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ABSTRACT

Since the discovery of genetic polymorphism within milk protein genes, a considerable
volume of research has been published relating milk protein genetic variants and milk
production properties. Polymorphism of milk proteins can result in two effects:

(a) changes in the biological and physico-chemical properties of systems containing

the variant protein,
(b) changes in the synthesis level of variant proteins.

As a result several studies of milk protein variants have identified phenotypes which may

be commercially advantageous for specific products.

Currently employed methods to determine milk protein phenotypes are generally limited fo
electrophoretic techniques. The gel electrophoretic techniques commonly used are able
to detect most milk protein variants that differ by their net electrical charge. However single
amino acid substitutions that result in a change in net charge account for only 25% of the
possible substitutions that could occur. The remaining 75% of potential variants are the
result of a neutral residue substituted by another neutral residue - a 'silent' variant. Thus
it is likely that some substitutions, and hence genetic variants have gone undetected in the
past.

The purpose of this study was to develop new methods for determining the phenotype of
milk proteins, and to determine the frequency of occurrence of silent or other novel variants

in a New Zealand dairy cattle study population.

Polyacrylamide gel electrophoresis (PAGE), free zone capillary electrophoresis (CE),
peptide mapping by reverse-phase HPLC and electrospray mass spectrometry (ESI-MS)
were used in the characterisation of milk proteins purified from 109 individual dairy cows.

Three different PAGE systems were used. Alkaline-urea PAGE enabled the detection of
ag-casein variants B and C, B-casein variants group A (variants A', A? and A% and

B, and k-casein variants A and B in the study population. Beta-casein variants A', AZ and
A® were subsequently resolved in an acid-urea PAGE system. The whey proteins were very
poorly resolved in PAGE systems containing urea. Alpha-lactalbumin A, and B-lactoglobulin



(B-LG) variants A and B were resolved in a non-denaturing ‘native’ PAGE system. The
frequencies of the various milk protein variants corresponded closely to figures previously

published.

A free zone CE method that is able to resolve B-LG variants A, B and C was used to check
the phenotype of purified B-LG samples. Three samples previously typed as B-LG BB were
subsequently determined to be B-LG CC; one sample typed as B-LG BB was re-assigned
as B-LG BC. This highlighted the limitations of PAGE systems for the detection of known

variants.

Tryptic hydrolysis of purified casein proteins and B-LG, followed by reverse-phase HPLC
separation of the resultant peptides was used to create peptide 'maps' of the hydrolysis
products. Differences in peptide maps were noted between protein variants. The
differences corresponded to peptides containing a substitution site. All samples analysed
in this way contained more peptide peaks than expected. Analysis revealed that some
were the result of incomplete digestion; others the result of chymotryptic-like cleavages.
No aberrant peptide maps, indicative of a silent mutation, were detected.

Purified casein proteins and B-LG were subjected to ESI-MS for mass analysis. The mass
of each protein species was determined as follows:

Protein Average mass Std. dev.
as-CN B-8P 23614.9 Da 1.2 Da
as,-CN A-11P 25228.9 Da 1.5 Da
B-CN A'-5P 24023.9 Da 3.1 Da
B-CN A%-5P 23983.5 Da 1.8 Da
B-CN B-5P 24092.6 Da n.d.
K-CN A-1P 19038.8 Da 1.5 Da
kK-CN B-1P 19003.8 Da n.d.
B-LG A 18362.6 Da 1.0 Da
B-LG B 18277.0 Da 0.9 Da
B-LGC 18287.2 Da 0.6 Da

In all cases the experimentally determined mass corresponded to the mass calculated from
published primary sequences of milk protein variants.



In addition to the expected B-LG variant in each mass spectrum, additional species were
detected differing from the mass of the B-LG species by increments of approximately 324
Da. Although less pronounced, the +324 Da molecular weight species were also detected
in a sample of B-LG purchased from the Sigma Chemical Company. The additional species
were also detected in whey prepared by ultra-centrifugation, although at a much lower level.

The 324 Da molecular weight adducts observed in ESI-MS spectra of purified B-LG are
consistent with an addition of a lactosyl residue to the protein. The observation that these
species remain after heat denaturation, reduction and RP-HPLC treatment suggest that the
linkage is covalent. Lactulosyl-lysine is known to form in milk products during some
processing conditions, particularly during heating. The observation of these glycated
species in gently treated, unheated milk suggests that glycation may occur to some extent
in the udder of the cow.

The association of the 324 Da molecule with B-LG does not alter the charge, molecular
weight or hydrophobicity sufficiently to be detected by PAGE, CE or RP-HPLC.
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ABBREVIATIONS AND TERMINOLOGY

a-La Alpha lactalbumin

as,-CN Alpha S1 casein

Qs,-CN Alpha S2 casein

B-CN Beta casein

B-LG Beta-lactoglobulin

K-CN Kappa casein

2-D Two dimensional
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In the context of this work the following terms are defined as:

Genotype - the genetic constitution of an individual organism. The genetic make up

of an animal which codes for the synthesis of an individual milk protein.

Phenotype - the characteristics of an expressed milk protein as a result of the
interaction of its genotype with its environment. Post-translational modifications such
as phosphorylation and glycosylation frequently alter the gene product (protein) prior

to expression in milk.

Electrophoretic variant - a protein variant that is able to be resolved from other genetic

variants by electrophoretic techniques.

Silent variant - a protein variant with (an) amino acid substitution(s) that has no net
effect on the overall electrical charge of the protein - generally undetected by standard
electrophoretic techniques. Silent variants may occur when a neutral amino acid
residue is substituted by another neutral residue, or when a residue carrying a charge

is substituted by a similarly charged residue.
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Introduction

Since the domestication of cattle and the adoption of pastoral agriculture, milk has
been an important food source for man. Internationally, dairy production has
developed into a 518 million tonnes of milk per year industry (International Dairy
Federation, 1994). New Zealand production accounts for about 1.7% of this or 8.3
million litres (Evans, 1995). Successive advances in technology have seen the
traditional core products of cheese, fresh milks, cream and butter, greatly expanded
to include dietary formulations, concentrated and dried milk products, ultra-heat-
treated milk products, food ingredients, new functional products and non-food

technical applications.

Traditional protein sources are increasingly being utilised as ingredients in a growing
number of formulated foods. The benefits of milk proteins as ingredients in other
foods stems from their excellent nutritional characteristics and their ability to
contribute unique and essential functional properties to the final product. As we begin
to more fully understand the elements which determine the behaviour of a protein, we
have seen a rapid expansion in the technological opportunities to utilise these

characteristics in novel ways.

However, proteins that are adapted to human technological needs are not necessarily
as nature would have designed them. In the past ten years we have witnessed a rapid
expansion in the number of genetically altered or engineered organisms that express
proteins with superior characteristics for specific applications (Jiminéz-Flores and
Richardson, 1988, 1991; Krimpenfort et a/., 1991; Bian, 1991; Martin and Grosclaude,
1993). This technology has begun to be used in applications involving higher
organisms. A modified genomic alpha-1-antitrypsin gene construct has been
successfully introduced into the DNA of inseminated eggs of sheep and goats (Bian,
1991). Alpha-1-antitrypsin, a serum glycoprotein used in the treatment of
emphysema, is expressed in the milk of these transgenic animals. Tissue plasminogen
activator (t-PA), used to dissolve fibrin clots in coronary occlusions, has similarly been
expressed in the milk of transgenic goats. Intact lactoferrin DNA has been

incorporated into the DNA of bovine embryos by microinjection of pronuclei of the
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oocytes after in vitro fertilisation. The anti-bacterial human iron-binding/transport
protein lactoferrin is a highly desirable ingredient that could be included in infant

formula milk powders.

Yet in the present global environment there is an overwhelming rejection of genetically
engineered milk or milk products for human consumption (Dionysius, 1991; Coghlan,
1991; Joyce, 1991; Bruhn, 1992; Driesel, 1992; Nathan, 1992; Watson, 1994: Rifkin
and Howard, 1993; Anon., 1995). The options available to meet specific processing,
functional and nutritive needs are thus presently limited to exploration and utilisation
of the full range of naturally occurring genetic variations within the dairy cow

population.

Since the original finding of genetic polymorphism (variance in the protein primary
sequence) within the bovine B-lactoglobulin (B-LG) gene by Aschaffenburg and Drewry
(1955), a considerable volume of research has been recently published relating milk
protein genetic variants and milk production properties (McLean et al., 1984; Ng-Kwai-
Hang et al., 1984; Ng-Kwai-Hang et a/., 1986; Ng-Kwai-Hang et a/., 1987; Aleandri
et al., 1990; Bech and Kristiansen, 1990; Ng-Kwai-Hang and Monardes, 1990a; Van
Eenennaam and Medrano, 1991; Lawrence, 1993; Rahali and Ménard, 1991; van den
Berg et a/., 1990, 1992; Bovenhuis et al., 1992; Jakob and Puhan, 1992; Mariani et
al., 1992; Oloffs et al., 1992; Delacroix-Buchet et a/., 1993; Hill, 1993; Hill and
Paterson, 1994; Hill et a/., 1995a, 1995b, 1995c¢; Macheboeuf et al., 1993; Sacchi
et al., 1993; Jakob, 1994a, 1994b; Puhan and Jakob, 1993). Reported results

indicate genetic polymorphism of milk proteins can give rise to two effects:

(a) changes in the biological and physico-chemical properties of systems
containing the variant protein such as gelation, viscosity, syneresis, heat stability,

aggregation and emulsification

(b) changes in the synthesis levels of the variant proteins - despite having the
mutation occurring in the coding sequence, rather than the regulation region of the
milk protein gene (Bouniol et al., 1993; Schild et al., 1994; Levéziel et al. 1994;
Wagner et al.,, 1994). Other mutations are also seen in promoter and regulatory
sequences (Schild et a/., 1994; Wagner et a/., 1994).
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Subsequent studies of the combinations of milk protein variants expressed in milk
(phenotypes) have identified milk types that are commercially advantageous for
specific products such as cheese (Aleandri et a/., 1990; Marziali and Ng-Kwai-Hang,
1986a, 1986b; Davoli et a/l., 1990), UHT milk (McLean et a/., 1987; Kristiansen, 1990;
van den Berg et al., 1990) or yogurt (Vegarud et al., 1990; McLean and Schaar,
1989).

Consequently the concept of segregating milk for particular milk products, based on
desirable milk protein phenotype, has been the topic of considerable debate (Jakob and
Puhan, 1992; Puhan and Jakob, 1993; Jakob, 1994a). Effective implementation of

milk segregation strategies rely on

(a) accurate identification of the milk protein phenotype of individual animals,

and

(b) an appropriate breeding programme to align the number of animals with the

desired volume of product.

Our current knowledge of milk protein phenotypes extends mainly to those that are
detectable by electrophoresis (electrophoretic variants). These are due to amino acid
substitutions and deletions which generate a net difference in the overall charge on the

protein and hence facilitates their separation by electrophoretic techniques.

It is important to note that polymorphism detected by electrophoresis provides
incomplete information as to the real polymorphism at a genetic level. Only three out
of four mutations of the codon generate a substitution of one amino acid for another
due to redundancy of the genetic code (multiple codons, or nucleotide triplets,
generate the same amino acid). Additionally only one out of three amino acid
substitutions (on average) modify the net charge of the protein which is then able to
be resolved by electrophoresis. Substitutions involving neutral amino acid groups that
do not alter the net charge of the protein ('silent’ variants) subsequently would not be
detected by electrophoresis. Theoretically electrophoretic techniques allow the
detection of only 23% of the mutations occurring at the coding level of the

corresponding gene (3 out of 4 mutations at the DNA level resulting in an amino acid
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substitution; 1 out of 3 amino acid substitutions resulting in a modification of the net

charge of the protein) .

Silent substitutions are likely to be associated with changes in milk physico-chemical
properties, composition, yield of milk components, and functionality of milk as already

observed with electrophoretic variants.

Some studies of milk protein phenotypes and their effect on milk composition, milk
yield and milk functional behaviour, have generated results that are confusing and
contradict previous studies. The experimental designs in some studies have taken into
account many of the variables encountered such as differences in breed, age, stage
of lactation and geographic location (Ng-Kwai-Hang et a/., 1984; Ng-Kwai-Hang et a/.,
1986; Ng-Kwai-Hang et a/., 1987; Ng-Kwai-Hang and Monardes, 1990b; Bovenhuis
and van Arendonk, 1991; Van Eenennaam and Medrano, 1991, Bovenhuis et al.,
1892; Hill, 1993; Hill and Paterson, 1994). Additionally linkage effects between genes
physically clustered on a chromosome have been incorporated. Despite this some

effects attributed to phenotype are still inconclusive.

Given the limitations of electrophoretic techniques currently used for determination of
milk protein phenotype, it is likely that some phenotypes have been incorrectly
assigned in the past. It is possible that other modifications of milk proteins, such as
phosphorylation and glycosylation could have an influence on milk production, milk

composition and milk functional behaviour.

Thus using traditional electrophoretic techniques we are seeing only part of the

phenotypic picture.

The objectives of this current work was to:

(1) develop new methods for determining the phenotype (both silent and

electrophoretic) of the casein proteins and B-LG

(2) determine the frequency of occurrence of silent or other novel variants in

a New Zealand dairy cattle study population
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Once the true phenotype of an individual cow is known, then we may be able to
isolate more precisely the effects of milk protein polymorphism on composition, yield
and functionality from environmental and other effects. Genotyping of sires and dams
additionally enables milk protein genes to be incorporated as genetic markers in
accelerated breeding programmes for desirable milk types. Utilisation of naturally
occurring genetic variations in this way provides a consumer acceptable means to

control aspects of milk production and composition, and improve processing.
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Literature Review

i MILK COMPOSITION

Milk is a complex mixture of lipids, proteins, carbohydrates, vitamins and minerals,
structured to provide a complete diet for infant mammals. The average composition
of bovine milk from Western cattle breeds (Guernsey, Jersey, Ayrshire, Brown Swiss,
Shorthorn and Holstein/Friesian) is 86.6% water, 4.1% fat, 3.6% protein, 5.0%
lactose and 0.7% minerals (Swaisgood, 1985). The lipid fraction shows a bewildering
number of components, however triglycerides account for 97-98% of total lipids
(Jenness, 1974; Johnston, 1974). Environmental and genetic influences also
contribute to variations in milk composition and the proportion of lipid to other milk
constituents (Hill and Paterson, 1994). Lactose is the predominant carbohydrate,
accounting for 50% of the solids in skim milk (Morrisey, 1985). Its synthesis is
associated with a-lactalbumin, which is part of the UDP-galactosyltransferase enzyme
complex. Milk salts consist principally of chlorides, phosphates, citrates and
bicarbonates of sodium, potassium, calcium and magnesium (Pyne, 1958). The
distribution of calcium, magnesium, phosphate and citrate between soluble and
colloidal phases of milk and their interaction with milk proteins are important factors

in the stability of dairy products.

The major milk proteins may be subdivided into casein or whey proteins on the basis
of their solubility at pH 4.6 at 20°C. The isoelectrically precipitated proteins are
classified as caseins and account for about 80% of the total protein. The remaining
soluble proteins are classified as whey proteins. The phenotype and relative
proportions of casein and whey proteins have major influences on the manufacturing

properties of milk (see discussion Section 6, page 29-38).
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2. HETEROGENEITY OF BoVvINE MILK PROTEINS

Bovine milk contains 30-35 g I’ of total protein (Figure 1) of which about 80% is
present as large spherical complexes with inorganic species, particularly calcium
phosphate, known as micelles. The mammary gland produces six major secretory
protein products : Og,-casein (ag,-CN), ag,-casein (Xs,-CN), B-casein (B-CN), K-casein
(k-CN), a-lactalbumin (a-La) and B-lactoglobulin (B-Lg). They are all products of
codominant, allelic autosomal genes. Genetic polymorphisms, or genetic variants, of
each are also observed. In addition to the primary gene product several milk proteins
are subject to post-translational modifications such as glycosylation and

phosphorylation.

/ Milk Proteins (30-35 g I'")
Minor proteins / \\ Enzymes

Caseins (24-28 g I) Whey proteins (5-7 g I'')

B-LG (2-4 g1 Serum albumin

a,-CN
(A,B,C,D,E,F,G,D,) (0.1-0.4 g I)

K-CN (3-4 g I'")
(A.B)

a,,-CN
(12-15 g I'") a-La (1-1.5g 1) Immunoglobulins (0.6-1 g I'")
(A,B,C,D) (A,B)

IgG IgA IgM
a,,-CN (3-4 g I')

(A,B,C,D) IgG1 1gG2
B-CN (9-11 g I')
(A', A%, A®, B,B,,C,D,E) \
Y-CN (1-2 g I'") Proteose-peptone
(0.6-1.8g1")

Comp3 Comp5 Comp8

Slow Fast

FIGURE 1 Distribution of major milk proteins and peptides in bovine milk
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2.1 CASEINS

Caseins were originally subdivided on the basis of their solubility in 0.25 M Ca?* at pH
7 and 37°C into 'calcium sensitive' or 'calcium insensitive' fractions (Waugh and von
Hippel, 1956). The advent of starch gel, and later alkaline urea polyacrylamide gel
electrophoresis (PAGE) allowed the identification of individual families. With the
determination of their primary sequence, it was then possible to define them on the

basis of their chemicai structure, rather than solubility under specific conditions.

2.1 .1 aS“CN

The primary sequence of ag,-CN B was established by Mercier et a/. in 1971. It is a
polypeptide of 199 residues (see Figure 2). Three hydrophobic regions are discernable
- residues 1 to 44, 90 to 113 and 132 to 199. Additionally the region 41 to 80
contains a cluster of phosphoseryl residues. These observations suggest a dipolar
structure with a globular hydrophobic domain and a highly solvated and charged
domain. Amongst the caseins there is a strong sequence homology in these
hydrophobic and phosphoseryl regions. This conservation of structural domains

suggests that these proteins may have evolved from a common ancestral gene.

Five genetic variants of ag,-CN are currently recognised - A, D, B, C and E (in
decreasing order of mobility in alkaline urea gel electrophoresis) (Eigel et al., 1984).
The polymorphs are breed specific with the B variant predominant in Bos taurus and
C predominant in B. indicus (zebu) and B. grunniens (yak). The E variant has only been
observed in some B. grunniens milk. The A variant differs from the B variant by the
deletion of residues 14 to 26, and is rarely seen in B. taurus milk. Erhardt (1993a)
reported a new Qg,-CN variant with a low frequency occurring in German Black and
White cattle, differing from other known variants by its electrophoretic mobility in
alkaline polyacrylamide gels. The exact nature of the mutation has yet to be

determined.
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NH,—

Absent in Variant A ¥(og-CN B-9P) (D)

59

DIKQM EAEXI XXXEE IVPNX VEQKH IQKED VPSER YLGYL EQLLR LKKYK VPQLE
K(E)

IVPNX AEERL HSMKE GIHAQ QKEPM IGVNQ ELAYF YPELF RQFYQ LDAYP SGAWY

192

YVPLG TQYTD APSFS DIPNP IGSEN SEKTT MPLW -COOH
(C & E)

FiGure 2 Primary structure of a5,-CN B-8P. Sites of mutational differences between the B
variant and other variants are indicated in blue and green respectively. The alternative
phosphoserine (X) at position 41 represents an additional phosphorylation site in the o5,-CN B-9P
variant. The D variant differs from the B variant by a phosphothreonine (Z) at position 53.
Phosphoserine residues (X) are highlighted in red.

2 . 1 .2 (132-CN

Brignon et al. (1976, 1977) determined the primary structure of ag,-CN (see Figure 3). It
consists of 207 residues, possibly existing as dimers linked via a disulphide bond (Hoagland
etal., 1971). A cluster of negative charges at the N-terminus and positive charges at the
C-terminus create a strong dipolar arrangement, suggesting that electrostatic interactions
may be an important factor in influencing structural characteristics.

The four genetic variants of this protein have been designated as A, B, C, and D. Whilst
variants A and D have been observed in B. taurus, B is the predominant variant. C is
observed specifically in B. grunniens. a,-CN D differs by a deletion of 9 residues around
the phosphoserine residue cluster SerP56-SerP58 (Grosclaude et al., 1978, 1979) although
the exact location of the deletion has not yet been established.
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NH, -

50
KNTME HVXXX EESII XQETY KQEKN MAINP SKENL CSTFC KEVVR NANEE EYSIG
Absent in Variant D

a0

XXKXEE XAEVA TEEVK ITVDD KHYQK ALNEI NEFYQ KFPQY LQYLY QGPIV LNPWD

QVKRN AVPIT PTLNR EQLXT XEENS KKTVD MEXTE VFTKK TKLTE EEKNR LNFLK

KISQR YQKFA LPQYL KTVYQ HQKAM KPWIQ PKTKV IPYVR YL -COOH

FiGURE 3 Primary structure of ag,-CN A-11P. The D variant differs from the A variant by a
deletion of 9 residues between positions 50 and 60 (indicated in blue). The exact location has not
been determined. The notation X (in red) indicates phosphoserine.

213 B-CN

The B-CN family consists of at least seven genetic variants (A', A%, A% B, C, D, E), of which
A', A%, A% and B are the predominant types seen in Western cattle breeds. A', A? and A?
variants are only distinguishable by acid urea gel electrophoresis or isoelectric focusing.
Another possible variant, B,, has been observed in Indian and African zebu (8. indicus)
cattle (Aschaffenburg, 1968). Although it has the same electrophoretic mobility as the B
variant, chymotryptic peptide mapping has revealed some differences in peptide slution
profile. Visser et al. (1995) recently identified a further B-CN variant, differing from the A’
variant by a 'silent' substitution of a leucine residue at position 152 for a proline residue.
The new genetic variant has been named B-CN F-5P in accordance with guidelines for the
nomenclature of milk proteins (Eigel et al., 1984).

B-CN A? consists of 209 amino acids (see Figure 4). The primary structure was determined
by Ribadeau-Dumas et al. (1972). B-CN is the most hydrophobic of the caseins, with a
highly charged domain clearly separated from a large hydrophobic domain. The unusually
high frequency (0.17) of prolyl residues most likely influences the number of B-turns present
(Andrews et al., 1979; Graham et al., 1984).
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NH,-
18 35 3637
RELEE LNVPG EIVEX LXXXE ESITR INKKI EKFQX EEQQQ TEDEL QDKIH PFAQT
(D) (C)S KK(C)
51 (E) 106
QSLVY PFPGP IPNSL PQNIP PLTQT PVVVP PFLQP EVMGV SKVKE AMAPK HKEMP
H(C, A", B) O(A?Y)
122 152
FPKYP VEPFT ESQSL TLTDV ENLHL PLPLL QSWMH QPHQP LEPTV MFPPQ SVLSL
R(B) L(F)

SQSKV LPVPQ KAVPY POQRDM PIQAF LLYQE PVLGP VRGPF PIIV —-COCH

Ficure 4 Primary structure of 3-CN AZ5P. Mutational differences between the A® variant and
the A", A’ B, C, D, E and F variants are indicated in green. X denotes phosphoserine (shown in red).

214 x-CN

The primary structure of k-CN, determined by Mercier et al. (1973), is shown in Figure 5.
In comparison with other caseins it is notable for its carbohydrate moieties attached via
threonyl residues, and the absence of phosphoseryl clusters. k-CN contains a single
phosphoserine residue. Consequently k-CN does not bind Ca** to the same degree as the
other caseins; thus its solubility is independent of this ion. The amphipathic nature of this
milk protein has been appreciated for many years due to the specific chymosin-catalysed
hydrolysis of the Phe105-Met106 bond. This releases the polar macropeptide from k-CN,
destabilising the casein micelle and results in clotting of milk. This is the central process
in the production of many cheeses.
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Approximately two thirds of k-CN molecules are glycosylated; all k-CN molecules carry at
least one phosphate group. Considerable heterogeneity is seen in this protein, with at least
seventeen minor components varying in carbohydrate type and content, and/or phosphate
content (\Vreeman et al., 1977; Doi et al., 1979; Fournet et al., 1975; Mollé and Léonil,
1995). k-CN, as isolated from milk, occurs in the form of a mixture of polymers linked by
intermolecular disulphide bonding, (Swaisgood and Brunner, 1963) aithough Beeby (1964)
suggests that the native form may be the reduced monomer.

Two variants, A and B, are common in B. faurus. The A variant is seen in the Friesian
breed with a frequency of approximately 0.68. The opposite is seen in the Jersey breed,
where the B variant is seen at a high frequency (0.77) (McLean ef al., 1984).

NH,~

EEQNQ EQPIR CEKDE RFFSD KIAKY IPIQY VLSRY PSYGL NYYQQ KPVAL INNQF

LPYPY YAKPA AVRSP AQILQ WQVLS DTVPA KSCQA QPTTM ARHPH PHLSF MAIPP

136 148
KKNQD KTEIP TINTI ASGEP TSTPT IEAVE STVAT LEAXP EVIES PPEIN TVQVT
(A “(A)

STAV -COOH

FIGURE 5 Primary structure of k-CN 8-1P. The A variant differs from the B by substitutions
at positions 136 and 148( indicated in green). Phosphoserine is represented as X (in red);
pyroglutamate as E.
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2.2 WHEY PROTEINS

The major families of proteins included in this class are B-LG, a-La, serum albumin and
immunoglobulins. Previously the proteose-peptones were included. When these
fragments were sequenced it was found that these were proteolysis products of B-CN

and are subsequently now included in the casein family.

