Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Microfiltration Membrane Fouling by Dairy Proteins

Thesis submitted

for the degree of Doctor of Philosophy

at Massey University

New Zealand

by

Allen D Marshall

1994

For Sylvia

Abstract

i

Microfiltration membrane fouling occurs through the deposition of proteins both on the membrane surface and within the membrane pores. Fouling is complex with both the nature and location of fouling dependent upon the properties of the feed material, the properties of the membrane material and the operating conditions used.

Two aspects of fouling have been investigated, one in which the feed contained proteins considerably larger than the membrane pores (casein micelles) and the other, in which the protein (ß-lactoglobulin) was much smaller than the pores. In this way, it was possible to separately investigate surface layer formation and fouling within the membrane pores.

It has been demonstrated that a casein "gel layer" forms on the membrane surface causing severe fouling during the microfiltration of skim milk on a 0.1 μ m polysulphone membrane if the combination of cross-flow velocity and permeate flux leads to a concentration of casein at the membrane wall equal to or higher than that required for "gel layer" formation. Once formed, the gel layer restricts the passage of protein through the membrane and reduces plant throughput.

During the microfiltration of β -lactoglobulin on a 0.1 μ m zirconium oxide membrane, in the presence of calcium and with high fluxes, protein-protein interactions at or near the pore entrance lead to pore narrowing and the eventual retention of protein by the membrane. High localised shear rates at the pore entrance lead to partial unfolding of the protein and calcium appears to form an ion-bridge between exposed negatively charged protein groups leading to aggregation and multi-layer deposition on the membrane pore walls. The removal of calcium or a reduction in the permeate flux prevents severe fouling and greater than 90% transmission of protein can be achieved.

The importance of understanding the properties of the feed material in interpreting and explaining membrane fouling is stressed.

Acknowledgements

First and foremost I wish to thank my supervisors, Peter Munro and Gun Trägårdh, for their encouragement, direction and friendship over the last 3 years.

I also wish to acknowledge the support of the New Zealand Dairy Research Institute for allowing me to study for this degree and for keeping my family housed, clothed and well fed. Thanks also to the Swedish Institute and New Zealand Dairy Research Institute for the financial support of my 11 month stay at the University of Lund. The opportunity to travel and study at a foreign university was greatly appreciated.

Designing and building a new sophisticated piece of equipment is often fraught with difficulty and I am indebted to Andrew Fletcher and Dan Johansson for their skilled input to the design and development of the equipment. Also to Byron McKillop for building the polymer membrane module.

Ideas and concepts rarely come only from a single person and there have been a large number of people who have had input directly, by commenting on my results and reports, and indirectly, by at some time acted as a "sounding board" for me. As a consequence something of their ideas have become my own.

To my friends in Sweden, especially Hans Karlsson, Dan Johansson, Vassilis Gekas, Petr Dejmek, Kenneth Persson, Benoit Dutré and Christian Trägårdh (I hope I have not missed anyone), many thanks for your support during our stay. To Helgot Olsson, many thanks for your expert preparation of the samples for electron microscopy.

To Jean-Loius Maubois and Georges Daufin in Rennes, thanks for your time and interest during my visit and for the many contributions from your lab that have advanced our understanding of membranes. To my colleagues at the New Zealand Dairy Research Institute; there have been so many who have contributed to my project over the last few years, thank you for your input and encouragement. To Peter Hobman and Rex Humphrey, thank you for encouraging me into attempting a PhD that is now almost finished. Special thanks also to Mark Pritchard and Linda Schollum for constantly allowing me to bug them for comments on what I have planned or written.

Finally, to Sylvia, who allowed me to drag her half way around the world and back again, and without whose constant support, encouragement and love this thesis would never have been attempted.

ş

Now all has been heard; here is the conclusion of the matter: Fear God and keep his commandments, for this is the whole duty of man.

Ecclesiastes 12 v13.

Abstract	i
Acknowledgements	ii
Table of Contents	v
1. The complexity of fouling in microfiltration - an	1
overview of the research performed in this thesis	
1.1. Overview of fouling	1
1.2. Surface layer formation	3
1.3. Deposition of protein within the membrane	5
pores	
1.4. Conclusions	7
2. Literature review: the effect of protein fouling in	8
microfiltration and ultrafiltration on permeate flux,	
protein retention and selectivity	
2.1. Introduction	8
2.2. Protein adsorption or deposition on the	13
membrane	
2.3. Evidence for proposed fouling mechanisms	17
2.3.1. Formation of a dynamic membrane	17
on the front face of the membrane	
2.3.2. Fouling within the membrane	19
structure	
2.3.3. Fouling at the pore entrance	22
2.4. The effect of the feed properties	24
2.4.1. Concentration	24
2.4.2. pH and ionic strength	25
2.4.3. Prefiltration and the removal of	30
aggregates	
2.4.4 Component interactions	30

