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Detangling flat bands into Fano lattices
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Abstract – Macroscopically degenerate flat bands (FB) in periodic lattices host compact local-
ized states which appear due to destructive interference and local symmetry. Interference provides
a deep connection between the existence of flat band states (FBS) and the appearance of Fano
resonances for wave propagation. We introduce generic transformations detangling FBS and dis-
persive states into lattices of Fano defects. Inverting the transformation, we generate a continuum
of FB models. Our procedure allows us to systematically treat perturbations such as disorder and
explain the emergence of energy-dependent localization length scaling in terms of Fano resonances.

editor’s  choice Copyright c© EPLA, 2014

Introduction. – The effect of interactions and disorder
on wave transport in periodic potentials, such as electrons
in crystals, is strongly amplified if the bandwidth (kinetic
energy) is small. A particularly interesting situation arises
when some of the dispersion bands become strictly flat
with macroscopically degenerate eigenstates. In this limit,
any relevant perturbation will lift the degeneracy and
determine the emerging highly correlated and nontrivial
eigenstates. A celebrated example is the fractional quan-
tum Hall effect, which occurs as a result of the flat band
(FB) degeneracy of Landau levels of electrons in a mag-
netic field [1]. There is a growing effort [2,3] to construct
FB lattice models supporting new topological phases with-
out the need of low temperature and external magnetic
fields, which may be realized in diverse settings including
ultracold atoms in optical lattices [4], light propagation in
waveguide arrays [5], and exciton-polaritons in microcavi-
ties [6]. These systems allow control over the interactions
that successfully compete with the kinetic energy, and may
lead to new wave transport phenomena [7–9]. Engineering
FB lattice models has been extended to three-dimensional
(3D) [10], two-dimensional (2D) [8,11,12], and even one-
dimensional (1D) settings [13,14].

A number of FB construction pathways using graph the-
ory were suggested [13,15,16]. They use compact states

which are fully localized on several lattice sites [11,13].
The origin of the compact flat band states (FBS) is the
destructive interference effectively decoupling FBS from
the rest of the lattice, similar to the antisymmetric bound
states embedded in and decoupled from the continuum
in ref. [17] and geometric frustration in spin chains [18].
The interferometric nature of FBS suggests the appear-
ance of Fano resonances [19], similar to the universal role
of Fano interference in competition with bound states in
the continuum [20], phase dislocations [21], and Anderson
localization [22]. The compactness of FBS significantly
modifies disorder-induced localization and metal-insulator
transitions [10,23,24] and may be instrumental in achiev-
ing topological Anderson insulators [25].

In this letter we develop a generic detangling procedure
of FBS from the dispersive part of the lattice, which al-
lows to track the impact of perturbations in a systematic
way. The number of unit cells involved in one irreducible
FBS defines the FB class U of the model. Here we trans-
form and detangle the FBS and dispersive states into a
lattice of Fano defects. Inverting the scheme, we derive a
continuum of FB models for any FB class. In the case of
an onsite disorder potential, the symmetric part of it lifts
the FB degeneracy but keeps the compact localization of
FBS. The antisymmetric part yields Fano-induced Cauchy
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Fig. 1: (Color online) 1D FB lattices. Circles denote lattice
sites, solid lines are hopping elements of tjj′ with value 1,
dashed lines are hoppings with tunable value t. Filled circles
show the location of a compact localized state with identical
wave amplitudes and alternating signs as indicated (all other
lattice sites have strict zero amplitudes in such a FBS). The
irreducible band structure is shown below each lattice. Onsite
energies ε = 0, except in (f) where ε = 1 for the upper row.
Flat bands correspond to red horizontal lines. (a) Cross-stitch
U = 1; (b) tunable diamond U = 1; (c) 1D pyrochlore U = 1;
(d) 1D Lieb U = 2; (e) stub U = 2 [14]; (f) triangle U = 2.

tails for the potential felt by the dispersive states. As a
result, weak disorder enforces different energy-dependent
localization length scales, and highly nontrivial mode pro-
files at the FB energy. Scattering by perturbed FBS can
be intuitively understood as a Fano resonance.

