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1. Outline 

1.1 Research Questions 
 
The Pacific region provides a natural system to study complex admixture. From a 
broad perspective, there were two waves of settlement; the first 45,000 years ago 
(Melanesian), and the second, approximately 5,000 years ago (Asian) [1]. According 
to recent research, Asian ancestry does not decline gradually across Island Southeast 
Asia, but instead dramatically decreases, forming a cline [2]. There are several 
hypotheses explaining why there is a drastic, but not gradual, change in genetic 
ancestry proportions (Asian to Melanesian) across the region. One of these is a steep 
change in environmental conditions in Eastern Indonesia, which complicates rice 
cultivation [3]. Another explanation can be the switch from matri- to patriarchal social 
systems [4]. The main goal of this project is to explore demographic factors, such as 
migration and selection, to see if they can explain the genetic ancestry distribution. 
 
The main theoretical question that I will answer is: what is the reason behind the 
steep change in genetic ancestry proportion across eastern Indonesia? One of the 
reasons behind this could be cultural selection, although selection is just a hypothesis 
and the process might be selectively neutral. 
 
Anthropological data from the region are quite sparse, and this leads to the second 
goal of the project: to infer the history of modern Pacific populations using 
genetic data. 
 

1.2 Rationale and Importance of the Study 
 
Many populations experienced admixture with similar levels of complexity to the 
Pacific region [5]. Complex admixture dominates many other natural and 
experimental systems as well [6]. Several works describing this admixture [2, 3, 7, 8] 
have been published, but as yet, none of them explained the cause of the steep cline in 
Asian ancestry across the region. 
 
At the moment, there are several programs capable of describing population 
admixture proportions available [9, 10]. They utilize SNP data. Common limitations 
are that they do not allow us to infer underlying processes and parameters, such as 
effective population size and migration rates. Another limitation is that they do not 
provide confidence intervals. However, it is possible to identify said parameters using 
Agent Based Modelling (ABM) approaches, which in its turn will reduce the time 
required for fitting of the parameters in further simulations. The aim of the following 
simulations is to provide molecular diversity comparable to actual molecular 
diversity, which could be further analyzed using coalescent based approaches such as 
SPLATCHE2 [11]. 
 
Apart from reconstructing history, another benefit of the work is that it can make a 
contribution to a basis of future biomedical research, since there is an increasing 
demand for methods that allow researchers to differentiate between genetic patterns 
produced by demographic history and disease susceptible genotypes [12]. 
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1.3 Description of Available Data 
 
Glossary: 
 
SNP chip – Consider short (usually 15-25 nucleotides) DNA sequences attached to a 
solid base (chip). When a fluorescently labeled genetic sample is applied to the chip, 
hybridization occurs. This allows us to scan the chip with a laser, and in our case, 
obtain a picture of SNPs presented in a genome. 
 
Ancestry Informative Markers (AIMs) – are SNPs which are at high frequency for 
one population, thus reflecting the ancestry of individuals. 
 
At the moment, two main datasets are available. First, the Cox group, Eijkman 
Institute and the University of Arizona genotyped 500,000 autosomal SNPs in 250 
individuals from across the Indonesian archipelago using the Affymetrix 550k SNP 
chip (Fig. 1.3.1; supplementary materials, Table S1). Second, the same NZ-US-
Indonesian consortium genotyped 37 AIMs in 1,430 individuals from 60 populations 
spanning mainland Asia to Melanesia.  
 
Similar datasets are also available for future work: the HUGO Pan-Asian SNP 
Consortium has screened 50,000 autosomal SNPs in 1,928 individuals from 73 Asian 
populations using the Affymetrix 50k SNP chip, and the 1000 Genomes Project has 
released full genome sequences for several individuals from Asian parental 
populations. 

 

 
Figure 1.3.1: Samples map. The Affymetrix 550k SNP chip was used to assay 
individuals. Each square corresponds to one local population. A number in the 
square shows the number of assayed individuals. 
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2. Literature Review 
 

2.1 History of Human Pacific Populations 
 
In 1890 Wallace, after travelling through Indonesia, described intergradation of the 
human population. He noted that phenotypic change occurs in Eastern Indonesia [15]. 
The described phenotypic change line denoted change from Asian to Melanesian 
phenotype. 
 
Later in 1924 Bais and Verhoef contributed to the research question by reporting 
differences in frequencies of blood groups between populations of Java and New 
Guinea [16]. Two-thirds of 20th century research was summarized by Hudson in 1974 
[17]. Researchers mostly utilized serological markers, various anthropomorphic 
parameters and linguistic methods [18] to differentiate between populations. Work 
describing and comparing anthropomorphic characteristics of populations within the 
region were published until the mid-nineties. For example, Hanihara [19] and 
Pietrusewsky [20] described differences in craniofacial features between Asian and 
Melanesian populations. Interestingly, Hanihara noted that Australian aboriginals 
showed more similarities to African rather than to Melanesian populations. Also 
Melanesians can be characterized by dark skin color [21, 22]. These facts suggest that 
Melanesian populations can be distinguished into one cluster. However, since the 
discovery of PCR in 1983, the attention of the scientific community has shifted to 
comparing genomes. Thus, genome comparison replaced anthropometrics, but not 
linguistic methods. 
 
 

 
 
Figure 2.1.1: Population boundaries in the Pacific region [3].  
 
Historically, there were two models explaining the settlement of the Pacific. Although 
new large scale (e.g., SNP chip data) datasets suggest that both models are only 
partially true, they were prevalent in Anthropology for several decades and are 
interesting from that perspective.  
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The model by Bellwood [5, 23] assumes that indigenous Melanesian populations, the 
modern descendants of which are Papuan, settled in the region approximately 50,000 
years ago. Then about 5,000 years ago, wide adoption of agriculture in Asian 
communities near modern Taiwan and mainland China lead to expansion of Asian 
populations in an eastern direction [5, 24]. This hypothesis also has some linguistic 
support [25]. 
 
The model by Oppenheimer [26] conforms to the Bellwood model in the assumption 
that the Pacific region was settled about 50,000 years ago. However, contrary to 
Bellwood, Oppenheimer proposed that current populations are branches of one 
parental population, and not the result of the admixture and migration processes 
between Asian and Melanesian populations. In other words, modern human 
population diversity in the region evolved from one parental population. According to 
this model, eastern Indonesian populations expanded to remote Oceania 
approximately 10,000 years ago. 
 
Most genetic research within the area has been done using the following types of data: 
mitochondrial DNA and Y-chromosome. However, more recently, the use of 
autosomal SNPs has gained popularity. 
 
Hertzberg in 1989 [27], studying mtDNA from Polynesian, Australian and 
Melanesian aboriginals, found an Asian-associated 9-bp deletion in Polynesian 
mtDNA samples and the absence of this deletion in Papuan and Australian 
individuals. This finding was later confirmed and extended by Merriwether in 1999 
[28]; the deletion was absent in a remote Papuan and almost all Australian samples, 
while it was present in eastern regions of Papua New Guinea, which are closer to 
Polynesia. It was also shown that Asian, Papuan and Australian populations each have 
their own characteristic haplogroups [29, 30]. 
 
There are similarities in the geographical distribution of Y-chromosome and  mtDNA 
haplogroups. Numerous papers studying the molecular variance of Y-chromosome 
diversity within the region were published during the last two decades [1]. The most 
recent nomenclature system was published in 2008 [31]. A study by Kayser in 2001 
[32] showed the presence of Asian haplotype M119C/M9G in coastal Papua New 
Guinea and its absence in both Highland and Australian samples. Additionally, the 
study did not reveal shared haplotypes between Australian and Papuan populations, 
which allows hypothesizing on the independent history of Papuan and Australian 
populations. In 2006 Kayser, comparing Polynesian Y chromosome and mtDNA data 
with potential parental populations from Asia, Australia and Melanesia, proposed that 
there is an admixture bias towards Melanesian men, as the Y-chromosome in 
Polynesian men predominantly comes from the Melanesian population. It is thought 
that the admixture event happened before the settlement of Polynesia. Another study 
by Mona in 2007 [34] showed that 97.5% of 162 samples obtained in the northwest 
region of Papua New Guinea originated in Melanesia, while the remaining 2.5% of 
samples contained the Asian-related O haplogroup. Another large scale study of 1,917 
men published in 2010 by Karafet [35] revealed that Y-chromosome samples taken in 
eastern parts of the region had Melanesian haplogroups, while samples taken in the 
western parts carried Asian haplogroups. The border between the two clusters lies 
between Bali and Flores islands. 
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Research conducted up to 2010 was summarized by Kayser [36]. The earliest Pacific 
work utilizing autosomal SNP data was published in 2008 by Friedlaender [37]. The 
molecular diversity of the Pacific region was described by sampling 952 individuals 
from 41 populations. It is shown that isolated Papuan populations have decreased 
molecular diversity, which inflates the distances between Papuan populations. While 
there is a clear difference in genetic ancestry of Asian and Melanesian populations, 
genetic distances between Asian populations tend to be smaller. 
 
A different approach was implemented by Cox in 2010 [2]. 37 autosomal Ancestry 
Informative Markers (AIMs) were identified, which are SNPs with significant FST 
values between Han Chinese and Papua New Guinea highlanders. These selected 
SNPs were assayed in 1,460 individuals across the region. Ancestry admixture 
proportions were calculated by defining a pseudo-parental population and measuring 
their SNP frequencies. Pseudo-parental populations are modern populations, which 
are presumed to be closest to the real ancestral population. In this particular case, Han 
Chinese and Papuan highlanders were selected as two pseudo-parental populations. 
An advantage of this approach is its ability to estimate ancestry admixture 
proportions, by comparing allele frequencies between pseudo-parental and 
presumably admixed populations (Fig. 2.1.2), because autosomal chromosomes come 
from maternal and paternal lineages and AIMs are independent from each other. 
Thus, this allows us to check if Bellwood’s model migration assumptions hold. 
 

 
 
Figure 2.1.2 [2]: Admixture proportions from populations across the Pacific 
region. The dotted line is Wallace’s biogeographic line. The Asian ancestry 
proportion is shown in white; Melanesian ancestry proportion is shown in black.  
 
In 2010, Wollstein [8] also utilized autosomal SNPs to infer the history of Pacific 
demography. Two main groups from Polynesia and Papua New Guinea were assayed. 
Han Chinese, Japanese, African and Caucasian samples were also included in the 
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dataset. Frappe (see Section 2.2) was used to infer ancestry proportions. The 
researchers varied the number of assumed ancestral populations (K) from 2 to 6. 
When K was equal to two, individuals clustered into two groups: Africans versus non-
Africans. When K was equal to four, Papuan, African, Caucasian and 
Asian/Polynesian samples appeared as different clusters. The authors utilized 
coalescent theory and Approximate Bayesian computation (see Sections 2.5 and 2.6) 
to propose that the split between Oceanian and Eurasian populations occurred 
approximately 27,000 years ago. 
 
Adoption of autosomal SNP data allowed the description of admixture proportions. 
Potentially high-density SNP data allow not only to infer admixture proportions, but 
more importantly, to estimate when the admixture event occurred. Pugach in 2011 
[38] developed a theory, also known as wavelet transform analysis. This estimation is 
done in two steps. In the first step, an algorithm specifies a sliding window along the 
chromosome and assigns it a score. The score is based on pseudo-parental populations 
allele frequencies. In the second step, these scores are transformed into wavelet 
signals. The wavelet frequencies are then used to infer ancestral block sizes. 
Knowledge of block size is then used to infer the time back to the admixture event. 
Utilizing this method, Pugach inferred the admixture time in a Polynesian population, 
which resulted from admixture between Asian and Melanesian populations. The 
admixture event happened 2,700 years ago. 
  