2.2.1 a-La

Of the three genetic variants of a-La that are known, only the B variant is observed in
milk from Western cattle. Brew et a/. (1970) determined that a-La is a polypeptide
consisting of 123 amino acids (Figure 6). Four intramolecular disulphide bridges occur
in the molecule as shown. Minor forms of a-La have been reported, most containing
some form of carbohydrate moiety - hexosamine (Gordon, 1971), mannose, galactose,
fucose, N-acetylglucosamine, N-acetylgalactosamine and N-acetylneuraminic acid
(Barman, 1970). Barman (1973) also reported an additional variant form of a-La

differing by one less disulphide bridge than that described by Brew et al. (1970).

a-La forms part of an enzyme complex in the synthesis of lactose. It interacts with
galactosyltransferase, an enzyme that catalyses the transfer of galactose from uridine
diphosphate galactose to N-acetylglucose. Without a-La, glucose is an extremely poor

substrate for galactosyltransferase.
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NH'.-_

10
EQLTK CEVFR ELKDL KGYGG VSLPE WVCTT FHTSG YDTQA IVENN QSTDY GLEFQI
(A)

NNKIW CKNDQ DPHSS NIGNI 'SCDKF LNNDL TNNIM GVKKI LDKVG INYWL AHKAL

SEKL DQWLC EKL -COOH

FIGURE 6 Primary sequence of a-Lac B. The A variant differs from the B by a substitution at
position 10 (shown in green). Intramolecular disulphide bridges are indicated between residues 6 and
120, 28 and 111, 61 and 77, and 73 and 91.

222 B-LG

B-LG is the principal whey protein in bovine milk. Two genetic variants, A and B are found
in all breeds of B. taurus and B. indicus. Some breeds of B. taurus also express variants
C and D. The Droughtmaster breed of B. taurus includes a further variant, B-LG,,,
containing both an amino acid substitution and a singie glycosylation (Bell et al., 1970).
Several more variants are seen in the Yak' (8. grunniens) and in Bali (Bentang) cattle (B.
javanicus) (Bell et al., 1981). Baranyi et al. (1993) identified a possible further variant in
Hungarian Grey cattle. The nature of this mutation is yet to be determined.

Bovine B-LG contains 162 residues. Five of these are cysteine. Four occur as disulphides
and one as a free thiol. One of the disulphides occurs invariably between residues 66 and
160 (Figure 7). The second is estimated to be distributed approximately 50% between
residues 106 and 119, or between residues 106 and 121. In the pH range from 5.2 to 5.7,
all the genetic variants investigated have been shown to exist primarily as dimers. Initially
it was thought that hybrid dimers could not exist. Subsequent experiments have clearly
shown hybrid B-LG AB dimers. Below the isoionic point, and particularly below pH 3.5, the
dimer dissociates into monomers. Dissociation also occurs above pH 7.5, although there

' Referred to as B-LG D,,, by Grosclaude et al. (1976) or as B-LG E as suggested by the
Report of the Committee on the Nomenclature and Methodology of Milk Proteins of the Dairy
Foods Research Section, Dairy Foods Division, American Dairy Science Association (Eigel et
al., 1984).
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is some debate as to the extent (McKenzie, 1967; Zimmerman et al, 1970). In the
isoelectric region octomerisation is also known to occur. The pH dependence with
maximum octomerisation at pH 4.6 suggests that carboxyl groups are invoived. Three
carboxyl groups occur in the vicinity of Asp64 in B-LG A. This residue is replaced by a Gly
residue in the B variant. Swaisgood (1982) observed the B variant as having a greater
negative change in entropy during octomerisation than the A variant. This tends to support
the concept of Asp64 as being at the contact site as fewer water molecules would be
released from the B variant monomers than the A during octomerisation.

The first determination of the primary sequence of 3-LG was made by Braunitzer ef al.
(1972).

NH., -

45
LIVTQ TMKGL DIQKV AGTWY SLAMA ASDIS LLDAQ SAPLR VYVEE LKPTP EGDLE
(D)

59 &4 l
ILLOK WENGE CAQKK ITAEK TKIPA VFKID ALNEN KVLVL DTDYK KYLLEF CMENS
© 0@ -

_____________ e EE B oEe = e M o = e o

I
118 | 158

AEPEQ SLA&Q CLVRT PEVDD ERALEK FDKAL KALPM HIRLS FNPTQ LEEQC HI
) HE)

—COOH

FIGURE 7 Primary sequence of 3-LG B. Mutational differences between the B variant and A,
C and D variants are as indicated. Intramolecular disulphide bridges are as indicated between
residues 66 and 160; the second disulphide bridge occurs between residues 106 and 119, or 106 and
121 as the free thiol group exists in a 50:50 distribution between residue 119 and 121.
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2.2.3 Serum albumins and immunoglobulins

Serum albumin accounts for approximately 1.2% of the total milk proteins. Serum
albumin (SA) prepared from milk is physically and immunologically identical to blood
SA. Analysis by isoelectric focusing (IEF) shows considerable micro-heterogeneity in
SA (Spenser and King, 1971) although no variant species are known to exist. Bos SA
consists of 582 amino acid residues with 17 intramolecular disulphide bonds and a
single free thiol (Figure 8). The complete primary sequence was determined by Brown
(1975).

The immunoglobulins form an extremely heterogeneous family of proteins and are
classified primarily by immunochemical criteria. Four classes have been identified in
bovine milk (IgG, IgA, IgM and IgE), all existing as glycoprotein monomers or polymers
of a basic unit composed of four polypeptide chains linked covalently by disulphide

bonds.
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NH,-

DTHKS EIAHR FKDLG EEHFK GLVLI AFSQY LQQCP FDEHV KLVNE LTEFA KTCVA

[ 1
DESHA GCEKS LHTLF GDELC KVASL RETYG DM'ADfi'._ CEKEQ PERNE ?FLSH KDDSP

1
DLPKL KPDPN TLCDE FKADE KKFWG KYLYE IARRH PYFYA PELLY ANKYN GVFQE

CTQAE DKGAC LLPKI ETMRE KVLTS SARQR LR IQKFG ERALK AWSVA RLSQK

FPKAE FVEVT KLVTD LTKVH KETCH GDLLE TADDR ADLAK YICDN QDTIS SKLKE

r
CI:_KDPC LLEKS H_CIIIAE VEKDA IPEDL PPLTA DFAED KDVCK NYQEA KDAFL GSFLY

|
EYSRR HPEYA VSVLL RLAKE YEATL EECCA KDDPH ACYTS VFDKL KHLVD EPQNL
B e |

i |
IKONC DQFEK LGEYG FQNAL IVRYT RKVPQ VSTPT LVEVS RSLGK VGTRjZ CTKPE

SERMP CTEDY LSLIL NRL?V LHEKT PVSEK VTK([TC TESLV NRRPC FSALT PDETY

VPKAF DEKLF TFHAD ICTLP DTEKQ IKKQT ALVEL LKHKP KATEE QLKTV MENFV

E. -
AFVDK CCAAD DKEAC FAVEG PKLVV STQTA LA -COOH

FIGURE 8 Primary sequence of bovine serum albumin. Intramolecular disulphide bridges are

as indicated.
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. 8 THE MOLECULAR BASIS OF POLYMORPHISM IN MILK PROTEINS

The central dogma of molecular genetics proposed by F.H.C. Crick in 1953 states that
genetic information flows from DNA to RNA to protein. Three major processes are
involved in the preservation and transmission of genetic information. The first is
replication, the copying of DNA to form identical daughter molecules. The second is
transcription, the process by which the genetic message in DNA is transcribed into the
form of messenger RNA, to be carried to the ribosomes. The third is translation -the
process by which the genetic message is decoded on the ribosomes. RNA is used as
a template in directing the specific amino acid sequence from the nucleotide triplets
during protein biosynthesis. This central dogma is supported by clear demonstration
that the sequence of nucleotides in a gene bears a linear correspondence to the

sequence of amino acids in the protein coded by the gene.

The somatic cells of eucaryotic organisms are usually diploid and contain twice the
number of chromosomes found in the germ cells, which are haploid. Each gene in a
eucaryote thus occurs in two forms, or alleles. Eucaryotic organisms usually reproduce
by sexual conjugation, during which genes from both parents are exchanged and

incorporated into the genome of the progeny by the process of recombination.

Various types of chemical changes in DNA can lead to mutant gene products. Single
point mutations can be divided into four major classes on the basis of the change
produced in the DNA. In translational mutants one purine-pyrimidine base pair is
replaced by another, i.e. A-T for G-C or visa versa. In transversional mutations a
purine-pyrimidine base pair is replaced by a pyrimidine-purine pair (A-T to T-A, G-C to
C-G). The third type involves insertion of an extra base pair. This results in a frame-
shift mutation where the normal reading-frame of the nucleotide triplets is pushed out
of register by the insertion. Similarly a deletion of one or more bases from the DNA
results in a frame-shift. Transitions and transversions are relatively benign as they
result in the substitution of only one amino acid in the peptide chain. It is possible for
the defective protein to still be functional. Insertions or deletions, unless in a multiple
of three base pairs, cause all the DNA beyond the point of the mutation to be misread.

Such mutations are often fatal.
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Eucaryotic organisms contain far more DNA than actually codes for protein. It has
been estimated that in mammalian DNA, perhaps only 2% codes for proteins. The
function of the remaining DNA largely remains a mystery. Coding sequences (exons)
in these split genes are separated by intervening sequences (introns), which are
removed in the conversion of the primary transcript into mRNA. Many exons encode
discrete structural and functional units of proteins. We now know that introns control
aspects of the timing and level of gene expression. These include promoters and
enhancers of transcription (cis-acting elements) and factors specific for the

transcriptional machinery or modulators of DNA binding (trans-acting elements).

A further source of polymorphism is derived from ‘exon skipping'. Aberrant splicing
of primary transcripts, where intron sequences are removed and the remaining exon
sequences are spliced together, is suspected to be responsible for polymorphism of
Og,- and a¢,-CN in ruminant species (Grosclaude et al., 1970; Grosclaude et al., 1979;
Brignon et al., 1990; Bouniol et al., 1993).

Recently it has been shown that the point mutation in the fourth intron of the ag,-CN
A gene from a cow in New Zealand responsible for causing exon skipping is different
to that published in the literature by Mohr et al. (1994) (R. Wilkins, personal

communication).

Many mammary-gland nuclear factors (mammary gland factor, milk protein-binding
factor, pregnancy-specific mammary nuclear factor, mammary cell-activating factor)
bind specifically in the 5'-flanking regions of milk-protein genes. Point mutations in
these 5'-flanking regions may affect the binding of these factors and hence the

transcription activity of the gene.
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4. POST TRANSLATIONAL MODIFICATIONS

As a result of translocation many proteins are modified in the lumen of the
endoplasmic reticulum. Amino-terminal signal sequences are cleaved by signal
peptidase, disulphide bonds are formed and some proteins are glycosylated. Further
processing may occur in the Golgi apparatus - O-linked sugars are fashioned and N-
linked ones may be modified. Serine and threonine residues may be phosphorylated.
These post-translational modifications are functionally distinct from genetic mutations

as they occur after translation of RNA.

Phosphorylation of casein occurs post-translationally in the Golgi apparatus where
casein kinases have been identified (Bingham, 1979). Sequence homology at the site
of phosphorylation has led to a postulated recognition sequence of Ser/Thr-X-Glu/SerP
(Mercier et al., 1972). It also appears that Asp can replace Glu in the recognition
sequence as Ser41 is sometimes phosphorylated in the ag,-CN sequence yielding a,,-
CN (Manson et al., 1977). However Thr-X-Asp does not appear to be a recognition
site as this site is not phosphorylated in ag,- (Thr39), ag,- (Thr72, Thr138) or B-CN
(Thr41). Only one case of phosphorylation of a threonyl residue is known (ag,-CN D)
although the Thr-X-Glu sequence occurs four times in Qg,-CN. Thus it appears that
the recognition sequence is not sufficient per se for recognition by the phosphorylating
enzyme. In a-La and B-LG these sequences are buried within secondary structure,
rendering them inaccessible. For interaction with casein kinases these residues must
be exposed - typical in the unstructured polar domains of caseins. Phosphorylation of
K-CN is likely to be influenced by previous glycosylation at or near the susceptible

residues.

Glycosylation of K-CN probably also occurs in the Golgi apparatus. It is thought that
glycosylation always occurs on a B-turn (Loucheux-Lefebvre et a/., 1978). Comparison
with predicted structures of human K-CN macropeptide, containing roughly three times
more carbohydrate than bovine, shows twice as many Thr residues in B-turn regions
(Fiat et a/., 1980).
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4.1 PHOSPHORYLATION

The major proportion of ag,-CN contains eight phosphate groups. A minor component
previously designated ag,-CN was found to have a primary amino acid sequence
identical to ag,-CN apart from a substitution of a serine for a phosphoserine. The g~
CN D variant differs from the ag,-CN B variant by an alanine to phosphothreonine
substitution. Thus the major component of ag,-CN D contains nine phosphate groups

and the minor component ten phosphate groups.

At least one major and four minor components are seen in the 0g,-CN family
corresponding to differences in phosphate content. The major component contains
eleven phosphorylated serine residues although the exact location of them has yet to

be determined.

B-CN A', A%, A%, B and E variants contain five phosphoserines. In the C variant one
phosphoserine is substituted by a serine. In the D variant a phosphoserine is

substituted by a lysine residue.

Phosphorylation increases the viscosity, water adsorption and solubility of casein in
acidic medium, but decreases the emulsifying capacity (Matheis et a/., 1983; Girerd
et al., 1984). Courthaudon et al. (1989) reported similar results. They concluded that
the binding of acidic phosphate groups and consequent increase in electrostatic
repulsion was responsible for the observed differences between phosphorylated and
de-phosphorylated casein. Chemically induced phosphorylation of B-LG increased

viscosity and emulsion stability compared to native B-LG (Woo and Richardson, 1983).

The high proportion of ester-bound phosphate observed in the casein proteins is closely
associated with the calcium binding capacity. Modulation of the calcium and inorganic
phosphate content of milk strongly influences intermolecular interactions and hence
the stability of the casein micelle. In nutritional terms the casein proteins not only
serve as a source of amino acids but also serve to increase the content of dispersed
calcium and phosphate above that which is possible on the basis of solubility alone.

Phosphorylation in combination with micellar structure provide a mechanism for
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transportation of calcium and phosphate to appropriate sites in the gut for subsequent

absorption.
4.2 GLYCOSYLATION

The K-CN family contains a major carbohydrate free component plus at least seventeen
other components (Mollé and Léonil, 1995). Vreeman et al. (1977) concluded that

seven of the various groups were :

- a major carbohydrate (CHO) free component containing one phosphate group

- a component containing one phosphate and one CHO moiety with a N-
acetylneuraminic acid (NeuNAc) residue

- a component containing one phosphate and two NeuNAc in a branched
configuration

- a component containing two phosphates and no NeuNAc

- a component containing one phosphate and two CHO groups of two NeuNAc

- a component containing two phosphates and one CHO group of two NeuNAc

- a component containing either two phosphates, two CHO groups of two

NeuNAc, or one phosphate and three CHO groups.

In contrast Doi et a/. (1979) concluded that there are five major and two minor

components, all containing one phosphate group. The major components were :

- a CHO free component

- a component containing one galactose (Gal) and one galactosamine (GalNAc)
- a component containing one Gal, one GalNAc and one NeuNAc

- a component containing three Gal, two GalNAc and two NeuNAc

- a component containing four Gal, three GalNAc and three NeuNAc
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D-glucose and D-mannose (Man) were also detected in K-CN preparations from

colostrum milk (Wheelock and Sinkinson, 1973).

Jollés et al. (1973), Fournet et al. (1975, 1979) and Kanamori et al. (1980) determined
that the points of attachment of oligosaccharides occur at threonine residues 131,
133, 135 and 136 via O-glycosidic linkages. Mollé and Léonil (1995) reported a
maximum of three of the potential glycosylation sites as being modified by

carbohydrate chains, containing up to six NeuNAc residues per molecule of K-CN.

Covalently attached carbohydrates are also seen in the B-LG, but only in the
Droughtmaster breed. NeuNAc, N-acetylglucosamine (GIcNAc), GalNAc, Man and
galactose (Gal) were determined to be present in the proportions 1.0:3.4:0.9:1.9:0.8
(Bell et al., 1970).

Minor forms of a-La that are glycosylated are known to exist. Barman (1970) reported
a glycosylated form of a-La containing Man, Gal, fucose, GIcNAc, GalNAc and NeuNAc
in the proportions 4.1:1.4:1.0:3.1:1.1:0.64.

Glycosylation of milk proteins has been shown to enhance solubility, heat stability and
viscosity of protein solutions, and alter surface properties. Kitabatake et a/. (1985)
covalently attached gluconic or melibionic acids to the amino groups of B-LG. The
synthetic glycoproteins exhibited enhanced solubility, particularly at low ionic strength
or at the isoelectric point of native B-LG. Heat stability was also improved compared
to native B-LG. Glycosylation of B-LG with maltose or glucosamine increased the
viscosity over native B-LG in proportion to the degree of substitution (Waniska and
Kinsella, 1984).

4.3 DISULPHIDE CROSS-LINKING

Disulphide cross-linking is observed in several of the milk proteins. Intramolecular
disulphide bridges are observed in a-Lac (Figure 6), B-LG (Figure 7) and BSA (Figure 8).
Two disulphide bridges occur in B-LG. One occurs between residues 66 and 160. One
free thiol in B-LG is distributed equally between residues 119 and 121. The second
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disulphide bridge is distributed between residues 106 and 119, and 106 and 121
(McKenzie, 1971; Braunitzer et al., 1972; McKenzie et al., 1972).

Intermolecular cross-linking is observed in Qag,- and K-CN. A minor component
previously designated as ag-CN is now known to be a dimer of ag,-CN A-12P and ag,-
CN A-11P linked by a disulphide bond. K-CN occurs as a mixture of polymers linked
by intermolecular disulphide bonds (Swaisgood and Brunner, 1963). In raw milk K-CN

does not appear to form disulphide-linked polymers with ag,-CN or with whey proteins.

Following heat denaturation B-LG, containing a buried unreactive sulphydryl in the
native state, forms disulphide linked complexes with K-CN with major effects on many
technologically important properties of milk. K-CN may also undergo sulphydryl-
disulphide interchange reactions with a-La and ag,-CN during heating. Little is known
about the exact location and processes involved in disulphide bridge formation during

the synthesis of milk proteins.



M.Sc. Thesis - Richard Burr
Literature Review - Page 26

9. GENETIC ORGANISATION OF THE MILK PROTEINS

All of the major milk proteins reflect the action of autosomal genes transmitted from
parent to offspring by Mendelian inheritance. The protein products are the result of
expression of co-dominant alleles, found as identical pairs in homozygotes, or non-
identical pairs in heterozygotes. Thus an individual cow that carries both alleles coding
for the same variant of the protein (AA, BB, CC etc.) is described as homozygous for
that particular genotype. Conversely an individual cow carrying dissimilar alleles for

a protein (AB, AC, BC etc.) is described as heterozygous.

Phenotype describes the protein product(s) expressed by an individual. This is of
primary importance in determining the physical characteristics of milk from an
individual. Usually the phenotype of an individual for a particular milk protein
corresponds to the individual's genotype. However Bouniol et a/. (1993) reported an
example of three homozygous cows, two carrying the Qg,-CN D (CasD) allele and one
carrying the as,-CN A (CasA) allele, the two variants differing by a deletion of 9 amino
acids (see Figure 2, page 10). Sequencing of genomic DNA revealed no differences
in the coding region for ag,-CN. The two cows carrying the CasD allele differed from
the cow carrying the CasA allele by two identical nucleotide substitutions in the non-
coding region of the ag,-CN A cDNA. This suggests that during processing of the Qg,-
CN D-encoding-pre-mRNA, the nucleotide substitution results in skipping of exon ViIll,
coding for the 9 amino acids deleted in the ag,-CN D variant. Similar observations of
exon skipping in milk protein genes have been reported in ovine ag,-CN (Boisnard et
al., 1991), caprine ag,-CN D and F (Leroux et a/., 1992), human B-CN (Martin and
Leroux, 1992; Menon et al., 1992) and bovine ag,-CN A (Mohr et al., 1994).

Using classical linkage analysis Hines et a/. (1981) demonstrated the close linkage of
the casein genes. Threadgill and Womack (1990) concluded that the four casein genes
reside on less than 200 kb of DNA in the order ag-CN, B-CN, a, -CN, K-CN on
chromosome 6. In contrast the B-LG locus is genetically independent of the casein
cluster. Population data further suggest that the loci of B-LG and a-La are not closely
linked (Grosclaude et a/., 1974). Threadgill and Womack (1990) assigned a-La to the

bovine syntenic group U3 on chromosome 5, whilst the B-LG gene was located on the
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syntenic group U16 of a yet to be identified chromosome.

The non-independent inheritance of casein alleles may be observed in the genotypic
structure of populations. King et a/. (1965) first reported the apparent absence of
particular combinations of ag,-CN and B-CN genotypes. The absence was interpreted
as a consequence of close linkage between the two loci. These early interpretations
have led to postulations of the phylogeny of the casein alleles (Figure 9) and their
distribution, particularly throughout Europe. The reader is referred to Ng-Kwai-Hang

and Grosclaude (1992) for an excellent review of this topic.



M.Sc. Thesis - Richard Burr
Literature Review - Page 28

a,,-CNC

ag,- CN A

B-CN A?

K-CN A

a-LaB

B-LgB

148 Asp —> Ala
136 Thr —> lie

10 Arg —> Gin
>

58 Gin —> His

* Alternatively deletion of 51 to 50, or 52 to 60.

Dsistion 14 to 268
>
182 Gly —> Glu
>

53 Ala —> ThiP

Deletion 50 to 58°

122 Ser—> Arg
87 Pro —> His
>

37 Glu—> Lys
35 SerP —> Ser
>C

108 Hie —> Gin
> A

36 Glu —> Lys
>

> B

84 Gly —> Asp
118 Ala —> Val

> A

45 Glu —> Gin

>D

FIGURE 9

milk proteins.

Phylogenetic relationships between genetic variants of the major bovine



M.Sc. Thesis - Richard Burr
Literature Review - Page 29

6. SIGNIFICANCE OF POLYMORPHISM

Since the first report of genetic polymorphism in B-LG in bovine milk by Aschaffenburg
and Drewry in 1955, a considerable volume of information has been amassed which
examines the relationship between milk protein polymorphisms and milk production
traits, milk composition and technological properties of milk. Several comprehensive
reviews have been published in this area (Grosclaude, 1988; Jacob and Puhan, 1892;
Ng-Kwai-Hang and Grosclaude, 1992; Puhan and Jacob, 1993; Jacob, 1994a). The
ability to phenotype cows for milk proteins and examine the physical characteristics
of each type has offered plausible explanations for the variation in properties of milk
from individual animals. Consequently considerable interest has been generated in
using milk protein genes as genetic markers for selective breeding to increase milk

production, control milk compaosition and improve processing related traits.

6.1 MILK PRODUCTION

There are conflicting reports on the relationship between genetic variants and milk
production. Mclean et a/. (1984), Ng-Kwai-Hang et a/. (1984), Ng-Kwai-Hang and
Monardes (1990a, 1990b) and Lin et al. (1986) all reported no relationship between
B-LG variant and milk production. Jairam and Nair (1983) reported higher production
for the BB phenotype, whereas Ng-Kwai-Hang et a/. (1986) determined that cows
homozygous for the B-LG A gene were higher milk producers. Similarly the effects of
casein phenotype on milk production are unclear. Whilst McLean et a/. (1984) found
no significant correlation between milk yield and genetic variants of ag,-, B- and K-CN,
others have reported superiority of ag,-CN BB phenotype over AB or BC (Ng-Kwai-Hang
et al., 1984, 1986; Lin et al., 1986), the A variant (particularly the A? and A?® variants)
of B-CN (Ng-Kwai-Hang et a/., 1984, 1986; Lin et a/., 1986) and the AB phenotype of
K-CN (Ng-Kwai-Hang et al., 1986). Ng-Kwai-Hang and Grosclaude (1992) in their
review draw our attention to the variable nature of the studies undertaken and the

difficulty in making a valid comparison between them.
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6.2 MILK COMPOSITION

The results of studies relating milk protein phenotype and different milk components
is somewhat clearer, although not without conflicting results. Milk collected from B-LG
BB phenotype cows is associated with higher fat content (McLean et a/., 1984; Ng-
Kwai-Hang et al., 1984, 1986; Aleandri et al, 1990; van den Berg et a/., 1992;
Bovenhuis et al., 1992; Hill, 1993; Hill and Paterson, 1994). Similar associations have
been made between «g,-CN BC phenotypes, B-CN BB phenotypes and K-CN BB
phenotypes (Ng-Kwai-Hang et a/., 1986). The BB phenotype of ag,-CN was found to
produce more protein in the study by Ng-Kwai-Hang et al. (1984), as did B-CN
phenotypes A’A® and BC (Ng-Kwai-Hang et al., 1984 and Graml et al., 1985
respectively). In all studies B-LG AA phenotype was associated with more protein than
the milk from AB or BB phenotype cows. MclLean et a/. (1984) examined the effect
of three casein polymorphisms on the level of synthesis of these proteins and on their
proportion relative to total casein synthesis. They concluded that the level of B-CN
synthesis is only affected by the polymorphism of the B-CN gene. The levels of ag,-CN
and K-CN synthesis were found to be always affected by the polymorphism of other
casein genes. Whatever changes occurred in individual casein levels, the total casein

level remained constant.