2.5. The effect of the membrane material	32
2.5.1. Hydrophobicity	33
2.5.2. Charge effects	34
2.5.3. Surface rugosity or roughness	35
2.5.4. Porosity and pore size distribution	36
2.5.5. Pore size	39
2.5.6. Membrane consistency	41
2.6. The effect of the processing variables	41
2.6.1. Transmembrane pressure	41
2.6.2. Cross-flow velocity and turbulence	44
promoters	
2.6.3. Backflushing	46
2.6.4. Temperature	47
2.7. Fouling mechanisms and the influence of the	48
membrane pore size	
3. Membrane theory	55
3.1. Concentration polarisation	55
3.1.1. The film model	55
3.1.2. Gel layer and osmotic pressure	57
models	
3.2 Membrane fouling	59
3.2.1. Resistance model	59
3.2.2. Protein deposition models	60
3.2.3. Cake filtration model	61
3.2.4. Blocking laws	62
3.3. Retention calculations	65
3.4. Miscellaneous calculations	66
4. Design and development of a cross-flow/constant-flux	68
membrane rig	
4.1. System design	68
4.2. Control of important variables	69

ļ

4.2.1. Cross-flow velocity	69
4.2.2. Constant transmembrane pressure	69
4.2.3. Constant flux	71
4.2.4. Temperature	73
4.3. Measurement of variables	74
4.4. Membrane modules	75
4.5. Plant operation and performance	78
4.5.1. Start up	78
4.5.2. Performance of controllers	79
4.6. Specific problems and solutions	80
4.6.1. Pump failure	80
4.6.2. Creasing and rupture of polymer MF	81
membranes	
4.6.3. Air in the permeate chamber	82
5. The influence of the permeate flux and cross-flow	85
velocity on membrane fouling during the	
microfiltration of skim milk	
5.1. Introduction	85
5.2. Materials and methods	87
5.2.1. Feed material and pretreatment	87
5.2.2. Operating procedures	87
5.2.3. Protein analysis	88
5.2.4. Scanning electron microscopy	89
5.2.5. Experimental design	89
5.3. Results	93
5.3.1. MF trials	93
5.3.1.1. The effect of the permeate flux	93
5.3.1.2. The effect of the retentate	96
recirculation rate	
5.3.1.3. Flushing and cleaning of the	99
membrane	
5.3.1.4. Protein analysis	102

5.3.1.5. Scanning electron microscopy	105
5.3.2. UF trials	109
5.4. Discussion	111
5.4.1. MF fouling	111
5.4.2. UF and the role of the whey proteins	116
5.4.3. Nature of the casein "gel layer"	117
5.4.4. Nature of membrane fouling when	119
casein "gel layer" formation was	
prevented	
5.5. Conclusions	120
	100
6. Fouling of microfiltration membranes by	122
B-lactoglobulin	
6.1. Introduction	122
6.2. Materials and methods	123
6.2.1. Feed material and pretreatment	123
6.2.2. Membranes	124
6.2.3. Plant operation	125
6.2.4. Measurements and analysis	125
6.2.5. Overview of experiments	126
6.3. Results	128
6.3.1. Consistency of feed and membrane preparation	128
6.3.2. Comparison of powder "A" and	131
powder "B"	
6.3.3. Flushing	133
6.3.4. Effect of ionic strength	136
6.3.5. Effect of pH	141
6.3.6. Effect of the permeate flux	143
6.3.7. Effect of calcium	151
6.3.8. Effect of the cross-flow velocity	160
6.3.9. Effect of the membrane pore size	165

6.4. Discussion 1	71
6.4.1. Summary of fouling behaviour 1	71
6.4.2. Proposed fouling mechanisms	72
6.4.3. Protein adsorption 1	72
6.4.4. Fouling in the pores 1	76
6.4.4.1. Location of fouling 1	76
6.4.4.2. Protein-protein interactions 1	81
and the role of calcium	
6.4.4.3. Protein unfolding and the 1	85
effect of shear	
6.4.5. Surface layer formation 1	88
6.5. Conclusions	90
7. Recommendations for further study	91
7.1. MF of skim milk	91
7.2. Fouling by ß-lactoglobulin or other smaller	92
proteins 1	92
7.3. General	
1	93
8. Nomenclature	
1	196
9. References	
Appendices 2	223
1. Component list of membrane test rig	223
2. Run data from trials on ß-lactoglobulin	225
A. Summary of trials	225
B. Feed properties	227
C. Operating conditions	229