which is possessed by W1 • Consequently, 1r{j, (ti) #- 1r{j, (tj) and, therefore ,
1r{j (ti) #- 1r{j (tj) too, a contradiction. It follows that 1r{'t, (ti) = 1r{'ir (tj) holds and there­
fore 7r�+uw (ti) = 7r�+uw (tj) as wel l . Now, x+ U W is the join of elements in DepB(X) ,
i .e . , X --» x+uw E E+ by Proposition 4.8. Hence, we infer X ----+ (V -'- (X+uW)) E E+
by the mixed pseudo-transitivity rule. Proposition 4.8 implies V_,_ (X+ u W) :S x+ ,
and therefore 1f�_,_ (x+uw) (ti) = 1f�_,_(x+uw) (tj) · Since V :S (x+ u w) u (V-'- (x+ u w))
holds we obtain 1r{j (ti) = 1r{j (tj) · This proves Fr U ----+ V.

2 . Suppose U --» V E E. Define again

w = u{wi I 3U' .U' :S u and U' is possessed by Wi} ·

As before, U :S x+ u W holds. From U --» V E E and >. :S x+ u W follows x+ u W --»

V E E+ by the augmentation rule.
Take ti, tj E r with 1r{j (ti) = 1r{j (tj) . Again, the construction of r implies 7r�+uw (ti) =
7r�+uw (tj) · Since X --» x+ u w E E+ holds by Proposition 4.8, the pseudo-transitivity
rule allows to derive X --» (V -'- (X+ U W)) E E+ . Therefore, V -'- (X+ U W) is the join
of some elements in DepB(X) by Proposition 4.8. By construction of r there is some
t E r with

and

107

4 . 2 . MINIMALITY Sebastian Link

As U, V ::; x+ U W U (V -'- (X+ u W)) hold we have U u V ::; x+ u Wu (V -'- (X+ u W))
and therefore n{fuv (t) = n{fuv (ti) · From V -'- (X+ U W) ::; V follows

ve ::; (V -'- (x+ u W))e

But then U U ye ::; x+ U W U (V-'- (X+ U W))c and thus n�uvc (t) = n�uvc (tj) · This
proves Fr U - V. D

The construction for maximal basis attributes of N is based on the relational theory. The
rest follows from the algebraic framework and the fact that non-maximal basis attributes
of N that are not possessed by any W E X M are already functionally determined by X.
This is due to the mixed meet rule.

Corollary 4.14. Finite and unrestricted implication coincide for the class of FDs and
MVDs in the presence of records and lists.

Proof. According to Proposition 4.5 the inference rules are sound for the (unrestricted)
implication of FDs and MVDs. This shows that E+ � E* . Theorem 4.13 has just shown
that Efin � E+ holds. This implies

E+ c E* c E* c E+ - - fin -

and E* = Efin follows for an arbitrary nested attribute N and an arbitrary set E of FDs
and MVDs on E. D

4 . 2 Minimality

In this section the independence of the inference rules from Proposition 4.5 is studied.
That is, we will investigate whether the sound and complete set of inference rules from
Proposition 4 .5 is minimal in the sense of Definition 3.7 . The goal of this section is to
identify a minimal subset of the rules from Proposition 4 .5 . For technical reasons we first
derive the auto-complement rule

x - Y
X - Z Z ::; Y n ye .

The proof of Lemma 4 . 15 shows in particular the soundness of this rule.

Lemma 4.15 . The auto-complement rule is not independent from {reflexivity axiom, tran­
sitivity rule, implication rule, mixed meet rule} .

Proof.

----=---Z <YnYc
X --+ Y n ye Y n ye --+ Z -

X -+ Z
x - z

108

D

4 .2 . MINIMALITY Sebastian Link

The following lemmata show that pseudo-difference rule, multi-valued meet rule as well
as augmentation rule cannot be used to infer any further MVDs in the presence of the
remaining inference rules. In the corresponding proofs inference schemata are identified
which can be used instead of an application of the respective rule.

Lemma 4.16 . The pseudo-difference rule is not independent from { Brouwerian comple­
ment rule, auto- complement rule, join rule} .
Proof. According to Theorem 4.2 (viii) in [202] we have (Z---=-Y)ee = (zeenye)ee . Applying
the third equation from Lemma 4.4 we obtain (Z---=-Y)ee = (ze u yee)e .

Furthermore, (Z---=-Y) n (Z---=-Y)e :::; (Z n ye) n (Y u ze) = (Z n ye n Y) u (Z n ye n
ze) :::; (Ye n Y) u (ze n Z) . As (Z n ze) u (Y n ye) contains only non-maximal basis
attributes of the underlying nested attribute N, all maximal basis attributes of N are in
((Z n ze) U (Y n ye))C , i .e . , ((Z n ze) U (Y n ye))e = N . This shows that

(Z ---=-Y) n (Z---=-Y)e :::; ((Y n ye) u (Z n ze)) n ((Y n ye) u (Z n ze))e (6)
holds as well .

X --» Y
X --» Z X --» ye
X --» ze X --» yee X --» y n ye

YnYC �:ynyc
X --» z n ze

znzc :sznzc

X --» ze u yee X --» (Y n ye) u (Z n ze)
X --» (ze U yee)c X --» (Z---=-Y) n (Z---=-Y)e (6)

X --» (Z---=-Y)ee U ((Z---=-Y) n (Z---=-Y)e)
=Z-'-Y

0

Lemma 4. 1 7. The multi-valued meet rule is not independent from { Brouwerian comple­
ment rule, auto- complement rule, multi-valued join rule} .
Proof. The following derivation tree applies the third equation of Lemma 4.4 , and uses
distributivity.

X --» Y X --» Z
X --» ye X --» ze
X --» ye u ze X --» Y

X --» (Ye u ze)e X --» y n ye n ZYnYC nz:synyc
X --» z

------::---znzc ny <znzc X --» (Ye u ze)e u (Y n ye n Z) x --» z n ze n Y -

X --» (Ye u ze)e u (Y n ye n Z) u (Z n ze n Y)
.._,_,

=(Ynz)CC =(YnZ)n(Ynz)C
X --» Y n Z

109

0

4 .2 . MINIMALITY Sebastian Link

Lemma 4.18 . The augmentation rule follows from { reflexivity axiom, pseudo-transitivity
rule, multi-valued join rule, implication rule} .

Proof. Note that Y = Y n (Y U X) = ((Y -'-X) u Y) n ((Y -'-X) u X) = (Y -'-X) u (Y n X) .

X u W --+ Xx::;xuw

X u w ____.. X X ____.. y X u w --+ y n XYnx::;xuw

X u w ___.. y_,_x X U W ----* Y n X
x u w ___.. y

X U W ----* Y U V

X u W --+ Vv::;w::;xuw

X U W ----* V

0

It follows from the previous lemmata that reflexivity axiom, extension rule, transitivity
rule, implication rule, Brouwerian complement rule, pseudo-transitivity rule, mixed pseudo­
transitivity rule, multi-valued join rule and mixed meet rule form already a sound and
complete set of inference rules for the implication of FDs and MVDs. We are now going
to show that this is in fact a minimal set , i .e . , each of the rules is independent from the
others.

Lemma 4.19 . The reflexivity axiom is independent from the set m = { extension rule,
transitivity rule, implication rule, Brouwerian complement rule, pseudo-transitivity rule,
mixed pseudo-transitivity rule, multi-valued join rule, mixed meet rule} .

Proof. The reflexivity axiom is the only inference rule that allows one to infer dependencies
from the empty set . o

Lemma 4.20. The extension rule is independent from the set m = {reflexivity axiom,
transitivity rule, implication rule, Brouwerian complement rule, pseudo-transitivity rule,
mixed pseudo-transitivity rule, multi-valued join rule, mixed meet rule} .

Proof. Let N = L(A, B) , E = {L(A) --+ L(B) } and a = L(A) --+ L(A, B) . The closure of
E under m is represented by the following tables in the following way. An FD X --+ Y is
in the closure E� if and only if there appears a cross x in row X and column Y of the left
table. Correspondingly, an MVD X ____.. Y is in the closure E� if and only if there appears
a cross x in row X and column Y of the right table.

11 --+ IIAIL(A)IL(B)IL(A, B)II 11 ____.. IIAIL(A)IL(B)IL(A, B)II
A X A X X

L(A) X X X L(A) X X X X
L(B) X X L(B) X X X X

L(A, B) X X X X L(A, B) X X X X

It can be seen that a tf: E� . However, a can be inferred from E using the extension
ru�. 0

1 10

4 .2 . MINIMALITY Sebastian Link

Lemma 4.2 1 . The transitivity rule is independent from the set 91 = { reflexivity axiom, ex­
tension rule, implication rule, Brouwerian complement rule, pseudo-transitivity rule, mixed
pseudo-transitivity rule, multi-valued join rule, mixed meet rule} .

Proof. Let N = L(A, B) , E = {A ---+ L(A) , L (A) ---+ L(B) } and a
closure of E under 91 is represented by the following tables.

A ---+ L(B) . The

---+ 11 A IL (A)IL (B)IL(A, B)ll
A X X

L(A) X X X X
L(B) X X

L(A, B) X X X X

11 - 11 A IL(A)IL (B)IL (A, B)ll
A X X X X

L(A) X X X X
L(B) X X X X

L(A, B) X X X X

It can be seen that a � E� . However, a can be inferred from E using the transitivity
rule. 0

Lemma 4.22. The implication rule is independent from the set 91 = { reflexivity axiom, ex­
tension rule, transitivity rule, Brouwerian complement rule, pseudo-transitivity rule, mixed
pseudo-transitivity rule, multi-valued join rule, mixed meet rule} .

Proof. Let N = A , E = 0 and a = A - A . The closure of E under 91 is represented by the
following tables.

11---+IIAII
11 A llxll

It can be seen that a � E�. However, a can be inferred from E using first the reflexivity
axiom to infer A ---+ A, and subsequently the implication rule. 0

Lemma 4.23. The Brouwerian complement rule is independent from the set 91
{reflexivity axiom, extension rule, transitivity rule, implication rule, pseudo-transitivity
rule, mixed pseudo-transitivity rule, multi-valued join rule, mixed meet rule} .

Proof. Suppose we interpret X - Y as "X functionally determines Y" , and consider the
set of FDs on a nested attribute N. Under this interpretation, implication rule, pseudo­
transitivity rule, mixed pseudo-transitivity rule, multi-valued join rule and mixed meet rule
are all still valid, but the Brouwerian complement rule is not. Hence, it cannot be logically
implied by the set given. 0

Lemma 4.24. The pseudo-transitivity rule is independent from the set 91 = { reflexivity ax­
iom, extension rule, transitivity rule, implication rule, Brouwerian complement rule, mixed
pseudo-transitivity rule, multi-valued join rule, mixed meet rule} .

1 1 1

4 .2 . MINIMALITY Sebastian Link

Proof. Let N = L(A, B, C) , E = {.A ----* L (A) , L (A) ----* L(B) } and a- = .A ----* L(B) . The
closure of E under 91: is represented by the following tables

and

� 11 .A IL (A)IL(B)IL(C)IL (A , B)IL(A, C)IL(B, C)IL(A, B , C)ll
.A X

L(A) X X
L(B) X X
L(C) X X

L(A, B) X X X X
L(A, C) X X X X
L(B, C) X X X X

L(A, B , C) X X X X X X X X

----* 11 .A IL(A)IL(B)IL(C)IL(A, B)IL(A, C)IL(B, C)IL(A, B , C)lj
.A X • • X

L(A) X X 0 0 0 0 X X
L (B) X X X X
L(C) X X X X

L(A, B) X X X X X X X X
L(A, C) X X X X X X X X
L(B, C) X X X X X X X X

L(A, B , C) X X X X X X X X

A filled circle • in line X and column Y indicates that X ----* Y follows from the given
MVD .A ----* L(A) , and a o in line X and column Y indicates that X ----* Y follows from the
given MVD L(A) ----* L(B) . This shows that A ----* L(B) tJ. E�, but a- can be derived using
the pseudo-transitivity rule. D

Lemma 4.25. The mixed pseudo-transitivity rule is independent from the set 91: =

{ reflexivity axiom, extension rule, transitivity rule, implication rule, Brouwerian comple­
ment rule, pseudo-transitivity rule, multi-valued join rule, mixed meet rule} .

Proof. Let N = L(A , B) , E = {.A ----* L (A) , L (A) --+ L(B) } and a- = .A � L(B) . The
closure of E under 91: is represented by the following tables.

11 � 11-A IL (A)jL(B)jL (A, B)il I! ----* jj-AjL(A)jL (B)IL(A, B)lj
.A X .A X X X X

L (A) X X X X L(A) X X X X
L(B) X X L(B) X X X X

L(A, B) X X X X L(A, B) X X X X

1 12

4.2 . MINIMALITY Sebastian Link

It can be seen that a � .E� . However, a can be inferred from E using the mixed pseudo-
transitivity rule. 0

In order to show the independence of the multi-valued join rule, we make use of the fact
that non-maximal basis attributes cannot be represented as the Brouwerian complement
of any subattribute.

Lemma 4.26. The multi-valued join rule is independent from the set 9t = { reflexivity
axiom, extension rule, transitivity rule, implication rule, Brouwerian complement rule,
pseudo-transitivity rule, mixed pseudo-transitivity rule, mixed meet rule} .

Proof. Let N = L(A, K[B]) , .E = {A __,. L(A) , A __,. L (K[A]) } and a = A __,. L(A, K[A]) .
The closure of E under 9t is represented by the following tables

and

11

---+ 11 A IL(A)IL(K[A])IL([K(B)])IL(A, K[A])IL(A, K[BDII
A X 0

L(A) X X 0 0

L(K[A]) X X
L(K[B]) X X X

L(A, K[A]) X X X X
L(A, K[B]) X X X X X X

11 A IL(A)IL(K[A])IL([K(B)])IL(A, K[A])IL (A, K[BDII
A X • 0 • X

L(A) X X 0 X 0 X
L(K[A]) X • X • X
L(K[B]) X X X X X

L(A, K[A]) X X X X X X
L(A, K[B]) X X X X X X

A filled circle • in line X and column Y indicates that X __,. Y follows from the given
MVD A __,. L(A) , whereas a circle o in line X and column Y indicates that X ---+ Y or
X __,. Y follows from the given MVD A __,. L(K[B]) . One can see that A __,. L(A, K[A]) �
E� , but a can be derived using the multi-valued join rule . 0

Lemma 4.27. The mixed meet rule is independent from the set 9t = {reflexivity axiom,
extension rule, transitivity rule, implication rule, Brouwerian complement rule, pseudo­
transitivity rule, mixed pseudo-transitivity rule, multi-valued join rule} .

Proof. Let N = L[K(A, B)] , .E = {A __,. L[K(A)] } and a = A __,. L[A] . We use a instead of
A ---+ L[A] for technical reasons. The closure of .E under 9t is represented by the following
tables

113

4 .3 . BROUWERIAN-COMPLEMENT RULE Sebastian Link

-+ IIAIL [A]IL [K(A)JIL [K(B)JIL [K(A, B)JII
A X

L[A] X X
L[K(A)] X X X
L[K(B)] X X X

L [K(A, B)] X X X X X

and

11 IIAIL [A]IL [K(A)JIL [K(B)JIL [K(A, B)JII
A X • • X

L [A] X X • • X
L[K(A)] X X X X X
L[K(B)] X X X X X

L [K(A, B)] X X X X X

as before. A filled circle • in line X and column Y indicates that X - Y follows from
the given MVD A --* L[K(A)] . One can see that A -+ L[A] � E� , but it can be derived
using the mixed meet rule. Furthermore a � E� , but a can be derived by applying the
implication rule to A -+ L[A] . 0

The combination of the previous lemmata gives the following result .

Theorem 4.28. Reflexivity axiom, extension rule, transitivity rule, implication rule,
Brouwerian complement rule, pseudo-transitivity rule, mixed pseudo-transitivity rule,
multi-valued join rule and mixed meet rule form a minimal, sound and complete set of
inference rules for the implication of FDs and MVDs in the presence of records and lists.

0

Theorem 4 . 28 is somewhat surprising. We have seen that in the presence of lists the
multi-valued join rule is independent from the rest of the rules in Theorem 4.28. For
relational databases, however, it was proven in [204] that the multi-valued join rule is
logically implied by a corresponding subset of the rules above. The fact that this is not
the case in the presence of lists results from the existence of some subattributes which are
not the Brouwerian complement of any other subattributes, e .g. L [A] is not the Brouwerian
complement of any subattribute of L [A] .

4 . 3 B rouwerian- Complement Rule

The Brouwerian complement rule is the analogue of the complementation rule for MVDs in
relational databases. There are a few papers [32 , 46, 204] which point at the significance of
the complementation rule. In fact , it is the only rule that does not have a direct analogue
in the axiomatisation of FDs since it is the only rule that takes into account the context

1 14

4.3 . BROUWERIAN-COMPLEMENT RULE Sebastian Link

of the dependencies, that is, the underlying relation schema R. The rest of the inference
rules apply independently of whatever relation schema the attributes are embedded in.

The situation is again slightly different in the presence of lists. Here, the Brouwerian
complement rule is not the only context-sensitive rule. The mixed meet rule depends on
the underlying nested attribute as well. That is, the FD X --7 Y n Y� can be inferred from
the MVD X ---* Y.

EXAMPLE 4 . 8 . Let Y = L(A, K [A]) , N1 = L(A, K[A]) and N2 = L(A, K [B]) . In these
cases, Y�1 = L(A, A) and Y�2 = L(A, K[B]) . It follows that Y nN1 Y�1 = L(A, A) , but
Y nN2 Y�2 = L(A, K[A]) . 0

We delay a detailed study of the mixed meet rule to future research , and focus for the
remainder of this section on the role of the Brouwerian complement rule . It is interesting to
study whether one can obtain a (minimal) sound and complete set of inference rules that
does not include the Brouwerian complement rule. A further reason for this might appear
in the future when the algorithmic synthesis of nested attributes will be studied. This will
cause at least as many problems as in relational databases [29, 204] .

Given a nested attribute N we introduce the N-axiom A ---* N
which is sound by the

definition of MVDs. It is a very weak form of the Brouwerian complement rule, and corre-

sponds to the so-called R-axiom 0
---* R

for a relation schema R in relational databases (see

[46]) . We will show in this section that the Brouwerian complement rule in the minimal set
of inference rules from Theorem 4 .28 can be replaced by the N-axiom and still maintain
minimality.

First of all , we will show that N-axiom and Brouwerian complement rule are equivalent
in the presence of reflexivity axiom, implication rule and pseudo-transitivity rule.

Lemma 4.29. The Brouwerian complement rule is not independent from { reflexivity ax­
iom, N -axiom, implication rule, pseudo-transitivity} . Furthermore, the N -axiom is not
independent from {reflexivity axiom, Brouwerian complement rule, implication rule} .

Proof. The derivation tree for the first statement is given by

y --+ A>.::;Y

Y ---* A A ---* N
X - Y Y - N

X ---* N....:....Y
"-v--'
=Ye

and the proof for the second statement is given by

A --+ A>.::;>.

A ---* A
A ---* N

115

0

4.3 . BROUWERIAN-COMPLEMENT RULE Sebastian Link

While all elements of Dt = { reflexivity axiom, extension rule, transitivity rule, implica­
tion rule, pseudo-transitivity rule, mixed pseudo-transitivity rule, multi-valued join rule,
mixed meet rule} are still sound when the MVDs are interpreted as FDs, the N-axiom is
not. This shows the independence of the N-axiom from m. above.

Let Dt = {reflexivity axiom, extension rule, transitivity rule, implication rule , N-axiom,
pseudo-transitivity rule, mixed pseudo-transitivity rule, multi-valued join rule, mixed meet
rule } . It follows from Lemma 4 .29 and the lemmata from the previous section that R
is independent from Dt - { R} , if R E {extension rule, transitivity rule, mixed pseudo­
transitivity rule, multi-valued join rule , mixed meet rule} . We deal with the remaining
cases in the following lemma.

Lemma 4.30. Let Dt = { reflexivity axiom, extension rule, transitivity rule, implication
rule, N -axiom, pseudo-transitivity rule, mixed pseudo-transitivity rule, multi-valued join
rule, mixed meet rule} . For R E { reflexivity axiom, implication rule, pseudo-transitivity
rule} it follows that R is independent from Dt - { R}.

Proof. The independence of the reflexivity axiom R from Dt - { R} follows from the fact
that there is no other axiom to infer any trivial FDs.

Let R be the implication rule , N = A, E = 0 and a = A ---* A. Then E�-{R} = {A -+
A, A -+ A, A -+ A, A ---* A} , but a can be derived by the implication rule .

Let R be the pseudo-transitivity rule, N = L(A, B) , E = {A ---* L(A) , L(A) ---* L(B) }
and a = A ---* L(B) . The closure of E under Dt - { R} is represented by the following two
tables.

11 -+ IIAIL(A)IL(B)IL(A, B)II 11 ---* IIAIL (A)IL(B)IL(A, B)II
A X A X 0 X

L(A) X X L(A) X X • •

L(B) X X L(B) X X
L(A, B) X X X X L(A, B) X X X X

A filled circle • in line X and column Y indicates that X ---* Y follows from the given
MVD L(A) ---* L(B) , and a o in line X and column Y indicates that X ---* Y follows from
the given MVD A ---* L(A) . One can see that a tt. E�-{R} ' but a can be derived from E by
the pseudo-transitivity rule. 0

We obtain the following result .

Theorem 4.31 . Reflexivity axiom, extension rule, transitivity rule, implication rule, N­
axiom, pseudo-transitivity rule, mixed pseudo-transitivity rule, multi-valued join rule, and
mixed meet rule form a minimal, sound and complete set of inference rules for the impli­
cation of FDs and MVDs in the presence of records and lists. 0

116

4 .4. IMPLICATION PROBLEM Sebastian Link

4.4 Implication Problem

The implication problem for FDs and MVDs is to decide whether for an arbitrary nested
attribute N, an arbitrary set E of FDs and MVDs on N and an arbitrary FD or MVD a on
N, E f= a holds. According to Corollary 4 . 14 finite and unrestricted implication problem
coincide. We will now present a provably-correct algorithm for deciding the implication
problem. It is shown that the algorithm works in polynomial time in the number of basis
attributes of the underlying nested attribute and the number of FDs and MVDs given .

4.4.1 The Algorithm

Proposition 4 .8 suggests a strategy for deciding the implication problem for the class of
FDs and MVDs. An MVD X - Y is implied by a set E of FDs and MVDs if and only if Y
is the join of some elements of the dependency basis of X with respect to E. Furthermore,
an FD X � Y logically follows from E if and only if Y is a subattribute of the nested
attribute closure x+ of X with respect to E. The implication problem E f= a where a
is an FD or MVD with left-hand side X reduces therefore to the problem of computing
the dependency basis DepB(X) for any X and with respect to any set E in the sense of
Definition 4 .6 . The following algorithm extends the well-known membership algorithm for
relational databases proposed in [27] .

The idea of this algorithm is to start with trivial values for nested attribute closure
x+ (in the algorithm Xnew) and XM (in the algorithm DBnew) in line (1) and (2) . The
algorithm then tries to further extend x+ and decompose X M as long as there are any
changes to one of them after considering all FDs and MVDs in E (REPEAT loop from
line (3) to line (26)) . As it will turn out in the correctness proof later it is sufficient to
consider all the FDs and MVDs in E. That is, any dependencies in E+ - E do not need
to be considered . This leads ultimately to a polynomial-time algorithm. If X � V E E+
at some stage, then x+ is extended by V in line (1 1) . Furthermore, every maximal basis
attribute of N that is a subattribute of V becomes a new singleton in XM, and all previous
W E X M are reduced to (W _,_ V)cc in line (12) . If X - V E E+ at some stage, then x+ is
extended by V n vc in line (19) according to the mixed meet rule. Suppose there is some
W E XM which shares at least some maximal basis attribute of N with V ((Vn W)cc i= A.) ,
but not all of the maximal basis attributes of N which are subattributes of W are also
subattributes of V ((V n W)cc f. W) . Such a W is then replaced by two new elements,
(V n W)cc and (W _,_ V)cc of XM in line (22) . That means a finer partition has been found
according to pseudo-difference and multi-valued meet rule. More details of the algorithm
can be found in the correctness proof.

Algorithm 4.4.1 (Nested Attribute Closure and Dependency Basis)

Input : N E N A, X E Sub(N) , set E of FDs and MVDs on N
Output : XJ"g and DepBa1g (X)
Method:

1 17

4.4 . IMPLICATION PROBLEM Sebastian Link

(1)
(2)
(3)
(4)
(6)
(7)
(8)
(9)
(10)
(1 1)
(12)
(13)
(14)
(15)
(16)
(1 7)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)

VAR DBnew , DBold � Sub(N) , Xnew , Xo!d , U, V, W, U, V, U' E Sub(N) ;

Xnew := X;
DBnew := MaxB(Xcc) U {Xc} ;
REPEAT

Xold := Xnew ;
DBold := DBnew ;
FOR each U ---+ V E E DO

[!_ := U{W E DBnew I �U' .U' possessed by W, U' � Xnew , U' ::=; U} ;
V := V--=-U;
IF V =/= A THEN BEG IN

Xnew := Xnew U V;
DBnew := { (W--=-V)cc I W E DBnew, (W--=-V)cc =/= A} U MaxB(Vcc) ;

END;
END DO;
FOR each U --+t V E E DO

U := U{W E DBnew I �U' .U' possessed by W, U' � Xnew , U' ::=; U} ;
V := V--=-U;
IF V =/= A THEN BEG IN

Xnew : = Xnew u (V n vc) ;
FOR each W E DBnew DO

IF (V n W)cc =!= A AND (V n W)cc =!= W THEN
DBnew := (DBnew - {W}) u { (V n W)cc, (W--=-V)cc } ;

END DO;
END;

END DO;
UNTIL (Xnew = Xoid) AND (DBnew = DBoid) ;
X + · - X . X M · - DB . alg .- new, alg .- new ,
DepBaig (X) := SubB(X�g) U X� ;
RETURN(X�g' DepBaig (X)) ;

In order to become more familiar with Algorithm 4.4 .1 we present an example.

ExAMPLE 4 . 9 . Suppose the input for Algorithm 4.4.1 is as follows:

- N = L1 (L2 [L3 [L4 (A, B, C)]] , L5 [L6 (D, E)] , L1 (F, Ls [Lg (G, L10 [H])] , I)) ,
- U1 = L1 (L5 [A] , L7 (F, Ls [Lg (G)] , J)) , V1 = L1 (L2 [L3 [L4 (C)]] , L5 [L6 (E)])] ,
- U2 = L1 (L2 [L3 [A]] , L7 (F)) , V2 = L1 (L2 [L3 [L4 (A)]] , L7 (Ls [Lg (G)] , I)) ,
- U3 = L1 (L7 (F, Ls [Lg (LIO [A])])) , V3 = L1 (L2 [L3 [A]] , L5 [L6 (D)]) ,
- E = {U1 --+t V1 , U2 ---+ V'; , U3 --+t \13} and X = L1 (L7 (F, Ls [Lg (LID [H])])) .

After initialisation we have

118

0

4.4 . IMPLICATION PROBLEM Sebastian Link

- Xnew = X, and
- DBnew - {L1 (L2 [L3 [L4 (A, B, C)]] , Ls [L6 (D, E)] , L7 (Ls [Lg (G)] , I)) ; L1 (L7 (F)) ;

L1 (L7 (Ls [Lg (L10 [H])])) } .

The initial state i s illustrated in Figure 4 .3 . Functionally determined basis attributes
are marked with a circle, remaining maximal basis attributes appear in different boxes
according to their membership.

H

Fig. 4.3. Initialisation for DepBalg (X) .

The first pass through the REPEAT loop between line (3) and (26) yields the following
intermediate results:

1 . u2 --7 V2 :
[!_ = L1 (L2 [L3 [L4 (A, B, C)]] , Ls [L6 (D, E)] , L7 (Ls [Lg (G)] , I)) ,
V = A and therefore no changes

2 . ul - V1 :
[!_ = L1 (L2 [L3 [L4 (A, B, C)]] , L5 [L6 (D, E)] , L7 (Ls [Lg (G)] , I)) ,
V = A and therefore no changes

3 . u3 - V3__:_
U = A, V = V3 ,
Xnew = L1 (L2 [L3 [A]] , Ls [A] , L1 (F, Ls [Lg (LIO [H])]))
DB new = { L1 (L2 [L3 [L4 (A, B, C)]] , Ls [L6 (E)] , L7 (Ls [Lg (G)] , I)) ; L1 (L7 (F)) ;
L1 (L7 (Ls [Lg (LIO [H])])) ; L1 (Ls [L6 (D)]) }
The second pass through the REPEAT loop yields the following intermediate results:

1 . u2 --7 V2 :
u = A, v = v2 ,
X new = L1 (L2 [L3 [L4 (A)]] , Ls [A] , L1 (F, Ls [Lg (G, L10 [H])] , I)) ,
DBnew = {L1 (L2 [L3 [L4 (A)]]) ; Ll (L7 (Ls [Lg (G)])) ; L1 (L7 (I)) ; L1 (L2 [L3 [L4 (B, C)]] ,
Ls [L6 (E)]) ; L1 (L7 (F)) ; L1 (L7 (Ls [Lg (Lio [H])])) ; L1 (Ls [L6 (D)]) }

2 . ul - V1__:_
u = A, v = v1 ,
Xnew = L1 (L2 [L3 [L4 (A)]] , Ls [A] , L1 (F, Ls [Lg (G, L10 [H])] , I)) ,

1 19

4.4. IMPLICATION PROBLEM Sebastian Link

Fig. 4.4. DepBalg (X) after its first Update.

Fig. 4.5. DepBalg (X) after its second Update.

DBnew = {L1 (L2 [L3 [L4 (A)]]) ; Ll (L7 (Ls [Lg (G)])) ; L1 (L7 (I)) ; L1 (L2 [L3 [L4 (B)]]) ;
L1 (L2 [L3 [L4 (C)]] , L5 [L6 (E)]) ; L1 (L1 (F)) ; L1 (L7 (Ls [Lg (LlD [H])])) ; L1 (Ls [L6 (D)]) }

3 . u3 ___.. V3 :
u = .x., v = v3 and therefore no changes.

The next pass through the REPEAT loop yields nothing new. We therefore have the
output

- X�g = L1 (L2 [L3 [L4 (A)]] , Ls [-X] , L7 (F, Ls [Lg (G , L10 [H])] , I)) and
- DepBalg (X) = {L1 (L2 [-X]) ; L1 (L2 [L3 [.X]]) ; L1 (L2 [L3 [L4 (A)]]) ; Ll (Ls [-X]) ; L1 (L7 (F)) ;

L1 (L1 (L8 [-X])) ; L1 (L7 (Ls [Lg (G)])) ; L1 (L7 (Ls [Lg (Ll0 [-X])])) ; L1 (L7 (Ls [Lg (LlO [H])])) ;
L1 (L7 (I)) ; L1 (Ls [L6 (D)]) ; L1 (L2 [L3 [L4 (B)]]) ; L1 (L2 [L3 [L4 (C)]] , Ls [L6 (E)]) } .

Figure 4 .6 illustrates DepBalg (X) . 0

4.4.2 Correctness

As mentioned beforehand one major objective of this section is to prove that Algorithm
4 .4 . 1 is correct , i .e . , X�g = x+ and DepBa1g (X) = DepB(X) . Before doing so we show a
technical lemma which is a result of Brouwerian algebras that is not specific to Sub(N) .

Lemma 4.32. Let N E N A and X, Y, Z E Sub(N) . Then X --=-Y = (X --=- (Y u Z)) u ((X n
Z)--=-Y) .

120

4.4 . IMPLICATION PROBLEM Sebastian Link

H

Fig. 4.6. Final State for DepBaig (X) from Example 4.9.