Flat band models and compact localized states.
– Consider a lattice wave eigenvalue problem of the type
EΨj = εjΨj −

∑
j′ tjj′Ψj′ , where the wave components

Ψj are complex scalars allocated to points on a peri-
odic lattice, the matrix tjj′ defines some coupling between
them, and εj are onsite energies. Such a generalized tight-
binding model produces a band structure for the eigenen-
ergies Eν(k), ν = 1, 2, . . . , μ (here k is a reciprocal Bloch
vector, and ν counts the bands). Excluding the trivial
case of just one band, μ = 1, we consider a model with
at least one FB for which Eν(k) = const. Due to this
macroscopic degeneracy, FB eigenvectors in the Bloch rep-
resentation may be mixed to obtain highly localized FB
eigenvectors [11,13,26]. While there is no theorem which
in general states that among all these combinations there
will be compact localized eigenvectors, it is at least tempt-
ing to search for such cases [13]. In fig. 1 we show that
indeed for a set of known FB models, compact localized
FB eigenvectors exist. We classify the compact localized
FBS by the number U of unit cells occupied by each state.
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Fig. 2: (Color online) Detangled Fano lattices. (a) Cross-stitch
lattice from fig. 1(a) detangled with eqs. (4), (5). Horizontal
couplings are of strength 2, and vertical couplings follow ε−n .
(b) Tunable diamond chain from fig. 1(b).

Detangling into Fano lattices. – The simplest 1D
case with μ = 2 and class U = 1 is the cross-stitch lattice,
shown in fig. 1(a). The amplitude equations read

E an = εa
nan − an+1 − an−1 − bn−1 − bn+1 − t bn, (1)

E bn = εb
nbn − an+1 − an−1 − bn−1 − bn+1 − t an. (2)

In the absence of a potential, εa
n = εb

n = 0, there is exactly
one flat and one dispersive band, whose relative positions
are tuned with t:

EFB = t, E(k) = −4 cos(k) − t. (3)

The flat and dispersive bands intersect if |t| ≤ 2. Intro-
ducing the transformation

pn =
1√
2

(an + bn) , fn =
1√
2
(an − bn), (4)

ε+n =
1
2

(
εa
n + εb

n

)
, ε−n =

1
2

(
εa
n − εb

n

)
, (5)

we obtain a lattice with dispersive degrees of freedom pn

and side-coupled Fano states fn [19],

E pn =
(
ε+n − t

)
pn + ε−n fn − 2 (pn+1 + pn−1) , (6)

E fn =
(
ε+n + t

)
fn + ε−n pn. (7)

In the following, we refer to such lattices as “Fano lat-
tices”, see fig. 2(a). Interestingly, such lattices with side-
coupled defects also appear as models for charge transport
in DNA [27,28].

The transformation (4), (5) is a set of permuting local
rotations, each in the n-th vector space {an, bn}. If the
potential εn satisfies the local symmetry ε−n0

= 0, the corre-
sponding Fano state fn0 decouples completely. If this sym-
metry is supported on all unit cells, ε−n = 0, then all Fano
states decouple with individual energies Efn = (t + ε+n ).
If, in addition, ε+n = ε for all n, the Fano states form a FB.

Generating FB lattices. – Let us invert the proce-
dure. We choose a dispersive chain, eq. (6), and set for
simplicity εn = 0. We add a set of uncoupled Fano states
fn with energies Efn. We assign locally each fn to a site
with pn. We then perform local rotations (transforma-
tions) in the space {pn, fn}.

Each rotation is parametrized by one angle θn. For
θn = π/4 and Efn = −t we obtain the original cross-stitch
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Fig. 3: (Color online) (a) The irreducible Fano square lattice in
two dimensions. (b) The rotated version. Bonds show only the
connectivity, not the actual values. Newly appearing bonds are
green and red. Red bonds indicate a tunable hopping strength
which does not destroy the compactness of FBS.

lattice, eqs. (1), (2). Other values of θn generate modified
cross-stitch lattices. An additional local potential ε−n re-
sults in purely local coupling of a state fn into the disper-
sive chain. If the energy Efn was in resonance with the
dispersive chain, then the compact localized state fn will
act similarly to a Fano resonance in the Fano-Anderson
model [19]. If all Fano states fn are coupled into the dis-
persive chain, we obtain a Fano lattice.

