Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. REMOVAL OF COPPER, CHROMIUM AND ARSENIC FROM THE TANNERY AND TIMBER TREATMENT EFFLUENTS AND REMEDIATION OF CHROMIUM CONTAMINATED SOIL

> A thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science at Massey University

SUBRAMANI THIAGARAJAN MAY 1997

Massey University Library Palmerston North Turitea

Dedicated to My Beloved Parents

ABSTRACT

Tannery and timber treatment effluents are considered to be the major source of Copper (Cu), Chromium (Cr) and Arsenic (As) heavy metal contamination into the environment. Chromium is used in tanneries for the treatment of hides and skins whereas, copper, chromium, and arsenic (CCA) solution is used as the timber treatment chemical. Chromium is used as Cr (III) in tannery industry and as Cr (VI) in timber treatment industry. Arsenic and Cr (VI) which are present in the timber treatment effluent are highly toxic and carcinogenic.

An initial survey has indicated that some tannery industries in New Zealand have not developed pre-treatment practices to reduce the heavy metal concentration before discharging the effluent into soil or waterways. The heavy metal pollution due to timber treatment industries may occur from the drips, leaks and spills due to poor handling of CCA solution while treating timber.

In this project, the potential value of industrial waste materials, such as *Pinus radiata* bark, fluidised bed boiler ash (FBA), flue gas desulphurisation gypsum (FGDG) and natural resources, such as zeolite, peat soil, and two soils (Tokomaru and Egmont soils) to reduce heavy metal concentration in tannery and timber treatment effluents was examined. The value of these materials in the remediation of soil contaminated with Cr was examined using a growth experiment.

The effect of pre-treatment of *Pinus* bark with acid, alkali of formaldehyde/acid on the retention of Cr was examined. Pre-treatment of *Pinus* bark increased the heavy metal retention only at low heavy metal concentration and did not significantly improve the heavy metal retention at high concentration. The extent of adsorption increased with an increase in surface area of *Pinus* bark material. Speciation of Cr indicated that Cr (VI) is reduced to Cr (III) and adsorbed onto the *Pinus* bark.

FBA was found to be most efficient in reducing the Cr (III) concentration from tannery effluent and As and Cu concentrations in the timber treatment effluent. In the

case of Cr (VI), the highest retention was shown by the *Pinus* bark and the peat soil. The increased retention of Cr (III), Cu and As by FBA was due to the precipitation of Cr (III) as chromium hydroxide, Cu as cupric hydroxide and As as calcium arsenate. A combination of FBA + *Pinus* bark or FBA + peat soil was efficient in reducing all the three heavy metal (Cu, Cr (VI) and As) concentration from the timber treatment effluent. The effluents contaminated with Cu, Cr and As can be passed through a column containing FBA and *Pinus* bark or peat soil.

A growth experiment using sun flower (*Helianthus annus*) was set-up to examine the effectiveness of FBA, lime and *Pinus* bark to immobilise Cr in contaminated soil. FBA and lime amended soils were effective in establishing a normal plant growth of sun flower in Cr (III) contaminated soil even at high Cr (III) levels (3200 mg/kg soil). Incorporation of lime or FBA in Cr (III) contaminated soils causes precipitation of Cr (III) and thereby reduces the bioavailability of Cr for plants uptake. Only *Pinus* bark amended soil was found to be effective in remediating Cr (VI) contaminated soil even at 3200 mg/kg soil. *Pinus* bark material effectively retained the Cr (VI) present in the soil solution and thus reducing the toxicity and bioavailability of Cr (VI) to plants.

ACKNOWLEDGEMENT

I wish to express my sincere thanks, heartfelt gratitude and appreciation to the following people for their contribution towards the completion of this thesis.

My supervisor Dr. N.S.Bolan, for his valuable guidance, encouragement, help, patience, tolerance and friendship during my studies. I also wish to thank him for supporting my application for NZODA scholarship which has enlightened my career.

Prof. Russ Tillman, for his valuable guidance and suggestions during my studies and conference presentations. Drs. Mike Hedley and Loganathan for their valuable advise and support during various other research projects.

Dr. Ravi Naidu, Senior Principal Research Scientist, CSIRO Division of Land and Water, Adelaide, for his helpful advise in various aspects of chromium pollution due to tannery industry.