Proof. From

X U Y (X u Y u Z) n (X u Y)
(X u Y u Z) n (X u Y u (X -'- (Y u Z)))
(Y u Z u (X -'- (Y u Z))) n (X u Y u (X -'- (Y u Z)))
((Y u Z) n (X u Y)) u (X -'- (Y u Z))
Y u (X n Z) u (X-'- (Y u Z))
Y u ((X n Z)-'-Y) u (X --'- (Y u Z))

follows X :S Y u ((X n Z) -'-Y) u (X -'- (Y u Z)) , i .e . , X -'-Y :S ((X n Z)-'-Y) U (X -'- (Y u Z)) .
It remains t o show that ((X n Z)-'-Y) U (X -'- (Y U Z)) ::; X -'-Y holds. This follows from
X -'- (Y u Z) ::; X --'-Y and (X n Z)-'-Y :S X -'-Y. D

The next result shows that Algorithm 4.4 .1 does not compute anything wrong, i .e . ,
every element of DepBa1g (X) is indeed in Dep(X) and X�g is a subattribute of x+.

Lemma 4.33. Let N E N A, X E Sub(N) , E a set of FDs and MVDs on N and
(X�9, DepBatg(X)) the output of Algorithm 4 .4 . 1 with DepBat9 (X) = SubB(X�9) U X;;{g.
Then

- X - Wj E E+ for all Wj E DepBat9 (X) and
- X -t X�9 E E+ hold.

Proof. The proof is done by induction on the number of passes through the two FOR
loops between line (7) and line (25) of Algorithm 4.4. 1 . Let Xt and XiM denote Xnew and
DBnew , respectively, after the ith pass.

After initialisation we have X(i = X on one hand and X -t X(i E E+ by the re­
flexivity rule. On the other hand Xf: = MaxB(Xcc) U {Xc}, i . e . , Wj E Xf: implies
Wj E MaxB (Xcc) or Wj = Xc . In the first case we have X -t X E E+ by reflexivity,
which implies X -t Wj E E+ by the subattribute rule for FDs since Wj ::; X and finally
X - Wj E E+ by the implication rule. In the second case we obtain again X -t X E E+
by reflexivity, then X - X E E+ by implication and finally X - xc E E+ by the
Brouwerian complement rule.

121

4.4 . IMPLICATION PROBLEM Sebastian Link

Let now i > 0 and U ---+ V E E the functional dependency selected in the next pass .
Suppose that Xi�l =J. xi+ or Xt'1.1 =J. Xfl since there is nothing to show otherwise. First we
have X ---+ X/ E E+ by hypothesis. Using the implication rule we derive X - xi+ E E+ .
Moreover, X - U E E+ by the join rule for multi-valued dependencies and the hypothesis.
Applying again the join rule for multi-valued dependencies gives us X - xi+ U U E E+ .
On the other hand we have U � U U xi+ , i .e . , xi+ U U ---+ U E E+ by reflexivity. Since
U ---+ V E E we can apply the transitivity rule to derive X/ U U ---+ V E E+ . An application
of the mixed pseudo-transitivity rule to X - xi+ U U, xi+ U U ---+ V E E+ leaves us with
X ---+ (V....:... (xi+ u U)) E E+ . The subattribute rule can be applied to X ---+ xi+ E E+
to infer X ---+ (xi+ n V):... U E E+ . The join rule for functional dependencies is then
applied to X ---+ (V....:... (xi+ u U)) , X ---+ (xi+ n V)__,_ U E E+ , and using Lemma 4. 32 we
obtain X ---+ V:...U E E+ . This is X ---+ V E E+ by definition, and applying the join rule
for functional dependencies to X ---+ xi+ E 2)+ tells us that X ---+ xi+ u V E 2)+' i . e . ,
X ---+ Xi�l E E+ holds.

Let wj E X/1-1 = { (W....:...V)CC I w E xr, (W....:...V)CC =J. .X} u MaxB(vcc) . If wj E xiM,
then there is nothing to show. Otherwise, if wj � vcc � V, then it follows X ---+ wj E 2)+
by the subattribute rule from X ---+ V E 2)+ ' and then X - wj E 2)+ by the implication
rule. Let now be wj = (W....:... v)cc for some w E xiM. We obtain X - V E 2)+ by the
implication rule. Furthermore, X - W E E+ by hypothesis which leads to X - W....:... V E
E+ by application of the pseudo-difference rule . Applying the Brouwerian complement rule
twice gives us X - Wi E E+ . This shows X - Wi E E+ for all Wj E X['f:-u and completes
the proof for the first FOR loop between line (7) and (14) where functional dependencies
are selected .

Consider now the second FOR loop between line (15) and (25) where multi-valued
dependencies are selected. Suppose U - V E E is used in the next pass. As before we
derive X - U U xi+ E E+ . From U - V E E, U � U U xi+ and .\ � U U X/ it
follows that U U xi+ - V E E+ by the augmentation rule. An application of the pseudo­
transitivity rule leaves us with X - V....:... (U U xi+) E E+ . On the other hand we can
derive X ---+ (xi+ n V):... U E E+, and X - (xi+ n V):...U E E+ by the implication rule.
Using now the join rule for multi-v�lued dependencies, and applyi� L�mma 4.32 gives us
X - V:...U E E+ which is X - V E E+ . It follows that X ---+ V n vc E E+ by using
the mixed meet rule. Applying the join rule for functional dependencies to X ---+ X/ E E+
leads to X ---+ xi+ u (V n vc) E E+, i .e . , X ---+ Xi�l E E+ .

Let now Wi E XiM and .\ =J. (V n Wi)cc =J. Wi. Then follows X - Wi E E+ by
hypothesis. From X - V E E+ follows X - wj n V E E+ by the multi-valued meet rule
on one hand, and X - Wi:... V E E+ by the pseudo-difference rule on the other hand. A
double application of the Brouwerian complement rule leads to X - (Wi n V)cc E E+ and
X - (Wi....:... V)cc E E+, respectively. This proves that X - Wj E E+ for all Wj E X/1-.u
and completes the proof. 0

Consider the proper chain E = E0 c E1 c · · · C En = E+ where Ei
results from Ei-l

by adding exactly one functional or multi-valued dependency which is not in Ei-l and can

122

4 .4 . IMPLICATION PROBLEM Sebastian Link

be derived by applying one of the inference rules from Proposition 4.5 to dependencies in
Ei-1 . On the way to showing the correctness of Algorithm 4 .4 . 1 we have to justify that it
is sufficient to consider FDs and MVDs in E. That is, we need to show that dependencies
in E+ - E do not alter the dependency basis. Suppose the algorithm does not only select
U -+ V, U ---» V E E within line (7) and (15) , respectively, but all FDs and MVDs from
some fixed Ei instead. Denoting the respective output by (XJg,i ' DepBalg,i (X)) , we define

(Ei)+ = alg {X -+ y I y ::; XJg,J u
{X ---» Y I Y = UZ for some Z � DepBalg,i (X) } .

Then it is obvious that EJg = (E0)�g � (E1)�g � . · · � (En)�g holds. We are going
to show that Ei � (Ei)�g for every i = 0, . . . , n, and EJg = (E1)�g · Therefore E+ �
(En)�g = · · · = (E1)�g = EJg holds. Since also EJg � E+ by Lemma 4 .33 and Proposition
4 .8 , we have indeed shown that EJg = E+ .

Lemma 4.34. For every i = 0 , . . . , n we have Ei � (Ei)�9 .

Proof. Let X -+ Y E Ei be arbitrary. Then we choose to compute XJg,i and DepBa1g,i (X)
using Algorithm 4.4 . 1 where functional and multi-valued dependencies in line (7) and (15) ,
respectively, are selected from Ei . Due to initialisation we have X ::; X new at any time
during the computation . Since X -+ Y E Ei , X -+ Y will be selected at some point . In
this case, X = A since every X' with X' ::; X also satisfies X' ::; Xnew · Consequently,
Y = Y -'-A = Y and, therefore, Xnew := Xnew U Y which implies Y ::; XJg,i · This, however,
means that X -+ Y E (Ei)�g ·

Let X ---» Y E Ei be arbitrary. Again, we choose to compute XJg,i and DepBaig,i (X) =
SubB(XJg,i) UX�,i using Algorithm 4.4. 1 where functional and multi-valued dependencies
in line (7) and (1 5) , respectively, are selected from Ei . Due to initialisation we have X ::;
X new at any time during the computation. Since X ---* Y E Ei , X ---» Y will be selected
at some point . In this case, X = A since every X' with X' ::; X also satisfies X' ::; Xnew ·
Consequently, Y = Y -'-A = Y and, therefore, Xnew := Xnew u (Y n ye) . This implies
y n ye ::; XJg,i " Moreover, yee = U{W E DBnew I (Y n w)ee # A} after the inner FOR­
loop between line (20) and (23) . It follows that yee = U{W E x�,i I (Y n w)ec -1- A} .
Since Y = yee U (Y n ye) , we conclude that Y = uz for some Z � DepBalg,i (X) and,
therefore, X ---» Y E (Ei)�g · D

The following lemma is a reminder of some algebraic properties of Brouwerian algebras.

Lemma 4.35. Let N E N A and X, Y, Z E Sub(N) . Then
1 . (X -'-Y) -'-Z = X-'- (Y u Z) ,
2. X_,_ Y ::; ye ,
3. xe_,_y ::; (X-'-Y)e, and
4- xe_,_y = (X u Y)e .

123

4.4 . IMPLICATION PROBLEM Sebastian Link

Proof. Consider the first equation. As X :::; X U Y U Z = (X -'- (Y U Z)) U Y U Z we
have X__,_ Y :::; (X__,_ (Y U Z)) U Z and this means (X__,_ Y) __,_ Z :::; (X__,_ (Y U Z)) . Vice versa,
X :::; X U Y U Z = Z U Y U (X -'-Y) = ZUYU ((X -'-Y)-'-Z) and , consequently, X -'- (Y U Z) :::;
(X__,_ Y) __,_ Z.

The second law follows immediately from X :::; Y U ye = N.
The third law follows from the fact that X U Yu (X__,_ Y)G = (X__,_ Y) u Yu (X__,_ Y)c = N

holds. Therefore, xc :::; Y U (X__,_ Y)c and xc __,_ Y :::; (X__,_ Y)c.
xc_,_y :::; (X U Y)c since X U Y U (X U Y)c = N holds. Moreover, N = X U Y U xc =

X U Y U (Xc_,_Y) , i .e . , (X U Y)c :::; xc_,_y as well . This shows the fourth law. 0

The next lemma shows that FDs and MVDs in E+ - E do not have any impact on the
dependency basis.

Lemma 4.36. E:Z9 = (E1)�9

Proof. Let N E N A, X E Sub(N) and E a set of FDs and MVDs on N. We show
that the functional or multi-valued dependency in E1 - E does not affect the output
(X.;jg , DepBa1g (X)) of Algorithm 4 .4 . 1 . Therefore, we consider every inference rule from
Theorem 4 .28 in turn.

Suppose we have U --+ V V :::; U, i .e . , {U --+ V} = E1 - E. Note that U :::; U U X.;jg
since every subattribute of U that is possessed by some Wi E X� is a subattribute of X.;jg
or a subattribute of U and every subattribute of U that is not possessed by any Wi E X�
is a subattribute of X.;jg . From V :::; U :::; U U X.;jg follows V = V -'-U :::; X.;jg . Since every

W E MaxB((X.;jg)cc) satisfies {W} E X� we have (Wi-'-V)cc = >. or (Wi-'-V)cc = Wi for
all Wi E X�. That proves the lemma for this case.

U -t V
Suppose U --+ U U V with {U --+ U U V} = E1 - E. Since U --+ V E E we know that

V -'-U :::; X.;jg . Furthermore, U :::; U U X.;jg implies U --=-U :::; X.;jg . Then we compute

where the second equation follows from Theorem 2 .3(10) . As before, it follows that
__.-.._..- ___......___-

(VV:· -'-U U V)cc =). or (VV:·-'-U U V)cc = VV:· for all VV:· E XM t t t t aJg ·
U -t V, V -t W - - + Suppose U --+ W with {U --+ W} = E1 -E. We know that V -'-U, W--'-V :::; Xa1g ,

. - + - + . - + - + Le. , V :::; u u xalg and w :::; vuxalg ' We need to show that w -U :::; xaig ' or w :::; uuxalg
equivalently. We show V :::; U first. Let Wi E X� be a subattribute of V. Then there is
some Z E SubB(V) with Z i X.;jg and Z is possessed by Wi · Since V :::; U U X.;jg it follows
that Z E SubB(U) and as Z is possessed by Wi it must be the case that Wi :::; U holds as
well . This shows V :::; U. It is now obvious that W :::; VU X.;jg :::; U U X.;jg holds. As before,

it follows that (Wi_,_ W)cc = >. or (Wi_,_ W)cc = Wi for all Wi E X�.

124

4 .4 . IMPLICATION PROBLEM Sebastian Link

u � v _
Suppose U ---» V with {U ---» V} = E1 - E. First we know that V ...:.... U :::; X�g which

already implies
(V...:.... U) n (V...:.... U)c < V...:....U < x+ . - - alg

Moreover, we also know that (Wi ...:.... (V ...:.... U))cc =). or (Wi...:.... (V ...:.... U))cc = Wi holds for all
Wi E X�. This is equivalent to saying that ((V ...:.... U) n Wi)cc = Wi or ((V ...:....U) n Wi)cc =).
holds for all Wi E X�.

U -» V - -
Suppose U ---» vc

with {U ---» vc} = E1 - E. First we show that (Vc...:.... U) n (Vc...:....u)c :::;
X�g follows from (V ...:.... U) n (V ...:.... U)c :::; X�g· Note that U is the join of Wi E X�, i . e . , - -c - -
U n U :::; X�g holds as well. In the following we use the facts that vc...:.... U :::; (V ...:.... U)c and
vc...:....U = (U u V)c hold. It follows

We know that

(Vc...:.... U) n (Vc...:....U)C = (Vc...:.... U) n (U U V)cc
:::; (Vc...:.... U) n (U U V)
= (Vc...:....U) n (U U (V ...:.... U))
= ((Vc...:....U) n U) u ((Vc...:.... U) n (V ...:.... U))
:::; (Uc n U) u ((V ...:.... U)c n (V ...:....U))
:::; x�g ·

(7)

holds for all Wi E X�. Suppose there is some Wi E X� with). =/=- (Wi n (Vc...:.... U))cc =/=­
Wi · Then there is some X E MaxB(Wi) with X E MaxB(Vc...:....U) . This implies
X E MaxB(Vc) and X � MaxB(U) , and X E MaxB(Vc) implies X � MaxB(vcc) .
Therefore, X � MaxB((V ...:.... U)cc) . Furthermore, there is some Y E MaxB(Wi) with Y �
MaxB(Vc...:.... U) . This implies Y � MaxB(Vc) or (Y E MaxB(Vc) and Y E MaxB (U)) .
As X � MaxB(U) and X, Y E MaxB(Wi) we must also have Y � MaxB(U) . This leaves
us with Y � MaxB(Vc) . We conclude Y E MaxB(vcc) and Y E MaxB((V ...:.... U)cc) . The
fact that X, Y E MaxB(Wi) with X � MaxB((V ...:....U)cc) and Y E MaxB((V ...:.... U)cc) is
obviously a contradiction to (7) . Hence, ((VC...:....U) n Wi)CC = wi or ((VC...:....U) n Wi)CC =).
holds for all Wi E X�.

U -» V, V -» W
Suppose U ---» W...:.... V with {U ---» W...:.... V} = E1 - E. We show first that

((W...:.... V) ...:....U) n ((W...:.... V)...:.... U)c :::; X�g· We know that (V...:....U) n (V...:....U)c :::; X�g and
(W...:.... V) n (W...:.... V)c :::; X�g· In what follows we prove that

(W...:.... V)...:....U :::; (W...:.... V) n U c n (V...:....U)c (8)

holds. For this purpose it is proven that V :::; V U U holds. Let Z E MaxB(V ...:.... U) , i . e . ,
Z E M axB(V) and Z � SubB(U) (note that Z is a maximal basis attribute of N) .

125

4 .4 . IMPLICATION PROBLEM Sebastian Link

According to the definition of V it follows that there is some Y � V which is possessed
by some Wi E X�, Z � Wi , and Y 'i X�g· Since Z � SubB(U) and Z � Wi we
must have Wi 'i U, and Y � SubB(U) . Since Y � V we derive Y E SubB(V -=-U)
and as Y 'i X�g' but (V-=-U) n (V-=-U)c � X�g ' it follows that Y E MaxB((V-=-U)cc) .
Consequently, ((V --=-U) n Wi)cc #

.X
which leaves us with ((V --=-U) n Wi)cc = Wi· From

Z � Wi follows now Z � ((V-=-U) n Wi)cc � (V-=-U) n Wi � V--=-U � V. Hence, V--=-U � V,
or equivalently, V � V U U.

We now compute (W-=-V) -=-U = W-=-(V U U) � W--=-V where the first equality follows
from Lemma 4.35 and the second relationship follows from V � VUU and Theorem 2 .3 (3) .
Due to the same laws, V --=-U � V U U implies W --=-(V U U) � W --=- (V --=-U) and therefore
(W-=-V)--=-U = W--=-(V u U) � W--=-(V-=-U) � (V--=-U)c. Finally, (W--=-V)--=-U � Uc , and (8)
follows.

Next, we compute ((W--=-V) -=-U)c � U u (W--=-V)c � u u v u wc = U u (V--=-U) u wc �
U u (V --=-U) u (W--=-V)c. This shows

(9)

According to (8) and (9) we obtain

((W-=-V)-=-U) n ((W--=-V)--=-U)c � (W-=-V) n Uc n (V --=-U)c n (U u (V --=-U) u (W--=-V)c)
� (U n U c) u ((V-=-U) n (V-=-U)c) u ((W--=-V) n (W--=-V)c)
< x+ - aJg ·

It remains to show that (w-::.v- n Wi)cc = Wi or (w-::.v- n Wi)cc =
.X

holds for all
Wi E X�. We know that

(((V--=-U) n Wi)cc = Wi or ((V-=-U) n Wi)cc = -X) and

(((W-=-V) n Wi)cc = Wi or ((W--=-V) n Wi)cc = -X) (10)

hold for all Wi E X�. Assume there is some Wi E X� with (w::-v n Wi)cc =f- Wi
and (w-::=.-v n Wi)cc #

.X . From (w::-v n Wi)cc # A follows the existence of some Y E ------ ------
MaxB(Wi) with Y E MaxB((W-=-V)cc) . As W--=-V = W --=- (U u V) holds we infer that
Y E MaxB(wcc) and Y � MaxB((U U V)cc) . The fact that V � V U U holds tells us
that Y � MaxB(V) , i . e . , Y E MaxB((W--=-V)cc) and therefore ((W--=-V) n Wi)cc =f- .X .
On the other hand V --=-U � V � U U V, i .e . , Y � MaxB((V -=-U)cc) neither. This shows
((V -=- U) n Wi)cc # Wi·

It follows from (10) that ((V-=-U) n Wi)cc = A and ((W-=-V) n Wi)cc = Wi must both

hold. Our assumption that there is some wi E X� with (w::-vnwi)CC # wi and (w::-v n
Wi)cc # A implies the existence of some X E MaxB(Wi) with X E MaxB((�)cc)
and X � MaxB((V --=-U)cc) . Furthermore, there must be some Y E MaxB(Wi) with

Y � MaxB((w-::=.-v)cc) and Y E MaxB((W--=-V)cc) . From X E MaxB((w::-v)cc) follows

126

4.4 . IMPLICATION PROBLEM Sebastian Link

X tf:. MaxE(U) as W:::V = (W -=-V)-=-U, and consequently, Y tf:. MaxE(U) neither . Recall
that --------

w-=-V = W-=- (U u V) = ((V n W) u (W-=-V)) -=- (U u (V-=-U)) .

From Y E MaxE((W-=-V)cc) and Y tf:. MaxE((W:::V)cc) as well as Y tf:. MaxE(U) follows
Y E M axE((V -=-U)cc) . This contradicts ((V -=-U) n Wi)cc = .\ , and our assumption must

have been wrong. Therefore, (W:::V n Wi)CC = wi or (w:-v n Wi)CC = A holds indeed for
all Wi E X�.

U _.. V, V -t W
Suppose U -t W-=-V with {U -t W-=-V} = E1 - E. We need to show that

(W-=-V)-=-U ::; X�g' or W ::; UUVUX�g· We know that W-=-V ::; X�g ' (V-=-U) n (V-=-U)c ::;
X�g and ((V -=-U) n Wi)cc = Wi or ((V -=-U) n Wi)cc = .\ holds for all Wi E X�. As in
the previous case one shows that V ::; V U U holds. The proof for this case follows:
W ::; V u X�g ::; U u V u X�g ' which means (W-=-V)-=-U ::; X�g ·

u _.. v, u _.. w
Suppose U _.... V U W with {U _.... V U W} = E1 - E. We show first that ((V u

W)-=-U) n ((V u W)-=-U)c ::; X�g · Note that V-=-U ::; (Vu W)-=-U and W-=-U ::; (V u W)-=-U
imply that ((V U W)-=-U)c ::; (V -=-U)c n (W -=-U)c holds (according to Theorem 2 .3 (3)) . We
then have ((V u W)-=-U) n ((V u W)-=-U)c ::; ((V -=-U) u (W -=-U)) n (V -'-U)c n (W -'-U)c ::;
((V-'-U) n (V-'-U)c) u ((W-=-U) n (W-=-U)c) ::; X�g by hypothesis. It remains to show that

(VlJW n Wi)cc = Wi or (VlJW n Wi)cc = A holds for all Wi E X� where VlJW =
(V u W)-'-U = (V -'-U) u (W -'-U) . We know that

(((V-=-U) n Wi)cc = Wi or ((V-'-U) n Wife = .A) and

((W-=-U) n Wi)cc = Wi or ((W-'-U) n Wi)cc = .A) (1 1)

hold for all Wi E X�. Assume there is some Wi E X� with (VlJW n Wi)cc =I .\ and

(VlJW n Wi)cc =I Wi. Then there is some X E MaxE(Wi) with X E MaxE((VlJW)cc) ,
and there is some Y E MaxE(Wi) with Y tf:. MaxE((VlJW)cc) . The latter implies Y tf:.
M axE((V -'-U)cc) and Y tf:_ M axE((W -'-U)cc) , and ((V -'-U) n Wi)cc =I Wi and ((W -'-U) n
Wi)cc =I Wi follow, respectively. On the other hand X E MaxE((VlJW)cc) implies X E
MaxE((V -'-U)cc) which contradicts ((V -=-U)nWi)cc = .\ , or X E MaxE((W -'-U)Gc) which
contradicts ((W -'-U) n Wi)cc = .\. In any case, this contradicts (1 1) and our assumption
must have been wrong.

u _.. v
Finally, suppose U -t V n vc

with {U -t V n vc } = E1 - E. We need to show that

(VnVc)-=-U ::; X�g knowing that (V -'-U) n (V -'-U)c ::; x:lg holds. From Vc-=-U ::; (V -=-U)c
follows

(V n vc) _,_U ::; (V -'-U) n (Vc_,_U) ::; (V -'-U) n (V -'-U)c ::; x:lg
where the first relationship follows since (V n vc) _,_U is not only a subattribute of V -=-U,
but also of vc-=-U. This completes the proof. o

127

4 .4 . IMPLICATION PROBLEM Sebastian Link

We obtain the following result by putting Lemma 4.33, 4.34, 4.36 and the comments
after Lemma 4.33 together.

Theorem 4.37. Let N E N A, X E Sub(N) and E a set of FDs and MVDs on N.
Then Algorithm 4 .4 - 1 always terminates and computes nested attribute closure x+ and
dependency basis DepB(X) for X with respect to E.

Proof. It remains to show that Algorithm 4 .4 . 1 always terminates. After the initialisa­
tion and after each pass of the REPEAT loop between line (3) and (26) the set MaxBa­
sis={MaxB(Z) I Z E DBnew} is a partition of MaxB(N) . Consequently, the number
of sets in any such partition is at most I M axE (N) I , the number of maximal basis at­
tributes of N. However, after each pass through the REPEAT loop (except the last) the
partition MaxBasis is refined, and the number of sets in it increases, or the number of
elements in NMaxB(Xnew) increases. It follows, that the REPEAT loop is executed at
most I SubB(N) I = I MaxB(N) I + I NMaxB (N) I times, and therefore the algorithm
terminates. 0

EXAMPLE 4 . 1 0 . We continue the example of the halftoning application. Recall that the
underlying nested attribute N is Halftoning(Brightness,Input [Level] ,Output [Bit]) and the
set E of FDs and MVDs is specified as in Example 4.3 . We may now ask whether the MVD

Halftoning(Brightness,Output [.X]) � Halftoning(Output [Bit])

is a logical consequence of E. We apply Algorithm 4.4 .1 to the input (N, X, E) where X
= Halftoning(Brightness,Output[.X]) . The algorithm has output

X�g = Halftoning(Brightness, Input [.X] ,Output [.X]) , and
DepBa1g (X) = { Halftoning(Brightness) , Halftoning(Input [.X]) , Halftoning(Output [.X]) ,

Halftoning(Input [Level]) , Halftoning(Output [Bit]) } .
As Halftoning(Output [Bit]) is an element of DepBa1g(X) and according to the correctness
of Algorithm 4.4. 1 , the MVD above must indeed be a logical consequence of E. 0

4.4.3 Complexity

We will now show that implication of FDs and MVDs can be decided in polynomial
time. Let N E N A, X E Sub(N) and E a set of FDs and MVDs on N be the input for
Algorithm 4 .4 . 1 . We use n to denote the size of N, that is n = I SubB(N) I is the number
of basis attributes of N. Furthermore, let s denote the number of dependencies given by E,
i . e . , s = I E I · SubB(X) and MaxB(X) can be computed in time O(n) . Moreover, union
and intersection of sets can be computed in time O(n) as well. This follows from the fact
that SubB(X u Y) = SubB(X) u SubB(Y) and SubB(X n Y) = SubB(X) n SubB (Y) ,
i . e . , join and meet operation are linear in n, as well. The pseudo-difference, and therefore
the Brouwerian complement operation as well, can be easily implemented in quadratic time:

128

4.4. IMPLICATION PROBLEM

(1) SubB(X -=-Y) := SubB(X) ;
(2) FOR each A E SubB(X) DO

Sebastian Link

(3) IF A E SubB(Y) THEN SubB(X -=-Y) := SubB(X -=-Y) - {A} ;
(4) ENDDO;
(5) FOR each A E SubB(X -=-Y) DO
(6) SubB(X-=-Y) := SubB(X-=-Y) u SubB(A) ;
(7) ENDDO;

i .e . in time O(n2) . This implementation reflects exactly the definition of the pseudo­
difference operation -=-eN in the Brouwerian algebra (CN , s;;;; , U , n, -=-eN , JN) . First, the set
difference SubB(X) -SubB(Y) is applied as usual, followed by closing the result downwards
with respect to :::; .

Next we will write down an algorithm which computes U : = U{W E DBnew
3U' .U' is possessed by W, U' 1:_ X new , U' :::; U} . Recall that, according to Lemma 4 .10 ,
the subattribute U' i s possessed by some W E DBnew if and only if U' E SubB(W) and
U' rf. SubB(We) .

(1) u := .A ;
(2) WHILE (SubB(U) =J 0) AND (DBnew =J 0) DO
(3) SELECT U' E SubB (U) ;
(4) SubB(U) := SubB(U) - {U' } ;
(5) IF U' rj-. SubB(Xnew) THEN
(6) FOR each W E DBnew DO
(7) IF (U' E SubB(W)) AND (U' rf. SubB(We)) THEN
(8) U := U U W;
(9) DBnew := DBnew - {W} ;
(10) ENDIF;
(1 1) ENDDO;
(12) ENDIF;
(13) ENDDO;

This demonstrates that U can be computed in time O(n3) . Let us now look at the
time complexity to refine Xnew and DBnew , respectively. First consider the case where this
refinement has been triggered by a functional dependency U ---+ V E E, i .e . , line (7) to
(14) . If V =J .A in line (10) , then Xnew := Xnew U V in line (1 1) which takes time in O(n) .
In order to compute DBnew := { (W...:.. v)ee I w E DBnew , (W...:.. v)ee =J .A} u M axB(vee) in
line (12) we need to compute (W-=-V)ee in time O(n2) for every W E DBnew · Since DBnew
has at most I MaxB(N) I elements this takes time in O(n3) . Computing MaxB(vee) and
forming the union is in O(n2) . Consider now the case where the refinement is triggered by
some multi-valued dependency U --» V E E, i . e . , line (15) to (25) . If V =J .A in line (1 8) ,
then Xnew := Xnew u (V n ve) in line (1 9) which takes time in O(n2) . As the computation
of (V n W)ee and (W-=-V)ee takes time in O(n2) the inner FOR loop between line (20)
and (23) for the refinement of DBnew takes O(n3) steps.

129

4.4 . IMPLICATION PROBLEM Sebastian Link

It follows that each pass through the REPEAT loop between line (3) and (26) takes
time in O(n3 · s) . As we have seen before, the REPEAT loop is executed at most n times.
Therefore, the time complexity of Algorithm 4 .4 . 1 is O(n4 • s) .

Theorem 4.38. Let N E N A, E a set of FDs and MVDs on N and a an FD or MVD
on N. The implication problem whether E f= a holds can be decided in time O (n4 · s) .

Proof. Let a be the FD X -+ Y. Algorithm 4.4 . 1 computes the attribute set closure x+ in
time O(n4 • s) . It follows that E f= X -+ Y if and only if Y � x+ according to Proposition
4 .8 . To decide whether Y � x+ holds takes time in O(n) .

Let a be the MVD X .- Y. Algorithm 4.4 .1 computes the dependency basis
DepB(X) = SubB (X+) U XM in time O(n4 • s) . It follows that E f= X .- Y if and
only if Y = UZ for some Z � DepB(X) according to Proposition 4 .8 . To decide whether
Y is the join of some elements in DepB(X) takes time in O(n2) . That is, Y' is the join of
those W E DepB(X) with W � Y. If Y � Y' holds as well , then Y is indeed the join of
some elements in DepB(X) , otherwise it is not . This proves the theorem. 0

4.4.4 Applications

The algorithms in Section 3 .2 .5 can now be generalised to cover the more general class of
FDs and MVDs. Algorithm 3 .2 .4 can be extended to compute non-redundant covers for
sets E of FDs and MVDs.

Algorithm 4.4.2 (Non-Redundant Covers)

Input : N E N A, set .E of FDs and MVDs on N
Output: a non-redundant cover e of .E
Method:

(1) e : = E;
(2) FOR each a E E DO
(3) IF a E (8 - {a})+ THEN 8 : = 8 - {a} ;
(4) ENDDO;
(5) RETURN($) ;

0

Theorem 4.39. Algorithm 4 .4 .2 computes a non-redundant cover for a set E of FDs and
MVDs on some nested attribute N in time O(n4 • s2) . 0

In the same way, we can generalise Algorithm 3.2 .5 to decide whether a given subat­
tribute of N is a superkey for N with respect to a set of FDs and MVDs defined on N.
Recall that X is a superkey for N with respect to a set E of FDs and MVDs on N if and
only if E f= X -+ N holds. This, however, is equivalent to N � X�g·

130

4 .5 . THE CLASS OF MULTI-VALUED DEPENDENCIES Sebastian Link

Algorithm 4.4.3 (Superkey)
Input : N E N A, set E of FDs and MVDs on N , X E Sub(N)

Out ut:
{ yes , if X is a superkey for N with respect to E

P no , else

Method:
(1)
(2)
(3)

Compute Xj"g using Algorithm 4.4 . 1 with input (N, E, X) ;
IF N :::; Xj"g THEN RETURN (yes)

ELSE RETURN (No) ;
0

Theorem 4.40. Algorithm 4 . 4 . 3 decides in time O(n4 • s) whether X E Sub(N) zs a su­
perkey for N with respect to a set E of FDs and MVDs defined on N. D

4 . 5 The Class of Multi-valued Dependencies

Although the more general class of FDs and MVDs has been the object of study in this
chapter it is also interesting to investigate the class of MVDs itself. The proofs of previous
sections can be used to obtain minimal axiomatisations and solve the implication problem
efficiently for the class of MVDs.