The difference between the protein content of milks from B-LG phenotype AA, AB and
BB cows is largely due to the altered level of B-LG synthesis (Aschaffenburg and
Drewry, 1957; MclLean et al., 1984, Ng-Kwai-Hang et al., 1987). The higher B-LG
content of AA phenotype milk results in a higher proportion of whey protein fraction
in milk. If the level of synthesis of casein remains constant, the ratio of casein to total
protein (or casein number) declines. This casein number is frequently used as a
measure of cheese yielding capacity of milk. Most studies confirm that B-LG AA
phenotype milk is associated with a lowered casein content, compared to BB
phenotype (Mariani et a/., 1979; Buchberger et al., 1982; MclLean et al., 1984; Ng-
Kwai-Hang et al., 1986; Hill, 1993; Hill and Paterson, 1994; Hill et a/., 1995a, 1995b,
1995c). Ng-Kwai-Hang et al. (1987) determined the effects of B-LG polymorphism on
the contents of individual caseins and whey proteins. They found B-LG AA phenotype

to be associated with lower contents of o,-CN, a-La, serum albumin and
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immunoglobulins, but higher content of B-LG. Ng-Kwai-Hang and Grosclaude (1992)
suggest that the B-LG gene is a major gene determining the amount of this protein
synthesised. Hill (1993) further proposes that the B-LG gene may be more active than
the other milk protein genes, diverting the available supply of amino acids away from
the synthesis of these proteins. In studies of the effect of bovine somatotropin (bST)
on milk protein distribution, Ozimek et a/. (1989) observed that bST increases in a-La
and B-LG B were greater than the increase in B-LG A, indicating that control of the two

B-LG variant genes may be different.

6.3 MILK PROPERTIES

Milk, as a food, is subjected to various technological processes prior to its
consumption either as liquid milk or as a component of a food system. The factors
which influence the manufacturing processes of milk have been studied for many
years. In particular, the inheritable traits of cows that influence cheese manufacture
have been scrutinised since 1923 (K&stler, 1923). It has long been recognised that the
technological behaviour of milk is determined by its composition. However this does
not fully account for the variation in the behaviour of milk from individual cows or

breeds.

The discovery of genetic polymorphism of milk proteins offered other avenues of
research to explain these variations. It has become clear that genetic variants of all

the major milk proteins influence the behaviour of milk (Grosclaude, 1988).

6.3.1 Heat stability

The heat stability of milk was the first property to be studied in relation to genetic
polymorphism of B-LG. Gough and Jenness (1962), Dupont (1965) and Lyster (1970)
reported that B-LG in milk containing the B variant of B-LG denatured faster than B-LG
in milk containing the A variant when heated at temperatures up to 90-95°C. Many
other studies have confirmed these findings (Sawyer et a/., 1971; McKenzie, 1971;
Puhan and Flueler, 1974; Hillier and Lyster, 1979; Hillier et a/., 1979; Marshall, 1986,
Dannenberg and Kessler, 1988; Luff, 1988). Above 100°C the situation appears to
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reverse, with the A variant of isolated B-LG (Hillier and Lyster, 1979; Hillier et al.,
1979) and reconstituted whole milk containing the A variant of B-LG (Anema et al.,
1995) to be less stable than the B variant. In contrast to these findings Manji and
Kakuda (1986) found that the A variant was slightly more stable than the B variant
upon heating skimmed milk. Parnell-Clunies et a/. (1988) reported similar results in
ultra-high temperature treated milk. Sawyer (1968) found that the susceptibility to
denaturation of the variants of B-LG was in the order C>B>A. Other studies have
found the order of susceptibility to be B>C>A (G. Manderson and L. Creamer,

personal communication).

The pH of the protein solution also influences the heat stability. Laligant et a/. (1991)
found that at pH 6.5 and heating between 75-90°C, and pH 7.5 and heating at 90°C,
B-LG B was more heat sensitive than B-LG A. The opposite trend was observed at pH
7.5 at 75°C, with B-LG B being more heat stable.

The only report of thermal properties of genetic variants of casein was that of K-CN
A, AB and B variants by Ma et a/. (1990). In calcium chloride solutions they found
that the order of heat stability was A>AB>B.

In milk systems MclLean et al. (1987) and Schulte-Coerne et a/. (1992) associated K-CN
B with higher heat stability. For K-CN BB milk the heat coagulation time at 140°C was
reported to be between 40 and 90% longer than K-CN AA milk (Schulte-Coerne et al.,
1992). The same authors also reported higher amounts of deposits fouling heat
exchangers in K-CN BB milks relative to K-CN AB and K-CN AA milks.

The effects of genetic variation of B-LG on the heat stability of milk is less clear. Some
studies have found that the apparatus used to measure heat coagulation time had a
marked effect on the results obtained (G. Paterson, personal communication). The
general trend found in a number of studies (Rose, 1962; Feagan et a/., 1971; McLean
et al., 1987) is for the maximum in the heat coagulation time-pH curve to follow the

order of B-LG phenotype AA>AB>BB.
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6.3.2 Association, dissociation and aggregation behaviour of B-LG

In its native form in milk B-LG exists as a dimer. Under certain conditions the dimeric
form of B-LG dissociates into monomers (Hambling et a/., 1992). McKenzie and
Sawyer (1972) reported the tendency of B-LG dimers to dissociate follows the order
A>B>C. The dissociation is a key step in the mechanism leading to an unfolding of
B-LG and possible exposure of the free thiol group (Hambling et a/., 1992). Using
unreduced, discontinuous sodium dodecyisulphate-PAGE, Hill et al. (1995,
unpublished) found that purified B-LG A, B and C variants heated to 110°C, produced
two bands. A single band was observed from the same samples prior to heating. It
is likely that the two bands are a result of differences in the distribution of the free
thiol group (see Figure 7 and discussion section 4.3). The B and C variants exhibited
similar distributions between the two bands. The A variant was markedly different,
possibly due to the valine substitution at position 118 influencing the accessibility of

cystine 119 for disulphide bonding.

Thresher et al. (1994) examined the subunit interactions of B-LG A and B variants in
simulated milk ultrafiltrate by affinity chromatography. They found the interaction of
soluble B-LG B with immobilised B-LG B to be stronger than the interaction of soluble
B-LG A with immobilised B-LG A. Mixed variant interactions were weaker than either

the A or B variant interactions.

The influence of genetic variation of B-LG on heat induced aggregation in sweet whey
has been examined by Parris et a/. (1993). Sweet whey containing B-LG B tended to
form a greater proportion of soluble aggregates than insoluble aggregates upon
heating. The opposite was found for the A variant. They suggested that this may be
related to an Asp64 to glycine substitution in the B variant, lowering the net charge,
consequently binding less calcium and therefore lowering the proportion of insoluble
aggregates. An alternative explanation is that the proportion of soluble or insoluble
aggregates is related to differences in the reactivity of the thiol group between the

variants.
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6.3.3. B-LG interaction with K-CN

During heat treatment of milk, B-LG and K-CN interact to form a complex (Sawyer,
1969; Fox, 1982). The reaction between denatured B-LG and K-CN via disulphide
bonding also has a significant effect on the heat stability-pH profile of milk (Singh and
Creamer, 1991). Studies by McKenzie (1971) and Parnell-Clunies et a/. (1988) showed
the reaction between B-LG B and K-CN is faster than B-LG A and K-CN.

6.3.4. Heat induced gelation of B-LG

Huang et al. (1994a) examined the gelation of purified B-LG A and B variants at pH
7.0. Although both variants formed viscoelastic gels, the gelation point and initial
gelation rate was higher in the A variant. They concluded that the gel matrix
structures formed in the gels of the two variants must involve different molecular
interactions between partially unfolded chains of the protein. McSwiney et a/. (1994)
found that the strength of gels made from B-LG A was higher than those made from
B-LG B, particularly at concentrations above 5%. They also found the strength of gels
made with B-LG B was markedly decreased at lower pH values, whereas the strength

of gels made from B-LG A was independent of pH.

6.3.5. Cheese making

The most significant economic consequence of genetic polymorphism of milk proteins
may be seen during cheese manufacture. For some milk products special demands are
made of the processing parameters of the milk. For example a very fast renneting time
is required in the manufacture of Parmesan cheese. Speed of renneting (or
coagulation), curd strength, cheese yield and quality are all important economic
parameters which are influenced by polymorphisms of not only the caseins, but B-LG

as well.

6.3.5.1. Renneting

A clear agreement exists on the effects of milk protein polymorphism on the renneting
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properties of milk. The favourable effects of K-CN B over the A variant for cheese
making (shorter coagulation time and higher curd firmness) has been confirmed by
several groups (Sherbon et a., 1967; Jakob and Puhan, 1986; Aaltonen and Antila,
1987; Menard et al.,, 1986; Mariani and Leoni, 1985; van den Berg et al., 1990;
Kristiansen, 1990; Veguard et a/., 1990; van den Berg et a/., 1992; Delacroix-Buchet
et al.,, 1993; Jakob, 1993). The enzymatic rate of cleavage at the chymosin sensitive
region is similar between the A and B variants (Jakob, 1993), however the clotting
time differs appreciably. Several theories have been postulated to explain the

differences in clotting activity including:

- differences in citric acid content and hence calcium chelating capacity (Mariani
et al., 1979, 1983; Schaar, 1985). Jakob and Puhan (1986), and van den Berg
et al. (1990) found the differences between the K-CN AA and BB type milks
could be minimised by the addition of calcium chloride and/or slight
acidification of the milk.

- differences in the number and nature of the carbohydrate groups involved in
glycosylation of k-CN between the two variants.

- differences in micelle size distribution (Morini et al.,1975).

- differences in the relative proportions of the caseins (Mariani et al.,1983;
Menard et a/.,1986).

- differences in micellar size (Ekstrand et a/., 1980).

- differences in electrostatic repulsion of the micelles due to net differences in

the charge of the two variants.

Horne et al. (1994) proposed a simple mechanical model to explain the differences in
rennet gel strength between the A and B variants. They assumed that gel strength is
a function of the number and strength of bonds formed. If each micelle is assigned an
average coordination number (the maximum number of bonds each is able to form),
then the number of micelles in the system determines the gel strength. To
accommodate all of the K-CN at the micellar surface, a milk with a higher K-CN content
must have a larger micellar surface area, and consequently smaller micelles. In support
of this they found K-CN BB type milks to have a higher K-CN content, smaller micelle
size and higher gel strength than K-CN AA type milks.
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The influence of ag,-CN variants on renneting time is less conclusive. In general Og;-
CN C variant milk is associated with a higher curd firmness than the B variant (Sherbon
et al., 1967; El-Negoumy, 1972; Mariani et al., 1988), whereas the A variant produces
very soft curd (Sadler et a/., 1968).

Various reports have established the order of B-CN variants in both renneting time and
curd strength is C>B> A (EI-Negoumy, 1972; Mariani et a/., 1982; Mariani and Leoni,
1985; Jakob and Puhan, 1986). The various differences reported between different

B-CN A variants (A', A%, A% are very small and inconsistent.

Even though B-LG is not directly involved in the process of enzymatic coagulation, a
number of studies have associated superior curd firmness with B-LG BB milk over B-LG
AA milk (Sherbon et al., 1967; Feagan et al., 1971; Mariani et al., 1979; Rahli and
Menard, 1991; Hill et al., 1994a). Marziali and Ng-Kwai-Hang (1986b) found B-LG AA

phenotype milk to give firmer curds.

6.3.5.2. Syneresis

Mariani et al. (1976) observed that cheese made from kK-CN BB type milk lost
approximately 15% more weight within 24 hours than cheese derived from K-CN AA
milk. McLean and Schaar's (1989) results confirmed these findings. They further
concluded that if syneresis in acid coagulated curds followed the same trend, it could
impact on yogurt manufacture. Vegarud et al. (1990) reported that mixed variant K-CN
AB milk resulted in yogurt with better water binding than K-CN AA variant milk.

6.3.5.3. Yield and quality

Compared to K-CN AA type milk, K-CN BB type milk has proven to be significantly
better for manufacture of Parmigiana-Reggiano cheese (Mariani et a/., 1976). Firmer
curd and more uniform curd size resulted in nearly 10% higher yield of cheese in K-CN
BB type milk. Fat losses in cheese whey were approximately 50% lower, moisture
content was 4% lower and a higher proportion of cheese made from K-CN BB type milk

were graded as first class. Graham et a/. (1986), and Marziali and Ng-Kwai-Hang
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(1986a) found a similar trend in Cheddar cheese manufacture on a laboratory scale.
Similar trends have also been observed by Mariani et a/. (1976) in Parmesan cheese,
Rahali and Menard (1990, 1991) with Camembert cheese, and van den Berg et al.
(1990) with Gouda cheese. In contrast Schaar et a/. (1984), using pasteurised milk,
were unable to associate K-CN polymorphism with cheese yield or composition, except

for fat content.

Cows homozygous for the B-LG B variant also appear to produce milk with better
cheese making properties than the A variant (Morini et al., 1982; Schaar et al., 1985;
Marziali and Ng-Kwai-Hang, 1986a, 1986b; Aleandri et a/., 1990; Rahali and Menard,
1990,1991; Hill et al., 1995a). The increase in yields varied from 1% in Parmesan
cheese (Morini et al., 1982) to 10% in Cheddar cheese (Hill et a/., 1995a). The finding
of significantly higher protein recovery from B-LG BB type milk than AB or AA type
milks (Marziali and Ng-Kwai-Hang, 1986b; Rahali and Menard, 1991) can be attributed
to higher relative casein content in the milk of B-LG BB phenotype cows (Grosclaude,
1988).

Combined effects of polymorphisms of K-CN and B-LG support independent evidence
of the superiority of the B variants of these two milk proteins (Feagan et al., 1971; El-
Negoumy, 1972; Mariani and Leoni, 1985). The study by Graham et a/. (1984)
compared cheese making properties of milk from type B phenotypes (ag,-CN BB, k-CN
BB, B-CN AB or BB, B-LG AB or BB) with that of type A phenotype milk (ag,-CN BB, K-
CN AA, B-CN AA, B-LG AA). Type B milks had a higher casein content (25.2 g kg™
milk compared to 22.9 g kg''), reached a given curd firmness 15 minutes earlier and
resulted in an 8% (actual) and 9% (dry matter) greater yield of cheese than the type
A milk.

6.3.6 Other effects

Moisture adjusted yield of rennet casein was 6% higher when manufactured from B-LG
BB phenotype milk relative to B-LG AA phenotype milk (Hill et a/., 1995c). Yield losses
during processing were also lower. Other functional properties such as solubility.

viscosity, colour, hydration and extrusion properties of rennet casein manufactured
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from B-LG AA and BB phenotype milks were found to be similar.

Polymorphs of all caseins have been found to affect calcium sensitivity of the micelle
(Thompson and Kiddy, 1964; Thompson et al., 1969; El-Negoumy, 1968, 1971, 1974;
Ng-Kwai-Hang and Imafidon, 1990). The polymorphs of ag,-CN may be ranked
A<B<C in calcium sensitivity and the K-CN variants A<B for micellar stabilising

effects (EI-Negoumy, 1971, 1974).

Water sorption of casein was found to be correlated with polymorphisms of B-CN

(AA/AB> AC) by Kirchmeier et al. (1983).

The effects of casein variants in fermented milks was reported by Vegarud et al.
(1990). A better consistency and viscosity was associated with ag,-CN BB, k-CN BB
and B-LG BB phenotype milks.

Plasmin activity in B-LG AA type milks was reported to be lower than B-LG BB type

milks by Schaar (1985), resulting in lower levels of proteose peptones.

Differences in dye binding characteristics of B-LG A and B variant proteins have also
been noted. Reimerdes and Mehrens (1978) found B-LG B bound nearly twice as much
Coomassie Blue G 250 dye than B-LG A. Graml et a/. (1989) also found B-LG B to
have a higher dye binding capacity for Amido Black dye relative to B-LG A.
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& DETECTION OF POLYMORPHISMS IN MILK PROTEINS

Aschaffenburg and Drewry (1955) first recognised the occurrence of polymorphism in
B-LG using paper electrophoresis. Prior to this proteins in milk were considered to be
homogeneous. The two electrophoretically distinct bands were denoted originally as
B,- and B,-LG, revised to A and B when they discovered that the synthesis of both
types of B-LG were under control of paired autosomal genes (Aschaffenburg and
Drewry, 1957). Since then a range of techniques have been developed capable of

detecting polymorphisms within milk proteins.

7 ELECTROPHORESIS

Electrophoretic techniques have been extensively used for phenotyping due to their
resolving power and relative simplicity of use in rapid analysis of large numbers of
samples. Under the influence of an electric field charged molecules migrate in the
direction of the electrode of the opposite charge. Due to the varying charges and
masses, different molecules migrate at different speeds and are thus separated into
discrete fractions. The electrophoretic mobility is a characteristic parameter of a
charged molecule and is dependent on the pK value of the charged group and the size
of the molecule. It is influenced by the type, concentration and pH of the buffer,
temperature and field strength as well as the nature of the support material.
Electrophoretic separations may be carried out in free solution, as in capillary

electrophoresis, or in stabilising media such as thin-layer plates, films and gels.

7.1.1 Paper electrophoresis

As mentioned above Aschaffenburg and Drewry (1955) first used paper electrophoresis
to detect variants of B-LG. The inclusion of 6.0 M urea as a casein dissociating agent
enabled Aschaffenburg (1961) to overcome the problem of association of casein

proteins in the micelle. This allowed him to detect A, B and C variants of B-CN.
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7.1.2 Starch gel electrophoresis

Starch gel electrophoresis expanded the range of detectable genetic variants to ag,-CN
A, B and C (Thompson et a/., 1962). The inclusion of 2-mercaptoethanol as a reducing
agent led to the detection of further B-LG variants (Grosclaude et a/., 1966) and K-CN
variants A and B (Swaisgood and Brunner, 1963; Neelin, 1964; Schmidt, 1964;
Woychik, 1964). Further resolution of B-CN variants A', A? and A® was achieved by
electrophoresis under acidic conditions (Kiddy et a/., 1966; Grosclaude et al., 1966;

Arave, 1967) as opposed to alkaline conditions previously used.

7.1.3 PAGE

Polyacrylamide gel electrophoresis (PAGE) has largely superseded starch and paper
electrophoresis for the analysis of proteins due to its ease of preparation, staining and
robustness. Most of the known variants of caseins, except B-CN A variants, have been
resolved by alkaline PAGE (Creamer and Richardson, 1975; Grosclaude et a/., 1978,
1979; Medrano and Sharrow, 1989; Creamer, 1991). The New Zealand Dairy
Research Institute has found that slight modifications to the alkaline urea mini PAGE
gel method reported by Creamer (1991) have been suitable for the resolution of ag;-CN
A, Band C, ag,-CN B, B-CN A, B and C, and K-CN A and B variants after reduction with
2-mercaptoethanol (Coker - personal communication, 1995). Similarly modifications
to the acid urea mini PAGE method (Creamer, 1991) are routinely used for resolving
B-CN variants A', A? and A®. Whey proteins are better resolved without the addition

of urea or reducing agents.

B ISOELECTRIC FOCUSING (IEF)

Isoelectric focusing has recently been developed to the point where the majority of
milk protein polymorphisms are able to be resolved in a single analysis. Prior to the
development of ultra thin (< 0.5 mm) gels and narrow pH range ampholytes,
resolution was somewhat limited and run times long. Using 100 ym thick gels Siebert

et al. (1985) were able to resolve all the milk protein variants in a single run within 45
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minutes. Using the Phast System (Pharmacia LKB, Uppsala, Sweden), Bovenhuis and
Verstege (1989) further improved the method to enable complete processing through
to destained gel within 45 minutes. They were able to resolve proteins differing in
isoelectric point by as little as 0.01 pH units. This level of resolution has led to the
discovery of other variants of K-CN (Siebert et a/., 1987; Erhardt, 1989) and B-LG
(Krause et a/., 1988). The B-LG W variant in the Murnau-Werdenfelder breed of cattle
differs from the B variant by a proposed 'silent’ substitution of neutral amino acids.
Observations of other amino acid substitutions in B-LG and B-CN variants shows a shift
in pl of 0.100-0.125 pH units per unit of molecular charge. The pl determined for the
W variant of B-LG differed by only 0.005 pH units from the B variant. Upwards of 20
bands may be observed in the analysis of whole casein. Given the extremely small
change in pl observed in silent variants and the large number of bands observed in
partially purified proteins, it is possible that some variants may be overlooked or

misassigned.

Similar silent substitutions in human haemoglobins have been detected by |IEF (Altland

and Rossmann, 1985).

7.3 2-D ELECTROPHORESIS

Two dimensional electrophoresis has also been used in the study of protein
polymorphisms. lIsoelectric focusing, followed by SDS-PAGE was used in the study of
caprine Og,- and Og,-CN genetic variants by Tutta et al. (1991). Lopez et al. (1995)
utilised a broad pH range (2.5 - 7.0) for IEF prior to SDS-PAGE in the analysis of ovine
whey proteins. In the absence of urea, proteins separated by this method were able
to be blotted and detected by immunological means. The incorporation of urea as a
dissociating agent altered the isoelectric focusing pattern of whey proteins

considerably.

The combination of IEF and PAGE is capable of resolving many of the protein
components in milk. However, substitutions involving non charged residues are

unlikely to be easily detected.
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7.4 Liauib CHROMATOGRAPHY

Many liquid chromatographic techniques have been applied to the separation of milk
proteins. Yaguchi and Rose (1971) provided an excellent review of column
chromatographic techniques for general milk protein separations. More recently Ng-
Kwai-Hang and Grosclaude (1992) reviewed chromatographic techniques as applied

to separation of milk protein variants.

7.4.1 lon-exchange

Prior to the development of high performance chromatographic. media, few examples
of the separation of milk protein genetic variants existed. Thompson and Pepper
(1964) and Ng-Kwai-Hang and Pélissier (1989) achieved separation of the A and C
variants of B-CN on a DEAE-cellulose and QAE-cellulose media respectively. Using a
DEAE-cellulose column Thompson (1966) could resolve K-CN variants A and B. The
advent of Fast Protein Liquid Chromatography (FPLC®, Pharmacia AB, Uppsala,
Sweden) and high performance liquid chromatography (HPLC) columns began an era
of routine separation of some milk protein variants. Humphrey and Newsome (1984)
and Andrews (1986) reported resolution of B-LG variants A and B by anion-exchange
chromatography. Guillou et al. (1987) separated K-CN variants A and B, and B-CN
variants A' and C also using anion-exchange chromatography. Hollar et a/. (1991b)
were further able to resolve the A? variant of B-CN as well using cation-exchange
chromatography. Ng-Kwai-Hang and Dong Chin (1994) reported a series of four peaks
corresponding to K-CN using a DEAE anion exchange column. The first appeared to
be the B variant and the remaining three representing both A and B variants with

differing degrees of glycosylation.

In all of these cases the protein variants that were resolved differed in the net charge
of the molecule. Variants with amino acid substitutions that do not alter the net
charge of the protein are not expected to be resolved from other similarly charged
variants, thus limiting the use of ion-exchange chromatography to phenotyping only

those milk proteins variants which differ in charge.
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7.4.2 Reverse phase

Reverse phase chromatography exploits the property of hydrophobicity to separate
molecules. Each amino acid in a protein or peptide contributes to the overall
hydrophobicity of the molecule. Thus any alteration in the primary sequence of a
protein would be expected to alter the hydrophobicity of that molecule. Several
groups have used this approach to separate some of the polymorphs of milk proteins
(Barrefors et a/., 1985; Carles, 1986; Bican and Spahni, 1991; de Frutos et a/., 1991;
Visser et al., 1991, 1995). Using a C,s column Visser et a/. (1991) were able to
resolve glycomacropeptide (GMP) A and B, K-CN A and B, ag,-CN A, ag,-CN A, B/C and
D, a-La/B-CN B, A', A%, A® and a silent variant termed X (see footnote?), B-LG B and

A respectively in an increasing gradient of acetonitrile in water-trifluoroacetic acid.

The contribution of a single amino acid substitution to a change in the net
hydrophobicity of a protein is likely to be small. Despite the resolving power of reverse
phase chromatography silent variants of intact milk proteins are unlikely to be detected

easily by this technique.

7.5 PEPTIDE MAPPING

The contribution of a single substitution to the net hydrophobicity of a whole protein
may be too small to detect in all cases. Complete hydrolysis of the protein followed
by reverse phase separation of the peptide fragments has been successfully used to
detect protein variants, including silent substitutions (Carles, 1986; Dalgalarrondo et
al., 1990; Visser et al., 1991, 1995; Dong Chin, 1992). In the cases cited trypsin was
used to cleave a purified milk protein. The resulting peptide fragments were separated
on a reverse phase column in an increasing acetonitrile concentration gradient in water-
trifluoroacetic acid. The resultant peptide maps were compared with digests of
standard proteins. Amino acid analysis, amino acid sequencing or mass spectroscopic
analysis of aberrant peaks were used to determine the substitutions involved.

Although the technique is able to detect silent and electrophoretic protein variants, it

2The B-CN variant X reported by Visser et a/. (1991) was subsequently shown to differ
from the A' variant by a Pro to Leu substitution at position 152 by Visser et al. (1995).
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requires the initial purification of the suspect protein. The procedure of protein
purification, hydrolysis and peptide mapping is unlikely to be used on a large scale for

phenotyping due to its complexity and time required.

7.6 DNA SEQUENCING

The limitations of traditional electrophoretic and chromatographic techniques to
phenotyping only lactating females has begun to be overcome by the development of
DNA techniques in conjunction with gene amplification using the polymerase chain
reaction (PCR). DNA sequences derived from nucleated cell samples have made
possible the identification of milk protein genotypes independent of lactation, age and

sex.

The k-CN A and B alleles were first differentiated using labelled DNA probes by
Levéziel et a/. (1988). Restriction fragment length polymorphism (RFLP) involves
separation of fragments of amplified DNA by agarose-gel electrophoresis after digestion
by different restriction enzymes. This method has been used by several groups for
typing variants at the K-CN (Denicourt et a/., 1990; Schlieben et a/., 1991; Schlee and
Rottmann, 1992a), B-LG (Medrano and Aguilar-Cordova, 1990), ag,-CN (David and
Deutch, 1992) and a-La locus (Schiee and Rottmann, 1992).