Similar transformations can be performed with other
models of class U = 1 (fig. 1(a)–(c)), and one example for
the detangling of the diamond chain, fig. 1(b), is shown
in fig. 2(b). Moreover, we can generalize the construc-
tion procedure: consider any d-dimensional tight-binding
model with m lattice sites per unit cell and m dispersive
bands. To each group of these m lattice sites we assign p
Fano states, perhaps with different eigenenergies. Now we
define a rotation in the corresponding (m+p)-dimensional
vector space. If that is done in a translationally invari-
ant way in all unit cells, we will obtain a complex-looking
d-dimensional lattice, which possesses p flat bands. The
graphical outcome of the simplest transformation for d = 2
and m = p = 1 is shown in fig. 3. The dispersive lattice
has energies E(kx, ky) = −2(cos kx + cos ky). The FB en-
ergy can have any value.

If the Fano energies are nonuniform (e.g. random) along
the lattice, or if the rotation angles are different for dif-
ferent unit cells, then the complex final lattice will even
possess inhomogeneities. Nevertheless the underlying sys-
tem remains translationally invariant in its dispersive part.
That essentially concludes the U = 1 case.

For U ≥ 2 (e.g. fig. 1(d)–(f)) the detangling procedure
becomes hard, because the compact FBS do not form an
orthogonal basis. Still, we can at least detangle in every
U -th unit cell in the 1D models in fig. 1 along the lines of
the U = 1 case, or in a similar way in two-dimensional
models like the Lieb [29] or checkerboard [24] lattices.
With that we detangle 100

U % of the FBS, and will be left
with the task of detangling the remaining fraction. How-
ever, if we are simply concerned with understanding the
impact of disorder or similar perturbations on FB models,
this partial detangling is already sufficient.

We can generalize our construction principle. Namely,
we consider again a d-dimensional tight-binding lattice
with m lattice sites per unit cell, and m dispersive bands.
We choose sets of U (possibly neighbouring) unit cells,
and assign p Fano states to each. In the first procedure
we rotate in the space of every U -th assignment whose di-
mension is Um + p. Then we repeat the procedure, up to
U times. For example, for a 1D tight-binding chain with
U = 2 and p = 1 we assign in the first step a Fano state
to two neighbouring sites (note that we have assigned in
total N/2 Fano states, where N is the number of lattice
sites). Then we rotate in the subspaces of 2+1 = 3 dimen-
sion each. In the second step we assign another N/2 Fano
states in a similar manner, and rotate again. In general
this produces a rather complex-appearing d-dimensional
lattice with many hoppings between nearest and next-to-
nearest neighbors.

Disorder, localization length, and Cauchy tails.
– The detangling procedure and the Fano lattice repre-
sentation allows us to systematically treat perturbations.
Formally, the FB macroscopic degeneracy makes it hard
to predict the impact of perturbations. In the detangled
version, however, it can become rather easy and straight-
forward. An example is the case of onsite potentials εn

which change the energy of each site of a lattice. Consider
first the cross-stitch lattice, fig. 1(a), with EFB = t. As
shown above, for ε−n = 0 the Fano states remain decou-
pled, but their degeneracy is lifted since ε+n �= 0. This
can be generalized to any lattice with compact localized
FBS. If the onsite energies are identical on all sites which
involve a compact localized FBS, then the FBS stay com-
pact and the Fano states are still decoupled. Therefore,
the local FBS structure dictates a certain local symme-
try. The asymmetric potential part induces an interaction
between the FBS and the dispersive states. In partic-
ular for symmetry-related uncorrelated random numbers
εa
n = εb

n = εn with probability density distribution (PDF)
P(εn) = 1/W for |εn| ≤ W/2 and P = 0 otherwise, the
Fano states of the cross-stitch lattice stay decoupled, but
acquire an energy spread of the order of W around EFB .
At the same time the dispersive lattice (6) becomes An-
derson localized with a localization length ξ ∼ 1/W 2 for
weak disorder W ≤ 4 [30]. We remind that the localization
length characterizes the spatial decay of an eigenstate, e.g.
for the cross-stitch lattice Ψ(a,b),n ∼ e−|n|/ξ.

