
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

1

Appendix K Application of the analytical framework

This appendix describes five agile methods, DSDM, XP, Scrum, ASD and Crystal Methods,

using the comparative analytical framework described in Chapter 4. The source for the method

description is the major publication listed for each method in its identifier table. Opinions or

statements not made by the method author listed in the identifier are clearly stated as my own

opinion or referenced to another source.

Table of Contents for Appendix K

1 Dynamic Systems Development Method..2

2 Extreme Programming ..13

3 Scrum ..25

4 Adaptive Software Development ..36

5 Crystal Methods ..50

Bibliography for Appendix K ...61

List of Figures

Figure 1: DSDM process diagram from the DSDM Consortium ("Dynamic Systems

Development Method Ltd.; the DSDM lifecycle", 1997 - 2005)......................................9

Figure 2: XP values, principles, activities and practices (Beck, 2000)...........................18

Figure 3: XP practices and their interactions from Beck (2000, p. 70)20

Figure 4: Empirical Management Model (Schwaber & Beedle, 2002, p. 101)28

Figure 5: Summary of Scrum phases adapted from Schwaber & Beedle (2002, p. 8) ...33

Figure 6: The Detailed Adaptive Life Cycle (J. A. Highsmith, 2000, p. 85)..................44

Figure 7: Characterising projects by communication load and criticality53

Figure 8: Cockburn’s model of concurrent development (Cockburn, 2002, p. 132)58

List of Tables

Table 1: Identification of the source material for DSDM...2

Table 2: Identification of the source material for XP ...13

Table 3: Project risks and how they are addressed in XP. Adapted from Beck (2000) 16

Table 4: Identification of the source material for Scrum ..25

Table 5: Project risks and how they are addressed in Scrum..27

Table 6: Identification of the source material for ASD...36

Table 7: Identification of the source material for Crystal methods50

Table 8: Cockburn’s Crystal methods (Cockburn, 2002) ...59

2

1 Dynamic Systems Development Method

Identifier

Table 1: Identification of the source material for DSDM

Method Name

Alternative(s)

Dynamic Systems Development Method

DSDM

Author Jennifer Stapleton

Date of first publication 1995 ("Dynamic Systems Development Method, Version 2", 1995)

Major publication Stapleton (1997)

This source was selected because it contains “the essential foundations
of DSDM that are not expected to change in future versions” (Stapleton,
1997, p. xi)

Country of origin United Kingdom

Philosophy

Paradigm

This method is primarily objectivist as there is an assumption that a software product will be

produced. The subjectivist component of the method is shown in the concern for the people

who will work with the system.

Assumptions and values

The stated assumptions are:

� Development is a team effort. It must combine the users’ knowledge of the business

requirements with the technical skills of IT professionals.

� High quality demands fitness for purpose as well as technical robustness.

� Development can be incremental. Not everything has to be delivered at once, and

delivering something earlier is often more valuable than delivering everything later.

� The law of diminishing returns applies- resource must be spent developing the features

of most value to the business.

� DSDM is about people not tools. It is about truly understanding the needs of the

business and delivering solutions that work – and delivering them as quickly and as

cheaply as possible (Stapleton, 1997, p. xiv).

These assumptions are formalised in a set of nine principles:

1. Active user involvement is imperative. This is the most important principle. There are ‘a

few knowledgeable users who support and participate in the development team throughout

3

the project’ (ibid, p. 11). This involvement is continuous and is designed to reduce

communication problems between users and developers regarding requirements.

2. DSDM teams must be empowered to make decisions. The main constraint to team-level

decision making is the budget, but within that constraint frequent small decisions should be

made by the team.

3. The focus is on frequent delivery of products. This may be weekly and consist of

functioning software or other artefacts of development. The delivered artefact does not

need to be complete. Frequent delivery ensures that the delivered product meets the needs

of the users and helps manage control of the process.

4. Fitness for business purpose is the essential criterion for acceptance of deliverables. This

is to avoid the problem of ‘gold-plated’ solutions that attempt to cover all possible user

needs.

5. Iterative and incremental development is necessary to converge on an accurate business

solution. Systems evolve using this method, a subset of functionality is delivered early to

the user and additional functionality is developed in further passes of the process. Having a

user in the team ensures fast feedback on the work quality and that errors are captured early.

6. All changes during development are reversible. It is accepted to discard or rework any

project artefact which does not meet its intended purpose.

7. Requirements are base lined at a high level. The requirements captured in the business

study become the agreed high-level scope of the project. To provide project control these

broad requirements are gathered and ‘frozen’ (left unchanged), prototyping is then used to

elaborate the detail of requirements during process iterations.

8. Testing is integrated throughout the lifecycle. “Test as you go” (ibid, p. 16) is possible

because of the early and constant delivery of software (partial system components). All

forms of testing are carried out incrementally throughout the project.

9. A collaborative and cooperative approach between all stakeholders is essential. This

includes relationships between users, developers, parts of the business, IT organisations

(both internal and external), purchasers and suppliers. Compromise is considered important

when negotiating new functionality within budgetary and time constraints as some

functionality must be left out as new functionality is discovered.

4

Perspective

The method “addresses the needs of all participants in RAD: project manager, developers, end

users, user management and quality assurance personnel.” (ibid, p. xiv). The method is even-

handed in its perspective and takes no one viewpoint.

Objectives

DSDM is designed to provide a controlling framework for Rapid Application Development

(RAD) tools and techniques. The framework has all of the characteristics of a method, but the

description of how to use it is stated at a high level so that users can tailor the method to any

technical or business environment.

A primary goal of the method is to shorten development times and to deliver what will have the

greatest business benefit first. One stated aim is to provide “a way of developing application

systems that truly serve the needs of the business” (ibid, p. xiii).

DSDM also aims to remove the ‘quick and dirty’ image of RAD. This is achieved by using

techniques designed to deliver only what is needed, on time and at an agreed level of

maintainability. There are three maintainability (quality) levels. The level of each project is

decided at the start of development. The levels are:

1. The system must be maintainable from its first delivery into the operational

environment.

2. Maintainability is not initially guaranteed, but will be addressed after delivery.

3. The system is a temporary solution and therefore will not be maintainable. The

developers reserve the right to remove the system from production once it has served its

immediate purpose.

In addition “DSDM is more than anything about improving communications between all parties

involved in the development of a system” (Stapleton, 1997, p. 65).

In conclusion DSDM has the objectives of providing a structured, framework for RAD

techniques in order to shorten development time and provide the required system at a negotiated

level of quality.

Domain

The domain of this method is computationally straightforward business problems with high user

interface needs.

5

Target

“There are classes of system to which the method is most easily applied” (ibid, p. 19).

Size of project – small and large, but large projects must be able to be split into functional

components for incremental delivery.

Type of problem – business problems

Type of organisation – not specified

Size of organisation – large or small

Type of development – not specified

Type of application – interface intensive business systems

Technology environment – not specified

The method states specific criteria which should be met before DSDM is considered:

1. Functionality is reasonably visible at the user interface. This makes user verification of

the system using prototyping a more useful method for requirements gathering.

2. All classes of end users can be identified. This is because it is considered essential in

this method to have a representative of the potential end user population working

alongside the development team at all times. The aim is to have complete coverage of

all relevant user views within the development team.

3. The application is computationally straightforward (not complex).

4. Large applications can be meaningfully split into smaller functional components.

5. The project is time constrained.

6. The requirements are flexible and specified at a high level.

There is a ‘suitability filter’ published in the DSDM Manual ("Dynamic Systems Development

Method, Version 2", 1995) which is a series of questions to consider the use of the framework.

This list however does not give a definitive answer to whether the method should be used or

not, rather it raises questions, the answers to which provide useful project information for

planning purposes. The filter has questions about the business, the system to be developed and

technical considerations.

Model

The primary model is readable, well-documented code; no other model is specified in DSDM.

The creation of any type of models, structured or object-oriented, is acceptable. A minimal and

essential set of analysis, design and test documents are defined by the team at the start of

development and they are reviewed as development progresses. It is acceptable to create

6

additional support models and documents but they should not be reviewed. Recommended

documents are a system overview, a context diagram showing the systems interfaces with other

systems, a description of system components and how they are linked, the physical data

structures and the design decisions that were taken and why.

Techniques

Stapleton states “There are no prescribed techniques, but suggested paths are supplied for

implementers of both structured and object-oriented approaches” and in addition “DSDM

describes project management, estimating, prototyping, timeboxing, configuration management,

testing, quality assurance, roles and responsibilities (of both users and IT staff), team structures,

tools environments, risk management, building for maintainability, reuse and vendor/purchaser

relationships”. (ibid, p. xiv).

Evolutionary prototyping is a fundamental technique which is controlled using documented

evaluation criteria and timeboxing. It is used to overcome the problem of communication

between IT people and business people and resolve the requirements to a fine level of detail by

clarifying the interface, its look, feel and properties. The prototype is not a traditional “throw

away” type, but is a partial system component elaborated in increments until it becomes the

final system. Different types of prototype are defined: business prototypes to demonstrate

business functionality, usability prototypes for investigating the HCI aspects of the system,

performance and capacity prototypes for workload assessment and capability/design prototypes

for trying out a particular design approach. The prototype is always accompanied by a review

document where user feedback is recorded by a scribe.

Iteration is another technique used in DSDM and a timeboxing technique is used to control the

iterations. Incremental delivery is a technique that is accepted as necessary in DSDM but it is

not discussed in any detail. It is expected that a full set of system artefacts is produced at each

increment including a complete and consistent set of documentation, working software, user

manuals, and training materials.

Analysis and design techniques are not specified in the method, only how to manage such

activities. Time management is given detailed consideration in DSDM because it is important to

complete the project is short time frame. In order to keep to a strict time frame the following

practices are recommended:

� “The aim should be to work within the normal working day and keep weekends and

evenings free” (ibid, p. 26).

7

� The scope of the project is clearly agreed and documented in a business study carried

out at the start of the project. If new functionality is added than some other

functionality is removed to maintain time and budget limits.

� Regular and frequent team meetings are used to ensure development is on track. Daily

meetings are recommended which take no longer than ½ hour.

� Development only includes what is absolutely necessary to the business users.

A technique called MoSCoW rules is used for prioritising requirements. All requirements are

assigned a priority of; must have, should have, could have, want to have but will not have this

time round. This prioritisation is used to decide what will be achieved in each time box.

Priority is based on considerations of the importance of the business requirements, technical

risk, and the difficulty of the task for the developers.

Each project is divided into a series of timeboxes which control the development of

functionality and iterations. Each timebox has a start and end date and consists of a list of

prioritised functionality. The timebox is controlled using a three stage process of:

� Investigation – considers the status of previous timeboxes and any work that impacts on

this new timebox. What is to be produced in the timebox according to the set priorities

is decided, priorities are reviewed to check that they are still correct and quality criteria

for deliverables are set.

� Refinement – this is the stage when development is carried out.

� Consolidation – this stage is used to ensure that all deliverables and quality criteria

(tests) have been met for this timebox.

Each stage has an objectives-setting meeting at the beginning and another meeting at the end to

check that objectives have been met. To control each stage, forms checklists and descriptions of

objectives are use. Each timebox contains a mix of priorities to provide some flexibility if

things are not completed or problems arise.

Joint Application Development (JAD) is a meeting of stakeholders to discuss and agree on

project details such as requirements definition, prioritisation of requirements, prototyping the

user interface, and benefits analysis.

Stakeholder training in DSDM principles and practices is recommended. Team and user

collocation is another technique recommended in DSDM to maintain effective communication

and reduce the need for formal documentation. Testing occurs in each timebox and includes

unit, integration, system, acceptance and regression tests. Testing is carried out by the team

(user or developer) and is not passed to a third party. Automated testing is recommended.