The success of RFLP relies on the occurrence of a recognition site for the enzyme at
the mutation point. Other methods such as allele-specific PCR have overcome this
limitation and have been used for typing B-CN (Schlee and Rottmann, 1992), k-CN
(Medrano and Aguilar-Cordova, 1990) and as,-CN (David and Deutch, 1992). However
genotyping at the DNA level, using these techniques, is reliant on the appropriate DNA
primers or restriction enzymes to detect known variants. Alleles other than the already
known protein polymorphisms have been demonstrated at the DNA level (Threadgill
and Womack, 1990; Lien and Rogne, 1993; Levéziel et a/., 1994) but have involved

detailed and labourious DNA sequencing to determine the exact nature of the mutation.

The advent of recombinant DNA and PCR technologies, and development of variant
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specific probes has allowed genotyping of both parents, offspring and even unborn
foetuses. The commercial implications of these developments are significant. It
means that herds with desirable genotypes can be assembled or increased very quickly
and at relatively low cost compared to traditional methods requiring progeny to achieve

lactation before typing is possible.
1.7 MAsS SPECTROSCOPY

Recent advances in ionisation technology has seen mass spectrometry emerge as a
means of measuring the molecular mass of large molecules. Electrospray ionisation
mass spectroscopy (ESI-MS) in particular has proven to be extremely useful in the
analysis of large, labile biomolecules up to 200,000 Da with a precision of better than
0.01% (Fenn et a/., 1989). This far exceeds the accuracy of conventional techniques
such as SDS-PAGE, chromatography or ultracentrifugation, typically accurate to only
5% at best. For proteins and peptides within the range of 100 to 100,000 Da, it is
possible to identify post-transiational modifications such as phosphorylation,
glycosylation, acetylation, methylation and hydroxylation solely by the increase in
mass. Subunits or prosthetic groups not covalently bound will be dissociated and
measured as separate species. Conversely, covalently bound groups will show a
characteristic increase in mass. Also, the mass change produced by a single amino
acid substitution or deletion may often be used to establish or confirm the presence

of variants.

Recently Léonil et a/. (1995) published a comprehensive analysis of the major bovine
milk proteins by reverse phase HPLC coupled to ESI-MS. The method permitted the
simultaneous identification of caseins and whey protein variants by comparison of
molecular masses derived by ESI-MS to molecular masses calculated from primary
structures derived from chemical sequencing or DNA sequences. Protein masses were
resolved to within of 3.2 Da or less. This degree of accuracy in mass determination
allows cross checking of genotype and phenotype. If the measured mass of a protein
agrees with that calculated from the gene sequence, it is likely that the deduced
sequence is correct, the amino and carboxyl terminals of the mature protein have been

correctly assigned, and the protein contains no post-translationally modified amino acid
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residues. However a difference between the measured and predicted molecular
weights implies either an error in the cDNA deduced sequence or a post-translational
modification or processing of the protein. Léonil et a/. (1995) suggested two
corrections to the primary sequences, as determined from cDNA sequences, of ag,-CN
A (Leu 193 to Trp - Stewart et a/., 1987) and B-CN A' and A? (Leu 93 to Met -
Jimenéz-Florez et a/., 1987). In addition to the rapid identification of genetic variants
it is possible to observe co- and post-translational modifications, protein-protein
interactions and metal binding phenomena (Léonil et al., 1995, Mollé and Léonil,
1995).

The electrospray ionisation process produces intact protein molecules in an ionised
form from a dilute protein solution by nebulisation in the presence of a strong electric
field (Figure 10). As a consequence of the strong electric field between the end of the
capillary ("4 kV) and the counter electrode ("1 kV), the sample solution emerging from
the capillary is dispersed into an aerosol of highly charged droplets. The fine droplets
formed carry excess positive or negative charge (depending on the polarity of the
electric field). The droplets diminish in size by evaporation, assisted by dry gas and
or heat. A point is reached where multiply charged ions are released free of solvent
resulting in multiply ionised proteins in the gas phase. The exact process by which this
occurs is still unknown. These are directed into the mass analyser (usually a
quadrupole filter) held under high vacuum for mass to charge ratio (m/z) analysis

(Figure 11).
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to facilitate desolvation of the nebulised liquid. (Adapted from Siuzdak, 1996).
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FIGURE 11 Schematic diagram of an electrospray mass spectrometer. (Adapted from Mann

and Fenn, 1992).
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A characteristic of an ESI mass spectrum is the production of intact ions with
extensive multiple charging, resulting in a mass spectra containing a family of charge
states arising from a single protein. On average one charge is added to the protein per
1,000 Daltons. Each member of the series of charge states for a particular protein is

related to its nearest neighbour by having one more or one less proton.

Proteins are normally analysed as positive ions where the charges are produced by

added protons. The ions have the general form:

(M+nH)™

where M is the molecular mass of the protein
n is an integer number of protons (charges)

and H is the mass of the proton (1.00794).

The mass to charge ratio (m) of each peak is given by:

_ M+nH
n

m

The mass spectrometer measures the mass to charge ratio (m/2) of each peak. Thus
a protein of molecular mass of 10,000 with 10 added protons would appear at a

mass/charge ratio of 1001.0.

It follows then that the molecular mass may be calculated from the measured mass to
charge ratio if m can be found. To determine n, any two consecutive peaks differing
by one proton in the series may be used:

M+nH
ﬂl2 = =

m _M+(n+1)H
L n+1
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where m2 and m1 are the measured mass/charge ratios of two peaks with n and n+1
protons respectively. Solving the two simultaneous equations, the charge (n) on m2
is determined as:

n=

mz _m1

The molecular mass is calculated for every peak using:

M=n(m-H)

- the masses are then summed and averaged. Molecular masses are normally given as
average (chemical) values based on the atomic weights of the elements C = 12.011,
H = 1.00794, N = 14.0067, O = 15.9994 and S = 32.06.

To facilitate interpretation electrospray spectra are normally transformed by data
analysis procedures so that all the peaks in the original spectrum from a given protein
are combined and presented as a single peak on a true molecular mass scale (Figure
12).
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(a) Raw spectrum of a mixture of two proteins. Numbers above the peaks designate the
charge states of each ion species.
!
:};un:\ |.rI|;:-nu. 18400 18800 :.:.iﬁuo !'J’.‘[II(:; a5 .-.;;u 2400 |gg;n.o-“-_q“;q—e_ua_nﬁjrr:?‘
(b) Reconstructed mass spectrum of (a) after transformation to a true molecular mass

spectrum.

FIGURE 12 Raw and transformed electrospray mass spectra
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In tandem MS (or MS-MS) two consecutive stages of mass analysis are utilised. The
first stage of mass analysis is used to select the (M + nH)"* ion of a peptide from the
other parent ions produced during ionisation. Following this mass filtering the
relatively stable ion is directed to a collision cell. It is bombarded with a neutral gas
such as argon or helium to cause fragmentation in a process called collision-induced
dissociation (CID). The family of fragment ions, or daughter ions, is directed to a
second mass analyser for similar mass to charge analysis. Partial, if not complete,
amino acid sequence information may be deduced from the mass differences between
successive fragments. Interpretation of sequence information becomes more difficult
as molecular weight increases, realistically limiting tandem MS sequence analysis to

peptides of less than 40 residues.

An important attribute of ESI-MS is the capability of interfacing with high-resolution
liquid chromatography and capillary electrophoresis separation methods. With the
automation capabilities of autosamplers and data analysis software, routine analysis
of multiple milk samples for simultaneous phenotyping of the major milk proteins, and
detection of silent or new protein variants is likely to become the analysis method of

choice.

For comprehensive reviews of the principles of ESI-MS the reader is referred to Mann
and Fenn (1992) , Smith et a/. (1992) and Mann and Wilm (1995).
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Experimental

The aim of the research undertaken was to examine peptide mapping and mass
spectroscopy as techniques for determining the phenotype of milk proteins, and to
determine the frequency of silent or novel milk protein variants in a study dairy cow
population. These methods are contrasted with standard PAGE techniques commonly

used. This entailed several phases of work

- collection of milk samples and preparation of casein and whey

- determination of electrophoretic phenotype of milk proteins by standard PAGE
techniques

- purification of milk proteins

- hydrolysis, peptide mapping and analysis of peptides

- mass spectroscopy of intact milk proteins
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1 PRELIMINARY SAMPLE PREPARATION

Milk samples were processed by several means to provide purified milk proteins for
further analysis. Preliminary sample preparation consisted of centrifugation of milk
samples to remove the fat prior to PAGE, and isolation of casein and whey as a

primary step in individual protein purification.

1.1 PREPARATION OF SKIM MILK

A total of 109 fresh milk samples were collected from individual Jersey or
Jersey/Friesian cross cows in a local seasonal supply dairy herd. Approximately 200
ml of raw milk from each cow was heated to 40°C in a water bath for a period ranging
from 5 minutes to 30 minutes to facilitate cream separation. After heating samples
were centrifuged at 5,000 x g for 10 minutes (unrefrigerated) in a Sorvall GSA rotor.
Skimmed milk was separated from fat by carefully aspirating the cream layer. At this
stage a 1 ml aliquot from each milk sample of skimmed milk was taken for analysis by

PAGE.

1.2 CASEIN AND WHEY PREPARATION

The skimmed milk was then adjusted to pH 4.6 by slow addition of 1M HCI with
continuous stirring. After standing for a period of 20 minutes the isoelectrically
precipitated casein was separated from the whey by centrifugation at 5,000 x g for
15 minutes. The casein curd was crumbled into small particles and washed
extensively with reverse osmosis water and finally with MilliQ deionised water
(Millipore Corp., Bedford, MA.). After removing excess water the casein was frozen

at -20°C until required.
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2 DETERMINATION OF ELECTROPHORETIC PHENOTYPE

2.1 MATERIALS AND METHODS

The electrophoretic phenotype of casein and whey proteins from each cow were
determined by various polyacrylamide gel electrophoresis (PAGE) techniques. To date
no single electrophoretic technique has been shown to unequivocally resolve all of the
known major milk protein variants. Alkaline urea PAGE was used to phenotype Og,-,
B- and k-casein variants. B-casein variants A', A2 and A® could not be resolved from
each other by this technique. Acid urea PAGE was used to resolve B-casein A', A? and
A? variants, and 'native' PAGE for phenotyping B-LG variants A and Bor C. B-LG B
and C variants were unable to be resolved using any of these gel methods. All
methods utilised 60 x 100 x 0.75 mm gels run on Mini-Protean Il equipment (BioRad
Corp., Richmond, CA). After electrophoresis each gel was stained in a 0.05% (w/v)
solution of Coomassie Brilliant Blue R (BioRad Corp., Richmond, CA) in
isopropanol:acetic acid:water (2.5:1:6.5 v/v) for 1 hour, before destaining in two
changes of isopropanol:acetic acid:water (1:1:8 v/v). Unless stated otherwise all

reagents were obtained from the Sigma Chemical Company (St. Louis, MO, USA).

2.1.1 Alkaline Urea PAGE

Alkaline urea PAGE was carried out using a modification of the nondissociating
discontinuous buffer system used by Creamer (1991). The resolving gel (12%T,
2.6%C) consisted of 8 ml of a stock 30% w/v solution of acrylamide:N,N'-Methylene-
bis-acrylamide (BIS) (37.5:1) (BioRad) in 11.9 ml of resolving gel buffer (0.38 M Tris-
HCI, 4.5 M urea), polymerised with 100 ul of a 10% solution ammonium persulphate
(APS) and 10 4l of tetramethylenediamine (TEMED). This was overlaid by a stacking
gel (3.9%T, 2.7%C) consisting of 1.3 ml of 30% acrylamide:BIS stock in 8.65 ml of
stacking gel buffer (30 mM Tris-HCI, 0.6 M urea, 90 mM boric acid, 2.5 mM
ethylenediaminetetraacetate (EDTA), pH 8.4) and polymerised with 50 1 10% APS and
5 pyl TEMED. The electrode buffer was 17.6 mM Tris-HCI, 17.8 mM boric acid, 0.55

mM EDTA, pH 8.4. Gels were left overnight to ensure completion of polymerisation.

Samples were prepared by adding 50 gl of skimmed milk to 0.95 ml of stacking gel
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buffer, to which 0.1% w/v bromophenol blue, 10% glycerol and 10 ul of 2-
mercaptoethanol had been added. After vortexing and standing for at least 1 hour, 10
pl of reduced sample was loaded per lane. Gels were run in pairs at 210 V, 70 mA,

6.5 W (limit values) for 1.7 hours and stained immediately after electrophoresis.
2.1.2 Acid Urea PAGE

Similarly, acid urea PAGE was performed using a modified nondissociating
discontinuous buffer system based on that used by Creamer (1991). The resolving gel
(6.5%T, 5%C) consisted of 9.75 g acrylamide:BIS (5%C) (Serva Research Grade)
dissolved in 150 ml resolving gel solution (4.5 M urea, 1 M acetic acid, 62 mM
ammonium acetate, 23 mM thiourea, pH 3.86) and polymerised by 3 yl of hydrogen
peroxide (30% w/v) per ml of solution. Stacking gel (5%T, 5%C) consisted of 5.0 g
acrylamide:BIS (5%C) (Serva Research Grade) dissolved in 100 ml stacking gel buffer
(6 M urea, 0.25 M acetic acid, 15 mM ammonium acetate, 23 mM thiourea, pH 4.1),
and polymerised by 3 4l of hydrogen peroxide (30% w/v) per ml of solution. Electrode
buffer was 1 M acetic acid. Gels were left overnight to ensure completion of

polymerisation.

Samples were prepared by adding 25 pl of skimmed milk to 750 ul of sample buffer
(6.8 M urea, 0.25 M acetic acid, 15 mM ammonium acetate, pH 4.16, and 1 gl of 10%
basic fuschin dye) and 10 ul of 2-mercaptoethanol. Samples were vortexed and stood
for at least 1 hour before loading 10 yl per lane. Gels were run in pairs with the
electrodes reversed to the configuration used with alkaline urea and native gels. The
values used for electrophoresis were 210 V, 70 mA, 6.5 W (limit values) for 1 hour.

Gels were stained immediately following electrophoresis.
2.1.3 Native PAGE

Native PAGE was performed using a modification of the discontinuous buffer system
reported by Creamer (1991). Resolving gel (15%T, 2.6%C) was prepared by mixing
5 ml of a stock acrylamide:BIS solution (30% w/v) with 1.25 ml resolving gel buffer
(3 M Tris-HCI, pH 8.8), 3.75 ml of water, 50 ul APS (10% w/v) and 5 ul TEMED.
Stacking gel (3.75%T, 2.6%C) was prepared by mixing 1 ml of stock acrylamide:BIS
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with 2 ml stacking gel buffer (0.5 M Tris-HCI, pH 6.8), 5 ml water, 40 ul of APS and
8 yl TEMED. Electrode buffer consisted of 25 mM Tris-HCI, 0.2 M glycine, pH 8.3.

Gels were left overnight to polymerise.

Samples were prepared by adding 50 ul of skimmed milk to 950 4l of sample buffer
(0.1 M Tris-HCI, 0.01% (w/v) bromophenol blue, 10% (v/v) glycerol, pH 6.8). Ten
microlitres of prepared sample was loaded per lane. Gels were run in pairs at 210 V,

70 mA, 6.5 W (limit values) for 1.5 hours and stained immediately after.

2.2 RESULTS

Typical results of alkaline-urea PAGE, acid-urea PAGE and native PAGE are seen in
Figure 13 (a), (b) and © respectively. The major milk protein variants were identified

by their relative mobilities in each of the PAGE systems used.

Under alkaline urea conditions ag,-CN had the highest mobility, followed by as,-CN,
a-La, B-LG, B-CN, k-CN and BSA in order. Lactoferrin and immunoglobulins essentially
did not penetrate the stacking gel at all. In milk a-La is present in such low quantities
relative to the casein proteins, that at the loadings used it was not visualised clearly.
B-LG appeared as a diffuse band in approximately the same position as B-CN. The

variants of B-LG could not be clearly resolved.

Under acid urea conditions ag,-CN migrated the furthest, followed by K- and B-CN. The
variants of as,- and K-CN were not resolved. The whey proteins appeared as faint,

diffuse bands.

Non-reducing conditions in the absence of urea resulted in clearly resolved bands
corresponding to a-La, B-LG B or C, and B-LG A. Under these conditions the casein
proteins do not dissociate from casein micelles to any appreciable degree. The caseins
appear as a broad, heavily stained smeared band extending from the loading well at

the top of the gel, through to approximately half the length of the resolving gel.
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FiGure 13 (a)  Alkaline-urea PAGE of whole milk samples from individual cows. The phenotypes

determined are as follows:

Lane 1 2 3 4 5 6 7 8 9 10 11 12 13 14
K-CN AA | BB | AB | BB BB AB | 77 AB | BB AB | AB | BB BB BB
B-CN AA | AB AA | A? AA | AA | AA | AB | AB | AB | AA | AA | AA | AA
ag,-CN BB BB BB BB BB BC | BB BB BC BB BB BB BB BB

Lane 1
Lane 2
Lane 3
Lane 4
Lane 5
Lane 6
Lane 7
Lane 8
Lane 9
Lane 10
Lane 11
Lane 12
Lane 13
Lane 14

FicuRE 13 (B)  Acid-urea PAGE of whole milk samples from individual cows. The phenotypes

determined are as follows:

Lane 1 2 3 4 5 6 7 8 9 10 11 12 13 14

B-CN Al Al A2 | A2 A2 | Al A2
Al A2 A2 | A2 A2 | A2 | A2

Al A1l A2 | A2 | A2 | A2 | A2
A2 | A1 A2 | A2 | A2 | A2 | A2




R. Burr - M.Sc. Thesis
Experimental - Page 59

Lane 1
Lane 2
Lane 3
Lane 4
Lane 5
Lane 6
Lane 7
Lane 8
Lane 9
Lane 10
Lane 12
Lane 14
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Fioure 13 (c)  Non-denaturing 'native’' PAGE of whole milk samples from individual cows. The

B-LG phenotypes determined are as follows:

Lane 1 2 3 4 8 6 7 8

B-LG BB AB | AB | AB | AB | AB | AB | BB AB | AA | BB

AB | BB AA

2.2.1 Alkaline-urea PAGE

Alkaline-urea PAGE enabled the determination of casein phenotypes with the exception
of B-CN A', A? and A® variants.

as,-CN variants B and C were identified by alkaline-urea PAGE. The B variant had a

slightly higher relative mobility than the C variant. Often mixed BC phenotypes

appeared as a broader band than monovariant B or C types.

Os,-CN appeared as a two distinct and several faint bands, corresponding to variously

phosphorylated species. All samples analysed appeared identical in the area

corresponding to the bands ascribed to ag,-CN. As only the A variant has been

identified in Bos taurus, all samples were assumed to be ag,-CN AA phenotype.

Alpha-lactalbumin appeared as a very faint, smeared band with a relative mobility
higher than B-LG, but less than ag,-CN.
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Beta-lactoglobulin showed a similar mobility to B-CN, but the quantity loaded onto the
gel from a skimmed milk sample was negligible. This did not unduly interfere in

assessment of B-CN phenotype.

The incorporation of urea in alkaline-urea PAGE to dissociate the casein species results
in the whey proteins appearing as indistinct broad bands. Combined with the broad
bands seen in comparison to the caseins, determination of B-LG phenotype in this gel

system could not be accomplished.

Beta-casein appeared as either a single band, corresponding to either A group (A', A?
or A% or B variants, or as two bands indicating a mixed A(x)B phenotype. The A group
of B-CN variants had a slightly higher relative mobility than the B variant. Some
samples were difficult to assign. The combination of the high protein loading level
(required to simultaneously visualise K-CN) and the small difference in relative mobility
between the A group and B variants often resulted in broad bands that tended to
overlap. In all cases further analysis by acid-urea PAGE allowed complete

determination of B-CN phenotype.

Mono variant K-CN appeared as a single faint band. Mixed K-CN AB variant appeared
as two faint bands, corresponding to the unglycosylated forms of each variant. The
A variant has a higher relative mobility than the B variant. Additionally a series of

fainter bands, assumed to be the variously glycosylated forms of k-CN, were seen.

Kappa casein represents only 10% of the total casein in skimmed milk. The intensity
of the bands attributed to K-CN, relative to the intensity of the other caseins, was

consistent with the ratio of K-CN to the other caseins.
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2.2.2 Acid-urea PAGE

Acid-urea PAGE allowed the further characterisation of B-CN phenotypes. Variants A’,
A?, A and B were resolved from each other. The order of relative mobility was
B>A'>A?> A% Under acidic conditions the other milk proteins appeared as smeared,

diffuse bands.

Immediately after the completion of electrophoresis gels were immersed in Coomassie
stain. For acid-urea gels it was found that the B-CN phenotype was best determined
after 5 to 10 minutes staining time. The B-CN bands were stained more intensely than
the background and were relatively well defined. After phenotyping the gels were
returned to stain, processed and photographed as normal. After the standard staining

and destaining procedure the bands were less defined and tended to overlap.

2.2.3 Native PAGE

Alpha-lactalbumin appears as a single band with a relative mobility higher than that of

the caseins, but lower than any of the B-LG variants.

Beta-lactoglobulin variants A and B were clearly resolved with the A variant having a
higher relative mobility than the B. The B and C variants were not able to be resolved
in this gel system. The B variant differs from the C variant by a GIn59 to His
substitution. At the pH of the buffer systems used, His is unprotonated. Thus in this
system the B and C variants are expected to have the same net charge. The C variant
was assumed to be rare in the New Zealand dairy population (J. Hill and G. Paterson,
personal communication). All samples with a single band corresponding to the same
mobility as B-LG B were assigned as the B-LG BB phenotype. Those samples with two
bands corresponding to the same mobility as B-LG A or B were assigned as mixed B-LG

AB phenotype.
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Protein Phenotype Number of cows % of study population
ag,-CN BB 82 75.2
BC 27 24.8
ae,-CN AA 109 100.0
B-CN A'Al 15 13.8
A'A? 20 18.3
A’A? 56 51.4
A'B 1 10.1
A’B 7 6.4
K-CN AA 36 33.0
AB 52 47.7
BB 21 19.3
a-Lac AA 109 109
B-LG AA 31 28.4
AB 62 14.7
BB 16 56.9
TABLE 1 Tabulated results of phenotyping by PAGE methods

2.3 DiscussioN

The milk protein phenotypes found in the samples analysed by the three PAGE systems
used included ag,-CN AB, BB and BC; o,-CN AA; B-CN A'A', A'A?, AZA?, A'B, A’B
and BB; Kk-CN AA, AB and BB; a-La BB and B-LG AA, AB and BB. These phenotypes

are consistent with the phenotypes

reported

in Western cattle breeds by

Aschaffenburg (1968), Swaisgood (1982), Eigel et al. (1984) and Ng-Kwai-Hang and
Grosclaude (1992). The rarer milk protein phenotypes (0s,-CN AA and B-CN CC) were

not observed in the samples analysed by alkaline-urea PAGE, acid-urea PAGE or native-

PAGE. The B-LG C variant was unable to be resolved from the B variant in any of the

systems used.
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No single PAGE system has been able to resolve all of the milk protein variants. Hence
a systematic study of milk protein polymorphism requires three runs under alkaline,

acid and non denaturing conditions.

The majority of the casein genetic variants are resolved from each other by alkaline-
urea PAGE. A high concentration of urea is incorporated into both the gel system and
sample buffer. The chaotropic nature of urea solution effectively disrupts the
association between casein species in the micelle. Once dissociated the individual
species are able to be separated by a combination of molecular sieving and charge
under the influence of an electric field in the gel. The relative mobility of each species
under these conditions is a function of the apparent size and net charge of the

molecule.

The major influence on relative mobility of protein species in the three gel systems
used is the net charge of the molecule. Asp and Glu residues have a negative charge
only above the pK of their lateral carboxyl groups (pH 3 to 4), whilst His is positively
charged at a pH below the pK of the imidazole ring NH (below pH 6). SerP and ThrP
are negatively charged and Arg and Lys are positively charged throughout the pH range
which can be used in electrophoresis. Thus substitutions of SerP, ThrP, Arg and Lys
by a neutral amino acid may be detected at both alkaline and acid pH values. This
type of substitution (or deletion) is seen in ag,-CN A, D and E relative to 0g,-CN B (see
Figure 2, page 10), ag,-CN D relative to o,-CN A (Figure 3, page 11), B-CNB, C, E
relative to B-CN A? (Figure 4, page 12) and a-La A relative to a-La B (Figure 6, page
15). Substitution of Asp and Gly residues by neutral amino acids may be detected at
a pH above 3 to 4. Examples of this type of substitution or deletion may be found in
as,-CN A, C, E relative to a5;,-CN B (Figure 2, page 10), ags,-CN D relative to ag,-CN A
(Figure 3, page 11), K-CN A relative to K-CN B (Figure 5, page 13) and B-LGA, D, E
relative to B-LG B (Figure 7, page 16). Acidic buffers must be used to detect
substitutions involving His and neutral residues. These are found in B-CN A', A®, B and
C relative to B-CN A? (Figure 4, page 12) and B-LG C relative to B-LG B (Figure 7, page
16).
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IEF has been shown to be useful in the analysis of the polymorphism of casein
(Rigehetti et al., 1980; Trieu-Cuot and Grippon, 1981; Addeo et al., 1983; Siebert et
al., 1985) and whey proteins (Krause ef al., 1988). The technique has advanced from
resolving some of the known variants of individual proteins (Trieu-Cuot and Gripon,
1981) to phenotyping in a single run all milk proteins in ultrathin layer polyacrylamide
gels (Siebert et al., 1985; Bovenhuis and Verstege, 1989). With the development of
ultra-narrow pH range, immobilised pH gradient gels further variants of K-CN (Siebert
et al., 1987; Erhardt, 1989) and B-LG (Krause et a/., 1988) have been discovered. The
B-LG W variant reported by Krause et al. (1988) differed by only 0.007 pH units from
that of the B-LG B variant. They suggest that this may be a result of substitution of

amino acids with dncharged side chains.