Mr. Lance Currie, Mr. Bob Toes, Mr. Ian Furkert, Mr. Mike Bretherton, Mrs. Ann West and Mr. Brett Robinson for their assistant in the laboratory experiments. Mrs. Denise, Ms. Marian and all my fellow postgraduates for their help and friendship. Mr. Malcolm Boag for his proof reading.

Drs. Peter O' Donnell and Das Gupta from New Zealand Leather and Shoe Research Association for their advise and guidance.

The Ministry of Foreign Affairs and Trade for granting me NZODA scholarship to pursue my Masters degree at Massey University. International Student Office, particularly Mr. Charles Chau, Mrs. Magrate Smille, and Mrs. Diane Reilly for their advise, friendship and support. Mr. Kevin Harris from the Agricultural and Horticulture Multimedia Unit, for the use of his computing resources and helping me to have my personal homepage in the World Wide Web.

Dr. Mahaimaraja from Tamil Nadu Agricultural University, India for encouraging and guiding me to New Zealand, which had made my dream come true.

Mr. and Mrs. Rajarathanam, and Dr. Marimuthu from India for their encouragement and guidance during my studies.

Dr. Leela Bolan for her encouragement, love and friendship during my stay in New Zealand.

Finally, but most importantly to my beloved parents Mr. D.K. Thiagarajan and Mrs. Ramani Thiagarajan, who melted like a candle to lighten me during their whole career. I would like to express my most heartfelt gratitude for their love, never-ending tolerance, encouragement, continual support, prayers and offering me education with many sacrifices and difficulties.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENT	ш
TABLE OF CONTENTS	v
LIST OF TABLES	xiv
LIST OF FIGURES	xv
LIST OF PLATES	xvii

CHAPTER 1

INTRODUCTION

1.1	BACKGROUND	1
1.2	OBJECTIVES	2
1.3	STRUCTURE OF THE STUDY	3

CHAPTER 2

LITERATURE REVIEW

2.1	INTRODUCTION	4
2.2.	TANNERY AND TIMBER TREATMENT PROCESSES	5

Page

	2.2.1	Tannery trea	atment processes	5
		2.2.1.1	Vegetable tanning	5
		2.2.1.2	Chrome tanning	6
		2.2.1.3	Mixed Chromium-Vegetable tanning	7
		2.2.1.4	Aluminium tanning	7
		2.2.1.5	Zirconium tanning	7
	2.2.2	Timber treat	ment process	8
		2.2.2.1	CCA treatment	9
2.3	COM	PARISON OF	CHROMIUM FIXATION ONTO HIDE	
	AND	TIMBER		10
	2.3.1	Chromium fi	ixation onto hide	10
	2.3.2	Chromium fi	ixation onto timber	12
2.4	THRI	ESHOLD LEV	ELS OF HEAVY METAL ON SOILS	13
	2.4.1	Contaminati	on due to tannery and timber treatment	
		sites in New 2	Zealand	14
2.5	REM	OVAL OF TH	E HEAVY METALS FROM	
	INDU	STRIAL EFF	LUENTS	15
	2.5.1	Chromium (III)	15
		2.5.1.1	Precipitation	16
		2.5.1.2	Other processes	17
	2.5.2	Chromium (VI)	17
		2.5.2.1	Reduction and precipitation	18
		2.5.2.2	Other processes	18

vi

	2.5.3	Copper		19
		2.5.3.1	Precipitation	19
		2.5.3.2	Other processes	19
	2.5.4	Arsenic		20
		2.5.4.1	Precipitation	20
		2.5.4.2	Other processes	20
2.6	REAC	CTIONS OF C	OPPER, CHROMIUM AND ARSENIC	
	IN TH	IE SOILS		21
	2.6.1	Copper		21
	2.6.2	Chromium		22
	2.6.3	Arsenic		23
2.7	REM	EDIATION O	F HEAVY METAL CONTAMINATED	
	SOIL			24
	2.7.1	Onsite treatm	nent of heavy metal contaminated soil	25
		2.7.1.1	Physical in-situ treatment	25
		2.7.1.2	Chemical in-situ treatment	26
		2.7.1.3	Biological in-situ treatment	27
	2.7.2	Offsite treat	nent	28
	2.7.3	Removal of c	ontaminated soil	28
	2.7.4	Other soil re	medial treatment	29
2.8	SUM	MARY		30

