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ABSTRACT 

This thesis explores the effects of data analytics and human judgment on management 

decision making in an increasingly data-driven environment. In recent years, the topics 

of big data and advanced analytics have gained traction and wide-spread interest among 

practitioners and academics. Today, big data is considered a buzzword by some and an 

essential prerequisite for future business success by others. Recent research highlights 

the potential of big data analytics for decision making, but also points out critical 

challenges and risks.  

The aim of this research is to take an in-depth look at management decision making by 

using qualitative case studies and critical incidents to carefully examine managers' 

decision-making processes. This exploration evolves around the two main research 

questions:  

i) How do managers perceive the role of advanced analytics and big data in 

the decision-making process? 

ii) How do managers perceive the alignment of advanced analytics and big data 

with more traditional decision-making approaches such as human 

judgment? 

The content and thematic analyses of data from 25 semi-structured interviews with 

managers, executives, and business analysts from nine organizations provided several 

key insights. Managers were found to rely on data and human judgment in their decision 

making to varying extents and in different roles. The processes followed by the decision 

makers depended on the decisions at hand, the managers’ characteristics and 

preferences, as well as environmental factors.  

The findings empirically support the development of an ecological systems framework, 

which provides a holistic picture of managerial decision making in the age of big data. 

The study contributes by applying the dual process theory to the context of data-driven 

decision making. Practical implications for organizations are derived from the findings 

and identify organizational considerations and prerequisites. The influence of the 

managers’ environments on decision making emphasizes the organizations’ need to 

utilize a holistic approach when adopting a data-driven decision-making culture.   
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CHAPTER 1: INTRODUCTION 

1.1. Research Background and Significance  

Can big data be considered a game changer? In Carr’s famous article, “IT Doesn’t 

Matter”, he labeled information technology as a mere commodity that has lost its 

potential for competitive advantage since becoming ubiquitous (Carr, 2003). The 

comparatively new phenomenon of big data, however, promises unique advantages to 

innovative companies that are willing and able to exploit its capabilities. With an 

estimated 40 trillion gigabytes of data created, replicated, and consumed in 2020, the 

‘digital universe’ is expected to steadily continue growing and creating more 

information that can be used for business purposes (Kune, Konugurthi, Agarwal, 

Chillarige, & Buyya, 2016). Organizations also have access to increasing volumes of 

organizational data–up to tens or even hundreds of petabytes (Grover, Chiang, Liang, 

& Zhang, 2018). Astute businesses and managers are thus increasingly embracing the 

unique opportunities to capitalize on this big data to gain a competitive advantage.  

This is reflected in the spending trends on big data and business analytics, according to 

the Worldwide Semiannual Big Data and Analytics Spending Guide created by the IDC 

(Goepfert & Shirer, 2019, p. 1): “Worldwide revenues for big data and business 

analytics (BDA) solutions are forecast to reach $189.1 billion this year, an increase of 

12.0% over 2018”. This revenue growth is furthermore expected to remain stable, 

leading to an expected BDA revenue of $274.3 billion in 2022. Both professional 

sectors and academia show a growing interest in the topic, resulting in a wide range of 

research on big data and steadily expanding the level of knowledge (Mishra, Luo, Jiang, 

Papadopoulos, & Dubey, 2017). A search in the Web of Science shows 28 published 
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articles/editorials in the year of 2011 with “Big Data” in their title or topic, with the 

number rising to 657 in 2013, 2,896 in 2015, and 6,999 in 2018, respectively. This 

exceptional increase demonstrates the growing interest of researchers in the topic and 

reflects the rapidly increasing awareness of big data across organizations and industries 

globally. 

The worldwide significance of big data can also be seen in New Zealand, where this 

research took place, and where it is thus focused. The New Zealand Data Future Forum 

in 2014 took stock of the state of big data, discussing its potential, risks, and 

opportunities (Kirk, 2014). The Ministry of Education was one of the early adopters 

employing traffic, geospatial and population data and information for use in predictive 

analytics. The Forum concluded that the available data and technology could potentially 

transform New Zealand government institutions and the general economy; however, 

most of this potential remained untapped. In 2016, the New Zealand Herald reported an 

estimated value of $4.5 billion in big data and sophisticated analytics across New 

Zealand businesses, with government and banking spearheading the maximizing of its 

potential (Ryan, 2016).  

Most recently, in 2019, ZDNet reported on the All Blacks’ use of performance analytics 

(Barbaschow, 2019). NZ Rugby adopted SAS Visual Analytics in 2013, and has since 

been using competitor, player, and team data, focusing on match performance data. The 

data is visualized to align with game strategy, to gather specific insights, or to generally 

fill knowledge gaps. While the technology provides significant advantages, the rugby 

players are still considered to be in charge of the game. Data analytics is therefore seen 

as a supportive tool in the background, used to inform decisions and provide context 

(Barbaschow, 2019). 
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NZ Rugby is not alone, as more and more companies and institutions show interest in 

adopting data-driven decision making, particularly due to their ever-increasing access 

to data. Big data is the result of this increase and can be differentiated from traditional 

datasets by several characteristics, primarily its volume, variety, and velocity–often 

referred to as the 3 Vs (Laney, 2001). Essentially, big data is seen as a large amount of 

data from various sources and in diverse formats that is generated–and ideally 

processed–in (near) real-time. Due to this growing complexity, analytics needs to adapt 

and evolve to incorporate these characteristics. Generally defined as the use of hardware 

and software to extract meaning and patterns from data, analytics is also becoming more 

advanced: offering the potential to not only descriptively analyze past data, but also in 

a predictive manner to plan and foresee events and developments, and even in a 

prescriptive capacity, advising for best actions (Kaisler, Armour, Espinosa, & Money, 

2013). 

As beneficial as its use can be, recognizing the limitations of data analytics is an 

important consideration for business applications. Data itself cannot lead companies to 

guaranteed success; human factors, such as experience, knowledge and wisdom, are 

also of vital importance. As Silver (2012, p. 9) warns, “It is when we deny our role in 

the process that the odds of failure rise. Before we demand more of our data, we need 

to demand more of ourselves.” Managers therefore need to reflect upon their current 

decision making and use the reflection period to determine the best ways to incorporate 

big data into their decision processes.  

Due to its increasing volume, variety and velocity, big data has the potential to 

significantly improve decision making (Bumblauskas, Nold, Bumblauskas, & Igou, 

2017; Davenport, Barth, & Bean, 2013; McAfee & Brynjolfsson, 2012). In fact, it can 
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be considered critical for the management level of an organization, especially since “a 

significant, perhaps the distinctive, task of the manager is making decisions” (James, 

1975, p. 22). Managerial decision making is the key to good managerial performance. 

Indeed, an empirical study by Köse (2016) confirmed “a statistically significant 

relationship between the decision-making competence of the managers and managerial 

performance.” Simon (1960, p.1) actually equates ‘managing’ to ‘decision making’. 

Managers need to identify decision situations, develop and evaluate potential solutions, 

and make an informed choice for the best way forward. 

Successfully using data in this process requires certain managerial characteristics and 

preparedness. New challenges and the extended requirements of big data demand a 

certain way of thinking and decision making from managers, as, for example, S. Shah 

et al. (2012) suggest. Not all senior managers showed the necessary aptitude for this 

thinking, which the study assessed by looking at the managers’ ability to allocate and 

utilize relevant information for their decision-making process. Only 50% of surveyed 

senior managers had sufficient analytical skills, considered colleagues’ perspectives, 

and found a balance between their own judgment and analytical output. This 

combination of analytics and judgment components was found to be connected to 

increased productivity and effectiveness (S. Shah, Horne, & Capellá, 2012).  

But how can big data change decision making so significantly that managers require an 

advanced skill set to take advantage of it and stay competitive? Whereas big data can 

be seen as the next step in the evolution of data and analytics (Intezari & Gressel, 2017), 

what sets it apart is the rapid generation of new and unstructured data, as well as leaps 

in machine learning, which both offer new opportunities (Agarwal 2014). The 

difference between the more traditional structured and the newer semi-structured and 
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unstructured data is defined by Russom (2011). Structured data can be found in 

spreadsheets and relational databases and can easily be captured and queried.  

In contrast, forms of unstructured data, such as images, audio, video, etc., pose 

difficulties for analysis, due to their ill-defined nature. This unstructured data 

constitutes almost 95 percent of the currently available big data (Grover et al., 2018). 

In between structured and unstructured data exists semi-structured data, which is 

increasingly used for analytics (Russom, 2011). Semi-structured data is often simply 

unstructured data that has been enriched with metadata, which makes it searchable and 

organizable. Some examples of metadata are time and location tags for photos and 

emails. Semi-structured data itself still lacks structure, but these identifiable features 

support its analysis. 

Decision making can profit from a combination of these newly acquired data sources 

with traditionally structured data, which together help compose a more thorough overall 

picture (McAfee & Brynjolfsson, 2012). According to McAfee and Brynjolfsson 

(2012), companies that rely on data-driven decision making exceed their competition 

by 5% in productivity and by 6% in profit. This creates a link between the use of big 

data and improved performance, emphasizing the benefits of big data for predictive 

analysis.  

Due to the variety of these new data sources, big data also shows various applications 

for modern organizations. For example, big data and analytics have been shown to play 

a large role within organizations by providing timelier and more accurate information 

about factors such as product demand, integrated supply chain networks, operational 

processes, and improved collaboration with partnering organizations (Gunasekaran, 

Yusuf, Adeleye, & Papadopoulos, 2018). It also enables better inventory control, 
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improved transportation, job scheduling, and quality control at the operational level. 

This is particularly achieved by an improved understanding of the customer experience, 

which facilitates the customization of recommendations, the identification and 

prediction of root causes for failures, the catalyst for quality and innovation, and the 

improvement of complaint management and operational procedures (Grover et al., 

2018). Industries where opportunities for big data and analytics have been identified 

include manufacturing (Gunasekaran et al., 2018), farming (Wolfert, Ge, Verdouw, & 

Bogaardt, 2017), the public sector (Kim, Trimi, & Chung, 2014), and many more.  

Big data and analytics, when applied successfully, have the ability to improve 

productivity, efficiency, and offer several valuable opportunities (Melé, 2010). Big data 

can enable organizations to automate various processes, and therefore minimize the 

required personal input from management (McAfee & Brynjolfsson, 2012). Here, the 

necessity of case-by-case judgment diminishes, and intuition and practical wisdom fade 

into the background (Bhidé, 2010). However, in their implementation of big data 

analytics, some organizations intentionally leave room for intuition, judgment and 

wisdom, since they see equally clear benefits in the use of expertise, experience and 

values (Jimenez, Araneta, & Tan, 2012). Intuition is thereby understood as an emotional 

and unconscious process, that involves rapidly formed holistic associations and experiences 

(Dane & Pratt, 2007; Khatri & Ng, 2000). Particularly experienced managers benefit from 

their knowledge, i.e. years of application and personalization of information (Alavi & 

Leidner, 2001), when making intuitive judgments.  

Not all organizations have discovered the potential of big data analytics and therefore 

cannot yet realize its value opportunities. First-movers and creative analysts are gaining 

a competitive edge from utilizing big data, thus creating the need for all other businesses 

to follow suit (Davenport, 2006; Huber, 1990; McAfee & Brynjolfsson, 2012). But for 
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big data to be successfully employed, several environmental components need to be put 

in place. Organizational culture is critical for this success (Diaz et al., 2018). Companies 

must also consider privacy and security (Raguseo, 2018). On top of this, big data 

initiatives also require employees that are different from conventional analysts 

(Davenport, 2014a). A growing number of organizations are expected to make use of 

big data, which raises the question if all of them will use it wisely. 

Whereas certain research streams have encouraged organizations to compete on 

analytics and big data (Davenport, 2006; McAfee & Brynjolfsson, 2012), others call 

for more caution, and emphasize prudence and wisdom (Bhidé, 2010; Rooney, 

Mandeville, & Kastelle, 2013). But while the predictive power and precision of 

information systems may lead to an increasing trust in analytics, this reliance on 

abstract data and knowledge may lead to the neglect of judgment, experience and 

wisdom (Bhidé, 2010). So this begs the question: is there a middle ground? 

“Unfortunately, while many provocative ideas about the interplay between rational and 

intuitive decision making have been suggested, empirical research in this area, 

particularly in the field of management, remains insufficient” (Dane and Pratt, 2007, 

p.48). This research, therefore, aims at further exploring the interaction between human 

judgment and analytics in managerial decision making, a thread of exploration which 

is further discussed in the next section. 

1.2. Research Problem and Research Questions 

Current practitioner literature and academic research on big data and advanced analytics 

is primarily focused on the technological challenges, new analytics tools and 

capabilities, and the implementation and organizational effects of those advanced 

technologies (Sivarajah, Kamal, Irani, & Weerakkody, 2017; Wamba et al., 2017; 
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Wang, Kung, & Byrd, 2018). Most literature stops at the point of successful 

implementation or resumes at the point of evaluating the impact of big data 

technologies. Additionally, most research in this area is focused on high-level effects, 

such as big data’s potential to improve firm performance (Akter, Wamba, Gunasekaran, 

Dubey, & Childe, 2016; Kung, Kung, Jones-Farmer, & Wang, 2015), and to 

significantly improve decision making (Wamba et al., 2017). However, the ‘how’ of 

these effects has not been addressed extensively, and the actual application of big data 

in the decision-making process has not been sufficiently explored.  

Once organizations adopt big data technologies, managers are still not necessarily 

aware of how to access or use this new information, how they can balance it with their 

extant decision-making methods, and even if that information is trustworthy. Therefore, 

even though this topic seems to invite further exploration, research in this field is still 

lacking, possibly due to the novelty of big data and its rather recent application in 

organizations. Extant literature on data-driven decision making is limited to the context 

of traditional analytics, which mostly does not account for more complex applications 

of data. This literature tends to emphasize the advantages of analytics and mostly 

supports reliance on analytics over intuition or other human factors (Davenport, 2006, 

2013; LaValle, Lesser, Shockley, Hopkins, & Kruschwitz, 2011; McAfee & 

Brynjolfsson, 2012; Provost & Fawcett, 2013). Literature in favor of intuition, 

judgment and wisdom in decision making, on the other hand, is often of an exclusively 

theoretical and conceptual nature (Bhidé, 2010; Bonabeau, 2003; Melé, 2010), or based 

in the area of psychology (Gilhooly & Murphy, 2005; Kounios & Beeman, 2009; 

McCrea, 2010).   
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The research objective of this study is thus to address this gap in the extant literature 

and to explore management decision making in the age of big data. Its aim is to explore 

how and if managers are in fact using big data in their decision-making processes, and 

how they perceive its effects, which will lead to a holistic view of decision making in 

the age of big data. This study therefore ultimately set out to form a rich understanding 

of the actual use of big data in various organizations across different industries.  

An important aspect in this context is whether managers can trust their own judgment 

in this new and unprecedented field of big data. Furthermore, factors that influence this 

decision-making approach also need to be addressed. As the relation between data-

driven and judgment-based decision making is not sufficiently answered by current 

research efforts, this thesis addresses this gap via its two main research questions:  

1. How do managers perceive the role of advanced analytics and big data in the 

decision-making process? 

2. How do managers perceive the alignment of advanced analytics and big data 

with more traditional decision-making approaches such as human judgment? 

The following section outlines the specific research design that was used to explore 

these research questions.  

1.3. Research Design 

This research followed a multi-step process, which is outlined Figure 1. As a first step, 

a comprehensive literature review was conducted in order to closely examine the field 

of big data and determine gaps in extant research efforts. This review provided an 

overview of the current definitions and understanding of big data and advanced 

analytics. The chapter also identified a shortcoming in the extant literature specifically 
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regarding the application of big data analytics in managerial decision making. This led 

to a further exploration of decision-making theory, and consequently literature on 

human judgment and data use in managerial decision making. Lastly, as the extant 

literature highlighted various challenges managers encounter when employing big data, 

the literature review therefore identified several organizational prerequisites for 

successful big data programs. 

The literature showed a strong focus on applications of big data and technological use 

cases, as well as challenges. Furthermore, the effects on organizational performance 

and competition were frequently emphasized. However, the literature lacked an 

exploration of ways to incorporate big data into the managerial decision-making 

process. This led to the formulation of the two research questions, on which this thesis 

focused: exploring decision makers’ understanding of big data and advanced analytics, 

as well as their perception of incorporating it into their decision-making processes. 
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Figure 1. Research Process 

These research questions informed the used methodology of this study and led to the 

next step of the research process, which is the research design. The nature of the 

questions demanded an interpretivist approach, as they explore the subjective 

assessment and experiences of managers regarding big data in decision making in their 

individual context (Creswell, 2012). A qualitative approach was then selected in order 

to collect the rich data that was required to reach the in-depth insights the research 

questions required (Carson, Gilmore, Perry, & Gronhaug, 2001). As decision making 

is at the core of this thesis, the used methodology was chosen for its ability to collect 
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data about actual decision-making processes, as well as reflections on and general 

perceptions of the topic of data-driven decision making.  

A combination of the Critical Incident Technique (CIT) (Flanagan, 1954) and case 

study research methodology (Yin, 2014) was ultimately chosen, as it promised rich and 

diverse insights. Both methodologies, case study research (Cavaye, 1996; Popovič, 

Hackney, Tassabehji, & Castelli, 2018; Walsham, 1995), and CIT (Coetzer, Redmond, 

& Sharafizad, 2012; Trönnberg & Hemlin, 2014), have previously been used for 

qualitative decision-making studies that focused on human judgment and/or analytics. 

Combining these two methods provided insights into actual decision-making processes 

and circumstances, and furthermore captured contextual factors such as personal 

characteristics and environmental factors. 

Case studies of the main unit of analysis, i.e. the decision makers, were conducted using 

semi-structured interviews. The embedded unit of analysis in the cases were critical 

incidents describing memorable decisions based on (big) data. This combination 

enabled the capture of the managers’ perceptions of the topic, but also their actions in 

actual decision-making situations. Twenty-five managers and business analysts were 

interviewed in total.  

For the CIT portion of the interview, a rigorous set of questions was asked, which led 

to the managers’ recollection of 43 usable incidents. The data collected with this 

methodology was primarily content analyzed, and later thematically analyzed in line 

with the case studies. The case study portion of the interview addressed general 

impressions around data-driven decision making, environmental influences, specific 

characteristics of the managers, and their reflection on past decisions. This provided 

rich context for the managers’ decisions, and often highlighted contrasts between actual 
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and ideal decision making. The case study piece of the interview was solely 

thematically analyzed.  

A multi-level analysis approach was then employed to enable a full examination of 

individual decision making, including contextual factors (Andersson, Forsgren, & 

Holm, 2001; Kidwell, Mossholder, & Bennett, 1997). Abductive reasoning led to a 

spiral process of matching findings to theories that had been identified during the 

literature review, exploring new theories, and exploring propositions put forward in 

recent publications, which then led to a thorough and holistic multi-level picture of 

managerial decision making (Blaikie, 2007). While the original setup of the study 

mainly accounted for managerial decision-making processes, the findings soon showed 

the significance of differentiation between different manager types and their contexts. 

Abductive reasoning facilitated the emerging of these additional themes and layers. 

Recruitment followed purposive case selection, which was based on replication logic, 

ensuring the cases had theoretical value (Miles, Huberman, & Saldana, 2014; Stake, 

2006). Attention was therefore paid to diversity in respect to the organization’s use of 

analytics, the organizational size and culture, the industry, and the manager’s 

department, position, and experience. The participants of this study included heads of 

departments, (general) managers, C-level positions, but also analysts. All participants 

were involved in managerial decisions and provided various views on the issue. For the 

sake of simplification, the different types of participants were all nevertheless referred 

to as managers, as they were involved in managerial decision making, i.e. preparing the 

decision and recommendation, designing the process, etc. 

The analysis efforts led to various insights, and several groups of themes were 

identified. Three findings and discussion chapters were then developed, which 
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correspond to the multi-level analysis approach. Chapter 4 reports on the embedded 

unit of analysis findings. Dual process theory was applied to the different decision-

making processes, covering the different types of decisions. The various roles of 

analytics and human judgment were identified and their importance for the different 

processes was determined. This chapter was mainly informed by the content analysis 

with minor inputs from the thematic analysis. Chapter 5 covers the main unit of 

analysis, the individual manager, with the findings exploring different types of 

managers and the influences of their characteristics on the decision-making processes 

they followed. The context was explored as the last level of analysis in Chapter 6, 

identifying environmental factors that significantly impact individual managers and 

their decision making. Chapters 5 and 6 were primarily informed by the thematic 

analysis, with minor insights gained from the content analysis. 

The multi-level analysis approach led to several relevant research outcomes. These 

outcomes are further discussed in the next section. 

1.4. Research Contributions 

The study contributes to the extant literature by presenting a multi-level view of 

managerial decision making in the age of big data. This multi-level view led to several 

theoretical implications, as well as methodological and practical contributions.  

Applying seminal decision-making process work (e.g. Mintzberg, Raisinghani, & 

Theoret, 1976; Simon, 1960) to the context of data-driven decision making to assess 

their validity in the age of big data led to the first of four key theoretical implications. 

Decision-making processes were found to still consist of three main stages: 

identification, development, and selection. Four main triggers for the identification of 

a decision situation could be differentiated, and analytics was found to be one of these 
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four initiators of the decision-making process. The development stage was found to be 

extended by the additional insights of analytics, which allowed for a more thorough 

development and evaluation of alternatives. The selection stage particularly benefited 

from the use of data-driven decision making, as it allowed managers to objectively 

justify their choices to other stakeholders.  

A second theoretical implication resulted from the use of the dual process theory 

(Bazerman & Moore, 2013; Dane & Pratt, 2007): The two-system view enabled a 

thorough identification and differentiation of the roles that analytics and human 

judgment take on in the decision-making process, in which stages, and to what extent.   

As a result of this thesis, the classic decision-making processes (e.g. Mintzberg et al., 

1976; Simon, 1960) were extended to account for these different roles of data analytics 

and human judgment, furthering current understanding for the use of both.  

The third theoretical implication is the expansion of extant decision categories (Ackoff, 

1990; Snowden & Boone, 2007) by developing decision types that reflect decision-

making processes in the age of big data. These three decision types, namely balanced, 

high-data, and high-judgment decisions are distinguished by the manager’s extent of 

data and human judgment use. Furthermore, it was examined which decision situations 

would benefit of which decision type, providing insights on when data and judgment 

are most appropriate to use. 

Going beyond the decision-making processes, Bronfenbrenner’s ecological systems 

framework (1977, 1979) was used as a lens to evaluate the cases and to craft a 

managerial decision-making environment. This led to the fourth theoretical 

contribution by enabling the incorporation of the concept of analytics maturity, which 

had heretofore been criticized for a lack of theoretical footing (Lahrmann, Marx, 
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Winter, & Wortmann, 2011). Further factors that were identified as part of this 

environment were: the individual managers themselves; their team-level influences 

such as the access to business analysts for support with data-driven decisions; 

organizational-level aspects such as the prevalent organizational decision-making 

culture, traditional or data-driven; and industry-level influences such as the access and 

exposure to data. 

The methodology underlying this research contributes by offering a combination of CIT 

and case study research, which, to the researcher’s knowledge, has never before been 

employed in such depth. The combination of both methodologies facilitated a data 

collection and analysis approach that allowed for the collection of rich, in-depth data 

that connected real-life experiences with general perceptions. The approach provided a 

contrast between managers’ actual decisions and their views on general decision-

making processes. This gave participants the opportunity to reflect on their own 

decision-making behavior.  

Besides the opportunity for reflection, the study incurred several practical 

contributions, for one the upcoming textbook ‘Management Decision-Making, Big 

Data and Analytics’ by Gressel, Pauleen, and Taskin (2020) guiding managers on their 

journey to becoming apt decision makers in the age of big data. Furthermore, the 

definition of different decision-making processes in this thesis can assist managers in 

finding ways of balancing data and judgment use and adjusting the extent of this use, 

depending on decision-specific factors. Organizations on their journey to more data-

driven decision making will also benefit from the findings of this research. The 

managerial decision-making environment highlights how organizational factors and 

other influences impact managers in their decision making. This can assist 
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organizations in creating a beneficial environment for their employees. The component 

of analytics maturity can furthermore assist with understanding and reaching the next 

stages of the journey to data-driven decision making. Lastly, the differentiation of 

distinct types of managerial decision makers also identified their differing needs, which 

companies can now consider with more insight and care when transforming into a data-

driven organization. 

1.5. Thesis Outline 

This study begins with an overview of the extant literature on big data and advanced 

analytics, which covers the evolution of data and analytics over recent years and 

highlights current understanding of the concepts. This is followed by an overview of 

the decision-making literature, which emphasizes the need for further exploration of 

analytics and judgment use and their contribution to the managerial decision-making 

process in the age of big data. The last part of the literature review presents 

organizational prerequisites that are expected to support managers in their data-driven 

decision making. 

The next chapter (Chapter 3) provides an outline of the methodology of this study, 

beginning with the research rationale, which informed the actual research design. This 

design is a combination of CIT and case study research, which was aimed at thoroughly 

exploring the two research questions. This is followed by the data collection, which 

reports on the specifics of purposive case selection as well as the structure, questions, 

and piloting of the interviews. The chapter concludes with a section on coding the data 

and the multi-level thematic and content analyses that were employed. 

Chapters 4 to 6 each contain the findings and discussions for one of the three levels of 

analysis, starting with Chapter 4 on the embedded unit of analysis. After outlining the 
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data analysis for this chapter, the data-driven decision-making process steps are 

outlined, distinct roles of human judgment and data are differentiated, and the contrast 

between actual and ideal decision making is presented. The findings are then discussed 

in the context of extant literature. The findings and discussion on the main unit of 

analysis, the decision maker, are covered in Chapter 5. The managers’ understanding 

of big data and analytics is addressed first, followed by a categorization of distinct types 

of managerial decision makers, highlighting their varying preferences, experiences, etc. 

The last findings and discussion chapter (Chapter 6) reports on the context of the case 

studies as a function of the managerial decision-making environment, a concept that 

was created using the ecological systems framework as a lens. These external factors 

contain team-, organization-, and industry-level influences, as well as the component 

of analytics maturity. 

The study is rounded off with a conclusion chapter (Chapter 7) that highlights 

theoretical implications, as well as methodological and practical contributions. The 

limitations of this research are also discussed, and lead to suggestions for future 

research. A list of references and appendices is provided after the study’s conclusion. 
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CHAPTER 2: LITERATURE REVIEW 

This literature review serves the purpose of providing a broad background in terms of 

the context of this study and introduces theoretical concepts from which the study then 

draws. First, the historical background of data management and analytics is reviewed 

to highlight big data’s evolution and distinctiveness. Since this is a management 

information systems study, the topic of analytics and its adjacent concepts are covered 

first, given that all following areas and topics refer to these concepts. Second is a 

discussion of a body of literature on decision making. This includes the principles of 

the dual systems theory, exploring further the concepts of human judgment as well as 

the role of information systems (IS) in the managerial decision-making process. Third, 

the prerequisites of managerial decision making with analytics are explored, including 

managerial, as well as organizational, industrial, and technological challenges.  

2.1. (Advanced) Analytics and Big Data 

Advanced analytics as well as big data (analytics) are often perceived and marketed as 

a new phenomenon, disregarding the fact that these concepts are built upon and 

affiliated to established technologies such as data warehouses and database 

management systems (DBMS)  (Bumblauskas et al., 2017; H. Chen, Chiang, & Storey, 

2012; Intezari & Gressel, 2017; Watson & Marjanovic, 2013). In fact, early forms of 

data management and analytics, which facilitated the storing and processing of data, 

have been used since the 1950s to support decisions and business processes 

(Bumblauskas et al., 2017; Davenport, 2013; Petter, DeLone, & McLean, 2012).  

Going back even further in time, Bumblauskas et al. (2017) refer to Taylor’s scientific 

management techniques in the early 1900s as the initial catalyst for storing and 
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analyzing data, albeit to a limited degree, methods being constrained by the 

technological capabilities of that time. From the 1930s, digital computers were 

introduced and eventually led to the data processing era, in which managers of financial 

and military institutions relied on information systems to complete subtasks and 

automate processes in the 1950s to 1960s (Bumblauskas et al., 2017; Petter et al., 2012). 

The increasing use of information systems from the 1960s to 1980s enabled managers 

to use data for routine decision making in the management reporting and decision 

support era (Petter et al., 2012; Watson & Marjanovic, 2013). Managers, however, 

struggled with the vast quantities of collected data and the resulting information 

overload (Bumblauskas et al., 2017; Petter et al., 2012), which prompted many to adapt 

their processes and develop new decision tools and techniques. The challenges of 

information overload and the need to adapt the ways of decision making in this era are 

often echoed in big data literature (Davenport, 2013; Niesen, Houy, Fettke, & Loos, 

2016; Prescott, 2016; S. Shah et al., 2012; Watson, 2016).   

In the 1980s and 1990s, organizations recognized the value of IS use also for their 

strategic goals, which led to a further increase in the use of IS and to the development 

of more user-friendly interfaces in the strategic and personal computing era (Petter et 

al., 2012). The challenge of improving user interfaces, and hereby addressing 

information overload concerns, is also reflected in big data literature on visual tools for 

improved management decision making (LaValle et al., 2011; Miller & Mork, 2013; 

Moore, 2017).  

At the beginning of the 1990s, the dawn of the enterprise system and networking era, 

enterprise resource planning (ERP) systems made data available across organizations, 

leading to data sharing between managers and applications, and furthermore enabling 
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group decision support systems (Bumblauskas et al., 2017; Petter et al., 2012). In the 

mid-1990s, the internet allowed the capabilities of information sharing to expand 

beyond organizational borders, and made information accessible instantaneously across 

the world (Bumblauskas et al., 2017). This also marked the beginning of the customer-

focused era (2000 and beyond), as organizations began collecting IP-specific 

information about their customers through cookies and server logs, which enabled a 

customized experience for individuals (Bumblauskas et al., 2017; H. Chen et al., 2012). 

Pioneering efforts of such sophisticated IS include, for example, Amazon’s 

recommendation engine, as well as Google’s search algorithm (Petter et al., 2012).  

As can be seen from this brief history, the difficulties encountered by organizations and 

managers throughout the early years of 20th century data gathering are to some extent 

comparable to the ones that organizations are now facing with big data: “Seen in the 

context of earlier information systems and types of data, big data is just a further step 

in the evolution of data and their applications” (Intezari & Gressel, 2017, p. 74). Big 

data can be seen as an extension of traditional data, and big data solutions as an 

extension of traditional data warehouses and analytics, not as an “either/or” decision 

that companies have to make (Watson & Marjanovic, 2013). Organizations, therefore, 

are given a wide spectrum of sophisticated analytics techniques and tools to choose 

from, many of which are rooted in the field of data management (H. Chen et al., 2012).  

To further develop an understanding of how managers can best employ these tools for 

decision making, this section looks at the importance of converting mere data into 

knowledge for decision making; compares categorizations of analytics capabilities; 

explores a working definition of big data and advanced analytics; and finally, presents 
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the most common challenges and opportunities that managers face when working with 

big data.  

2.1.1. Data, Information, Knowledge, and Wisdom: The DIKW Pyramid 

The evolution of big data provides managers with a significant increase in available 

data. However, raw data alone, regardless of volume, cannot assist in improving 

managerial decision making. In order to gain insights from it, the data must be 

processed and put into a form that is useful for users in a timely manner (Bumblauskas 

et al., 2017). It is therefore required that the sophistication of analytics tools improves 

alongside the evolution of data to better allow managers the possibility of gaining 

information, knowledge and wisdom from vast amounts of data. Big data analytics is 

in turn expected to improve managerial decision making (Bumblauskas et al., 2017; 

Wamba et al., 2017). 

The distinction between these key terms, namely data, information, knowledge, and 

wisdom, is vital to understanding the key role analytics tools play in managerial 

decision making (Bumblauskas et al., 2017). This particular order of the terms is often 

graphically represented in the form of the DIKW pyramid, which can be seen in Figure 

2. This depiction suggests that there is an upward movement, starting out from the broad 

base of data, which gets transformed into information, then knowledge, and is finally 

synthesized into wisdom through understanding (Ackoff, 1989).  

Data is seen as “a set of discrete, objective facts about events” (Davenport & Prusak, 

1998, p. 2), and is therefore simply a “unprocessed raw representation[s] of reality” 

(Faucher, Everett, & Lawson, 2008, p. 6). Information is then perceived as data that has 

been processed to be useful and meaningful for the receiver of the information (Ackoff, 

1989; Davenport & Prusak, 1998). Knowledge is the application and personalization of 
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that information, possessed by individuals (Alavi & Leidner, 2001). “Wisdom,” at the 

top of the pyramid, “is the critical ability to use knowledge in a constructive way. 

Equally, wisdom has in it the critical ability to discern ways in which new ideas can be 

created” (Matthews, 1997, p. 209).  

 

Figure 2. DIKW Pyramid 

The DIKW pyramid is not without its critics. In a contrasting view of the pyramid 

presented by Tuomi (1999), the sharing of a knowledge base is also crucial for an 

individual to arrive at the same conclusions from stored data or information as others. 

It is also argued that the pyramid is indeed inverse, and that no data can be classified as 

raw, since knowledge is required for the data identification and collection (Tuomi, 

1999). While Ackoff (1989) theorized that an organization will only gain wisdom from 

big data when knowledge can be created, accessed and applied, Tuomi’s reversed 

framework (1999) concludes that wisdom and knowledge are absolute prerequisites for 

the collection and exploitation of big data.  

Other researchers have chosen to adapt the idea of the DIKW pyramid, often omitting 

the concept of wisdom. Moore (2017) focuses on the first three levels–data, information 

Wisdom

Knowledge

Information

Data
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and knowledge–of the pyramid in her study, incorporating them as steps in a data-

driven decision-making process. This process begins with the gathering of data, then 

the inferring of meaning by setting the data into a context, therefore receiving 

information. Knowledge is eventually created by synthesizing or combining 

information, which might involve experience-based judgment calls, for example.  

In their highly-cited book, ‘Working Knowledge: How Organizations Manage What 

They Know’, Davenport and Prusak (1998) also limit themselves to the three base 

levels of the pyramid, reasoning that the distinction between those three concepts is 

already sufficiently difficult for organizations and that for their purposes, the concept 

of wisdom is incorporated into knowledge. Building on Davenport and Prusak (1998), 

Bumblauskas et al. (2017) add the additional level ‘actionable knowledge’ to the 

pyramid after knowledge: “… decision makers must be able to derive meaning from 

data or information driving decision-making that can translate into specific action and 

communication to others” (Bumblauskas et al., 2017, p. 12f.). This actionable 

knowledge is theorized required for making effective and timely decisions in the age of 

big data. Prescott (2016)  also focuses on the first three levels of the pyramid when 

incorporating them into a framework known as the ‘knowledge staircase’, which refers 

to the process of developing employee competencies.   

The different applications of the DIK(W) pyramid show that the distinction of data, 

information, and knowledge is significant and widely spread across different research 

areas. Research on big data and advanced analytics particularly benefits from a clear 

understanding of those myriad concepts. Big data will only deliver insights and create 

value if there is a process in place to tailor it to the user so it can eventually be turned 
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into knowledge and wisdom. Information technology can assist with the transformation 

from data into information (Davenport & Prusak, 1998).  

2.1.2. Evolution of Data and Analytics 

Whereas small amounts of data could be grasped without the help of sophisticated tools, 

the variety and amount of data that managers have available nowadays requires 

advanced tools to gain insights. The following section presents three key frameworks 

classifying the evolution and capabilities of analytics, which are additionally 

summarized in Table 1. Comprehending the evolution of big data and advanced 

analytics from its origin in early data management generations fosters a deeper 

understanding of the status quo (Watson & Marjanovic, 2013). Furthermore, these 

frameworks provide an overview of the applications and tools managers currently have 

available for their decision making.  

Chen et al. (2012) is the most widely cited framework incorporating BI and analytics 

capabilities. According to the IT research and advisory firm Gartner, “business 

intelligence (BI) is an umbrella term that includes the applications, infrastructure and 

tools, and best practices that enable access to and analysis of information to improve 

and optimize decisions and performance” (Business Intelligence, n.d.). Since 1990, BI 

has evolved from a mere IT resource into “an organizational capability of strategic 

importance” (Lahrmann et al., 2011, p. 1). Data analytics is generally understood as the 

use of hardware and software to extract meaning and patterns from data. Gartner defines 

it as a “catch-all term for a variety of different business intelligence (BI)- and 

application-related initiatives […] Increasingly, “analytics” is used to describe 

statistical and mathematical data analysis that clusters, segments, scores and predicts 
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what scenarios are most likely to happen” (Analytics, n.d.). In the three evolutionary 

steps that Chen et al. (2012) differentiate, BI&A is used as a unified term. 

The first step, BI&A 1.0, has its foundation in warehousing and data management, the 

collected data being mostly structured and stored in relational database management 

systems (RDBMS) (H. Chen et al., 2012). Managers commonly rely on database 

queries and reporting tools. Graphics and visualizations are used for exploration and 

performance metrics. Furthermore, predictive modeling, data segmentation and 

clustering, and regression analyses are well adopted options in BI&A 1.0. In BI&A 2.0, 

the collected data is web-based and unstructured. The use of data shifts from mere 

business reporting functions to the analysis of customer online behavior, optimization 

of web presences and product recommendations. Organizations can gain a better 

understanding of their customers’ needs when tracking their online activities by using 

cookies, IP addresses, and server logs. Text and web mining techniques are also applied 

to unstructured, user-generated content from social networking and multimedia sites, 

which eventually must be integrated with organizations’ RDBMS. In BI&A 3.0, mobile 

and internet/sensor-enabled devices enable operations and transactions that are targeted 

toward individuals and are adapted to a specific context or location. The techniques for 

capturing and analyzing mobile and sensor data are still in a developmental stage (H. 

Chen et al., 2012; Mazzei & Noble, 2017) with early adopters enjoying first gains (H.-

M. Chen, Schütz, Kazman, & Matthes, 2017). 

Davenport (2013) depicts the evolution of big data with a focus on analytics. The 

framework suggests that there are three eras of analytics, each era being characterized 

by “new priorities and technical possibilities” (Davenport, 2013, p. 65). Analytics 1.0 

is established as the first era of analytics, the era of BI. The era is marked by the 
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discovery of the use of data for business applications, as well as the utilization of data 

on customers and production primarily to optimize and support decision making. 

Analytics is limited to descriptive capabilities, and the process of collection and 

analysis is time-consuming. It is the era of data warehousing and business intelligence 

software, which focuses on queries and reporting. This depiction concurs with Chen et 

al.’s (2012) first evolutionary step, BI&A 1.0.  

Davenport’s Analytics 2.0 is the era of big data, with external data now being available 

from the internet, sensors, audio and video (Davenport, 2013). To analyze these 

additional data sources, new tools are required such as Hadoop, which is an open source 

software that allows faster data processing using parallel servers. DBMS cannot 

manage the amount and unstructured nature of the data, so companies explore NOSQL 

options. However, these new possibilities are limited to industry innovators, i.e. 

organizations that are internet-based or in the social networking business. Analytics 2.0 

widely coincides with BI&A 2.0, but also incorporates the competencies of BI&A 3.0 

as depicted by Chen et al. (2012). According to Davenport (2013), the final era is 

Analytics 3.0: the era of data-enriched offerings. This era marks the transition from big 

data being used mainly by Silicon Valley “information firms and online companies” to 

it being employed by virtually all industries and companies ranging from start-ups to 

multinational conglomerates (Davenport, 2013, p. 67).  

Watson and Marjanovic (2013) focus on the grounding of big data in the field of data 

management. They depict big data as the fourth generation of data management, 

therefore also rooting big data in the database management field, in concurrence with 

Chen et al. (2012) and Davenport (2013). However, Watson and Marjanovic (2013) add 

more distinctions in the pre-big data era: Decision Support Systems (DSS), which are 
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not specifically addressed in the prior two frameworks, are introduced as the first 

generation of their framework. This generation is characterized by a single decision 

maker relying on a DSS that is populated by only one or a small number of internal, 

structured data sources; its use was additionally limited to strategic and tactical 

decisions.  

The following generation of enterprise data warehouses (EDW) is led by an increase in 

reporting needs, which results in a larger number of systems providing data, leading to 

increased use that extends beyond organizational boundaries. Real-time data 

warehousing is considered the third generation. Again, mostly structured data is being 

captured in real time, enabling managers to extend their use of data to operational 

decision making as well, leading to another increase in users. This distinction between 

the second and third generation is not made by the prior frameworks. Each combine 

them into one evolutionary step, namely Analytics 1.0 and BI&A 1.0 (H. Chen et al., 

2012; Davenport, 2013).  

Lastly, the current big data generation offers new data sources that exceed the 

capabilities of RDBMS because of big data’s key characteristics of volume, variety, 

and velocity (Watson & Marjanovic, 2013). New technologies enable the use of big 

data to create more context for improved decision making, particularly when combined 

with traditional data. In this last framework, mobile and sensor data are not specifically 

addressed. 
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Table 1. Evolution of Data and Analytics 

Evolutionary 

Step 
Chen et al., 2012 Davenport, 2013 

Watson & 

Marjanovic, 2013 

DSS 

  First Generation (of Data 

Management): The DSS - 

a single decision maker 

using data and analytical 

aids to support decision 

making. Data sources are 

single or just a few 

operational systems. 

EDW 

BI&A 1.0 - Data is mostly 

structured, collected by 

various legacy systems in 

RDBMS. Data is mostly used 

for business reporting 

functions, statistical analyses 

and data mining. 

Analytics 1.0: era of 

business intelligence - 

the era of the enterprise 

data warehouse. Data is 

prepared, stored, 

queried and reported. 

Analyses are time-

consuming. No 

explanations or 

predictions are offered. 

Second Generation: 

EDW - data-focused 

approach to data 

management. Data is 

structured and updated in 

batch mode from several 

systems. 

DBMS and 

data ware-

housing 

Third Generation: Real-

Time Data Warehousing 

- Operational decisions 

and processes are 

supported by real-time 

data. Data volume is 

increased, but data is still 

mostly structured. 

Big Data for 

first movers 

 Analytics 2.0: era of big 

data - mostly used by 

internet-based firms, 

changing the role of 

data and analytics. Use 

of internal, external and 

unstructured data. Rise 

of Hadoop, NoSQL and 

cloud computing. 

 

Big Data for 

all 

organizations 

BI&A 2.0 - Data is web-based 

and unstructured. Data is used 

to analyze customer online 

behavior, optimize web 

presences and product 

recommendations. User-

generated content provides 

feedback and opinions. 

Analytics 3.0: era of 

data-enriched offerings 

- other large 

organizations from 

various industries 

follow the trends of 

Analytics 2.0. 

Big Data Generation - 

new ways of using data, 

such as deeper 

understanding, better 

predictions, or greater 

context. Relatively new 

data sources are utilized. 

Mobile & 

Sensor Data 

 BI&A 3.0 - Data is mobile 

and sensor-based. Data 

supports highly mobile, 

location-aware, person-

centered, and context-relevant 

operations and transactions. 

 



  Chapter 2: Literature Review 

30 

 

The stages of these frameworks differ in terms of both emphasis and detail: while 

Davenport (2013) focuses solely on analytics capabilities, Chen et al. (2012) combine 

analytics and BI developments, and Watson and Marjanovic (2014) emphasize big 

data’s data management roots. Nonetheless, the general tendencies and overall 

developments correspond in all three frameworks, showing a gradual evolution of big 

data and advanced analytics. The most recent and evolved stage is presented as a wide 

range of organizations utilizing big data for various purposes, incorporating 

unstructured and diverse data sources into their decision making (H. Chen et al., 2012; 

Davenport, 2013; Watson & Marjanovic, 2013).  

2.1.3. Definition of Big Data and Advanced Analytics 

The age of big data and advanced analytics offers new opportunities for managerial 

decision making, but also entails diverse challenges because of its technological novelty 

and managers’ inexperience in this new area. Especially regarding the term big data, 

not all practitioners are consistently informed. Particularly when it comes to 

management, knowledge gaps can be identified (Davenport, 2013; Gandomi & Haider, 

2015; Wang et al., 2018; Watson & Marjanovic, 2013). This leads to a 

misunderstanding of big data’s opportunities, limitations and challenges (Davenport, 

2014a). To comprehend all aspects of big data decision making, it is essential not only 

to understand the evolution of big data and advanced analytics, but also what is 

currently understood about these terms. Since both topics are relatively new to industry 

and academia, a consensus has not yet been reached. Therefore, the following section 

explores the respective current literature and derives a working definition for this thesis.  

First used in a publication on the visualization of large datasets by Cox and Ellsworth  

in 1997, the term ‘big data’ has since been increasingly explored and shaped. In 2001, 
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big data received a characterization distinguishing it from traditional data. Gartner’s 

Doug Laney established three defining dimensions which are now commonly known 

as the “3 V’s” (Laney, 2001): volume, velocity, and variety (McAfee & Brynjolfsson, 

2012; O'Leary, 2013; Wang et al., 2018; Watson & Marjanovic, 2013). Since then, a 

fourth and fifth dimension have been added by several sources: veracity (Abbasi, 

Sarker, & Chiang, 2016; Jagadish et al., 2014; Sathi, 2012; Sivarajah et al., 2017), and 

value (Bumblauskas et al., 2017; Colombo & Ferrari, 2015; Mishra et al., 2017; Wamba 

et al., 2017). An overview of these dimensions can be seen in Table 2. 

Table 2. Big Data Dimensions 

Dimension Description References 

Volume 
Datasets exceed the capacity of DBMS and 

traditional analytics tools. 

McAfee & Brynjolfsson, 
2012; O'Leary, 2013; 

Sivarajah et al., 2017; 

Wamba et al., 2017; Wang 

et al., 2018; Watson & 
Marjanovic, 2013 

Velocity 

Data is processed in (near) real-time. Data 

collection, analysis, and interpretation are 

continuous processes. 

McAfee & Brynjolfsson, 

2012; O'Leary, 2013; 
Sivarajah et al., 2017; 

Wamba et al., 2017; Wang 

et al., 2018; Watson & 

Marjanovic, 2013 

Variety 

Diverse data sources – often unstructured – 

from social media, sensors, audio or video 

files pose problems for the data analysis. 

McAfee & Brynjolfsson, 

2012; O'Leary, 2013; 

Sivarajah et al., 2017; 
Wamba et al., 2017; Wang 

et al., 2018; Watson & 

Marjanovic, 2013 

Veracity 

Data sources must be credible and suitable 

for the organization to provide reliable 

results. 

Abbasi, Sarker, & Chiang, 
2016; Jagadish et al., 2014; 

Sathi, 2012; Sivarajah et 

al., 2017; Wamba et al., 

2017 

Value 
Economic benefits are derived from the use 

of big data. 

Bumblauskas et al., 2017; 

Colombo & Ferrari, 2015; 

Mishra et al., 2017; 
Wamba et al., 2017 
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The volume of big data far exceeds the size of traditional datasets, creating challenges 

for DBMS and data warehouses (Kaisler et al., 2013; Katal, Wazid, & Goudar, 2013; 

Provost & Fawcett, 2013; Sivarajah et al., 2017; Wang et al., 2018; Watson & 

Marjanovic, 2013). However, the volume of data that determines what qualifies as big 

data is hard to pinpoint to a specific number, generally ranging from terabytes to 

petabytes or even exabytes (Abbasi et al., 2016; Mishra et al., 2017). This results from 

the continuous growth of data that is produced every second over the internet, sensors, 

customer transactions, and so forth (McAfee & Brynjolfsson, 2012; Phillips-Wren, 

Iyer, Kulkarni, & Ariyachandra, 2015; Pospiech & Felden, 2016; Watson & 

Marjanovic, 2013).  

Furthermore, the technological capabilities are increasing, offering more data storage 

capacity to companies for lower costs and enabling them to store increasing amounts 

of customer and production data. The growing market of cloud computing (Gantz & 

Reinsel, 2012), for example, offers organizations of all sizes tailored solutions and 

capacities for their data storage (H. Chen et al., 2012; Delen & Demirkan, 2013). 

Organizations pay for the used capacity, and in exchange are provided with rapid 

elasticity and ubiquitous network access. A further aspect of cloud computing is the 

possibility of analytics-as-a-service. Users do not only have the ability to access their 

data and information from remote devices, but can also use the necessary analytic tools 

on demand (Delen & Demirkan, 2013; Hazen, Boone, Ezell, & Jones-Farmer, 2014). 

This service assists especially with attaining the other two components of big data, 

namely velocity and variety.  

The velocity of big data is characterized by the speed of data generation (Phillips-Wren 

et al., 2015; Wang et al., 2018). Regarding velocity, a dataset can only be classified as 
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big data if the data is processed in (near) real-time (Hazen et al., 2014; McAfee & 

Brynjolfsson, 2012). Data is not analyzed in hindsight, but in ‘continuous flows and 

processes’ (Davenport et al., 2013, p. 23), providing and demanding more flexibility 

and faster actions (Abbasi et al., 2016; Mishra et al., 2017). The velocity of data is 

especially crucial for decision making, since certain decisions can influence data that is 

simultaneously being gathered and analyzed. Changes and alterations that result from 

decision making therefore have to be immediately implemented and updated in the 

ongoing data stream (Bumblauskas et al., 2017; O'Leary, 2013). The speed of data 

creation is at the heart of the expansion of big data and advanced analytics. However, 

techniques that enable the analysis of this vast stream of data remain underutilized in 

organizations (Bumblauskas et al., 2017; H. Chen et al., 2012).  

The variety dimension of big data can be seen in the different forms of internal and 

external data sources and various kinds of information that are stored (Davenport, 2013; 

Hazen et al., 2014; McAfee & Brynjolfsson, 2012; Phillips-Wren et al., 2015; Pospiech 

& Felden, 2016; Wang et al., 2018). Data is no longer limited to structured, numerical 

data, which is typically displayed in spreadsheets and merely represents 5% of all 

available data (Mishra et al., 2017). The variety of big data allows unstructured forms 

of data to be collected from social networks, texts, audio or video files, sensor data, 

GPS signals, click-streams and so on (Abbasi et al., 2016; Mishra et al., 2017; O'Leary, 

2013; Phillips-Wren et al., 2015). This variety of data offers a new spectrum of 

possibilities, as well as challenges that exceed the capabilities of traditional DBMS 

(McAfee & Brynjolfsson, 2012).  

An often used extension of these original 3 Vs can be found represented in the 

dimension veracity, a descriptor often suggested in more recent literature (Abbasi et al., 
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2016; Jagadish et al., 2014; Sathi, 2012; Sivarajah et al., 2017; Wamba et al., 2017). 

Veracity reflects how credible a data source is and how well the data suits the 

organization’s audience. In order to benefit from decision making and analytics in 

general, the data sources have to be credible enough to ensure data fidelity, truthfulness, 

correctness and accuracy (Phillips-Wren et al., 2015; Sathi, 2012). Veracity is therefore 

a useful data quality measure for the varying reliability of big data sources, which are 

often affected by spam, noise, and biases (Abbasi et al., 2016; Mishra et al., 2017; 

Phillips-Wren et al., 2015; Sivarajah et al., 2017). The first step to ensuring veracity is 

“creating an inventory of available data sources and the metadata that describes the 

quality of those sources in terms of completeness, validity, consistency, timeliness, and 

accuracy” (Miller & Mork, 2013, p. 57).  

Value refers to economic benefits that result from the use of big data, and is considered 

by some sources as its fifth dimension (Bumblauskas et al., 2017; Colombo & Ferrari, 

2015; Mishra et al., 2017; Wamba et al., 2017). It is a concept that originates from 

practitioner reports on big data by Oracle and market research firm Forrester. It reflects 

the necessity to identify value-adding sources of information that are meaningful 

(Dijcks, 2012; Gogia et al., 2012). 

This thesis refers to big data using a definition based on the original 3 Vs, as this 

characterization is the most common denominator in academic and practitioner 

literature. Veracity, rather, is considered an inherent challenge for organizations that 

results from the other three dimensions. Value is also not considered a dimension, but 

the general aim of utilizing big data. In the context of this thesis, big data is defined as 

a vast amount of structured and unstructured data from various sources that are 

constantly generated and processed.  
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For big data to be converted into information and eventually knowledge, advanced 

analytics tools that are capable of handling the 3 Vs of big data must be applied (Intezari 

& Gressel, 2017). Advanced analytics, in contrast to traditional analytics, can be 

considered a collection of sophisticated tools that primarily serve the discovery and 

exploration of large and detailed datasets (Russom, 2011). Therefore, advanced 

analytics is frequently applied in the context of big data: “We define advanced analytics 

to be the application of multiple analytic methods that address the diversity of big data 

– structured or unstructured – to provide estimative results and to yield actionable 

descriptive, predictive and prescriptive results” (Kaisler et al., 2013, p. 729). Tools and 

techniques that are considered part of advanced analytics are, for example, complex 

SQL queries, data mining and statistical analysis, as well as data visualization (Russom, 

2011).  

While equipped for big data sets, these techniques can also be employed for the 

exploration of traditional datasets, as Bose (2009) defines advanced analytics as “a 

general term which simply means applying various advanced analytic techniques to 

data to answer questions or solve problems” (p.156). Managers mainly employ them 

for predictive and prescriptive purposes to predict and optimize outcomes (Barton, 

2012; Gartner, 2014), but the techniques can also benefit descriptive analytics. These 

three types of analytics, namely descriptive, predictive, and prescriptive, are 

characterized by their purpose and utilized tools, as described below. 

Descriptive analytics serves the purpose of determining well-defined past and present 

opportunities or potential problems (Delen & Demirkan, 2013; Sivarajah et al., 2017). 

The information gained from business reporting tools such as scorecards and data 

warehousing enables organizations to alter or adapt their future behaviors (Davenport, 
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2013; Delen & Demirkan, 2013). Big data can be advantageous in the provision of more 

extensive and real-time data, offering further insight into business situations and 

customers (LaValle et al., 2011; Watson & Marjanovic, 2013). 

Predictive analytics enables managers to make more prudent and forward-looking 

decisions, since the constructed models are designed to predict future conditions 

(Davenport, 2013; Shmueli & Koppius, 2011; Sivarajah et al., 2017). Predictive 

analytics utilizes qualitative and quantitative techniques to go beyond the prediction of 

the future and analyze various scenarios, such as how past observations would have 

been altered if the given conditions had been different (Waller & Fawcett, 2013). 

“Predictive analytics uses data and mathematical techniques to discover explanatory 

and predictive patterns […] representing the inherent relationships between data inputs 

and outputs” (Delen & Demirkan, 2013, p. 361). Big data offers increased accuracy for 

predictions, benefiting various business scenarios from different industries. McAfee et 

al. (2012) look at an airline case that improved its prediction of arrival times of airplanes 

at the airport by using various data sources beyond the pilots reporting. Using additional 

sensor, weather and flight schedule data led to a more rigorous predictive model and 

therefore improved the airline’s decision making (McAfee & Brynjolfsson, 2012).  

Prescriptive analytics provides the decision maker with sufficient information about 

optimal behaviors to clearly determine the best course of action (Davenport, 2013; 

Delen & Demirkan, 2013). This form of analytics is widely based on optimization and 

randomized testing (Sivarajah et al., 2017). When analytics is embedded into 

operational processes, the input of big data will automatically evoke a result, change or 

decision, and therefore increase the efficiency of day-to-day business activities 

(Davenport, 2013; Provost & Fawcett, 2013). Empirical evidence from a study on 
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optimized allocation of an organization’s sales force suggests that revenue can be 

increased marginally if prescriptive analytics are embedded (Kawas, Squillante, 

Subramanian, & Varshney, 2013). 

This thesis assumes the term advanced analytics to mean a set of advanced tools and 

techniques that is applied to several or vast data sets, and therefore exceeds the use and 

outcome of traditional analytics.  

2.1.4. A Critical Look at Big Data: Opportunities and Challenges 

The rapid generation of vast and often unstructured amounts of data presents new 

opportunities for organizations. However, the use of big data is tied to several 

challenges that organizations need to overcome, as well as to certain controversies 

among customers, practitioners and academics surrounding legal and privacy aspects. 

This section provides a concise overview of the inherent opportunities of big data, 

which appeal to organizations because of their potential to create value. Some of the 

key challenges of big data are also discussed in a concise manner to point out the key 

areas to consider when organizations are planning to implement big data technologies. 

Factors regarding the organizational prerequisites for optimized big data 

implementation and use are discussed further in section 2.3. 

2.1.4.1. Opportunities and Use Cases 

With big data gaining traction, first-movers were expected to gain a significant 

advantage from using big data (Davenport, 2013). This accelerated the development 

and availability of a wide range of applications. By now, value added from big data is 

visible in various industries and business areas such as finance, marketing and sales, 

production and manufacturing, as well as supply chain and logistics (Kaisler et al., 

2013; Manyika et al., 2011; Mishra et al., 2017; Watson & Marjanovic, 2013). Research 
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of various disciplines, for example health care, also benefits from the extended 

possibilities of big data (Agarwal & Dhar, 2014; Mishra et al., 2017). With the medical 

field gaining access to a large amount of patient information, big data increases the 

potential to research diseases such as Alzheimer’s or diabetes, while taking 

geographical information, habits and other influencing factors into consideration  

(Agarwal & Dhar, 2014).  

One of the reasons for those opportunities is the increase in transparency, a movement 

away from closed-off and siloed databases. Within organizations, this transparency is 

created through the integration of multiple systems and data from multiple 

departments–sometimes even with input from external companies. The result are 

openly available datasets that assist with functional and business analysis (Brown, 

Chui, & Manyika, 2011; Kaisler et al., 2013; Motamarri, Akter, & Yanamandram, 

2017). However, the accessibility of information across sectors cannot only be 

considered an opportunity for organizations: “It can threaten companies that have relied 

on proprietary data as a competitive asset” (Brown et al., 2011, par.11). Brown et al. 

(2011) refer to the real estate industry as an example of this, because it relies on 

asymmetry of information availability between buyers and sellers. The transparency of 

this information allows a bypassing of real estate agents, therefore challenging their 

ability to create profit.  