4.5 .1 Axiomatisation

A sound and complete set of inference rules for MVDs in the context of relational databases
has been provided in [32] . In Section 4.2 we have seen that the mixed meet rule and
implication rule, i .e . ,

X -t Y n ye
and

X -t Y
X -» Y'

imply the soundness of the auto-complement rule

X -» Y
x - z z :::; Y n Ye .

The non-triviality of its side condition Z ::=:; Y n ye gives the following axiomatisation
again a distinctive Brouwerian touch.

Theorem 4.41 . The following inference rules

(reflexivity)
X -» Y
x - ye

(Brouwerian complement}

X -» Y ------ V < W W U X -» V U Y
(augmentation}

X -» Y
--- Z < Y n Ye x - z -

(auto-complement)

131

X -» Y, Y -» Z
X -» (Z -'-Y)

(pseudo- transitivity)
X -» Y, X -» Z
X -» (Y U Z)

(multi-valued join}

4 .5 . THE CLASS OF MULTI-VALUED DEPENDENCIES

X -» Y, X -» Z
X -» (Z�Y)

(pseudo-difference)

X -» Y, X -» Z
X -» (Y n Z)

(multi-valued meet)

Sebastian Link

are sound and complete for the implication of MVDs in the presence of records and lists.
0

It is easy to see that all rules from Theorem 4.41 apart from the auto-complement
rules are natural extensions of rules in the RDM (compare [220, p . 80 ,81]) . Interpreting
the auto-complement rule in relational databases means that the trivial MVD X -» 0 can
be derived from the MVD X -» Y, and is therefore not needed.

The soundness of the inference rules in Theorem 4.41 has already been proven. In order
to show the completeness of these rules one can proceed as in the proof of Theorem 4.13 .
The instance that is used in this proof is generated from two tuples that coincide exactly
on the closure x+ of X with respect to the set E of FDs and MVDs given. It remains to
clarify what x+ looks like when E does not contain any FDs.

Lemma 4.42. Let N be a nested attribute, X E Sub(N) and E be a set of MVDs defined
on N. It follows that x+ = X u U{Y n ye : X -» y E E+} .

Proof. The functional closure x+ of X under all inference rules for FDs and MVDs is
defined by x+ = U{Y : X -t y E E+ } . It is rather easy to see that X u U{Y n
ye : X -» Y E E+ } :S x+. First , X -t X E E+ by the reflexivity axiom, and then
X -t (Y n ye) E E+ for every X -» Y E E+ by the mixed meet rule. It remains to
show that x+ :S X u U{Y n ye : X -» y E E+} holds as well . Consider the proper
chain E = E0 c E1 c · · · c En = E+ where Ei results from Ei-l by adding exactly one
functional or multi-valued dependency which is not in Ei-l and can be derived by applying
one of the inference rules from Theorem 4 . 1 3 to dependencies in Ei-l _ We further define
xi+ = U{Y : X -t y E Ei} and show xt :S X u U{Y n ye : X -» y E E+} for all i
by induction. The case i = 0 is trivial as E0 = E does not contain any FDs, i . e . , Xft = A.
We exhibit now every inference rule in turn, considering only inference rules which have
an FD in the conclusion .

Reflexivity Rule: Say X -t Y E (Ei+1 - Ei) with Y :S X. We conclude by hypothesis
that Y :S X :S X u U{Y n ye : X -» Y E E+} .

Extension Rule: Suppose now that X -t Y E (Ei+1 - Ei) where Y = X U Z and
X -t z E Ei holds . The hypothesis tells us that z :S X u U{Y n ye : X -» y E E+}
holds. This, however, implies also y = X u z :S X u U{Y n ye : X -» y E E+} .

Transitivity Rule: Assume that X -t Y E (Ei+1 - Ei) where X -t Z, Z -t Y E Ei
hold. We conclude by hypothesis that

Z :S X U U{V n ve : X -» V E E+ } and Y :S Z U U{W n We : Z -» W E E+}

hold. This implies y :S X u U{V n ve : X -» V E E+} u U{W n we : z -» w E E+} .
We show that U{W n we : z -» w E E+} :S z u U{V n ve : X -» V E E+}

132

4 . 5 . THE CLASS OF MULTI-VALUED DEPENDENCIES Sebastian Link

holds which implies y :S X u U{V n ve : X --# V E _E+} . Let z --# w E .E+ . From
X -+ Z E _E+ follows X --# Z E _E+ by the implication rule. From X --# Z, Z --# W E _E+
follows X --# (W -'-Z) E _E+ by means of the pseudo-transitivity rule . Recall that W :S
W u Z = Z u (W _,_ Z) and we :S (W _,_ z)e :S Z u (W _,_ z)c hold. It is then easy to see that

holds as well which completes this case.
Mixed Pseudo- Transitivity Rule: Suppose X -+ (Y _,_ Z) E (_Ei+l - _Ei) where X --#

Z, Z -+ Y E .Ei hold. We conclude by hypothesis that

holds . We need to show that Y _,_z ::; X u U{V n vc : X --# V E .E+ } holds which is
equivalent to y :S x u z u u{v n ve : X --# V E _E+ } . We show that U{W n wc : z --#
w E _E+} :S z u U{V n vc : X --# V E _E+} . Let z --# w E .E+ . From X --# z E _E+
follows X --# (W _,_z) E _E+ by the multi-valued pseudo-transitivity rule . As in the previous
case follows then W n we ::; Z u ((W _,_z) n (W _,_z)e) . We conclude

which we had to prove.

Y ::; z u U{W n we : z --# W E .E+}
::; z u U{V n ve : X --# V E .E+ }
::; X u z u U{V n ve : X --# V E .E+ }

Mixed Meet Rule: It remains to consider the case where X -+ Y n ye E (.Ei+1 - .Ei)
where X --# y E _Ei holds. It follows then immediately that y n ye :S X u U{V n ve :
X --# V E _E+ } holds. This concludes the proof. 0

4.5 .2 Minimality

The proofs in Section 4 .2 show that the inference rules from Theorem 4 .41 are not minimal.
In particular, it follows from Lemmata 4 . 15 , 4 . 16 , 4 . 1 7 and 4 . 18 that pseudo-difference rule,
meet rule and augmentation rule are logically implied by reflexivity axiom, Brouwerian
complement rule, pseudo-transitivity rule, multi-valued join rule and auto-complement
rule. The independence of these rules from one another follows directly from the proofs of
Lemmata 4 . 19, 4 .23 , 4 .24 , 4 .26 and 4.27.

Theorem 4.43. Reflexivity axiom, Brouwerian complement rule, pseudo-transitivity rule,
multi-valued join rule and auto-complement rule form a minimal, sound and complete set
of inference rules for the implication of MVDs in the presence of records and lists. 0

Theorem 4.43 reveals again a difference to relational databases. It has been proven
in [204] that reflexivity axiom, complementation rule and pseudo-transitivity rule form a
minimal, sound and complete set . The auto-complement rule is of course not needed in

133

4.5 . THE CLASS OF MULTI-VALUED DEPENDENCIES Sebastian Link

relational data bases, but the join rule is logically implied by { reflexivity axiom, comple­
mentation rule, pseudo-transitivity rule } . However, the situation is different in the presence
of lists.

As in the more general case of FDs and MVDs one can replace the Brouwerian com-

plement rule in Theorem 4 .43 by the N-axiom A ---* N' The proofs of Section 4.3 show

that Brouwerian complement rule and N-axiom are equivalent in the presence of reflexiv­
ity axiom and pseudo-transitivity rule. Moreover, the independence of reflexivity axiom,
N-axiom, pseudo-transitivity rule, multi-valued join rule and auto-complement rule from
one another follows from the comments and proofs in Section 4.3 as well .

Theorem 4.44. Reflexivity axiom, N -axiom, pseudo-transitivity rule, multi-valued join
rule and auto-complement rule form a minimal, sound and complete set of inference rules
for the implication of MVDs in the presence of records and lists. 0

Remark. Although the set of inference rules in Theorem 4.44 is minimal in the sense of

Definition 3 .7 the side condition Y :S X in the reflexivity axiom X ---* y Y :::; X can be

weakened to Y :::; X, Y E SubB (N) . Let us call

X ---* y Y :S X, Y E SubB (N)

the membership-axiom. We show that the reflexivity axiom follows from {membership­
axiom, N-axiom, pseudo-transitivity rule, join rule} .

I f N = A, then the only instance of the reflexivity axiom is A ---* A which i s in this case
also an instance of the N-axiom. We can therefore assume that N =I= A. Suppose X =I= A,
say A E {Z :S X I Z E SubB (N) } . We proceed by induction on the number n of elements
in {Z :S Y I Z E SubB (N) } . If n = 0, then the inference schema is

X ---# A A�X,AESubB(N) A ---# A A�A,AESubB(N)

X ---tt A

where the pseudo-transitivity rule is used in the last step. Suppose Y
U{A1 , . . . , An , An+d · Note that Ai :S X for i = 1 , . . . , n + 1 as Y :S X. We then have the
following inference schema

U{A A }
U{Al , . . . ,An }�X X A An+ l � X,An+l ESubB(N)

X ---* 1 , · · · , n ---* n+l
----��------��--�---------------X ---tt Y

where the join rule is applied in the last step. It remains to consider the case where X = A .

Note that N<N follows from the previous case as N ...J. A .
N ---tt N -

I

134

4 .5 . THE CLASS OF MULTI-VALUED DEPENDENCIES Sebastian Link

The pseudo-transitivity rule is again applied in the last step. This shows that the reflexivity
axiom follows from {membership-axiom, N-axiom, pseudo-transitivity rule, join rule} .

Following a similar line of reasoning one can show that the auto-complement rule can
be weakened to

X --» Y
X --» z Z :S Y n ye , Z E SubB(N) .

The following inference rules

X --» Y, Y --» Z
X --» (Z-'-Y) X --» y Y :S X, Y E SubB (N)

X --» Y, X --» Z
X --» (Y u Z)

X --» Y
X --» z Z :S Y n ye , Z E SubB(N)

are minimal, sound and complete for the implication of MVDs in the presence of records
and lists. 0

4.5.3 Implication Problem

Finally, Algorithm 4.4. 1 can be used to compute the dependency basis of some attribute
X E Sub(N) with respect to a set E of MVDs given. However, lines (7) to (14) can be
omitted as FDs do not need to be considered. This results in the following algorithm.

Algorithm 4.5 .1 (Dependency Basis)

Input : N E NA, X E Sub(N) , set E of MVDs on N

Output: DepBa1g (X)

Method:

VAR DBnew , DBold � Sub(N) , Xnew , Xoid , U, V, W, U, V, U' E Sub(N) ;

(1) Xnew := X;
(2) DBnew : = MaxB(Xcc) U {Xc} ;
(3) REPEAT
(4) Xold := X new ;
(5) DBold : = DBnew ;
(6) FOR each U --» V E E DO
(7) l!_ : = U{W E DBnew I 3U' .U' possessed by W, U' 'i Xnew , U' :S U} ;
(8) V : = V -'- U;
(9) IF V =/:- A THEN BEGIN
(10) Xnew := Xnew u (V n vc) ;
(1 1) FOR each W E DBnew DO
(12) IF (V n W)cc =1- A AND (V n W)cc =1- W THEN
(13) DBnew := (DBnew - {W}) u { (V n W)cc, (W-'--V)cc } ;

135

4 .5 . THE CLASS OF MULTI-VALUED DEPENDENCIES

(14)
(15)
(16)
(1 7)
(18)
(19)
(20)

END DO;
END;

END DO;
UNTIL (Xnew = Xotd) AND (DBnew = DBotd) ;
X+ · - X . XM · - DB . alg .- new , alg .- new ,
DepBa1g (X) : = SubB(X;:,;g) U X�;
RETURN (DepBatg (X)) ;

Sebastian Link

D

The correctness of Algorithm 4.5 . 1 follows immediately from Theorem 4.37.

Theorem 4.45. Let N E N A, X E Sub(N) and E a set of MVDs on N. Then Algorithm
4 . 5. 1 always terminates and computes the dependency basis DepB(X) for X with respect
to E. D

The complexity analysis of Algorithm 4 .4 .1 in Section 4 .4 .3 determines also the com­
plexity of Algorithm 4.5 . 1 . It follows that the complexity of the implication problem for
the class of MVDs has essentially the same complexity as the class of FDs and MVDs, as
expected.

Theorem 4.46. Let N E N A, E a set of MVDs on N and a an MVD on N. The impli­
cation problem whether E f= a holds can be decided in time O(n4 • s) . D

4.5 .4 A different Perspective for MVDs

MVDs have been defined as expressions X - Y where X, Y E Sub(N) . Alternatively, we
can view MVDs as expressions X - Y where X, Y E eN and (eN , � ' U, n, -'-eN , JN) is the
Brouwerian algebra of closed subsets of the PO-space on the join-irreducible elements J N
of Sub(N) . A set r � dom(N) satisfies the MVD X - y on eN , denoted by Fr X - Y, if
and only if there is a t E r with 1r� (t) = 1r�(t1) for all B E XUY and 1rg(t) = 1rg (t2) for all
C E X U (JN-'-cNY) whenever 7r1 (t l) = 7r1(t2) for all A E X holds for any t1 , t2 E r . This
view can again be justified in the following sense. Lemma 3 .9 shows that for all r � dom(N)
we have Fr X - y for X, y E eN if and only if Fr u X - u y in terms of Definition
4. 1 . The minimal axiomatisation from Theorem 4 .44 reads then as follows. The following
inference rules

x - Y, x - z
x - Y u z

are minimal, sound and complete for the implication of MVDs in the presence of records
and lists.

136

4.6 . RELATED AND FUTURE WORK

4 . 6 Related and Future Work

Sebastian Link

MVDs have been studied very well in relational databases. The next goal is the proposal of a
nested list normal form for nested attributes with respect to the class of MVDs and the class
of FDs and MVDs, to semantically justify this proposal and generalise the decomposition
approach. Research papers that may be used as guidelines are [103, 133, 289, 290] . The
proposal of such a normal form can be found in Section 6.2 of this thesis. It is desirable
to improve the running time of Algorithm 4.4. 1 for deciding the implication of FDs and
MVDs. Substantial research on that subject has again been done for relational databases
and the papers [98, 1 18, 135, 152 , 173, 223, 239, 277] may give some more information.
The paper [2 1 6] proposes algorithms how to obtain reduced MVDs and minimal covers
of sets of MVDs for relational databases . The concept of a pure set of FDs and MVDs
was introduced in [154] . An MVD X ----» Y of a set E of FDs and MVDs on a relation
schema R is called pure iff it is non-trivial and neither X -t Y nor X -t (R - Y) are in
E+ . A related definition aimed at factoring out MVDs which cannot be derived from FDs
appears in the concept of an envelope set due to [301 , 302] in a work on desirable 4NF
decompositions. So-called conflict-free MVDs are introduced in [247] . MVDs of this class
have the property that they allow a unique 4NF dependency preserving database schema.
Moreover it is stated that non conflict-free sets of dependencies are inadequately specified.
It is interesting to study these different notions in the context of complex object types.

Multi-valued dependencies have been the subject of data mining. In [242] two algo­
rithms for the discovery of multi-valued dependencies from relations are presented . The
top-down algorithm enumerates the hypotheses from the most general to more specific hy­
potheses which are checked on the input relation. The bottom-up algorithm first computes
the invalid multi-valued dependencies. Starting with the most general dependencies, the
algorithm iteratively refines the set of dependencies to conform with each particular invalid
dependency. The implementation of the algorithms is analysed and some empirical results
are presented . A different approach is proposed in [300] .

Recent papers that study multi-valued dependencies in the context of XML are [286,
287] . The work in [286] introduces MVDs in XML (XMVDs) and justifies the definition by
showing that for a general class of mappings from relations to XML, a relation satisfies an
MVD if and only if the corresponding XML document satisfies the corresponding XMVD.
As this justification of XMVDs already suggests, XMVDs provide semantics for XML
documents that are exported or imported from relational databases. Therefore, XMVDs
do not cover multi-valued dependencies among complex objects such as lists. The definition
of XMVDs is again based on the notion of a path. The work in [287] proposes an extension
of the well-known fourth normal form (4NF) from relational data bases to XML in order to
syntactically describe semantically well-designed XML documents with respect to XMVDs
as studied in [286] .

A conceptual treatment of MVDs is introduced in [266] . It is proposed that entity­
relationship modelling techniques enable a more natural and intuitive way of handling
MVDs. Based on the concept of competing MVDs it is proven in which case a unique
entity-relationship schema representation exists. If MVDs are competing, then either one

137

4.6 . RELATED AND FUTURE WORK Sebastian Link

of the competing schemata is chosen or an approximation which combines the competing
schemata can be used.

For more comments on future work see Section 6.2. Let us finally look at a further
example of MVDs among complex objects. Suppose we store nucleotide sequences together
with certain genes that occur in it, i .e . sequences of amino acids, and together with a certain
base and the sequence of positions in which that base appears in the original nucleotide
sequence. We may use the nested attribute

Genes (Sequence[N ucleotide] , Gene[Amino-Acid] , Occurs(Base, Position[N umber])) .

There might b e several genes encoded within the nucleotide sequence, and there are dif­
ferent bases together with a certain sequence of positions in which they occur. The set of
genes, however, is independent from the set of bases and the corresponding sequence of
occurrences. We therefore have the following MVDs

Genes (Sequence[Nucleotide]) ----* Genes(Gene [Amino-Acid]) and
Genes (Sequence[Nucleotide]) ----* Genes(Occurs (Base, Position[Number])) .

Moreover there are the FDs

Genes(Sequence[Nucleotide] ,Occurs (Base)) -+ Genes(Occurs(Position[Number])) and
Genes (Sequence[N ucleotide J , Occurs (Position [Number])) -+ Genes(Occurs (Base)) .

It appears that the chance of MVDs occurring among complex objects is as good as the
chance of MVDs occurring among fiat data. The techniques provided in this chapter may
therefore help to cover more application domains.

138

Chapter 5

Functional Dependencies in t he

Presence of List s , Set s and Mult iset s

This chapter is devoted to the study of FDs in the presence of multiple type constructors.
In fact, the objective is to investigate all combinations of types illustrated in Figure 1 .2 .

We have seen in Chapter 3 that the theory of FDs can be generalised from the relational
data model to the presence of the list constructor. The semantic behavior of such functional
dependencies can be captured by a natural extension of Armstrong's axioms to null, fiat ,
record- and list-valued attributes.

The goal of this chapter is to investigate the impact of set and multiset constructor on
the theory of FDs. Both, sets and multisets do not impose an order on their elements. It
turns out that the extension rule is no longer sound in general , which results in a more
complex notion of an FD. A syntactical condition for pairs of subattributes is introduced
that characterises those pairs X and Y for which the values of projections on X and
Y uniquely determine the value of the projection on their join X U Y. This leads to
a more sophisticated set of sound and complete inference rules. In order to prove the
completeness result the standard technique of constructing a certain two-element instance
is used whose elements coincide exactly on a set of subattributes which is closed under
inference. The construction of such an instance, however, becomes difficult in the presence
of sets and multisets. While in the case of sets a few combinatorial arguments are used,
the case of multisets requires further studies of the algebraic structure of nested attributes.
Having proven the completeness of the set of inference rules it is shown that they are all
independent from one another. In this sense none of the rules can be omitted without losing
completeness. The first main result of this chapter provides minimal axiomatisations for
FDs in the presence of all combinations of record, list , set and multiset type in which at
least the record type is present .

The second objective is to study the implication problem for FDs in all the different
contexts of record, list, set and multiset type . A provably-correct algorithm for computing
the nested attribute closure for a set of subattributes is proposed that works in polynomial
time in the number of subattributes and the number of FDs given.

The axiomatisation of FDs can be found in [145] , [139] contains the axiomatisation of

139

5 . 1 . AXIOMATISATION Sebastian Link

FDs in the presence of records and sets, and [140] discusses the implication problem of
FDs in the presence of all type combinations above.

5 . 1 Axiomatisat ion

In this section axiomatisability of FDs is studied in the presence of null , fiat, record-, list-,
set- and multiset-valued attributes.

5 . 1 . 1 The Failure of the Extension Rule

We start with an example that reveals the difficulty of dealing with sets or multisets.

EXAMPLE 5 . 1 . Suppose we store sets of tennis matches using the nested attribute

Tennis{Match(Winner,Loser) } .

Consider the following instance r over Tennis{ Match(Winner,Loser) } :

{ { (Becker, Agassi) , (Stich, McEnroe) } ,
{ (Becker, McEnroe) , (Stich, Agassi) } } .

The second element of this set results from the first by simply switching opponents. We
can see that Fr Tennis{Match(Winner) } --+ Tennis{Match(Loser) } holds. In fact, the set
of winners {Becker, Stich } is the same for both elements and so is the set of losers { Agassi,
McEnroe} .

However, �r Tennis{Match(Winner) } --+ Tennis{Match(Winner, Loser) } since the
matches stored in both elements are different from one another. The instance r is therefore
a prime example for the failure of the extension rule

X -+ Y
X -+ X U Y

in the presence of sets . The same is true for multisets as a set is just a multiset in which
every element occurs exactly once. 0

Example 5 . 1 shows, in particular, that the current notion of functional dependency
is insufficient in the context of sets and multisets. In general, values on subattributes do
not determine the value on the join of these subattributes. This implies that instead of
considering single subattributes as left- and right-hand sides of functional dependencies it
becomes necessary to consider sets of subattributes. This motivates the following definition.

Definition 5 . 1 . Let N E N A be a nested attribute. A functional dependency on N is an
expression of the form X --+ Y where X, Y � Sub(N) are non-empty. A set r � dom(N)
satisfies the functional dependency X --+ Y on N, denoted by Fr X --+ Y, if and only if
1rf (t1) = 1rf (t2) holds for all Y E Y whenever 1r� (t1) = 1r� (t2) holds for all X E X and
any t 1 , t2 E r . D

140

5 . 1 . AXIOMATISATION Sebastian Link

Clearly, the new definition of FDs has increased the level of expressiveness. The FD
X --+ {L{K(A, B) } } implies for instance the FD X --+ {L{K(A, >.) } , L{K(>. , B) } } but
not vice versa. In the same way the FD { L{ K (A, B) } } --+ Y is implied by the FD
{L{K(A, >.) } , L{K(A, B) } } ---+ Y but not vice versa.

The condition that X, Y � Sub (N) are both non-empty is simply a matter of con­
venience and does not reduce the expressiveness . In fact, any two tuples have the same
projection on >.. The FD X --+ 0 is satisfied by any instance, but so is X ---+ { >. } . On the
other hand the FD 0 ---+ Y is satisfied by some instance r if and only if r satisfies { >. } ---+ Y.

We are now able to formalise the constraints for the retailer example from Section 1 .2 .2 .

EXAMPLE 5 . 2 . Let N denote the nested attribute of Example 2 .5 which was used as a
schema for the retailer database. The set E of FDs on N, informally described in Section
1 .2 . 2 , can be formally specified as follows:

1 . Sales (Day) ---+ N,
2 . Sales (List [Order(Cart (Article (Title)))]) ---+ Sales (Sold{Product (Item) }) ,
3 . Sales(List [Order(Cart (Article (Price)))]) ---+ Sales (List [Order(SubTotal)]) ,
4 . Sales (List [Order(SubTotal)]) ---+ Sales(Total) ,
5 . Sales (List [Order (Customer(N ame))]) ---+ Sales (Sold {Product (CustN ame) }) ,
6 . Sales(List[Order(Cart (Article (Title)) ,Customer(Name))]) ---+

Sales(Sold{Product (Item,CustName) }) ,
7 . Sales(List [>.]) ---+ Sales (NOrd) , and Sales(NOrd) --+ Sales (List [>.]) ,
8 . Sales(List [Order (Cart (>.))]) ---+ Sales (NProd) ,
9 . Sales(List [Order(Cart (>.) ,Customer(Address))]) --+ Sales (NShip) . 0

The notions of implication (F) and derivability (h:n) with respect to a set 9{ of inference
rules can be defined as in Section 3. 1 .2 where C is now the class of FDs in the presence of
null, flat, record- , list- , set- and multiset-valued attributes. As before it follows that finite
and unrestricted implication coincide for this class of FDs.

5 . 1 . 2 Reconcilable Attributes

Example 5 . 1 shows that Definition 5 . 1 of a functional dependency X ---+ Y on some nested
attribute N cannot be simplified to an expression of the form X ---+ Y with X, Y E Sub (N) .
That is, values of projections on subattributes X and Y do not determine the value of the
projection on X U Y in general. The reason for this is the set constructor, and the same
reasoning applies to the multiset constructor. Before we introduce some inference rules
for FDs we will give a sufficient condition when projections on subattributes X and Y do
determine the projection on X U Y.

Definition 5 .2 . Let N E N A. The subattributes X, Y E Sub (N) are reconcilable if and
only if one of the following conditions is satisfied

- Y � X or X � Y,

141

5 . 1 . AXIOMATISATION Sebastian Link

- N = L(N1 , . . . , Nk) , X = L(X1 , . . . , Xk) , Y = L(Yi , . . . , Yk) where Xi and }i are rec­
oncilable for all i = 1 , . . . , k ,

- N = L [N'] , X = L[X'] , Y = L[Y'] where X' and Y' are reconcilable. 0

Given X, Y E Sub(N) that are reconcilable and some t E dom(N) the projections 1rf (t)
and 1rP' (t) determine 7rfuY (t) .

Lemma 5.3 . Let N E N A, X, Y E Sub(N) reconcilable and t1 , t2 E dom(N) . If 1rf (t1) =
1rf (t2) and 1rP' (t1) = 1rP' (t2) , then 7rfuy (ti) = 7rfuy(t2) ·

Proof. We proceed by induction on the structure of N. If Y :::; X , then X U Y = X
and the statement follows from the assumption that 1rf (t1) = 1rf (t2) . If X :::; Y, then
X U Y = Y and the statement follows from the assumption that 1rP' (t1) = 1rP' (t2) . Let
N = L (N1 , • . . , Nk) , X = L(X1 , . . . , Xk) and Y = L(Y1 , . . . , Yk) · Consequently, t1 , t2 E
dom(N) have the form t1 = (tL . . . , tk) and t2 = (tf , . . . , tk) with t� E dom(Nj) for j =
1 , . . . , k and i = 1 , 2 . From 7rf (t 1) = 7rf (t2) follows 1r�: (t}) = 1r�; (tl) for i = 1 , . . . , k by
definition of the projection function. Similarly follows 1r�; (t}) = 1r�; (tl) for i = 1 , . . . , k
from 1rP'(t 1) = 1rP' (t2) . The assumption that X and Y are reconcilable implies that Xi and
}i are reconcilable for all i = 1 , . . . , k. Consequently, we conclude 1r�;uY; (t}) = 1r�;uY; (tl)
for i = 1 , . . . , k . This shows that

7rfuy (tl) = (1r��uY1 (tD , · · · , 1f�uYk (tl))
= (7f��UY1 (tf) ' . . . ' 7f X�UYk (t�))
= 7rfuy (t2)

which we had to prove. It remains to consider the case where N = L [N'] , X = L[X'] , Y =
L[Y'] . Consequently, t 1 , t2 E dom(N) have the form t1 = [tL . . . , tl] and t2 = [tf , . . . , tr]
with t} , t] E dom(N') for i = 1, . . . , k and j = 1, . . . , l . From 7rf(t 1) = 7rf (t2) follows k = l
and 1rf; (tt) = 1rf; (tl) for i = 1 , . . . , k by definition of the projection function. Similarly
follows 1rpr; (t}) = 1rpr; (tl) for i = 1 , . . . , k from 1rP' (t1) = 1rP' (t2) . The assumption that X
and Y are reconcilable implies that X' and Y' are reconcilable. Consequently, we conclude
1rf;uY' (t}) = 1rf:uY' (tl) for i = 1 , . . . , k . This shows that

7rfuy (tl) = [7rf;uY' (tD , · · · , 7rf;uY' (tl) J
= [7rf;uY' (tf) , · · · , 7rf;uY' (t�)]
= 7rfuy (t2)

which we had to prove. If N is a set-valued or multiset-valued attribute, then X :::; Y or
Y :::; X according to Definition 5 . 2 of reconcilable subattributes. 0

We will see later on that this condition is exact, i .e . , if the projections on X and Y do
determine the projection on X U Y, then X and Y are necessarily reconcilable. In [139] ,
where only record and set type have been studied, the term semi-disjoint was used instead
of the term reconcilable. In that setting reconcilability of two nested attributes X, Y E
Sub(N) means that there are X' :::; X, Y' :::; Y with X' n Y' = AN and X' U Y' = X U Y.

142

5 . 1 . AXIOMATISATION

Definition 5.4. The generalised Armstrong axioms for FDs are

X ---+ Y y � X, {X} ---+ {Y} y � X,

{X, Y} ---+ {X UN Y} X, Yreconcilable,

X -+ Y
X -+ X U Y '

X ---+ Y, Y ---+ Z
X -+ Z

Sebastian Link

i .e . , reflexivity axiom, subattribute axiom, extension rule , restricted join axiom and tran­
sitivity rule. 0

5 . 1 . 3 Soundness and some useful Inference Rules

We show that all FDs that can be derived from a given set I.; of FDs using any of the rules
from Definition 5 .4 are also implied by £. This shows in particular that reconcilability is
indeed a sufficient condition under which the join axiom is sound .

Proposition 5.5. The generalised Armstrong axioms are sound for the implication of FDs
in the presence of records, lists, sets and multisets.

Proof. Let N E N A and r � dom(N) . First consider the reflexivity axiom, and let t 1 , t2 E r
with 1rf (t1) = 1rf (t2) for all X E X. Since Y � X this implies that 1rf (ti) = 1rt' (t2) holds
also for all Y E Y.

For the subattribute axiom let again t1 , t2 E r with 1rf(t1) = 1rl] (t2) . For Y � X follows
1rf = 1r9 o 1rf where o denotes the composition of functions. Consequently, 1rf (h) =

7r9 (7rf (tl)) = 7r9 (7rf (t2)) = 7rf (t2) ·
In order to prove the extension rule let t1 , t2 E r with 1rf (ti) = 1rf (t2) for all X E X.

Since Fr X ---+ Y holds, it follows that 1rf (t1) = 1rf (t2) holds for all Y E Y. Consequently,
1r� (t1) = 1r� (t2) is true for all Z E X U Y.

For the restricted join axiom let X and Y be reconcilable, and r � dom(N) . Let t1 , t2 E r
with 1rf (ti) = 1rl] (t2) and 1rf(ti) = 1rf (t2) . Lemma 5 .3 shows that also 7rfuy (t i) =
1rfuY (t2) holds. The soundness of the restricted join axiom follows.

For the proof of the transitivity rule let t1 , t2 E r with 1rf (t l) = 1rf (t2) for all X E X.
Since Fr X ---+ Y holds, we infer 1rf (ti) = 1rf (t2) for all Y E Y. Moreover, Fr Y ---+ Z
which implies 1r� (h) = 1r� (t2) for all Z E Z. This proves that Fr X ---+ Z holds as well . 0

Recall that the famous Armstrong axioms for the implication of FDs in the RDM
consist of the reflexivity axiom, the extension rule and the transitivity rule with X, Y and
Z being sets of fiat attribute names. Subattribute and restricted join axiom, however, are
not needed in the RDM since fiat attribute names are not comparable anyway, i . e . , form
an anti-chain. We derive a couple of sound inference rules from the generalised Armstrong
axioms which will be needed in the completeness proof.

Lemma 5.6. The following inference rules are derivable from the generalised Armstrong
axioms, and hence are sound:

X ---+ Y, X ---+ Z
X -+ {-X} X -+ Y U Z

X ---+ {Z} y < z X ---+ {Y} -

143

X -+ Z
y c z

X -+ Y -

5 . 1 . AXIOMATISATION Sebastian Link

They are called >.-axiom, union rule, subattribute rule and subset rule, respectively.

