Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

STUDIES IN THE PROMOTION OF PRECOCITY IN 'DOYENNE DU COMICE' PEAR.

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Horticultural Science at Massey University New Zealand

> By DEANE A PEGLER

Massey University 1993 Abstract of a thesis submitted in partial fulfilment of the requirement for the Degree of Master of Horticultural Science

STUDIES IN THE PROMOTION OF PRECOCITY IN 'DOYENNE DU COMICE' PEAR.

by Deane Pegler

Flower evocation is the process, generally hormonally controlled, that occurs before the vegetative bud apex changes from the differentiation of leaves to the differentiation of floral structures, and at that stage the bud has begun the reproductive cycle.

Four treatments were chosen that had been shown in the literature to stimulate flower evocation and differentiation in pipfruit, and were applied in an experiment on 'Doyenne du Comice' pear trees. These treatments were applied to experimental potted trees during the 1990 - 1991 growing season, and consisted of the application of one of the following: nitrogen fertiliser in the form of ammonium sulphate, subtoxic levels of simazine herbicide, plant growth regulator paclobutrazol or a period of regulated deficit irrigation (R.D.I.). A Control treatment was also monitored

The flower clusters were monitored in the spring of 1991 and all treatments had increased flower clusters per centimetre of wood compared to the Control, however only the Paclobutrazol and the R.D.I. treatments increased flower clusters significantly (P < 0.01). Trunk diameter and shoot extension growth were both reduced although only the former was significantly reduced by the Paclobutrazol treatment (P < 0.01).

The total free nitrogen levels were monitored in the leaves and the buds of the experimental 'Doyenne du Comice' at various harvest dates during the season, which included assessment of ammonium, nitrate, arginine and total amino acids. There were no clear seasonal trends among the treatments in the levels of any individual nitrogenous components or the total free nitrogen levels.

The R.D.I. treatment reduced the photosynthetic rate during its application period to a maximum significance of P < 0.01 just prior to the reinstatement of full irrigation. The water deficit imposed significantly reduced the xylem water potential for a period of 50 days although no statistically significant differences in water content of the growing medium was demonstrated.

Examination of the bud apex with a Scanning Electron Microscope (SEM) during the development of floral structures was made during the season. This linked with a defoliation study done on spur buds on mature trees in an orchard near Wanganui which showed that defoliation before 4.12.90 significantly reduced bloom and defoliation after 11.2.91 had no effect. Evocation occurred between 14.12.90 and 8.1.91 as shown by the SEM. Fruitlet retention was also significantly affected by defoliation and the presence or absence of the bourse shoot.

The ability of the spur bud to produce flowers depends on its position in the canopy of a mature 'Doyenne du Comice' tree and a separate study showed that positions in the tree that had low PPFD had reduced flower numbers. A further study showed tying branch angle down from the vertical during winter is beneficial in terms of increased flower formation and reduced vegetative growth.

ii

ACKNOWLEDGEMENTS

- To my supervisors, Dr David Wood and Dr Stephen Lawes, for the much appreciated opportunity to study for this masterate in fruit production and also for the helpful assistance and guidance you provided in order to make this project successful. Often relevant references and appropriate comments really helped to focus my direction at the most critical periods.
- To my Family and Friends, who helped by encouraging me to persist when all I wanted to do was to give up. Thankyou for all your positive comments and moral support (congratulations Phil.!).
- To my Lord and Saviour, Jesus Christ; it sure has been a pleasure serving you. Your creation is full of wonderful and 'marvellous things'. I'm greatful for this opportunity to explore what you planned so long ago. There is no doubt that there is more to it than meets the eye.
- To all the Postgraduates and the staff members in the Plant Science department who helped by contributing useful suggestions and problem solving techniques. I would like to especially thank Sigit Sudjatmiko for helping me get to grip's with statistics and graphic's. Thanks also to Dr Hugo Varela-Alverez (Statistics), Lance Curry (Soils) and Cherry Gordon (Library) for your help.
- Thanks also to Dr Brent Clothier of Hort+Research who generously allowed me the use of equipment for data collection purposes. Thanks also to Doug Hopcroft of Hort+Research who did such a great job of the SEM (Scanning Electron Microscope) photographs and prints.