Another reason for big data opportunities lies in the variety of data sources, specifically 

in the availability of sensor data. The areas of production, manufacturing and 

maintenance particularly benefit from employing sensors, as can be seen in computer-

assisted innovation enabled by embedded product sensors (Kaisler et al., 2013). Big 

data can, for example, assist in predicting the failure of machine parts, offering the 
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opportunity to exchange these parts before actual damage or production delays happen 

(Watson & Marjanovic, 2013). One of the companies taking advantage of this 

opportunity is Etihad. By equipping its airplanes with hundreds of sensors, Etihad is 

able to collect a significant amount of digital data about its fleet, which can then be 

analyzed and applied for predictive maintenance (Alharthi, Krotov, & Bowman, 2017). 

This generates substantial savings for the company by preempting problems and storing 

location information on their fleet in real time. A similar use case is Tesco PLC, which 

saves on energy costs by analyzing 70 million data points from their refrigerator units 

to closely monitor performance and predict maintenance, as well as servicing needs 

(Laskowski, 2013).  

Besides the use for manufacturing and production, sensor data also unlocks a new layer 

of understanding for customers. This gives rise to additional marketing and sales 

opportunities, such as experimental analysis testing approaches and decisions, as well 

as improved market segmentation and sentiment analyses (Kaisler et al., 2013; Watson 

& Marjanovic, 2013). A sophisticated example is Disney parks’ MagicBands, which 

are bracelets with integrated radio-frequency identification (RFID) sensors (Alharthi et 

al., 2017). The bracelets function as entry passes to the park and offer the benefit of 

pre-booking and line-cutting to the visitors. Most importantly for the company, the 

RFID chips allow Disney to collect digital information on the bracelet wearers’ 

movements and interactions with the park. The analysis of this data provides Disney 

with insights into customer behavior, enabling them to improve customer experience 

by relying on data about waiting times, purchasing history and customer preferences. 

In addition to the revenue gains realized by the targeted marketing opportunities and 

improved customer experience, operational efficiency is also improved (Kuang, 2015). 
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The pre-booking feature, for example, allows for increased crowd control and 

optimized staffing at rides and restaurants. 

2.1.4.2. Challenges and Considerations 

While this synopsis of different use cases and opportunities demonstrates big data’s 

potential and appeal, organizations are also confronted with a range of challenges that 

must be considered before and while employing big data solutions. One of the main 

obstacles recognized in big data literature are the technological challenges, such as 

handling the complexity of the data, as well as providing the right infrastructure. The 

complexity results from the rapid rate of data growth, as well as the multiple sources 

and formats of the data, which increase the challenge of analyzing it (Alharthi et al., 

2017). Data from these different sources needs to be acquired, recorded, integrated, 

cleaned and reduced down to meaningful information (Lodha, Jain, & Kurup, 2014).  

In terms of underlying infrastructure, organizations need to invest in new technologies 

that exceed the capabilities of traditionally used software and hardware (Alharthi et al., 

2017). The real-time analysis of vast amounts of records requires extended capabilities 

and is essential for organizations to gain up-to-date insights. While the data can be 

stored in database systems, its analysis requires the use of analytics packages for 

statistical analyses and data mining (Lodha et al., 2014). A strong infrastructure requires 

coordination between the DBMS and analytics packages.  

Organizations’ investments in new technology to explore big data have been immense 

for years (Goepfert & Shirer, 2019; Ross, Beath, & Quaadgras, 2013). Many, however, 

do not see the expected results. This is because what the data is telling them is not 

always easily transferred into action and often requires major changes in the 

organization and its processes. As Ross et al. (2013) point out, a lot of companies 
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struggle with the information they already have for reasons of poor information 

management, lack of analysis skills and failure to act on insights. Advanced technology 

such as big data is therefore not necessarily the right solution for all organizations. 

Some businesses might benefit from traditional options that are often falsely considered 

as inferior (Huber, 1990).  

Corporate culture is an important aspect to consider in this context. As research shows 

large, data driven and competitive corporations are in a better position to benefit from 

the increase in analytical competencies (Davenport, 2006; Huber, 1990; McAfee & 

Brynjolfsson, 2012). In this type of environment, analytical and technical reports are 

often used as key justifications in the decision-making process (McAfee & 

Brynjolfsson, 2012; Nicolas, 2004).  

For the adoption of big data technologies, Human Resources (HR) concerns must be 

considered as well. A major challenge that organizations face is the lack of analytics 

skills in existing employees, as well as a shortage of specialized analytics talent, such 

as data scientists, on the market (Alharthi et al., 2017; H.-M. Chen et al., 2017). In order 

to plan ahead accordingly, Watson and Marjanovic (2013) suggest a skills assessment 

of current employees to address existing gaps with training or external hires. Otherwise, 

a “lack of data analytics skills among existing employees may increase data entry errors 

that could result in placing information in the wrong record, losing valuable 

information, and limiting the value a business can derive from the data that it captures” 

(Alharthi et al., 2017, p. 288).  

While the involvement of business, IT, and HR departments seem to be straightforward 

for the strategic deployment of big data, legal and Public Relations (PR) divisions 

should also be involved in the planning and preparation process. One of the most 
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publicly discussed challenges of big data is the concern about legal, ethics and privacy 

risks of big data use. At the center of this debate is the insecurity of users when assessing 

which of their data might be collected and who might process it (Matzner, 2014). In his 

work on big data ethics, Zwitter (2014) refers to this lack of awareness about the 

collection and use of data as an “ethical disadvantage qua knowledge and free will” 

(p.3) for the user.  

Big data is considered a particular threat to the user’s privacy because of its variety 

dimension, enabling the integration of datasets from multiple sources (Lodha et al., 

2014). Anonymized datasets in their original context might not pose any privacy threats 

for users, but through the combination with other datasets for various purposes, they 

might reveal the user’s identity or other private information (Alharthi et al., 2017; 

Matzner, 2014; Nunan & Di Domenico, 2013). An example of this is provided by Boyd 

and Crawford (2012) in their critical piece on big data. Harvard researchers had released 

anonymized social media data from students to the public, which was then partially 

deanonymized by other researchers exploring the dataset. This privacy breach affected 

the students, who had no knowledge of their data being collected.  

Social media data is a particularly interesting part of the privacy debate, with public 

posts marking a new territory for ethical considerations, as Boyd and Crawford (2012) 

point out: 

Very little is understood about the ethical implications underpinning 

the Big Data phenomenon. […] What if someone’s ‘public’ blog post 

is taken out of context and analyzed in a way that the author never 

imagined? What does it mean for someone to be spotlighted or to be 

analyzed without knowing it? Who is responsible for making certain 
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that individuals and communities are not hurt by the research 

process? What does informed consent look like?   (p.672)  

Social media organizations themselves, such as Twitter or Whatsapp, are often under 

scrutiny, as their privacy policies do not clearly specify the current and future use of 

the data shared on their platforms as well as other collected data about the user (Alharthi 

et al., 2017). From an ethical point of view, researchers–and generally all analysts–

should carefully consider the use of social media data, even though posts might be 

publicly accessible (Boyd & Crawford, 2012). This ethical challenge also extends 

beyond the case of social media to other forms of big data. The field of health research, 

for example, demands caution from its researchers to maintain a privacy-preserving 

research environment under the guidelines from ethics review boards (H. Chen et al., 

2012). 

From a legal perspective, most organizations processing user data rely on “notice and 

consent” models, outlining the purpose of the collected data and the limitation of its use 

(Mantelero & Vaciago, 2015, p. 105). However, big data challenges this legal 

framework, as the main purpose of its analysis is to discover insights through 

correlations and integrations of different sources. This makes it nearly impossible for 

organizations to disclose all potential uses at the point of data collection. Nunan and Di 

Domenico (2013) therefore ask the question: “How can consumers trust an organisation 

(sic) with information when the organisation (sic) does not yet know how the 

information might be used in the future?” (p.5).  

Mantelero and Vaciago (2015) further point out that users often consent to the 

collection of their data despite not understanding or ignoring the legal wording of 

privacy agreements to use certain services. In the aftermath, users are often startled by 
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the use of their data, and given a better understanding of the consequences they might 

not have given their consent to (Matzner, 2014). The effort and level of knowledge 

required to fully grasp and gain access to the privacy terms and conditions might put 

some users at a disadvantage, as referred to by Zwitter (2014). 

When planning for the collection and use of big data, organizations need to account for 

those ethical and legal challenges in their strategy to avoid controversies and financial 

repercussions (Motamarri et al., 2017). As Kemp (2014) concludes in his work on the 

legal aspects of managing big data:  

A sound analytical legal model for understanding the rights and 

duties that arise in relation to Big Data in order to manage risk, and 

the development of a structured approach to legally compliant and 

software enhanced Big Data input, processing and output will  be 

essential factors for successful Big Data projects and their 

governance and management. (p. 491) 

Besides establishing a legal model and ensuring ethical conduct, there are security 

aspects which must be considered from a technical perspective (Lodha et al., 2014). 

Secure data protection requires privacy awareness access control features, which 

exceed the often prevalent basic forms of access control in big data platforms, and 

support privacy policies (Colombo & Ferrari, 2015). 

As can be seen, big data is a complex concept that offers value creating opportunities 

for organizations that comprehend its challenging nature and are willing to holistically 

prepare for its use. Big data affects most organizational functions to some degree and 

requires sometimes significant adjustments throughout the organization. Its use also 

opens the organization up to criticism and legal battles, if the security of collected data 
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is compromised. Nevertheless, big data has the potential to significantly enrich the 

decision making of managers by providing in-depth insights and predictions, enabling 

fact-based judgments.  

2.2. Management Decision Making 

The importance of decision making for managers can be seen in Herbert Simon’s 

introduction of his renowned lectures on ‘The New Science of Management Decision’ 

in 1960: “What part does decision making play in managing? I shall find it convenient 

to take mild liberties with the English language by using “decision making” as though 

it were synonymous with “managing”” (Simon, 1960, p. 1). Decision making is 

considered a key aspect of management, and proficiency in it distinguishes an effective 

manager from an ineffective one (Harrison, 1995). While the field of decision making 

has experienced (often quantitative) research interest for years (Harrison, 1995), big 

data promises to significantly affect managerial decision making (Davenport et al., 

2013; Prescott, 2016; S. Shah et al., 2012). Exploring the effects of big data and 

advanced analytics on this crucial management function is therefore a promising 

research endeavor.  

The following section introduces extant literature on management decision making 

focusing on the process of decision making and the roles of analytics and human 

judgment. First, the dual process theory is introduced. This theory is used as a lens for 

this study to explore the effects of big data’s arrival on the decision-making process. 

Then, two streams of influencing factors are discussed. On the one hand, the influence 

of technology such as analytics, DSS, and KMS is assessed. On the other hand, the 

influence of human judgment, which in this study serves as an umbrella term for factors 

such as intuition, experience, insight, and wisdom, is considered. This approach 
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provides an overview of current views on the use of human judgment as well as 

managers’ reliance on data and technology in decision making.  

2.2.1. Decision Making: Dual Process Theory 

A decision is defined as a “moment, in an ongoing process of evaluating alternatives 

for meeting an objective, at which expectations about a particular course of action impel 

the decision maker to select that course of action most likely to result in attaining the 

objective” (Harrison, 1995, p. 5). Arriving at this moment, and therefore a decision, can 

be achieved through one of two ways, according to dual process theory (Dane & Pratt, 

2007; Gilhooly & Murphy, 2005). This perspective of dual processing enjoys 

popularity among researchers of decision-making theory, particularly in the field of 

psychology (Dane & Pratt, 2007; Evans, 2003). While there are different variations of 

the dual process theory in cognitive and social psychology (Dane & Pratt, 2007; Evans, 

2003; Stanovich & West, 2000), this thesis follows the two-system view that has found 

an application in the field of managerial decision making (Bazerman & Moore, 2013; 

Dane & Pratt, 2007; Kaufmann, Wagner, & Carter, 2017; Wray, 2017). 

The two-system view postulates that there are two distinct cognitive processes that can 

result in a decision, distinguishing intuition from reasoning (Kahneman, 2003). While 

the two modes of thought have been labeled under different terms in past publications 

(Stanovich & West, 2000), considerable commonalities exist between the two 

(Kahneman, 2003). The generic terms for these two systems are System 1 and System 

2, respectively (Evans, 2003; Kahneman, 2003). These terms are also applied in 

managerial decision making (Bazerman & Moore, 2013). The two systems are briefly 

introduced in the following paragraphs, then discussed in further detail in the next 

sections. 
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The labeling of these two systems eventuates from an exploration of individual 

differences of reasoning by Stanovich and West (2000). Their work accumulates the 

various properties of these two systems as outlined by previous publications and 

characterizes the systems accordingly. System 1 is therefore conceptualized as 

“automatic, largely unconscious, and relatively undemanding of computational 

capacity,” while System 2 “encompasses the processes of analytic intelligence” (p. 

658). A decision maker interpreting a problem via System 1 will automatically 

contextualize this problem, invoking an intuitive, often biased judgment. This system 

generally finds application in a familiar setting, when the decision maker works under 

time constraints and can confidently rely on his intuition (Bazerman & Moore, 2013).  

System 2, on the other hand, is more regulated, enabling the decision maker to 

decontextualize the problem (Stanovich & West, 2000). Rules and principles can 

therefore be applied in a more controlled fashion in this system, leading to a 

depersonalization and a more objective judgment. This system informs the decision 

maker’s most important decisions, which require a logical and conscious process 

(Bazerman & Moore, 2013).  

While these systems can act separately, they are often found to work in tandem 

(Bazerman & Moore, 2013). System 1 processes provide support for System 2 in the 

form of shortcuts to “stop the combinatorial explosion of possibilities that would occur 

if an intelligent system tried to calculate the utility of all possible future outcomes,” 

(Stanovich & West, 2000, p. 710). Furthermore, as System 1 processes can lead to 

biased results if used uncorrected, one of System 2’s tasks is to monitor these processes 

(Evans, 2003; Gilhooly & Murphy, 2005; Kahneman, 2003; Wray, 2017). The 
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monitoring of System 1 by System 2 leads to a more controlled process, which is often 

related to the concept of rationality in decision making (Evans, 2003).  

While this monitoring function of System 2 can be useful for avoiding 

oversimplifications caused by heuristics, it is not without its limitations, as Kahneman 

(2003) points out. Particularly the availability or representativeness heuristics were 

shown to be problematic for System 2. For one, there is the risk of overcorrection, 

leading managers to judge a situation incorrectly in the opposite direction than the 

heuristic would have led them. Another consideration is System 2’s dependency on 

triggers and the framing of decisions: if managers are not reminded of specific training 

or knowledge they possess, they likely rely on heuristics like someone who does not 

have the knowledge in the first place (Kahneman, 2003). 

In this research, dual process theory in form of the two-system view is chosen as a lens 

instead of the often applied concept of rationality in management decision-making 

research (Harrison, 1995; Intezari, 2013). Rational decision making assumes the strict 

following of a clearly structured process that consists of the clarification of objectives, 

assessment of alternatives and potential consequences, and a selection of the alternative 

best suited for obtaining the objectives (Harrison, 1995). Non-rationality consequently 

is considered a failure to act rationally due to narrow-mindedness or biases attributed 

to a set of beliefs or prior experience. While System 1 can in parts be compared to non-

rational decision making, and System 2 to more rational decision making (Evans, 2003), 

the underlying assumption differentiates the two concepts, as the two-system view 

recognizes the cooperation and value of both systems. 

The assumptions of rationality in decision making have been criticized in the past. 

Simon (1987) does not concur with the idea of a strictly rational decision maker: 
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“intuition is not a process that operates independently of analysis; rather, the two 

processes are essential complementary components” (p. 61). He also introduces the 

concept of bounded rationality, which outlines the decision maker’s limitations as their 

rationality is bounded by the complexity of problems and insufficient mental capacity 

to process all available information and alternatives (Simon, 1957). Other limitations 

of bounded rationality are the lack of information, cost and time constraints, failures of 

communication, precedents and the decision maker’s perception (Harrison, 1995). 

Kahneman and Tversky further explore which factors cause decision makers to act 

against the assumptions of rational decision making. Their work identifies diverse 

heuristics and biases that influence management decision making, which are further 

discussed in the following section (Tversky & Kahneman, 1973, 1975, 1992).  

In the context of this thesis, the dual process theory is expected to be a valuable lens to 

explore the management decision-making process, as well as the roles of human 

judgment and analytics in it. Since System 1 processes are prone to biases, the 

increasing availability of data and analytics outcomes are expected to support System 

2 processes in countering these biases. On the other hand, the lack of management’s 

familiarity with big data is expected to impact System 1’s capability to eliminate 

alternatives for System 2. The age of big data’s influence on the challenges of balancing 

System 1 and 2 is therefore further explored in this thesis.  

2.2.1.1. System 1 – Intuitive Judgments 

From an evolutionary perspective, System 1 is considered the older of two systems 

depicted in the dual process theory, as the system’s processes are shared between 

humans and animals (Evans, 2003). The system is shaped by habits and experiences, 

making any adjustments to or control of its processes challenging (Kahneman, 2003). 
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Various other characteristics of this system are identified in the literature on the two-

system view, as can be seen in Table 3. It is most commonly referred to as fast, 

automatic, and effortless. This enables System 1 processes to generate “intuitive, 

immediate responses” (Gilhooly & Murphy, 2005, p. 282), with consciousness only 

being able to grasp the final product (Evans, 2003; Gilhooly & Murphy, 2005).  

Table 3. System 1 Characteristics 

Characteristic Sources 

Relatively fast 
Bazerman & Moore, 2013; Dane & Pratt, 2007; Evans, 
2003; Gilhooly & Murphy, 2005; Kahneman, 2003; 

Stanovich & West, 2000; McCrea, 2010  

Automatic 
Bazerman & Moore, 2013; Betsch & Glöckner, 2010; Dane 

& Pratt, 2007; Evans, 2003; Gilhooly & Murphy, 2005; 

Kahneman, 2003; Stanovich & West, 2000 

Effortless 
Bazerman & Moore, 2013; Dane & Pratt, 2007; Evans, 

2003; Kahneman, 2003; Stanovich & West, 2000  

Acquisition by biology, exposure, 
and personal experience 

Dane & Pratt, 2007; Evans, 2003; Kahneman, 2003; 
Stanovich & West, 2000  

Implicit (not available to 

introspection) 
Bazerman & Moore, 2013; Betsch & Glöckner, 2010; 

Gilhooly & Murphy, 2005; Kahneman, 2003  

Associative 
Dane & Pratt, 2007; Kahneman, 2003; Stanovich & West, 

2000 

Emotional 
Bazerman & Moore, 2013; Kahneman, 2003; McCrea, 

2010 

Unconscious 
Betsch & Glöckner, 2010; Dane & Pratt, 2007; Stanovich 

& West, 2000  

Holistic 
Betsch & Glöckner, 2010; Dane & Pratt, 2007; Stanovich 

& West, 2000 

 

In the context of management decision making, System 1 is often referred to as 

intuition, which is described as a holistic, time-efficient, emotional, but unconscious 

process that relies on learning from experience (Dane & Pratt, 2007; McCrea, 2010). 

The outcome of this intuitive process is referred to as an intuitive judgment (Dane & 

Pratt, 2007; Kahneman, 2003). A key part of intuition is holistic associations, which is 

the process of matching stimuli to known patterns and fitting “isolated bits of data and 

experiences into an integrated picture” (Khatri & Ng, 2000, p. 60). In this process, the 
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stimuli are matched to either simple cognitive structures, known as heuristics, or more 

complex cognitive structures, which are referred to as expert decision-making 

perspectives (Dane & Pratt, 2007).  

Expert decision-making perspectives are often described as superior or complementary 

to analytical structures; especially in the case of unstructured problems, since there are 

no accepted decision rules in place: “One could argue that the rapid change that 

characterizes current organizational environments makes intuitive decision making 

more necessary today than it has been in the past" (Dane & Pratt, 2007, p. 49). Experts 

are often found to make competent intuitive judgments without being able to give valid 

reasons or describe the process leading to their judgment (Simon, 1987). Indeed, the 

decision itself would be disrupted and drawn out by an attempt to analyze those reasons 

(Dane & Pratt, 2007; Dijkstra, Pligt, & Kleef, 2013).  

The rapid arrival of experts at a decision can be explained through a “recognition and 

retrieval process” (p. 61) evoked by a set of premises that leads them to the right 

conclusion (Simon, 1987): “only the final product of such processes is available to 

consciousness” (Gilhooly & Murphy, 2005, p. 282). The basis for this retrieval process 

is a large stock of previously acquired knowledge and experiences that are anchored in 

the manager’s memory and are accessed during the decision-making process (Betsch & 

Glöckner, 2010; Khatri & Ng, 2000; Simon, 1987). This knowledge and experience are 

skills that managers acquire through decision-making practice, enabling them to make 

accurate, intuitive judgments rapidly and effortlessly (Kahneman, 2003). Individual 

differences in managers’ decision-making capabilities are therefore relevant for the 

outcome of intuitive judgments (Stanovich & West, 2000).  
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Managers’ intuitive judgment is most accurate in situations and environments they are 

familiar with, as it is very context-specific (Chakravarti, Mitchell, & Staelin, 1981). 

When confronted with new and complex challenges, the use of intuitive judgment can 

lead to errors or biases. The novelty of big data and advanced analytics is therefore 

expected to pose additional risks for managers relying on their intuition. Especially due 

to the often abstract nature of data and its derived information and knowledge, 

managers develop a psychological distance from this knowledge, which influences their 

judgment (Bryant & Tversky, 1999). The result of this distance are generalizations in 

situations that would require case-by-case decisions (Bhidé, 2010).  

In contrast to the complex cognitive processes employed in expert decision making, 

simple cognitive processes are referred to as heuristics (Dane & Pratt, 2007). Also 

known as rules of thumb, heuristics reduce the decision maker’s processing effort and 

time as they eliminate pieces of effortful information and therefore reduce complexity 

(Bazerman & Moore, 2013; Betsch & Glöckner, 2010; Tversky & Kahneman, 1975). 

In the two-system view, as part of System 1, heuristics are considered essential to 

limiting the number of available alternatives for System 2 processes (Stanovich & West, 

2000), helping “the actor quite well to maintain a relatively high level of accuracy in 

different choice and judgment tasks” (Betsch & Glöckner, 2010, p. 279).  

The finance industry is an example of this, where heuristics are applied in the form of 

category systems which help with the evaluation and comparison of firms (Carruthers, 

2010). However, when heuristics are applied inappropriately, they can lead to biases 

that are reflected in the manager’s decision (Bazerman & Moore, 2013; Betsch & 

Glöckner, 2010). This inappropriate application can result from an unawareness of 

using a heuristic, a misinterpretation of the decision’s context, or a lack of feedback 
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from previous decisions signaling the bad quality of an applied heuristic in the past 

(Bazerman & Moore, 2013). 

Different types of heuristics and biases can certainly be identified. However, their exact 

number and denomination can differ across publications. Three well-known heuristics 

are introduced by Bazerman and Moore (2013) as availability, representativeness, and 

confirmation heuristic. The availability heuristic is based on research by Kahneman and 

Tversky (1973, 1975), postulating that the ease of information accessibility determines 

the decision maker’s assessment of an event’s probability. While often a useful tool for 

decision makers, for example when assessing the frequency of an event, this heuristic 

is also fallible (Bazerman & Moore, 2013; Tversky & Kahneman, 1973): “An event 

that evokes emotions and is vivid, easily imagined, and specific will be more available 

than an event that is unemotional in nature, bland, difficult to imagine, or vague” 

(Bazerman & Moore, 2013, p. 7f.). Vividness of past experiences can promote their 

availability in the decision makers memory, even though they might not be the most 

relevant ones for that particular decision (Bazerman & Moore, 2013; Wray, 2017).  

The representativeness heuristic is applied when the decision maker has to judge a 

person, event or process (Bazerman & Moore, 2013; Tversky & Kahneman, 1975). For 

this purpose, the decision maker compares the object in question by its traits or 

characteristics to established categories or stereotypes (Bazerman & Moore, 2013). 

This heuristic is also fallible, and if used unconsciously, can cause biases in the form 

of discrimination. 

The confirmation heuristic is described as the selective use of data when decision 

makers test hypotheses, which leads to the neglect of other instances of information 

(Bazerman & Moore, 2013). This can lead to an anchoring bias, meaning an initial 
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assessment of a situation or a starting point impacts all further judgment of the situation 

(Bazerman & Moore, 2013; Tversky & Kahneman, 1975). Kahneman (2003) directly 

depicts anchoring as the third heuristic instead of confirmation. 

Regarding System 1, this thesis will explore what role expert decision making, 

heuristics and biases play in the management decision-making process, and 

whether/how big data and analytics might have additional effects. 

2.2.1.2. System 2 – Deliberate Decision-Making Process 

Intuitive judgments made by System 1 can lead to several biases when it comes to 

decision quality, as discussed in the previous section. One of System 2’s central tasks 

is therefore the monitoring and periodic correction of System 1 judgments if an 

irrational response is detected (Wray, 2017). The systematic procedures of System 2 

allow decision makers to consciously gather and evaluate information (Dane & Pratt, 

2007), and “[permit] abstract reasoning and hypothetical thinking” (Gilhooly & 

Murphy, 2005, p. 282). This offers an advantage over System 1 in situations that cannot 

be mastered by relying on previous experience (Evans, 2003). System 2 processing is 

utilized by rational decision-making models, and consists of deliberate process steps 

and analysis (Dane & Pratt, 2007). It is consequently often referred to as the rational 

system. Its key characteristics are summarized in Table 4. 
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Table 4. System 2 Characteristics 

Characteristic Sources 

Relatively slow 
Bazerman & Moore, 2013; Evans, 2003; Gilhooly & 

Murphy, 2005; Kahneman, 2003; Stanovich & West, 

2000 

Encompasses the processes of 

analytic intelligence (logical, 
analytic) 

Bazerman & Moore, 2013; Dane & Pratt, 2007; Evans, 

2003; Stanovich & West, 2000 

Rule-based 
Dane & Pratt, 2007; Kahneman, 2003; Stanovich & 

West, 2000 

Hypothetical thinking 
Dane & Pratt, 2007; Evans, 2003; Gilhooly & Murphy, 

2005 

Conscious 
Bazerman & Moore, 2013; Betsch & Glöckner, 2010; 

Kahneman, 2003 

Sequential 
Betsch & Glöckner, 2010; Evans, 2003; Gilhooly & 

Murphy, 2005 

Controlled 
Betsch & Glöckner, 2010; Kahneman, 2003; Stanovich & 

West, 2000 

Deliberate Dane & Pratt, 2007; Kahneman, 2003 

Acquisition by cultural, and formal 

tuition 
Dane & Pratt, 2007; Stanovich & West, 2000 

Effortful Bazerman & Moore, 2013; Kahneman, 2003 

 

While System 2 can be a useful tool for decision makers, it also has its limitations, 

which can especially impair its key function of monitoring System 1. It is considered 

effortful, involving often complex analysis and resulting in a considerably slower 

processing speed than System 1’s (Bazerman & Moore, 2013; Evans, 2003). System 

2’s operations are further hindered by time pressure and simultaneous performance of 

other tasks, as well as a range of other factors (Kahneman, 2003). Positive influences 

on System 2 processing capability are a high level of fluid intelligence and working 

memory capacity, as well as experience with statistical thinking (Evans, 2003; Gilhooly 

& Murphy, 2005; Kahneman, 2003). Especially statistical training can support decision 

makers’ awareness and avoidance of biases resulting from availability and 

representativeness heuristics (Kahneman, 2003). The knowledge itself, however, is 

often insufficient, and cues or reminders of the decision makers’ training are required 

to prevent decision makers from making biased judgments. 
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When System 2 processes work unencumbered, they consist of several analytical steps. 

These logical decision-making steps vary throughout different publications in name as 

well as in number and extent of included steps. This thesis relies on the theoretical input 

of seminal pieces of work, which are still referenced in current research on decision 

making. Taking into account the simplicity and unchanging nature of basic decision-

making process steps, these seminal works were considered to provide a reputable and 

solid foundation for this research. In their review of strategic decision-making 

literature, Eisenhardt and Zbaracki (1992) outline a basic decision-making model, 

referred to as ‘the rational model of choice’ (p. 18). This model involves cognitive 

assumptions: decision makers are aware of the decision’s objectives from the outset 

and assess potential outcomes accordingly. Subsequently, information is accumulated, 

and alternatives are developed. The best suitable alternative is then selected. Eisenhardt 

and Zbaracki (1992) further note extensions. Four further publications that demonstrate 

such variations are discussed in the following text and highlighted in Table 5. 

Table 5. Decision-Making Processes 

Source Steps 

Eisenhardt 

& Zbaracki, 

1992 

Objectives 
Alternative 

Development 

Selection of best 

alternative 
  

Simon, 

1960 
Intelligence Design Choice   

Harrison, 

1995 

Setting managerial 

objectives 

Searching 

for 

alternatives 

Comparing 

and 

evaluating 

alternatives 

Act of 

choice 

Imple-

menting 

decision 

Follow-

up and 

control 

Mintzberg, 

Raisinghani, 

& Theoret, 

1976 

Identification Development Selection   

Bazerman 

& Moore, 

2013 

Define 

problem 

Identify 

criteria 

Weight 

criteria 

Generate 

alternatives 

Rate each 

alternative 

on each 

criterion 

Compute 

optimal 

decision 
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This basic succession of steps suggested by Eisenhardt and Zbaracki (1992) is echoed 

by Herbert Simon’s (1960) suggested three phases: “finding occasions for making a 

decision; finding possible courses of action; and choosing among courses of action” 

(Simon, 1960, p. 1). During the first step, intelligence, the decision maker determines 

what the problem is. This step consumes a considerable amount of the manager’s time, 

as the environment must be surveyed for changes that warrant action. With the next 

step, design, the manager–individually or in collaboration with colleagues–develops 

and analyzes potential consequences of alternatives that match the decision’s needs, 

which extends over an even longer period. The last step, choice, marks the manager’s 

decision for the best alternative, which can be considered a quick action based on the 

preparation of the previous steps.  

While these steps concur with Eisenhardt and Zbaracki (1992), a slight variation from 

their rational model of choice can be seen in Simon’s (1957) concept of bounded 

rationality, which challenges their underlying rationality assumptions. Simon (1960) 

also acknowledged the complexity of decision making and suggested that each step is 

a separate, self-contained decision-making process that might require intelligence, 

design, and choice. 

An extension of these basic steps to a more detailed decision-making process can be 

found with Harrison (1995), who suggests six components. The first and second 

component are setting managerial objectives and searching for alternatives, which 

match the phases outlined by Eisenhardt and Zbaracki (1992) as well as Simon (1960). 

The third and fourth component split up what is the last ‘Choice’ stage in the previous 

two models. Harrison (1995) separates comparing and evaluating alternatives from the 

act of choice, considering the actual choice as a mere moment that follows the elaborate 
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stage of alternative comparison. Furthermore, two components are added after the 

choice, namely implementing the decision and follow-up and control (Harrison, 1995). 

While these components are not included in any of the decision models introduced here, 

they can be found in other publications (Intezari, 2013). In the context of this thesis, 

these steps will not be taken into consideration, as the emphasis lies on the decision-

making process itself, and not on medium- to long-term implementations and 

consequences. 

An example of decision-making processes that “accepted the rational model, but 

rearranged the pieces to allow repetition and variety” (Eisenhardt & Zbaracki, 1992, p. 

18), can be found in Mintzberg, Raisinghani, and Theoret (1976). This seminal piece 

of work in the field of unstructured strategic decisions offers a model that is comprised 

of 25 different decision-making processes identified during the study. This dynamic 

model consists of three central phases: identification, development, and selection. The 

process starts with the identification phase, in which an occasion for a decision is 

recognized, and decision makers familiarize themselves with the key factors involved, 

as well as their interrelations. During the second phase, potential solutions to the 

identified problem are developed. The decision maker searches for existing solutions, 

which might then be modified or supplemented with new custom-designed solutions.  

In the selection phase, all possible solutions are evaluated, and the decision maker 

commits to an action. Three different modes can be identified in this stage: judgment, 

bargaining, and analysis. The judgment mode can be compared to previous descriptions 

of System 1’s intuitive judgment, in which the decision maker reaches a choice without 

being aware of the process that led to it. Bargaining refers to a decision being made by 

several decision makers that merge their diverse individual judgments to form a 
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consensus. Analysis refers to an evaluation of facts comparable to System 2 processes, 

which are then followed by either judgment or bargaining.  

While selection is considered the last phase of the decision-making process, “selection 

is typically a multistage, iterative process, involving progressively deepening 

investigation of alternatives” (Mintzberg et al., 1976, p. 257). This exemplifies the 

dynamic nature that Eisenhardt and Zbaracki (1992) and Simon (1960) identify as a 

form of variation to the classic three-step rational model outlined in their publication. 

Even though the basic three phases found in Mintzberg et al. (1976) are essentially 

unaltered, the model incorporates the non-sequential nature of strategic decisions, i.e. 

“operating in an open system where it is subjected to interferences, feedback loops, 

dead ends, and other factors” (Mintzberg et al., 1976, p. 263). The phases of the model 

account for those circumstances and allow for a number of subsets that vary depending 

on the decision maker and the decision itself (Mintzberg et al., 1976; Nicolas, 2004). 

This enunciated understanding of strategic decision making nonetheless remains a 

relevant piece of work for recent literature (Bradbury, Gressel, & Forsyth, 2017). 

Another form of variation from the rational three-step model as outlined by Eisenhardt 

and Zbaracki (1992) can be found in the underlying use of rationality assumptions: 

“The most recent incarnation transformed the rational vs. boundedly rational dichotomy 

into a continuum, probing whether and when decision making is rational” (Eisenhardt 

& Zbaracki, 1992, p. 18). Bazerman and Moore (2013), for example, outline a process 

of six logical steps that they advise following when the decision maker applies a rational 

process. However, referencing dual process theory, they also concede that decision 

makers do not follow this rational reasoning most of the time. They argue that the 

logical steps, which they refer to as a prototype for System 2 thinking, are impractical 
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in a variety of situations and are reserved for the most important decisions. System 1 

processes are considered sufficient for most other decisions, depending on time 

constraints and other external factors (Bazerman & Moore, 2013).  

The specific steps suggested by Bazerman and Moore (2013), are more detailed and 

quantitative than the basic models suggested by Eisenhardt and Zbaracki (1992) and 

Simon (1960). This can be seen in the first three steps of the process, which are 

considered one phase by all previously introduced models (Bazerman & Moore, 2013). 

Separate steps are identified for the definition of the problem, the identification of 

relevant criteria, and the assignment of weights to these criteria, adding a more 

quantitative component. The fourth step, the generation of alternatives, concurs with all 

prior models. The last two steps, considered as selection by three of the previous 

models, once again demonstrate the quantitative character of this process, as each 

alternative is rated on each criterion and the optimal decision is eventually computed. 

While the introduced models differ in certain aspects, three core phases emerge as a 

common denominator, representative of System 2 processes: firstly, the identification 

of a problem or decision occasion occurs. This is followed by the development of 

alternatives, eventually leading to the stage of their evaluation and choice of the best 

solution to the scenario. In addition to these commonalities, each model provides 

interesting facets through their variations for the exploration of management decision 

making in the age of big data.  

Both System 1 and System 2 have benefits and limitations, as well as the potential for 

collaboration. Which processes are most suitable for the decision maker is expected to 

depend to some extent on the nature and context of their decision. It is therefore 
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paramount to understand the different types of decisions that managers are facing, 

which is discussed in the following section.  

2.2.2. Decision Types 

Managers face a variety of decisions, which can be divided into types based on their 

characteristics, such as their impact, complexity, or the manager’s familiarity with the 

decision (Harrison, 1995). The differentiation of these decision types is important, as it 

informs the manager’s approach to decision making and determines how much time 

and resources should be allocated to it. Strategic decisions, for example, make up a 

small percentage of the overall number of decisions a manager encounters. However, 

this decision type requires more time and resources than other decisions because of its 

significant long-term outcomes and often high levels of complexity (Harrison, 1995; 

Intezari & Gressel, 2017).  

On the other hand, a routine operational decision would be more immediate and require 

less resources, as the decision maker is often familiar with the decision, which is fairly 

structured and rather inconsequential (Ackoff, 1990; Harrison, 1995; Intezari & 

Gressel, 2017). Decision types therefore influence the decision-making process’ length, 

thoroughness and number of involved steps.  

Extant literature offers different classification frameworks of decisions. Harrison 

(1995) collates several of these diverse classifications in his review and identifies two 

basic decision categories as their common denominator: the first category, routine 

decisions, is characterized as recurring, predictable, with clear cause and effect 

relationships. The appropriate decision-making approach is described as “relying upon 

rules and principles; habitual reactions” (Harrison, 1995, p. 21). Another viable 

approach is applying computational techniques, since the decision criteria are known 
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variables in this category. The second category, nonroutine decisions, is described as 

nonrecurring, unique and complex. These decisions require intuition, judgment, and 

creativity; heuristics are also often applied.  

A widely accepted classification that is part of Harrison’s (1995) review is Simon’s 

(1960) distinction between nonprogrammed and programmed decisions, which concurs 

with the identified two (non-)routine categories. Both schemes of decision categories 

suggest that routine/programmed decisions are approached through System 2 processes, 

which can be improved through training programs and–on an organizational level–

through superior and standardized operating procedures (Simon, 1960). 

Nonroutine/nonprogrammed decisions, however, are approached through System 1 

processes:  

When we ask how executives in organizations make nonprogrammed 

decisions, we are generally told that they "exercise judgment," and 

that this judgment depends, in some undefined way, upon 

experience, insight, and intuition […] we may be told that creativity 

was required. (Simon, 1960, p. 11) 

Simon (1960) continues to suggest that this approach can also be improved to some 

extent by training managers in ‘orderly thinking.’ Decision types therefore not only 

influence the time and resources spent on decision making, but they also determine 

whether managers rely on System 1 or 2 processes, and how managers can be trained 

adequately to improve their decision-making skills. 

While these basic decision types provide certain insights, their simplicity limits the 

extent of the implications that can be extrapolated for the decision maker. Furthermore, 

the distinction between programmed and nonprogrammed decisions cannot be seen as 
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a binary differentiation, but more as a continuum (Harrison, 1995; Simon, 1960). That 

is, decisions cannot be clearly sorted into categories, but merely placed along a 

continuum ranging from programmed to nonprogrammed. More nuanced decision 

types can be found in frameworks provided by Ackoff (1990) as well as Snowden and 

Boone (2007), which are discussed below.  

These frameworks offer a clearer distinction and variety and are therefore used as a lens 

in the exploration of management decision making in this study. Ackoff’s (1990) 

framework is utilized to capture the dimension of longevity and impact, whereas 

Snowden and Boone’s (2007) Cynefin framework is applied to express the dimension 

of decision context, capturing its complexity and circumstances. Both frameworks’ 

decision types are summarized in Table 6. 
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Table 6. Decision Types 

Decision Type Description Source 

Operational 
Mostly routine, well-defined decisions 

regarding immediate future  

Ackoff, 1990; 

Mintzberg et al., 1976 

Tactical 
Medium-term decisions regarding the 

organization’s efficiency 
Ackoff, 1990 

Strategic 

Important, high-level, long-term decisions 

that influence the organization's goals and 

objectives 

Ackoff, 1990; 

Drucker, 2006; 

Eisenhardt & 
Zbaracki, 1992; 

Mintzberg et al., 1976 

Simple 

Decisions or problems are assessed, 

categorized and responded to with 

established practices. 

Dykstra & Orr, 2016; 

Snowden & Boone, 
2007  

Complicated 
Several potential solutions for a decision 

require thorough analysis and expertise. 

Snowden & Boone, 

2007 

Complex 
Unpredictable decisions that rely on 

probing and experiments 

Snowden & Boone, 

2007; Wray, 2017 

Chaotic 

Decisions defined by turbulence and 

without underlying cause-and-effect 
relationships 

Dykstra & Orr, 2016; 

Snowden & Boone, 
2007 

Disorder 
No other decision type or context is 

predominant.  

Snowden & Boone, 

2007 

 

The differentiation among decisions according to longevity and impact as seen in 

Ackoff’s (1990) framework is commonly used in an academic and business context. 

The three decision types are namely operational, tactical, and strategic (Ackoff, 1990). 

Operational decisions are mostly short-term, and their primary objective is the 

company’s survival. They are considered routine, have clearer descriptions, and can be 

approached through quantitative analysis (Mintzberg et al., 1976). Tactical decisions 

are medium-term, typically do not exceed the fiscal year, and their primary concern is 

efficiency (Ackoff, 1990).  

Lastly, “[s]trategic decisions are concerned with a period long enough to cover 

development of new products (as distinct from modifying old ones), development of 
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new sources of product, or entry into a new business. The focus of strategic decisions 

is growth” (Ackoff, 1990, p. 523). Strategic decisions are characterized as important 

and significant, resulting in an increased allocation of resources (Drucker, 2006; 

Harrison, 1995; Mintzberg et al., 1976). These complex and infrequent decisions are 

made on a high level, conceptually and hierarchically (Drucker, 2006; Eisenhardt & 

Zbaracki, 1992).  

Initially developed by David Snowden, the Cynefin framework presents an alternative 

or complement to Ackoff’s (1990) by focusing on another dimension of decisions: their 

context (Snowden, 2000). The Cynefin framework posits that decision makers must 

identify the specific context of the decision at hand and adjust their approach 

accordingly (Snowden & Boone, 2007). Five different decision types, or contexts, are 

differentiated, according to the decision’s inherent cause-and-effect relationship: 

simple, complicated, complex, chaotic, and disorder. Simple and complicated contexts 

are characterized by a clear cause-and-effect relationship, whereas in complex and 

chaotic contexts, this relationship is not instantly apparent. Disorder only finds 

application if none of the other four contexts is clearly predominant. The decision can 

then be separated into smaller parts and separately be classified as one of the four other 

contexts.  

Simple contexts, also referred to as obvious, are often decisions with well-structured 

processes, which mostly result in self-evident solutions that are understood by all 

affected parties (Dykstra & Orr, 2016; Snowden & Boone, 2007). A categorization of 

the identified problem or decision suffices to find the correct response (Snowden & 

Boone, 2007). Complicated contexts differ from simple ones in having several potential 

solutions and requiring more expertise. This context requires an analysis of the 
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available options rather than a mere categorization. Decisions in complex contexts are 

considered as unpredictable, because they are shaped by constant change inherent to 

the exploration of new terrains, such as mergers and acquisitions (Moore, 2017; 

Snowden & Boone, 2007). Only isolated parts of the situation are understood by the 

decision maker, and complete understanding of the context is often only achieved in 

hindsight (Snowden & Boone, 2007; Wray, 2017).  

Complexity is furthermore seen as an important indicator for the ensuing decision-

making process (Eisenhardt & Zbaracki, 1992). This context requires patience from 

managers, as they must rely on emerging patterns, probing, and experiments to reach a 

decision (Snowden & Boone, 2007). A chaotic context has constantly shifting cause-

and-effect relationships and therefore displays no determinable patterns (Dykstra & 

Orr, 2016; Snowden & Boone, 2007). In this turbulence, the decision maker  

must first act to establish order, then sense where stability is present 

and from where it is absent, and then respond by working to 

transform the situation from chaos to complexity, where the 

identification of emerging patterns can both help prevent future 

crises and discern new opportunities. (Snowden & Boone, 2007, p. 

6) 

The Cynefin framework has previously been employed in information systems studies 

to delve deeper into decision circumstances and to make sense of changes in IS (e.g. 

Dykstra & Orr, 2016; Hasan & Kazlauskas, 2009; Moore, 2017). Moore (2017), for 

example, established a link between the Cynefin framework and the decision types 

outlined in Ackoff (1999). In her study on the visualization of information as decision-

making support, strategic executive decisions are attributed to the complex context 
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(Moore, 2017). Another study by Dykstra and Orr (2016) applied the Cynefin 

framework to the area of cybersecurity, underlining the importance of understanding 

and adapting to the decision context to ensure prudent decision making. They posit that 

the Cynefin framework can reduce the risk inherent to cybersecurity by providing the 

defenders with a tool that allows them to quickly assess the situation and adjust their 

actions and decision making accordingly (Dykstra & Orr, 2016).  

Both, Ackoff’s (1990) decision types and Snowden and Boone’s (2007) decision 

contexts are expected to have a significant effect on managerial decision making. The 

frameworks are therefore employed in this study to explore managers’ choices to 

incorporate big data and analytics in their decision-making process. The decision types 

are expected to influence managers’ use of System 1 and System 2 processes, as well 

as their balance of data and human judgment. The following sections will discuss an 

excerpt of the extant literature on the potential of using data, analytics, and human 

judgment in decision making. 

2.2.3. The Role of Data and Analytics in Decision Making 

Due to its progressively open and integrated nature, the business world is becoming 

more complex and challenging to managers, increasing their dependence on reliable 

and accurate information (Delen & Demirkan, 2013). In order to legitimize their 

decisions, managers have increasingly relied on analytics or technical reports (Bhidé, 

2010; Nicolas, 2004; S. Shah et al., 2012). Big data enriches this area of traditional 

analytics and reporting, creating diverse and far-reaching opportunities for the 

application of analytics and providing a broader pool of accessible data. The following 

section discusses how extant literature sees the role of data and information systems in 

management decision making. Understanding the status quo builds a basis for exploring 
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the effects of advanced analytics techniques and big data on the decision-making 

process. 

While advanced analytics and big data currently pose challenges for organizations, 

traditional analytics capabilities and IS tools supporting decision making have been 

utilized for decades. Decision support systems (DSS) and knowledge management 

systems (KMS) have notably provided managers with valuable insights and played a 

prominent role facilitating decision making. DSS are designed to follow System 2 

processes and assist the decision maker by introducing an optimized structure, 

particularly into unstructured and semi-structured decision types (Courtney, 2001). As 

big data’s novelty often contributes to the decision’s complexity, managers employing 

big data are expected to significantly benefit from DSS capabilities when making 

prudent decisions. While providing technological support and structure, DSS leave 

room for managerial judgment and act in a supporting role (Bohanec, 2009).  

A KMS can be another important tool for the exploitation of big data, as it assists in the 

acquisition, creation and storage of knowledge. It enables users to access existing 

knowledge on an organizational level through a structured, large-scale and 

comprehensive knowledge base (Alavi & Leidner, 2001; Bhatt, 2001; Matthews, 1997; 

Swan & Newell, 2000). This allows employees to deduce the same conclusions from 

stored data or information (Tuomi, 1999).  

Intezari and Gressel (2017) propose updated criteria for advanced KM systems to meet 

managers’ needs for a more agile and dynamic system in the age of big data. Especially 

when dealing with unstructured data, the systems must be social in order to facilitate 

group decision making, include the collaboration of IT and business, and offer a 

detailed evaluation of information. Advanced KMS are furthermore characterized as 
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cross-lingual and integrative. As a result, knowledge seekers can gain insights from 

aggregated, formerly scattered data and knowledge, and assess its fit based on the 

knowledge sharer’s expertise and background. Furthermore, an integration of freely 

attainable social media data with KM can enable a contextual comparison with 

competitors (He, Wang, & Akula, 2017). Organizations can gain additional customer 

insights, and previously limited access to competitors’ data may now lead to a 

competitive advantage.  

The general influence of DSS, KMS, and other information systems is addressed in 

Huber’s (1990) theory of the effects of advanced information technologies on 

organizational design, intelligence, and decision making. Huber (1990) proposes that 

using communication and decision support technologies leads to several significant 

changes, such as fewer time-consuming meetings and an increased variety of people 

acting as information sources for decision making. At the same time, the number of 

employees involved in the decision-making process is expected to decrease, as these 

technologies can function as a source of expertise and therefore substitute for the 

respective expert. Overall, the use of these systems is proposed to have a positive effect 

on the identification of opportunities and problems, and to facilitate less time-

consuming and higher quality decisions.  

While Huber’s theory was published in 1990, the pursuit of more accurate and timely 

decision making has remained the same. Today, advanced analytics and big data are 

applied to increase efficiency and gain a competitive advantage (LaValle et al., 2011). 

Big data has become a useful source of information for organizations in areas such as 

customer satisfaction and journeys, supply chain risk, competitive intelligence, pricing, 

and discovery and experimentation (Davenport, 2014b). The results of a survey of 
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almost 3,000 executives, managers, and analysts show that about half of the top 

performing organizations employ analytics to gain insights into day-to-day operations 

as well as for guidance regarding future strategies (LaValle et al., 2011). Only about a 

quarter of the lower performers followed suit. The study also shows that using analytics 

is preferred over relying on intuition by both top and lower performers in the areas of 

financial management, operations and production, strategy and business development, 

and sales and marketing. Lower performers still preferred to rely on their intuition in 

areas such as customer service, product and research development, general and risk 

management.  

Empirical work by Brynjolfsson, Hitt and Kim (2011) further supports the positive 

effects of data use on organizational performance. Their findings suggest that data-

driven decision making increases a company’s productivity by 5-6%, and furthermore 

affects asset utilization, return on equity and market value (Brynjolfsson, Hitt, & Kim, 

2011). This sentiment is echoed by another empirical study, which finds that business 

analytics has a positive direct effect on information processing capability, as well as a 

positive indirect effect through the mediating facilitation of a data-driven environment 

(Cao, Duan, & Li, 2015). Information processing capability in turn is found to 

positively affect data-driven decision making, overall improving decision-making 

effectiveness.  

The realization of such productivity and effectiveness gains posits a successful 

conversion of raw data into insights. These insights are gained when information is 

extracted from big data using fundamental principles of data science (Provost & 

Fawcett, 2013). This extraction, which is related to data mining, processes raw data into 

meaningful information and knowledge. When analytics is used as the basis for decision 
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making, the quality of data is of utmost importance for creating valuable insights 

(Kaisler et al., 2013): “Big data basically focuses on quality data storage rather than 

having very large irrelevant data so that better results and conclusions can be drawn” 

(Katal et al., 2013, p. 407). Only with rigorous data selection can descriptive, predictive 

and prescriptive analytics offer valuable opportunities to the decision maker (Waller & 

Fawcett, 2013). 

The quality of the data sources and their fit with the organization do not only impact 

the quality of the results or insights, but also the decision process itself (Bumblauskas 

et al., 2017). When the decision maker is overwhelmed by too much data or lacks trust 

in it, this can result in a paralysis by analysis, and therefore a prolonged decision-

making process. Analysis paralysis is an often occurring problem, as “individuals tend 

to want too much rather than too little information and may take too long to arrive at 

decisions” (Harrison, 1995, p. 12). Decision makers must always weigh the necessity 

of gathering additional information against the cost and time its acquisition requires to 

reach close ‘proximity to optimum amount of information’ (p.350). Furthermore, the 

decision maker has to understand the meaning and collection context of the data used 

in the decision-making process (Janssen, van der Voort, & Wahyudi, 2017). A lack 

thereof can negatively impact the decision quality. 

While managers may struggle with their cognitive limitations when confronted with the 

complexity and volume of big data, information technology has limitations of its own 

that can affect the usefulness of data for decision making. Managers’ views on the 

effectiveness of converting data into knowledge, for example, are twofold. Whereas 

some attribute a great role to IT, others are of the opinion that knowledge is embedded 

in the human mind (Bhatt, 2001). This echoes the prevailing sentiment of two opposing 
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sides in decision making: the possibilities of analytics and the necessity of human 

judgment. Bhatt (2001) concludes that IT is capable of organizing data in order to 

receive information, but “IT is a poor substitute for converting information into 

knowledge” (Bhatt, 2001, p. 68). This conversion of information into knowledge is 

attributed to human factors and interpretation. Even judgment-based models or expert 

systems implemented to substitute for human judgment require antecedent design, 

which relies on qualified input such as specified information and judgmental estimates 

in order to enable a parameterization (Chakravarti et al., 1981). Without this initial 

human input of expertise, models cannot be effectively designed to optimize decision 

making. 

The role of data, analytics and IS in decision making is significant and expected to 

increase in the age of big data. Bhidé (2010) depicts the rising importance of analytics 

as a clearly diminishing force on judgment: “The information technology revolution 

has shifted the balance between judgment and rules, giving a strong economic and 

psychological boost to judgment-free decision making” (Bhidé, 2010, p. 49). However, 

the rise of data-driven decision making does not necessarily entail the absence of human 

judgment. Data-driven decisions can accommodate big data and analytics as well as the 

decision maker’s intuition–all depending on the decision maker’s preferences and 

abilities (Provost & Fawcett, 2013).  

As a result, managers are expected to benefit from a basic understanding of data and 

analytics, whilst still using their own judgment and expertise. These human factors can 

even be considered assets in the decision-making process:  

There remain many patterns that humans can easily detect but 

computer algorithms have a hard time finding in spite of the 
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tremendous advances made in computational analysis. Ideally, 

analytics for Big Data will not be all computational–rather it will be 

designed explicitly to have a human in the loop. (Lodha et al., 2014, 

p. 3288)  

In an editorial by Pauleen (2017) interviewing David Snowden, Snowden concurs with 

this view, pointing out the limitations of algorithms and highlighting the value of human 

reasoning. 

The value of a balanced decision-making approach is evident in the example of the 

financial crisis of 2008. Its root cause was generalized agency models based on 

historical data applied to calculate the default rate of subprime mortgages (Carruthers, 

2010). However, the utilized data was not fit for this purpose, and therefore not a 

dependable input for investment decisions, leading to severe misjudgment. The failure 

to incorporate this data into a wider context, and the resulting lack of accounting for 

socio-economic, political and cultural dynamics, was a contributing factor to this crisis 

(Pauleen, Rooney, & Intezari, 2017). The overpowering reliance and dependence on 

abstract analysis in this case overshadowed the need for human judgment: “the very 

possibility of fallibility seemed to be discounted because of the way the entire rating 

process was enshrouded with images of “rocket science” and quantitatively rigorous 

analytical methods” (Carruthers, 2010, p. 166). Due to the clear risks of a one-sided 

decision-making approach, the role of human judgment and relevant factors are further 

discussed in the following section.  

2.2.4. The Role of Human Judgment in Decision Making  

Human judgment in this thesis is used as an umbrella term for human factors that 

influence decision makers, such as their intuition, experience, and wisdom. Although 
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managers often rely on those factors in their decision making, they can rarely express 

which of their skills or abilities they apply, but rather state that they "exercise judgment" 

(Simon, 1960, p. 11). As different factors are expected to also play a significant, if 

different, role in data-driven decision making, they will be further discussed in the 

following section. 

Judgment itself is understood as combining “facts, past experiences, and imagination, 

different individuals faced with the same situation would respond differently” (Bhidé, 

2010, p. 47). While human judgment constitutes System 1 thinking, the more structured 

and analytical System 2 processes also benefit highly from it. When looking at the three 

basic steps of the decision-making process, human judgment can be an incremental part 

in all of them. During the identification step, human judgment is essential for 

contextualizing available data and information and forming an understanding of the 

interacting decision variables (Nicolas, 2004).  

Depending on the decision type and context, human judgment and analytics can be 

equally important for the step of developing and creating alternatives. Heuristics are 

particularly useful in this phase, as managers struggle with cognitive limitations when 

evaluating all available options (Kahneman, 2003), a phenomenon known as the 

concept of bounded rationality (Simon, 1957). The step of selection, while justified and 

supported by data, is highly affected by human judgment, specifically by emotion and 

intuition (Nicolas, 2004). As Simon (1960) states, managers often simply exercise 

judgment for this step. Human judgment can also be an asset for the analytics part of 

the decision-making process, the decision to acquire data, in what amount, from which 

sources, for which use, leads back to an initial managerial decision (Larreche & 
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Moinpour, 1983). Judgment, therefore, cannot be seen as a factor of declining 

importance in the age of big data, but rather as an expanding and evolving one.  

The quality of judgment benefits from knowledge and experience. Senior managers 

with a higher knowledge level, therefore, tend to exceed novices (Dijkstra et al., 2013; 

Dreyfus & Dreyfus, 1980). In a series of experiments on the role of expertise in 

judgments, Dijkstra et al. (2013) demonstrate that experience is positively correlated 

with accurate judgment, i.e., experts in fact make more accurate judgments than 

novices. While an intuitive judgment might seem like acting on a hunch, the expert in 

fact relies on a vast ‘repertoire of experienced situations’ (Dreyfus & Dreyfus, 1980).  

The involvement of conscious deliberation in expert decision making is often masked 

by automated processes that in fact simply enable the expert to reach a decision in fewer 

steps: “The expert appears to take giant intuitive steps in reasoning, as compared with 

the tiny steps of the novice” (Simon, 1987, p. 61). As Dreyfus and Dreyfus (1980) 

outline in their five-stage model, the novice is required to rationally analyze a problem, 

whereas the experienced manager can rely on their expertise and base the decision on 

their intuition. Expertise, therefore, enables intuitive judgments. 

Bonabeau (2003) defines intuition as “the brain’s process of interpreting and reaching 

conclusions about phenomena without resorting to conscious thought. […] this process 

draws on the mind’s vast storehouse of memories” (p.118). Intuition is furthermore 

characterized as an emotional, unconscious process, which involves rapidly formed 

holistic associations and experiences (Dane & Pratt, 2007; Khatri & Ng, 2000). A study 

on intuition and decision making by Bradbury, Gressel, and Forsyth (2017) uses this 

characterization to explore national sports coaches’ views on the use of intuition in their 

decision making. Their findings suggest that coaches who understand their intuition to 
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be a clinical, experience-driven judgment are more confident in their use of it than 

coaches who see intuition as an emotional metaphysical ‘gut feeling’. Coaches who 

were comfortable relying on their experience and prior knowledge saw intuition as a 

valuable tool, particularly in the context of their complex and rather unstructured 

decisions.  

The Unconscious Thought Theory (UTT) developed by Dijksterhuis and Nordgren 

(2006) underlines this sentiment. Built on the insights of their previous experiments, 

UTT distinguishes between conscious thought (CT) and unconscious thought (UT) in 

decision making. The theory posits that while simple decisions should be approached 

with conscious thought, complex decisions benefit from unconscious thought. As can 

be seen in Figure 3, the decision quality is not affected by the complexity of the decision 

when relying on UT, whereas the quality of CT decision making declines with 

increasing decision complexity. Accordingly, intuition is expected to be more relevant 

in strategic decisions, as they often lack structure, are complex, and cannot be 

programmed (Mintzberg et al., 1976). 
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Figure 3. Unconscious Thought Theory (Dijksterhuis & Nordgren, 2006) 
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The use of biases and heuristics is also considered useful and often even necessary for 

complex decisions, in spite of their drawbacks (Busenitz & Barney, 1997; Tversky & 

Kahneman, 1973).  Empirical work by Busenitz and Barney (1997) shows that 

entrepreneurs–in contrast to senior managers–rely on biases and heuristics to a vast 

extent, which leads the entrepreneurs to  

speculate that without the use of biases and heuristics, many 

entrepreneurial decisions would never be made. With entrepreneurial 

ventures in particular, the window of opportunity would often be 

gone by the time all the necessary information became available for 

more rational decision-making. (p.10)  

It is therefore expected that particularly time-critical and complex strategic decisions 

will rely on unconscious thought, and more specifically on biases and heuristics.  