Proof. Applications of any of these rules can be replaced by inferences using the generalised
Armstrong axioms only.
>.-axiom: Every instantiation of X --+ {)...} in any derivation tree is an FD according to
Definition 5 . 1 . We can therefore assume that there is some X E X where X is used as a
parameter for an element of X.

union rule:

X -+ Y
X -t X U Y

subattribute rule:

subset rule:

X --+ {X}{X}�X {X} --+ {>..}
A:SX

X --+ {>.. }

X u y --+ XX�XUY X -+ z
X U Y -+ Z

X U Y -+ X U Y U Z X U Y U Z -+ Y U Z
X U Y -+ Y U Z

X -t {Z} {Z} -t {Y}
Y:SZ

X --+ {Y}

D

If one chooses to permit empty sets X, Y in the definition of FDs X --+ Y, then the
>.-axiom is not implied by the generalised Armstrong axioms from Definition 5 .4 . In this
case, the >.-axiom needs to be included in this set to achieve completeness .

5 . 1 .4 Completeness

The idea for the completeness proof follows again the original lines of reasoning: for every
X --+ Y � _E+ a two element instance r = { t1 , t2} is constructed which satisfies all FDs in
E, but does not satisfy X --+ Y. In fact , the projections of t1 and t2 will coincide on exactly
those subattributes W which are in the closure x+ of X with respect to E. In order to
construct this instance r we need some further preparations.

Definition 5.7. Let N E NA. The identifying term TN (X) of X E Sub(N) is inductively
defined as follows:

- TA ()..) = ok,
- TA (>.) = a, TA (A) = a' with a, a' E dom(A) and a # a' for A E U,

144

5 . 1 . AXIOMATISATION Sebastian Link

- T£(N1 , ... ,Nk) (L (Ml , . . . , Mk)) = (TN1 (MI) , . . . , TNk (Mk)) ,
- T£{N} (L{M}) = {rN (M) } and T£{N} (A) = 0,
- T£(N) (L(M)) = (rN (M)) and T£{N} (A) = () ,
- T£[NJ (L [M]) = [rN (M)] and T£[NJ (A) = [] . 0

Figure 5 . 1 shows the subattributes X of K { L(A, M[N(B, C)]) } together with their iden­
tifying terms.

K{ L(M[N(B,C)]) }

[(a,[(b' ,c')]) }

K { L(M[/...]) }

[(a,[(b,c))) }

K { L(A,M[N(C)])]

[(a',[(b,c')]) }

Fig. 5 . 1 . Identifying Terms of the Algebra K {L(A, M[N(B, C)]) }

The problem is now the construction of the two element instance where the difficult cases
are set- and multiset-valued attributes. In order to deal with these cases some technical
lemmata are proven first.

Technical Lemmata. We establish some results on the projection of identifying terms. If
the projection of Y's identifying term on X is the same as the projection of X's identifying
term on X, then is X necessarily a subattribute of Y:

Lemma 5.8. Let N E N A and X, Y E Sub(N) . Then n� (rN (Y)) = n� (rN(X)) implies
X :S: Y.
Proof. We will show the contraposition by induction on N. From X 1:. Y follows X =j:. A .

Let N = A be flat attribute. For X 1:. Y i t remains to consider the case where X = A
and Y = A . Then n� (rN (Y)) = TA (A) = a and n�(rN (X)) = TA (A) = a' . This shows
n� (rN (Y)) =/=- n� (rN (X)) .

Let N = L(N1 , . . . , Nk) , X = L(X1 , . . . , Xk) and Y = L(Y1 , . . . , Yk) · From X 1:. Y
follows Xi 1:. Yi for some i with 1 :::; i :::; k . We conclude that n�; (TN; (Yi)) =f. n�: (TN; (Xi))
holds by hypothesis. However, since n� (rN (Y)) = n�(rN (X)) is equivalent to the fact that

145

5 . 1 . AXIOMATISATION Sebastian Link

n;� (TNi (Yj)) = n;� (TNi (Xj)) holds for all j = 1, . . . , k the statement of the lemma follows
for this case.

Let N = L{N'} . Then we distinguish between two cases. First , let Y = A and X =
L{X'} . Then we have

7r� (rN (X)) = ntt;:j (TL{N' } (L{X'})) = ntt;:j ({TN' (X') }) = {n�: (TN' (X')) } ,
but

n�(rN (Y)) = ntt;:j (rL{N'} (A)) = ntt;:j (0) = 0 .
It remains the case where Y = L{Y'} and X = L{X'} . From X' "t Y' follows
n�; (TN' (Y')) # 1r�; (TN' (X')) by hypothesis. It follows that

7r� (TN (Y)) = { 7r�; (TN' (Y')) } # { 7r�; (TN' (X')) } = 7r� (TN (X))
The proof for the remaining cases of multiset- and list-valued attributes are completely
analogous to the case of set-valued attributes . 0

The projection of X 's identifying term on Y is the projection of X n Y 's identifying
term on Y:
Lemma 5.9. For N E N A, X, Y E Sub(N) holds n� (rN (X)) = n� (rN (X n Y)) .
Proof. If Y = A, then there is nothing to show. If N = Y, then X n Y = X n N = X. If
X � Y, then X n Y = X. In both cases the lemma is obviously true.

We proceed by induction on N. The cases where N = A or N is a flat attribute
follow from the considerations above. Suppose N = L(N1 , . • . , Nk) , Y = L(Y1 , . . . , Yk) and
X = L(X1 , . . . , Xk) · We compute

7r� (TN (X)) = (7r�1 (TN1 (X1)) , . . . , 7r�k (TNk (Xk)))
= (n�1 (TN1 (X1 n YI) , . . . , nt:,k (TNk (Xk n Yk))
= n�(rN (X n Y)) .

Let N = L{N'} , Y = L{Y'} and X = L{X'} . It follows

7r� (TN (X n Y)) = nt{�:� (TL{N' } (L{X'} n L{Y'}))
= ntt�:� (TL{N' } (L{X' n Y'}))
= nt{�:} ({ TN' (X' n Y') })
= { n�: (TN' (X' n Y')) }
= { 1!"�: (TN' (X')) }
= nt{�:� ({ TN' (X')})
= nt{�:} (TL{N'} (L{X'}))
= n� (TN (X)) .

The proof for the remaining cases of multiset- and list-valued attributes are completely
analogous to the case of set-valued attributes. 0

146

5 . 1 . AXIOMATISATION Sebastian Link

The general construction of the desired two element instance is given in Lemma 5 . 14 .
While inductive arguments can be used for record- and list-valued attributes the elements
for set- and multiset-valued attributes must be constructed directly. This is due to the
notion of reconcilability.

The Case of Sets. The construction in the case of set-valued attributes L{ P} is based on
the following idea. Given some ideal Y of subattributes of P, one element contains exactly
the identifying terms of subattributes in Y while the other element contains the identifying
terms of all subattributes of P.

Lemma 5. 10. Let N = L{P} E NA, and 0 =J X � Sub(N) an ideal with respect to ::; .
Then there are t N , t'tv E dam(N) with nt{; (t N) = nt{; (t',y) if and only if W E X .

Proof. Since X =J 0 is an ideal we have A E X. Let X = {L{X} : X E Y} U {A} for some
Y � Sub(P) . Let tN = { Tp (X) : X ::; P} and t'tv = { Tp (X) : X E Y } . For W = A we
obviously have nf (tN) = ok = nf (t'tv) . Let now be W = L{V} . We need to show that

{nC(Tp(X)) : X ::; P} = {nC (Tp (X)) : X E Y} if and only if V E Y

holds. It is always true that {n� (Tp (X)) : X E Y} � {n� (Tp (X)) : X ::; P} holds since
Y � Sub(P) .

We show first that V E Y implies {n� (Tp(X)) : X ::; P} � {n� (Tp (X)) : X E Y} . Let
V E Y. We show that for all X ::; P there is some Y E Y with n� (Tp (X)) = n� (Tp (Y)) .
If X E Y , then obviously take Y = X. If X tf:_ Y, then take Y = X n V . We conclude
n�(Tp (X)) = n�(Tp (Y)) by Lemma 5 .9 . Certainly, Y E Y since Y is an :S-ideal.

It remains to show that {n� (Tp (X)) : X E Y} c {nC (Tp (X)) : X ::; P} , if V tf:_ Y.
Let V tf:_ Y. Since Y is an ideal it follows that all X ::; P with V ::; X also satisfy X tf:_ Y.
Hence, Tp (X) E tN , but Tp (X) tf:_ t'tv for all X with V ::; X ::; P. Suppose there was some
X E Y with n�(Tp (X)) = n� (Tp (V)) . Using Lemma 5 .8 we infer V ::; X and therefore
Tp (X) tf:_ t'tv . This is a contradiction since Tp (X) E t',y for all X E Y holds. Consequently,
n� (Tp (X)) =J n�(Tp (V)) for all X tf:_ Y. We conclude that n�(Tp (V)) E {n�(Tp (X)) : X ::;
P} and n� (Tp (V)) tf:_ {n� (Tp (X)) : X E Y} . This concludes the proof. 0

EXAMPLE 5 . 3 . Consider the nested attribute N = K {L(A, M[O(B, C)]) } together with
the FDs K{L(A) } --+ K{L(M[O(B)]) } and K{L(A) } --+ K{L(M[O(C)]) } . The closure
x+ of X = K { L(A) } with respect to these FDs is illustrated in Figure 5 .2 .

We generate two elements tN , t'tv which coincide exactly on the elements of x+. Follow­
ing the proof of Lemma 5 . 10, tN = { T£(A,M[O(B,C)]) (X) : X ::; L(A, M [O(B, C)]) } is

{ (a' , [(b' , c')]) ; (a, [(b' , c')]) ; (a' , [(b' , c)]) ; (a' , [(b, c')]) ; (a , [(b' , c)]) ;
(a, [(b, c')]) ; (a' , [(b, c)]) ; (a, [(b, c)]) ; (a' , []) ; (a, []) }

and t'tv = { T£(A,M[O(B,C)]) (Y) : Y E Y} is

{ (a, [(b' , c)]) ; (a , [(b, c')]) ; (a , [(b, c)]) ; (a' , []) ; (a, []) }
The projections nt{; (t) and nt{;(t') for W E Sub(N) are:

147

5 . 1 . AXIOMATISATION Sebastian Link

K{ L(A,M[O(C)]) }

Fig. 5 .2 . The closure x+ of X = K{L(A) }

11 w 11
K{L(M[O(B)]) } { (ok, [(b' , ok)]) ; (ok , [(b, ok)]) ; (ok , []) }
K{L(M[O(C)]) } { (ok , [(ok , c')]) ; (ok , [(ok , c')]) ; (ok , []) }

K{L(A) } { (a' , ok) ; (a, ok) }
K {L(M[O(B, C)]) } { (ok , [(b , c)]) ; (ok , [(b' , c)]) , (ok, [(b, c')]) ; { (ok, [(b , c)]) ; (ok , [(b' , c)]) ;

(ok, [(b' , c')]) ; (ok, []) } (ok, [(b , c')]) ; (ok , []) }
K {L(A, M[A]) } { (a, [(ok , ok)]) ; (a , []) ; { (a , [(ok , ok)]) ;

(a' , [(ok, ok)]) ; (a' , []) } (a, []) ; (a' , []) }

Indeed , tN and t'rv coincide on all maximal elements of x+, and therefore on all elements
of x+. Furthermore, tN and t'rv deviate on all minimal attributes of Sub(N) which are not
in x+. 0

The Case of Multisets. The strategy used for set-valued attributes does not work for
multiset-valued attributes since multiple occurrences of projections do not vanish in a
multiset . At this point it helps to look deeper into the structure of nested attributes. In
fact, the relativised subalgebra (Sub(X) , � ' u, n, -"- , X) with respect to X n X1 n · · · n Xk
is Boolean where X1 , . . . , Xk are the �-maximal subattributes of X E Sub(N) .

Let X, Y E Sub(N) with X � Y. Then [X, Y) = {Z E Sub(N) : X � Z � Y} is
called an interval of Sub(N) , [9 , 101] .
Lemma 5 . 11 . Let N E N A and X E Sub(N) . Let {X1 , . . . , Xk} be the set of all � ­
maximal proper subattributes of X . Then ([Ox , X] , � ' n, U , f), Ox , X) forms a Boolean al­
gebra where Ox = X n X1 n · · · n Xk and Y = (X -"-Y) U Ox for all Y E [Ox , X] .
Proof. The order � ' meet n and join U in ([Ox , X] , � ' n, u) are the respective restrictions
of order, meet and join from (Sub(N) , � ' n, u) to [Ox , X] . [Ox , X] is closed under meet n,

148

5 . 1 . AXIOMATISATION Sebastian Link

join U and complement (·) . It remains to show that Y = (X -'-Y) U Ox defines indeed the
complement of Y E [Ox , X] .

We show that Y n (X-'- Y) :::; Ox holds for all Y E [Ox , X] . If Y = X, then Y n (X-'-Y) =
AN :::; Ox . If Y = Ox , then Y n (X -'-Y) = Ox ::::; Ox . For every other Y E [Ox , X] we
have then y = xi! n . . . n xin where { 1 , . . . ' k } is the disjoint union of the two non­
empty sets { i1 , . . . , in } and {j1 , . . . , Jm} · Since (Xi1 n · · · n XiJ u (Xh n · · · n X]m) =
(Xi1 U Xj1) n · · · n (Xin U X]m) = X holds (the join of two different maximal proper
subattributes of X is always X) we have X-'-Y :::; Xh n · · · n XJm . We conclude that
Y n (X_,_ Y) < x n · · · n X· n x · n · · · n x = X1 n · · · n xk = x n X1 n · · · n xk = Ox . - �1 �n)1 Jm

It follows then that Y U Y = Y U (X-'-Y) U 0 x = X U Y U 0 x = X , and Y n Y =
Y n ((X -'- Y) u Ox) = (Y n (X -'-Y)) u (Y n Ox) :::; Ox u Ox = Ox . This completes the
proof D

We are going to prove the existence of two elements which deviate in their projections
on exactly all elements of a principal filter, i . e . , on all elements in the shaded area of the
left picture in Figure 5 .3 .

M

Fig. 5.3. Illustration of Lemma 5 .12

The idea is to use a bijection between the intervals [Oy , Y n U] and [Y n U, Y] . The
meet of Y and some ::;-maximal subattribute U of Y that is not in the principal filter of
Y, however, is always the complement of some atom. This is illustrated in the right-hand
picture of Figure 5 .3 . One multiset contains the identifying terms of all attributes from the
even levels of ([Oy , Y] , ::::;) , the other multiset contains the identifying terms of all attributes
from the odd levels of ([Oy , Y] , :::;) . The kth level of ([Oy , Y] , :::;) is defined as the set of all
elements in [Oy , Y] that have distance k to Oy in the Hasse diagram of ([Oy , Y] , :::;) , see also
[9, 101] .

Lemma 5 . 12 . Let N = L (M) E N A and A "I X = L(Y) :::; N. Then there are t1 , t2 E
dom(N) with 1r{'£, (t1) -=/= 1r{'£,(t2) for W E Sub(N) if and only if X :::; W.

149

5 . 1 . AXIOMATISATION Sebastian Link

Proof. Let ([Oy , Y] , :=:; , n, u, (.), Oy , Y) be the Boolean algebra according to Lemma 5 . 1 1
where [Oy , Y] contains 2k elements. Let Li denote the ith level of ([Oy , Y] , :=:;) for i =
0, . . . , k . Then we define t 1 = (rM (Z) : Z E .Ci, i even) and t2 = (rM (Z) : Z E .Ci , i odd) .
Note that t2 = () , if k = 0 .

First , i t follows that 7r� (rM (Y)) is an element of either 7rf(t1) or 1rf (t2) . If
7r� (rM (Y)) = 7r� (rM (Z)) held for some Z :=:; M, then Y :=:; Z by Lemma 5 .8 . The elements
t 1 and t2 , however, have only identifying terms of subattributes Z :=:; Y as members. We
conclude that 7r� (rM (Y)) =I= 7r�(rM (Z)) for Z < Y. This shows that 1rf (tl) =I= 1rf (t2) , and
therefore also 1r� (t1) =I= 1r� (t2) whenever X :=:; W.

It remains to show that 1r� (t1) = 1r� (t2) holds whenever X 1:. W holds. It is sufficient
to show that 1rf (t1) = 1rf (t2) holds for all :=:;-maximal subattributes V E Sub(N) with
X i V. This is obvious if V = >.. Let therefore be V = L(U) where U is a :=:;-maximal
subattribute U E Sub(M) with Y 1:. U.

We show first that Y n U is always a ::;-maximal proper subattribute of Y. Suppose
there is some Z with Y n U < Z < Y. If U = Z U U, then

U n Y = (Z u U) n Y = (Z n Y) u (U n Y) = Z u (U n Y) = Z

and this contradicts U n Y < Z. This shows U < Z U U. If Y :=:; Z U U, then Y __,_ Z :=:;
U n Y :=:; Z. This means Y :=:; Z which gives the contradiction Z < Y :=:; Z. We conclude
that U < Z U U and Y 1:. Z U U. This contradicts the :S-maximality of U with Y 1:. U and
shows that Z = Y n U or Z = Y, i .e . , Y n U is indeed a :=:;-maximal proper subattribute
of Y. This implies that Y n U is always the complement of an atom of ([Oy , Y] , :=:;) .

Let [Oy , Y n U] , [Y n U, Y] denote the intervals between Oy and Y n U, and Y n U and
Y, respectively. The mapping Z H Z U Y n U from [Oy , Y n U] to [Y n U, Y] is bijective
with inverse z H z n (Y n U) . Since y n u is an atom we have TM (Z u y n U) E t2
whenever TM (Z) E t 1 , and vice versa. The situation is illustrated in the right picture of
Figure 5 .3 .

I t is now sufficient to show that 7rtf (rM (Z)) = 7rtf(rM (Z U Y n U)) for Z E [Oy , Y n U] .
We have

7rtf (TM (Z)) = 7rtf (TM (z u Oy))
= 7rtf (rM ((Z n U) u (Y n U n Y n U)))
= 7rtf (rM ((Z n U) U (Y n U n U)))
= 7rtf (rM ((Z U Y n U) n U))
= 1rtf (TM (Z u Y n U))

where the last equation follows from Lemma 5 .9 .

(Z = Z u Oy)
(z = z n u, Y n u n Y n u = Oy)

(Y n u n Y = Y n U)
(Distributivity)

0

For the general construction we pick all :=:;-minimal subattributes Mi that are not in the
ideal X and form the union over all multisets given by the previous lemma on all generated
principal filters . This is illustrated by Figure 5 .4.

Lemma 5.13 . Let N = L(P) E N A, and 0 =I= X � Sub(N) an ideal with respect to :=:; .
Then there are t N , t'rv E dom(N) with 1r� (tN) = 1r� (t�) if and only if W E X.

150

5 . 1 . AXIOMATISATION Sebastian Link

Fig. 5 .4. Illustration of Lemma 5 . 1 3

Proof. Let {M1 , . . . , Mn} � Sub(N) be the set of all :::; -minimal subattributes of N with
Mi t/:. X. Since A E X holds it follows that Mi ::f A for all i = 1 , . . . , n. According to
Lemma 5 . 12 , and for all i = 1, . . . , n, there are tM; , t�; E dom(N) with 7r� (tMJ ::f 1r� (t�J

n n

if and only if Mi :::; Z. Define tN = U tM; and t'tv = U t�; ' where the union is taken i=l i= l
over multisets . I f W E X holds, then Mi 1:: W for all i = 1 , . . . , n and, consequently
n{:[r (tMJ = 1r{{; (t�J holds for all i = 1, . . . , n as well. This implies n{{; (tN) = n{{; (t'tv) . If
W t/:. X holds, then there is some j with 1 :::; j :::; n such that Mj :::; W holds . The element
n{:ir (TN (Mj)) , however, is member of exactly one of n{{; (t N) , n{:ir (t'tv) by the construction.
This implies n{:ir (t N) ::f 1r{:ir (t'tv) . Consequently, 1r{:ir (t N) = n{{; (t'tv) if and only if W E X. D
EXAMPLE 5 . 4 . We will illustrate the construction for multisets. Consider the nested at­
tribute N = L(M) with M = K(J[A] , 0{ P(B, Q{ C}) }) . The structure of (Sub(M) , :::;) is
illustrated in Figure 5 .5 where labels have been omitted .

Let X = { L(X) : X E Y} where Y is the ideal that consists of all subattributes
of M which are circled in Figure 5.5 . The :::;-minimal subattributes V E Sub(N) with
V t/:. X are V1 = L(K(J[A] , O{P(B, Q{A}) })) and V2 = L(K(J[A] , O{P(A, A) })) .
The structures of ([K(A , O{P(A, A) }) , K(J[A] , O{P(B, Q{A}) })] , :::;) and
([K(J[A] , A) , K(J[A] , O{P(A, A) })] , :::;) are illustrated in Figure 5.6.

According to Lemma 5 . 12 the following elements are chosen :

t� = (([] , { (b, 0) }) ; ([] , { (b' , { c}) }) ; ([a] , { (b' , 0) }) ; ([a] , { (b, { c}) }))
t� = (([] , { (b' , 0) }) ; ([] , { (b , { c}) }) ; ([a] , { (b , 0) }) ; ([a] , { (b' , { c}) }))
t7 = (([a] , 0) ; ([a'] , { (b, 0) }))
t� = (([a] , { (b, 0) }) ; ([a'] , 0)) .

Finally, and according to Lemma 5 . 13 one chooses

t N = t� U t7 = (([] , { (b, 0) }) ; ([] , { (b' , { c}) }) ; ([a] , { (b' , 0) }) ; ([a] , { (b, { c}) }) ;
([a] , 0) ; ([a'] , { (b, 0) }))

t'tv = t� U t� = (([) , { (b' , 0) }) ; ([] , { (b, { c}) }) ; ([a] , { (b , 0) }) ; ([a) , { (b' , { c}) }) ;
([a) , { (b, 0) }) ; ([a'] , 0)) .

One can verify then that n{{; (tN) = 1r{{; (t'tv) for all :::;-maximal W E X, i .e . ,
W E {L(K(A, O{P(B, Q{C}) })) , L(K(J[A] , O{P(B, A) })) , L(K(J[A] , O{P(A, Q{A}) })) ,
L(K(J[A] , A)) } . Furthermore, nt: (tN) ::f nt: (t'tv) and 1r� (tN) ::f 1r� (t'tv) . D

151

5 . 1 . AXIOMATISATION

[A] {B {C } }

Fig. 5 .5 . The structure of M = K(J[A] , O{P(B, Q{ C})})

[A.]{B{A.}}

/ I �
A.{B{A} } [A.] {BA.} [A.]{ A.{ A.}}

l X X I
A.{ BA.} A.{)..{ A.} } [A.]{U}

� 1 /

Fig. 5.6. The structure of Subalgebras in Example 5 .4

[A]{ AA.}

I \
[A.]{A.A.} [A]A.

\ I
[A.]/..

Sebastian Link

The Main Lemma. The main lemma is now a mix of the previous lemmata on set­
and multiset-valued attributes as well as induction arguments for record- and list-valued
attributes.

Lemma 5 . 14. Let N E N A, and (/) f. X � Sub(N) an ideal with respect to S with the
property that for reconcilable X, Y E X also X U Y E X holds. Then there are tN , t� E
dom(N) with 1r{X, (tN) = 1r{X, (t�) if and only if W E X.

Proof. The proof is done by induction on N. The case N = >. is trivial . If N = A is a fiat
attribute , then there are two cases X = { >.} and X = {>. , A} to consider. In the first case
we choose tA = a, t� = a' with a, a' E dom(A) and a f=. a', in the second case tA = a = t� .

152

5 . 1 . AXIOMATISATION Sebastian Link

Consider now the case where N = L(N1 , . . . , Nk) · For every X E X we have X =
(X n L(NI)) u · · · u (X n L(Nk)) . Consequently, Xi = {X n L(Ni) : X E X} is a non­
empty ideal in Sub(L(Ni)) for every i = 1, . . . , k. Let Xi , Yi E Xi be reconcilable. Then
Xi = X n L(Ni) and Yi = Y n L(Ni) for some X, Y E X . Since X is an ideal it follows from
Xi S X and li S Y that Xi , Yi E X, too. We conclude that Xi U li E X since X is closed
under the join of reconcilable elements. Since Xi U li = (X U Y) n L(Ni) E X it follows
that (Xi U li) n L(Ni) = Xi U li E Xi by definition of Xi · That is, Xi is also closed under
the join of reconcilable elements. We know by hypothesis that for all i = 1 , . . . , k there are
tL(N;) , t�(N;) E dom(L (Ni)) with 1ft��� (tL(N;)) = 1ft��� (t�(N;)) if and only if L(Wi) E Xi
holds. Now we choose tN = (tL(N!) , . . . , tL(Nk)) and t'tv = (t�(NJ) ' . . . , t�(Nk)) and have the

equivalence of 1r{;{, (tN) = 1r{;{, (t'tv) if and only if W E X with 1rt��:g (tL(N;)) = 1ft�:;;� (t�(N)
if and only if L(Wi) E Xi holds for i = 1 , . . . , k .

Suppose N = L[N'] . Then X = {L[M] : M E Y} U {.A} for an ideal Y � Sub(N') . If
Y = 0, then X = {.A} . Define tN = [] , t'tv = [n'] E dom(N) for some n' E dom(N') . For
.A =f. W E Sub(N) , say W = L [M'] , we have then 1r{;{, (tN) = [] -j. [1r�, (n')] = 1r{;{, (t'tv) .
This implies 1r{;{, (tN) = 1r{;{, (t'tv) i f and only if W = .A . Suppose Y -j. 0 and X' , Y ' E
Y are reconcilable. It follows that L[X'] , L[Y'] E X are also reconcilable. Consequently,
L[X' U Y'] = L[X'] U L[Y'] E X by assumption, and X' U Y' E Y. The hypothesis tells
us that there are t N' , t'tv, E dam(N') with 1r{:[:, (t N') = 1r{:[:, (t'tv,) if and only if W' E Y. We
define tN = [tN'] , t'tv = [t'tv ,] E dom(N) . First, Kf (tN) = Kf (t'tv) holds, and .A E X. For
.A =f. W E Sub(N) , say W = L[W'] , we obtain

1r(;{, (tN) = [7r(;{,', (tN')] = [7r(;{,', (t:V,) J = 7r(;{, (t:V) iff W' E Y iff W E X.

The remaining cases of set- and multiset-valued attributes are covered by Lemma 5 . 10 and
Lemma 5 . 13, respectively. 0

The Main Theorem. As before, the key idea is now to take any X � Y f:. E+ and to
construct an instance which satisfies all dependencies in E, but does not satisfy X � Y.
The proof is based on the same idea that was used in the case of the RDM, but makes also
use of the fact that x+ (the closure of X under derivation of FDs from E) is a non-empty
ideal that is closed under the join of reconcilable attributes.

Theorem 5.15. The generalised Armstrong axioms are sound and complete for the impli­
cation of FDs in the presence of records, lists, sets and multisets.

Proof. Soundness has been established in Proposition 5 . 5 . We show the completeness. Let
N E N A and E be a set of FDs on N. Let X � Y be an FD on N with X � Y f:. E+.
Define x+ = { Z : X � { Z} E E+ } . Then .A E x+ according to the .A-axiom. The
derivability of the union rule implies that X � x+ E E+ holds. If Y was a subset of
x+, the subset rule would imply that X � Y E E+ , a contradiction to our assumption.
Hence, Y Cl x+ , i .e . , there is some Z E Y with Z f:. x+. According to the subattribute
rule x+ is an ideal with respect to s . Moreover, if U, V E x+ are reconcilable, then the

153

5 . 1 . AXIOMATISATION Sebastian Link

restricted join axiom implies that U U V E x+, too. Therefore, using Lemma 5 . 14 we define
r = { t 1 , t2 } � dom(N) by

if and only if W E X+ (12)

holds. I t i s immediate that ft=r X --t { Z} , and this implies ft=r X --t Y by definition. It
remains to show that Fr E. Therefore, take any U --t V E E.

- If U � x+, then 1r{j (t1) =1- 1r{j (t2) for some U E U by (1 2) . Obviously, Fr U --t V.
- If U � x+, then 1r{j (t1) = 1r{j (t2) for all U E U by (12) . Since X --t x+ E E+ it follows

from the subset rule that also X --t U E E+ holds. Applying the transitivity rule again
results in X --t V E E+ . The subset rule guarantees that V � x+ . We conclude by
(12) that 1r� (t 1) = 1r� (t2) holds for all V E V. This shows Fr U --t V.

As E* = {X --t Y I E f= X --+ Y} , i t follows that Fr E* . Therefore, X --t Y � E* . This
proves the completeness. 0

5 . 1 .5 A Note on Reconcilability

We demonstrate that reconcilability of X and Y is an exact condition for the soundness of
the restricted join axiom {X, Y} --+ {X UN Y} . This means that one cannot find a weaker

sufficient condition for that rule to hold. Proposition 5 .5 already implies that reconcilability
is a sufficient condition. If X and Y are not reconcilable, then we show that there is some
instance r with ft=r {X, Y} --t {X U Y } . It is then sufficient to find an ideal Y satisfying
the properties of Lemma 5 . 1 4 and where X, Y E Y, but X U Y � Y. This guarantees the
existence of t N , t� with 1r([, (t N) = 1r([, (t�) if and only if W E Y. The desired r is then
{tN, t�} .

Lemma 5.16 . Let N E N A and X, Y E Sub(N) . Then Y = {U U V : U � X, V �
Y, U and V are reconcilable} is a non-empty ideal with respect to � and for all S, T E Y
that are reconcilable follows S U T E Y .

Proof. Y i s non-empty as A E Y holds. We show that Y is an ideal with respect to � ­
Let S E Y , i .e . , S = U U V with U � X, V � Y and U, V are reconcilable. Let T � S .
Then T = S n T = (U u V) n T = (U n T) u (V n T) where U n T � U � X and
V n T � V � Y holds. We show that U n T, V n T are reconcilable, and conclude that
T E Y, too. We proceed by induction on reconcilable nested attributes. If U � V, then
U n T � V n T. Similarly, if V � U, then V n T � UnT. If T = A, then UnT = V n T. Let
N = L(N1 , . . . , Nk) , U = L(U1 , . . . , Uk) , V = L(V1 , . . . , Vk) and T = L(T1 , . . . , Tk) · Since
U, V are reconcilable it follows that Ui , Vi are reconcilable for all i = 1 , . . . , k . Consequently,
UinVi and VinTi are also reconcilable for i = 1 , . . . , k. The reconcilability of UnT and VnT
follows from the fact that UnT = L(U1nT1 , . . . , UknTk) and VnT = L(V1nT1 , . . . , VknTk) ·
Let N = L[N'] , U = L[U'] , V = L [V'] and T = L[T'] . Then U', V' are reconcilable by
definition, and U' n T' , V' n T' are reconcilable as well . Since U n T = L[U' n T'] and
V n T = L[V' n T'] it is proven that U n T and V n T are indeed reconcilable.

154

5 .2 . MINIMALITY Sebastian Link

It remains to show that Y is closed under the join of reconcilable elements. Let
S, T E Y be reconcilable. We proceed again by induction on the definition of reconcil­
able nested attributes in order to show that S U T E Y holds as well . Note that this
is true, if X = A or Y = .A . If S � T, then S U T = T E Y, and if T � S, then
S U T = S E Y. Let N = L(N1 , . . . , Nk) , X = L(X1 , . . . , Xk) , Y = L(Y1 , . . . , Yk) · It
follows that Y = {L(M1 , . . . , Mk) : Mi E Yi} where Yi = {Ui u Vi : Ui � Xi , Vi �
Yi and Ui , Vi are reconcilable} is a non-empty ideal for every i = 1 , . . . , k . Let S, T E Y be
reconcilable. Then S = L(S1 , . . . , Sk) , T = L(T1 , . . . , Tk) with Si , 1i E Yi for i = 1, . . . , k.
Furthermore, si , 1i are reconcilable . We know that si UTi E Yi holds for every i = 1 , . . . , k ,
and therefore S u T = L(S1 , . . . , Sk) u L(T1 , . . . , Tk) = L (S1 u T1 , . . . , Sk u Tk) E Y which
proves this case.