CHAPTER 3

CASE STUDIES OF THE TANNING AND TIMBER

TREATMENT INDUSTRIES IN NEW ZEALAND

3.1	INTR	ODUCTION			31
3.2	THE	TANNING IN	DUSTI	RY	31
	3.2.1	Visit to a Ta	nnery i	ndustry in North Island	32
		3.2.1.1	Probl	em of the site	32
		3.2.1.2	Efflue	ent and soil collection	34
		3.2.1.3	Efflue	ent and soil analysis	34
		3.2.1.4	Resul	ts and discussion	35
			А.	Effluent analysis	35
			B.	Soil samples	36
		3.2.1.5	Recor	nmendations	37
			А.	Pre-treatment of effluent using	
				"FBA-Bark Filter System"	37
			В.	Precipitation tank	38
			C.	Immobilisation of Cr in the	
				polluted soil	38
	3.2.2	Visit to a Ta	nnery i	n Wanganui	38
		3.2.2.1	Recor	nmendations	40
3.3	THE	TIMBER TRI	EATMI	ENT INDUSTRY	40
	3.3.1	Visit to a tim	ber tre	atment plant, Tangimona	40
	3.3.2	Visit to Cart	er Holt	Harvey Timber treatment plant, Marton	42
3.4	CON	CLUSIONS			42

CHAPTER 4

REDUCTION OF COPPER, CHROMIUM AND ARSENIC FROM

TANNERY AND TIMBER TREATMENT EFFLUENTS

4.1	INTR	ODUCTION		46
4.2	MAT	ERIALS USE	D	47
	4.2.1	Industrial wa	astes	47
		4.2.1.1	Pinus bark	47
		4.2.1.2	Fluidised bed boiler ash	48
		4.2.1.3	Flue gas desulphrisation gypsum	48
	4.2.2	Natural reso	urces	49
		4.2.2.1	Zeolite	49
		4.2.2.2	Peat soil	49
		4.2.2.3	Tokomaru and Egmont soil	50
	4.2.3	Combination	a of materials	50
	4.2.4	Chemicals us	sed	50
4.3	MET	HODS USED		51
	4.3.1	Measuremen	t of Cu, Cr and As	51
	4.3.2	X-ray diffrac	ction study	51
	4.3.3	Retention of	Cr by <i>Pinus</i> bark	52
		4.3.3.1	Surface area measurement	52
		4.3.3.2	Pre-treatment of <i>Pinus</i> bark	53
			A. Acid treatment	53
			B. Alkali treatment	53
			C. Formaldehyde/Acid treatment	54

		4.3.3.3	Batch adsorption at low and high	
			concentration of Cr	54
		4.3.3.4	Speciation of Cr adsorbed by the bark	55
	4.3.4	Batch adsorp	otion for Cu, Cr and As	56
	4.3.5	Adsorption i	sotherms for Cu, Cr and As	56
	4.3.6	Leaching exp	periment for Cu, Cr and As	57
4.4	RESU	LTS AND DI	SCUSSION	59
	4.4.1	Retention of	Cr by <i>Pinus</i> bark	59
		4.4.1.1	Effect of surface area of bark on	
			Cr adsorption	59
		4.4.1.2	Effect of Pre-treatment of bark on	
			Cr adsorption	60
		4.4.1.3	Speciation of Cr adsorbed by the bark	62
	4.4.2	Batch adsorp	otion of Cu, Cr and As	63
		4.4.2.1	Tannery effluent	63
		4.4.2.2	Timber treatment effluent	66
		4.4.2.3	Mechanism of heavy metal reduction	
			in the effluents	67
			A. Precipitation by FBA	67
			B. Pinus bark retention	68
			C. Peat soil retention	68
	4.4.3	Combination	of materials - Batch adsorption	70
	4.4.4	Adsorption is	sotherms for Cu, Cr and As	72
		4.4.4.1	Chromium (III)	72

х

		4.4.4.2	Copper	72
		4.4.4.3	Chromium (VI)	72
		4.4.4	Arsenic	76
	4.4.5	Leaching exp	periment for Cu, Cr and As	76
		4.4.5.1	Tannery effluent	76
		4.4.5.2	Timber treatment effluent	78
4.5	CON	CLUSIONS		80
	4.5.1	Tannery effl	uent	80
	4.5.2	Timber treat	ment effluent	81
	4.5.3	Disposal of t	he heavy metal retained materials	81

