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ABSTRACT 

The mechanism of elon g at ion of segments  of hypocotyl of l ight- grown 

seedlings  o f  l up i n  ( Lupi nus angustifol ius  cv . N . Z .  Bi tter Bl ue ) has 

b een inv estigated . The a pproach was three-fo l d : b io physical anal ys i s  

o f  growth respon se s ;  a n  i nvesti g ation o f  the role of i nd iv idual 

t i ssue s i n  elon g at ion; and  tests of pred iction s of the ac id- growth 

h ypothe sis . 

In b io physical  stud ies , a method wa s d evel o ped to measure the 

hal f- times o f  transients  in elong ation rate  in response to app l icat ion 

o f  a compressi v e  load . For load s of 4- 1 8g ( equivalent to a pp l ied 

pressures  of about 0 . 1 -0 . 5  bars) hal f- times for the return of  

elongat ion rate  to a stead y val ue after load ing were  3 - 1 5 minutes for 

segments incub ated wi tho ut IAA , and 6 - 1 3 minutes for IAA-treated 

segments . Hal f- time s  after remov ing the load were 2-7 minutes for 

non-IAA-treated segments . Resul ts we re anal ysed accord ing to the 

d iagnost ic schem e of Co sgrov e ( 1 981 , P l ant Phys io l .  68 : 1 4 39- 1 4 4 6 ) ,  and 

suggested that IAA  promoted elong ation through a n  e ffect on either the 

t i ssue free ener g y  d iffu s i v ity o f  water ( D ) ,  or on ex ten sib il i t y .  I t  

was not po ssib l e  t o  d isti ngui sh between these a l ternati v es on the 

e v idence avai l ab l e .  

In stud ies on the rol e  o f  d ifferent tissue s i n  elongation , the e ffect 

of remov ing s pe c i fic t issues from non-I AA-treated segments was first 

d eterm ined . The e pid erm is appa rent l y  l im ited e longation of  i ntact 

segmen t s , since a burst o f  exten sion occurred when it was remov ed by 

peel ing . In  pe e l ed segments , the stel e ( vascul ar tissue and pith)  

apparent l y  l im i t ed the rate of ex tension s ince its  remov al resu l ted in 

very rapid  ex ten s ion of the remaining 

treatment , the r e spon se o f  segments 

initial l y  sim i l ar to that obta ined with 

that the e piderm i s  and cor tex onl y 

c yl inder o f  

wi th the 

cortex . On 

s tel e remov ed 

IAA 

wa s 

i ntact segments , suggesting 

were involved in the i n i t i al 

respon se . In segments where the epiderm is  had prev iousl y been remov ed 

this in i t i al respon se to IAA was ab sent , b ut there was a l cnger term 

respon se . The se resul ts suggest that the respon se of intact segments 

to IAA c onsisted o f  two superimpo sed phases . The first was the resul t 



111 

of  epi d ermal " re l axation " ,  and the second was an ind epend ent elongation 

control l ed by the cortex . 

The ac id- growth hypothesis pred icts that treatment with ac id sol utions 

will  promote elongation to IAA- ind uced lev el s .  Tests o f  th is  

prediction  with ho l low cyl ind e r s  and pee l ed segments of l upin hypocotyl 

showed that the m o st IAA-respon sive  preparation ( ho l low cyl i nd ers wi th 

the epi d e rmis intact) was the l east ac id-responsive , with l ittle  

elong at ion respon se at pH  5 .  Treatment at  pH 4 was need ed to promote 

elong at i on to IAA-ind uced rate . The cortex alone respond ed strongly  to 

acid trea tment ( pH 5 ) , sugges t i ng that the epid ermis was l im iting 

respon se when it was present . Peel ed segments elong ated i n  respon se to 

IAA trea tment , b ut d id not elong ate in r esponse to acid treatment 

(pH 5 )  ( if pretreated in water ) ,  perha ps because response was l imited 

by restr i c ted d i f fu s ion o f  hyd rog en ions through the starch sheath and 

into the stele . H owev er , peel ed segments elong ated rapi d l y  i n i t i al l y  

a fter tre a tment w i th acid i f  fir st pretreated i n  buffer ( 1 mM  

K�HFO�- c i tric acid , pH 6 . 6 ) . These r e su l ts show that ac id- ind uced 

elong at i o n  of segments may  be i n fl uenced by d ifferential  respon se o f  

tissue s ,  by barr i er s  to d iffus ion of  hyd rogen ion s ,  and b y  treatment 

with buffered so l ution s . The r e su l ts suggest that unl ess IAA ac tion in 

intac t se gments causes pH in the wal l s  of the outermost cel l laye r s  to 

fall to t o  about p H  4, then it i s  u n l ike l y  that IAA-ind uced elongation 

is  med iated ( init i al l y) by hyd rogen ion s .  
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1: INTRODUCTION 

P l ant growth is  tradit ional ly v iewed as being governed by two processes 

- cell d i v ision and cel l  e x pansion . Of  the latter , Clel and ( 197 1) 

stated : "The importance of cel l  enlargement has long been recogn i sed , 

and the papers deal ing with the process number i n  the tens of  

thousand s .  From these pa pers the re has been  d isti l l ed a body of  bas i c  

i nformat ion The prob l em i s  that i t  i s  unclear a s  to how t o  fit 

these pie ce s  together into any coherent pi cture of cell enlargement . "  

This sta t ement a l ludes to the d i ffi cul t y  in und erstand ing the mechan ism 

of  expan s ion of  s i ngle i n t a ct cel l s , when a v ai l able techn i ques have  

d ictated that measuremen t of  expansion be made  at a macroscopic l evel  

( using segments o f  tis su e ) or  that  the cel l s  are  d i srupted . 

A plant c e l l  con s i sts o f  a protoplast  bound ed by a cell  wa l l . In  a 

mature ( non-growing ) cell  the protoplast  can be viewed as an osmometer 

which wi l l  swel l with water uptake and exert a pressure on the cel l 

wall , causing i t  to stretch  in response . The pressure on the wal l  i s  

termed tu rgor pressure ; i t  is the d ifference between the e x ternal 

pressu re and the actual h ydrost a t i c  pressure of  the cel l v acuole  

(Dain ty 1976 ) .  When tu rgor pressure i s  zero , the  cell  is  at minimum 

( irreversible ) volume . With water uptake into the cel l  the cel l  wall  

is stretched el astical l y  ( reversi b ly ) . The ob served cell  volume at  any 

pressure will  then be a r e f lection  of  the i nitial ( irrever sibl e )  

volume , a nd  the e l astic p ropert i e s  of  the cel l  wal l . 

In  a growing ( e x pand in g )  cel l , i rreversible  volume i s  i ncreas ing w i th 

t ime . A t  any po i nt in t i me , the ob served volume i s  a func tion o f  the 

i rrever s ible  vol ume at that  time , and the elas t i c  proper t i es of the 

cel l  wal l (Lockhart 196 5 ) .  I ncrease i n  obser v ed cel l  volume i s  due to 

water upt a ke into the pro toplast , which is  driven b y  the d i f ference in 

water pot entia l (D.'/J) between  the ce l l  vacuole and the external  med ium . 

I ncrease in irreversible  cel l volume is  driven by  turgor pressu re . 

When cell  volume is incr e a s ing a t  a stead y rate , the rate of  water 

u ptake is  equal to the rat e  of cel l wall  expansion ( Lockhart 1965 ,  Ray 

et al . 1972 ) .  
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These two face ts ( wate r u ptake a nd wal l  e xten s ion )  of  the cel l 

expansion process have been recognised in earl y  models .  The role o f  

turgor pr essure w a s  apprec iated b y  Sachs ( 1 874 , c ited b y  Heyn 1 940 ) i n  

t he first  publ ished mod e l  o f  cel l elongat ion . O n  the rol e  o f  water 

u ptake , H eyn ( 1 940 ) stated " . . .  actual  enlargement is d epend ent , 

i n  the f i r s t  place , on uptake of water by the vacuol e ,  elongation being 

i mposs i b le if  this is pre vented . The uptake of w a ter general l y  is  not 

a l imi t i ng factor , however • . . " .  Given this assumpt ion , c e l l  expansion 

i s l imi t ed by ce l l  wal l e x tensi on . In a summa r y  of  ear ly  model s  o f  

cell wal l  extens i on ,  H eyn ( 1 940 ) d ist i nguished three t ypes o f  

hypothes i s .  The f irst was that cel l  wal l  en l argement was i n i tiated by  

an active  process o f  wal l  d eposi t i on , i nd ependent o f  any other force . 

This has not been suppor ted by the resul t s  o f  many stud ies  which 

suggest that turgor pressure  is the driving force for cel l expansion  

( Clel an d  1 959 , Green �- 1 97 1 , Green and Curnrn i ns 1 974 ) . The other 

two mode l s  have been discussed by  C leland ( 1 97 1 ) .  In each , enlargement 

i s  init i a t ed by a b iochemi c al "wa l l  loosen ing" step , and subsequent 

turgor-driven exten s i o n  is i rreversibl e , in one mode l ; or  reversible  

and then r endered i rrever s ible  by  a second b iochemical step ( for 

example ,  wal l  synthes i s ) , i n  the other . 

The f i r s t  formal ana l y s i s  o f  cel l expan s ion ( Lockhart  1 965 ) 

i ncorpor a ted statement s for both water uptake and cel l  wal l  extension . 

This ana l ysis forms the basis o f  current thinking  in s tud ies on c e l l  

expan s i o n . The model assumes that the p l ant cel l wal l  respond s t o  

stress in the manner  o f  a B ingham sol id material . That i s , the 

relative e longation rate is l inea r l y  proportional to stress  above a 

yield thr e shold . Cosg rove  ( 1 98 1 ) expresses t h i s  relation ship for the 

relative rate of i rrevers ible  ce l l  volume expan s i on as 

( 1 /V0 ) ( dV0 /dt )  = � ( P-Y ) 

where Vo 
� 
p 

y 

= 

= 

= 

= 

cell vol ume at zero turgor 

wal l ex tensib i l ity 

cel l  turgor pr essure 

yield  threshold ( min imum tu rgor requi red for wal l  

expansion ) 

( 1 ) 
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Cell expa nsion a l so involves water uptake , and to account for this  the 

add itional  assumption is made tha t the growing cel l behaves as a s imple 

osmometer . Hence the equation for the re l at i ve rate of volume change 

due to water inf l ux is  (Cosgrove 198 1) 

(1/V ) (dV/dt )  = L (<1".CliT -P ) ( 2 ) 

where V = cell volume at a part i c u l ar moment of growth 

L = hyd r a u l ic conductiv ity o f  the cel l , equal to 

membrane  hydraul i c  cond uctivity  Lp , times membrane 

surface area A, d ivided by cel l volume V (L = L p . A/V ) 

<J = solu t e  reflect ion coe fficient  

�TI = d ifference in osmotic potent i a l s between the inside  

o f  the cel l  and the e xter n a l  medium 

In stead y-state growth , the r e lative r ates of water i n flux 

i rrev er s ible wal l e xpan s ion are equa l . When equations ( 1) and (2 ) 

and 

are 

set equ a l  to each o ther , the equation for steady state growth rate 

becomes ( Cosgrove 198 1  ) 

Vs = L�  (a:AfT - Y) / (L+�) (3 ) 

When wate r  uptake i s  not l imiting (cf .  Heyn 194 0 ) then L » � ' and 

equation  (3 ) becomes 

:;:; = Rf<�.t§f-Y) <4 > 

and since  Cl'f will be c lose to zero , 0:6-IT = P .  H ence 

V� = � (P-Y) (5 ) 

which shows that i n  this  si tuation , cell e xpansion is depend ent on the 

r ate of i r reversib l e  wal l  extension [ equat ion ( 1) ] .  Th i s  is the case 

of extensibili ty-lim i ted expansion discussed in the descri pt ive  mod e l s  

( Cleland  197 1 ) . 

I t  is not obv ious in the b iophysi cal mod el  how e xpansion i s  initi ated 

or main t a ined. I n  terms o f  the mod el pro posed by Lockhart ( 1965 ) ,  the 
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cell  wal l would " flow " , in the manner of  a Newton ian fl uid , a t  stresses 

above the yield threshold . The rate of flow is proportional to stre s s , 

and is gov erned b y  the v i s cosity , which is  direct l y  rel ated to 

exten s ib i l ity . H owev er , cel l walls whi ch have  been iso lated and 

sub jected to a creep test (where e xtension  i s  measured over a per iod of 

time in response to an app l ied tens i l e  load ) do not flow , i nstead 

showing  a decl in i n g  rate o f  exten sion w i th time (Cleland 197 1) . 

Apparent l y ,  and not surpr i singl y ,  simply  replacing turgor stress (wi th 

an app l i e d  stre ss ) i s  not sufficient to cause isol ated cel l  wal l s  to 

yield as i n  growi n g  intact cells . Assoc i a t i on with the protoplast  i s  

necessa r y  for the wall t o  b e  maintained i n  a state where con t i nuing 

extens ion will ha ve  the appearance of flow . I t  is this associat ion 

which pro v ides the mean s of ini t i a t ing and maintaining cel l  e xpan s ion -

the process  of " s tress rel axation " (Ra y  e t  al . 1972 ) ,  " wall  loosen i ng" 

(Cle l a n d  197 1) , or the " prima r y  cause " (He yn 1940 ) . Thi s  is the 

"biochemical step" in the descr iptive mod e l s  (Cleland 197 1) , and shows 

how tho se mode l s  and the b iophysical  mod e l  (Lockhart 1965 ; Ray  e t  al . 

1972 ; Co sgrov e 198 1 )  may be rel ated . The processes i n volved i n  the 

b ioche mical step d etermine the pa rameters o f  cell  wall expansion i n  the 

b iophysical mod e l . 

The b i o physical  model o f  Lockhart ( 1965 ) has been used as a basis  of  

interpretation i n  many stud ies o f  plant cel l  expansion . S i ngle c e l l s  

(of N it e l l a) have been used i n  one stu d y  (Green et a l . 197 1) . I n  

others ,  se gments o f  coleopt i le (G reen and Cummins 1974 ,  C leland 1977 )  

or hypoco tyl (Bo yer and Wu 1978 ) ,  or seed l ings  (Boyer and Wu 1978 , 

Cosgrov e and Green 198 1 )  have been used . The model can be app l i ed in 

unmodi f i ed form to the growth of segments in solut ion , i f  it is assumed 

that the main pathway for water uptake into the segment is through the 

epider m i s ,  and that the epidermis  prov ides  the l imiting resi stance to 

water f l ow (Lockhart 1965 , C osgrove 198 1  ) . The segment is then 

regard ed as ana logous with a single cel l , w i th the model  pa rameter L 

(equa l to Lp . A/V )  g i v en by the hydraul ic cond uctiv ity of the epidermis ,  

the segment sur face  area , and the segment volume . � and Y for the 

segment w i l l  be a v erage v a lues of  � and Y for the cel l s  of the ti ssue 

which l i mits elongation of  the segment . The model  must be modified  to 

apply to intact p l ants , or in other cases where the main resi stance to 
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water f l ow does not occur at  one barrier , but  i s  i n stead d i stributed 

through the tissu e .  A mod ified analys i s  which accounts for rad i a l  

water tra nsport i n  a growi n g  cyl indrical stem has been prov ided by  

Cosgrov e ( 1981 ) . 

Although in wi despread use as a worki n g  hypothesis , the mod e l  o f  

Lockhart (1965) has been tested i n  onl y  two stud ies ( Lockhart 1965, 
Green � · 1971). A formal test of the model requires that est imates 

be made of all the parameters in equat ion ( 3 )  and these v alues 

substi tuted in the general solution of equation ( 3 )  to yield a complete 

solution . Thi s  w i l l  be an express ion for l ength as a function of time , 

and i s  a pred i c t ion of the mode l  which can be compared w i th 

e xperimentall y  observed respon ses .  

measured : L ,  � , er ,  ATT, and Y .  

F i v e  parameters need to be 

In short-term stud i e s , it i s  usually  assumed that the osmoti c  pressure 

(IT) of the cell i s  constan t , and that a- i s  equ a l  to one ( i . e . , that the 

cell membrane i s  i mpermeab l e  to solutes ) . The term o-;Aii [ equation ( 3 ) ]  

is therefore equ a l  to 6TT , and is con stant i f  the extern a l  osmotic 

pressure is  con stant . There are several methods of measuring rr ( ce l l )  

( Dai n t y  1969). Onl y a few measurements  of  er have  been made ( see  Dainty 

1976), in giant a lgal ce l l s ,  and Penny a nd Penny  (1978) observe that 

there do not appear to have been a n y  attempts to measure o- i n  

auxin- treated h i gher p l ant t i ssues . 

The y ield  threshold Y has been measured i n  one study with single  cel l s  

o f  Nitella (Green et al . 1971) and i n  severa l stud ies with segments of  

higher p l ant ·t i ssue ( Cl eland 1959, Green and  Cummins 1974). Green 

�.(1971) m easured Y as the turgor pressure below wh ich expansion 

appare n t l y  ceased , and suggested that the value o f  thi s  parameter might 

depend on the time sca l e  of measurement . I n  short-term measurements ,  Y 

was very c lose to cel l turgor P ,  s i nce onl y  a smal l  reduc t ion in turgor 

pressure would a pparent l y  stop e longat i on ( in N itel l a ) . However , 

elongation sub se quently recov ered , and i f  stabi l ised v alues o f  

· elonga t i on rate were con s i d ered ( l ong-term) the yield threshol d  was 

quite low . Thi s observat ion i l l ustrates a genera l point about the 

model , namely that  val ues of the parameters ma y change w i th time . 
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Unless this is  re cogni sed in a mod i ficat i on o f  the model ( for exampl e ,  

G reen e t  al . 1 97 1 ) ,  an y set of  parame t e r s  wi l l  appl y i n  onl y one -
situat ion ( Ra y  e t  al . 1 972 ) .  

Hydraul ic conducti v ity of the cel l ( L ) can be estimated from 

measurements o f  L p  (hyd raul ic conduc t i v ity o f  the cel l  membran e ) , cel l 

surface area and cell  vol ume . Method s o f  measur ing Lp in single cells  

a re discussed i n  Dainty ( 1 976 ) ;  measurement o f  L p  in single cel l s  of  

h igher p l ant t i s sue has on l y  been accomp l i shed u s ing the pressure probe 

techn i qu e  ( Cosg rove and Steud l e  1 98 1 ) .  

Measur ement o f  exten si b i l ity , �. has a l so p roved difficult . On ly  one 

measurement of � [ as defin ed in the b ioph y s ical model (L ockhart 1 965 ) ] , 

has been made ( G reen et a l . 1 97 1 ) in s in g l e  cel l s  of N i te l l a .  I n  that 

case , turgor pre ssure was m easured and it was shown that water uptake 

was not l imitin g growth . Equation ( 5 )  was the appropri ate mode l ,  and � 

was then estima t ed from the rel a t i on sh i p  between elongation rate and 

( P-Y ) , as�= ( 1 /L0 ) ( dL
9

/d t ) /( P -Y ) .  N o  clear measurement  of � has been 

made for segmen t s  of  higher plan t  tissue . I n  principle , the method of 

Green �· ( 1 97 1 ) could be  used , but this requi res that the con d i tion 

o f  exten s ibilit y-l im i ted ex ten sion a p p l ies . I f  this has not been 

shown , then e qu a tion ( 3 )  app l ies . -Other measuremen t s  of  

" exten s i bility"  have been mad e  with 

d iscuss e d  in C l e l and ( 1 97 1 ) and Penn y 

severa l problems in rel a t i ng resu l ts 

v a r ious physica l  tests and are 

and Penn y ( 1 978 ) .  T here are 

of these tests to the model  of  

Lockh a r t  ( 1 965 ) . The major problem is  con ceptua l . I t  is  clear  that 

exten s i b il ity (� ) is not  simply  a phy s i c a l  pro perty of the cel l wall  

( Green and Cumm ins 1 974 , C l e l and 1 977 , Green et al . 1 977 ) . It  is  

d efined as  a fun c t i on of  ce l l  expan s ion rate  and turgor pressu r e , and I 

have already suggested that an influenc e  ( poss i b l y  biochemical ) of the 

protopl ast is at l east part l y  involved in control l ing the rate of c e l l  

expan s i on . Even assuming  that ex tensi b i l ity was a phys i c a l  pro perty o f  

the wal l , no phys i cal test yields measurements o f"extensib i l ity"which 

c an be c l early r e l ated to the biophysical  model ( P enny and Penn y 1 978 ) . 

These points i l l ustrate some of the d iffi c u l ties in test i ng the model 

of Lockhart ( 1 96 5 ) .  However , in a par ticular  situation , in  the absence 
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of such a test , the mod el  can sti l l  be used as a working hypothes is . 