However, opposing views can also be found in the literature. Some research strongly 

advises depending on analysis in decision types without available examples, since 

intuition on its own is not a dependable tool in complex and unfamiliar areas 

(Bonabeau, 2003; Chakravarti et al., 1981; Larreche & Moinpour, 1983; S. Shah et al., 

2012). Necessary requirements for these cases are identified as the right selection of 

technological tools, managers’ insight, experience and appropriate analytical skills 

(Bonabeau, 2003; Provost & Fawcett, 2013). Relying solely on intuition can lead to a 

decision that does not account for the problem’s complexity, but rather simplifies it to 

match pre-existing patterns, impairing accurate judgments. This is supported by a study 

on decision making focused on experienced intelligence agents (Reyna, Chick, Corbin, 

& Hsia, 2014). The agents showed a clear bias towards choices that were put in a more 

positive light through the technique of framing. Their previous experience was 
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concluded to be an influence on their intuition, and ultimately the reason for this bias 

and the negative influence on their decision making. Experts are particularly prone to 

this entrained thinking, which might lead them to dismiss novel ideas and fail to notice 

changes in a formerly familiar context (Snowden & Boone, 2007). Expert decision 

makers therefore need to challenge preexisting frames and consider new or deviating 

data (G. Klein, Phillips, Rall, & Peluso, 2007). 

These limitations of experience and knowledge can be mitigated by the concept of 

wisdom. Wisdom, as an extension of knowledge, can contribute to big data decision 

making by applying better judgment and adding prudency, as well as moral and 

epistemic values, to the decision-making process (Intezari & Pauleen, 2013). A wise 

response is considered an ‘embodied individual/organizational practice’ (p.397), 

incorporating values essential to prudent decision making. Wisdom is furthermore 

connected to the concepts of intuition and judgment (Rooney et al., 2013; Sternberg, 

2003). Rooney at al. (2012) state that being intuitive is characteristic for wise people, 

and in Sternberg’s (2003) review of research on intelligence and wisdom, judgment is 

listed as an important component of wisdom. 

Managers are ideally characterized by their openness to other people’s opinions, ability 

to embrace new experiences, and open-mindedness toward new ideas (Rooney et al., 

2013; Yaniv & Choshen‐Hillel, 2012). Research shows that managers benefit most 

from the wisdom of others if they hold off on forming their own opinion until after they 

have considered the judgment of others (Budescu, Rantilla, Yu, & Karelitz, 2003; 

Yaniv & Choshen‐Hillel, 2012). An unbiased mindset supports an intuitive 

identification of a central tendency in those opinions and outperforms judgment that is 

biased by the personal opinion of the decision maker (Yaniv & Choshen‐Hillel, 2012). 
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Wisdom could therefore be a useful tool for experts for avoiding pre-existing frames 

and biases. As a result, Küpers and Pauleen (2015) suggest that a theoretical 

understanding of the concept of wisdom is insufficient, and advocate for embodied 

learning through habitualization in management education. 

Wisdom is further expected to enrich managers’ decision making that is informed by 

often abstract knowledge from big data sources. A main concern that arises when 

examining the central role of abstract knowledge in managerial decision making is that 

its “generalizing (even universalizing) nature is problematic when it becomes reified 

and becomes psychologically distant from a concrete, situated reality, and this is a 

challenge for ethics” (Rooney et al., 2013, p. 449). Especially in the finance industry, 

reification is a common mechanism, by which people “release debts from relationships, 

disembed them, and give them ‘thing-like’ qualities” (Carruthers, 2010, p. 161). 

Managers can apply wisdom to enrich this abstract knowledge with meaning and 

perspective. Only then will abstract knowledge lead to more prudent and sustainable 

decisions, which can result in a strategic advantage (Rooney et al., 2013).  

In this section on management decision making, the benefits and drawbacks of data-

driven as well as human judgment-driven decisions were introduced. While some of 

the extant literature seems to favor one or the other, the general consensus agrees on a 

balanced decision-making approach. For this research, managers are expected to benefit 

from both human judgment and data analytics:  

It is doubtful that we will find two types of managers (at least, of 

good managers), one of whom relies almost exclusively on intuition, 

the other on analytic techniques. More likely, we will find a 

continuum of decision-making styles involving an intimate 
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combination of the two kinds of skill. We will likely also find that 

the nature of the problem to be solved will be a principal determinant 

of the mix. (Simon, 1987, p. 61)  

No matter how experienced the manager, or the quality of their instincts, in order to 

realize the benefits of big data and advanced analytics, organizations need to provide 

their decision makers with a supportive environment and access to reliable data and 

analytics. These prerequisites for management decision making with analytics pose 

challenges to organizations, which will be discussed in the next section. 

2.3. Organizational Prerequisites for the Use of Advanced Analytics and Big Data 

The previous sections have outlined various big data opportunities and its potential to 

improve managerial decision making. To take advantage of these opportunities, 

organizations must establish an environment that is conducive to the use of advanced 

analytics. The implementation of big data technologies affects several, and sometimes 

all, business areas within an organization, and therefore requires thorough preparation. 

Organizations need to overcome various challenges, including the acquisition of data, 

lobbying for leadership support, building an integrated infrastructure, and finding the 

right opportunities. These challenges must be overcome on an organizational level to 

facilitate a supportive environment for decision making on an individual level.  

The organization’s preparedness for big data is therefore expected to have a significant 

influence in this study. The following section compiles several challenges outlined in 

the extant literature that organizations need to overcome in order to provide their 

employees with the foundation for data-driven decision making. Management 

challenges refer to business issues, personal decision-making style, and managerial 
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problems that must be addressed. Technological challenges consist of problems around 

the IS infrastructure and the analysis of big data. 

2.3.1. Management Challenges 

Managers need to respond to the changes and challenges brought on by the age of big 

data in order to be and stay competitive with analytics in this new period (Davenport, 

2013). As has been observed in previous evolutionary steps of data management, 

organizations will need to adapt their processes, develop new tools, and handle 

information overload accordingly (Bumblauskas et al., 2017; Petter et al., 2012). To 

ensure prudent use of big data, managers must also be aware of previous misuse of data 

and an overweening dependency on analytics, as the example of the financial crisis in 

2008 demonstrates so well (Carruthers, 2010; Pauleen et al., 2017; S. Shah et al., 2012). 

Such lessons from the past, as well as from current big data use cases, enable the 

identification of three key challenges that are relevant for successfully and prudently 

managing big data: identifying appropriate opportunities, new ways of deciding and 

managing, as well as managing talent. Table 7 presents a summary of these challenges, 

which are discussed below in more detail. Each challenge requires thorough 

consideration and response to ensure the successful employment of big data. 
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Table 7. Management Challenges 

Challenge Requirements for Success Sources 

Identifying appropriate 

opportunities 

• Clearly defined business 

requirements  

• Large-scale opportunities 

• Involvement of top management 

and best talent 

H.-M. Chen et al., 

2017; LaValle et al., 

2011; McAfee et al., 
2012; Shmueli & 

Koppius, 2011; Watson 

& Marjanovic, 2013; 

Watson, 2016; Wirth & 

Wirth, 2017 

New ways of deciding 

and managing 

• Receptiveness for data-driven 

decisions and experimentation  

• Shift in the role of business 

analysts and domain experts 

• Adapted governance 

Davenport, 2013; 

Janssen et al., 2017; 

McAfee et al., 2012; 

Phillips-Wren et al., 

2015; Watson & 

Marjanovic, 2013; 

Watson, 2016 

Managing talent 

• Skills gap analysis 

• Data scientists 

• Shortage of talent 

Alharthi et al., 2017; 

H.-M. Chen et al., 

2017; Davenport, 2013; 
Janssen et al., 2017; 

McAfee et al., 2012; 

Phillips-Wren et al., 

2015; Watson & 

Marjanovic, 2013; 

Wirth & Wirth, 2017 

 

The first challenge, and therefore the starting point of an organization’s big data 

journey, is identifying appropriate opportunities, beginning with a clear definition of 

the business requirements (Watson & Marjanovic, 2013). Detailed business 

requirements ensure an alignment of big data and analytics with the goals and strategy 

of the organization (Shmueli & Koppius, 2011; Watson & Marjanovic, 2013). Wirth 

and Wirth (2017) emphasize the importance of defining use cases and addressing 

critical questions before diving into big data initiatives: “What are the crucial decisions 

that we take on a regular basis? Which decisions or business processes should be more 

data-driven and objective? What are our most important pain points? Where would we 

benefit most from data-driven solutions?” (p.33).  
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The challenge of answering these questions and identifying the right opportunities 

results from uncertainty and a lack of relevant experience when managers are 

confronted with new and advanced technology (Chakravarti et al., 1981; Huber, 1990). 

Most executives have an elementary understanding of big data and its occasional 

successful use in other companies, but are unsure of how to utilize it in their specific 

organizational environment (Watson & Marjanovic, 2013). To find appropriate 

opportunities and set detailed requirements for their organizations, managers therefore 

require a wide skill set that incorporates technological understanding, project 

management experience, creativity, innovativeness and calculated risk taking (LaValle 

et al., 2011; McAfee & Brynjolfsson, 2012; Watson & Marjanovic, 2013). The 

definition of use cases and business requirements informs the appropriate choice of 

technology and analytics tools (Wirth & Wirth, 2017). The technology and tools should 

therefore be the consequence of thorough planning, and not the starting point of big 

data initiatives.  

In terms of project scale, a survey of 3,000 executives, managers, and analysts by 

LaValle et al. (2011) suggests seizing large-scale opportunities instead of small-scale 

big data projects, which paradoxically bare lower risk and have a higher potential of 

serving as a successful example. The lower risk can be explained by the involvement 

of top management and best talent in large-scale projects, lowering the risk of failure. 

While top management support has been a constant in prior eras of system 

implementation literature, it plays a particularly crucial role for the employment of big 

data (H.-M. Chen et al., 2017; Watson, 2016). This eventuates from the ownership of 

big data projects, which is more successfully driven by use cases and business 

requirements than by IT (Wirth & Wirth, 2017). Early success with big data projects 

demonstrates their value and subsequently encourages a more data-driven mindset 
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throughout the organization, leading to its cultural transformation (LaValle et al., 2011; 

Watson, 2016).  

Employees have to embrace this cultural change induced by big data use (Watson, 

2016), which according to Davenport (2013), involves new ways of deciding and 

managing. Traditional decision-making styles, like the use of intuition or judgment, are 

substituted or at least complemented by data-driven experimentation (Davenport, 2013; 

S. Shah et al., 2012). Large-scale decisions about pricing or production cycles, for 

instance, are made after appropriate small-scale experimentation informed by big data 

outcomes. Trust in data, the prerequisite of (big) data-driven decision making, can only 

be built when previously intuition- or judgment-driven decisions are reduced in favor 

of a greater reliance on data (McAfee & Brynjolfsson, 2012). The establishment of such 

a cultural foundation is therefore crucial for the successful launch of analytics projects 

(H. Chen et al., 2012; Davenport, 2006; Nicolas, 2004).  

To facilitate this required change in corporate culture, the roles of business analysts and 

domain experts must evolve. Business analysts and BI experts need to “know not only 

how to turn raw data and information (through analytics) into meaningful and 

actionable knowledge for an organization, but also how to properly interact with and 

communicate this knowledge to the business and domain experts of the organization” 

(H. Chen et al., 2012, p. 1183). The role of domain experts, then, shifts from being the 

provider of solutions and answers, to asking the right questions (McAfee & 

Brynjolfsson, 2012). This shift supports the overall aim of adapting the organization’s 

decision-making structure to enable cross-functional collaboration, and places the 

decision-making rights with positions that have the relevant information (McAfee & 

Brynjolfsson, 2012; Ross et al., 2013). The collaboration among analysts, BI experts 
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and decision makers is considered “a key condition to overcome fragmentation and 

create a BD [big data] chain”, eventually positively affecting the decision-making 

quality (Janssen et al., 2017, p. 5). 

This new dynamic between IT and business highlights the importance of defining roles 

and responsibilities, as well as establishing effective data governance (Wirth & Wirth, 

2017). While technical aspects should be attributed to IT personnel, the overall 

governance should be managed on the business side. IT is therefore responsible for the 

set-up of the infrastructure, while business oversees aspects such as data access, 

acquisition, storage and documentation (Phillips-Wren et al., 2015; Wirth & Wirth, 

2017). An effective governance structure stretches from prioritizing big data initiatives 

from different business units, to assessing their strategic fit, to providing training to 

decision makers (Phillips-Wren et al., 2015). Governance processes should also 

incorporate legal compliance to effectively avoid security breaches and privacy 

concerns. Furthermore, mechanisms for the selection and processing of the most 

suitable data sources as well as knowledge sharing of the insights gained should be in 

place (Janssen et al., 2017; Phillips-Wren et al., 2015). 

The last management challenge that organizations face is concerned with the lack of 

specialized human resources. The use of big data and analytics prompts an increased 

attention to talent management, i.e. acquiring, securing, and training employees in order 

to develop the necessary skills for exploiting big data initiatives (Bumblauskas et al., 

2017; McAfee & Brynjolfsson, 2012; S. Shah et al., 2012; Watson, 2016). In early 

stages, a skills gap analysis serves as the most effective tool for assessing which big 

data and analytics skills are lacking in the organization (Watson & Marjanovic, 2013). 

Then, appropriate and tailored measures such as new hires, consulting services or 
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training efforts can elevate the skill level. Otherwise, insufficient skills and knowledge 

around big data can negatively affect decision-making quality, especially if the decision 

maker has limited understanding of the data’s meaning or context of collection (Janssen 

et al., 2017).  

Turning data into meaningful insights requires scientific rigor, solid 

knowledge of statistics, and expertise in the respective empirical 

methodology. Volume and quantity of data are often misjudged as 

the main prerequisite of a successful analysis but this 

misunderstanding can lead to weak or even wrong results. (Wirth & 

Wirth, 2017, p. 36)  

Sufficient skills are therefore required to understand the limitations of the data, as it 

might be flawed, the context of its collection too specific or the dataset not suitable for 

the use case (Wirth & Wirth, 2017). 

McAfee et al. (2012) especially emphasize the role of data scientists, who serve as an 

intermediary between business requirements and technological capabilities and 

represent a crucial part for the success of big data use. A background in statistics, 

computer science, and mathematics, combined with an understanding for business, 

enables them to communicate insights to both IT and business leaders (Phillips-Wren 

et al., 2015). Their role therefore exceeds the traditional responsibilities of business 

analysts as they “work on new product offerings and help shape the business” 

(Davenport, 2013, p. 67). Their focus is on the analysis and development of descriptive 

and predictive models (Phillips-Wren et al., 2015), while data engineers provide more 

technical support during this process, such as ensuring the availability of required tools 

(Wirth & Wirth, 2017). Data scientists, however valuable for the organization, are still 
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a rather scarce and costly resource that must also be considered in the preparation of 

big data projects (H.-M. Chen et al., 2017). 

Specialists for big data (and analytics in general) are a sought-after commodity, crucial 

for big data success, which poses a major challenge for organizations (Alharthi et al., 

2017; Janssen et al., 2017): “According to the U.S. Department of Labor, the shortage 

of people with big data skills in the U.S. alone [was] predicted to be between 120,000 

and 190,000 by 2018” (Alharthi et al., 2017, p. 288). This shortage is consequential for 

organizations, as a lack of analytics skills can result in data entry errors, leading to loss 

of information and the value of the insights gained being compromised (Alharthi et al., 

2017). One of the ways this skills shortage is addressed on a bigger scale is via 

collaborations between industry and educational institutions, which provide early-on 

training and building up a more adaptable workforce. 

2.3.2. Technological Challenges 

After the first of the management challenges is addressed and careful consideration of 

the organization’s business requirements leads to the right big data opportunity, this 

choice will inform its technological requirements. This results in the organization 

encountering technological challenges, given that big data’s requirements exceed 

current data management and analytics capabilities (Alharthi et al., 2017; Jagadish et 

al., 2014; Watson & Marjanovic, 2013). The main challenges, as summarized in Table 

8, are the selection of comprehensive technology, the collection and preparation of the 

data, as well as processing and interpreting big data. These challenges follow a 

sequential order, with each challenge relying on the successful completion of the 

previous step.  
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The first technological challenge organizations need to overcome is selecting 

comprehensive technology, which builds the foundation for successful long-term big 

data initiatives. LaValle et al. (2011) emphasize the need for an integrated and 

consistent information foundation that can be extended with further applications. 

Additional programs and tools can be added for specific analyses, with the foundation 

ensuring the compliance with the big data strategy (LaValle et al., 2011; McAfee & 

Brynjolfsson, 2012; Watson & Marjanovic, 2013). 

Table 8. Technological Challenges 

Challenge Requirements for Success Source 

Selecting 
comprehensive 

technology 

• Integrated and consistent 

foundation 

• Appropriate tools and 

framework 

• Keep existing capabilities 

Alharthi et al., 2017; H. 

Chen et al., 2012; 

Davenport, 2013; LaValle 
et al., 2011; McAfee et al., 

2012; Watson & 

Marjanovic, 2013, Wirth & 

Wirth, 2017 

Collection and 
preparation of data 

• Acquisition of data 

• Effective filtering of data 

• Addition of supportive 

metadata 

• ETL and data cleansing 

Davenport et al., 2013; 

Jagadish, 2014; Janssen et 

al., 2016; Miller & Mork, 
2013; Phillips-Wren et al., 

2015; Shah et al., 2012; 

Wirth & Wirth, 2017 

Processing and 

interpreting big data 

• New methods for data 

querying and mining 

• Visualization tools 

• Analytical understanding in 

management 

• Embedded analytics 

Davenport, 2013; Jagadish, 
2014; LaValle et al., 2011; 

Miller & Mork, 2013; 

Moore, 2017; Phillips-Wren 
et al., 2015; Shah et al., 

2012; 

 

The variety dimension of big data in particular can render the organizations’ existing 

legacy systems insufficient. The data’s heterogeneity exacerbates its processing, 

specifically the integration of new unstructured data sources with structured data (H. 

Chen et al., 2012; O'Leary, 2013). However, a variety of new tools and applications 

facilitate the transformation of unstructured inputs, e.g. from social media, into 
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structured data. Organizations can benefit from processes such as MapReduce, which 

are superior to parallel DBMS in terms of analytics as well as ETL (extract, transform, 

load) of semi-structured data (H. Chen et al., 2012). Developing an infrastructure that 

supports big data and advanced analytics is connected to substantial costs (Alharthi et 

al., 2017).  

Legacy systems, such as Decision Support Systems (DSS), data warehouses and 

NoSQL databases, should be kept and added to instead of eliminated to keep existing 

capabilities (Alharthi et al., 2017; H. Chen et al., 2012; Davenport, 2013; LaValle et 

al., 2011). All legacy systems can be of use for big data analytics. However, 

management is confronted with the challenge of creating an appropriate architecture 

(Davenport, 2013). If in place, a Knowledge Management System (KMS) can, for 

example, be an important prerequisite for the exploitation of big data, enabling the 

organization-wide sharing of insights (Intezari & Gressel, 2017; Pauleen, 2017). These 

systems enable users to acquire, create and store knowledge by offering a structured, 

large-scale and comprehensive knowledge base (Alavi & Leidner, 2001; Bhatt, 2001; 

Matthews, 1997; Swan & Newell, 2000).  

After selecting the right technology and establishing a solid foundation, the collection 

and preparation of data represents the next challenge for organizations. Various types 

of data have to be discovered, stored, and integrated (Alharthi et al., 2017; Davenport, 

2013; S. Shah et al., 2012). This challenge begins with the acquisition of data, referring 

to the collection of traditional data in form of structured customer and transaction 

datasets, but also of new and unstructured sensor, web, or simulation data (Jagadish et 

al., 2014). Not all of these big data sources prove relevant or valuable to organizations, 

and therefore require that the data be filtered and evaluated to determine which of it 



  Chapter 2: Literature Review 

90 

 

will be stored (Davenport et al., 2013; Jagadish et al., 2014; S. Shah et al., 2012). The 

underlying interests of an organization, as well as its use cases, inform this decision 

(Jagadish et al., 2014; Wirth & Wirth, 2017).  

Following the extraction of data, it is paramount to document the quality of the data 

source. Miller and Mork (2013) remark on the necessity of adding supportive metadata 

to grant decision makers in later stages of the data analysis the possibility to trace the 

original sources and their quality. Given that the quality of big data sources varies 

significantly, organizations should aim to acquire accurate, timely, complete, 

consistent, and relevant data in order to prevent unwise and costly decisions based on 

unreliable data (Janssen et al., 2017).While not all data sources will be of high quality, 

the metadata enables organizations to use a variety of different quality sources for their 

use cases by providing them with confidence of knowing the data’s reliability and origin 

(Wirth & Wirth, 2017).  

The subsequent preparation of data is the first step for “bring[ing] disparate data 

together in an organized fashion and create[ing] valuable information that can inform 

decision making at the enterprise level” (Miller & Mork, 2013, p. 58). The specific steps 

of preparing big data differ in detail and name across the literature, as Janssen et al. 

(2016) remark. However, the main steps include data cleaning and the ETL process, 

which refers to the extraction, transformation, and loading of the data into the target 

system (García, Ramírez-Gallego, Luengo, Benítez, & Herrera, 2016; Jagadish et al., 

2014; Phillips-Wren et al., 2015). The data cleaning eliminates inaccurate or incomplete 

data after the extraction from its sources. Then, the data is transformed into an 

analyzable format, which presents an increasing challenge, due to big data’s velocity 

complicating the integration of heterogeneous data (Davenport et al., 2013; Jagadish et 
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al., 2014). These ETL processes are therefore reliant on expertise and build the 

foundation for later analysis (Phillips-Wren et al., 2015).  

After the data is prepared and loaded onto the target system, the processing and 

interpreting of big data confronts management with technological challenges because 

of its variety, velocity and volume: “Many of these processes have been standard in 

data analysis for a long time. What is different in the case of big data is the larger 

amount and variety of data under consideration and, possibly, the real-time nature of 

data acquisition and analysis” (Phillips-Wren et al., 2015, p. 456). Therefore, the right 

infrastructure and tools must be selected, in order for management to gain access to 

valuable insights at a more rapid pace. To accomplish this, the organization’s 

technology must be capable of processing an immense volume of data in real-time or 

near real-time (Davenport, 2013).  

Because “Big Data is often noisy, dynamic, heterogeneous, inter-related, and 

untrustworthy,” new methods have to be established for big data to be queried and 

mined successfully  (Jagadish et al., 2014, p. 90). Due to its volume and the spreading 

of NoSQL databases, traditional SQL queries can no longer be considered efficient, 

posing a challenge to organizations (Moniruzzaman & Hossain, 2013). An example of 

a software framework that can provide organizations with these capabilities is Hadoop, 

which is able to store and process data, identify patterns and create flexible predictive 

models (Phillips-Wren et al., 2015). The developed models can also be used for further 

analysis in the data warehouse, offering more in-depth insights.  

After the processing of the data, the manager is presented with analysis results, which 

must then be interpreted. The analysis and results therefore have to be presented clearly 

and be logically retraceable, so the decision maker can verify them and make a prudent 
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decision (Jagadish et al., 2014). Metadata about the data sources used in the analysis, 

as well as about potential integrations of those sources, can support the decision maker 

in tracing the steps of the analysis and assessing the credibility of the sources (Miller & 

Mork, 2013). Data visualization tools can also assist in this aspect, facilitating the 

interpretation of big data for managers (LaValle et al., 2011; Miller & Mork, 2013; 

Moore, 2017). Another factor influencing the successful gathering of insights is the 

decision maker’s analytical understanding, which is required for the interpretation of 

big data outputs and their implications, as well as for transforming the data into 

decision- and policy-making (Janssen et al., 2017; S. Shah et al., 2012). The manager’s 

experience with data-driven decision making was found to have a positive effect on the 

quality and speed of decision making (Janssen et al., 2017) 

Even faster decision making can be achieved by embedded analytics, which relieves 

management from the obligation of selected day-to-day decisions (Davenport, 2013). 

Embedded analytics, however, and ultimately prescriptive analytics, require that high-

quality management secure and supervise the planning and execution of these 

influential tools. This supervision is required for further investigating the outcomes of 

big data analytics, like in the case of correlations, which not necessarily equal causation 

(Provost & Fawcett, 2013). Analytics outcomes therefore benefit from expert judgment 

and human input. 

2.4. Summary 

The literature review introduced the topics of big data and analytics, outlined the need 

for further exploration of their use in the managerial decision-making process, and 

compiled organizational prerequisites that are expected to support managers in this 

venture.  
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While data has been used for decision making since the 1950s, traditional datasets have 

evolved–in terms of variety, volume, and velocity–into big data. For big data to be 

valuable to organizations, it must be transformed into information, and eventually 

knowledge. Therefore, analytics tools and techniques have also evolved–into advanced 

analytics, catering to the needs of big data. Big data and advanced analytics have the 

potential to improve decision making and various business processes, leading to overall 

performance gains. The variety and transparency of datasets provide organizations and 

researchers with numerous opportunities, but also challenges, as the use of big data 

technologies is associated with technological and organizational changes as well as 

privacy concerns.  

Despite its challenges, big data’s potential results in ongoing interest from academia 

and practitioners. Especially due to its improved insights, the evolution of data and 

analytics is expected to significantly affect decision making. This effect is explored by 

following one of the dual process theory variations: the two-system view of decision 

making. This theory posits that there are two distinct cognitive processes that can lead 

to a decision, namely System 1 and System 2. System 1 is understood as rapid, 

automatic, unconscious, and is based on the decision makers’ experience and 

knowledge. As this system contextualizes encountered problems and often simplifies 

them, it is prone to biases.  

System 2 has the potential to overwrite System 1, and is generally characterized as more 

rule-based, regulated, and slow. As it facilitates hypothetical thinking, and is rather 

structured, this system is applied for the most important decisions. System 2 is also 

often connected to rational decision making, and a structured decision-making process. 
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This process consists of three basic steps, namely identification, development and 

evaluation of alternatives, and selection. 

Different decision types and contexts are expected to determine which system will be 

applied by the decision maker, and which specific process steps will be followed. 

Furthermore, data analytics and human judgment significantly influence management 

decision making. While managers rely on their intuition, experience, and wisdom, the 

use of data and analytics is still considered limited. Data quality, analysis paralysis and 

missing trust in data are potential reasons for this lack of use. Managers display a certain 

degree of insecurity around the topic of data analytics, according to research that can 

provide valuable insights. The extant literature on the integration of big data insights 

into the actual decision-making process falls short. This thesis aims to address this 

shortcoming by examining managers’ past decisions captured in the form of critical 

incidents, as well as their general perceptions of data-driven decision making.   

For managers to make informed decisions based on big data, organizations need to 

provide them with a supportive foundation. Organizations are often at a loss for a 

starting point with their data initiatives and encounter various unexpected difficulties 

that might be the result of unpreparedness, misguided reasons for implementation, or 

unrealistic expectations. The first step should therefore be the clear definition of 

business requirements and use cases to identify appropriate big data opportunities. For 

big data initiatives to take hold in the organization, the establishment of a data-driven 

cultural foundation is a critical prerequisite. Trust in data must be built as a complement 

to intuition and experience in decision making. In addition, the analytics and big data 

skills of the organization must be addressed with a sophisticated HR strategy entailing 
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training for current employees, temporary employment of consultancy services, and 

new hires of scarce data specialists.  

Furthermore, organizations need to overcome a range of technological challenges, 

beginning with the setup of a consistent infrastructure foundation that aligns with their 

big data strategy and is informed by business requirements and use cases. The 

integration of legacy systems into this infrastructure should be considered, as well as 

its extension by tools and applications for analysis. This foundation must be suited to 

accomplish the preparation and processing of the acquired data sets, which are 

exacerbated by big data’s three defining dimensions. In order to monitor the varying 

quality of big data sources, metadata should be applied. This practice supports 

management in retracing the analysis steps when interpreting big data outcomes and 

incorporating them into their decision making. While these management and 

technological challenges are well covered in the literature as obstacles in the big data 

journey, research on their actual effects on the decision-making process falls short.  

As this literature review highlights, the explanation of the effects of (big) data and 

analytics on individual managerial decision making in general fall short. To address 

these gaps the following two research questions were formed: 

1) How do managers perceive the role of advanced analytics and big data in the 

decision-making process? 

2) How do managers perceive the alignment of advanced analytics and big data 

with more traditional decision-making approaches such as human judgment? 
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CHAPTER 3: METHODOLOGY  

This chapter describes the rationale behind the research methodology of this study, 

outlines its research design, and discusses the use of research methods and data 

collection, as well as coding and analysis techniques. The chapter begins with the 

rationale for employing qualitative research methods, abductive reasoning, and the 

researcher’s epistemological stance. Next, the research design is explained, elaborating 

on a combination of multiple case study research and Critical Incident Technique (CIT). 

Third, the data collection section discusses the purposive selection of cases and the 

design of the semi-structured interviews, as well as the conducted pilot study and the 

resulting changes to the interview questions. Lastly, the multi-level approach to data 

analysis is explained, addressing the relationship between method, units of analysis, 

and the report of the findings. The two different analysis techniques, content analysis 

and thematic analysis, as well as their relation to the research methodologies, are then 

further discussed.  

3.1. Research Rationale 

Big data and advanced analytics’ potential and opportunities are manifold. The extant 

literature provides an overview of diverse use cases, promises improved decision 

making through better insights, and cautions about various technological and 

organizational challenges. However, the literature has so far not provided sufficient 

insights into exactly how big data and analytics are incorporated into the decision-

making process. The subsequent research aims to provide an in-depth understanding of 

this topic and focuses on exploring the balance decision makers must find between 

relying on analytical inputs and their own human judgment. The managers’ perceptions 
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and understandings of advanced analytics, big data, and organizational challenges 

further enrich these insights and form the context of this research project.  

Exploring management decision making in this rather new age of big data and capturing 

subjective views to gain in-depth and context-specific insights calls for interpretive 

exploratory research using qualitative methodology:  

Qualitative research is suitable where the research emphasis is on in-depth 

understanding of how, why and in what context certain phenomena occur; and 

what impacts upon or influences such phenomena. It is most appropriate where 

the explanation and understanding of behavior or activities matter more than 

specific measurements. (Carson et al., 2001, p. 66)  

I applied a qualitative methodology to capture and analyze these underlying reasons 

and circumstances of managerial decision making, relying on the participants’ 

perceptions and interpretations of their actions. The nomination of the interpretive 

paradigm at this point of my study does not simply fulfill the purpose of establishing a 

great fit between the topic of this research and the chosen approach, but signals the 

influences this interpretive approach has on “the way knowledge is studied and 

interpreted. It is the choice of paradigm that sets down the intent, motivation and 

expectations for the research” (Mackenzie & Knipe, 2006, p. 194). 

Since advanced analytics is a rather new phenomenon and the context of decision 

making will be of a rather complex and dynamic nature, this study endorses an 

interpretivist approach, based on the understanding and interpretation of managers and 

decision makers (Carson et al., 2001; Leitch, Hill, & Harrison, 2009). The choice of a 

qualitative, exploratory approach reflects my interpretivist research paradigm, which 
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aims to explore real-life events as they are experienced by managers in their 

organizations (Carson et al., 2001). 

The research questions have been crafted to provide me with deeper insight into 

management decision making and the influence of data analytics in contrast to human 

judgment. The interpretive framework in this qualitative study consequently employs 

research procedures that “are sensitive to participants and context” (Creswell, 2012, p. 

32). The findings of this research are grounded in the self-examination of managers and 

their decision making, which also corresponds to my interpretivist epistemological 

stance (Leitch et al., 2009). Leading back to the corresponding constructivist 

ontological consideration of the nature of reality, the subjects of this study are assumed 

to be influenced by their previous experience, social setting and organizational context 

(Intezari, 2013; Mackenzie & Knipe, 2006). Therefore, the aim of this study is not to 

capture facts of an objective reality, but to explore and interpret the managers’ 

perceptions within the given context of this research (Leitch et al., 2009; Mackenzie & 

Knipe, 2006). 

This wealth of information was collected and analyzed using case study methodology 

and the Critical Incidents Technique (CIT). Case study research was chosen as the 

primary methodology to capture a holistic picture of managerial decision making that 

exceeds the mere decision-making process and incorporates potentially influential and 

contextual aspects, such as personal characteristics and organizational factors. Case 

studies can be seen as a useful approach to gather “well-grounded, rich descriptions and 

explanations of developments that are relatively weakly understood” (Popovič et al., 

2018, p. 3). CIT was selected as a secondary research method for gaining an in-depth 

view on the decision as an embedded unit of analysis, not only to focus on general 
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answers from the manager and their context, but also to hone in on specific 

characteristics and circumstances of actual decisions. While CIT is mostly used as a 

stand-alone technique, it also finds application in ‘cross-case comparison studies’ 

(Gogan, McLaughlin, & Thomas, 2014, p. 2). 

Other research methodologies had been considered but were dismissed due to their 

subpar fit. For example, extant empirical decision-making literature, particularly 

sources placing emphasis on the use of human judgment and/or analytics, relies on a 

variety of research methods. Quantitative data in the studies mentioned in this literature 

was mostly collected in the form of surveys (Brynjolfsson et al., 2011; Cao et al., 2015; 

LaValle et al., 2011; Müller & Jensen, 2017; S. Shah et al., 2012). While these 

quantitative studies provided thought-provoking impulses, their positivist underpinning 

often restricted insights to rather broad and generic statements, leading to a lack of 

depth in terms of relevant context and detail. Furthermore, subjective survey data, such 

as the data collected in LaValle et al. (2011), which relied on self-reported performance 

and analytics maturity levels, gives rise to validity concerns (Bertrand & Mullainathan, 

2001). Quantitative methods were dismissed for these reasons. 

Qualitative studies in the field of decision making with the focus on human judgment 

and/or analytics employed a variety of research methods that better suited the overall 

aim of this study as well as the interpretivist stance: case study research (Cavaye, 1996; 

Popovič et al., 2018; Walsham, 1995), CIT (Coetzer et al., 2012; Trönnberg & Hemlin, 

2014), experiments (Dijksterhuis & Nordgren, 2006; Dijkstra et al., 2013; Elgendy & 

Elragal, 2016; Reyna et al., 2014), or other qualitative approaches (Dean & Sharfman, 

1996; Dreyfus & Dreyfus, 1980; Hensman & Sadler-Smith, 2011; McAfee & 

Brynjolfsson, 2012).  
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However, experiments as a data collection method for this thesis were dismissed, as 

“experimental results produced by restricting experiments to precisely controlled but 

highly artificial situations” (p.2) have been criticized regarding their significance 

(Dreyfus & Dreyfus, 1980). Since the use of big data and analytics is considered a rather 

complex subject involving several varying contextual and situational factors, an 

experiment did not appear to be a satisfactory method for answering the research 

questions. Particularly given the exploratory nature of this study and the range of 

unknown factors, surveys or experiments would have led to subpar results and 

superficial or fragmented insights. Other options, such focus groups or the Delphi 

method, were also dismissed. These methods were not considered efficient in obtaining 

insights into real-life individual decision making. The aim of this research was to 

understand individuals, their past decisions, influences that they experienced, and their 

own subjective accounts and views of these decisions. Interpretive case study 

methodology and CIT were a better fit for this research, as the participants’ views were 

not affected by other participants’ experiences or opinions during data collection.  

The field of information systems (IS) particularly values interpretive research: 

“[i]nterpretive research can help IS researchers to understand human thought and action 

in social and organizational contexts; it has the potential to produce deep insights into 

information systems phenomena including the management of information systems and 

information systems development” (H. K. Klein & Myers, 1999, p. 67). However, in 

contrast to quantitative research, the quality of qualitative research cannot be evaluated 

with control variables and validity tests. Klein and Myers (1999) therefore have 

developed a number of principles for interpretive field research that, if followed, 

facilitate a more robust research design and a more consistent practice of data collection 
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and analysis. I used these principles as guidelines throughout this study, beginning with 

the contextualization of my research by outlining the history of data analytics.  

In addition to these interpretive principles, guidelines for qualitative research can also 

be found in the literature (Patton, 1999). These guidelines are similarly aimed at 

improving the quality of research. Patton (1999) advocates integrity in the analysis 

process by including alternative explanations for analysis findings. This extends to the 

inclusion of negative cases, i.e. cases that do not fit the identified patterns. I applied 

these techniques during my analysis, not only to follow the guidelines, but also as an 

integral part of the abductive approach I followed, which will be explained in the next 

paragraph.  

Patton (1999) furthermore introduces various forms of triangulation, which enable the 

researcher to view different aspects of the research topic. Triangulation is a prominent 

subject in case study methodology, and will therefore be specifically discussed in part 

3.2.1., alongside further guidelines that specifically address case study research 

(Benbasat, Goldstein, & Mead, 1987; Yin, 2014).  

Given the novelty of the research topic, the exploratory nature of this study, and a range 

of only partially applicable theories, the analysis process and resulting findings are 

based on an abductive approach to theory building. Abduction enables researchers “to 

break out of the limitations of deduction and induction, which both are delimited to 

establish relations between already known constructs” (Kovács & Spens, 2005, p. 136). 

Its objective is the exploration of the collected data, the identification of themes and 

patterns, and lastly the application of some level of guessing and intuition as to their 

significance and meaning, eventually resulting in logical propositions (Lipscomb, 

2012; Shannak & Aldhmour, 2009). The applied intuition is triggered by unexpected 
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findings that existing theories are unable to explain, which initiates the abductive 

reasoning process of systematic analysis (Kovács & Spens, 2005; Shannak & 

Aldhmour, 2009; Timmermans & Tavory, 2012).  

Abductive reasoning follows a spiral process instead of linear logic, using theoretical 

lenses for data interpretation (Blaikie, 2007). An exemplary depiction of this spiral 

process can be seen in Figure 4 below. The process begins at the point of a surprising 

observation that does not align with the study’s established theoretical foundation, 

leading to additional questions and a search for fitting frameworks in an iterative 

process step that is referred to as ‘theory matching’ (Shannak & Aldhmour, 2009).  

These iterations are aimed at finding a suitable theoretical framework as an explanation 

for the empirical observation, or for extending the initial theory. Abduction can also 

result in the proposition of general rules (Kovács & Spens, 2005). In this capacity, the 

primary objective of abductive reasoning is not generalization, but a focus on context 

and specific circumstances, highlighting the distinction between generalizable and 

context-specific results. The attention to environmental influences and context-specific 

observations was mirrored in my choice of case study methodology and embedded CIT. 
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Figure 4. Abductive Reasoning 

I made surprising observations at several points during my research journey, beginning 

with the recruitment of participants and my initial impressions during the early stages 

of data collection. These surprises led me to delve deeper into the collected data, 

addressing questions such as ‘Why is big data/analytics not being used?’, ‘Which 

individual/decisional/organizational factors influence whether or not big data is being 

used?’, and so forth. The spiral process of matching findings to theories that had been 

identified during the literature review, exploring new theories, and exploring 

propositions put forward in recent publications, led to a thorough and holistic multi-

level picture of managerial decision making.  

3.2. Research Design 

The research design of this study reflects its exploratory nature, as well as its holistic 

approach to delving deeper into the managerial decision-making process from an 
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individual, as well as from a decision-specific and organizational point of view. This is 

accomplished by employing case study methodology with the individual managers (M) 

as the unit of analysis, with several managers having the same organizational context. 

The managers were interviewed about their general perceptions on the research topic 

and were additionally asked to provide a number of critical incidents (CI), i.e. recalling 

critical data-driven decisions that these managers had made in the past. These incidents 

served as an embedded unit of analysis, which will be discussed in more detail in 

section 3.4.1.  

The various critical incidents were each analyzed in the context of their case (the 

manager), but also cross-analyzed with all other incidents in form of a content analysis 

that informed the first findings chapter on decision-making processes (Chapter 4). The 

cases were individually and cross-analyzed, informing all three findings chapters, but 

particularly the second one, which specifically addresses the varied types of managerial 

decision makers. The organizational context facilitated the development of a 

management decision-making environment that captures influences on the managers 

and their decision making, which forms the third findings chapter. The research design 

is outlined in Figure 5, and the individual research methods will be explained in detail 

in the following sections.  
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Figure 5. Research Design 

3.2.1. Case Study Research 

I chose case study research as the main methodology for this study for addressing the 

exploratory research questions. It is commonly used in this capacity and is understood 

as a well-founded approach for furthering knowledge and discovery in the discipline of 

information systems (Benbasat et al., 1987; Cavaye, 1996). In their review of case study 

research in the IS field, Benbasat et al. (1987) conclude that “case study strategy is well 

suited to capturing the knowledge of practitioners and developing theories from it” 

(p.370). In contrast to surveys and experiments, case studies provide “a broader view 

on a problem” than surveys or experiments (Blumberg, Cooper, & Schindler, 2011, p. 

256), and are more suitable for researchers who have less a priori understanding of 

which variables will be significant during the study (Benbasat et al., 1987).  

This broader view lends itself to theory building, enabling me to explore explanations 

and connections that I had not considered from the outset (Blumberg et al., 2011), but 

emerged through pattern recognition during the analysis (Patton, 1999). Big data and 
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analytics research is still considered to be in the early stages, and therefore benefits 

greatly from a broad view and insights from diverse cases (Popovič et al., 2018). 

Case study methodology is commonly chosen to explore phenomena in their natural 

setting and real-life context (Benbasat et al., 1987; Blumberg et al., 2011; Darke, 

Shanks, & Broadbent, 1998; Yin, 2014). This study uses multi-case research, which 

provides the additional benefit of expanding the exploration of the phenomenon to more 

than one context (Blumberg et al., 2011; Stake, 2006). These contexts were expected to 

influence the cases, i.e. managers, and their decision making. Therefore, the 

phenomenon of managerial decision making with big data and advanced analytics was 

explored in its real-life setting, considering the managers, their various decisions, and 

their organizational and industrial environments.  

The context was thus not stripped from the results to achieve generalization, but rather 

examined to identify key aspects that influence managerial decision making. This 

allowed me to “shed light on a phenomenon from multiple perspectives defined by its 

context” (Blumberg et al., 2011, p. 256). For this aspect, multi-case studies are 

considered more appealing and also more robust than single case studies (Blumberg et 

al., 2011). Particularly for postgraduate research, the use of several case studies is 

recommended, as they enable cross-case analysis, allowing for ‘richer theory building’ 

(Perry, 1998, p. 792). 

This research relied on the decision maker as the unit of analysis when qualitatively 

exploring the role of intuition in decision making, similar to a study on intuitive 

decision making in the banking sector by Hensman and Sadler-Smith (2011). An 

embedded unit was the decision. Selecting these units of analysis enabled me to explore 

how the decision types, managerial characteristics, and organizational context affect 



  Chapter 3: Methodology 

107 

 

the managerial decision-making process. Therefore, the case fulfills Creswell’s (2013) 

requirement to have natural boundaries and supports the study’s aim of developing an 

in-depth analysis. Each case captured the manager’s perceptions of advanced analytics’ 

role in decision making, and also provided insights into his/her organizational 

background, taking the manager’s specific context into account while also providing a 

holistic view of the research problem (Carson et al., 2001; Leitch et al., 2009).  

This holistic approach, and how it applies to the research questions, is depicted in 

Figure 6. The central part of this figure is adapted from Miles et al. (2014), who use the 

heart as the focus and therefore the unit of the analysis. The circle around it outlines the 

boundaries of the case, with the inside representing the case context. I added the center 

of the heart to display the embedded unit of analysis. 

 

Figure 6. Holistic Case Study Approach (adapted from Miles et al. (2014)) 

The primary data collection method for this holistic research approach was semi-

structured interviews with decision makers. Case study research often relies on several 

data collection methods (Blumberg et al., 2011; Stake, 1995; Yin, 2014), which in this 
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study was mainly achieved by applying a second research methodology, i.e. CIT. Data 

for CIT was also collected through interviews; however, these were of a more structured 

nature addressing real-life events. The specific interview setup, preparation, and 

questions will be discussed in the next section. Additionally, secondary data was used 

to a limited extent when available, in the form of supportive news articles, 

articles/memos authored by the managers, or information gained from the companies’ 

websites. As significant and often key strategic decisions are the subject of this 

research, supporting documentation was not accessible. Observations or shadowing of 

managers was additionally deemed impractical, considering the length and complexity 

of the decision process.  

The focus was therefore on data collection through interviews, which “are the most 

widely used source for collecting information for evidence” (Blumberg et al., 2011, p. 

258), and are considered “one of the most important sources of case study evidence” 

(Yin, 2014, p. 110). The semi-structured interviews, as demonstrated by the questions 

presented in 3.3.2., were rather structured to ensure consistency and completeness 

throughout all participants. Another positive argument for using semi-structured 

interviews was to capture the managers’ views on previous participants’ perceptions. 

After the managers voiced their own views on certain questions, selected parts of the 

other participants’ opinions were shared with the interviewees and they were asked to 

evaluate them. These reflections from other participants were simply used to “confirm 

insights and information the researcher already holds” (Blumberg et al., 2011, p. 258).  

An important aspect of case study methodology is the concept of triangulation, which 

aims at strengthening the cases put forth, as well as increasing the depth of the 

research’s presented information and transferability. Triangulation generally refers to 
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the convergence of several data sources to strengthen the findings and their validity 

(Yin, 2014). In essence, it is “mostly a process of repetitious data gathering and critical 

review of what is being said […] to assure that the right information and interpretations 

have been obtained” (Stake, 2006, p. 34f.). There are four common types of 

triangulation, namely data triangulation, methodological triangulation, theory 

triangulation, and investigator triangulation (Denzin, 1989; Patton, 1999; Stake, 1995, 

2006; Yin, 2014), which will be discussed in more detail below.  

Data source triangulation is primarily used to assess whether the studied phenomenon 

changes across different spaces, times or with the people involved (Stake, 1995). 

Theoretical sampling can be considered a form of data source triangulation, as the 

selection of systematically divergent settings help the researcher to identify 

commonalities across these settings (Denzin, 1989). Applying theoretical sampling in 

this particular study, for example, enabled me to discover patterns that were unaffected 

by variables such as industry or character traits, but also patterns that were unique to 

certain groupings of people or decisions. In that sense, data source triangulation was a 

useful tool for me “to see if what we are observing and reporting carries the same 

meaning when found under different circumstances” (Stake, 1995, p. 113). To explore 

the managers’ perceptions on their decision making in different circumstances, they 

were asked about different decision types and situations. CIT was an especially useful 

technique in this regard, as it exposed real-life decisions under various circumstances, 

including potential shortcomings.  

This form of triangulation was particularly relevant during the cross-case analysis, as 

several different data sources (i.e. the interviews conducted with the 25 participants) 

could be evaluated for their perspectives and meanings. In two different instances, two 
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participants each reported about the same decision during the CIT part of the interview, 

providing different perspectives. Data triangulation within the case was used to a 

minimal extent, as most of the data was generated during one interview. Only in very 

few cases could documentation and online sources be used to gain further insights. 

Generally, while data triangulation can be considered crucial for the exploration of 

certain phenomena, managers’ perspectives on their decision making are more personal 

and individual. This limits the use of different data sources, as the only valid and 

meaningful data source in this case are the managers themselves.  

However, triangulation is still important for the accurate representation of the 

manager’s meaning and perspective. Therefore, I provided the managers with several 

opportunities during the interviews to express their opinions and perceptions. At critical 

points during the interview, I also inquired as to whether my interpretations of their 

answers were correct, as “triangulation has been generally considered a process of using 

multiple perceptions to clarify meaning, but it is also interpreted as verifying the 

repeatability of an observation or interpretation” (Stake, 2006, p. 37). Stake (1995, 

2006) furthermore suggests the technique of member checking, which refers to the 

practice of providing participants with a summary or report and giving them the 

opportunity for feedback. Accordingly, preliminary reports with initial findings were 

sent out to the participants with the opportunity for comment. While interest in these 

preliminary reports was shown, no changes were suggested. 

A second form of triangulation, methods triangulation, was applied using a technique 

identified by Patton (1999) and Denzin (2009). This allowed me to gain deeper insights 

by relying on more than one data collection method, i.e. adding CIT to the case study 

methodology. The critical incidents provided the participants with the opportunity to 
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describe their perspectives on the use of data during decision making through actual 

examples. This gave me the opportunity to explore beyond the managers’ general and 

hypothetical opinions, which added more facets to each case. The result was a more 

detailed and practical view of real-life decisions that managers had faced, and it often 

revealed a contrast between the theoretical and practical decision making of the 

managers.  

As a third form, theory or perspective triangulation, i.e. the use of multiple theoretical 

perspectives to examine and interpret the data, was employed (Jick, 1979; Patton, 

1999). This resulted naturally from the use of an abductive approach, which, as 

explained above, uses a spiral process to match and test diverse theories to the collected 

data. Several theories were therefore used as lenses or as potential explanations during 

the data analysis, which is further discussed in the respective findings chapters. The 

fourth and last form, triangulation of different evaluators, was not employed. A doctoral 

thesis is considered a single-author piece of work, and it was therefore not considered 

appropriate to involve several interviewers or researchers for the analysis. Supervisors 

were, however, presented with exemplary evidence from the cases and the 

interpretation of the results. These interpretations were not objected.  

Often considered a limitation of interpretive case studies is their generalizability, which 

limits this methodology to the explanation of past data that can only be regarded as 

tendencies in the prediction of future events because of their setting in a specific context 

(Walsham, 1995). Nevertheless, the contribution of rich insights from multiple cases 

can benefit organizations and provide them valuable guidelines. They can also be 

considered impulses for further quantitative research and theory testing. Case studies 

therefore, while not necessarily suitable for the purpose of generalization, are a good 
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approach for developing theory and very appropriate for “How?” and “Why?” questions 

(Blumberg et al., 2011; Yin, 2014).  

Thus, case studies facilitate an understanding of real-world problems, as their findings 

are used to develop foundational theoretical explanations (Blumberg et al., 2011). This 

constitutes a good fit for the abductive approach of this study, which is also primarily 

concerned with offering such a potential form of explication instead of pursuing 

generalization. The analysis of case study data, which will be further discussed in 

section 3.4., equally matches the spiral processes of this abductive study: “With a case 

study, theories are developed and tested in a sequential, step-by-step, manner. Starting 

with a previously developed theory the researcher compares the results of the case study 

with the theory” (Blumberg et al., 2011, p.256).  

3.2.2. Critical Incident Technique 

An embedded unit of analysis (Carson et al., 2001; Eisenhardt, 1989) in this exploratory 

multi-case study are managerial decisions that were collected using the Critical Incident 

Technique (CIT) (Butterfield, Borgen, Amundson, & Maglio, 2005; Flanagan, 1954). 

The critical incidents were embedded in the main unit of analysis, i.e. the manager. 

Each manager’s decisions therefore had to be analyzed and compared with one another 

before all managers could be cross-analyzed (Carson et al., 2001). Whereas the case 

study part of the interviews served to capture the managers’ perceptions of their general 

decision making, the CIT part was used to gain an in-depth view of the actual practice, 

success, and requirements of decision making with advanced analytics. The sharing of 

these real-life events provided a different perspective from the managers’ general 

answers (Coetzer et al., 2012), and generated rich descriptions of the managers’ 

personal experience (Leitch et al., 2009; Serenko & Turel, 2010). Another strength of 
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the technique is the reduction of the researcher’s bias, as the participants are required 

to select themselves which incidents were most critical (Serenko & Turel, 2010). 

CIT has mostly been employed in the area of psychology (Butterfield et al., 2005) and 

medicine (Bradley, 1992b); within the field of business studies, the technique has been 

used primarily for marketing, organizational learning, and performance appraisal 

(Butterfield et al., 2005). In the field of information systems, CIT has been used 

sparingly (Guimarães, Arce, & Mattos, 2013; Islam, 2014; Thomas & Bostrom, 2010), 

and is still considered an underutilized method (Gogan et al., 2014; Islam, 2014). It is, 

however, recognized as an effective exploratory tool in studies on decision making 

(Bradley, 1992b; Coetzer et al., 2012; Kaufmann et al., 2017; Powell & Greenhaus, 

2006; Trönnberg & Hemlin, 2014). Coetzer et al. (2012) suggest that the “close 

correspondence between the broad elements of a decision-making situation and the 

elements of a typical critical incident is suggestive that the CIT is ideally suited to the 

study of managerial decision making situations” (p.174). This research therefore 

contributes to its expansion in the field of IS and the topic of decision making. 

CIT is considered a rather flexible technique that can be modified and adapted 

according to the study’s requirements (Butterfield et al., 2005; Coetzer et al., 2012; 

Flanagan, 1954). It provides a repertoire of procedures for collecting data on significant 

incidents that meet the researcher’s predefined criteria (Flanagan, 1954). A critical 

incident is in this context defined as:  

any observable human activity that is sufficiently complete in itself to permit 

inferences and predictions to be made about the person performing the act. To 

be critical, an incident must occur in a situation where the purpose or intent of 

the act seems fairly clear to the observer and where its consequences are 
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sufficiently definite to leave little doubt concerning its effects. (Flanagan, 1954, 

p. 1)  

While originally focusing on direct observations, almost the entirety of CIT studies has 

been based on retrospective self-reports in recent years (Butterfield et al., 2005; Coetzer 

et al., 2012; Islam, 2014). A drawback of this retrospective retelling of an event is its 

potential risk of incurring biases (Gogan et al., 2014). Therefore, only critical incidents 

are considered in CIT studies, since “validation studies have confirmed that while it is 

difficult for respondents to confidently report on outcomes from typical behavior, recall 

is more accurate when they are asked to report on critical behaviors” (Gogan et al., 

2014, p. 3). Kraajienbrink (2012) echoes this sentiment and considers these reports as 

accurate for processes. In this study, I asked participants to share decisions with me that 

had either significantly positive or negative outcomes, to ensure that the decisions were 

memorable to them.  

CIT is primarily a content analysis method used for the classification of occurrences, 

events or activities (Islam, 2014), to further explore their requirements (Flanagan, 

1954). The method ideally follows five steps as advocated by Flanagan (1954). The 

first step is the determination of the activity’s general aim (Urquhart, Lehmann, & 

Myers, 2010), which serves to establish the objectives of the researched activity, and 

therefore the criteria for assessing whether or not the activity is successful (Flanagan, 

1954). The second step is data collection planning, during which the researcher 

specifies which incidents are relevant (Flanagan, 1954; Urquhart et al., 2010). 

According to Flanagan (1954), the incident must make “a "significant" contribution, 

either positively or negatively, to the general aim of the activity” (p.12) to be classified 
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as critical. The third step is the actual data collection, either through (group) interviews, 

questionnaires, or record forms (Butterfield et al., 2005; Flanagan, 1954). 

The fourth step is the analysis of the data, in which categories are formed in order to 

increase the data’s usefulness (Coetzer et al., 2012; Flanagan, 1954). These categories 

facilitate easier reporting of the incidents, and enable the researcher to compare them 

and gain insights (Flanagan, 1954). The categories are created in a way that represents 

a useful summary of the data, but at the same time preserves as much of the incidents’ 

context and comprehensiveness as possible (Butterfield et al., 2005; Coetzer et al., 

2012; Flanagan, 1954). As a last step, the requirements of the activity that were 

identified during the data analysis require interpretation and reporting (Flanagan, 1954; 

Urquhart et al., 2010).  

For this study, the general aim was explored with high-level employees and contact 

persons from the participating organizations, as well as the interviewees directly. I 

defined the critical incidents as decisions with significantly negative or positive 

outcomes, concentrating on exploring the roles of data and human judgment, as well as 

the requirements for successful decisions. The data was then collected in the form of 

retrospective self-reports through semi-structured interviews. During the analysis, three 

categories were identified according to the managers’ use of data and human judgment 

in their decisions. These categories were further subdivided according to various 

factors, as can be seen in findings chapter 4. More information about the interviews is 

provided in section 3.3.2.; the coding and analysis is further explained in section 3.4., 

as well as in Chapter 4. 

I considered CIT to be a suitable method for this study, particularly because it is 

described as “easy to use, and effective and robust. Its use allowed the identification of 
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some trends […] it presents […] a methodology to aid scholars and practitioners to 

study managers in their information seeking and use behavior” (Guimarães et al., 2013, 

p. 781). The technique allowed me to generalize the incidents to an adequate extent 

while still preserving their context (Thomas & Bostrom, 2010). CIT, therefore, fulfilled 

its purpose of exploring the embedded unit of analysis, i.e. the decision, and of 

providing valuable insights into the main unit, the manager. It furthermore facilitated a 

holistic view on managerial decision making, the big picture results this study aimed 

for:  

CIT generates data which gives the researcher a holistic view of decision 

making situations. This includes data about factors leading up to the decision 

making situation, data about the actual decision that was made, and data about 

outcomes of the decision. (Coetzer et al., 2012, p. 174)  

CIT was also compatible with the interpretive case study methodology. Next to the shift 

from direct observation to retrospective self-report, CIT has furthermore evolved over 

the years with regard to its underlying paradigm. Initially positioned in positivism 

(Flanagan, 1954), the technique has also become a valuable research tool for the 

interpretive research paradigm (Butterfield et al., 2005; Coetzer et al., 2012; Leitch et 

al., 2009; Thomas & Bostrom, 2010). 

3.3. Data Collection  

Both methodologies of this study utilized semi-structured interviews as their main data 

sources. The following elaborates on the planning and process of this data collection. 

First, the research context of New Zealand is specified. Second, the selection of cases 

for the case study methodology is discussed, expanding on selection criteria, replication 

logic, and demographics of the participating managers, i.e. the cases. Third, the 
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interview questions for both the case study research and CIT are introduced, and their 

formulation is outlined. Last, the piloting of the interview questions and resulting 

changes to the questions are explained.  

3.3.1. New Zealand Context 

This study was limited to the context of New Zealand, as all participating companies 

and managers were based in New Zealand. Although some of these organizations were 

subsidiaries of international companies and several of the participants had international 

backgrounds, the decisions and environments explored in this study were set in New 

Zealand.  