CHAPTER 5

IMMOBILISATION OF CHROMIUM IN CONTAMINATED SOIL

5.1	INTR	ODUCTION		82
5.2	MAT	ERIALS AND	METHODS	83
	5.2.1	Soil Cr levels		84
	5.2.2	Soil amendm	ents	84
	5.2.3	Plant used		84
	5.2.4	Pot experime	nt	85
	5.2.5	Plant analysi	S	85
	5.2.6	Soil analysis		86
		5.2.6.1	Soil pH	86
		5.2.6.2	Soil Cr sequential extraction	86

xi

			А.	Water soluble Cr and	
				Cr (VI) in soil	87
			B.	Exchangeable Cr	87
			C.	Organic bound Cr	88
			D.	Fe/Mn oxide bound Cr	88
			Е.	Residual Cr	88
5.3	RESU	LTS AND DI	SCUSS	SION	89
	5.3.1	Plant growth	L.		89
		5.3.1.1	Effect	t of soil Cr on germination	91
			А.	Soil Cr (III)	91
			B.	Soil Cr (VI)	91
		5.3.1.2	Effect	t of soil Cr on dry matter production	91
			Α.	Soil Cr (III)	93
			B.	Soil Cr (VI)	93
		5.3.1.3	Effect	t of soil Cr on leaf area	93
			A.	Soil Cr (III)	93
			B.	Soil Cr (VI)	95
	5.3.2	Plant analysi	is		95
	5.3.3	Soil analysis			98
		5.3.3.1	Effect	t of soil Cr on pH of the soil	98
			А.	Soil Cr (III)	98
			B.	Soil Cr (VI)	100
		5.3.3.2	Soil C	Cr sequential extraction	100

xii

A .	Soil Cr (III)	101
A.		1

B. Soil Cr (VI) 104

5.4 CONCLUSION

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1	LITERATURE REVIEW	110
6.2	CASE STUDIES	111
6.3	REDUCTION OF HEAVY METAL CONCENTRATION	
	FROM THE TANNERY AND TIMBER TREATMENT	
	EFFLUENTS	111
6.4	IMMOBILISATION OF CHROMIUM IN	
	CONTAMINATED SOIL	113
6.5	RECOMMENDATIONS FOR FUTURE WORK	114

Table 2.1	Threshold levels of As, Cr(III), Cr (VI) and Cu on	
	soils in some developed countries.	13
Table 2.2	Concentration of Cu, Cr & As at CCA contaminated	
	sites in New Zealand.	15
Table 2.3	Preferred options for remediating a contaminated.	25
Table 2.4	Offsite soil treatment options.	28
Table 2.5	Treatment technologies available for soils contaminated	
	with inorganic compounds.	29
Table 3.1	pH, EC and Na and Cr concentration of the tannery	
	effluent.	36
Table 3.2	pH, EC and Na and Cr concentration of the	
	soil samples.	36
Table 4.1	Characteristics of natural resources used.	49
Table 4.2	Retention of Cr (III) and Cr (VI) by untreated Pinus	
	bark and pre-treated Pinus bark at low concentration	
	(30 mg Cr/L).	60
Table 4.3	Retention of Cr (III) and Cr (VI) by untreated Pinus	
	bark and alkali treated bark at high concentration	
	(3200 mg Cr (III)/L and 1100 mg Cr(VI)/L).	61
Table 4.4	Speciation of Cr solution using activated aluminium	
	oxide.	62
Table 4.5	Speciation of Cr (VI) solution which was treated with	
	Pinus bark.	63
Table 4.6	Freundlich equation describing the adsorption	
	data for Cr (III), Cr (VI), Cu and As.	73
Table 5.1	Sequential extraction of soil Cr (III).	102
Table 5.2	Concentration of Cr (VI) in the water soluble fractions.	104
Table 5.3	Sequential extraction of in the Cr (VI) contaminated soil.	105