Cosgrov e ( 1 98 1 ) shows how cert a in measurable  features o f  growin g cel l s  

or segmen t s  [namely v5 ( the steady  state  e x pan sion rate at a par t i cular 

pressure ) ;  Ps ( the value of turgor pressure at the stead y state ) ; and 

the hal f- time for tran s i ents in growth rate between stead y states ] can 

be used to d iagnose ( a) whether or not ex pansion is l imi ted by water 

uptake ; and ( b )  the mechanism o f  acti on o f  an y factor affecting growth 

rate , in terms o f  the parameters  ( L , � , cr.b.7T, and Y )  of the mod el . 

However , there remains  a poss ibly  importan t  problem in the use of  the 

model as a basis of analysi s of resu l ts of e x periments on the growth of 

plant se gments .  Whether the segm en t  is regarded as analogous wi th a 

s ingle  ce l l , or whether account i s  taken o f  d istr ibuted resi stan ce to 

water flow, in n e i ther case has the morphological and funct ion a l  

differen ti ation o f  cel l s  wi thin t h e  segmen t  been acounted for . The 

assumpti on is mad e ,  usua l ly tac i t l y ,  but expl i c itly by  Cosgrov e ( 1 98 1 ) 

in his an a lysi s for the case of d istr ibuted resistance to water flow , 

that all  cells  in a segmen t are a l ike . An e x ample o f  ev i d en ce which  

suggests that d if ferent i a l  respon se of ce l l s  might need to  be accoun ted 

for is the d iffer en tial re sponsiveness of t issues in aux in-treated 

split stems ( Thi mann and Schn eider 1 93 8 ) , where the outermost tissues 

apparen t l y  elon g a ted mor e  rapid l y  than the innermost tissues . The 

e ffects o f  any d i f feren t i a l  respon si ven e s s  in the rapid str a i ght- growth 

respon se o f  segmen ts has not been in v esti gated . 

Given that al l cel l s  in a segmen t may not  respond equa l l y  to an y factor 

a ffectin g growth , one crucial question remain s  about the process o f  

cell ex pansion . What i s  the "pr imary cause " , the b iochem ical mechan i sm 

by wh ich  e xpan si on is in i t iated ? One of the mean s of in vestigatin g  

this  has b een to u s e  auxin to promote expan s i on , and seek correlated 

changes in prope r t ies of the cel l wall  ( rev iewed by Penn y and Penn y 

1 978 ) ;  or in hyd raul ic conducti v ity ( Boyer and Wu 1 978 ) or osmot ic 

p ressure  ( Penn y et al . 1 972 ) . Resu l ts hav e suggested that a u x in 

a ffects e x ten s ib i l ity ( G reen and Cumm in s 1 974 , Boyer and Wu 1 978 ) ;  and 

d oes ( Boyer and Wu 1 97 8 ) or does not ( D owler et al . 1 97 4 )  affect 

h ydraul i c  cond u c ti vity . The use of techn i ques for high resolut i on 
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measurement of  growth ( Penny and Penny 1 978 ) has prov ed valuable in 

critic a l  assessment of hypotheses  of aux i n  action . These have shown 

that rapi d elonga t i on of se gments begins about 10- 1 5  minutes after 

auxin treatment . For a change in a cel l u l ar parameter to be the cause 

of enhan c ed elongation that change must occur before , or coincident 

with , the increase in elon gation rate . Penny and Penny ( 1 978 ) document 

many suc h  rapid r esponses to aux i n  treatment ( not  all  in growing  

tissues ) .  These includ e effects on cel l  wall  xyloglucan ( Labavitch and 

Ray 1 97 4 ) ,  membrane potential ( Clel and �· 1 977 ) and permeab i l ity 

( Loros a nd Tai z  1 982 ) , water uptake i n  protopl asts (Gregor y a nd Cocking 

1 966 ) , a nd red uc tion of  extrace l lular pH (Cleland 1 976 , J a cobs and Ray 

1 976 ) . A cur ren t l y  favoured e x planat ion for the mechanism of aux in 

action i s  the ac id-growth hypothesis , which states that aux in acts on 

the cel l  p rotoplast to cause a red u ction of pH in the cel l  w a l l  which 

activate s a wa l l - loosen ing en z yme ( or enzyme s ) , which ini t i ates 

turgor-driven cell expansion ( Ra yl e  and C l e l and 1 980 ) . Many 

exper imental ob servat ions suppor t this  hypothes i s  (C l el and and Rayl e 

1 978 ) but som e  do not ( P enny and Penny 1 978 ) . A criti c a l  tes t  o f  the 

hypothes i s  requ ires  d emon strati on o f  an aux in- induced red uction of cell  

wall  pH , to  an  e longation-promoting v alue , before the rate of 

elongation  is increased . A prere qu i s ite i s  to estab l i sh tha t  treatment 

with ac i d ic sol ut ions wi l l  promote elongation rate to the aux in- induced 

v alue . I n  some stud ies ( for e x ampl e , C leland 1 976 , J acob s and Ray 

1 976 ) resul ts o f  such tests yiel d  resu l ts which support the acid- growth 

hypothes i s . However , results o f  experiment s  with lupin  hypocotyl 

segments  ( and � coleoptiles ) ( Penny  et al . 1 975 ) do not support the 

hypothes i s .  Reasons for these apparent l y  contrad ic tory resu l ts r emain 

to be res o l ved .  

The approach i n  this study to the probl ems outl ined h as been 

three- fold . F i r stl y ,  I have u s ed the ana lysi s  o f  Cosgrove ( 1 98 1 ) as a 

basis to d iagno se the mechanism o f  action o f  aux in on elongation of  

lupin hypocotyl segments , in  terms  of the parameters of the  Lockhart 

model . Second l y ,  I have shown how the rapid elongation response of 

hypocot y l  segments , after aux in treatment , might depend on the 

i nteraction of d i f fe renti a l ly aux i n-responsi ve  tissues which a re 

i nitia l l y  in d i fferent sta tes of s tress . From a qual itat i v e  point of 
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view , these resu l ts i l l ustrate the need for caut ion in in terpretin g  the 

respon se s  of se gm ents in terms o f  cellular behav iour . The third  l ine 

of approach in vol ves an in vesti g ation of an aspect of  the b iochemical  

mechan i sm of aux in action on segment  e lon gation . Tests o f  the 

acid-growth hypothes i s  have shown that both the epidermis ( pe e l ed from 

segmen t s  and sub j ected to an app l ied load ) and peel ed segments w i l l  

elongate in respon se to t reatmen t with acid  ( for e x amp l e , Dur and and 

Rayle 1 973 ) . H owever , the as sumpt ion that al l tissues of  a segment  are 

eq ual l y  r espon s i v e  to hyd rogen i on s  at in v ivo levels of stress has not 

been tested . Th i s  assumption is tested here  with segmen t s  of lupin 

hypocoty l . Resu l ts suggest tha t  d ifferential  responsi v en ess  to acid is  

a featur e  which should be a ccoun ted for in tests of  the acid-growth 

hypothes i s ;  and a l so prov ide a possible  e x pl an a tion of the apparently  

contrad i c tory results o f  Penn y e t  al . ( 1 975 ) and Cleland ( 1 976 ) .  

MASSEY UNIVERSITY 
LIGRARY 
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2 :  BIOPHYSICAL ANALYSIS OF GROWTH RESPONSES 

2. 1 I N T RODUCTION 

Expans i on of a p l ant cel l  invol ves water uptake i nto the protopl ast , 

and yi e l d ing o f  the cel l w a ll ( Lockhart 1 965 , Ray  et al . 1 972 , 

Cosgro v e  1 98 1 ) .  The d riving f orce for wall ex tension i s  turgor 

pressu re , as sho wn in experiment s  where elongat ion of single  cel l s  of 

N itel l a  has been measured a s  a func tion o f  turgor p ressure (Green 

et al . 1 97 1 ),  and where elongation of segments of pl ant t issue has been 

measu red as a func tion o f  e xternal  osmot ic potent i a l  ( Cl e l and 1 959 , 

Green and Cummi n s  1 97 4 ) .  Ou r p resent und erstanding of  the rel a t ion ship 

between tu rgor pressure a nd cel l  e x pansion is  expressed i n  the 

hypoth e s i s  first described in mathematical  form by Lockhart ( 1 965 ) ,  

restated b y  Ray et al . ( 1 972 ) ,  and further dev eloped by Cosgrove 

( 1 98 1 ) .  This i s  outl ined in the e quations ( 1 ) - ( 3 )  on pages 2-3 . 

When the rate o f  e xpansion i s  ste ad y ,  the ra te of i rreversible  vol ume 

e x pan s i on [equ a t ion ( 1 ) ] is equal  to the rate of volume i ncrease due to 

water u p ta ke [ equation ( 2 ) ] .  When set equal to each other , these 

equat i o n s  yield e quation ( 3 ) ,  which is a model for ste ad y-state 

expan s i o n .  Th i s  equation i s  given below and also outlined graph i c a l l y  

in Fi g .  1 .  

0 

Fig.  1 :  The stead y- state model of Cosgrove ( 1 98 1 ) .  
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Cosgrove  ( 1 98 1 ) and others ( G reen and Cumrnin s  1 974 ) have shown how 

measurement of v� [ equat i on ( 3 ) ]  as a function o f  external water 

potent i a l  [ wh ich  is  dire c t l y  rel ated to cr:.n11 of equation ( 3 ) ]  can be 

u s ed in the d iagnosis of the mechan ism of action of any factor 

a ffecting  growth , in terms of L ,  rp, and Y .  For ex ampl e ,  if aux in 

p romotes expansion  through red uc ing Y ,  then the s lope [ L� / (L+� ) ]  of  the 

p lot o f  v5 agai nst the e x te rnal water potent i al ( F ig.  1 )  would be the 

s ame for auxin- treated segment s  as for non-treated segments , but the 

X -inte rcept ( wh i ch is the yield thresho ld Y) would be changed . If L or  

� was increased b y  auxin  then  the s lo pe of the  plot would be  increased , 

b ut the X -int e rcept wou l d  rema i n  the same. 

Cosg ro ve ( 1 98 1 ) al so shows how measu rement o f  P5 ( the stead y-state 

turgor pressure ) can hel p i n  determining the mechan i sm o f  action o f  

auxin . P5 will increase i f  the rate o f  wa ter uptake [ equation  (2 ) ]  i s  

i ncreased a s  a result o f  a n  increase i n  L ,  lT( cel l )  , o r  o-. This  is  

most simply  expl ained as follows . The rate of increase i n  the actual 

cell  vol ume ( V ) ,  becomes greater than the rate of i ncrease of 

i rrevers ible volume ( V0 ) [ wh i c h  is g i v en by equation ( 1 ) ] .  S i nce 

turgor p ressure P is rel ated to ce l l  volume accord ing to the formula 

( Dai n t y  1 976 , Cosgrove 1 98 1 ) 

P = e.(V-V0 ) /V0 (6 ) 

where E: = the volumetri c  elastic modulus 

then P w i ll increase w i th the increase in ( V-V0 ) .  U s i ng sim i l a r  

reason i n g , P w i l l  decrea s e  if  the rate of i rreversible wall expan sion 

[ equa t i o n  ( 1 ) ]  increases as a result o f  an increase in � or a decre ase 

in Y.  

As implied abov e ,  when growth rate* is chang ing ( not i n  stead y-state ) 

e quat i o n s ( 1 )  and (2 ) are not equal . This is shown by Cosgrov e ( 1 98 1 ) 

* [Th e  term "growth rate" used he re ( and by Cosg rove 1 95 1) refers to 

the rat e  of actual volume i ncrease ( 1 /V ) ( dV /dt) , and not to the rate of 

i ncreas e  o f  irreversible volume ( 1 /V0 ) ( dV 0/d t )  which is the d e finit ion 

o f  growth given on page 1 ] . 
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in  an extension of the ear l ier ana l ysis  of  Lockhart  ( 1 965 ) .  From 

equation s ( 1 ) ,  ( 2 )  and ( 6 ) , Cosgrove ( 1 98 1 ) der i v es an ex press ion for 

turgor p r essur e as a funct i on of time and the parameters L ,  �.nil, �. Y 

a nd �. A ft er a change in growth rate , or i n  a n y  of the parameters 

govern i n g  growth rate , tu rgor pressure changes ex ponen t i a l ly toward s a 

new stead y state v a lue . S ince the relat i ve rates o f  water influx  

[ equa t i o n  (2 ) ]  and of  i r rever s i b l e  wal l  expan sion [ equat ion ( 1 ) ]  are 

l inked to turgor pressure , each w i l l  al so change toward s a new steady 

s t ate v a l ue ,  but with one increas ing whi l e  the other decreases . The 

observed growth rate of the segment dur ing the transient is g iven by 

( 1 /V) ( dV / d t ) ,  the relat i v e  rate of actual  volume change . The time 

constant ( and hence the hal f-time) of this change in rate i s  d epend ent 

on the pa r ameters  for both water in flux a nd wal l  e x tension ( Cosg rove 

1 98 1 ) and can thu s be used as a thi rd d iagnostic feature of the 

b iophys i ca l  mechanism o f  auxin  action . Cosgrove  ( 1 98 1 ) shows that i f  

g rowth r a te i s  doubled , then the ha l f-time is  un changed ( or changed 

l ittle )  i f  a change in e i ther a-.o�. Y ,  L ,  or � i s  the cause of  the 

doubl ing i n  rate ; but i s  reduced by  hal f  i f  both L and � have  changed . 

To dete rmine the half- t ime o f  g rowth r ate tra n s i ents , r ate must be 

sharpl y  d ispl aced from the stead y state , a nd the course o f  subsequent 

ad justment in rate measu r ed ( Cosgrov e 1 98 1 ) .  The method commonl y  u sed 

to alter t he growth rate o f  cel l s  or segments in solution has been to 

i nduce w ater fl u x  and tu rgor change by a l ter i ng the external wa ter 

potent i a l  (Green et a l . 1 971 , G reen and Cummi n s  1 974 ) . However , 

u n less se gments are  onl y a few cel l s  thi ck ( as i n  coleopt i l es ) , and 

unless spec ial me asures are  taken to increase the rate of  ent r y  of the 

o smot i cum into the segment (Green and Cummin s  1 974 ) , then it i s  

u n l ik e l y  that th i s  method will meet the r e qu i rement of caus ing an 

a brupt change in growth rate . The t ime constant for d iffus ion of 

o smoti cum into the segment is likely to be  greater that the t ime 

constant of the change in  tu rgor pressure wh ich fol lows the impo sed 

c hange in growth rate ( Cosgrove 1 98 1 ) .  There fore i t  would not be 

poss i b l e  to measu re the r e qu i red t i me con stant ( or half-time) of the 

t rans ient  in growth rate . Thi s  w i ll be a particu l ar prob lem in sol id 

c yl ind er s of  p l ant tissue , such as  stems and hypocotyl s .  C onse quent l y ,  

a n  alter n a t ive method wa s requi red for perturbing growth r a tes in the 
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segments  o f  lupin hypocotyl which were used i n  this stud y .  

The obj ec tives of thi s  study were as fol l ows : 

( 1 )  To d evelop a method which would permit the elongation rate of  lupi n 

h ypocotyl  segments to be 

( a ) changed abruptl y  from a stead y-state value ; and 

( b ) measu red through this change and the subsequent ad justment in rate . 

A method was developed wh ich allowed measurement of the r esponse of  

e longat i ng segments to an applied pressur e . The technique o f  al ter i ng 

the elon g ation rate of pl ant segments through a pp l ication o f  a 

compress i ve load has not previous l y  been used in stud ies invol v ing high 

resolu t i on measurements  of growth . The l ar ger part of thi s  stud y has 

been con c e rned wi th establ ishing the effe c t i v eness and l im i tat ion s of 

this techn ique . 

( 2 )  To compare the t ime cour se of  rate adjustment with that pred icted 

f rom the a nalysis  o f  Co sg rove ( 1 98 1 ) ,  and to determine the hal f-time o f  

this response . 

( 3 )  To d etermine the e ffect of  IAA on the hal f-time . 

( 4 )  To d etermine the steady state elongation response as a function o f  

a ppl ied p ressure , i n  I AA-treated and non-treated segments . 

( 5 )  From (3 ) and ( 4 ) ,  to assess the biophys i c a l  mechan i sm of  action o f  

I AA on elongation , i n  terms o f  the parameters  of  the model  o f  Cosg rove 

( 1 98 1 ) .  

2 . 2  MATER IALS AND METHODS 

2 . 2 .  1 Plant m ater i a l s  

Four-day o l d  lupin seed l ings ( Lupi nus angusti fol ius cv . N . Z .  Bi tter 

B lue) were grown in continuous low l ight at 22 C ( Penny 1 969 ) .  The 

l ight was a mix tu re of f l uorescent and incand escent , wi th PAR 60-70 
- 2  -1 

� einstei n s  m s S eedl ings for e x periment  were selected w i th 

h ypocot y l  50-60 mm  long , and 1 0 mm  segments of h ypocotyl ( cut 2-3 mm below 

the coty l edona ry node) were used i n  exper iment s .  
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2 . 2 . 2 Measu rement o f  growth 

Segments were held in a chamber similar to tho se described by Penny 

et al . ( 1 974 ) , and shown in Fi g .  2 .  The chamber was m ade from a block 

of  perspex  through which  ho les were bored . Solution was pumped in at 

A ,  fl.owed pas t the segment ( C ) , and dra i ned at B .  Arrows show the 

d irection  of flow . The se gment was placed on a pin ( D )  embedded in a 

perspex p lug ( E ) whi c h  was screwed into the i ncubation chamber . The 

foot ( F )  of the apparatu s which was used to app l y  a force to the 

segment ( Fi g .  3 ) , rested on the top of the segment , and was connected 

to a l inea r displ acement t ransd ucer, wh i c h  was used to measure 

elonga t i on of the hypocotyl segment (Penny et a l . 1 974 ) . Resolut ion 

was 0 .  6 3)Jlll . 

Segments were incubated in  the chamber in  flowing aerated bu ffe r ( 1 mM 

K-pho sphate buffer pH 6 . 6 ) , w i th or wi thout 30pM IAA . Solut ions were 

recirc u l ated from flasks held in a water bath at 25 C .  

was 1 0 m l /min . 

The flow rate 

Experiments  were conducted in  normal l abor atory l ighting , with the 

chamber i lluminated in add ition w i th a 40W tungsten l am p  placed about 

1 5  cm away .  

2 .2 . 3 A lteration o f  growth rate 

The method of a l ter i ng growth rate whi l e  s imul taneous l y  measur i ng 

e longat i on of a l upin hypocotyl segment i n volved use o f  appa ratus 

d esigned by Dr s P . Penny  and R . O'Dr i scoll ( Fi g .  3 ) .  Thi s  was ori g inal ly  

d esigned to  appl y  a cont i nuous l y  v arying force to a segment to  maintain  

i t  at a f i x ed leng th , but  had not been tested . In  experiments in this 

study , i t  was used to a pp l y  a pred eterm ined force which remained 

unchanged , unt i l  remov ed . 

Appa r a t us 

F igur e  3 shows the equi pment used . A coil  ( A ) , formed on a rectangu l ar 

brass frame ( B ) , was held  hor i zontal l y  i n  a brass  frame ( C ) .  The coil 

could p i v ot free l y  on bea r i ngs at D and E .  End s o f  the co i l  wire were 
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t o  transducer 

t 

! E 
B 

Fig . 2 :  Diagram of the incubation chamber ( mid- section ) .  
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SIDE V IEW 

I 
F i g .  3 :  Diagram of the appa ratus for appl ying a force to the hypocotyl 

segment . 
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attached to a variable transformer . One side of the coil passed 

between the poles of a magnet ( F ) . A short brass rod wi th a pe rspex 

foot ( G )  was att ached to the und er side o f  the opposite s i de of the 

coi l ,  and rested on the top of the hypocotyl  segment in the incubation 

c hamber ( Fig . 2 ) .  A polyester thread was attached to the uppe r side of 

the coi l  at H, a nd passed over a pu l ley to a l inear d ispl acement 

transd ucer . 

Operat ion 

A current was passed through the coi l by appl ying a d . c .  vol tage 

a c ross the ends of the coi l .  A current carrying wi re in a magnet ic 

f i eld e x periences  a force ( Li n s l e y  1 974 ) 

F = I f.. l 

where F = force 

I = current 

f.>= magnet i c  flux d en sity 

l = length of wire 

The d irection o f  thi s force is  per pend icular to the current d irection. 

I f  not o pposed , the co i l  was defl ected from its or i g inal hor i zontal 

posit i o n . In e x periment s ,  mov ement of  the coi l was oppo sed by the 

hypoco t y l  segmen t ,  and a compr e s s i ve force was ex erted on the top of  

the segment . 

