Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Isolation and Characterisation of the 5' Region Sequence for the Bovine ATP-Citrate Lyase Gene

A thesis presented in fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University

Xingzhang Tong

2001

Abstract

ATP-citrate lyase (ACL) is one of the major lipogenic enzymes. It catalyzes the synthesis of acetyl-CoA from citrate in the cytosol. This is the first committed step towards the conversion of carbohydrate precursors into fatty acids. Acetyl-CoA serves as the major precursor for lipogenesis and cholestogenesis. Examination of this pathway shows that the rate of fatty acid synthesis from glucose is dependent on the activity of ACL. In rats the activity of this enzyme can be increased by feeding high carbohydrate diet and reduced to low levels by fasting. These changes are regulated at the transcriptional level.

The ruminant provides a good model to study the regulation of expression of ACL. The levels of this enzyme are high in young ruminants, but fall to very low levels once a functional rumen is developed. In adult ruminants, acetyl-CoA for fatty acid synthesis is produced directly from acetate formed by microbial fermentation in the rumen and carried to the peripheral tissues. The down-regulation of this enzyme can be reversed by the administration of glucogenic precursors by a route that bypasses their fermentation to volatile fatty acids in the rumen. An understanding of the regulation of expression of ACL in the adult ruminant and a comparison with monogastric animals will provide significant new information about the regulation of the conversion of carbohydrate into fat.

A probe containing exon 2 to exon 3 of the rat ACL gene was prepared. Its specificity to bovine genomic DNA was verified and the probe was then used to screen a bovine λ genomic library. A 17 kb clone was isolated. The restriction map of this clone was determined with several enzymes. A part of this clone (9490 base pairs) was sequenced and shown to consist of a 3 kb promoter region and doenstream seqence as far as intron 3 of bovine ACL. The transcription start sites were determined by 5'RACE. Several important features of this gene were discovered by computer analysis of the sequence. Two key transcription factor binding sites were found in the promoter region. This work provided a solid basis for further investigation towards elucidating the mechanism of the transcriptional regulation of bovine ACL and the process of lipogenesis.

Acknowledgement

I sincerely thank my supervisor, Associate Professor John Tweedie, for his remarkable guidance and supervision. His encouragement, patience and enthusiasm throughout the course of this project were deeply appreciated. I would also like to gratefully thank Carole Flyger for her help in preparing the probe and general guidance, Carolyn Young for her help in the library screening, and all members of the Twilight Zone for their help and advice in the lab.

TABLE OF CONTENTS

ABS	FRACT		ii
ACK	NOWL	EDGEMENTS	iii
TAB	LE OF (CONTENTS	iv
LIST	OF FIG	GURES	vii
LIST	OF TA	BLES	ix
ABB	REVIA	ΓΙΟΝS	х
СНА	PTER (ONE: INTRODUCTION	1
1.1	Overv	'iew of Lipogenesis	1
1.2	Regul	ation of Lipogenesis	2
1.3	The N	lolecular Mechanisms of the Regulation of Lipogenesis	4
	1.3.1 (General Model of Gene Transcription	4
	1.3.2 (Glucose/Insulin Regulation in Lipogenic Gene Expression	6
	1.3.3	The Role of SREBPs in Lipogenesis	10
		1.3.3.1 Members of SREBP Family	10
		1.3.3.2 Target Genes of SREBPs	11
		1.3.3.3 Binding specificity of SREBPs	12
		1.3.3.4 SREBP as the Major Mediator of Insulin	13
		1.3.3.5 Regulation of SREBP by Glucose and Fatty Acid	14
		1.3.3.6 Coregulatory Factors	15
		1.3.3.7 Analysis of SREBP-1c Promoter	16
1.4 A	TP-Citr	ate Lyase	17
	1.4.1	Role of ATP-Citrate Lyase	17
	1.4.2	Regulation of ATP-Citrate Lyase	19
	1.4.3	Phosphorylation of ATP-Citrate Lyase	19
	1.4.4	Gene Structure	20
	1.4.5	Molecular Mechanism of the Regulation of ATP-Citrate Lyase	21
1.5	ATP-	Citrate Lyase in Ruminants	24
	1.5.1	Glucose Metabolism in Ruminants	24
	1.5.2	Fatty Acid Synthesis in Ruminants	26

