Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE BIOSYNTHESIS OF DOTHISTROMIN

A Thesis

Presented to Massey University in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy

by

G. JOHN SHAW

Massey University

January 1975

ABSTRACT

This thesis is concerned with the biosynthesis of dothistromin (2,3,3a,12a tetrahydro-2,3a,4,6,9 pentahydroxyanthra[2,3-b]furo[3,2-d]furan-5,10 dione) by the fungus <u>Dothistroma pini</u>. The biosynthesis of related secondary metabolites is reviewed and as a working hypothesis it is proposed that dothistromin is solely acetate-derived.

In the preliminary phases of the investigation strains of the organism giving high yields of the metabolite were sought and isolated from natural sources. Some growth media were tested for their ability to support growth, promote sporogenesis and sustain high yields of dothistromin. A medium containing malt and dried whole yeast was chosen. The growth characteristics of the organism in this medium were studied and the temporal relationship between growth and pigment production for a variety of cultural conditions was found. The findings of these experiments suggested times when it would be favourable to add possible precursors.

Incorporation studies with [1-¹⁴C]-sodium acetate revealed that dothistromin incorporated isotope from this precursor and disclosed the lipids heavily incorporated the label. Subsequent experiments were concerned with examining the effects that precursor concentration, time of precursor addition and time of metabolite harvesting had on the isotope enrichment and yield of dothistromin.

ii.

It was found that the optimisation of these two parameters were mutually exclusive processes and compromise conditions which were compatible with obtaining both reasonably good enrichments and yields of dothistromin had to be selected.

Initially attempts were made to determine the distribution of isotope in dothistromin, which had incorporated isotopically labelled acetate, by chemical degradation. Potassium tertiarybutoxide/water cleavage of the anthraquinone ring of the pentamethyl derivative of dothistromin labelled by $[1-1^{4}C]$ acetate yielded 1,4-dimethoxybenzene which had a molar specific radioactivity that was 0.33 times that of the starting material. This finding was consistent with the formation of dothistromin from nine molecules of acetate.

Subsequently 13 C-NMR techniques were used to determine the distribution of isotope in dothistromin derived from $[1-{}^{13}C]$ and $[2-{}^{13}C]$ -acetates. Pulsed Fourier transform ${}^{13}C$ -NMR spectra of the monoethyl acetal derivative of dothistromin were obtained using broad-band proton decoupling and off-resonance proton decoupling. By comparison with the ${}^{13}C$ -NMR spectra of a number of model compounds the resonances in the spectrum of the dothistromin derivative were assigned in most cases to specific carbon atoms and in a few instances to two or three alternatives.

The ¹³C-NMR spectra of the dothistromin derivatives which had been enriched by isotope from the carbon-13 labelled acetates showed nine resonances with intensities enhanced by enrichment

iii.

from the carboxyl carbon of acetate, eight from the methyl carbon and one resonance of uncertain origin. The distribution of isotope in the anthraquinone moiety of the molecule was consistent with its formation from a polyketide precursor but this was not proven because of the equivocal assignment of some of the NMR signals. The distribution of isotope in the furofuran ring moiety and its relation to the distribution in the anthraquinone part was the same as that reported by others for corresponding structures in aflatoxin B_1 and sterigmatocystin.

Acknowledgements

I wish to convey my thanks to my supervisors, Dr M. Chick and Professor R. Hodges, for their encouragement and helpful suggestions throughout this investigation; their guidance has been invaluable.

I am indebted to Dr C. Bassett and Dr P.D. Gadgil of the Forest Research Institute, Rotorua, for providing the Dothistroma pini cultures.

I would like to express my appreciation to Dr G.W.A. Milne (National Heart and Lung Institute, N.I.H., Bethesda, U.S.A.) for running ¹³C-NMR spectra of carbon-13 enriched dothistromin derivatives and for analysis of model compounds. My thanks are also due to Dr J.W. Blunt (University of Canterbury) and Mr H. Holenweger (H.B. Selby and Co. Ltd., Australia) for carbon-13 analyses of additional model compounds.

I would like to thank my wife, Glenda, for typing this thesis.

v.