Let N = L [N'] , X = L[X'] , Y = L [Y'] . It follows that Y = {L[M] : M E Y'} U {.A}
where Y' = {U' U V' : U' � X', V' :::; Y' and U' , V' are reconcilable} i s a non-empty
ideal . If Y' = 0, then Y = {.A} and S U T = .A E Y. Let S, T E Y be reconcilable,
say S = L[S'] and T = L[T'] . Consequently, S', T' E Y' , and the reconcilability of S' , T'
follows from the reconcilability of S, T. We know that S' U T' E Y' which means that
S u T = L [S'] u L[T'] = L[S' u T'] E Y holds. o

5 . 2 Minimality

We will investigate whether the generalised Armstrong axioms form a minimal, sound and
complete set of inference rules for the implication of FDs in the sense of Definition 3 .7.

Lemma 5 . 17. The reflexivity axiom is independent from 91 ={subattribute axiom, exten­
sion rule, restricted join axiom, transitivity rule} .

Proof. Let N = L{A}, E = 0 and a = {-A , L{-A} , L{A} } ---+ {.A} . We present E� by the
following table where the row names denote the left-hand side X, and the column names
denote the right-hand side Y of an FD X ---+ Y. An FD X ---+ Y belongs to E� if and only
if the entry at row X and column Y is a cross x .

IIP.}i{L{.X.} }j{L{A} }j{.X., L{A} }j{.X., L{A} }j{L{A} , L{A} }j{A , L{.X.} , L{A} }I
{A } X

{L{A} } X X X
{L{A} } X X X X X X X

{A , L{A} } X X X
{A , L{A} } X X X X X X X

{L{A } , L{A} } X X X X X X X
{ .X., L{A} , L{A} }

We can see that a � E�. However, as {.A} � {A , L{.A} , L{A}} we conclude that a can be
inferred from E using the reflexivity axiom. 0

Lemma 5 . 18 . The subattribute axiom is independent from 91 ={reflexivity axiom, exten­
sion rule, restricted join axiom, transitivity rule} .

155

5 .2 . MINIMALITY Sebastian Link

Proof. Let N = L(A) , E = 0 and a = {L(A) } -t {.\} . The following table represents E� .

JJ{.\}J{L(A) }J{.\ , L(A) } J
{.\} X

{L(A) } X
{.\ , L(A) } X X X

We can see that a � E� . However, as A :::; L(A) we conclude that a can be inferred from
E using the subattribute axiom. D

Lemma 5 . 19 . The extension rule is independent from � ={ reflexivity axiom, subattribute
axiom, restricted join axiom, transitivity rule} .

Proof. Let N = L(A) , E = 0 and a = {L(A) } -t {A , L(A) } . The following table represents
E�.

1/{.\}J{L(A) }J{A , L(A) } J
{.\} X

{L(A) } X X
{.\ , L(A) } X X X

We can see that a � E� . However, as {L(A) } -t {.\} E E� we conclude that a can be
inferred from E using the extension rule and �- D

Lemma 5.20. The restricted join axiom is independent from � ={ reflexivity axiom, sub­
attribute axiom, extension rule, transitivity rule} .

Proof. Let N = L(A, B) , E = 0 and a = {L(A) , L(B) } -t {L(A, B) } . We compute E� by
the tables

11{-A}I{L(A) }I{L(B) }I{L(A, B)} I {A, L(A) }I{A, L(B) }I{A, L(A, B) }I{L(A) , L(B) }I
{A} X

{L(A) } X X X
{L(B) } X X X

{L(A, B)} X X X X X X X X
{.A, L(A) } X X X
{A, L(B) } X X X

{A, L(A, B)} X X X X X X X X
{ L(A) , L(B)} X X X X X X

{L(A) , L(A, B)} X X X X X X X X
{L(B), L(A, B)} X X X X X X X X
{A, L(A) , L(B)} X X X X X X

{A , L(A), L(A, B) } X X X X X X X X
{.A, L(B) , L(A, B)} X X X X X X X X

{L(A) , L(B) , L(A, B)} X X X X X X X X
{A , L(A) , L(B) , L(A, B)} X X X X X X X X

156

5 .2 . MINIMALITY Sebastian Link

and

II{L(A) , L(A, B) }I{L (B) , L (A , B) } I {A, L(A) , L(B) }I{ A, L(A) , L(A, B) } I
{,\}

{L(A) }
{L (B) }

{L(A, B) } X X X X
{A, L(A)}
{,\ , L(B) }

{A, L (A, B) } X X X X
{L(A) , L (B) } X

{L(A) , L(A, B) } X X X X
{L (B) , L(A, B) } X X X X
{A, L(A) , L (B)} X

{A, L(A) , L(A, B) } X X X X
{,\ , L(B) , L(A, B) } X X X X

{L(A) , L(B) , L(A, B) } X X X X
{,\, L(A) , L(B) , L (A, B) } X X X X

and

liP, L(B) , L(A, B) }I{ L(A) , L(B) , L(A, B) } I {A, L (A) , L(B) , L(A, B) }I
{,\}

{L(A)}
{L(B) }

{L(A, B) } X X X
{ ,\ , L(A) }
{>., L(B) }

{ >. , L(A, B) } X X X
{L (A) , L (B)}

{ L (A) , L (A , B) } X X X
{L(B) , L(A, B) } X X X
{ ,\, L(A) , L (B) }

{ ,\ , L(A) , L(A, B) } X X X
{,\ , L(B) , L(A, B) } X X X

{L (A) , L(B) , L (A, B) } X X X
{,\ , L(A) , L(B) , L(A, B) } X X X

We can see that a � E�. However, as L(A) and L(B) are reconcilable , we conclude that a
can be inferred from E using the restricted join axiom. D

Lemma 5.21 . The transitivity rule is independent from 9t ={reflexivity axiom, subat­
tribute axiom, extension rule, restricted join axiom} .

Proof. Let N = L{A} , E = 0 and a = {£{>.} , L{A}} --+ {>.} . The following table repre­
sents E� .

157

5 .3 . MINIMAL AXIOMATISATIONS FOR ALL COMBINATIONS Sebastian Link

IIP}I{L{>.} }i{L{A} }I{A, L{A} }I{A, L{A} }i{L{A} , L{A} }I{A, L{A} , L{A} }I
{>.} X

{£{>.}} X X X
{L{A} } X X X X X

{A, L{A}} X X X
{A, L{A}} X X X

{L{A} , L{A} } X X X
{>., L{A} , L{A} } X X X X X X X

We can see that a tf_ E� . However, { L{ A} , L{ A}} ---+ {A} can be inferred from
{L{.X} , L{A}} ---+ {L{A} } , {L{.X}} ---+ {A} E E� by the transitivity rule . We conclude
that a can be inferred from E using the transitivity rule and �. 0

It is interesting to note that in every of the previous lemmata trivial FDs have been
identified as witnesses for the independence of the respective inference rule, i .e . , FDs that
follow from the empty set of FDs specified.

The previous lemmata prove the following main result. It shows that there is no proper
subset of the generalised Armstrong axioms which forms also a complete set of inference
rules for the implication of FDs.

Theorem 5.22. The generalised Armstrong axioms form a minimal, sound and complete
set of inference rules for the implication of FDs in the presence of records, lists, sets and
multisets. 0

5 . 3 Minimal Axiomatisations for all Combinations

Theorem 5 . 22 captures the implication of FDs in the presence of all types considered in
this section. It is now interesting to ask what the minimal axiomatisations for all subsets
of the set of all four types are. The extended abstract [139] presented an axiomatisation of
FDs in the presence of records and sets. The generalised Armstrong axioms from Definition
5 .4 are in fact already all needed to capture implication in the presence of these two types.
The proofs in Section 5 . 2 show now that this axiomatisation is also minimal.

Multisets behave similar to sets in the sense that elements of a multiset are not ordered.
Values on the join of two subattributes are therefore not determined by the values on the
individual subattributes. An axiomatisation of FDs in the presence of records and multisets
is again given by the generalised Armstrong axioms. Moreover, the proofs in Section 5 .2 are
completely analogous, if set-valued attributes are replaced by multiset-valued attributes.
Therefore, the axiomatisation is even minimal.

The situation becomes easier if only records and lists are considered. Here the join
axiom is valid in unrestricted form due to the fact that elements of a list are totally
ordered. This means that it is sufficient to consider FDs of the form X ---+ Y where X
and Y are subattributes of some nested attribute N. Sets of subattributes are no longer
required as all elements of the set can be joined without changing the semantics. As shown

158

5 .4 . IMPLICATION PROBLEM Sebastian Link

in Chapter 3 the implication of FDs can be captured by a generalisation of Armstrong's
original axioms. We can therefore summarise the results on the axiomatisability of FDs in
the presence of various type constructors in the following theorem.

Theorem 5.23. The Armstrong axioms, i. e . ,

--- Y < X,
X -+ y -

X -+ Y, Y -+ Z
X -+ Z

form a minimal, sound and complete set of inference rules for the implication of FDs in
the presence of records, and in the presence of records and lists.

Let T be any non-empty subset of { lists, sets, multisets} apart from { lists} . The gen­
eralised A rmstrong axioms, i. e . ,

X -+ Y y � X' {X} -+ {Y} y � X,

{X, Y} -+ {X UN Y} X, Y reconcilable, X -+ Y, Y -+ Z
X -+ Z

form a minimal, sound and complete set of inference rules for the implication of FDs in
the presence of records and T. 0

In terms of Figure 1 . 1 , Theorem 5 .23 extends the knowledge on the class of FDs and
the problem of axiomatisability along the data type dimension covering all combinations of
record-, list-, set- and multiset-valued attributes. We would like to do the same extension
for the implication problem of FDs.

5 .4 Implication Problem

In view of Theorem 5 . 15, E f= X -+ Y holds if and only if E f-9\ X -+ Y holds where
9'\ are the generalised Armstrong axioms from Definition 5.4. Given some set E one can
enumerate all FDs derivable from it. However, the enumeration algorithm is time consuming
and therefore impractical. We will now present a provably-correct membership algorithm
and prove that it works efficiently, i .e . , in polynomial time in the number of subattributes
of the underlying nested attribute and the number of FDs given .

5.4 .1 The Closure

Similar to the RDM [29] and similar to the case of list-valued attributes in Chapter 3 we
introduce the notion of a closure for a set of nested attributes with respect to a given set
of FDs. Please note that this notion already played an important role in proving Theorem
5 . 15 . The closure is defined with respect to the set 9'\ of the generalised Armstrong axioms
from Definition 5 .4 .

1 59

5 .4 . IMPLICATION PROBLEM Sebastian Link

Definition 5.24. Let N E N A, X � Sub(N) a set of subattributes of N, and E a set of
FDs on N. The closure x+ � Sub(N) of X with respect to E is x+ = { Z : X -t { Z} E
E+ } . o

According to Theorem 5 . 15 the closure x+ of X is therefore the set of all nested
attributes which are functionally determined by X with respect to a given set E of FDs.
The computation of x+ is sufficient for deciding whether E f= X -t Y holds .

Lemma 5.25 . Let N E N A, and E a set of FDs on N. Then

X -t Y E E+ if and only if Y � x+

Proof. If X ---+ Y E E+ , then X -t {Y} E E+ for all Y E Y by the subset rule. This means
all Y E Y are elements of x+ , i .e . , Y � x+.

Assuming that every Y E Y also satisfies Y E x+ implies that X -t {Y} E J.;+ for all
Y E Y. We infer that X -t Y E E+ by the derivability of the union rule . 0

Let X, Y � Sub(N) . We call X a generalised subset of Y, denoted by X � gen Y, if
and only if for every X E X there is some Y E Y with X ::; Y (Hoare-ordering) . Note
that � gen is a pre-order (reflexive, transitive) on the powerset P(Sub(N)) of Sub(N) . The
distinct sets X = {L[A] , L [-\] } and Y = {L [A] } are generalised subsets of one another, i .e . ,
� gen is not symmetric.

The projection of any tuple on a superattribute always determines the projection of
this tuple on each of its subattributes. It is therefore sufficient to consider only maximal
subattributes with respect to ::; . The set of all maximal elements of some :S-ideal X �
Sub(N) is formally defined as Xmax = {X E X : VZ E X.X ::; Z implies X = Z} . It is
an immediate consequence of Lemma 5 .26 that Y � x+ if and only if Y �gen X�ax ·

Lemma 5.26. Let N E N A, and X � Sub(N) an ideal with respect to ::; . For all Y �
Sub(N) we have

Y � X if and only if Y �gen Xmax

Proof. We show the only if part first . Let Y E Y be arbitrary. From Y � X follows Y E X.
Consequently there is some Z E Xmax with Y ::; Z. This shows that Y �gen Xmax·

It remains to consider the if part. Let Y E Y be arbitrary again. Since Y �gen Xmax,
there is some Z E Xmax with Y ::; Z. Since Xmax � X we have Z E X. However, X is an
ideal with respect to ::; , i . e . , Y E X holds as well. This shows Y � X. 0

5.4.2 Units of Nested Attributes

In order to solve the implication problem for FDs on some nested attribute N we will
split N into mutually reconcilable subattributes Ni and solve the projected implication
problems on the Ni simultaneously. The idea is to choose the units Ni of N such that for
all subattributes U, V E Sub(N) we have that U and V are reconcilable if and only if for
all units Ni of N the subattributes U n Ni and V n Ni are comparable with respect to ::; .
This motivates the following definition.

160

5 .4 . IMPLICATION PROBLEM Sebastian Link

Definition 5.27. Let N E N A. A nested attribute Ni E N A is a unit of N if and only if

1 . Ni :S N,
2. VX, Y ::; Ni , if X and Y are reconcilable, then X ::; Y or Y ::; X,
3 . Ni i s ::;-maximal with properties 1 . and 2 .

The set of all units of N i s denoted by U(N) . D

The property that two subattributes U, V E Sub(N) are reconcilable is not tran­
sitive: if N = L(K { M(A, B) } , C) and U = L(K { M (A, .\) } , A) , W = L(A , C) and
V = L(K{M(A, B) } , A) , then U and W are reconcilable, W and V are reconcilable, but U
and V are not reconcilable. In fact , U, V E Sub(L(K{M(A, B) } , A)) , but they are incom­
parable with respect to ::; .

ExAMPLE 5 . 5 . Let N = L1 (L2 (L3 (A, B)) , L4 [L5 (C, L6 (D))] , L7 (E, L8 { L9 (F, G, H) })) .
The units of N are

- Ll (L2 (L3 (A, B)) , A , L7 (.\, .\)) ,
- L1 (.\ , £4 [£5 (C, .\)] , £7 (.\ , .\)) ,
- L1 (.\, L4 [L5 (A , L6 (D))] , L7 (A, .\)) ,
- L1 (.\ , A , L7 (E, A)) and
- L1 (.\, A, L1 (.\ , L8 {L9 (F, G , H) })) .

Clearly L1 (A, A, L7 (A , L8 {L9 (.\ , G, H) })) also has properties 1 . and 2 . of Definition 5 .27,
but is not maximal with respect ::; . D

Next we give an inductive characterisation of units.

k
Lemma 5 .28. Let N E N A . Then U(N) = U {L(AN! l · . . , M, . . . , ANk) : M E

i=l
U (Ni) and Ni =/= ANJ, if N = L(N1 , . . . , Nk) and N =/= AN, U(N) = {L[M'] : M' E U(M) } ,
if N = L[M] holds and U(N) = {N} in any other case.

Proof. We prove the equivalence of this definition and Definition 5 .27 by induction on the
structure of the nested attribute N.

If N = A or N = A is a flat attribute, then X ::; Y or Y ::; X for all X, Y E Sub(N) ,
i . e . , N is its only unit .

If N = L(M) or N = L{M} , then X ::; Y or Y ::; X for all reconcilable X, Y E Sub(N) .
This follows directly from the definition of reconcilable attributes. Consequently, N is again
its only unit .

Let N = L[M] . We show that L[M'] E U(N) , if M' E U(M) . Clearly, L[M'] :S N as
M' :S M. Let X, Y :S L[M'] . If X = .\ or Y = A, then X :S Y or Y :S X. If X = L[X'] and
Y = L[Y'] are reconcilable, then X' and Y' are reconcilable as well . Consequently, X' ::; Y'
or Y' ::; X', and therefore also X ::; Y or Y ::; X. The maximality of L[M'] follows from
the maximality of M'. If N = L(N1 , . . . , Nk) and Ni = ANi for every i = 1 , . . . , k, then
U(N) = {N} as well.

161

5 .4 . IMPLICATION PROBLEM Sebastian Link

It remains to consider the case where N = L(N1 , . . . , Nk) and N =/=- AN. We show that
L(M) E U(N) , if M E U(Ni) and Ni =/=- AN; · We know that M =/=- AN; since N =/=- AN · First
L(M) :::; L (Ni) :::; N since M :::; Ni holds. Suppose now there are reconcilable X, Y :::; L(M) .
Then X = L(X') , Y = L(Y') with reconcilable X', Y' :::; M . I t follows that X' :::; Y' or
Y' :::; X' holds. Consequently, X :::; Y or Y :::; X holds as well . It remains to show the
maximality of L(M) . M itself is maximal, i .e . , all L(M') with M :::; M' :::; Ni and M =/=- M'
do not satisfy the second property in Definition 5 .27. Suppose some L(M, K) :::; N with
K =/=- ANi and K :::; Nj for i =/=- j . Clearly, L(M) , L(K) :::; L (M, K) are reconcilable, but
they are :::; -incomparable as L(M) =/=- AN and L(K) =!=- AN. It follows that L(M) is indeed
:::;-maximal with the first two properties. 0

Every nested attribute is the join of its mutually reconcilable units.

Lemma 5.29 . Let N E N A . Then N = U{M I M E U(N) } and for N1 , N2 E U(N) with
N1 =/=- N2 and U :::; N1 , V :::; N2 follows that U and V are reconcilable.

Proof. The proof is done in both cases by induction on N using Lemma 5 .28. We show
first that N = U{M I M E U(N) } . In the cases where N = A, N = A is a fiat attribute ,
N = L{M} , N = L(M) and N = L(N1 , . . . , Nk) with Ni = AN; for i = 1 , . . . , k , we
have that U(N) is a singleton containing N. Therefore the statement is obvious. Let N =
L(N1 , . . . , Nk) where Ni =J. AN; for some i holds. The hypothesis is that Ni = U{M I M E
U(Ni) } holds for all i = 1 , . . . , k. This implies

N = L(N1 , . . . , Nk) = u:=l L(ANl , . . . , Ni , . . . , ANk)
= u:=l L(ANp . . . , U{M 1 M E u(Ni) } , . . . , ANk)
= u:=l U{L (ANp . . . , M, . . . , ANk) 1 M E u(Nd}
= U{L(ANp . . . ' M, . . . ' ANk) I L(ANp . . . ' M, . . . ' ANk) E U(N) } .

I f N = L[M] , then M = U{M' I M' E U(M) } and therefore

N = L[U{M' I M' E U(M)}] = U{L[M'] I M' E U(M) } = U{L[M'] I L [M'] E U(N) }
and this concludes the proof for the first statement.

For the second statement there is nothing to show when N = A, N = A is a fiat
attribute, N = L{M} , N = L(M) or N = L(N1 , . . . , Nk) with Ni = AN; for i = 1 , . . . , k .
The statement i s trivial i f U = A or V = A. Let N = L[M] , N1 = L[N{] , N2 = L[N�] with
N1 , N2 E U (N) and N1 =/=- N2. For U = L[U'] and V = L[V'] with U' :::; N{ and V' :::; N�
the reconcilability of U' and V' follows. Consequently, U and V are reconcilable too. Let
N = L(N1 , . . . , Nk) with Ni =/=- AN; for some i. Let M1 = L (M) , M2 = L(M') E U (N)
be distinct with M E U(Ni) and M' E U(Nj) · Moreover, let U = L(U') , V = L(V') with
U' :::; M and V' :::; M' . If i =!=- j, then U and V are reconcilable since M1 and M2 are
reconcilable . If i = j , then M =/=- M' since M1 =!=- M2, and M, M' E U(Ni) · This implies the
reconcilability of U' and V' , and therefore also the reconcilability of U and V. This shows
the second statement . 0

It follows that two subattributes U and V of N are reconcilable precisely if for all units
Ni of N the subattributes U n Ni and V n Ni are comparable with respect to :::; .

162

5.4. IMPLICATION PROBLEM Sebastian Link

5.4.3 Computing the Closure

We are finally prepared to present the algorithm. Lemma 5 .25 and Lemma 5.26 reduced the
implication problem E f= X --t Y to the problem of computing X�ax' the set of maximal
subattributes which are functionally determined by X. Given some set X � Sub(N) of
nested attributes, the function max (X) returns all maximal elements of X with respect to
� · Moreover, if U (N) = {N1 , . . . , Nk} , then Xi = {X n Ni : X E X} for i = 1 , . . . , k .

Algorithm 5.4.1 (Nested Attribute Closure)

Input : N E N A, X C Sub(N) , set E of FDs on N
Output : xaig max
Method:

VAR Xtew , X?1ct � Sub(N) for i = 1 , . . . , k, N1 , . . . , Nk E Sub(N) ;

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(1 1)
(1 2)

Compute U(N) = {N1 , . . . , Nk} ;
FOR i = 1 TO k DO Xtew := max({X n Ni : X E X}) ;
REPEAT

FOR i = 1 TO k DO xiolct : = xrw;
FOR each U --t V E E DO

IF Ui �gen xrw for i = 1 , . . . , k THEN
FOR i = 1 TO k DO Xtew := max (xrw u Vi) ;

END IF;
END DO;

UNTIL xrw = X?1ct for i = 1 , . . . , k ;
valg ·- {X U U X . X· E vnew } · /\.max · - 1 · · · k · t /\.i '
RETURN (X;;1fx) ;

In order to illustrate Algorithm 5 .4 . 1 we turn now to an example.

EXAMPLE 5 . 6 . Suppose we are given the following input instance for Algorithm 5 .4 . 1 :

0

- N = L1 (L2 (L3 (A, B)) , L4 [L5 (C, L6 (D))] , L7 (E, L8 {L9 (F, G, H) })) with the units from
Example 5 .5 ,

- E i s given by

• F D1 : { £1 (£2 (£3 (A))) , Ll (L2 (£3 (B)) , L7(Ls {Lg (F, H) })) } --+ { £1 (L7(Ls { Lg (F, G) })) } ,
• F D2: { £1 (L2 (£3 (B)) , £4 (£5 (C)] , L1(E)) } --+ { Ll (£4 (£5 (£6 (-\))] , L1 (Ls { Lg (F, H) })) } ,
• F D3 : {A} --+ {L1 (L2 (£3 (B))) }

- and X = {L1 (L2 (L3 (A)) , L4 [L5 (C)] , L7 (E)) } .
For the sets xrw we compute Xfew = {Ll (L2 (L3 (A))) } , X�ew = {L1 (L4 [L5 (C)]) } , and

x_rew = {L 1 (L7 (E)) } and Xfew = X�ew = {AN} .
Consider the first run through the REPEAT loop (line (3) to line (10)) of Algorithm 5.4 . 1 .

For F D1 and F D2 there are no changes . Due to F D3 we obtain

163

5 .4 . IMPLICATION PROBLEM Sebastian Link

In the second run through the loop F D2 gives

In the third run, F D1 causes the update

There are no further changes in the fourth run through the loop, i .e. , the final values are

xrw = {L1 (L2 (L3 (A))) , LI (L2 (L3 (B))) } ,
x;ew = {LI (L4 [Ls (L6 (A))]) } ,
X5new = {L1 (L7 (Ls {Lg (F, G) })) , L1 (L7 (Ls{Lg (F, H) })) } .

It remains to compute x;tfx:

X:few = {L1 (L4 [Ls (C)]) } ,
x,pew = {L 1 (L7(E)) } ,

L 1 (L2 (L3 (A, A)) , L4 [Ls (C, L6 (A))] , L7(E, Ls {Lg (F, G, A) })) ,
L1 (L2 (L3 (A, B)) , L4 [Ls (C, 16 (A))] , 17 (E, Ls {Lg (F, G, A) })) ,
11 (L2 (L3 (A, A)) , 14 [Ls (C, 16 (A))] , 17 (E, Ls {Lg (F, A, H)})) ,
11 (12 (L3 (A, B)) , L4 [1s (C, 16 (A))] , L7 (E, 1s {Lg (F, A, H) })) .

which is the output of Algorithm 5.4. 1 .

5.4.4 Correctness

0

We will now prove the correctness of Algorithm 5.4. 1 , i .e . , x;1fx = Xr!ax · Recall that a set
X � Sub(N) is called an anti-chain with respect to s if and only if every two different
elements of X are incomparable, i . e . , for all X, Y E X with X =/= Y follows X 1:. Y and
y 1:. X.

Lemma 5.30. x,;ax and x::/£x are both anti-chains with respect t o s .

Proof. It i s obvious that the set Xmax of all s-maximal elements of any X � Sub (N) is an
anti-chain with respect to s . It follows that Xr!ax is an anti-chain with respect to S , and it
remains to show that x;1fx is an anti-chain, too. We proceed by induction on the number
j of runs through the REPEAT loop of Algorithm 5.4 . 1 to show that xrw is an anti-chain
for every i = 1 , . . . , k. If j = 0, then Xtew = max(Xi) contains only the maximal elements
of Xi and is therefore an anti-chain. Suppose that Xtew is an anti-chain after the jth run
through the REPEAT loop. Whenever the value of xrw is changed within the j + 1-st
run, then it is changed to max(xrw U Vi) consisting again of s-maximal elements only.
Therefore, after the REPEAT loop has been aborted (before executing line (1 1) that is)
xrw is an anti-chain for every i. It follows that X;1fx = {XI U . . . U Xk : Xi E xrw} also
forms an anti-chain. D

Moreover, if X, Y � Sub(N) are two anti-chains, X �gen Y and Y �gen X, then X = Y.

Lemma 5.31 . Let N E N A and X, Y � Sub(N) be two anti-chains with respect to s. If
X �gen Y and Y �gen X, then X = Y.

164

5.4. IMPLICATION PROBLEM Sebastian Link

Proof. Let Y E Y. We show that Y E X holds. Since Y �gen X, there is some X E X
with Y :S X. Since X �gen Y holds as well, we find some Y' E Y with X :S Y'. We
conclude by transitivity of �gen that Y :S Y' for Y, Y' E Y. As Y is an anti-chain with
respect to :S we have to conclude that Y = Y' and therefore also Y = X. It follows that
Y E X and, therefore, Y � X holds. The inclusion X � Y follows similar using that X is
a :S-anti-chain. It follows X = Y. 0

Theorem 5.32. Algorithm 5.4 . 1 is correct, i. e. , x::/Zx = X,;t"ax ·

Proof. According to Lemma 5 .30 and Lemma 5 .31 it is sufficient to show x;1fx �gen X�ax
and X�ax �gen x;1fx . We will first show that x;1fx �gen Xrtax holds.

We infer from the soundness of the reflexivity rule that X � x+ = { Z : X -+ { Z} E
E+} holds. Consequently, X �gen X�ax by Lemma 5 .26. Since X' E Xi implies X' = X n Ni
for some X E X we have X' :S X. This implies Xi �gen X . We conclude Xi �gen X�ax by
transitivity of �gen · In particular, max(Xi) �gen X�ax · This implies Xtew �gen X�ax for all
i after line (2) of Algorithm 5 .4 . 1 has been executed .

Suppose now that Xtew �gen X�ax holds for all i within some j-th run . Furthermore
suppose that U --+ V E E and Ui �gen xrw for all i (otherwise nothing changes) . It follows
that Ui �gen Xrtax for all i , and therefore X --+ Ui E E+ for all i by Lemma 5 .25 and
Lemma 5 .26. Lemma 5 .29 shows that U E Ui and U' E Uj with i =/- j are reconcilable. The
following inference schema is therefore sound:

X -+ Ui Ui -+ {U} X -+ Uj Uj -+ {U'}

X -+ {U} X -+ {U'}

X -+ {U, U' } {U, U'} -+ {U U U'}
U,U'are reconcilable

X -+ { U U U'}

and we obtain X --+ U E E+ where U = {U1 U . . . U Uk : Ui E Ui } . We know further
that U � U holds as U E U can be represented as U = U n N = U n (N1 U . . . U Nk) =
U1 U . . . U Uk with Ui E Ui using Lemma 5 .29. The soundness of the subset rule implies
therefore X -+ U E E+ . We assumed further that U -+ V E E which leads to X --+ V E E+
applying the transitivity rule . Moreover, Vi �gen V and we infer by the soundness of the
following schema

X -+ {X}
{X}�X {X} -+ {Y} Y:SX
X -+ {Y}

and the soundness of the union rule that X -+ Vi E E+ holds for all i . Using Lemma
5.25 and Lemma 5 .26 results in Vi �gen Xrtax · Since also Xtew �gen X�ax holds, we have
Xtew U Vi �gen Xrtax and, in particular, max(xrw u Vi) �gen X�ax · This induction shows
that xrw �gen Xrtax holds for i = 1 , . . . , k before executing line (1 1) . Again, applying
Lemma 5 .25 and Lemma 5 .26 gives X --+ Xtew E E+ for i = 1 , . . . , k . As before, X E xrw
and Y E xrw are reconcilable. Repeatedly applying the inference schema

X -+ xrw xtew -+ {X} X -+ xnew xnew -+ {Y}

X -+ {X} X -+ {Y}

X -+ {X, Y} {X, Y} -+ {X U Y}
X,Yare reconcilable

X -t {X U Y}

165

5 .4 . IMPLICATION PROBLEM Sebastian Link

results in X ---+ x;}�x E E+ with x;'�x = {X1 U . . . U Xk Xi E xrw} . Lemmata 5 .25 and
5 .26 give x;'�x �gen x�ax ·

We will now show that X�ax �gen x;'�x holds as well. The definition of X�ax depends
on E. Consider therefore the chain

E = Eo c E1 c · · · c Es = E+

where Ei+l results from Ei by application of exactly one of the inference rules among the
generalised Armstrong axioms from Theorem 5 . 15 . We will use induction on j to show the
following:

if Y ---+ Z E Ei and Y �gen X�';x, then Z �gen X�';x . (13)

We can then conclude for j = s that Z �gen X;f!x follows from Y �gen X;1!x and Y ---+ Z E
E+. Using Y = X and Z = X�ax gives then X�ax �gen x;'!x. because X ---+ X�ax E E+ and
X �gen x;'�x hold.

It remains to show (13) . Let j = 0, Y ---+ Z E E and Y �gen x;'�x · This implies
that Yi �gen (x;'�x) i = xrw for all i after executing line (1 1) of Algorithm 5.4 . 1 . Since
y ---+ z E E and Yi �gen xrw for all i we have zi �gen xrw for all i due to line (7) of
Algorithm 5 .4 . 1 . This implies Z � Z �gen x;'�x ·

Let now be j > 0 . Then Ei - Ej-l contains exactly one Y ---+ Z which has been inferred
by using one of the generalised Armstrong axioms from Theorem 5 . 15 . We distinguish
therefore between five different cases.