- To Massey University, for allowing staff the opportunities to study part time where it would be extremely difficult to do so otherwise. Thankyou.
- To Massey University Agricultural and Research Fund (M.U.A.R.F). Without financial assistance, a project like this would be impossible.
 - To Mr 'Timber' Woods of Wanganui and Mr Blair Glasgow of Hawkes Bay, thank you for graciously allowing me to 'process' your trees and for the time you gave to collect data for me.

TABLE OF CONTENTS.

Chapter

Abstract	i
Acknowledgement	iii
Contents	v
List of Tables	xi
List of Figures	xiv
List of Plates	xvii
Glossary of abbreviations	xix
1. INTRODUCTION	1
2. REVIEW OF THE LITERATURE	3
2.1 Flower evocation	3
2.2 Dwarfing rootstocks and their influence	
on precocity	6
2.3 Influence of fertilizer applications on	
flower evocation	7
2.4 The acquisition and tolerance of ammonium	
by plants	10
2.5 The arginine biosynthesis pathway	12
2.6 The role of polyamines	12
2.7 Arginine and precursors and their	
relationship to the application of	
ammonium, and to flower evocation	14
2.8 Simazine and nitrogen metabolism	17
2.9 The influence of water stress on flower	
evocation and on plant constituents	18
2.10 Increasing precocity with growth	
regulators	21
2.11 Paclobutrazol (Cultar): Mode of action.	22
2.12 Biochemical changes associated with	
paclobutrazol application	24
2.13 Flower evocation	26
2.14 Morphological studies of flower bud	
formation	26
2.15 Other aspects of flower production	27

	2.16 The role of light and leaves in the	
	process of flower formation and	
	retention of the fruitlets	30
	2.17 Branch angle and its influence on	
	flowering	32
3.	GENERAL MATERIAL AND METHODS	34
	3.1 Introduction	34
	3.2 The Palmerston North experiment - The	
	trees	35
	3.3 The experimental design	36
	3.4 Fruit growth	38
	3.5 Climate	40
	3.6 Wanganui studies	40
	3.7 Hawkes Bay study	41
	3.8 Statistical procedure	41
4.	SIMAZINE BIOASSAY - GROWTH OF RYE GRASS AND RADISH AT	
	DIFFERENT RATES OF SIMAZINE APPLICATION	42
	4.1 Introduction	42
	4.2 Methods and materials	42
	4.3 Results	46
	4.4 Discussion	46
5.	DEVELOPMENTAL MORPHOLOGY OF FLORAL BUDS IN 'DOYENNE DU	
	COMICE' PEAR TREES	47
	5.1 Introduction	47
	5.2 Methods and materials	47
	5.3 Results	48
	5.4 Discussion	55
	5.5 Conclusion	57

6.	ASSESSMENT OF AMINO ACIDS, AMMONIUM AND NITRATE IN	
	SAMPLES OF LEAVES AND BUDS, OF THE	50
	EXPERIMENTAL 'DOYENNE DU COMICE' PEAR TREE	58
	6.1 Introduction	58
	6.2 Methods and materials	58
	6.2.1 Assessment of amino acids	59
	6.2.2 Assessment of ammonium and nitrate	60
	6.3 Results	61
	6.3.1 Free arginine and total free amino	<i>c</i> 1
	acids in leaves and buds	61
	6.3.2 Free ammonium and nitrate in the leaves	65
	6.4 Discussion	68
	6.4.1 Arginine and total amino acid content	68
	6.4.2 Ammonium and nitrate	71
	6.5 Conclusion	73
7.	ANALYSIS OF THE RESPONSES TO THE REGULATED	
	DEFICIT IRRIGATION TREATMENT	74
	7.1 Introduction	74
	7.2 Methods and materials	75
	7.2.1 Water content in the pots	75
	7.2.2 Water potential	75
	7.3 Results	76
	7.3.1 Water content in the pots	76
	7.3.2 Water potential	77
	7.4 Discussion	82
	7.5 Conclusion	83
8.	THE INFLUENCE OF THE TREATMENTS ON SHOOTS EXTENSION	
	AND TRUNK DIAMETER GROWTH OF 'DOYENNE DU	
	COMICE' DURING THE 1990-1991 SEASON	84
	8.1 Introduction	84
	8.2 Methods and materials	84
	8.2.1 Shoot extension	84
	8.2.2 Trunk diameter	84
	8.3 Results	85
	8.3.1 Shoot extension	85