Another study of population stratification using autosomal SNPs data was conducted 
by Xu [39] in 2012. In his study, he analyzed two different datasets. One contained 
288 individuals from 13 Austronesian-speaking populations and two Papuan-speaking 
populations. Another dataset contained SNP data received from 36 individuals, from 7 
populations in Indonesia and 25 individuals from Papua New Guinea. The Affymetrix 
680,000 SNP chip was used. The authors utilized Structure and Frappe (Section 2.2) 
to perform population stratification (Fig. 2.1.3). Pugach’s wavelet decomposition 
method was used to date the admixture event. The admixture time was estimated to 
have happened 121-204 generations or 3,026-5,109 years ago. 
 

 
Figure 2.1.3 [39]: Population stratification of 680,000 SNPs from 36 individuals 
using Frappe. K reflects an assumed number of ancestral populations. Varying 
K is necessary because although the main hypothesis suggests two parental 
populations, there might have been more than two. For example, Australian 
aboriginals carry specific mtDNA lineages, which are not found in Indonesian 
and Papuan populations. Each color corresponds to an ancestry component. 
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On a broader scale, “biological” methods are not the only ones implemented within 
this research area. For example, in 2000, Gray [40] used lexical data to build a 
phylogenetic tree of Austronesian languages (which are languages of the Pacific 
region, excluding Papua New Guinea), thus showing that they had common ancestor. 
One of the landmarks of this Austronesian language family study was the creation of 
the Austronesian Basic Vocabulary Database in 2008 by Greenhill [41]. The database 
contains wordlists from more than 500 languages. This database was used by Gray in 
2009 [42] to identify phylogenetic relationships between 400 Austronesian languages. 
The implementation of Bayesian phylogenetic methods allowed not only the 
description of relationships between the languages but also characterization of the 
ancestor language as originating in Taiwan about 5,000 years ago. 
 
A recent study by Atkinson [43] focusing on identification of cognate words within 
the Austronesian language family was able to identify and successfully build the 
language tree reconstructing the descent of words from Proto-Austronesian (Fig. 
2.1.4). 
 

 
 
Figure 2.1.4 [43]: Reconstruction of words’ descent on the language tree. The 
words’ translation to English are sky and five. Cognate forms are coded blue, 
orange and green. Yellow nodes represent ancestral protolanguages. For two 
bigger cognate groups, word forms are shown for reconstructed ancestral 
languages. 
 
Bellwood’s model states that modern Pacific populations resulted from an admixture 
of Asian and Melanesian migration waves separated in time, whereas Oppenheimer 
assumed that the modern Pacific population resulted from one parental population. 
Overall, the research within the last two decades suggests that the Bellwood model is 
more consistent with real world data. 
 

2.2 Ancestry Description Software 
 
In this section, I will provide a summary of programs I used to infer individual 
admixture proportions. 
 
Today, several software solutions allowing the description of ancestry exist. One of 
the most popular programs is Structure [44] by J. Pritchard, the original algorithm of 
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which was described in the year 2000. Several extensions of it were published later 
[45, 46]. Structure can run in four modes. No admixture mode, if there is an 
assumption that all samples come from different populations. The admixture mode, if 
there is an assumption that samples come from two or more admixed populations. The 
linkage mode can be utilized to take into account linkage disequilibrium between loci 
in admixed populations, thus inferring the admixed regions along a chromosome [45]. 
Finally, there is an option to include sampling location information to achieve better 
results with limited data [47]. 
 
Before setting up the run, it is necessary to have a hypothesis on the number of 
ancestral populations. However, Structure can calculate the most probable K out of 
many, if needed. Structure approach is based on MCMC (Markov Chain Monte 
Carlo). Structure assumes K populations. Each population is characterized by 
frequencies at each SNP position. Samples are then assigned to a population, or to 
two or more populations if there is an indication of admixture. The basic Structure 
algorithm assumes Hardy-Weinberg equilibrium and independent SNPs for 
subpopulations, except when the linkage disequilibrium option is activated. To 
summarize, it calculates the probability of an observed SNP set in a sample given 
allele frequencies in the ancestral populations. Then Structure clusters individuals 
based on that information [48]. 
 
Frappe [50] was released in 2005, by Tang et al. at Stanford University. The model 
of Frappe assumes that each person’s genotype is a mixture of alleles coming from 
different populations. Because collecting samples from ancestral populations is 
usually impossible, individuals from populations closely related to ancestral ones are 
included into the dataset. For example, in our case, individuals from pseudo-ancestral 
populations are Han Chinese and Papuan samples, because those are assumed to be 
closest to ancestral Asian and Melanesian populations. Input data should contain 
samples from pseudo-ancestral and admixed individuals. Frappe requires specification 
of K (the number of ancestral populations) to run, and assumes Hardy-Weinberg 
equilibrium. Frappe utilizes a Maximum Likelihood approach to estimate genetic 
ancestry proportions. An individual’s admixture proportion is set up by a vector 
𝑄! = 𝑞!!… 𝑞!" , where each q corresponds to the probability that an allele comes 
from population K. Initially, values along the vector are assigned randomly, and the 
value of the likelihood function is computed. The program then iterates until values 
maximizing the function are found. A disadvantage of Frappe is its inability to 
compute the most probable K. 
 
Admixture [9, 52] is the latest program among those described above. As with 
Frappe, it focuses on Maximum Likelihood estimation, but maximizes the likelihood 
function utilizing a different algorithm. It is possible to specify several values of K (in 
our case from 2-6) and calculate error rates for each. It has a strong advantage over 
Frappe and Structure in terms of computational performance with big datasets. It is 
possible to obtain the same results within hours in comparison to days for Frappe and 
months for Structure. 
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2.3 Agent Based Modeling (ABM) in Biology 
 
An agent is a self-sufficient object, which can represent anything from a molecule to 
an individual. 
 
An agent-based model can be described as an environment where a discrete number 
of agents interact with each other. The rules of interaction between agents, the agent’s 
evolution through time and environmental characteristics are specified by the 
researcher. Ultimately, this approach allows us to observe emergence. ‘Emergence’ is 
a property of a system, which emerges at a certain level of organization. One cannot 
observe the emergent property on an individual level. In our case, the emergent 
property of interest is a cline in the Asian ancestry proportion corresponding to 
geographical latitude. Usually, the ultimate goal of ABM is the re-creation or 
prediction of system behavior. 
 
Agent based modeling traces its roots to cellular automata, a concept which was 
originally described in the late 1940s by von Neumann [53]. The purpose of his work 
was to explore machine self-replication; for example, a 3D printer printing its own 
copy. In the late 1960s, John Conway created his famous Game Of Life [54], in which 
each cell has two states, “alive” or “dead”. The state of each cell changes according to 
neighboring cells’ states. The reason behind the popularity of Conway’s game was 
that, given simple rules and changing them, it was possible to observe changes in 
system behavior and evolution. But overall, agent based modeling was not widely 
used until the early 1990s. 
 
The key work that popularized the ABM approach was published in 1987 by 
Reynolds [55]. This work models the behavior of flocking birds (known as the ‘boids’ 
model), but as the author notes, the model can also be applied to any other groups of 
animals. Reynolds specified simple behaviors (or rules) for each bird (or more 
generally speaking – an agent), which allowed him to simulate complex behavior. The 
rules were: 
 

1. Clash preclusion 
2. Speed synchronization (with close flock mates) 
3. Centralization (agents aim was to stay close to flock mates) 

 
The model allowed the simulation of realistic behavior of animal groups and was 
successfully implemented in several different fields. One of the earliest examples of 
this implementation is in the movie “Batman Returns”, where the boids model was 
used to create an animated penguin army of the Penguin attacking Gotham City [56]. 
 
In the general case, an ABM can be described as an environment, which holds self-
sufficient agents. The environment sets the background for agents to make their own 
decisions. Minimally, the environment should provide a time step for an agent. The 
time step within a model can correspond to any discrete time interval (a second, 
month, year). Other facilities that should be provided by the environment heavily 
depend on the modeled system. The agent relies on the variables provided by the 
environment (e.g., time, food gradient, space coordinates) to make its own decisions 
on whether to die, migrate, mate, bind to another agent, etc. 
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The main difference between ABM approaches and more widely used equation-based 
modeling is that equation-based modeling considers a system as a set of processes, 
which can be described by a system of equations, the variables of which depend on 
one another. From the population genetics point of view, a disadvantage of equation-
based modeling is that it is not possible to track the state of an individual, as only 
variables describing the state of the whole population are possible. 
 
Even though ABM is implemented in many research areas [57], in this section I will 
concentrate on ABM examples within the Life Sciences domain. 
 
Ecologists were one of the earliest adopters of ABM approaches. In 1980, DeAngelis 
[58] created an ABM model to study populations of one year old largemouth bass and 
their switching to cannibalism in relation to food sources. The model of DeAngelis 
considered each fish as an independent variable, and took into account natural death, 
as well as death due to the cannibalism, food source and growth of individuals. 
 
During the 1980s, several works discussing and implementing ABM within the Life 
Sciences were published [59, 60]. However, the ABM approach was not widely used 
until the 1990s. 
 
During the 1990s, the number of ABM publications drastically increased. The 
overwhelming majority of Agent Based Models created within this decade aimed to 
study emergent properties of various population(s). A large proportion of models 
came from the field of fish population biology [61]. For example, in 1991, DeAngelis 
[62] using ABM studied changes of smallmouth bass population age structure after 
changes in population density. Nests and fishes were considered as agents. After 
swim-up from the nest, each fish encountered randomly distributed prey. Growth and 
mortality were dependent on the prey availability. Ultimately, the model describes 
dependencies between populations and larval density. In general, a lot of ABM work 
during this decade considers not only natural limitations of the environment, but also 
aspects of individual behaviour within a population and/or population social structure 
[63-66]. 
 
The first attempt of agent based modelling to take into account GIS data was 
undertaken in 1997 by Kohler, in which he attempted to describe the settlement 
formation of prehistoric North American populations. However, only a 1995 paper 
describing the early stages of the project was found [67]. Another work studying 
population dynamics dependent on a landscape was published by Henein in 1998 
[68]. This explored the effects of landscape spatial structure, changes in 
environmental conditions and connectivity of landscape types (woods-fencerow-
agricultural fields) on the population size and survival of eastern chipmunks and 
white-footed mice. A landscape was simulated as a 64x64 cell grid. Researchers 
varied the proportion of wood to agricultural field on parts of the grid. It was shown 
that mice surpass chipmunks on all forms of landscapes and the connectivity between 
types of landscape can be a predictor of chipmunk success. 
 
One of the most influential works, which took into account genetic loci, was 
published in 1999 by Dieckmann and Doebeli [69]. These authors studied sympatric 
speciation in abstract populations (i.e., how species are formed from a parental 
population without geographical separation). Two models were created with and 
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without sexual reproduction. In each model, individuals varied a quantitative trait x 
(for example, bird beak size) that determed resource use. Competition between 
individuals depended on the size of the difference in trait x: when the difference was 
large, authors assumed no competition; conversely, when the difference was smaller, 
there was more competition. In the model, sexual reproduction quantitative traits were 
determined by additive diploid loci (+ and -) inherited from a father and mother, 
independently (free recombination). The trait was proportional to the number of + 
alleles. 
 