	1.5.3	Regulation of lipogenesis in ruminants	28
	1.5.4	ATP-Citrate Lyase in Ruminants	30
1.6	Aim o	f This Study	31
CHA	PTER T	WO: MATERIALS AND METHODS	33
2.1 M	aterials		33
2.2 M	ethods		35
	2.2.1 N	Maintenance and Storage of Bacterial Strains and Phage	35
	2.2.2 F	Preparation of Plasmid DNA	35
	2.2.3 F	Preparation of Phage DNA	35
	2.2.4 F	Preparation of Genomic DNA	35
	2.2.5 I	DNA Amplification	35
	2.2.6 (Quantitation of DNA	36
	2.2.7 I	DNA Digestion and Agarose Gel Electrophoresis	36
	2.2.8 I	Digestion of Genomic DNA	36
	2.2.9 E	Electrophoresis of Genomic DNA	37
	2.2.10	Purification of Fragments from Agarose Gels	37
	2.2.11	Preparation of Vectors for Subcloning	37
	2.2.12	Ligation of Vector with Insert DNA	38
	2.2.13	Transformation of Competent Cells	38
	2.2.14	Labelling DNA Probes with ³² P	38
	2.2.15	Southern Transfer	38
	2.2.16	Southern Hybridisation	39
	2.2.17	Autoradiography	39
	2.2.18	Screening Bacteriophage Library	40
	2.2.19	DNA Sequencing	40
	2.2.20	Isolation of Total Cellular RNA	40
	2.2.21	5' RACE System for Rapid Amplification of cDNA Ends	40
CHA	PTER T	THREE: RESULTS AND DISCUSSION	42
3.1 Pr	obe Pre	eparation	42
3.2 V	erificati	on of the Probe Specificity	43
3.3 Sc	reening	, the Library	43
3.4 Cl	haracte	risation of two λ Clones	46

3.4.1 Restriction Mapping of two λ Clones	46
3.4.2 Characterisation of the 10 kb EcoR I subclone	53
3.4.3 Characterisation of the 8.4 kb Sal I subclone	65
3.5 Sequencing	70
3.6 Determination of the Transcription Start Point	73
3.7 Analysis of the Sequence	77
3.7.1 An Overview of the Whole Sequence	77
3.7.2 Analysis of the mRNA Sequence	80
3.7.3 Analysis of the Promoter Region	83
CHAPTER FOUR: FUTURE DIRECTIONS	87
4.1 Confirmation of Transcription Start Sites	87
4.1.1. Nuclease Protection	87
4.1.2 Primer Extension	88
4.2 Determination of the Minimal Promoter	88
4.3 Binding Sites for Transcription Factors	89
4.3.1 DNase I footprinting	89
4.3.2 Electrophoretic mobility shift assays (EMSA)	90
4.4 Expression of ATP-Citrate Lyase in Tissues During Development	90
4.5 Long-term Aims	91
REFFERENCES	92
Appendix 1: Sequence of the 5'-Region of the Bovine ACL	106
Appendix 2: Potential transcription factor binding sites in the bovine	
ACL promoter	113
Appendix 3: Comparison of the Promoters From the Bovine, Human	
and Rat ACL	117

LIST OF FIGURES

Figure 1: A general model of gene transcription	5
Figure 2: Minimal sequences from the L-pyruvate kinase (L-PK), S14, and	
acetyl-coenzyme A carboxylase (ACC) genes that are able to	
confer glucose responsiveness and their functionality.	8
Figure 3: An outline of the target genes of SREBPs	12
Figure 4: The role of ATP-citrate lyase and an outline of lipogenesis	18
Figure 5: A comparison of SRE sites and inverted Y-box	
in human and rat ACL	22
Figure 6: Probe Position on Rat ACL Gene	42
Figure 7: Verification of The Probe Specificity	44
Figure 8: Autoradiographs of hybridisation filters used in the screening	45
of the λ DASH II library	
Figure 9: λ DASH II Vector Map	47
Figure 10: Agarose gel electrophoresis of digested λ TW5 DNA and	
autoradiograph of the agarose gel after Southern blotting	
and hybridisation to the rat ACL probe.	49
Figure 11: Restriction map of the λ TW5 clone deduced from the results	
shown in Figure 10 and Table 2.	51
Figure 12: Agarose gel electrophoresis of digested λ TW6 DNA and	
autoradiograph of the agarose gel after Southern blotting and	
hybridisation to the rat ACL probe.	52
Figure 13: Graphic maps of pGEM 3Zf(-) vector and 10 kb EcoR I	
subclone construct	55
Figure 14: First group of restriction digests and Southern blot of the	
10 kb <i>EcoR</i> I subclone	56
Figure 15: Restriction map of the 10 kb EcoR I subclone deduced from the	
results shown in Figure 14 and Table 3.	58