	8.3.2 Trunk diameter	86
	8.4 Discussion	91
	8.4.1 Shoot extension	91
	8.4.2 Trunk diameter	92
9. EFFECT	OF THE TREATMENTS ON THE PHOTOSYNTHETIC RATE	
	AND RELATED PARAMETERS	93
	9.1 Introduction	93
	9.2 Methods and materials	94
	9.3 Results	94
	9.4 Discussion	97
10. FLOWER	NUMBERS FROM THE EXPERIMENTAL 'DOYENNE DU	
	COMICE' TREES FOLLOWING THE APPLICATION OF	
	TREATMENTS DURING THE PREVIOUS GROWING	
	SEASON	98
	10.1 Introduction	98
	10.2 Methods and materials	98
	10.3 Results	99
	10.4 Discussion	102
11. BLOOM	DATES ON 'DOYENNE DU COMICE', 'WINTER NELIS',	
	AND 'BUERRE BOSC'	105
	11.1 Introduction	105
	11.2 Methods and materials	105
	11.3 Results	105
	11.4 Discussion	109
12. THE IN	FLUENCE OF LIGHT LEVELS ON BUD FORMATION AND	
	FLOWERING IN MATURE 'DOYENNE DU COMICE'	110
	12.1 Introduction	1 1 0
	12.2 Methods and materials	110
	12.2 Results	112
	12.3 Discussion	117

13. THE	E EFFECT OF DEFOLIATION AND THE INFLUENCE OF THE	
	BOURSE SHOOT ON THE FRUITLET RETENTION	
	OF THE SPUR BUDS OF 'DOYENNE DU COMICE'	118
	A. The effect of defoliation and the	
	influence of the bourse shoot on the flower/	
	fruitlet retention of the spur buds of	
	'Doyenne du Comice'	118
	13.1a Introduction	118
	13.2a Methods and materials	1 1 8
	13.3a Results	120
	13.4a Discussion	123
	13.5a Conclusion	124
	B. Defoliation and flower potential	125
	13.1b Introduction	125
	13.2b Methods and Materials	125
	13.3b Results	125
	13.4b Discussion	127
	13.5b Conclusion	129
14. THE	RELATIONSHIP BETWEEN FLOWERING, SHOOT GROWTH	
	AND THE POSITION OF THE BRANCH ON MATURE	
	'DOYENNE DU COMICE' TREES	130
	14.1 Introduction	130
	14.2 Methods and materials	130
	14.3 Results	131
	14.4 Discussion	134
15 CTV	IERAL CONCLUSIONS	135
ID. GEN		
	15.1 Introduction	135
	15.2 Factors influencing bloom	135
	15.2.1 Treatment effects on flowering	135
	15.2.2 Shoot and tree growth, water potential	4 3 5
	and branch angle	135
	15.2.3 Photosynthetic rate, light levels and	
	flowering	136
	15.2.4 Endogenous plant factors	137

15.3 Time of evocation and characteristics of	
flower bud development	137
15.3.1 Examination of spur bud apex	137
15.3.2. Spur defoliation	137
15.4 Factors influencing set	138
15.4.1 Bloom periods and cross pollination	138
15.4.2 The influence of the bourse shoot	138
15.5 Conclusions and recommendations	139
15.6 Further work	139
REFERENCES	141

LIST OF TABLES

Table Page 6.1 Influence of the treatments applied on leaf free arginine concentration $(\mu g/g)$ of the experimental 'Doyenne du Comice' trees. 61 6.2 Influence of the treatments applied on total free amino acids in the leaves $(\mu q/q)$ of the experimental 62 'Doyenne du Comice' trees. 6.3 Leaf free arginine expressed as percentage of total free amino acids in the leaves. 62 6.4 Influence of the treatments applied on bud free arginine concentration $(\mu g/g)$ of the experimental 'Doyenne du Comice' trees. 62 6.5 Influence of the treatments applied on bud free amino acid concentration $(\mu g/g)$ of the experimental 'Doyenne du Comice' trees. 63 6.6 Bud free arginine expressed as percentage of total free amino acids in the buds. 63 6.7 Influence of the treatments applied on free ammonium levels in the leaves $(\mu g/g)$ of the experimental 'Doyenne du Comice' trees. 65 6.8 Influence of the treatments applied on free nitrate levels in the leaves $(\mu g/g)$ of the experimental 'Doyenne du Comice' trees. 65 6.9 Influence of the treatments applied on percentage of dry weight of total free nitrogen in leaves of the 66 experimental 'Doyenne du Comice' trees.