8

Metrics are collected to determine project progress and time spent on the various activities. The

data can be gathered using a questionnaire and the results graphed and publicly displayed.

There are no proscribed metrics.

Tools

The ideal support environment consists of automated testing tools, configuration management

tools and documentation production tools. These tools should be an integrated set, although the

author states that this integrated set is not available at the time of writing. The set is listed as:

1. Common user interface (presentation integration).

2. Development tools - including tools for requirements analysis, system prototyping,

design, construction, testing, and reverse engineering

3. Requirements management tools

4. Configuration management tools

5. Project/process management tools

6. Documentation tools

7. Shared repository (data integration)

8. Virtual operating environment (platform integration)

Scope

The development process has five phases as shown in Figure 1.

1. Feasibility study

This is a traditional assessment of the feasibility of the project but is very brief (two weeks

are recommended) and includes an assessment of the feasibility of using DSDM for this

particular project. The feasibility study also includes an outline plan and a ‘fast prototype’

(ibid, p. 5) to provide evidence of the technical feasibility of the project.

2. Business study

This study provides understanding of the business and technical constraints, the business

processes to be automated and the information needs of the new system. JAD sessions are

held to gather initial high level requirements for this study and to prioritise the

requirements. The content of the study can be changed as the project progresses and as the

need arises. The contents are:

9

Business Area Definition: describes at a high level the processes to be automated, the

business users who will be affected by the system, the prioritisation of the business

requirements and initial system models.

System Architecture Definition: describes the development and target platforms and the

software architecture, its major components and interfaces.

Outline Prototyping Plan: defines the prototyping strategy and the configuration

management plan.

Figure 1: DSDM process diagram from the DSDM Consortium ("Dynamic Systems

Development Method Ltd.; the DSDM lifecycle", 1997 - 2005)

3. Functional model iteration

This iteration consists of the creation of analysis models, software components, and

prototyping activities. Each iteration has four activities: identification of tasks, agreement

of task allocation, carrying out tasks, and a review of the completion of tasks (document

review, prototype demonstration and software testing).

 Contents:

 Prioritised functions

 Functional prototyping review documents

 Non-functional requirements

 Risk analysis of future development

4. System design and build iteration; this is when the system is refined to standard suitable for

implementation. The activities of the functional model iteration are continued.

10

5. Implementation; this is when the system is installed into the operational environment, users

are trained, a User Manual and Project Review Document are produced and

recommendations for future system refinement are documented. If further work is needed

the project returns to an earlier phase to complete the work.

The feasibility and business study are carried out sequentially at the beginning of project. The

latter phases are iterative; their exact progress depends on individual project needs.

Output

The output is a fully functional system which meets user requirements and includes

documentation suitable for maintenance purposes, training schemes and user manuals.

The main product is working software of an agreed quality. In addition a series of documents

that explain the project, and enough models and documents to enable maintenance to be carried

out at a more sophisticated level than studying the code, are produced.

Practice

Background

DSDM is formulated and controlled by a UK- based not-for-profit consortium of organisations

of all types who are involved in RAD development of software systems. The consortium was

formed in 1994. DSDM is a practitioner-based methodology.

DSDM and standards

TickIT

DSDM can be used in the TickIT environment. TickIT is a UK scheme which provides

certification and third party auditing procedures around the ISO 9001 standard and ISO9000-3

notes for guidance for software development. The British Standards Institution produces a

specific guide for the application and assignment of DSDM in a TickIT environment.

CMM

DSDM can help an organisation achieve a CMM (Capability Maturity Model) process maturity

level of 2 (the repeatable process level) according to the DSDM Consortium.

11

DSDM certification

A six month course is available for IT staff which is conferred jointly by the Consortium and the

countries examining body.

Roles and responsibilities

The development team consists of user representatives, developers and project management

staff. Individual roles specified are:

Senior developer; leads the team and is experienced in RAD techniques. Sets timeboxes, carries

out analysis, design, coding and testing (component tests, integration tests, regression tests).

Developer; a less experienced senior developer

Technical coordinator; defines system architecture, ensures system quality, maintains technical

controls (such as configuration management). Normally a senior technical expert.

Ambassador user; participates in prioritisation of functionality, provides communication

between the user group and the developer team and carries out acceptance testing. This

representative comes from the community that will use the system.

Advisor user; anyone who has an interest in the final system. They have an ad hoc role in

providing business requirements for the project and supplement the knowledge provided by the

Ambassador user in specialist areas.

Visionary; this person is responsible for defining and championing the new system. They

clearly see the business need for the system and participate in the feasibility and business study

phases.

Executive sponser; the ultimate controller of the finances of the project and the final decision

maker.

Project manager; “the autocratic project manager has no place heading up a DSDM project”

(Stapleton, p. 38) . This person prepares the feasibility study and the business study for the

project with input from the user representatives and other development team members. They

maintain logistic support for the project. The project manager works full time on one project.

The recommended team size is 2-6 people. A project may have up to six teams working in

parallel. Dedicated technical staff rather than part-time staff are recommended.

Difficulties with DSDM

The authors state that DSDM is unsuitable for scientific or engineering applications as it is

untried in these environments. Difficulties are likely to occur when the target environment (see

Target section above) is not present.

12

Skill levels

Each team should have the technical and business skills necessary to carry out the development

with additional specialists be called in as required. Every member of a DSDM team must be

able to work in a cooperative and collaborative way with all other members of the team and

with end users. There is no clear delineation between the various roles within a team and all

members should be capable of carrying out the main development tasks (user communication,

analysis, design, code and test).

Tailorability

“For DSDM to be successful, all of these [nine] principles must be applied in a project (ibid, p.

11). If one of them is ignored, the whole basis of DSDM is endangered. Some projects may

find that one or more of the principles is difficult to apply in which case the user of DSDM

should be seriously reconsidered. At the very least, an approach to mitigating the consequences

of non-conformance to the principles needs to be thought out” (ibid, p. 19). Although DSDM

is not tailorable at a high level tailoring is expected when it is applied to individual projects as:

“It [DSDM] is a method in as much as it defines a process an a set of products, but these have

been deliberately kept at a high level so that they can be tailored for any technical and business

environment” (ibid, p. xiv). One of the case studies in Stapleton (1997) states: “be prepared to

adapt everything [in the method] to suit the needs of the team and to play to your strengths”

(Stapleton, 1997, p. 89). I conclude from this that tailoring the method for a project is

considered acceptable as long as the overall principles are adhered to.

13

2 Extreme Programming

Identifier

Table 2: Identification of the source material for XP

Method Name

Alternative(s)

Extreme Programming

eXtreme programming, XP

Author Kent Beck

Date of first publication 1999 (Beck, 1999)

Major publication Extreme programming explained: embrace change (Beck, 2000)

Country of origin USA

Philosophy

Paradigm

“XP takes commonsense practices and principles to extreme levels” (Beck, 2000, p. xv); which

explains the name of the method.

XP is primarily objectivist because it is ‘scientific’ and disciplined (Beck, 2000, p. xvii) and is

“concerned with engineering a system to achieve its objectives” (Checkland, 1999. p. A48). It

is scientific because explicit practices are mandated and metrics are recommended. It is

disciplined in the sense that the people using the method have clearly defined roles and

responsibilities and in order for the methodology to work they must carry out these roles and

responsibilities consistently and correctly. The objectivist philosophy is also apparent in the

planning game technique which assumes a shared understanding will arise from a meeting of

developers and the systems business stakeholders. This positivist stance indicates an objectivist

approach (D.E. Avison & Fitzgerald, 1995). XP is subjectivist in that emergent properties

(“The whole is greater than the sum of the parts” (D. E. Avison & Fitzgerald, 2003, p. 557)), in

the sense of Checkland (1999, Chap 3) will occur when the principles and practices of the

method are used together, supporting each other and leading to a balance. As Beck says “The

practices and the principles work together with each other to create a synergy that is greater than

the sum of the parts.” (Beck, 2000, p. 150). Exactly what these synergistic benefits are is left

unexplored in the method description.

14

Assumptions and values

The method is built on an assumption about the ‘cost of change’ and four values. The values

are supported by fifteen principles which are implemented with twelve practices and four

activities.

In XP the belief is that the traditional ‘cost of change’ relationship is no longer valid in most

system development projects. Traditionally the cost of a change in a system rises exponentially

over time as the system moves through the phases of analysis, design, implementation and

testing. Beck believes that this assumption is no longer valid due to changes in technology such

as the use of object-oriented systems development, integrated development environments and

object databases which have reduced the impact of system changes on cost and time. If the

‘cost of change’ assumption is no longer true then making changes late in the development

process is acceptable. This assumption explains why many of the practices of XP are possible.

Once it is acceptable to make a change to the system at any time during development then

practices such as simplicity in design (you can always make a change later if it proves

necessary), acceptance of late changes to systems due to changing requirements, constant code

refactoring, and constant retesting of the code base also become acceptable.

The values of XP are communication, simplicity, feedback and courage. Communication

between the customer and the development team and communication between team members is

critical to project viability as it reduces misunderstandings and problems within the project.

Simplicity is implemented by creating the simplest coded solution to a requirement and not

designing the system for future flexibility or extension. The purpose of this is to reduce

development time. Feedback is important because it is used to assess project progress and to

ensure the system under creation is correct. Courage is needed by the development team to

make changes to code structure as and when needed, to throw away code that is not working, to

try different code designs and to communicate project problems openly with management

whenever they occur.

Further assumptions are that the important variables that act on projects are cost, time, quality

and scope. Beck assumes that any three of these variables can be controlled in a project but not

all of them at once. The customer of an XP project is asked to set the value of any three of the

variables. Then the development team adjusts the additional variable to enable the project to be

carried out. Another assumption of XP is that “Everything in software changes. The

requirements change. The design changes. The business changes. The technology changes.

15

 XP aims to reduce project risk, improve responsiveness to

business changes, improve team productivity throughout the life

of the system, to make working in teams to create software ‘fun’,

to have better relationships with customers and to have “stable,

more productive programmers”. (Beck, 2000, p. xvii)

The team changes” (Beck, 2000, p. 28) . Responding to and controlling the impact of these

changes on the development environment is a goal of XP.

Perspective

“The programmer is the heart of XP” (Beck, 2000, p. 141).

There is a programmer-centric view of development in XP. It underlies some of the reasons for

the practices used particularly those concerned with team morale and communication and 40

hour weeks.

Objectives

This statement summarises the objectives of the method. When introducing the method Beck

analyses the risk associated with software development projects and explains how XP is

designed to address these risks with appropriate practices. Table 3 shows these risks and

associated practices of XP.

The prime objectives of the method are; to develop the system as rapidly as possible; to produce

software which meets the customer’s needs and has some acceptable level of quality while

mitigating risks; to produce quality software in small efficient teams using established software

development techniques; to have high morale and a good working environment for developers.

Software quality is important. It is negotiated with the customer and supported with specific

techniques. High morale and an appropriate working environment are objectives not considered

in other methodologies. Even the participative ETHICS methodology of Mumford (1995)

makes no mention of developers although employees who will use a system are fully catered

for.

I believe the objective of the method is narrow, it does not include any strategic analysis of the

need for the system, general problem solving, the impact of the system on the business, its effect

on business productivity, or the work lives of users, all of which are addressed historically by a

variety of methodologies. The objective is to meet the customers stated business needs by

producing a software solution and no further problem analysis is undertaken.

16

Domain

XP is a specific problem-solving methodology because it is designed to enable a team of

developers and customers to produce solutions for specific business problems. There is an

underlying assumption that there is a specific problem to be addressed which is clearly specified

before the project begins.