To incorporate assortative mating into the model, the authors added additional 
parameters. In the first scenario, the additional mating probability was based on 
similarities in quantitative trait x between two individuals. In the second scenario, the 
mating probability was based on selectively neutral quantitative ‘markers’, also 
determined by a combination of + and – alleles. Individuals carrying intermediate 
value s of the ‘marker’ mated randomly, while individuals carrying mostly negative 
alleles preferred to mate with the opposite type, and individuals carrying mostly + 
alleles preferred to mate with their own ilk (Figure 2.3.1). 
 

 
 

Figure 2.3.1 [69]: Speciation. a, Mating probabilities depend on the trait x. It 
takes 50 generations for x to reach an average value, and then speciation 
occurs. b, Mating probabilities depend on selectively neutral markers. 
Speciation still occurs due to genetic drift, but it takes longer in comparison 
to conditions implemented in a. 
 
Interestingly in the second scenario, when mating depends on selectively neutral 
markers, in order for speciation to occur there has to be linkage disequilibria between 
ecological trait x and neutral markers. The opposing force in the model is free 
recombination. However, due to genetic drift, speciation still occurs. 
 
Another example of incorporating genetic data into ABMs was performed by Pertoldi 
in 2004 [70] who used the ALMaSS [71] modelling system. A landscape and 
environmental conditions varied, in order to bring the population to a bottleneck (95% 
population mortality). Each individual carried 32 alleles in 16 pairs. Alleles were 
passed to the offspring randomly at each locus. The initial population consisted of 
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1,000 animals randomly placed on the map, and the length of one run was 2,000 
years, discretized to one day steps. The values of census size, effective population 
size and several other coefficients were monitored during the last 500 years. 
Ultimately, the model was able to reflect decreases in effective population size, and 
expected and observed heterozygosity after bottlenecks.  
 
One of the latest examples of an ABM implementation, where agents incorporated 
genetic information, was published in 2011 by Yamaguchi [72]. This study of food 
web stability described a food web on two trophic levels, embedding S species. At the 
beginning of the simulation, the number of prey and predators were equal. Predators 
were simulated as agents. Each predator contained a set of loci, which determined 
consumption of prey species. Generations of predators were discrete and mutations in 
predators caused them to switch from one prey species to another after mutation 
reached a certain frequency in the population. The more predators consumed, the 
more offspring they could leave. In parallel to selection, the allele frequency was also 
influenced by genetic drift. The number of species varied from 4 to 8. Dominant-loci, 
recessive-loci and no evolution models were tested. In the dominant loci model, 
individuals with the genotype 11 or 10 at Gj ate j. In the recessive-loci model, only 
individuals with 11 were allowed to eat prey j. Overall, the results demonstrated that 
the stability of (proportion of species that survive) food webs decreases with an 
increase in the complexity of the model. In the dominant loci model, evolution 
resulted in extinction. Also, increasing the mutation rate increased the stability of the 
system. 
 
During the last decade, there were also many examples of ABM implementations 
within the Life Sciences domain that simulate movement and social interactions 
within populations. For example, Robbins implemented an ABM approach to 
simulate population dynamics and a social structure of mountain gorillas [73], Stroud 
used ABM to simulate the spread of influenza [74], Shwarzkopf predicted the 
movements of tropical toads in Australia during the wet season [75], Wood studied 
the evolution of movement of selfish herds [76], and Phoetke studied population 
dispersal [77]. 
 
Apart from population modelling, another trend in ABM arose after the year 2000, as 
researchers started to apply ABM to model the formation of biological tissues, cells, 
intracellular signalling and molecular pathways. The research papers which fell in this 
category up to 2009 were summarized by An [78]. 
 
In 2007, Folcik [79] developed a model of an immune system, which consisted of two 
main compartments (parenchyma, secondary lymphoid tissue), and blood/lymph 
circulation between them. Immune system cells were considered as agents.  
 
Another example of an ABM modelling approach was published by Segovia-Juarez 
[80] focusing on cellular levels of tuberculosis granuloma formation. In his model, the 
environment represents a part of alveolar tissue, while agents were represented by 
macrophage and T cell agents. Chemokine and extracellular bacteria are represented 
by concentration variables. Chemokine sources are infected and/or activated 
macrophages. Secreted chemokine attracts other macrophages and T-cells leading to 
the granuloma formation. Necrosis was also implemented, by calculating how many 
times T-cells killed an infected macrophage and how many times macrophages 
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(assuming that reactive oxygen species released during both processes) burst within a 
particular section of the environment. By varying parameters of the model, 
researchers were able to reproduce three outcomes: clearance, small and growing 
solid granulomas, and large and necrotic granulomas. 
 
One of the latest examples of cellular ABM modelling was published in 2012 by 
Macklin [81]. He used patient histopathology and tomography data to calibrate a 
model of ductal carcinoma in situ (an invasive form of breast cancer). The model was 
able to replicate patient tumour ductal growth and necrotic cell lysis. 
 
In conclusion, it is possible to say that the popularity of ABM approaches has 
increased over time. I propose that the main reason behind this is that it is more 
intuitive and much easier to implement in comparison to equation-based modelling 
approaches. Another advantage, crucial for the Life Sciences, of ABM in comparison 
to the equation-based modelling is that it can account for individual variance. Even 
though ABM is a general modelling approach, the main disadvantage is its 
computational performance when large numbers of agents are modelled (for example, 
a concentration of matter in a mixture). However, in some cases, two approaches can 
be combined, and an environment variables of an AB model (e.g., nutritional 
medium) used by agents can be set up using anequation-based approach. 
 

2.4 Agent Based Modeling Software Review 
 
There are numerous options for frameworks and programs for Agent Based Modeling. 
In this section, I will provide a review of the most popular. In all cases, there were 
five key properties I was looking for: execution speed, ability to run simulations 
without a graphical user interface, the quality of documentation, a programming 
language used for model description, and the number of publications in which the 
program or framework was used. In my case, the option to detach the graphical 
interface is critical, because it not only allows running simulations on an external 
computational cluster, but also provides a way to automate the process. In its turn, 
automating the process is necessary because of the stochastic nature of ABM 
approach, which means that thousands of simulations are necessary to infer realistic 
values in complex processes. Also, running the simulation without graphical output 
can dramatically increase the execution speed. 
 
One of the oldest and most well-established programs to perform ABM is NetLogo 
[82]. One of the main advantages of NetLogo is its simplicity of use, as among other 
applications, it is used to introduce scholars to programming. The Logo programming 
language dialect is used to describe a model. It is also best documented in comparison 
to other programs and frameworks. There is an extensive list of publications, in which 
NetLogo was applied to many different fields, including, but not limited to, 
Economics, Biology and Social Sciences. The first version of the program was 
published at 1999. The disadvantages of NetLogo are: its execution speed, 
unavailability of the source code, the non-detachable graphical interface and the 
program specific programming language. The user does not have any access to the 
graphical interface and is only allowed to describe the behavior of agents and the 
environment. Programming restrictions of NetLogo are that code has to be written in 
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one file and there is no IDE (integrated development environment) with Eclipse-like 
debugger available [83]. 
 
The second popular option is Repast-Simphony[84]. The advantages of this package 
are its extensive documentation, multiple language support (ReLogo, Groovy, Java, 
C++), a module for creation of high performance and distributed models [85]. It is 
more flexible than NetLogo. The main disadvantage of the package is that it is 
strongly attached to the Eclipse IDE, which leads to configuration problems on 
different platforms (Windows, Linux and Macintosh). Also, it tends to be a little bit 
slower than MASON, but faster than NetLogo [83]. 
 
The third popular option is MASON [86]. MASON was first published in 2003. It is 
basically a Java library containing prewritten classes, which set up a pattern for a 
model creation. In comparison to all software listed above, MASON focuses on 
execution speed. It replaces some of the built-in Java classes, which have poor 
performance with big data. The graphical interface is built on top of the model and 
can be easily detached (Fig. 2.3.1.). It also allows parallelization of a simulation run, 
using internal Java thread management tools. MASON is platform independent and 
the only requirement to run a simulation is presence of a Java Virtual Machine. It is 
actively used and well documented. There is a GeoMason module, which adds 
support for geographical data. The main disadvantage of MASON is that it requires 
knowledge of Java and Object Oriented Programming (OOP) principles, therefore in 
comparison to NetLogo and Repast, it can be hard to use for beginners.  
 
After trying all software solution described above, I decided to use MASON to create 
my model. The reasons why I decided to choose MASON are the following: 
 

1) Execution speed 
2) Ability to run a model without the graphical interface 
3) Reasonable amount of documentation, including tutorials 
4) Numerous publications using the framework 
5) Ability to incorporated 3rd party libraries 
6) Potential for parallelization and complex visualization of the model 
7) Integration with Eclipse IDE, allowing the use of a debug mode 

 
A bit outdated, but still useful review comparing MASON, Repast, NetLogo and 
some others was published by Railsback in 2006 [83]. Summarizing the results of the 
comparison, it is possible to sort the software described above by the execution time 
in the following way: Mason < Repast-Simphony < Netlogo. 
 
Several other options such as Breve [87], FLAME [88] and SPARK [89] were also 
considered.  
 
Breve is a Python based ABM environment and was rejected due to a lack of support 
(latest version dated 2008) and the lack of publications in peer reviewed journals. 
 
FLAME is a C++ framework for ABM. Even though it has numerous publications, 
good execution speed and very strong visualization options, it was rejected because of 
its complexity, as it would require significantly more time to create a model, as well 
as insufficiency of documentation. 
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SPARK is an ABM environment which allows the creation of models using the 
Logo-based SPARK-PL language. This software was rejected because of its sparse 
documentation, domain specificity (mostly used to model processes beyond the 
individual level, e.g., cell signaling), software specific language and lack of 
publications in comparison to mainstream ABM toolkits. 
 

 
 
Figure 2.3.2: MASON architectural layout. Modeling and visualization are 
separated, which allows the model to run on external computational clusters. 
Scheme taken from MASON manual. 
 

2.5 Spatial Coalescent Modeling 
 
After determining parameter sets and their values that allow ABM to reproduce the 
cline in Asian ancestry observed in the data, it would be possible to generate 
molecular diversity more accurately utilizing coalescent theory. This is in order to 
check and tune parameters and their values, both of which are from the agent-based 
model. Comparison of simulated data with actual genetic data gathered across the 
region is highly beneficial. It enables us to infer past demographic processes and tune 
their values. Generation of genetic markers matching real-life data is the strength of 
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coalescent theory. Statistical inference techniques could then be used to compare with 
the data (see Section 2.6). 
 
Coalescent theory was developed by Kingman in 1982 [90] and many others [91]. 
Kingman followed the assumptions of the Wright-Fisher population model. Under 
this model, mating is random. This assumption allows the construction of a stochastic 
genealogy tree that extends back to the Most Recent Common Ancestor (MRCA) or, 
in other words, until the lineages coalesce. Once the genealogical tree is constructed, 
mutations may be placed on it, immediately generating the molecular variation of the 
final population. 
 
There are several programs currently available to generate SNP data under various 
assumptions of demographic conditions [92]. However, SPLATCHE2 [11] is the 
only coalescent simulator to date that allows the incorporation of the actual landscape. 
In accordance with coalescent theory, SPLATCHE2 performs two steps to generate 
diversity. On the first step, also called the backwards step, it builds a phylogenetic 
tree, taking into account the geographical distribution of demes, migration, deme 
population size and admixture between populations. A deme’s population capacity 
can be changed in every step to reflect environmental fluctuations. On the second 
step, also called forward step, using the obtained tree, SPLATCHE2 outputs genetic 
markers for each individual in ARLEQUIN [93] format. ARLEQUIN is a widely 
used format for genetic data and can be easily converted to match our dataset. 
PGDSpider [94] can be used for the conversion. 
 