The substitutions mentioned cover most of the known polymorphisms found in Bos
taurus. The inability of the native PAGE method used to resolve the B and C variants
of B-LG highlights the limitation of PAGE methods alone to accurately determine milk
protein phenotype. Silent substitutions involving non-charged amino acids are unlikely
to be detected by standard electrophoretic techniques. It is possible that the
extremely small shifts in pl seen with silent variants may be overlooked when using IEF

methods.
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3 MiLK PROTEIN PURIFICATION

3.1 B-LACTOGLOBULIN PURIFICATION

Detailed analysis of milk proteins for unknown polymorphisms required purification of
the major proteins species from individual cow's milk. Beta-lactoglobulin was prepared

from whey after isoelectric precipitation of the casein.

3.1.1 Materials and Methods

All the whey proteins with the exception of B-LG were precipitated from the whey
supernatant by adaptations to the method of Mailliart and Ribadeau-Dumas (1988).
This involved slow addition of NaCl to 7% (w/v) to acid whey (pH 4.6). Once the salt
had completely dissolved the pH was adjusted to 2.0 by slow addition of 6 M HCI drop
wise with continuous stirring. After standing for 20 minutes the precipitated proteins

were separated by centrifugation at 8 000 x g for 15 minutes.

The B-LG containing supernatant was decanted into 10,000 molecular weight cut off
dialysis tubing (Union Carbide), and dialysed against 300 mM Tris buffer, pH 7.0,
overnight. Two subsequent dialysis steps were performed against distilled water for
24 hours each before freezing samples on a Just-a-Tilt Model SF-4 shell freezer (FTS
Systems Inc., Stone Ridge, NY), followed by freeze drying on a Virtis freeze drier
Model 20L (The Virtis Co. Ltd., Gardiner, NY). Confirmation of phenotype and
assessment of purity were made by native PAGE as described above, using a loading
of 2.5 ug per lane. Gels were analysed by scanning densitometry using a Personal
Densitometer and ImageQuant software (Molecular Dynamics, Sunnyvale, CA). Protein
purity was determined by comparing the band volume of purified protein (calculated
from the area and density of staining of each band) to the band volume of any

contaminating protein.

3.1.2 Results.

Native PAGE analysis of B-LG purified by the method above indicated a purity of
greater than 95% when analysed by native PAGE (Figure 14). Alpha-lactalbumin was
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identified as the contaminant in B-LG preparations. The P-LG preparations were

deemed to be sufficiently pure for use in further experiments.
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FIGURE 14 Non-denaturing 'native’ PAGE of salt precipitate prepared B-LG. Each lane

represents a sample of B-LG prepared from an individual cow.
3.2 CASEIN PURIFICATION

Similarly purified caseins were required for detailed analysis of the range of
polymorphisms occurring in the study population. Caseins were purified by ion

exchange chromatography.
3.2.1 Materials

Urea was obtained from PetroChem NZ Ltd., (Hawera, N.Z.). This was de-ionised by
passing a solution of 8 M urea through a 2.6 x 50 cm column of AG5I01 -X8 mixed bed
resin (BioRad, Richmond, CA.). After de-ionisation the solution was filtered through
Whatman GF/A filter paper, and finally through a 0.45 ym pore size filter (both from
Millipore, Bedford, MA.)

Chromatography was performed on a BioPilot chromatography station fitted with a
Frac 300 R fraction collector. Data was collected and analysed using FPLC Manager

software (all Pharmacia, Uppsala, Sweden).
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Equipment and methods used for PAGE analysis of purified casein fractions were the

same as for electrophoretic phenotype determination.

Casein samples were selected for further purification based on the phenotypes of each
protein. Twenty two samples that were homozygous for ag,-CN B, and homozygous
for either B-CN A, B-CN A? or B-CN B proteins were selected.

3.2.2 Methods

Thawed wet casein, prepared as above, was dissolved in buffer A (6 M urea, 20 mM
sodium acetate, pH 5.0) to 2% (w/v). This was titrated to pH 7.0 with 2 M NaOH and
treated with 0.1% dithiothreitol for 1 hour before careful titration back to pH 5.0 with
2 M HCI. The sample was then stood overnight at room temperature before
centrifugation at 5,000 x g for 10 minutes. 100 ml of solubilised, reduced casein was
then chromatographed on a 50 x 150 mm column of S-Sepharose Fast Flow ion-
exchange media (Pharmacia, Uppsala, Sweden) at a flow rate of 5 ml min™, using a O-
0.4 M NaCl gradient over 3 column volumes (60 minutes). Eluate was collected in 5
ml fractions. The eluate was monitored by UV absorbence at 280 nm throughout the
run. The elution profile was recorded during each run and used to assess which
fractions to analyse by PAGE, based on the UV absorbence. Following analytical
chromatography the column was regenerated by washing for 10 minutes at a flow rate

of 5 ml min™ first with buffer A + 1 M NaCl, followed by buffer A for 30 minutes.

Collected fractions were analysed by alkaline-urea PAGE as outlined above. The
fractions that corresponded to pure ag,-, O,-, B- and K-CN, as indicated by the
appearance of band(s) corresponding to the purified protein, were individually pooled.
They were then dialysed against 5 | of 300 mM Tris, pH 7.0 overnight, followed by
two further 24 hour, 5 | dialysis steps against purified water. Dialysed, purified
caseins were then lyophilised by shell freezing liquid samples prior to freeze drying and

storage at -20°C.

The purity of each freeze dried casein sample was checked by alkaline PAGE analysis
as described above. 2.5 pg of ag,- and B-CN, and 5.0 pg of Os,- and K-CN were loaded

per lane. Samples were run in conjunction with a whole casein standard. The relative
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order of migration of caseins in alkaline PAGE was ag;-CN> ¢,-CN>B-CN>k-CN.

3.2.3 Results

Figure 15 shows a typical elution profile of acid precipitated casein on S-Sepharose
Fast Flow. The collected fractions A to F were examined by alkaline PAGE. These
corresponded to Y-, B-, K-, Og,-, Qg,- D and ag,-CN respectively. The fraction identified
as Og,- D appeared to be a dimeric form of o,-CN. Given the sample preparation
conditions, all proteins were expected to be dissociated to monomeric forms. It

appears that reduction of ag,-CN proceeds at a much slower rate than K-CN.

By alkaline-urea PAGE purified caseins appeared homogeneous (Figure 16).

s r

0.25 |

ABSORBANCE @ 280 nm

FIGURE 15 Elution profile of casein proteins from S-Sepharose Fast Flow ion-exchange
column. Fractions are - y: Y-CN; B: B-CN; k: K-CN; as2: ag,-CN; as2-D: ag,-CN dimer;
as1: ag,-CN. Shaded areas indicate fraction cuts. The ionic gradient overlays the

spectral absorbence.
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Using the method outlined above, purified ag,-, Og,-, B- and K-CN were prepared from
22 milk samples selected. On the basis of this selection 22 samples of ag,-CN B, 22
samples of ag,-CN A, 14 samples of B-CN A?, 7 samples of B-CN A, 1 sample of B-CN
B, 8 samples of K-CN A, 1 sample of K-CN B and 13 samples of mixed K-CN A and B

were purified,

F D C B A BT WC
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FIGURE 16 Alkaline-urea PAGE of peak fractions collected from ion-exchange

chromatography of whole casein. Lanes A, B, C, D and F correspond to fractions collected from
the chromatogram shown in Figure 15. BT represents the breakthrough peak (not shown in

chromatogram; WC represents the sample of whole casein loaded onto the column.

3.2.4 Discussion

The success of this chromatographic method relies on the careful preparation of the
sample. Dalgleish (personal communication) recommended dissolving acid casein in
6 M urea at pH 5.0, titration to pH 7.0 and reduction with 2-mercaptoethanol for 1
hour prior to careful titration back to pH 5.0. In this separation the less noxious

dithiothreitol was substituted as reductant.

Both reducing agents are far more effective at neutral pH. Thus samples were titrated
to pH 7.0 prior to reduction. The minimum quantity of acid or base was added to
meet the required pH for reduction and chromatography. It was found that an excess
of acid or base increased the ionic concentration of the sample enough to effect

dissociation with the media. This resulted in a higher proportion of the sample
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appearing in the break though peak (data not shown).

Hollar et al. (1991a) recommended a sample concentration of between 0.3 to 0.75%.

It was found that this could be increased to 2% without precipitation.

Temperature also appears to be an important factor. Sample storage of the reduced
samples overnight at 4°C resulted in selective precipitation of approximately half of the

ag,-CN. This was avoided by storage at room temperature.




R. Burr - M.Sc. Thesis
Experimental - Page 71

4 B-LG PHENOTYPING BY CAPILLARY ELECTROPHORESIS

The native PAGE method, used for determining B-LG phenotype proved to be unable
to resolve variants B and C. Previously it was assumed that the frequency of the C
variant in New Zealand dairy cattle was extremely low as no C variant had been
detected (Hill, 1993). Using purified B-LG A, B and C standards, Paterson et a/. (1995)
developed a method of separating the three B-LG variants by free zone capillary
electrophoresis. This method was used to check the B-LG phenotype previously

assigned using native PAGE.

4.1 METHODS AND MATERIALS

Samples of purified B-LG, prepared as outlined above, were dissolved in 50 mM 2-(N-
morpholino)ethane sulphonic acid (MES) (BDH Chemical Ltd., Poole, England) buffer,
pH 8.0, 0.1% Tween 20, to approximately 0.5 mg ml”'. Each sample was then spiked
with a solution of a-La, bringing the final concentration of a-La to approximately 0.15
mg ml'. Samples were then filtered through a 0.45 ym syringe filter to remove any

residual particulate material.

Free zone capillary electrophoresis was carried out using an Applied Biosystems 270A-
HT capillary electrophoresis system (Applied Biosystems, San Jose, CA). The capillary
used was an Applied Biosystems 72 cm uncoated silica capillary with 50 gm internal
diameter. Injections were carried out using vacuum (17 kPa) for 4 seconds, and the
separation was carried out at 20 kV. Eluent was monitored at 215 nm. In all cases,
a separation buffer consisting of 50 mM MES, pH 8.0 with 0.1% Tween 20 was used.
To retain separation reproducibility, the capillary was flushed between injections with

0.1 M NaOH, Milli-Q water and buffer successively for 2 minutes each (at 68 kPa).

The data were collected via a PE Nelson 900 series interface and analysed using a PE

Nelson Turbochrom 3.3 software package (PE Nelson, Cupertino, CA).
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4.2 RESULTS

Typical electropherograms of purified B-LG from individual cows, spiked with and
aligned to a-La are seen in Figure 17. Some drift in injection to elution time of a-La
was observed between samples. Paterson et a/. (1995) suggest that this is due to ion
depletion of the cathodal buffer. Aligning electropherograms to the a-La peak resulted

in consistent relative elution times for B-LG variants A, B and C.
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FIGURE 17 Capillary electrophoresis of (a) whey protein standards, and B-LG purified from
acid whey of a B-LG AA phenotype (b), a B-LG BB phenotype (c), a B-LG AB phenotype, a B-LG
CC phenotype, and a B-LG BC phenotype using the method of Paterson et al. (1995).
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All samples of purified B-LG were also analysed by CE to check the accuracy of the
phenotype assessed by native PAGE. Seven of the samples previously phenotyped as
B-LG BB were found to be either BC (2) or CC (5) phenotypes. No B-LG AC phenotype
samples were identified. All samples examined resulted in peak retention times that
corresponded to standard B-LG A, B or C variants. No peaks were observed that fell

outside of the expected ranges for the A, B or C variant.

4.3 DiscussioN

Although B-LG A and B are the predominant variants, the C variant has been observed
in some populations of Jersey and Ayrshire breed cows at frequencies between 0.01
and 0.11 (Aschaffenburg and Drewry, 1955; Mclean et al., 1984; Bech and
Kristiansen, 1990; Paterson et al., 1995). Given the inability to distinguish the B and
C variants in the gel electrophoretic systems described, the accuracy of phenotypic

determination by PAGE alone appears questionable.

Previous studies have indicated the presence of the B-LG C variant may influence the
composition and functional properties of milk and milk products (Whitney, 1988;
Motion and Hill, 1994). Obviously the determination of the physical characteristics
and effect that milk protein variants have on the behaviour of milk and milk products

are dependent on accurate phenotyping.

Phenotyping of B-LG by native PAGE and CE highlights the limitations of traditional
PAGE methods for the detection of variants, even those involving substitutions of

charged residues.
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5 TRYPSIN PURIFICATION

Trypsin is frequently used in hydrolysis studies of proteins. Its specificity for cleavage
at the carboxyl side of arginine and lysine residues results in a limited number of
peptides compared to less specific enzymes. Theoretically each tryptic peptide, except
for the carboxyl-terminal peptide of the protein, will end with an arginine or lysine
residue. However, trypsin preparations are often contaminated with chymotrypsin
(Jany et al.,, 1976). Chymotrypsin cleaves preferentially on the carboxyl-side of
aromatic and other bulky non polar residues. Chymotrypsin action may be specifically
blocked by a-(1-tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK). Trypsin
preparations are often treated with TPCK to block contaminating chymotrypsin

activity.

5.1 MATERIALS AND METHODS

TPCK treated trypsin type Xlll (from bovine pancreas) and chymotrypsin were obtained
from Sigma Chemical Company (St. Louis, MO.) An FPLC low pressure
chromatography station and MonoQ HR5/5 column (Pharmacia, Uppsala, Sweden)

were used for the analysis of trypsin and chymotrypsin.

Trypsin and chymotrypsin standards were dissolved in 50 mM phosphate buffer, pH
7.0 to 0.5 mg ml”'. A trypsin plus chymotrypsin solution was prepared by mixing the
two standards in a 1:1 ratio. Fifty microlitres of each protein solution was injected
onto the column, previously equilibrated with 50 mM phosphate buffer, pH 7.0.
Protein was eluted from the column in a 10 column volume gradient of O to 1 M NaCl

in phosphate buffer at 1 ml min *'. Eluent was monitored at 280 nm.
5.2  RESULTS
The elution profiles of TPCK trypsin, chymotrypsin and a mixture of both are seen in

Figure 18. Chymotrypsin elutes earlier in the gradient than trypsin. The TPCK trypsin

standard used showed no traces of chymotrypsin contamination.
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FIGURE 18 Analysis of trypsin purity. Chymotrypsin (a), trypsin (b), and a mixture of both

standards were analysed by ion-exchange chromatography. Neither trypsin or chymotrypsin

showed cross contamination with the other enzyme.
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6 TRYPTIC HYDROLYSIS

Enzymatic hydrolysis of a protein followed by separation of the resultant peptides is
frequently used as the first step in determining the primary sequence of the protein.
Comparison of the elution profiles of the peptides, or peptide mapping is a useful tool

for detecting alterations in the amino acid sequence from that of the standard protein.

Reversed phase (RP) chromatography separates compounds on the basis of their
hydrophobicity. The hydrophobicity of a peptide is determined primarily by the amino
acid composition. To a lesser degree a peptide's net hydrophobicity is influenced by
the environment around each residue. The slight change in hydrophobicity resulting
from a single amino acid residue substitution is likely to have little net effect on the
overall hydrophobicity of the intact protein. By prior cleavage of the protein to
subsequent smaller peptides the hydrophobic effect of amino acid substitution on a
peptide is much easier to detect. Trypsin is frequently used for hydrolysis due to its
high degree of specificity and subsequently limited number of resultant peptides to

analyse.

Peptide mapping using RP-HPLC has been used for the detection of silent mutations
in haemoglobin (Schroeder et al., 1982). Eluent fractions corresponding to peaks with
different retention times than the standard elution profile may be further analysed by
amino acid analysis, amino acid sequencing, mass spectroscopy or a combination of
these techniques to determine the substitution involved. Mass spectroscopy enables
the detection of many post-translational modifications such as phosphorylation that

may not be detected by amino acid analysis or sequencing.

6.1 METHODS AND MATERIALS

6.1.1 Hydrolysis

TPCK treated trypsin (analysed above) was dissolved in phosphate buffer (0.04 M

Na,HPQO,, 0.01 M KH,PO,, pH 7.45) to 1.0 mg ml". Purified milk proteins, prepared

above, were dissolved in phosphate buffer to 5 ml ml”'. 50 ul of trypsin was added
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to each ml of protein solution (1:100 enzyme:substrate w/w) and digested at 37°C
with shaking for the required time. The hydrolysis was terminated by acidification
with 5 ul of trifluoroacetic acid (TFA) (SpectroSol, BDH Laboratory Supplies, Poole,
England). After mixing and standing at room temperature for 30 minutes any
precipitated material was separated by centrifugation at 10,000 x g for 15 minutes.

The supernatant was either analysed immediately or stored at -20°C until required.

6.1.2 Peptide Mapping

Hydrolysed milk protein peptides were separated by reversed-phase high-performance
liquid chromatography (RP-HPLC) using linear gradients of several steps on a octadecyl
silane porous silica column (3.9 x 300 mm Bondclone 10y C18 with 3.9 x 30 mm
Bondclone C18 guard column, Phenomenex, Torrance, CA) at 60°C. Two HPLC
systems were utilised. One system comprised a Waters 600 E multi solvent delivery
system, Waters 700 Satellite WISP autosampler (Waters Division, Millipore Corp.,
Milford, MA), Hewlett-Packard 1040A diode array detector (HP DAD) and Hewlett-
Packard 300/7946 data station running HPLC ChemStation software (Hewlett-Packard,
Palo Alto, CA). The alternative system comprised two LC-6A pumps, SIL-6A
autoinjector, SCL-6A system controller, CTO-6A oven, SPD-6AV UV-Vis
spectrophotometric detector, C-R3A Chromatopak integrator, FDD-1A floppy disc drive
data storage (all Shimadzu Corp., Kyoto, Japan) and Gilson FC 203 fraction collector

(Gilson Medical Electronics Inc., Middleton, WI).

The solvents used during reversed phase analysis were 5% HiPerSolv 'Far UV' grade
acetonitrile, 0.05% TFA for solvent A (both BDH Laboratory Supplies, Poole, England),
and 60% acetonitrile, 0.05% TFA as solvent B. Solvents were sparged with helium

prior to use.

Prior to use TFA was re-distilled from KMnO, over 4A sieves. Coloured fractions from
the start and end of distillation were discarded and only the clear mid-distillate was

used.

A start-up programme linearly increased the flow rate from 0 to 1 ml min' over 10

minutes prior to equilibrating the column in solvent A. Similarly a shut-down
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programme decreased the flow rate to O ml min”' at the end of a series of

chromatographic runs.

A series of gradients were run to determine optimum separation parameters. The
gradient that was found to resolve most peptides across the range of proteins used
consisted of a linear gradient from O to 15% B over 15 minutes after sample injection,
followed by a linear gradient from 15 to 50% B over 10 minutes. The gradient was
increased from 50 to 60% B over 15 minutes prior to an increase to 100% B over the
next 10 minutes. The column was held at 100% B for 3 minutes prior to
re-equilibration by a decreasing gradient to 0% B over 0.5 minutes, then holding at 0%
B for 6.5 minutes. The separation programme used a consistent flow rate of 1 ml/min
throughout. The programme from sample injection to completion of re-equilibration

took 60 minutes (see appendix A).

A sample injection volume of 50 ul was used, applied via the autoinjector with

thorough rinsing between samples.

Detection was either at 214 or 280 nm (as indicated) on the Shimadzu HPLC, or
between 205 and 300 nm in 2 nm steps with the HP DAD system. Multiple
wavelength monitoring of column eluate provides supplementary information as to the
possible amino acid composition of each peptide. The peptide bond absorbs strongly
at 205 to 214 nm. Thus the peak height, in the absence of strongly absorbing
aromatic amino acid residues, is proportional to the number of peptide bonds. At 280
nm the aromatic amino acids tyrosine and tryptophan absorb strongly. These two
amino acids may be differentiated at 295 nm where tryptophan has a much stronger

absorbence.

Peptide maps, obtained from reversed phase separation of the tryptic peptides, were
compared. Typical retention times and peak patterns were determined for each variant
of the casein proteins. Samples exhibiting aberrant peptide maps were re-analysed.
Peptides with altered retention times or peak shapes were collected automatically using
changes in peak slope as an indicator of a new peak. Peptides were either sequenced

directly or dried using a SpeedVac and stored at -20°C until required.
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6.1.3 Peptide sequencing

Peptides were sequenced by the Biochemistry Department of Massey University,
Palmerston North, New Zealand. The instrument used was a Applied Biosystems
Model 476A protein sequencer (Applied Biosystems Inc., Foster City, CA), utilising

Edman N-terminal sequencing chemistry.

6.1.4 Fast atom bombardment - mass spectrometry (FAB-MS)

Selected peptides isolated from tryptic hydrolyses were subjected to mass analysis by
FAB-MS. The analyses were completed by the Mass Spectroscopy Unit of AgResearch
Grasslands, Palmerston North, New Zealand. Mass spectra were obtained on a VG70-
250S double focusing, magnetic sector mass spectrometer (VG Analytical,
Manchester, U.K.). This was equipped with a Liquid Secondary lon Mass Spectrometry
ion source (LSIMS) and associated caesium ion gun. The primary beam was 15 KeV
caesium ions at a total current of 1 mA measured at the gun cathode. The secondary

ion beam used was 6 kV at the source.

Samples were dissolved in water/70% formic acid to approximately 10 yg ml'. One
microlitre of sample was spotted on 1 ul of glycerol matrix on the stainless steel LSIMS
probe tip. A mass range of 10 to 1600 AMU was scanned at 5 sec./decade scan rate,

using a resolving power of 1000.

6.2 RESULTS

Typical tryptic peptide profiles after RP-HPLC of ag,-CN B, as,-CN A, B-CN A', and K-
CN B may be seen in Figure 19.



R. Burr - M.Sc. Thesis
Experimental - Page 80

g
ag-CNB 2
<
0 ‘ 20 ' w 50
Time (min)
g
as,-CN A E
8
g
ﬁ A
V&V\J\P\J
4] : 2lD l 4I0 : 60
Time (min)
g
e
B-CN A g
| M
<L
O_..J;i;a_._AZIOA‘AA_LJ_ ‘;0444‘1‘44460
Time (min)
g
xk-CNA ¢
3
=T
V] ~ : ;D_‘ et 4:3 - = 60
Time (min)
FIGURE 19 Typical RP-HPLC tryptic peptide profiles for the casein proteins 0g,-CN B, a.,-CN

A, B-CN A' and K-CN A.
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6-2.1 as1'CN

The primary sequence of ag,-CN B-8P indicates that there are 18 peptide bonds that
are theoretically cleaved by trypsin (see Table 2). About 30 peaks may be seen
resolved in 60 minutes on the typical peptide map of ag,-CN B. The profile obtained
bore little resemblance to that obtained by other researchers (Lemieux and Amiot,
1990; Dong Chin, 1992). This is not surprising due to differences in RP columns and
gradient conditions used. The additional peaks observed are likely due to incomplete
hydrolysis of the protein, resulting in additional intermediate peptides containing
trypsin susceptible bonds which had not been cleaved. Alternatively the protein may
have been cleaved at sites not normally associated with trypsin specificity (see

discussion 6.2.2).

Pept # Residue Mass (Da) Sequence
1 A(1-3) 399.3 RPK
2 A(4-7) 493.3 HPIK
3  A(8-22) 1758. HQGLP QEVLN ENLLR
4 A(23-34) 1383.7 FFVAP FPEVF GK
5 A(35-36) 275.1 EK
6 A(37-42) 688.4 VNELS K
7 A(43-58) 1926.7 DIGXE XTEDQ AMEDI K
8 A(59-79) 2720.9 QMEAE XIXXX EEIVP NXVEQ K
9 A(80-83) 524.3 HIQK
10 A(84-90) 830.4 EDVPS ER
11 A(91-100) 1266.7 YLGYL EQLLR
12 A(101-102) 259.2 LK
13 A(103-103) 146.1 K
14 A(104-105) 309.2 YK
15 A(106-119) 1659.8 VPQLE IVPNX AEER
16 A(120-124) 614.3 LHSMK
17 A(125-132) 909.5 EGIHA QQK
18 A(133-151) 2316.1 EPMIG VNQEL AYFYP ELFR
19 A(152-193) 4717.2 QFYQL DAYPS GAWYY VPLGT QYTDA PSFSD

IPNPI GSENS EK

20 A(194-199) 747.4 TTMPL W

TABLE 2 Expected tryptic peptides from a.,-CN B and their calculated mass.

All of the peptide profiles of the samples of ag,-CN B examined were very similar. By
superimposing profiles (Figure 20) it may be seen that peak retention times are nearly

identical with minor differences in peak heights.
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FIGURE 20 Overlay of three ag,-CN tryptic peptide maps.
6.2.2 ag,-CN

A theoretical trypsin hydrolysis of 0s,-CN should result in 28 peptides (Table 3). About
35 peaks were resolved in 60 minutes on a typical tryptic peptide profile of ag,-CN B.
The majority of peaks observed were collected and the peptides contained within each
peak identified by amino-acid sequencing. FAB-MS was used to corroborate the
primary sequence of the peptides by comparison of measured mass and calculated
mass. In addition to the expected tryptic peptides, several peptides were identified by
sequencing that were the result of chymotryptic like activity (Table 4). Chymotrypsin
cleaves carboxyl-terminal to aromatic and bulky hydrophobic residues (tryptophan,
tyrosine and phenylalanine) Peptide bonds preceded by other hydrophobic residues may

also be cleaved but generally at a slower rate.