LIST OF TABLES

LIST OF FIGURES

Figure 2.1	Chemical bonding between Cr salt and hide protein.	12
Figure 2.2	Simplified processes of Cr fixation onto hide and timber.	13
Figure 2.3	Chrome recycling drum system.	16
Figure 2.4	Chemical transformation of As in soils.	24
Figure 3.1	Current treatment of the tannery effluent before	
	discharging into the soil.	33
Figure 3.2	The CCA timber treatment process using vacuum.	
	and stream drying after timber treatment.	44
Figure 4.1	Adsorption of Cr (VI) as measured by K-value	
	for different size fractions of Pinus bark.	59
Figure 4.2	Batch adsorption using various materials for Cr (III)	
	in the tannery effluent.	64
Figure 4.3	Batch adsorption for various materials for Cu (II)	
	in the timber treatment effluent.	64
Figure 4.4	Batch adsorption for various materials for Cr (VI)	
	in the timber treatment effluent.	65
Figure 4.5	Batch adsorption for various materials for As (V)	
	in the timber treatment effluent.	65
Figure 4.6	Cumulative adsorption by various materials for timber	
	treatment effluent.	67
Figure 4.7	XRD pattern showing the peaks for gypsum -G -	
	(CaSO 4. 2 H2O) and sodium chloride (NaCl).	69
Figure 4.8	Batch adsorption using combination of effective	
	materials for tannery effluent.	71
Figure 4.9	Combination batch adsorption using various materials	
	for timber treatment effluent.	71
Figure 4.10	Adsorption isotherm of various effective materials	
	for Cr (III).	74
Figure 4.11	Adsorption isotherm of various effective materials	
	for Cu (II).	74

Figure 4.12	Adsorption isotherm of various effective materials	
	for Cr (VI).	75
Figure 4.13	Adsorption isotherm of various effective materials	
	for As (V).	75
Figure 4.14	Breakthrough curves for Cr (III) in the tannery	
	effluent.	77
Figure 4.15	Breakthrough curves for Cu (II) in the timber	
	treatment effluent.	77
Figure 4.16	Breakthrough curve for Cr (VI) in the timber	
	treatment effluent.	79
Figure 4.17	Breakthrough curve for As (V) in the timber	
	treatment effluent.	79
Figure 5.1	Effect of soil Cr on the dry matter production.	92
Figure 5.2	Effect of soil Cr on leaf area.	94
Figure 5.3	Plant uptake of Cr grown on unamended and FBA,	
	lime and Pinus bark amended soils.	96
Figure 5.4	Relationship between plant Cr levels and dry matter	
	production at varying levels of soil Cr grown on	
	unamended and FBA, lime and bark amended	
	soils (Except for the bark amended soil, there was	
	no growth above the soil Cr(VI) level of 300 mg/kg	
	in all the soils).	97
Figure 5.5	Effect of soil Cr addition on pH as measured in	
	deionised water () and KCl (_) for	
	the various soil amendments.	99
Figure 5.6	Comparison of sequential extraction of soil Cr at	
	low (300 mg/kg) and high soil Cr (3200 mg/kg)	
	levels in the Cr (III) contaminated soil.	103
Figure 5.7	Comparison of sequential extraction of soil Cr at	
	low (300 mg/kg) and high soil Cr (3200 mg/kg)	
	levels in the Cr (VI) contaminated soil.	107

xvi

LIST OF PLATES

Plate	3.1	Chromium precipitation tank, used to recycle	
		Cr into the tannery at J.D.Wallace tannery, Waitoa.	39
Plate	3.2	Discharge of untreated tannery effluent with high Cr	
		concentration (3200 mg/L) into a public sewage system,	
		from a tannery in Wanganui.	39
Plate	3.3	Groundwater sampling in a timber treatment plant,	
		Tangimona.	41
Plate	3.4	CCA treatment chamber with steam drying facility	
		for drying the the freshly treated timber.	41
Plate	3.5	Freshly treated timber at the Carter Holt Harvey timber	
		treatment plant, Marton (after steam drying).	45
Plate	3.6	CCA drips from freshly treated timber in a timber	
		treatment plant (without steam drying).	45
Plate	5.1	Difference in the plant growth between Cr (III) and	
		Cr (VI) contaminated soil.	90
Plate	5.2	Effect of FBA, lime and Pinus bark amended soil in	
		remediating soils contaminated with low (300 mg/kg)	
		and high (3200 mg/kg) Cr levels.	108