2.6 Statistical Inference 
 
Modeling results obtained from the coalescent simulation could be compared with 
real-life data. Derivation of the likelihood function, describing the relationships 
between probability distribution parameters, does not seem achievable. This is 
because of the complexity and stochastic nature of the system. Therefore, I plan to 
utilize the Approximate Bayesian Computation technique for comparison between 
artificially generated and real-life data. 
 
Approximate Bayesian Computation (ABC) is a widely used statistical inference 
technique within the population genetics field. The first publication describing the 
method was published in 1997 by Tavare [95] and extended by others [96]. The main 
principle behind ABC is running a sufficiently large number of simulations varying 
underlying model parameters and comparing them to real-world data. Measuring the 
level of difference between simulated and real-world data usually requires a reduction 
of the dataset. The reduction of the dataset is done by calculation of summary 
statistics. Thus, if the difference between simulated and real-world data is too large, 
the parameter value is rejected. Several different models can be compared in the same 
way. Basic principles and pitfalls of the ABC approach were recently reviewed [97]. 
The main problem of using summary statistics is loss of information. Several 
reduction techniques are available at the moment [98].  An incorrect choice of the 
reduction technique can dramatically affect inferred results. Using several different 
summaries can increase the precision (for example, FST and average genetic ancestry 
admixture proportions within a population). However, an increase in the 
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dimensionality of summary statistics causes a decrease in acceptance probability of 
model parameters [99]. 
 
Several libraries for Python and R [100-102] are available at the moment. More 
detailed reviews and performance comparisons will be needed. 
 

3. Ancestry of Modern Pacific Populations 
 

3.1 Frappe and Admixture Results 
 
The procedure for finding differences in allele frequencies between subpopulations 
due to differences in ancestry and/or geographical isolation is known as population 
stratification. STRUCTURE is the most widely used software to perform population 
stratification analysis. It utilizes the Bayesian approach. The main disadvantage of the 
program is its unacceptable computational speed: our dataset (576 samples and 
500,000 SNPs) took more than two months to run on the IMBS1 server. 
STRUCTURE requires its own input data format. Conversion of the original dataset 
was done using the PGDSpider2 program. It required 10 hours of computational time 
and utilization of Massey University computational facilities. 
 
Due to poor runtime, I instead turned to alternative software with better runtime 
properties. I chose FRAPPE and ADMIXTURE. They are based on Maximum 
Likelihood estimation, but utilize different algorithms. One FRAPPE run took 7-8 
hours, whereas ADMIXTURE performed faster by roughly five times. Another 
advantage of both programs is that they do not require specific input formats and 
accept standard PLINK *.ped files [103]. Plink is most widely used program for 
analyzing SNP data and provides data management, summary statistics and many 
other tools. The advantage of *.ped files is that they are lightweight. Our dataset in a 
plain text format used 1.5 Gb of storage space, while the dataset in *.ped format used 
about 150 Mb. 
 
Parameter K reflects our assumptions on a number of ancestral populations for an 
individual. After the choice of program was made, I conducted several runs varying K 
from 2 to 6. Obtaining results for different numbers of ancestral population was 
needed to test if our hypothesis of two ancestral populations in the region holds.  
 
After the runs were completed, I assigned geographical coordinates into output for 
each sample. This reflects the location where samples were collected. Thus, the 
columns of the resulting table, in the case of K = 2, were: unique sample name, Asian 
ancestry proportion, Melanesian ancestry proportion and coordinates of an 
individual’s population. R was used to plot the results (Fig. 3.1.1). All samples were 
sorted by latitude, because latitude is a good proxy for the Asian-Melanesian 
admixture cline. Latitude values were rescaled using a Python script in order to put 
Polynesian samples at the end of the x-axis. The results are consistent with previous 
findings, as it is possible to see the admixed origins of modern Pacific populations. 
However, this use of high-density SNP chips allowed us to generate improved 
estimates of admixture proportions for some Pacific populations previously studied by 
Cox in 2010 [2]. 
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FRAPPE and ADMIXTURE results were consistent with the 2010 paper [2] by Cox. 
Utilization of high-density SNP data allowed the adjustment of admixture proportions 
for some populations, but for several populations, admixture proportions matched 
almost exactly (Fig. 3.1.1).  
 
Further, it was possible to replicate the steep cline in Asian ancestry proportion in 
dependence to geographical latitude. Asian ancestry proportions were averaged, and 
plotted according to geographical latitude. To estimate the relationship between Asian 
ancestry proportion and latitude, I utilized a local regression method. The local 
regression is based on a weighted least squares method. A polynomial function was 
fitted locally by assigning more weight to neighboring variable values (Fig. 3.1.2). 
 
Admixture proportions for K from 3 to 6 are provided in supplementary materials. I 
only discuss K = 2 results here because all hypothesis so far suggest two ancestral 
populations (Asian and Melanesian). ADMIXTURE provides a method for best K 
selection by calculating the error rate for each number of K. I calculated error rates for 
each K from 2 to 6. Error rates were almost identical. For K = 2, the error rate was 
higher than for K = 3 to 6, but a difference between rates differed on the order of 
0.001 (supplementary materials, Figure S1). I connect this with a presence of the 
Philippines Aeta samples in our dataset. The modern Aeta population is assumed to 
be a descendent from the Negrito population, which is why it appears to be a distinct 
cluster for K greater than two. Our results are additional evidence supporting the 
Bellwood model. Under assumptions of this model, there were two migration waves. 
First, the region was settled by Melanesians around 50,000 years ago. Then about 
5,000 years ago, mainland China and Taiwan Asian populations started to expand into 
the region. Thus, as I can see from previous work and our study that individuals are 
admixed. Another popular settlement model was suggested by Oppenheimer. The 
Oppenheimer model suggests that modern population resulted because of the 
geographical isolation of one parental population within Indonesia. If the 
Oppenheimer model was true, I would not be able to identify as many admixed 
individuals. In other words, different populations would appear as different clusters 
on the bar plots. Also, error rates for K=2 would be significantly higher than for 
bigger numbers of K. However, both models fail to explain the origin of Australian 
aboriginals, as some studies of non-autosomal DNA indicated that Australian 
aboriginals do not share mtDNA lineages with Asian or Melanesian populations. 
 
Averaging Asian ancestry proportion per population and fitting the polynomial 
function allowed us to replicate the steep cline in Asian ancestry across the Pacific 
region described in the 2010 Cox [2] paper. Ancestry proportion is consistent with 
existing theories. The Bellwood model suggests the admixed origin of modern Pacific 
populations, which can be clearly seen on Figures 3.1.1 and 3.1.2. An increase in the 
Asian ancestry proportion in Polynesia is also consistent with the results of Wollstein 
in 2010 [8]. Polynesian samples show a high Asian ancestry component and Papuan 
samples appeared as a distinct cluster, with low levels of Asian ancestry. 
 
 
 
 



	
   20 

3.2 MASON Results 
 
Reasons for selecting MASON as a framework of choice are stated in Section 2.4. 
Briefly, I selected MASON as software of choice because of its computational 
performance, flexibility, in terms of incorporating third party libraries and complete 
separation of the computational part from a graphical user interface. 
 
I have performed several iterations of the model logic. All prototypes can be 
summarized into three groups: 
 

1) Prototypes with individuals as agents 
2) Prototypes with demes as agents 
3) Mixed prototypes 

 
In an early prototype, the model consisted of individuals, which moved randomly 
across the map. In order to provide a background for mating and migration, I tried to 
add an interaction network. Networks can be described as undirected graphs. The 
vertices of the graph are individuals, while edges are relationships between 
individuals. A social interaction graph was initially instantiated at the beginning of the 
run. I planned to add an additional vertex to the graph for each newborn, and delete it 
when individual reached its endpoint. However, due to problems described below, I 
did not code it. Each edge of the graph had its weight, which reflected relationships 
between the two vertices it connected. Most edges specified neutral relationships. 
However, some specified negative and positive relationships. The negative 
relationship caused individuals to move away from each other, while positive 
relationships caused the exact opposite. Overall, the movement vector resulted from a 
force to the closest attraction point, location of “enemies”, location of “friends” and a 
small random movement component. At the beginning, the idea was to mate close 
individuals if the friendship weight exceeded some certain threshold. With such a 
movement specification, some unlucky individuals were forced to the edge of the map 
(Fig. 3.2.1). Then I added attraction points onto the map. Attraction points were 
coordinate points on the map. The addition of these caused individuals to crowd 
around the attraction points. Crowding around the attraction points was supposed to 
replicate the deme’s population. The attraction force increased gradually with distance 
from an individual to the point. Each individual chose a point closest to its location as 
its attraction point.  
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Figure 3.1.1: Ancestry admixture proportions for modern populations in the 
Pacific region. Abbreviations: PNG – Papua New Guinea. The assumed number 
of ancestral populations is equal to two (K = 2). Populations are sorted by 
geographical latitude, from west to east. For each population, samples are sorted 
by the increase in Asian ancestry fraction. A – ADMIXTURE results; B – 
FRAPPE results. 
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Figure 3.1.2: Average Asian ancestry proportion per population in relation to 
latitude. It is possible to see that the Asian ancestry proportion falls rapidly near 
130 degree of latitude, or in other words, near the Indonesian island of Alor. The 
Asian ancestry proportion goes up at latitude corresponding to Polynesia 
because this region was settled during the last Asian migration wave. The 
migration process started approximately five thousand years ago, while the 
Polynesian region was settled from around 1,500 BC.  
 
The next prototype did not include a social network. Instead I tried to implement 
migration between demes. I did this by allowing individuals to switch between the 
attraction points. Just as previously, individuals chose the closest attraction point, but 
could randomly switch between them. In addition, I added new individuals to the map 
periodically. This migration pattern caused an overwhelming majority of the “world” 
population to migrate constantly and in an unmanageable manner (Fig. 3.2.2). I could 
not locate the source of the problem and decided to try different design. 
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Figure 3.2.1: Visual representation of the model prototype with a social network. 
A – beginning of the simulation. Individuals placed randomly on the map. B – 
individuals chose their attraction points and clustered around them. It is possible 
to see outliers for which the attraction point vector is canceled by negative 
relationships with individuals surrounding the point. 
 

 
Figure 3.2.2: Visual representation of the prototype with migration. The 
overwhelming majority of the “world” population is in the migration process. 
Outlier individuals are newly added agents, which are moving to the closest 
attraction point. Under this model design, I faced difficulties in migration 
management and therefore decided to try a different design. 
 
Eventually it turned out that the specification of complicated movement patterns leads 
to problems in parameter value selection. It was impossible to select an appropriate 
movement speed corresponding to the time step of the model because, at any given 
time, a significant proportion of the map population was in the migration process. 
Also, it was unclear what time (day, month, year) to assign to each time step of the 
model. Facing this and similar difficulties, I decided to not include individuals and 
their movement into the next set of prototypes. 
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I then tried a model design where agents were represented as demes scattered across 
the map. Each deme contained a collection of arrays. Each collection represented the 
deme’s population, including an individual haploid strand with SNPs. At each step, a 
certain percentage of the population mated and produced offspring. The mating 
function randomly picked two individuals from the population, walked along their 
SNP strand and formed an associated SNP strand of a child. The number of children 
per pair was random and varied from one to three. After producing children, parents 
were removed from the population. Mating a certain fixed percentage of the 
population caused consistent growth of the deme’s population, leading to a crash of 
the simulation run, or population extinction. The reason behind such behavior turned 
out to be a rounding error. I solved this problem by fixing the number of mating pairs 
per deme per time step. I also found that varying the number of mating pairs per step 
changes the deme population size. For instance, fixing the number to eight mating 
pairs per year caused population size to fluctuate around five hundred individuals. I 
chose this number based on the study of Lansing 2008 [104]. 
 