- Y -t Z has been inferred using the reflexivity axiom. Then Z � Y �gen x;'�x holds.
- Y ---+ Z has been inferred using the subattribute axiom. This leaves us with Y =

{Y} , Z = {Z} and Z :::; Y. It follows again that Z �gen Y �gen x;'�x holds.
- Y ---+ Z has been inferred using the extension rule. In this case Z = Y U W with

Y ---+ W E Ei- l · From Y �gen x;'�x follows W �gen X;f�x by hypothesis and therefore
z = y u w �gen x;;�x·

- Y ---+ Z has been inferred using the transitivity rule. Then there are Y ---+ W, W ---+
Z E Ej-l · From Y �gen x;'�x follows W �gen x;'�x by hypothesis (Y ---+ W E Ei-1)
and subsequently Z �gen x;'!x. by hypothesis again (W ---+ Z E Ei_ 1) .

- Y ---+ Z has been inferred using the restricted join axiom. This leaves us with Y =
{Y, W} , Z = {Y U W} where Y and W are reconcilable. From Y �gen x;'�x follows
Y n Ni :::; Zi and W n Ni :::; z: for some Zi , z: E xrw for i = 1 , . . . , k . Since Y and
W are reconcilable it follows that Y n Ni and W n Ni are reconcilable for i = 1 , . . . , k .

Consequently, Y n Ni :::; W n Ni or W n Ni :::; Y n Ni . Moreover, (Y u W) n Ni =

W n Ni :::; z: or (Y u W) n Ni = Y n Ni :::; Zi for i = 1 , . . . , k. Using Lemma 5 .29 we
have

Y u W = (Y u W) n N
= (Y U W) n (N1 u . . . u Nk)
= ((Y u W) n NI) U . . . U ((Y u W) n Nk)
:::; X 1 U . . . U X k E X;f!x

for some Xi E xrw . This means Y U W :S X for some X E x;'�x = {X1 U . . . U Xk
Xi E xrw} . We conclude that Z �gen x;'�x ·

166

5 .4 . IMPLICATION PROBLEM Sebastian Link

This concludes the proof. 0

ExAMPLE 5 . 7 . We continue Example 5.6 . According to Theorem 5 .32 we know that

- E � X --+ {Z = L1 (L2(L3 (A, -X)) , -X, L7 (-X , L8 {L9 (F, G, H) })) } since Z does not have
any SUperattribute in x;l�x ' but

- E f= X --+ {L1 (L2 (L3 (A, -X)) , -X, L7 (-X , L8 {L9 (F, G, -X) })) ; L1 (L2 (L3 (A, -X)) , -X , L7 (-X ,
L8 {L9 (F, -X , H) })) } . o

EXAMPLE 5 . 8 . We continue Example 5 .2 of the retailer. Suppose N and E are
given as in Example 5 .2 and we want to find the closure of the subattribute
Sales (List [Order(Cart (Article (Price)))]) with respect to E. Using Algorithm 5 .4 . 1 we ob­
tain the following units of N:
- N1 = Sales (Day) ,
- N2 = Sales (List [Order(Cart(Article(Title,Description ,Price)))]) ,
- N3 = Sales (List [Order(Customer(Name))]) ,
- N4 = Sales (List [Order(Customer(Address))]) ,
- N5 = Sales (List [Order(Customer(Payment))]) ,
- N6 = Sales (List [Order(SubTotal)]) ,
- N7 = Sales (Sold{ Product (Item,CustName) }) ,
- N8 = Sales (Total) ,
- N9 = Sales (NOrd) ,
- N10 = Sales(TProd) ,
- Nu = Sales(Ship).

In this example all xrw are singletons and therefore written as subattributes . Initially we
have X2new = Sales (List [Order(Cart(Article(Price)))]) and X1new = X3new = · · · = X1n1ew = -X .
The first run through the REPEAT loop has the following sequence of updates (considering
that the FDs in E are selected in the order they were presented in Example 5 .2) :

vnew _ 1\T vnew _ N vnew _ 1\ T and vnew _ N 1"\.5 - l Y6 , 1"\.8 - 8 , A.g - l Vg , t'\.10 - 10 •

The join of these subattributes and X2new is

Sales(List [Order (Cart (Article(Price)) ,SubTotal)] , Total,N Ord,NProd) .

This shows that given the list of multisets of individual prices, one can determine the list
of total values of the orders, the total value of sales, the total number of orders and the
total number of products ordered. 0

5.4.5 Complexity

We will now study the complexity of Algorithm 5.4 . 1 in terms of the size of the input.
The input consists of some nested attribute N, some set E of FDs on N and a set X of
subattributes of N. We define the size n of N as the number of subattributes of N, i .e . ,
n = \ Sub(N) \ . This is a reasonable measure since we consider sets of subattributes in

167

5.4 . IMPLICATION PROBLEM Sebastian Link

general. The size s of E is simply defined as the number of its elements, i . e . , s = I E I ·
The size of X is defined as I X I · Note that we have I X I :S n for all X � Sub(N) . Lemma
5.28 suggests a strategy to compute the maximal units of N. This can obviously be done
in time O(n) . Algebraic operations such as meet , join and union on sets of subattributes of
N can all be performed in time O(n) as well . The same holds for checking the subattribute
relationship between two nested attributes .

Theorem 5.33. In the presence of record-, list-, set- and multiset-valued attributes, the
implication problem E f= X -t Y for FDs on a nested attribute N can be solved in time
O(n4 • s · min{s , n}) where n = I Sub(N) I and s = I E I ·

Proof. The termination of Algorithm 5 .4 . 1 follows from the complexity analysis of the
REPEAT loop below. As already noted, U(N) = {N1 , . . . , Nk} is computed in time O(n) .
Let n i = I Sub(Ni) I for i = 1 , . . . , k . The sets Xi = {X n Ni : X E X} can be computed

k
in time 0(1 X I ·ni) for every i = 1 , . . . , k . Since I: ni :S k · maxf=1 ni :S k · n :S n2 and

i=1
I X I :S n it takes O(n3) operations for this. In order to compute the maximal elements in
every set Xi we need to check whether X :S Y holds for every pair X, Y E Xi · Doing this
for every i = 1 , . . . , k takes

steps. The initialisation (line (1) and (2)) takes therefore O(n4) operations.
Since every dependency in E can contribute to a change of any Xtew at most once,

there are at most s + 1 runs through the REPEAT loop (line (3) to (10)) . Every xrw
can contain at most as many elements as a maximal anti-chain of (Sub(Ni) , :S) . If WN;
denotes the cardinality of a maximal anti-chain of (Sub(Ni) , :S) , then I xrw I :S WN; · For
all i = 1 , . . . , k one can find maximal anti-chains AN; of (Sub(Ni) , :::;) which are pairwise
disjoint , i .e . , AN; n ANi = 0 whenever i =I= j. Therefore, the sum over all WN; is at most
w N . Thus, there are also at most

k k
2:= I xrw I + 1 :S 2:= w N; + 1 :S w N + 1 :S n + 1
i=1 i=1

runs through the REPEAT loop. We conclude that there are at most min{ s , n} + 1 passes
through the loop. Inside the inner FOR loop (line (6)) , the condition Ui �gen xrw has to
be tested. It is satisfied if and only if for every element U in Ui there is some element X in
xrw with u :S X . This takes therefore at most I ui I . I xtew I ·ni steps for every i . The
constraint ui �gen xtew for all i = 1 ' . . . ' k is therefore verified in at most

k k
2:=(1 ui I · I xtew I ·ni) :S ��f{ l ui I } · ��1x{ l xrw I } · 2:= ni :S n2 · k · ��1x ni :S n4
�1 �1

168

5 .4 . IMPLICATION PROBLEM Sebastian Link

steps, i .e . , in time 0(n4) . With arguments we have used before it is easy to see that the
FOR loop in line (7) takes at most O(n4) operations. Every run through the REPEAT
loop takes therefore time in O(n4 · s) which leaves us with O(n4 · s · min{s , n}) steps for
the entire loop.

Computing all elements xl u . . . u xk of X�1�X ' where xi E xrw for every i = 1 , . . . ' k ,
k

needs at most IT I xrw I operations (line (1 1)) . As every xrw contains at most WN;
i=l

k k
elements the definition of a unit implies that IT I xrw I ::; IT WN; ::; n holds. The time

i=l i= l
complexity of Algorithm 5 .4 . 1 is therefore indeed O(n4 • s · min{s , n}) .

In order to decide whether E f= X � Y holds it is sufficient to decide whether Y �gen
X�1�x (Lemma 5 .25 , Lemma 5.26 and Theorem 5 . 15) . It takes O(n4 • s · min{ s , n}) steps to
compute X�1�x · Subsequently, Y �gen X�1�x can be verified in time O(n3) . o

Corollary 5 .34. In any case of the following type combinations: { records, sets} , { records,
multisets}, {records, sets, multisets} , the implication problem E f= X � Y for FDs on a
nested attribute N can be solved in time O(n3 · s · min{s , n}) where n = I Sub(N) I and
s = I E I ·

k
Proof. In any of those cases we have IT ni = n, i . e . , the number of subattributes of N

i=l
is equal to the product of the number of subattributes of its units Ni · In that case, the
meet of any two different units is AN . This results in smaller upper bounds in the proof of
Theorem 5.33. 0

5.4 .6 Some Applications

Algorithm 5 .4 . 1 can again be applied to compute non-redundant covers and decide whether
an arbitrary set of subattributes is a superkey with respect to a set of FDs.

Theorem 5.35. In the presence of record-, list-, set- and multiset-valued attributes, non­
redundant covers for a set E of FDs on some nested attribute N can be computed in time
O(n4 • s2 • min{ n , s}) where n = I Sub(N) I and s = I E I · 0

A set X � Sub(N) of subattributes of some nested attribute N is called a superkey for
N with respect to a given set E of FDs on N if and only if E f= X � N holds. This means
that X is a super key for N if and only if N E x+.

Algorithm 5.4.2 (Superkey)

Input : N E N A, set E of FDs on N, X C Sub(N)

Out ut :
{ yes , if X is a superkey for N with respect to E

p
no , else

Method:

169

5 .5 . THE IMPLICATION PROBLEM FOR ALL COMBINATIONS Sebastian Link

(1) Compute X�1� using Algorithm 5 .4 . 1 with input (N, E , X) ;
(2) IF N E X;!�x THEN RETURN (yes)
(3) ELSE RETURN (No) ;

D

Theorem 5.36. In the presence of record-, list-, set- and multiset-valued attributes, Algo­
rithm 5.4 . 2 decides in time O(n4 • s · min{ n, s }) whether X E Sub(N) is a superkey for N
with respect to a set E of FDs defined on N, where n = I Sub(N) I and s = I E 1 . D

5 . 5 The Implication P roblem for all Combinations

Figure 5. 7 shows upper complexity bounds for the implication problem of FDs in the
presence of various types. If the input parameters are the nested attribute N and E a set
of FDs defined on N, then n = I SubB(N) I , m = I Sub(N) I and s = I E I ·

Records, Lists, Sets, Multisets

O(m4 · s · min{m, s})

�------ � --------
Records, Lists, Sets

O(m4 · s · min{m, s })

1 -==�--=:::::::::::�
Records, Lists

O(n · s)
Records, Sets

O(m3 · s · min{m, s})

I
Records
O(n · s)

Records, Sets, Multisets

O(m3 · s · min{m, s})

::::::==--=::::::::::__�= I
Records, Multisets

O(m3 · s · min{m, s})

Fig. 5. 7. Upper Complexity Bounds for the Implication Problem in the Presence of various Types

5 . 6 Related Work

Dependency theory is a well-studied area of research in the context of the RDM. Excellent
surveys are provided in [109, 264, 278] . The RDM is completely captured by the presence
of record-valued attributes.

The nested relational data model [179] has also attracted research on dependency the­
ory, especially on the issue of normalisation [207, 215] . The FDs studied in those papers

170

5 .6 . RELATED WORK Sebastian Link

arise from a relational representation of the data assuming a complete unnesting. Take for
instance the nested schema {Course, (Student-ID, Name) * } in which for each course the set
of participating students is stored, i .e . , their student identification number together with
their name. A typical FD would be

Student-ID -+ Name,

i .e . , the student identification number uniquely determines the student 's name over all
courses. FDs in which a set of objects is determined by some object or in which a set of
objects determines an object are not considered. An example of such an FD would be

Course -+ (Student-ID)*

where the course determines the set of the identification numbers of its participants. This,
however, can be done using record- and set-valued attributes. Consider the nested attribute
Enrolment (Course,Participant{Student (ID,Name) }) . The FD above is then specified by

Enrolment(Course) -+ Enrolment(Participant{Student (ID) }) .

On the other hand, FDs in which inside a set-valued attribute L{N} some subattributes
of N determine another subattribute of N can be expressed by the previous approaches
but are not yet covered by our approach. The previous example suggests for instance to
consider the structure of embedded nested attributes such as Student (ID,Name) . Then the
FD

Student (ID) -+ Student (Name)

does reflect the FD above. The nested relational data model is covered by the presence of
record- and set-valued attributes.

Next we consider two approaches which have studied functional dependencies in the
presence of finite sets. In [137] FDs are defined as well-defined path expressions in the
presence of records and finite sets . An axiomatisation for the implication of those FDs
is provided. However, the FDs do not allow arbitrary nesting, and most importantly, the
right-hand side of every FD is always a single path. As the results in this thesis point out
the case where the right-hand side is the union of paths is particularly interesting in the
presence of sets (the join axiom is only valid in restricted form) . FDs of the form

{S{L(A) } , S{L(B) } } -+ S{L(A, B) }

cannot be expressed by the approach in [137] as this FD is different from the two trivial
FDs

{S{L(A) } , S{L(B) } } -+ S{L(A) } and {S{L(A) } , S{L (B) } } -+ S{L(B) } .

There are still differences even if we consider only single paths in the right-hand side.
Consider for instance the nested attribute N(L{K(A, B , C) } , D) together with the FD

N(L{K(A, B) }) -+ N(D)

171

5 .6 . RELATED WORK Sebastian Link

where the set of value pairs on A, B determines the value on D. FDs which are expressible
by the approach in [137] are

N : [L --+ D] and N : [L : A, L : B --+ D]

assuming that the labels identify the (embedded) nested attributes. These, however, are
both different from

N(L{K(A, B)}) --+ N(D) .
The first FD corresponds to

N(L{K(A, B, C) }) --+ N(D)

and the second corresponds to

{N(L{K(A) }) , N(L{K(B) }) } --+ N(D) ,

respectively. On the other hand, in order to express the FD N : L[A --+ B] in our context,
we need to consider the embedded nested attributes K(A, B , C) where the FD K(A) --+
K (B) could be defined. Moreover, attributes in which >. occurs are not covered in [137] . In
summary, the approach in [137] uses partly the expressiveness of the set constructor, but
does not take care of the fact that the extension rule is not valid in the presence of sets.

A further approach to defining FDs in the context of the nested relational data model
is provided in [180] . So-called null extended FDs are defined to admit null values and study
the relationship between multi-valued dependencies X -» Y and FDs X --+ Y* (here Y
refers to the complete unnesting of the relation-valued attribute Y*) , i .e. , the interaction of
different dependency classes in the context of nesting and unnesting. Null extended FDs are
again defined on the basis of paths. FDs from the RDM cannot be expressed. Furthermore,
relation-valued attributes can only occur on the right-hand side of null extended FDs.
Consider the nested attribute N = L(A, K { M(B, S{ C}) }) which would be expressed as
A(B(C)*) * in a slightly simplified nested relational data model. Examples for null extended
FDs are

A --+ (B(C)*) * or AB --+ (C) * .

The last of these is not covered yet by our data model . I n order t o express the last null
extended FD in our context we need to consider combinations of embedded nested at­
tributes, i .e . , L(A, M(B, S{C})) in this case. Conversely, the FD L(A, K{M(B) }) --+
L(K{M(S{C}) }) is again not expressible as a null extended FD. The expressiveness of
null extended FDs and FDs in the presence of null, flat , record- and set-valued attributes
is different.

Most recently, the major research interest is on the model of semi-structured data
and XML [1 , 53] . Work on integrity constraints in the context of XML and object-oriented
databases can be found in [14 , 5 1 , 58, 1 10, 1 1 1 , 1 78 , 262, 285, 286, 287, 295] . The approaches
in [14 , 5 1 , 178, 262, 285, 295] are again based on a relational representation of the data,
thus resulting again in a different expressiveness from our approach. FDs in [14] are not

172

5 .6 . RELATED WORK Sebastian Link

axiomatisable at all. In order to illustrate the difference to our data model a bit more we
look at some examples.

Consider the XML data tree in Figure 5 .8 containing data on courses organised by the
dancing club of the local high school.

E He E She

Tom Jane
E

Tom Jane
E

She

Jim Tina
E

Tom Jane

Fig. 5 .8 . An XML data tree carrying some functional dependency.

Jim Tina

The XML document corresponding to this XML data tree is shown in Figure 5 .9 .

0 1 < Root>
02 < Co u rse Date=" Feb 1" > 17 < / Pa i r >

03 < Pa i r> 18 < Ra n ki ng> B- < / R a n ki ng>

04 < He> Tom < / H e > 1 9 </Course>

05 < S h e > J a n e < /S he> 20 < Co u rse Date=" Feb 5" >

06 < / Pa i r> 2 1 < Pa i r>

07 < R a n ki ng>A- < / Ra n k i ng> 22 < He > Tom < / H e >

0 8 < /Course> 23 < S h e > Jane</She>

09 < Co u rse Date=" Feb 2" > 24 < / Pair>

10 < Pa i r> 25 < Pa i r>

1 1 < He> Tom < / He> 26 < He > J i m < / H e >

1 2 < S h e > J a n e < /She> 27 < She> Ti n a < /She>

13 < / Pa i r > 2 8 < / Pa i r >

14 < Pa i r > 2 9 < Ra n ki ng> B- < / R a n king>

15 < He > J i m < / He> 30 < /Course>

1 6 < S h e > Ti n a < /S he> 3 1 < / Root>

Fig. 5 .9 . An XML document corresponding to the XML data tree in Fig. 5.8 .

It happens that neither gentlemen nor ladies change their dance partners. That is, for
every pair in the XML data tree He determines She, and vice versa. Both observations are
likely to be called functional dependencies .

173

5 .6 . RELATED WORK Sebastian Link

Now consider the XML data tree in Figure 5 . 10 . It is obvious that the observed func­
tional dependencies do no longer hold. Nevertheless the data stored in this tree is not
independent from each other: whenever two courses coincide in all their pairs then they
coincide in their rating, too. That is, in every course the set of Pa irs determines the Rating.
The reason for this might be straightforward. Suppose, during every course each pair is
asked whether they enjoyed dancing with each other (and suppose that the answer will not
change over time) . Afterwards, the average rating is calculated for the course and stored
within the XML document. This, in fact , leads to the functional dependency observed in
Figure 5 . 10 .

Tom Jane
E

She

Jim Tina Tom Jane
E

She

Jim Tina
E

Tom Tina

Fig. 5 . 10. Another XML data tree still carrying some functional dependency.

Jim Jane

Surprisingly, [14 , 1 78, 285] all introduced the first kind of functional dependencies for
XML while the second kind has been neglected so far in the literature on XML. The
reason for this is the path-based approach towards functional dependencies used in all
three papers. The second kind, however, represents functional dependencies that can be
captured using nested attributes. Suppose we have the nested attribute

Course (Date,Pair{Partner (He,She) } ,Rating) ,

then the functional dependency above reads as

Course (Pair{Partner (He,She) }) --+ Course (Rating) .

In order to capture the first kind of functional dependencies via nested attributes one
needs to consider the embedded nested attribute Partner (He,She) . In this case the FDs read
as Partner (He) --+ Partner(She) and Partner (She) --+ Partner (He) . For a graph-oriented ap­
proach towards functional dependencies in XML that is based on homomorphisms between
subgraphs see [138] and [144] .

In order to capture the full expressiveness of XML one will need to consider the union
and reference type. Thus, a Kleene-star element definition (!ELEMENT X(Y) *) can
be represented by the list-valued nested attribute X[Y] , a sequence element definition

174

5 .6 . RELATED WORK Sebastian Link

(!ELEMENT X(Y1 , . . . , Yn)) by the record-valued attribute X(Y1 , . . . , Yn) , and an al­
ternative element definition (!ELEMENT X(Y1 I · · · I Yn)) by X(Y1 EB · · · EB Yn) · Fur­
thermore, as the plus-operator in regular expressions can be expressed by the Kleene-star,
an element definition (!ELEMENT X(Y)+) can be represented by the record-valued at­
tribute X(Y, X' [Y]) with a new label X'. Similarly, optional elements can be expressed by
alternatives with empty elements, thus an element definition (!ELEMENT X(Y?)) will
be represented by the union-valued attribute L(X (Y) EB X'(.A.)) . In order to capture the
reference structures in XML documents we may need to consider rational tree attributes.
See [76] for fundamental properties of infinite trees. In this case, the subattribute lattice
may become infinite.

In summary, our approach based on explicit subattributes deviates significantly from
previous approaches in the nested relational data model , object-oriented data models and
XML, yielding a complementary expressiveness . In particular, the algebraic approach based
on a Brouwerian algebra of subattributes is original. To the author's best knowledge there
is not any other work which deals specifically with lists and multisets in the context of
FDs.

1 75

C hapter 6

S ummary

This chapter shall summarise the main results and contributions of this thesis and comment
on future research by listing some open problems.

6 . 1 Main Results

The major contribution of this thesis is the provision of a mathematically well-founded
framework that allows the study of different classes of dependencies in the presence of
various combinations of data types. Data models are classified according to the data types
that they support. The approach is therefore independent of any specific data model .
Although it is not claimed that this is the ultimate unifying framework to investigate
problems of dependency theory in complex-value data models, the presence of specific
types in any data model do motivate the study of those kinds of problems investigated in
this thesis. The examples used throughout the thesis illustrate that dependencies naturally
occur among complex objects. The extension of the relational theory of various dependency
classes to the presence of complex data types allows to specify more real-world constraints
and increases therefore the number of application domains. Moreover, a formal foundation
for automated reasoning about these constraints is provided and the start to a complex­
value database design theory made.

It has been demonstrated that the presence of such complex objects like records, lists,
sets and multisets leads to the algebraic structure of a Brouwerian algebra. The relational
data model is based on the Boolean powerset algebra (P(R) , � , u , n, (·)c , 0 , R) . From a
purely algebraic point of view, the gain in expressiveness due to the introduction of com­
plex objects results therefore in the loss of the involutional character of the complement
operation. Throughout the thesis it is shown that Brouwerian algebras are sufficiently
powerful to generalise and extend well-known results from relational databases.

In the presence of lists it is sufficient to consider the subattributes of a nested attribute
in order to define functional and multi-valued dependencies while in the presence of sets or
multisets, sets of subattributes need to be introduced. In that sense lists are simpler than
sets and multisets. This is not really surprising as the list type possesses both features:
the elements of a list are totally ordered and multiple occurrences of the same element are

176

6 . 1 . MAIN RESULTS Sebastian Link

allowed . Since multisets also allow the occurrence of duplicates, it must be the total order
on the elements of a list that guarantees the soundness of the join axiom, i .e . , that the
values of the projections on subattributes determine the value of the projection on their
join. While list and multiset type allow the reasoning about the number of their elements,
the set type is only capable of distinguishing between empty and non-empty sets. The fact
that elements of a list or multiset may occur more than once is decisive to that regard .

The dependency classes that have been studied add a complementary expressiveness to
those that have previously been studied in the literature. MVDs have not been studied at
all in the presence of lists . FDs have not been studied at all in the presence of lists and
multisets.

Regarding the problem of axiomatising the class of FDs, Theorem 5 .23 captures the
main result. Once the framework of nested attributes is given, it is straightforward to
obtain a generalisation of Armstrong's axioms for the class of FDs in the presence of
records and lists. The introduction of set- and multiset-valued attributes calls for a more
sophisticated definition of FDs. Left- and right-hand side are now sets of subattributes
instead of single subattributes. Besides Armstrong's original axioms two more axioms are
required to capture the class of FDs in the presence of sets or multisets. The completeness
proof, which still remains constructive, uses rather deep arguments in case of set- and
multiset-valued attributes. Theorem 5 .23 provides minimal axiomatisations for the class of
FDs in the presence of all combinations of records, lists , sets and multisets that at least
include records.

Figure 5 .7 summarises the upper complexity bounds for the implication problem of
FDs in the presence of all previous type combinations. In the context of records and lists, a
provably-correct and linear-time algorithm is proposed for computing the closure of a nested
attribute with respect to a given set of FDs. The size of the input is defined in the number
of join-irreducible subattributes and the number of FDs given. The representation theorem
for Brouwerian algebras suggests a different, topological view of FDs. This alternative
perspective is even more similar to the framework of relational databases, in the sense that
operations are performed on (closed) sets. In the presence of sets or multisets, provably­
correct and polynomial-time algorithms are proposed for computing the closure of a set
of nested attributes with respect to a given set of FDs. The size of the input , however,
is now defined as the number of all subattributes and the number of FDs given. This is
justified by the fact that a set of subattributes is semantically different from the join of
these subattributes.

Theorem 4.3 shows that MVDs are still equivalent to binary join dependencies , even in
the presence of records and lists . Theorem 4. 13, Theorem 4.28 and Theorem 4 .31 provide
(minimal) axiomatisations for the class of FDs and MVDs, Theorem 4.43 and Theorem
4 .44 propose minimal axiomatisations for the class of MVDs. An interesting fact is that
the MVD X -* Y implies the non-trivial FD X --+ Y n ye which gives the set of inference
rules a distinctive Brouwerian flavour. Recall that MVDs do not imply any non-trivial FDs
in the context of the RDM. Further differences to the RDM are given by the minimal
sets of inference rules. This is due to the fact that non-maximal join-irreducible subat­
tributes cannot be represented as the Brouwerian complement of any set of subattributes.

177

6 .2 . OPEN PROBLEMS Sebastian Link

The provably-correct and polynomial-time Algorithm 4.4 .1 computes dependency basis
and nested attribute closure for a given subattribute and a given set of FDs and MVDs.
It naturally generalises the well-known membership algorithm for FDs and MVDs in rela­
tional databases. This shows that the implication problem for FDs and MVDs is efficiently
decidable in the presence of records and lists.

The applicability of efficiently solving the various implication problems is demonstrated
by proposing efficient algorithms for computing non-redundant covers of sets of dependen­
cies and deciding whether a (set of) nested attribute(s) is a superkey with respect to a
given set of dependencies.

Database design theory in terms of FDs is extended to the presence of records and lists.
Formal definitions of design criteria such as the absence of redundancies and the absence
of abnormal update behavior are generalised and adapted to this framework. The Nested
List Normal Form (NLNF) is proposed as a normal form that syntactically describes well­
designed nested attributes. NLNF is strictly weaker than a straightforward extension of
Boyce-Codd Normal Form. The proposal is semantically justified by formally showing the
equivalence to the absence of redundancy, strong insertion anomalies, and strong type-1 and
strong type-2 replacement anomalies. Furthermore, strong type-3 replacement anomalies
cannot occur for nested attributes in NLNF. In order to verify that an instance of a
nested attribute in NLNF satisfies all FDs given, it is sufficient to verify that this instance
satisfies all key dependencies and all inevitable FDs. Finally, a provably-correct algorithm
is proposed which decomposes an arbitrary nested attribute with respect to a given set
of FDs into subattributes that are all in NLNF with respect to the set of projected FDs.
This decomposition is lossless in the sense that every instance, satisfying all the FDs
given, is the generalised natural join of its projections on the decomposed subattributes .
Some problems with the algorithm are pointed out. The algorithm may execute in time
exponential in the size of the given nested attribute and set of FDs, the cardinality of
the decomposition may be exponential in the size of the given nested attribute. Moreover,
deciding whether an arbitrary subattribute is in NLNF with respect to the projected set
of FDs is coNP-complete. Finally, some of the FDs that have been specified may be lost
during the decomposition process. The results obtained for NLNF as well as the problems
with the decomposition algorithm generalise well-known results from the RDM.

6 . 2 Open P roblems

Figure 1 . 1 gives an indication of opportunities for future research. Although an axiomati­
sation for the class of FDs has been achieved in all combinations of records, lists, sets and
multisets, the expressiveness for the class of FDs can be increased. We have seen examples
which suggest to study the interaction of FDs defined on embedded nested attributes.
Consider for instance the nested attribute

L[N(A, B, C)] together with its embedded attribute N(A, B, C) .
Suppose the functional dependency N(A) ---+ N(B) has been specified on N(A, B, C) and
r � dom (N) satisfies this FD. If r' � { [t 1 , . . . , tn] l ti E r }, then r' � dom(L[N(A, B, C)])

178

6 .2 . OPEN PROBLEMS Sebastian Link

satisfies the FD L[N(A)] --+ L[N(B)] . Considering embedded attributes of a nested at­
tribute therefore leads to the soundness of further inference rules which need to be studied
in order to achieve an axiomatisation for this new class of FDs. The expressiveness can be
even more increased if not only embedded attributes, but also combinations of embedded
attributes are studied. This was suggested by the example of null-extended FDs and the
FDs previously studied in XML. In the same spirit , one may try to increase the expres­
siveness of MVDs by studying the interaction between MVDs on embedded attributes.

Another approach to increasing the expressiveness is to extend the number of subat­
tributes for a fixed nested attribute. This can be done by relating the information content
of different data types to one another. The list-valued attribute L [A] for instance may have
the subattribute L(A) which itself has the subattribute L{ A} . In the first step we drop
the information on the order of the elements, in the second step we drop the possibility of
multiple occurrences of the same element . It is then interesting to study to which extent
this approach still results in a sufficiently powerful structure in which dependencies can be
investigated .

A more general treatment of data dependencies in complex-value databases may have a
successful turnout as in the RDM [109, 264, 278] . The problem is that of finding a suitable
logic (if there is one) such that dependencies can be associated with formulae in that logic.
The first-order theories of lists, sets and multisets established in [99] seem promising.

What changes if lists, sets or multisets are allowed to have an infinite number of ele­
ments?

It is desirable to improve the running time of Algorithm 4 .4 . 1 for deciding the impli­
cation of FDs and MVDs. Substantial research on that subject has again been done for
relational databases and the papers [98 , 1 18, 135, 152, 173 , 223, 239, 277] may give some
more information.

It seems interesting to study multi-valued dependencies in the presence of the set and
multiset constructor. For relational databases, the fiat relation r satisfies the MVD A --* B
if and only if the relation r* , that results from a NEST operation over attribute B, satisfies
the FD A --+ (B) * , see [1 13] . This observation will have a direct impact on the interaction
of FDs and MVDs on different combinations of embedded attributes.

The minimality results in thesis have been achieved with respect to Definition 3. 7. As
mentioned before the notion of minimality can be improved. Strictly speaking, minimality
would also refer to the fact that the constraints for every inference rule cannot be weakened
without losing completeness. This stronger notion of minimality should be studied in the
future. Moreover, it would be interesting to find other (all?) minimal sets of inference rules
for the various axiomatisations.

Although the context-dependent Brouwerian complement rule could be replaced by the
much weaker context-dependent N-axiom, it is still interesting to ask how mixed meet rule
and auto-complement rule , respectively, can be weakened.

Another interesting line of research is data mining. It would be interesting to develop
algorithms that determine all FDs and MVDs on a nested attribute N that are satisfied
by a particular instance r � dom(N) . For relational databases, [167, 189 , 1 98, 199] and
[242, 300] have developed algorithms for FDs and MVDs, respectively.

179

6 .2 . OPEN PROBLEMS Sebastian Link

There is a polynomial-time algorithm for obtaining a lossless BCNF decomposition
for relation schemata [270] . The idea from that paper may give hints how to obtain a
polynomial-time algorithm for achieving a lossless NLNF decomposition.