Table 3: Project risks and how they are addressed in XP. Adapted from Beck (2000)

Software Project
Risk

How XP practice addresses the risk

Schedule slippage Short release cycles of a few months at most

1-4 week iterations within a release consisting of customer-requested features

1-3 day tasks within an iteration

Feature prioritisation carried out by customer

Project cancellation Releases are short and provide evidence of software’s usefulness

Maintenance
problems

Unit test suites developed for each code segment

Integration tests carried out daily

High initial defect
rates

Unit tests for each code segment

Integration tests daily

Customers write and carry out function tests

Business
misunderstood

Customer on-site

Late change requests acceptable

Business changes Short release cycle produces software early for feedback

False feature rich Function prioritisation reduces unnecessary features

Staff turnover Programmers estimate and complete their own work

Team contact and interaction encouraged

Collective ownership of code spreads knowledge of the system around the
team

Target

The target environment for XP is described as follows:

Type of problem to be addressed by the project –

• Projects that are not constrained by an existing computing environment

• Projects with vague requirements

• Projects with constant changes in requirements

Type of organisation for which the software is developed – any type

Type of organisation in which the software is developed – any type

Size of organisation – any size

Size of project - projects that can be carried out by two to ten programmers.

Type of development

17

• Outsourced software

• Fix-price contract software development

• In-house development

Type of application XP is designed for - application frameworks for external use, software

applications, web-based systems, shrink-wrapped software

Technology platform - Systems developed using object-oriented concepts and programming

languages.

Model

No model is specified in XP. There is an assumption that XP is used in an environment with

object-based systems development, and class models, CRC cards (Beck & Cunningham, 1989)

and sketches are mentioned. These models are intended to be used when required as an aid to

communication and understanding, otherwise any appropriate models can be used but no

guidance is provided on what models should be used. In addition there is no formal design

phase or documentation requirement specified in XP. Models are created and thrown away

once the code and its unit test are completed.

The nearest thing to a model is the ‘system metaphor’ which is used to describe the system

architecture, but its development and use is not explained in any detail.

Simple design and refactoring
1
are used in place of formal modelling. Beck specifies what he

means by ‘simple design’; this is when the system meets a specified set of constraints (in

priority order) (Beck, 2000, p. 109):

1. The system must communicate everything you want it to communicate.

2. The system must contain no duplicate code.

3. The system should have the fewest possible classes.

4. The system should have the fewest possible methods.

This set of guidelines is inadequate for most practical purposes as criteria 1, 3, and 4 are

subjective. The refactored code and its associated unit test scripts are the only artefacts of the

system which are kept.

Techniques

The techniques of XP are related to the philosophical values of courage, feedback, simplicity

and communication. Beck calls the techniques ‘practices’ so that name will be used here.

There are fifteen principles which support the values and four activities and twelve practices

1

Refactoring is the process of reworking existing code to simplify it and improve its design.

18

Values
Communication

Courage

Feedback

Simplicity

Principles
Primary Principles

Rapid feedback

Assume simplicity

Incremental change

Embracing change

Quality work

Secondary Principles

Teaching learning

Small initial investment

Play to win

Concrete experiments

Open, honest communication

Work with peoples instincts

Accepted responsibility

Local adaptation

Travel light

Honest measurement

Activities
Coding

Testing

Listening

Designing

Practices
Coding standards

Collective ownership

Continuous integration

40 hour week

Metaphor

On-site customer

Pair programming

Planning game

Refactoring

Small releases

Testing

Simple design

which are used to achieve these principles. Values, principles, practices, activities and the

relationship between them are shown in Figure 2.

Four activities are central to XP; coding, testing, listening, and designing. Coding is used to

produce the end product but it is also used as a mechanism for communication between team

members as it explains system and program logic when pair programming and it is used as a

learning mechanism for trying out different designs and structures for the system. The source

code is valuable because, along with its unit tests, it forms an ‘operational specification’ (Beck,

2000, p. 45) of the system.

The twelve practices of XP are:

Coding standards – programmers write code in accordance with rules which emphasise

communication through code readability.

Collective ownership – “anyone can change any code anywhere in the system at any time” (ibid,

p. 99). This technique is used so that knowledge about the system is shared amongst the team.

Continuous integration – the system is integrated and tested whenever a task is completed

which may be many times per day. This provides rapid feedback on system development

progress.

40 hour week – must be the norm. Never work overtime a second week in a row. This is to

reduce worker stress and low morale.

Figure 2: XP values, principles, activities and practices (Beck, 2000)

19

Metaphor – a single shared story of how the whole system works that describes the system

architecture and guides development. The system metaphor is “A story that everyone –

customers, programmers, and managers, can tell about how the system works.” (ibid, p. 179).

There are no examples or further discussion about this practice making it weakest of the XP

practices.

On-site customer – a customer is part of the team so that they are available at all times to answer

questions. This reduces the chance of misinterpreted requirements and provides rapid response

when requirements are unclear of problems occur.

Pair programming – all production code is written using two programmers sitting at one

machine. The benefits of this practice are that it improves code quality, reduces any detrimental

effects of personal ownership of code and supports a shared knowledge base throughout the

team.

Planning game – planning is carried out at the beginning of each release and each iteration

within a release. The scope of the next release is determined quickly by combining business

priorities and technical estimates.

Refactoring –programmers restructure the system without changing its behaviour to remove

duplication, improve communication (code readability), simplify, or improve flexibility.

Small releases – a simple system is put into production quickly and new versions are released

on the shortest cycle possible. The aim is to find a balance between implementing the most

valuable business requirements and the highest risk requirements first.

Testing – programmers continually write unit tests before writing the code and these tests must

run correctly before development can continue. Integration testing of units is carried out at least

daily. Customers write function tests so that features are demonstrated as complete.

Beck explains that: “The practices support each other. The weakness of one is covered by the

strengths of others.” (ibid, p. 63). How each of the practices support and interact with other

practices is explained in detail in the method (see Figure 3). There are two further practices that

are not included in the list above; metrics and room arrangements. Metrics are managed by the

tracker role, one of the major tasks for this role is to implement and manage a metrics

programme. Metrics are discussed as a mechanism for process control and feedback but only

one metric is described: “the ratio between estimated development time and calendar time”

(ibid, p. 72).

Any other metrics can be used and are posted publicly. Facilities Strategy or room layout is

also specified in the method “We will create an open workspace for our team, with small private

20

on-site customer

collective ownership

metaphor

short releases

simple design

continuous integration

refactoring

coding standards

pair

programming

40 hour week

planning game

testing

spaces around the periphery and a common programming area in the middle” (ibid, p. 77). The

reason for this is to enable pair programming and improve informal communication during

development.

Figure 3: XP practices and their interactions from Beck (2000, p. 70)

Tools

Automated unit testing tools must be available for unit testing and integration testing as without

such tools the whole method is cumbersome and impractical. This makes the availability of

such tools a fundamental requirement for successful XP adoption.

Scope

Detailed explanations of the phases needed to carry out the planning, scoping, and prioritising

of functionality into releases and iterations is provided. Phases are: (Beck, 2000, chap 21)

Exploration; this includes team formation, testing the development technology, exploring

possibilities for system architecture by prototyping, estimating task implementation times, and

practicing the technique of story writing.

21

Planning; consists of customers and developers agreeing on a date for the end of the first release

which should ideally be between 2 and 6 months long. Requirements are written by the

customer on story cards. These main stories are assigned to releases. Estimates of the length of

time for each story to be implemented are made by the developers to provide an overall estimate

of the length of the project. The customer decides which of the stories are most important and

these are implemented first. Where technical factors affect the priority then negotiation occurs

between the developer and the customer to decide on a reasonable time frame or priority for the

story. Customer involvement is crucial in the planning phase as negotiation is both mandated

and clearly described in XP.

Iterations to first release; this breaks the release into one-to-four week iterations. The initial

iteration “must result in a system that runs end-to-end, however embryonically” (ibid, p. 91).

Customers prioritise and pick the story to be implemented in each iteration. At the beginning of

each iteration the developers divide a story into tasks on task cards, a developer selects a task

and estimates the time needed to implement the task. A task typically takes 1-2 days.

Customers write functional tests for each story which are run at the end of the iteration.

Productionizing occurs at the end of the last iteration and is when releases of software occur.

Each release begins with an exploration phase and risk analysis is carried out to determine

which changes should be included in the release. Daily stand-up meetings are recommended

during releases to maintain communication amongst team members. Iterations continue and

software is evolved more slowly during this phase. Performance tuning begins along with

refactoring of the code base.

Maintenance; this is when the system is in production and is considered ‘the normal state of an

XP project’(Beck, 2000, p. 135). New functionality is produced during this phase and

refactoring continues to improve the code structure. Developers may take a ‘help desk’ role in

addition to programming. Iterations and releases continue.

Death occurs when new customer stories have stopped or for other business reasons. At this

point a brief document is produced that describes the overall system. The purpose of this is as

an aid to future maintenance or when creating similar systems.

22

In summary XP specifies a set of phases and activities such as analysis (story writing), design

(using CRC cards and refactoring), testing and writing code that are carried out during each

phase.

Output

The only outputs specified in XP are source code and associated unit tests. Any other outputs

are negotiated with the customer. The main XP product is working software. Another outcome

of using the practices is a development team with good morale. The team will also be familiar

with the method which could be considered another product. Any other product is negotiable

with the customer.

Practice

Background

XP is based on the development experience of a single author and is aimed at developers;

therefore it is a practitioner-based method. The practices used in XP are all traditional software

engineering practices except pair programming, test first development and refactoring.

Roles and responsibilities

Programmer; estimates the time needed to implement features, estimates the consequences of

technical alternatives, sets the detailed scheduling of tasks within a release, writes unit tests and

code, works as a pair programmer and communicates understanding to other programmers,

performs functional tests and integration tests.

Tester; helps customer choose and write functional tests and performs any additional types of

test.

Tracker; gathers and maintains information and metrics about the project progress. Checks that

schedule estimates for stories were correct and that scheduled iterations and releases are likely

to be met. This person also keeps a record of reported defects, defects assigned to programmers

and test cases used.

Coach; understands, implements and maintains the method and process. Implements a process

for reviewing XP practices and is normally a senior technical person.

Consultant; an expert called in to solve a particular problem.

Big Boss; hires and fires employees and takes overall control of the project.

23

Customer; sets the timing and scope of releases (defines features/functionality to be

implemented in a release), sets the relative priorities and scope of proposed features. An expert

user is recommended for this role.

Difficulties with XP

Aspects of XP that are difficult to adopt are collaboration with others in the team, and using

simple designs. These involve overcoming people’s tendency to avoid collaboration and

introduce unnecessary complexity in system structure (Beck, 2000).

Beck bases his guidelines on when not to use XP on his own experiences. The main

contraindications are: “big teams, distrustful customers and technology that doesn’t support

‘graceful change’” (Beck, 2000, p. 155) . Other detrimental environmental conditions include: a

business culture that is very hierarchical and uses command and control mechanisms for making

decisions, a culture where an explicit analysis, design or system specification must be produced

before development begins, a culture where complete documentation of a system is required, a

workplace where it is normal to spend long hours at work, or where communication between

programmers is actively discouraged and a project that needs more than 20 programmers.

Many of the practices of XP cannot be achieved easily with large teams, without customer and

management support, or with systems built without objects. Practices such as continuous

integration, planning game, and customer on-site become unmanageable as the amount of code

and the number of participants in the development increases. Large existing systems which are

complex and highly coupled are also not amenable to the practices of XP. Cultures with large

slow quality assurance processes that lengthen feedback cycles are also not recommended.

Meeting the physical environment specifications is also considered crucial to implementing XP

effectively and XP is not recommended for geographically separated teams.

Skill levels

The skill levels needed are those of average programmers. Coaches are necessary team

members and experience with the method along with previous system development experience

is needed for this role. The skill level required of the customer who joins the team is also high.

They must be capable of carrying out a number of activities in development and decision

making which require either training or experience to carry out competently.

24

Tailorability

To gain the maximum benefits from XP all practices must be adopted completely.