As big data is a worldwide phenomenon and its effects are also seen in New Zealand, 

the results and insights of this study are not just relevant to a New Zealand audience, 

but have international significance. Already in 2014, The New Zealand Data Future 

Forum was held to discuss the state of big data, its potential, risks, and opportunities, 

concluding that although not yet fully utilized, big data would have a transformative 

effect on New Zealand (Kirk, 2014). By 2016, an estimated spending of $4.5 billion in 

big data and sophisticated analytics across New Zealand businesses was reported 

(Ryan, 2016).  

New Zealand also fares well in a study focusing on the leaders of the data economy. By 

determining a new GDP–abbreviated from ‘gross data product’–30 countries were 

ranked taking into account four criteria: the absolute amount of broadband consumed, 

number of users active on the internet, institutional openness to data flow, and volume 

of broadband consumption per capita (Chakravorti, Bhalla, & Chaturvedi, 2019, p. 3). 

Achieving place 12 of 30 in this ranking, New Zealand can be considered a serious 

contestant among the international leaders of the data economy. Its position in the upper 
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half of the ranking makes it a good research context as a representative setting for an 

international audience of this thesis.  

3.3.2. Case Selection 

The planning of the data collection for case study research begins with the identification 

of the research subject. After identifying the phenomenon to be explored, the cases can 

be considered as opportunities to study this phenomenon (Stake, 2006). Accordingly, 

the cases selected for this study had to be relevant to big data and analytics-driven 

management decision making, provide diversity, and facilitate insights into different 

contexts with varying complexity (Stake, 2006). This sentiment is echoed by Miles, 

Huberman, and Saldana (2014), who emphasize the importance of including a 

comprehensive sample that offers users a variety of cases with which they can identify.  

The diversity of contexts is evident in, for example, the different degrees of data use in 

decision making, resulting in an inclusion of managers (cases) in organizations 

(contexts) that have always relied on data-driven decision making, have recently bought 

into it, or are still in the planning stage. Several more components were considered as 

distinguishing features that contribute to the cases’ diversity, such as participants’ 

positions, experience, or industry. The diversity this range provided for my study is 

considered a strength of multi-case studies, as it enables the researcher “to examine 

how the program or phenomenon performs in different environments” (Stake, 2006, 

p.23).  

To facilitate this diverse exploration, typical as well as atypical settings must be 

selected (Stake, 2006) in a way that makes this selection purposive and not random 

(Miles et al., 2014; Stake, 2006). Therefore, I based my case selection on literal and 

theoretical ‘replication logic’: “The main idea behind replication logic is that according 
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to a theory, one would expect that the same phenomenon occurs under the same or 

similar conditions or that the phenomenon differs if the circumstances change” 

(Blumberg et al., 2011, p. 257). Literal replication refers to the selection of very similar 

cases, which are expected to deliver similar outcomes and processes (Benbasat et al., 

1987; Blumberg et al., 2011). On the other hand, theoretical replication assumes that 

selecting dissimilar cases will lead to contradictory results (Benbasat et al., 1987). 

Theoretical dimensions should inform the selection of these differing cases (Blumberg 

et al., 2011).  

Case selection therefore requires careful consideration, and should not simply be 

opportunistic (Benbasat et al., 1987). I chose purposive case selection based on 

replication logic in an effort to select cases that are of theoretical value, i.e. confirming 

or opposing the theory in development (Eisenhardt, 1989; Perry, 1998; Stake, 2006). 

The main criterion for selecting companies was therefore their “information richness”, 

which determined the overall number of cases (Perry, 1998, p. 793). The sampling was 

directed at diversity in various conceptual categories (Eisenhardt, 1989), such as the 

use of advanced analytics by the organization, the manager’s department, position, 

experience, industry, and organizational size and culture.  

An example of an often-suspected theoretical difference is corporate culture (Blumberg 

et al., 2011), which is described as an important aspect in the use of advanced analytics 

and big data, with large, data-driven and competitive corporations being mentioned as 

especially able to benefit from the increase in analytical competencies (Davenport, 

2006; Huber, 1990; McAfee & Brynjolfsson, 2012). The industry background and its 

history of reliance on analytics was therefore expected to have an influence on the 

successful use of advanced analytics, leading to the inclusion of managers from diverse 



  Chapter 3: Methodology 

120 

 

industries. The finance and banking industry, for example, is known for its reliance and 

use of analytics. Decision making in this sector is often highly dependent on the support 

of ‘hard data’, which leads to a constraint on intuitive decisions (Hensman & Sadler-

Smith, 2011). Managers rely more on deliberative decision making than on intuition, 

and show a high reliance on hard information, such as financial information and 

economic circumstances in lending decisions (Trönnberg & Hemlin, 2014). 

Anticipating a significant effect of organizational culture and setting on managerial 

decision making, I made efforts to recruit several individuals per identified 

organization. Managers within the same organization were considered to have a similar 

context (literal replication). Managers from a differing organization to those mentioned 

above, particularly in another industry, were expected to have a different context 

(theoretical replication). While several managers per organization were initially 

envisioned to draw conclusions about the organizational context’s effects on individual 

decision making, this was not always feasible in practice. As Perry (1998) points out, 

particularly small businesses can be a challenge in terms of participation numbers due 

to a limited participant pool, and I was often limited to one or two participants per 

company. However, similarities in terms of context were also found inter-

organizationally. 

The recruitment for data collection began through personal networking, which granted 

access to the first two organizations, resulting in the pilot case and several additional 

cases. Employment of a snowballing tactic led to further referrals (Noy, 2008); 

participants had been asked to inform potential contacts in other suitable organizations 

about the research project. This eventually led to the participation of Organization 4. 

Another recruitment effort was the publication of a press release about the research 
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project in a New Zealand Sunday newspaper and corresponding website (Atherton, 

2015). The participation of two additional organizations resulted from this exposure, 

Organizations 3 and 5. The snowballing tactic was also applied with these companies, 

not resulting directly in the addition of further participants but leading to the 

opportunity of presenting at the New Zealand Analytics Forum. This exposure led to 

connections with Organizations 8 and 9 that contributed several participants. A final 

effort for recruitment of more diverse New Zealand businesses was supported by an 

academic advisor from Massey University. Organizations 6 and 7 were ultimately 

identified through this approach. 

After initial contact with the organizations, I provided the main contact person with an 

information sheet containing an outline of the research project which can be seen in 

Appendix A. If the organization showed interest, the information sheet was forwarded 

internally. After clarification of all questions and a discussion about participant 

characteristics, the most apt and interested managers were identified by the respective 

liaison of the organization as participants for the study. Prospective participants as well 

as their organizations were evaluated according to certain criteria in order to be 

considered a good fit for the study. Particularly in the later stages of data collection, the 

following points were considered when assessing each case’s fit with the replication 

logic: 

Key Criteria for Participation: 

• Analytics Maturity: organizations had to use data analytics for their decision 

making or show an interest in employing data in the near future.  

• Positions: participants were required to have managerial positions, or more 

technical roles, such as Business/Data Analyst.  
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Literal and Theoretical Replication Criteria: 

• Industry 

• (Non-) Profit sector 

• Organizational size 

• Experience with analytics and decision making 

• Department 

• Decision types 

• Gender 

Suitable participants were then sent the information sheet (see Appendix A) and consent 

form, as well as a preparation document for the CIT part before the interview. This 

preparation document can be found in Appendix C and will be further discussed in the 

next section.  

The result of these recruiting and replication efforts was a diverse sample of 25 

participants, who provided a variety of opportunities for an in-depth exploration of 

decision making with big data and advanced analytics. A complete table of 

demographics can be found in Appendix B, while Table 9 and 10 summarize some of 

the key demographics. Table 9 outlines the number of participants per department, 

industry, and organizational size. Managers from nine New Zealand organizations 

participated in the study, granting insights from the industries of financial services, 

computer and software, transportation, as well as agencies and non-profits. The 

participants’ departments/functions were categorized as operations, finance, marketing, 

analytics and the position of CEO. Organizational size was categorized as small (<10 

employees), medium (10-99), or large (>99) (Lawrence, Collins, Pavlovich, & 

Arunachalam, 2006). 
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Table 9. Participants by Industry, Organizational Size, and Department 

 

Table 10 provides an overview of the participants’ average years of experience with 

analytics, big data, general decision making, and in their role–sorted by position. 

Participants interviewed were categorized as managers, heads of departments, general 

managers, C-level executives, and analysts (which includes business analysts and data 

scientists). Expectedly, across all positions the participants had fewer average years of 

experience with big data than with analytics. However, the already low number of 

average years was skewed, as most participants had under one year or no experience 

with big data at all. Only six participants had more than a year of experience with big 

data, nevertheless raising the average significantly. While the on average 44.7 year-old 

participants had vast experience with decision making (18.5 years), their experience 

Marketing Finance Operations Analytics CEO

Org. Size <10 0 0 0 0 0 0

10-99 0 0 0 0 0 0

>99 1 1 5 3 1 11

Total 1 1 5 3 1 11

Transport Org. Size <10 0 0 0 0 0 0

10-99 0 0 0 0 0 0

>99 0 0 5 1 0 6

Total 0 0 5 1 0 6

Non-Profit Org. Size <10 0 0 0 0 1 1

10-99 0 0 1 0 1 2

>99 0 2 0 0 0 2

Total 0 2 1 0 2 5

Agency Org. Size <10 0 0 0 0 1 1

10-99 0 0 0 0 0 0

>99 0 0 0 0 0 0

Total 0 0 0 0 1 1

Org. Size <10 0 0 0 0 0 0

10-99 0 0 0 1 1 2

>99 0 0 0 0 0 0

Total 0 0 0 1 1 2

Total Org. Size <10 0 0 0 0 2 2

10-99 0 0 1 1 2 4

>99 1 3 10 4 1 19

Total 1 3 11 5 5 25

Department/Function

Computer/

Software

Total
Industry

Financial 

Services
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with analytics was more limited (10.1 years). This serves as the first indicator of 

analytics being a more recent addition to the management decision-making process.  

Table 10. Participants' Experience by Position 

 

The sample consisted of 23 males and 2 females. The low number of female participants 

can be explained by a comparatively low number of female managers and executives 

in the participating companies. The organizations were asked to nominate individuals 

for this research, which in turn were almost exclusively male. When possible, I made 

an effort to recruit female employees in accordance with purposive sampling to add 

‘diversity of context’ (Stake, 2006, p. 23). The absence of more female participants 

was, however, not considered to be a major limitation, as the two female participants’ 

answers did not significantly vary from their male counterparts’; a focus on gender was 

also outside of this study’s scope. Furthermore, as Harrison (1995) states: “There is 

little hard evidence to support a contention of significant differences in the behavior of 

males and females enacting managerial roles in formal organizations” (p.271). Another 

IS study by Thomas and Bostrom (2010) interviewing IS Project Virtual Team Leaders 

has a similarly low number of female participants: 2 out of 13. 

During the planning phase of data collection, a sample size of 12 to 15 cases was 

initially set, which is a common sample size for multi-case studies to provide literal and 

theoretical replication (Benbasat et al., 1987). The number of cases was then increased 

to incorporate more diverse perspectives, and to allow for the collection of additional 

Analyst Manager Head of Department General Manager C-Level

n=4 n=5 n=6 n=4 n=6

Analytics 3.3 7.8 9.9 14.4 14 10.1

Big Data 1.3 0.9 4.1 8.6 3 3.5

Role 2.1 2.4 2.8 5 7.1 4.0

Decision Making 6.1 15.6 24.4 23.5 20 18.5

Combined 

Average

Position

Experience with
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critical incidents. Eventually, theoretical saturation was reached after 18 interviews, at 

which point “incremental learning is minimal because the researchers are observing 

phenomena seen before” (Eisenhardt, 1989, p. 545). While all case studies have unique 

settings and therefore unique qualities, the experiences that were gathered after the 18th 

interview did not lead to the creation of new themes and offered only marginal 

additional insights. The additional seven interviews did, however, enable me to ensure 

that saturation had been reached (Kraaijenbrink, 2012), and enriched the dataset by 

reinforcing the themes, providing a deeper understanding of some facets, and delivering 

more critical incidents (decisions).  

For the CIT part of the interview, the participants were asked to recollect three to five 

critical incidents (decisions) which were memorable to them and resulted in a 

significant outcome, both positive and negative. Most interviewees shared between one 

and three incidents, which led to a total number of 43 usable incidents. A similar sample 

size of 12 to 15 interviewees with four to five incidents has been used in studies by 

Ellinger, Watkins and Bostrom (1999), Coetzer, Redmond and Sharafizad (2012), as 

well as Thomas and Bostrom (2010). In their review of CIT studies, Gogan et al. (2014) 

state that several studies reached theoretical saturation at around 40-50 incidents.  

3.3.3. Interviews 

The primary data collection method for both the case study methodology and CIT were 

semi-structured interviews, since this method provides the best access to interpretations 

of actions and past events (Walsham, 1995). The interviews were therefore well suited 

to exploring the participants’ perceptions on critical incidents of management decision 

making with analytics and big data. To sufficiently answer both research questions, I 

designed the interview in a way that provided a fundamental structure covering all 
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relevant factors expected to affect data-driven decision making, which had been 

identified during the literature review. At the same time, the semi-structured nature of 

the interviews allowed for a more natural conversation with the participants, during 

which new factors and aspects could emerge (Blumberg et al., 2011).  

Blumberg et al. (2011) notes that the interviews conducted with key informants, such 

as, for example, the business analysts in this study, are often of a more informal nature. 

These participants had a deeper understanding and multi-faceted views, which I found 

to vastly enrich my insights into the topic and assisted in highlighting central factors 

and aspects. Interviews with managers from Pacifica organizations were similarly 

conducted less in a formal way, as this was suggested by the Pacifica advisor to create 

a better climate for the interview. 

All interviews were recorded and transcribed verbatim, so as to preserve accurate 

wording and decrease the variation of interpretation (Flanagan, 1954). Twenty-four 

interviews were conducted, predominantly in person; one was conducted over the 

phone due to logistical reasons. On average, the interviews lasted about 46 minutes, 

with a minimum of 22 minutes, and a maximum of 75 minutes. About one hour is the 

expected duration for short case study interviews, as they tend to focus on following 

the case study questions. This results both from a comparably large number of cases, 

and from the research objective being the participants’ perceptions, which requires 

more focus on the developed questions (Yin, 2014). In terms of the CIT portion of these 

interviews, participants shared on average 1.7 incidents, with a maximum of four 

incidents, and four participants were without incidents. In total, 43 usable incidents 

were collected, which is considered a sufficient sample for CIT studies (Coetzer et al., 

2012; Ellinger et al., 1999; Gogan et al., 2014; Thomas & Bostrom, 2010). 
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3.3.3.1. Interview Structure 

I began every interview with a brief introduction to the study and its aims, explained 

the participants’ rights and obtained their written consent (Yin, 2014). The interview 

questions, which will be discussed below, consisted of three parts, beginning with a 

demographics section that incorporated a clarification of the terms analytics and big 

data. This was followed by a section capturing the participants’ past decisions, which 

was designed according to the Critical Incident Technique (Flanagan, 1954). Lastly, 

questions which are referred to as case study questions were posed addressing general 

managerial decision making. While the CIT questions addressed real-life examples, the 

case study questions aimed to gather the participants’ general impressions and 

perceptions.  

Conducting the CIT part of the interview ahead of the case study questions was an 

intentional choice to reduce bias in the recollection of the incidents–i.e. before the 

interviewee could be influenced by certain terminology or factors covered in the case 

study questions. The incidents could then be revisited (if appropriate) during the case 

study question portion to gather more details about the participants’ understanding of 

their use of human judgment and analytics during the respective decision. This offered 

participants a chance to reflect on these decisions, and subsequently their general 

decision-making process. This reflection also lent additional depth to the collected data.  

Demographic information was collected first via a set of traditional questions 

requesting the participants’ age, education, experience, and department. I also inquired 

about the participants’ understanding of big data and analytics. This provided insights 

into their a priori knowledge of the topic. Common definitions were shared with the 

participants afterwards to ensure a mutual understanding of the following questions. 
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Furthermore, participants were not only asked about their position, but specifically how 

their role related to data/analytics. This was used to gain an understanding of the 

participants’ exposure to analytics before the interview, as well as of their role–enabling 

me to ask more specific and targeted follow-up questions. It also presented a convenient 

way of easing the participants into talking about the often difficult and not well 

understood area of analytics. It furthermore served as a confirmation or specification of 

the general aim of decision making with analytics, which was an important prerequisite 

for the following CIT portion of the interview. 

3.3.3.2. CIT Questions 

During the second part of the interview, participants were asked to share critical 

incidents, for which the majority had prepared in advance. For this part, information-

rich data collection depended on the participants sharing specific details about their 

decision-making process in real-life situations. The key objective was to determine if 

the applied process had been efficient and effective, i.e. led to a positive decision 

outcome. It was thus important to identify which steps were perceived as factors 

contributing to a successful decision, as well as which factors posed obstacles and 

hindered the decision-making process. Gathering this information required participants 

to lead me through the process by outlining their experience as a sequence of steps or 

events that occurred, beginning with the leadup to the decision, and ending with lessons 

they learned.  

The Critical Incident Technique provided a supportive structure for gathering this 

information in a consistent manner that facilitated the comparison of incidents during 

data analysis. This part of the interview began by asking the participants to recall 

significant decisions they had made in the past relying at least partially on 
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data/analytics, and which had a significant negative or positive outcome. This 

encouraged the participants “to do most of the talking, [so] the interviewer can usually 

get unbiased incidents” (Flanagan, 1954, p. 16), a crucial element of the technique. If 

participants left out critical parts during their narrative, the main CIT questions, as well 

as probing questions, were asked, as seen in Table 11. These questions were adapted 

from Flanagan’s (1954) seminal piece of work as well as CIT studies by Thomas and 

Bostrom (2010), Hensman and Sadler-Smith (2011), and Bradley (1992). They are 

further discussed below. Another way of clarifying details and encouraging participants 

to continue their narrative was to summarize and restate what they had said (Flanagan, 

1954). 

Depicted in the first column of Table 11 are the three phases of a critical incident. These 

phases or elements represent a typical critical incident. They were informed by Coetzer 

et al.’s (2012) findings report, and Butterfield et al.’s (2005) CIT review. In this 

research, the first phase addressed the circumstances leading up to the decision. This 

prompted the collection of information about the decision type and its time frame, as 

well as about the decision’s initiative and the involvement of other parties.  

Phase 2 focused on the details of the decision-making experience and factors that had 

a significant effect on it. I then gathered information about the specific steps that were 

taken during the decision-making process, which sources were used, and which role 

data and human judgment played in it. Additionally, I enquired about the influence of 

the decision type in question, and about potential organizational factors. In phase 3, 

participants shared the outcome of the decision with me; specifically, whether they 

perceived the outcome as positive or negative, and whether they learned any lessons 

from it, which they could apply to their decision-making process in the future.  
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Table 11. Interview Part 2 (CIT) 

CIT Phase CIT Question Probing Questions 

Phase 1: What led 

up to the incident?  

What were the 

circumstances leading 

up to this decision? 

• Was this a one-off decision, or is it an 

iterative one? 

• What were the general circumstances 

leading up to this incident?  

• Who initiated this project/decision? 

• Who was involved in making this 

decision or contributing to it? Individual 

or group decision? 

• When did this incident happen? 

Part 2: The 

experience itself – 

key factors 

influencing 

decisions 

 

Did you follow a 

certain process when 

making the decision? 

• Did you follow specific steps? Or 

guidelines? 

• Which sources did you consider when 

making the decision?  

• Did you have any doubts based on your 

intuition or experience?  

• Did you follow up on these doubts?  

• Tell me exactly what you did that was so 

helpful (or had a negative impact) at that 

time. 

• Why do you think this was helpful (or 

had a negative impact)?   

Was the process 

related to a specific 

type of decision? 

 

Was the process 

affected by specific big 

data characteristics/ 

problems with 

analytics? 

• Were there any problems or concerns 

with the data sources or systems? 

Were there any 

personal/organizational 

factors that influenced 

this process? 

• Were there any organizational influences 

on this decision? 

Part 3: Outcomes 

of the incident 

What was the outcome 

of this incident? 

• What was the specific outcome?  

• Did you learn any lessons from this?  

• Would you have changed any of the 

actions you took in retrospect?  
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While the first column indicates which data had to be collected in each phase of the 

incident, the second column shows the main questions that were asked during the 

interview. These questions were also provided to the managers before the interview–as 

part of their preparation document, which can be found in Appendix C. I encouraged 

participants to use the preparation document, as it assists with the recollection of events 

and ensures the completeness of the retrospective narrative (Coetzer, 2012). The 

document could be taken into the interview to serve as a memory-aid (Bradley, 1992b; 

Coetzer et al., 2012). The questions in the last column served as probing questions to 

follow up on some aspects or left-out details of the participant’s recollection of the 

incident. 

3.3.3.3. Case Study Questions 

The final part of the interview consisted of several general case study questions, which 

particularly served to benefit the exploratory nature of this study. Potentially 

influencing factors of the research topic were addressed in this portion, which allowed 

participants to voice their general perceptions and helped determine the importance of 

those factors. Through this exploration, my understanding of the key factors of this 

study evolved, in turn leading to an evolution of the questions. Table 12 shows the 

initial interview questions and which factors they addressed. The next section discusses 

the minor alterations to them following the pilot study.  
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Table 12. Interview Part 3 (Case Study Questions) 

Interview 

Section 
Interview Question Explored Factors 

Decision 

Making: 

System 1/2 

Is there a typical process you go through when 

making strategic (tactical/operational) decisions? 

If yes, please name some integral steps that you 

would take when making a strategic decision and 

order them sequentially. 

• Decision Type  

• DM Process 

• Analytics Role 

• Human Judgment 

Role 

When making decisions, what percentage is 

based on your own experience/gut feeling, and 

what percentage is based on a more rational, 

sequential process? 

• DM Process 

• Analytics Role 

• Human Judgment 

Role 

What effect does (big) data analytics have on 

your decision making? In what ways has (big) 

data analytics enriched or maybe even hindered 

your decision-making process? 

• DM Process 

• Analytics Role 

Which data sources do you rely on for your 

decision making? Which datasets do you query? 

• Analytics Role 

• Organizational 

Prerequisites 

Data/ 

Analytics 

How comfortable are you with using information 

systems and analytics in your day to day tasks? 

• Analytics 

Understanding 

• Analytics Role 

Is the use of information systems, especially 

analytics, wide-spread and promoted within your 

company/ industry? 

• Analytics Role 

• Organizational 

Prerequisites 

• Industry 

Would you say that big data has an important role 

in your position? 
• Analytics Role 

Human 

Judgment 

How would you define wisdom? • Wisdom 

How would you define a wise decision? • Wisdom 

Which role does wisdom play in your decision 

making? 

• Wisdom 

• Human Judgment 

Role 

How would you define intuition? • Intuition 

Which role does intuition play in your decision 

making? 

• Intuition 

• Human Judgment 

Role 

How would you define judgment? 
• Human Judgment 

Role 

Do you still trust your own judgment when 

confronted with results from big data analytics? 

• Human Judgment 

Role 

• Analytics Role 
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• Experience 

Would you say that the use of big data analytics 

provides you with better insights? 

• Human Judgment 

Role 

• Analytics Role 

Balance of 

Human 

Judgment and 

Analytics 

When making a decision, what percentage is 

based on human factors, such as your own 

intuition, experience, and colleagues’ opinions, 

what percentage is based mainly on the results 

from big data analytics? 

• Human Judgment 

Role 

• Analytics Role 

• Intuition  

• Experience 

• Wisdom 

How do you proceed when you encounter 

ambiguous information from big data analytics 

while making a decision? 

• DM Process 

• Analytics Role 

• Human Judgment 

Role 

• Organizational 

Prerequisites 

How do you react to finding outlying data, e.g. 

spikes in sales? 

• DM Process 

• Analytics Role 

• Human Judgment 

Role 

• Data Quality 

• Organizational 

Prerequisites 

Industrial/ 

Organizational 

Factors 

Is your decision-making style influenced by 

organizational guidelines or the organizational 

culture? 

• DM Process 

• Organizational 

Prerequisites 

Would you say the industry you are working in 

influences your decision-making style? 

• DM Process 

• Industry 

Is there a difference between your personal 

decision-making style and the decision-making 

style that is predominant in your organization or 

industry? 

• DM Process 

• Organizational 

Prerequisites 

• Industry 

 

The questions in this part were developed through referring to case study literature, as 

well as by thematically drawing on extant literature in the areas of decision making, 

human judgment and analytics. Following case study research guidelines (Yin, 2014), 

the case questions were designed to facilitate an unbiased and ‘nonthreatening’ (p.110) 

interview climate. As an example, ‘How?’ questions were preferred to ‘Why?’ 
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questions, to prevent defensive participant reactions. Thematically, the case study 

questions were influenced by the studies of Shah et al. (2012), Kathri and Ng (2000), 

and Intezari (2013). Additional questions were added to cover all elements of the 

research questions.  

As demonstrated in the first column of Table 12, this resulted in the creation of five 

thematic sections, namely decision making, data/analytics, human judgment, the 

balance of human judgment and analytics, and industrial and organizational factors. 

Several questions per section gave me sufficient opportunity to gather information 

about all relevant factors, as are indicated in the last column of the table. Due to the 

semi-structured nature of the interview, I did not have to ask all questions explicitly. 

Often, participants readily volunteered the required information in previous parts of the 

interview. 

3.3.3.4. Pilot and Alterations of Questions  

As recommended by case study literature, the designed interview questions were 

piloted (Stake, 1995; Yin, 2014). Piloting can assist with refining the data collection 

content and procedures (Yin, 2014). After an initial review from academic peers, the 

questions were therefore used in a pilot case with a participant from the first 

organization. This organization was very accessible, which made the piloting possible. 

Next to the accessibility criterion, Yin (2014) also suggests not to select a typical, but 

instead a comparably complicated case, in which potentially arising issues might be 

encountered.  

After careful selection, my pilot case was therefore an analyst with rather limited 

decision-making experience employed in an organization that exhibited a high level of 

analytics maturity. While I considered analysts to be a rich and valuable source of 
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information for this study, they would not make up the majority of my sample, and the 

questions had been designed with seasoned managers in mind. During the piloting, the 

questions proved to be flexible enough to accommodate a wide range of participants, 

including the pilot case.  

As the questions had been thoroughly designed before the piloting, and all essential 

information was successfully collected from the participant, the pilot test could also be 

considered a pretest (Blumberg et al., 2011; Yin, 2014). I only made minor alterations 

in phrasing–the initial plan for data collection was not changed. Since these changes 

after the pilot were minimal, the pilot was included in the sample for data analysis. Four 

more cases were studied at the same company, with three senior managers and the CEO. 

An initial thematic analysis of these first five cases revealed that all main concepts 

identified in the literature were addressed by the participants’ answers, and additional 

themes could already be identified just from the participation of a single organization.  

However, this initial analysis also highlighted that a few aspects about the questions 

could be improved, which led to a small number of added and removed questions. These 

alterations can be seen in Table 13. The added questions were included to emphasize 

important aspects that had not seemed important to highlight during the development 

of the questions. They also addressed links between different concepts, that emerged in 

the thematic analysis. Some of the added questions simply provided an additional 

opportunity for participants to expand on key aspects of the research, which provided 

more depth.  

The removed questions were eliminated because they were either answered previously 

in other parts of the interview or resulted in the same answers as previous questions. To 

ensure consistency and for the purpose of reaching saturation, I made sure not to remove 
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relevant questions. Demographic and CIT questions remained unchanged, as they both 

serve a rather positivist approach that includes analysis methods such as counting. 

Table 13. Alterations of Interview Questions 

Interview 

Section 

Questions Added/Removed after Pilot 

Case 

Explored 

Variables 

Decision 

Making: 

System 1/2 

Would you say that the influence and reliance on 

analytics has increased over the last few years? 

Were there any major changes in the data sources 

you had access to, for example, or in the ways of 

analyzing them? 

• DM Process 

• Analytics 

Understanding 

• Analytics Role 

• Human Judgment 

Role 

Do you analyze data yourself, or is there an 

analytics department that manages your data 

needs, and sends out reports, for example? Do 

you have access to all the data you require to 

make an informed decision? 

• DM Process 

• Analytics Role 

• Organizational 

Prerequisites 

How would you rate the overall data quality? 

• Analytics 

Understanding 

• Organizational 

Prerequisites 

Analytics 
Would you say that big data has an important 

role in your position? 
• Analytics Role 

Human 

Judgment 

Would you say the role of judgment, your 

intuition, and your own experience has decreased 

since the use of analytics in decision making? For 

which parts of your decision-making process? 

• DM Process  

• Human Judgment 

Role 

• Intuition  

• Experience 

In your opinion, do data analytics contribute to 

good judgment and making wise decisions? Or do 

you think analytics and data should be relied on 

with caution? 

• Human Judgment 

Role 

• Analytics Role 

• Wisdom 

How would you define intuition? • Intuition 

How would you define judgment? 
• Human Judgment 

Role 

Balance of 

Human 

Judgment and 

Analytics 

When making a decision, what percentage is 

based on human factors, such as your own 

intuition, experience, and colleagues’ opinions, 

what percentage is based mainly on the results 

from big data analytics? 

• Human Judgment 

Role 

• Analytics Role 

• Intuition  

• Experience 

• Wisdom 
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Industrial/ 

Organizational 

Factors 

Are decisions based on data analytics 

encouraged? Are decisions based purely on 

intuition valued by the organization? 

• DM Process 

• Organizational 

Prerequisites 

• Analytics Role 

• Human Judgment 

Role 

• Intuition  

Is there a difference between your personal 

decision-making style and the decision making 

style that is predominant in your organization or 

industry? 

• DM Process 

• Organizational 

Prerequisites 

• Industry 

 

3.4. Data Coding and Analysis  

This section serves as an introduction to the employed coding and analysis techniques. 

As is further explained below, due to this study’s multi-level analysis, each findings 

chapter draws on different parts of the dataset and applies different analysis techniques. 

Therefore, each findings chapter has a separate analysis section, which elaborates on 

the specific data sources and analysis techniques used for the respective chapter.  

The section begins with an outline of the multi-level analysis that ties the research 

design to the analysis and the resulting findings and discussion chapters. This is 

followed by a justification for the use of content analysis for the CIT part of this study, 

as well as an overview of the coding and categories employed. Last is a section on 

thematic analysis that outlines the coding and analysis process for the case study 

research. 

3.4.1. Multi-level Analysis 

This study employs multi-level analysis to provide an in-depth and holistic view of the 

managerial decision-making process with advanced analytics and big data. The choice 

of case study research as the study’s methodology was the first step to facilitate this 

multiple level approach: “Case studies can employ an embedded design, that is multiple 
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levels of analysis within a single study” (Eisenhardt, 1989, p.534). In this study, these 

multiple levels of analysis refer to three levels in the organizational environment that 

affected management decision making. These levels are the organization, the 

individual, and the decision. The research design, which was presented in Figure 5 and 

Figure 6 above, was the next step in enabling this multi-level approach. By introducing 

an embedded unit of analysis, the level of ‘decision’ was added to the main level of 

‘manager’ as the unit of analysis, and the case’s context, the ‘organizational factors’.  

Various quantitative studies have employed this form of multi-level analysis 

(Andersson et al., 2001; Kidwell et al., 1997; Simard & Marchand, 1995). Exploring a 

similar set of levels, a conceptual study by Staw, Sandelands, and Dutton (1981)   

researched threat rigidity effects on three levels within an organizational system, 

namely the individual, group, and organizational level. A further exploratory study by 

Andersson, Forsgren, and Holm (2001) focused on business embeddedness at three 

different levels, namely the relationship, subsidiary and corporate level. Their study 

concludes that an understanding of the relationship level is essential to understanding 

processes at the other two levels.  

Expecting similar dependencies between the three levels of decision making, the three 

findings chapters of this research report on decisional factors and processes, types of 

managers and their characteristics, and the manager’s environment or context, 

respectively. This can be seen in Figure 7, which outlines the connection between 

research design and data analysis approach. The underlying assumption of this 

approach was that managerial decision-making processes are firstly influenced by the 

type of decision, and therefore its context and impact. Secondly, it was expected that 

managerial characteristics, such as their openness to data-driven approaches and 
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domain experience, influence their decision making. Lastly, the ecological systems 

framework forming the manager’s environment was suggested to impact managerial 

decision making.  

 

 

Chapter 4 focuses on the embedded unit of analysis. Findings in relation to the decision-

making process are reported and discussed. During the data analysis, each decision was 

summarized as an incident. A content analysis of all incidents was then conducted–a 

common CIT analysis technique (Coetzer et al., 2012) that will be discussed in more 

detail in the following sections. This led to the identification of several distinct 

decision-making processes, characterized by impact and longevity of the decisions, as 

well as the different roles of analytics and human judgment. Additional insights and 

reflections from the case study questions were incorporated. 

Chapter 5 centers around the main unit of analysis, i.e. the manager. Each interview, 

including the critical incidents, was thematically analyzed as a case with regards to the 

managers’ characteristics, such as their position, perceptions, experience, and 

preferences. This led to a classification of different manager types. These types were 

then connected to the distinct decision-making processes identified in Chapter 4, to 

assess how managers’ characteristics impact their decision-making processes. 

Chapter 6 - Ecological Systems Framework 

Chapter 5 - Types of Managers 

Chapter 4 - Decision Making Processes 

Figure 7. Multi-Level Analysis 
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Chapter 6 focuses on findings regarding the context of the cases, i.e. organizational 

factors. Similar to Chapter 5, each manager’s perception of their organizational 

environment was thematically analyzed, taking into consideration the organization’s 

culture, industry, maturity of analytics capabilities, and the manager’s department. A 

priori and emerging themes led to the design of an ecological systems framework 

specifically for managerial decision making with advanced analytics and big data. This 

framework was then connected to the types of managers and decision-making processes 

also identified in Chapter 5 in order to discuss the effects of the organizational context 

on the managers. 

By focusing on these three levels, the findings chapters are able to examine different 

aspects of the cross-case analysis, avoiding the having to present each individual case 

separately or in isolation. This is an acknowledged form of reporting results for case 

study research:  

There may be no separate chapters or sections devoted to the individual cases. 

Rather, [the] entire report may consist of the cross-case analysis, whether purely 

descriptive or also covering explanatory topics. In such a report, each chapter 

or section would be devoted to a separate cross-case issue, and the information 

from the individual cases would be dispersed throughout each chapter or 

section. (Yin, 2014, p.186) 

This focus on cross-case analysis was already embedded in the research design, 

represented by the high number of cases. The objective was to exceed the limitations 

of a merely descriptive narrative of a small number of cases. Instead, cross-case analysis 

of differences and similarities allowed me to form a more in-depth understanding and 
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to develop ‘more sophisticated descriptions and more powerful explanations’ for my 

findings (Miles et al., 2014, p. 101).  

3.4.2. Content Analysis 

After the data was collected, a content analysis of the critical incidents was conducted. 

This analysis primarily informed findings Chapter 4 by developing decision-making 

processes from the CIT data gathered based on the various decisions participants had 

shared. As the coding unit was the decision, all critical incidents were extracted into 

separate files and assigned numbers that indicated the participants who shared the 

incident. The incidents were then analyzed across the different cases, focusing solely 

on the embedded unit of the research design, which represents the first level of this 

multi-level analysis. The cross-incidents analysis enabled an examination of a direct 

relationship between the decision making and its success or failure (Kraaijenbrink, 

2012), outside of the organizational and individual context. After the content analysis, 

the incidents were also thematically analyzed as part of the main unit of analysis, i.e. 

the respective managers, to gain a deeper understanding of the decision makers and 

their context. 

CIT data analysis consists of four key steps: the determination of the frame of reference, 

coding, the formulation of categories, and a determination of the level of specificity 

(Butterfield et al., 2005; Flanagan, 1954; Kraaijenbrink, 2012; Thomas & Bostrom, 

2010). Originally described as a rather subjective process by Flanagan (1954), the data 

analysis begins with sorting a small number of incidents into groups which reflect the 

frame of reference (Butterfield et al., 2005). The frame of reference is generally chosen 

by considering the use of the determined classifications (Flanagan, 1954). In the context 

of this study, classifications are therefore related to decisions and decision making. 
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After initial categories are created, the rest of the incidents are classified according to 

these categories (Butterfield et al., 2005), which can be altered and expanded until all 

incidents are classified. 

I followed this traditional form of analysis as a first step during the familiarization with 

the CIT data, which allowed a broad categorization of the incidents. However, to delve 

deeper into those categories and explore further details for the development of the 

decision-making processes, I chose a more structured approach as the next step–a 

content analysis. This was done to address a limitation of the CIT analysis, i.e. that the  

categories may or may not capture the context of the situation and 

are reductionist by definition. This is not necessarily consistent with 

the goals or aims of the grounded theory, content analysis, or 

descriptive phenomenological psychological approaches to 

analyzing data. (Butterfield et al., 2005, p. 481)  

In answer to this limitation, CIT analysis has evolved over the years (Butterfield et al., 

2005), and can now be better described as an ‘interpretive content analysis’ (Thomas 

& Bostrom, 2010, p. 121). Given that the two main qualities of content analysis are 

‘objectivity and being systematic’ (Bryman & Bell, 2015, p. 289), this form of analysis 

further balances out the limiting effects of the rather subjective CIT analysis process.  

Relying on both the subjective traditional CIT analysis and the more objective content 

analysis benefited my overall analysis process. During the more traditional form of CIT 

analysis, I had created a set of categories based on a first impression of similarities 

among the critical incidents, centered around the extent and role of data/human 

judgment use during decision making. The categories emerging from the more detailed 
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content analysis, which was based on an a priori coding scheme, however, did not line 

up with these initial categories, and also failed to group similar incidents.  

To address this when confronted with the ill-fitting coding scheme, which consisted of 

factors that might have an influence on the decision-making process, as identified by 

the extant literature, I applied abductive reasoning. Key elements of the initial coding 

scheme, such as the decision types, as well as decision triggers and outcomes, proved 

insufficient for grouping truly similar incidents together, and did not match my initial 

categories. They furthermore seemed insufficient to address a key segment of the 

research questions: how managers balanced data and human judgment in decision 

making. 

Therefore, I added further elements to the coding scheme, namely the ‘role of data’ and 

the ‘role of human judgment’ in the decision-making process, as well as a measure for 

the extent of ‘use of data’ and ‘use of human judgment’. Use of human judgment and 

data were measured using a 7-point Likert scale. A similar approach had previously 

been used in a quantitative study on the dual process theory (Kaufmann et al., 2017).  

 

As this value was assigned by me during the analysis and not by the participants 

themselves, it can be considered consistent across participants. These additions enabled 

a classification of the incidents into low/high data- and low/high human judgment-

driven decisions. These were ultimately the categories that most accurately grouped 

similar incidents together. Table 14 displays the coding manual, which entails the final 

set of codes used for the content analysis (Bryman & Bell, 2015). During the actual 

analysis, these codes were converted into a coding schedule in Excel, which can be 

found in Appendix D. 
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Table 14. Coding Manual 

Code Sub Code 

Decision Context Simple, Complicated, Complex, Chaotic, Disorder 

Decision Impact and 

Longevity 
Operational, Tactical, Strategic 

Decision Mode Individual, Group 

Use of Data 1-7 

Use of Judgment 1-7 

General Aim 
Consumer Behavior, Risk Management, Planning 

and Efficiency 

Role of Data Open (thematic) 

Role of Human Judgment Open (thematic) 

Behavioral Bias Open (thematic) 

Type of Data Used Internal (several), External (several) 

Process: Identification Open (thematic) 

Process: Alternative 

Development 
Open (thematic) 

Process: Selection Open (thematic) 

Outcome Positive, Negative, N/A 

Lessons Learned Open (thematic) 

 

After coding all 43 incidents according to the above manual, I placed the incidents on 

a graph with the two axes displaying the ‘use of data’ and ‘use of human judgment’ 

measures, which will be presented in Chapter 4. The incidents were then clustered into 

four categories, namely high-data decisions, high-judgment decisions, low-data/low-
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judgment decisions, and high-data/high-judgment decisions. Common themes and 

patterns were identified within these categories, such as, for example, decision types.  

This process enabled a first overview of the incidents provided by the managers and 

identified several subcategories and key factors that influenced the use of data and 

judgment in these decisions. The presence of identified themes and categories was 

counted by incident to establish the importance and frequency of their occurrence 

(Thomas & Bostrom, 2010). The code counts and exemplary incident summaries were 

then included in the findings to increase the transparency of the analysis procedure 

(Gogan et al., 2014). 

The overall aim of the CIT part of this study, and therefore this content analysis, was 

to determine the most successful processes for certain decision types, and to 

furthermore explore a balance of data use and human judgment. The content analysis 

was a suitable tool for answering questions of a more quantitative nature (Bryman & 

Bell, 2015), such as ‘For which decision types was the use of data most useful?’ and 

‘Which decision-making processes most likely led to a positive outcome?’. Chapter 4 

consequently relies to a large extent on the categorization and clustering of these 

incidents, as well as process coding (Miles et al., 2014).  

While content analyses often rely on quantitative measures for data analysis, Bryman 

and Bell (2015) state that text can also be coded in terms of themes or subjects in order 

to categorize the phenomenon of interest, which was applied for this study. Meaning 

was extracted from the data through noting patterns and themes as well as clustering 

and counting (Coetzer et al., 2012). The categories and themes identified in this content 

analysis were subsequently used as a priori codes in the following thematic analysis.  
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3.4.3. Thematic Analysis 

Following the content analysis of the embedded unit, a multi-level thematic analysis 

was conducted across all three levels in order to extract more detailed insights into 

management decision making with analytics. While the content analysis focused on 

actual decisions and identified key factors that influenced managerial decision-making 

processes, the thematic analysis was used to delve deeper into those initial insights. The 

participants’ reflections on their decisions, as well as their general perceptions of the 

topic, provided a more holistic perspective encompassing the effects of individual 

characteristics and organizational components on decisions. The thematic analysis 

therefore informed all three findings chapters.  

Thematic analysis is considered a rather flexible approach to qualitative data analysis 

which, as broadly outlined by Braun and Clarke (2006), consists of six general steps. 

The first step is a familiarization with the data through transcription and repeated 

reading. This is followed by the creation of an initial set of codes, which eventually 

leads to the development of potential themes. These themes are reviewed for 

compliance with all coded passages, and after continuous refinement, are given clear 

definitions and names. The last step is described as the reporting of the analysis results. 

These general steps can also be found in Miles, Huberman, and Saldana’s work (2014) 

on qualitative data analysis methods, which additionally offers a more detailed manual 

of various techniques for data coding, analysis, display and reporting.  

I followed Braun and Clarke’s (2006) steps during the data analysis and utilized several 

coding techniques, as outlined by Miles, Huberman, and Saldana (2014). The 

systematic process relied on iterative comparison of the data with emerging themes and 

extant literature (Eisenhardt, 1989; Miles et al., 2014; Popovič et al., 2018). This 
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comparison served the purpose of finding the best suited explanation for the findings 

(Popovič et al., 2018; Yin, 2014) and supported the abductive approach to theory 

building.  

The coding process began with an initial set of a priori codes, that were informed by 

theory, literature, the research questions and the results of the prior content analysis 

(Miles et al., 2014; Yin, 2014). These codes were set up as nodes in the software NVivo. 

While a priori constructs and theoretical propositions can provide theoretical grounding 

(Eisenhardt, 1989; Yin, 2014), the use of theories and hypotheses must always initially 

be considered as tentative in order to ensure theoretical flexibility, as the actual 

collected data may change the applicability of theories and even research questions 

(Eisenhardt, 1989). As codes and themes therefore often emerge from analysis 

(Eisenhardt 1989), other coding techniques are added to a priori coding. During first 

cycle coding, which refers to the initial assignment of codes to data chunks, I employed 

process coding, descriptive coding, in vivo coding, and evaluation coding (Miles et al., 

2014).  

Process coding was applied for the open coding section in the content analysis, as well 

as for the general case study questions referring to the decision-making process steps 

and factors that are directly connected to these steps, such as ‘data sources’. Descriptive 

coding was used for predefined themes that referred to the literature or the research 

problem and required further subthemes, such as ‘intuition’ or ‘organizational culture’. 

“In Vivo” coding was particularly used for emerging codes and themes, such as for the 

roles of human judgment and analytics, as well as for the definitions of big data and 

analytics. These are concepts that vary widely or are not mentioned in the literature. In 

vivo coding provided the best option to capture and preserve the participants’ 
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understanding and their perceptions. Evaluation coding, as a supplement to descriptive 

and in vivo coding, was used to capture the managers’ judgments and perceptions of 

analytics, as well as decision outcomes of critical incidents. 

An extract of the resulting codes can be seen in Figure 8. ‘Analytics’ and ‘Perception’ 

are examples of a priori codes. ‘Analytics’ was identified as a key theme in the decision-

making literature. Managers’ ‘perception’ was part of the research questions and 

categorized as a subtheme. ‘Positive’ and ‘Negative’ are evaluation codes summarizing 

the managers’ perception of analytics. Several in vivo sub codes are attributed to these 

perceptions, which express specific aspects of the managers’ evaluation.  

 

Figure 8. Coding Extract 

After applying these coding techniques, first cycle coding was completed. 

Subsequently, second cycle coding works with the results from first cycle coding, 

“lay[ing] the groundwork for cross-case analysis by surfacing common themes and 

Analytics

Perception

Positive

Enrichment

Objective Validation

Negative

Data Access and 
Speed of Analysis

Limitations of 
Analytics

Lack of Skills

Misunderstanding or 
Manipulation of Data

Neutral Trust

....

A Priori Coding 

Evaluation Coding 

In Vivo Coding 
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directional processes” (Miles et al., 2014, p. 86). During this cycle, clustering and 

chunking of the data led to categories of pattern codes. Manipulations of the data 

supported this process of pattern recognition, leading to the tentative creation of themes 

(Yin, 2014). The forms of manipulations I used for this thematic analysis were the 

creation of category matrices and flow charts, as well as sorting information into 

chronological order (Miles et al., 2014; Yin, 2014). 

The codes and themes identified during the content and thematic analyses enabled a 

cross-case analysis on several levels. As is recommended for multiple-case analysis, 

my familiarization with the data began with a focus on within-case analysis: “The 

overall idea is to become intimately familiar with each case as a stand-alone entity. This 

process allows the unique patterns of each case to emerge before investigators push to 

generalize patterns across cases” (Eisenhardt, 1989, p. 540). The within-case insights I 

gained through this familiarization provided me with valuable first impressions about 

differences and similarities that seemed to affect the managers’ decision making. The 

following cross-case analysis enabled me to consider the data through different lenses, 

and therefore to move beyond my first impressions (Eisenhardt, 1989). 

Within- and cross-case analysis can lead to the identification of themes, concepts, and 

relationships between variables (Eisenhardt, 1989). Particularly during the cross-case 

analysis, the findings of each case are applied to themes that characterize and describe 

the research topic (Stake, 2006). This process helps to identify similarities between 

cases, leading to a grouping or type of case (Eisenhardt, 1989; Stake, 2006; Yin, 2014). 

This approach of cross-case analysis serves to aid the retention of key situational 

characteristics of the single cases, but simultaneously can be considered a move towards 

generalization (Stake, 2006). Findings are merged across cases; special findings that 
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only occur in one case are also recorded if they are significant enough. These findings 

are then sorted into clusters and ranked in order of importance. Eventually, tentative 

assertions are generated from the most important or significant findings. These 

assertions can be based on one or several of the merged findings.  

The cross-case analysis and the emerging profiling of the cases result in different types 

of decisions, as well as analytics and human judgment roles discussed in the first 

findings chapter. The second findings chapter demonstrates that types of managerial 

decision makers also could be distinguished. The third findings chapter centered around 

the profiling of the managers’ decision-making environments. 
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CHAPTER 4: MANAGERIAL DECISION-MAKING PROCESSES 

This is the first of three chapters outlining the main results of the data collection and 

analysis. Each chapter covers one level of the multi-level analysis and is divided into 

three sub-sections, beginning with the specific data analysis techniques applied for each 

level of analysis, followed by a section summarizing the key findings, and ending with 

a discussion of the findings in the context of current literature.  

This particular chapter focuses on the embedded unit of analysis, and therefore the 

decision level of this multi-level analysis, primarily centering on data collected using 

the Critical Incident Technique, supported by data from the case study analysis. CIT 

was an especially useful technique for this level of analysis, as it provided rich insights 

into instances of actual managerial decision making, enabling a detailed analysis of the 

decision-making processes in diverse decision contexts and with different decision 

impacts.  

The key contributions of this chapter are threefold: 

• The extension of decision-making processes as captured in the extant literature, 

accounting for the managers’ use of data analytics. This is supported by a 

comparison of the actual versus ideal managerial decision making. 

• The categorization of decision processes based on the extent of the use of data 

analytics and human judgment. 

• The identification of distinct data analytics and human judgment roles. These 

roles highlight the different facets of both analytics and human judgment, 

countering their often one-sided representation in extant literature. 



                                                    Chapter 4: Managerial Decision-Making Process 

152 

 

The chapter is structured as follows: first, the specific analysis techniques are outlined 

in detail, describing the application of CIT data for the development of different 

decision-making processes. Next, the chapter breaks down the use of case study data to 

highlight the contrast between actual and ideal decision making, as well as its use for 

the identification of key decision-making influences. In the findings section, the 

decision-making process steps identified during the data analysis are explored first. 

This is followed by a differentiation of the roles of human judgment and analytics in 

managerial decision making. Subsequently, actual decision-making processes, as 

captured by CIT, are introduced, and placed in contrast to the managers' thoughts on 

ideal decision making.  

The discussion section explores an extension of decision-making processes outlined in 

current literature by the findings of this thesis. The dual process theory is then applied 

to the findings, highlighting its relevance in this context for explaining the balance 

between human judgment and the use of analytics in managerial decision making.  

4.1. Data Analysis 

The data analysis for this chapter is centered on the Critical Incident Technique. As 

discussed in the methods section, each decision the managers shared during the semi-

structured interviews was content-analyzed using a list of a priori codes that were 

informed by extant literature, as well as a posteriori codes. However, the findings were 

not only drawing on the content analysis, but also the thematic analysis, which was 

conducted afterwards and included the case study data.  

Interview data is referenced according to its source, differentiating whether the reported 

data was part of an incident or part of the case interview with the manager. A total of 

25 managers (M) shared 43 critical incidents (C). The participants are numbered 
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according to their organization and their interview order at the organization; e.g. 

Manager M41 was the first manager interviewed at organization 4. Incidents are named 

accordingly, with the third digit indicating the order of reported incidents; e.g. C411 

was the first incident reported by the first manager interviewed at organization 4. When 

reporting on findings from an incident, e.g. C411, the respective manager is still 

referred to as manager M41.  

Managers are furthermore referred by their positions, as discussed in section 3.3.1. This 

means that participant M01, for example, is referred to as ‘analyst M01’. The number 

zero indicates pilot studies, with M01 being the first pilot overall, and M10 being the 

first pilot in the first organization.  

4.1.1. Content Analysis: CIT 

The content analysis first focused on the determination of a general aim of management 

decision making with data analytics. The general aim is considered a prerequisite of 

using the Critical Incident Technique, as it establishes the task’s objectives, and 

therefore the criteria of successful and unsuccessful incidents (Flanagan, 1954). 

Determining a general aim was critical to assessing if each decision outcome was to be 

considered positive or negative. As Flanagan (1954) points out: “…unfortunately, in 

most situations there is no one general aim which is the correct one. Similarly, there is 

rarely one person or group of persons who constitute an absolute, authoritative source 

on the general aim of the activity” (p.10).  

The general aim of decision making with data analytics was therefore expected to vary, 

depending on the manager's role or department. Consequently, the aim was determined 

with every manager at the beginning of the interview with the question: “Please 

describe your position in more detail and what role data/analytics plays in it?” As 
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managers often fulfill several roles, the general aim could also vary between the 

different decisions they shared. 

Three groups of general aims emerged, namely improving understanding of ‘consumer 

behavior’ (n=12), ‘planning and efficiency’ (n=12), and ‘risk management’ (n=22). 

Identifying these general aims therefore showed that a successful decision outcome 

would result in better consumer understanding, efficiency gains, or the avoidance of 

risk. The general aim was, as expected, mostly related to the department of the manager 

who shared the decision. Marketing managers, for example, were therefore often 

aiming at understanding ‘consumer behavior’, whereas operations managers were 

mostly aiming at improved ‘planning and efficiency’, or ‘risk management’. 

While every incident was assigned a general aim, these aims were not always mutually 

exclusive (n=3). Incident C931, for example, a decision about the reorganization of a 

customer service team, could be considered to be related to consumer behavior, but also 

to efficiency and planning. In general, the three different aims could be grouped into 

one general aim: ‘Making more effective and better decisions, leading to the best 

possible outcome’, or simply ‘better decisions’. This is in accordance with Flanagan 

(1954), who states that useful general aims are often simple phrases around “such words 

as ‘appreciation’, ‘efficiency’, ‘development’, ‘production’, and ‘service’” (p.11).  

Several participants had reflected on the general aim of their decision making, as it was 

critical to evaluating their performance as well. Head of department M21 captures this 

sentiment:  

‘Ok, what benefit are we actually chasing – is it hard dollars or is it 

about engagement and impact?’ And no matter what benefit we’re 

chasing, they must be measurable. So how do we measure things and 
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how do we use that data then to inform us if that was a good 

investment and did it actually pay back? (M21)  

This awareness and reflection speak of a level of maturity in terms of using data 

analytics on an individual and organizational level, as will be discussed in Chapters 5 

and 6. Determining the general aim was therefore not only a required component for 

this CIT part, but also delivered valuable insights for further findings. 

Further questions addressing CIT elements, such as the incident's circumstances, 

involvement, triggers, lessons learned, and outcomes functioned as an information 

source for the codes of the content analysis. The incident's circumstances provided 

information about the decision type, as it outlined the context and impact of the 

decision, as well as the resources that were available to the decision maker. The specific 

decision types that were differentiated are further discussed below. The CIT 

involvement provided information about the decision mode, i.e. whether the decision 

was an individual or group decision. Triggers were coded as the identification stage of 

the decision-making process and provided information about the origin of the decision, 

as well as its source.  

Outcomes functioned as an indication of the decision process' success, and therefore 

supported the practice of identifying the positive and negative influences on decision 

making. Lessons learned were considered a review of the decision-making process, 

particularly informing the 'ideal decision making' section of this chapter. The outcomes 

of the recorded decisions were mostly positive (n=30), including only a small number 

of negative incidents (n=3). However, several of the positive incidents involved 

significant obstacles to be overcome, which also provided insights into negative aspects 
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of the use of analytics for decision making. This balanced the lack of negative incidents 

to some extent.  

If an outcome was neither positive nor negative (n=10), it was categorized as ‘not 

applicable’ ('n/a'). Decisions without a known outcome had initially been planned for 

dismissal from the study; however, their content was assessed as a useful source of 

information to the study. The (lack of) outcome alone was not seen as a sufficient reason 

to exclude those incidents from the sample. 

The 'n/a' outcome was attributed to decisions that were only recently implemented and 

had not yet been evaluated in terms of their success. In addition, decisions that led to 

the rejection of opportunities were considered as 'n/a', as a hypothetical evaluation is 

not possible. Furthermore, decisions were considered 'n/a' if they were passed on to 

superiors, boards, or other departments, leading to an unknown outcome. Lastly, the 

'n/a' categorization was applied for decisions that only allowed for negative outcomes, 

as exemplified by incident C843, which revolved around downsizing: “Like I say, 

there’s no good outcome here; it’s just which one is worse.” (C843).  

4.1.2. Content Analysis: Extant Literature and Emerging Findings 

Complementary to the CIT elements discussed above, further codes were analyzed 

during the content analysis. These were either informed by extant literature or emerged 

during the analysis. They are discussed in the following section. 

In an effort to capture the impact and context of the decisions, the coding scheme used 

the decision-making frameworks of Ackoff (1990), and Snowden and Boone (2007), as 

outlined in the literature review. Most decisions reported during the interviews were 

categorized as a combination of tactical/strategic and complicated/complex, as well as 

a high number of complex/tactical and complicated/strategic decisions. Only a few 
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incidents were categorized as operational or simple decisions. Given the research 

emphasis on managerial decisions, this distribution was expected. Complex/operational 

or simple/strategic decisions were also not identified. Furthermore, none of the shared 

decisions was labeled ‘chaotic’ or as ‘disorder’. Below, Table 15 summarizes the 

different types of context and impact that were captured during the data collection.  

Table 15. CIT Decision Types 

Decision 

Context/Impact 
Strategic Tactical Operational 

Complex 10 7 0 

Complicated 6 13 2 

Simple 0 1 3 

Chaotic 0 0 0 

Disorder 0 0 0 

 

As the decisions analyzed in this chapter are an embedded unit of analysis, and therefore 

part of the unit of analysis, namely the manager, the retelling of these decisions is 

limited to the manager’s perceptions. Each decision is recounted from the manager's 

point of view and limited to their involvement and contribution to it. This affected the 

determination of the decision-making mode as ‘group’ or ‘individual’; decisions were 

considered as individual (n=9) when the interviewed manager was the sole decision 

maker for the recorded incident. If the decision was used later on as a recommendation 

for superiors, making it a group decision, it was still not declared a group decision, as 

the manager was not involved in these further stages.  

Decisions were only categorised as group decisions (n=34) when other parties were 

directly involved in the selection stage of the decision-making process. The influences 

of those involved parties on the decision-making process were solely captured from the 



                                                    Chapter 4: Managerial Decision-Making Process 

158 

 

manager's perspective. Other involved parties were usually not questioned for their 

perspective, except in the case of two incidents that were both coincidentally shared by 

two different managers. 

Opportunities and problems were differentiated in the analysis of decision initiatives 

(Harrison, 1995). However, the influence of decision motives, referred to as 

opportunities and threats in Shepherd and Rudd (2014), are not seen as significant in 

the extant literature. Their impact was similarly insignificant for this study. 

The extent of human judgment and data use in the decision-making process was 

captured through a 1-7 Likert scale measure, with 1 representing a low use of 

data/judgment and 7 representing a high use of data/judgment. This served as a 

simplified and consistent measure, which facilitated the comparison of all critical 

incidents based on their use of human judgment and analytics. As the balance of these 

factors is a key aspect of this research, the measure enabled a clustering of the decisions.  