Previous analysis of the trypsin used showed no traces of chymotrypsin present.
Furthermore TPCK treatment of the trypsin is expected to block the activity of any
chymotrypsin present. The chymotrypsin-like activity seen is thus likely to be
endogenous to the trypsin used. It is likely that at least some of the additional peaks
seen in the ag,-CN B and K-CN A tryptic hydrolyses were also peptides resulting from

endogenous chymotryptic-like activity.
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Pept # Residue Mass (Da) Sequence
1 A(1-1) 146.1 K
2 A(2-21) 2618.9 NTMEH VXXXE ESIIX QETYK
3 A(22-24) 403.2 QEK
4 A(25-32) 873.4 NMAIN PSK
5 A(33-41) 1043.4 ENLCS TFCK
6 A(42-45) 501.3 EVVR
{ A(46-70) 3008.0 NANEE EYSIG XXXEE XAEVA TEEVK
8 A(71-76) 689.4 ITVDD K
9 A(77-80) 574.3 HYQK
10 A(81-81) 1367.7 ALNEINEFYQ K
11 A(92-113) 27084 FPQYL QYLYQ GPIVL NPWDQ VK
12 A(114-114) 1741 R
13 A(115-125) 1194.7 NAVPITPTLN R
14 A(126-136) 1410.5 EQLXT XEENS K
15 A(137-137) 146.1 K
16 A(138-149) 1465.6 TVDME XTEVF TK
17 A(150-150) 146.1 K
18 A(151-152) 2472 TK
19 A(153-158) 747 4 LTEEEK
20 A(158-160) 288.2 NR
21 A(161-165) 633.4 LNFLK
22 A(166-166) 146.1 K
23 A(167-170) 502.3 ISQR
24 A(171-173) 437.2 YQK
25 A(174-181) 978.6 FALPQ YLK
26 A(182-188) 902.5 TVYQH QK
27 A(189-197) 1097.6 AMKPW IQPK
28 A(198-199) 2472 TK
29 A(200-205) 745.4 VIPYV R
30 A(206-207) 294 .2 YL
TABLE 3 Theoretical tryptic 0g,-CN A peptides and their calculated mass.

There were several ag,-CN peptide profiles that differed slightly from the majority of
the ag,-CN profiles. These samples had a relatively small peak eluting at approximately
15.8 minutes. This was absent in the standard samples (Figure 21). Collection and
sequencing of this peptide identified it as peptide 138-149 (TVDMESTEVFTK). The
same peptide was also identified as eluting at approximately 16.4 minutes in both the
standard and aberrant samples. FAB-MS analysis of the peptide eluting at
approximately 15.8 minutes revealed that this peptide had a measured mass of 1467
mass units (Figure 22), 80 mass units higher than the calculated and measured mass

of the peptide 138-149. This is consistent with a phosphorylation of a single residue.
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FiGuRE 21 Tryptic hydrolysis peptide map of standard Gg,-CN A.
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FIGURE 22 FAB-MS of peak eluting at 16.4 minutes in RP-HPLC chromatogram of a,-CN
A tryptic digest.
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Ser143 has been identified as phosphorylated in at least one &g,-CN fraction (Brignon
et al., 1977). Evidence to date suggest that all of the fractions of ag,-CN A

separated by gel electrophoresis (formerly classified as Qg;-, Ogy-, Xgs- and Agg-CN) have
the same amino acid sequence but differ in phosphate content (Brignon et a/., 1976,
1977; Eigel et al., 1984). From this experimental evidence it appears that in at least

some individual cows that Ser143 is a site of variable phosphorylation.

A similar phenomenon is seen in ovine ds,-CN. Ferranti et a/. (1995) found nine serine
residues fully phosphorylated in ovine ag,-CN A, whereas Ser41 and Ser115 were

phosphorylated by approximately 20 and 50% respectively.

Expected tryptic peptide Fragment Chymotryptic-like Fragment
peptide identified observed
VIPYVR 200-205 VIPY 200-203
NMAINPSK 25-32 NMAINP 25-30
AMKPWIQPK 189-197 AMKPW 189-193
FPQYLQYLYQGPIVLNPWDQVK 92-113 FPQYLQY 92-98
LYQGPIVLNPWDQV 99-112
FPQYLQYLYQGPI 92-104
TABLE 4 Additional chymotryptic-like peptides generated from the tryptic hydrolysis of ag,-
CN A.
6.2.3 B-CN

Three variants of B-CN were examined by this peptide mapping technique. Eleven
samples of B-CN A', 10 of B-CN A? and one of B-CN B were hydrolysed under identical
conditions, the resultant peptides separated by RP-HPLC and the elution profiles

compared.

Theoretically 16 peptides are expected from a tryptic hydrolysis (Table b5).
Approximately 27 peptides were resolved in each variant within 60 minutes. An
overlay of three samples of B-CN A’ is presented in Figure 23(a). Similarly an overlay
of three samples of B-CN A? is presented in Figure 23(b). These two figures indicate

the reproducibility of hydrolysate elution profiles between samples of the same protein.
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The elution profile of B-CN B may be seen in Figure 23(c).

Pept # Residue Mass (Da) Sequence
1 A(1-1) 1741 R
2 A(2-25) 2966.2 ELEEL NVPGE IVEXL XXXEE SITR
3 A(26-28) 373.2 INK
4 A(29-29) 146.1 K
5 A(30-32) 388.2 IEK
6 A(33-48) 2061.8 FQXEE QQQTE DELQD K
7 A(49-97) 5318.8 IHPFA QTQSL VYPFP GPIPN SLPQON IPPLT QTPVV

VPPFL QPEVM GVSK
8 A(98-99) 245.2 VK
9 A(100-105) 645.3 EAMAP K
10 A(106-107) 283.2 HK
11 A(108-113) 747.4 EMPFP K
12 A(114-169) 6362.2 YPVEP FTESQ SLTLT DVENL HLPLP LLOQSW MHQPH
QPLPP TVMFP PQSVL SLSQS K

13 A(170-176) 779.5 VLPVP QK
14 A(177-183) 829.4 AVPYP QR
15 A(184-202) 2186.2 DMPIQ AFLLY QEPVL GPVR
16 A(203-209) 741.4 GPFPI IV

TABLE 5 Expected peptides from a tryptic hydrolysate of B-CN A2,

The differences in the elution profiles of B-CN A' and B-CN A? are highlighted in Figure
24 by arrows. Theoretical tryptic hydrolysis of the A' and A? variants indicates that
the substitution of His67 to Pro occurs in the peptide comprising residues 49-97.
Accordingly it is expected that the only difference in the peptide elution profiles of B-
CN A' and B-CN A?is the elution time of peptide 49-97. Figure 24 clearly shows much
larger peaks eluting at 30.3 and 42.6 minutes, peaks of reduced size eluting at 31.4
and 48.5 minutes, peaks at 35.1 and 45.9 minutes missing, and a new peak at 37.6
minutes for B-CN A? relative to B-CN A'. This suggests that there are several peptide
bonds within B-CN that are susceptible to cleavage with trypsin that do not conform

to the expected specificity of trypsin (see discussion section 6.2.2)

In the B-CN samples analysed there were no elution profiles that did not conform to

standard B-CN A', A? or B variant profiles.
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FIGURE 23 Overlays of three tryptic hydrolyses of (a) B-CN A’ and (b) B-CN A? ; and a single

trace (c) of B-CN B.
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Ficure 24 Overlays of tryptic hydrolyses of B-CN variants A' and A?. Differences in the

elution profiles are highlighted by arrows.

6.2.4 k-CN

Figure 25 shows an overlay of three elution profiles of hydrolysed K-CN A. The

majority of peaks eluted in a concentrated time period from 16 to 32 minutes.

theoretical trypsin hydrolysis is expected to yield 13 peptides (Table 6).

Pept # Residue Mass (Da) Sequence
1 A(1-10) 1249.4 EEQNQ EQPIR
2 A(11-13) 378.2 CEK
3 A(14-16) 418.2 DER
4 A(17-21) 642.3 FFSDK
5 A(22-24) 330.2 1AK
6 A(25-34) 1250.7 YIPIQ YVLSR
7 A(35-68) 4011.1 YPSYG LNYYQ QKPVA LINNQ FLPYP YYAKP AAVR|
8 A(69-86) 1981.1 SPAQI LQWQV LSDTV PAK
9 A(87-97) 1192.5 SCQAQ PTTMA R
10 A(98-111) 1607.8 HPHPH LSFMA IPPK
11 A(112-112) 146.1 K
12 A(113-116) 503.2 NQDK
13 A(117-169) 5535.7 TEIPT INTIA SGEPT STPTT EAVES TVATL EDXPE
VIESP PEINT VQVTS TAV
TABLE 6 Theoretical tryptic peptides from hydrolysis of K-CN A.

In the samples analysed no aberrant profiles were detected.
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FIGURE 25 Overlay of three K-CN A tryptic peptide maps

6.3 DiscussIiON

Peptide sequence information derived from Edman degradation chemistry is often not
unequivocal. Terminal residues may be modified such that they do not cleave. Other
modifications may affect the retention time of a residue during chromatography
resulting in mis-identification. The value of cross checking peptide sequencing
information by peptide mass measurement was highlighted in the analysis of two

peptides.

During amino acid sequencing of the a,-CN tryptic peptide 189-193 (AMKPW), the
elution time of the methionine residue was slightly different than the standard. This
suggested that the methionine residue may have been modified. A frequent
modification of methionine is oxidation. If the methionine residue was oxidised the
mass of the peptide would be either 16 (sulphoxide) or 32 (sulphone) mass units
higher, consistent with an additional one or two oxygen atoms respectively. Mass
spectroscopic analysis of the peptide revealed a mass of 632. This is consistent with
the calculated mass of the unoxidised peptide. This confirmed the methionine residue
was unmodified. The reason for the slight difference in elution time of the methionine

residue remains unknown.
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The second peptide was the ag,-CN tryptic peptide 138-149 (TVDMEX3*TEVFTK).
Sequencing was unable to differentiate between a serine or phosphoserine residue at
position 143. The measured mass of this peptide was 80 units higher than the
calculated mass of the peptide TVDMESTEVFTK indicating a post-translational
phosphorylation of Ser143.

Of the 74 samples of purified casein proteins hydrolysed and analysed by peptide
mapping none exhibited an abnormal profile that would indicate a potential variant,
other than the recognised electrophoretic variants. The frequencies of potential silent
variants detected by Dong Chin (1992) were 9.1, 15.8, 9.1 and 4.3% for ag,-CN B,
B-CN A', B-CN A? and K-CN A respectively. Based on these frequencies it is expected

that few potential variants would be detected in this study population.

The results of this study and those of Dong Chin (1992) indicate that random mutation
involving neutral residues in milk proteins is not as frequent as mutations that alter the

net charge of the protein.

3X denotes a phosphorylated serine residue
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7 MASS SPECTROSCOPY

Recent developments in ionisation techniques has made mass spectroscopic analysis
of proteins and large peptides possible. Electrospray ionisation (nebulisation in the
presence of an electric field) and matrix assisted desorption, has seen mass
spectroscopic analysis of proteins and peptides become a routine tool in protein
analysis. The ability to measure the mass of intact proteins up to approximately
100,000 Daltons to within 0.01% has simplified the process of identifying protein
variants. In some cases mixtures of several proteins may be simultaneously analysed

making complex purifications redundant.

Electrospray mass spectroscopy was investigated as a means of identifying milk

protein variants from purified samples and acid casein.

7.1 MATERIALS AND METHODS

Samples of purified casein proteins, acid casein and purified B-LG were prepared as
outlined earlier. Samples were dissolved in 50% acetonitrile, 0.05% formic acid to
approximately 0.1 mg ml' prior to filtering through a 0.22 ym syringe filter. The
instrument used was a VG Platform single-quadrupole mass spectrometer (VG BioTech,
Altrincham, UK) equipped with a pneumatically assisted electrospray ion source.
Positive multi-charged protein ions were generated by introducing filtered sample
diluted in 50% acetonitrile, 0.05 % formic acid to approximately 1 g ml”, into a
stream of 50% acetonitrile pumped at 10 gl min' by a Spectra-Physics pump through
a 75 um ID fused-silica capillary. This was housed in a stainless steel capillary held at

a potential of 5.0 kV.

The interface between the electrospray source and mass analyser consisted of a small
conical orifice of 100 ym diameter held at +60 V. A gas curtain of 0.8 | min™' of dry
nitrogen in the interface region prevented entry of neutral molecules into the mass

analyser.

10-15 wl aliquots were introduced into the solvent stream via a Rheodyne sample

injection loop. This allowed at least 8 acquisitions to be accumulated and averaged
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over a period of approximately 1 minute. Each acquisition was acquired over the
mass-to-charge range of 600 to 2500, with a step size of m/z = 0.25 and a dwell time
of 0.5 sec. The charge number of the multi-charged ions, the m/z ratio of each peak,
the deconvoluted mass spectra and molecular weight determinations were derived

using MassLynx software.

7.2 MASs SPECTRUM DATA PROCESSING

The raw spectra acquired were subjected to a series of processes to reduce
background noise, differentiate signal from spurious spikes, identify series of multiply
charged ions and to deconvolute the data to a true mass scale. The process

parameters used were, in order :

Background subtraction - a polynomial of order 1 was fitted to data such that 40% of
the data points lay below the polynomial. The operation was performed to an
arithmetic tolerance of 0.01. This reduced a large proportion of non-specific

background noise.

Smoothing - high frequency noise was reduced by smoothing the data twice using a

moving mean technique with an average peak width of 3.75 Da.

Peak Centre - used all the points across a peak in a continuum trace to calculate the
mass of the peak centre. A minimum of 4 data points across a peak at half height
defined a significant peak. This process was used to produce stick spectra for each

sample. From this the series of multiply charged ions were then identified manually.

Transform - once the multi-charged ion components were identified in the spectrum,
the data system assigns charge states to each peak. The Transform algorithm uses this
information to display the m/z spectrum on a true molecular mass axis. The data was
transformed over an appropriate mass range for each protein (18000 to 20000 Da for
B-LG, 18000 to 28000 Da for caseins) with a resolution of 0.125 Da.
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7.3 RESULTS

7.3.1 ag-CN

Twenty two samples of purified &g,-CN were analysed by ESI-MS. A raw spectrum
with inset transformed spectra may be seen in Figure 26. The group mean mass
determined was 23614.9 + 1.2 Da. This compares favourably with the calculated
mass of og,-CN B-8P of 23614, 23614.8 and 23614.87 from Eigel et a/., (1984),
Léonil et a/. (1995) and PeptideTools*. The average individual variation from the mean
was = 3.54 Da (Table 7, page 99; Figure 26). All of the samples analysed
corresponded to the calculated mass of ag,-CN B-8P within error. The 7 or 9

phosphoseryl forms of this protein detected by Léonil et a/. (1995) were not seen.

100
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FIGURE 26 Raw ESI-MS spectrum and transformed spectra (inset) of a sample of purified o,-
CN.

4Average mass calculated from the primary sequence as published by Eigel et a/.
(1984) by PeptideTools software (Hewlett-Packard, Palo Alto, CA.).
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ESI-MS Mass Determination
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FiGURE 27 Average individual mass determinations for o4,-CN B samples

error of each mass determined is indicated by an error bar.
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7-3.2 asz"cN

The group mean mass of the 22 samples of ag,-CN analysed was 25228.9 + 1.5 Da
with an average individual variation of + 1.5 Da (Figure 28). This corresponds to the
mass of ag,-CN A-11P, calculated to be 25230, 25228.4 and 25229.48 by Eigel et a/.
(1984), Léonil et al. (1995) and PeptideTools respectively. The micro heterogeneity,
indicative of variations in the level of phosphorylation seen by Léonil et a/. (1995) was

not observed. Within error all samples corresponded to the caiculated mass of ag,-CN
A-11P.

ESI-MS Mass Determination
Alpha S2-CN
25245 -
25240 +
25235 -+ w
H . [ TL’«"*“-I_‘
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© r It Eir | I . 1 L
IR e J[[
25225 + ‘ | l
25220 +
25215196 :s1= 66 87 252 67 79 194 360 166 154
Cow Number
FIGURE 28 Average individual mass determinations for each a,-CN A sample. The individual

error of each mass determination is indicated by an error bar.



R. Burr - M.Sc. Thesis
Experimental - Page 96

7.3.3 B-CN

Three groups of B-CN, differentiated by mass may be seen in Figure 29. The three
mass groupings calculated were 23983.5 = 1.8 Da, 24023.9 + 3.1 Da and 24092.6
+ 4.1 Da. These correspond to the calculated masses of the 5 phosphoseryl form of
B-CN variants A%, A' and B respectively (Table 7). All of the masses determined

corresponded to one of the variants described.

ESI-MS Mass Determination
Beta-CN
24100
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24075 {
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FIGURE 29 Average mass determinations for each B-CN sample analysed. The individual error

of each mass determination is represented by an error bar.
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7.3.4 k-CN

Nine samples of K-CN were examined. The raw spectra for all of the samples consisted
of a large proportion of background noise relative to the ion signal. This made it
difficult to differentiate spurious peaks from the true signal. Despite this spectra were
able to be processed and a mass for each sample was determined. Eight samples had
a group average mass of 19038.5 + 1.5 Da, with an average individual variation of
+ 3.3 Da. This corresponds within error to the calcuiated mass of K-CN A-1P. The
remaining sample of K-CN analysed had a measured mass of 19003.8 + 3.6 Da,

corresponding to K-CN B-1P (Figure 30).

ESI-MS Mass Determination
Kappa CN
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FiGURE 30 Average individual mass determinations for each K-CN sample analysed. The

individual error of each mass determination is indicated by an error bar.

Previous experience in purification of K-CN by the ion-exchange method used indicates
that despite the extensive dialysis, a significant proportion of the dried material
collected from the K-CN fraction is salt or urea. The presence of salts during ESI-MS
is known to induce the protonation of the analyte with particularly sodium and
potassium ions, and to a lesser extent calcium ions (MNa*, MK" and MC4

respectively) as well as the hydrogen ions (MH*). As a result the MS signal for an
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analyte may consist of a series of multiply charged species for each of the protonating
species - protonated, sodiated, potassiated and calciated spectra all overlaying on the

one spectrum.

It is known that a proportion of K-CN exhibits micro heterogeneity in the form of
various degrees of glycosylation (Vreeman et a/., 1977). None of these forms were
detected. It is probable that minor quantities of these glycosylated forms were present

during analysis, but were unable to be resolved from the background.
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Theoretical mass calculated by

Protein Average Std. n Individ

observed dev. ual Eigel et Léonil et  Peptide

mass error al. (1984) al. (1995) Tools
ag,-CN B-8P 236149 1.2 22 3.5 23614 23614.8 23614.9
as,-CN A-11P 252289 1.5 22 3.2 2230 25228.4 25229.5
B-CN A'-5P 240239 3.1 7 4.6 24023 24023.3 240234
B-CN A%.5P 23983.5 1.8 14 4.5 23983 23983.3 239834
B-CN B-5P 24092.6 1 4.1 24092 24092.4
K-CN A-1P 19038.5 1.5 8 3.3 19039 18037.3 19036.3
K-CN B-1P 19003.8 1 3.6 19007 19005.5 19004.4
B-LG A 18362.6 1.0 40 1.6 18363 18363.4 18363.4
B-LGB 18277.0 0.9 56 1.8 18277 18278.3 18277.3
B-LG C 18287.2 0.6 4 1.1 18286 18286.3

TABLE 7 Comparison of milk protein masses determined experimentally and calculated

from the primary sequence.
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7.3.5 Casein

A number of acid precipitated caseins were also analysed by ESI-MS. Samples were
dissolved in 50% acetonitrile, 0.1% formic acid, filtered and diluted in 50% acetonitrile
prior to injection. In general the spectra obtained had a low signal to noise ratio,
possibly caused by the inclusion of an unacceptably high salt content. The masses of
two species could be determined in each sample. In all cases these corresponded to
Og;-CN B-8P, and either the B-CN A'-5P or B-CN A%-5P variant. However the average
individual variation from the calculated mean was of the order £ 10-20 Da for both
species. This degree of error meant that several potential substitutions with a net
mass change of less than 40 Da may not be detected. The use of ESI-MS for
phenotyping casein proteins by this particular method is thus limited to detection of
gross changes in the mass of ag,-CN and B-CN only. With suitable modifications to the
methodology it is possible that the resolution may be improved such that all of the

casein proteins may be characterised.

7.3.6 B-LG

One hundred and nine samples of B-LG, prepared from acid whey were analysed by
ESI-MS. Several groups of B-LG variants could be distinguished by mass determination.
A group of 38 samples had a calculated group average mass of 18362.6 + 1.0 Da
(Figure 31a). Within error this coincides with a mass of 18363 Da calculated from the
primary sequence of B-LG A (Eigel et a/., 1984). A second group of 54 samples had
a group average mass of 18277.0 + 0.9 Da (Figure 31b), consistent with a mass of
18277 Da calculated from the primary sequence data of B-LG B (Eigel et a/., 1984).
A third group of 3 samples had a group average mass of 18287.2 + 0.6 Da (Figure
31c¢), consistent with a mass of 18286 Da calculated from the primary sequence of B-
LG C (Eigel et al., 1984). Fourteen samples showed two species present (Figure 31d).
Thirteen matched the calculated molecular weights of B-LG variants A and B. The same
samples had been previously phenotyped as B-LG AB by both PAGE and CE techniques.
A single sample matched the calculated molecular weights of B-LG B and C variants.
This sample had previously been phenotyped as B-LG BB by PAGE and corrected to B-
LG BC by CE. All of the samples analysed corresponded within error with one or more

of the B-LG variants A, B or C.
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FIGURE 31

Individual mass determinations for each B-LG sample analysed. The individual

error of each mass determination is indicated by an error bar. The figures A to D are B-LG A, B-
LG B, B-LG C and mixed phenotype B-LGs respectively.
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In all the samples analysed up to 4 other species were detected (Figure 32). In each
case the lowest molecular weight species detected corresponded to the calculated
mass of one of the B-LG variants A, B or C. The mass of the subsequent species were

always of the form

Mass of species detected = Mass of LG variant + n (324.4 Da)

where n is an integer between 1 and 4.

The average increment to the B-LG variant was 324.4 = 1.1 Da. This phenomenon

was examined more extensively (see section 8).
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FiGURE 32
samples of B-LG A, B-LG B, B-LG C and B-LG AB respectively.

Multiple molecular weight species detected in B-LG samples. Figures A to D are
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7.4 DiscussION

The determination of the mass of intact proteins to within £ 2-3 Da has been
successfully applied to the identification of some common genetic variants of bovine
milk proteins. This information has been used to confirm the primary sequence and
post-translational modifications of these proteins by comparison of observed and

calculated mass.

The group average masses for each protein variant agreed very closely with the
expected mass. Individual average masses were calculated from up to 12
determinations of mass, based on the m/z ratios of adjacent pairs of ionised species.
Although the average mass agreed closely with the expected mass, there was a much
larger variation in individual determinations. This is graphically demonstrated in Figures
26 to 30. In these the average mass is plotted for each sample with an error bar
indicating the variation in individual determinations. The various parameters used in
deconvoluting the raw data which the user has control over, had significant effects on
the average mass determined and the variation observed. Using the values suggested
by the software manufacturer generally resulted in the lowest variation, although in
some cases this could be marginally reduced by altering some of the processing

variables.

The degree of accuracy in mass determination obtained during these experiments is
consistent with that quoted by the manufacturer (0.01%) and other groups (Chianese
et al., 1995; Léonil et al., 1995; Visser et a/., 1995). The major milk proteins vary in
mass from approximately 19000 to 25000 Da. Given an error of £ 2 Da most single

amino acid residue substitutions should be detectable. The exceptions may involve:

Pro (97.1 Da) and Val (99.1 Da);

Cys (103.1 Da) and Thr (101.1 Da);

lle (113.2 Da), Leu (113.2 Da), Asn (114.1 Da) and Asp (115.1 Da);
Gin (128.1 Da), Lys (128.2 Da), Glu (129.1) and Met (131.2 Da).
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The number of potentially undetectable substitutions (14) accounts for 7.3% of the
190 possible single substitutions amongst the 20 common amino acids. This does not
include other modifications such as phosphorylation, amidation, oxidation and
glycosylation. If multiple substitutions, additions and deletions are considered the
number of potentially undetected alterations rises considerably. However the ratio of

undetected to potential substitutions remains relatively constant.

Although ESI-MS may not detect all potential substitutions it is a major improvement
on electrophoretic techniques. Assuming that only the substitutions that alter the net
charge of a protein are detected, electrophoresis has the potential to detect 87
(45.8%) of the potential 190 single residue substitutions®. The substitution may be

detected but little indication is given as to the nature of the substitution.

Not all substitutions involving a change in the net charge of a milk protein are easily
detected by electrophoresis as is evidenced by the inability to differentiate B-LG B and
C variants in the native PAGE system used earlier. In some cases this may be a result
of the substitution site being buried within the tertiary structure of a protein.
Conversely some 'silent' substitutions have been detected by ultra-narrow range IEF
(Altland and Rossmann, 1985; Krause et al., 1988). The mechanism whereby these
substitutions are differentiated is largely unknown. It is possible that these silent
substitutions are located in positions that influence the tertiary structure of the protein

sufficiently to cause a significant change in the overall charge or isoelectric point.

Purification of the milk proteins was required prior to ESI-MS analysis due to the
limitations of the equipment available. Sample solutions could only be introduced into
the electrospray solvent line via a sample loop or included in the solvent solution. The
complexity of the raw spectrum obtained from sample mixtures is proportional to the
number of species present. This makes spectral peak assignment to an ionised species
in an m/z series increasingly difficult, especially as series from different species often
overlap. Consequently sample solutions were restricted to containing as few protein

species as possible. To avoid having more than one protein species present in a

The substitutions potentially detectable by electrophoresis are:
His, Lys and Arg may be substituted by 15 neutral residues plus Asp and Glu (17 x 3);
Asp and Glu may be substituted by 15 neutral residues plus His, Lys and Arg (18 x 2).
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sample of purified protein, only casein samples homozygous for ag,-CN, ag,-CN and
B-CN were selected for ion exchange purification. Thus only 22 casein samples were

selected for purification of casein proteins.

