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Abstract

In this thesis, we present the state-based adaptive power control (S-APC) protocol that is
aimed to reduce energy consumption in low power wireless sensors while maintaining an
application specific packet success rate requirement. The state-based approach is unique
of its kind that dynamically adapt to the varying path losses caused by the movement of
mobile sensors, by obstructions appearing between the stationary sensor and the base-
station and movements of objects or humans in between two communicating stations.
Since the primary reason for a drop in transmitted packets is the poor signal-to-noise
ratio, it is important for the sensor to select a set of RF transmission power levels that will
deliver the packets within a specified error rate while using the least amount of energy. In
a battery-powered wireless sensor node, the use of ARQ (Automatic Repeat reQuest)
protocol will lead to retransmissions when an attempt to send a packet fails. The
proposed adaptive protocol does not use received signal strength indication (RSSI) based
beacon or probe packets nor does it listen to the channel before transmitting for channel
estimation. The use of the proposed S-APC protocol is not limited to only sensor
network. It is applicable to any kind of radio communication when the transmitting radio
frequency (RF) modules have configurable output power and options for retransmission.
This proposed protocol can comfortably work on top of existing MAC protocol that is
contention based and listens to channel before transmitting.

The hardware used for evaluating the protocol parameters is the nRF24L01p transceiver
module from Nordic Semiconductor Inc. This radio module is cheaper than other
modules that provide the RSSI values to the chip and the application of the adaptive
power control protocol can further reduce the overall deployment and running cost of a
sensor network.

The proposed protocol is designed to respond to an unknown and variable radio channel
in an energy-efficient manner. The adaptive protocol uses past transmission experience or
memory to decide the power level at which the new packet transmission will start. It also
uses a drop-off algorithm to ramp down power level as and when required. Simulation
has been used to compare the performance with the existing RSSI and non-RSSI based
adaptive power control protocol. Results have shown that when the channel condition is
between average and poor (ratio of bit energy (Ep) and noise power spectral density (No)
is less than 20 dB), the RSSI based adaptive protocol consumes 10-20% more energy.
Following the simulations, exhaustive experimental trials were done to compare S-APC
with the existing protocols. It was found that there can be an increase of energy efficiency
up-to 33% over fixed power transmission. This protocol could be applied in mobile
robots that collect data in real time from sensors and transmit to the base station as well
as to body wearable sensors used for monitoring the health conditions of patients in a
health facility centre. Overall, this adaptive protocol can be used in radio communication
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where the channel has dynamic temporal and spatial characteristics to enhance the
lifetime of battery powered wireless sensors.
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Figure 21. The transmit mode curve showing the current consumption during transmission, reception of
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Figure 30. Distance = 14 m. Transmit Power = -6 dBm. Comparison of packet success rate (PSR), average
number of retries and energy used per successful transmission with 4 partitions in between the
transmitter and the hub (receiver). The software delay has reduced the average number of retries
significantly by 87%. The reduction in cost due to software delay is approximately 10 %. This small
difference in costs is due to marginal change in PSR (~99-100%). In terms of average number of
retries values and energy expenditures, there is no significant difference between delays of 19 ms
Lo Lo I o XU 80

Figure 31. Distance = 14 m. Transmit Power = 0 dBm. Comparison of packet success rate (PSR), average
number of retries and energy used per successful transmission with 4 partitions in between the
transmitter and the hub (receiver). The software delay has reduced the average number of retries
significantly by 79%. The reduction in cost due to software delay is around 3 %. This small difference
in costs is due to comparable PSR value of both types of delays. The average number of retries values
and energy expenditures when software delays of 19 ms and 34 ms are used are same. ................. 81

Figure 32. Distance = 24 m. Transmit Power = -6 dBm Comparison of packet success rate (PSR), average
number of retries and energy used per successful transmission with 5 partitions in between the
transmitter and the hub (receiver).There is a huge jump in the PSR from ~30% (hardware) to ~50%
(software). The software delay has reduced the average number of retries by ~25%. The reduction in
cost is around 47 %. Very small differences are observed in the average number of retries values and
energy expenditures when software delays of 19 ms and 34 ms are Used. ............ccccuveevvvveesiveenennnnnn 82

Figure 33. Distance = 24 m. Transmit Power = 0 dBm Comparison of packet success rate (PSR), average
number of retries and energy used per successful transmission with 5 partitions in between the
transmitter and the hub (receiver). The software delay has reduced the average number of retries by
more than 50%. The reduction in cost is around just around 28 %. Marginal differences are observed
in the average number of retries values and energy expenditures when software delays of 19 ms and
B4 NS GIE USEU. ..ottt ettt ettt ettt ettt st e s bt e s ate e bt e eabe e bt e s abeesbbesateesaeeenbeenateenreeean 82

Figure 34. Distance = 20 m. Transmit Power = -6 dBm Comparison of packet success rate (PSR), average
number of retries and energy used per successful transmission with 4 partitions in between the
transmitter and the hub (receiver). The software delay has reduced the average number of retries by
9%. The significant reduction in cost due to software delay is due to the PSR value getting doubled
when software delays are used. The average number of retries values and energy expenditures when
software delays of 19 ms and 34 ms are used are practically equal. ............cccocovevveeeviienieencieesennnnnnn 83

Figure 35. Distance = 20 m. Transmit Power = 0 dBm Comparison of packet success rate (PSR), average
number of retries and energy used per successful transmission with 4 partitions in between the
transmitter and the hub (receiver). The software delay has reduced the average number of retries by
75%. The reduction in cost due to software delay is 18% due to the small change in the PSR value.
The average number of retries values and energy expenditures when software delays of 19 ms and
34 ms are used are pPractically @QUAL. ..............ccoeoccueieieeeiieee e e e e e et s 83

Figure 36. The energy cost per successful transmission of the calculated and measured data is plotted
against the PSR. A high correlation of 0.9998 validates the mathematical model. The measured or
the experimental values correspond to the software delay between retry of 19 ms when packets are

assumed to be independently affected by fading channel condition. ..............ccccccvevevveviiveenceeencnennnn 88
Chapter 5
Figure 37. State transition diagram of the adaptive algorithm..............cccoocveiiiiiiiiiiiiniieere et 90

Figure 38. The curves behave differently depending on the value of R. Low R value indicates slow back off
while high R indicates fast back off. When the number of successes is 0, the probability of transition

School of Engineering and Advanced Technology, Massey University Xii



Non-RSSI based energy efficient transmission power control algorithm for low power indoor wireless
sensor networks

is 0. This drop-off algorithm takes into account of all the previous successes indicating that it uses

memory information while dropping-0ff As Well. ............cccoveeiiieeiiieiiiiee e 93
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Figure 50. Distance 15m. Large gathering of people. Number of partition type | = 3, Number of partition
type Il = 1. Comparison of the efficiency and average cost of successful transmission based on the
PSR and data collected during a gathering in a house. The minimum energy consumption of fixed
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energy than the fixed power transmission at 0 dBm when R = 0.5.The protocol efficiencies of both
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Figure 62. Random Walk 5: Comparison of the PSR, protocol efficiency based on the minimum average cost
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