For this purpose, all incidents were organized in a diagram, which can be seen in Figure 

9 below. Clusters were established by characterizing decisions as ‘low-data’ when their 

data use measure was equal to or below 4. Accordingly, decisions were also 

characterized as ‘low-judgment’ when their judgment use measure was equal to or 

below 4. The incidents were therefore divided into four clusters:  

• low-data/low-judgment decisions (n=0). No incidents fell into this category of 

‘uninformed decisions’, which effectively left the following three distinct 

clusters of decisions 

• high-data/high-judgment decisions (n=18), which are referred to as ‘balanced 

decisions’ 
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• low-data/high-judgment decisions (n=13), which are referred to as ‘high-

judgment decisions’ 

• low-judgment/high-data decisions (n=12), which are referred to as ‘high-data 

decisions’ 
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Figure 9. Clustering of Critical Incidents 
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The extent of data/judgment use was, however, not enough to capture their role in the 

decision-making process. Therefore, the codes of ‘role of human judgment’ and ‘role of 

data’ were added to the coding scheme. These codes enabled a more qualitative 

assessment of the role of data/judgment, and eventually led to the establishment of seven 

distinct roles for data (analytics) use, as well as five distinct roles for the use of human 

judgment in the decision-making process. These distinct roles are further discussed in 

section 4.2.2. 

The decision-making process steps were openly coded during the content analysis under 

'identification', 'development of alternatives', and 'selection'. These steps match the 

decision-making process as identified by Simon (1960). These codes covered the 

managers' answers sufficiently, with no need for the addition of more codes relating to 

the steps. The detailed findings regarding these process steps are outlined in section 4.2.1.  

4.1.3. Case Study Analysis 

This chapter focuses on the critical incidents, but also incorporates insights from the 

thematic coding of the case study research. This data adds a hypothetical perspective of 

the managers’ ideal decision-making processes, providing an opportunity to highlight a 

contrast between their actual decision making and their ideal processes, which is captured 

in section 4.2.5. Several managers took this as an opportunity for reflection and identified 

key factors that hindered their ideal decision-making process.  

In other cases, however, managers were not aware of a mismatch between their 

theoretical decision-making process and the critical incidents they had shared. 

Nevertheless, these managers still shared interesting insights into important factors that 

caused the deviation from their ideal decision-making process.  
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4.2. Findings 

The findings section is organized into five parts. First, as a foundation to this decision-

making study, the decision-making process steps identified during the CIT analysis are 

described and significant differentiators are added. Second, the key finding of diverse 

roles of human judgment in the decision-making process is outlined, and their 

categorization is explained. Thirdly, the roles for data analytics are discussed. Fourthly, 

the critical incidents are categorized according to their processes, or more specifically, 

their extent of human judgment and data use. This is followed by a comparison with the 

findings from the case study data, which provides a hypothetical view of decision making 

and a reflection on actual decision making.  

4.2.1. Decision-Making Process Steps 

The steps identified during the data analysis broadly matched the three basic steps from 

Simon (1960) previously discussed in the literature review: Identification, Development, 

and Selection. With a focus on the use of data and analytics in decision making, however, 

several further distinctions could be made within each step.  

4.2.1.1. Identification 

Beginning with the first step, Identification, four distinct categories of decision-making 

initiatives were found, further referred to as triggers, in the analysis of the critical 

incidents. These triggers are summarized in Table 16, and are identified as Evaluation, 

Routine Check, External Trigger, and Anecdotal. The differentiation of these triggers as 

the first decision-making step is important, as they influenced the managers’ use and 

roles of data analytics and human judgment in their further decision making, which is 

discussed in more detail in section 4.2.4. 
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Table 16. Decision Identification - Triggers 

Trigger Description n= 

Evaluation 
An internally triggered, intentional review of current 

practices, or an evaluation of future opportunities. 
16 

Routine Check 
An ad hoc problem identified during a routine check 

or review. 
12 

External Trigger 
An external impulse, i.e. opportunity or problem, 

prompting a decision. 
9 

Anecdotal 
Concerns, often longstanding, based on employees’ 

perceptions that require a decision. 
6 

 

An evaluation (n= 16) is initiated internally in an effort to review certain aspects of the 

status quo with the hope of improvement. It is not an ad hoc problem, but a deliberate 

effort, often led by new hires (C123, C111, C851). Incident C132 captured a typical 

example of this, as the newly hired general manager M13 evaluated a key problem of the 

department:  

So this is a driver about understanding my business better, I guess. So 

I came in here, and things have always been good at [the company], 

but I just couldn’t get my head around how we seemed to lose so 

[much business] in a month. (C132)  

Further examples of this category are the evaluation of an existing marketing strategy 

when a new marketing manager was hired (C111), a review of old decisions (C132), and 

the use of unique expertise to assess new opportunities (C143). 

Routine checks (n= 12) are regular efforts carried out either by employees or 

automatically through a reporting system, which result in the identification of an acute 

ad hoc problem, often supported by some form of data. An example of this is incident 

C811, the trigger for which was the identification of changes during regular market 
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observation: “So that was driven by watching the market for all the value of things […] 

And once you can spot there’s a change, you can then try and capitalize on that” (C811). 

These decisions are characterized by the interviewees’ use of words such as ‘always’, 

‘usually’, or ‘generally’ in the description of the incident. Routine checks can also be 

embedded into automated work processes carried out through workload automation and 

job scheduling software. These processes automatically identify problems or errors, 

which then need to be addressed by employees (C911).  

An external trigger (n= 9) is an impulse from outside the organization that unexpectedly 

presents an opportunity or problem that requires a decision. In contrast to a routine check, 

the external trigger is not actively sought out. External triggers can therefore be initiated 

by existing or potential business partners (C312), agencies (C113), or external 

circumstances (C922), for example. Externally triggered decisions often encounter the 

problem that internal data or reference points are not available; the decision is therefore 

based on missing, incomplete, or external information that might not fit the organization 

(C312, C711, C812, C842).  

Several examples for external triggers in the incidents were identified, including an 

offered business partnership (C411) and an offer to a not-for-profit organization to apply 

for funding (C711). These offers led to decisions by the organizations that were based on 

incomplete and incompatible external data. When asked about what initiated a marketing 

decision with a negative outcome in incident C113, the manager responded that the 

decision was based on their partner agency’s (external) data. The agency had provided 

M11 with case studies from other clients regarding the use of a certain marketing channel. 

However, these clients were targeting different customer segments, and this discrepancy 

led to an unsuccessful campaign for M11’s company.  
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Anecdotal triggers (n= 6) refer to employees’ perception of a problem or opportunity, 

which is solely based on intuition or coworkers’ anecdotes, without the backing of data. 

These decisions often address long standing problems or complaints. Examples for this 

trigger are managers demanding more staff for their teams (C932), as well as suspicion 

and eventual detection of systematic fraud (C142). Anecdotal triggers usually require a 

high level of data use in the development step, as they are only informed by human 

judgment during the identification step. In order to assess the problem or opportunity 

holistically, data is consulted to enable a prudent decision. In incident C134, general 

manager M13 had gathered anecdotal evidence, but in order to move the decision 

forward, the CEO requested the input of data analytics:  

So we have been debating this for a long time […] but we don’t seem 

to be able to get it across the line. And I said, well, in my view, I’ve 

validated it just through sitting with people and seeing what happens. 

And he goes: ‘right let’s get the data’. (C134) 

Data analytics had a direct effect on the identification stage of the decision-making 

process by functioning as an additional source of problem and opportunity identification. 

The use of data analytics also enabled managers to improve the definition of requirements 

in this step by providing them with more detail early in the decision-making process. 

When analysts become involved and are consulted by the business units, they often 

encourage managers to deepen their understanding of the problem (M14, M93). This 

leads to an overall more prudent decision-making process.  

Data analytics is therefore seen as a valuable tool in the identification step at the 

beginning of the decision-making process, as general manager M93 emphasized: “It’s a 
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spark, an idea, the thought that we develop, and that’s what helps in distribution […] It’s 

good to get those sparks when you start and when you develop something (M93).” 

More on the managers’ perceptions of analytics in decision making is discussed in section 

5.2.1. 

4.2.1.2. Development 

In the collected incidents, the development stage was mostly comprised of a combination 

of varying degrees of human judgment and data analysis, depending on the decision 

trigger and the decision cluster, e.g. high-data, high-judgment, or balanced decisions, 

which are further discussed in section 4.2.4. Further influencing factors can be personal 

characteristics, which are discussed in Chapter 5, as well as environmental factors, which 

are covered in Chapter 6. 

The availability of additional data sources and ubiquitous information can lead to an 

extended development step. This enables a more thorough development and evaluation 

of alternatives, as general manager M13 pointed out: “We’re working with our internal 

analytics team now to develop reports which are much richer for our process, which 

enable us to make better decisions” (M13). However, this thorough approach can also 

lead to an increased duration of this step. Analysis paralysis can therefore become a more 

common problem due to the larger amount of available data. Manager M41 cautioned 

that data has to be gathered and analyzed in a timely manner, as the decision must at 

some point be made. Organizations often struggle with this, spending too much time on 

data analysis, as head of department M94 observed: 

And some organizations tend to get consumed by trying to understand 

why, but actually all they need to do is find out that people like you 
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like to buy a certain type of product. It doesn’t really matter at the end 

of the day, why. And that’s an interesting distinction. So a lot of 

people spend a lot of effort trying to analyze, analyze, analyze, why, 

why, why – all you need to do is just to have the insight. (M94) 

Delays due to data analytics could also be traced back to technical, procedural, and 

human resources problems, which are further discussed in Chapter 6. After these 

problems have been solved, analytics can be a valuable contribution to the development 

step. Analyst M86 particularly recognized the value of data for the evaluation of 

alternatives after overcoming initial problems with analytics: 

Even though it started with a hindrance, but once I streamlined the 

data, I got rid of the duplicated source of information–whose sources 

were outdated. So I realized data was actually quite powerful to make 

decisions, because then you’re giving people a real-time scenario. 

(M86) 

4.2.1.3. Selection 

Like the development step, the selection of an alternative was found mostly to consist of 

a combined input of data analytics and human judgment, depending on various factors 

as mentioned above. Data analytics is particularly an enrichment for the selection step, 

as it allows management to justify their decision in a more objective manner than solely 

basing it on subjective human judgment. This objective justification is an important 

aspect for stakeholders and shareholders in the age of big data, and not only within data-

driven organizations. Executive M51, for example, used data analysis to provide the 

general manager of the company with new and surprising insights regarding the 
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profitability of key customers. Having data at hand as a form of objective evidence 

enabled M51 to significantly influence the selection step of this decision: 

I’ve done this profitability statement; I’ve shown that to the general 

manager and he said to me: ‘How could that be so, they’re our biggest 

customer?’ – ‘So here are the reasons…’ So he turns to the CFO: ‘Is 

this right, are these numbers right?’, and the CFO said: ‘Yes, that all 

reconciles back to our financial statement’ – ‘Wow, I had no idea’. 

(C511) 

This signifies the power of analytics to sway unpopular or controversial decisions in a 

diplomatic way, and to ensure stakeholder buy-in. In a similar incident C932, general 

manager M93 was able to influence the selection stage of a decision about human 

resource allocation by confronting team leaders with key data on their employees’ 

workload capacity: 

So it’s really to make sure that we had the data to say “well actually , 

in your team […] you have got some capacity if we rework things like 

this.” And everyone is sincere and agreed that’s accurate and that’s a 

fair reflection of what’s going on in those businesses.  (C932) 

All of this being said, the most significant impact on the development and selection steps 

in the age of big data were the actual roles of data and human judgment in managerial 

decision making. These roles defined the decision-making steps, and are discussed in the 

next two sections, 4.2.2. and 4.2.3. 
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4.2.2. Roles of Human Judgment 

Traditional decision making relies heavily on judgment, whereas data-driven decision 

making in recent years has put more emphasis on the role of data analysis. However, data 

is not necessarily seen as a substitute of judgment, but as a complement. During my 

exploration of the role of data analytics in the age of big data, managers acknowledged 

that while data enriches their decision making, it also has its limitations. When asked 

about the role of human judgement in the decision-making process, manager M41 replied 

that “it’s got to” be part of the process as well: “You’re not going to know everything, 

and your data is not going to show you everything. So you always got to have some 

reliance on your own judgment, and experiences and all that.”  

While human judgment in decision making should not be replaced, managers still need 

to find a balance incorporating both their judgment and analytics, into their decisions. 

During the interviews, it became apparent that managers see both as important aspects 

of successful decision making, and that both have the potential to cancel out each other’s 

limitations. Both can also have very different influences on the decision-making process 

and additionally play a role in different parts of the process.  

Human judgment, for example, was used in many instances (n=30) to form an initial 

assessment of a given situation or decision that was informed by the managers’ business 

understanding and experience. On the one hand, this initial assessment was seen as a 

good way to gain an initial impression of the problem and its scope. On the other hand, 

the use of intuition was also considered a cognitive bias in some instances, when not all 

variables of the decision were taken into consideration. Therefore, data and human 

judgment were categorized as fulfilling different roles, which were identified as themes 
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during the analysis. These roles reflect data analytics’ and human judgment’s influence 

and their place in the decision-making process.  

Five distinct roles of human judgment were identified in the decision-making process: 

human judgment was used as initial assessment of the problem, enrichment of analytics, 

sense-check and data challenging tool, identifier of need for analytics, and to outweigh 

analytics. A list of the identified roles can be found in Table 17, sorted according to their 

frequency in the critical incidents. The roles are further discussed below, relaying both 

the findings of the critical incidents as well as further insights from the case study 

questions. 

Table 17. Human Judgment Roles 

Human 

Judgement Role 
Description N= 

Initial Assessment 
Human judgment is used by managers to create an 

initial impression of the situation. 
30 

Enrichment of 

Analytics 

Human judgment adds valuable insights and additional 

aspects to the data analytics results. 
15 

Sense-Check and 

Data Challenging 

The analysis results are challenged and run through a 

sense-check. 
8 

Identifier of Need 

for Analytics 

Decision makers recognize the need for additional, 

more sophisticated decision-making support. 
5 

Outweighing of 

Analytics 

Factors such as relationships, intuition, and cultural 

aspects can outweigh fact-based analytics results. 
4 

 

4.2.2.1. Initial Assessment  

In most cases (in 30 different incidents), managers used their human judgment to form 

an initial assessment of the decision they were facing. In these cases, managers relied on 

their previous experiences, intuition, and business understanding. These initial 

assessments in some cases assisted managers in determining a starting point in the 
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decision-making process, as general manager M93 pointed out: “Given sort of my history 

and experience and some others’, that was a logical place to start, but we didn’t want to 

let that be the driving force” (C931). 

However, as M93 cautioned, this initial assessment informed by previous experience 

should not be the only influence in the decision-making process. Initial assessments also 

introduce biases into decisions and can lead to assumptions early on. Negative outcome 

incident C122 was based on just such a biased and eventually erroneous initial 

assessment, which then had to be corrected through the use of additional data: 

In the […] example it was a negative impact, because that was based 

on an assumption that we shouldn’t lend to [customer segment]. But 

then when you get the data and you see the portfolio performance for 

that customer demographic, you can lend to [customer segment] all 

day long. (C122)  

It is important to note that managers are often aware of these biases and recognize 

the limitations of their own initial assessments. Therefore, this practice is often used 

in combination with analytics in the roles of confirmation or challenger, which are 

further discussed in section 4.2.3. Head of department M85 elaborates on this 

relationship of human judgment in the form of intuition, and further information 

used to test it:  

So I think at the beginning I use my intuition to say ‘you know, it’s 

probably here, but I know enough to go and test it here and therefore 

the decision process will go this way’. And having got the extra 

information, then look at it again and go ‘Ok’. (M85) 
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When data is not available to challenge an initial assessment and balance out the 

limitations of human judgment, seemingly insignificant assumptions can ultimately 

diminish the overall decision outcome’ effectiveness. Head of department M84 retells 

the negative outcome of incident C842, in which the lack of data led to a decision based 

purely on the managers’ initial assessment: 

So we had to make a call on what we expected they would have. And 

unfortunately, they didn’t meet our expectations […] It’s a bad 

outcome for us, because it’s used a heap of extra people and time that 

we hadn’t allowed for in our labor forecast.  (C842) 

4.2.2.2. Enrichment of Analytics  

In 15 incidents, human judgment functioned as an enrichment of data analytics. As 

analytics also has limitations, the managers’ experience and business understanding 

could often add nuances and context that could not be captured purely from the data. As 

executive M10 described, managers are looking at “what comes back from a data 

perspective and then overlaying that with, I guess, intuitive knowledge or saying ‘why 

would that be?’” (M10). The development of scorecards is one example, which heavily 

relies on data analytics, but also requires the input of human judgment. As analyst M14 

pointed out, ‘subjective business understanding’ (C141) is applied to adjust scorecards 

in order to incorporate factors that the algorithm is not (capable of) tracking and 

incorporating. 

Furthermore, the collection of data depends on human judgment calls on selecting 

relevant factors, determining scope and constructing initial theories. When asked how 

variables and parameters were selected for analysis, M14 referred to intuition in most 
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cases. For incident C143, this intuition was further confirmed by the added insights from 

the company’s CEO:  

In discussion with the CEO, getting the business understanding, he 

said: ‘try this, try this, try this’ and gave me lots of variables to try. 

And I would throw them in and try them, and use statistics to say how 

important each variable is. (C143) 

A similar view was expressed by executive M22, who also relied on ‘gut feel’ (C223) to 

select data parameters and criteria. 

Particularly decisions that involve a degree of creativity and include artistic elements 

incorporate a significant amount of human judgment. M84, for example, explained that 

they are not dealing with “just 1s and 0s”, but that they require experience and intuition 

to make the best decisions. M22 expressed a similar thought when reporting on incident 

C221. This decision was the optimization of a production process that required the 

employees’ input in order to determine key variables for a more data-based approach: “I 

talked to, we had a lot of production staff, to understand the different parts of the art, if 

you like” (C221).  

While data and information can provide objective insights into a situation, human 

judgment enables managers to make more holistic assessments. Wisdom is especially 

highlighted for its ability to combine experiences from several sources in the case of head 

of departments M84 and M85. For incident C843, M84 had to gather insights from 

several employees to make a risk assessment decision based on some initial data:  

So that was a clear set of information that we knew, but experience 

being the guide on what was actually going to be wrong […] And it 
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was the collective wisdom that was being used for that decision; and 

how bad [it] could be. (C843)  

4.2.2.3. Sense-Check and Challenging 

While data analytics is often seen as a more objective resource for decision making than 

human judgment, it also has limitations and should be questioned. The role of sense-

check emerged as an in vivo code taken from one of the managers, when asked if the 

organization encouraged their employees to question data: 

So yes, we do a lot of that, and it’s sort of encouraged just to get a 

sense-check on it. Especially if it’s going external–just to say: ‘does 

this actually make sense? Does that read properly’, and all that sort of 

stuff. (M41) 

This sense-check and data challenging role was employed relatively frequently (n=8), as 

blind trust in data is seen as one of the pitfalls of data-driven decision making. Executive 

M31 cautioned that when confronted with “something that doesn’t make sense, don’t act 

to move the data point, act to understand what/where the data points made a mistake”. 

The manager furthermore added that organizations would be well advised to foster a 

culture of double-checking data instead of ‘un-skeptically’ relying on it (M31). Executive 

M10 confirmed this sentiment and recommended that data should be challenged by 

intuition: 

Data is great, but you have got to have a little bit of intuition behind 

the back of it and reconfirm and check the data’s integrity, quality and 

the way it’s been presented is impartial. (M10) 
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For managers to be able to challenge data and confidently use it in their decision 

making, they need to understand the data and trust it. This is further discussed in 

section 5.2.1., but its importance is evident in the role of sense-checking data 

analytics. As M41 remarked, understanding the data is crucial for managerial 

decision making, “because if you don’t understand the data yourself, you’re 

probably not going to question it.” Executive M22 and manager M83 furthermore 

add that familiarity with the data and recurring metrics enables managers to be more 

sensitized to spot errors and inconsistencies in the data: “You just look at something 

and then you almost like… smell it. You know there is something not right” (M83). 

Challenging data was particularly recommended in cases with outlying and surprising 

data (M82, C851). This was advised by executive M71 as a lesson learned from “when 

you see a lunacy of making decisions just using analytical data and a single focus on the 

analytical data.”  

The data challenging does not always have to result in the detection of incorrect data 

analytics results but can also point out human error in the interpretation of the data and 

its analysis (M91), or the omission of input data (C134). In order to sense-check the 

results, analyst M01 and executive M31 therefore follow similar processes, beginning 

with the challenging of calculations and the outlying data point. Next, a wider 

investigation is conducted to consider a broader range of factors that might have 

negatively affected the data analysis, such as the used data sources or the selected 

process/thinking.  

Furthermore, the challenging of results is not one-sided. Data results should be 

challenged by human judgment, but human judgments should also be similarly 

challenged with data results, as M01 points out, and will be seen in 4.2.3.6.: 
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And I think that goes both ways. I think if you intuitively, or based on 

your experience think: ‘this would be a good outcome’, but the 

analytics says: ‘that’s the good outcome’, it’s good to check both. So 

either your wisdom and experience could be wrong, but your data and 

analytics could also be wrong. So it’s good to match up both, and 

really use both in any decision that you make. (M01)  

Data challenging requires leadership support and needs to have its roots in the 

organizational culture (M41, M51), which will be further discussed in Chapter 6. 

4.2.2.4. Identifier of Need for Analytics  

Human judgment is seen as critical not only in challenging data, but also in recognizing 

the need for (more) data analytics (M84). Human judgment was used as an identifier of 

the need for analytics in five incidents – exclusively in combination with the role of initial 

assessment. This initial assessment of the situation is required before the manager can 

ask for supporting data or begin an analytics initiative. This also supports case study 

insights from business analysts stating that they are not pulling data or creating reports if 

they do not know the purpose of it (M94, M13). Managers are therefore forced to 

carefully assess the decision and determine its requirements beforehand.  

Human judgment can therefore be used as part of the initial assessment role to identify 

further information needs, after initially building some context and summing up the 

situation (M85). Analyst M01 confirmed this notion, and described the process of the 

identification step of the decision-making process, using the roles of initial assessment 

and identifying analytics needs:  
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So first of all, I start thinking about how would I tackle this problem 

or question. And then based on that I am thinking what kind of 

information would I need to tackle this problem? (M01) 

Expanding upon that, general manager M13 provided a list of questions that are routinely 

answered during this stage: “What information do I need? And how can I get that? Who 

can I talk to? What can I get to make sure that I have an informed base from which to 

make a decision?” (M13). However, as M13 further pointed out, the role of identifier of 

need for analytics can also extend beyond the initial step of the decision-making process 

and recur at a later stage, when data results are not clear, or the results need to be 

challenged. Head of department M84 confirmed this sentiment. When managers are 

confronted with insufficient access to data, the decision can also come to a halt in this 

early stage of initial assessment, when the need for analytics is identified, but cannot be 

met. 

Wisdom can be understood as an important part of this human judgment role, in that 

identifying the need for analytics can be considered wise in some cases. When asked if 

there was a connection between analytics and wisdom, executive M22 responded: “a 

wise choice may be to use analytics”. 

4.2.2.5. Outweighing of Analytics 

Human judgment was furthermore found to take on the role of outweighing analytics 

results. In four incidents, human judgment was used to factor different aspects into a 

decision that could not be captured by data. These factors were able to outweigh the data 

result, as executive M10 explained: 
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Data might say one thing, but there might be other […] influences in 

there that are actually heavier weighted than that initiative you started 

to begin with. You might not see that in the data, so intuitively you 

have to weigh that up and say ‘hang on, there’s three other key 

influences here, that may also trigger this’. (M10) 

The outweighing of analytics results occurs in the later stages of the development and 

selection steps of the decision-making process. In these stages, human judgment is often 

perceived as the final step prior to making the decision. Data analytics is a factor that 

plays into this decision but can be overwritten by intuition, as general manager M91 

described: 

Occasionally on a business decision side, you sort of go: ‘Is this the 

right thing to do intuitively in your gut?’ You feel it is or it isn’t and 

you make a call. And sometimes you just do that because there is no 

other way–you’ve got every bit of information you can possibly get to 

make the decision, and at the end of the day you just got to make the 

call–and that’s intuition: is it the right call or not.  (M91) 

The role of outweighing or overriding analytics becomes critical when analytics cannot 

consider all relevant factors. Such factors are, for example, learning opportunities (C312) 

and the improvement of relationships (M11, M85) that could be an intangible outcome 

of decisions. To uphold business relationships with key suppliers, manager M11 voted 

to grant contracts to them, even if they were less cost-effective. Executive M31 elaborates 

on the value of gained experience, which could not be measured by analytics, when 

retelling incident C312: 
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We have to layer in things that aren’t in the data to make it make sense. 

I’ve got one client who is marginally unprofitable, we’d probably turn 

it over best, but I really like him and I’m learning by working with 

him, because he is at a different level in a different business. And so I 

can go ‘Actually what the data says, we should move this on, because 

it’s time we don’t have, and where we not make any margin, but there 

are personal benefits and professional benefits and social benefits that 

mean that is ok.’ (C312) 

Relationships play a major role in the field of human resources and people management, 

as data analytics are limited in capturing relevant factors: “Intuition plays a big part when 

it comes to people, because that’s the most difficult bit to get the analytics side on, and 

the hard data and so around” (M92). Recruiting decisions fall into this category, as the 

assessment of organizational fit was characterized as an ‘intuitive feel’ (M92). 

Considering fairness in a decision is at the manager’s discretion and another example of 

a factor that cannot be portrayed by data (M72).  

Altruistic motives can also be a reason to outweigh data analytics and were particularly 

identified in incidents in the not-for-profit sector. Executive M61 described situations in 

which he decided not to apply for funding because their projects would have consumed 

most funds of specific grants, leaving no funds for smaller and newer organizations that 

would also depend on that funding. Another not-for-profit decided to take on projects 

that were not particularly profitable but added value to the community: “And similarly 

we bid for very small bits of work recently, where we thought we could bring a cultural 

element to it” (M71).  
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4.2.2.6. Relation between Human Judgment Roles and Decision Triggers 

Decision triggers have a significant effect on the decision-making process. As the 

development and selection step consists of an interaction between human judgment and 

analytics roles, this section looks at the relationship between these roles and decision 

triggers as identified in the critical incidents. A summary of these relationships can be 

found in Table 18 below.  

Table 18. Human Judgment Role in Identification Step 

 

Initial assessment saw the most significant prevalence of human judgment in the 

incidents (n= 30) and had the highest occurrence in evaluation-triggered decisions 

(n=12). This percentage can be explained by the fact that these evaluations often rely on 

the experience of specifically hired managers. Evaluations in the beginning stages of the 

decision-making process therefore require a rather high quotient of human judgment and 

collaboration to gather sufficient business understanding as well as diverse perspectives 

and experiences. 

Enrichment of analytics is present at equal rates in evaluation- (n= 7) and routine- (n=7) 

triggered decisions. As discussed above, evaluations require a high level of experience, 

indicating the importance of this role. This role is essential in order for managers to 

enrich data analytics results with further layers and facets of their business experience. 

Routine-triggered decisions often result from outlying data or data anomalies; human 

Initial 

Assessment

Enrichment of 

Analytics

Sense Check and 

Challenging

Need for 

Analytics

Outweighing 

Analytics

n=30 n=15 n=8 n=5 n=4

Anecdotal 5 0 1 2 0

External 6 1 1 1 2

Evaluation 12 7 2 1 1

Routine 7 7 4 1 1

Trigger

Human Judgment Role
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judgment can therefore be a supportive tool for managers to assess the results and add 

their business understanding in the context of such decisions. 

Sense-check and challenging is particularly important for routine-triggered decisions 

(n=4). When outlying data triggers a decision, this needs to be challenged by managers 

in order to establish credibility and accuracy. For anecdotal decisions (n= 2) on the other 

hand, the role of identifying the need for analytics is important. Anecdotal decisions are 

informed by human judgment and personal observations, resulting in the need for more 

objective data. Managers frequently identified the need for analytics in order to make 

more balanced and therefore more objective decisions. 

Outweighing analytics was most often used in externally triggered decisions (n= 2). As 

these decisions are based on externally provided data, managers need to first assess the 

fit of this data to their organization. If the fit is deemed unsatisfactory, managers can 

outweigh these analytics results with their business understanding and experience.  

4.2.3. Roles of Data Analytics  

Seven distinct roles could be identified for the use of data analytics in the decision-

making process: enabler of judgment, confirmation, identification, exploration, 

justification, challenger of judgment, and ‘no brainer’. These roles are summarized in 

Table 19 and further discussed below. 
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Table 19. Data Analytics Roles 

Data (Analytics) 

Role 
Description N= 

Enabler of 

Judgment  

Data is applied for choices that are too complex to 

determine without analytics. 
23 

Confirmation Data is used to confirm initial assessments. 21 

Identification 
Analytics (e.g. reporting) identifies a problem or 

opportunity that requires a decision. 
10 

Exploration 
Data sources are explored for trends or potential solutions 

to problems that were not considered previously. 
10 

Justification 
During the selection stage, data analytics results are used as 

objective validation to justify decisions. 
9 

Challenger of 

Judgment 

Initial assessments and cognitive biases are challenged with 

the assistance of data analytics. 
9 

No-Brainer 
Data analytics results are black and white, and the decision 

is therefore solely based on them. 
3 

 

4.2.3.1. Enabler of Judgment 

Decisions that incorporate several variables are often too complex for managers to judge 

confidently. Data was used in 23 incidents to help form a judgment based on insights 

from data analytics in these cases. This role provides managers with greater confidence 

in their decisions, as manager M11 highlighted when asked to which changes data 

analytics led: “Previously you were kind of flying a little bit blind, when you don’t know 

what sort of results you’re getting. So it is quite refreshing to understand that” (M11). 

Data as an enabler of judgment can therefore assist managers in making decisions that 

their human judgment cannot evaluate completely. General manager M13 discussed an 

example of this regarding customer service staff assessments, which were significantly 

improved by introducing analytics metrics to monitor customer calls:  
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And each of those calls is tracked through that database and we’re 

working with our internal analytics team now to develop reports which 

are much richer for our process, which enable us to make better 

decisions about rostering effectiveness of staff and KPIs.  (M13) 

Data was furthermore used in this role to enable manager M11 to evaluate the 

performance of certain marketing materials, leading to the elimination of costly and 

ineffective materials (C111). Simpler forms of this practice were also regularly applied 

by executive M71 to assess the profitability of contracts using a cost center analysis. 

One of the key benefits of this role, especially for early-career professionals, is that it 

also offers managers the opportunity to balance a lack of personal experience and 

business understanding. Analyst M14 highlighted this aspect of analytics’ role when 

relating wisdom to data: 

As I said, wisdom is about experience, but it doesn’t have to be your 

own. So you can learn from the experience of many others, if you use 

data. Definitely, and we do that systemically through a lot of our 

processes. (M14) 

The potential and extent of this role depends on the available data and the analytics 

capabilities of the organization. If organizational prerequisites are met, the role of enabler 

of judgment can become quite extensive and prescriptive. Head of department M82 

described a tool that assesses current workload and assigns priorities, therefore enabling 

them to plan more efficiently. In incident C121, the general manager and a supporting 

business analyst reviewed a balanced scorecard that informed their lending policy, and 

in turn, a large number of financial decisions. 
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4.2.3.2. Confirmation 

While traditional decision making is based on making judgment calls informed by 

intuition and experience, managers tend to value the additional support of data to confirm 

their initial assessments. This is confirmed by the data: data analytics was used in 21 

incidents as an assurance to increase managers’ confidence in their own decisions. 

Overall, the role of confirmation was used for “really just trying to support our own 

thinking and to test our own views on things” (C912). Addressing the balance of human 

judgment and data analytics, manager M41 added that this role of data does not diminish 

the value of human judgment, but simply adds to it: “I think you probably use intuition 

just as much, but you’ve got the data now to better prove or disprove your intuition” 

(M41).  

However, once managers are accustomed to relying on data to confirm their assessments, 

the unavailability of data in certain situations becomes particularly apparent. During 

these excepting circumstances, managers might not have the expected data at hand, 

leading to insecurity about their decisions, as head of department M21 pointed out when 

reporting on an incident during which data was not readily available: 

And I was nervous about that because I did not have the backing of 

the maths and the data and the information. I had some ‘these things 

are telling me, this is what we should be doing’, but I cannot justify 

that with data and maths. (C212) 

The role of confirmation is particularly relevant in strategic and high-impact decisions to 

confirm initial assessments or theories. Executive M10 emphasized this relevance for 

strategic decisions, as they led to significant changes: “So you have a theory–check the 

data, does it tell you, like confirm or deny your theory? So I wouldn’t just jump 
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wholeheartedly into any changes in that regard” (M10). General manager M12 confirmed 

this sentiment by saying that creating a new strategy needs the additional confirmation 

from the data. 

While managers agree on the significance for data confirmation in high-impact decisions, 

their role is less pronounced in operational decisions. In these day-to-day decisions, 

confirmation is still a valuable contributor, but the data analysis is less time-intensive. 

Analyst M14 highlighted that these decisions are mostly informed by personal 

experience and knowledge, but that data can still function as confirmation, albeit in a 

diminished capacity:  

If it was a day-to-day, I would probably be more likely to rely on what 

I already knew, hopefully supported by data that I already understand. 

But probably less analysis, maybe just more of a ‘let’s quickly check 

the report that we already have–and yes, it’s still saying what it should 

say’. (M14) 

The overall sentiment shared by the managers on the role of confirmation, was that the 

amount of data that should be collected depends on the manager, and how confident they 

feel about the decision at hand: “Get as much data as you can to ensure that you are 

satisfied that the decision you’ve got to make is the right one” (M91). 

4.2.3.3. Identification 

Data analytics was used in the role of identification in ten incidents. For this role, data 

analytics is used to identify problems or opportunities that require a decision. Data that 

fulfills this role is usually presented in the form of recurring reports. This was the case 
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for incident C821, as the daily report data pointed out problems with operational 

procedures of the head of department’s team that had to be considered carefully: 

And every day that I read those, it was almost like: it was 

discouraging. Everything we were doing had problems and wasn’t 

done properly. So we used that as evidence that we needed to improve 

what we were doing as a planning team. (C821) 

A similar scenario could be found in incident C931, when general manager M93 and his 

team observed negative customer satisfaction scores to determine potential solutions for 

improvement: 

When we look at data, things like customer satisfaction–points that 

customers score us–it was pretty clear that we were failing in that. So 

we needed to find a different model to sort of deal with all those 

customers. (C931) 

Outlying data in reports or ad hoc analyses can also highlight errors or negative 

circumstances that require immediate attention. This identification often originates from 

the analytics or business intelligence department, for example in the form of unexpected 

“bubbles” that are detected in recurring reports (M12). These bubbles can be understood 

as sudden spikes or drops that need to be investigated further. When reports or ad hoc 

analyses reveal outlying data, this data is forwarded to the respective business unit for 

clarification: “Probably if the [analytics team] find[s] anything weird, they might 

promote that back up further. So they say ‘here’s some recommendations or decisions’, 

and then the management team can act based on this” (M10).  
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There are also other sources of identification besides efforts driven by a designated 

analytics team. The identification can also come from the business unit through the 

course of their own research, market observations, or internal analytics efforts (M11). 

Furthermore, data can also be provided by external sources. As general manager M12 

pointed out, their business units receive regular updates from external sources regarding 

how they compare to the competition: “We were having a look at market share data 

provided to us and showed that our market share was going backwards a little bit 

compared to other […] companies” (C121). This external market share data triggered 

internal strategic decision making. 

Issues can also be identified during an analysis for a different purpose, and potentially 

highlight further tactical or even strategic issues (M41). The role of identification is in 

these cases very valuable, as it provides managers with insights and points out issues that 

they ‘need to be aware of’ (M93). 

While the identification of problems is accomplished through the role of data analytics, 

human judgment is unarguably still required for further steps of the decision-making 

process. Conveying data results to other business units or top management is an example 

of this, as the uncovered insights might be sensitive or highlight shortcomings of other 

departments and current policies (C852). Human judgment is furthermore required in the 

role of sense-check and data challenging, as outlying data could also be the result of an 

analytics error (M82). More on the role of sense-check and data challenging can be found 

in chapter 4.2.2.3.  

4.2.3.4. Exploration 

Data served as an exploratory tool in ten incidents, providing managers with an 

opportunity to assess a wide range of complex factors and their potential influence on 
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their decisions. Often, the number of variables involved in a decision became too large 

to assess their interaction and effects on the decision alternatives. In many cases, 

managers may also not know all contributing factors from the outset. As head of 

department M94 pointed out, these situations benefit from insights provided by data: 

“Analytics generally would be the use of statistical modelling or sophisticated tools to 

try to unearth patterns in the data that might not be evident to intuition” (M94).  

In this role, data analytics can be used to explore correlations and dependencies in order 

to assess business performance and determine significant influences. As executive M10 

highlighted, business analysts can use data to explore a wide range of relations to identify 

enablers, disruptors, risks and opportunities: 

Are there decision rules in there that are starting to be the performance 

enablers or performance disrupters in the business? So, ‘I’m trying to 

understand this: can you [business analyst] please give me a summary 

of how that looks, what are the behaviors in that, are there any clusters 

or otherwise that we need to be aware of–that may be risks or 

opportunities?’ (M10) 

Particularly in the field of marketing, exploration can be a valuable role of data analytics 

to assess consumer behavior by evaluating, for example, marketing channels (M21, M22) 

or campaigns (M01), and by looking for trends (M61). These decisions will inform future 

investments and further marketing plans. As executive M61 emphasized, the role of 

exploration is of key importance to the marketing team, who regularly reports findings 

regarding the drivers of marketing success or failure: 
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[The marketing team] does report to me, gives me a view, tells me 

when there’s no movement. And then we try to work out what 

happened: either that we had no events on, or there wasn’t anybody 

pumping things out. (M61) 

Exploration was also essential in the field of operations to determine the cause of 

operational issues, as well as the future steps to address these issues (M10, M41, C911). 

Data analytics in this capacity contributed to the daily business and provided managers 

with an understanding of current events (M41). When probing deeper, data exploration 

enabled general manager M91 in incident C911 to assess the root cause of an operational 

problem and plan further steps to mitigate the situation:  

So as part of the root cause analysis, that’s where we had to tap into 

the data to find out what was the cause … understanding that was a 

key component and where we went to from there. (C911) 

4.2.3.5. Justification 

Data analytics as justification was used in nine incidents and was considered critical to 

managers in data-driven organizations, as well as in companies that required a more 

formal decision process involving stakeholders or funders. Whereas decisions solely 

based on judgment might be accepted in more traditional organizations, a data-driven 

environment demands the support of these judgments with data and facts. Data allows 

for a more objective form of reasoning, and–since data analytics results and related 

efforts can be easily documented–functions as a basis for discussion and justification of 

a decision. In incident C931, described by general manager M93, data was not only used 

to identify a preferred option among several alternatives in the decision-making process, 

but was furthermore employed as a tool to justify the decision to executives:  
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Obviously had to convince other people it’s the right thing to do. And 

I think that’s where the data helped with that–we had several options–

to come up with a preferred option and then just talking the exec[utive] 

team through that. (C931) 

Controversial decisions in particular benefit from the support of data analytics, as they 

enable decision makers to provide an objective form of justification that is not solely 

based on subjective judgments. When facing a critical decision about the allocation of 

new equipment in several departments, manager M92 based the decision on data and 

used the results as a justification when reasoning with departments that were not satisfied 

with the decision outcome: 

We had lots of [departments] that were disappointed. So then we 

walked them through the process and said: well, here’s the numbers . 

So, it was the data that saved our decision making, because we could 

go back to it: ‘well here is the fact. You’re in or you’re out’. (C922) 

While this form of justification is the norm for data-driven companies, organizations in 

earlier stages of their data journey, as well as not-for-profits with an often more 

traditional organizational culture, can also benefit from using data analytics for 

justification. Not-for-profit organizations particularly require data in order to obtain and 

manage funding. As outlined in incident C612, data is an integral part of obtaining this 

grant money. Once grants have been won, organizations need further data to justify their 

decisions and performance, as executive M71 pointed out: 

Keeping our statistics and keeping our records and proving that we’re 

doing a good job is actually really vital. A) for any potential to grow 



                                                    Chapter 4: Managerial Decision-Making Process 

191 

 

B) for survival. I think [the company] has lost contracts in the past for 

not reporting properly. (M71)  

Data analytics in the role of justification is often included in business cases, when 

presenting decisions and key information for their reasoning to stakeholders or higher 

authorities for approval. Managers use data in this role to realize projects that do not have 

wide-spread support from the outset, as head of department M81 remarked. While upper 

management might support the general notion of a new project or decision, the backing 

of analytics is often needed to advance to the next stage, as head of department M82 

confirmed when retelling incident C822 involving their team: 

We couldn’t have done it just by simply saying to the business: ‘Hey, 

it’s a good idea, it’s going to work – let’s move’. I’ve always had to 

push business cases up to the highest level within the company. And 

at that level people don’t just buy into emotive kind of thoughts. It has 

to be backed up by some kind of solid information/justification for 

doing it. (C822) 

4.2.3.6. Challenger of Judgment 

Corresponding to the human judgment role of sense-check and data challenging is the 

data analytics role of challenger of human judgment. Due to its objective nature, data is 

often seen as a neutral source of information that can challenge cognitive biases and 

initial assessments, which are based on subjective perceptions. Data analytics was found 

to function as a challenger of human judgment in three incidents. While the number of 

incidents is low, executive M31 still estimated that 20-30% of their initial intuitive 

judgments were contradicted by the data. Executive M10 added that the more available 

data, the more effective this role of data analytics is in preventing mistakes. This role 
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was therefore seen as critical by head of department M85 in avoiding biased decisions 

and creating an opportunity for reflection: 

I think intuition is important to be able to just step back, make sure 

you’ve removed your biases: ‘I know that was my intuition in the 

beginning, but having been presented with this other stuff, what I truly 

think is …’ And be honest with yourself to challenge that. (M85) 

Challenging one’s own perception is not the only purpose of this role. It is also used by 

managers to change others’ initial assessments and biases to carry out organizational 

change. As M85 emphasizes, data in this case can achieve immediate results: “And it 

was just great, because [the data] was able to move a mindset very quickly” (C851). 

Changing the mindset of senior management and executives also proved effective in 

incident C511. Executive M51 introduced a data-informed profitability analysis that 

allowed the company to re-evaluate their customer base and therefore increase their 

profit. The results of this analysis had contradicted the other executives’ prior 

assumptions on the customers’ value and was a valuable piece of evidence supporting 

M51’s case. 

In a similar incident C932, general manager M93 used data to challenge team leaders’ 

assumptions on the capacity levels of their employees, rejecting the planned 

organizational change of adding further employees. When asked if the data revealed any 

surprises, M93 responded: 

Probably more for the managers of those teams. Where they thought 

that one person was flat stacked and one person wasn’t. I think it gave 

them a few surprises. There is always a bit of push back. But once you 
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could show and compare with others and even within their own teams, 

it was starting to make sense, and the data allowed for it to be a much 

more facts-based discussion rather than emotive. (C932) 

The challenging of human judgment is often necessary, especially when this judgment is 

based on outdated experience that is applied to now-changed circumstances, leading to 

biased judgments (M81). As a result, managers particularly value the role of data 

analytics as a challenger in strategic and high-impact decisions, as general manager M12 

highlighted: “I believe that you should look at the data, anytime you’re looking at 

changing policy or moving a customer demographic from your sweet spot” (C122). 

4.2.3.7. No-Brainer 

Data was seen as self-evident and the sole decision maker in its role as ‘no brainer’ in 

three incidents. The role is an in vivo code identified in the interview with executive 

M10, who pointed out the dominant role of data analytics in certain decisions: “Yes, 

sometimes intuition takes over data, and sometimes data is so black and white, that it’s a 

no-brainer” (M10). As described in this statement, data analytics’ role as a no-brainer 

can be understood as the other end of the spectrum from the human judgment role of 

‘outweighing data analytics.’ Data used as a no-brainer can therefore similarly be the 

main or sole factor considered in selecting the best alternative.  

As manager M92 remarked, the selection stage of the decision-making process can be 

rather simplistic: “If it’s inside the metrics – it’s obviously yes; if it’s outside the metrics 

– it’s obviously no” (M92). These decisions are often simple operational decisions that 

have limited consequences and follow a structured, predefined approach. An example 

was mentioned by manager M11 as the selection of suppliers, during which the cheapest 

provider is chosen. Similarly, in incident C822 data also took on the role of no-brainer 
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for part of the alternative evaluation. For this decision, head of department M82 created 

several data-driven criteria for selecting one of three alternatives. One of these 

alternatives achieved a higher result than the other two, “so it was a no-brainer” (C822).  

4.2.3.8. Relation between Data Analytics Role and Decision Trigger 

As discussed in section 4.2.2.6. for human judgment roles, decision triggers influence 

the following decision-making process steps of development and selection. 

Correspondingly, this section investigates the relation between the data analytics roles 

and decision triggers as identified in the critical incidents. A summary of these 

relationships can be seen in Table 20.  

Table 20. Data Analytics Role in Identification Step 

 

Enabler of judgment was the most frequently used role of data analytics in decision 

making (n=23), and most often occurred in evaluation-triggered decisions (n=7). 

However, externally-triggered (n=6) and routine-based (n=6) decisions also regularly 

applied data analytics in the form of an enabler of judgment. This role is well-rounded 

and applicable to several scenarios, which explains its frequent occurrence. Evaluation 

decisions are usually large in scale, incorporating several analytics and human judgment 

roles. Data analytics provides an opportunity to objectively evaluate most considered 

factors. In externally-triggered decisions, internal data analytics can be used to assess 

external data, as well as the fit of offered opportunities within the organization. Routine-

Enabler of 

Judgment Confirmation Identification Exploration Justification Challenger No Brainer

n=23 n=21 n=10 n=10 n=9 n=9 n=3

Anecdotal 4 3 1 1 1 3 0

External 6 5 0 0 2 0 1

Evaluation 7 9 3 6 3 2 2

Routine 6 4 6 3 3 4 0

Trigger

Data (Analytics) Role
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based decisions usually rely on sophisticated regular reports, which enable managers to 

judge the problem or opportunity at hand.  

The role of data analytics as confirmation was most frequently used in evaluation 

decisions (n=9). Evaluations can be heavily informed by manager’s experience and 

intuition. In these cases, data analytics takes on the important role of confirming initial 

theories and perceptions. 

Identification most often occurred in routine-based decisions (n=6). As these decisions 

are mostly based on regular reports, data analytics’ role of identifying problems and 

opportunities is an inherent quality. 

The role of exploration was particularly relevant for evaluation decisions (n=6), as these 

are often rather complex and unstructured decisions with little available or familiar data. 

This consequently results in the exploration of wider datasets in order to identify patterns 

and discover relevant factors that might influence the decision outcome. 

Justification is mostly used in evaluation (n=3) and routine-based (n=3) decisions. As 

evaluations are mostly impactful decisions that are quite commonly supported by 

business cases, data analytics is used as an objective form of validation to justify the 

selection of the decision alternative. Routine-based decisions are mostly triggered by 

data, which in turn can function as justification for beginning the decision-making 

process, as well as the selection outcome. 

Data analytics was employed most commonly as a challenger of human judgment in 

routine-based decisions (n=4). When routine-based decisions are not triggered by 

internal data reports, but external data sources, or are the result of regular meetings, these 
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decision initiatives can be biased. Data analytics can then be used to challenge biased 

assumptions or external views. 

The role of ‘no-brainer’ was mostly used as part of evaluation decisions. While these 

decisions usually entail several data analytics roles, the eventual selection or later stages 

of the development step are often reduced to a small number of options that are evaluated 

by a metric composed of several data sources. This last-step evaluation of options is often 

seen as a no-brainer, purely based on the metric at hand.  

The roles of human judgment and data analytics cannot be considered as negative or 

positive influences per se. The interviews with managers clearly showed that a certain 

role could be a contributor as well as a disrupter of successful decision making. While a 

certain influence was considered negative by one participant, another participant 

considered it a positive influence. An example of this was using human judgment to make 

an initial assessment. Most managers considered the formation of an initial assessment 

to be something positive, as discussed in section 4.2.2.1. However, in incident C122, this 

initial assessment was biased, leading to complications during the decision-making 

process. It was therefore considered to have had a negative effect on decision making by 

general manager M12.  

These different perceptions of the roles are fleshed out in the following section reporting 

on the actual decisions, which were collected using CIT. Eventually, this exploration of 

the data led to the understanding that a categorization of the roles as contributors or 

disrupters additionally depended on further factors, which will be discussed in Chapters 

5 and 6.  
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4.2.4. Actual Decision Making 

During data collection, 43 incidents were captured with diverse impacts and contexts, a 

wide range of data analytics and human judgment roles, different outcomes, decision 

triggers and a varying extent of data and judgment use. Below, the findings regarding 

these differentiators highlight significant relationships between them. This section 

focuses solely on the insights gained from analyzing these incidents, incorporating the 

roles and decision-making process steps that were discussed in the previous sections of 

this chapter. The findings outlined here are structured according to the decision clusters 

that have been determined in section 4.1.2., namely balanced decisions (n=18), high-

judgment decisions (n=13), and high-data decisions (n=12). The relationships between 

decision clusters and decision types can be seen in Table 21 and are additionally further 

discussed below.  

Table 21. Decision Types per Cluster 

 

Incidents in the balanced cluster were mostly found to be complex strategic decisions 

(n=6). These decisions are generally considered to be critical and have long-term 

consequences. Managers therefore gathered input from several–often difficult to access 

or acquire–data sources, even if the data could only be added in hindsight. This data was 

then balanced with the experience and judgment of senior management. The balanced 

cluster also contained several complicated strategic decisions (n=5). However, data 

Complex/ 

Strategic

Complex/ 

Tactical

Complicated/ 

Strategic

Complicated/ 

Tactical

Complicated/ 

Operational

Simple/ 

Tactical

Simple/ 

Operational

n=10 n=7 n=7 n=13 n=2 n=1 n=3

Balanced 

Decisions n=18 6 1 5 4 1 0 1

High-

Judgment 

Decisions n=13 2 5 0 4 1 0 1

High-Data 

Decisions n=12 2 1 2 5 1 1 0

Cluster

Decision Type
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acquisition was usually considered easier to acquire for these decisions, as they are not 

as complex and have more measurable components. Lastly, the balanced cluster had 

several complicated tactical decisions (n=4). However, these decisions were quite evenly 

spread throughout the different decision clusters. Their scope is limited, and the 

application of data often depended on the need and availability.  

For the high-judgment cluster, most decisions were complex tactical (n=5). These 

decisions are similar to complex strategic ones, in that data might be scarce and difficult 

to apply. However, since tactical decisions are typically not as critical and smaller in 

scope, the effort to gather data was more limited than for strategic decisions. As a result, 

these complex tactical decisions relied highly on judgment. As mentioned above, 

complicated tactical decisions were also rather prominent in this cluster (n=4). The 

cluster of high-data decisions only had a majority of complicated tactical decisions (n=5). 

Otherwise, the decisions types were evenly spread out. 

This following section facilitates a deeper understanding of actual managerial decision 

making, highlighting the impact and diverse influences of data analytics and human 

judgment on the different decision clusters. For each decision cluster, to analyze the 

specific impact of the data analytics and human judgment roles within the decision-

making process, the frequency distribution of findings for each role between the different 

steps was compared. The frequency distribution determined whether the results indicated 

a relatively high, medium or low importance of analytics or human judgement for each 

step in the decision-making process. In contrast to the managers’ general statements and 

perceptions of the balance between these two key influences, the following findings are 

informed by actual decisions, and represent a realistic sample of decision making in the 

age of big data.  
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4.2.4.1. Balanced Decisions 

Most critical incidents were categorized as balanced decisions (n=18), which means that 

the managers involved displayed a high level of both data analytics and human judgment 

use. Seven of the decisions could be categorized as assessing opportunities, while the 

other 11 addressed problems. When looking at the distribution of strategic decisions, 

with 11 out of 18, the balanced decision cluster contained most strategic decisions. 

Balanced decisions were triggered externally (n=4), by routine checks (n=6), and most 

often in the context of evaluations (n=8). None of the balanced decisions had an anecdotal 

trigger.  

Evaluation decisions were mostly identified in the balanced decision cluster. As these 

evaluations were usually large-scale, they demanded a balanced approach, that benefitted 

from data analytics, but also the experience and judgment of the managers. Another 

common trigger for the balanced decision cluster were routine checks. These decisions 

were mostly triggered by recurring reports providing a substantial amount of data. 

Furthermore, these routine checks could mostly follow established processes for the use 

of judgment, in the form of management or board meetings that ensured the input of 

human judgment. External triggers were also common in this cluster, as they were often 

based on external data and demanded business understanding and experience to evaluate 

that data or influences for organizational fit.  

While balanced decisions benefitted from both, human judgment roles as well as data 

analytics roles, these roles were not evenly distributed among all three stages of the 

decision-making process. Figure 10 highlights the frequency of these roles in the 

different decision-making steps. Comparing the frequency distributions between the 

different steps of the decision-making process shows that human judgment roles were 
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predominantly employed during the identification and development steps of the decision-

making process, whereas data analytics was primarily used for the development and 

selection steps.  

Decisions in the balanced cluster were often without precedent, and therefore initially 

relied on the managers’ intuition, expertise and domain knowledge, because there was 

no familiar data or information available. However, data could be added in later stages 

and helped to shape and enrich the project (C123, C221). Data analytics enabled decision 

makers to reach more precise conclusions, to further explore certain aspects of their 

decisions, and to evaluate their initial assessments and impressions of those decisions.  

A typical example of this cluster is incident C123, a complex strategic evaluation led by 

a new hire to assess the potential of a new line of business. The identification step and 

the initial phase of the development step were informed by the manager’s prior 

experience with the potential line of business, which led to a pilot project. Data gathered 

during this pilot was then used for further stages in the development and selection steps 

to make a decision:  

So we launched the pilot. And it went better than expected for those 

first six weeks. So then we pulled the data of that six weeks. What was 

the score? Does it fit in with the assumption that we had in the business 

case? And then that data over that short period of time helped us to do 

the full nationwide launch. (C123) 
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Figure 10. Roles in Balanced Decisions 

While this particular analysis provides an overview of the extent of data analytics and 

human judgment use in balanced decisions, not only the extent, but also the specific roles 

used during the decision-making steps, were found to vary according decision cluster. 

Table 22 summarizes the use of human judgment roles in the distinct decision-making 

steps of balanced decisions. During the identification step, the initial assessment role is 

the only frequently used role (n=6) and was often described by managers as a logical 

starting point (M11, M41, M81). It is also the most common role in the development 

step.  

However, this development step also benefitted from human judgment in the form of the 

enrichment of analytics (n=4), and an identifier of need for analytics (n=3). After an 

initial assessment, managers used their judgment to provide additional insights to enrich 

the gathered data analytics results, and to identify further use cases for data analytics. 

The role of sense check and data challenging was used in equal amounts in the 

identification and development steps (n=2) and provided management with an 

opportunity to test the data involved in the decision. 
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Human judgment was less critical in the selection step of decision making, where it still 

mostly functioned as an initial assessment (n=2). It was additionally used once in the 

capacity of data challenging, and once to outweigh data analytics results. 

Table 22. Balanced DM-Steps - Human Judgment Roles 

 

Table 23 focuses on the different data analytics roles managers employed during the 

various decision-making steps. As mentioned above, data analytics plays a limited part 

in the identification step of balanced decisions, while the only relevant role of analytics 

in this step was identification itself (n=4).  

The roles of analytics became much more prominent in the development step, where it 

was used particularly often to enable judgment (n=9), for confirmation (n=5), and for 

justification (n=3). Once managers were provided with access to data, analytics was 

applied in this stage to assess the more complicated but measurable aspects of their 

decisions. Balanced decisions therefore benefited from the enabler of judgment role. In 

its second most common capacity, data was used to confirm the managers’ initial 

assessment and judgments, providing them with more confidence in their decision. The 

role of justification had already been previously applied in the development step to move 

forward with certain alternatives and provide objective validation. 

Data analytics’ use during the selection step exhibited the same order and similar 

frequency; analytics was once again used to enable judgment and decide between 

Identification Development Selection

n=9 n=14 n=4

Initial Assessment n=13 6 5 2

Sense Check and Data Challenging n=5 2 2 1

Enrichment of Analytics n=4 0 4 0

Identifier of Need for Analytics n=4 1 3 0

Outweighing of Analytics n=1 0 0 1

Balanced DM Steps

Human Judgment Role
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different alternatives developed in the previous decision step (n=6), to confirm previous 

initial assessments (n=5), and to justify the manager’s selection of alternative. 

Table 23. Balanced DM-Steps - Data Analytics Roles 

 

Decisions in the balanced cluster applied human judgment to incorporate the managers’ 

prior experience as a starting point to the decision-making process. In later stages of these 

balanced decisions, data analytics was added to provide managers with the opportunity 

to assess measurable aspects of decisions, and to confirm and justify their judgments.  

Due to its balance and thorough nature, this holistic approach was therefore commonly 

used for complicated decisions involving decision parameters that could be calculated, 

as well as for complex strategic decisions that were crucial enough to warrant an often 

extensive effort to collect data. Both decision types provide an explanation for the 

common use of the data analytics role of enabler of judgment in this decision cluster.  

Particularly strategic and tactical decisions were found to require this balanced approach 

to ensure that the selected decision alternative was the best choice. M91 emphasized this 

point, highlighting the amount of diverse inputs that go into these strategic decisions: 

“So you make a strategic call, which obviously has to be justified as strongly as it can 

be; for all the right reasons financially, let alone logically and taking people into account, 

and a whole lot of other things” (C912). M41 expressed a similar sentiment, saying that 

Identification Development Selection

n=5 n=22 n=18

Enabler of Judgement n=16 1 9 6

Confirmation n=10 0 5 5

Identification n=7 4 2 1

Justification n=6 0 3 3

Exploration n=3 0 2 1

No Brainer n=2 0 1 1

Challenger n=1 0 0 1

Balanced DM Steps

Data Analytics Role
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strategic and tactical decisions cannot be made purely based on numbers in a sterile 

environment, as even the most perfectly designed product might not get accepted by the 

market. He therefore concluded that there are “probably things outside your data analysis 

for strategic and tactical decisions” (M41).  