Contradicting this is the principle of ‘local adaptation’ which says that the method should be

adapted for local conditions. Adaptation guidelines are brief and general; initially pick the most

difficult problem; use only the planning game and test-first development practices; as each

practice is learned then adopt more practices. The only other advice is to adapt the practices to

the situation as needed, for example if the team consists of only three or four programmers then

some of the coordination practices can be omitted (e.g. the iteration planning game).

Tailoring is an accepted practice in XP, but details on how to adapt the method for various

situations is not given.

25

 3 Scrum

Identifier

 Table 4: Identification of the source material for Scrum

Method Name

Alternative(s)

Scrum

none

Author Schwaber, K. , Beedle, M.

Date of first publication Schwaber (1995)

Major publication Agile software development with Scrum

(Schwaber & Beedle, 2002)

Country of origin USA

Philosophy

Paradigm

Scrum is objectivist in that it assumes that an automated solution to the problem is needed.

Scrum consists of constant objective assessment of progress towards the goal of a completed

software project. It is subjectivist because it is concerned with the people who will create the

system and the emergent properties of the method. What these emergent properties are is not

explored.

Assumptions and values

In Scrum the assumption is that “software development is like new product development and

not like manufacturing”(Schwaber & Beedle, 2002, p. 106). Consequently software

development should not follow a repeatable and defined manufacturing process; the software

development process should involve creativity, research and learning and be managed using

empirical methods. Scrum is based on process control theory and ideas formulated in a study of

the development practices of six large Japanese and American companies who produced

innovative products during the late 1970s and early 1980s. This study by Takeuchi and Nonaka

(1986) determined six characteristics of new product development processes:

1. “Built-in instability

2. Self-organizing project teams

3. Overlapping development processes

“Scrum is based on an empirical process control model

rather than the traditional defined process control model”

(Schwaber & Beedle, 2002, p. 89).

26

4. “Multilearning”

5. Subtle control

6. Organizational transfer of learning” (Takeuchi & Nonaka, 1986, p. 138)

Takeuchi and Nonaka (1986) likened traditional sequential development methods to a relay race

and their new method to a rugby game (rugby is popular in Japan). A scrum is a technique used

in rugby to gain control of the ball.

Schwaber uses these ideas to explain the reasons for the Scrum techniques. Traditional project

management and ‘heavy weight’ systems development methodologies try to impose an abstract

repeatable process model on software development; this type of process cannot be effective for

software development when each project is unique. Scrum offers a solution to managing and

controlling software projects using an empirical process control model. This involves regular

inspection of development activities to observe the state and progress of development, and then

adjustment of the activities to produce the desired and predicted outcomes. Figure 4 shows this

empirical management model. The model illustrates how a self-organising team uses the

technology, requirements and multi-learning as input to the development process, called a

Sprint, which is controlled using observation and adjustment of progress. The output is an

increment of the total software product.

Scrum has stated values which emerge when Scrum is used; commitment, focus, openness,

respect and courage. The techniques of Scrum support these values:

Commitment – team members commit to the project because they are given autonomy to solve a

problem in whichever way they choose.

Focus – the team must be able to focus to solve a problem and Scrum gives them the

environment where this is possible by removing distractions.

Openness – there is communication and visibility for all tasks, problems, responsibilities, and

lines of authority.

Respect – all team members, who all have different skills, backgrounds, education levels and

abilities, respect one another

Courage – the team members have the courage to make decisions and to work out how to meet

the cost, schedule, quality and functionality commitments of development.

Scrum has a team-oriented philosophy shown by statements such as; “Scrum deals primarily at

the level of the team” (Schwaber & Beedle, 2002, p. 2); “Scrum is about deep social interactions

that build trust among team members”. (ibid, p. 106). The published method discusses the

effect of using Scrum on the development team which showed signs of ‘emergent properties’ of

27

hyper-productivity, and developing better solutions; “The personal lives of the people were

changed. People said they would never forget working on such a project and they would always

be looking for another experience like it. It induced open, team-oriented, fun-loving behaviour

in unexpected persons and eliminated those who were not productive from the team through

peer embarrassment” (ibid, p. 15).

Perspective

This method has a project manager and programmer team perspective of development.

Objectives

Scrum provides technological solutions in environments with certain risk factors. These risks

and associated Scrum practices are shown in Table 5.

Table 5: Project risks and how they are addressed in Scrum

Software Project Risk How Scrum practice addresses the risk

Not pleasing the customer Customer can constantly see the product

Customer on-site preferred.

Customer sees working software at least every Sprint

Sprint planning meeting used to prioritise and allocate tasks
according to customer choice

Sprint review meeting used to assess visible progress

Functionality incomplete Functionality prioritised for each Sprint. Only low priority
functionality is missed.

Poor estimating and
planning

Techniques for evaluating progress and prioritising tasks:

• Daily Scrums,

• Product Backlog

• Monthly Sprints

• Sprint planning meeting

• Sprint review meeting

Not resolving issues The management role is facilitated by attendance at daily
meetings

Not completing the
development cycle

Working software is delivered at each Sprint

Taking too much work and
changing expectations

Changes to Product Backlog not allowed during a Sprint

Scrum objectives are;

• To provide an effective alternative to traditional methodologies and processes.

• To provide techniques for estimating, planning, tracking and managing software

development projects.

28

• To form “a self-empowered team where everyone had a global view of the product

begin built” (ibid, p. 11).

• To enable teams, guided by knowledge and experience rather than a formal project plan,

to cooperate effectively to produce complex, sophisticated products.

• To provide exponential productivity gains.

• To produce working functionality within one month and in consistent increments

thereafter.

• To produce software that meets business needs.

• “to wrestle working systems from the complexity of emerging requirements and

unstable technology” (Schwaber & Beedle, 2002, p. 154).

• To act as a wrapper to other methods. Scrum has been used with XP on projects.

Scrum “is superimposed on and encapsulates whatever engineering practices already

exist” (ibid, p. 18).

Another Scrum goal is to control the four variables of development; time, cost, quality and

functionality. The first three are normally fixed for a project and the fourth is varied to meet the

goal set for an each iteration. This is done by increasing or decreasing the scope or depth of the

functionality delivered.

Figure 4: Empirical Management Model (Schwaber & Beedle, 2002, p. 101)

Process

Input Output

Control

Key
Input – requirements, technology, team

Output – incremental product built during each iteration

Control – monitoring of the project progress

Process – the thirty day iteration (Sprint)

29

“Scrum works in any environment and can scale into programming in the large”

 (Schwaber & Beedle, 2002, p. 17).

Domain

Scrum is designed to address existing well-defined problems.

Target

Type of problem to be addressed by the project –

• Projects that are complex

• Projects with vague requirements

• Projects with constant changes in requirements

Type of organisation for which the software is developed – any type

Type of organisation in which the software is developed – any type

Size of organisation – any size

Size of project - projects that can be carried out by five to nine developers.

Type of development – any type

Type of application Scrum is designed for – any type but with particular use in

• Application frameworks designed for reuse

• Software applications for web deployed wireless technologies

• Web-based systems

• Object-oriented systems

Technology platform – any

Scrum is a general method suitable for any type of development.

Model

There is no ‘model’ specified in this method. “Architecture and design emerge across multiple

Sprints, rather than being developed during the first Sprints” (Schwaber & Beedle, 2002, p. 9).

It is recommended that the first Sprint includes the development of an initial system framework

to show that the chosen solution is possible given the technology and team available. Object-

oriented development and design techniques are assumed to be the paradigm in which most

development takes place. No guidance is provided in their use and it is assumed that the team

will have this knowledge in place before development begins. This is not explicitly stated in the

method but a number of case studies in the main Scrum publication discuss the technology used

30

“Teams develop products incrementally and empirically”

 (Schwaber & Beedle, 2002, p. 2).

and it is typically object-oriented. In addition it is stated that the foundation of Scrum is sashimi

(incremental development) and scrum as described by Takeuchi and Nonaka (1986) which are

techniques “that uniquely fit object-oriented implementation of software” (ibid, p. 11). There is

some criticism of the ‘use-case driven’ approach as it is seen to obscure a lot of the tasks that

must be completed to create the system solution.

The case studies described in the method publication offer an insight into the importance of the

model in Scrum development: “Stop worrying about documentation. Document the system

after you go into production” (ibid, p. 134).

Models are used when needed and primarily as a guide to thinking about the solution.

Techniques

Scrum uses an empirical process control model which “provides and exercises control through

frequent inspection and adaptation for processes that are imperfectly defined and generate

unpredictable and unrepeatable outputs.” (ibid, p. 25). The techniques are designed to enable

management to carry out control by observation and incremental adjustment while the team

carries out the development unhindered. Scrum has a number of techniques for managing the

project:

Product Backlog is a publicly available list of everything the system should include and address,

including functionality, features and technology, enhancements, bug fixes, and issues. The list

is gathered from all stakeholders and prioritised by the Product Owner. The Product Owner

estimates the amount of tasks in a release and in a Sprint, and in consultation with the team,

estimates the time in days to implement each Product Backlog item. Because functionality is

prioritised in this way, any functionality not completed in an increment is likely to be low

priority. The Product Backlog grows as items are added and shrinks as Sprints are completed.

Sprint is a thirty day period (iteration) in which a subset of the Product Backlog is implemented

to create an increment of product functionality. At the end of a Sprint another subset of the

Product Backlog is selected for implementation and a new Sprint begins. Working software is

delivered to the customer at every Sprint.

Sprint Goal is the ultimate goal of a sprint which is set during the Sprint Planning meeting.

31

Sprint Backlog is a subset of the Product Backlog which is selected at the beginning of a Sprint

for implementation during that Sprint. The Sprint Backlog is maintained by the team. Each task

is estimated by its developer and estimates can be adjusted as the development progresses.

Sprint Planning meeting occurs at the start of each Sprint. Customers, users, management, the

Product Owner and the Scrum Team determine the Sprint goal and functionality at this meeting.

The Product Owner selects tasks to complete in the Sprint from the Product backlog. The team

then allocates the individual tasks that must be performed to build the product increment to meet

the Sprint goal.

Daily Scrum is a short 15 minute meeting held daily where individual progress is reviewed and

impediments to progress are reported to the Scrum Master who deals with them. Anyone

(managers and users) may attend the meetings but only the team and the Scrum Master can

speak. Management, in the form of the Scrum Master ensures active management of the

project. This meeting is to give management first-hand observation of teams and project

progress.

Sprint Review meeting is a four hour informational meeting held at the end of each Sprint.

Management, the team, customers, users, and the Product Owner inspect the product increment,

which may be either kept for further development, scavenged for parts to be reused, or thrown

away. This means that if the team is unable to develop the required functionality, only one

month is lost from the whole development process. The Product Backlog may be reprioritised

at this stage depending on any additional requirements arising during the Sprint. Releases of

software occur when the product is deemed ready and may occur during a Sprint.

Release Backlog is a subset of product Backlog that is selected for a release of finalised

software product.

Product Backlog Graph is a graph used by management to track project progress and assist in

decision making; it shows the estimated days of work remaining for a release. The Product

Owner updates these values weekly. The graphs dependent axis is ‘estimated work remaining’;

the independent axis is the project or release time scale.

Sprint Backlog graph is the same as the Product Backlog Graph but for a single Sprint.

Sprint signatures are backlog graphs which show patterns unique to a team.

32

Tasks are subsets of functionality worked on by team members and are usually four to sixteen

hours long.

Other recommended practices:

• Customer on-site: “Wherever possible , Scrum prefers to have a customer on-site but it

mandates that the customer sees working software at least every Sprint.”(Schwaber &

Beedle, 2002, p. 109). The purpose of this is to validate the progress of the project.

• A large open work space where communication is face-to-face and development

progress is posted on public notice boards.

• Daily builds and tests.