On a deme level, I was able to stabilize population size and implement mating. 
However, I was unable to implement a migration processes between the demes. The 
problem was that in order to implement migration, I had to modify the contents of one 
deme from another. This operation contradicts basic Java and ABM principles. Java is 
an Object Oriented Programming (OOP) language. One of the basic principles of the 
OOP approach is encapsulation of objects. Object properties are defined in special 
class files. Process of creating an object from a class called instantiating. 
Encapsulation means restricted access to objects internal data. Ideally, communication 
between objects and all modifications should be done via special get and set 
functions. However, when there are numerous instances (objects) of one class 
communication between objects becomes complicated and requires manual 
specification of communication procedures. In our case, I could not get 
communication working between demes. Demes were instances of one class. In 
addition, ABM principles, regardless of programming language used, state that agents 
should be self-sufficient and make their own decisions based on the environment 
conditions. In other words, the more independence an agent has, the better. Thus, I 
decided to change the design again, instead of investing time in a workaround 
development. 
 
Next, I decided to merge the two approaches described above. I specified two 
identical maps. A map is a field with a coordinate system, which holds the agents. 
The first map contains individuals, while the second map contains demes. The 
location of individuals on map one is determined by deme coordinates. For each 
deme, there is only one coordinate point where all individuals belonging to the deme 
are stacked.  
 
Each step in the model corresponds to one year in real life. Individuals “decide” when 
to migrate and die (Fig. 3.2.1). At each step, each individual has 0.05 probability of 
migrating. If the migration condition becomes true, the individual selects another 
deme in the map to migrate to. The migration probability of 0.05 is our assumption 
and could be fitted to real data at some later time. I assume social selective advantage 
of individuals of Asian ancestry. Each individual carries a boolean flag, reflecting if 
he had at least one Asian ancestor. Theoretically, an individual can carry no Asian 
SNPs, but the flag can still be true. However, the probability of getting such an 
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individual is unlikely. While Melanesian descendants chose only the closest deme to 
migrate to, Asian descendants gather coordinates of the four closest demes and 
randomly select one to migrate to. Each individual has an age counter. When the 
counter value exceeds twenty five, the individual dies. Human generation time 
estimates vary between 15 to 30 [105, 106] years. The number 25 was chosen for 
testing purposes, and could be changed to a mortality curve later. Each individual 
carries one thousand independent SNPs. 
 
One function of demes is the mating of individuals (Fig. 3.2.1). At each step, each 
deme gathers copies of individuals from the same place on map one and randomly 
mates them. I fixed the number of mating pairs to eight per year as this allows the 
population of each deme to fluctuate around five hundred. Five hundred is our 
assumption of village size based on the Lansing 2008 publication [104]. The mating 
function randomly picks two individuals, walks along their independent SNPs and at 
each SNP position randomly selects SNP from individual one or individual two. 
Offspring is then immediately added to the map according to the deme’s coordinates. 
This model assumption is subject to discussion and potentially can be changed in the 
future. Another function of the deme is the calculation of admixture proportions. I 
represent SNPs of Asian origin as ones and SNPs of Melanesian origin as twos. On 
each step, each deme calculates the proportion of SNPs of Asian origin according to 
equation 3.2.1: 
 
𝐴𝑠𝑖𝑎𝑛  𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦  𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =    !"#$%  !"#$  !"  !"#!!!  !"!#$%&"'

!"#$%&'(")  !"#$∗!"#$%  !"#$%&  !"  !"#$
                  (3.2.1) 

 
For visual representation of the model, the proportion is converted to colour according 
to the RGB scheme (Fig. 3.2.2). Demes are represented as circles with varying radius. 
The radius of the circle reflects population size. According to the RGB colour 
scheme, every colour can be described as a mixture of Red, Green and Blue. Each 
colour proportion varies from 0 to 255. In our case, I do not need Green colour, so it 
is always zero. If deme does not contain any Melanesian SNPs, the value would be 
Red = 255, Green = 0, Blue = 0. This corresponds to a bright red colour. If the deme 
is admixed in equal proportions, the colour code would be (127.5, 0, 127.5) which 
corresponds to purple. Finally, if the deme contains only Melanesian SNPs, the colour 
code is (0, 0, 255), which corresponds to blue. Eventually, the deme colour is set up in 
the following manner (eq. 3.2.2): 
 
𝑅𝑒𝑑,𝐺𝑟𝑒𝑒𝑛,𝐵𝑙𝑢𝑒 = (255 ∗ 𝐴𝑎𝑝, 0, 255− 255 ∗ 𝐴𝑎𝑝)                                   (3.2.2) 

 
Where Aap stands for Asian ancestry proportion. 
 
The source code of the model is provided in the supplementary materials, Section S1. 
 
For testing the model, I varied the number of demes.  SNP counts per individual and 
deme population size were always 1,000 and approximately 500 respectively. Table 
3.2.1 shows the computational performance of the model. Running the model without 
a GUI increases the execution speed significantly.  
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Table 2.3.1: Computational performance of the model 
 

Number of demes Approximate rate 
(seconds) with 

graphical output 

Approximate rate 
(seconds) without 
graphical output 

20 33 33 
40 17 18 
80 7 8 

 

 
Figure 3.2.3: Agent Based Model scheme. A – beginning of the run. Two 
neighbouring demes. Asian – red, Melanesian – blue; B – migration process; C – 
migration process completed. Demes colour reflects equal proportion of Asian 
and Melanesian SNPs within population. D – two individuals are randomly 
selected to mate. E – selected individuals produced admixed child. The colour of 
the child reflects admixed ancestry. In this case, the  child has equal proportions 
of Asian and Melanesian ancestry. F – deme population size increased. From top 
view, this would be reflected as a change in in circle radius. 
 
Strangely, computational speed is not affected by running the model without the 
graphical user interface. Usually visualization is the limiting factor. I explain this by 
suggesting that the limiting factor is operations on a large collection of arrays 
representing independent SNPs. 
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Source code of the model is provided in the supplementary materials, Section S1. 
 
 

 
 
Figure 3.2.4: Visualization of the Agent Based Model. Circles correspond to 
deme locations. Colour reflects the genetic background. Blue –Melanesian; Red – 
Asian; Purple – admixed ancestry. Gradations of colour reflect changes in 
admixture proportions. The circle radius reflects the deme’s population size. 
 

3.3 Future Improvements of the Model 
 
The problem of such a visualization approach is that it is sometimes hard to tell the 
exact admixture proportions by looking at the visual representation of the model. One 
direction of future work would be to incorporate a bar chart, where each bar would 
represent one deme, and a fraction of each ancestral population will be shown in its 
own colour.  
 
At the moment, the map is split into several regions. Asian demes are initially placed 
to the North-West section, and Melanesian demes are placed along the South-East 
direction of the map. Asian and Melanesian sections have a small overlap. All demes 
are placed randomly within their specified sections of the map. Without incorporation 
of actual geography, model check and selection of the parameters can be difficult. 
Another possible future direction is incorporation of the actual geography of the 
region. Demes could be placed at roughly the same distance from each other 
according to the geography of Indonesia. Incorporation of actual geography of the 
region is necessary because it will allow different sophisticated selective advantage 
scenarios to be tried in terms of migration. Thus taking geography into account can 
dramatically affect the inference of parameters of interest. However, the exact set of 
parameters is not specified at the moment. 
 
Performance is an object of concern because tens to hundreds of thousands of 
simulations will need to be run to infer parameters of interest, such as the migration 
rate, lifespan, reproductive age and various selective advantage scenarios. Different 
parameter layouts will need to be tried varying some and fixing (if possible) other 
parameters. An extensive literature review in order to fix as many parameters as 
possible will be needed, as with an increase in degrees of freedom decreasing the 
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probability of finding a parameter layout replicating the real world data. The 
parameter fitting process will need to be automated. 
 
Summarizing possible future modelling tasks: 
 

• Incorporation of actual geography 
• Improving visualization 
• Implementing several different selective advantage scenarios 
• Specifying the exact set of parameters to fit, in order to replicate the real world 

data 
• Inference of parameter values by running tens to hundreds of thousands of 

simulations, due to a stochastic nature of the ABM approach. 

Bibliography 
 
1. Cox, M.P., The genetic environment of Melanesia: clines, clusters and 

contact. Population genetics research progress, 2008: p. 45-83. 
2. Cox, M.P., et al., Autosomal and X-linked single nucleotide polymorphisms 

reveal a steep Asian-Melanesian ancestry cline in eastern Indonesia and a sex 
bias in admixture rates. Proc Biol Sci, 2010. 277(1687): p. 1589-96. 

3. Cox, M.P., The Genetic Environment of Melanesia: Clines, Clusters and 
Contact., in Population Genetics Research Progress. 2008, Nova Science 
Publishers, Inc: New York. p. 45-83. 

4. Stephen Lansing, J., et al., An ongoing Austronesian expansion in Island 
Southeast Asia. Journal of Anthropological Archaeology, 2011. 30(3): p. 262-
272. 

5. Bellwood, P.S., First farmers : the origins of agricultural societies. 2005, 
Malden, Mass. ; Oxford: Blackwell. 

6. Teeter, K.C., et al., The variable genomic architecture of isolation between 
hybridizing species of house mice. Evolution, 2010. 64(2): p. 472-85. 

7. Guillot, E.G., M.K. Tumonggor, J.S. Lansing, H. Sudoyo and M.P. Cox., 
Climate Change Influenced Female Population Sizes through Time across the 
Indonesian Archipelago. Human Biology, 2013. 

8. Wollstein, A., et al., Demographic history of Oceania inferred from genome-
wide data. Curr Biol, 2010. 20(22): p. 1983-92. 

9. Alexander, D.H., J. Novembre, and K. Lange, Fast model-based estimation of 
ancestry in unrelated individuals. Genome Res, 2009. 19(9): p. 1655-64. 

10. Tang, H., et al., Estimation of individual admixture: Analytical and study 
design considerations. Genetic Epidemiology, 2005. 28(4): p. 289-301. 

11. Ray, N., et al., SPLATCHE2: a spatially explicit simulation framework for 
complex demography, genetic admixture and recombination. Bioinformatics, 
2010. 26(23): p. 2993-4. 

12. Teshima, K.M., G. Coop, and M. Przeworski, How reliable are empirical 
genomic scans for selective sweeps? Genome Res, 2006. 16(6): p. 702-12. 

13. Csillery, K., et al., Approximate Bayesian Computation (ABC) in practice. 
Trends Ecol Evol, 2010. 25(7): p. 410-8. 

14. Saunders, I.W., et al., A range of simple summary genome-wide statistics for 
detecting genetic linkage using high density marker data. Genet Epidemiol, 
2007. 31(6): p. 565-76. 



	
   29 

15. Wallace, A.R., The Malay Archipelago, the land of the orang-utan and the 
bird of paradise : a narrative of travel with studies of man and nature / by 
Alfred Russel Wallace. 1890, London: Macmillan. 

16. Bais, W.J. and A.W. Verhoef, On the Biochemical index of Various Races in 
the East Indian Archipelago. The Journal of Immunology, 1924. 9(5): p. 383-
386. 

17. Howells, W.W., Physical variation and history in Melanesia and Australia. 
American Journal of Physical Anthropology, 1976. 45(3): p. 641-649. 