4.2.4.2. High-Judgment Decisions 

The second-most populated decision cluster was high-judgment decisions (n=13), which 

means that these decisions displayed a high level of human judgment use, and a limited 

or no use of data analytics. Eight decisions assessed opportunities, while only five 

decisions addressed problems. Only two of the 17 strategic decisions fall into this cluster. 

These decisions were most often triggered externally (n=5), but also in the context of 

evaluations (n=4), by anecdotes (n=2), and through routine checks (n=2).  

As discussed in the balanced cluster, external triggers often required human judgment to 

assess external data or influences for their organizational fit. In contrast with the 

evaluations in the balanced cluster, the high-data evaluations were mostly tactical 

decisions (n=3). As tactical decisions are limited in their impact and resources, a lack of 

available data was substituted by human judgment instead of more elaborate and costly 

efforts to gather additional data. Anecdotes are mostly driven by human judgment, and 

therefore led to high-judgment decisions. Routine checks that trigger tactical or 

operational decisions were not seen as critical and were mostly resolved by relying on 

human judgment. 

As is evident from Figure 11, in contrast to balanced decisions, human judgment roles 

are not predominantly applied during the earlier identification and development stage, 

but during the latter two stages: development and selection. Data analytics roles are very 

limited in the identification and selection step, and mostly find application during the 
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development of alternatives. Due to the high number of external triggers, the relevance 

of both data and judgment roles in the identification step is limited. 

 

Figure 11. Roles in High-Judgment Decisions 

High-judgment decisions are often the result of limited access to data. Especially external 

and anecdotal triggers can lead to a lack of available or applicable data, as they are rooted 

in external sources that might not be applicable to the organization, and human judgment 

respectively. For the mostly tactical decisions in this cluster, the effort and resources to 

gather more data was considered not profitable (M01, M91). As the medium impact 

decisions did not warrant a more thorough gathering of data, managers relied solely on 

their judgment. This lack of data analytics, and therefore lack of objective inputs, was 

the root cause of the only negative outcome incidents (n=3) shared in this study. Two of 

these incidents referred to the same decision but were reported by two different 

managers.  

These negative outcome decisions were categorized as high-judgment decisions, with the 

extent of data use having a value of three or less. All these decisions were business 

opportunities that were accepted due to the lack of relevant data but should have instead 

been rejected. All of them were complex tactical decisions. Additionally, the managers 

lacked relevant experience, as head of department M81 points out in a negative-outcome 
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incident (C812) that led to the acceptance of external contract work. Their decision to 

accept had been based on limited internal data that did not match the conditions of the 

contract work, and limited experience with the subject: “And that didn’t turn out too well, 

because the work was a lot more significant than we thought it was going to be. So there 

was no real experience in doing it, so it was just a guess” (C812). 

This decision led to considerably more work than estimated, which strained the 

company’s financial and human resources (C842). The managers learned from this that 

information must be relevant for the context of the decision, and their organization 

furthermore decided to include a standard into the planning process, which enabled them 

to more accurately assess the starting point of potential contract work (C842).  

After outlining the extent of data analytics and human judgment use, determining their 

specific roles helped to further characterize the high-judgment cluster. As can be seen in 

Table 24, the human judgment roles employed are quite evenly distributed, with no clear 

majorities. During the identification stage, only the role of initial assessment (n=2) was 

used by the managers. The development and selection step show a rather equal 

application of all human judgment roles, except the identifier of need for analytics. This 

role, matching the characteristics of this cluster, was not relevant for high-judgment 

decisions, as analytics was not an integral part of these decision processes.  

The human-judgment roles used in the negative-outcome decisions were also limited. 

One of the decisions (C113) used none of the defined roles, but only had external human 

judgment from a partner available when making the decision. The other decisions (C812, 

C842) were influenced by the role of initial assessment. This initial assessment, however, 

was impacted by limited experience. 
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Table 24. High-Judgment DM-Steps - Human Judgment Roles 

 

As Table 25 shows, data analytics was almost exclusively used during the development 

step, mainly in the roles of confirmation (n=5) and enabler of judgment (n=5). The role 

of confirmation was employed in this step to confirm the managers’ judgment and initial 

assessment, which matches this cluster’s characteristics. Data was employed as an 

enabler of judgment when managers reached the limits of their own experience or mental 

capacity but had already defined the key parameters of the decision. The roles of 

challenger of judgment, exploration, and no-brainer found no application in this high-

judgment decision cluster. Its use in the roles of justification and identification was also 

limited, as these decisions were not data-centric, the value of data as identification or 

justification being limited.  

The negative-outcome decisions applied the data analytics roles of enabler of judgment 

and confirmation. In decision C113, data was used as an enabler of judgment; however, 

only external data was available. While data analytics results deemed the selected 

alternative a good choice, this data did not reflect the organization’s characteristics, 

which eventually led to a negative outcome. For incidents C812 and C842, the role of 

confirmation was used to confirm the managers’ initial assessment. But while the data 

confirmed their assessment, both the data and the assessment were limited to a very 

specific context that did not apply to the actual decision parameters. 

Identification Development Selection

n=2 n=6 n=6

Initial Assessment n=4 2 1 1

Outweighing of Analytics n=4 0 2 2

Enrichment of Analytics n=3 0 2 1

Sense Check and Data Challenging n=3 0 1 2

Identifier of Need for Analytics n=0 0 0 0

Human Judgment Role

High-Judgment DM Steps
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Table 25. High-Judgment DM-Steps - Data Analytics Roles 

 

Decisions in this cluster mostly relied on the managers’ human judgment during the 

development and selection steps of the decision-making process. The roles of analytics 

were essentially only used for the development step to confirm managers’ assessments 

or enable judgment. The overall use of data analytics for this cluster was thus relatively 

limited in scope and scale. 

Managers attributed this to the decision types that mostly fell into this cluster. A lot of 

tactical decisions could be categorized as high-judgment decisions. These decisions 

tended to lack access to data, and due to the often digestible consequences of tactical 

decisions, managers decided to go with their intuition: 

You wonder about the consequences later. As long as you know that 

the consequences are not going to be that severe, then why not? But 

you know, the more severe the consequences, the more checking and 

double-checking you would have to do. (M01) 

M91 echoes this sentiment by saying that the day-to-day decisions are mostly based on 

experience and the manager’s professional background, and not on data analytics results, 

Identification Development Selection

n=2 n=13 n=3

Enabler of Judgement n=9 1 5 3

Confirmation n=6 1 5 0

Identification n=2 0 2 0

Justification n=1 0 1 0

Challenger n=0 0 0 0

Exploration n=0 0 0 0

No Brainer n=0 0 0 0

High-Judgment DM Steps

Data Analytics Role
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“but when you’re getting into bigger strategic decisions, absolutely is where to me data 

does play a big part” (M91). 

Also, several complex decisions could be attributed to this cluster. These decisions 

mostly lacked clearly definable parameters or, often, access to data. As general manager 

M91 phrased it, complex decisions “can go all over the place” (C911). For these kinds 

of decisions, managers could not follow a structured process, and human judgment 

became more relevant, as M91 added: “When you go outside of a standard process […] 

it does come often down to judgment, or experience. When we just make a call” (C911). 

Executive M31 summarized the importance of human judgment in complex decisions 

with one sentence: “Essentially the complex question is a talking one” (M31). 

4.2.4.3. High-Data Decisions 

The last identified decision cluster, high-data decisions (n=12), refers to decisions that 

displayed a high level of data analytics use, and limited to no use of human judgment. 

Three of the decisions were categorized as opportunities, whereas eight were considered 

problems. One decision could not be classified as either. While most high-data decisions 

were found to be solving problems (n=8), high-judgment decisions were mostly assessing 

opportunities (n=8). The support of data analytics was therefore seen as more significant 

for problem-solving than for the assessment of opportunities. High-data decisions were 

triggered to equal amounts by anecdotes (n=4), routine checks (n=4), and in the context 

of evaluations (n=4). None of these decisions were triggered externally.  

As noted in the definition of externally triggered decisions, they often lack internal 

reference points and therefore require a fair amount of human judgment. The lack of 

external triggers in this high-data cluster therefore matches its characteristics. Most 

anecdotal decisions fell into the high-data cluster, as the trigger was purely based on 
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human judgement, and the ensuing decision used data to assess this judgment. High-data 

decisions triggered by routine checks exclusively used the role of exploration for their 

decisions, with managers following established data-driven processes. The evaluation 

decisions in this cluster were either complicated or simple decisions for which the 

managers had measurable components to assess and enough data was accessible.  

Figure 12 provides an overview of the frequency distribution of data analytics and human 

judgment roles across the different decision-making steps of high-data decisions. Human 

judgment roles can be seen to have had an equally light impact on all three steps of the 

process. Data analytics roles also only exhibited a light frequency in the identification 

step but became more important for the development and selection step.  

While human judgment was employed throughout the decision-making process in a 

supporting capacity, data analytics was a significant influence on the development step 

of the most often complicated decisions. In these decisions, the alternatives were often 

rather clear and defined, and data analytics was used to judge the best option for 

management. In often predefined and structured data-driven decision-making processes, 

data analytics could not only be used to evaluate the best option when given a limited 

number of alternatives, but also to further explore the variables of the decision. 

 

Figure 12. Roles in High-Data Decisions 
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In accordance with their data-driven nature and the well-organized application of 

analytics in the decision-making process, these high-data decisions were almost 

exclusively made by the two companies with the highest level of analytics maturity, 

Organizations 1 and 9. The consistently positive outcomes of the incidents in this cluster 

indicate that data-driven decisions can be successfully employed by organizations that 

are mature with respect to data analytics. More on the aspect of analytics maturity is 

discussed in Chapter 6. 

A typical example of such a high-data decision by an organization with a high level of 

analytics maturity is decision C133. This decision was triggered by a routine check to 

evaluate a scorecard in use by the organization. In an established and highly structured 

process, data analytics was employed as an enabler of judgment to assess the impact of 

previously determined and recurring variables on the performance of their scorecard. The 

role of data analytics was very significant for the outcome of this decision, whereas 

human judgment functioned in a merely supporting capacity. Similar results can be found 

in most decisions in this cluster. 

While the human judgment roles were evenly distributed across the three decision-

making steps, the actual roles applied were limited, as demonstrated in Table 26. 

Judgment was almost exclusively used by managers in form of initial assessment, mostly 

during the identification (n=4) and development step (n=4). In these high-data decisions, 

the value of human judgment was noted primarily as providing a first assessment of the 

situation, which was then further evaluated by data analytics. In exceptional cases, 

human judgment was furthermore used as a sense-check (n=2) and to enrich data 

analytics results (n=1). The role of outweighing data analytics did not find application in 

this cluster, as the relevance of human judgment was limited in high-data decisions. 
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Table 26. High-Data DM-Steps - Human Judgment Roles 

 

Similar to decisions in the balanced cluster, data analytics roles were mostly employed 

in the development and selection step, as shown in Table 27. The most common analytics 

roles were enabler of judgment (n=10) and exploration (n=10). Enabler of judgment was 

primarily used for the development step (n=5), but also found application in the other 

steps, matching the results of the previous two decision clusters. The role of exploration 

mostly found application in this cluster, having had no influence on high-judgment 

decisions, and only limited impact on balanced decisions. Exploration was particularly 

significant for the development step (n=8), in which data analytics was applied to identify 

patterns and understand complex connections that were not evident to managers from the 

outset.  

Justification (n=5) was also an important, if less frequent, role for high-data decisions, 

as a data-driven environment requires the support of data analytics to justify decision 

outcomes. Furthermore, the role of challenger (n=4) was employed to challenge the 

initial assessments of managers, the only relevant role of human judgment in this decision 

cluster. The role of confirmation, one of the main data analytics impacts in the other two 

decision clusters, barely influenced managerial decisions in the high-data cluster (n=2). 

This matches the characteristics of this cluster, in which data analytics took on leading 

instead of supporting roles in the decision-making process. 

Identification Development Selection

n=5 n=5 n=4

Initial Assessment n=10 4 4 2

Sense Check and Data Challenging n=2 0 1 1

Identifier of Need for Analytics n=1 1 0 0

Enrichment of Analytics n=1 0 0 1

Outweighing of Analytics n=0 0 0 0

High-Data DM Steps

Human Judgment Role
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Table 27. High-Data DM-Steps - Data Analytics Roles 

 

The high-data cluster contains data-driven decisions by analytics-savvy organizations for 

which data analytics took the lead in the decision-making process. While the impact of 

human judgment was mostly limited to providing managers with an initial assessment of 

the situation, data analytics dominated the development and selection stage. In this 

cluster, data analytics was used to its fullest potential by applying it for exploration and 

using it as the main criterion in the selection process. 

While all three clusters contain successful decisions, managers often voiced their 

discontent about their own or their organization’s decision making; they were generally 

in favor of more balanced or data-driven decision-making approaches. These 

discrepancies between the managers’ actual decisions and their general views on ideal 

decision making are further discussed in the next section. 

4.2.5. Ideal Decision Making 

The previous section focused on actual decisions that were shared by the managers during 

the critical incidents part of the interview. However, during the more general case study 

portion, it became apparent that the participants often had differing ideas about their ideal 

decision-making process. This idealized process often contrasted with the examples of 

actual decisions they had previously shared. Several participants were aware of this 

Identification Development Selection

n=5 n=19 n=12

Enabler of Judgement n=10 2 5 3

Exploration n=10 1 8 1

Justification n=5 0 2 3

Challenger n=4 0 2 2

Identification n=3 2 1 0

No Brainer n=2 0 0 2

Confirmation n=2 0 1 1

Data Analytics Role

High-Data DM Steps
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discrepancy and their current shortcomings, as executive M22 demonstrated when asked 

whether he follows a structured process or certain steps when making decisions: “Uhm, 

ideally or what we do?” (M22). Several managers expressed similar sentiments, using 

phrases such as “I would like/want it to be…”. An example of this is manager M83 

explaining his ideal balance of data and judgment use: “I’d like it to be 75% data-driven, 

25% intuition. I’d like it to be like that” (M83).  

In this section, the focus therefore lies on outlining findings that describe this ‘ideal’ 

decision-making process further, accumulating managers’ perceptions on requirements 

to improve decision making, as well as lessons they learned from their previous decisions 

and from overcoming obstacles. The five key requirements managers identified were to 

find a balance between judgment and data in decision making; building trust in data 

analytics; transforming reactive into proactive decisions; and creating processes and 

guidelines around decision making.  

4.2.5.1. Finding Balance in Decisions 

Finding a balance between data and human judgment use was a key concern addressed 

by managers, and often seen as a shortcoming in their current decision making (M12). 

Both data input and judgment were often crucial for decision success, as incident C711 

showcases. Executive M71, for example, had been approached by an external party for a 

business opportunity and had to decide whether to take or decline it. As M71 emphasized, 

both data and human judgment were critical to reach a positive decision outcome. Data 

in the form of financial information and judgment in the form of business understanding 

and experience were considered in assessing the opportunity for cultural fit. M71 remarks 

that in past decisions, neither of the components might have been considered, which 

would have led to a negative decision outcome:  
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So again, if I think back: Once upon a time we might have just gone 

for it and found out later to our cost that a) it wouldn’t have worked 

financially, and b) it wasn’t going to work culturally either. (C711) 

M10 confirmed this notion by saying that even if data yields a certain result, past 

experiences will always be mixed into the decision making as well. Maintaining this 

balance was important, as both human judgment and analytics have limitations. Analytics 

reached its limits at the point when the decision parameters were unclear or impossible 

to model. As executive M51 argued, intuition could then be an invaluable decision-

making tool for managers, given the right experience: 

Quite often it’s necessary to make decisions based on intuition. And 

intuition can be a powerful way of making the right decision, take it 

the practitioner has the experience or some knowledge or the ability 

to work in heuristics or they’ve got knowledge about lots of different 

things that are very hard to model. You can end up getting some quite 

good answers. (M51)  

The roles of human judgment and individual knowledge were also limited and could be 

prone to biases. Managers’ knowledge was found to be formed by their own experiences 

which might vastly differ from the organization’s collective knowledge or procedures. 

Head of department M82 therefore advocated to reduce the influence of these factors in 

certain decisions to avoid inconsistent decision quality and work outputs:  

I think there are many roles within the business, where we should not 

necessarily rely on individual knowledge. Don’t base it on your own 

personal knowledge. We have many people in this office next door 
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that do things because they know better how to do it, and we get 

different products into my team because of that. (M82) 

Participants generally spoke out for a balanced decision-making approach, advocating 

the use of both, human judgment and data analytics. A balanced approach, however, was 

also found to encounter the difficulty of contradicting results. If, for example, an initial 

assessment did not match the results of data analytics, managers were often conflicted 

about the selection of an alternative. Manager M92 pointed out this “clash” of intuition 

and data, referring also to the concept of developing sufficient understanding for 

analytics, which builds trust in data results. 

4.2.5.2. Trust in Data Analytics  

Trust in data analytics was a significant factor for successful data-driven decision 

making. Reasonable data quality and access to information were essential prerequisites. 

However, to build organization-wide trust in data demanded further steps, including a 

cultural shift. This shift and its importance were highlighted by head of department M85 

in an incident:  

It’s not about presenting facts, it’s actually about effecting change . So 

the challenge now is we’ve got reasonably good information but flying 

that information out would get the change we need, and there’s a real 

cultural thing of building belief. But if you don’t have good 

information, you can’t build belief. Once you believe in the value, you 

get action.” (C851) 

If this trust was not built, managers faced difficulties when using the data analytics results 

to justify their decisions, particularly when employing the results that contradicted the 
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intuition of other parties involved in the decision. Executive M51 demonstrated the 

importance of this trust and understanding in an incident he shared. During this decision, 

analytics provided valuable insights, but not all involved decision makers were willing 

to accept the results:   

So suddenly you’ve got this breakthrough and either one will be in 

complete disbelief and denial: ‘How could that be? That must be 

wrong. No, I’m not going to understand it or believe it.’ And others 

would take their time to actually absorb that, and say: ‘I had no idea’, 

and it might change the whole range of things. (C511) 

In order to facilitate this understanding of analytics’ significance and to create trust in its 

results, it was therefore deemed a useful practice to share positive experiences with data-

driven decisions. According to general manager M93, showing and comparing data 

results with coworkers obliged employees to make sense of the data. This facilitated more 

fact-based discussions than emotive ones (C932).  

The topic of trust will be further discussed in Chapter 5. Data quality and access, as well 

as organizational change, are aspects discussed in Chapter 6. 

4.2.5.3. Transforming Reactive into Proactive Decisions 

Once managers had had their first successful experiences with data analytics, the lessons 

they learned from these decisions were often incorporated into further decision making. 

After a positive outcome decision that was informed by data analytics, analyst M86 

applied a similar approach to an on ongoing decision:  

I think I’m trying to apply that thinking to my current project . I 

thought rather than being reactive, which is: ‘oh I have an error…just 
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solve it, get rid of it’, we need to have a preventive approach. So I will 

make sure that I use more that kind of thinking by maybe tweaking the 

code, which will fix the root cause. (C861) 

In this example, the analyst M86 used the lessons learned during the previous data-driven 

decision to define a more proactive decision-making process. This approach was then 

considered a guideline to prevent errors and avoid negative outcomes. In a similar 

example, general manager M14 used data that assisted a positive decision outcome to 

establish a regular report. This report enabled the organization to make more proactive 

decisions, and to identify negative developments early on: “And based on this one we 

started producing a regular report to see this coming sooner” (C142).  

4.2.5.4. Decision-Making Processes and Guidelines 

In their process to convert the lessons learned in the early stages of data-driven decision 

making into actionable insights for others, managers often saw the need to clearly define 

decision-making processes or guidelines. An example of this is an established case study 

process, as manager M41 explained during incident C411. Particularly in data-driven 

organizational cultures, structured decision-making and business cases were clearly 

valued. While organizational culture is further discussed in Chapter 6, its implications 

for decision-making processes and guidelines are made clear in an example by general 

manager M93. Discussing the company’s decision-making approaches, he emphasized 

the role of business cases:  

We’re very structured. You just can’t go and say: ‘I’d like to do this, 

because I think this is the right thing to do.’ No, it’s very much about 

that business case, the analytics is done, the recommendation is done, 

and you’ve assessed something properly, before you design it . (M93) 
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Executive M51, contrastingly, pointed out a limitation of business cases: as these cases 

are mostly used for strategic and complex decisions, the availability of suitable data and 

experiences is restricted. M51 therefore highlighted that structured business cases were 

a useful tool, but that their predictability was difficult to determine: “[when] you always 

deal with the future, you don’t have a lot of knowledge about how it’s likely to work” 

(M51). 

In general, however, managers saw structured decision-making guidelines as a benefit. 

When asked if there was a defined process in place for strategic decisions, head of 

department M85 negated the question but expressed a need for a more structured 

approach:  

There should be. In my current role, I haven’t got a good defined 

process. It’s always: understand, validate, test, probe. But a really 

good decision-making process or analytical method that I use? No. 

(M85) 

Analyst M86 also recognized the benefits of a long-term integration of lessons learned. 

She not only adapted her current decision-making approach according to a past positive 

outcome decision, but furthermore made “sure the policies are documented” (C861). The 

documentation was a vital contribution for future decisions in this field.  

While the consensus among managers supported decision guidelines, executive M10 saw 

limited value in defined decision-making processes. He elaborated that decisions are not 

created equal, their results therefore not necessarily universally replicable: “I think each 

decision would have quite a different impact. So if you put that in a square box I don’t 

think that would work in different areas of the business.” (M10)   
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4.3. Discussion: Dual Process Theory in the Age of Big Data 

The analysis in this chapter focused on the exploration of changes in management 

decision making in the age of big data on the level of individual decisions. It therefore 

contributes to the current understanding of management decision-making processes, and 

particularly to data-driven decision making, in the following ways: 

• Decision-making processes incorporating managers’ use of data analytics in 

addition to human judgment were introduced, extending extant literature on 

decision making. The comparison of managers’ actual versus ideal decision 

making provided further supporting insights. 

• Decision processes were categorized according to the extent of data analytics and 

human judgment in use, providing a new categorization of decisions for the age 

of big data. 

• Distinct data analytics and human judgment roles were identified, highlighting 

the different facets of both in order to provide a contrast to the often one-sided 

representation in extant literature. 

Overall, the findings provide insights into the balance of data analytics and human 

judgment that managers ultimately need to find in their decisions.  

Clustering the decisions shared during data collection into balanced, high-judgment, and 

high-data decisions helps to develop a more detailed understanding of the specific 

processes the managers used. The clusters highlight the extent of data and judgment use, 

their specific roles, as well as the decision triggers, types and contexts that impacted 

managerial decisions. 
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This section discusses the findings, covering the embedded unit of analysis, i.e. the 

decision in the context of the two-system view of dual process theory. Distinguishing 

between the decision maker’s intuition and reasoning, referring to System 1 and System 

2 respectively, the theory is used as a lens for explaining the extent and specific 

applications of data analytics and human judgment.  

Firstly, the extent of data and judgment use is discussed by placing the identified decision 

clusters into the context of decision types and decision contexts, as defined by current 

literature. Secondly, the specific roles data and human judgment played in decision 

making are discussed in the context of cognitive biases, heuristics, and expert decision 

making. Lastly, the impact of these data and judgment influences on decision-making 

processes on extant literature is discussed. This serves to highlight the extension of 

decision-making process steps in the age of big data.  

4.3.1. Extent of Data Analytics and Human Judgment Use: Decision Clusters 

The clustering of decisions as outlined in the findings is considered the first key 

contribution of this research. This clustering extends the understanding of decision 

categories beyond traditional decision types and contexts by incorporating the unique 

decision clusters of data and judgment use. Establishing these decision clusters furthers 

the academic understanding of increasingly data-driven decisions and will enable 

managers to better grasp the increasing number of impacts on their decisions.  

Clustering decisions according to the extent of data analytics and human judgment used 

was a result of the analysis performed. The decisions gathered during data collection 

were initially categorized according to decision types as described by Ackoff (1990), and 

decision contexts as defined by Snowden and Boone (2007). In terms of decision types, 

the incidents were classified as strategic, tactical, or operational, according to their 
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impact and longevity (Ackoff, 1990). These classifications are commonly accepted, with 

the decision types finding application in further extant literature (Drucker, 2006; 

Eisenhardt & Zbaracki, 1992; Mintzberg et al., 1976). The second dimension, decision 

context, assessed decisions as either complex, complicated, or simple, in an attempt to 

reflect the decision’s complexity and circumstances. This classification is based on 

Snowden and Boone (2007). Further sources referencing complex, complicated, and 

simple decisions could be found in the decision-making literature (Dykstra & Orr, 2016; 

Wray, 2017).  

However, these categorizations of decision types and contexts did not fully capture the 

two main components of this study, i.e. the use of data analytics and the use of human 

judgment. Therefore, as outlined in section 4.1.2., additional decision categories were 

created by assessing the extent of data and judgment use for every decision. Three main 

clusters ultimately emerged: balanced, high-judgment, and high-data decisions. 

Most decisions were sorted into the balanced cluster. These decisions displayed high 

levels of both data analytics and human judgment use, reflecting a balanced approach by 

the managerial decision makers. Most strategic decisions could be categorized as 

balanced. This is in accordance with extant literature, which states that strategic decisions 

require an interplay of intuition and rational decision-making elements (Calabretta, 

Gemser, & Wijnberg, 2017; Elbanna, Child, & Dayan, 2013; Khatri & Ng, 2000). Indeed, 

decisions with considerable impact demand managerial experience, but also call for 

further validation and business case support to justify the decision to other stakeholders 

(Hanlon, 2011). Collecting information has been found to be a key success factor for 

decision-making performance and the gateway to more effective strategic decisions 

(Dean & Sharfman, 1996; Elgendy & Elragal, 2016; Kaufmann et al., 2017). 
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Strategic decisions are known to consume a considerable amount of time and resources, 

due to their complexity and long-term effects (Harrison, 1995; Intezari & Gressel, 2017; 

Shepherd & Rudd, 2014). This complexity was also confirmed by the findings of this 

thesis, as the decisions in this cluster were mostly complex and complicated. Both 

complex and complicated decisions were made by using human judgment and data 

analytics: while human judgment was mostly used during the identification and 

development steps of the decision-making process, data analytics was primarily utilized 

in the development and selection steps.  

Complex decisions are seen as unpredictable and rely on probing and experiments 

(Snowden & Boone, 2007; Wray, 2017). The complex decisions captured during data 

collection therefore benefitted from an initial assessment that was based on experience 

and intuition, and subsequent data-driven piloting and experiments during the 

development and selection steps. This approach also served complicated decisions, as 

they often have a number of potential solutions and therefore require thorough analysis 

and expertise (Snowden & Boone, 2007).  

Decisions in the high-judgment cluster displayed high levels of judgment use, and only 

low to moderate levels of data use. In these decisions, business understanding and domain 

experience were considered more relevant than the input of data. Mostly tactical 

decisions were sorted into this cluster, as well as a mix of complex and complicated 

decisions. The main differentiating factor between the decision in the balanced cluster, 

ultimately was the decision type. Managers making decisions in this cluster made 

extensive efforts to gain access to data for strategic decisions by, for example, running 

experiments and pilots. Tactical decisions in this case were considered to have fewer 

significant consequences, and the time and cost to gather relevant data was not deemed 
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proportional to the decision impact. Instead, managers relied particularly heavily on 

human judgment.  

Human judgment was mostly used during the development and selection step of the 

decision-making process, whereas data analytics was only used in a limited capacity. In 

several instances, data played no relevant role whatsoever. Here, human judgment was 

the driving force of the decision. The importance of business understanding and 

experience was also supported by the high number of complex decisions. The resulting 

novelty and open-endedness of these complex decisions often leads to unclear decision 

requirements, solutions, and difficulties in evaluating outcomes (Mintzberg et al., 1976). 

Managers referred to these decisions as, in essence, all over the place. As neither their 

process nor their outcomes could therefore be predicted by data, judgment was 

considered more relevant in these cases. 

Such an intuitive approach is particularly more suitable for decisions that are 

characterized by incomplete information and knowledge, which is often the case in a 

dynamic business environment (Kathri, 2000). The factors and variables of these 

decisions might not always be quantifiable. The managers’ experience thus becomes 

more valuable as a decision-making influence. This is supported by the Theory of 

Unconscious Thought, which postulates that more highly complex decisions benefit from 

the use of unconscious thought and lead to higher quality outcomes than conscious 

decisions (Dijksterhuis & Nordgren, 2006).  

While this theory explains the successful judgment-driven complex decisions in this 

cluster, it is important to revisit the fact that the only negative outcome incidents of this 

study were also complex and judgment-driven. These incidents were made by managers 

who lacked both previous experience and relevant understanding of the decision 
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background. As unconscious thought relies on these previous experiences (Dijksterhuis 

& Nordgren, 2006), their judgments were as a result not reliable.  

High-data decisions were characterized by high levels of data analytics use and 

comparatively low levels of human judgment use. The influence of human judgment was 

therefore limited throughout all decision-making process steps in this cluster. Data 

analytics was considered much more significant for these decisions by managers and 

found application particularly in the development and selection steps. These findings 

match the representation of data and judgment use in extant literature regarding the 

cluster’s decision contexts. 

High-data decisions held a clear majority of complicated decisions, compared with 

complex or simple contexts. As complicated decisions require a high level of analysis 

and expertise to determine the best solution among a large number of possibilities 

(Snowden & Boone, 2007), data-driven decisions fit logically into this cluster. The 

expertise that managers required for these complicated decisions was merely supported 

by the role of human judgment. The required high level of analysis explains why 

decisions in this cluster were exclusively made by managers from organizations that 

showed very high levels of analytics maturity: managers in these cases were mostly able 

to simply follow established processes. 

This justification matches literature on data-driven decision making that posits a 

readiness of organizations for big data and analytics-driven decisions (M. Gupta & 

George, 2016; Jagadish et al., 2014; N. Shah, Irani, & Sharif, 2017). The managers 

reporting the high-data decisions worked in data-ready environments, which also 

explains the positive outcomes of the four strategic decisions of this cluster. While 

strategic decisions usually also require high levels of human judgment, the organizations’ 
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level of maturity enabled the managers to benefit from sophisticated and tested data 

analytics methods that had already previously incorporated and synthesized expertise. In 

such a stable environment, data and an analytical approach are seen as more reliable and 

can lead to better outcomes than decisions based on judgment (Dijksterhuis & Nordgren, 

2006; Khatri & Ng, 2000). The concept of analytics maturity will be further discussed in 

Chapter 6. 

As outlined above, the characteristics of the decision clusters can be attributed to the 

composition of each cluster’s decision types and contexts. While this provides a certain 

background explaining the extent of data and judgment use, a further investigation of the 

specific parts data and judgment played in the decision-making process added still more 

insights. 

4.3.2. Roles of Data Analytics and Human Judgment Use 

The second key contribution this research makes is the understanding of human judgment 

and data analytics as distinct roles in the decision-making process. Extant literature 

focuses on the importance and extent of intuition, judgment, and data in decision making, 

but not to the scale of differentiating between distinct roles. For an increased 

understanding of the identified roles and their place in the decision-making process, all 

identified human judgment and data analytics roles were assessed in the context of the 

dual process theory. This offered insights into the interaction of System 1 and 2, and 

therefore the interaction of the roles with one another. Therefore, this research 

contributes to the extension of the dual process theory by deepening the understanding 

of conscious and unconscious thought in managerial decision making in the age of big 

data. 
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System 1 is understood as a fast, effortless, automatic and intuitive response which is 

shaped by previous experiences (Evans, 2003; Gilhooly & Murphy, 2005; Kahneman, 

2003). As data analytics roles require conscious thought and deliberate action, only 

human judgment roles of this research can be categorized as part of System 1. However, 

not all human judgment roles are automatic processes, some requiring similarly 

conscious, analytical thought to data analytics roles.  

Looking more closely at differences among human judgment roles, initial assessment as 

well as sense check and data challenging can be understood as System 1 processes, as 

they are a manager’s automatic response to being presented with either a new decision 

or new data results, respectively. In both cases, the response is an immediate assessment 

that is based on habits and experience with the decision subject or data. A negative gut 

feeling can therefore lead managers to further investigate or ignore certain data sources 

(Kaufmann et al., 2017). The aforementioned System 1 roles identified in this research 

are considered required skills for positive results when it comes to big data: “A proper 

understanding of the challenges to be addressed, plus critical thinking when it comes to 

turning data into insights, are probably more crucial success factors than using the latest 

Big Data analytics tools” (Wirth & Wirth, 2017). 

System 1’s role in the dual process theory is seen as providing shortcuts for System 2, so 

as to avoid lengthy analysis of potentially endless options (Betsch & Glöckner, 2010; 

Kaufmann et al., 2017; Stanovich & West, 2000). The roles of initial assessment as well 

as sense check and data challenging, match System 1’s role in the case of this research, 

providing the analytical parts of the decision-making process with shortcuts and rapid 

feedback. In the age of big data, this proved useful to managers for narrowing the focus 
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of the decision, minimizing required data analytics efforts, and evaluating analytics 

results. 

These System 1 shortcuts or heuristics can also lead to cognitive biases (Bazerman & 

Moore, 2013; Betsch & Glöckner, 2010). Although cognitive biases did not play a 

prominent role in the collected data, several examples could still be identified. In the 

examples, relying on outdated or insufficient experiences led to misinformed judgments. 

Preventing negative outcomes from these biases is part of System 2’s monitoring task, 

which is an essential component of the systems’ interaction helping managers to avoid 

negative outcomes like those mentioned above. However, biases cannot be avoided 

completely, as not only System 1 is biased. Rational analysis is also biased, as 

quantitative approaches are based on assumptions and perceptions as well (Kathri, 2000). 

Managers need to be aware of the limited application of pre-defined approaches in 

unfamiliar environments (Dane & Pratt, 2007).  

Intuition and judgment are therefore also inevitably part of System 2, which is generally 

understood to consist of systematic procedures that allow decision makers to deliberately 

gather and evaluate information, enabling hypothetical thinking (Dane & Pratt, 2007; 

Gilhooly & Murphy, 2005). Three of the identified human judgment roles could be 

attributed to System 2, namely identifier of need for analytics, enrichment of analytics, 

and outweighing of analytics. These roles are conscious processes that demand 

managers’ attention and full analytical capabilities.  

As an identifier of need for analytics, the manager’s conscious assessment is that their 

judgment is not sufficient to reach a satisfactory decision outcome, and that data analytics 

is therefore required to further evaluate the situation (Kaufmann et al., 2017). In this role, 

judgment also determines the extent of and sources for the data analysis (Larreche & 
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Moinpour, 1983). This role is therefore used in early stages of the decision-making 

process.  

In a sequential and rational process, following the identified analysis, managers can also 

use their judgment as an enrichment of analytics. Data has limitations which might not 

be able to represent all relevant aspects of a decision, and can be mitigated by human 

judgment (Pauleen, 2017). In the role of enriching analytics, judgment was used to 

incorporate experience and business understanding, and to provide further facets for the 

development of decision alternatives. Eventually, judgment could also outweigh the 

results of data analysis, when important components could not be captured by the data. 

Data analytics also took on several roles identified as System 2 processes. As analytics 

always requires a certain extent of conscious thought and action, all data analytics roles 

were attributed to System 2. In the managers’ decisions, data was able to identify 

situations that required decisions and enabled managers’ judgment when the alternatives 

were too complicated to judge using merely previous experience and intuition. Data also 

fulfilled the roles of exploring decision factors and functioned as a ‘no-brainer’ in clear 

black and white situations that did not demand any further human judgment.  

The data analytics and human judgment roles were found to interact in various ways, 

balancing their limitations; similarly, System 1 and System 2 complement one another. 

Interacting with System 1, data analytics contributed to the decision-making process by 

providing a justification for other stakeholders, or by confirming or challenging 

managers’ initial assessments. Particularly in the role of challenger, analytics (and 

rational processes in general) can outweigh biased or misinformed initial assessments 

(Kaufmann et al., 2017). 
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These interactions and their effects on the decision-making processes depended on the 

decision types and the extent of data and judgment use, which will be outlined further in 

the next section.  

4.3.3. Extension of Decision-Making Process  

The increasing potential of data analytics and the availability of various data sources 

undoubtedly impacted the decision-making process of the interviewed managers. As 

indicated in the previous sections, these impacts were evident in the evolving roles of 

data and judgment, as well as in the extent of their use. All three steps of the decision-

making process were affected when comparing the findings to extant literature on 

decision-making processes. This section focuses on the seminal work identified in the 

literature review. As the abductive approach applied in this study focuses on matching 

theory with findings and searching for explanations for phenomena, these seminal works 

provided sufficient explanations and a solid theoretical base. The number of steps 

identified in the data could be matched to the traditional three-step decision-making 

models introduced by Simon (1960) and followed by Mintzberg et al. (1972). Eisenhardt 

and Zbaracki (1992) also identified a three-step process as a result of their strategic 

decision-making literature review. 

While Mintzberg et al.’s (1976) model concurs with Simon’s (1960) trichotomy, it differs 

in its definition of the three decision steps, most significantly regarding development and 

selection activities. Mintzberg and colleagues’ selection step consists of either an 

intuitive approach referred to as judgment, bargaining activities with other stakeholders, 

or an analysis of previously designed alternatives, which in turn also leads to judgment 

or bargaining. The development step is limited to search and design activities.  
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This contrasts with Simon’s (1960) description of the decision steps, and the findings of 

this thesis. In Simon’s model, the development step in the findings incorporated mostly 

alternative evaluation activities. The analysis taking place during the development step 

is a result of data demanding a more dynamic decision-making approach and increased 

System 1 and 2 interaction, which helps to avoid analysis paralysis (Harrison, 1995) or 

cognitive biases (Bazerman & Moore, 2013) during the development of alternatives.  

Mintzberg et al. (1976) accounted for the dynamic nature of strategic decisions in a 

different way by postulating a non-sequential nature of the steps. They reasoned that the 

decision-making process “is subjected to interferences, feedback loops, dead ends, and 

other factors” (p.263). These dynamic factors can delay, speed up, stop, or restart the 

decision-making process, and cause cycles within a phase, or even the circling back to a 

prior phase. While the results of the critical incidents content analysis did exhibit 

dynamic elements, there were no processes that circled back into previous stages. 

Simon’s (1960) process understanding therefore matches the results of this study well, 

in that he outlined the development stage to contain most of the work regarding design 

and evaluation of alternatives, and the selection stage as a mere fragment of that time. 

Simon (1960) also said that the steps are mostly clearly distinct from each other, but that 

each step also contained a self-contained decision-making process, meaning that each 

step of the process might require its own intelligence, design, and choice, as he previously 

labeled the three steps. 

The findings of this research would therefore fit the trichotomy’s definition outlined in 

Simon (1960), and to some extent the dynamic spirit of Mintzberg et al. (1976). However, 

through the definition and use of roles of human judgment and data analytics, the 

dynamic of the process can be achieved within each phase, and does not require a 
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recycling to previous phases, as Mintzberg et al. (1976) postulate. Neither does each step 

resemble a completely self-contained process, as Simon (1960) understands the three 

steps. From the findings and the application of roles, it is rather understood that the steps 

follow a clear path, and even within each step follow a sequence of roles. The sequence 

of roles per step can be repeated, for example, per decision alternative, but is limited to 

the specific step’s tasks. ‘Identification,’ therefore, is limited to assessing the situation, 

‘development’ to developing and evaluating different options using a combination of 

analytics and judgment, and ‘selection’ ultimately to choose one of the options in the 

final step of the process. 

In order to clarify the gained understanding of the managerial decision-making process 

in the age of big data, the findings are discussed in the context of these models and further 

extant literature below. The distinct steps are reviewed and the effects of both the extent 

and most significant roles of human judgment and data analytics are outlined per decision 

cluster. This highlights the most common results and suggests an ideal decision-making 

process for each cluster. 

4.3.3.1. Balanced Decisions 

Decisions in this cluster followed a balanced approach between the use of human 

judgment and data analytics, which was reflected in a comprehensive and thorough 

decision-making process on the part of the managers. This process is illustrated in Figure 

13 below, which illustrates the interaction of Systems 1 and 2, as well as the most 

commonly used data analytics and human judgment roles by managers, which were 

balanced in the case of these decisions.  
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Figure 13. Balanced Decision-Making Processes 

The first indication of the thoughtful approach behind these balanced decisions could be 

seen in the identification step. Only a very low number of decisions were initiated by the 

reactionary catalyst of external triggers, with most decisions being triggered by the active 

efforts of evaluations and routine checks. This matches Simon’s (1960) depiction of 

managerial decision identification. He states that executives spend a considerable amount 

of time on identifying changes in their environment that require a decision action. 

Mintzberg et al. (1976) posit that a decision is triggered when a threshold of stimuli is 

crossed, meaning that either several stimuli or one severe stimulus leads the manager to 

take action. For this research, this threshold was not defined or considered a significant 

criterion. Rather, the identified decision triggers were categorized according to the nature 

of the stimuli. The different decision triggers were found to influence the ensuing 

decision-making process. 

Following the identification, the development stage usually involved a significant 

amount of data in the form of reports, ad hoc analytics, experiments, and pilots. The 
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involvement of data to this extent also inferred the inclusion of analytics-savvy 

employees in the decision-making process. This could be the managers themselves or, in 

many cases, additional business analysts. This contradicts Huber’s (1990) proposition 

that advanced information technology tends to decrease the number of people involved 

in the decision-making process.  

Furthermore, increased availability of data analytics provided the managers in this study 

with additional options to develop and assess alternatives during the development step. 

Including relatively new data sources and unfamiliar data types often led to loops in the 

development step, as data still had to be sense-checked. Analysis paralysis was more of 

a risk at this point than not considering enough alternatives (Harrison, 1995).  

The selection stage was mostly based on data, as managers had already employed their 

and others’ human judgment during the earlier decision-making steps. Considering most 

strategic decisions in the balanced cluster, managers used the data in this step to confirm 

their previous assessments, or to justify their choices to other stakeholders. As data 

analytics was an important part of this final decision-making step, several managers 

encountered related obstacles, such as a lack of trust in the data, misunderstandings of 

the results, and lingering biases that needed to be overcome.  

The selection step modes of analysis, bargaining and judgment could be partially 

identified in the managers’ decisions, and the roles managers applied in the process could 

be assigned accordingly. The analysis mode took place during the development step of 

the process and was executed by System 2 processes, i.e. the roles of enabler of human 

judgment and enrichment of analytics, as well as by System 1 processes in the form of 

initial assessment and a sense check of data analytics. The bargaining mode took place 

in the actual selection step in the form of System 2 processes and the data analytics roles 
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of confirmation and justification. Intuitive judgments, which would require System 1 

processes, could not be identified in the selection stage of balanced decisions. Intuitive 

processes were limited to the identification and development steps. This enabled the 

input of unconscious thought at the beginning of the decision-making process and an 

analytical and well-argued selection of evaluated alternatives at the end.  

Calabretta et al. (2017) outline a similar logic in their paradoxical thinking work when 

describing the interplay between intuition and rationality: System 1 processes provide 

affective evaluations and make connections, while System 2 processes structure the 

information and form a cognitive evaluation. Similarly postulating the interaction of 

System 1 and 2, Shapiro and Spence (1997) furthermore suggest using intuition first and 

following up with a more rigorous analytical approach. This timing was reflected by the 

balanced decisions cluster. System 1 processes in form of the human judgment roles of 

initial assessment, as well as sense check and data challenger, were mostly applied during 

the identification and development steps. The more analytical System 2 processes in the 

form of the other human judgment and data analytics roles could be found in all decision 

steps, but particularly during development and selection.  

The decision-making process displayed in Figure 13 and discussed above captured the 

actual findings of the critical incidents in this cluster. However, given the success of these 

decisions and the managers’ satisfaction with their outcome, this process can also be 

understood overarchingly as an ideal process for important strategic decisions. The 

findings showed that long-term strategic decisions benefit strongly from the input of 

human judgment, i.e. business understanding, experience, intuition, and from the use of 

analytics as a tool for gaining insights from data. In most cases, strategic decisions had 

to be justified. Data offered the opportunity to go beyond the use of a rule of thumb or a 
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mere gut feeling, delivering a solid validation of human judgment. The decisions in this 

cluster therefore relied highly on the knowledge of managers, but also required analytics 

to extract meaning from complex and often vast data sets–not only to confirm the 

managers’ judgment, but also to help them discover finer nuances.  

4.3.3.2. High-Judgment Decisions 

Decisions in this cluster relied to a large extent on the use of human judgment, and only 

minimally on data analytics. This led to a mostly judgment-driven decision-making 

process which heavily relied on the manager’s previous experience and intuition. This 

process is captured in Figure 14 below, which displays the interaction of Systems 1 and 

2, as well as the most commonly used data analytics and human judgment roles in this 

cluster.  

 

Figure 14. High-Judgment Decision-Making Process 

Compared to the balanced decision cluster, System 1 is more prominent in high-judgment 

decisions, and spans across all three decision-making steps. Human judgment roles also 

outweigh the number of analytics roles managers applied during the process. An early 

indication of this judgment-driven approach is found in the identification step: most 
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decisions were triggered externally. External triggers often led to the problem of a lack 

of internal reference points, which impeded the managers’ capabilities to assess the 

external data for organizational fit. This corresponds to the veracity criterion of big data, 

which posits that big data needs to be checked for credibility and for target audience 

suitability (Jagadish et al., 2014; Sathi, 2012). Due to the managers’ inexperience with 

data, or simply the lack thereof, decisions often had to be made based on incomplete 

information, which led to the high emphasis on human judgment in this cluster. 

This high reliance on human judgment was also noticeable during the development and 

evaluation of alternatives. Data analytics was only used to confirm judgments, or to take 

on minor parts in enabling judgment for more complicated scenarios. Most of these 

development and selection steps relied on the managers’ experience, business 

understanding, and intuition. These judgments, however, were error-prone, as the use of 

System 1 processes is particularly prone to resulting in cognitive biases (Bazerman & 

Moore, 2013; Stanovich & West, 2000). Furthermore, more heavily analytical System 2 

processes that relied to a large extent on human judgment led to incomplete assessments, 

demonstrated by the fact that in several incidents, the managers’ lack of experience 

negatively impacted the decision outcome. Experience is a critical contributor to decision 

making, particularly for impacting human judgments (Dreyfus & Dreyfus, 1980). As 

managers required experience in the decision matter as well as the assessment of internal 

and sometimes external data sources, any lack thereof led to the only reported negative-

outcome incidents. 

The three basic decision-making steps of identification, development, and selection, as 

outlined by Simon (1960), could also be recognized in decisions from this cluster. 

However, as described above, the identification step was less of an active scanning of the 
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environment, and rather more so triggered by external sources. The development step 

was also not as rigorous as in balanced decisions. While Systems 1 and 2 interacted 

during what Mintzberg et al. (1976) refer to as analysis, the contribution of data analytics 

was kept to a minimum. System 1 affected this step through the initial assessment of 

alternatives and sense check of data analytics results. System 2 processes provided these 

data results through the role of enabler of judgment and used further human judgment to 

enrich these results.  

Similar to balanced decisions, the analysis mode began and ended during development, 

while the two modes of judgment and bargaining took place during the selection step, as 

originally defined by Mintzberg et al. (1976). The only role that could be assigned to the 

bargaining mode is the outweighing of analytics, once again emphasizing the dominance 

of human judgment in this cluster. The mode of intuitive judgment requires System 1 

processes and could in this cluster be assigned as the role of sense check and data 

challenging. However, in contrast to Mintzberg and colleagues (1976), this intuitive 

judgment would not mark the endpoint of the selection step. While the challenging of 

data results could be identified as an important part in the development and selection 

step, the endpoint would in this case be the managers’ use of the roles of outweighing 

analytics, or enriching analytics with additional business expertise. System 1 processes 

therefore did not end the decision-making process; instead, conscious System 2 processes 

informed by human judgment served as the final step. 

Data analytics only found application in a very limited capacity during the development 

and selection steps of the decision-making process in this cluster. Data merely functioned 

as a confirmation for intuition or managerial judgment, or enabler of judgment for more 

complicated aspects, if sufficient data input was available. These roles were then 
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succeeded by the human judgment roles of enrichment of analytics or were outweighed 

by judgment. This corresponds to the work of Agor (1986), who suggests following up 

rational analysis of information with an intuitive synthesis.  

Due to the susceptibility of high-judgment decisions to cognitive biases and their limited 

potential for justifying decision outcomes, managers preferred the balanced decision-

making approach. However, the high-judgment approach was still often applied and seen 

as suitable for tactical or complex decisions.  

4.3.3.3. High-Data Decisions 

Decisions in this cluster relied mostly on data analytics, leading to a data-driven decision-

making process that was only marginally influenced by intuitive judgment. This process 

is captured in Figure 15 below, which displays the interaction of Systems 1 and 2, as well 

as the most commonly used data analytics and human judgment roles by managers in this 

cluster of decisions. 

 

Figure 15. High-Data Decision-Making Process 
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In contrast to balanced and high-judgment decisions, high-data decisions’ System 2 

processes are only comprised of significant data analytics roles. Human judgment roles 

were limited to System 1 processes. While this means a significant reduction in the 

variety of human judgment applications, System 1 processes were still relevant during 

all three stages to some extent, which exceeds their relevance in balanced decisions.  

This contrary use of data and judgment roles compared to the high-judgment cluster is 

immediately evident in the identification step. The decision triggers of this high-

judgment cluster were equally distributed between anecdotes, routine checks, and 

evaluations. No externally triggered decisions were assigned to this cluster, in contrast 

to most external triggers found in the high-judgment cluster. As data-driven decisions 

highly rely on the analysis of various internal and external data sources, external triggers 

do not provide a beneficial starting point, as discussed in the previous section. The 

triggers identified in this cluster, similarly to balanced decisions, match Simon’s (1960) 

definition of this step, which characterizes it as time-consuming scanning of the 

environment.  

During the development and selection steps, data was often the driver in these decisions, 

since the decisions often involved various variables and data sources that made the use 

of judgment impractical and insufficient to grasp their complexity. Human judgment was 

restricted to initial assessment and consideration of the analysis results’ validity during 

development and selection. Its active impact on the creation of alternatives was limited. 

This corresponds to findings by Kaufman et al. (2016), who see the most valuable 

contribution of intuition as a ‘complement/supplement to rationality’ (p.9).  

Data, on the other hand, had a significant and diverse impact on the decision-making 

process. The role of exploration was used particularly extensively, after having played 
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no significant role in the other two clusters. Data in the role of exploration was also 

employed, as judgment was not sufficient to identify all, or even the best, alternatives for 

the decisions. Data in these cases was used to identify all the relevant possibilities, as 

well as to discover more in-depth insights. This approach was solely used by the 

organizations with the highest analytics maturity. Particularly for top-performing 

organizations, analytics is preferred to intuition in decision making, independent of the 

decision type  (LaValle et al., 2011). In their study, LaValle et al. (2011) found a clear 

correlation between performance and analytics-driven management. The analytics 

maturity of an organization was an important factor for their decision making, which is 

further discussed in Chapter 6. 

The high-judgment decision-making process corresponds to Simon’s (1960) depiction of 

the decision steps. The identification was driven by management, development was an 

elaborate effort of creating and assessing all relevant alternatives, and the selection step 

was a brief moment of choice after the already-completed analysis, followed by a 

justification of this choice. 

As with the other three decision clusters, Mintzberg et al.’s (1976) model mostly fit the 

findings, except for the analysis mode taking place during the development step instead 

of the selection step. This analysis consisted of interactions between the System 1 

processes of initial assessment and sense-check, as well as the System 2 processes of 

enabler of human judgment and exploration. Intuitive judgments were possible in this 

cluster, as the System 1 processes were still applied in the selection step. However, these 

intuitive judgments did not mark the end point of the decision, as characterized by 

Mintzberg et al. (1976). They were furthermore corroborated by data, which took place 

in the bargaining mode. The bargaining mode consisted of System 2 processes in the 
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form of justification and challenger roles. Intuitive judgment was therefore still justified 

or challenged with the means of data analytics.  

High-data decisions resulted in positive outcomes and were valued by managers. 

However, all managers agreed that data-driven decisions were mostly applicable to 

operational and tactical decisions. Managers emphasized that a high reliance on data 

analytics requires a familiarity with the decision. If established processes were followed, 

data could lead to successful decisions with minimal human judgment input, as they had 

already incorporated human judgment in the form of previous experiences and 

organizational knowledge. Key requirements for the success of these decisions were 

believed to be access to quality data and analytics maturity. This maturity was postulated 

on an organizational level, but also on an individual level in the form of analytics 

understanding and trust. 

Both managerial characteristics and organizational factors are further discussed in later 

chapters, managerial characteristics in the following Chapter 5, and organizational 

factors in Chapter 6. 

4.4. Summary of Findings and Discussion: Chapter 4 

This chapter focused on the embedded unit of analysis, the individual decisions, and 

specifically which processes the managers employed to make their decision. The steps 

of these decision-making processes could ultimately be categorized as 'identification', 

'development of alternatives', and 'selection'.  

The identification step refers to the recognition of a problem or situation that requires a 

decision. Four distinct triggers that start this decision-making process were identified: 

‘Evaluation’, ‘Routine Check’, ‘External Trigger’, and ‘Anecdotal’. ‘Evaluation’ refers 
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to an internally triggered and intentional review of current practices or future 

opportunities. ‘Routine Check’ refers to an ad-hoc problem that is identified during a 

routine check or review. ‘External Trigger’ refers to an external impulse, usually 

originating from outside the organization. Lastly, ‘Anecdotal’ refers to concerns that are 

based on employees’ perceptions.  

In the development of alternatives step of the decision-making process, the managers 

focus on determining the different possible decision alternatives from which a choice 

needs to be made. During this step, the availability of additional data sources and 

ubiquitous information enable a more thorough development and evaluation of 

alternatives, which can lead to this step requiring an extended period of time. If the 

amount of available data becomes too large, it can even lead to analysis paralysis. During 

the selection step of the decision-making process, the manager chooses one of the 

alternatives. In this step, data analytics is found to be an enrichment, as it allows 

management to justify their decision in a more objective manner, rather than solely 

basing it on subjective human judgment. 

Within the decision-making process, data analytics and human judgment were found to 

play very distinctive roles. For human judgment, five roles could be identified. Human 

judgment was used as an initial assessment of the problem, as an enrichment of analytics, 

as a sense-check and way to challenge the data, as identifier of the need for analytics, 

and to outweigh analytics. To make an initial assessment of the problem the managers 

were facing, they relied on their previous experiences, intuition, and business 

understanding. This experience and business understanding often added different 

nuances, aspects, and context that could not be captured by data analysis alone. As it is 

important to understand and trust the data, managers used human judgment to double-
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check data instead of just relying on the results. After the initial context of the situation 

was created, human judgment helped managers to identify the need for additional 

information and data analytics. Finally, in the situations where factors that could not be 

captured by data analytics but played an important role, human judgment could outweigh 

the results put forward by analytics. 

For the use of data analytics in the decision-making process, seven distinct roles could 

be identified: as an enabler of judgment, for confirmation, identification, exploration, 

justification, as a challenger of judgment, and as a ‘no-brainer’. Data as an enabler of 

judgment assisted managers in making decisions that their human judgment could not 

fully evaluate. Data analytics could also provide valuable support to confirm the initial 

assessment of the manager. In the form of identification, data analytics was used to 

identify problems or opportunities that may have gone unnoticed otherwise. Data 

analytics also served as an exploratory tool to assess complex factors and their impact on 

the decision through correlation and dependencies. To enable a more objective form of 

reasoning, data analytics was used to justify the decision. Due to this objective nature, 

data is often seen as a neutral source of information that can challenge cognitive biases 

without factoring in subjective perceptions. In the role of ‘no-brainer,’ data analytics can 

best be understood as outweighing human judgment. For those scenarios, this application 

functions as the sole factor for determining the best alternative.  

The roles of human judgment and data analytics cannot be considered as negative or 

positive influences, per se. A certain role could just as easily be a contributor or a 

disrupter of successful decision making. Three distinct decision-making process clusters 

could be identified as using the human judgment and data analytics roles in different 

capacities. The first cluster contained the balanced decision-making processes. Here, 
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human judgment was used to incorporate the managers’ prior experience as a starting 

point to the decision-making process. In the following stages, data analytics enabled the 

managers to assess the measurable aspects of decisions, and to confirm and justify their 

judgments.  

The second cluster contained the high-judgment decision-making processes. These 

processes favored human judgment roles, mostly as the result of limited access to data, 

or because the effort and resources needed to gather more data was considered not 

profitable. The third cluster was comprised of high-data decision-making processes. This 

cluster focused primarily on problem-solving. The data analytics roles were found to play 

an important part, as often the alternatives were clear and well-defined.  

Overall, most managers agreed that the ‘ideal’ decision-making process involved the 

following five key requirements: finding a balance between judgment and data in 

decision making; building trust in data analytics; transforming reactive into proactive 

decisions; and creating processes and guidelines around decision making. 
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CHAPTER 5: TYPES OF MANAGERIAL DECISION MAKERS  

This second of three findings and discussion chapters focuses on the main unit of 

analysis: the managerial decision maker. The chapter contributes to the current 

understanding of decision making using (big) data analytics in two ways:  

• It provides an empirical, in-depth view of managers’ awareness and perception 

of analytics in decision making. 

• It distinguishes between four different managerial decision maker types, 

accounting for differences in experience, skills and preferences.  

The exploration of the decision maker’s understanding and perception of human 

judgment and data analytics, as well as their impact on decision making, is the focus of 

this chapter. It primarily draws on the collected case study data, with supporting data 

included from the critical incidents. Comparative case study analysis allowed for a 

thorough within-case analysis of each manager and offered the benefit of further cross-

case analysis among all participants. This provided valuable in-depth insights into the 

characteristics of each managerial decision maker and enabled the clustering of all 

participants into distinct manager types.  

The chapter is structured as follows: first, a brief overview is provided of the analysis 

techniques employed in this chapter, describing the utilization of thematic analysis to 

highlight the managers’ varying understanding and perceptions of analytics and human 

judgment. Furthermore, the use of comparative case study analysis for the identification 

of distinct types of managerial decision makers is outlined.  

In the findings section, the definitions and the perceptions of big data and analytics are 

described using descriptions provided by the participating managers themselves. 
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Correspondingly, the managers’ understanding of human judgment is explored. This is 

followed by a categorization of four distinct management types, focusing on how their 

characteristics, including experience, skills, and preferences, impact their decision 

making. 