• Configuration management

• Regression testing

• System testing

• Release management

The only metrics described for Scrum are those used to monitor progress; the Product Backlog

and the Sprint Backlog.

This analysis shows that Scrum prescribes various techniques for controlling the project and the

team and provides little further guidance on other aspects of development, such as analysis and

design techniques, leaving such details to the team to decide. It provides mainly project

management practices for iterative and incremental development in environments where object-

oriented technologies are in use.

Tools

No tools are specified for the method but adequate tools and infrastructure are recommended

(Schwaber & Beedle, 2002).

Scope

Scrum uses iterative, incremental systems development. The phases are clearly stated and are

shown schematically in Figure 5Figure 5: Summary of Scrum phases adapted from Schwaber &

Beedle (2002, p. 8)

.

33

Output

The output of the method is working software which meets the requirements of the customer.

The customer receives working software at the end of each 30 day period. Any other products

can be requested by the customer.

Figure 5: Summary of Scrum phases adapted from Schwaber & Beedle (2002, p. 8)

Practice

Background

Scrum is practitioner-based because it is based on the development experiences of the authors

who report on a number of examples where they have used the method to develop systems.

34

There is some grounding in management and process theory as shown in the philosophical

discussion above.

Roles and responsibilities

Scrum Master; a management representative (project leader or project manager) who enforces

Scrum values, practices and rules, helps the team make decisions and solves problems arising

for the team. This person acquires needed resources and acts as an interface between the team

and the rest of the organisation. This person forms Scrum teams in association with

management; works with the Product Owner and the team to create Product Backlog for a

Sprint; calls and attends daily meetings to determine progress; removes impediments to

progress; works with management to gauge progress and reduce backlog; coordinates and

conducts the Sprint Review meeting.

Product Owner is the person who is officially responsible for the project and decides the order

in which the system functionality will be implemented. Only they can prioritise the Product

Backlog which they must keep visible to the whole team. This person works with the team and

others (e.g. quality assurance people, technical writers) to estimate the time backlog items will

take to implement.

Scrum Teams are self-organising and fully autonomous, their focus exclusively on the currently

selected Product Backlog. The team selects the amount of backlog that it believes it can handle

in a Sprint based on estimates for each item. This becomes the Sprint Backlog which the team

commits to turn into a working product. The team may consist of programmers, analysts,

testers, consultants with specialised expertise and any other specialists required. Other points

about teams:

• Team size, 7+-2 less than 3 too small for benefits, larger than 8 to large for control

mechanisms to work properly.

• The team is cross-functional, all members are responsible for analysis, design, coding,

testing and user documentation and all members work on all tasks. Team composition

may change at the end of a Sprint.

• The team makes all decisions about how the Sprint goal will be achieved within the

constraints of any charters, standards, conventions, architectures and technology

specified.

• Only the team can change the contents or the estimates of a Sprint Backlog during a

Sprint. They must keep the Sprint Backlog up to date.

35

• The team must attend Daily Scrum meetings; teams may be located in different

locations but still report to the daily meeting using telecommunication media.

Management; their role is to manage the four variables of cost, date, functionality and quality as

the development proceeds.

Difficulties with Scrum

No difficulties are discussed. Scrum can be used in all situations, and all difficulties expect

management cancellation of the project are assumed to be surmountable.

Skill levels

The skill levels are not stated.

Tailorability

The method is designed to be used as stated but can be tailored if needed. It is recommended

that until experience is gained, the full set of techniques is used before tailoring is carried out.

How to tailor the method for different environmental conditions is not described. “Scrum scales

to any size” (ibid, p. 16) and general guidance is provided on how to adjust the method for

larger projects, reuse of components, and how to use it for geographically distributed projects.

For larger projects the advice is to structure the development into multiple teams who then

develop product increments in parallel, all teams working from the same Product Backlog.

Each team has there own Scrum Master and the Scrum Masters meet frequently to communicate

progress and problems. Scrum can be used in conjunction with XP or any other existing

engineering practices without tailoring.

36

4 Adaptive Software Development

Identifier

Table 6: Identification of the source material for ASD

Method Name

Alternative(s)

Adaptive Software Development

ASD

Author James Highsmith

Date of first publication Highsmith (1997)

Major publication Highsmith (2000)

Country of origin USA

Philosophy

Paradigm

ASD combines the philosophy and practices of Rapid Application Development with the ideas

of complex adaptive systems theory to provide a framework for developing software systems.

The framework is most effective for project environments of constant change and high time

pressure. I believe that RAD methods reflect an objectivist approach as the goal of the practices

is always to provide software systems for business problems. Adaptive systems theory, as it

relates to human activity systems, provides the rationale for the techniques of ASD. I believe

this shows a subjectivist approach because this theory is based on the holistic thinking of

complex adaptive systems.

Assumptions and values

Complex adaptive systems theory is usually associated with the actions of living entities and

their relationships (e.g. cells). Successful software development projects carried out in

accelerated and uncertain environments (extreme projects) tend to act as complex adaptive

systems and show the properties of emergent order. This is “a property of complex adaptive

systems that creates some greater property of the whole (system behaviour) from the interaction

of the parts (agent behaviour). This emergent system behaviour cannot be fully explained from

the measured behaviours of the agents”
2
 (J. A. Highsmith, 2000, p. 8). The property of

emergence is also identified as a characteristic of systems in the Soft Systems Methodology of

Checkland (1999). Software projects can be characterised as systems, similar to a living

2

Highsmith notes “there is no scientific proof that emergence is a characteristic of organizational systems. However

there is growing evidence that emergence is a characteristic that helps explain observed organisational behaviours. It

is usable and actionable, and it helps organizations achieve their stated missions, the behaviours are not accidental –

they follow an understandable pattern.” (J. A. Highsmith, 2000, p. 283)

37

organisms, with agents as the people taking part in the project. Approaching software

development in this way “provides a better model for managing extreme software projects.

Such an approach produces better products more quickly, and at the same time fosters healthier

organisms ready to tackle the next project” (J. A. Highsmith, 2000, p. 11). Projects that behave

as complex adaptive systems show self-organisation and a high degree of collaboration leading

to emergent order and the ability to adapt quickly to change. The practices and techniques of

ASD are designed to support self-organising teams and collaboration; within the team, between

teams and between the team management and customers. The techniques support a software

development process that is adaptable when changes occur.

The method is based on three models:

Adaptive Conceptual Model – defines the properties of complex adaptive systems. The system

is viewed as an ensemble of independent agents with these properties:

• Agents interact to form an ecosystem;

• their interaction is defined by the exchange of information;

• their actions are based on internal rules;

• they self-organise to product emergent results;

• they exhibit characteristics of both order and chaos;

• and they evolve over time.

Adaptive Development Model – a life-cycle model designed to accommodate uncertainty and

change. The model is based on the RAD spiral, iterative and evolutionary lifecycle and includes

the concept of emergent order and component-based development. Using this model projects

are not controlled directly but guided to completion. There are three phases, speculate,

collaborate and learn. The speculate phase involves defining the mission and sharing it among

the stakeholders, developing a detailed adaptive life cycle plan and producing versions of the

product in an iterative manner. The collaborate phase involves active stakeholder participation

characterised by unfettered information flow and good leadership. The learn phase comes from

the ideas of the learning organisation (Senge, 1990) and organisational adaptation (Holland,

1995). Highsmith believes that learning organisations and teams are those which are capable of

changing with the times because the organisation has the ability to critically examine itself and

improve itself based on that knowledge. In a software development project this is characterised

by critical feedback from stakeholders to the team about the product, and feedback on the

progress of component development from the team to management. Feedback allows any

mistakes to be found early and corrected in short iterative cycles.

38

Adaptive (Leadership-Collaboration) Management Model – an adaptive organisation treats

continuous change as the norm and reflects this in their practices. Adaptation is nurtured by

leadership and collaboration rather than command-and-control. Leadership focuses on creating

the cultural environment in which adaptation and collaboration are supported, and on creating a

collaborative structure in which multiple teams and virtual teams can interact effectively.

Important concepts in the method are having the appropriate organisational culture, leadership

style and team characteristics to support collaboration. For successful projects and teams the

organisational culture should be human-centred and view people, participation and relationships

as vital to success. An organisation should be viewed, not as a mechanistic deterministic

machine, but as a complex adaptive system. To support this system management should

encourage creativity, innovation and adaptability, and maintain an unstructured environment.

This ‘chaordic’ environment is created when the organisation and its projects are balanced

between chaos and lack of control, and order and control.

If the business environment is changing rapidly the organisation must also change, along with

the development teams. So managers and developers need to understand the organisational

goals and the business environment so they can understand the strategies the organisation uses

in different environments.

Management should “embrace change” (J. A. Highsmith, 2000, p. 183) and absorb it rather than

control it. This strategy leads to opportunities to learn and also to get ahead of the competition.

Changes needing management are requirements changes caused by new customer requests,

changes in technology needs, and competitors actions. Accepting change as a normal state in a

high change environment is an essential part of creating an adaptive culture.

Highsmith provides six characteristics of an adaptive culture:

1. Emergent order – which arises from self organisation.

2. Simple principles – a few simple clear guidelines are best rather than many rules and

regulations.

3. Rich connections – a high degree of collaboration between individuals and teams

throughout the organisation.

4. Distributed governance – distributed decision-making and team involvement.

5. Poise – building teams while honouring diversity, compromising by way of mutual

concessions and decision making by finding common ground.

6. Balance – maintaining tradeoffs between product characteristics and practices.

39

Highsmith believes that the most critical activities in an adaptive culture are creativity,

innovation and problem-solving.

Leaders in adaptive organisations must be highly talented in people management. They should

understand the goals of the organisation, facilitate collaboration by providing a team network

structure, encourage ideas, support relationships and encourage learning from mistakes. They

should also be pragmatic, optimistic, and visionary, acknowledge risk and make hard decisions.

In addition they must have the ability to balance rigor and flexibility, guide the team rather than

control it, deal with the emotions of the team, have technical understanding, judgement, and be

able to continuously adapt.

Teams must participate in team decision making and be accountable for outcomes, they should

respect and trust the leaders and have confidence in their own technical skills, and they must

build strong relationships based on collaboration. Teams should be able to react to change

without the guidance of explicit documentation or specific change-control procedures. Core

values are mutual trust, respect, participation and commitment.

Collaboration is another major theme in ASD. Cross-group communication and valuing the

contribution and participation of others enhances collaboration. ASD provides guidance on “the

interpersonal, cultural, and structural issues of collaboration” (J. A. Highsmith, 2000, p. 115)

including how to enable small groups to interact effectively, how to manage complex

environments and how to create an environment which supports emergence. A barrier to

collaboration is the ‘command and control’ style of management where communication is

vertical (up and down a hierarchy) and where rules and predictability are important and

individuals are viewed as interchangeable pieces. Another barrier is the culture of individualism

present throughout western organisations which rewards the individual rather than the group.

Perspective

“Adaptive software development is a management approach to delivering software product; it is

not a specific development approach” (J. A. Highsmith, 2000, p. 70). I believe the perspective

of the method is primarily that of the project manager.

Objectives

ASD is a framework for managing software development projects which are under high time

pressure and have rapidly changing requirements. The ideas and practices in the method are

designed to maintain a collaborative team environment and successfully manage projects using

40

RAD techniques. The primary objective is to deliver the product to the client within designated

scope, schedule, resource and defect levels. Highsmith states the benefits of ASD:

� “Applications evolve in response to periodic feedback, resulting in a close match to

customer requirements.

� Changing business needs are accommodated more easily.

� The development process adapts to the specified quality profile of the product.

� Customer benefits are generated earlier, for example, because the customer gets the

application more quickly and can use it to increase revenue.

� The risk that major failures will occur is reduced.