18. Friedlaender, J.S., Patterns of Human Variation: The Demography, Genetics, 
and Phenetics of Bougainville Islanders. 1975: Harvard University Press. 

19. Hanihara, T., Comparison of craniofacial features of major human groups. 
Am J Phys Anthropol, 1996. 99(3): p. 389-412. 

20. Pietrusewsky, M., Pacific-Asian Relationships: A Physical Anthropological 
Perspective. Oceanic Linguistics, 1994. 33(2): p. 407-429. 

21. Harvey, R.G., Ecological factors in skin color variation among Papua New 
Guineans. Am J Phys Anthropol, 1985. 66(4): p. 407-16. 

22. Norton, H.L., et al., Skin and hair pigmentation variation in Island Melanesia. 
Am J Phys Anthropol, 2006. 130(2): p. 254-68. 

23. Bellwood, P.S., .Prehistory of the Indo-Malaysian Archipelago. 1997, 
Honolulu: University of Hawai’i Press. 

24. Diamond, J. and P. Bellwood, Farmers and Their Languages: The First 
Expansions. Science, 2003. 300(5619): p. 597-603. 

25. Blust, R., The Prehistory of the Austronesian-Speaking Peoples: A View from 
Language. Journal of World Prehistory, 1995. 9(4): p. 453-510. 

26. Oppenheimer, S., Eden in the East : the drowned continent of Southeast Asia. 
1999, London: Phoenix. 

27. Hertzberg, M., et al., An Asian-specific 9-bp deletion of mitochondrial DNA is 
frequently found in Polynesians. Am J Hum Genet, 1989. 44(4): p. 504-10. 

28. Merriwether, D.A., et al., Mitochondrial DNA variation is an indicator of 
austronesian influence in Island Melanesia. Am J Phys Anthropol, 1999. 
110(3): p. 243-70. 

29. Redd, A.J. and M. Stoneking, Peopling of Sahul: mtDNA variation in 
aboriginal Australian and Papua New Guinean populations. Am J Hum 
Genet, 1999. 65(3): p. 808-28. 

30. Kivisild, T., et al., The Emerging Limbs and Twigs of the East Asian mtDNA 
Tree. Molecular Biology and Evolution, 2002. 19(10): p. 1737-1751. 

31. Karafet, T.M., et al., New binary polymorphisms reshape and increase 
resolution of the human Y chromosomal haplogroup tree. Genome Research, 
2008. 

32. Kayser, M., et al., Independent histories of human Y chromosomes from 
Melanesia and Australia. Am J Hum Genet, 2001. 68(1): p. 173-190. 

33. Kayser, M., et al., Melanesian and Asian Origins of Polynesians: mtDNA and 
Y Chromosome Gradients Across the Pacific. Molecular Biology and 
Evolution, 2006. 23(11): p. 2234-2244. 

34. Mona, S., et al., Patterns of Y-Chromosome Diversity Intersect with the Trans-
New Guinea Hypothesis. Molecular Biology and Evolution, 2007. 24(11): p. 
2546-2555. 

35. Karafet, T.M., et al., Major East–West Division Underlies Y Chromosome 
Stratification across Indonesia. Molecular Biology and Evolution, 2010. 
27(8): p. 1833-1844. 



	
   30 

36. Kayser, M., The Human Genetic History of Oceania: Near and Remote Views 
of Dispersal. Current Biology, 2010. 20(4): p. R194-R201. 

37. Friedlaender, J.S., et al., The genetic structure of Pacific Islanders. Plos 
Genetics, 2008. 4(1): p. e19. 

38. Pugach, I., et al., Dating the age of admixture via wavelet transform analysis 
of genome-wide data. Genome Biology, 2011. 12(2): p. R19. 

39. Xu, S., et al., Genetic dating indicates that the Asian-Papuan admixture 
through Eastern Indonesia corresponds to the Austronesian expansion. Proc 
Natl Acad Sci U S A, 2012. 109(12): p. 4574-9. 

40. Gray, R.D. and F.M. Jordan, Language trees support the express-train 
sequence of Austronesian expansion. Nature, 2000. 405(6790): p. 1052-1055. 

41. Greenhill, S.J., R. Blust, and R.D. Gray, The Austronesian Basic Vocabulary 
Database: from bioinformatics to lexomics. Evol Bioinform Online, 2008. 4: 
p. 271-83. 

42. Gray, R.D., A.J. Drummond, and S.J. Greenhill, Language Phylogenies 
Reveal Expansion Pulses and Pauses in Pacific Settlement. Science, 2009. 
323(5913): p. 479-483. 

43. Atkinson, Q.D., The descent of words. Proceedings of the National Academy 
of Sciences, 2013. 110(11): p. 4159-4160. 

44. Pritchard, J.K., M. Stephens, and P. Donnelly, Inference of population 
structure using multilocus genotype data. Genetics, 2000. 155(2): p. 945-59. 

45. Falush, D., M. Stephens, and J.K. Pritchard, Inference of population structure 
using multilocus genotype data: linked loci and correlated allele frequencies. 
Genetics, 2003. 164(4): p. 1567-87. 

46. Falush, D., M. Stephens, and J.K. Pritchard, Inference of population structure 
using multilocus genotype data: dominant markers and null alleles. Molecular 
Ecology Notes, 2007. 7(4): p. 574-578. 

47. Hubisz, M.J., et al., Inferring weak population structure with the assistance of 
sample group information. Molecular Ecology Resources, 2009. 9(5): p. 1322-
1332. 

48. Liu, Y., et al., Softwares and methods for estimating genetic ancestry in 
human populations. Hum Genomics, 2013. 7: p. 1. 

49. Johansen, A.M., Markov Chain Monte Carlo, in International Encyclopedia of 
Education (Third Edition), P. Editors-in-Chief:  Penelope, et al., Editors. 2010, 
Elsevier: Oxford. p. 245-252. 

50. Tang, H., et al., Estimation of individual admixture: analytical and study 
design considerations. Genet Epidemiol, 2005. 28(4): p. 289-301. 

51. Dempster, A.P., N.M. Laird, and D.B. Rubin, Maximum Likelihood from 
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical 
Society. Series B (Methodological), 1977. 39(1): p. 1-38. 

52. Alexander, D. and K. Lange, Enhancements to the ADMIXTURE algorithm 
for individual ancestry estimation. BMC Bioinformatics, 2011. 12(1): p. 246. 

53. Von Neumann, J. and A.W. Burks, Theory of self-reproducing automata. 
1966. 

54. Gardner, M., Mathematical Games: The fantastic combinations of John 
Conway's new solitaire game ``life''. Scientific American, 1970: p. 120-123. 

55. Reynolds, C., Flocks, Herds, and Schools: A Distributed Behavioral Model. 
Computer Graphics, 1987. 21(4): p. 25-34. 

56. Bajec, I.L. and F.H. Heppner, Organized flight in birds. Animal Behaviour, 
2009. 78(4): p. 777-789. 



	
   31 

57. Macal, C.M. and M.J. North, Tutorial on agent-based modelling and 
simulation. Journal of Simulation, 2010. 4(3): p. 151-162. 

58. Deangelis, D.L., D.K. Cox, and C.C. Coutant, Cannibalism and size dispersal 
in young-of-the-year largemouth bass: Experiment and model. Ecological 
Modelling, 1980. 8(0): p. 133-148. 

59. Kimmel, M., Does competition for food imply skewness? Mathematical 
Biosciences, 1986. 80(2): p. 239-264. 

60. Łomnicki, A. and J. Ombach, Resource partitioning within a single species 
population and population stability: A theoretical model. Theoretical 
Population Biology, 1984. 25(1): p. 21-28. 

61. Grimm, V., Ten years of individual-based modelling in ecology: what have we 
learned and what could we learn in the future? Ecological Modelling, 1999. 
115(2): p. 129-148. 

62. DeAngelis, D.L., L. Godbout, and B.J. Shuter, An individual-based approach 
to predicting density-dependent dynamics in smallmouth bass populations. 
Ecological Modelling, 1991. 57(1–2): p. 91-115. 

63. Datta, S.B. and G. Beauchamp, Effects of Group Demography on Dominance 
Relationships Among Female Primates. I. Mother-Daughter and Sister-Sister 
Relations. The American Naturalist, 1991. 138(1): p. 201-226. 

64. Haefner, J.W. and T.O. Crist, Spatial Model of Movement and Foraging in 
Harvester Ants (Pogonomyrmex) (I): The Roles of Memory and 
Communication. Journal of Theoretical Biology, 1994. 166(3): p. 299-313. 

65. Carter, J. and J.T. Finn, MOAB: a spatially explicit, individual-based expert 
system for creating animal foraging models. Ecological Modelling, 1999. 
119(1): p. 29-41. 

66. Schank, J.C. and J.R. Alberts, Self-Organized Huddles of Rat Pups Modeled 
by Simple Rules of Individual Behavior. Journal of Theoretical Biology, 1997. 
189(1): p. 11-25. 

67. Kohler, T., Agent-based modeling of Anasazi village formation in the northern 
American Southwest. 1995. 

68. Henein, K., J. Wegner, and G. Merriam, Population Effects of Landscape 
Model Manipulation on Two Behaviourally Different Woodland Small 
Mammals. Oikos, 1998. 81(1): p. 168-186. 

69. Dieckmann, U. and M. Doebeli, On the origin of species by sympatric 
speciation. Nature, 1999. 400(6742): p. 354-357. 

70. Pertoldi, C. and C. Topping, The use of agent-based modelling of genetics in 
conservation genetics studies. Journal for Nature Conservation, 2004. 12(2): p. 
111-120. 

71. Topping, C.J., et al., ALMaSS, an agent-based model for animals in temperate 
European landscapes. Ecological Modelling, 2003. 167(1): p. 65-82. 

72. Yamaguchi, W., M. Kondoh, and M. Kawata, Effects of evolutionary changes 
in prey use on the relationship between food web complexity and stability. 
Population ecology, 2011. 53(1): p. 59-72. 

73. Robbins, M.M. and A.M. Robbins, Simulation of the population dynamics and 
social structure of the Virunga mountain gorillas. American Journal of 
Primatology, 2004. 63(4): p. 201-223. 

74. Stroud, P., et al., Spatial dynamics of pandemic influenza in a massive 
artificial society. Journal of Artificial Societies and Social Simulation, 2007. 
10(4): p. 9. 



	
   32 

75. Schwarzkopf, L. and R.A. Alford, Nomadic movement in tropical toads. 
Oikos, 2002. 96(3): p. 492-506. 

76. Wood, A.J. and G.J. Ackland, Evolving the selfish herd: emergence of distinct 
aggregating strategies in an individual-based model. Proceedings of the Royal 
Society B: Biological Sciences, 2007. 274(1618): p. 1637-1642. 

77. Poethke, H.J., B. Pfenning, and T. Hovestadt, The relative contribution of 
individual and kin selection to the evolution of density-dependent dispersal 
rates. 2010. 

78. An, G., et al., Agent‐based models in translational systems biology. Wiley 
Interdisciplinary Reviews: Systems Biology and Medicine, 2009. 1(2): p. 159-
171. 

79. Folcik, V., G. An, and C. Orosz, The Basic Immune Simulator: An agent-
based model to study the interactions between innate and adaptive immunity. 
Theoretical Biology and Medical Modelling, 2007. 4(1): p. 39. 

80. Segovia-Juarez, J.L., S. Ganguli, and D. Kirschner, Identifying control 
mechanisms of granuloma formation during M. tuberculosis infection using an 
agent-based model. Journal of Theoretical Biology, 2004. 231(3): p. 357-376. 