An open problem is to extend the NLNF proposal to the class of MVDs, and the class
of FDs and MVDs, to semantically justify the proposal in terms of absence of redundancies
and abnormal update behavior, and to generalise the decomposition approach. Relevant
papers that address these problems in the context of relational databases are [280, 281 ,
283 , 289 , 290] and [133] . The key to solving these problems is an appropriate definition of
inevitable MVDs. Let N be a nested attribute and E a set of FDs and MVDs on N. The
conditions when an FD from E+ is in Einev are exactly as before. An MVD X ---* Y E E+ is
in Einev if and only if Y � X or Y E NMaxB(N) or X U Y = N. The set Ei�ev of inevitable
FDs and MVDs on N with respect to E is then the closure of Einev under the complete
set of inference rules for FDs and MVDs in the presence of lists from Theorem 4.28. It
follows for an MVD X ---* Y E E+ that X ---* Y E Ei�ev if and only if ycc � X or ye � X
holds. A nested attribute N is said to be in Nested List Normal Form with respect to the
set E of FDs and MVDs on N if and only if every X ---* Y E E* is inevitable on N with
respect to E or X is a superkey for N with respect to E. It is conjectured that the results
on the 4NF in relational databases from [280] carry over to the Nested List Normal Form.
As it was the case with BCNF and NLNF, a simple extension of 4NF implies NLNF, but
not vice versa. Along these investigations it might prove useful to generalise such notions
as reduced MVDs and minimal covers of sets of MVDs [216] , pure set of FDs and MVDs
[1 54] , envelope set [301 , 302] and conflict-free MVDs [247] from relational databases to the
context of complex object types.

A further desirable goal is to propose normal forms for nested attributes in the presence
of more type constructors. The axiomatisations of FDs in the context of records, lists, sets
and multisets suggest to continue along those lines. The decisive notion in a Complex-value
Normal Form proposal may be that of a unit of a nested attribute, taking over the role of
maximal basis attributes in the proposal of the NLNF.

Normalisation is nothing but an optimisation. Considering the example of the prime
factorisation Factor(Integer,Prime[Number] ,Exponent [Number]) , one may ask whether the
list constructor is really appropriate here. Instead of storing the list of prime factors and
the list of exponents, one may store the set of prime factor/exponent pairs. It would be
interesting to see whether the specification of inevitable FDs such as

Factor(Prime[.A]) --+ Factor(Exponent [.A]) and Factor (Exponent[.A] --+ Factor(Prime[.A])

suggest that the data type is inappropriate. A further observation is the following. Consider
the list-valued attribute L [M] and suppose the FD A --+ L[-A] has been specified. It says
informally that all tuples coincide on L[.A] , i .e . , the length of the list L[M] is constant,
say k . In this case, it is certainly more appropriate to use the record-valued attribute
L(M1 , . . . , Mk) with dom (Mi) = dom (M) for i = 1 , . . . , k .

The notions of redundancy and update anomalies that were used in this thesis are
not the only notions that appear in the literature. Vincent has introduced the concept of
value-redundancy in [283] . Given a relation schema R, an attribute A in R, a set E of

180

6 .2 . OPEN PROBLEMS Sebastian Link

FDs and MVDs on R, a relation r over R and a tuple t in r, the data value occurrence
t [A] is redundant with respect to E iff for every replacement of t [A] by a value a' such
that t [A] =I= a' and resulting in a new relation r', then �r' E. (R, E) is defined to be in
redundancy free normal form if and only if there does not exist an r over R with Fr E
which contains a data value occurrence that is redundant with respect to E. Vincent shows
that (R, E) is in redundancy free normal form if and only if R is in 4NF with respect to E.
Update anomalies, as defined in this thesis, are called key-based update anomalies in [280] .
So-called fact-based update anomalies are also introduced in [280] , and the relationship
between their absence and BCNF and 4NF are examined. The extensions of these notions
to the framework of nested attributes and their relationship to the Nested List Normal
Form are further directions of future research. Arenas and Libkin [13] use techniques from
information theory to define a measure of information content of elements in a database
with respect to a set of constraints. This provides a set of tools for testing when a nor­
mal form proposal corresponds to a good design. The results give information-theoretic
justifications for normal forms such as BCNF, 4NF, project-join normal form (P J /NF) ,
fifth normal form (5NF) , domain-key normal form (DK/NF) and the XML normal form
XNF proposed in [14] , as well as information-theoretic criteria for justifying normalisation
algorithms. It would be interesting to test the measure with respect to the Nested List
Normal Form proposal, and later on the Complex-value Normal Form proposal.

Normalisation is a well-studied area in the context of relational databases. Besides
BCNF and 4NF, there are many other normal form proposals. An extension of third normal
form (3NF) [70, 304] , P J /NF [104] , 5NF [282] and DK/NF [105] to nested attributes seem
desirable.

The (disjoint) union type is well-worth investigating as it can be used to represent
alternatives. It is very important for the higher-order entity-relationship model [265] and
XML [53] . In order to give a small illustration of the difficulty of the union type we look
at the following example. Figure 6 . 1 shows the structure of the union-valued attribute
L(A EB B) .

L (A EB B)

---- ----
L(A EB AB) L(AA EB B)

---- ----
L(AA EB AB)

I
A

Fig. 6 . 1 . Subattribute Lattice of a Union-valued Attribute

181

6 .2 . OPEN PROBLEMS Sebastian Link

Note that the subattribute L(AAEBAs) indicates from which domain a value stems. If the
projection on L(AA EB As) is okA , then the value comes from dom(A) , and if the projection
is oks , then the value comes from dom(B) . Suppose that one needs to find two different
elements t 1 , t2 E dom(L (A EB B)) with 1r{t (t1) = 1r{:t (t2) iff W ::S L(AA EB As) . Consequently,
both of the values must be okA or both of the values must be oks on L(AA EB As) . That
means we have either t 1 , t2 E dom(A) or t 1 , t2 E dom(B) . However, in this case we also have
1r£(.xAEBS) (t1) = 1r£(.xAEBS) (t2) or 1r£(AEB.Xs) (tl) = 1r£(AEB.Xs) (t2) · That shows that one cannot
find any two elements of dom(L(A EB B)) with this property, which indicates that there is
an FD

where the right-hand side is a disjunction of subattributes. Such FDs are relevant, if an
axiomatisation of FDs in the presence of unions is pursued.

Another challenge is the inclusion of the reference type into the types of interest . It
is particularly important for object-oriented databases and XML. A possible approach to
investigate the reference type is to represent nested attributes as labelled trees where the
labels of a non-leaf node are used to define embedded attributes and leaf nodes are either
null or fiat attributes or referencing labels to other nodes. This leads to rational trees which
are infinite, but in which the number of different subtrees is still finite.

More classes of relational dependencies will be the subject of future studies in the pres­
ence of various combinations of data types. The book [264] identifies more than 90 different
constraint classes for relational databases. The class of join dependencies is more general
than the class of MVDs. Interestingly, there does not exist a finite Hilbert-style axioma­
tisation for this class [229] , however, a sound and complete set of Gentzen-style inference
rules is proposed in [39] . A different and important class are inclusion dependencies which
are not uni-relational, i .e . , refer to more than one relation schema.

Finally, the proposed concepts and algorithms should be implemented. The research
report [252] contains a C++ implementation for computing dependency basis and nested
attribute closure of a given subattribute with respect to a given set of functional and
multi-valued dependencies in the presence of records and lists.

182

B ibliography

1 . Abiteboul, S . , P. Buneman and D. Suciu , "Data on the Web: From Relations to
Semistructured Data and XML," Morgan Kaufmann Publishers, 2000.

2 . Abiteboul, S. , S . Cluet, T. Milo, P. Mogilevsky, J . Simeon and S . Zohar, Tools for
data translation and integration, Data Engineering Bulletin 22 (1999) , pp. 3-8.

3. Abiteboul , S . , P. C . Fischer and H.-J . Schek, editors, "Nested Relations and Complex
Objects, Papers from the Workshop "Theory and Applications of Nested Relations
and Complex Objects" , Darmstadt, Germany, April 6-8 , 1987," Number 361 in Lec­
ture Notes in Computer Science, Springer, 1989.

4 . Abiteboul, S. and R. Hull, IFO: A formal semantic database model, Transactions on
Database Systems (TODS) 12 (1987) , pp. 525-565.

5 . Abiteboul, S . , R. Hull and V. Vianu, "Foundations of Databases," Addison-Wesley,
1 995.

6. Abiteboul, S . and P. C. Kanellakis, Object identity as a query language primitive,
in: Proceedings of the International Conference on Management of Data (SIGMOD),
ACM, 1989, pp. 1 59-173.

7. Aho, A. V. , C . Beeri and J . D. Ullman, The theory of joins in relational databases,
Transactions on Database Systems (TODS) 4 (1979) , pp. 297-314.

8. Amos, M. , G . Paun, G . Rozenberg and A. Salomaa, Topics in the theory of DNA
computing, Theoretical Computer Science 287 (2002) , pp. 3-38.

9. Anderson, I . , "Combinatorics of finite sets," Oxford Science Publications, The Claren­
don Press Oxford University Press, New York, 1987.

10. Arapis, C . , Temporal specifications of object behavior, in: Proceedings of the 3rd Sym­
posium on Mathematical Fundamentals of Database and Knowledge Base Systems
(MFDBS), number 495 in Lecture Notes in Computer Science (1991) , pp. 308-324.

1 1 . Arenas, M. and L . Libkin, On verifying consistency of XML specifications, in: Prin­
ciples of Database Systems (PODS) (2002) , pp. 259-270 .

12 . Arenas, M . and L. Libkin, What 's hard about XML schema constraints ?, in: Database
and Expert Systems Applications (DEXA), 2002, pp. 269-278.

13 . Arenas , M. and L. Libkin, An information-theoretic approach to normal forms for
relational and XML data, in: Principles of Database Systems (PODS) (2003) , pp.
1 5-26.

14. Arenas, M. and L. Libkin, A normal form for XML documents, Transactions on
Database Systems (TODS) 29 (2004) , pp. 195-232.

1 83

BIBLIOGRAPHY Sebastian Link

15 . Armstrong, W. W. , Dependency structures of database relationships, Information
Processing (1974) , pp. 580-583.

16. Armstrong, W. W. , Y. Nakamura and P. Rudnicki, Armstrong 's axioms, Journal of
formalized Mathematics 14 (2002) .

1 7. Arora, A. K . and C. R. Carlson, The information preserving properties of relational
database transformations, in: Proceedings of the International Conference on Very
Large Data Bases (VLDB), 1978, pp. 352-359.

18 . Asano, T . , N . Katoh, K. Obokata and T. Tokuyama, Matrix rounding under the lp­
discrepancy measure and its application to digital halftoning, SIAM Journal on Com­
puting 32 (2003) , pp. 1423-1435.

19. Asirelli, P. , P. Inverardi and G. Plagenza, Integrity constraints in deductive
databases: an overview, Technical Report 1996-B4-12-03, Istituto di Elaborazione
dell 'lnformazione, Pisa, Italy (1996) .

20. Atkinson, M . , F . Bancilhon, D . DeWitt, K . Dittrich, D. Maier and S . Zdonik, The
object-oriented database system manifesto, in: Proceedings of the International Con­
ference on Deductive and Object-Oriented Databases, 1989, pp. 40-57.

2 1 . Banatre, J. and D. Le Metayer, Programming by multiset transformation, Communi­
cations of the ACM 36 (1993) , pp. 98-1 1 1 .

22 . Bancilhon , F . , C . Delobel and P. Kanellakis, editors, "Building an Object-Oriented
Database Sytem: The Story of 02 ," Morgan Kaufmann, 1992.

23. Barendregt , H. P. , editor, "The Lambda Calculus: Its syntax and semantics," North
Holland, Amsterdam, 1984.

24. Basten, T . , Parsing partially ordered multisets, International Journal of Computer
Science 8 (1 997) , pp. 379-407.

25. Batini, C . , S . Ceri and S. B. Navathe, "Conceptual Database Design: An Entity­
Relationship Approach," Benjamin Cummings, 1992.

26. Beeri, C . , On the role of data dependencies in the construction of relational database
schemes, Technical Report TR-43, The Hebrew University of Jerusalem (1979) .

27. Beeri , C . , On the membership problem for functional and multivalued dependencies in
relational databases, Transactions on Database Systems (TODS) 5 (1980) , pp. 241-
259.

28. Beeri , C . , A formal approach to object-oriented databases, Data and Knowledge En­
gineering 5 (1 990) , pp. 353-382.

29. Beeri , C. and P. A . Bernstein, Computational problems related to the design of normal
form relational schemata, Transactions on Database Systems (TODS) (1979) , pp. 30-
59.

30. Beeri , C . , P. A . Bernstein and N. Goodman, A sophisticate 's introduction to database
normalization theory, in: Proceedings of the International Conference on Very Large
Data Bases (VLDB) , 1978, pp. 1 13-1 24.

31 . Beeri , C. , M. Dowd, R. Fagin and R. Statman, On the structure of armstrong relations
for functional dependencies, Journal of the ACM 31 (1984) , pp. 30-46.

32. Beeri, C . , R. Fagin and J . H . Howard , A complete axiomatization for functional and

1 84

BIBLIOGRAPHY Sebastian Link

multivalued dependencies in database relations, in: International Conference on Man­
agement of Data (SIGMOD) , ACM, 1977, pp. 47-61 .

33 . Beeri, C. and P. Honeyman, Preserving functional dependencies, SIAM Journal on
Computing 10 (1981) , pp. 647-656.

34. Beeri, C . and M. Kifer, An integrated approach to logical design of relational database
schemes, Transactions on Database Systems (TODS) 1 1 (1986) , pp. 134-1 58.

35. Beeri, C. , A . 0. Mendelzon, Y. Sagiv and J . D. Ullman, Equivalence of relational
database schemes, SIAM Journal on Computing 10 (1 981) , pp. 352-370.

36. Beeri, C. and T. Milo, Schemas for integration and translation of structured and
semi-structured data, in: Proceedings of the International Conference on Database
Theory (ICD T), Jerusalem, Israel, 1999, pp. 296-313 .

37 . Beeri, C. and J . Rissanen, Faithful representation of relational database schemes,
Technical Report RJ2722, IBM Research Laboratory (1980) .

38. Beeri, C . and M . Y. Vardi, The implication problem for data dependencies, in: Pro­
ceedings of the International Conference on Algorithms, Languages and Program­
ming, number 1 15 in Lecture Notes in Computer Science (1981) , pp. 73-85 .

39. Beeri, C . and M . Y. Vardi , Formal systems for join dependencies, Theoretical Com­
puter Science 38 (1985) , pp. 99-116 .

40. Bernstein, P. A . , Normalisation and functional dependencies in the relational data
base model, Technical Report CSRG-60, University of Toronto (1975) .

41 . Bernstein, P. A . , Synthesizing third normal form relations from functional dependen­
cies, Transactions on Database Systems (TODS) 1 (1976) , pp. 277-298.

42 . Bernstein, P. A. and N. Goodman, What does Boyce- Codd normal form do ?, in: Pro­
ceedings of the International Conference on Very Large Data Bases (VLDB) , 1980,
pp. 245-259.

43 . Bernstein, P. A . , J . R. Swenson and D. C . Tzichritzis, A unified approach to functional
dependencies and relations, in: Proceedings of the International Conference on the
Management of Data (SIGMOD), ACM, 1975 , pp. 237-245.

44. Berry, G. and G. Boudol , The chemical abstract machine, Theoretical Computer Sci­
ence 96 (1992) , pp. 2 17-248.

45 . Birkhoff, G . , "Lattice Theory," American Mathematical Society, 1940.
46 . Biskup, J . , On the complementation rule for multi valued dependencies in database

relations, Acta Informatica 10 (1978) , pp. 297-305.
47. Biskup, J . , Database schema design theory: achievements and challenges, in : Infor­

mation Systems and Data Management, number 1066 in Lecture Notes in Computer
Science (1995) , pp. 1 4-44.

48. Biskup, J . , Achievements of relational database schema design theory revisited, in:
Semantics in databases, number 1358 in Lecture Notes in Computer Science (1998) ,
pp. 29-54.

49. Biskup, J . , U. Dayal and P. A. Bernstein, Synthesizing independent database schemas,
in: Proceedings of the International Conference on the Management of Data (BIG­
MOD), ACM, 1979, pp. 143-153.

185

BIBLIOGRAPHY Sebastian Link

50. Bobrow, D. G . , K. M . Kahn, G . Kiczales, L . Masinter, M . Stefik and F. Zdybel, Com­
monloops: Merging Lisp and o bject-oriented programming, in : Proceedings of the
Conference on Object- Oriented Programming Systems, Languages, and Applications,
ACM, 1986, pp. 17-29.

5 1 . Bommel, M . F . and G. E. Weddell, Reasoning about equations and functional de­
pendencies on complex objects, Transactions on Knowledge and Data Engineering 6
(1 994) , pp. 455-469.

52. Borger, E . , E. Gradel and Y. Gurevich, "The Classical Decision Problem," Perspec­
tives in Mathematical Logic, Springer, 1997.

53. Bray, T . , J. Paoli , C . M. Sperberg-McQueen, E . Maler and F. Yergeau, Extensible
markup language (XML) 1 . 0 (third edition) W3C recommendation 04 february 2004,
http :/ /www.w3.org/TR/2004/REC-xml-20040204/ (2004) .

54. Brodie, M . L . and D. Ridjanovic, On the design and specification of database trans­
actions, in: On Conceptual Modelling (1984) , pp. 277-306 .

55 . Bry, F . and P . Kroger, A computational biology database digest: data, data analysis,
and data management, Distributed and Parallel Databases 13 (2003) , pp. 7-42.

56. Buneman, P. , S. Davidson, W. Fan, C. Hara and W. Tan, Keys for XML, Computer
Networks 39 (2002) , pp. 473-487.

57. Buneman, P. , S . Davidson, W. Fan, C. Hara and W. Tan , Reasoning about keys for
XML, Information Systems 28 (2003) , pp. 1037-1063.

58. Buneman, P. , W. Fan, J. Simeon and S . Weinstein, Constraints for semi-structured
data and XML, SIGMOD Record 30 (2001) , pp. 47-54.

59. Buneman, P. , W. Fan and S . Weinstein, Path constraints in semistructured databases,
Journal of Computer and System Sciences 61 (2000) , pp. 146-193.

60. Calude, C . , G. Paun, G. Rozenberg and A. Salomaa, editors, "Multiset Processing,
Mathematical, Computer Science, and Molecular Computing Points of View [Work­
shop on Multiset Processing, WMP 2000, Curtea de Arges, Romania, August 21-25,
2000] , " Springer, 2001 .

6 1 . Calvanese, D . , G . DeGiacomo and M . Lenzerini, Representing and reasoning o n XML
documents: a description logic approach, Journal of Logic and Computation 9 (1999) ,
pp. 295-318 .

62 . Cardell i , L . and P . Wegener, On understanding types, data abstraction and polymor­
phism, ACM Computing Surveys 17 (1985) , pp. 471-522.

63. Chen, P. P. , The entity-relationship model: Towards a unified view of data, Transac­
tions on Database Systems (TODS) 1 (1976) , pp. 9-36.

64. Chen , P. P. , English sentence structure and entity-relationship diagrams, Information
Science 29 (1983) , pp. 127-149.

65. Chomicki, J . , Efficient checking of temporal integrity constraints using bounded his­
tory encoding, Transactions on Database Systems (TODS) 20 (1995) , pp. 149-186.

66. Chomicki, J. and D. Niwinski , On the feasibility of checking temporal integrity con­
straints, Journal of Computer and System Sciences 51 (1995) , pp. 523-535 .

67. Cluet , S . , C . Delobel, J . Simeon and K . Smaga, Your mediators need data conversion,

186

BIBLIOGRAPHY Sebastian Link

in: Proceedings of International Conference on Management of Data (SIGMOD) ,
ACM, 1998 , pp. 1 77-188 .

68. Codd, E. F . , A relational model of data for large shared data banks, Communications
of the ACM 13 (1970) , pp. 377-387.

69. Codd, E. F . , Normalized database structure: A brief tutorial, in: Workshop on Data
Description, Access and Control, ACM, 1971 , pp. 1-17.

70 . Codd, E. F. , Further normalization of the database relational model, in: Courant
Computer Science Symposia 6: Data Base Systems (1 972) , pp. 33-64.

71 . Codd, E. F., Relational completeness of database sublanguages, in: Courant Computer
Science Symposia 6: Data Base Systems (1972) , pp. 65-98 .

72 . Codd, E. F . , Recent investigations in relational database system, in: Proceedings of
the IFIP Conference, 1974, pp. 1017-1021 .

73 . Colmerauer, A . , Equations and inequations on finite and infinite trees, in: Proceedings
of the International Conference on Fifth Generation Computer Systems 1984, Tokyo,
Japan, 1984, pp. 85-99.

74 . Cosmadakis, S. S . and P. C. Kanellakis, Equational theories and database constraints,
in: Proceedings of the International Symposium on the Theory of Computing, ACM,
1985, pp. 73-284.

75. Cosmadakis, S. S . , P. C. Kanellakis and S . Spyratos, Partition semantics for rela­
tions, Journal of Computer and System Sciences 32 (1 986) , pp. 203-233.

76 . Courcelle, B. , Fundamental properties of infinite trees, Theoretical Computer Science
25 (1983) , pp. 95-169.

77. Crolard , T., Subtractive logic, Theoretical Computer Science 254 (2001) , pp. 1 5 1-
185 .

78 . Curry, H. B. , "Foundations of Mathematical Logic," Dover, 1976.
79 . Czermak, J . , A remark on 9entzen's calculus of sequents, Notre Dame Journal of

Formal Logic 18 (1977) , pp. 471-474.
80. Dantsin, E. and A. Voronkov, Complexity of query answering in logic databases with

complex values, in: Logical Foundations of Computer Science, 4th International Sym­
posium, LFCS'97, Yaroslavl, Russia, July 6-12, 1 997, number 1234 in Lecture Notes
in Computer Science (1997) , pp. 56-66.

8 1 . Date, C. J . , "An Introduction to Database Systems," Addison-Wesley, 1986.
82. Date, C . J . and H. Darwen, Relation-valued attributes or will the real first normal

form please stand up ?, in: Relational Database Writings 1989-1 g91, 1992, pp. 75-98.
83. Date, C . J. and H. Darwen, "A Guide to the SQL Standard," Addison-Wesley, 1 993.
84. Davidson, A . , M. Fuchs, M. Hedin, M . Jain, J . Koistinen, C. Lloyd, M . Maloney

and K. Schwarzhof, Schema for object-oriented XML 2. 0, W3C note 30 july 1 999,
http:/ /www.w3.org/TR/NOTE-SOX/ .

85. DeBra, P. and J . Paredaens, Horizontal decompositions for handling exceptions to
functional dependencies, in : Advances in Data Base Theory, vol. 2, 1984, pp. 1 23-
144.

86. Delobel, C. , Normalisation and hierarchical dependencies in the relational data model,
Transactions on Database Systems (TODS) 3 (1978) , pp. 201-222 .

187

BIBLIOGRAPHY Sebastian Link

87. Delobel , C. and M. Adiba, "Relational database systems," North Holland, 1985.
88. Delobel, C . and R. C. Casey, Decomposition of a database and the theory of boolean

switching functions, IBM Journal of Research and Development 17 (1972) , pp. 370-
386.

89. Demetrovics, J . , On the number of candidate keys, Information Processing Letters 7
(1978) , pp. 266-269.

90. Demetrovics, J . , On the equivalence of candidate keys with sperner sets, Acta Cyber­
netica 4 (1979) , pp. 247-252 .

91 . Demetrovics, J . , Candidate keys and antichains, SIAM Journal on Algebraic and
Discrete Methods 1 (1980) , p. 92.

92 . Demetrovics, J . , Z . Fiiredi and G. 0. H. Katona, Minimum matrix representations of
closure operations. , Discrete Applied Mathematics 1 1 (1985) , pp. 1 15-128.

93. Demetrovics, J. and G. Gyepesi, On functional dependency and some generalisations
of it, Acta Cybernetica 5 (1981) , pp. 295-305.

94. Demetrovics, J . and G. 0 . H . Katona, Combinatorial problems of database models,
in : Colloquia Mathematica Societatis Janos Bolyai 42, A lgebra, Combinatorics and
Logic in Computer Science, 1983, pp. 331-352.

95. Demetrovics, J . , L. Libkin and I . B. Muchnik, Functional dependencies and the semi­
lattice of closed classes, in : MFDBS 89, 2nd Symposium on Mathematical Funda­
mentals of Database Systems, Visegrad, Hungary, June 26-30, 1 989, number 364 in
Lecture Notes in Computer Science (1989) , pp. 135-147.

96. Demetrovics, J. and V. D. Thi, Some results about functional dependencies, Acta
Cybernetica 8 (1988) , pp. 273-278.

97. Deutsch, A . , L . Popa and V. Tannen, Physical data independence, constraints, and
optimization with universal plans, in: Proceedings of the International Conference on
Very Large Data Bases (VLDB), 1999, pp. 459-470 .

98. Diederich, J . and J . Milton, New methods and fast algorithms for database normal­
ization, Transactions on Database Systems (TODS) 13 (1988) , pp. 339-365.

99. Dovier, A . , A. Policriti and G. Rossi, A uniform axiomatic view of lists, multisets, and
sets, and the unification algorithm, Fundamenta Informaticae 36 (1998) , pp. 201-234.

100 . Dummett, M . , "Elements of Intuitionism," Clarendon Press, 2000.
1 0 1 . Engel, K . , "Sperner theory," Cambridge University Press, 1997.
102 . Fagin, R. , The decomposition versus synthetic approach to relational database design,

in: Proceedings of the International Conference on Very Large Data Bases (VLDB),
1 977, pp. 441-446.

103. Fagin, R. , Multivalued dependencies and a new normal form for relational databases,
Transactions on Database Systems (TODS) 2 (1977) , pp. 262-278.

104. Fagin, R. , Normal forms and relational database operators, in: Proceedings of the
International Conference on the Management of Data (SIGMOD) , 1979 , pp. 153-
160.

105 . Fagin, R. , A normal form for relational databases that is based on domains and keys,
Transactions on Database Systems (TODS) 6 (1981) , pp. 387-415 .

188

BIBLIOGRAPHY Sebastian Link

106 . Fagin , R. , Armstrong databases, Technical Report RJ3440, IBM Research Laboratory,
San Jose, California, USA (1 982) .

1 07. Fagin , R. , Horn clauses and data dependencies, Journal of the ACM 29 (1982) ,
pp. 952-985.

1 08 . Fagin , R., A. 0. Mendelzon and J. D . Ullman, A simplified universal relational as­
sumption and its properties, Transactions on Database Systems (TODS) 7 (1982) ,
pp. 343-360.

1 09 . Fagin , R. and M. Y. Vardi , The theory of data dependencies: a survey, in: Mathe­
matics of Information Processing: Proceedings of Symposia in Applied Mathematics
(1986) , pp. 19-71 .

1 10 . Fan , W. and L. Libkin, On XML integrity constraints in the presence of DTDs, Jour­
nal of the ACM 49 (2002) , pp. 368-406.

1 1 1 . Fan, W. and J. Simeon, Integrity constraints for XML, Journal of Computer and
System Sciences 66 (2003) , pp. 254-291 .

1 12 . Fischer, P. C . , J . H . Jou and D . M. Tsou, Succinctness in dependency systems, The­
oretical Computer Science 24 (1 983) , pp. 323-329.

1 13 . Fischer, P. C . , L. V. Saxton, S. J. Thomas and D. van Gucht, Interactions between
dependencies and nested relational structures, Journal of Computer and System Sci­
ences 31 (1985) , pp. 105-129.

1 14. Fishman, D . H., D. Beech, H. P. Cate, E . F. Chow, T. Connors, J . W. Davis,
N. Derret, C. G. Hoch, W. Kent , P. Lyngbrek, B. Mahbod, M .-A. Neimat , T. A. Ryan
and M.-C. Shan, IRIS:an object-oriented database management system, Transactions
on Office Information Systems 5 (1987) , pp. 48-69.

1 1 5 . Fleming, C. C. and B . van Halle, "Handbook of Relational Database Design ,"
Addison-Wesley, 1 989.

1 1 6 . Florescu, D., L. Raschid and P. Valduriez , A methodology for query reformulation
in cis using semantic knowledge, International Journal of Cooperative Information
Systems (IJCIS) 5 (1996) , pp. 431-468.

1 1 7. Floyd, R. W. and L . Steinberg, An adaptive algorithm for spatial grey scale, in: Pro­
ceedings of the Society of Information Display, 1976, pp. 75-77.

1 18 . Galil , Z . , An almost linear-time algorithm for computing a dependency basis in a
relational database, Journal of the ACM 29 (1982) , pp. 96-102.

1 19 . Gallaire, H . and J . Minker, "Logic and Databases," Plenum Press, New York, 1978 .
1 20 . Ganascia, J . -G . , Algebraic structure of some learning systems, in: Algorithmic Learn­

ing Theory, 4th International Workshop, ALT '93, Tokyo, Japan, number 744 in
Lecture Notes in Computer Science (1993) , pp. 398-409.

1 2 1 . Gardarin, G . , J.-P. Cheiney, G . Kiernan, D. Pastre and H. Stora, Managing complex
objects in an extensible relational DBMS, in: Proceedings of the International Con­
ference on Very Large Data Bases (1989) , pp. 55-65.

1 22 . Garey, M. R. and D. S . Johnson, "Computers and Intractibility: A Guide to the
Theory of NP-Completeness," Freeman, San Franciso, 1 979.

1 23 . Gertz , M . and U. W. Lipeck, " Temporal" integrity constraints in temporal databases,
in: Recent Advances in Temporal Databases, Proceedings of the International Work-

189

BIBLIOGRAPHY Sebastian Link

shop on Temporal Databases, Zurich, Switzerland, 1 7-18 September 1 995, 1995, pp.
77-92.

1 24. Ginsburg, S . and R. Hull, Order dependency in the relational model, Theoretical Com­
puter Science 26 (1 983) , pp. 149-195.

1 25 . Ginsburg, S . and S. M. Zaiddan, Properties of functional dependency families, Journal
of the ACM 29 (1982) , pp. 678-698.

1 26. Gischer, J. L . , The equational theory of pomsets, Theoretical Computer Science 6 1
(1 988) , pp. 199-224.

1 27. Godel, K . , Die Vollstiindigkeit der Axiome des logischen Funktionenkalkiils, Monat­
shefte der Mathematischen Physik (1 930) , pp. 349-360.

1 28. Goldberg, A. and D. Robson, "Smalltalk-80: The Language and Its Implementation,"
Addison-Wesley, 1 980.

1 29 . Goodman, N . D., The logic of contradiction, Zeitschrift fiir Mathematische Logik und
Grundlagen der Mathematik 27 (1981) , pp. 1 19-126.

130. Gore, R. , Dual intuitionistic logic revisited, in : TABLEA UXOO: Automated Reason­
ing with A nalytic Tableaux and Related Methods, number 1847 in Lecture Notes in
Artificial Intelligence (2000) , pp. 252-267.

131 . Gorn, S . , Explicit definitions and linguistic dominoes, in: Systems and Computer
Science, 1967, pp. 77-115 .

132 . Gottlob, G . , Computing covers for embedded functional dependencies, in: Principles
of Database Systems (PODS), 1987, pp. 58-69 .

1 33. Grahne, G . and K. P. Wiiha, Database decomposition into 4NF, in: Proceedings of
the International Conference on Very Large Data Bases (VLDB), 1983, pp. 186-196.

1 34 . Gyssens, M . , J . Paredaens and D. Van Gucht, A graph-orienteed object database
model, in: Principles of Database Systems (PODS), 1990, pp. 417-424.

135. Hagihara, K . , M. Ito, K. Taniguchi and T. Kasami, Decision problems for multivalued
dependencies in relational databases, SIAM Journal on Computing 8 (1979) , pp. 247-
264.

136. Hammer, M. and D. McLeod, Database description with SDM: A semantic database
model, Transactions on Database Systems (TODS) 6 (1981) , pp. 351-386.

137. Hara, C. S. and S . B. Davidson, Reasoning about nested functional dependencies, in :
Principles of Database Systems (PODS) (1999) , pp. 91-100.

138. Hartmann, S . and S . Link, More functional dependencies for XML, in: Advances in
Databases and Information Systems, 7th East European Conference, ADBIS 2003,
Dresden, Germany, September 3-6, number 2798 in Lecture Notes in Computer Sci­
ence (2003) , pp. 355-369.

