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ABSTRACT

This study investigated how pervaporation could be incorporated into hybrid schemes for
purifying ethanol produced from whey of fusel oils and whether this could be achieved at
a lower energy cost than distillation alone whilst maintaining product quality within
specification. In order to achieve these objectives the project included: investigation of
fundamental pervaporation mechanisms and the influence of operation parameters,
simulation of the distillation train at the New Zealand Distillery Co. Ltd. (NZDCL)
including pervaporation relationships developed during this study, and pinch analysis of

the NZDCL.

Aqueous solutions of 5 to 20% w/w ethanol with approximately 1% w/w of a mixture of
n-propanol, i-butanol, n-butanol, i-amyl alcohol and ethyl acetate were pervaporated
through a disk apparatus fitted with either poly-ether-block-amide (PEBA) or
poly(dimethyl siloxane) membranes. Similar solutions were sorbed into PEBA beads for

the study of sorption.

A new, semi-empirical relationship between enrichment factor of alcohols during
pervaporation and their molecular size and activity coefficient in the feed stream was
proposed. It was observed that for organophilic membranes, sorption generally sets the
enrichment factor while the influence of diffusion becomes relevant only when the
distribution range of the size of the molecules involved is quite large. In consequence, it
1s recommended that the study of sorption and diffusion relationships between solvents and
dense polymers be given priority as they are relevant for the fast development of this

technology.

During pervaporation, the temperature of the feed atfected mainly the process economics,
as an increase in temperature resulted in an exponential increase in the total flux, without

significantly changing the product composition.



The flux of the minor components studied was independent of the total flux through the
membrane except for the i-amyl alcohol, which had its flux influenced by the total flux

possibly due to its higher concentration.

For the removal of fusels from the fermentation broth with organophilic membranes, all
three commercially available membranes investigated presented similar enrichment factors
and, compared to evaporation, did not significantly improve the separation of fusels from
ethanol. The membranes investigated differed amongst each other with respect to their
total flux; the higher the flux through the membrane, the lower the membrane area required

for a specific separation.

Hydrophilic membranes were used to remove the water fraction at an earlier stage of
distillation. Simulation and experiments of the new process showed that it was possible to
reduce design complexity and energy expenditure by approximately ten percent. This

process could become economically feasible if membrane price dropped by over 60%.

Pinch analysis and simulation results of distillation were combined to investigate
immediate opportunities to reduce energy usage at NZDCL. Changes in the heat exchanger
network and in the distillation feed temperature could reduce production costs (steam

usage) without compromising product quality and plant flexibility.
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