81. Macklin, P., et al., Patient-calibrated agent-based modelling of ductal 
carcinoma in situ (DCIS): From microscopic measurements to macroscopic 
predictions of clinical progression. Journal of Theoretical Biology, 2012. 
301(0): p. 122-140. 

82. Wilensky, U. NetLogo,  http://ccl.northwestern.edu/netlogo/.  1999. 
83. Railsback, S.F., S.L. Lytinen, and S.K. Jackson, Agent-based simulation 

platforms: Review and development recommendations. SIMULATION, 2006. 
82(9): p. 609-623. 

84. North, M., et al., Complex adaptive systems modeling with Repast Simphony. 
Complex Adaptive Systems Modeling, 2013. 1(1): p. 1-26. 

85. Collier, N. and M. North, Parallel agent-based simulation with Repast for 
High Performance Computing. SIMULATION, 2012. 

86. Luke, S., et al., MASON: A Multiagent Simulation Environment. 
SIMULATION, 2005. 81(7): p. 517-527. 

87. Klein, J., breve: a 3D environment for the simulation of decentralized systems 
and artificial life, in Proceedings of the eighth international conference on 
Artificial life. 2003, MIT Press. p. 329-334. 

88. Holcombe, M., S. Coakley, and R. Smallwood. A General Framework for 
agent-based modelling of complex systems. in Proceedings of the 2006 
European Conference on Complex Systems. 2006. 

89. Solovyev, A., et al., SPARK: A Framework for Multi-Scale Agent-Based 
Biomedical Modeling. 2010, IGI Global. p. 18-30. 

90. Kingman, J.F.C., The coalescent. Stochastic Processes and their Applications, 
1982. 13(3): p. 235-248. 

91. Hudson, R.R., Gene genealogies and the coalescent process. Oxford surveys 
in evolutionary biology, 1990. 7(1): p. 44. 

92. Carvajal-Rodríguez, A., Simulation of genomes: a review. Current genomics, 
2008. 9(3): p. 155. 

93. Excoffier, L., G. Laval, and S. Schneider, Arlequin (version 3.0): an 
integrated software package for population genetics data analysis. 
Evolutionary bioinformatics online, 2005. 1: p. 47. 



	
   33 

94. Lischer, H.E.L. and L. Excoffier, PGDSpider: an automated data conversion 
tool for connecting population genetics and genomics programs. 
Bioinformatics, 2012. 28(2): p. 298-299. 

95. Tavare, S., et al., Inferring coalescence times from DNA sequence data. 
Genetics, 1997. 145(2): p. 505-518. 

96. Beaumont, M.A., W. Zhang, and D.J. Balding, Approximate Bayesian 
computation in population genetics. Genetics, 2002. 162(4): p. 2025-2035. 

97. Sunnåker, M., et al., Approximate bayesian computation. PLoS computational 
biology, 2013. 9(1): p. e1002803. 

98. Blum, M., et al., A comparative review of dimension reduction methods in 
approximate Bayesian computation. Statistical Science, 2013. 28(2): p. 189-
208. 

99. Csilléry, K., et al., Approximate Bayesian Computation (ABC) in practice. 
Trends in Ecology & Evolution, 2010. 25(7): p. 410-418. 

100. Csilléry, K., O. François, and M.G.B. Blum, abc: an R package for 
approximate Bayesian computation (ABC). Methods in Ecology and 
Evolution, 2012. 3(3): p. 475-479. 

101. Liepe, J., et al., ABC-SysBio—approximate Bayesian computation in Python 
with GPU support. Bioinformatics, 2010. 26(14): p. 1797-1799. 

102. De Mita, S. and M. Siol, EggLib: processing, analysis and simulation tools for 
population genetics and genomics. BMC Genetics, 2012. 13(1): p. 27. 

103. Purcell, S., et al., PLINK: a tool set for whole-genome association and 
population-based linkage analyses. The American Journal of Human 
Genetics, 2007. 81(3): p. 559-575. 

104. Lansing, J.S., et al., Male dominance rarely skews the frequency distribution 
of Y chromosome haplotypes in human populations. Proceedings of the 
National Academy of Sciences, 2008. 105(33): p. 11645-11650. 

105. Langergraber, K.E., et al., Generation times in wild chimpanzees and gorillas 
suggest earlier divergence times in great ape and human evolution. 
Proceedings of the National Academy of Sciences, 2012. 109(39): p. 15716-
15721. 

106. Martin, A.P. and S.R. Palumbi, Body size, metabolic rate, generation time, 
and the molecular clock. Proceedings of the National Academy of Sciences, 
1993. 90(9): p. 4087-4091. 

 



	
   34 

Appendix 

Figure S1: ADMIXTURE results for K from 3 to 4 respectively. Color denotes 
the ancestry component. Interestingly, the Philippines Aeta population appears 
as a different cluster on all bar plots, except for K = 2 (Fig. 3.1.1). One possible 
explanation for this is that the Philippines Aeta population descends from a 
Negrito population. 
 
 
Error rates for K from 2-6: 
 

Number of K Error rate 
2 0.44693 
3 0.44581 
4 0.44388 
5 0.44250 
6 0.44171 
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Table S1. Samples size by population. 
 
Population Sample size 
 
Han South 

 
13 

Indonesia Flores Bama 30 
Indonesia Java 21 
Indonesia Nias 28 
Indonesia Sumatra 30 
Indonesia Sumba Wunga 30 
Indonesia Timor Umanen Lawalu 17 
Indonesia Alor 23 
Indonesia Flores Bena 30 
Indonesia Lembata 28 
Indonesia Pantar 27 
Indonesia Sumba Anakalang 30 
Indonesia Timor Kamanasa 19 
Indonesia Bali 19 
Indonesia Flores Rampasasa 12 
Indonesia Mentawai 29 
Indonesia Sulawesi 21 
Indonesia Sumba Rindi 3 
Indonesia Timor Umaklaran 1 
Philippines 8 
Philippines Aeta 13 
Taiwan Aboriginal 15 
Malay 8 
Vietnamese 10 
Yao 15 
PNG Coastal 11 
PNG Highland 13 
PNG Nasioi 4 
Polynesia Tahiti 9 
Polynesia Tonga 10 
Polynesia Western Samoa 10 
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Section S1. Source code of the latest version of the model. Classes describing 
Deme, Individual, Individuals (model controller class), and graphical user 
interface (DemesWithUI.java) are provided. 
 
 
1. Deme.java 
 
package sim.app.pacific_9; 
 
import java.util.HashMap; 
 
import ec.util.MersenneTwisterFast; 
import sim.engine.*; 
import sim.util.*; 
 
public class Deme implements Steppable { 
  
 public MersenneTwisterFast random = new MersenneTwisterFast(); 
 int z = 0; 
 public double admixture_proportion = 0.0; 
 public double asian_markers_counter = 0.0; 
 public int population_size = 0; 
 public Bag nearest_neighbours = new Bag(); 
 public DoubleBag distances = new DoubleBag(); 
 public HashMap distance_coordinates = new HashMap(); 
 public Bag coordinates = new Bag(); 
 public Double2D location; 
 public Bag neighbours_choice = new Bag(); 
  
 public Deme(Double2D loc) { 
  location = loc; 
 } 
  
 public double get_admixture() { 
  return admixture_proportion; 
 } 
  
 public int get_population_size() { 
  return population_size; 
 } 
  
 public Bag get_closest_demes() { 
  return neighbours_choice; 
 } 
  
 public void step(SimState state) { 
  Individuals inds = (Individuals) state; 
  z++; 
  Double2D me = 
inds.map_demes.getObjectLocationAsDouble2D(this); 
  if (z == 1) { 
   nearest_neighbours = 
inds.map_demes.getNeighborsExactlyWithinDistance(me, 
200);//getNearestNeighbors(me, 2, false, false, true, 
nearest_neighbours) 
   for (int neighb = 0; neighb < 
nearest_neighbours.size(); neighb++) { 
    Deme neighbour = (Deme) 
nearest_neighbours.get(neighb); 
    Double2D dist = neighbour.location; 
    coordinates.add(dist); 
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    double distance = me.distance(dist); 
    distances.add(distance); 
   } 
   for (int conn = 0; conn < distances.size(); conn++) 
{ 
    double dist = (double) distances.get(conn); 
    Double2D coord = (Double2D) 
coordinates.get(conn); 
    distance_coordinates.put(dist, coord); 
   } 
   distances.sort(); 
   for (int n = 0; n < distances.size(); n++) { 
    if (distances.get(n)!=0.0) 
neighbours_choice.add((Double2D) 
distance_coordinates.get(distances.getValue(n)));  
   } 
   nearest_neighbours.clear(); 
   nearest_neighbours.shrink(0); 
   coordinates.clear(); 
   coordinates.shrink(0); 
   distances.clear(); 
   distances.shrink(0); 
   distance_coordinates.clear(); 
    
  } 
  Bag population = 
inds.map_individuals.getObjectsAtLocation(me);//.getNeighborsExactlyW
ithinDistance(me, 2.0); 
  Bag gene_pool = new Bag(); 
  Bag ancestry = new Bag(); 
  for (int k = 0; k < population.size(); k++) { 
   Individual individual = (Individual) 
population.get(k); 
   IntBag ind_genes = individual.getGenes(); 
   boolean ind_anc =  individual.getAncestry(); 
   gene_pool.add(ind_genes); 
   ancestry.add(ind_anc); 
  } 
  population.clear(); 
  population.shrink(0); 
  population_size = gene_pool.size(); 
  int mating_pairs = random.nextInt(7)+7; 
  for (int mp = 0; mp < mating_pairs; mp++) { 
   int random_papa = random.nextInt(gene_pool.size()); 
   int random_mama = random.nextInt(gene_pool.size()); 
   IntBag papa = (IntBag) gene_pool.get(random_papa); 
   IntBag mama = (IntBag) gene_pool.get(random_mama); 
   boolean papa_anc = (Boolean) 
ancestry.get(random_papa); 
   boolean mama_anc = (Boolean) 
ancestry.get(random_mama); 
   int offspring_num = (random.nextInt(3) + 1); 
   for (int b = 0; b < offspring_num; b++) { 
    IntBag baby = new 
IntBag(Individual.genes_number); 
    for (int genes = 0; genes < 
Individual.genes_number; genes++) { 
     int snp = random.nextInt(2); 
     if (snp == 0) { 
      int papa_snp = (int) 
papa.get(genes); 
      baby.add(papa_snp);  
     } 
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     else { 
      int mama_snp = (int) 
mama.get(genes); 
      baby.add(mama_snp); 
     } 
    } 
    boolean baby_ancestry = papa_anc|mama_anc; 
    //requires validation with reverse 
    //baby.reverse(); 
    Individual individual = new Individual(baby, 
baby_ancestry); 
    individual.stopper = 
inds.schedule.scheduleRepeating(individual); 
   
 inds.map_individuals.setObjectLocation(individual, me); 
   
 //System.out.println(inds.schedule.getSteps()); 
   } 
  } 
   
  for (int q = 0; q < gene_pool.size(); q++) { 
   IntBag individual = (IntBag) gene_pool.get(q); 
   for (int f = 0; f < individual.size(); f++) { 
    if (individual.get(f) == 1) 
asian_markers_counter++; 
   } 
  } 
   
  admixture_proportion = 
asian_markers_counter/(gene_pool.size()*Individual.genes_number); 
  asian_markers_counter = 0.0; 
   
  gene_pool.clear(); 
  gene_pool.shrink(0); 
   