� Customers gain early confidence in the project”. (J. A. Highsmith, 2000, p.40)

Another objective is to produce software systems of ‘good enough’ quality. This means that the

quality of the product is negotiated at the beginning of the project. The quality of scope

(including functions and performance attributes), schedule, defects and resources are all

negotiable.

Minimal documentation is another aim of the method although certain documents are specified

in a lot of detail as discussed below. Another stated goal is to create change-tolerant,

maintainable and extensible software.

The framework aims to produce software while balancing learning, knowledge, process and

people, concepts and practice, rigor and flexibility.

Domain

This method is designed for specific pre-defined problems for which a computerised system is

the expected solution.

Target

ASD is recommended when the project is “a critical new business initiative (J. A. Highsmith,

2000, p. xxix), under intense time pressure and undergoing constant changes in requirements.

Type of organisation – not specified.

Size of organisation – not specified.

Size of project – small to medium-sized projects. The basic Adaptive Life Cycle is suitable for

projects ranging up to 10,000 function points that can be carried out by teams of less than 10

developers. The Advanced Adaptive Life Cycle is for projects larger than this.

41

Type of development – component development or component assembly, using any object

technology.

Type of application – e-commerce and e-business, data warehouse, and products for the Internet

software market.

Technology platform – recommended for, but not restricted to; client/server, networked, Internet

application server.

Model

There is no model specified by this method.

Techniques

ASD techniques are designed to maintain effective collaboration and learning and to enable the

management of iterative development.

Components – iterative development is based on the assignment of product features to

‘components’. A component is a set or group of product features, for example; object-oriented

‘objects’, business features, the GUI, or containers that are planned and implemented together.

There are three types of component:

1. Primary components deliver functionality to the customer e.g. produce warehouse stock

report.

2. Technology components are components on which the primary components are built such

as networks, computer hardware, operating systems, database management software.

3. Support components are items that support the developed product such as training

manuals, data models, and data conversion programs.

High risk components, such as components implementing new technologies, are placed in early

iterations to reduce the risk to the project.

Function point counting is used to size the project. Other metrics-based techniques are also

recommended but the exact techniques are not specified.

Time-boxing. Timeboxes are set for the whole project and for iterations. Timeboxes are

boundaries for development effort and the activities within the timebox are negotiated so that

development stays within its timebox. For projects less than 9 months a cycle timebox should

be 4-8 weeks and for projects longer than 9 months the timebox should be 6-10 weeks.

Timebox length is based on application sizing and estimation techniques. The overall schedule

“The practices and tools needed for effective collaboration are in fact those

needed for managing continuous change!” (J. A. Highsmith, 2000, p. 185)

42

is divided into development cycles, each with a time milestone. Trade-offs in features and

resources are then made so that the time milestone can be met. The early cycles are kept to

timeline in order to check the plan; later cycles can then be adjusted once experience is gained.

Early cycles are shorter than later cycles to encourage customer involvement and confidence in

the development, and to verify scope, requirements and project viability.

Concurrent development within iterations is a control mechanism for managing change.

Components are developed concurrently with the proviso that dependencies between

components may reduce or disallow concurrency.

Learning - To support learning a number of techniques are used to increase feedback to the

development team. Prototypes, customer focus-groups, software inspections and post-mortems

are all carried out at regular short intervals to enhance learning. The belief is that frequency and

repetition enhance learning.

Prototyping - and prototype sessions are when developers and customers meet to review or

develop applications. Prototyping sessions are less formal than customer focus groups. They

are a standard RAD technique used to precisely specify software requirements and to reduce

misinterpretation of the customer’s requirements. Highsmith believes that models of the system

are not adequate and that the application itself is the only deliverable on which customers can

base an evaluation. Prototyping begins in the early planning phase and continues during

development. Prototypes are used to determine scope, size and cost estimates.

Software inspections are used whenever appropriate during the development cycle. Software

reviews, software inspections and walkthroughs are all acceptable techniques. Any work

products can be inspected, for example strategic plans or test-case scenarios. Inspections are

used to locate defects, train team members in best practices, and support non-testable quality

goals such as maintainability. Checklists of what to look for are created. Inspection is carried

out before the inspection meeting which is used to review the identified potential defects.

Facilitators are appointed to run the inspections. The results of the inspection meeting are a

defect list, suggested updates to checklists and inspection metrics (such as hours spent per

defect discovered).

Customer involvement and active partnerships between developers and customers are facilitated

by Joint Application Development (JAD) and customer focus groups. Developers are advised

to get close to the customer in order to understand their business language and needs.

Joint Application Development sessions are used to support collaboration. JAD in ASD is

defined as “a facilitated workshop that brings together cross-functional groups to build

collaborative relationships capable of producing high-quality deliverables during the life of a

project” (J. A. Highsmith, 2000, p. 135). JAD workshops are recommended throughout the

development process not just at the start of development.

43

Customer focus groups are formal review meetings held at the end of a major development

cycle when a cross-section of customer representatives explore the working application in a

facilitated meeting. The session focuses on demonstrating specific business scenarios. The

developer team is present in order to learn about any product changes and to get to know the

customers. The customer representatives are present to increase confidence in the product and

to gain a sense ownership of the product. The results of the meeting are documented change

requests that are later analysed, accepted or rejected, and then assigned to developers.

Post-mortems are facilitated meetings carried out by the core project team and managers during

the review phase and again at the end of the project. The effectiveness of the team, the

development process, progress-to-date and the development practices are reviewed and any

successes, problems and areas for improvement are discussed. This allows for correction during

the next development cycle. The post mortem document is distributed about the organisation so

other teams can learn from it.

Resource requirements analysis is an analysis of resource needs. This is based on a list of

questions that must be addressed by the team.

Risk assessment is addressed at the project planning stage and in the review phase. This assists

in cycle planning and is used to modify plans based on management of identified risks.

Teams are collocated and dedicated to a single project. A team is made up of core members and

supporting specialists. Frequent short team meetings are held in a dedicated team meeting space

to support collaboration, effective communication and concurrent development. Concurrent

development needs effective communication so that team members understand the progress on

related components. Core members also work together on mission documents to encourage

acceptance and understanding of the mission.

Other techniques and practices are recommended but not described in any detail. They include

any RAD techniques as well as change management, beta testing, data modelling, training

programmes, quality assurance plans, production of user documentation, development of test

plans, test cases and test data and source code control.

Tools

Tools are recommended for supporting collaboration but no development tools are specified.

The recommended tools include electronic mail, group calendaring and scheduling,

asynchronous and synchronous data conferencing, electronic meeting systems, source-document

creation tools, configuration management tools and threaded discussion group tools.

44

Scope

ASD development is carried out using cycles of speculate, collaborate and learn phases as

shown in Figure 6. The timeboxed phases are designed to be tolerant of change. The phases

used are:

Project Initiation - The project initiation phase is when the project is planned and the initial

mission documents are written.

Adaptive Cycle Planning - Components are assigned to iterations during the adaptive cycle

planning phase based on their importance, size and dependencies. The steps in the adaptive

planning cycle are:

Project

Initiation

Adaptive

Cycle

Planning

Quality

Review

Final Q/A

and

release

Learning Loop

Adaptive Life Cycle

Concurrent

Component

Engineering

Concurrent

Component

Engineering
Concurrent

Component

Engineering

Speculate phase Learn phaseCollaborate phase

Figure 6: The Detailed Adaptive Life Cycle (J. A. Highsmith, 2000, p. 85)

1. Conduct the project initiation phase to determine the basic architecture and

development technologies. Produce the mission statement and the feasibility study.

2. Determine the project time-box. Two types of dates are possible. Target dates are

determined by business needs and set the overall project delivery time, committed dates

are set by the development team after project initiation and planning sessions. Cycle

dates only change if both the team and executive sponsor approve. A 10 to 20% time

buffer is recommended to allow for unanticipated events.

45

3. Determine the optimal number of cycles and the time-box for each.

4. Write an objective statement for each cycle to provide the team with a goal for the

iteration.

5. Assign the primary components to cycles.

6. Assign technology and support components to cycles.

7. Develop a project task list.

Concurrent Component Engineering -The goal of each concurrent component engineering

phase is to work on components concurrently. Timeboxes are maintained by making trade-offs

between time and delivered functionality in consultation with the stakeholders. The learning

loop iterations are used to keep the product development public and consistently under review

and to keep the project on track. There are three types of iteration through the lifecycle;

versions, cycles and builds and each iteration consists of analysis, design, coding testing and

conversion planning. A version iteration is a long iteration that produces a new version of the

product which is ready to be installed. A cycle iteration is a major loop that delivers a

demonstrable component to the review process. A cycle is used to both monitor the project and

learn about the product. A build is a short iteration used to produce an interim deliverable

which is usually only reviewed by the development team. The first cycle is a proof of concept.

Quality Review - The review is for reflection, status determination and learning. The team

considers the project status, its schedule, scope, defect-level and resources. They determine if

project artefacts are valid, check that the delivered component meets customer and technical

specifications and expectations and assess how the team is working. The cycle plan is also

reviewed and corrected if necessary, any new requirements are assigned to components and

cycles, and the completion status of the components is assessed. Each component moves

through the lifecycle and enters a series of states which are used to manage the project progress:

1. Outline state – the components initial state, with some code written

2. Detail state – the component may have a prototype or model which performs the basic

functions required.

3. Reviewed state – the component has been reviewed and changes have been

implemented.

4. Approved state - the component is complete

The number of states used depends on the size and complexity of the project. Larger projects

need all states; smaller projects can reduce the number of states.

46

The project management lifecycle - Project management is a separate set of activities to the

software development lifecycle. ASD contains a series of questions that the project manager

should ask at each step to monitor the status of the project. The steps are:

1. Initial the project

2. Plan the project

3. Manage the project

4. Close the project

Steps are performed iteratively except step 3 which is carried out continuously.

Output

The main output of the method is a software product which is delivered in an evolutionary

manner. Although it is recommended to minimize formal documentation to reduce workload, a

number of documents are produced during development to support shared understanding about

the project. These documents define the project mission and are written by the project manager

and the development team. They include the following:

Project vision – this defines what the project is about in 2 to10 pages. The vision document

contains the key business objectives, product specifications and market positioning information

in the form of a feasibility study. Political, economic, technical and organisational factors are

described and problems, constraints and opportunities identified. A detailed list of contents for

the project vision document is provided.

Project data sheet – this document is a one page summary of key business benefits, product

specifications and project management information including important scope, schedule and

resource information. The data sheet is prominently displayed on a wall in the project team

area.

Progress data – qualitative and quantitative measures taken of scope, schedule, defects and

resources.

Product specification outline – this specifies the scope, features and functionality of the project

including the architecture, project size estimates measured using traditional methods such as

function points, lines of code, indications of work effort, milestones and resource estimates.

The outline is reviewed at the beginning of each cycle and is used as a baseline for size

estimation and to set minimal component specifications and to determine how product features

(components) are assigned to development cycles.

Product mission profile – a matrix stating the priority levels for scope (features), schedule,

defects and resources. Priority levels are based on market success and cover three levels: excel,

improve and accept. This matrix specifies the focus of the development and is written by the

47

developers in consultation with the sponsors. The profile forms a contract between the

development group and the executive sponsor or primary customer.

Other products are negotiated with the client and include written documentation, training,

support and consultancy.

Practice

Background

ASD is a practitioner-based method although specific projects are not described.

Roles and responsibilities

Executive sponsor – articulates the objects of the project, approves resources and establishes

project constraints.

Project manager – must be full time on a single project. Must be highly skilled and show the

leadership qualities described above. The person in this role focuses on defining the mission,

building relationships and removing obstacles to progress, rather than on prescribing tasks.

Core team – the team of developers who work on the project full-time. There is one team for

each major feature set on a larger project.