139. Hartmann , S. and S. Link, On functional dependencies in advanced data models,
Electronic Notes in Theoretical Computer Science (ENTCS) 84 (2003) .

140. Hartmann, S . and S . Link, The implication problem of functional dependencies in
complex-value databases, accepted for Electronic Notes in Theoretical Computer Sci­
ence (ENTCS) (2004) .

1 4 1 . Hartmann, S . and S . Link, A membership algorithm for functional and multi-valued

190

BIBLIOGRAPHY Sebastian Link

dependencies in the presence of lists, Electronic Notes in Theoretical Computer Sci­
ence (ENTCS) 91 (2004) , pp. 171-194.

142. Hartmann, S . and S. Link, Multi-valued dependencies in the presence of lists, in:
Proceedings of the 23rd International Conference on Principles of Database Systems
(PODS), ACM, 2004, pp. 330-341 .

143. Hartmann, S . and S . Link, Normalisation i n the presence of lists, i n : 15th Australasian
Database Conference (ADC), Conferences in Research and Practice in Information
Technology 27 (2004) , pp. 53-64.

144. Hartmann, S . , S . Link and M. Kirchberg, A subgraph-based approach towards func­
tional dependencies for XML, in: Proceedings of the 7th World-Multiconference on
Systemics, Cybernetics and Informatics (SCI), Volume IX, Computer Science and
Engineering II, Orlando, Florida, USA, July 27 - 30, 2003 , pp. 200-205.

145. Hartmann, S. , S . Link and K .-D. Schewe, Functional dependencies in the presence
of records, lists, sets and multisets, Technical Report 1 , Department of Information
Systems, Massey University, Palmerston North, New Zeland (2004) .

146. Hartmann , S . , S . Link and K .-D. Schewe, Reasoning about functional and multi-valued
dependencies in the presence of lists, in : 3rd International Symposium on Foundations
of Information and Knowledge Systems (FolKS), number 2942 in Lecture Notes in
Computer Science (2004) , pp. 134-154.

147. Hull, R. , Finitely specifiable implicational dependency families, Journal of the ACM
31 (1984) , pp. 210-226.

148 . Hull, R., A survey of theoretic research on typed complex database objects, in:
Databases (1987) , pp. 193-256.

149. Hull, R. and R. King, Semantic database modeling: Survey, applications and research
issues, ACM Computing Surveys 19 (1987) .

150. Hull, R. , K . Tanaka and M. Yoshikawa, Behavior analysis of object-oriented
databases: Method structure, execution trees and reachability, in : Proceedings 3rd In­
ternational Conference on Foundations of Data Organization and Algorithms, 1989,
pp. 372-388.

1 5 1 . Hull, R. and C. K. Yap, The Format model: A theory of data organization, Journal
of the ACM 31 (1984) , pp. 518-537.

152 . Ito, M . , M . Iwasaki , K. Taniguchi and K. Kasami, Membership problems for data
dependencies in relational expressions, Theoretical Corn pu ter Science 34 (1 984) ,
pp. 315-335 .

153 . Ito, M . and G . E . Weddell , Implication problems for functional constraints on
databases supporting complex objects, Journal of Computer and System Sciences 50
(1995) , pp. 165-187.

154. Jajoda, S . , Recognizing multivalued dependencies in relation schemas, The Computer
Journal 29 (1 986) , pp. 458-459.

155. Jarvis, J. F . , C. N. Judice and W. H. Ninke, A survey of techniques for the display
of continuous-tone pictures on bilevel display, Computer Graphics Image Processing
5 (1976) , pp. 1 3-40 .

191

BIBLIOGRAPHY Sebastian Link

1 56 . Jaschke, G. and H.-J . Schek, Remarks on the algebra of non first normal form rela­
tions, in: Principles of Database Systems (PODS), 1982, pp. 124-138.

1 57. Kandzia, P. and M. Mangelmann, On covering Boyce- Codd normal form, Information
Processing Letters 1 1 (1980) , pp. 218-223 .

1 58 . Kanellakis, P . C. , "Elements of Relational Database Theory," Elsevier, 1990 pp.
1074-1 156 .

1 59 . Kari , L . , G . Paun , G . Rozenberg, A. Salomaa and S . Yu, DNA computing, sticker
systems, and universality, Acta Informatica 35 (1998) , pp. 401-420.

160 . Katsavounidis, I . and C.-C. J . Kuo, A multiscale error diffusion technique for digital
haljtoning, Transactions on Image Processing 6 (1997) , pp. 483-490 .

161 . Kent , W. , "Data and Reality," North Holland, 1978.
162 . Kent, W., Limitations of record-based information models, Transactions on Database

Systems (TODS) 4 (1979) , pp. 107-131 .
163 . Kent , W. , The many forms of a single fact, in : Proceedings of the IEEE Compcon

Conference, 1 989.
164 . Kerschberg, L . and J . E . S . Pacheco, A functional data base model, Technical report,

Pontificia Univ. Catolica do Rio de Janeiro, Rio de Janeiro, Brasil (1 976) .
165 . Kifer, M . , G . Lausen and J . Wu, Logical foundations of object- oriented and frame­

based languages, Technical Report 93/06, Computer Science Department, SUNY at
Stony Brook, New York (1993) .

166 . Kim, W. and F. Lochovski , editors, "Object-Oriented Concepts, Databases and Ap­
plications," Addison-Wesley, 1989.

167. Kivinen, J. and H. Mannila, Approximate inference of functional dependencies from
relations, Theoretical Computer Science 149 (1995) , pp. 129-149.

1 68 . Kobayashi, I . , Databases and conceptual schemata: A formal framework, in: Proceed­
ings of the International Conference on Very Large Data Bases (VLDB), 1986, pp.
3-23 .

169 . Koubarakis, M . , Databases and temporal constraints: Semantics and complexity, in:
Recent Advances in Temporal Databases, Proceedings of the International Workshop
on Temporal Databases, Zurich, Switzerland, 1 7-18 September 1995, 1995, pp. 93-
109 .

170 . Kuper, G. , On the expressive power of logic programming languages with sets, in :
Principles of Database Systems (PODS), 1988, pp. 1 0-14.

171 . Kuper, G . , Logic programming with sets, Journal of Computer and System Sciences
41 (1990) , pp. 44-64.

1 72 . Kuper, G . and M. Y. Vardi, A new approach to database logic, in : Principles of
Database Systems (PODS), 1984, pp. 86-96.

173 . Lakshmanan, V . S . and C. E . VeniMadhavan, An algebraic theory of functional and
multivalued dependencies in relational databases, Theoretical Computer Science 54
(1987) , pp. 1 03-128.

1 74 . Lamperti, G . , M. Melchiori and M . Zanella, On multisets in database systems, in:
Workshop on Multiset Processing (WMP), number 2235 in Lecture Notes in Com­
puter Science (2000) , pp. 147-216 .

192

BIBLIOGRAPHY Sebastian Link

1 75 . Lawvere, F. W. , Introduction, in: Categories in Continuum Physics, Lecture Notes
in Mathematics 1174 (1986) .

176 . Lawvere, F . W. , Intrinsic co-heyting boundaries and the leibniz rule in certain
toposes, in: Category Theory, Lecture Notes in Mathematics 1488 (1 99 1) , pp. 279-
297.

1 77. Layman, A. , E . Jung, E . Maler, H. S. Thompson, J. Paoli , J . Tigue,
N. H. Mikula and S. De Rose, XML-data, W3C note 05 Jan J gg8,
http: / /www.w3.org/TR/1998/NOTE-XML-data/ .

178. Lee, M . , T. Ling and W. Low, Designing functional dependencies for XML, in: Ad­
vances in Database Technology - EDBT 2002, 8th International Conference on Ex­
tending Database Technology, Prague, Czech Republic, March 25-27, number 2287 in
Lecture Notes in Computer Science (2002) , pp. 124-141 .

1 79. Levene, M . , "The Nested Universal Relation Database Model ," Springer, 1992.
180. Levene, M. and G. Loizou, Semantics for null extended nested relations, Transactions

on Database Systems (TODS) 18 (1993) , pp. 414-459.
181 . Levene, M. and G. Loizou, "A Guided Tour of relational databases and beyond,"

Springer, 1999.
1 82 . Li, B . , Fuzzy bags and applications, Fuzzy sets and systems 34 (1 990) , pp. 61-71 .
183. Li, J . , S . Ng and L. Wong, Bioinformatics adventures in database research, in: Pro­

ceedings of the International Conference on Database Theory (ICDT), number 2572
in Lecture Notes in Computer Science (2002) , pp. 31-46.

184. Lien, Y. E . , On the semantics of the entity-relationship model, in: Entity-Relationship
Approach to Systems Analysis and Design, 1 980, pp. 155-167.

1 85. Lien, Y. E . , On the equivalence of data models, Journal of the ACM 29 (1982) ,
pp . 333-363.

186. Ling, T . , F. Tompa and T. Kameda, An improved third normal form for relational
databases, Transactions on Database Systems (TODS) 6 (1981) , pp. 326-346.

187. Ling, T. W. and L. L. Yan, NF-NR: A practical normal form for nested relations,
Journal of Systems Integration 4 (1994) , pp. 309-340 .

188. Lipeck, U . W. and G . Saake, Monitoring dynamic integrity constraints based on tem­
poral logic, Information Systems 12 (1987) , pp. 255-269.

189. Lopes, S . , J .-M. Petit and L. Lakhal, Efficient discovery of functional dependencies
and armstrong relations, in: Proceedings of the 7th International Conference on Ex­
tending Database Technology: Advances in Database Technology, number 1777 in Lec­
ture Notes In Computer Science (2000) , pp. 350-364.

190. Lucchesi, C . L . and S . L . Osborne, Candidate keys for relations, Journal of Computer
and System Sciences 17 (1978) , pp. 270-279.

1 9 1 . Maier, D . , Minimum covers in relational database model, Journal of the ACM 27
(1980) , pp. 664-674.

1 92 . Maier, D . , "The Theory of Relational Databases," Computer Science Press , 1983.
193. Maier, D., A. 0. Mendelzon, F . Sadri and J. D. Ullman, Adequacy of decompositions

of relational databases, Journal of Computer and System Sciences 21 (1980) , pp. 368-
379 .

193

BIBLIOGRAPHY Sebastian Link

194. Maj id , S . , On the nature of physics, http:/ /www.maths.qmw.ac .uk/ majid/pessay.html.
195 . Makinouchi , A., A consideration of normal form of not-necessarily-normalized rela­

tions in the relational database model, in: Proceedings of International Conference on
Very Large Data Bases (VLDB), 1 977, pp. 447-453.

196. Manrtila, H. and K. P. Raiha, Small armstrong relations for database design, in: Prin­
ciples of Database Systems (PODS), 1985 , pp. 245-50.

197. Mannila, H . and K. P. Raiha, "The Design of Relational Databases," Addison-Wesley,
1992.

198 . Mannila, H. and K. P. Raiha, On the complexity of inferring functional dependencies,
Discrete Applied Mathematics 40 (1992) , pp. 237-243.

199. Mannila, H. and K. P. Raiha, Algorithms for inferring functional dependencies from
relations, Data & Knowledge Engineering 12 (1994) , pp. 83-99.

200. Manola, F. and E. Miller, Resource description framework primer, W3C recommen­
dation 1 0 february 2004, http:/ /www.w3.org/TR/2004/REC-rdf-primer-20040210/.

201 . McKinsey, J. C . C. and A. Tarski , The algebra of topology, Annals of Mathematics
45 (1944) , pp. 141-191 .

202. McKinsey, J . C . C. and A. Tarski, O n closed elements in closure algebras, Annals of
Mathematics 47 (1946) , pp. 122-146.

203. Melton, J. , An SQL3 snapshot, in : Proceedings of the IEEE Conference on Data
Engineering, 1996, pp. 666-672 .

204. Mendelzon, A . 0 . , On axiomatising multivalued dependencies in relational databases,
Journal of the ACM 26 (1979) , pp. 37-44.

205. Mitsa, T. and K. Parker, Digital halftoning using a blue-noise mask, in: Image Pro­
cessing Algorithms and Techniques II, The International Society for Optical Engi­
neering (SPIE) 1452, 1991 , pp. 47-56.

206. Mok, W. Y . , A comparative study of various nested normal forms, IEEE Transactions
on Knowledge & Data Engineering 14 (2002), pp. 369-385.

207. Mok, W. Y. , Y. K . Ng and D. W. Embley, A normal form for precisely charachter­
izing redundancy in nested relations, Transactions on Database Systems (TODS) 21
(1996) , pp . 77-106.

208. Naqvi, S . and S . Tsur, "A logical language for data and knowledge bases," Computer
Science Press, 1 989.

209. National Centre for Biotechnology Information, Genbank overvzew,
http:/ /www.ncbi .nih.gov/Genbank/GenbankOverview.html.

210 . National Centre for Biotechnology Information, Sample genbank record and file for­
mat description, http :/ /www.ncbi .nih.gov /Sitemapjsamplerecord.html.

2 1 1 . N g, W. , Ordered functional dependencies in relational databases, Information Systems
27 (1999) , pp. 535-554.

212 . Nicolas, J .-M. , First order logic formalization for functional, multivalued and mutual
dependencies, in: Proceedings of the International Conference on Management of
Data (SIGMOD) , ACM, 1978, pp. 40-46.

213. Nicolas, J . -M. , Logic for improving integrity checking in relational databases, Acta
Informatica 18 (1982) , pp. 227-253.

1 94

BIBLIOGRAPHY Sebastian Link

214 . Osborne, S. L . , Testing for the existence of a covering Boyce- Codd normal form,
�?formation Processing Letters 8 (1 979) , pp. 1 1-14 .

215 . Ozsoyoglu, Z . M . and L. Y. Yuan, A new normal form for nested relations, Transac­
��ons on Database Systems (TODS) 12 (1987) , pp. 1 1 1-136.

216. Ozsoyoglu, Z . M . and L. Y. Yuan, Reduced MVDs and minimal covers, Transactions
on Database Systems (TODS) 12 (1987) , pp. 377-394 .

217 . Ozsoyoglu, Z . M . and L . Y . Yuan , On the normalisation in nested relational databases,
in : Nested Relations and Complex Objects in Databases, number 361 in Lecture Notes
in Computer Science (1989) , pp. 243-271 .

218 . Pagliani , P. , Intrinsic co-heyting boundaries and information incompleteness in rough
set analysis, in: Rough Sets and Current Trends in Computing, number 1424 in Lec­
ture Notes in Computer Science, 1998, pp. 1 23-130.

219. Pappas, T. and D. L . Neuhoff, Least-squares model-based halftoning, in: Human Vi­
sion, Visual Processing and Digital Display III, International Society for Optical
Engineering (SPIE) 1666 , 1992, pp. 165-176 .

220 . Paredaens, J . , P . De Bra, M . Gyssens and D. Van Gucht , "The Structure of the Re­
lational Database Model ," Springer-Verlag, 1989.

221 . Paredaens, J. and D. Janssens, Decompositions of relations: a comprehensive ap­
proach, in: Advances in Data Base Theory, vol. 1 (1981) , pp. 73-100.

222 . Paredaens, J. and D. van Gucht, Possibilities and limitations of using fiat operators
in nested algebra expressions, in: Principles of Database Systems (PODS), 1 988, pp.
29-38.

223. Parker, D. S. and C. Delobel , Algorithmic applications for a new result on multivalued
dependencies, in: Proceedings of the International Conference on Very Large Data
Bases (VLDB), 1979 , pp. 67-74.

224. Paun, G . , DNA computing: Distributed splicing systems, in: Structures in Logic and
Computer Science, number 1261 in Lecture Notes in Computer Science (1 997) , pp.
353-370.

225. Paun, G . , Computing with membranes, Journal of Computer and System Sciences 61
(2000) , pp. 108-143.

226. Paun, G . and G. Rozenberg, A guide to membrane computing, Theoretical Computer
Science 287 (2002) , pp. 73-100.

227. Pearl, J . , "Probabilistic Reasoning in Intelligent Systems," Morgan Kaufman, 1988.
228. Pearl, J. and T. Verma, The logic of representing dependencies by directed graphs, in:

Proceedings AAA! Conference 1g87, 1988, pp. 374-379 .
229. Petrov, S. V. , Finite axiomatization of languages for representation of system prop­

erties: Axiomatization of dependencies, Information Sciences 47 (1989) , pp. 339-372 .
230. Rauszer, C . , Semi-boolean algebras and their application to intuitionistic logic with

dual operations, Fundamenta Mathematicae LXXIII (1974) , pp. 219-249.
231 . Rauszer, C . , An algebraic and kripke-style approach to a certain extension of intu­

itionistic logic, Technical report, Institute of Mathematics, Polish Academy of Sci­
ences (1980) .

195

BIBLIOGRAPHY Sebastian Link

232. Reps, T. W. , Algebraic properties of program integration, Science of Computer Pro­
gramming 17 (1991) , pp. 139-215 .

233. Richardson, J . , Supporting lists in a datamodel, in : Proceeding of the International
Conference on Very Large Data Bases (VLDB) , 1992, pp. 1 27-192.

234. Rissanen, J . , Independent components of relations, Transactions on Database Systems
(TODS) 2 (1977) , pp. 317-325 .

235. Rissanen, J . , Theory of relations for databases - a tutorial survey, in : Proceedings
of 7th Symposium on Mathematical Foundations of Computer Science, number 64 in
Lecture Notes in Computer Science, 1978, pp. 536-551 .

236. Rissanen, J . and C. Delobel, Decomposition of files, a basis for data storage and
retrieval, Technical Report RJ2220, IBM Reseach Lab (1975) .

237. Roth, M . A . and H . F . Korth, The design of •lnf relational databases into nested
normal form, in: Proceedings of the International Conference on Management of
Data (SIGMOD), 1987, pp. 143-159.

238. Roth , M. A., H. F. Korth and A. Silberschatz, Theory of non-first-normal form re­
lational databases, Technical Report TR-84-36, University of Texas, Austin, Texas,
USA (1 986) .

239. Sagiv , Y . , An algorithm for inferring multivalued dependencies with an application
to propositional logic, Journal of the ACM 27 (1980) , pp . 250-262.

240. Sagiv, Y. , C . Delobel , D. S . Parker Jr. and R. Fagin, An equivalence between relational
database dependencies and a fragment of propositional logic, Journal of the ACM 28
(198 1) , pp. 435-453.

241 . Sanchez, E . , Solutions in composite fuzzy relation equations: application to medical
diagnosis in Brouwerian logic, in: Fuzzy Automata and Decision Processes, 1977, pp.
221-234.

242. Savnik, I . and P. A. Flach, Discovery of multivalued dependencies from relations,
Intelligent Data Analysis 4 (2000) , pp. 195-211 .

243. Schewe, K .-D. and B. Thalheim, Fundamental concepts of object oriented databases,
Acta Cybernetica 1 1 (1993) , pp. 49-85.

244. Scholl , M. H . and H.-J. Schek, A relational object model, in: Proceedings of Interna­
tional Conference on Database Theory (ICDT) (1990) , pp. 89-105.

245. Schreiber, W. F. , "Fundamentals of Electronic Imaging Systems: Some Aspects of
Image Processing," Springer, 1 986.

246. Schulze, M. and T. Pappas, Blue noise and model-based halftoning, in: Human Vision,
Visual Processing and Digital Display V, International Society for Optical Engineer­
ing (SPIE) 2179 , 1994, pp. 1 81-194.

247. Sciore, E . , Real-world MVDs, in : Proceedings of the International Conference on Man­
agement of Data (SIGMOD), 1981 , pp. 121-132.

248. Seshadri, P. , M. Livny and R. Ramakrishnan, The design and implementation of se­
quence database system, in: Proceedings of the International Conference on Very
Large Data Bases (VLDB), 1996, pp. 99-1 10 .

249 . Shapiro, V. , Maintenance of geometric representations through space decomposi-

196

BIBLIOGRAPHY Sebastian Link

tions, International Journal of Corn pu tational Geometry and Applications 6 (1997) ,
pp. 383-418.

250. Shipman, D . , The functional data model and the data language DAPLEX, Transac­
tions on Database Systems (TODS) 6 (1981) , pp. 140-173 .

251 . Silva, A. M. and A . Melkanoff, A method for helping discover the dependencies of a
relation, in: Advances in Database Theory (1981) , pp. 1 15-133.

252. Speer, J . , Implementing a membership algorithm for functional and multi-valued de­
pendencies in the presence of lists, Technical report , Dept of Information Systems,
Massey University, Palmerston North, New Zealand (2004) .

253. Stell, J . G. and M . F. Worboys, The algebraic structure of sets of regions, in : Pro­
ceedings Spatial Information Theory (COSIT), 1997, pp. 163-174.

254. Stevenson, R. L. and G. R. Arce, Binary display of hexagonally sampled continuous­
tone images, Journal of the Optical Society of America A: Optics, Image Science,
and Vision 2 (1985) , pp. 1009-1013 .

255 . Stone, M. H. , Topological representations of distributive lattices and Brouwerian log­
ics, Casopis pro pestovani matematiky a fysiky 67 (1 937- 1938) , pp. 1-25 .

256. Stonebraker, M . , P. Brown and D. Moore, "Object-relational DBMSs: Tracking the
Next Great Wave 2e," Morgan Kaufman, 1999.

257. Stroustrup, B . , "The C++ Programming Language, 2d ed." Addison-Wesley, 1991 .
258. Stucki, P. , Mecca-a multiple-error correcting computation algorithm for bilevel im­

age hardcopy reproduction, Technical Report RZ1060, IBM Research Lab (1981) .
259. Su, S . Y. W. , SAM*: A semantic association model for corporate and scientific sta­

tistical databases, Information Sciences 29 (1983) , pp. 151-199.
260. Suzuki, Y . , Y. Fujiwara, J. Takabayashi and H. Tanaka, Artificial life applications

of a class of P systems: Abstract rewriting systems on multisets, in: Workshop on
Multiset Processing (WMP), number 2235 in Lecture Notes in Computer Science
(2000) , pp. 299-346.

261 . Suzuki, Y. and H. Tanaka, A new moleculer computing model, artifical cell systems,
in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
'00), Las Vegas, Nevada, USA (2000) , pp. 833-840 .

262. Tari, Z . , J . Stokes and S . Spaccapietra, Object normal forms and dependency con­
straints for object-oriented schemata, Transactions on Database Systems (TODS) 22
(1997) , pp. 513-569.

263 . Tarski, A . , Der A ussagenkalkiil und die Topologie, Fundamenta Mathematicae 25
(1938) , pp. 1 03-134.

264. Thalheim, B . , "Dependencies in Relational Databases," Teubner-Verlag, 1 99 1 .
265. Thalheim, B . , "Entity-Relationship Modeling: Foundations of Database Technology,"

Springer-Verlag, 2000.
266 . Thalheim, B . , Conceptual treatment of multivalued dependencies, in: Proceedings of

the International Conference on Conceptual Modeling (ER), number 2813 in Lecture
Notes in Computer Science (2003) , pp. 363-375 .

267. Thomas, S . J . and P. C. Fischer, Nested relational structures, Advances in Computing
Research 3 (1986) , pp. 269-307.

197

BIBLIOGRAPHY Sebastian Link

268. Thompson, H. S . , D. Beech, M. Maloney and N. Mendelsohn, XML schema, W3C
recommendation, may 2001, http:/ /www.w3.org/XML/Schema.

269. Tjoa, A. M . and L. Berger, Transformation of requirement specifications expressed in
natural language into an EER model, in: Entity-Relationship Approach, number 823
in Lecture Notes in Computer Science (1993) , pp. 206-217.

270 . Tsou, D.-M. and P. C. Fischer, Decomposition of a relation scheme into Boyce- Codd
normal form, SIGACT News 14 (1982) , pp. 23-29.

271 . Ulichney, R. A., "Digital Halftoning," Cambridge, MA: MIT Press, 1987.
272. Ulichney, R. A. , The void-and-cluster method for dither array generation, in: Human

Vision, Visual Processing and Digital Display IV, International Society for Optical
Engineering (SPIE) 1913 , 1993, pp. 332-343.

273. Ullman, J. D . , "Principles of Database Systems," Computer Science Press, Potomac,
Maryland, 1979.

274. Ullman, J. D. , "Principles of Database and Knowledge Base Systems, vol. I," Com­
puter Science Press, Rockville, 1988.

275. Urbas, 1 . , Dual intuitionistic logic, Notre Dame Journal of Formal Logic 37 (1996) ,
pp . 440-451 .

276. Vardi , M . Y. , On decomposition of relational databases, in : Conference on Founda­
tions of Computer Science (1982) , pp. 176-185.

277. Vardi, M. Y., Inferring multivalued dependencies from functional and join dependen­
cies, Acta Informatica 19 (1983) , pp. 305-324.

278. Vardi , M . Y . , Fundamentals of dependency theory, in : E . Borger, editor, Trends in
Theoretical Computer Science (1987) , pp. 171-224.

279. Vincent , M . , Modification anomalies and Boyce-Codd normal form, Research and
Practical Issues in Data bases (1992) , pp. 251-264.

280. Vincent, M . , "The semantic justification for normal forms in relational database
design," Ph.D. thesis, Monash University, Melbourne, Australia (1994) .

281 . Vincent, M . , Insertion anomalies and the justification for 4NF in relational databases,
Australian Computer Science Communications 17 (1995) , pp. 540-545.

282. Vincent, M . , A corrected 5NF definition for relational database design, Theoretical
Computer Science 185 (1997) , pp. 379-391 .

283. Vincent, M . , Semantic foundation of 4NF in relational database design, Acta Infor­
matica 36 (1999) , pp. 1-41 .

284. Vincent, M . and M. Levene, Restructuring partitioned normal form relations without
information loss, SIAM Journal on Computing 29 (2000) , pp. 1550-1567.

285. Vincent , M. and J. Liu, Functional dependencies for XML, in: M. 0. X. Zhou,
Y. Zhang, editor, Web Technologies and Applications: 5th Asia-Pacific Web Con­
ference, APWeb 2003, Xian, China, April 23-25, 2003. Proceedings, number 2642 in
Lecture Notes in Computer Science (2003) , pp. 22-34.

286. Vincent, M . and J . Liu, Multivalued dependencies in XML, in : British National Con­
ference on Databases, number 2712 in Lecture Notes in Computer Science (2003) ,
pp. 4-18 .

198

BIBLIOGRAPHY Sebastian Link

287. Vincent , M . , J . Liu and C. Liu, A redundancy free 4NF for XML, in: Proceedings of
the XML Database Symposium, number 2824 in Lecture Notes in Computer Science
(2003) ' pp. 254-266.

288. Vincent , M. and B. Srinivasan, Armstrong relations for functional and multivalued
dependencies in relational databases, in: Advances in Database Research (1993) , pp.
3 17-328.

289. Vincent , M. and B. Srinivasan, Redundancy and the justification of fourth normal
form in relational databases, International Journal of Foundations of Computer Sci­
ence 4 (1993) , pp. 355-365.

290. Vincent , M. and B. Srinivasan, Update anomalies and the justification of fourth nor­
mal form in relational databases, Information Sciences 81 (1994) , pp. 87-102.

291 . Vorobyov, S. G . and A. Voronkov, Complexity of nonrecursive logic programs with
complex values, in: Principles of Database Systems (PODS), 1998, pp. 244-253.

292. Vossen, G., "Data Models, Database Languages and Database Management Sys­
tems," Addison-Wesley, 199 1 .

293. Wang, C. P. and H. H . Wedekind, Segment synthesis in logical data base design, IBM
Journal on Research and Development 19 (1975) , pp. 71-77.

294. Wang, X. , C. Bettini, A. Brodsky and S. Jajodia, Logical design for temporal
databases with multiple granularities, Transaction on Database Systems 22 (1997) ,
pp. 1 1 5-170.

295 . Weddell , G. E. , Reasoning about functional dependencies generalized for semantic
data models, Transactions on Database Systems (TODS) 17 (1992) , pp. 32-64.

296. Wijsen, J . , Design of temporal relational databases based on dynamic and temporal
functional dependencies, in: Recent Advances in Temporal Databases, Proceedings
of the International Workshop on Temporal Databases, Zurich, Switzerland, 1 1- 18
September 1995, 1 995, pp. 61-76.

297. Wijsen, J . , Temporal FDs on complex objects, Transactions on Database Systems
(TODS) 24 (1999) , pp. 127-176.

298. Wolter, F., On logics with coimplication, Journal of Philosophical Logic 27 (1998) ,
pp. 353-387.

299. Yager, R. R. , On the theory of bags, International Journal of General Systems 13
(1986) , pp. 23-37.

300. Yan, M. H. and A. W.-C. Fu, Algorithm for discovering multivalued dependencies, in :
Proceedings of the International Conference on Information and Knowledge Manage­
ment, ACM, 200 1 , pp. �.56-558.

301 . Yuan, L. Y. and Z. M. Ozsoyoglu, Logical design of relational database schemes, in:
Principles of Database �ystems (PODS), ACM, 1987, pp. 38-47.

302 . Yuan, L. Y. and Z . M. Ozsoyoglu, Design of desirable database schemes, Journal of
Computer and System Sciences 45 (1992) , pp. 435-470.

303. Zaniolo, C. , "Analysis and Design of Relational Schemata for Database Systems,"
Ph.D. thesis, UCLA, Technical Report UCLA-ENG-7769 (1976) .

304. Zaniolo, C. , A new normal form for the design of relati onal database schemata, Trans­
actions on Database Systems (TODS) 7 (1982) , pp. 489-499.

199

BIBLIOGRAPHY Sebastian Link

305. Zaniolo, C., Key constraints and monotonic aggregates in deductive databases, in:
Computational Logic : Logic Programming and Beyond, 2002 , pp. 109-134.

306. Zdonik, S . B . and D. Maier, editors, "Readings in Object-Oriented Database Sys­
tems," Morgan Kaufman, 1990.

200

	10001
	10002
	10003
	10005
	10007
	10009
	10010
	10011
	10012
	10013
	10014
	10015
	10016
	10017
	10018
	10019
	10020
	10021
	10022
	10023
	10024
	10025
	10026
	10027
	10028
	10029
	10030
	10031
	10032
	10033
	10034
	10035
	10036
	10037
	10038
	10039
	10040
	10041
	10042
	10043
	10044
	10045
	10046
	10047
	10048
	10049
	10050
	10051
	10052
	10053
	10054
	10055
	10056
	10057
	10058
	10059
	10060
	10061
	10062
	10063
	10064
	10065
	10066
	10067
	10068
	10069
	10070
	10071
	10072
	10073
	10074
	10075
	10076
	10077
	10078
	10079
	10080
	10081
	10082
	10083
	10084
	10085
	10086
	10087
	10088
	10089
	10090
	10091
	10092
	10093
	10094
	10095
	10096
	10097
	10098
	10099
	10100
	10101
	10102
	10103
	10104
	10105
	10106
	10107
	10108
	10109
	10110
	10111
	10112
	10113
	10114
	10115
	10116
	10117
	10118
	10119
	10120
	10121
	10122
	10123
	10124
	10125
	10126
	10127
	10128
	10129
	10130
	10131
	10132
	10133
	10134
	10135
	10136
	10137
	10138
	10139
	10140
	10141
	10142
	10143
	10144
	10145
	10146
	10147
	10148
	10149
	10150
	10151
	10152
	10153
	10154
	10155
	10156
	10157
	10158
	10159
	10160
	10161
	10162
	10163
	10164
	10165
	10166
	10167
	10168
	10169
	10170
	10171
	10172
	10173
	10174
	10175
	10176
	10177
	10178
	10179
	10180
	10181
	10182
	10183
	10184
	10185
	10186
	10187
	10188
	10189
	10190
	10191
	10192
	10193
	10194
	10195
	10196
	10197
	10198
	10199
	10200
	10201
	10202
	10203
	10204
	10205
	10206
	10207
	10208
	Blank Page