  /*int people = 0; 
  while (people < population.size()) { 
   IntBag individual = (IntBag) 
population.get(people); 
   people++; 
   for (int snp_at_pos = 0; snp_at_pos < 
individual.size(); snp_at_pos++) { 
    if (individual.get(snp_at_pos) == 1) { 
     pre_adm_prop++; 
    } 
   } 
  } 
  admixture_proportion = 
pre_adm_prop/(population.size()*Individual.genes_number); 
  pre_adm_prop = 0.0; 
  System.out.println(admixture_proportion);*/ 
 } 
} 
 
 
2. Individual.java 
 
package sim.app.pacific_9; 
 
import ec.util.MersenneTwisterFast; 
import sim.engine.*; 
import sim.util.*; 
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import sim.field.continuous.*; 
 
public class Individual implements Steppable { 
 
 Stoppable stopper; 
 int z = 0; 
 public MersenneTwisterFast random = new MersenneTwisterFast(); 
 public static int genes_number = 1000; 
 public IntBag genes = new IntBag(genes_number); 
 boolean ancestry; 
 public int max_age = 25; 
 public Bag neighbours_choice = new Bag(); 
 public double a_migration_prob = 0.9; 
 public double m_migration_prob = 0.94; 
 
 public Individual(int num, boolean anc) { 
  int[] genes_array = new int[genes_number]; 
  for (int pos = 0; pos < genes_number; pos++) { 
   genes_array[pos] = num; 
  } 
  genes.addAll(genes_array); 
  ancestry = anc; 
 } 
  
 public Individual(IntBag baby, boolean anc) { 
  genes.addAll(baby); 
  ancestry = anc; 
 } 
  
 public IntBag getGenes() { 
  return genes; 
 } 
  
 public boolean getAncestry() { 
  return ancestry; 
 } 
 
 public void step(SimState state) { 
  z++; 
  if (z > max_age) { 
   Individuals inds = (Individuals) state; 
   inds.map_individuals.remove(this); 
   stopper.stop(); 
   return; 
  } 
  else { 
   if (z%5 == 0) { 
    if (ancestry) { 
     if (random.nextDouble() > 
a_migration_prob) { 
      Individuals inds = (Individuals) 
state; 
      Double2D me = 
inds.map_individuals.getObjectLocation(this); 
      Bag demes = 
inds.map_demes.getObjectsAtLocation(me); 
      Deme deme = (Deme) demes.get(0); 
      neighbours_choice.clear(); 
      neighbours_choice.shrink(0); 
     
 neighbours_choice.addAll(deme.get_closest_demes()); 
      int deme_choice = 0; 
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      if (neighbours_choice.size() > 3) 
{ 
       deme_choice = 
random.nextInt(4); 
      } 
      Double2D migration_point = 
(Double2D) neighbours_choice.get(deme_choice); 
     
 inds.map_individuals.setObjectLocation(this, migration_point); 
     } 
    } 
     
    else { 
     if (random.nextDouble() > 
m_migration_prob) { 
      Individuals inds = (Individuals) 
state; 
      Double2D me = 
inds.map_individuals.getObjectLocation(this); 
      Bag demes = 
inds.map_demes.getObjectsAtLocation(me); 
      Deme deme = (Deme) demes.get(0); 
      //need to check if clear is 
necessary 
      neighbours_choice.clear(); 
      neighbours_choice.shrink(0); 
     
 neighbours_choice.addAll(deme.get_closest_demes()); 
      Double2D migration_point = 
(Double2D) neighbours_choice.get(0); 
     
 inds.map_individuals.setObjectLocation(this, migration_point); 
     } 
    } 
   } 
   /*if (z%5 == 0) { 
    Individuals inds = (Individuals) state; 
    if (random.nextDouble() > 0.94) { 
     Double2D migration_point = new 
Double2D(); 
     DoubleBag distances = new DoubleBag(); 
     Double minimal_distance = 0.0; 
     Bag locations = inds.locations; 
     Double2D my_loc = 
inds.map_individuals.getObjectLocationAsDouble2D(this); 
     for (int loc = 0; loc < 
locations.size(); loc++) { 
      Double2D said_deme = 
(Double2D)locations.get(loc); 
      Double distance = 
my_loc.distance(said_deme); 
      distances.add(distance); 
     } 
     for (int min_dis = 0; min_dis < 
distances.size(); min_dis++) { 
      if (minimal_distance < 
distances.get(min_dis)) { 
       minimal_distance = 
distances.get(min_dis); 
       migration_point = 
(Double2D) locations.get(min_dis); 
      } 
     } 



	
   41 

    
 inds.map_individuals.setObjectLocation(this, migration_point); 
    } 
   }*/ 
  } 
 } 
 
} 
 
3. Individuals.java 
 
package sim.app.pacific_9; 
 
import ec.util.MersenneTwisterFast; 
import sim.engine.*; 
import sim.util.*; 
import sim.field.continuous.*; 
 
public class Individuals extends SimState { 
  
 public int asian_demes_number = 40; 
 public int melanesian_demes_number = 40; 
 public int individuals_per_deme = 100; 
 public Continuous2D map_individuals = new Continuous2D(10, 
600.0, 600.0); 
 public Continuous2D map_demes = new Continuous2D(10, 600.0, 
600.0); 
 //public Bag locations = new 
Bag(asian_demes_number+melanesian_demes_number); 
 public Individuals(long seed) { 
  super(seed); 
 } 
  
 public void start() { 
  super.start(); 
  map_demes.clear(); 
  map_individuals.clear(); 
  for (int i = 0; i < asian_demes_number; i++) { 
   double latitude = random.nextDouble()*200; 
   double longitude = random.nextDouble()*200; 
   Double2D location = new Double2D(latitude, 
longitude); 
   Deme deme = new Deme(location); 
   schedule.scheduleRepeating(1.0, 1, deme); 
   //locations.add(location); 
   map_demes.setObjectLocation(deme, location); 
   for (int z = 0; z < individuals_per_deme; z++) { 
    Individual individual = new Individual(1, 
true); 
    individual.stopper = 
schedule.scheduleRepeating(individual); 
    map_individuals.setObjectLocation(individual, 
location); 
   }  
  } 
   
  for (int i = 0; i < melanesian_demes_number/4; i++) { 
   double latitude = random.nextDouble()*200+400; 
   double longitude = random.nextDouble()*200+400; 
   Double2D location = new Double2D(latitude, 
longitude); 
   Deme deme = new Deme(location); 
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   schedule.scheduleRepeating(1.0, 1, deme); 
   //locations.add(location); 
   map_demes.setObjectLocation(deme, location); 
   for (int z = 0; z < individuals_per_deme; z++) { 
    Individual individual = new Individual(2, 
false); 
    individual.stopper = 
schedule.scheduleRepeating(individual); 
    map_individuals.setObjectLocation(individual, 
location); 
   } 
  } 
  for (int i = 0; i < melanesian_demes_number/4; i++) { 
   double latitude = random.nextDouble()*200+300; 
   double longitude = random.nextDouble()*200+300; 
   Double2D location = new Double2D(latitude, 
longitude); 
   Deme deme = new Deme(location); 
   schedule.scheduleRepeating(1.0, 1, deme); 
   //locations.add(location); 
   map_demes.setObjectLocation(deme, location); 
   for (int z = 0; z < individuals_per_deme; z++) { 
    Individual individual = new Individual(2, 
false); 
    individual.stopper = 
schedule.scheduleRepeating(individual); 
    map_individuals.setObjectLocation(individual, 
location); 
   } 
  } 
  for (int i = 0; i < melanesian_demes_number/4; i++) { 
   double latitude = random.nextDouble()*200+200; 
   double longitude = random.nextDouble()*200+200; 
   Double2D location = new Double2D(latitude, 
longitude); 
   Deme deme = new Deme(location); 
   schedule.scheduleRepeating(1.0, 1, deme); 
   //locations.add(location); 
   map_demes.setObjectLocation(deme, location); 
   for (int z = 0; z < individuals_per_deme; z++) { 
    Individual individual = new Individual(2, 
false); 
    individual.stopper = 
schedule.scheduleRepeating(individual); 
    map_individuals.setObjectLocation(individual, 
location); 
   } 
  } 
  for (int i = 0; i < melanesian_demes_number/4; i++) { 
   double latitude = random.nextDouble()*200+100; 
   double longitude = random.nextDouble()*200+100; 
   Double2D location = new Double2D(latitude, 
longitude); 
   Deme deme = new Deme(location); 
   schedule.scheduleRepeating(1.0, 1, deme); 
   //locations.add(location); 
   map_demes.setObjectLocation(deme, location); 
   for (int z = 0; z < individuals_per_deme; z++) { 
    Individual individual = new Individual(2, 
false); 
    individual.stopper = 
schedule.scheduleRepeating(individual); 
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    map_individuals.setObjectLocation(individual, 
location); 
   } 
  } 
 } 
  
 public static void main(String[] args) { 
  doLoop(Individuals.class, args); 
  System.exit(0); 
 } 
 
} 
 
 
4. DemesWithUI.java 
 
package sim.app.pacific_9; 
 
import sim.engine.*; 
import sim.display.*; 
import sim.portrayal.DrawInfo2D; 
import sim.portrayal.grid.*; 
import sim.portrayal.continuous.*; 
 
 
import java.awt.*; 
 
import javax.swing.*; 
 
import ec.util.MersenneTwisterFast; 
 
public class DemesWithUI extends GUIState { 
  
 org.jfree.data.xy.XYSeries series; 
 sim.util.media.chart.TimeSeriesChartGenerator chart; 
  
 public Display2D display; 
 public JFrame displayFrame; 
 ContinuousPortrayal2D demesPortrayal = new 
ContinuousPortrayal2D(); 
  
  
 public static void main(String[] args) { 
  DemesWithUI ex = new DemesWithUI(); 
  Console c = new Console(ex); 
  c.setVisible(true); 
 } 
  
 public DemesWithUI() { super(new 
Individuals(System.currentTimeMillis())); } 
  
 public DemesWithUI(SimState state) { super(state); } 
  
 public static String getName() { return "Demes Simulation"; } 
  
 public void start() { 
  super.start(); 
  setupPortrayals(); 
 } 
  
 public void setupPortrayals() { 
  demesPortrayal.setField(((Individuals)state).map_demes); 
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        demesPortrayal.setPortrayalForAll( new 
sim.portrayal.simple.OvalPortrayal2D() { 
         public void draw(Object object, Graphics2D graphics, 
DrawInfo2D info) { 
            Deme deme = (Deme)object; 
            int admixtureLevel = (int) (deme.get_admixture() * 255); 
            //double demeDiameter = (double) deme.getDiameter(); 
            int population_size = (int)deme.get_population_size(); 
            double demeDiameter = (double) (population_size/10); 
            if (admixtureLevel > 255) admixtureLevel = 255; 
            paint = new Color(admixtureLevel, 0, 255 - 
admixtureLevel); 
            scale = demeDiameter; 
            super.draw(object, graphics, info); 
            } 
        }); 
        display.reset(); 
 } 
  
 public void quit() { 
  super.quit(); 
  if (displayFrame != null) displayFrame.dispose(); 
  displayFrame = null; 
  display = null; 
 } 
  
 public void init(Controller c) { 
  super.init(c); 
  display = new Display2D(600, 600, this); 
  display.setClipping(true); 
  displayFrame = display.createFrame(); 
  displayFrame.setTitle("Pacific Island Display"); 
  c.registerFrame(displayFrame); 
  displayFrame.setVisible(true); 
  display.setBackdrop(Color.black); 
  display.attach(demesPortrayal, "DemesSimulation"); 
 } 
  
 public Object getSimulationInspectedObject() { 
  return state; 
 } 
  
  
} 
 