xi

	xii
7.1 Mean values for dawn leaf water potential (bars) at weekly intervals from 17.11.90 - 19.1.91 by treatment.	77
7.2 Mean values for noon leaf water potential (bars) 17.11.90 - 19.1.91 at weekly intervals by treatment.	78
8.1 Mean values per treatment for trunk diameter (mm) at dates of measurement.	86
8.2 Mean increase in trunk diameter (mm) of treatments between each measurement date.	87
9.1 Mean values for Photosynthesis ($\mu molCO_2/sq.m/sec)$ for different dates by treatment.	94
9.2 Photosynthetic Photon Flux Density (P.P.F.D.), (µmolphoton/sq.m/sec) light energy available for different treatments by date.	95
10.1 Mean values for flower cluster, total shoot length, clusters per cm of shoot and clusters as a percentage of Control by treatment (1991).	99
12.1 Mean values for PPFD (µmolphoton/sq.m/sec), spur base diameter, spur bud diameter and flower number per cluster, at seven positions in each of 10 mature 'Doyenne du Comice' trees in Hawkes bay.	112
13.1 Mean values of flower number, number of cluster and bourse leaves and cluster, bourse shoot leaf area and total leaf area before treatments imposed (data gathered on 19.10.90).	120
13.2 Mean values for number of cluster and bourse shoot leaves and cluster and bourse shoot leaf area and total leaf area after treatments imposed (data gathered on 19.10.90).	121

13.3 Mean number of fruit set, and as percentage of original number of fruitlets after applying treatments on 19.10.90 on treated spurs.
122

13.4 Percentages of spurs which flowered, and mean number of flowers per cluster, in spring 1991, following total or partial defoliation of the spur on one of two dates in pervious season.

14.1 Mean values for shoot length, shoot base diameter and flower number per shoot on tied down and not tied down branches of 4 YO 'Doyenne du Comice'.
131

LIST OF FIGURES	xiv
Figure	Page
2.1 A Schematic representation of nitrogen assimilation by plants.	16
3.1 Mean Fruit volume growth of 'Doyenne du Comice' from full bloom.	39
4.1 Simazine bioassay - Effect on radish plant height of varying rates of simazine down the profile (no flush).	44
4.2 Simazine bioassay - Effect on rye grass plant height of varying rates of simazine down the profile (no flush).	44
4.3 Simazine bioassay - Effect on radish plant height of varying rates of simazine down the profile (flushed with water).	45
4.4 Simazine bioassay - Effect on rye grass plant height of varying rates of simazine down the profile (flushed with water).	45
6.1 Influence of the treatments applied on ammonium levels in the leaves of the experimental 'Doyenne du Comice' trees (Day $1 = 27.11.90$).	67
6.2 Influence of the treatments applied on the nitrate levels in the leaves of the experimental 'Doyenne du Comice' trees (Day $1 = 27.11.90$).	67
7.1 Media water content in containers of 'Doyenne du Comice' trees of Control and R.D.I. treatments, where Day 1 and start of R.D.I. = 17.11.90, (1990 - 1991). Vertical lines represent standard error of the mean at	
each data point.	80

xiv

7.2 'Doyenne du Comice' Xylem Water Potential for Control and R.D.I. treatments at dawn and noon, where day 1 and start of R.D.I. = 17.11.90. (1990 -1991). Vertical lines represent standard errors of the mean at each data point.

8.1 Shoot length extension for Control, Ammonium, Simazine, Paclobutrazol and R.D.I. treatments on 'Doyenne du Comice', where day 1 = 24.10.90 (1990 - 1991), vertical lines at each data point represents standard error of each mean.