TABLE OF CONTENTS

								Page
	Abstract	••	••			••		ii
	Acknowledgements							v
	Table of contents	••	••	• •	••	••	••	vi
	List of tables		••	•••	• •	••		x
	List of figures	••		• •	• •			xii
	List of graphs	••		••	••			xiv
	List of plates	••	••	••		••	••	xv
Chapter 1	Introduction			••		••		1
1.1	Biosynthetic origi	n of	dothi	lstro	nin			1
1.2	Acetyl-coenzyme A							2
1.3	The acetate hypoth of aromatic comp	esis ounds	for t	he bi	losyn	thesis	5	3
1.4	Stages in the bios derived metaboli	ynthe tes	esis c	of pol	Lyket:	ide-		4
1.4.1	Assembly processes	(enz	ymes	form	ing po	olyke	tides)	4
1.4.2	Cyclisation process	ses						7
1.4.3	Modifying processes							9
1.4.3.1	Alkylation							9
1.4.3.2	Oxygen addition and	d rem	oval					10
1.4.3.3	Decarboxylation							12
1.5	Coupling of separa	te po	lyket	ide o	chains	S		13
1.6	Biosynthesis of an	thrag	luinor	nes				14
1.6.1	Fungal							14
1.6.2	Higher plants							16
1.7	Possible role of s secondary metabo	ubsti lism	tuted	l antl	nrone	s in		17
1.8	Biosynthesis of me furo[2,3-b]benzo	tabol furan	lites n ring	with g sys [.]	a tem			19
1.9	Coexistence of 18 metabolites	carbo	on and	1 20 0	carbo	n		23
2.0	Bioconversion of a	veruf	in to	afla	atoxi	ns		24
2.1	The oxidative coup biosynthesis	ling	hypot	thesis	s for			26
Chapter 2	Growth of the orga dothistromin	nism 	and p	oroduo	ction	of		27
2.1	The organism							27
2.2	Isolation							28

vi

		vii.
2.2.1	Isolation from plant tissue	29
2.2.2	Single spore isolation	30
2.3	Maintenance	31
2.3.1	Agar slant	32
2.3.2	Soil culture	32
2.3.3	Lypophilisation	33
2.4	Extraction and purification of dothistromin	34
2.4.1	Extraction	34
2.4.2	Chromatography	35
2.4.3	Differential solubilities	36
2.5	Identification of dothistromin	37
2.5.1	Dothistromin ethyl acetal	37
2.5.2	Dothistromin ethyl acetal tetramethyl ether	37
2.6	Estimation of dothistromin in culture extracts	38
2.7	Cultivation and cultural description	39
2.7.1	Growth on solid media	39
2.7.2	Cultural description	40
2.7.3	Growth in liquid culture	41
2.7.3.1	Surface culture	41
2.7.3.2	Shaken culture	42
2.7.3.2a	Modified Raulin's medium	42
2.7.3.2b	Malt medium	44
2.7.4	Correlation of pH with pigment production	46
2.7.4.1	Measurement of pH.	48
2.7.5	Fermacell culture	50
Chapter 3	Isotopic labelling of dothistromin	51
3.1	Approach to the study of biosynthesis	51
3.2	Criteria used to assess biosynthesis	51
3.2.1	Dilution value	52
3.2.2	Percentage incorporation	53
3.2.3	Relative isotope content	54
3.2.4	Carbon-14 enrichment	54
3.2.5	The effect of label randomisation	55
3.3	Biosynthetic precursor of dothistromin	56
3.4	Carbon-14 biolabelling of dothistromin	58
3.5	Preliminary examination of the incorporation of [1-14C]-sodium acetate into pigment extracts	58
3.6	Determination of radioactive counting efficiency for dothistromin	60

viii.

3.7	Effect of time of precursor addition on the specific radioactivity of dothistromin	62			
3.8	Effect of acetate concentration on dothistromin elaboration				
3.9	Effect of acetate concentration on the incorporation of [¹⁴ C]-acetate into dothis- tromin	66			
3.10	The specific radioactivity of dothistromin in relation to the time of its isolation	67			
Chapter 4	Attempted determination of the biolabelling pattern in [¹⁴ C]-dothistromin by chemical degradation	70			
4.1	Method of chemical degradation	70			
4.2	Potassium tertiary-butoxide cleavage of anthraquinones	71			
4.2.1	Optimisation of the reaction conditions	73			
4.3	Preparation of dothistromin methyl acetal tetramethyl ether	74			
4.3.1	Cleavage of [14C]-dothistromin methyl acetal tetramethyl ether and analysis of the products	77			
Chapter 5	Carbon-13 tracer studies	79			
5.1	13C-NMR and the study of biosynthesis	79			
5.2	Methods of detection	81			
5.3	Direct measurement	82			
5.3.1	Continuous wave - NMR	82			
5.3.2	Pulsed Fourier transform-NMR	83			
Chapter 6	The carbon-13 spectral assignments of dothistromin ethyl acetal	85			
6.1	Carbon-13 spectrum of dothistromin ethyl acetal	85			
6.2	Carbon-13 peak areas : integration of signal intensity	85			
6.3	Assignment aids	86			
6.3.1	Proton broad-band decoupling and nuclear Overhauser enhancement	86			
6.3.2	Off-resonance decoupling	88			
6.3.3	Longitudinal relaxation times	89			