Cal ibr  at  ion 

The cal ibration curve for the coi l-magnet apparatus is  shown in Fig . 4 .  

The force exerted by the foot of the coi l (G  i n  F i g .  3 )  on an 

e l ectron i c  top-weighing bal ance was measured as a func t i on of vol tage 

across the coi l , for the range 0 - 5 volts . ( In this  bal ance , read ings 

represent  the force requ i red to keep the we i ghing pan stat ionary when a 

weight i s  added ) .  The c o i l  wa s i n itial l y  b al anced to g i v e  a load of  

about 2 g ,  at zero  vol ts . Vol tage was increased i n  one vol t  increments 

to fiv e  v olts and the we i ght recorded at each step . Th i s  proced ure was 

r epeated five times .  Force increased l inearly  w i th vol tage over the 

range tested ,  w i th a stand ard error at any point of l ess than 0 . 2g. 

The regre ssion equation of  force on vol tage i s  s hown i n  F i g .  4 ;  a 
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change o f  one volt  i s  equ i v alent t o  a n  increment in force o f  1 7  g .  

Control s  

C are was taken to minimise movement i n  the apparatus when applying and 

remov ing load . Both the coil-magnet a pparatus and the segment 

i ncubat i on chamber were ri g idly mounted . Some movement d id occur , 

mainl y o f  the co i l  on its bearing s . Measurement of thi s movement was 

made with the p l an t  segment repl aced wi th a brass substitute . Vol tage 

was increased from zero to 1 ,  2 ,  3 ,  4 ,  or  5 volts , and transd ucer 

readings recorded at 10 second interv a l s over the next minute . Vol tage 

was reduced to zero , and readings again recorded . The procedure was 

repeated f i ve t i mes at each vol tage . Most movement occurred in the 

fi rst 10 second s after changing the vol tage , and is  shown i n  Tab l e  I .  

C ompari son wi th the deformation r ecorded in p l ant segments at 1 0  

second s a fter chang ing the load [ fo r  exampl e ,  F i g .  6 ( B ,  C )  - where an 

a pplied p ressure  2 o f  20 g/mm resu l ts from a load of  about 8 5 g ]  suggests 

that mov ement in the apparatus may be  the source of a major error i n  

these res u l ts .  L ittle add itiona l  movement was observed ( at times u p  to 

one minut e )  ( Table  I ) . 

Exper imenta l  procedure 

Pretreatment : S egments  were incubated i n  the chamber for about 270 

m inutes .  By this  t ime the mean elongation rate of segments treated 

w ith I AA was 5 . 5�m/minute .  A fter 1 00 minutes the mean rate had 

d eclined by onl y  0 . 3�m/minute , in 1 1  control segments ( which  were not 

l oaded ) . The mean elongat ion rate of segments incubated w i thout IAA 

was 2 . 2�m/min ute , and fel l  to 2 . 0pm/minute over the next 1 0 0  minutes , 

i n  7 con t rol segments . 

Load appl icat ion : Be fore applying load the frequency of  e longation 

r eadings was increased from one m i n ut e  to t en second i nter v a l s .  Load 

was app l i ed by in creasing  the vol tage to a predetermined v alue , 

b eginn i ng as one elongation read ing  was i n i t i ated , and be i n g  compl ete 

before the nex t read ing ( i . e .  w i thin  ten second s ) . Load was 

m aintained at this ini t i a l  value u n t i l  elongation rate had stab il ised 

( up to 1 00 min ut e s ) . Applied load s cov ered the range z e ro to 85  g ( the 

e quivalent of a f i ve vol t  change ) . 
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Tab l e  I :  Mov ement i n  the a pparatus 

L oad D ispl acement 

After load ing 

1 0 sec 6 0 sec 

1 7  7 . 9  7 . 9  

3 4  1 5 . 0 1 6 . 4 

5 1  1 8 . 6  20 . 2  

68 27 . 7  30 . 9  

85 34 . 0  37 . 8  

Units : Load = grammes 

Displ acement = �m 

After 

1 0 sec 

6 . 3  

1 2 . 6  

1 7 . 3 

23 . 9  

3 1 . 0  

unload ing 

60 sec 

7 . 3  

1 4 . 2  

1 9 . 2  

28 . 3 

35 . 3  

19 

5 



For each segmen t ,  an estimate was made o f  app l ied pressure ( load/area ) . 

Mean cro s s-se c t ional area was e s t imated from the segmen t wei ght and 

l ength ( measu red before the segment was placed i n  the chamber ) ,  

a ssumi ng a segment density  o f  one g/cm3 , as area = mass/( l ength x one ) . 

Load removal : The procedure was sim i l a r  to that for load appl icat ion . 

V ol ta g e  was rapi d l y  red uced to zero ( ov er 1 -2 second s ) . 

N itrogen trea tm ent : The elongat ion o f  growing segments which were 

l oaded and  unloaded con s i sted o f  mechani c a l  deformation super imposed on 

g rowth r a te .  S i nce I wi shed to know the time course of growth rate 

a lone som e mea n s  of est imat i ng the amount of mechan i cal d e formation was 

needed . In  som e  exper iment s , a fter load ing and unload ing of the 

s egmen t  i ncubat ed in aer a t ed bu ffe r ,  the solution was gassed wi th 

o x ygen- free n i t rogen , and sup p lementa r y  i l l um i nation of the segment 

stoppe d . (Prel iminary exper i ments had ind icated that reduction of 

g rowth rate with nitrogen t reatment was more rapid  without add it ional 

l ight ) . After  60-80 minutes elongat ion rate had fallen to a mean value 

of 0 . 9�m/minut e , i n  IAA-tr eated segments ; and to 0 . 6 �m/minute in 

s egments  incub ated witho ut IAA . Load was  appl ied and l ater  remov ed , as 

d escribed abov e .  The response observed in the n i trogen- treated segment 

was  assumed to be almost entirel y mechanical  ( si nce the growth rate was 

v ery l ow ) , and was used as  an estimate of  the mechani ca l  d eformation 

which occ urred when the growing segment was load ed. 

This app roach is the sam e , in principle , as that used to estimate the 

g rowth o f  Nit el l a  cel l s  ( Green et al . 1 97 1 ) or s egments of r ye 

coleo pt i le (Green and Cummi n s  1 974 ) in  response to turgor change . I n  

e ach of  those stud ies the r esponse o f  a non- growing  ( or s l owly growing )  

s e gment to  a change in  tur g or was measured , and compared with the 

respon se o f  a growing segment to the same c hange . The d i fference 

between the two re sponse s was inter preted as the response of  growth to 

the impo sed turgor change . 
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2 . 3 RESULTS 

Resu l ts of e x pe riments with segments i ncubated with and without IAA are  

d iscussed sepa r a tely ,  and  then com pared . With i n  each sect ion , res-

ponses of segmen t s  treated in aera ted buffe r or with  nitrogen are 

d iscussed separately .  In order to dete rmine the " growth" respon se 

a fter loa d ing or unload ing in growing segments , i t  was necessar y to 

e stimate the ex tent of mechanical d eformat ion whi ch was super imposed on 

growth . This was done by comparing  the response of growi n g  segments 

w ith that of non- growing  ( ni trogen-treated ) se gments . 

2 . 3 . 1 Segments incub ated without I AA 

Responses of n i trogen- treated segments  
Segments which  had  been treated wi th nitrogen were subj ected to  a range 

o f  app l ied load s .  Fig . 5 shows the resu l ts of one experiment , where 

change i n  leng th w as recorded in response to appl ication and remov a l  of  

a 34  g l o ad . [ This load  is equ i v alen t  to  a pressure of 7 . 8 g/mm2 ( or 

a pprox imatel y  0 . 76 bar ) , calculated on the estimated mean cross-

s ectional  area of the segment ] .  This  resul t  w i l l  be used as a mod e l  

f or discu ssion o f  resul ts of  the other ex per iment s .  

Respons e  after l o ad ing : Since the elong ation rate o f  t he segment 

b e fore load ing wa s low ( 0 . 5pm/minute ) ,  the ob served change  in length 

was largel y ind ependent of growth , and the respon se depend ed on the 

m echan i c a l  pro pe r t ies of the segment . F i g . 5 shows that  a fter load ing , 

there was a l arge  " instantaneous "  compress ion o f  the segment fol l owed 

by a more grad ua l approa ch towa rd s an equ i l ibr ium l ength . The 

i nstantaneous compress ion ( that o ccurr i ng in the f irst ten second s 

after load ing) i s  shown i n  Fig . 6 ( C ) , for expe r iments cov e r i n g  a r ange 

o f  appl ied pre s su res . F i g .  6 ( D ) shows " equi l ibrium" compress ion ( the 

maximum compre s s ion recorded ov er the t ime tha t load was a ppl ied ) . 

C ompre s s ion had reached a max imum ( or was not less than 9 3 %  of the 

m aximum record ed ) wi th i n  20 minutes a fter app l ication of load . 

Respon se after u n load ing : Fig . 5 ind i cates that on r emov al o f  the 

compressive load , a complete re v ersal of  the orig inal compres sion 
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occurred . The " instantaneous" recover y ( that occurring in  the first 

ten second s of the respon se ) i s  shown i n  Fig.  6 ( B) , for a l l  

e xperiments . The change in  length ( recovery)  a t  20 mi nutes after 

r emoving the load is shown i n  Fi g .  6 ( A ) . 

Rever sibilit y :  Compress ion of segments after l oad ing was compl etely  

recovered on  unload ing . This i s  i llustra ted in  Fig .  6 ,  where the 

c hange in length 20 minutes after unload ing ( A )  can be compared w i th 

the max imum compression after load ing ( D ) . However , resu l ts suggest 

that the t ime course of recovery is not simply a reversal of  the course 

o f  compr ession after loa d i n g . Wh i l e  the i n stantaneous recovery a fter 

unload ing  [Fi g .  6 (8 ) ] was not signi f i cant l y  d ifferent ( t  = 1 . 624 , 

p > 0. 05 ) from i nstantan eous com press ion a fter load ing [ F ig .  6 ( C ) ] ,  

the sub se quent i ncrease i n  length d id not reach an e qui l ibr i um ,  but  

r ather con t i nued i ncreas i n g . Th i s  was probably due to cont inuing 

( albeit s low) growth o f  the segments . 

Response of  growing se gments 

F i g .  7 shows the change in length record ed in a growing segment i n  

respon se t o  appl icat ion and remov al of a 3 4  g load . The same segment 

was later treated with n i t rogen and again loaded ( Fig .  5 ) . 

Respon se after load ing : F i g .  7 shows that al though the segment was 

i n it i al l y  compre ssed , there was subse quentl y  a recovery with growth . 

The ini t i a l  compression a ppears s i mi l ar to that ob served after load ing 

in the n i trogen-treated segment ( Fi g .  5 ) . The i nstantaneous 

c ompress ion is shown in  [ Fi g .  8 ( 8) ] , with resu l ts for other exper iments 

for the range of  appl ied pressur e s . The compress ion observed up to the 

t ime when  leng th started i ncreas i n g  agai n  i s  shown in Fi g .  8 ( C ) , w i th 

r esults for all other exper iment s .  

Respon se after un load in g : Fig . 7 ind icates that on remov al of  the load 

compress ion was recover ed , and that  thi s  recovery was super imposed on 

a n  add i t i onal res ponse . The separate courses of the two responses were 

not immed iatel y apparent ; sepa r a ti on of  growth from the total res ponse 

is d iscus sed in the nex t section . Instantaneous recov ery is shown in  

F ig. 8 ( A) , w i th resu l ts of  the  other e x per iments with d i fferent applied 
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pressu r e s . Al tho ugh I might ex pect the instantaneous recovery after 

unload i n g  to d iffer  from the instantaneous compress ion a fter load ing 

[ Fig . 8 ( 8) ]  ( because of the e ffect o f  growth ) ,  compari son o f  the 

respon ses  ( pa i red ) suggested that they were not significantly d i fferent 

( t  = 1 . 92 9 ,  p>0 . 05 ) .  

Proced ure for d etermin i ng the growth response 

The chan g e  in len g th after load ing and unload ing in a growi ng  segment 

( Fig . 7 )  repre s ents phys ical d e formati on supe r imposed on elon gat ion due 

to growth . The growth response alone was requ i red , and this was 

obtained as follows . 

Respon se  after l oad ing : 

loading  in  the growing 

Resu l ts suggested that compress ion a fter 

segments was the same as in n itrogen-treated 

segmen t s . Thi s  was shown by these obse r v ations . 

( 1 )  The i nstantaneous compress ion in growing segments [ F i g .  8 ( 8 ) ]  was 

not s igni fican t l y  d ifferent ( t  = 1 . 84 1 ,  p > 0 . 05 )  from that o f  

n i trog en-treated segmen ts [F i g .  6 ( C ) ] in  compari son o f  resu l ts ( pa i red ) 

over the range o f  load s tested . 

( 2 )  The compress ion observed u p  to the t ime when l ength s tarted 

i ncrea s i n g  again  in growi n g  segments [ F i g .  8 ( C ) ] was not signi f icant l y  

d iffe r e n t  (t  = 0 . 889 , p > 0 . 20 )  from the max imum compression of  

ni trogen-treated segments [ F i g .  6 ( 0 ) ] ,  i n  compa r i son o f  resu l ts 

( paired ) over the range o f  loa d s  tested . Growth responses  we re 

therefore estimated by subtract i n g  from the observed response of the 

g rowi n g  s egment , the com pression  r ecord ed when the load ing procedure 

was repea ted after the segment had been nitrogen- treated . The resu l t  

o f  su b t r acting t h e  data of  Fig .  5 for load ing , from tha t  o f  Fi g .  1 for 

load in g , i s  shown in F i g . 9 ( 0 ) .  Th i s  resu l t  suggests that growth rate 

was rap i d l y  red u c ed to a low value  after l oad ing , a nd then s lowl y  

recovered . Th i s  observat ion was confirmed in man y o f  the resu l ts o f  

the other  exper i m ents , e x ampl es of  wh ich  are i nc l ud e:d i n  Fig . 9 .  

H owever , at h i g her load s ( 5 1  g and greater ) " growth" r ate was not 

i mmed i a t ely red uced ,  but  instead decl ined gradua l l y  over 1 0-20 minutes . 

This m i g ht be a real  ( growth) response , or might i nd icate  that the 

n i trog en-treat ed segments were  compressed more rapidly than the growi ng 

segmen t s . 
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In man y exper iments the growi n g  segment was load ed and unload ed , but 

was not subsequently  n i trogen- treated for the load ing procedure to be 

repeated . An a l ternat i v e  procedure was used for est imat i ng the growth 

r espon se i n  these expe riments . I f  compress ion i n  the growing segment 

was the s a me as that in th e n i trogen-treated segment , then it would 

a pproach e qui l i b r i um in  the same way.  In  nitrogen-treated segments 

compr e s s i on had reached maximum ( or was with i n  9 3 %  of the max imum 

recorded v alue ) at 10 mi nutes after load ing ( for loads of 1 8g or less ) ; 

a t  1 5  m i n utes { for loads  o f  34g ) ; or at  20 minutes ( for load s of  

5 1 -85 g ) . It fol lows that  at  the same t imes in  g rowing segments ,  

c ompr e s s ion wou l d  be complete or close to e qui l ibr ium .  Therefore , at 

l onger t i mes the response in  the growing segments woul d b e  ( almos t )  

entir e l y  " growth " .  I t  i s  thi s  part of the respon se whi ch was used i n  

furthe r  a n alys i s , in  a l l  ca s e s .  

The s econd app roach t o  estimat i ng the growth response was the preferred 

m ethod . I t  had a major ad v antage  in obv iating  the need for n itrogen 

t reatmen t ,  thu s represent ing a s a v ing in  resource s and time . 

Respon s e  after un load i n g :  Re su l ts sugg ested that compress ion a fter 

load i n g  was recov ered after unload ing ( ex periments with n itrogentreated 

segmen t s , page 2 1 ) .  I as sume that the t ime course of recov ery reversed 

the cour s e  of compress ion . There is no good evi d ence for this 

assum p t i on , however , s i nce the course of recove r y  of compress ion in  

n i trog en - trea t ed segments ( F i g .  5 )  was ob scured by the  smal l  amount of  

growth o ccurri ng . 

u nload i n g  greater  

On the  basis  of  this 

than tho se gi ven in 

assumpt ion , at 

the p revious  

t imes a fter 

secti on , the 

response  o f  growing segments woul d  exc l ud e  most o f  the recov ery from 

compre s s i on and thus be almost enti rely " g rowth " . The magnitud e of  the 

growth r e sponse was  est imated by subtracting the max imum value of 

compr e s s ion after load ing , from the observed response after unload ing . 

E x ampl es of the growth respon ses obta i ned by this  method are includ ed 

i n  Fi g .  1 2 .  Response s are tho se of the f i v e  segments who se responses 

a fter load ing are shown in Fig .  9.  The v alue of change in  length ( for 

the growth respon se ) at 1 0  ( or 1 5 )  minutes after unload ing is a l so 

g iven . 



30 

Analys i s  of the g rowth response 

The ana l ys is of C o sgrov e ( 1 98 1 ) pred icts that the turgor pressu re , and 

therefore  the growth rate , wi l l  show an e x ponent ial  approach to a new 

stead y- state value a fter growth rate has been changed from its or i g ina l 

steady- state . 

For the case where growth rate has been red uced from steady-state to a 

lower v a l ue ( as happens when load is app l ied ) , this pred iction can be 

expressed  as 

dL/d t  = ro + ( rs -r0 ) [ 1 - e x p ( -t/tc. ) ]  

where L = length 

rs = new stead y-state elongation rate 

ro = elongation rate at t= O 

tc:  = time constant 

This equat ion is shown graphical l y  in Fi g .  1 0 .  
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F i g .  1 0 :  Pred icted response of  elongation rate . 

(7 ) 

The e qu a tion is based on two simpl ifying assumptions . One is that 

d iameter  is  not i n creas ing , and so "growth rate" ( 1 /V ) ( dV /d t )  is equal  

to  ( 1  /L ) (dL/dt) . The second is  that 1 /L is  constant , and i f  L= 1 then 



3 1  

( 1 /L ) ( dL/dt)  i s  equal to dL/dt . These are both reasonab le  assumptions 

for the se gments of lupin hypocotyl used here , since segment rad ius 

i ncrea ses only s l owly in compar i son with increase in len g th ( Per ley 

et al . 1 975 ) ,  and  measu rements were mad e over short times so that L 

i ncreased  at most by about 5 % .  

Integration o f  equation (7 ) gives 

( 8 )  

which is the pred iction of  the co urse of change in length a s  a function 

o f  time . 

To test that growth respon ses after load ing were of  the pred icted form , 

the fit o f  each response to equat ion (8 ) was est imated us ing a 

non- l i near lea s t  squares proced ure ( Numerical  Algorithms Group 1 982 ) . 

I n  a l l  cases , a good fit was found ; Fig . 1 1 (0 )  shows the response of  

Fig .  7 replotted , with  the fitted curve  also shown . E x ampl es of 

r esponse s at d ifferent loads  ( tho se shown in Fi g .  9 ) , a r e  al so includ ed 

i n  Fig .  1 1 .  

The f i t ted cur v es give values for the new stead y-state rate ( r5 ) ,  the 

i nitia l r a te ( r0 ) ,  and the time con stant ( tc. ) which  are shown in Table 

I I ,  as  a function o f  appl ied pressure . V a l ues of  tc hav e  been used to 

c alcu l a t e  hal f- t imes , accord ing to 

hal f- time ( t,1,) = tc . l n2 

= 0 . 69 3  tc ( 9 )  

and these  are a l so given i n  Tab le  I I .  Si nce the ha l f- time increased 

with load , val u e s  of hal f-time at l oad s of 1 7- 1 8g were used for 

compa r i son with results of IAA- treated segments . The mean hal f-time at 

this load was 1 1 . 2 minutes ,  wi th  stand ard error 1 . 1 minutes . 

A poss i b l e  exp l anation of  the increase i n  t� with i ncreasing load i s  

that the part o f  the observ ed respon se used in ana l ys i s  sti l l  includ ed 

a signi f i c ant com press ion component . Th i s  would have the e ffect o f  
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Table I I : Parameter val ues for the growth responses . 