Simultaneous analysis of more than one species in a sample solution is possible and
was demonstrated in several B-LG samples that contained both the A and B protein
variants. Given this it is likely that caseins from cows heterozygous for casein proteins

could have been successfully analysed.

Léonil et al. (1995) took a different approach in protein purification prior to ESI-MS
analysis. They were able to separate the major milk proteins in a skim milk sample on
a RP-HPLC column, directing the eluent into an electrospray interface to a mass
spectrometer. Simultaneous separation and mass analysis of all the major milk proteins
was accomplished in less than 30 minutes. This compares favourably with traditional
PAGE phenotyping. Although PAGE may be used for simultaneous analysis of a
number of samples (up to 15 samples per mini-gel), three gel systems and their
associated sample preparations are required to determine all known 'electrophoretic’
phenotypes. The system used by Léonil ef al. (1995) lends itself to routine automated
determination of protein variants in a milk sample - including 'silent’ variants and other

post-translational modifications.

The species differing from the mass of B-LG variants A, B and C in multiples of
approximately 324 Da detected by ESI-MS were not detected by either PAGE or CE.
The nature of this adduct or modification was not immediately apparent. Elucidation

of the nature of these species was the subject of further investigation (see section 8).
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8 ANALYSIS OF B-LG ADDUCT SPECIES

While its biological role is unclear, B-LG is known to bind many non-polar ligands such
as retinol and fatty acids (Hamblin et a/., 1992; Papiz et a/., 1986). It is thought that
a possible function of B-LG could be to bind and protect small hydrophobic molecules
during their passage through the stomach in order to deliver these ligands to specific

receptors located in the intestine (Papiz et al., 1986).

It was postulated that the additional species seen in the analysis of B-LG samples may
have been due to non-covalent association of multiple small non-polar molecules in the
retinol binding cleft of B-LG. However the observed mass additions of 324 Da does
not match the calculated mass of any small molecule likely to be found in bovine milk.
The categories of molecules searched included vitamins, fatty acids, hormones, sugars,

mineral salts and small non-polar compounds.

A number of small molecules were re-examined with a view to potential covalent
interactions that they could undergo with the protein. Of the small molecules likely
to be found in milk only a covalent linkage of a lactosyl residue to the protein matched

the observed change in mass of 324 Da within error.

The hypothesis that the observed adducts to B-LG were multiple lactosyl residues
covalently bound to one or more amino acid residues was the subject of the following

section of experiments.

A number of experiments were conducted to establish

- whether lactose was the adduct species

- the nature of the association between adduct species and B-LG

- identification and location of any modified amino acid residues in the primary
sequence of B-LG

- whether adduct formation was the result of purification or analysis conditions,

or whether the adduct was formed in vivo
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8.1 Reducing sugar test

A simple colorimetric analysis to determine the presence of a reducing sugar in the

prepared B-LG samples was performed.

8.1.1 Methods and materials

Beta-lactoglobulin A and B was prepared by salt precipitation from acid whey, as
described earlier. A sample of B-LG A was further purified by ion-exchange
chromatography. This involved dissolving the lyophilised protein in 50 mM sodium
acetate buffer, pH 6.0 to 1 mg/ml'. Aliquots of 100 ul of protein were injected onto
a MonoQ HR5/5 column (Pharmacia BioTech, Uppsala, Sweden) previously equilibrated
in 50 mM sodium acetate buffer, pH 6.0. Protein was eluted with a linear gradient of
0 to 0.5 M NaCl over 15 minutes at a flow rate of 1 ml min'. Eluent with an
absorbence at 280 nm of greater than 0.2 units was pooled from 20 consecutive
chromatographic runs. This was dialysed in 10,000 MW cut off dialysis tubing (Union
Carbide) against three changes of RO water prior to lyophilisation. A further sample
of commercially prepared mixed B-LG A and B was purchased (Sigma Chemical Co.,
St. Louis, MO.).

The presence of reducing sugars was determined by a modification of the
phenol-sulphuric acid method of McKelvy and Lee (1969). Protein solutions were
prepared from samples of salt precipitate purified B-LG, B-LG purified by ion-exchange
chromatography and commercial B-LG by dissolving 1 mg of protein in 1 ml of 1%
sodium dodecyl sulphate (SDS) (BDH Chemicals, Poole, UK). 0.5 ml of protein solution
was added to 0.3 ml of 10% aqueous phenol solution. 1.8 ml of concentrated
sulphuric acid was added to the solution while vortexing. After cooling to room
temperature the absorbence was read at 480 nm and compared to a standard curve

prepared with lactose in 1% SDS.
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8.1.2 Results

Phenol-sulphuric acid analysis of salt precipitation prepared B-LG samples demonstrated
the presence of reducing sugar in the ratio of 2 to 3 moles of sugar to 1 mole of B-
LG. Analysis of Sigma and ion-exchange purified B-LG revealed only trace quantities

of sugar.

8.1.3 Discussion

The method for detection of reducing sugars by McKelvy and Lee (1969) is not
particularly sensitive nor specific. Some difficulty was experienced in obtaining an
acceptable standard curve as the absorbence reading was influenced by the reaction
time and temperature at which the reading was taken. Consequently the ratio of sugar
to B-LG is at best a crude estimate. On the basis of the molar quantities of sugar
involved, lactose is indicated as the species involved. Although other sugars are found

in milk, they are present in very low quantities.
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8.2 Nature of adduct association

Samples of salt precipitate prepared B-LG, Sigma and ion-exchange prepared B-LG were
subjected to heat denaturation under reducing conditions. Samples were analysed by
RP-HPLC and ESI-MS after denaturation.

8.2.1 Materials and methods

Sample B-LG solutions (1 mg ml™') from salt precipitate prepared B-LG, Sigma and ion-
exchange prepared B-LG were prepared in 4 M urea containing 50 mM dithiothreitol.
The samples were heated at 100°C in a water bath for 10 minutes, followed by

cooling to room temperature prior to 0.22 ym filtration.
Undenatured samples (1 mg ml') were prepared in water.

Samples were analysed by RP-HPLC on a Shimadzu HPLC (Shimadzu Corp, Osaka,
Japan). Sample injections of 50 ul were injected onto a Vydac C4 4.6 x 150 mm
column (Separation Group,.Vesperia, CA.) at 60°C. Protein was eluted in a gradient
of O to 60% solvent B (60% acetonitrile, 0.05% trifluoroacetic acid) over 60 minutes
at a flow rate of 1 ml min'. Eluent was monitored at 214 nm. Eluted peaks were

collected and dried prior to ESI-MS analysis.

Collected samples were dissolved in 50% acetonitrile:water to approximately 1 mg ml’
with the addition of 0.5% formic acid. Samples were subsequently diluted 1000 fold

in 50% acetonitrile prior to injection onto the mass spectrometer.

The mass spectrometer and conditions used were identical to those used for earlier
analyses. Reference solutions of horse heart myoglobin and cytochrome C were used

to calibrate the equipment prior to sample analysis.
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8.2.2 Results

RP-HPLC (Figure 33) was able to confirm the purity of monovariant samples with only
a single peak being observed in all chromatograms. Sigma B-LG exhibited two peaks
consistent with B-LG variants A and B. No differences were observed between

chromatograms of native B-LG and B-LG samples that had undergone heat

denaturation.

A
Sigma Standard p-LG AB
Y
% B-LG AA
§
§
2
C
J‘ p-LG BB
D
Denatured reduced p-LG AA
0 ; 'IICI 15
Time (min)
FIGURE 33 RP-HPLC chromatograms of (a) Sigma B-LG, B-LG purified from acid whey from

a B-LG AA phenotype cow (b), a B-LG BB phenotype cow (c), and heat denatured and DTT
reduced B-LG from an AA phenotype cow.
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Figure 34 shows the transformed ESI-MS spectra of a number of native B-LG samples.
The multiple molecular weight B-LG species are clearly visible. As in previous analyses
the lowest molecular weight species corresponded to the calculated molecular weight
of one of the B-LG variants A, B or C within error. Up to four additional species of
higher molecular weight, differing by multiples of 324 Da, were present. The samples
of Sigma and ion-exchange purified B-LG showed a single additional species of each
of the B-LG variants present. Integration of the peak areas in transformed spectra
revealed that in the B-LG samples prepared by salt precipitation, adduct species
accounted for between 31.9 and 88.7% of the total peak area. In Sigma and ion-
exchange prepared B-LG samples adduct peaks accounted for 7.5 and 9.0% of total

peak areas respectively.

A
B
f
¢ Z ! |
. A
D
E
Mass [Dal
FiGuRE 34 Transformed ESI-MS spectra of (a) Sigma purified B-LG, B-LG purified from acid

whey from a B-LG AA phenotype cow (b), a B-LG BB phenotype cow (c), a B-LG CC phenotype

cow (d), and heat-denatured, reduced B-LG from an AA phenotype cow.
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Heat denaturation, reduction and RP-HPLC, followed by ESI-MS of B-LG samples was
found to increase the observed mass of B-LG by an average of 4 Da. This is consistent
with a reduction of two disulphide bonds in the protein. There was no effect on the

number or proportion of + 324 Da molecular weight derivatives.

8.2.3 Discussion

Milk is often heat treated to effect pasteurisation or sterilisation. Besides these
desirable effects heating also results in undesirable effects such as browning, off
flavour development and loss of nutritional value. In heated milks and milk products

the Maillard reaction is frequently responsible for the browning seen.

The Maillard reaction is characterised by the condensation of the carbonyl group of
lactose with particularly the €e-amino group of lysine residues of milk proteins. A
Schiff's base is formed first and subsequently the Amadori rearrangement leads to the

formation of the protein-bound Amadori product lactulosyllysine (Figure 35).

RNH RN RNH
CHO +RNH, | -H,;0 1 !
{E:HOH] CHOH H M
T g = CHOH) O
CH,OH lCHOH),| ((IZHOH}n ( I bt
CH,0H CH,0H H\‘i}-——J
CH,0H
Aldose (aldehydo Schiff's base N-substituted glycosylamine
form)
] +H*
+
RJ;J']*I Rl'\l'H R.!;IIH
i I i
Cc=0 C—OH -H* CHOH
I e | — |
(CHOH) (CHOH) (CHOH)
| n-1 I n-1 I n-1
CH,0H CH,0H CH,0H
I-amino-1-deoxy-2-ketose 1,2-enediol of Cation of Schiff's
(keto form) I-amino- I-deoxy-2-ketose base
FIGURE 35 Initial steps of the Maillard reaction. The first step involves the nucleophilic

attack by the nitrogen atom of an amino compound (lysine) on the electrophilic carbonyl group
of an aldehyde or ketone (such as lactose). A water molecule is eliminated in the formation of
a Schiff's base, which re-arranges to form the lactosylamine intermediate. The unstable
lactosylamine reacts, via the spontaneous Amadori rearrangement, to form the keto derivative

(1-amino-1-deoxy-2-ketose). (Adapted from Berg and van Boekel, 1994).
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The Maillard reaction is known to occur predominantly in the casein proteins,
particularly kappa casein (Berg and van Boekel, 1994), but is also known in the whey

proteins (Pelligrino et al., 1994).

The observed adducts may be intermediate products of the Maillard reaction. The
mass shift of 324 Da is consistent with a lactosyl residue covalently bound to B-LG.
The existence of the adducts after heat denaturation and reduction suggests that the
association is covalent rather than electrostatic or hydrophobic. Given the
concentration of organic solvent used in ES-MS and the ionisation voltages, it seems
very unlikely that associations other than covalent would survive the process of sample

ionisation.

As B-LG contains 15 Lys residues, and only two to four adducts are seen in the
samples this suggests that the process of multiple glycation® targets specific Lys
residues. Henle and Klostermeyer (1993) reported that lysine residues which were
highly reactive to reducing sugars in B-casein A' variant were located directly adjacent
to the charged side chains of glutamic acid and lysine, respectively. In B-LG, four such
sites occur - Lys69-Lys70, Glu74-Lys75, Lys100-Lys101 and Glu134-Lys135. This
suggests that the microenvironment may influence the reactivity of lysine residues.
Henle and Klostermeyer further suggested that the charged side chains of lysine and
glutamic acid residues may be involved in the intramolecular catalysis of Amadori
rearrangement products. It is possible that adjacent lysine or glutamic acid residues
participate in modulating the supply of a proton between the N-substituted

glycosylamine and the cation of Schiff's base.

Confirmation of the particular lysine residues involved will be the subject of further
experimentation. It is expected that tryptic hydrolysis of B-LG, followed by ESI-MS
characterisation of the resultant peptides will enable the location of residues that have

been modified in the process of glycation.

It is of interest to note that the samples of B-CN previously analysed (Section 7.3.3,

%n this discussion glycation denotes the process of non enzymatic covalent bonding
of sugar groups to reactive residues. This is contrasted with the enzyme catalysed
process of glycosylation.
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page 97) exhibited no signs of multiple glycation. Nor did any other purified milk
protein analysed by ESI-MS. This suggests that B-LG is much more susceptable to
Maillard reactions under the conditions used during purification and mass

determination.

Maillard reactions are normally associated with alkaline conditions and elevated
temperatures (Hurrell and Carpenter, 1974; O'Brian, 1995; Berg and van Boekel, 1994;
Mauron, 1981). The relatively low temperatures and acidic conditions used during
purification and ESI-MS analysis in this current study are not thought to be conducive

to Maillard product formation.

During the development of this series of experiments the characterisation of a lactosyl-
B-LG conjugate occurring during the heating of whey by ESI-MS was reported.
Maubois et al. (1995) reported that even very mild heat treatment (63°C, 20 sec)
applied to milk prior to whey separation resulted in modification of the molecular
weight of native B-LG by 324 Da. At more severe heat treatments (70°C, 60 minutes)
up to 35% of B-LG appeared to be of the modified form. Although not discussed in
their report, similar adducts were seen in the ESI-MS spectrum of a bovine B-LG sample

analysed by Hutton et a/. (1995).

The much lower levels of glycated species observed in Sigma and ion-exchange
purified B-LG suggest that the degree of modification is influenced by the purification
process. Alternatively the glycated species are removed at some stage of preparing
the Sigma and ion-exchange purified samples. The observation of a lactosyl-B-LG
conjugate in whey prepared from very mildly heated milk (Maubois et al., 1995)

suggests the possibility that glycation may occur /in vivo at physiological temperatures.

8.3 Preparation of native whey proteins

To examine the effects of acidification, salt precipitation and lyophilisation on the
degree of glycation, a 'gentle’ method of protein preparation was required to provide
unmodified "native’ B-LG. Ultra-centrifugation of whole milk was used to isolate native
whey from sedimented casein micelles and supernatant fats. Native whey proteins

were variously dried in the presence of lactose, dialysed and dried, and salt
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precipitated and dried. The resultant products were analysed for adduct species by

ESI-MS.

8.3.1 Methods and materials

Fresh milks were obtained from 6 cows homozygous for the B-LG B variant protein.
Samples were kept at 30 to 35°C throughout. Approximately 5 ml of whole milk was
centrifuged in 13 x 51 mm Beckman Quick-Seal centrifuge tubes at 60,000 x g for 60
minutes in a Beckman L8-80M ultra-centrifuge (Beckman Instruments Inc., Palo Alto,
CA.). A portion of the translucent whey fraction was carefully aspirated from each
sample. An aliquot of each sample was held at -20°C until ESI-MS analysis. A further
aliquot was lyophilised. A sample of each whey was extensively dialysed in 10,000
MW cut off dialysis tubing (Union Carbide) and then freeze dried. Beta-lactoglobulin
was prepared from the remaining portion of native whey by addition of NaCl to 7%
and acidification to pH 2.0 with 1M HCI. After standing for 1 hour at room
temperature samples were centrifuged at 5,000 x g in a benchtop centrifuge for 15
minutes. The B-LG containing supernatant was decanted into 10,000 MW cut off

dialysis tubing, dialysed against purified water and lyophilised.

The variously prepared samples of whey proteins were dissolved in, or diluted with
50% acetonitrile to approximately 1 yg ml" and 0.22 um filtered prior to ESI-MS.

Conditions used for ESI-MS were identical to those used in previous analyses.

8.3.2 Results

ESI-MS analysis of liquid native whey prepared by ultracentrifugation resulted in a poor
signal to noise ratio in the raw spectrum. Despite this a signal was able to be
extracted. Deconvolution of the signal revealed that B-LG, and a small quantity of
glycated B-LG with one and two lactulosyllysine residues was present. In the un-
dialysed, lyophilised sample no signal could be reasonably extracted from the
background noise. The dialysed and lyophilised sample provided a clearly
distinguishable signal with very low background noise. Deconvolution and
transformation show that the major component is unmodified B-LG B (Figure 36).

Two minor components corresponding to B-LG B plus 1 and 2 lactulosyl adducts are



R. Burr - M.Sc. Thesis
Experimental - Page 117

also present. The proportions of glycated B-LG appear to be similar between the liquid

sample and the dialysed, lyophilised sample.
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FiGURE 36 Transformed ESI-MS spectra of B-LG in whey prepared by ultracentrifugation of

the milk from a B-LG AA phenotype (a) and a B-LG BB phenotype cow (b).
8.3.3 Discussion

The quantity of salts present in whey is likely to severely suppress ionisation of the
protein species present. A high proportion of sodiated, potassiated and calciated
ionised species (MNa*, MK* and MCa?*) is also expected. This was the case with the
aliquot of whey that had been freeze dried. Dialysis of the whey sample prior to
lyophilisation reduced the salt concentration to a level sufficiently low, such that only

the MH™* ionised species series is seen.

Although the signal in samples containing salts was difficult or impossible to extract,

the results indicate that the ratio of glycated B-LG to unmodified B-LG remains
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relatively constant. This observation suggests that the process of dialysis or
lyophilisation does not impact on the process of glycation. Why samples that had
been prepared by salt precipitation from acid whey appeared to have a higher
proportion of glycated species is still unknown. These samples were held at 40°C for
up to 30 minutes prior to cream separation. Evidence from Maubois et a/. (1995)

indicates that heat is a factor in the formation of glycated species.

All samples, with the exception of the unresolved freeze dried sample, clearly showed
glycated species present in the whey of ultracentrifuged milk. This process did not
expose the samples to any extreme changes in heat, pH or shear stress. Thus it is

likely that glycation occurs in the udder under physiological conditions.

The elucidation of the process of formation of glycated B-LG species will be the focus

of ongoing research.
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9 DISCUSSION AND CONCLUSION

Ng-Kwai-Hang and Grosclaude (1992) theorised that mutations in proteins due to
amino acid substitutions not leading to a change in the net charge of the protein
should occur three times more frequently than those resulting in an alteration of net
charge. A study of milk proteins purified from 281 Holstein and Ayrshire cows in
Canada identified a number of potential silent variants by RP-HPLC tryptic peptide
mapping (Dong Chin, 1992). She found that 24 of 264 samples of ag,-CN (9.1%), 9
of 57 samples of B-CN A'A' (15.8%), 5 of 55 samples of B-CN A2A? (9.1%) and 8 of
188 samples of K-CN AA (4.3%) were potential candidates for silent genetic variants.
In this study population no proposed silent mutations were observed by RP-HPLC
peptide mapping and ESI-MS of 109 samples of B-LG, 22 samples of ag,-CN, 22
samples of ag,-CN, 22 samples of B-CN, and 9 samples of K-CN.

Of the 190 possible single amino acid substitutions, only eight result in a mass shift
of less than 5 Da and do not involve a change in net charge. Given the mass
resolution obtained in these experiments, these are the substitutions which may not
be detected by either ESI-MS or electrophoretic methods. It is expected that all other
substitutions would be detected by one or more of the techniques used in this work.
The lack of diversity in the mass of milk proteins outside of the known variants
indicates only the known electrophoretic variants are present in the study population.
If this is so, it raises the question as to why the majority of milk protein variants
involve substitutions resulting in a change of net charge. Possible explanations

proposed include -

the number of mutations involving neutral residues is lower than those

involving charged residues,

a higher proportions of mutations involving neutral residues may be lethal,

the substitutions involved in the known 'electrophoretic’ protein variants are
associated with desirable traits. The process of intensive selection pressure
and the extensive use of artificial insemination from selected sires in the study

population has excluded many variants that may exist in the gene pool of the
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larger national and international dairy population.

It is assumed that the proposal that silent mutations should occur three times more
frequently than electrophoretic mutations is based on the ratio of neutral to charged
residues (15 neutral : 5 charged = 3:1). At the DNA level not all point mutations in
the codon result in an alteration of amino acid (Table 8). For example there are six
times as many codons specifying an arginine, serine or leucine residue as there are for

a methionine residue.

Residue No. of codons Residue No. of codons
Gly 4 Glu 2
Asp 2 Val 4
Ala 4 Arg 6
Ser 6 Lys 2
Asn 2 Met 1
lle 3 Thr 4
Trp 1 Cys 2
Tyr 2 Leu 6
Phe 2 Pro 4
Gin 2 His 2
TABLE 8 Number of codons specifying a particular amino acid

Recalculating the ratio of neutral to charged residues based on random point
mutations of nucleotides results in a slightly higher proportion of charged residues
(3:1.17 - 46 codons specifying neutral residues, 18 codons specifying charged

residues, 3 codons specify an end signal).

Ignoring deletions, analysis of the substitutions occurring in the known variants of Bos
taurus milk proteins reveals that 16 mutations involve substitution of neutral to
charged residues, or positively charged and negatively charged residues. Only four
mutations involve substitutions of neutral residues. An interspecies comparison of
mutations occurring in casein proteins between bovine, ovine and caprine species

shows charged to neutral residue substitutions account for 35.1% of changes in
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primary sequences. Silent substitutions (neutral to neutral residue substitutions)
account for 60.6%, and charged to similar charged residue substitutions account for
the remaining 4.3%. The larger proportion of silent substitutions evident in a cross-
species comparison suggests that it is possible that a larger number of silent

substitutions may exist within a species but to date have gone undetected.

Alternatively silent substitutions may be associated with less desirable traits and have
been selectively bred out of the study population. In an attempt to maximise the
genetic potential of dairy herds, the New Zealand dairy industry has made extensive
use of artificial insemination to a restricted number of superior sires for a number of
years. It could be argued that the gene pool within the New Zealand dairy population

is weighted towards the genes of a small number of high performing dams and sires.

Mutations involving hydrophobic residues may have adverse effects on casein micelle
stability. A large number of apolar residues occur in the primary sequences of Qg;-, B-
and K-CN. In general these hydrophobic residues are somewhat clustered.
Hydrophobic bonding contributes significantly to the stability of the casein micelle.
Substitution of key hydrophobic residues with more polar residues may reduce

hydrophobic bonding to such an extent as to disrupt micellar structure.

Intra- and intermolecular ionic bonds between charged residues also contribute to
casein micelle stability. The total number of charged groups of the casein monomer
indicate that in the formation of a casein micelle, not all of the ionic groups can occupy
a surface position (Farrell, 1988). Either a large amount of energy is used to bury
these groups or the structure is porous and accessible to water. Current evidence
suggest the latter (Ribadeau-Dumas and Garnier, 1970). Sufficient alteration of the

solvation of the micelle is known to destabilise milk.

Similar comments may be made for residues involved in disulphide bonds, and binding
of inorganic phosphate and calcium. Substitutions of residues that are involved in key
stabilising interactions may be more likely to result in lethal conditions where the milk
becomes either unpalatable or unable to be expressed from the udder. Thus it is likely
that the range of substitutions in milk proteins is limited by their effect on the

functionality of the protein.
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The proposed glycation of B-LG may have several functional implications. MacRichie
(1978) observed that glycosylation of native B-LG reduced surface properties in the
isoelectric pH range. Thus glycosylated proteins might be less strongly attracted to
the hydrophobic air-water interface and less easily engaged in the hydrophobic
interactions critical in the formation of cohesive films. Covalent bonding of gluconic
or melibionic acids to amino groups of B-LG by Kitabake et a/. (1985) increased the
heat stability and solubility of the synthetic glycoprotein compared to native B-LG.
Glycosylation of B-LG with maltose or glucosamine increased the viscosity over native

B-LG in proportion to the degree of substitution (Waniska and Kinsella, 1984).

Further investigation into the process of glycation of B-LG may provide a measure of
control over the degree of modification, or a means of isolating modified from
unmodified species. In this way we may be able to alter the functional behaviour of

this milk protein to meet technological requirements in a consumer acceptable way.
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11  APPENDIX

11.1  Appendix A - Liquid chromatography time and parameter programmes for RP-HPLC
separation of milk protein tryptic hydrolyses on Shimadzu system.

LC Time Program LC Parameter

File 2 (B.Ge) File 2 (B.Ge)

Time Func Value

0.01 T.Flow 1 T.Flow 1

0.01 Wave 214 B.Conc 0

0.01 B.Conc 0 B.Curve 0

15 B.Conc 15 C.Flow 0

25 B.Conc 50 P.Max 240

40 B.Conc 60 P.Min 0

50 B.Conc 100 Oven.T 60

53 B.Conc 100 T.Max 65

535 B.Conc 0 Wave 214

60 B.Conc 0 SV

60 Stop RV.A 0
RV.B 0
RV.C 1
RV.D 1

Event
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11.2 Appendix B - FAB-MS spectra of ag,-CN A tryptic peptides.