Collaboration facilitator – this person organises and acts as facilitator at review meetings, JAD

sessions, and on-line meetings. They also manage information flow, for example by setting up

access rights for on-line communication, arranging face-to-face meetings and moderating

discussion forums. This role is very important for large projects with virtual teams.

Client team members – customer representatives who are available to the team on a daily basis.

Highsmith admits that this is the optimal situation which may not always be possible.

Difficulties

No difficulties or problems are described with the method. However this method would not be

compatible with the CMM. Highsmith is convinced that the optimisation objective of CMM is

not suitable for software development improvement. Highsmith (2000, p. 287) believes that “It

is a widely accepted management axiom that strict, detailed procedures and bureaucratic rules

impede innovation and creativity” and that “Optimization stifles emergence, not only because

individuals feel restricted but also because optimization reduces the breadth and scope of

interconnections and relationships.”

48

Skill levels

There is a certain level of assumed knowledge on the part of the team. Highsmith states: “in

Cycle 1, the team needs to establish development guidelines such as naming standards, reuse

approach, and data design considerations. Hopefully the team is experienced with the tools and

those guidelines are already in place and only need to be tailored to fit the project” (J. A.

Highsmith, 2000, p. 107). Highsmith (2000, p. 115) believes that: “having individuals with

high software-engineering skill levels is a critical success factor for adaptive groups” along

with “teams whose members collaborate well, exchange ideas, share leadership, embrace

diversity, and learn from mistakes”. Teams should be picked for intelligence and must have

“the right blend of skills – technical skills, business skills, problem-solving and decision-

making skills, and interpersonal skills.” (J. A. Highsmith, 2000, p. 118). The aim is to create a

‘jelled’ team who have a common vision of the project, can discuss issues and make decisions,

and whose members support team decisions even when they do not fully agree with them.

Team members hold themselves mutually accountable for the project outcomes. The team takes

an open-ended flexible approach to technical problem-solving. Open teams with these

characteristics are also able to take on larger projects.

Tailorability

Most ASD techniques are advised not proscribed. Tailoring is undertaken at project startup

when the team tailors the method to the project. The roles and responsibilities of the team

members are defined, communication and collaboration pathways are set up, development

practices and support tools are identified and plans for change management and progress

assessment are written. To set up communication pathways stakeholders are identified, along

with what each one needs to know and how that information will be delivered to them.

The techniques for tailoring the method for larger projects are ‘the advanced adaptive lifecycle’

and ‘structural collaboration’.

Scaling up using the advanced adaptive lifecycle involves adjustments to team organisation and

to component development. The project is divided amongst a number of different teams, called

a network of teams, who work concurrently on different components. Core teams consist of 5-

10 members who work full-time on a project supported by part-time experts. Interim prototypes

are developed and delivered at milestones which act as synchronisation points when results

from different teams are brought together, reviewed and integrated into a testable product. A

phase and gate approach is used to manage the increased number of components. This approach

focuses on identifying and planning components, determining the dependencies and

49

interrelationships between components, monitoring the evolution of each component through

defined completion states, and evaluating progress on component development at the end of

each cycle. Techniques for managing large numbers of components include increasing the

number of component states allowing closer monitoring of progress to completion, increasing

the number of components monitored and increasing the formality of component

documentation. To manage component dependencies during concurrent development

increasingly formal communication between groups is needed. Components that cross

organisational boundaries (i.e. must be worked on by more than one non-collocated team) are

monitored more closely using a rigorous daily build process.

Structural collaboration is the second technique for managing larger projects. This is a

knowledge management technique for sharing expertise and best practices across virtual teams.

ASD has techniques for maintaining structural collaboration. As projects get larger and more

complex rigor is increased while taking care not to stifle emergence. Rigor is first increased on

final integrated product components, components that are shared across geographical groups

and documents shared with geographically distributed groups. Then rigor is increased for

components and documents that are used within collocated teams.

50

5 Crystal Methods

Identifier

 Table 7: Identification of the source material for Crystal methods

Method Name

Alternative(s)

Crystal methods

Author Alistair Cockburn

Date of first publication 2002

Major publication Cockburn 2002

Country of origin USA/Europe

Philosophy

Paradigm

The paradigm is primarily objectivist because the goal is to create software solutions to given

problems. There is a subjectivist aspect in that the software development team and its

interactions are as important as any other aspect of software development.

Cockburn’s ideas are based on the writings of Naur (1992), Musashi (2000), Weinberg (1998)

and Ehn (1992).

Assumptions and values

Crystal methods are based on the idea that effective software development is only possible with

good communication and a methodology which is fit for the project. Techniques are described

for supporting communication amongst the team, and for tailoring a methodology in a timely

manner so that it is sufficient for the project and capable of evolving when needs change. The

underlying assumption is that when a development methodology is focused on team member

skills and communication the project will be effective and agile (capable of adjusting to change)

whereas a focus on process is not so effective.

The Cooperative Game Principle
Software development is a (resource-limited) cooperative game of

invention and communication. The primary goal of the game is to deliver

useful, working software. The secondary goal, the residue of the game, is

to set up for the next game. The next game may be to alter or replace the

system or to create a neighbouring system. (Cockburn, 2002, p. 31)

51

Cockburn analyses the essential elements of a systems development methodology. Then he

uses this base to form the Crystal methods. The elements are:

Activities – actions that must be carried out during the project.

Deliverables – work products that are needed within the organisation or between teams.

Milestones – points in time where the progress of product development is assessed as either

complete or incomplete. There are three kinds of milestone: reviews, publication and

declarations (statements of completion).

Process – the sequence of activities that move the development through to completion, each

with a pre and a post condition.

Quality – the desired degree of defects in the software product and other work products. This

also involves metrics used to measure the quality of work products and the quality of activities

of development.

Roles – the set of activities which a team member carries out. The personality traits of the

people should match their role.

Skills – the abilities of team members based on experience, training and natural ability.

Standards – includes code standards but also any tool, technique, or project management

decision that is applied across the whole project.

Team values – a set of values that the team embodies.

Teams – the team of people working on producing the software product.

Techniques – specific procedures that people use to accomplish tasks.

Tools – software that supports the development process

Work products- disposable and permanent artefacts of software development.

Each methodology has a particular scope which is a combination of lifecycle coverage, role

coverage and activity coverage. In addition when designing a methodology the following

parameters are important:

Methodology size – this is the number of control elements in the methodology. Control

elements include deliverables, standards, activities, quality measures and techniques.

Ceremony – the degree of formality and completeness of the artefacts of production.

Methodology weight– a subjective measure of methodology size multiplied by ceremony.

Problem size – the number of elements in the problem and their interdependencies, also a

subjective measure.

Project size – the number of staff involved in the project.

System criticality – this is the damage from undetected defects. The categories of criticality are

loss of comfort, loss of discretionary money, loss of irreplaceable money and loss of life.

Precision – there are three categories low, medium and high precision and all activities and

work products are completed to some degree of precision.

52

Accuracy – the degree of accuracy required in various work products e.g. rough sketches to

completed object models with all details added.

Relevance – the area in which the methodology is relevant e.g. interface design, system

architecture, user participation.

Tolerance – is the degree of variation allowed in the use of standards and in the dates for

activities.

Visibility – is the degree to which an outsider can readily assess if the methodology is being

followed.

Scale – the degree to which detail is hidden in models, techniques or project reporting to give a

high level view.

Stability – the degree to which the project and the methodology are changing. Projects and their

artefacts generally become more stable over time and also just before a design review or

publication of a software product or other artefact.

Cockburn’s methodology ideas are based on seven principles:

1. “Interactive, face-to-face communication is the cheapest and fastest channel for

exchanging information.

2. Excess methodology weight is costly.

3. Larger teams need heavier methodologies

4. Greater ceremony is appropriate for projects with greater criticality.

5. Increasing feedback and communication reduces the need for intermediate deliverables.

6. Discipline, skills, and understanding counter process, formality, and documentation.

7. Efficiency is expendable in non-bottleneck activities” (Cockburn, 2002, p. 148)

Cockburn makes a distinction between heavy and light methodologies. Heavy methodologies

tend towards greater process, formality and documentation whereas light methodologies tend

toward increased skills, discipline and understanding and a reliance on tacit knowledge. The

former are ‘optimizing’ methodologies and the later ‘adapting’ methodologies. Crystal methods

are adapting methodologies.

The following characteristics of projects have effected Cockburn’s ideas about design of

methodologies (Cockburn, 2002, Chap 4):

• Adding people to a project is costly in terms of salaries and the added communication

burden needed to maintain productivity.

53

• Team size increases in large jumps. This is based on the ideas of Brooks, author of The

Mythical Man Month (1995).

• Teams should be improved, not enlarged. When productivity must be increased adding

people to the team is not the optimal strategy. Better strategies are training, replacing

team members with more skilled people and people who are better team members, and

sitting people closer together to reduce communication lags.

• Different methodologies are needed for different projects. This is based on Cockburn’s

grid as shown in Figure 7. Different grids are used for different project priorities, for

example productivity rather than criticality.

Cockburn provides examples which embody his ideas about methodologies. He names the

methodologies for crystals; Crystal clear, Crystal yellow, Crystal orange. He ranks XP as in the

C4 to E14 category. The methodologies he describes are all at the smaller project size, ranging

from 1 to 40 people. The Crystal methods are based on general principles about software

development, people, communication, projects, and methodology weight. Software

development is viewed as a cooperative activity supported by invention and communication.

People are good at observing and taking initiative and these characteristics should be supported

by the methodology used. Communication is most effective when it is face-to-face and the

methodology should strive for this style of communication.

Defects cause
loss of…

Methodology prioritized for criticality

Life (L) L6 L20 L40 L100 L200 L500

Essential
money (E)

E6 E20 E40 E100 E200 E500

Discretionary
money (D)

D6 D20 D40 D100 D200 D500

Comfort (C) C6 C20 C40 C100 C200 C500

 1-6 -20 -40 -100 -200 -500

Number of people involved ± 20%

Key

Crystal clear

Crystal yellow

Crystal orange

Crystal red

Figure 7: Characterising projects by communication load and criticality

Adapted from Cockburn (2002, p. 162).

54

Projects are unique ‘ecosystems’ and the methodology should be adjusted to fit the unique

ecosystem. The methodology should also be as light as possible while remaining sufficient to

complete the project effectively. Lighter methodologies deliver working software more quickly

than heavy methodologies, but larger projects need heavier methodologies to cope with the

heavier communication load and greater ceremony the larger team needs to be effective. As

project size increases the project manager should maintain the lightest methodology possible for

the situation rather than increase weight.

Cockburn’s Crystal methods are a family of methodologies with the same basic values, goals

and principles. The method most suitable for a project is selected and then tailored to meet the

specific details of the project. Three crystal methods are described by Cockburn because they

have been used in real projects.

In the Crystal methods the main principles are that people and communication are of primary

importance for project success and development must be incremental and concurrent. The

techniques of the methods are designed to support the positive traits of people most specifically:

• People are good at observing their environment (e.g. problems that arise, things that

need attention) and should be encouraged to take the initiative.

• People have the ability to learn and they are malleable.

• People take pride in work, in accomplishment and in contributing to some outcome.

• People like to be good citizens (e.g. being punctual, following code conventions, using

code libraries, informally training others).

• People need feedback that is clear and frequent.

• Peoples’ personalities should be matched to their role.

• Effective collaborative groups work by consensus.

• Only the people on the team can deduce and decide what will work in that particular

environment and then tune it.

Perspective

I believe that ASD takes the perspective of the project manager and the developers. Any group

that wants to create and document their own methodology would also find this set of methods

and the philosophy behind them useful.