Load Appl ied Load appl ied Load removed 

pressure rs ro tc. t ,,z. rs ro tc. t ,/:z 

8 . 2 1 . 8 1 . 7 -2 . 3  4 . 8 3 . 3 1 . 3 5 . 3  1 0 . 3  7 . 2 

9 . 0 1 . 8 1 . 7 -2 . 0  4 . 5 3 . 1 1 . 9 7 . 3  5 .  1 3 . 5  

9 . 0 2 . 0  1 . 2 -2 . 0  3 . 7 2 . 6  1 . 5 1 0 . 0  2 . 5  1 . 7 

1 7 .7 3 . 8 1 . 3 -0 . 6  1 4 . 7  1 0 . 2  2 . 3 9 . 9  6 . 4  4 . 4 

1 7 .7  4 . 0 1 . 4 -0 . 6  1 6 . 9  1 1 . 7 2 . 2 1 5 . 7  4 . 6  3 . 2  

1 7 . 7  4 .  1 1 . 0 -0 . 7  1 5 . 4 1 0 . 7  1 . 7 6 . 6  7 . 8  5 . 4  

1 7 . 9  4 . 3 1 . 0 -0 . 3 2 1 . 5  1 4 . 9  2 . 8  1 2 . 9  4 . 4  3 . 0  

1 7 . 5  4 . 6 1 . 4 -0 . 6  1 2 . 2  8 . 5  2 . 5  1 6 . 8 3 . 6  2 . 5  
3 3 . 8  7 . 6  1 . 2 -0 . 3 5 4 . 1 37 . 4 2 . 0  1 2 . 3  8 . 2  5 . 7  

3 3 . 8  8 . 0  *2 . 6  -0 . 1 245 1 70 2 . 3 1 2 .  1 7 . 6  5 . 3 

36 .2 8 . 5 0 . 8  -0 . 4  28 . 6  1 9 . 8  2 . 6  9 . 5  1 0 . 5  7 . 3  

5 1 . 2 1 0 . 3  * 1 • 1 -0 . 1 1 36 94 . 4  1 . 5 9 . 4  1 2 . 3 8 . 5  

5 1 . 9  1 0 . 7  * 3 . 7  -0 . 4  1 65 1 1 4 ***  

5 1 . 2 1 1 . 3 1 . 3 -0 . 4  30 . 5  2 1 . 1  2 . 8  30 . 8  5 . 3  3 . 7 

5 1 . 5  1 1  • 3 *2 . 0  -0 . 1 267 1 85 2 . 6  1 1 . 0 7 .  1 5 . 0 

68 . 3  1 6 . 0  * *  1 . 2 9 . 7 1 0 . 6  7 . 3  

6 8 .7 1 6 .  1 * *  1 . 3  2 . 6  2 7 . 0  1 8 . 7  

8 5 . 0 1 6 . 6 * *  

85 . 0  1 9 . 7  **  1 . 2 8 . 6  20 . 4  1 4 .  1 

U nits are : Load = grammes 

Applied pressu re = g/rnrn l. 

rs , r0 = }Jm/minutes 

tc. , t'/, = min utes 

* see text pa g e  34 

* *  load ing responses not fi tted 

* * * sat i s f actory  f i t to e quation ( 1 1 )  not ob ta ined 
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slowing the appro ach of the obse r v ed response towa rds ste ad y rate . The 

actua l g rowth response m i ght have reached stead y rate much sooner , and 

would therefore have a shorter ha l f-time than suggested by these 

r esul ts .  Giv en this e x p l anat ion , values of hal f-time at low l oad s 

might be the most reliab l e  ind ication of the hal f- time o f  the growth 

r espon se . 

The fit  of responses at load s  of  68 g or 85 g was not tested , since it  

seemed l ikely that  the a pparent co urse o f  approach to  the very l ow 

steady r a te ( less than 0 . 3�m/m inute , a t  90-1 20 minutes after load ing)  

would be signi f i c antly a f fected by  con t i nuing compress i on ( which was 

0 . 1�m/minute on average ov er the per i od 20-50 minutes a fter loading in 

n i trog en-treated  segmen ts at the same load s ) . 

Values o f  stead y rate given by the fitted curv es ( rs in Tab le I I )  are 

p lotted as a func t ion o f  a ppl ied p ressure in Fi g .  1 6 '  with the 

e xception  of  tho se values marked ( * ) . These v al ues d iffe red from 

v alue s  o f  rate c a l culat ed from the  final 3 0  minutes of the observed 

r espon se by mor e  than 1 0 0 % ,  suggesting that stead y rate had not been 

r eached in the time of measurement . Th is  m ight be the case , but it  is 

a l so possible that the cou r se of  approach to steady rate was affected 

b y  cont i n uing compress ion . The v alues of  stead y rate estimated from 

the fi n a l  30 min utes of the obser v ed respon se in these experiments and 

t hose at higher l oads ( 6 8 g  and 8 5 g) have  been shown i n  F i g .  1 6 ,  but 

were not includ ed in the re gress ion of stead y rate on app l ied pressure . 

For the case whe r e  growth rate is  i ncreased from stead y-state to a 

h igher v a lue ( as happens  when load is  remov ed ) , the pred ic tion for the 

course o f  subsequent ra te adjustment ( Cosgrove 1 98 1 ) can be ex pressed 

a s  

d L/dt = r 0 + ( r0 - r  5 )  [ e x p( - t/tc. )  - 1 ]  ( 1 0 )  

which is  shown graphica l l y  in F i g . 1 0 ,  a nd which  is  integrated to g ive 

( 1 1  ) 
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To test that growth respon ses after  unload ing we re of this  pred ic ted 

form, th e fit of e ach response to equat.i on ( 1 1 )  was est imated as 

d escri bed for the respon ses after load ing . With one exception , g ood 

f i t  to equ at ion ( 1 1 )  wa s found . F ig .  1 2 (D )  shows the respon se of 

F ig. 7 replotted with the fitted curve al so shown . Other exampl es are 

a l so shown these are the responses of the same segments whose 

r espon ses after load ing are  shown in Fi g .  1 1 .  

The fitted curves give values of  r5 , r0 and t c  wh i ch are shown i n  Tab le  

I I , with  v alues for  hal f-times calcul ated from tc  [ equa tion ( 9 ) ] .  

Half- times after unl oad ing were lower than those after load ing - the 

mean hal f-time for load s of 1 7- 1 8 g  was 3 . 7  m inute s .  I f  the reduction  

in  hal f- time represe n t s  a rea l  change in  the hal f-time of  the growth 

response , then it  could occur through a change in any of the parameters 

L ,  Y.  a-, L'.IT, 1:' ,  or 6 d u ring the time that load was appl ied . 

Higher values of  hal f- t ime a t  higher load s ( Table I I )  m i ght be 

e x plained  in the same wa y as for the responses after load ing . 

2 . 3 . 2  I AA-treated se gments 

Resu l ts of ex periment s  with segments incubated wi thout IAA suggest that 

t he method of app l ying load wi l l  cause sudden changes in  growth rate 

a nd tha t  the sub se quent responses are con si s t ent  with pred iction s .  The 

primar y  objec t i v e  of the stud y has been s a t i s f i ed . The second ar y aim 

was to compare re sponse s of  segments incubated w i th and w i thout I A A .  

I n  thi s  s ection , r esu l ts of  ex per iments w i th I AA-trea ted segments are 

presented . 

The responses of  IAA-treated segments have been anal ysed i n  the s ame 

way as those of non-treated segments . I n  gene r a l  the y support 

c onclu s i o n s  alread y mad e about the method . A compa rison o f  the results 

o f  IAA- treated and non- trea ted segments is  mad e in  the nex t section . 

Respon s e s  of nitrogen- treated segments 

S egments which had been treated w i th nitrogen were subjected to a range 

of app l ied load s .  Respon ses were simi l a r  to those of segments 
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i ncubated wi thout IAA ( Fi g .  5 ) , i n  that a l arge instantaneous comp

r ession was fol lowed by a more grad ual a pproach toward s an equi l ib r i um 

l ength . 

The instantaneous compress ion ( in the fi r st ten second s after load i n g )  

i s  shown i n  Fi g .  1 3 ( C ) , a s  a function of  appl ied pressure , for all  

exper iments . The instantaneous recover y after unload ing is  shown in  

Fig .  1 3 ( 8) .  

Values of  max imum compress ion after load ing are shown i n  F i g . 1 3 (D ) . 

A s  with s egmen t s  i ncub ated wi thout !AA , a fter unloading the segment 

l ength d i d  not reach equ i l ibrium but rather con t i n ued i ncreas ing , 

presumab l y  because  the s egment was sti l l  growing slowl y .  The change in  

l ength at 20 mi nutes after unload ing i s  shown in  Fi g .  1 3 ( A ) , to 

i nd icate that by this time the compress ion which occurred a fter load ing 

[ Fig . 1 3  (D ) ]  had bee n  recov ered . I n s tantaneous compress ion a fter 

l oading was recov ered " i n stantaneous l y" after unload ing , s ince there 

was no s i gnificant  d ifference ( t  = 0 . 548 , p > 0 . 5 )  between the 

r espon ses shown in Fig .  1 3 ( 8 a nd C)  ( pa ired responses were compared ) .  

Responses of g rowing segments 

The respon ses o f  g rowin g  segments a fter load ing and unload ing were 

s imil ar in form to tho se of segments incubated wi thout IAA ( F i g .  7 ) . 

After load ing segments were ini t i a l ly compressed , and l ater recov ered . 

The instantaneous compress ion ( in the first  ten second s )  i s  shown i n  

F ig. 1 4 ( 8) ,  for exper iments cover i n g  a range of  app l ied pressu res . The 

compress ion reco rded up to the t ime when l ength started i ncreasing  

a gain is  shown in  Fig .  1 4 ( C ) . 

The instantaneous recovery a fter unload ing [ F i g .  1 4 ( A ) ]  was 

s i gni ficantly g re ater ( t  = 2 . 8 1 6 ,  p < 0 . 02 )  than the i nstantaneous 

compress ion after load ing  [Fi g .  1 4 ( C ) ] ( pa i red responses compared ) .  

This pre sumab l y  reflec t s  the e ffect of growth . 

Determination o f  the growth response 

T o  sepa rate  the mechanical  respon se  from the response of  growth a fter 

l oad ing a nd unl oad ing , the same method s were used as for segments 
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n i trogen , the growth response was estimated by subtracting the l atter 

r esponse from the former respon se , assum i n g  that the compress ion i n  the 

n i trogen-treated segment was the same as that in the growing segment . 

S i nce v a l ues of  maximum compression in  the n i trogen- treated s egment  

[ Fi g .  1 3 (D ) ]  were not  sign i f i cantl y  d ifferent ( t  = 1 . 649 , p > 0 . 1 0 )  from 

v alues o f  compre ssion up  to the time when l ength started i ncreas ing  

a gain in  g rowi ng segment s [Fi g .  1 4 ( C ) ] ,  t h i s  assumpt ion a ppeared 

j usti fied . Howe ver , the instant aneous compre ss ion in  n i trogen- treated 

[ Fig . 1 3 (B ) ] and growing [ F ig . 1 4 ( B) ) ]  segments was not the same - pa ired 

comparisons  ind icated s i g ni f icantly  greater ( t  = 2 . 484 , p < 0 . 05 )  comp

r ession i n  the latter . 

The resu l ts o f  subtr a c t i ng the response s  of  n i tr ogen- treated segments  

f rom the r esponse s o f  growi ng se gments were  s imi l a r  to the resu l ts for 

n on-I AA-treated segments , i n  that· growth rate was rapi d l y  reduced to a 

l ow value , from which i t  subse quentl y  recovered . The one exce pt ion was 

the single  experi ment at  a load of  5 1 g ,  where rate apparently d ecl ined 

over a pe r iod of  1 5  minutes after load ing . 

I f  compression i n  the g rowing segment fol lowed the same course as i n  

the nitrogen-tr eated se gment , then it  would b e  compl ete ( or l argely 

compl ete ) at the same time .  I n  n i trogen-treat ed segments , compress ion 

h ad reached a max imum ( or was not l ess than 96% of the max imum recorded 

compress ion) at 1 0  mi n utes , for l oad s o f  1 8g or l ess ; at 1 5  m i nutes , 

for load s o f  34 g ;  and a t  20 minute s , for load s o f  5 1 -68 g .  The re fore , 

that pa r t  o f  the re sponse i n  growi n g  segments a fter these t imes was 

considered  to be "g rowth " response , and wa s used in further analys i s . 

Responses  after unload ing  were n o t  anal ysed , s i nce in  most cases 

e longat i o n  rate d id not stabil ise but instead con t inued decreasing . A 

s imilar d ecline i n  rate was also s e en in con trol segments ( not  load ed ) 

over the s ame per i od . 
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Analys i s  o f  the growth response 

Response s after load ing have been f i tted to equat ion (8 ) .  The fit  was 

good in a l l  cases ; Fig . 1 5  shows exampl es of responses w i th fitted 

c urves a l so in c l  ud ed .  

Fitted val ues of the new stead y-sta te rate ( r� ) , the i n i t i a l  rate ( r0 ) , 

and the t i me constant C tc )  are g i v en in Tab l e  I I I , with hal f-times 

calcu l a t ed from tc [ equa t i on ( 9 ) ] .  The resu l ts at load s of 1 7- 1 8 g  were 

used for compar i son with the resu l ts of segments incubated without IAA.  

The mean hal f- time o f  those resu l ts was 9 . 1 minutes ,  with stand ard 

e rror 1 . 2 minutes . Val ues o f  new stead y rate ( r5 )  are shown in F i g .  1 6  

a s  a func t i on of appl ied pressure . 

2 . 3 . 3 Comparison of  responses of IAA-treated and non-treated segments 

Mechani ca l  pro pe rties 

The mechanical properti e s  of IAA -treated and non-treated segments 

d iffered . Thi s  was seen in comp a r i son o f  compre ssion a fter load ing . 

I n  nitrogen-treated se gments , the slope s  of regression l ines o f  

i nstantan eous com press ion  on app l i ed pressure [ F i gs .  6 ( C )  and 1 3 ( C ) ] , 

a nd of max imum compress ion on appl ied pressure [ Figs . 6 (0 )  and 1 3 ( 0 ) ] ,  

were s i g n i f icant l y  greater  in IAA -trea ted segments . [ For i nstantaneous 

c ompres s i on ,  t = 4 . 32 9 , p < 0 . 00 1 ; for max imum compression , t = 5 . 5 1 9 ,  

p < 0 . 00 1 . The regress ion coeffic ients were compared us i ng the method 

o f  Ba i l e y  ( 1 98 1  ) ] .  As expected , i n  g rowing segments the slopes of the 

r egress i o n  of i nstantaneous compression on appl ied pressure [ F i g s . 8 ( 8 )  

a nd 1 4 ( 8) ] ,  and  o f  m a x imum compres s i on on appl ied pressure [ F i gs . 8 ( C )  

a nd 1 4 ( C ) ] ,  were s i g n i ficant l y  greater i n  IAA-treated segments . ( For 

i nstantaneous compres s i on , t = 7 . 1 1 6 ,  p < 0 .  00 1 ;  for max imum 

c ompr ess ion , t = 8 . 445 , p < 0 . 00 1 ) .  

Growth response s : 

( 1 )  Hal f-ti mes : The hal f- times of the growth rate tran s i ents a fter 

l oading ( for loads of 1 7- 1 8g) were lower in IAA-treated segments , but 

not signi f i cant l y  so ( t  = 1 . 327 , p > 0 . 20 ) . 

( 2 )  The s lope o f  the plot  o f  stead y rate against a ppl ied pressure i s  

g reater f o r  IAA- treated segmen ts than for segments incub ated wi thout 
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Tab l e  III : Parameter v alues for growth respon ses 

( IAA-treated se gments ) 

L oad A p p l ied rs ro 
pressure 

4 . 3 1 . 0 3 . 5  0 . 3  

9 . 4 1 . 9 5 . 0  - 1 . 1 

1 7 . 5  3 . 6  4 . 2  -0 . 8  

1 7 . 7  3 . 7  2 . 7  - 1 . 4  

1 7 . 5  3 . 9 4 . 2  -2 . 0  

1 7 . 3  4 . 0 4 . 7  -0 . 3  

1 7 . 5  4 . 0 3 . 5 - 1 . 7  

3 4 . 5  7 . 6 2 . 6  - 1 . 0  

3 4 . 5  7 . 6 3 . 4  -0 . 9  

5 1 . 2  1 0 . 7 2 . 9  -0 . 8  

68 . 5  1 5 . 4  1 . 3 -0 . 5  

Units : Load = grammes  

Appl ied pressure = g/mmL 

r5 , r0 = urn/minute 

tc. , tVl. = minutes 

tc. tv.z. 

9 . 3 6 . 4  

1 2 . 0 8 . 3  

1 4 . 7 1 0 . 2 

8 . 6  6 . 0 

8 . 7 6 .  1 

1 8 . 8  1 3 .  1 

1 1  . 2 7 . 8  

1 6 . 7  1 1 . 6 

30 . 3  2 1 . 0  

29 . 9  20 . 7  

37 . 9  26 . 3  
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IAA ( F i g .  1 6 ) . Si nce there are no val ues for I AA-treated segments at 

h i gher pr essures , and because ther e  is  some doubt about the v alues for 

n on-I A A -trea t ed segments at h i gh pressures ( page 3 4 ) ,  it i s  not 

possi b l e  to make a compa r i son o f  the X- intercept for the two 

treatmen ts .  However , i f  the relation sh i p  between stead y rate and 

a pplied pressu re i s  l inear  over the whole range of  appl ied pressures , 

e xtra po l ation o f  regress i on l ines suggests that the X-intercept m i ght 

be the same for the two treatments .  

Th ese resu l ts suggest that L ( hyd raul ic  conduc t i v ity) or � ( ex tens

ib i l it y )  has been increased by IAA treatment , but that Y ( yield 

threshold ) has remained unchang ed . 

2 . 4  D ISCUSSION 

The f i rst obj ective of this study was to establ ish a method which would 

e n able the growth ( elong at ion ) o f  lupin  hypoco tyl segments to be 

suddenl y  chang ed from steady state , and the growth rate to be 

s imu l taneous l y  measured . The appl ied force techni que meets these 

r e qui rements . I n  add it i on , the method y i elds resu l ts which are 

consistent with tho se obtai ned by o ther investigator s .  

Growth respo n s e s  are of  the for m  pred icted by Cosgrove ( 1 98 1 ) and shown 

t o  occur i n  the stud ies o f  Green and Cummi n s  ( 1 97 4 ) ,  and Cosgrov e and 

G reen ( 1 981 ) .  Responses of  non-growi n g  ( ni trogen- treated ) segments are 

of the form expected from the resu l ts of  Ferrier and Dainty  ( 1 977 ) for 

compress ive load ing of non-growing onion  epiderm is . Such a response 

d epend s on tissue r igid it y ,  whi c h  is a fun c t ion of cell  wal l  e l asti c ity  

a nd tu rgor pressure (Fa l k  et a l . 1 958 ) ;  and a l so refl ects shr i nkage as 

a conse que nce of water eff l ux due to the i n creased hydrosta t i c  pressure 

( Ferr i e r  and D a i nty 1 977 ) .  The effect  of IAA on responses o f  

non-growing segments ( in increasing the amount o f  compress i on which 

occurs a fter load ing) m i ght then be due to  an increase in elastic 

compl iance ( st r a i n/stress) o f  the cel l  wall s , or to red uced turgor 

p ressure . Th i s  is consis tent w i th observ ation s  of increases i n  elastic  

compl i ance aft e r  aux in t reatm ent , in other mater i a l s  ( Cl e l and 1 97 1 ) ;  

a nd wi th the red uction i n  turgor pressure  seen i n  IAA-treated 

hypocotyls  of so ybean seed l ings ( Boyer and Wu 1 978 ) . 
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The secondary a i m  was to use resu l ts to d eterm ine the e ffect of IAA on 

g rowth , in  term s  of the pa rameters of the biophys ical mod el of Lockhart 

( 1 965 ) and using  the cri teria deta i l ed by  Cosgrove ( 1 98 1 ) .  Thi s  

r equi res that three  quanti ties b e  measured : ?5 ( the s tead y-state 

t urgor p r essure ) ;  v� ( the stead y-state growth rate ) ; and the 

h al f- t i me for a pproac h o f  growth rate to s teady-state , after rate  has 

been changed . I have measured two of these : v5 , as a func tion o f  

a pplied pressu re ; and the hal f- time . My resu l ts suggest tha t  there i s  

n o  signi f icant d i f ference between hal f- times o f  respon ses of  segments 

treated w i th or w i thout IAA .  A l so ,  the s lope of  the curve of � 

a gainst appl ied pressure  i s  steeper for IAA-trea ted segments than for 

s egment s  incub ated wi thout IAA . In  terms of  the ana l ys i s  presented by 

Cosgrov e ( 1 98 1  ) ,  these two results suggest that i n  I AA-treated 

segments ,  either L ( the hydraul i c  conductiv i t y ) , or � ( extensib i l ity ) , 

i s  higher than i n  segments not treat ed w i th IAA . These t wo 

a l ternat i ves could  be d is t i ngui shed by measuring ?5 • 

Some qual ifi c a t i on of  this  summary o f  conclusion s  i s  n e cessary .  

