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ABSTRACT 

This thesis is corx:erned with the biosynthesis of 

dothistromin ( 2 , 3 , 3a , 1 2a tetrahydro-2 , 3a , 4 , 6 , 9  pentahydroxy­

anthra[2 , 3-b] furo[3 , 2-d] fur.an-5 , 10 dione ) by the fungus 

Dothistroma pini . The biosynthes is of re.lated secondary 

metabolites is reviewed and as a working hypothesis it is  

propos ed that dothistromin is  solely acetate-derived . 

ii . 

In the preliminary phases of the investigation strains of the 

organism giving high yields of the metabolite were s ought and 

isolated from natural source s .  Some growth media were tested 

for their ability to support growth , promote sporogenesis and 

sustain high yields of dothistromin, A medium containing malt 

and dried whole yeast was cho sen . The growth characteristics 

of the organism in this medium were stud ied and the temporal 

relationship between growth and pigment production for a variety 

of cultural condit ions was found . The findings of these 

experiments suggested times when it would be favourable to add 

pos s ible precursors . 

Incorporation studies with [1-14c ] - sodium acetate revealed 

that dothistromin incorporated isotope from this precursor 

and disclosed ;�� lipids heavily incorporated the label . 

Subsequent experiments were concerned with examining the effects 

that precursor concentration , time of precursor addition and time 

of metabolite harvesting had on the isotope enrichment and yield 

of dothistromin . 



It was found that the optimisation of these two parameters 

were mutually exclusive processes and compromise conditions 

which were compatible with obtaining both reasonably good 

enrichments and yields of dothistromin had to be selected . 

Initially attempts were made to determine the distribution 

of isotope in dothistromin , which had incorporated isotopically 

labelled acetate , by chemical degradation . Potassium tertiary­

butoxide /water cleavage of the anthraquinone ring of the 

pentamethyl derivative of dothistromin labelled by [ 1- 14c ] ­

acetate yielded 1 ,4 -dimethoxybenzene which had a molar 

spec ific radioactivity that was 0 . 33 t imes that of the starting 

material . This finding was consistent with the formation of 

dothistromin from nine molecules of acetate . 

Subsequently 13c-NMR techniques were used to determine the 

distribution of isotope in dothistromin derived from [ 1-1 3c]  

and [2- 1 3c ]- acetates . Pulsed Fourier transform 13c -NMR 

spectra of the monoethyl acetal derivat ive of dothi stromin were 

obtained using broad-band proton decoupling and off- resonance 

proton decoupling . By comparison with the 13C-NMR spectra of 

a number of model compounds the resonances in the spectrum of 

the dothistromin derivative were assigned in most cases to 

specifi c  carbon atoms and in a few instances to two or three 

alternatives . 

iii . 

The 13c-NMR spectra of the dothistromin derivatives which 

had been enriched by isotope from the carbon-13 labelled acetates 

shqwed nine resonances with intensities enhanced by enrichment 



iv .  

from the carboxyl carbon of acetate , eight from the methyl carbon 

and one resonance of uncertain origin . The distribution of 

isotope in the anthraquinone moiety of the molecule was 

consistent with its formation from a polyketide precursor but 

this was not proven because of the equivocal assignment of some 

of the N�R signals . The distribution of isotope in the furo­

furan ring moiety and its relation to the distribution in the 

anthraquinone part was the same as that reported by others 

for corresponding structures in aflatoxin B1 and sterigmatocyst in . 
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