Figure 16: Second group of restriction digests and Southern blot of the	
10 kb <i>EcoR</i> I subclone	59
Figure 17: Restriction map of the 10 kb EcoR I subclone deduced from	
the results shown in Figure 12 and Table 4.	61
Figure 18: Third group of restriction digests of the 10 kb <i>EcoR</i> I subclone	62
Figure 19: Restriction map of the 10 kb <i>EcoR</i> I subclone deduced from the	
results shown in Figure 18 and Table 5	64
Figure 20: The 8.4 kb Sal I subclone construct.	66
Figure 21: Restriction digests of the 8.4 kb Sal I subclone	67
Figure 22: Restriction map of the 8.4 kb Sal I subclone deduced from the	
results shown in Figure 21 and Table 6.	69
Figure 23: Summary restriction map of λ TW5	71
Figure 24: Map of sequenced fragments and sequencing strategy	72
Figure 25: Overview of the 5'RACE procedure	74
Figure 26: Gel electrophoresis of total cellular RNA isolated from	
bovine liver tissue	75
Figure 27: The result analyzed by NIX program	
for 9490 bp bovine ACL data	78
Figure 28: Comparison of mRNA sequences in exon 1, 2, 3 from bovine,	
human and rat ACL gene	82
Figure 29: Alignment of the protein sequences of exon 2 and 3 from	
bovine, human and rat	83
Figure 30: An alignment of SRE sites in bovine, human and rat ACL	85

LIST OF TABLES

Table 1: Genotypes of Escherichia coli used in this study	34
Table 2: Sizes of fragment resulting from restriction endonuclease	
digestion shown in Figure 10	50
Table 3: Sizes of fragment resulting from restriction endonuclease	
digestion shown in Figure 14	57
Table 4: Sizes of fragment resulting from restriction endonuclease	
digestion shown in Figure 16	60
Table 5: Sizes of fragment resulting from restriction endonuclease	
digestion shown in Figure 18	63
Table 6: Sizes of fragment resulting from restriction endonuclease	
digestion shown in Figure 21	68
Table 7: The lengths of exon 1, 2 and 3 in bovine, human and rat ACL	79

Abbreviations

ACC	acetyl CoA carboxylase
ACP	acyl carrier protein
ACS	acetyl CoA synthetase
ACL	ATP citrate lyase
ADD-1	adipocyte determination and differentiation factor-1
ATP	adenosine triphosphate
b/HLH/LZ	basic/helix-loop-helix/leucine zipper
ChoRE	carbohydrate response element
cDNA	complementary DNA
CoA	coenzyme A
cpm	counts per minute
ddNTP	dideoxynucleotide triphosphate
DEPC	diethylpyrocarbonate
dH ₂ O	deionised water
Dnase	deoxyribonuclease
dNTP	deoxynucleotide triphosphate
DTT	dithiothreitol
EDTA	ethylenediamine tetraacetic acid
EEO	electroendosmosis
FAS	fatty acid synthase
GIRE	glucose response element
GLUT	glucose transporter
GSP	gene-specific oligonucleotide
HEPES	N-2-hydroxyethyl piperazine-N'-2-ethane sulfonic acid
HMC-CoA	3-hydroxy-3-methylglutaryl-CoA
IPTG	isopropyl β-D-thiogalactoside
LDL	low density lipoprotein
L-PK	L-type pyruvate kinase
λ	bacteriophage lambda

mRNA	messenger RNA
NADPH	nicotinamide adenine dinucleotide phosphaste, reduced form
NLS	n-lauryl sarcosine
nt	nucleotide
PCR	polymerase chain reaction
pfu	plaque forming units
Pol II	RNA polymerase II
PUFA	polyunsaturated fatty acids
RACE	Rapid Amplification of cDNA Ends
RNase	ribonuclease
rpm	revolutions per minute
RT	reverse transcriptase
SCD	stearoyl-CoA desaturase
SDS	sodium dodecyl sulphate
SRE	sterol regulatory element
SREBP	sterol regulatory element binding protein
SSC	sodium chloride and sodium citrate solution
TAE	tris-acetate buffer containing EDTA
Таq	Thermus aquaticus
TBP	TATA box binding protein
TdT	terminal deoxynucleotidyl transferase
TE	tris-HCl buffer containing EDTA
TSS	transcription start site
USF	upstream stimulating factor
UTR	untranslated region
UV	ultraviolet light
VFA	volatile fatty acids