F irst l y , it i s  not  obvious how appl ied pressure may be interpreted i n  

t erms of  the ana l ys is of  Cosgrove ( 1 98 1  ) .  A poss ibl e e x pl anat ion o f  

t h e  rel at i onsh i p  i s  as fol lows . F i rstl y ,  an app l ied external pressure 

w i ll increase the hydro st atic pre ssure in ( cel l s  o f) the s egment 

( Ferr i e r  and D a i nty 1 977 ) .  I n  terms o f  equat ion s  ( 1 ) and ( 2 ) this 

would result  in an increase in ( 1 /V0 ) ( dV0 /dt)  and a reduction in 

( 1 /V ) ( dV/d t ) . M y  resul ts which su ggest an immed iate red uc tion in 

o b served growth rate ( 1 /V ) ( dV /dt) a fter load ing are consi stent w i th 

t h is pred iction . Turgor pressu re  woul d  s ubsequently  d ecrease , and 

( 1 /V0 ) / ( dV0 / d t )  decrease wh i l e  the ob served g rowth rate ( 1 /V ) ( dV /d t )  

i ncreased ( Cosg rove 1 98 1 ) ,  as seen i n  my expe r iments . A second e ffec t  

o f  appl ied pressu re  i s  t o  reduce t h e  stres s  ( in t h e  longitud inal wa l l s  

o f  cel l s  o f  the segment ) which i s  acti n g  t o  dri v e  l ong itud inal 

e x tension . Th i s  stress a r i ses from the ac tion of  turgor pressure on 

the cel l wall ( N obel 1 97 4 ) .  Th i s  effect of  appl ied pressure is then 

v iewed as equ i v al ent in  e ffect to a reduct ion in turgor pressure , i n  

t erms of  e ffects  o n  stress  in the long itud inal  wa l l s .  [ H owever , i t  i s  

l ikel y  that app l i ed pre s sure wi l l  have a greater e ffect than an 

e quival ent red u c t ion in turgor pressure ( Ferr i er and Dainty 1 978 ) ] . 
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be 

an  

o smoticum) . F r om a qual itat i v e  v iewp o i n t , then , increas ing  app l ied 

p ressure is the same as reducing the ex ternal water potent i a l . The 

s lope of the rel at i on shi p between v5 and a pp l ied pressure i s  then 

qual itat i vely equ i v al ent to the ( - ) slope of a plot o f  v5 against  

e x ternal  water po tential , and i s  thus a measure of  L . � / ( L+� )  ( Cosg rove 

1 98 1 ) .  The qua n t itative  relation ship between a ppl ied p ressure and 

e x tern a l  wate r po tential  need not be estab l i shed , since a l l  that i s  
. 

r equired i s  to com pare v5 i n  IAA- treated a nd non- treated segments  

a cross a r ange of  a pplied pr�res . 

The second point concern s the rel at ionsh i p  o f  the b iophys i c a l  mod e l  to 

l upin hypocotyl s egments . If the epid erm i s  ( wh ich has a cutic l e , and 

s tomata ) is the m ajor path for water uptake into the segment ,  and i f  i t  

provides  the l im i ting res i stance t o  flow i n  that path , then the segment 

c an be regarded as analogous with a s ingle  cel l .  The model g iven by  

e quation ( 3 )  wi l l  then a pply ,  with  the hyd raul ic  conduc t i v it y  ( L )  that 

o f  the epidermi s . If the epiderm is  is not the maj or path for water 

e n try ( i . e .  water  ent r y  is mai n l y  through the c ut e nd s of the 

s e gment ) ,  then the mod ified form of t he model , which acounts for 

d istributed res i s tance to water flow ( Co sg rove 1 98 1 ) ,  w i l l  app l y .  The 

r ate of up take o f  water for growth is governed by the rate of d iffu sion 

t hrough the tis su e , and L in the d i agnost i c  scheme of Cos g rove ( 1 98 1 ) 

i s  repl ac ed by D ( the t i ssue free  energy d i ffus i v ity o f  water) . S ince 

the path of wate r  u ptake in lupi n hypocotyl  segments  is not known , i t  

i s  not clear  whi c h  form o f  the mod el will  app l y .  

Whi l e  I canno t  d istingu i sh whether IAA a ffects L ( or D )  o r  0 ,  Penny 

( 1 977 ) has shown that the conductivity  o f  the e piderm i s  o f  lupin  

h ypocoty l s  could  be increa sed ( by ether- d ipping , which remov es  some of  

the cut i c l e )  wi thout an i n crease in  elong at ion rat e .  I f  the  epid erm i s  

i s  the major pathway for water flow into t h e  segment , then this  resu l t  

suggests that an  I AA-ind uced increase i n  growth rate could not be 

c aused by  an inc r e a s e  in conductiv ity of tha t  barr ier . If this  is  the 

c a se ,  then my r e su l ts su ggest that IAA h as acted through i ncreas i ng 

e x ten s i b i l ity . H owever , if the major path for water entry  i s  through 
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the cut end s  of  the segment then the poss i b i l ity remains  that IAA c ould 

cause an i ncrease in rate through an effect on t i ssue  free energy 

d iffusiv ity  ( D ) . In  other case s ,  reports of  aux in- induced e ffects on 

conduct i vity in  growi ng t issues a re con fl icting . For e x ampl e , Dowl er 

et al . ( 1 974 ) have shown that IAA d id not increase the conducti v ity o f  

pea stem segments , whi l e  Boyer a n d  Wu ( 1 978 ) have suggested that aux in 

increased both hyd raul ic conduc t i v ity ( of the path for wa ter flow 

radial l y  outward s from the xyl em)  and e x tensib i l ity i n  soybean 

seedl ing s .  However ,  Cosgrove ( 1 98 1 ) has a rgued ins tead that the 

resul ts o f  Boyer and Wu ( 1 978 ) i nd icat ed that the effe c t  was mai n l y  on 

extensib i l ity , s i nce 

Aux in- induced e ffec t  

Cummi ns  ( 1 974 ) , who 

tu rgor pressure a pparentl y  d ecreased . 

on exten s i b i l i t y  has been suggested by Green and 

measured the elongation o f  segments of r ye 

coleopti l e  in response to s tep-changes in  external  water potential . 

I hav e  s u ggested that i t  i s  nec e s s a ry to measure the steady-state 

turgor p r essure ( P5 )  in  order to  d istingui sh between the t wo 

a l terna t i ve pos s ible mechanism s  o f  IAA a ction ( L or D  v s .  0 ) . Method s 

for measu r ing turgor pressure are d iscussed by Cosgrove ( 1 98 1 ) .  A more 

d irect a pproach would be to measure  L ( or D ) . I n  pri n c iple  the 

a nalys i s  o f  Fe rr i er and Daint y  ( 1 977 , 1 978 ) could be used with the 

r esul ts ( for com press ion of nitrogen- t reated s e gments ) of t h i s  stud y .  

H owev er , a pre l iminary  i nspection o f  resu l ts su ggests that i t  might be 

d ifficul t  to separate the component o f  the response whi c h  i s  due to 

water eff l ux f rom the par t  o f  t he response which d epend s on t issue 

r i gid ity . Nonetheless , it may be  worthwh i l e  persever i ng with this  

a pproach . 

I t  is important to note that the conclusions of  my s tud y do not 

necess ar i l y  app l y  to the initi a l  m echanism of IAA action , s ince the 

r esul ts were obta i ned onl y  after a p ro longed period o f  i ncubation o f  

segments i n  IAA . I t  i s  al so worth remember ing that " exten s i b i l ity" i s  

not simp l y  a phys ical pro perty o f  the c e l l  wal l s  o f  the segment , but 

rather re f l ects the act ion of  some process on cel l wa l l s  ( G reen and 

Cummi ns 1 974 , G reen et al . 1 97 7 ) .  Measurements of  physical  

"extensib i l ity"  ( i . e .  mechanical  pro perties )  of  cel l  wal l s  of lupin 

hypocotyl  segments ( P enny et a l . 1 972 ) show an i ncrease i n  plastic  
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( irrever sible )  compl iance ( strain/ stres s )  after aux in treatment . 

However , i ncrease in e longation rate preced ed this  change , and so it  is  

possible  that increased compl iance was an  e ffect rather than a cause of 

the increase in elongation rate . I n  some other stud ies , though , there 

i s  evid ence of changes in phys ical  prope rt i es preced ing aux in- induced 

changes i n  growth rate of segment s  ( rev iewed by Penny and Penny 1 978 ) .  

In  the ab sence of d irect measurement o f  turgor pressure , i t  may be 

possib l e  to use measurements of  physical properties of  cel l  wal l s  in 

conjunct ion wi th measur ements o f  t issue r i g id ity ( using a compress ive  

force ) to  determ i ne whether the i n i t i a l  action of IAA is  accompanied by  

a chang e  i n  turgor pressure . If  a d ecrease in  tissue r i g id ity cannot 

be accou n t ed for by an increase in e l astic compl iance , then a reduction 

i n turgor ( and hence IAA a ction on Q rather than on L or D )  would  be 

i ndicated . 

The stud ies o f  Green and Cumm i n s  ( 1 97 4 ) and Green e t  al . ( 1 977 ) are 

e xampl e s  of  the u se of osmotica t o  perturb growth rate . A f ter a 

step-change i n  exter n a l  water potent i a l , elastic  exten s ion or shr inkage 

of the segment occurred ( wi th d is c harge of the imposed water potent i al 

gradient ) super imposed on the " growth" respon se of the segment . The 

rapid osmo-el astic tran sients ob served suggested that the method was 

appropr i ate for the mater i a l  used rye coleopt i l es , g rown in  

penta- erythr i to l  to suppress cut i c l e  dev elopment , and w i th both the 

i nner and outer su r faces o f  the c o l eopt i l e  i n  cont act wi th the 

o smotic um. T h e  growth respon se  was a pparentl y an exponential a pproach 

o f rate to ward s a s teady v alue , w i th a ha l f-time of  6- 1 0  minutes ( Green 

a nd Cumm ins 1 97 4 ) ,  or about 5 minutes ( Green et al . 1 977 ) . Other 

measurem ents o f  the hal f- times o f  tran sients i n  growth rate hav e been 

made by Cosgrove and Green ( 1 98 1 ) ,  who measu red the elongat ion of 

hypocoty l s  of sun flowe r and cuc umber seedl ings in response to an 

i ncrease in hydro static pressure of the water around the roo ts of the 

seedling s .  The hal f-times of g rowth rate transients were 70- 1 50 

second s for su nfl ower , and 1 5-3 5 second s for cucumber . In lupin  

hypocoty l segmen ts , the h a l f- t i mes ( at l ow loads) o f  growth rate 

transi en t s  after  rate had been changed w i th an a pp l ied force are 

s imilar to tho se obtai ned by Green and Cummin s ( 1 974 ) and Green 
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et al . ( 1 977 ) ;  but hi gher than the hal f-times measured by Cosgrove and 

Green ( 1 98 1 ) .  

Unless tu rgor pressure can be measured , there  i s  no assu rance that 

observ ed tran s i e nts  re flect  a c hange  in  g rowth rate due to  a 

correspond ing change in tu rgor pressure . The observed behav iour could 

be  accounted for by  any process wh i ch l im i ts elongation rate and who se 

rate shows fir st order behaviour [ i . e . , could be descr ibed by e quations 

of the form of e qu a tions ( 7 ) and ( 1 0 ) ] .  C hanges in turgor may be 

r apid , b ut cha n g e s  in growth rate protrac ted due to change in the 

y ield ing prope r t i e s  of cel l  wal l s .  Such a respon se has been shown i n  

N itel l a  (Gree n  et al . 1 97 1 ) and suggested to occur i n  t he rye 

coleopt i l es in the stud i e s  of Green and Cummins ( 1 974 ) ,  and G reen 

e t  al . ( 1 977 ) .  The l atter hav e  specul at ed that  a continuous ac tiv ity 

which cou ld var y i n  rate , such as flux of v esic l es to the cell  wal l , 

could account for the change  in growth rate . Si nce the bas i c  model  o f  

Lockh a r t  ( 1 965 ) does n o t  expl ic itly  account for the e ffects o f  such 

metab o l i c  acti v i t ies on g rowth , add itiona l  assumpt ion s must be mad e  i f  

the mod el  is to be retained . For e x ampl e G reen e t  al . ( 1 97 1 ) assume 

t hat the m inimum yield threshold ( Y )  is u nder metabo l i c  contro l , and 

i ncor por ate in the model a statement showi n g  Y as  a time- dependent  

function of several  par am eters ; a nd Lockhart ( 1 965 ) prov id es 

add iti on a l  sol ut i ons  of the model which i ncorporate the assumption s  

that exte nsibi l it y  or osm otic pressure a r e  functions of  t ime . 

I f  su ch modif i c a t ions are to be made to the model for sing l e  cell s  on 

the bas i s  of the behaviour  of segments o f  t issue , it is f i r st l y  

necessary  to t e s t  the assumption that cel l ul ar behaviour c an b e  

i n fe rred from t h e  response s of segment s .  Resu l ts o f  such tests for 

segments of lupi n  hypocotyl  are reported i n  the nex t  chapter . 
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3 :  TISSUE INTERACTIONS IN  IAA-I NDUCED RA PID ELONGATION RESPONSES * 

3 .  1 I NT RODUCTION 

The rapid  elongat ion response of  exc ised pl ant segments to aux in has 

been frequent l y obser ved to show two rate max ima ( Va nd erhoe f 

et al . 1 976 , Penny  and Penny 1 978 ) .  One hypothes i s  which  accounts for 

the obser ved r e sponse i s  that there  is  a single  reaction mechan i sm ,  

with osc i l lation i n  elongat ion rate due to the action o f  a negative  

feedback system ( Penny and  Penn y  1 978 ) .  A second is  that  there  are  two 

separate respon s e s  ( Vand erhoef et al . 1 976 , Penny and Penny 1 978 ) . 

Another e x plan a t i on is tha t  rap i d  e longat ion i s  i n i t i ated by wal l 

loosen i n g , and then fluc tuates with turgor changes ( Cl e l and and Rayle 

1 978 ) . 

Implici t  in thes e  hypotheses is  the assumpt ion that cel l u l ar behav iour 

and molecular m echanisms can be  inferred from the gross res ponses of 

segment s  of  hypocotyl , stem , o r  coleo pt i l e . E v idence that not a l l  

cells i n  a stem respond equ a l ly to auxin is  seen i n  the inward bend ing 

of  aux i n -treated  spl i t  stems ( Thimann and Schneider 1 938 ) . There i s  

also e v i d ence o f  d ifferential  tissue response to a u x in i n  results o f  

straight-growth exper iments w i th stem s egments ( Masu d a  a nd Yamamoto 

1 972 , B r umme l l  and Hal l  1 980 ) . Using  pea stem segments , peeled to 

remove the epidermis , or bored to remov e the pith , Masu d a  and Yamamoto 

( 1 972 ) conclud e "that the ind u ction o f  stem elongation by  aux i n , at 

least in i ts ini t i a l  stage , is brought about by t he remov al of 

restr a i n t  of the s tem t i ssues by the epidermis . "  There is therefore 

the poss i bility  that the t wo max i ma observed in r a pid responses could 

be the r e su l t  o f  an interaction of  t i ssue responses , with d if ferences 

in timi n g  or degree of response to auxin . This h ypothes i s  is tested 

here w i th lupi n hypocoty l  segments . Resu l ts o f  similar  e x periments 

with mun g  bean h ypocotyl segmen t s  have recently b een repor ted ( P rat and 

Roland 1 980 ) . 

* This  chapter has been accepted for publ ication substan t i a l l y  in this 

form . 
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3 .2 MATERIALS AND METHODS 

3 . 2 . 1 P lant  mater i a l s  

Four-day old lupin seed l ings  ( Lupinus angustifolius cv . N . Z .  Bi tter 

Blue)  were grown in cont inuous low l i ght at 22C ( P enny  1 969 ) .  The 

l ight was a mix tu re of fl uorescent and incandescent , w i th PAR 60-70  

)Jeinste i n s  m�s- 1  • Seed l in g s  for e x periment were s elected w ith 

hypocotyl  50-60mm long , minor d i ameter 2 . 2-2 . 3mm ,  and major d iameter 

2 . 4-2 . 6mm .  ( The hypocotyl is  e l l i ptic in  cross section ) . 

3 . 2 . 2  Preparation o f  segments 

Segments used in IAA t reatment s  were prepared as follows . 

( a) " I n tact" segments , 1 0mm long , were exc ised from the hypocotyl 2-3mm 

below the cotyled onary nod e ,  u s i n g  a double-bladed cutter . 

( b) "P eeled"  se gments were prepared from 1 5mm segment s  which were 

peeled f r om both ends u s i n g  a razor blade and fine forceps , and then 

trimmed to  1 0mm . The segment su r face was kept moist with  water d ur ing 

this procedure . Peel ing  remov ed the epi dermis , the p i gmented 

sub-e p i dermal l ayer , and in p l aces one or two other cel l layer s . The 

cell  layers  remov ed w i l l  be r e ferred to hereafter as  "epidermi s " . 

Peel i n g  was con s id ered complete when there was no visu a l  evidence for 

remai n i n g  pigmen ted cel l s .  

( c ) "Out er tissue  cyl inders" were obta ined by cutti n g  the hypocotyl 

1 5mm bel ow the co tyledons and pushing a thin-w a l l ed glass tube 1 . 50 mm 

i n  exter n a l  diameter through the centre of  the hypocotyl from the cut 

end so th a t  the " central t i s sues " ( vascul ar tissue a nd p ith ) were  

separated from the  outer t i ssue s . The bor i ng tube was wi thd rawn , a 

1 0mm segment was cut and the cen tral  core removed a nd d is ca rded . 

Microsco pi c  ex amination con fi rmed that the hol low cyl ind er  cons i sted of  

epider m i s  and cor tex  onl y .  

( d )  "Central  tissue"  cores wer e  prepared a s  above . 

( e ) "Cor tex  cyl inder s" , hol low cyl inders 7 - 1 2  cel l s  wide con sisting  

solely of  cortex pa renchyma , were prepared by  bor ing  as in  ( c ) , and 

were then peeled a s  in ( b ) , before being  cut to 1 0 mm.  
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3 . 2 . 3 Measu rement of g rowth 

L inea r d ispl acement transducers were  used to measu re e longation of  

i nd iv id ual segments . R ead ings were ob tained at one minute interval s ,  

and rates calcu l a ted from these . R e solut ion was 0 . 6pm . Segments  were 

held in perspex chamber s s imil ar to those descr ibed by Penny et a l . 

( 1 974 ) , but whi ch perm i t ted per fusion o f  the central cav ity  of  hol low 

cylind er segmen t s  in add i tion to bathing of  the outer sur face , as shown 

in Fig .  1 7 . Segments were incubated at 25C i n  recircul ating  aerated 

buffer ( 1 mM  K - phospha t e , pH 6 . 6 ) . S ixty-eighty minutes after beginn i n g  

i ncubat i on , the solution was changed t o  30uM indoleacetic  acid ( IAA ) i n  

the same buffer . This I AA concent ration g ives max imal g rowth r ates 

under the se con d itions ( P enny and Penny 1 978 ) . Control segments 

remained in buf fe r .  The pH of sol ut ion s (+IAA ) changed by l ess than 

0 . 1 pH units d u r ing experiments . 

3 . 3  RESULTS 

3 . 3 . 1  Pretreatment responses 

The elongation responses of the d ifferent segment 

followi n g  bori ng and/or peel ing , are shown in Fi g .  1 8 .  

preparation s , 

The burst  o f  e longatio n , which occurred in pee l ed segments  in sol ution , 

is  evidence of the restrain ing effect  of  the e pidermis on the rema i n ing 

t issues o f  the segment . R emoval of  the l imiting epidermi s  apparentl y  

permits rea l isat ion o f  a " potent i a l "  for e x tension . Once this i n i t i a l  

l imita t i on has been remov ed , the  centr a l  t issues ( presumab l y  the 

vascular  tissue s )  apparently l i mit the rate at which ex tension occur s . 

Extreme l y  rapid  exten s i on of cort e x  cyl ind er s  occurred once the central  

tissues were remov ed .  This  response was  l argely compl eted during 

peel ing . The isolated central core  showed a response sim i l ar to that 

of a peeled segment . Outer tissue cyl inders  showed a smal l ini t i a l  

burst o f  extension ; thereafter , the epi d ermis presumabl y  l im i ts 

further e x tension . After pretrea tment in buffer for 60 minutes , a 

burst of  exten s ion sti l l  occurred  on peel ing  the epidermis  from hol low 

cylind e r s  or intact segments ( Fi g .  1 9 ) . 
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F i g . 1 7 :  Diagram of the incubation chamber ( mi d- section ) ,  with a hol low 

cylind er segment in place . Sol ution was pumped in at A a nd B ,  

and flowed past the outer  sur face ( and through the centre ) o f  

the segment ( C ) . A perspex " head" ( D ) which a l lowed solution 

to pass was placed on the top of the segment , and connected 

by a pol yester thread ov er a pul ley  to a transducer . The head 

was counterbal anced wi th the transd ucer core so that the net 

weight on the segment was about 0 . 5g .  