6.4	Carbon-13 spect ethyl acetal	tral a	assig	nment	s of	dothi	stron	nin	90
6.4.1	Nomenclature for dothistromin						91		
6.4.2	Additivity calculations for substituted anthraquinones						91		
6.4.3	Carbonyl carbon	ns							92
6.4.3.1	Carboxyl shifts	s in s	subst	itute	d ant	hraqu	inone	es	93
6.4.4	Aromatic carbon	ns							94
6.4.4.1	Aromatic carbor	ns dir	rectl	y bon	ded t	o oxy	gen		95
6.4.4.2	Aromatic carbor	ns dir	rectl	y bon	ded t	o hyd	roger	l	9 7
6.4.4.3	Aromatic carbor oxygen	ns not	bon	ded t	o hyd	rogen	or		100
Chapter 7	Biosynthesis of	E doth	nistr	omin	••	••		••	110
7.1	Production of carbon-13 labelled dothistromin					110			
7.2	Use of mass spe carbon-13 enr	ectron richme	netry ent	for	deter	minin	g		111
7.3	Carbon-13 NMR s enriched from	spectr n [130	ra of 2]-ac	doth etate	istro	min			113
7.3.1	Spectrum of dot from [1- ¹³ C]-	histr sodiu	romin um ac	ethy etate	l ace	tal e	nrich	ned	114
7.3.2	Spectrum of dot from [2- ¹³ C]-	histr sodiu	omin um ac	ethy etate	l ace	tal e	nrich	ned	115
7.3.3	13C-13C couplir dothistromin	ng in	spec	tra o	f 13 _C	enri	ched		116
7.4	Biosynthesis of	doth	nistr	omin	from	aceta	te		117
	Experimental	• •	<i>.</i>	•••	•••		••		120
	References	••	••	•••	•••	•••	••		160
	Formulae		• •	••					171

List of Tables

Table	
3-1	Incorporation of [1- ¹⁴ C]-sodium acetate into dothistromin : experiment 1
3-2	Incorporation of $[1-^{14}C]$ -sodium acetate into dothistromin : experiment 2
3-3	Incorporation of [1- ¹⁴ C]-sodium acetate into dothistromin : experiment 3
3-4	Incorporation of [2- ¹⁴ C]-sodium acetate into dothistromin : experiment 4
3-5	Incorporation of [2- ¹⁴ C]-sodium acetate into dothistromin : experiment 5
3-6	Incorporation of [1- ¹⁴ C]-sodium acetate into dothistromin : experiment 6
3-7	Effect of acetate concentration on the incorporation of [1- ¹⁴ C]-sodium acetate into dothistromin
3-8	Effect of acetate concentration on the incorporation of [2- ¹⁴ C]-sodium acetate into dothistromin
3-9	Yield and R.I.C. of [¹⁴ C]-dothistromin produced by 100 cm ³ sultures of <u>Dothistroma pini</u>
4-1	Glc of the TMS esters of some aromatic acids
4-2	Potassium tertiary-butoxide cleavage of some substituted anthraquinones
5–1	Summary of 13 C-enriched metabolites analysed by PFT- 13 C-NMR
6-1	Carbon-13 chemical shifts of dothistromin ethyl acetal
6-2	Carbon-13 chemical shifts of some substituted anthraquinones
6-3	Carbon-13 substituent effects of substituted benzenes