If now the symmetry constraint is relaxed, and εa
n is not

anymore correlated with εb
n (but still all numbers have the

PDF P), then ε−n �= 0 and the Fano states are locally
coupled into the dispersive chain. Due to the purely local
coupling, the Fano states can be eliminated and we obtain
a new equation for the dispersive lattice:[

E + t − ε+n − (ε−n )2

E − t − ε+n

]
pn = −2 (pn−1 + pn+1) . (8)

If |E − EFB | ≤ W/2 (FB localization), the denominator
in the LHS of eq. (8) produces heavy 1/z2 Cauchy tails.
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This happens because the PDF W of z = 1/ε+n is

W(z) =
1
z2

∫
P

(
1
z

)
P

(
y − 1

z

)
dy. (9)

If |E−EFB | ≥ W/2 (dispersive localization), Cauchy tails
are absent, and the dispersive localization length ξDB ∼
1/W 2. These two different energy windows will be present
for any flat band at energy EFB in any d-dimensional FB
lattice with additional diagonal disorder. For energies |E−
EFB | ≤ W/2 the dispersive lattice part is dressed with
Cauchy tailed disorder.

The FB localization length in the 1D case is then pre-
dicted to scale as ξFB ∼ 1/W for |t| < 2 when EFB is
in resonance with the dispersive spectrum, ξFB ∼ 1/W 1/2

for |t| = 2 when EFB is at the edge of the dispersive spec-
trum, and ξFB ∼ const for |t| > 2 when EFB is in a gap
outside the dispersive spectrum. The first two conclusions
follow from previous calculations of the localization length
scaling in pure 1D tight-binding chains with onsite Cauchy
disorder [31–35].

In the gapped case, Fano states show a disorder in en-
ergy of the order of W , and an effective hybridization (hop-
ping) between them of the order of (ε−)2 ∼ W 2, since one
has to first excite a dispersive band state, and then return
to the Fano states. That gives a vanishing localization
length for W → 0 according to the standard Anderson
approach [30]. However, at any finite W one hybridiza-
tion step always connects a Fano state to the dispersive
band. Then the Fano state acts as a defect state with a de-
tuned energy, and generates a corresponding exponentially
localized state on the dispersive band states. These can
back-couple into the Fano state system and generate the
same exponential localization profile there as well. This
third case therefore yields a localization length which does
not depend on the strength of disorder W , but is entirely
controlled by the detuning of the FB energy EFB away
from the dispersive bands into the gaps of the spectrum.
The localization length is then obtained simply from as-
suming a gapped defect state at energy EFB which decays
into the dispersive lattice. For instance, for the cross-stitch
lattice we obtain

EFB = −4 cosh(1/ξ) − t. (10)

In fig. 4 we show numerical computations of the local-
ization length ξ as a function of W for the above cases
of the cross-stitch lattice. We use standard transfer ma-
trix methods by iterating a variant of eq. (8) (see, e.g.,
ref. [30]). We obtain excellent agreement with the pre-
dictions, observing the correct scaling laws. Moreover, in
the gapped cases we obtain from eq. (10) ξ = 31.6 for
t = 2.001, and ξ = 1.04 for t = 3, in perfect agreement
with the numerical results for small W .

Sparse eigenstates. – Now we are in a position to
discuss the shape of the disordered FB eigenstates. For
that we have to consider the propagation of a wave at en-
ergy EFB . While dispersing in the sublattice, eq. (6), the

10-4 10-3 10-2 10-1 100 101
10-1

100

101

102

103

104

105

106

W
 

 

t=0, E=2

t=0
t=1
t=2
t=2.001
t=3

ξ
γ=2γ=1

γ=1/2

Fig. 4: Localization length scaling ξ(W ) ∼ W−γ for the cross-
stitch lattice. For FBS in the continuum, |E − t| < 2, the
scaling is γ = 1 (t = 0, 1). Exactly at the continuum edge,
E = −t = −2, the scaling is γ = 1/2 (t = 2). When the
FBS are in the gap, saturation to constant values occurs (t =
2.001, t = 3). Note the transient following of the band edge law
γ = 1/2 down to W ∼ |t|−2 from where on the gap location is
resolved. Finally, for t = 0 we show the dispersive localization
length scaling at E = 2, γ = 2.