Where intact segments o r  central t i ssue cores were used , the 

head was replaced with one which was flat ( intact segment s ) , 

or which had a 1 mm deep cav ity whi ch fitted over the top o f  

the cores ( and red uced bend ing) . 

A 
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Fig . 1 8 :  E longat ion o f  intact segm ents , and o f  segments  after bor ing 

and/or pe el ing . Prepa r a t i on of segments d iffered s l ightly 

from that descr ibed in Me thod s .  Segments were cut , measu red , 

bOred and /or peeled , and e longation in buffer measured w i th 

t ransducer s .  

T ime zero i s  the time at  whi c h  peel ing started ; o r  for 
\ 

unpee l ed segmen ts , the t i me at which continuous measurement 

s tarted . Hollow cylind er  segments contract when bored . E ach 

c urve i s  the mean of responses of at least five segments . 

Stand ard errors are shown . 
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Fig .  1 9 : E longat ion o f  segments a fter peel ing . 

Segments  were f i r st incub ated i n  buffer for 60-80 minutes , 

o therwi s e  treatment was the same a s  out l ined in Fi g .  1 8 .  

The cur v e for peel ed segments i s  the mean o f  respon se s  o f  

s i x  segments ; that for cortex c yl inders  the mean o f  four 

r e spon se s . 
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F i g .  20 : I AA-induced e longation rate o f  1 0 mm  hypocotyl segments . 

Intact se gments ( A) ,  peeled segments ( B) ,  outer t i s sue 

cyl ind er s ( C ) , cortex  cyl ind ers  (D ) ,  or central  t i s sue 

cores ( E )  were  pretreated in buffer for 60-80 mi nutes 

before IAA was added at time  zero . E ach c urve is the mean 

o f  five se gments ,  with mean contro l  rates ( for non-I AA

treated se gments ) subtrac ted . Data have been smoothed 

using a tr i angul a r l y-we i ghted 5-po i nt running average . 
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3 . 3 . 2  Responses to IAA treatment 

The elongation rate responses to IAA t reatment are shown in F i g . 20 , as  

the avera ge res u l ts from five segments o f  each type , minus mean control 

rate val ues . T imes and rates cited in the text are cal c u l ated from 

response s of i nd i v idua l  segments . Stand ard errors of means are g i ven .  

The response o f  i ntact se gments was simi lar to that reported prev iousl y  

for 25mm segments of l up i n  hypocotyl ( Penny and Penny 1 978 ) . The 

latent pe r iod was 1 3  + 0 . 4  minutes . Rate increased to a f irst max imum 

of 1 1  � 0 .  8).lm/minute abov e contr o l  rate , at 36 .:!:_ 2 minutes . I n  some 

experiments , there was a minimum , and second maximum at  about 78  

minutes , but the s e  were  not  as  wel l  defi ned as in previous e x pe r iments 

( Penny and Penny 1 97 8 ) • Thi s osc i l l at ion is  not apparent in F i g .  20 ; 

loss of d etail  wi th averaged resu l ts is  d i s cussed in Penny  and Penny 

( 1 978 ) . The response o f  outer t issue cyl inders  showed a latent period 

of  18 + 1 . 3 minutes . The time and valu e  of the fi rst rate max imum were 

not signi f i cantly d i fferent from those of  i ntact segments . I n  some 

experiments , a m inimum and second max imum were  apparent ,  but these were 

not sha r p l y  defi ned . These resu l ts show that remov al o f  the central  

t issues f rom inta c t  segmen ts resu l ts in l i ttle change in  i n i t i a l  

response to IAA . I suggest that the central  tissues are not 

s ignificantly involved in this e a r l y  response ; this i s  supported by  

the poor respon se o f  the i solated centr a l  core . In  contrast , the 

responses of pee l ed segments and cortex cyl inders show that the effect 

of remov ing the epiderm i s  is appa rently  to el iminate the fi rst phase of 

the response seen in intact  segmen t s  or in  outer tissue cyl inders . I 

suggest that the epiderm i s  has a m a j or ro l e  in  the i n i tial  response to 

IAA .  However , it has been reported tha t  strips of epid erm i s  peel ed 

from lup i n  hypoco tyls do not elongate in r esponse to IAA t reatment 

( Penn y �. 1 972 ) . These results then suggest that the epidermis 

respond s ind irec tly to I AA .  A d i rect response cannot be r ul ed out , 

though , and has been shown in one study with strips of  Hel ianthus 

epidermi s  ( S o l l  and Bottger 1 982 ) .  S ince peeled segments and the 

cortex in isolation showed a strong respon se to IAA , the cortex i s  

a pparent l y  the major s i te o f  d i r e c t  IAA action . 
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I suggest that i n  the intact  segmen t ,  IAA r e sponse occurs a s  fol lows . 

Initi a l  action i s  to cau s e  rel axat ion o f  the e pid ermis ( a  

"physio l og ical peel ing" ) and potential e x tension is expressed . This 

account s  for the first m a x imum observed at about 36 minutes . This 

response is  super imposed on an ind e pend ent response . I t  is  due to 

continui n g  d irec t  action on the cortex and either d i rect or i nd irect 

action on the epi d ermis and centr a l  tissues . 

reaches i t s  max imum rate at about 70-80 minutes . 

3 . 4  D ISCUSSI ON 

This second response 

Ev idence of the epid ermis apparen t l y  l imiting  elongation is found i n  

excised segments o f  pea s tem (Thi mann and Schne ider 1 93 8 , Masuda and 

Yamamoto 1 972 , Brummell  and H a l l  1 98 0 ) ,  A � ena coleopt i l e  ( Th imann and 

Schne i d e r  1 93 8 ) , Hel ianthus hypocotyl ( Firn  and Digby 1 977 ) , and mung 

bean hypocotyl ( P ra t  and Roland 1 980 ) .  These a l l  show a phase of rapid 

extension  following pee l ing . I n  this respect then , lupin  hypocotyl 

segment s do not d i ffer from other mater i a l s  investigated . I suggest 

that the h ypothes i s  of epid ermal r el axat ion adv anced for the f irst 

phase o f  auxin act ion on l upins may  apply  g enera l l y .  The hypothes i s  is 

supported by the observation that in i ntact  segments , s i gnificant 

IAA-ind uced e ffects on wall properties can be detected only in the 

outer l a yers ,  after  90 minutes t reatment ( Penny et a l . 1 972 ) . Also 

consistent  with t h i s  hypothesis are  observ ations o f  l oss o f  

auxin- sensi t i v ity i n  peeled s e gments , which su ggest that aux i n  action 

is  on the e pidermi s  ( Brummel l and Hal l  1 980 , Prat and Roland 1 980 , Soll 

and BOtt ger 1 982 , Fi rn and D i gby  1 977 ) .  The contenti on that the 

centra l  t issues a r e  not s i gnifica n t l y  involved in the ini t i a l  response 

to aux in is suppor ted by results showing that removal of the pith from 

mung bea n hypoco t y l  segments does not al ter the early response to auxin 

( Prat and Rol and 1 980 ) .  

The " re laxation"  of thi s  hypo thes is  i s  analogous to the stress 

relaxat i o n  process  descr ibed as the primary  event in cel l  enlargement 

( Ray et al . 1 972 ) , wh i ch resu l ts in formation and d ischarge of a water 

potent i a l  grad ient with consequent  exten sion .  However , the rapid 
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extens i on fol lowing peel ing might also be  due to d ischarge of  an 

exist i n g  water po tenti a l  

water transport would be 

Steudl e  1 981 ) .  

grad ient , and hence ini tial  aux in  action on 

an alternative possib i l ity ( Cosgrove and 

Peeled segments of  lupin  hypocotyl are strongl y IAA-responsive . Other 

studies have shown a strong response to au x in in peel ed segments of 

Avena co l eopt i l e  ( Du rand and Rayle  1 97 3 ) , a nd var ying degrees of  

response in pee l ed pea stem segments ( Th imann and Schneider 1 93 8 , 

Masud a and Yamamoto 1 972 , Durand and Rayl e 1 973 ) . These resu l ts a re 

consistent with the hypothesis that at l ea s t  part o f  the response to 

auxin is control l ed by the cortex . I am not  a ware of  any other report 

which identifies the cortex  as  the major s i te o f  d irect aux in  action in  

peeled se gments . Resu l ts whic h  show loss o f  aux in response on  pee l ing 

do not fi t with th i s  hypothesi s , however ( Brummell and Hall  1 98 0 , Prat  

and Rol and 1 980 , Sol l and  BOtt g er 1 982 , F irn  and Digby 1 977 ) .  I n  these 

cases , e i ther res ponsiv eness is confined to  the outer laye r s , o r  i s  

lost from the inn e r  l ayers a s  a con sequence  o f  pee l i ng ( Br umme l l  a nd 

Hall 1 98 0 ) .  

The e x planat ion g i v e n  here o f  the two maxima i n  the aux in- ind uced r ate 

response , in terms of t i ssue interaction s ,  is an a l tern a t i v e  to 

hypotheses ori g i n a l l y  advanced . Within  the hypothesis  that t issue 

i nterac t i ons are r espon s i b l e  for the osc i l l at ion in  rate observed w i th 

intact se gments , i t  is  poss ible that one o r  twu response mechanisms  

could be involved . One mechan i sm could cause epi dermal relaxat ion ( and 

l ead to e x pression o f  potential  ex tension ) and a l so init i ate the longer 

term response ( P enny 1 970 ) .  A l terna t i v el y ,  two d i fferent mechani sms 

could account for the two phases of  the response . S i nce the " secon d "  

respon se occurs i n  the absence of  the " fi r st " , they need not b e  l inked . 

I t  is not poss i b l e  to d is t i ngui sh betwee n  these a l ternat i v es on the 

evidence presented here . The s implest e x pl an a t ion is  that there i s  one 

reaction mechan i sm .  

Hollow cyl ind ers used in  thi s  work hav e  advantages i n  stud ies o f  acid 

e ffects on growth s ince the cut icular barr ier i s  overcome without 

recour se to treatment whi ch remov es or d am ages the epidermis . Resu l ts 
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of expe riments which test pred i c tions o f  the acid-growth hypothesis  are 

given i n  the ne x t  chapter . 
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4 :  ACID-INDUCED RAPID ELONGAT ION RESPONSES 

4 .  1 INTRODUCTION 

Auxin treatment of  stem , coleoptile  and hypocotyl segments causes rapid 

elongation  after a 1 0- 1 5 minute l atent per i od . One explanation of  this 

stimu l ation of  e longation is the acid-growth hypothes i s .  Rayle  and 

Cleland ( 1 980 ) prov ide  a recent statement of this hypothesis : 

" • . •  aux in causes cel l s  to excrete  protons i nto the wal l  sol ut ion . The 

lowered wall pH acti v ates one or more en zymes which cleave load-bearing  

bonds i n  the cel l  walls , thus  allowing for  accelerated turgor-driven 

extension . "  Two pred ictions whi ch arise from this hypothes i s  are : 

( 1 )  A r eduction in ce l l  wall pH w i ll occu r  in t issue elongating i n  

respon se to IAA t reatmen t ;  and 

(2 ) Treatment with hyd rogen ions should " sub stitute for aux in in any 

auxin- sensi t i v e  tis sue and cause  rates of elongation equ i v al ent to that 

produced by opti mal aux in"  ( C l  e l and 1 977 ) .  

Tests o f  these pred ictions hav e  shown : 

( 1 )  Treatment w i th IAA caused free spa c e  pH in Avena coleopt i l e  

segment s  t o  fal l  to a minimum val ue o f  about 4 . 8  ( Cl e l and 1 976 ) ;  and 

( 2 )  Treatment with acid  solut ions of  pH 4 . 8-5 . 0  promoted e l ongation 

initia l l y  to the s a me rate as is  ind uced by  a ux in , i f  peel ed segments 

were used ( Ra y l e  1 973 ) .  A more acid i c  solut ion ( pH 3 )  was needed to 

achieve the same resu l t  in intac t  segment s  ( Ra y l e  and C l eland 1 970 ) , 

probabl y  because the cut icle  was restric t i n g  access o f  hyd rogen ions to 

the segment from the ex ternal solut ion ( Dreyer et al . 1 98 1 ) .  I n  peel ed 

segments the cut i c l e  was removed along with the epidermis . 

Thus the measured IAA - induced r ed uc tion o f  pH was suffic ient to account 

for the i n i t ial pha se of IAA-ind uced elongation , at  l east  in peel ed 

Avena co l eopt i l e  segmen ts . For the hypothesis to be sat i s i fied i n  ---
i ntact se gments , i t  is also necessary to show that the epid ermis , a s  

well a s  p eeled se gments , i s  respon sive to hydrogen ions . S trips o f  

e pider m i s  peeled from Avena col eoptiles , e longated und er a ppl ied load 

in response to ac i d  treatment ( Du rand and Rayl e  1 973 , Rayle and Clel and 

1 977 ) . 
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In other mate r i a l s ,  pee l ed segments show a sim i l ar depend ence of 

e longation on pH , and str i ps of  epidermis peel ed from segments a l so 

e longate under app l ied load , in response to acid treatmen t  ( Du rand and 

R ayle 1 973 , Y amagata et al . 1 974 , Yamamoto et al . 1 974 , Rayle  and 

C l  eland 1 977 ) . 

However , the r e l ationsh i p  of resu l ts o f  these e x periments to respon ses 

which occ ur in i ntact se gments i s  uncertain , since it is d i fficu l t  to 

make qua l itat i v e  compar i sons between the e ffec t  of stress imposed by 

a pplying a load , and that generated by turgor pressure . I n  this s tudy 

I have u s ed hol low cyl inder segments of l upin hypocotyl i n  an 

i nvesti gation of the acid-induced elongat ion response of the epid ermis 

of lupin h ypocotyl s .  These cyl inders  retain undamaged the 

auxin- respon s i ve outer t issues ( pa ge 58 ) and permit access o f  hyd rogen 

i ons to these ti s s ues from the cent r a l  cav it y .  I am able  to t est the 

h ypothes i s  that the out e r  cell layers and the inner t issues are  equa l l y  

responsive  to acid , and can compare acid- induced and IAA-induced 

response o f  the l imitin g  outer cel l s ,  at i n  vivo stress . 

Results show that differ ent tissues are not equ a l ly responsive  to acid , 

and suggest that the most auxin-respon s i v e  preparation , which i nc l ud es 

the epide rmis , i s  the l east acid-responsive . So that resul ts could 

more eas i l y  be compared w i th tho se of  o ther stud ies , I have a l so 

i nvest i g ated the acid- induced e longat ion response of peeled segments .  

Results are sim i l ar to those obta i n ed wi th other materia l s , but I show 

that response to a cid treatment i s  largely  depend ent on the 

pretreatment r e g ime .  

4 . 2  MATER IALS AND M ETHODS 

4 .2 . 1 Plant mate r i a l s  

Four-day o l d  l upi n seed l ings (Lupinus angusti fol ius cv . N . Z .  B i t ter 

Blue)  were g ro wn in continuous low l i ght at 22 C ( P enny 1 969 ) .  A 

d etailed descr i pt i on of  seedl ing selection and segment pre paration has 

been g iv en prev iously ( page 52 ) .  Segments were 1 0 mm  l on g . Five  

d ifferent preparat ions were used i n  thi s  stud y :  



64 

( a) I ntact segments ; 

( b ) P ee l ed segments , which had the outermost 2-4 cell  l ayers removed ; 

( c) Ou ter tissue cyl ind ers , wh i ch were hollow c y l ind er s con s i st ing o f  

epidermi s  and cortex , the central  ti ssue s of  the hypocotyl having  been 

removed by bor i n g ; 

( d ) Cor tex  cyl i nders , which wer e  oute r t i ssue cyl inders peel ed to leave  

hollow c y l ind e r s  consist i ng onl y  o f  cor t e x  parenchyma ; 

( e)  Cen t ral t i ssue cores , the cores of  v ascular t issue and pith bored 

from hypocotyl s in the preparati o n  of ho l low cyl inders . 

4 . 2 . 2  Measurement of  growth 

Elongation o f  i nd ivid ual segments was measured wi th l inear d ispl acement 

transdu cers ( P enny et al . 1 97 4 ) .  D i g ital  read ings o f  voltage were 

recorded at  one minute interval s , and elongation rates were calcul ated 

from the s e . The d ata of rate  responses presented here we re  smoothed 

with a t r iangu l a r l y  we i g hted f i v e-po i nt run n i ng average . U n l ess 

otherwi s e  noted , each rate curv e i s  the mean of responses of at  l east 

five segments , w i th the m ean response of control segments ( at l east 

f ive) subtrac ted . Se gments wer e  held i n  perspex chambers des i gned to 

a llow per fusion o f  the centra l  cav ity of hollow cyl ind er segments in  

addit i on to bath i n g  of the  outer se gment sur face ( Fi g .  1 7 ,  page  54 ) .  

The volume o f  each chamber was 1 . 2ml . Aerated solut ions were 

recirc u l ated from flasks held in  a water bath at 25+0 . 5C . F low through 

each chamber was 1 0ml/minute . Where hol low cyl ind er segments were 

used , flow was 5 ml/minute through both the central  cav i t y  and the outer 

chamber . 

Unbuffe red solutions were used i n  many e x periments ,  since some stud ies 

have shown effec ts of buffer components on elongat ion , i n  add it ion to 

effects o f  low pH ( Gabel l a  and P i let 1 978 , Edward s a nd Scott 1 97 4 , 

Moll and J one s 1 981 ) .  Unbuffered sol utions were pre pared w i th 

d isti l l ed water with pH adjusted init i a l l y  to 6 . 6  w i th NaOH . Acid 

solut i on s  were prepared w i th HCl . IAA solution s were 30pM . S i nce 

acidic  solutions were tox ic at low pH , in some e x periments cal c i um 

c hlor i d e  was add ed to ov er come tox icity . [ Marschner et a l . ( 1 966 ) have 

reported that Ca C 1 2  would reduce ac id- i nduced potassium loss and tissue 
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damage in Zea root tips ] . 

In  some exper iments buffered solut ions were used so that effects of  the 

buffer on elongation of segments could be d etermined , a nd also so that 

results might be more eas ily compared wi th those of other stud ies where 

buffered solut i ons have been used . Buffered solut ions were 1 mM or 1 0mM 

K�HP04 p l u s  c itr i c  acid add ed to g i v e  pH 6 . 6  ( pretreatmen t )  or a lower 

pH (treatment ) .  

Segments were pretreated for one hour i n  the chambers before solution 

was changed to a c id , I AA , or fresh pretr e atment solution ( controls) . 

Because o f  mix ing of pretreatment and treatment solutions  i n  i nl et 

tubes on c hangeov er , solution changed grad uall y  i n  the segment chambers 

over fou r  minutes from the times shown i n  f igures . 

4 . 3  RESULTS 

4 . 3 . 1 .  Response of outer t i ssue cyl inders  

Unbuffered sol utions 

The responses o f  outer ti ssue cyl inders to t reatment with acid are 

shown in Fig .  2 1 . The response to IAA is included for compar i son . The 

response o f  segments treated with acid at pH 4 . 0  or 3 . 0  shows two 

d istinct max im a . I inter pret the first maximum ( that occurr i n g  within 

20 minute s )  as e x tens i on of  the i nnermost cell s  o f  the cortex , 

i ndepend ent of e x tension o f  the outermost cell  layers . This  e xpl anat

ion is suggested for the follow i n g  reason s .  First l y ,  the cortex is  

immed ia t ely  adj a cent to the cen t r a l  cav i t y  of  the cyl ind er  and so will 

receive acid b e fore the outermost  cell l a yers , a ssuming  that the 

cuticle r estricts  access of hyd rogen ion s to  the cyl ind er f rom the 

outside . This as sumpt i on is j u s t i fied by the observation that there 

was litt l e  elon gat ion of i ntact se gments i n  respon se to treatment w i th 

acid at pH 3 (Fig . 22 ) .  (The small  respon se which was fou nd might 

represent the action of hydrogen i ons whi c h  had penetrated the 

epidermis , but might a l so reflect ac id action at  the cut end s of  the 

segment ) .  Secondly , the cortex in isol ation re sponded s trongly to acid 

treatment [ F i g . 27 ( B ) ] .  Thirdly , it is known that not all ti ssues i n  a 
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segment are con strained to elongate equ a l ly . For exampl e ,  at the end s 

o f  IAA-treated i ntact segments of lupin  hypocotyl the outer tissues 

were ob se rved to have elongated more than the inner tissues . 