8.2 Trunk diameter growth for Control, Ammonium, Simazine, Paclobutrazol and R.D.I. treatments, (1990 -1991), day 1 = 22.8.90, vertical lines at each data point represent the standard error of the mean. 90

9.1 Photosynthesis rates for Control, Ammonium, Simazine, Paclobutrazol and R.D.I. treatments, where vertical lines at each data point represent the standard error of the mean, day 1 = 8.12.90, other dates as shown in Table 9.1.

9.2 P.P.F.D. (Photosynthetic Photon Flux Density) light energy available (μ mol quanta/sq. m/s) for Control, Ammonium, Simazine, Paclobutrazol and R.D.I. treatments, where vertical lines at each data point represent the standard error of the mean. Day 1 = 8.12.90, other dates shown in Table 9.1.

11.1 Blossoming period trends (open blooms) for 3 pears
cvs. trees aged 4 years (spurs of all ages) located at
Wanganui, day 1 = 28.9.90.

11.2 Blossoming period trends (open blooms) for three pear cvs. trees aged 7 years (spurs of all ages) located at Wanganui, day 1 = 28.9.90. XV

81

89

107

96

96

11.3 Blossoming period trends (open blooms) for different aged trees and wood on 'Doyenne du Comice' at Wanganui, day 1 = 28.9.90.

12.1 Spur base diameter (mm) as a function of PPFD (quanta μmol/sq.m/sec).

12.2 Bud diameter (mm) as a function of PPFD (quanta µmol/sq.m/sec).

12.3 Flower number per cluster as a function of PPFD
(quanta μmol/sq. m/sec).
115

12.4 Percentage light and its effect on spur base and spur bud diameter, light measurements taken in March 1991, buds measured on 4.7.92.

14.1 Mean shoot lengths along tied down branches and mean flower number per shoot, where shoot 1 is closest to the trunk - 'Doyenne du Comice' Wanganui (1990).

14.2 Mean shoot lengths along not tied down branches and mean flower number on each shoot, where shoot 1 is closest to the trunk - 'Doyenne du Comice' Wanganui (1990). 132

14.3 Total shoot length and flower numbers for tied and not tied down branches - 'Doyenne du Comice' Wanganui (1990). 133

LIST OF PLATES

Plate	Page
5.1 Control treatment 19.11.90 budscales(1) (mag. * 27)	0). 50
5.2 Ammonium treatment 19.11.90 bud scales(1) (mag. 29)	0). 50
5.3 Simazine treatment 19.11.90 bud scales(1) (mag. * 370).	50
5.4 Paclobutrazol treatment 19.11.90 bud scales(1) (mag. * 330).	50
5.5 R.D.I. treatment 19.11.90 bud scales(1) (mag. * 360). 51
5.6 Control treatment 14.12.90 leaves(2) (mag. * 350).	51
5.7 Ammonium treatment 14.12.90 leaves(2) (mag. * 170)	. 51
5.8 Simazine treatment 14.12.90 leaves(2) (mag. * 400)	. 51
5.9 Paclobutrazol treatment 14.12.90 leaves(2) (mag. * 360).	52
5.10 R.D.I. treatment 14.12.90 bud scales(1) leaves(2) (mag. * 270).	52
5.11 Control treatment 8.1.91 leaves(2) domed apex(3) (mag. * 150).	52
5.12 Control treatment 8.1.91 top view of 5.11 (mag. * 181).	52
5.13 Ammonium treatment 8.1.91 leaves(2) (mag. * 139).	53
5.14 Simazine treatment 8.1.91 leaves(2) (mag. * 310).	53