The discussion section then compares the managers’ understanding of big data and 

analytics as well as human judgment with the extant literature, identifying gaps in 

practitioners’ knowledge. In response to these gaps and the varying preferences of 

managers, different training options and tools are also discussed. Lastly, the identified 

managerial decision maker types are compared to existing frameworks differentiating 

managers from one another by their characteristics. 

5.1. Data Analysis 

In contrast to the previous findings and discussion Chapter 4, which focused on the 

content analysis of decisions, this chapter is driven by the thematic analysis of the main 

unit of analysis, the managerial decision maker. This thematic analysis enables the 

exploration of the different levels of managerial understanding for analytics and human 

judgement in the decision-making process. While revealing significant gaps in some 

managers’ knowledge of (big) data analytics, the analysis also uncovers commonalities 

regarding these deficiencies, insecurities, or reasons for rejection of data-driven decision 

making. 

When questioned about their decision making, the managers highlighted that their 

approaches did not only depend on decision context, but also referred to their decision-

making style as something personal and subjective. The within-case analysis of each 

manager, including the analysis of their shared decisions, highlighted the influence of 

managerial characteristics on their decision making. After identifying several seemingly 
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significant and frequent managerial characteristics, the cases were cross-analyzed to 

compare different managers and their decision making. 

While the subjective differences in the managers’ approaches to decision making could 

vary from person to person, four distinct themes emerged that characterized managerial 

decision maker types. This typology was created to “synthesize meaningful characteristic 

aspects of individual phenomena in order to explain the occurrence of social events” 

(Hekman, 1983, p. 121). Typologies have been used frequently in extant business and 

MIS literature in the past. A typology of employees based on their ability to find and 

analyze information can be found in Shah et al. (2012); a framework created by Eckerson 

(2011) categorizes analytics users into casual and power users; several studies can be 

found on managerial characteristics influencing effectiveness, company performance, 

and decision making (Elbanna et al., 2013; A. K. Gupta & Govindarajan, 1984; 

Papadakis, Lioukas, & Chambers, 1998). These and further examples are outlined in the 

discussion section of this chapter.  

After the cross-case analysis and the identification of the four distinct types, these types 

were furthermore compared to the insights gained from the content analysis: Managerial 

decision maker types were matched with their respective decisions, to see if their 

characteristics influenced their decision-making processes. The analysis in this chapter 

followed a variable-oriented strategy (Miles et al., 2014). Utilizing this strategy, in 

contrast to a case-based one, the analysis of the dataset focuses on variables and themes, 

instead of isolated cases. As discussed in Miles and Huberman (2014), a similar study 

with 25 participants was analyzed this way when recurring themes were located after 

inductive coding. The participants of the study were then sorted into 6 different types, 

matching the approach of this chapter.  
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This multi-case study focuses on the identified cross-case issues, and not on single cases 

as such. In this reporting format, individual cases do not have to be reported at all, but 

can be included in abbreviated form, or simply dispersed throughout the different 

chapters when discussing cross-case themes and findings (Yin, 2014). In the following 

sections, one selected case per managerial decision maker type was summarized to 

provide an example of each type. Following this format, each of the four identified 

manager types outlined below begins with such a case summary highlighting all relevant 

characteristics of the respective manager type. The sections are then complemented by 

findings from the other managers of this type. 

5.2. Findings 

The findings of this chapter are structured in a way that initially highlights the diverse 

understandings of the underlying topics of this research. The terms of ‘analytics’ and ‘big 

data’ were interpreted and perceived differently by the interviewed managers, who 

exhibited varying levels of awareness and knowledge of them. The constructs combined 

under the umbrella term of ‘human judgment’, such as intuition and wisdom, were also 

varied in how they were perceived and defined by the participants. This understanding 

of human judgment and data was found to be one of the primary indicators for the 

managers’ decision-making behavior.  

Therefore, the chapter builds on these fundamental discrepancies, while adding 

additional significant factors that contributed to the diverse decision-making processes 

of the managers. The types of managers that emerged from this analysis are then 

displayed in a matrix and more thoroughly discussed to exemplify the implications of 

their decision-making approaches. 



                                                        Chapter 5: Types of Managerial Decision Makers 

250 

 

5.2.1. Managerial Understanding of Analytics and Big Data 

An exploration of managerial decision making in the age of big data then begins with the 

exploration of managers’ understanding of big data and analytics. The participants were 

as a result asked in the beginning of their interviews about their definition of these terms 

before answering specific and general questions about their decision making. This was 

done not only to ensure a mutual understanding of these terms for the duration of the 

interview, but also to capture the current impressions and perspectives that managers had 

of these terms, particularly in relation to decision making.  

Their general perception of analytics and big data also often emerged at various points 

throughout the interview, when the managers reflected upon the roles of data and 

judgment in their decision making. These perceptions, as well as their understanding of 

the terminology, were expected to influence their decision making. Managers with a deep 

understanding of analytics and big data were presumed to be more aware of their 

potential benefits and pitfalls. Novices would likely be either hesitant in their use of 

analytics or trust its results blindly. These differing levels of understanding were 

expected to significantly impact the managers’ decision making and are therefore 

outlined in the findings below. 

5.2.1.1. Defining Analytics and Big Data 

The common understanding of the term ‘analytics’ equates to the computational analysis 

of data. The participants’ answers mostly exceeded the scope of this common definition. 

From the participants’ answers, three main components of analytics could be identified. 

They are displayed in Table 28.  
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Table 28. Components of Analytics 

Component 1 Component 2 Component 3 

Define/Ask Question 
Computational Analysis of 

Data 
Gain Insights/Make Sense 

n=8 n=14 n=17 

 

All three components of this definition could be found in the head of department M94’s 

answer, when he outlined an ideal approach to applying analytics in managerial decision 

making:   

Start with the question, not with the data. Where do you believe value 

could be in your business? And then, what’s the fastest, cheapest way 

for you to demonstrate a test of where that value could be? Do you 

need to develop an analytical model, or can you simply create a set of 

simple hypotheses to test? If you don’t even know where to start, you 

probably want to do some analysis, and some interpretation of 

insights. (M94) 

The first component, asking the right question and defining the requirements, was 

referenced eight times by participants when defining analytics. These questions referred 

to the metrics that would need to be defined, the cause or reason for the analysis for the 

decisions, or benefits that were sought out. Asking the right question was seen as a 

required starting point of the analytics process, and also as a critical skill for decision 

making: “Where I pride myself is: I know what questions to ask, I have a sixth sense in 

being able to understand if the data is accurate from my questions and from what I 

hypothesize in my head” (M92). 
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The second component matches the common understanding of the term, as reflected in 

analyst M01’s answer: “I gather the data from the information data sources that we have, 

and then I combine it all, and have analytical software perform calculations and 

computations.” Several managers also used a simplified formulation for this 

computational analysis component: head of department M85, for example, answered that 

he always referred to it as “turning pixels into pictures” when talking to his team. He 

considered this component to be a challenge that eventually led to important insights. 

This step was therefore seen as a significant prerequisite to the acceptance of data in 

decision making, as “with information people make decisions; with data, they get 

annoyed” (M85).  

The third component of analytics refers to gained insights and was considered essential 

by the majority of participants. Managers specifically addressed the outcomes and 

making sense of computational analysis results. It therefore exceeds the scope of the 

second component, aiming at transforming data results into intelligence, as manager M83 

highlighted: “Analytics to me is looking at what the data tells us and it’s really turning 

raw data into intelligence and information and giving insights.” Analytics was therefore 

seen as “part of a [bigger overarching] process, as opposed to just one function on its 

own,” as general manager M91 summarized.   

The three components of the analytics definition provided by the participants describe a 

contemporary view and expectation of analytics that goes beyond the traditional scope 

of analytics definition, or the mere computational analysis of data. 

While managers were confident about their understanding of analytics, big data proved 

a more difficult term for managers to define. Most participants had less than one year of 

experience with big data, or none. Only six participants had over one year of experience 
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with the topic. This was an indication of the limited use of big data in organizations. In 

general, big data was perceived as a rather subjective term that was often met with 

confusion. This subjective perception was demonstrated by several participants who 

began their responses with “For me/us…” or “My interpretation/understanding…”. 

From these varying perceptions, four thematically distinct definitions could be identified. 

Several of these thematic definitions were mentioned by each participant. Definitions 

from well-informed participants covered (parts of) the academic and practitioners’ 3 V 

definition. Others with less familiarity with it focused on the term in relation to the 

outcomes they were expecting of big data, or the lack thereof. Some informed but 

disillusioned managers saw big data merely as a buzzword. More traditional managers 

tended to provide incorrect answers or described different concepts. These definitions 

are all displayed in Table 29 and are further discussed below. 

Table 29. Definitions of Big Data 

Definition 1 Definition 2 Definition 3 Definition 4 

(Part of) 3 V’s ‘Buzzword’ 
(Lack of) 

Outcomes 
Confusion 

n=17 n=4 n=9 n=6 

 

Participants answering according to definition 1 referred at least partially to the definition 

as outlined in the literature review (n=17). The full definition was mostly used by 

participants in analytics teams or departments (n=4), as can be seen in analyst M01’s 

response: “Big data is basically the same as regular data, but then on a larger scale, so 

you would have large data sources with millions of records, you have multiple data 

sources combined into one, and you have access to it in real-time.” Other participants 

mostly focused on the criteria Volume or Variety (or both), like general manager M13 
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emphasized: “For me, I think that it is just about volume” (M13). This observation 

indicates a rudimentary understanding, but also highlights the gaps present among the 

definition 1 users when it came to grasping the full extent of big data. 

Four participants had a critical view of big data, having picked up on the hype 

surrounding the term, and referring to it as a ‘buzzword’, resulting in definition 2. This 

definition was an in vivo code, coined by executive M31: “Big data I would define as a 

buzzword to sell stuff to corporates right now. And the interesting thing about data today: 

it’s fashion. And a lot of people talk about it. But they don’t really understand it.” Head 

of department M81 echoed this sentiment, when asked about his definition of big data: 

“people don’t actually know what to do with it, they just talk about it a great deal. It is 

more talked about than done I think.” Participants answering in accordance with 

definition 2 were extremely knowledgeable and reflective when it came to big data and 

were therefore critical of its potential. 

When answering in line with definition 3, participants focused on defining big data in 

terms of its outcomes or promised value propositions and expectations (n=9). When 

talking about big data’s applications and use cases, several participants also added that 

these solutions were not yet available to them, or that they had not seen any solutions 

that followed up on these promises. This is highlighted in head of department M21’s 

definition: “We’re starting to get on top of that. But big data trends, like buying trends 

and behaviors and that sort of stuff, through third party means – no, I really haven’t had 

exposure or usage of that.” Similarly, managers see the lack of outcomes as defining the 

effectiveness or usability big data, as mentioned by head of department M81: “In theory, 

somewhere in there is an interesting thought or concern or solution…I don’t see brilliant 

solutions popping out.” 
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Lastly, in definition 4, participants were either not familiar with the term big data or 

defined it incorrectly by referring to other analytics concepts or components (n=6). 

Several managers referred to different or specific analytics concepts, such as KPIs or 

behavioral analytics when defining big data (e.g. M11). While these could be considered 

examples, their answers demonstrated that some managers’ understanding of big data 

was too narrow. Several managers were also not familiar with the meaning or concept of 

big data (e.g. M82, M84, M91).  

A detailed understanding of big data, ultimately, was not seen as a key requirement for 

all managers, as executive M10 mentioned. While he thought that his employees were 

not aware of the amount of data that flowed into the information they used for their 

decisions, he also added that they did not need to know: “No, they [my employees] won’t 

be aware. But they don’t need to be. I mean everyone is doing their job” (M10). Managers 

can still be using big data without knowing specifics, as can be seen in general manager 

M91’s answer to the question of whether he had previous experience with big data: 

“Definitely yes, without calling it that.” 

Understanding and knowledge of big data was significantly lower in comparison with 

the term analytics. Still, participants familiar with big data showed at least a rudimentary 

understanding of the term, but also exhibited critical views. Doubts about big data and 

an unfamiliarity with it could both be traced back to a lack of exposure to success stories. 

The reason for this could be, as M11 hypothesized, that even in companies that are rather 

far on their data journey, big data is not something that is used on a weekly basis. 

5.2.1.2. Perceptions of Analytics and Big Data 

In addition to being asked to define the terms, participants were also asked how analytics 

and big data were involved in their positions as part of their day-to-day activities. Their 
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answers to this question, as well as the notions they expressed during the interviews, 

often revealed both positive and negative aspects of big data and analytics. Ultimately, 

the managers recognized drawbacks as well as benefits resulting from their use of data-

driven decision making. 

Their positive perceptions can be categorized into two main themes: Objective validation 

and enrichment. Trust is seen in this case as a neutral factor, as it was perceived as 

positive for managers who had trust in data. However, managers that were not familiar 

with data, or saw the pitfalls of subjective data interpretation, perceived it negatively. 

Negative perceptions resulted in four themes: the lack of skills, data access and speed of 

analysis, limitations of analytics, and misunderstanding or manipulation of data. These 

positive and negative aspects understandably contributed to the managers’ perceptions, 

and thus ultimately to their willingness to use analytics and big data in their decision 

making.  

Positive perceptions were influenced by analytics’ potential to objectively validate and 

therefore justify their decisions (n=27). Confronting the doubt of other stakeholders with 

hard data and facts provided managers with additional bargaining power, as was pointed 

out by manager M83: “If [the argument] is data based, it’s easier to convince the other 

stakeholders that look: ‘it’s not just that I want to do it, I’ve actually got facts and data 

which back it up.’” Manager M11 extended this argument, by saying that the additional 

security data analytics provides, is not only beneficial in arguments with other 

stakeholders, but also for the decision makers themselves: “It’s quite important to have 

data to back up your reports and your results. Otherwise you’re a little bit in the blind.” 

Analytics was therefore considered an enrichment to the decision-making process 

(n=29), as it enabled managers like M41 to explore causes and connections that were 
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previously not accessible to them: “When I’m in a meeting trying to understand and 

explain our result–we’re actually able to do that now. So, it’s definitely changed for the 

better.” Particularly for small organizations that traditionally had limited access to data, 

ubiquitous data sources are more and more facilitating informed decision making. This 

was highlighted by executive M71: “I think small organizations like this in the past have 

really just done it by guesswork and hope.”  

Although data analytics was in this context considered to be making a positive impact on 

the decision-making process, the actual impact of data can certainly vary. Data can 

simply function as a source of confirmation, supporting managers’ ideas and intuitions, 

as manager M83 pointed out. Head of department M21 conceded that data might not 

necessarily change the outcome, but it could regulate expectations towards the outcome, 

leading to a more realistic planning process. On the other hand, executive M22 mentioned 

that data had on another occasion actually changed their business strategy for the 

forthcoming year. Data can therefore be an enrichment, independent of its impact’s reach. 

Trust in data analytics was seen as a critical aspect of relying on it (n=17) but was 

categorized by managers in different ways. The theme incorporated doubts in the 

credibility of the data itself, as well as the interpretation and analysis of it. However, 

managers generally perceived analytics positively and trusted in its results. They saw 

building trust in data as a key prerequisite to changing organizational culture. Asked 

about how data contributed to decision making, head of department M85 said: “I think 

the outcome is that we have a new philosophy embedded…that people believe now what 

the system is telling you, because now it is backed up by robust data that has been tested 

and proven.” However, several managers were also aware of the drawbacks of analytics 

use and had a critical view of it. They particularly lacked trust in other employees’ 
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interpretations of data. This concern was voiced by executive M10: “data is one thing, 

but the way you interpret the data might give you the wrong impression and [lead to] the 

wrong decisions.”  

Organizations were frequently found to struggle with the lack of required analytics skills 

in the beginning of their data journey. While there might be interest in more data-driven 

decision making, not all organizations have access to enough business analysts to explore 

data analytics’ full potential. Managers therefore often brought up the lack of skills when 

speaking about their negative perceptions of big data and analytics (n=18). Executive 

M22 referred to this obstacle directly, mentioning that the organization was planning to 

hire more technically oriented analysts that would also have the necessary skills to 

understand the required tools. 

The complexity of analytics for processing big data often exceeds the skills of current 

employees. However, new hires might not always be an option for organizations, due to 

a shortage of available talent and often limited budgets. Executive M51 emphasized this 

problem: “If you have to have a dedicated highly qualified data scientist between you 

and that solution, it won’t work. One, because they’re scarce, and two, the scale of the 

organization won’t justify the hiring of someone with that capability.” Without the 

required skills, organizations might have access to big data, but have limited options to 

get value out of it (M41). 

Even if sufficiently skilled employees are available, organizations can still encounter 

problems, which contribute to a negative perception of big data and analytics. These 

problems were mostly related to the delays in decision making due to time-consuming 

data analysis (n=21). Manager M92 pointed out that even though he and his team have 

access to high-quality data, the analysis of it can be too complicated and time consuming, 
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which in turn deters them from using it. Head of department M81 echoed this sentiment 

about analyzing data: “It takes so long and I’m thinking: ‘I’m not going to bother doing 

that. I’ve got access to SAP, but I’m not going to sit there for hours and hours trying to 

figure out how to get information out.’” 

A related problem is the gathering of the necessary data input for analysis, which was 

pointed out by manager M41. Data can have internal restrictions, as various departments 

might have information silos due to the different interpretations of data in different 

contexts. Particularly the availability of near-real-time data (or lack thereof) can hinder 

the decision making of managers as analyst M01 highlighted:  

Speed sometimes hinders you. For example, one of the systems we 

have, the data does not come real-time, but we only get that a day later, 

which means that it’s always after-the-fact. So if you need to make a 

decision based on what happened today, I wouldn’t be able to get the 

information, because it’s not available. (M01) 

If data is not available at all or not in a timely manner, managers may simply decide to 

solely rely on human judgment instead of incorporating the data in their decision-making 

process. For head of department M84 this depended on the decision circumstances:  

The effort that will go into that is based on the size of the decision to 

be made. And by effort, I mean if the data is not readily available, how 

much effort would I put in going and finding that data? Or would I 

just be starting then to call on my experience and instinct? (M84) 

Given the right skills and access to data, analytics can enrich managerial decision 

making. However, it still must be considered that even big data has limitations, which 

led to negative perceptions for some managers (n=12). Particularly in complex decision 
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contexts, data was not considered to be able to cover all relevant decision aspects. These 

decisions still required the input of human judgment, as manager M41 pointed out: 

“You’re not going to know everything, and your data is not going to show you 

everything. So you always got to have some reliance on your own judgment and 

experiences.”  

Similar limitations were noted for strategic decisions, as applicable data is often not 

available, and the impact of analytics was therefore considered limited. Particularly, 

when it comes to forecasting, data has limitations as “it’s not a mystic with a crystal ball” 

(M52). These strategic decisions often addressed future and hypothetical high-impact 

actions, as executive M51 highlighted: “It’s more of a business case. It’s a relatively 

high-level analysis, usually because there isn’t any better information. You always deal 

with the future; you don’t have a lot of knowledge about how it’s likely to work.”  

In addition to the clear limitations of data analytics, the risk of misunderstanding, 

misinterpreting, or intentionally manipulating data also contributed to several managers’ 

negative perception of it (n=15). As referenced in connection with the aspect of trust, 

misinterpretations of data were considered an especially significant pitfall of data 

analytics (M52). However, these misinterpretations were not always attributed to a lack 

of experience and skills with analytics, but as head of department M84 pointed out, could 

also be due to a manipulation of data to benefit the decision maker: “You could make 

data mean anything you want it to.” The consequences of this might ultimately be 

detrimental to the organization, as manipulated data can be “totally destructive and 

manipulative” (M85).  
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5.2.2. Managerial Understanding of Human Judgment 

Throughout this thesis, human judgment has been used as an umbrella term for different 

experience-based human influences on the decision-making process, namely intuition, 

wisdom, and experience. These factors are outlined as distinct constructs in the literature. 

They were also treated as such at the beginning of this study, when asking participants 

about their definition of human judgment constructs and how they perceived their 

importance. What became clear throughout the interviews was that managers often saw 

these factors as closely related, or even interchangeable. At times, the naming 

conventions would switch repeatedly during their answer, beginning with ‘intuition’, 

then referenced as ‘wisdom’, and so forth – all referring to the same umbrella term 

‘human judgment’. 

The use of this umbrella term was sufficient to portray the general balance in decision-

making processes as outlined in the previous chapter. However, considering the context 

of this chapter focusing on decision makers and their characteristics, their understanding 

and perception of the different human judgment constructs provided interesting insights. 

Intuition and wisdom were the two main factors to distinguish between, as there was a 

consensus on the meaning and value of experience. Their views on intuition and wisdom, 

however, could often reveal clues about their overall decision-making approach.  

Intuition was perceived by participants as having both a negative and a positive influence 

on the decision-making process. General manager M91 highlighted one of the risks of 

employing intuition in decision making as the connection to cognitive biases: “The most 

dangerous thing, and this is part of intuition, of course, is around assumptions. And 

intuition is full of assumptions.” These assumptions were seen as contributing to 
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erroneous judgments, as they might be based on the agendas of managers or their 

personal biases. 

Another perceived risk affecting intuition as well as cognitive biases was a lack of 

experience. As intuition relies on heuristics and shortcuts, a limited range of experience 

might be applied to inapt situations and lead to biased or misinformed decisions. This 

risk was seen as decreasing with an increase in experience. More experience was 

understood to provide managers with a richer portfolio of different scenarios and an eye 

for recognizing nuances. Experience in this context was equated to an additional source 

of data or facts, as head of department M84 elaborated: “experience can be the things 

that you’ve seen, and that’s almost factual, and adds to the dataset.” This experience can 

assist managers in improving their ability to assess current situations in comparison to 

past experiences. As a result, it was considered important to distinguish past decision 

scenarios from current situations, and to apply the ‘facts’ of experience only to situations 

that matched those experiences (M10).  

For managers to trust in their intuition, they therefore require sufficient experience, an 

understanding for spotting differences in current situations, but also an unbiased 

motivation as a starting point. M85 highlighted this as another key component to intuition 

being a valuable contributor to the decision-making process: “If your motivation is right, 

and you’re looking out for others, not self, then I think you can really use intuition” 

(M85). 

Intuition was mentioned repeatedly by participants, and there was a consensus on its 

definition. The concept was readily available in the managers’ vocabulary and was 

comfortably used throughout the interviews. Only the managers’ perception of it and 

therefore their trust in it varied, which in turn influenced the extent of their intuition use 
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in decision-making situations. Wisdom, on the other hand, was not brought up by the 

managers proactively, only referred to when questioned about their understanding of it 

and its role in decision making.  

Wisdom seemed to be a rather abstract concept for most participants (e.g. M86, M91). 

Managers often did not see wisdom as an active part of the decision-making process, as 

they focused particularly on the aspect of hindsight when talking about wisdom. Asked 

for a definition of a wise decision, analyst M01 highlighted that he would only be able 

to refer to a decision as wise after knowing its outcome: “You don’t know if it’s a wise 

decision until you see the result of the decision, whether it was wise or not.” General 

manager M91 echoed this sentiment by adding that “the degree of success will determine 

how wise the decision was.” 

Wisdom was therefore often related to reflection on past decisions and incorporating 

these as lessons learned into future decisions (M85). It is closely connected to and reliant 

on experience (M93), to some extent ‘replacing’ intuition and the mere use of gut feel 

with a more holistic approach (M13). This holistic approach was particularly important 

in an incident shared by manager M92. During this incident, M92 was confronted with a 

straight-forward operational decision to replace outdated machines with newer models. 

However, he examined a wider context and considered the more holistic question of: 

Were those outdated machines actually used, and are new ones required? The operational 

decision therefore became a strategic one, which led to a restructuring and 

reconsideration of parts of the company’s business model. 

A definition of wisdom as this holistic approach was offered by manager M83:  

For me, wisdom is a capability which some individuals have, who are 

able to combine experience with insights into the current situation, 
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and also look what it means for the future. It’s looking at a wide 

horizon, so taking various factors into account and optimizing the 

situation. It’s also something that is sustainable in the longer term. So 

that we’re not looking at short-term gains without building on the 

longer term. (M83) 

Several participants saw data as an important component of this holistic approach, and 

as a contributor to wise decisions (e.g. M01, M14, M22, M41). Analyst M14 emphasized 

that while experience was essential to making wise decisions, this experience could also 

be provided by data and function as a substitute for a lack of personal experience: 

“wisdom is about experience, but it doesn’t have to be your own. So, you can learn from 

the experience of many others, if you use data. We do that systemically through a lot of 

our processes.” M22 added that simply deciding to use data in the decision-making 

process could be considered a ‘wise choice’. 

While data was described as having the potential to diminish the importance of wisdom 

(M93), its relevance particularly for the human judgment role of sense checking and 

challenging data was emphasized by general manager M93: “We’ve got to be protective 

of it, that’s all. And the numbers aren’t always right; I think it would be very important 

to have that sort of knowledge to just maybe question things” (M93). 

5.2.3. Types of Managerial Decision Makers 

While the findings outlined in Chapter 4 and above have already answered the research 

questions of this study asking how big data and analytics are perceived by managers and 

how they are balanced with human judgment in decision making, the answers given thus 

far fail to provide a truly holistic picture. As reported in the previous two sections, the 

participants had diverse understandings and perceptions of data analytics as well as 
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human judgment. However, these perceptions were not entirely unique, and several 

managers expressed similar notions. When grouping these managers according to their 

use of analytics and judgment, four distinct types of managerial decision makers 

emerged. These types not only shared similar views, but also certain characteristics and 

comparable decision-making behaviors.  

As these different manager types share characteristics, views, and preferences that 

influence their decision making, their distinction from another establishes an important 

prerequisite for organizations in understanding individual managers’ needs. In order to 

build a data-driven workforce, all managers need to be comfortable with the use of data, 

and therefore share an informed understanding of data analytics. The typology of 

managerial decision makers thus will enable organizations to cater to their employees’ 

needs with customized approaches that match their characteristics and preferences. 

The quadrant below in Table 30 provides an overview of the characteristics and 

requirements of the four different managerial decision maker types, arranged according 

to their use of intuition and data analytics in decision making. All four types emerged as 

themes during the coding process:  

• Type A consists of managers that have an ‘analytics-bent’ and are therefore quite 

adapt at and experienced with using data and analytics. They often hold business 

analyst or related positions and tend to have more faith in data than in human 

judgment, which leads to mainly high-data decisions.  

• Type B managers are ‘all-rounders’, who usually hold higher management roles. 

They are comfortable with the use of analytics and have accumulated a significant 

amount of domain experience, which enables them to make balanced decisions. 
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• Type C managers can be characterized as ‘insecure’ about data-driven decision 

making. They are mostly lacking analytics training and experience, which leads 

to skepticism and avoidance. Their decisions tend to be spread across all clusters. 

• Type D managers can be considered ‘old-fashioned’ decision makers. They 

mostly trust in their own experience and judgment and hold positions in 

companies that are not very data-driven. They have either not been exposed to 

data or are data-averse. 

The following sections introduce the different manager types and explore their shared 

characteristics, such as experience, skills, and preferences in more detail. Additionally, 

how these characteristics impact their decision-making behavior is also examined. Each 

type of managerial decision maker is described in more detail below. One abbreviated 

case summary per manager type was selected in order to provide an example and 

showcase their features. 
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Table 30. Types of Managerial Decision Makers 

Type A “Analytics-Bent” 

Characteristics:  

• data-driven 

• analytics experience 

• trust in data 

• critical of judgment 

 

Requirements:  

• access to high quality data 

• coworkers open to analytics 

• skills to relay data to others 

Participants: M01, M11, M14, M52, M85, M86  

Type B “All-Rounder” 

Characteristics:  

• senior management positions 

• business understanding and domain 

experience 

• trust in data 

• good communication skills 

Requirements:  

• access to quality data and personnel 

• data-driven environment 

• visualization tools 

Participants: M10, M12, M13, M21, M22, M51, 

       M91, M92, M93, M94 

Type C “Insecure” 

Characteristics: 

• judgment-based decision making 

• sceptic towards data 

• no analytics training 

• no exposure to analytics successes 

Requirements: 

• leadership encouragement 

• sharing of analytics successes 

• analytics training 

Participants: M41, M81, M82, M83, M84 

 

Type D “Old-Fashioned” 

Characteristics:  

• non data-driven industries 

• data-averse or lack of exposure 

• rich domain experience 

• requirement for high-judgment decisions 

Requirements:  

• leadership guidance 

• analytics training and peer support 

• communication of culture change 

Participants: M31, M61, M71, M72 
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5.2.3.1. Type A: Analytics-Bent 

Type A managerial decision makers are referred to as being ‘Analytics-Bent’, which is 

an in vivo code identified in the transcripts of M83 and M84, and describes the mindset 

of data-driven decision makers: “Some of them have the analytics bent, that kind of 

thinking” (M83). Further participants used similar terms to describe the same theme of 

having an analytics-oriented mindset, being a numbers person, or similar expressions. 

Managers with the analytics bent are characterized by their extensive experience with 

analytics and their trust in data. Type A managers mostly follow high-data decision-

making processes, and value data as decision input more than judgment. They see 

analytics as an enrichment, a source of accumulated experiences, and a chance for 

objective validation. Intuition is perceived to be burdened by assumptions, biases, and 

limited applicability. 

Due to their reliance on data for decision making, these managers require access to high 

quality data sources and coworkers that are open to data analytics results, as their 

decisions are often based on them. Therefore, these managers also need the necessary 

skills to relay data and analytics results to others in an easily understandable manner.  

One key example of Type A managerial decision makers is analyst M14. This analyst 

shared that his analytical thinking had been strongly influenced by his Bachelor studies 

in mathematics. Further classes in statistics during his master’s degree in business 

supported his analytical foundation. In a professional capacity, he had about five to six 

years of experience with data and analytics in decision making. He had never received 

any formal analytics training until he took on his most recent role as business analytics 

manager in a financial services organization four years ago. In this position, his role was 

to manage the small analytics team and to report directly to the CEO, contributing to 
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strategic decision making: “That oversees all the reporting; that’s the business 

performance on a day-today, week-to-week, and month-to-month basis, that guides that 

kind of understanding where the business is at” (M14). 

The decisions he recalled for the CIT part of the study were categorized as two high-data 

decisions (C141, C142) and one balanced decision (C143), all with a very high extent of 

data use. This high-data decision-making process, as outlined in Chapter 4, could also be 

identified in the description of M14’s general decision-making process, which begins 

with using judgment as an initial assessment: “I definitely have that information-

gathering step; find out as much information as I can. First, it would be intuition, kind of 

like, think about it: what am I trying to find out? What data could help me?”   

As a next step, M14 critically examines this initial assessment for any potential biases he 

might bring to the decision-making process and challenges them before beginning his 

analysis of the problem using data analytics:  

What’s my preconceived idea about something? But then I’m not 

afraid to recognize that, challenge it. I think a lot of people use data 

this way: “Oh yes, I know what the answer is, let’s find some data to 

support what I already believe.” I think that’s how people misuse it. 

But I am going to gather this data to be completely unbiased and then 

make a quality observation and analysis, then go through with it. So, 

I’m sure I do follow that almost like an experimental methodology 

every time I do make a big data decision anyway. (M14) 

He furthermore added that using data is a balancing act and that even decision makers 

with the analytics bent have to be mindful of their extent of data use, as there is “always 

a danger of dismissing it or over-relying on it” (M14). As a last step of the decision-



                                                        Chapter 5: Types of Managerial Decision Makers 

270 

 

making process, he also uses a sense-check: “I usually bounce it off other people as well” 

(M14). 

After learning about M14’s decision-making process, the influences of his position, his 

company’s organizational culture, and the company’s industry were also explored. 

However, M14 emphasized that he has always had the analytics bent. When asked about 

the influence of the company culture on his decision-making approach, he described it 

as a good fit, rather than an influence: “I’m not sure if it’s influenced as much as the 

culture supports how I already would have been. That’s why it fits. I wouldn’t think it 

influenced. I already was like that” (M14). When asked about the influence of the 

industry, he provided a similar answer, saying the industry indeed relied heavily on data 

analytics, but that it simply matched his analytical personality. 

Besides M14, further managers categorized as Type A were M01, M11, M52, M85, and 

M86. These managers shared key characteristics and levels of experience with analytics, 

resulting in similar analytical mindsets. While the majority held analytics positions, other 

Type A managers were also found to have a very analytical mindset and data-driven 

decision-making approach (M11, M85). Head of department M85 described himself as 

“a bit of a data freak–not compared to some real data people, but–I like to have the facts 

and understanding it for making a decision.” He reasoned that his affinity to high-data 

decisions stems from having held ‘fairly data-centric roles’. According to M85, using 

data analytics for decision making enabled him to better understand situations instead of 

solely trusting in intuition and ‘jumping to confusions’ – a behavior he often observed 

with colleagues. 

While the analytics bent of Type A managers provided them with valuable insights from 

data, these managers have certain prerequisites to make successful high-data decisions, 
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namely access to high quality data, colleagues who are open to data results, and the skills 

to relay analytics results to others.  

Access to quality data is a key requirement for Type A managers to make successful 

decisions. If an organization’s IT infrastructure does not support their preferred way of 

making decisions and required data is not available, managers must solely rely on their 

judgment, which can lead to negative decision outcomes (C113). As analyst M86 

highlighted, getting access to the right data can be challenging, due to budget and time 

restraints. Particularly in large organizations, the ownership of different data sources can 

also be spread across several departments or units. This complicates the analysis, as M86 

pointed out: “If you have 6 or 7 databases for one piece of input–some of them are 

controlled by [unit A], some of them are looked after by [unit B], some of them we look 

after–it’s just my time and people’s time.” 

The other two requirements for Type A decision makers are closely related: Managers 

with the analytics bent require coworkers that are open to data-driven decision making, 

and need to have the necessary skills to relay data analytics results to their colleagues, 

particularly ones that are hesitant about using data for decision making. Analyst M14 

highlighted this connection when asked about how he reacts to others challenging his 

data analytics results: 

It depends where the doubt is coming from. I have to maybe take it as, 

is this coming from someone who has a fear, and is it just mistrust or 

misunderstanding of what this data actually represents? And in that 

case, I may need to reemphasize or sell the point a little bit better and 

maybe do a better job at explaining, what this represents. (M14) 
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While keeping a certain balance when using data has been mentioned by M14 above 

regarding the decision-making approach, the same goes for keeping a balance when 

relaying data analytics results to others. Depending on the audience, e.g. levels of 

seniority or the organizational culture, the amount and details of presented data should 

be adjusted so as not to overwhelm others with too much information. Head of 

department M85 had to learn this after starting his current position: 

The way I have related what data has told me, has probably hindered 

sometimes: because I’ve presented the data to people when they don’t 

need the data, they just need your opinion or your decision. (M85) 

Type A managers can be summarized as very data-driven and data-savvy decision 

makers whose experience is centered around analytics and not domain knowledge. They 

require a fitting organizational environment for successful decision making.  

5.2.3.2. Type B: All-Rounder 

Type B managerial decision makers are considered all-rounders, as they not only have 

an excellent grasp of data analytics but also extensive domain experience, which allows 

them to make balanced decisions. Their skill set also enables them to make high-data and 

high-judgment decisions successfully, although their preferred decision-making process 

is balanced. Type B decision makers mostly hold senior management positions, which is 

the reason for their extensive business understanding and domain experience. Like Type 

A managers, they have a good grasp on analytics and trust in data, albeit not to the same 

extent. What also characterizes Type B managers are their excellent communication 

skills, which enable them to communicate their judgments and analytics results to others.  

All-rounders mostly see equal value in data and judgment as decision-making inputs. 

Analytics is considered an enrichment, or a chance for objective validation, and they 
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generally trust in data. Therefore, they require an organizational culture and environment 

that is supportive of data-driven decision making. This extends to the need for access to 

quality data and analytics personnel who can support managers with more sophisticated 

data needs. As they are aware of the need to communicate analytics results to others, they 

also value visualization tools, which bring data into a more accessible format and 

facilitate the communication of analytics results.  

Type B decision makers also recognize the limitations of analytics, which leads to the 

mostly followed balanced decision approach. They challenge data and use their judgment 

according to decision contexts and data availability. While they recognize the value of 

intuition and experience, they also understand their limitations, such as the risk of 

cognitive biases, assumptions, and potentially limited applicability.   

M92 is an example of a Type B managerial decision maker. He had been with the same 

financial services organization for 20 years, which provided him with extensive business 

understanding and domain experience in his current position. Since starting out in this 

data-driven company, he had been using data and analytics in his decisions, which 

provided him with an appreciation for its value. While he never received any formal 

analytics training, he completed several management trainings, which taught him to 

analyze problems from different angles using various techniques. M92’s most recent role 

consisted of evaluating the operational model of his organization, which he considered a 

very data-driven task. 

In this role, M92 was part of several tactical and strategic decisions, two of which he 

shared in form of the high-data decision C921 and the balanced decision C922. Both 

decisions relied to a high extent on data, but also incorporated a significant amount of 

human judgment. This matched his general decision-making process, as M92 rated the 
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influence of data on his decisions at 80%. However, he elaborated that the data itself was 

already full of assumptions, and therefore contained human judgment to a significant 

extent: “You could even have a 100% data-driven decision, but it’s 50% based on 

assumptions.” This led M92 to generally follow an overall balanced decision-making 

approach. 

For manager M92, this general process begins with a thorough initial assessment, 

matching Type A decision makers. However, once the development of alternatives step 

of the decision-making process is reached, Type B manager M92 follows a different 

approach. While he relies on data experts during this stage for conducting the actual 

analysis of the data, he engages his judgment to sense check and challenge the data 

results. His business understanding and experience play a significant part in this step of 

the decision-making process. For the selection step, M92 then takes advantage of his 

communication skills to convey the analytics results to other stakeholders:  

I know how to kind of format or present data so that it helps to tell a 

story. So, I have people that drive and create data. I have people that 

then turn data into insights, and then I have people that create insights 

to business cases and presentations. So, I can work with all levels or 

areas, but I particularly like to work on the presentation end, in the 

sense of: ‘show me meaningful insights and then we’ll tell a story.’ 

(M92) 

This well-rounded and balanced decision-making approach incorporates M92’s analytics 

skills and his judgment. The data-driven environment provided by the industry and 

company, in combination with the management training courses he attended, certainly 

supported M92 in becoming an all-rounder. After 20 years with the company, he 
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identified with their values and approaches. He showed a high appreciation for data, 

especially in its capacity to challenge biases: “Yea, [data] beats the gut” (M92). While 

he said that everyone in the organization understood the value of data and appreciated its 

potential, the access to it and the often time-consuming analytics process were still 

considered deterrents for data-driven decision making by many. The manager recognized 

this and other limitations of data analytics and therefore valued the balance provided by 

human judgment. 

In addition to M92, other participants categorized as Type B managerial decision makers 

were M10, M12, M13, M21, M22, M51, M91, M92, M93, and M94. Type B managers 

therefore made up the largest group of this sample. Most of them were part of the two 

organizations leading this sample in analytics maturity (Organizations 1 and 9). All these 

managers made decisions based on data analytics as well as their previous experience by 

using their judgment. Executive M10 highlighted the importance of this balanced 

approach by referring to the limitations of data analytics. He elaborated that while data 

is a valuable decision input, managers still require intuition to “reconfirm and check that 

the data’s integrity, quality and the way it’s been presented is impartial” (M10). The 

importance of this role of human judgment, namely the sense-check of data, was 

confirmed by general manager M91.  

As all-rounder managerial decision makers rely on both data analytics and human 

judgment, their requirements are similar to managers that have an analytics bent. Type B 

decision makers require an environment that supports and is open to data-driven decision 

making. Several of Type B managers have made their careers in data-driven 

environments, which influenced their method of decision making. Head of department 

M21 explained this by referring to M22’s and his own past in the finance industry: “It’s 
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easy I suppose for the likes of myself and the CFO to basically say ‘show us the money’, 

because that’s what we’ve grown up with” (M21). 

All-rounders also require access to quality data, but furthermore to the right personnel 

that has sufficient analytics skills to support the managers with their more complex data 

needs. Type B managers have a good understanding of data, but mostly still require 

specialists for the data analysis (M12). As Type B managers might not have the extensive 

analytics experience of most Type A decision makers, they benefit from visualization 

tools that facilitate easier access to data analytics results. Part of their role is to relay their 

decisions and therefore data analytics results to other stakeholders. Visualization tools 

are of particular use for these scenarios, as they have the potential to reach a broad 

audience with varying analytics skills and understanding. Head of department M21 and 

general manager M93 brought this requirement up. Particularly M93 highlighted the 

benefits of visualization:  

What I’m trying to do is get everything that I feel that I need into sort 

of one main dashboard–productionalized information. At the moment 

I go to all those different areas to find the information I want; just 

trying to make it a bit easier for me to have that information there, and 

then I can quickly deal with insights I see from there. I want something 

that’s very, very visual, not just numbers based. It’s going to make 

that a lot easier. (#9.3) 

While Type B managers were described as benefitting from visualization, insecure Type 

C decision makers shared mixed views on this. Head of department M82 also mentioned 

the need for visualization tools. However, head of department M81 did not see the need 

for it himself, as he preferred to interact with hard data, which had not been previously 
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interpreted or manipulated. This signifies the varying needs among the different decision 

maker types, but also highlights how insecurity can manifest in different ways in the 

decision-making process. This is further explored in the next section on insecure 

managerial decision makers. 

5.2.3.3. Type C: Insecure 

Type C managerial decision makers exhibit insecurity around the topic of big data and 

analytics, being more used to a judgment-based decision-making environment. Often, 

they are part of organizations that have a traditional decision-making culture and have 

only recently embarked on the journey to a more data-driven approach. Type C managers 

are skeptical towards data, as they have usually not received any formal analytics 

training, and have not had sufficient exposure to analytics successes. They lack the 

understanding of analytics’ potential and are unsure about gaining related skills. In terms 

of decision-making approaches, Type C cannot be assigned to a specific decision cluster. 

These decision makers might avoid using data all together, or experiment with it to some 

degree, often making their exact decision-making process rather unpredictable.  

Insecure decision makers might generally be open to the use of analytics, but lack several 

prerequisites, effectively preventing them from data-driven decision making. They lack 

trust, analytics skills, access to quality data, and are not satisfied with the time 

commitment data analytics requires. As they mostly rely on their own experience and 

intuition, Type C managers will require leadership encouragement and analytics training 

in order to engage in data-driven approaches. Sharing positive results and use cases 

related to data-driven decision making can also be a helpful tool in creating more trust in 

data and demonstrating its value. 
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An example of insecure managerial decision makers is M83. The manager had been 

making decisions in a professional capacity for nine years, with partial support from 

analytics. Through his previous work engagements and the past five years at transport 

organization 8, he also acquired a vast repository of experiences and domain knowledge. 

His decisions tend to be influenced by both, depending on the decision context and 

circumstances. M83 had received several management trainings, as well as two short 

introductions to specific software tools in his previous company. His current company 

had not provided such training.  

For the past two years, in his role as manager of the support and services team, M83 had 

been involved in several strategic and tactical decisions. During the CIT part of the 

interview, he shared balanced decision C831. He had selected the decision with the 

highest amount of data use to share for the context of this study. For this decision, M83 

employed a very structured decision framework that he had acquired during one of his 

management courses. This decision does an excellent job of highlighting what was 

required for a Type C manager to make a successful decision.  

While M83 was used to well-organized and structured decision making, the use of data 

was not a common component. The input of data analytics was provided by members of 

his team that were familiar with processing the data. M83 highlighted the support of these 

team members, as well as the leadership support and encouragement he and the 

cooperating teams received. The role of leadership was deemed particularly crucial for 

the positive outcome of this decision, as previous efforts had not been successful:  

I found that the leadership role in the organization is really the key. 

So, I had tried some elements of that approach with a previous 

manager, but then that wasn’t successful, because he wasn’t engaged 
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and not communicating the expectation back to his staff and not 

explaining the value. But then, two years ago, when there was a new 

manager who started, I just saw a change overnight in the team’s 

attitude and support, and basically wanting to work together to 

improve our business. (M83) 

M83’s decision-making process matched the organizational culture, which resulted in 

high-judgment decisions predominantly influenced by extensive domain experience. 

However, as the organization aimed for a more data-driven approach, manager M83 also 

began to incorporate data into his decision making; that is to say, he saw the 

organizational culture as a definitive influence on his own decision making. 

In addition to M83, further Type C decision makers were M41, M81, M82, and M84. 

These managers are characterized by their insecurity around the topic of big data 

analytics. When faced with the need to use data analytics in their decision making, this 

insecurity could lead to negative decision outcomes, as seen in the incidents C812 and 

C842. These particular decisions were based on misjudgments related to data efforts and 

a lack of familiarity with analytics. On an individual level, Type C managers could 

therefore benefit from general exposure to data and analytics training. 

Another contributing factor to this insecurity was the analytics maturity of the manager’s 

organization. If the systems in place were not easy to use and trainings were not provided, 

even managers interested in data-driven decision making faced difficulties. Essentially, 

the organizational environment contributed to managers being categorized as Type C, 

even if they might otherwise be very capable of becoming Type B decision makers. 

Manager M83 and head of department M81 are examples of this: organization 8 was at 

the time of data collection going through a major shift from traditional to data-driven 
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decision making. M81 had already realized there might be potential for data analytics to 

outweigh his judgment, but simply had not seen it happen yet:  

I think you’d soon learn that your guesses and intuition aren’t 

necessarily right. You would question yourself more. At the moment, 

I have no reason to. I’m going to believe I’m right. But once the 

information comes, there will be turning points and changes. (M81) 

Once their data use journey was further along, managers like M83 might be classified as 

all-rounders. A more detailed discussion of the effects of organizational analytics 

maturity can be found in Chapter 6.  

Current Type C managerial decision makers require organizational support to avoid 

negative outcome decisions. These requirements include leadership support and 

encouragement and, at a minimum, basic analytics training. They also benefit from the 

sharing of positive data analytics results or cases. 

In incident C831, leadership support was provided in the form of introducing the element 

of gamification and competition. The team leader of the cooperating department 

introduced a leaderboard using traffic light color coding to track error-free data entries 

and related activities. This led to a healthy and playful competition among team 

members, which led to more engagement with data analytics and peer support, as 

manager M83 elaborated: 

What we were able to do was to create almost like a competitive 

environment among the different stages: where did we get the best 

improvement? So once I got that going, it became almost like a game. 
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So, it was like the monthly ranking of who was performing well. 

(C831) 

Executive M71 encouraged insecure decision makers by presenting analytics results 

related to performance during team and company meetings. When seeing the results and 

receiving explanations around it, employees saw the reason for their expected 

contribution to data analytics and saw the value of the results. M83 echoed this sentiment 

by mentioning the need for use cases to foster a more wide-spread understanding of data 

analytics and for demonstrating its value. The sharing of use cases is expected to foster 

understanding, as manager M83 highlighted: “I think there is just that kind of opportunity 

for some quick wins, that you would be able to demonstrate.” 

A further requirement for Type C managers is the access to analytics training. As 

discussed in section 5.2.3.1., Type A decision makers require an openness to data-driven 

decision making. Type C colleagues are therefore a hinderance for Type A decision 

makers, as their insecurity often leads to disbelief of results provided by Type A. Given 

the right skills, Type A managers can relay not only their analytics results, but also the 

basics of analytics to insecure managers, and encourage their use of information systems. 

This was explained by head of department M84, who himself was categorized as Type 

C. A Type A team member had been able to demonstrate the value of data analytics to 

him: “I’ve just lost a guy who had a real a) bent, and b) passion for analytics. And 

actually, until he came along, I didn’t appreciate what we could be getting if we get it 

right” (M84). 

Helping managerial decision makers to understand the basics of data analytics was seen 

as a necessary approach to address Type C’s insecurities, as it reduced the impression of 

complexity and inaccessibility. This was emphasized by executive M51:  
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That’s [use cases] one way of helping to persuade people that this is a 

good approach. But once you start putting it in a black box, no one 

understands what the black box is, and no one’s going to believe it.  

(C511) 

This understanding is a key prerequisite for successful data-driven decision making, as 

it demands that managers sense-check and challenge analytics results. Manager M41 

emphasized the importance of analytics understanding for the effective use of intuition 

in data-driven decision making:  

If you don’t understand the data yourself, you’re probably not go ing 

to question it. You should be able to understand what’s going on in 

the data. It shouldn’t be from a point that I just solely rely on the data 

and nothing else. (M41) 

While Type C managers often avoid data-driven decision making because of their 

insecurity around the topics of big data and analytics, other managers outright reject data 

in favor of their own experience and judgment. These managers are further discussed in 

the next section. 

5.2.3.4. Type D: Old-Fashioned 

Type D managerial decision makers are characterized as ‘old-fashioned’, an in vivo code 

that was extracted from the interview with head of department M81 when describing the 

decision-making style prevalent in his organization: “Particularly in this part of the 

company, it’s quite old-fashioned, if you like.” Managerial decision makers classified as 

Type D shared certain characteristics. All of them were with companies in non-data-

driven industries that required high-judgment decision making and therefore rich domain 

experience. Old-fashioned managers also shared a lack of exposure to data analytics or 
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were averse to data use due to their negative perceptions of it. The decision-making 

process followed for high-judgment decisions is therefore their preferred method.  

Old-fashioned decision makers that lack exposure to data analytics can be found in 

organizations that are in very early stages of their data journey. Their current high-

judgment decision making could therefore still evolve with the progression of the 

organization towards a more data-driven environment. There are, however, also Type D 

managers that consciously avoid using data in their decision-making process. This can 

be a result of the managers being in an environment that demands creativity and has very 

little, if any, use for data analytics.  

Another reason for avoiding high-data decisions are negative experiences with analytics. 

Managers that fall into this category understand the limitations and often unattainable 

requirements of data-driven decision making. Main data use deterrents for Type D 

managers are a lack of analytics skills, low quality data, and the time consumed by data 

analysis. Therefore, old-fashioned decision makers require additional organizational 

support in order to engage in high-data or balanced decision making. Essential 

components of this support are leadership guidance and the communication of the 

cultural change to a more data-driven environment. Furthermore, they benefit from 

analytics training, and particularly from peer support. 

One example of an old-fashioned managerial decision maker is M31. For the past five 

years, the executive had been the last stop on the line of decision making as the owner 

and founder of his company. He was therefore involved in all strategic decisions, but also 

in more tactical and operational ones. Over the past two years, analytics had become 

more relevant in this context. As he had never had any formal management or analytics 

training, M31 mostly relied on his ‘gut feeling’ for his decision making. Success in the 
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decisions he had made since founding his company gave him confidence and trust in his 

own judgment.  

M31’s decisions followed a high-judgment decision-making approach: “Basically all of 

those [decisions] are made on experience. I can pull reports and I use those to an extent, 

but I essentially use gut feel over the top of them.” The role of data analytics was limited 

to exploration or enabler of judgment, and only of relevance for profitability analysis 

regarding employees and customers. These results often had little impact on the decision 

outcome, as the executive’s judgment took on the roles of enrichment and outweighing 

of analytics: “So I sort of overwrite the analytics with common sense” (M31).  

In addition to common sense, his own experience and domain knowledge, the executive 

also considered the perspectives of colleagues and peers as a decision input, as noted in 

his quote above. A valuable part of M31’s decision-making process was therefore 

collaboration with others: “I talk to a lot of people and I get different opinions on what 

they would do in that situation.”  

Further ‘old-fashioned’ decision makers were M31, M61, M71, and M72. These 

managers are particularly apt at making very successful high-judgment decisions, as they 

rely heavily on their typically vast domain experience. Even though the role of analytics 

in these decisions might be minimal, the managers still incorporate facts into their 

process, as manager M72 clarified: “But nothing that I do is without having factual 

information” (M72). This information is usually not vast or diverse data, but still 

provides objective validation for the assessments.  

Type D managers are often data-averse due to a general resistance to change, or more 

specifically, a lack in computer literacy. These managers therefore have certain 

prerequisites for engaging in data-driven decision making. Particularly beneficial are 
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leadership guidance, clear communication of the change to a more data-driven decision-

making culture, and at least basic analytics training and peer support. 

A particularly key prerequisite for old-fashioned managers adopting a more data-driven 

decision-making style is leadership guidance. These Type D managers often display a 

general resistance to change. This was highlighted by analyst M86, who described the 

difficulties posed by introducing data-driven decisions to old-fashioned managers: “I 

mean you have mixed feelings, because people don’t like changes. So, you have people 

that were sitting and murmuring that ‘this idea sucks and I like doing it the original way, 

because I’ve been doing it for 35 years’” (C861). This sentiment was further echoed by 

manager M92 referring to Type D managers in his organization maintaining their original 

way of decision making. 

Leadership support in these cases is crucial, as the reluctance from superiors who are not 

behind data-driven decision making can spread to their employees. Executive M71 

shared such a difficult transition in one of their company’s offices. This office was led 

by a Type D manager who was not willing to change current processes. All employees 

reporting to this manager followed suit, which resulted in both offices following different 

decision-making processes. 

Clear and consistent communication of the change in decision-making culture is 

therefore a key requirement for reliable decision-making success. The sharing of positive 

results was described as a valuable technique to not only communicate the change itself 

but also its benefits. This communication and sharing of positive results were 

instrumental in changing the organizational culture as part of the data journey by head of 

department M85: 
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Once we had a philosophy, which took some time to educate people 

on the value of doing this extra step–sometimes it was just sheer ‘this 

is the way it will be’. Because until they take data for a certain amount 

of time, they don’t see the value in it. As soon as we would start to 

draw pictures and say: ‘this is what it’s telling us’, then believe grew 

in the system. (C851) 

Another factor with the potential to contribute to the resistance of old-fashioned 

managers is a deficit in computer-literacy, which was addressed by executive M71. In 

these cases, peer support was seen as particularly effective, as the managers displayed 

less hesitation in approaching peers for help than when asking superiors: 

Some of the older ones weren’t particularly computer-literate; and it’s 

just a matter of giving them the training. And also, the peer support: 

so quite often they’ll be reluctant to ask me for help, but they’ll ask 

each other. So people have really helped each other to get more used 

to it. (M71) 

If managers are not familiar with data analytics and lack essential training, their 

avoidance of it can be due to fear, as manager M92 pointed out: “And then, it won’t win, 

because some people are just afraid of it. They don’t understand it. So therefore, if you’re 

afraid, you avoid.” This insecurity is a commonality between Type C and Type D 

managers. While Type D managers make a more conscious choice to rely on judgment-

driven decision making, both types benefit from basic data analytics training, which 

removes the unknown component about data and analytics, and therefore some of the 

trepidation. Analyst M86 identified this lack of training as the root cause of numerous 
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processing errors, which led to incident C861. Insufficient training and missing 

processing policies led to managers using their own processes, which lacked consistency. 

Training, as well as access to data, must be adjusted to the level of the respective manager 

and their data needs. As executive M22 emphasized, not every manager requires the same 

level of data access and analytics skills, as their needs depend on their positions and 

decisions:  

So yes, I think users need to be trained, and they need to have the right 

level of access. And sometimes the right level of access actually 

means that they have a piece of paper that turns up on their desk or a 

report that’s generated to their inbox on a weekly basis. (M22) 

Organizations will therefore benefit from determining the types of managerial decision 

makers in their midst, in order to adjust for their varying skills and preferences. Differing 

requirements must be met for the specific decision maker types to optimize decision 

outcomes organization-wide.  

5.3. Discussion 

The findings of this chapter contribute to extant literature in two major ways. Firstly, 

managers’ perception of analytics is explored in the context of decision making and in 

contrast to the more traditional use of human judgment. Secondly, managers are 

identified as heterogeneous decision makers, with varying characteristics and, thus, 

requirements and preferences. Both key findings are discussed in the following sections 

in the context of the extant literature. 
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5.3.1. Understanding of Analytics and Human Judgement 

This section explores the first key contribution of this chapter, and discusses the 

managers’ understanding of data analytics as well as human judgment. The participants’ 

definitions and perceptions of both concepts are further explored in the context of extant 

literature. Common views portrayed in academic and practitioner literature are compared 

to the insights gained from this study. Finally, addressing the identified shortcomings 

regarding the managers’ understanding of big data and analytics, trainings and tools are 

suggested to facilitate the transition to more data-driven decision making.  

5.3.1.1. Analytics and Big Data – Understanding and Perception 

Gaining an overview of the managers’ understanding and perception of analytics and big 

data was the foundation for exploring their decision making. During the interviews, the 

managerial decision makers shared their definitions of the terms ‘analytics’ and ‘big 

data’, displaying different degrees of their understanding of the concepts. They 

furthermore presented varying perceptions of the use of data-driven decision making. 

Examining the managers’ answers in the context of definitions provided by extant 

literature exposed an often significant lack of analytics understanding. Unsurprisingly, 

these gaps in the managers’ knowledge often corresponded to the extent of data and 

judgment use in their decision-making processes.  

While managers displayed a high level of insecurity around the topic of big data, most 

participants showed a sufficient understanding of analytics. The answers provided could 

be categorized into three components, namely the definition of a question, the 

computational analysis of data, and the gaining of insights from the analytics results. 

These components signified a very contemporary view and expectation of data analytics. 

In this regard, managers went beyond the traditional scope of the analytics definition 
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provided by extant literature, which refers to mere computational analysis to extract 

meaning and patterns from data (Analytics, n.d.). The extended definition provided by 

most participants additionally shows their awareness of analytics’ increasing potential. 

The concept of big data, however, proved to be unfamiliar territory for most decision 

makers. As even most academic and practitioner literature does not concur on one clear 

definition of the term, this was not an entirely unexpected result. While the 3 Vs (Laney, 

2001)–volume, velocity, and variety–are commonly accepted as the defining dimensions 

of big data (Mishra et al., 2017), other dimensions have been suggested more recently, 

such as veracity (Abbasi et al., 2016; Jagadish et al., 2014; Wamba et al., 2017), and 

value (Bumblauskas et al., 2017; Colombo & Ferrari, 2015; Mishra et al., 2017; Sivarajah 

et al., 2017). Next to the specific dimensions of big data, its use and the sources for data 

also lead to discord. Big data might be understood as structured and/or unstructured data, 

as information dumps, web searches, or innovation (Richey Jr, Morgan, Lindsey-Hall, & 

Adams, 2016). 