Since e l ongation  of the isolated cortex i n  respon se to acid t reatment 

[Fig .  27 (B ) ] was prolonged in compa r i son w i th the " f i rst" response of 

acid- t r ea ted outer tissue cyl inders ( Fi g .  2 1 ) ,  and assuming that f i l es 

of  cel l s  in the cortex c o u ld not s l ip ahead independ entl y  of  the 

outermost cel l s , it is su ggested that con t i nuing e longat ion o f  outer 

t issue c y l ind e r s  was l imited b y  the outermost cel l  l aye r s . I then 

i nterpre t  the second phase of the re sponse as elongation of the whol e  

cyl ind er  ( the cortex and outermost cel l s  together ) ,  in  response t o  acid 

action at the outer laye r s . The c ourse o f  this response will  

presumably  depend on the pH  i n  the  outermost cel l s  chang ing gradually  

with time as h ydrogen ions  d iffuse across the cortex , a nd a l so on  the 

s ensit i v i ty of the outer c e l l s  to low pH . Since these outer  cel l s  are  

those on  which IAA must ac t before the segment can  e longate ( page 58 ) 

then i t  i s  the second phase o f  the response which i s  compared with the 

I AA response , in order to d etermine the e x ternal pH which will  

subst i tute  for IAA  in ind ucing e l ongat i o n . 

At no stage dur i ng treatment d id the ac id-ind uced e longation rate reach 

t he ma x i mum IAA -induced rate ( Fi g . 2 1 , F i g . 23 ) .  However , the decline  

in  rate seen in  the  latte r  s tages of  expe r iments a t  pH  4 . 0  and 3 . 0  

( Fig . 2 1 ) was probab l y  caused by  tox i c  e ffects of  acid ity , s ince 

s ections cut from segment s  after the 1 50 mi nute treatment showed cells  

to have  lost turgor and ce l l  content to  have coagul ated . Tox icity  

a pparent l y  occurred fi rst in cel l s  adj acent to  the central  cavity  o f  

the cyl i nders , a nd prog ressed to  the outermost cel l s  a s  t reatment 

cont inued . At pH 5 . 0 there was evid ence of tox ic ity in the inne rmost 

2-3 ce l l  layers  after the 1 50 mi nute treatment . 

Since i t  was l ikel y  that promotive  e ffec ts o f  hyd rogen ion s  on 

e longa t i on were confound ed by tox ic 

treatmen t ,  I u sed CaCl�-supp l emented 

overcome acid - i nduced tox ic ity . 

effects in the l ater stages o f  

solut ions  i n  a n  attempt to 



• 

• 
• 

• 

• 

• 

• 

• 

• 

• 

• 

, ... ...,.. .... ___ ...... __ .. ,,.....,......... .... ..,...,., 

PH 5 - _..,.-.....-· . 1. ,.,.. �, 
/•' 

'f •• 

_,._.·-

__..,.._.-........... , � . 
. -.; ..... 

,.. .'lo 
.· -.. 

••• ...'lo 

... 
,....

.. 
. .. · ....

. � ... . ........ · . 

67 

B 
,....,�,_.., . 

0 

. ...._ ... 
'· • 

• 

0 

.. 
• • 

• 
• • 

• 

_,.._ 
• • 

• • 
• • 

•• • • 
. .. • • 

• • • • • • • •• .,. 

20 

• 

40 

F i g . 2 1 : Acid- induced and 

• • • 
• 
..... • • • 

.... 

E 

60 80 
Time (minutes) 

IAA- induced elongation 

cylind er s , in unb uffered solut ion . 

·...._ 

100 1 20 

rate o f  outer t i ssue 

• 
... 

140 



QJ 
� - I I I I 
ro-'- 'c:  
c · -
o E 

� e  
� 
_g 2 � p H  3 .,--..., ... � 
� 1 � t ... 

� 
QJ ... 
� 0 1- ..... ••• 

"'C c 
I 

"'C 
u 

<t: I I I I 
0 20 40 60 

Ti m e  { minu t es ) 

-

-

-

Fig . 22 : Acid- ind uced elongation rate of intact segments , 

unbuffered  solution . 

! J f� 
r/

1 "'C E 8 Q.J ::J... u -::J 
""E �  · - ro !�t 

'
-----

1 
1 '-

< g  <t: · -
- �  ro 
r_ O'I 4  o c 

� 
- o  

1 --J 
:'E aJ  u 
<t: E  � 2  

)( 
f¥ 

0 10-5 'X)- 10-
Calcium chloride { mol . l- 1 ) 

68 

i n  

e-e IAA 
o-o pH 4 
�A pH 4· 5  
o-o pH 5 

10-2 

F i g .  23 : Acid- induced and IAA- ind uced max imum elongat ion rates 

of outer  t i ssue c y l inder s , in unbuffered CaCl2 solut ion s .  



6 9  

Figure 2 3  shows acid- induced maximum elongat ion rates , a t  each CaCl2  

concentra tion used . IAA- induced max imum elong ation rates are includ ed 

for comparison . The value  of  max imum rate shown at each point i s  the 

mean of results o f  ind iv idual e x periments , with stand ard errors shown . 

For each e xper iment the mean control  rate at  the time correspond ing to 

that of t he max imum ,  was sub tracted from the max imum to give the 

acid- induced or IAA- i nduced maximum rate . The resu l ts shown in Fi g .  23 

suggest that on the bas i s  

C aCl2- suppl em ented sol ution s , 

o f  max imum 

hydrogen ion s 

e longation r ates i n  

a t  about pH 4 . 0  would 

replace I AA in promotin g  e longat ion in outer tissue cyl inders . I n  

sections cut from segment s  after 1 50 minutes o f  a c id treatment I found 

l ittle  e v idence of tox i c  e ffects at pH 4 . 0  in  0 . 001 M CaCl� , or a t  

pH 4 . 5  i n  0 . 00 0 1 M  C a Cl 2 •  Tox ic e ffects a l though apparen t l y  reduced , 

were sti l l  obv ious at lower CaC l £  concentrations at  either pH . 

Buffered solutions 

I t  i s  poss ible  that unbuffe r ed solutions m i ght not maintain free space 

pH withi n  the ti ssue at the external  pH . To test the poss i b i l ity that 

observed response s wer e  a consequence of the use of unbuffered 

solutions ,  in some expe r iments I used 1 mM or 1 0mM K�H PO+-citric  acid  

buffers . F igure 24 ( 1 mM buffe r )  and F i g .  25  ( 1 0mM buffer )  show that 

segments  elongated l it t l e  in response to t reatment with buffered 

solution a t  pH 5 .  The response was similar  to that of  outer tissue 

c yl ind e r s  treated with u nbuffered solut ions  at  pH 5 [Fi g .  2 1 ( 8) ] .  I f  

these b u f fers penetrate the tissue , then I conclud e  that t hese 

cylind e r s  are on l y  sl i ghtly responsive at this  pH . 

In some cond itions , outer  tissue cyl ind ers responded more rapidly  to  

acid treatment . F i gure  26  shows the re sponse o f  a cyl ind er treated at 

pH 5 after a five  hour pretreatment in 1 mM N a 2HPO�-citric  acid buffer . 

This response was not found con sistent l y .  I have not investi gated 

further t he apparent depend ence of response on length of pretreatment . 

4 . 3 . 2 .  Response of cortex c y l inders 

Outer t i ssue cyl inders  a ppeared less 

than I e x pected from the work of  

responsi v e  to  a c id ic solut ions 

other i nvesti gators with peel ed 
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segment s  o f  other mater i a l s .  Thi s  insen s i t i v ity was appa rentl y  not due 

to the use of unbuffered solut ion s .  I t  seems more l ikel y that i t  i s  

the outermost cel l layers i n  the s e  cyl ind ers  which were comparat i vely 

unresponsive to hydrogen ion s .  The evidence for this i s  the rapid and 

strong e longat ion respon se of cor tex cyl i nders in acid solution at 

pH 5 . 0 [ Fig . 2 7 (8) ] .  Compare this  with the respon se of outer ti ssue 

cylind e r s  at pH 5 . 0  [ F i g .  2 1 ( 8) ] .  Apparently ,  a l l  that wa s requ i red 

for outer  tissue c yl ind ers  to re spond rapid l y  at pH 5 was r emov a l  o f  

the outermost ce l l  l ayer s .  

both ins i d e  and o u tside 

Howe v er , a c id had access to the t issue from 

the cyl inder , and so it was inev i table that 

overa l l  p e netr a t i on of the cortex would be faste-r than in outer tissue 

cylind e r s .  The segments may hav e  elongated rapidly  bec ause acid 

penetrated the t i s sue mor e quickl y ,  rather  than because elon gation was 

no longer rest r i c ted by the les s  r e sponsi v e  outer c e l l  l a ye r s . This  

hypothes i s  was tested by perfusing the central  cav ity with solution at  

pH  5 ,  wh i l e  the s olut i on outsi d e  the segment remained u nchanged . 

Segmen t s  responded simi l arly [ F i g .  27 ( A ) ] to those whose outer sur face 

was also e xposed to acid [ Fi g . 27 ( 8 ) ] .  Th i s  supports the conclusion 

that the o utermost cel l  l a yers were less responsive to acid than the 

greater p a rt of the cortex . 

Compar ison o f  the response of cortex cyl inders to !AA [ F i g .  27 ( C ) ] ,  

with the acid- induced response  at  pH 5 [ F i g .  27 ( A )  and ( B ) ] ,  suggests 

that a l e s s  acid ic s olution woul d  subst i tute for ! AA in m e eting the 

predic t i on of  the acid-growth h ypothes i s , if this tissue alone is 

consi d e r ed . 

4 . 3 . 3 . R e s ponse o f  peeled segment s  

Unbuffered so l ut ion 

Si nce cor t e x  cyl i nd ers  responded quickly  to acid , I e x pected that 

peeled se gments would a l so respond we l l . However , this  was not the 

case. L i ttle  response to treatment with unbuffered acid at pH 5 was 

observed [ Fi g . 28( A ) ] .  Si nce the central t issues p robab ly  l imit 

e longat i on in peel ed segments ( page  5 3 ) ,  two possible e x pl anat ions for 

the poor r esponse to ac id of peel ed segment s  are tha t eith e r  hydrogen 

ions d id not penetrate to the cent r a l  tissue , or that these  t i ssues 
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were less responsive  to low pH , than was the cortex . Whi le the central 
t issue cores were a pparently l ess sensi t i v e  to ac id than the cortex , 

n onethel e ss they respond ed more strongl y t o  acid than did  peeled 

segments [ Fi g .  29 ( 8 ) ] .  This  result  impl ies that i n  peeled segments , 

h ydrogen ions d id not reach  the central t i s sues from the e x ternal 

solution . How far d id the acid pen etrate? Observation s of tox icity in 

peeled se gments treated w i th acid for a prolonged per iod suggested that 

i nward d i ffusion of hyd rogen ion s was restricted by the innermost l ayer 

o f  the cortex ( the starch sheath ) . I noted that in the central  ti ssue 

cores , the starch steath was invar i ably cut at some poin t . Any barrier 

i t  may have  prov ided no longer ex isted . 

To test the possibil ity that the starch sheath was l im i t ing access o f  

h ydrogen ions t o  the ste l e ,  the response to acid treatment o f  " large" 

central t issue cores was d etermined . The response at  pH 5 [Fig . 29 ( A ) ] 

was simi l ar to that of pee led segments [ Fi g .  28 ( A ) ] .  These cores 

consisted of the v ascul ar tissue and p i th plus about 2-5 l ayer s  of  

cortex ce l l s .  In  sections  cut from the cores  and e x amined with a l i ght 

microsco pe , the starch sheath appeared to be intac t .  S ince the only  

a pparent d if ferences bet we en thes e  segments and the normal central  

t issue co res were the presence of a n  intact s tarch sheath and some 

addition a l  l aye r s  of cortex  cel l s  in the former , I suggest that the 

small response of the " l ar ge" cores  ( and of peel ed segment s )  at pH 5 

was due to restr i c tion o f  access o f  hydrogen ions to the ste l e  by the 

s tarch sheath . 

What e x tern a l  pH wi l l  subst i tute for I AA in pee l ed segments?  Resu l ts 

show that t reatment at pH 4 caused a rapid  elongat ion response 

[ Fi g . 28 (8 ) ] wi th a max imum simi l ar to the IAA- induced max imum rate 

[ Fi g .  28 (C ) ] .  The initial  response might be that of  the cortex ( i . e . , 

a s  suggested i n  e x plan a t i on of  the initial  respon se of  outer tissue 

c yl ind e r s  tre a ted with a c id )  and continuing elong ation a whole segment 

response due to s low penetration of the stele by hydrogen ions . The 

p romot i v e  effec ts of the a c id were probab l y  con founded by  tox ic e ffects 

as  treatment conti nued , s ince tox ic e ffects ( similar to those observed 

i n  outer t i ssue cyl inders  treated with ac id ) were  seen i n  sections cut 

from segments at the end of exper iments .  
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Buffered solution 

Buffered solut ions were  used in some experiments , so that resu l ts could  

b e  compar ed more  d irectly  with those of other stud ies . Peel ed segments 

responded rapi d l y  when treated with 1 mM buffer pH 5 . 0  after pretreat

ment with buffer  pH 6 . 6  [ Fig . 30 ( C ) ] .  The max imum rate was simi l ar to 

the IAA- induced max imum rate [ Fi g .  28 ( C ) ] .  Compare this resu l t  with 

the response in unbuffered sol ution [ Fi g .  28 ( A ) ] .  How i s  the 

d ifference exp l a ined? I observed that the mean pretreatment elongation 

rate in b uffer was only 70 % of the rate i n  water . Possibl y ,  then , 

acid- induced e x tension a fter pretreatment i n  buffer was dependent on 

that buffer pretreatment . This hypothes i s  was supported b y  the resu l ts 

shown in Fig .  30 . After pretreatment in buffe r , segments treated with 

either buffered [ Fi g .  30 ( C ) ] or unbuffered [ Fi g .  30 ( B) ] solut ions at 

pH 5 responded rapidly  

pretreatment i n  water , 

with either buffered 

to  reach s imil ar maximum r ate . A fter 

s e gments respond ed equa l l y  poo r l y  when treated 

[ F i g .  30 ( A ) ]  or unbuffered [ F i g .  28 ( A ) ] pH 5 

solut ion s .  Appar ently ,  i t  was the pretreatment , and not the method of  

treatmen t ,  whi ch largely  determ ined the  response . 

4 . 4  DISCUSSION 

The f i rst obj ective was to d etermine the in v ivo response to acid of 

the outer cell layers of l upin hypocotyl s .  Apparentl y ,  the outermost 

l ayers w e re less respon s i v e  to acid than a l l  other t issue s . A poss i b l e  

e xplana t ion o f  a t  least p a r t  o f  thi s  d ifferential  sensitiv i ty is that 

the str e s s  in long itud i n a l  

than i n  

o f  a n  

outermost  layers  

l ongitud inal wa l l s  

( 1 974 ) a s  

cYl_ = rP/2 t 

cel l wa l l s  might be l ower in ce l l s  of the 

cells o f  the cortex . Stress in the 

idea l  c y l ind r i c a l  cel l i s  given by Nobel 

where or� = longitu d i n a l  stress  

r = cel l  rad ius 

P = turgor pressure 

t = cel l wall  thi ckness 

In l up i n s ,  c e l l s  of the outermost four l ayer s  of the h ypocotyl have 
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small er rad i i  and thi cker rad ial  wal l s  than cel l s  of the i nner cortex . 

The rati o  r/2 t  for the outer cel l s  is  about one- third o f  that for the 

i nner ce l l s (K . M i ller , unpubl ished ) .  I f  the turgor pressure i s  the 

s ame in the d ifferent c e l l  l ayers , i t  fol lows that �� w i l l  be lower i n  

the outer most l a yers tha n  in  the inner  cel l s .  I f  the rate o f  extension 

i s  l imited  by str ess borne  equa l l y  throughout the thickness of the wall 

[ rather than l imited by stress in  onl y  part of  the wal l , as  suggested 

by Ta i z  et al . ( 1 98 1 ) for N i t e l l a ]  then it  m i ght be ex pected that the 

r ate of ac id-induced e x tension of the outer cel l s  be l ower than that of 

the inner cel l s  ( because stress is lowe r i n  the wal l s  of the former 

than in the wal l s  of the l atter ) . 

I can now assess the poss ible  role of hyd rogen ions i n  I AA- induced 

elongati o n  of lup ins . I have p rev ious l y  suggested that in  lupin 

h ypocoty l s ,  the outermost cell  l a yers are l imit i n g  elongat ion o f  the 

whole se gment , and that t he ini t i a l  elongation response to IAA is a 

conseque n ce of action on these layers ( page 58 ) .  I f  thi s  respon se i s  

mediated b y  hyd rogen ions , then  I pred ict  that ( 1 )  I AA t reatment w i l l  

cause a reduction in  p H  i n  the wal l s  of  the outermost cel l l a yers ; and 

( 2 )  treatment of  outer  cell  laye r s  wi th acid at the same pH wi l l  

p romote e longat ion  to the s ame rate  as ind uced b y  IAA . 

My resu l ts wi th outer t i s su e  cyl inders su ggest that an an a c id sol ution 

o f  about p H  4 wi l l  substi tute for IAA ,  i f  maximum acid- induced and 

IAA-ind uced rates in u nbuffered solut i on are compared ( Fi g .  23 ) .  G i v en 

the assumption that IAA- induced red uc t ion in  pH causes the same 

e longa t i on respon se as tha t caused by trea tment with an acid  solut i on , 

I suggest that an IAA- i nd uced reduct ion of  pH to  about 4 must  occur i n  

the outer  cell layers of l upin hypocotyl s ,  i f  the IAA�ind uced ex ten sion 

is med iated by hyd rogen ions . 

Penny �· ( 1 975 ) have measured pH changes induced by I AA treatment 

of lup i n  hypoco tyl segments , w i th a pH microelectrode in serted in  a 

x ylem v e ssel o f  an elong at ing segment . N o  reduc t ion i n  pH below 6 . 0  

could be detected before segments started elongating  r apidly i n  

r esponse t o  IAA 

possib i l ity  that 

treatmen t . However , I have not i nves t i gated the 

I AA causes pH to be reduced in  the outer cell  layers 
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of lupin hypocotyl s .  I n  other p l ants whi ch have been invest i gated , i t  

has been  observ ed that IAA t reatment causes  the p H  of the free space o f  

the out e r  cell l a yers t o  fal l to v alues rang ing between 4 . 8  and 5 . 4  

( Cleland 1 976 , J acob s and Ray 1 976 , M e ntze e t  al . 1 977 , Rayle  and 

C leland 1 980 ) . My resu l ts ( Fi g .  23 ) suggest that treatment with acid 

solution s of pH i n  this range ( 4 . 8-5 . 4 )  wou ld not be sufficient to 

promote e longa t i on of outer tissue cyl inders of l upin hypocotyl to 

rates ob served i n  IAA- treated s e gments . I f  IAA treatment of l upin 

hypocotyls  causes  pH in the fre e  space of the outer cel l  layers to fal l  

to a val ue sim i l ar to that recorded i n  othe r stud ies ( pH 4 . 8-5 . 4 ) ,  then 

it seems unlikel y  that the maj or part of the early  IAA - induced 

e longation response in lupins  i s  med iated by  pH l owering i n  the wa l l s  

o f  th e  l imiting outer layer s .  

Compa ri son o f  responses to a c i d  treatment o f  o uter tissue cyl ind ers 

[ Fig . 2 1 (8) ] and cortex cyl ind ers [ Fi g .  27 ( A ) , ( B) ] ,  suggests that the 

outermost  cell s  o f  outer t i ssue c y l ind er s  respond less rap i d l y  to acid 

than the i nner ce l l s  of those cyl inder s .  This conclusion is based on 

the ass umption that hyd rogen ions would e ffectively  penetrate the 

cortex free space  to reach the oute r  l ayers . Howe v er , I d o  not know 

how the free space  pH in the outer l a yers changed in response to a pH 

c hange of the solution in the cen t r a l  cav i t y .  The observed course o f  

response of  outer t issue c y l ind ers was possibly governed by  both t i ssue 

sensitiv ity to hydrogen ion s ,  a nd by change of pH with t ime i n  the 

outer ce l l  laye r s  of  these cyl ind e r s .  Possibl y ,  then , t h e  poor 

r esponse to aci d  at pH 5 seen in outer tissue cyl inders  d id not reflect 

the response whi c h  would occur i f  IAA red uced pH i n  the o uter cel l  

l ayers . 