5.15	Paclobutrazol treatment leaves(2) 8.1.91 (mag. * 87).	53
5.16	R.D.I. treatment 8.1.91 leaves (2) (mag. * 95)	53
5.17	Control treatment terminal flower(5) lateral flower(6) bract(4) 11.2.91 (mag. * 40).	54
5.18	Ammonium treatment 11.2.91 bract(4) lateral flowers(6) (mag. * 52).	54
5.19	Simazine treatment terminal(5) and lateral flower(6) bract(4) 11.2.91 (mag. * 54).	54
5.20	R.D.I. treatment terminal flower(5) and bract(4) $11.2.91$ (mag. * 52).	54
5.21	From 7 year old 'Doyenne du Comice' from Mr Woods orchard at Wanganui, terminal(5) and lateral flowers(6) 11.2.91 (mag. * 47).	55
10.1	Flower clusters on a Control branch, where photograph taken on 17.9.90.	100
10.2	Flower clusters on an Ammonium treatment branch, where photograph taken on 17.9.90.	100
10.3	Flower clusters on a Simazine treatment branch, where photograph taken on 17.9.90.	101
10.4	Flower clusters on a Paclobutrazol treatment branch, where photograph taken on 17.9.90.	101
10.5	Flower clusters on an R.D.I. branch, where photograph taken on 17.9.90.	102

GLOSSARY OF ABBREVIATIONS

ANOVA	Analysis of variance
AOA	Aminooxyacetic acid
¹⁴ C	Radioactive carbon 14
Cultar ^r	Paclobutrazol
DNA	Deoxyribonucleic acid
ÉPP	Effective pollination period
GA3	Gibberellin A3, gibberellic acid
PUT	Putrescine
PPFD	Photosynthetic photon flux density
RDI	Regulated deficit irrigation
SEM	Scanning electron microscope
YO	Year old

CHAPTER 1 General Introduction

The European pear (Pyrus communis) has long been recognised as an important horticultural crop in New Zealand, and throughout the world. Consistent harvestable crop yield is an important criterion for selecting a potential cultivar for orcharding. 'Dovenne du Comice' has a reputation as a high quality dessert pear. However a considerable drawback of this variety is that it starts bearing relatively late and also produces low yields young tree (Jaumien, 1968). Combined with these а as physiological hindrances has been the poor return per kilogram achieved for New Zealand pears on the local and world market during the last ten years. Because of these problems, growers and potential growers have been discouraged from establishing any significant land area for producing 'Doyenne du Comice'. The 1990 - 1991 season saw a considerable increase in the return per kilogram to growers for this and other quality cultivars on the New Zealand domestic market.

Flowering plants can be divided broadly into two groups - those which initiate flowers in response to specific stimuli such as photoperiod or vernalization, and those whose flowering is not clearly linked to a single environmental cue. Most work on flower initiation has concentrated upon plants in the first group where the flowering stimuli, once identified, can be reliably and repeatedly presented. Few woody plants fall into this group and they have thus been relatively neglected in flowering research (Jackson and Sweet, 1972).

Flowering in temperate woody plants has the following general but not exclusive characteristics.

1. There is normally a distinct rest period between evocation and anthesis.

2. There is usually a juvenile stage during which the plants will not produce flowers. At the completion of this phase the plant enters the adult phase when flowering occurs as a seasonal phenomenon, and the onset of flowering does not normally lead to senescence and/or death of the plant, as it does in many herbaceous plants.

3. The number of sequential steps involved in woody plant flower initiation is apparently greater than in many herbaceous annuals, where one promotive factor such as day-length may predictably and repeatedly induce flowering, (Jackson and Sweet, 1972).

The physiological problem of increasing precocity, i.e. promoting flowering and obtaining a yield early in the plants life, has two aspects. Firstly, the ability of the tree to produce flowers from otherwise vegetative buds and secondly; the ability of these flowers to retain the fruitlets once satisfactory pollination of the flowers has been achieved. It is the former of these two considerations that forms the main focus of this study.

The study was prompted by a conversation in 1988 with a member of the research personnel (Ms. Stella Macleod) of the New Zealand Apple and Pear Marketing Board (N.Z.A.P.M.B.), that despite the use of Quince BA29 rootstock, New Zealand growers were reporting delayed cropping of young Comice trees relative to other pear cultivars.

Objectives of this study.

The thrust of this research was to select treatments that had been reported in the literature to increase precocity in pipfruit and apply them to three year old 'Doyenne du Comice' potted trees on BA29 rootstock for the period of one growing season only. In order to discover the effect of the applied treatments, related parameters should be monitored throughout the growing season.

A number of other factors that influence flower evocation and early cropping in pipfruit, such as canopy light levels, spur defoliation, cross pollination and branch angle were examined in associated research.