55

Objectives

The purpose of Cockburn’s book is to describe how to create, document and distribute a

methodology that an organisation has developed along with how to select and tailor a

methodology appropriately at the start of a project. Advice on how to document and distribute

changes to a methodology is also provided. The application of Cockburn’s theories are

designed to lead to “methodologies whose priorities are being productive and responsive to

change” (Cockburn, 2002, p. 171). The main objective is to produce software for business

problems and the secondary objective is to set up for the next project by providing

documentation appropriate for maintenance, understanding of the development process and any

lessons learned.

The objective is also to structure a team and its environment in such a way that the team is

highly productive and satisfied during development.

Domain

Crystal methods are designed for business environments with specific defined problems.

Target

Type of problem - any

Technology environment – object technology is assumed by the methods are designed to work

in when developing any technology

Size of organisation – not specified

Type of organisation – not specified

Size of project – any size, but smaller projects of 2-8 people are desirable

Type of development – business systems and applications

Type of application – software deployed using the Web but not restricted to this

A number of ‘sweet spots’ for a project are listed. These are factors that enable a project to be

carried out in the most agile manner. They are to be aimed for rather met.

• Two to eight developers in one room to support communication flow.

• Onsite usage experts available at all times to provide feedback to the developers.

• One month increments to provide rapid feedback on project and product progress. This

allows any changes to requirements to be quickly accommodated and any adjustments

to be taken after a short time period.

56

• Fully automated regression tests (unit and/or functional tests). This enables the state of

the product to be assessed rapidly.

• Experienced developers as this allows for the smallest possible development team.

Model

There is no model specified in this set of methodologies. Whatever the developers need at the

time is appropriate. This is likely to include UML as it is a set of models that are suitable for

the current technologies.

Techniques

Detailed techniques for development are not given. Any techniques can be used as long as they

promote concurrency, communication, iterative and incremental development and effective

team work. Techniques from standard software engineering and project management

techniques are acceptable but the precision of their use is adjusted depending on the precision,

criticality, accuracy, visibility and scale of the individual project. Techniques from other agile

methods are acceptable such as techniques from XP, Scrum, DSDM and ASD. Techniques

from RUP (Kruchten, 2000) and Design for Use interface design (Constantine & Lockwood,

1999) are also acceptable. Cockburn’s advice on techniques is:

Concurrent development – this is used to reduce overall development time and to reduce the

negative effect on development time of unexpected changes in requirements. This involves

carrying out analysis, design coding and testing at the same time. Some lag between phases is

acceptable to allow work products from an earlier phase to be brought to a level where they are

useful to the next phase.

Iterative development – this is proscribed with increments of 4 months or less with a preference

for 1 – 4 month increments.

Adapting the methodology at project start up – this involves a series of interviews and that are

carried out at the beginning of the project. The development team or project leader interview

stakeholders and developers about project priorities, work product quality, how iterations should

be managed, and how communication will be organised. A detailed list of questions is provided

and the answers are used to form a base methodology. The methodology will then meet the

needs of management, customers and the team with regard to iteration length, artefacts to be

produced, workflow, roles, software quality level, and all of the other elements of a

methodology as described above in the section ‘assumptions and values’. A final meeting held

by the team determines the base methodology. This should take ½ to 1 day and no more.

Reflective workshops – these are meetings used for adapting the method during development.

Reflective meetings are held at the middle and end of each increment to discuss what has

57

occurred, what the team has learnt and what they should change. All of the methodology

elements should be assessed. Mid iteration workshops are not needed if increments are 3 weeks

or less. A method for running a reflective workshop is provided.

Techniques for minimising documentation – these are; making visits in person, using printing

whiteboards to record decisions and designs and focusing on producing minimal documentation

whenever documentation is needed.

Techniques to support effective communication - face-to-face communication should be

supported whenever possible. This is supported by collocation of people all in one room, the

use of information boards for communication about system status, work progress and anything

else important to the team and the project. Room arrangements should be made in a way that

allows an open common space for communication and private or quiet areas so that developers

can have privacy when necessary.

Publishing a methodology – a new methodology must be documented so that it can be reused,

adjusted, improved and distributed effectively. The publication can be organised by role-

deliverable-milestone. The text, to minimize size, should be made up of examples of work

products, technique guides with no text but references to other publications describing how to

use a technique, a set of role descriptions, and work product descriptions.

Training using role plays – this technique is described so that teams can experience a

methodology before using it on a project.

Techniques for Crystal Clear

• One team, seated in one room or in close proximity

• Software delivered in increments at 2-3 month intervals

• Progress tracked using milestones

• Automated regression testing

• Direct user involvement

• Two user viewings per release

• Phases are started as soon as the previous phases products are stable enough to review

(i.e. programming begins as soon as there are some stable requirements and UI and

object design)

• Product and methodology tuning workshops are held at the start and middle of each

increment

Techniques for Crystal Orange

• Time to market is important

• Time and cost must be kept down

58

• Communication with present and future staff is needed

• Three or four technologies are used

• Work products are developed to the degree where they are understandable by team

members and can be peer reviewed.

• Policy standards as for crystal clear

• Incremental delivery period – 3-4 months

Work product templates, coding style, user interface standards and regression testing details are

left for the team to decide upon.

Tools

A minimal tool set is specified. This includes a compiler, versioning and configuration

management tools and regression testing tools and a printing whiteboard for documenting plans,

designs and decisions.

Scope

Crystal methods assume no particular phases but only insist on incremental and iterative

delivery. Phases of development in Crystal methods are at the discretion or the team. However

in a discussion of ‘upstream’ and ‘downstream’ activities the concurrent activities listed are;

requirements, UI and object design, programming and testing. Cockburn’s model of successful

concurrent development is shown in Figure 8. Cockburn believes that a methodology should

have phases but they can consist of any combination of activities that move the project to

completion.

Outputs

The output is working software delivered incrementally and any other deliverables defined by

the customer. Other artefacts are negotiable with the customer. The two methods described by

Cockburn have the following specified outputs (see Table 8).

Requirements

Design

Programming

Test

Elapsed time

Figure 8: Cockburn’s model of concurrent development (Cockburn, 2002, p. 132)

59

Table 8: Cockburn’s Crystal methods (Cockburn, 2002)

Crystal Clear Crystal Orange

 Requirements document

Release sequence Release sequence

Schedule of user viewings and deliveries Schedule

Annotate use case or feature descriptions

Design sketches and notes as needed

Screen drafts UI design document

Common object model Common object model

Running code Source code

Migration code Migration code

Test cases Test cases

User manual User manual

 Status reports

 Inter-team specs

and optionally:

 Templates for work products

 Standards for code and user interface

 Standards for regression testing

Practice

Background

Crystal methods are based on Cockburn’s experience as a developer and his investigation of

successful software development projects.

Roles and responsibilities

The number of roles is dependent on the size of the project. Examples for Crystal clear and

crystal orange are provided but the activities undertaken by the people in the roles are allocated

by the project team.

Crystal Clear – sponsor, senior designer programmer, designer programmer, user.

Crystal Orange – sponsor, business expert, usage expert, technical facilitator, business

analyst/designer, project manager, architect, design mentor, lead designer-programmer, other

designer programmers, UI designer, reuse point, writer, tester.

In larger projects such as that for Crystal orange people are arranged into teams for systems

planning, project monitoring, architecture, technology, functions, infrastructure, external test.

Each team is cross-functional containing a business analyst, analyst designer, designer

programmers, database designer, other technology experts and tester.

60

Difficulties with Crystal methods

Difficulty arises with multi-site teams that are in different countries and time zones and with

virtual teams at multiple sites because of the difficulties of communicating effectively without

heavy documentation. Crystal methods have not been used with large geographically separated

teams or with life-critical systems.

Skill levels

No explicit levels are mentioned although Cockburn recommends that the lighter the

methodology the higher the level of skills that are needed. Training is recommended to improve

the skills of the team.

Tailorability

A base method is developed by the team at the start of the project then tailoring is carried out

during the project. This is achieved by reflecting every few weeks on what works well and what

should be changed. The method is normally tailored when the ‘sweet spots’ are not achievable.

However scaling to very large projects and large geographically distributed projects is covered

in theory by Cockburn’s tailoring mechanism but it has not been tried in practice.

An alternative to making your own method is to select one of the Crystal methods based on the

size of the project and the criticality of the project. Then the method is tailored using the same

review techniques as those described above to adjust the Crystal method to your unique project.

The techniques recommended by Cockburn can be substituted with those from similar

methodologies if they have the same effect on development. “Substitution of elements from

similar methodologies is permitted. For example, the team could decide to use Scrum or

DSDMs timeboxing and dynamic prioritization polices, Scrums daily stand-up meetings, pair

programming from XP and so on” (Cockburn, 2002, p. 203).

61

Bibliography for Appendix K

Avison, D. E., & Fitzgerald, G. (1995). Chapter 7 Methodologies: issues and frameworks. In Information

systems development: methodologies, techniques and tools (2 ed.). London: The McGraw-Hill

Companies.

Avison, D. E., & Fitzgerald, G. (2003). Information systems development: Methodologies, techniques and

tools (3 ed.). London: McGraw-Hill.

Beck, K. (1999). Embracing change with Extreme Programming. Computer, 32(10), 70-77.

Beck, K. (2000). Extreme programming explained: Embrace change. Boston: Addison-Wesley.

Beck, K., & Cunningham, W. (1989). A laboratory for teaching object oriented thinking, Conference

proceedings on Object-oriented programming systems, languages and applications, OOPSLA

'89 (pp. 1-6). New York, NY, USA: ACM Press.

Brooks, F. (1995). The mythical man month: Essays on software engineering. Reading, MA: Addison-

Wesley.

Checkland, P. (1999). Systems Thinking, Systems Practice. Soft systems methodology: A 30-year

retrospective. Chichester: John Wiley & Sons, Ltd.

Cockburn, A. (2002). Agile software development. Boston: Addison-Wesley.

Constantine, L., & Lockwood, L. (1999). Software for Use. Reading MA: Addison-Wesley.

Dynamic Systems Development Method Ltd.; the DSDM lifecycle. (1997 - 2005). Retrieved 8 May,

2005, from http://na.dsdm.org/en/about/lifecycle.asp

Dynamic Systems Development Method, Version 2. (1995). (2 ed.). Ashford: Tesseract Publishing.

Ehn, P. (1992). Scandinavian design: On participation and skill. In Usability: turning technologies into

tools (pp. 96-132). New York, NY: Oxford University Press.

Highsmith, J. (1997). Messy, exciting, and anxiety-ridden: Adaptive software development. American

Programmer, 10(4), 23-29.

Highsmith, J. A. (2000). Adaptive software development: A collaborative approach to managing complex

systems. New York, NY: Dorset House Publishing.

Holland, J. H. (1995). Hidden order: How adaptation builds complexity. Reading, Massechusetts:

Addison-Wesley Publishing Co.

Kruchten, P. (2000). The Rational Unified Process: An introduction (2 ed.). Boston: Addison-Wesley

Longman.

Mumford, E. (1995). Effective requirements analysis and systems design: The ETHICS method.

Basingstoke, UK: Macmillan.

Musashi, M. (2000). The book of five rings (T. Cleary, Trans.). Boston, MA: Shambhala Publications.

Naur, P. (1992). Programming as theory building. In Computing: A human activity (pp. 37-48). Reading,

MA: Addison-Wesley.

Schwaber, K. (1995). SCRUM software development process. Retrieved 3 October, 2004, from

http://www.controlchaos.com/old-site/scrumwp.htm

62

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Upper Saddle River, New

Jersey: Prentice Hall.

Senge, P. (1990). The fifth discipline: The art and practice of the learning organisation. New York:

Currency Doubleday.

Stapleton, J. (1997). DSDM Dynamic Systems Development Method. Harlow, England: Addison-Wesley.

Takeuchi, H., & Nonaka, I. (1986). The new new product development game. Harvard Business Review,

64(1), 137-146.

Weinberg, G. (1998). The psychology of computer programming. New York, NY: Silver Edition, Dorset

House.