I t  is  difficult  to further test thi s  poss i b i l ity . Access o f  protons to 

the outer cell l a yers from outs i d e  the segment was a ppa rentl y  

restr i c ted by the cuti c l e , since i ntac t l upin hypocotyl segments 

r esponded only  weakly to an acid treatment at pH 3 ( Fi g . 22 ) , i n  l ine 

w i th resu l ts of e x periments on l i ght- grown peas ( Barkley and Leopold 

1 973 ,  Yamamoto et al . 1 974 ) . Cuticul ar res i s tance to d iffusion o f  

p roton s c a n  be red uced by  treatments suc h  a s  ether-d ipp i ng . Lupin 

segments so-treated show an i mproved response to acid t reatment at 
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pH 4 ,  but which  i s  sti l l  onl y  about 70%  o f  IAA- induced rate ( Perley 

et al . 1 975 ) .  H owev er , it is  l ikely that some restr ict ion on proton 

d iffu s ion remai n s .  The same problem e x ists where abraded segments are 

used ( J acobs and Ray 1 976 , Ta i z  and Metraux 1 979 ) . 

The second obj e ctive of  this study was to compare the responses of  

l upins w i th tho se of  other plants , so that the general  app l icab i l ity of 

the conc l usions could be assesse d . 

I have  shown that peel ed segment s  o f  lupin  respond ed rap i d l y  to acid 

treatmen t ,  i f  they had f i rst been pretreated i n  buffer . This 

short- l ived response was sim i l ar to that found with pee l ed segments of 

e tiolated Aven a  coleopti l e  ( R a yl e  1 97 3 ) ,  peel ed segments of Hel ianthus 

hypocotyl (Fi r n  and Digby 1 977 ) ,  and abrad ed segments  of  etiol ated Zea  

coleopt i l e  ( Jacobs and Ray  1 976 ) .  S i m i larl y  buffered sol ut ions were 

u sed in those exper iment s .  At l east  in these cond i t ions , then , the 

b ehaviou r  of lupins  was not diffe rent from that of other mater ia l s .  

S ince i t  has been shown that acid s o l ution s o f  pH 4 . 8-5 . 0  wil l  cause an 

elongat ion respon se of max imum rate equ i v alent to that obta ined with 

I AA treatment , i t  has been con c l ud ed that obse rved IAA-induced pH 

l oweri ng is su fficient to account for the rapid IAA-induced e longation 

r esponse ( Rayl e 1 973 , J acob s a nd Ray  1 976 ) . Howe v er , I have shown 

t hat the a cid-ind uced re sponse in peel ed segments o f  l u p i n  hypocotyl 

was due to pretreatment in buffe r ,  and segments respond ed poor l y  i f  

p retrea t ed in water . Simi lar e ffects o f  buffer t reatment have been 

n oted wi th segments of Z e a  root ( Edwards  and Scott 1 97 4 ) and l ettuce 

hypocotyl ( Moll and Jone s  1 98 1  ) .  I h a v e  not further i nvestigated the 

r eason for inhibi ted pret reatment e longation rate i n  buffer . I t  might 

be  an osmotic e ffect , o r  d ue to  buffer pH or composi t ion . The 

e longat ion respon se on pH c hange  m ight be an ex pression of  "stored 

g rowth " ( Ray 1 961  ) • 

I suggest that effects o f  b uffer pretreatment on the respon se to 

s ubsequent acid t reatmen t might a ccount for the greater part o f  

a c id- induced elongation found i n  other invest i gations ( Rayle  1 973 , 

J acobs and Ray 1 976 ; F i rn and D i gby 1 977 ) .  I f  so , then onl y  when 

s egments have been pretreated with buffer will IAA-induced pH lowering 
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accoun t  for the i n itial rapid IAA-induced elongat ion respon se . 

I hav e s hown that  buffer-treated outer  t issue cyl ind ers  of lupin  

hypoc o t y l s  were  l ess responsive  to aci d  than  pee l ed segmen ts . Th i s  is 

consi s t e n t  with my suggest ion that the outermost cell layers  are l ess 

sensi t i v e  to acid than the inner t i s sues . There is  other ev idence in 

other mat erial s of such d i fferen t i a l  sen s i t ivity . In  a study simi l ar 

to the p r esent one , Yamamoto et a l . ( 1 97 4 ) present data which show that 

acid- i n duced e l ongation of  hol lo w  cyl i nd ers of  l ight- grown pea stem , a t  

p H  4 . 5 ,  over o n e  hour , was about 38% o f  that  o f  sim i l a r l y  treated 

peeled s e gments . C leland and Rayle  ( 1 975 ) give resul ts which show that 

peeled s e gments of l ight- grown pea stem e longated ini t i a l ly about 50%  

more rapi d ly t han segments  with the epidermis s l it but otherwise 

i ntact , at pH 3 . 3 . These resu l ts suggest that the outermost cel l s  of  

segment s  used i n  these stud ies might be  l ess responsive to acid than 

the inne r  tissu e s . 

I am not aware o f  any stud ies with etiol ated pl ants  where sim i l ar 

compar i s ons can be  made .  Howe v er , abr a d ed segments o f  some etiol ated 

mater i a l s wil l  re spond to pH 5 t reatment ( J acobs and R a y  1 976 ) .  Si nce 

the epi d e rmis was retained , then these segments were appar ently  more 

sensi t i v e  to ac i d  than are segments of l ight- grown lupin  hypocotyl 

which a l so reta i ned the e pidermis , and to which a c id had access . 

P ossi b l y , segmen ts of et i ol ated plants are  more sensitive  to acid than 

are segments o f  

c ompared etiol ated 

l ight- grown p l ants 

and l i ght- g rown 

o f  the same species . I hav e not 

l upins ;  however , Barkl ey and 

Leopol d  ( 1 973 ) have reported that peel ed segments of  l i ght- grown pea 

stem wou ld not respond to acid treatment , but that intact segments of 

etiolated plant s  would respond . 

I consider that my resul ts do not support the hypothe s i s  that hyd rogen 

ions cause the i n i tial phase o f  IAA- induced elongation in intact l upin 

hypocotyl segments . However , the assoc iat ion of free space pH lowering  

w i th IAA  action i s  appa r e n t l y  a common phenomenon ( Clel and 1 976 , 

J acobs a nd Ray 1 976 , Mentze et al . 1 97 7 ;  Rayl e and C l e l and 1 980 ) , and 

m ight a l so occur in lupi n s . Penny  et al . ( 1 975 ) fai l ed to detect any 

r eduction  in pH w i thin the l atent per iod for IAA- ind uced elongation , in 
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segmen t s  of both � and lupin . The pH microel ectrod e was posit ioned 

i n  a xyl e m  vess e l , however , and i t  now seems poss ible tha t any pH 

change i n  the fre e space outside the sta rch sheath would not be 

detec ted withi n  i t .  I have shown that the stelar t issues o f  lupin 

hypoco t y l s  in i so lation a re onl y  weakly IAA-responsive  [ Fi g .  20 and 

F ig .  2 9  ( C) ] , so l ittle  free space pH lower ing because o f  d irect IAA 

action on these t i ssues would be pred icted . O ' Brien and Carr ( 1 970 ) 

have shown that there are suberi sed l ayers in wal l s  o f  bund l e  sheath 

cell s  of  Triti cum , Zea and Avena leaves . The presence o f  any such 

l a ye rs i n  b undle sheaths o f  Avena c okopt i l es may r estr ict proton 

d iffusion i nto the vascul a r  bund l e  from outside , and might expl ain  why 

C l el and ( 1 97 6 ) could show IAA- induced pH lowering in the outer cel l 

l ayers o f � coleopt i l es ,  whi le Penny et al . ( 1 975 ) could not detect 

any such rapid re sponse in the pH of  the solution inside a xylem 

vessel . Other ex planat i ons for this difference have been d iscussed 

e lsewhe r e  ( Jacobs and Ray 1 97 6 ) .  
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5 :  DISCUSSION 

In introduc ing this work I r e fe rred to the d ifficul ty i n  stud ying the 

mecha n i sm of cel l expan s ion when  measur ement of e x pansion ( in cel l s  of  

higher p l ants ) must be made  on a macrosco pic scal e ,  using segments of  

tissue . I hav e i l lustrated som e o f  the problem s  i n  inter preting the 

elong at ion responses of segments o f  lupi n hypoco tyl in terms o f  

under l yi ng cel l ul ar behav iour , i n  eac h o f  the three sets o f  e x periments 

conduc ted . S i n ce resu l ts hav e  al read y been discussed in each cha pter , 

this conclud ing d iscussion is l im ited to showing how the resu l ts m ight 

be interrel ated . 

There are two fund amental d ifficul ties in inte r pret ing the resu l ts .  

F i rst l y ,  the maj or pathwa y for water flow into growing segments  i n  

so lut ion  i s  n o t  known ; and second l y ,  i t  i s  not c l ear whether 

elongation of segments is l im it ed by the rate of water uptake or by the 

rate o f  i rreversible  wal l  yield ing . The path for water f low to 

ex pand ing cel l s  in the hypocotyl of intact  seed l ings is prob ab l y  

rad ia l l y  inwa rd s and out ward s from the x yl em  ( Boyer a nd Wu 1 978 , 

Cosg ro v e  1 98 1  ) .  In elongat ing segments in so l ution , i t  i s  po ssib l e  

that this  remains  the maj or path for water f low . I f  most water flow i s  

from the x yl em , it  might be i n  t h e  cel l- cell  path rather than through 

cell wal l s ( Co sgrov e and Ste ud l e  1 98 1  ) .  The al ternati v e  pathwa ys for 

water flow  are through the epi d ermis , and long itud ina l l y  through the 

t i ssue from the c ut end s o f  the segment . S ince it is not c l ear wh ich 

i s  the mai n path for wa ter flow , it  is  not obv ious which form of  

b io phys ical m od el ( Cosgrov e 1 98 1 ) wi l l  appl y .  There fore , i t  i s  not 

c l ear which param eters are invol v ed in control of wa ter uptake . 

In pr incipl e ,  e long ation of segments i n  sol ut ion coul d be l imited by 

the rat e  o f  water flow into the segm ent , if  resistance o f  the pathwa y 

was su ffic ient l y  high . I f  l im ited by wa ter uptake , i t  i s  pred ic ted 

that turgor pressure ( P ) in cel l s  o f  the h ypocotyl wou l d  be lower when 

growi ng than when growth had ceased ( Co sgrov e 1 98 1 ) .  E v id en ce that P 

i s  lowe r i n  hypocotyls o f  soyb ean seed ings when elongating rapid l y  than 

when elongating  slowl y ,  has been prov ided by Bo yer and Wu ( 1 978 ) .  I n  

segments o f  lupi n hypocotyl i n  so l ution , evid ence that the segment 
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might not be in water potent ial  e qui l ibr ium wi th the ex ternal med ium is  

seen in the rapid e x ten sion of  segments after peel ing ( Fi g . 1 8 ) . Thi s  

e x ten sion might represent d ischa rge  o f  a water potential grad ient ( pa g e  

60 ) and hence m ight ind ic ate that  P w a s  l o w  in the segments  before 

peel ing ( and there fore that elong ation wa s l im ited by water uptake ) . 

Howe v er , it  i s  al so po ssible that the segments were ini t i al l y  at a l ow 

water po tential  because the water potent ial in the xyl em wa s low . Th i s  

w a s  prob ably  t h e  case , s i nce prel im ina r y  experiments i nd icated that the 

root prov ided a l imiting resistance to wa ter flow into the hypoco tyl 

( elongat ion rate  of the hypocotyl was increased when the root was 

e x c ised ) , and al so suggested that the xyl em sap was und er ten sion 

( since d ye immed iatel y entered the xyl em when the hypoco tyl was cut 

under the dye so l ution ) . Howev er , s i nce segments wh i c h  had been in 

solut ion for an ho ur al so extend ed rapi d l y  after peel ing ( Fi g .  1 9 ) , i t  

i s  poss i b l e  that  some water potent i a l  d isequi l ib r i um pe r s i sted . 

I f  elon g ation i s  l imited by ex tensib i l ity ( the r ate o f  i rrev ersib l e  

wal l  yi e ld ing ) , then a n  al ternative  ex pl anat ion o f  the rapid ex ten sion 

a fter peel ing i s  required , and has been given on page 59 . Th is other 

poss ib i l it y  is that remov al of  the epid ermis e ffec tivel y red uces the 

e l astic  modul u s  [ equat ion ( 6 ) ,  pag e  1 1 ] of cel l wal l s  i n  the peel ed 

segment , thus resu l ting i n  a red uction in P and therefore a red uc tion 

in the water potential . The wa ter potential grad ient between the 

segment and the m ed ium wo uld then be d ischarged , and the segment would 

ex tend . This hypothesis  arise s from the possib i l ity that the epid ermis  

may l im it exten sion of the  intact  segment , thus imposing a r estr iction 

on exten s ion of the other t issue s . Turgor pressure in the inner 

t i ssue s wo uld therefore be "hi g h" because the e ffective  e l astic  modul us 

o f  cel l wa l l s  wo ul d be high ( i . e . ,  cel l wall s  would b e  relat i v el y  

i nex ten sible) . A poss i b l e  ex pl anation o f  why the epid erm is m ight l im it 

e l ong at ion of the intac t s e gment i s  that the wal l s  o f  the e pidermal 

cells  m ig ht not yield at the sam e  rate as the wal l s  o f  other cel l s  in 

the se gment .  Th i s  might be  due to d ifferences i n  wal l  thickness ( page 

7 8 ) or i n  some o ther pro pe rty o f  the cel l s  wh ich  d eterm ines 

e x ten s i b i l it y  or the m in imum yi eld  threshold [ equat ion ( 1  ) ,  page 2 ] .  

I f  elon g ation is l imited b y  the rate of wa l l  yiel d ing , then it i s  

pred ic ted that tu rgor pr e ssure wi l l  be high ( i . e . ,  turg or pressure in 



86 

rapi d l y  elon g at ing segments wi l l  be sim il ar to that in segments 

e long at i ng onl y slowl y) ( Co sg rove 1 98 1  ) .  

If elongation i s  l imited by water uptake , then the i n i t i a l  ac tion of  

aux i n  must  be on  this l im iting ste p , i f  the rate o f  elong ation is to  be 

promoted . In pr incipl e the rat e  o f  water uptake could be increased by 

an effe c t  on any o f  the parameter s g overn i ng D, which is a function o f  

proto pl ast and c e l l  wa l l  hydraul ic and e l astic properties ( Mo l z  and 

Boye r  1 978 ) ;  or by e ffects on L (hyd r aul ic cond uc tiv ity o f  the 

e pid erm is)  or r:r ( the reflection coeffi c ient) ; or lT ( the osmotic 

pressure ) . 

The i n i t ial e longation respon se to IAA treatment seen i n  intac t 

segments o f  lupi n hypocotyl ( Fi g .  20 ) might then repr e sent the effec t  

o f  action o n  the rate of  wa ter upta ke , with a n  increase in P in  the 

o uter cel l s  and ( parti a l ) d ischarge of an ex ist i ng water potent ial 

g rad ien t . Th i s  hypothe s i s  is con s istent w i th the ob serv at ions that the 

i n it i al elong at ion respon se ( a fter IAA t reatment)  was not seen i n  

peeled se gment s , since i t  woul d be  expec ted that these segments were 

a l read y c lose to water po tential e qui l ibr i um wi th the ex ternal med ium .  

I t  woul d also be consistent with the ev id ence that the i n i t i al response 

was sti l l  found in outer t issue c yl ind er s , i f  in these cyl ind er s  the 

pathwa y for water flow to the out e r  tissu e s  was across the cortex , 

s ince the l ength o f  that p a th was changed only  l it t l e  in com parison 

w i th its l ength in the intac t segment . 

If  the rate o f  wa ter flow  was increased so that i t  was n o  l onger 

l imiting , then elongation wo ul d becom e l imi ted by the rate of wal l  

y ield ing . A second e ffec t  o f  I A A  might then be  i n  enhanc ing 

e x tensib i l it y  ( Green a nd Cumm ins 1 974 , Bo yer and Wu 1 978 ) • and 

m ainta i ni ng the grad ient for water influx  by red uc ing P ( as seen in the 

r e sul ts o f  lbyer and Wu ) .  The elongat ion respon ses o f  peel ed segments 

o f  lupi n h ypocotyl might then r e fl ec t  IAA action on wal l  yield ing . 

Howe v er , i f  se gment elongation is  l im ited ini t i ally  b y  the rate of 

i rrev ersibl e  wa l l  yiel d ing , then the f i r st ac tion of  IAA must be on 

this  process .  In lupi n s , this e ffect need onl y be on the outer tissue s 
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( in i t i a l l y ,  at  least) . In terms o f  the hypothesis al read y d escribed , 

an effec t  on the rate of yi e l d ing o f  the outer tissues m ight resul t in 

a l arge i n i tial el astic ex tension of cel l s  o f  the other tissues of the 

se gment . Since P woul d i ncrease , the rate of water upta ke woul d fal l ;  

and bec ause of  th is , and a l so because of  a continuing high rate of  wa l l  

y i el d ing , the turgor pre ssure wo uld sub sequentl y fal l . Turgor might 

then be maintai ned by an i ncrease in the osmotic pressure o f  the cel l s ,  

a s  suggested b y  C l  eland and Ra y l e  ( 1 97 8 ) .  

The elongation response s  of  segments treated wi th ac id ( Chapter 4 )  are 

now ex p l a ined in the conte x t  of  the points  j ust d iscussed . Accord ing 

to the ac id-growth hypo thesis ( Ra yl e  and Clel and 1 980 ) the action o f  

I AA ( and  o f  hyd rogen ion s )  i s  o n  wal l  properties . I f  elongat ion o f  the 

segment was l im ited by  the rate o f  water uptake , then the acid- growth 

h ypothesis  coul d not account for the ini t i al elongation response a fter 

IAA treatment . I t  

woul d  n o t  promote 

c yl ind e r s  of lupin  

not  sur pr i sing that 

t reated with ac id , 

wo u l d  then be  expected that treatment with ac id 

elon g a t ion . I f  the elongation o f  outer t issue 

hypocotyl was l imited by water uptake , then i t  i s  

the y  d id not initia l l y  elong ate rapid l y  when 

Thi s  is  an al ternat i v e  expl anat ion of the fai l ure  

of  the se c yl ind ers to re spond to acid treatment ; on page 78 I 

suggested that d i fferences i n  wal l  thickness might account for the 

d ifference  in response between outer t issue cyl inders and cortex 

c yl ind er s . Tha t  expl anat ion wa s based on the assumpt ion that 

the e l ongation was ex tensib i l ity- l imited . I t  i s  possib l e  that 

e l ong at ion of cor tex cyl inders m ight be l imited by ex tensib il it y ,  i f  

they we re close t o  water poten t i a l  equi l ibrium wi th the e x ternal 

so lut i on . 

These po ints i l l ustrate the d ifficul ties  in d rawi ng i n ferences about 

c e llul ar behav iour from the response s  o f  segments , and a l so suggest 

that caut ion sho uld  be ex ercised in drawi ng  infe r ences about the 

r e spon se s  of  intac t segments from the response s  of d ifferent tissues in 

i solat ion . Cl early ,  som e quest ion s need to be an swered before the 

e l ong at ion of segments is inter preted i n  t erms of a part icul ar 

b iophys ical m od el ( Co sg rove 1 98 1 ) .  What i s  the main path for water 

flow in the growi ng segment? Is it through the epiderm i s , or from the 



88 

x yl em? Through cel l s ,  or through the apopl asm? Wha t  is the l imiting 

r esistance to flow in th i s  path? For exam pl e ,  i f  water fl ows fro m the 

x yl em rad ial l y  outward s to g rowing cel l s ,  i s  resistance d istributed 

e qua l l y  along the path , or is ther e  a l imit ing resi stance at the starch 

sheath? 

Whe ther the model chosen i s  that for singl e cel l s  or that which 

accoun ts for d istr ibut ed r esistance to wa ter flow ( Co sg rov e 1 98 1  ) , each 

pred ic ts that tur gor pre ssure wi l l  be low in g rowing segments if 

e long ation is  l im ited by  e x ten sib il ity ( Co sg rov e 1 98 1  ) . It woul d be 

u se fu l  to test this pred ic tion i n  any  stud y of elon g at ion , before the 

a s sumption of ex tensib i l ity- l im ited elongation is mad e .  Th i s  woul d 

h e l p  i n  i nterpreting the e l ong at ion respon ses to IAA treatment , and 

woul d  i nd icat e  whether or not the initial  r espon se to IAA treatment 

c o uld in p rinc ipl e be accounted for by an e ffec t  on wal l  yield ing 

propertie s . The advent o f  techn i ques which perm it  measurement o f  

t u rgor pressure i n  singl e  cel l s  o f  higher plant tissues ( Hu sken et al . 

1 978 ) would be use ful i n  this contex t ,  a nd should g rea t l y  assist our 

und er stand ing o f  the mec hanism o f  cell ex pansion . 
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