Peptide Calculated mass
VIPY 492
AMKPW 633
NAVPI TPTLN RK 1197
TVDME XTEVF TK 1467 (X denotes a phosphoserine residue)
Glycerol (matrix) 369
TR s ET I s =3
iﬂ_l E )
“_
s E3
L]
5
A
&5
1]
55 304
58
It
“@® I
F-

FIGURE A FAB-MS analysis of a,-CN A tryptic hydrolysis RP-HPLC peak eluting at 18.1 min.
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FiGURE B FAB-MS analysis of ag~CN A tryptic hydrolysis RP-HPLC peak eluting at 18.4 min.
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Casein ESI-MS Data Sheet

alpha 51

Cow

b-CN

Cow
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7
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87
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154
3o
180

FLTS

L1
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82

Mass
2281424
23614.12

2614
23612.67
22816.88

20815.7
281407
23613.93
22018.52
23814.05
2812.71
23615 68
23015.67
2381438
2381783
23814.08
23814.81
23818 5%
23614 88
23615.43
2241301

23614 23

Mass
23979.958
22981 89
23981.98
23981.08
73982 62
23982.08
23983.2%
23983.3%
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2308545
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2296018
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24022.04
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5.81
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1.42
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2487
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L]
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n
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2.37
5.32
6.03
400
47
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632
5.4
4.22
800
495

LA ]

B4
2.54
2.82
4.08
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228188
23018.33
281877
3018.84
2030
238710.94
017.48
2201824
fal PRk
23817.07
neieae
01.29
22918.29
73919.88
2)920.27
13818.08
82017
82102
236183
238168.9
m6.84
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High
23982.85
12004.77
22988.00
23084.78
23985.00
23084 49
2)985.62
13080 608
13089.97
22080.01
23086 .41
1001.4%
23992.32

2em.a
4023.72
24028.43
24027.5
24078.06
24033.7
24028.42
24031.58
240040.65
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2081108
2380001
23800.22

23009.1
20811.78
2361176
2081086
23800.52
2361191
23811,00
23609.24
23810.07
23813.0%
23809 08
2381550
2381142
23600.05
22811 08
23813.48
22611.96
23609 08
22811 58
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20970.07
2267700
23975.8%

220792
23960.71
22079.63
23980 A8
2207002
mnm
23080.55
22081.07
22070.41
20079.88
23981.02
21015.28
24010.25

40178
24017.00

240109
2402235
24026.34
24088.49

Mass stat aS1-CN B

Muss (Dul

13m0

ESI-MS Mass Determination
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Mode NA "
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[ 0.9047241438 g
Prige 192 Q.
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Mass stat b-CN A2

24900
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E 3

24000
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Bata-CN
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130 &1 88 a7 252 67 73 104 363 128 1e4
Cow Mumbes

laar 3083 53786
Standmd Ernoe 0.AAZ0AET58
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Alpha S2-CN
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Mass
1903812
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4.0
a2
217
.08
354

High
251100
25230.04
2823147
870.01
F5337.0%
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10214 82
[LFELEH]
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ESI-MS Mass Determination ESI-MS Mass Determination
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1. Introduction

The major milk proteins («,;-casein, «,-casein, §-casein, k-casein, a-lactalbumin and -
lactoglobulin) are found in a number of variant forms in cattle [1]. The milk proteins and
their variants have traditionally been detected through differences in charge that result
from amino acid substitutions or deletions in the primary structure [1, 2]. A number of
methods have been used in the analysis of milk proteins in milk and other systems,
including electrophoretic techniques such as polyacrylamide gel electrophoresis (PAGE),
isoelectric focusing (IEF), various column chromatography techniques, including gel
filtration, ion exchange and reverse phase HPLC [3]. Electrophoretic and other
techniques are also able to separate the various post-translationally phosphorylated and
glycosylated forms of the milk proteins. Although these techniques are likely to separate
proteins on the basis of size and/or charge, they are less likely to separate or detect
variants which arise from substitutions involving neutral residues (silent variants),
Similarly, post-translation changes to proteins which do not result in a major cha_hge in

protein size or charge could also remain undetected by such techniques.
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The advent of modern mass spectrometric techniques, such as electrospray ionisation

mass spectrometry (ESI-MS) has provided a powerful new tool to investigate the primary
structure of proteins and peptides. Accurate molecular weight determination (within
0.01% for compounds up to 100,000 Da) enables identification of primary sequence and
post-translational modifications such as phosphorylation and glycosylation of proteins to
be detected [4, 5]. This technique has been used in the analysis of the milk proteins by
Léonil et al. (6), where in combination wit!1 reverse phase HPLC (RP-HPLC-ESI-MS) the
observed masses of the A and B variants of 8-LG were found to correspond closely to the
calculated mass of these proteins derived from their primary sequences. In both cases a

single peak was observed in the reconstructed spectra.

Recently ESI-MS has been used in the characterisation of e, -casein («,-CN) from sheep
[7]. The ovine a,,-CN A variant was found to be present as two species differing in
molecular weight by approximately 1000 Da. The extent of the phosphorylation of these

species of a,-CN A was also examined by the ESI-MS technique.

In another recent report [8] ESI-MS was used in the identification of a new genetic
variant of bovine B-casein (8-CN). The new variant differs from the §-CN Al variant at
position 152 in the primary protein sequence, where a leucine residue was found instead
of a proline and thus represents a silent substitution which would not have been detected

by classical electrophoretic techniques.

In this report ESI-MS was used in the characterisation of purified 8-LG samples prepared

from individual cows and the identification of multiple glycosylations of this protein.
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2. Materials and methods

All chemicals used were analytical grade or better. Solvents used were HPLC 'UV
grade’. Water was purified by reverse osmosis, followed by deionisation through MilliQ
(Millipore, Bedford, MA.) equipment. Bovine 8-LG AB, horse heart myoglobin and
horse heart cytochrome C were all obtained from Sigma Chemical Co. (St. Louis, MO,

USA).

2.1 Purification and phenoryping of 8-LG

Fresh milk samples were collected from 109 individual Jersey or Jersey-Friesian cross
cows. Approximately 200 ml of raw milks were heated to 40°C in a water bath for a
period from 5 minutes to 30 minutes to facilitate cream separation. After heating,
samples were centrifuged at 5 000 x g for 10 minutes (unrefrigerated). The fat layer was
aspirated prior to acidification to pH 4.6 by addition of 1M HCI with continuous stirring.
After standing for a period of 20 minutes the isoelectrically precipitated casein was
separated from the whey by centrifugation at 5 000 x g for 15 minutes. All whey
proteins with the exception of 8-LG were precipitated from the whey supernatant by
adaptations to the method of Maillard and Ribadeau-Dumas [9]. This involved slow
addition of NaCl to 7% (w/v). Once the salt had completely dissolved the pH was
adjusted to 2.0 by addition of 6M HCI drop-wise with continuous stirring. After standing
for 20 minutes the precipitated proteins were separated by centrifugation at 8 000 x g for
15 minutes. The 8-LG supernatant was decanted into 10 000 molecular weight cut off
dialysis tubing (Union Carbide), and dialysed against 300 mM Tris buffer, pH 7.0,
overnight. Two subsequent dialysis steps were performed against deionised water for 24

hours each before freeze drying. -
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The B-LG phenotype of the samples and assessment of purity was made by capillary
electrophoresis according to the method of Paterson et al. [10]. For this purified B-LG
was dissolved in water to 1 mg ml" and 0.22 pm filtered (Millex PVDF 0.22 pm,
Millipore, Bedford, MA). An internal standard of a-lactalbumin (a-Lac) was added to all

samples and electropherograms were aligned using this standard.

2.2 Preparation of B-casein (B-CN)

B-CN was purified from acid precipitated casein on a BioPilot chromatography station
(Pharmacia, Uppsala, Sweden). Whole casein was dissolved in buffer A (6 M urea, 20
mM sodium acetate, pH 5.0) to 2% (w/v). Prior to chromatography the sample solution
was titrated to pH 7.0 with 2 M NaOH, treated with 0.1% dithiothreitol for 1 hour before
titration back to pH 5.0. Three hundred mls of sample casein (6 g) was loaded onto a
113 x 150 mm column of S-Sepharose Fast Flow (Pharmacia, Uppsala, Sweden) and
eluted at 25 ml min® in a 3 column volume (4.5 1) gradient from 0-0.4 M NaCl, with
eluent monitored at 280 nm. B-CN was eluted immediately following a small y-CN peak,
and prior to k-, a,,- and a,-CN respectively. The collected eluent was dialysed
exhaustively against water before lyophilisation. Identification and purity was assessed by

alkaline urea PAGE according to the method of Creamer [11].

2.3 Prépara:fon of Whey by Ultracentrifugation of Whole Milk.

Fresh milk samples (5 ml) collected from individual cows were centrifuged at 60 000g
Richard for 30 mins in a Beckman L8-M ultracentrifuge. Following centrifugation the
soluble fraction in the samples was separaied from the casein (which had formed a pellet)

and fat (which had formed a layer above the aqueous phase). The whey samples were
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then subjected to mass spectroscopy as described below.

2.4 Reverse phase-HPLC analysis of 8-LG

B-LG samples were analyzed by reverse phase HPLC (RP-HPLC) on a Shimadzu HPLC
(Shimadzu Corp, Osaka, Japan). Samples were dissolved to 1 mg ml™ in solvent A (5%
acetonitrile, 0.05% trifluoroacetic acid) and 0.22 pm filtered prior to injection onto a
Vydac C4 4.6 x 150 mm column (Separation Group, Vesperia, CA, USA) at 60°C.
Protein was eluted in a gradient of O to 60% solvent B (60% acetonitrile, 0.05%

trifluoroacetic acid) over 60 minutes at a flow rate of 1 ml min™” and detected at 214 nm.

2.5 Mass Spectroscopy

The mass spectrometer used was a VG Platform single-quadrupole mass spectrometer
(VG BioTech, Altrincham, UK) equipped with a pneumatically assisted electrospray ion
source. Multi-charged protein ions were generated in the positive ionisation mode by
introducing sample into a stream of 50% acetonitrile pumped at 10 ul/min by a
Spectra-Physics pump through a 75 pm ID fused-silica capillary. This was housed in a
stainless steel capillary held at a potential of 3.2 kV. The electrospray source-mass
analyzer interface consisted of a 100 um diameter conical orifice held at +30 V, at a
temperature of 60°C. A gas curtain of 0.8 I min™ of dry nitrogen in the interface region

prevented entry of neutral molecules into the mass analyzer,

Samples were dissolved in 50% acetonitrile:MilliQ water to 1 mg ml” with the addition
of 0.5% formic acid prior to filtration thrbugh a 0.22 pm filter, Samples were

subsequently diluted 1000 fold in 50% acetonitrile prior to injection onto the mass
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spectrometer. Reference solutions of horse heart myoglobin and cytochrome C were run

prior to sample solutions for instrument calibration.

Aliquots of protein sample (10-15 ul) were introduced into the solvent stream via a
Rheodyne (Cotati, CA, USA.) sample injection loop. This allowed at least 8 acquisitions
to be accumulated and averaged over a period of approximately 1 minute. Each
acquisition was obtained over the mass-to-charge range of 300 to 2100. The raw spectra
acquired were subjected to a series of processes to reduce background noise (background
subtraction), differentiate signal from spurious spikes (smoothing), identify series of
multiply charged ions (peak centering) and to deconvolute the data to a true mass scale
(transformation) using MassLynx software (Fissons Instruments, Altrincham, UK). The
data were transformed over an appropriate mass range for each protein (18000 to 20000

Da for 8-L.G) with a resolution of 0.125 Da.

2.6 Theoretical Calculation of Protein Mass
Theoretical calculations of the mass of each 8-LG variant were obtained with the use of
Peptide Tools software (Hewlet-Packard Co., San Diego, CA), based on the milk protein

variant primary sequences published by Eigel ez al. (1).

2.7 Heat Denaturation and fieductfou
Sample 8-LG B solutions (1 mg ml™) were prepared in 4 M urea containing 50 mM
dithiothreitol. The samples were heated at 100°C for 10 minutes, followed by cooling to -

room temperature and 0.22pm filtered.
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3. Results
Figure 1 shows a series of CE electropherograms of the purified 8-LG samples. As was
observed by PAGE, the only species present in the samples were found to correspond to

either the A, B or C variant forms of 8-LG [10].

RP-HPLC (Figure 2) was able to confirm the purity of the -LG samples, with only a
single peak being observed in all chromatograms. No differences were observed in the
chromatograms of native 8-LG and $-LG which had been heat-denatured under reducing

conditions.

Figure 3 shows the transposed ESI-MS spectrums of a number of purified 8-LG samples.
It is clear that multiple molecular weight B-LG species are observed by this technique.
The species with the lowest molecular weight was found in the case of each purified -
LG sample analysed to correspond to the known molecular weight (within error) of one of
the variants (A = 18363.4 Da, B = 18277.3 Da or C = 18286.4Da) of this protein
(Table 1). Additional species of higher molecular weight were also observed to varying
degrees. These adducts differed from the known molecular weights of the 8-LG variants
by multiples of 324.5 + 0.9 Da (up to four additional species). Although less marked,
analysis of a sample of purified mixed 8-LG A and B variants purchased from the Sigma
Chemical Company was also found to contain one adduct of the +324 molecular weight
species attached to both the A and B variants (Figure 3). As with the other samples of
purified B-LG, the sample from Sigma gave only single peaks corresponding to either 3-

LG A or B upon RP-HPLC.
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In the transposed ESI-MS spectra of the whey samples prepared by ultrcentrifugation
peaks corresponding to the +324 molecular weight adduct species of 8-LG were also

observed (Figure 4).

The heat denaturation, reduction and RP-HPLC, followed by ESI-MS of 8-LG samples
was found to increase the observed mass of 8-LG by an average of 4 Da, as would be
expected due to the reduction of the two disulphide bonds in the protein. However, this
treatment had no effect on the number or proportion of the +324 molecular weight

derivatives.

Analysis of five monovariant samples of purified 3-CN Al by ESI-MS determined that a
single component existed with a molecular weight of 24,024 Da, consistent with a
calculated weight derived from the primary sequence. Unlike 8-LG no adducts were

observed with §-CN.

4. Conclusions

The 324 Da molecular weight adducts observed in ESI-MS of the purified samples of -
LG are consistent with the covalent linkage of a lactosyl residues to the protein. The
observation that these species remain after heat denaturation, reduction and RP-HPLC
treatment is supporting evidence that the linkage is covalent. It is probable that such a
series of treatments would remove any molecules which were associated with B-LG by
noncovalent bonding. Similarly the samples of B-LG were subjected to extensive dialysis
during preparation, thus making it unlikely that any molecules would remained associated

with the protein unless the dissociation constant for the binding of that molecule to 8-LG
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was extremely low. It is unlikely that any noncovalent associations would survive the

ionisation conditions used in the ESI-MS experiments.

Henle and Klostermeyer [12] chemically induced the glycosylation of purified 8-CN Al
by heating this protein in the presence of lactose. They found the highly reactive lysine
residues to reducing sugars in 8-CN Al were located directly adjacent to the charged side
chains of glutamic acid and lysine, respectively. Henle and Klostermeyer [12] suggested
that the charged side chains of lysine and glutamic acid residues may be involved in the
intramolecular catalysis of the Maillard reaction Amadori rearrangement products. It is
possible that the lysine or glutamic acid residues adjacent to the lysine residue which
reacts with the sugar participate in modulating the supply of a proton between the N-
substituted glycosylamine and the cation of Schiff’s base. This suggests that the
microenvironment of the protein may influence the reactivity of lysine residues in the
Maillard reaction. In this investigation there was no evidence for the formation of 324
Da adduct species in the 8-CN samples purified as descibed in the methods section. It is
interesting to note that in -LG there are four sites where a lysine residue is adjacent to
either another lysine residue or to a glutamic acid residue (Lys69-Lys70, Glu74-Lys75,
Lys100-Lys101 and Glul34-Lys135) and that the adducts species of 8-LG were observed

in multiples of up to four 324 Da units,

The fact that the multiple forms of 8-LG were not observed by CE or RP-HPLC would
suggests that the association of the 324 Da molecule with 8-LG does not alter the charge,
molecular weight or hydrophobicity of this protein enough to be detected under the

conditions used with these techniques.
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Future exp;ariments will look to confirm that the modified species of 8-LG involve the
covalent attachment of lactose to lysine residues on the protein and the location in .the
primary sequence of these modified residues. The nature of the reaction mechanism is
also to be studied. The stage in the isolation 8-LG at which the adduct species of this
protein are formed is also of interest. The individual milk samples were held at 40°C for
up to 30 mins during the purification process. It is possible that this step induced a
reaction between milk lactose and B-LG. If this were the case then it is also possible that
the reaction would also occur at physiological temperature in the udder of the cow. The
finding that B-LG in whey samples prepared from fresh milk by ultracentrifugation

contain +324 Da molecular weight species would suggest that this is in fact the case.
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5. Summary

Electrospray ionisation mass spectrometry (ESI-MS) was used in the characterisation of B-
lactoglobulin (8-LG) A, B and C variants purified from the milks of 109 individual cows.
Capillary electrophoresis and reverse phase-HPLC were used to confirm the purity of the
samples, which contained either one species in the case of samples prepared from cows
homozygous for a particular 8-LG variant or two species in the case of samples prepared
from cows heterozygous for this protein. However, all samples were found to contain
multiple molecular weight species of 8-LG when analysed by ESI-MS. In addtion to
spectral peaks corresponding to the known molecular masses of the A, B and C variants,
additonal peaks were observed which differed in molecular weight from 8-LG by
increments of approximatetly 324 mass units. Although less marked, the +324 Da
molecular weight species were also present in a sample of 8-LG purchased from the

Sigma Chemical Company.
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Figure 1:

Figure 2:

Figure 3:

Figure 4:

14

Capillary electropherograms of (a) whey protein standards, and 8-LG
purified from acid whey of a (b) 8-LG AA phenotype, (c) 5-LG BB
phenotype, (d) B-LG AB phenotype (e) 8-LG CC phenotype (f) 8-LG BC

phenotype cow using the method of Paterson et al. (10).

RP-HPLC chromatograms of (a) Sigma purified 8-LG, 8-LG prepared from
acid whey from a (b) B-LG AA phenotype cow, (c) B-LG BB phenotype
cow, and (d) heat denatured and DTT reduced $-LG from an AA

phenotype cow.

Transformed ESI-MS spectrums of (a) Sigma purified §-LG, B-LG
prepared from acid whey from a (b) f-LG AA phenotype cow, (c) B-LG
BB phenotype cow, (d) 8-LG CC phenotype cow and (e) heat denatured

and DTT reduced $-LG from an AA phenotype cow.

Transformed ESI-MS spectrums of 8-LG in whey prepared by
ultracentrifugation of the milk from a (a) 8-LG AA phenotype cow and (b)

B-LG BB cow.
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Table 1: Average molecular mass of 8-LG variants and adducts as determined
by ESI-MS

Mass (Da) Variant A Varinat B Variant C

‘Native’ protein 18362.3 + 1.1 18277.0 + 1.6 18286.2 + 1.0

+ 1 adduct 18686.3 + 1.2 18601.5 + 1.5 18609.3 + 0.5

+ 2 adduct 19011.0 + 1.4 18924.9 + 1.4 18934.4 £+ 1.3

+ 3 adduct 19334.7 + 1.3 19249.6 + 2.2 19258.6 + 1.7

+ 4 adduct 19661.0 £+ 1.6 19575.0 + 2.6 19583.5 + 2.5
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Detection of "silent" milk protein variants. Dairy Technology, 10 (2), 5

Detection of "silent" milk protein variants

by Richard Burr, Food Science Section,
NZDRI

It has been known for some time that
genetic variants of milk proteins are
closely associated with significant
changes in milk production traits (Ng-
Kwai-Hang et al., 1984, 1986), milk
composition (McLean et al., 1984; Ng-
Kwai-Hang et al., 1984, 1986; Hill, 1993)
and processing characteristics such as
heat stability and cheese making
properties (Marzialiand Ng-Kwai-Hang,
1986a, 1986b; McLean et al., 1987, 1989;
Aleandri et al., 1990; Ng-Kwai-Hang,
1990).

Genetic polymorphism of milk
proteins are the result of amino acid
substitutions or deletions in the protein
primary sequence. To date these genetic

- variants have been identified by mainly
electrophoretic methods. These methods
are able to differentiate proteins of
different net charge at a given pH, due to
the substitution or deletion of an amino
acid carrying a ionisable side chain group.

However, of the 20 common amino
acids, only 5 carry positive or negative
charge. Changes involving the other 15
neutral residues theoretically will not
affect the net charge of the protein
appreciably, and will therefore go
undetected by normal electrophoresis.
Assuming that mutation leading to amino
acid substitution is random, we could
expect neutral or "silent” variants to occur
3 times as frequently as known
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Introduction Results

In cattle the major milk proteins (the caseins, a-lactalbumin and fi- Figtre 1 Figure 2
lactoglobulin (5-LG) exist in a number of variant forms which can be i L == :
post-transiationally phosphorylated and glycosylated to various extents, 4 @84

These forms have traditionally been detected through differences in size IR ﬂ

or charge using electrophoretic (including CE) and HPLC techniques. & \ Il
Variants arising from substitutions involving neutral residues (silent v ¥ ! W\

variants) and post-transiation changes not resulting in major changes in
protein size of charge may remain undetected by such techniques.

Tgma At
#L0 A

Mass spectrometric techniques, such as electrospray ionisation (ESI-
MS), are powerful new tools to investigate the pnmary structure of proteins.
Accurate molecular weight determination (within 0.01% for compounds
up to 100 kDa) enabiles detection of primary sequence and post-
translational modifications such as phosphorylation and glycosylation. | praxe
ESI-MS has been used used to characterise purified #-LG samples and
to identify multiple glycations of this protein.

E
|
|
}
|
Avaortnce @ 210 nm

Abaortance a 715 nm

I
l.’_‘".‘,’,. — N _:l_. = | | | Joraiasa ieuced
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The CE electropherograms in Figure The purity of the §-LG samples was also
1 were used to determine the confirmed by RP-HPLC (Figure 2.
phenotype of the purified §-LG There were no differences in the
Methods samples. chromatograms of natve LG and (LG which
had been heat-denatured under reducing
Fresh milk was collected from individual Jersey or Jersey-Friesian cross conditions
COWS,
Whey was produced either by acidification of milk to pH 4.6 with HCI
and centrifugation at 5000 xg for 1S min or by uitracentrifugation of
tresh milk at 60,000 xg for 30 min.
[i-LG was prepared from whey by NaCl precipitation of the other whey Figure 3
proteins at pH 2.0. 1 Figure 3 shows the muitiple molecular weight
[LG (mg/mi in 4M urea/S0mM dithiothreitol) was heat denatured under | || f-LG species observed by ESI-MS of a
reducing conditions at 100°C for 10 min. L || number of punfied 7-LG samples.
Il || neoan The iowest molecular weight species of each
The [-LG phenotype of the samples and assessment of purity was made w| = 11&4 7 SEERES— sample caresponded to the molecular weight
by CE (Paterson et al.) and reverse phase-HPLC on a Shimadzu HPLC (within error) of the corresponding f-LG
(Shimadzu Corp, Osaka, Japan) using a Wdac C4 4,6 x 150 mm column ..J! . variant (Table 1).
(Separation Group, Vesperia, CA, USA) with a gradient of 0 to 36 % (-l | = Additional adducts differin
: Siss | | g from the known
acetonitrile, 0.05 % trifluorcacetic acid. 2 i J . molecular weights of the A-LG variants by
¥ multiples of 324.5 + 0,9 Da (up to four
Mass spectrometry was performed on a VG Platform single-quadrupole £ -_ f_ 4
MS (VG BioTech, Altrincham, UK) equipped with a pneumatically assisted 5 odditional.apecies) were ailko chverved.
electrospray ion source. Each sample was the average of at least 8 2 |I II FEAR
acquisitions over a period of 1 min. Raw spectra were analysed using .ﬂ m -‘—‘L — ﬁ!t%wsh feds mmid' ;mme(é c
MassLyru software (Fisons Instruments, Altrincham, UK) and the theoretical “:_ ook ot s, e ibogr o
mass of each §-LG vanant calculated using Peptide Tools software molecular weight species attached to both
(Hewlett-Packard Co., San Diego, CA). rva sanauia 910 A8 the A and B variants (Figure 3 -amowed).
\N!-—— - This sample gave only single peaks (f-LG A
| ‘ and B) upon RP-HPLC.
5 (|| oommessamens s10mn Heat denaturation, reduction and RP-HPLC,
2 R T followed by ESI-MS resulted in an increased
Conclusions B e ey e e e Y observed mass of f-LG of 4 Da (due to the
My (Da) reduction of two disulphide bonds).
The 324 Da molecular weight adducts observed in ESI-MS of the punfied This treatment did not effect the number
samples of -LG are consistent with the covalent linkage of a lactosyl of +324 molecular weight derivatives.
residues to the protein.
The observation that these species remain after heat denaturation,
reduction and RP-HPLC treatment suggested that the linkage was covalent. ———— v
The association of the 324 Da molecule with §-LG does not alter the 1‘&& I: ﬁr_uqe mdmhrmas_:_nlﬂ-l.c varianls and add_m:ls as duwtnined Iry_ES!—!_lS |
E’i "’CFE ;'" R"’IPQCHU:C“#“ or hydrophabicity of f-LG enough lo be detected Mass (Da) Variant A Variant B Variant C ‘
The presence of the 324 Da molecular weight species in -LG ‘Native' protein 18362.3=1.6 18277.0+1.6 18286.2¢1.0 |
byultmcantrlh.mtmstmaﬂsﬂutthemcim between milk lactose +1 adduet 18686.321 2 18601.5+1.5 10609305 |
and f-LG may occur in the udder of the cow. +2 adduct 19011.0:1 4 18924.9+1.4 18934.4+1 3
+3 adduct 19334.71.3 19249642 2 19258 6£1.7
+4 adduct 19661.0+1.6 19575.0+2.6 19583.522.5
Reference Figure 4
; b The +324 molecular weight adduct species
Titoe?i’gégj.ﬂ., Hill, J.P. and Otter, D.E.: J. Chm A 700 105~ z of ﬁ-LG were also observed in the whey
? o samples prepared very 'gently’ by
ultracentrifugation (Figure 4).
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