wave will encounter a Fano resonance with a FBS having
an energy close enough to EFB . This scattering event will
involve a very strong population of the Fano state [19].
Since the Fano state is coupled to the continuum with
strength W and the continuum has group velocities ∼ t
(here t = 1), the width of the Fano resonance is W 2/t.
The Fano energies are distributed randomly in an interval
of width W . We remind that Fano states appear at each
unit cell in a Fano lattice. A given Fano state has then
probability W 2/tW = W/t to be in resonance with the
propagation energy EFB . If a localized state is character-
ized by a length ξ, we will count on average Wξ/t Fano
resonances in the volume ξ. Each of these resonances will
contribute to a large peak in the eigenvector. The num-
bers of peaks in an eigenvector can be measured with the
participation number P = 1/

∑
n(|an|4 + |bn|4). It fol-

lows that P ∼ Wξ/t. If EFB is in resonance with the
dispersive band, then P becomes independent of W in the
limit of weak disorder, despite the fact that the localiza-
tion length diverges as ξ ∼ 1/W . Therefore, disordered
FB eigenstates have a sparse structure with a finite num-
ber of peaks and an increasing distance between them as
the disorder weakens. We test that for the cross-stitch lat-
tice by computing the average over the participation num-
ber P at the energy EFB for t = 0 and different disorder
strengths. We confirm that P remains finite as W → 0:
P (W = 1) ≈ 8, and P (W = 0.01) ≈ 9.

These results can be taken to higher dimensions d.
A Fano state will still scatter in a similar way with
its resonance width W 2/t being independent of the
dimensionality of the continuum. However, an eigenstate
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will occupy now a volume of the order of ξd, yielding on
average Wξd/t resonances. In addition, the localization
length is expected to diverge faster for weak disorder in
d = 2, and allow for mobility edges and complete diver-
gence at finite disorder values in d = 3.

For d = 2, even the conservative ansatz of ξ ∼ 1/W
yields a divergence of the participation number of FB
states at weak disorder, but nevertheless much slower than
the growth of the localization volume ξd itself. The lo-
calized eigenvectors will then have a growing localization
volume, a growing number of peaks within, and a grow-
ing distance between these peaks, i.e. a growing sparsity,
signalling a fractal structure of the FB eigenstates as dis-
cussed in [24]. Further, for a FB energy at the mobility
edge in the d = 3 case, not only fractal FB states, but per-
haps a more intricate modification of the metal-insulator
transition point can be expected. Thus, we expect qual-
itatively different behaviour compared to the inverse An-
derson transition obtained in ref. [10], where no dispersive
bands were present.

Conclusions and outlook. – Previously the localiza-
tion length at the FB energy EFB = 0 of the diamond
chain, fig. 1(b), was evaluated [36]. At this particle hole
symmetric point, ξ ∼ 1/W 1.3 was observed, distinct from
the expected Cauchy law 1/W . When EFB �= 0, away
from the particle hole symmetric point, we found com-
plete agreement with the Cauchy prediction. The singular
behaviour at EFB = 0 remains to be explained.

We predict that in two dimensions and three dimen-
sions, the impact of flat band disorder will be again the
generation of heavy Cauchy tails in the effective disorder
potential for dispersive waves. It will be therefore very
useful to understand the impact of Cauchy tailed disor-
der in these dimensions. Furthermore, in these higher
dimensions our procedure may be generalized to con-
struct anisotropic Fano states and design lattices display-
ing direction-dependent localization [37].

Off-diagonal disorder can also be induced in the matrix
elements tjj′ , and can be even studied experimentally
with microwaves propagating in networks of dielectric res-
onators [38]. Similar to the onsite disorder, a locally
symmetric off-diagonal disorder will not destroy the com-
pactness of FBS, while asymmetric disorder will couple
them back into the dispersive lattice, generating similar
Cauchy tails and Fano resonances.
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