6-4	Carbon-13 substituent effects of substituted acetophenones
6-5	Carbon-13 shift assignments of 2,3,3a,8a-Tetra- hydro-2-oxo-4,6-dimethoxyfuro[2,3-b]benzofuran(6-1)
6-6	Carbon-13 shift assignments of 2,4-Diacetoxy-3a,- hydroxy-6-methoxy-2,3,3a,8a-tetrahydrofuro- [2,3-b]benzofuran(6-2).
6-7	Carbon-13 shift assignments of 3a-Hydroxy-4-acetoxy- 6-methoxy-3a,8a-dihydroxyfuro[2,3-b]benzofuran(6-3)
6-8	Carbon-13 shift assignments of dothistromin ethyl acetal.
7-1	Production of carbon-13 enriched dothistromin
7-2	Carbon-13 chemical shifts of dothistromin enriched from $[1-^{13}C]$ - and $[2-^{13}C]$ -sodium acetate

Figure

- 1-1 The main flow of carbon metabolism, the main products of primary synthesis and the corresponding categories of secondary metabolism
- 1-2 Comparison of the biosynthesis of a 16 carbon fatty acid and 16 carbon secondary metabolite
- 1-3 A possible relationship between anthraquinones of the versicolorin type, xanthones of the sterigmatocystin type and aflatoxins
- 1-4 A possible biogenetic origin of the fused difuran ring system
- 1-5 A possible mechanism for deriving the difuran ring system from a linear 6 carbon chain
- 1-6 A possible route for the biosynthesis of aflatoxins via the acetate pathway and oxidative coupling of acetoacetate
- 3-1 Silica gel tlc radiochromatograph of the crude ethyl acetate extract of <u>Dothistroma pini</u> fed [1-¹⁴C]-sodium acetate
- 4-1 Mechanism for the potassium tertiary-butoxide cleavage of anthraquinone
- 4-2 Mechanism for the potassium tertiary-butoxide cleavage of 1-methoxyanthraquinone
- 4-3 Radioactivity of the chromatogram of the (a) tetramethyl- and (b) pentamethyl-derivatives of [¹⁴C]-dothistromin
- 4-4a Glc of 1,4-dimethoxybenzene
- 4-4b Glc of [¹⁴C]-1,4-dimethoxybenzene
- 6-1 The proton noise-decoupled PFT-¹³C-NMR spectrum (25.2 MHz) of dothistromin ethyl acetal

- 7-1 The proton noise-decoupled PFT-¹³C-NMR spectrum (25.2 MHz) of dothistromin ethyl acetal enriched from [1-¹³C]-sodium acetate
- 7.2 The proton noise-decoupled PFT-¹³-NMR spectrum (25.2 MHz) of dothistromin ethyl acetal enriched from [2-¹³C]-sodium acetate

List of Graphs

Graphs	
2-1	Relation between pH, pigment production and time for the growth of <u>Dothistroma pini</u> in Raulin's medium modified to contain various sugars
2-2	Rate of dothistromin production versus time from from inoculation in 100 cm ³ and 300 cm ³ malt cultures of <u>Dothistroma pini</u>
2-3	Time course of pigment production in 300 cm ³ malt cultures of <u>Dothistroma pini</u> with and without antifoam
2-4	Time course of pH change and pigment production in four equivalent 100 cm ³ malt cultures of Dothistroma pini
2-5	Time course of pH change and pigment production in a 20 litre culture of <u>Dothistroma pini</u>
3-1	Quench curve for dothistromin
3-2	Incorporation of [1- ¹⁴ C]-sodium acetate and [2- ¹⁴ C]-sodium acetate into dothistromin from 100 cm ³ malt cultures of <u>Dothistroma pini</u>
3-3	Effect of sodium acetate concentration on the yield of dothistromin in 100 cm ³ malt cultures of <u>Dothistromin pini</u>
3-4	Yield and relative isotope content of $[^{14}C]$ -dothistromin produced by 100 cm ³ malt cultures of <u>Dothistroma pini</u> in the presence of 0.01 M [1- ¹⁴ C]-sodium acetate and 0.01 M [2- ¹⁴ C]-sodium acetate
4-1	Quench curve for dothistromin methyl acetal tetra- methyl ether

List of Plates

PlateASingle colonies of Dothistroma piniBGrowth of Dothistroma pini on malt agarCGrowth of Dothistroma pini after 3-4 days
incubationDGrowth of Dothistroma pini after 5-6 days
incubationEGrowth of Dothistroma pini after 9-11 days
incubationFGrowth of Dothistroma pini after 16-20 days
incubation

xv.