This insecurity around defining the term of big data was reflected in the participants’ 

answers, which were divided into four thematically distinct definitions. Only one of these 

definitions was focused on actual characteristics of big data and entailed the 3 V 

dimensions outlined by extant literature. Out of the 17 participants referring to these 

dimensions, merely four referred to all 3 Vs, with most others focusing on the volume 

and/or variety of big data in contrast to regular datasets. Participants additionally referred 

to big data as a mere buzzword or hype, defined it by referring to big data’s outcomes or 

a lack of use cases, or simply displayed confusion when explaining the term. 

Misunderstanding the term ‘big data’ could also be considered an indicator for a general 

lack of understanding of big data sources, the context of big data collection, and its 
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meaning. As Janssen et al. (2017) points out, this (lack of) knowledge has an effect on 

the managers’ decision making quality. A thorough understanding of big data and data 

analytics in general is also a key requirement for a positive perception of these concepts.  

Managers’ perceptions of big data and analytics were found to have a clear impact on the 

extent of data use in their decision making. Positive perceptions led managers to rely on 

high-data or balanced decision-making processes. As these managers saw data as a form 

of objective validation or an enrichment of their decisions, the extent of their data use 

was rather high. Managers that had negative perceptions of data analytics referred to a 

lack of skills, data access and speed of analysis, the limitations of analytics, and the 

misunderstanding or manipulation of data. Data access and speed of analysis are factors 

that are managed on an organizational level and will therefore be discussed in Chapter 6. 

The limitations of data analytics have been discussed in the literature review and must 

be understood by managers for them to prudently use data-driven decision making. 

The misunderstanding or manipulation of data, on the other hand, is related to an overall 

lack of trust in data analytics. Trust is an important factor for managers in order for them 

to rely on data analytics for their decision making, as confirmed by Moore (2017). 

Executives need the assurance that the data used for their decisions is of good quality. 

Distrust can be caused by “discrepancies between the data source and data store, over or 

understated data values, inconsistent or inaccurate data calculations, inconsistent data 

formats, data unavailability, and a lack of infrastructure to fulfil new requirements” 

(Moore, 2017, p. 130).  

To avoid this distrust, it is considered essential to have a single source of truth, as was 

highlighted by several of the participants. This was confirmed by Ross, Beath, and 

Quaadgras (2013) and their research on the creation of business value from data. They 
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found that managers consulting different sources to determine the same measures is not 

uncommon in organizations and can lead to differing and often widely inaccurate results. 

This highlights the value of determining a single system for each use case for providing 

data. As a result, managers are obligated to use this single source of data that is regularly 

maintained, therefore ensure the best possible data quality and consistency throughout 

the organization (Ross et al., 2013). As a result, the decision makers can thus recognize 

the value of data analytics and develop a habit of relying on data-driven decisions.  

5.3.1.2. Human Judgement Perception and Understanding 

In this study, human judgment was used as an umbrella term to capture the influence of 

human factors such as intuition, experience, and wisdom on managerial decision making. 

Managers were often found to use these concepts interchangeably during their 

interviews. This has already been stated by Simon (1960), who reported that managers 

were often not able to determine which of their abilities or skills were applied to their 

decisions, expressing that they simply used their judgment. To arrive at such a judgment, 

managers combine past experiences with facts and use their own imagination (Bhidé, 

2010).  

Decision makers were found to especially benefit from experience, with more senior 

managers making successful high-judgment decisions. This is confirmed by Dreyfus and 

Dreyfus (1980) as well as Dijkstra, Pligt, and Kleef (2013). Participants considered 

experience to be an essential component for discerning between past situations and 

current decision-making conditions, aiding their ability to recognize fine nuances. They 

furthermore perceived their past experiences as personal data, and therefore as another 

set of facts that could be included in the decision-making process.  
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Particularly for more complex and strategic decisions, the participants relied on high-

judgment decisions, as these decision types often lacked applicable data. This is reflected 

in the Unconscious Thought Theory discussed in the literature review (Dijksterhuis & 

Nordgren, 2006). The theory states that the quality of decisions made based on conscious 

thought declines with increasing complexity, therefore increasing the value of 

unconscious thought. Human judgment, both conscious and unconscious, was therefore 

seen as a valuable part of managerial decision making. 

Focusing on the different components of human judgment, experience was unanimously 

seen as a positive contribution to decision making and recognized as the foundation of 

intuition and wisdom. The managers’ understanding of intuition matched extant 

literature. They displayed positive as well negative perceptions towards it. The concept 

of wisdom, on the other hand, was not very well understood by most, but the decision 

makers’ definitions matched the characteristics of wisdom outlined in the literature to 

some extent.  

Intuition provided managers with a rich portfolio of experiences for their decision 

making; however, the participants shared concerns regarding its limitations. Managers 

worried that the gained experience might lead to preconceived ideas and incorrect 

assumptions, often informed by cognitive biases. While intuition serves as a rapid 

decision-making tool by employing expertise, the use of heuristics incurs several risks. 

Heuristics enable managers to reduce the number of potential solutions (Busenitz & 

Barney, 1997; Tversky & Kahneman, 1973), but they are also based on previous 

experiences that might not reflect current circumstances. Particularly when decision 

makers are unaware of their use of heuristics, the results can be biased (Bazerman & 

Moore, 2013). Depending on the framing of the presented alternatives, managers might 
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make misinformed decisions (Reyna et al., 2014). Participants shared these concerns and 

highlighted that managers’ motivations can contribute to biased intuitive judgments. 

Unlike intuition and its associated risks, wisdom was perceived solely as a positive 

impact on the decision-making process. It was seen as a more holistic approach compared 

to using one’s gut feel, therefore enabling the mitigation of risks from other factors. 

Wisdom goes beyond mere intuition and knowledge, as it adds prudency and values to 

the manager’s decision-making process (Intezari & Pauleen, 2013). Human judgment’s 

role of sense check and challenging particularly benefitted from the wisdom of the 

managers in this study.  

When elaborating on wisdom and wise decisions, managers particularly focused on the 

aspects of hindsight and reflection. The outcome of a decision and whether a decision 

was wise according to participants, could only be judged in hindsight. It provided 

managers with an opportunity to reflect on their decision-making processes. Wisdom was 

also mentioned by managers when speaking about collaboration with other parties during 

the decision-making process. Consulting others and considering different opinions and 

experiences was considered an important aspect of wise decision making. This open-

mindedness and embracing of diverse experiences are characteristic of wise managers 

(Rooney et al., 2013; Yaniv & Choshen‐Hillel, 2012), and assists in avoiding biases 

(Yaniv & Choshen‐Hillel, 2012). Collaboration is especially valuable in the case of 

uncertain strategic decisions, which demand the forming of coalitions and bargaining to 

reach an agreement (Shepherd & Rudd, 2014). 

Considering the benefits provided by intuition and wisdom, managers perceived human 

judgment as a valuable contribution to their decision-making process. While they saw 

risks in solely applying System 1 thinking, they recognized the benefits of incorporating 



                                                        Chapter 5: Types of Managerial Decision Makers 

294 

 

judgment into the more structured and analytical System 2 processes. Participants 

highlighted the fact that human judgment delivered important contributions to all stages 

of the decision-making process, which confirms extant literature, as captured in section 

2.2.4. 

5.3.1.3. Training 

Biased human judgments, lack of data, or misinterpretations of analytics results were the 

main reasons for negative decision outcomes and delays in the decision-making process. 

To reduce these negative occurrences, managers could benefit from further training. This 

was mentioned by managers in the case study portion of their interviews and its value is 

confirmed by extant literature. The following section outlines the specific training needs 

identified in this study that might alleviate common decision-making problems.  

The managers’ understanding and perception of human judgment was mostly sufficient; 

they displayed a general awareness of its value and drawbacks. Traditional Type D 

managers, for example, might overuse their human judgment–setting aside data insights–

but they were aware of the one-sidedness of their approach. They understood the 

implicated risks and potential biases, but still preferred their own judgment over data 

analytics.  

However, the often significant lack of understanding regarding analytics and big data 

displayed by several the participants is considered detrimental to prudent decision 

making. As pointed out in the literature review, an understanding of the meaning, context 

and collection of data is required for managerial decision makers. If this understanding 

is lacking, and the manager possesses insufficient skills, big data can have a negative 

effect on the manager’s decision-making quality (Janssen et al., 2017).  
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As a result, Phillips-Wren et al. (2015) see the provision of big data and analytics training 

for decision makers as part of an effective governance structure. Through training, 

managers cannot only learn to grasp the concept of big data itself, but they can also be 

exposed to the various legal, ethical and regulatory challenges surrounding the use of big 

data (Phillips-Wren et al., 2015). Watson and Marjanovic (2013) confirm this need for 

training, highlighting its role in addressing existing skills gaps in the current workforce. 

While some organizations might attempt to address these gaps by hiring qualified 

graduates, this approach is not future-proof (Carillo, 2017): Closing these skills gaps 

demands ongoing training, as the subject of big data and analytics is considered very 

complex and constantly developing at a rapid pace. Furthermore, research suggests that 

standardized training for big data analytics may not suffice, as individuals benefit more 

from customized training programs (Motamarri et al., 2017).  

Managerial decision makers are therefore expected to benefit not only from general 

analytics training, but from experimentation and in-house advice from analysts and peers 

who work with the same data and use cases. Gamification and competition, as mentioned 

in section 5.2.3., can in the same vein be effective tools enabling insecure or traditional 

managers to become more acquainted with data analytics in a decision-making capacity 

(C831). Serious games or simulations are also recommended in the extant literature as 

an effective pedagogical strategy, as they offer managers a chance to experiment with 

data analytics (Carillo, 2017). 

Another important component that should be addressed in the training of managerial 

decision makers is data literacy (S. Shah et al., 2012; Wirth & Wirth, 2017): Managers 

should be made aware that not all data is reliable. They should therefore develop a basic 

understanding of the factors and calculations that lead to the analytics results that will 
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later be used in their decision making. As a next step, managers then need to develop and 

engage their critical faculties to evaluate their data sources on their level of accuracy, 

biases, quality, and sample sizes.  

While these contents can be covered in workshops, another (and often more effective) 

approach is coaching (N. Shah et al., 2017; S. Shah et al., 2012). Organizations can 

therefore benefit considerably from hiring analysts who can provide continuous training 

and support to data-driven decision makers. These analysts-as-coaches cannot only 

provide analytics expertise, but also influence decision-making behavior and create trust 

in analytics (N. Shah et al., 2017). This was particularly mentioned by M82, who 

acknowledged the analytics support his organization received from the now centralized 

BI department. This support enabled them to build trust in analytics, to make more 

reliable data-based decisions, and to uncover complex insights. 

Another training tool related to the more informal training approach of coaching is the 

concept of peer support. The value of peer support was highlighted by executive M71, 

who emphasized its impact on insecure and old-fashioned managers who struggled with 

computer literacy. This lack of skills was the main factor leading to the managers’ 

resistance to adopt a more data-driven decision-making approach. Particularly insecure 

Type C and old-fashioned Type D managers are affected by their lack of analytics skills. 

While in executive M71’s organization managers had proved hesitant or reluctant in 

asking superiors for help, they were more comfortable consulting their peers. This relates 

to the concept of computer self-efficacy (CSE). 

In order to accept the use of analytics as a complement to their intuition, experienced 

decision makers need to trust their capabilities regarding the use and interpretation of 

analytics. The theory of self-efficacy describes the psychological phenomenon of a 
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person’s belief in his ability to achieve success in a given situation or when confronted 

with a certain task. In connection with observational learning, this theory postulates that 

external factors and the behavior of others influence an individual’s attitudes and 

confidence in their own abilities (Bandura, 1978). 

Compeau and Higgins (1995) transfer this theory into the field of information systems 

and define an adjusted construct of self-efficacy: “Computer self-efficacy…refers to a 

judgment of one's capability to use a computer. It is not concerned with what one has 

done in the past, but rather with judgments of what could be done in the future” (p.192). 

CSE is therefore an important factor and determinant of technology use, and 

subsequently affects the individual’s outcome expectations and use of that technology 

(Compeau & Higgins, 1995). Besides the use of technology, CSE also has an impact on 

the user’s effectiveness and therefore his performance using the system in question 

(Marakas, Mun, & Johnson, 1998). 

Training can also go beyond the imparting of technological understanding and big data 

knowledge. Type D managers, for example, could benefit from ‘training in orderly 

thinking’, extending their often rapid and unstructured System I approach to decision 

making (Simon, 1960, p. 11). As Simon (1960) points out, managers can be trained to 

apply a more structured approach to nonprogrammed decisions. This can be achieved by 

facilitating the formation of habits, such as beginning the decision-making process by 

asking: ‘What is the problem?’ 

This study focused on exploring managerial decision making, and highlighted the 

managers’ understanding of human judgment and (big) data analytics. Several 

shortcomings and the potential for more effective and efficient decision making were 

identified in the process. Training seems ultimately to be at the core of addressing these 
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shortcomings and improving managerial decision making. Further action-based research 

on the outcomes of training methods might therefore be a valuable extension of the 

insights provided in this study. 

5.3.2. Categorization of Managerial Decision Makers 

This section explores the second key contribution of this chapter and discusses significant 

findings that began to emerge in the early stages of data collection. These findings 

highlighted that not only could the decisions be sorted into different types, but the 

managers themselves. While there are other categorizations of managerial traits explored 

in extant literature, this study managed to identify four distinct manager types based on 

their decision making with analytics.  

The insights that emerged in this chapter present a significant contribution to the field’s 

understanding of analytics-based decision making. The theoretical contribution of 

highlighting the importance of analytics understanding and the different types of 

managers can inform further research exploring the effects of customized training on 

these different types of decision makers. The practical implications of this chapter are 

twofold: Managers who aim to improve their decision making can benefit from 

categorization by identifying which decision maker type they are and taking the 

respective action to further develop their skills. Second, organizations that are interested 

in becoming more data-driven can tailor their change management approach to the 

respective managers in their current workforce, instead of solely focusing on hiring 

external talent. 

Initially, individual characteristics were not considered in the setup of the study, and 

managerial characteristics were only included to the extent of the questions covered in 

the demographics section of the interview (see section 3.3.2.1). However, throughout the 
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data collection phase it became clear that distinct types of managers could be 

characterized by factors such as their domain experience, familiarity with analytics, but 

also based on more abstract factors such as affinity for numbers or visualization. 

Therefore, Chapter 5 was used to elaborate on these different types of managers.  

In extant literature, managers and their characteristics have been researched in several 

contexts related to organizational performance. Examples of these studies report on the 

influence of experience, tolerance for ambiguity and risk on the building of strategic 

business units (A. K. Gupta & Govindarajan, 1984), or the influence of managerial 

characteristics on the implementation of strategic change (Boeker, 1997). Furthermore, 

there are psychological assessments for practitioners, such as the Myers-Briggs Type 

Indicator, that allow managers to recognize the impact their personality and preferences 

have on their decision-making style (Cristofaro, 2017; Hirsh & Hirsh, 2010).  

More relevant for the findings of this chapter are previous studies that have reported on 

the influence of managerial characteristics on decision making (Hensman & Sadler-

Smith, 2011; S. Shah et al., 2012; Shepherd & Rudd, 2014). These studies cover a wide 

range of factors as their specific contexts informed the researchers’ selection of 

potentially relevant managerial characteristics.  

In their conceptual review, Shepherd and Rudd (2014) look at top management team 

characteristics as one of the influences on strategic decision making. These team 

characteristics capture demographic information (tenure, education, diversity, age) as 

well as diversity in cognitive style and personality. The factors are understood to 

influence the use of rationality, intuition, financial reporting and several other 

components of the decision-making process (Shepherd & Rudd, 2014). While the 

findings of Shepherd and Rudd (2014) focus on group decision making, the relevance of 
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the identified characteristics offers reasonable confirmation for the findings of this study 

on individual decision making.   

Hensman and Sadler-Smith (2011) conducted a qualitative study exploring intuitive 

decision making in the banking and finance industry. Their results showed that 

experienced executives’ reliance on intuition depended on the task at hand, individual 

factors (such as the executives’ experience and confidence), and on the organizational 

context. This confirms the results of this study, which relayed the influence of decision 

types and contexts on managerial decision making (Chapter 4) and discussed the 

influence of the managers’ decision-making environment (Chapter 6). Regarding 

individual characteristics, the results captured in this Chapter 5 corroborate Hensman and 

Sadler-Smith’s (2011) findings in that experience was found to impact the use of intuition 

in decision making. However, the findings in this chapter extend beyond intuition to the 

use of data analytics to capture all factors influencing decision making specifically in the 

age of big data.  

Closely related to this approach is an expansive research project evaluating 5,000 

employees by S. Shah and colleagues (2012). The researchers grouped decision makers 

and the results show commonalities with the types of managerial decision makers 

identified in section 5.2.3. S. Shah et al. differentiate between three different groups, first 

of which are ‘unquestioning empiricists’, who trust analysis over judgment and value 

consensus. This group can therefore be broadly compared to Type A managers, although 

Type A decision makers were mostly focused on data results without needing too much 

input from other parties. Secondly, ‘visceral decision makers,’ who distrust analysis and 

prefer to make decisions unilaterally. This group also exhibits similarities to a type of 

decision makers identified in this study, namely Type D managers. However, these 
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traditional managers mostly valued collaboration and the exchange of opinions with 

other parties. The closest match among the two studies can be found between S. Shah et 

al.’s ‘informed skeptics’ and Type B managers. These informed skeptics are 

characterized as balancing judgment and analysis with solid analytics skills and a 

willingness to consider differing opinions.  

While S. Shah et al.’s (2012) results offer confirmation for key insights of this study, the 

findings outlined here deliver more in-depth insights that account for different decision 

types and contexts as well as the decision makers’ environments. Furthermore, this study 

identified a fourth category of managerial decision makers, Type C, to account for 

insecure managers that are in a transition phase–a significant group representing a large 

proportion of managers today.   

5.4. Summary of Findings and Discussion: Chapter 5 

Different managerial decision maker types were identified in this findings chapter, which 

highlight the varying requirements, strengths and weaknesses that should be considered 

by organizations. The manager types were furthermore matched with their respective 

decisions to see if their characteristics influenced their decision-making processes. This 

matching showed that managerial characteristics indeed significantly influenced their 

decision-making process. Examining the decision makers’ characteristics and 

preferences enabled the identification of a set of prerequisites per manager type. 

Determining which decision maker types can be found in their workforce enables 

organizations to recognize and understand key differences among their employees. To 

foster a data-driven environment, organizations need to be aware of these varying 

prerequisites and must provide their managers with customized approaches for decision 

making based on this information.  
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Managerial decision makers could be divided into four different types, as summarized in 

section 5.2.3., Table 30. Type A managers with an analytics-bent display a thorough 

understanding and positive perceptions of data analytics. As they are critical of human 

judgment and its limitations, they prefer high-data decision-making processes. These 

managers require access to quality data and the skills to relay analytics results to their 

open-minded coworkers. All-rounder Type B managers are comfortable with the use of 

data analytics, but also have rich domain experience that can influence their decisions. 

Even though these managers prefer balanced decision-making processes, they can also 

make successful high-data or high-judgment decisions. These managers thrive in a data-

driven environment that grants them access to quality data and skilled analysts. They also 

value the aid of visualization tools. 

Type C managers are categorized as insecure and skeptical regarding data-driven 

decision making. Their decision-making processes are not exclusive to one cluster, as 

their insecurity leads them to follow the processes that are most convenient. Insecure 

managers strongly benefit from leadership encouragement and analytics training, which 

provides them with sufficient skills and support to embark on data-driven decision 

making. A further helpful tool is the sharing of positive analytics experiences and use 

cases to demonstrate the value and basic mechanisms of data analytics. Old-fashioned 

Type D managers have not had significant exposure to analytics or are data-averse. These 

decision makers mostly trust in their experience and rely on high-judgment decision-

making processes. In order to change their decision-making behavior, these managers 

require leadership guidance and clear communication of the change in decision-making 

culture. They furthermore require analytics training as well as the support and 

encouragement from peers also relying on data-driven approaches. 
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Even though these managerial characteristics and the resulting decision maker types 

determined decision-making processes to some extent, environmental factors still had a 

significant influence. This influence is further discussed in the following chapter, which 

examine the managerial decision-making environment. 
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CHAPTER 6: MANAGERIAL DECISION-MAKING 

ENVIRONMENT 

This last of three findings and discussion chapters focuses on the context of the main unit 

of analysis, i.e. the decision-making environment of managers. In the previous chapters, 

the decision types and circumstances were discussed as embedded units of analysis, 

along with the personal characteristics of managers that influence their decision making 

as the main unit of analysis. This chapter focuses on the third level of analysis, and 

therefore the context of these cases. Its aim is to assess the managers’ environment and 

how it enables (or possibly hinders) the successful use of analytics in their decision 

making. The chapter contributes to current knowledge of decision making with (big) data 

analytics in two ways:  

• The identification and relation of key influences on managerial decision making, 

namely: 

o Analyst support on the team level 

o Traditional versus data-driven organizational culture 

o Industry-specific access to data 

o The organization’s analytics maturity  

• The creation of a managerial decision-making environment in the age of big data, 

capturing the managers’ environmental influences on their decision-making 

processes, and therefore the context of this study’s main unit of analysis 

The environment of managerial decision making was not addressed in the research 

questions at the outset of this study; it is an outcome that emerged entirely as a result of 

the data collection. The influence of environmental factors became apparent in the early 
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stages of data collection. Participants reported on factors influencing their decision-

making processes that exceeded decision types and contexts, as well as their personal 

preferences. Themes emerged from these reported factors that could be sorted into four 

categories, using the ecological systems framework as a lens. Bronfenbrenner’s 

ecological framework postulates the influence of an individual’s environment on their 

development (1977, 1979). Applying this ecological framework as a lens allowed for the 

holistic examination of the context of managerial decision making, not only identifying 

influences but also accounting for the influences’ interaction. While individual factors 

emerged during the data analysis, the application of the ecological framework enabled 

the creation of a more holistic foundation for the results that depicts managerial decision 

making in the age of big data as a multi-factorial issue.   

Through this lens, relevant external factors were assessed on the team, organization, and 

industry level, corresponding with the findings during data analysis. In addition to these 

hierarchical levels, an overarching influence on individual decision making was 

identified: analytics maturity. Organizational maturity in terms of analytics capabilities 

was found to be a critical component determining the power and prevalence of data-

driven decision making, and was highly affected by the team-, organization- and 

industry-level influences.  

This chapter follows the structure of the previous chapters by first outlining the specific 

approach to data analysis that was applied in this chapter. The thematic cross-case 

analysis mainly draws on the insights from the case study interviews with the 

participants, with additional data from the CIT lessons learned. This approach enabled 

the identification of various hindering and conducive factors within the different impact-

levels of the decision makers’ environment. In the findings section, these team-, 
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organization-, and industry-level influences are discussed in detail, highlighting their 

impacts on decision-making processes. Furthermore, the construct of analytics maturity 

is identified and discussed as the most prominent environmental factor and is in turn 

observed to be significantly impacted by the other environmental factors.  

In the discussion section, diverse frameworks and theories are evaluated to establish a 

theoretical basis for the significant factors that were found to determine the decision-

making environment for managers in this study. These findings support and expand on 

certain factors of the extant literature, as well as extend our understanding of the 

managerial decision-making environment. 

6.1. Data Analysis 

Following a similar approach to the previous findings and discussion Chapter 5, which 

focused on the main level of analysis, this chapter is driven by the thematic cross-case 

analysis of the environmental context of managerial decision makers. This third level of 

analysis primarily draws on the case study data, which facilitated the exploration of 

obstacles found in organizations’ data journeys and in managers’ decision making using 

(big) data analytics. Furthermore, the thematic analysis extended to the critical incidents 

data. The lessons learned shared by managers in the CIT part of the interview were found 

to provide particularly interesting additional insights into their decision-making contexts.  

As in Chapter 5, a variable-oriented approach focusing on the emerging themes of the 

managers’ industry, analytics maturity, organizational culture, and colleagues was 

applied. Within each of these themes, several sub-themes could be identified, and are 

discussed in the findings below. These sub-themes elaborate on the diverse effects of the 

identified factors on decision making. As soon as external factors were identified as 

having significant impact on the managerial decision-making process, different 
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theoretical models were used to assess and explain these findings. These theoretical 

models are further discussed in section 6.3. Ultimately the ecological systems framework 

was used as lens to interpret the findings and to further understand the relationship 

between different environmental factors.  

Bronfenbrenner originally created the ecological framework when he suggested that 

individuals are influenced in their development by their environment, which consists of 

hierarchical levels (Bronfenbrenner, 1977, 1979). The model has since been used in 

different contexts, such as in research on bullying (Blackwood, 2015; Hong & Garbarino, 

2012), immigration assimilation (Paat, 2013), and in the context of decision making 

(Harrison, 1995), to name a few examples. It is further discussed in section 6.3.1.  

The hierarchical levels of the framework are the macrosystem, exosystem, mesosystem, 

and microsystem, with the individual at its center (Bronfenbrenner, 1977). For the scope 

of this research project, the framework was adapted to ensure the analyzed levels would 

align with the findings reported during data collection, which can be seen in Figure 16.  
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Figure 16. Ecological Framework - Managerial Decision Making (deducted from 

Bronfenbrenner, 1977, 1979) 

The individual at the center of the framework is the managerial decision maker. The 

microsystem, described as peers or immediate contacts, are in this context team-level 

influences, such as colleagues. The mesosystem consists of interactions among 

microsystem factors, therefore extending to the workplace, i.e. organization-level 

influences in this research. The exosystem expands on those influences and forms the 

broader social system, encompassing further environmental aspects such as ‘the world 

of work’ (Bronfenbrenner, 1977, p. 515). The individual manager is not involved at this 

level but is indirectly affected by it. For the sake of this study, these influences are seen 

as industry-level and are considered the final layer of influences that had significant 

impact on the decision making of the participants. The macrosystem, containing factors 

such as economic, legal, social, and political systems, did not emerge as a relevant factor 

for the participants’ individual decision-making processes in this study. 
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The organizational environment types were most clearly reflected in the analytics 

maturity that the organization displayed.  This concept allowed for organizations to be 

divided into different groups, matching the variable-oriented approach used in Chapter 5 

to determine the different managerial decision maker types. As analytics maturity had 

the most significant effect on decision makers and decision process types, section 6.2.5. 

has been used to build on the insights from the previous two findings and discussion 

chapters. Chapter 5 utilized the insights gained from the content analysis in Chapter 4 to 

match decision makers with their respective decisions. In section 6.2.5., those insights 

were extended by determining a fit between the actual decisions, managers, and the 

environmental context. Managerial decision-making types and decision types are 

additionally outlined for each stage of analytics maturity. 

6.2. Findings 

This section begins by providing a high-level overview of an ecological framework 

outlining all significant factors that were found to influence managerial decision making. 

This framework is the first key contribution of this chapter, building the foundation of 

the findings section. By hierarchically organizing the levels of the participants’ 

environment, the diverse influences of their environmental context, as well as the 

influences’ relations, become apparent.  

This is followed by the second key finding of this chapter: the identification and 

examination of the relationship of environmental influences on managerial decision 

making. Each of the four sections following the framework focuses on one of the 

influencing factors in the managers’ respective environments. The key influence at the 

team level is identified as the access to analysts during the decision-making process. On 

the organizational level, the prevalent organizational culture, whether data-driven or 
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more traditional, is found to be a significant factor. The industry-level factors highlighted 

by managers were primarily access, exposure and prevalence of data. The last of the 

influences discussed in this chapter is analytics maturity, which extends over all 

hierarchical levels.  

6.2.1. Managerial Decision-Making Environment in the Age of Big Data 

Analyzing the data on the decision makers’ environment through the lens of the 

ecological framework provided insights into the examined hierarchical levels and the 

interactions between those levels. This allowed for the incorporation of findings from the 

previous two chapters, namely the different types of decisions as well as managers. The 

adapted framework outlined in section 6.1. was therefore extended by the embedded unit 

of analysis: the decision types. Furthermore, the framework was also extended by another 

component: analytics maturity. This was an additional environmental factor that spanned 

across the three hierarchical levels defined before the data analysis and shown in Figure 

16. This resulted in a holistic managerial decision-making framework accounting not 

only for the environment, but also for individual and decision criteria that influence the 

decision-making processes, as seen in Figure 17.  
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Figure 17. Managerial Decision-Making Environment 

At the center of the model is the embedded unit of analysis: the decision types as 

identified in Chapter 4. The decision types, namely balanced, high-judgment, and high-

data decisions, determine the decision-making process that is followed by the manager. 

Which of the decision types is chosen depends to some extent on the decision factors, 

such as the context and impact of the decision. The process, however, also depends on 

the manager type (Type A-D), as outlined in Chapter 5. Each individual manager’s 

propensity to use data-driven or a more traditional decision-making process is therefore 

reliant on several personal characteristics.  

Managers do not act in a vacuum. Their use of data-driven decision-making approaches 

is influenced by their environment, as the findings of this chapter show. As can be seen 

illustrated in Figure 17, managers are directly influenced by their colleagues, who in turn 

are influenced by the organizational culture. In the context of this research, the findings 

showed that on the team level, access to analysts was a significant prerequisite to using 

data analytics in decision making. The availability and dispersion of analysts throughout 
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the organization depends on the organizational culture, i.e. whether data-driven decision 

making is valued and prioritized. In turn, organizational culture in terms of data-driven 

decision making depends to some extent on the industry the company is part of. Several 

industries tend to have access to data and have a long history of using it for decision 

making, while others are more traditional. Organizations that belong to data-rich 

industries often follow suit and have a more data-driven culture.  

These influences are reciprocal, as will be further outlined in the following sections 

elaborating on the environmental factors and concrete findings. This reciprocity becomes 

particularly clear through the last significant factor identified as part of the managers’ 

decision-making environment: analytics maturity. Analytics maturity represents any 

given organization’s readiness to employ data-driven decision making. This factor has a 

direct influence on managers but is also highly dependent on the factors of colleagues, 

organizational culture and industry. Analytics maturity is therefore shown as spanning 

across multiple levels in the ecological managerial decision-making environment above. 

In addition to incorporating the findings from the previous two chapters, the framework 

above identifies the various factors in the managerial decision-making environment that 

influence individual decision processes, which could be categorized into four main 

themes: team, organization, industry, and analytics maturity. These themes were 

arranged according to the ecological framework in Figure 16. Team-level factors include 

colleagues and supervisors, and most importantly access to analysts. Organizational 

factors include the perceived organizational culture, identified as a spectrum ranging 

from traditional to data-driven. Industry-level factors were defined as the availability of 

data sources and industry regulations. Societal factors, the macrosystem depicted in 

Figure 16, were considered to be things such as privacy and legal factors. Societal factors, 
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however, were not mentioned by managers in this study as having significant impact on 

their decision making and have therefore not been considered in the final framework 

depicted in Figure 17.  

As previously mentioned, one factor that spans across the other layers of the ecological 

framework is analytics maturity, as it is complemented by all the other factors in the 

managers’ environment. The industry, organizational culture, and colleagues are key 

determinants of an organization’s analytics maturity, affecting the organization’s data 

journey, IT and IS infrastructure, and ultimately analytics capabilities, availability and 

acceptance.  

The following sections focus on the influences that were found in the managers’ decision-

making environments, highlight their significance, and further discuss their impact and 

relationship to one another. 

6.2.2. Team-Level Influences: Analyst Support 

The team level of the decision-making environment represents the most immediate 

influence on a manager’s decision-making process, as it encompasses direct working 

relationships with colleagues and coworkers. Considering the concept of Computer Self-

Efficacy (CSE) (Compeau & Higgins, 1995), a general influence of team members and 

colleagues on decision making was expected, as was found and discussed in Chapter 5. 

However, the most significant finding of the team-level environmental influences on 

managerial decision making went beyond general coworker influences: access to data 

and business analysts was found to have a particularly significant impact on the 

managers’ decision-making processes. This section focuses on this phenomenon and its 

impact.  
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Analysts, and specifically BI and data analytics departments, were valued by the 

participants for a variety of reasons. For one, they contributed to the decision-making 

process by challenging managers, asking hard questions about their motivation and the 

reasoning behind their data analysis efforts. This encouraged managers to further define 

the problem and decision requirements to better understand the decision context. 

Furthermore, access to analysts provided managers with a learning opportunity that 

allowed them to improve their own data and analytics skills. This gave managers a better 

understanding for the decision inputs and, as a result, more confidence in their decisions. 

Lastly, centralized BI units granted all departments in an organization access to well-

maintained, high-quality data sources, as well as skilled analysts who could support their 

decision-making processes.  

Analysts were mentioned as frequently contributing to managers’ decision making 

simply by challenging them. This ‘challenging’ led managers to more clearly define the 

purpose of the data collection and to refine the initial question, as well as the expected 

results, before the analysts engaged in actual data collection and analysis. This 

particularly supported the definition and identification step of the decision-making 

process, enabling participants to avoid oversights and redundancies in the development 

and selection steps. 

Skilled and experienced business analysts often take on the ‘challenging’ role when they 

are approached by business managers for data input. In response, analysts ask managers 

why they require certain information (M14, M94). With this practice, analysts want to 

ensure that managers have thoroughly defined the problem and requirements. Managers 

value the challenge, as head of department M85 pointed out: “The team challenges me. 

I’ve got a data analyst now who challenges me. I say, ‘This is what I want to know’, and 
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he’ll ask me, ‘Why, why, why?’”. A challenge at this point in the decision-making 

process prevents the misspent use of human and financial resources by avoiding the 

collection and processing of potentially irrelevant data. 

While analysts are responsible for the actual data collection, analysis, and reporting, the 

manager, is responsible for the content of the queries, as executive M10 explained. 

Therefore, managers need to be precise when they request data input: 

The business sponsor or management person would drive the ‘what’ 

resort, so: ‘I’m trying to understand this, can you please give me a 

summary of how that looks, what are the behaviors in that, are there 

any clusters or otherwise that we need to be aware of that may be risks 

or opportunities?’ (M10) 

While this relationship between managers and analysts needs to be established as part of 

the course of an organization’s data journey, companies that are mature in terms of 

analytics capabilities can take advantage of this dynamic. As general manager M13 of 

one such mature organization pointed out, he used to approach analysts with requests for 

data input through a requirements document that outlined the purpose of the data 

collection. The analysts in turn would provide him with “some raw data and summary 

data and then I need to make conclusions and all that stuff myself” (M13). At the time of 

the interview, that process had evolved, and analysts had become more proactive, as M13 

elaborated:  

If these people [analysts] are actively engaged in the business, of 

course, they will see things and hear things themselves. And when 

you’re asking for data and putting criteria around it, much more 

engagement happens around that now. And when they’re presenting 
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data back, you know conclusions should be made and even 

recommendations for the business. And I think that is that next step in 

where the real power is. (M13)  

This shows the potential benefit that close access and a working relationship with 

analysts can have on managerial decision making. It furthermore supports that analytics 

maturity is in a reciprocal relationship with team-level influences, which is indicated in 

the managerial decision-making environment in Figure 17. 

Besides challenging managers in their decision making, analysts also ‘educate managers’ 

in using analytics tools for themselves, which has several benefits. For one, it saves 

managers time in their decision making, as they are not as reliant on coworkers for their 

data analysis. It also improves the managers’ understanding of the data that is 

incorporated into their decisions. As understanding is an important prerequisite of 

decision-making quality, analysts, in their educational capacity, are an important 

component for facilitating positive decision outcomes. Managers who interact with 

analysts, or coworkers who are responsible for data analysis, have a better understanding 

of the data, which in turn improves their decision making. 

Manager M92 described this collaboration in the form of two analysts that work in his 

team and support him on a regular basis to create business cases and work insights from 

data into presentations. For in-depth reporting, both the manager and analysts approached 

the company’s central business intelligence team for more detailed data. As a team, they 

would then work on analyzing that data together, with the manager being heavily 

involved himself. This enabled him to have a basic understanding of which data is used 

in his decision making, and ultimately led to more confidence in the decision itself. 
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Both for analysts in central business intelligence departments, and those within the teams 

of managers, this means a shift in their role. Analysts are not solely responsible for the 

collection and analysis of data; rather, they take on an educational role, as head of the 

analytics department, as M94 confirmed: “what my job has evolved to is showing the 

business that that stuff is really easy.” 

While working closely with individual analysts enriched the managers’ decision making, 

the participants benefitted particularly significantly from centralized BI and analytics 

departments. These departments had access to consolidated high-quality data that in turn 

enabled managers to gain access to well-maintained databases and the specialized 

individuals who have the skills to analyze them. While managers require a basic 

understanding of analytics to ensure high decision quality, dedicated analysts have 

superior skills and experience in analyzing data that benefit managers in their decision-

making process. The centralized nature of these teams enables all departments of an 

organization to access required data and human resources instead of having skilled 

individuals divided across the departments in uneven quantities. Several participants 

even advocated for the existence of a centralized role or department for data analytics, 

depending on the size of the organization (e.g. M12, M84, M92, M94). 

Key points that these managers mentioned were the integrated and shared service that 

these analytics departments offered, which gave managers access to a larger team (M82, 

M93). This provided managers with the advantage of “shared information and shared 

knowledge of business” (M82). As general manager M12 emphasized:  

If we didn’t have that access to the Business Analytics team and the 

data they provided, it would have just been a thumbs up. But because 
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we’ve got this data, we now feel as though we have made an informed 

decision to increase our risk appetite for the right customers. (C121)  

When analysts and data are dispersed across the organization, managers perceive this as 

hurdles for data-driven decision making (M41, M92). While they might still be able to 

find the needed information, the search is effortful and time-consuming (M41). 

According to Manager M92, internal and political issues are particularly to blame for the 

problems with accessing data sources. As data analytics departments take on an internal 

supporting role in organizations, they are generally not revenue-generating, which often 

leads to underfunding and resulting shortages of resources, as M92 explained:  

The reality is: data makes no profit for the company–it’s the decisions 

from data that make profit. So, these teams are potentially 

underfunded, and under-resourced, and yet everyone…you go through 

this horrible circle of wanting more data, but no one is able to get it. 

So, then you avoid it. (M92) 

This explanation depicts access to analysts as a critical requirement for organization-

wide data-driven decision making. However, general lack of acceptance of data-driven 

decision making, leadership support, or funding, as well as a shortage of skilled talent, 

are key problems that organizations face when setting up analytics departments. 

Once managers have been exposed to a data-driven environment and access to analytics 

departments, they often advocate for this type of environment when switching to other 

departments or companies. Coworkers were therefore found to not only have a significant 

impact on the decision making of managers and other employees, but also on the overall 

organizational culture. Coming from a very data-driven environment in his previous role, 

head of department M85 recognized the potential of analytics for decision making, and 
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in his new position supported coworkers in employing a more data-driven decision 

approach themselves. Taking on this advocating role had a transformative effect on his 

environment. Managers can therefore not only have an immediate impact on their 

coworkers, but also change the decision-making culture at an organizational level. The 

organizational culture and its influence on the managers’ decision-making environment 

is further explored in the following section. 

6.2.3. Organization-Level Influences: Data-Driven or Traditional Culture 

The organizational level is the second tier in the hierarchy of environmental influences 

on managerial decision making. On this level, in term of analytics use and acceptance, 

the most significant influencing factor was the organizational culture. Managers 

addressed the organizational culture from two different vantage points. They reported on 

their current organizational culture, but also expressed their thoughts and plans for 

changing or influencing it. The prevalent culture was often described as an influence on 

their individual decision-making process. On several occasions, the participants spoke 

about changing the culture to facilitate more data-driven decision making on an 

organizational level.  

Organizational culture was perceived as the key to achieving company-wide acceptance 

and use of data-driven decision making. In this regard, organizational culture was seen 

as even more crucial than overcoming technological challenges or mastering analytics 

techniques. This was highlighted by executive M51 when asked what his priorities were 

in their data journey: “Ultimately changing the culture, because the culture is far, far, far 

more important than any technique.” 

Having a consistent decision-making culture across the whole organization is therefore 

a key component for successful decisions. As head of department M82 pointed out, team-



                                                      Chapter 6: Managerial Decision-Making Environment 

320 

 

level as well as individual factors influence decision-making processes, particularly if an 

organization-wide approach is not accepted: “Culture does come into it a lot. Culture, 

personalities–people have their own way of doing things. And as I said, one of our teams 

receives information from many different teams within the business–it’s all different” 

(M82). 

The data collection and analysis revealed several differences in organizational culture. 

The findings suggest that the organizational cultures affecting managers and their 

decisions can largely be described as either traditional or data-driven. These two types 

of cultures could further be considered diametric opposites, with most organizations 

falling somewhere in between the two. This led to the conclusion that this theme is not 

binary, but rather a spectrum ranging from traditional to data-driven organizational 

culture. 

Organizations that prioritized or used human judgment, intuition, and experience for 

decision making were found to espouse a more traditional culture. The term traditional 

is an in vivo code recorded in interviews with the executive M71, who outlined the 

organizational culture as very traditional. For him, this meant that their employees were 

generally rejecting the use of data, having previously always relied on their judgment 

and experience, and had to get acquainted with basic data use in their day-to-day tasks. 

Head of department M81 outlined an example of this when describing the company’s 

culture:  

It’s quite old-fashioned, if you like. That’s the culture that we live in: 

very conservative. They base it on years and years of knowing, ‘this 

thing will lead to this thing’. We’re still back, like in the 70s, we 

behave like that. And we are in an industry like that. (M81) 
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His description illustrates the perceived effects of the industrial environment on the 

prevalent organizational culture. However, he also added that there were other 

departments in the organization that were further along in changing their culture, 

particularly accelerated by several younger new hires. This highlights the fragmentation 

of organizational culture due to team-level and individual factors, as well as the close 

relationship between the different environmental factors. 

On the other end of the spectrum, data-driven culture describes an organization that 

values data and often requires analytics as a form of objective validation when justifying 

decisions. Mere judgments are usually not accepted without some form of data backing. 

This point was made by head of department M81, who was experiencing the shift to a 

more data-driven culture, and therefore the changing expectations of manager: “people 

ask you, why haven’t you got that information. They won’t accept, ‘Oh it’s too difficult, 

I’ll have to make a guess.’ They will expect that you want to go out and find it.” 

Organizational culture might therefore not necessarily change the way individuals make 

their decisions, but nevertheless affects how these decisions are relayed to superiors 

(M85). This was confirmed by head of department M85, who elaborated: 

Organizational culture can make it very hard to present your decisions. 

And it does have an influence, because it helps you to be broader 

based, or it can make you very defensive. So it can influence your 

decision, but personally because I think of who I am, what I stand for, 

the values that I present: The decisions I make are not going to change 

too much, but it will definitely influence how I present them. (M85) 

This shows that organizational culture is an important component in the managerial 

decision-making environment, and that managers recognize its significance. Several 
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participants mentioned evolving into a more data-driven culture as an objective, albeit 

for different underlying reasons. Executive M22 favored informed data-driven decisions, 

as from his perspective, the current (more traditional) culture leads to ‘average decisions 

based on what people have historically thought about something’. Several managers 

particularly highlighted the customer focus that data-based decisions enabled, allowing 

for improved customer insights and an improved ability to meet the customers’ 

expectations (M41, M92, M93). 

Overall, managers from organizations with mature analytics capabilities advocated a 

data-driven culture that employed balanced decision-making processes. Analyst M01 

summarized the prevalent culture of his organization as using both human judgment and 

data analytics to reach the best possible decision outcome:  

What does your gut tell you what it’s going to be, what is analytics 

telling you what it’s going to be and really question the sanity of both, 

and really go from that. So, the culture is really to involve at least 

some analytics and use experience – best of both worlds kind of 

approach. (M01) 

Changing the organizational culture to a more data-driven approach requires employee 

buy-in, which itself requires time and commitment. Therefore, organizations need to 

ensure that users understand the value of data-backed decisions (M21). Objective 

validation and the sharing of positive results are critical drivers of organizational change. 

Head of department M85 confirmed this by saying that a critical part of achieving this 

culture was building belief in the system by showing results to the management team 

over a timeframe of 12-18 months.  
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During this process of slow cultural change, leadership support and governance are 

critical. Certain guidelines and restrictions need to be provided by the organization, to 

ensure consistent, safe, and structured use of data analytics in decision making. As a 

manager herself, M72 emphasized that ‘management is the culture’, meaning that it is 

ultimately the management of a company that dictates the organizational culture. In their 

capacity, therefore, managers should be promoting the culture that benefits the 

organization most. 

While changing the organizational culture facilitates long-term benefits, obstacles can be 

encountered along the journey. One inherent challenge is selecting the right approach to 

change management; that is, facilitating a smooth transition to a more data-driven culture 

that gain organization-wide acceptance (M85, M94). Experienced employees might be 

especially resistant to changing their often decades-old decision-making behavior, or 

they might be overwhelmed by the technology. Challenges also arise in organizations 

that are driven by the intrinsic motivation of their employees, as is often the case in not-

for-profit organizations (M21). These organizations can still rely on traditional, 

experience-based decision making and the best judgment of their employees, as their 

decisions are often affected by emotions and intangible factors. Changing this culture to 

a more rational, objective and data-based approach was seen as especially challenging 

by head of department M21, as will be described and explored in the next section. 

6.2.4. Industry-Level Influences: Access to Data 

As outlined in the previous section, managerial decision making is influenced by the 

organizational culture. In turn, this culture is affected by industrial influences. The 

industry-level is the outer-most layer of the environmental framework, as shown in 

Figure 17 above. Organizations are experiencing these industrial influences in the form 
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of restrictions on their business processes, imposed by industry standards or regulations, 

for example. Safety regulations or financial legislation might affect the organizations’ 

freedom to make decisions and limit their options significantly. This was highlighted by 

head of department M82: “We can work out how we’re going to do it within our own 

business–but to a larger extent we’re managed pretty strictly by outside influences.”  

The participants of this study perceived the influence of their industry on decision making 

to a varying extent. This depended on the level of restrictions of the respective industry’s 

regulations. Several organizations included in this study were limited by legal restrictions 

imposed on the financial services industry (i.e. organizations 1 and 9), or safety 

regulations imposed on the transportation industry (i.e. organization 8).  

While the relevance and extent of these restrictions varied among the participants, all 

managers agreed on the influence of their industries’ rising demands for and access to 

data. Manager M41, for example, did not consider the effect of industry characteristics 

as significant for his decision making, but emphasized the component of data availability: 

“So I wouldn’t say the insurance industry influences me much. It’s the data available that 

probably changes your approach to different things.” For certain industries, the 

increasing appetite for data analytics simply resulted in an extension of their tools and 

capabilities. For other more traditional industries, the demand for data meant a complete 

overhaul of their decision-making culture and the beginning of a journey to data-driven 

decisions. The effects of these different industrial backgrounds and their access to data 

is further discussed in this section to explore the significance of the industry-level 

component on the managerial decision-making environment.  

Organizations within the sample that had sufficient access to data were primarily in the 

industries of financial services (organizations 1, 4 and 9), the IT industry (organization 
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5), and transportation (organization 8). The financial services industry has a particularly 

data-rich history, as head of department M21 pointed out. While M21’s most recent 

position was within a non-profit organization, he and his colleague M22 had both come 

from a financial background. M21 elaborated that he had in fact taken this previously 

instilled data-driven culture and thinking, and applied it to their current, more traditional 

environment: “that’s worked well here. Back in the banking days, definitely the value is 

toward the data and the analytics. I suppose because of that rigor, people were 

accustomed to using data to make decisions” (C212). 

Due to strict guidelines and regulations, companies in the financial services industry had 

long been accustomed to data-driven decision making (M21). Additionally, customers 

and competitors expected data-derived insights in the age of big data, which further 

increased the relevance of data in this industry, as head of department M94 remarked: 

“Nowadays, I think there’s an expectation from the customer as much as competition 

from our peers around using data for an even more powerful conversation.” 

Not all organizations were used to relying on data to inform their decision making; 

certain industries tend to have less access to data, and therefore adopt a more traditional 

approach. This low access to relevant data mostly led to high-judgment decisions, which 

were identified particularly in the creative (organizations 3 and 6) and non-profit 

organizations (organizations 2, 6, and 7) of this study. These organizations displayed 

rather traditional cultures and were therefore not very reliant on data when making 

decisions.  

In these industries, managers were more prone to relying on the importance of 

relationships and values in their decision making. This was brought to attention by 

executive M61, who relayed his process on deciding which grants to apply for. Grants 
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are required sources of funding for non-profits that cover key portions of their expenses. 

However, being an established organization by now, M61 often reflects on their early 

days and forgoes certain grants so younger, less renowned organizations have higher 

chances: “Why take that scholarship? I guess, it’s because when we first used to get 

grants, we were the largest grants in the pool” (M61). 

In these situations, decision makers preferred their judgment over objective data. 

Outweighing data with judgment was not always based on benevolence or ulterior 

motives. Often, simply a lack of relevant data was the cause of these judgment-driven 

decisions. More recently, these rather traditional organizations have also become more 

data-driven as data becomes more ubiquitous. Non-profit organizations’ dependence on 

funding requires a change in decision-making cultures, as funders become more and 

more data-oriented. Therefore, all decisions that relate to funding applications or 

reporting to funders are highly data-driven, as executive M61 emphasized: “Funding, 

finding new sponsors and partners is data-driven. We have to prove the benefits of our 

organization and the service to the community. That is full quantitative data.”  

Executive M71 confirmed this sentiment and described it as a rather new development 

that can be attributed to the evolution of big data analytics. Funders are more aware of 

the relevance and the insights provided by data, and therefore require objective data 

results supporting non-profit decisions:  

What we are seeing is that traditional NGOs like ourselves having to 

be a lot more responsive to what funders expect of us, and properly 

measuring and evaluating what we do. But it’s a very recent, very new 

thing. And it’s not something we’re afraid of. Because eventually, in 

my view, it helps build our case for saying we should be allowed to 
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do more instead of funding other organizations who aren’t as effective 

as us. (M71) 

Non-profit organizations ultimately are also still businesses that require data to justify 

their decisions. In this aspect, non-profit organizations resemble for-profit businesses that 

need to justify their actions to their stakeholders. Head of department M21 compared his 

experience in the financial services industry with his current work in non-profit 

organization 2:  

There [in financial services] it’s about predictive: what  are the 

customers wanting to actually do? What behaviors are we seeing and 

see if we can sell a product. Whereas here [at this non-profit], it’s 

basically the same thing: what are our supporters doing? So we can 

identify what drives certain behavior to give. (M21)  

This growing importance of data access and analytics reliance among traditional 

organizations exemplifies a gradual evolution. However, organizations’ access to data 

did not automatically correspond in this study with the capability of those organizations 

to exploit insights from it. The tendencies towards data-driven cultures are represented 

across almost all industries, with many organizations struggling to achieve the necessary 

cultural change. This organizational journey to more data-driven decision making is 

further discussed in the next section, which outlines the different stages and obstacles of 

this journey.  

6.2.5. Analytics Maturity  

Early on during the data collection process, it became clear that most managers’ 

understanding of analytics and big data did not cover the full extent of these concepts 

(section 5.2.1). Furthermore, the findings suggested that big data and even basic analytics 
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were not as ubiquitously used by organizations as the impressions of current literature 

and vendors suggested. While vendors are found to sell big data as an omni-present 

solution, most participants were struggling with rather basic analytics tools, and were not 

ready to adopt big data. However, most organizations were aware of the growing 

availability and relevance of data, and therefore aimed at becoming more data-driven.  

On their journey to more data-driven decision making, the participating organizations 

were facing similar problems, or had just recently overcome them. This pointed to the 

concept of adopting data-driven decision making as a key indicator of organizational 

maturity. The findings were therefore more closely analyzed for characteristics of this 

‘analytics’ maturity. This in turn led to analytics maturity being considered as an 

additional component of the managers’ decision-making environment. Analytics 

maturity refers to an organization’s analytics capabilities, but also to what extent these 

capabilities are exploited for decision making and anchored in the organizational culture. 

The concept of maturity outlined in these findings therefore adds to the understanding of 

extant literature on analytics capabilities covered in Chapter 2.  

Analytics maturity was considered so far-reaching and symbiotic regarding the other 

environmental factors that it was not added as another hierarchical level, but rather as a 

parallel influence on the decision maker in addition to the other factors of the ecological 

framework. Manager M92 confirmed this influence of the managerial decision-making 

environment when discussing the maturity of his organization: “I think the maturity of 

data has increased, the importance of data has increased. That might be driven by my 

role as much as the environment.” 

Mapping the participating organizations’ data journey, three themes emerged that could 

be understood as distinct stages of analytics maturity. This is displayed in Figure 18 
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below, along with the positioning of the organizations in this study. The numbering of 

organizations is based on Appendix B.  

 

Figure 18. Data Journey to Analytics Maturity 

The figure indicates the positioning of each stage in relation to the organization’s 

analytics capabilities and its organizational culture. The stages reflect the organization’s 

current relationship with analytics, namely the ‘awareness’, ‘adoption’, and ‘maturity’ 

stage.  

The first stage of the data journey refers to the organization’s awareness and recognition 

of data analytics. All organizations within this sample were to some degree aware of the 

potential of data analytics and its value for decision making. However, awareness did not 

equal actual use of data analytics. Organizations in the awareness stage had just recently 

embarked on their data journey. This pursuit of analytics maturity was not always a 

conscious decision, but often triggered by the organizational environment. When 
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reflecting on his company’s data journey, manager M83 described their trigger as a new 

external data source, that was giving the organization “access to much more data than we 

used to have.” Being confronted with significant additional amounts of data, the 

organization started thinking about ways to harvest these sources. 

In these early stages of the data journey, it is considered important to get buy-in from 

leadership, develop ideas for first use cases, and put together a team of skilled analysts 

(M21). Organizations generally rely on several factors in order to create a data-driven 

environment that leads to good decision making with the help of analytics. In terms of 

culture, organizations are advised to focus on showing employees that there is value to 

be gained from using data, and therefore require easy wins that demonstrate this value 

(M22, M94). From a technological point of view, the best starting point for this part of 

the data journey is good data quality, as negative decision outcomes are often attributed 

to it (M21, M51, M83). 

Insufficient data quality is often discovered early in the awareness stage, when 

organizations delve deeper into their readily available data. This can also unearth errors 

in previous projects that relied on data, as executive M51 pointed out:  

It’s not until you actually strike doing some of these things, that you 

start cleaning up, because there hasn’t been a reason. So, we looked at 

the data, and actually some of the things that we did in that project last 

year–we recognized that the data that was more than four years old, 

was almost useless, for various reasons. (M51) 

Organizations observed as being in this stage are 3, 6, and 7. Taking into consideration 

the insights gained from Chapter 4 and Chapter 5, the allocation of these organizations 

to the awareness stage matches the decision maker types and decision-making processes 
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chosen by the participants: The managers of these three companies almost exclusively 

made high-judgment decisions, and belonged to Type D, i.e. the old-fashioned decision 

makers. Agency 3 was used to advising their customers on their data use and was thus 

able to work with big data on behalf of their clients. However, the agency itself barely 

used data, and executive M31 almost exclusively relied on his judgment for decision 

making. Not-for-profit organizations 6 and 7 were also considered to be in this stage. 

Characteristically for their industry, these organizations had not had extensive exposure 

to data that was useful for their purposes. However, with funders interest in data-backed 

reports and decisions growing, these organizations had to embark on their journeys to a 

more data-driven culture as well.  

After passing the awareness stage, executive M22 reflected upon early projects in this 

stage and referred to these beginnings as a discovery: “For me this project was a 

discovery process around how does this thing work - how do I turn this into reliable 

information rather than a whole bunch of data?” (C221). 

Organization 2 could now be found on the border between the awareness and adoption 

stages. This not-for-profit organization could be understood as having a traditional 

organizational culture that relied on judgment and experience. However, due to executive 

M22 and head of department M21, organization 2 had reached full awareness and was 

currently in the process of changing its culture. Both managers had backgrounds in the 

finance industry, and therefore had been exposed to the use and application of data in 

their previous roles. This experience helped executive M22 to assess the strengths and 

weaknesses of organization 2, and helped drive the initiative of becoming more data-

driven:  
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We’re not great at making good, well-informed decisions. We haven’t 

got great access to our data, and I don’t think we’ve got a great 

understanding of some of our data as well. And with the establishment 

of our business intelligence capability we’re actually trying to get on 

top of that data. (M22) 

As the example of organization 2 shows, the stage of adoption reflects an organization’s 

clear intent to become more data-driven. It serves as the first step in actualizing this 

intent. Other organizations determined to be in this stage are 4, 5, and 8. These 

organizations might have already hired BI talent, intensified their data collection efforts, 

or employed additional IT systems. However, their culture remains in transition, and 

individuals are still (at least partially) exhibiting resistance. Reflecting this state of 

transformation, Chapter 4 shows that managers of these organizations mostly made high-

judgment and balanced decisions. While they were striving for more data-driven 

decisions, limited access to and experience with data often resulted in experience-driven 

decisions.  

The findings of Chapter 5 also reflect the transition of this adoption stage; the decision 

makers could be sorted into three of the four different manager type categories. The 

majority were considered to be Type C, or insecure, managers. A few managers who 

were particularly influenced by their roles as managers or data champions, could be 

classified as Type A, i.e. analytics-bent. Lastly, the CEO of organization 5 was 

considered an all-rounder, i.e. decision maker Type B. No Type D managers were 

identified in this stage, likely because organizations in this stage would have access to 

data and encouraged managers to include it in their decision making. 
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Organizations in this stage display insufficient skills or technology to analyze the data 

collected. Data might still also need to be distributed among different silos, due to a lack 

of centralization. The key objectives of the organizations in this adoption stage are to 

increase their analytics capabilities and employ change management techniques to 

promote a more data-driven culture. This cultural shift is approached via building trust 

in data, tackling resistance, and sharing first successes and use cases.  

Head of department M84 explained that organization 8 was in the process of creating 

tools that would allow them to use the additional data they had gained access to, but that 

were currently not used. While the full potential of data insights could not yet be 

harnessed, the extent of data use for decision making was still limited: “We have some 

information that we’re basing decisions on, but it’s still a fairly experience-based 

decision-making process that we’re going through” (M84). Access to data, which was 

categorized as an industry-level influence, is therefore considered a significant factor for 

analytics maturity. This emphasizes the relationship between the concepts with other 

influences from the managerial decision-making environment. 

Similarly, the other levels of the ecological framework were found to play an essential 

role in affecting an organization’s analytics maturity. Executive M52 explained how 

departmental factors, including access to analysts and organizational culture, are key 

components of data-driven decision making. When asked about requirements for 

decision-making success, M51 described a team that was skilled, able to challenge data 

and human judgment results, and that espoused an organizational culture that enabled 

knowledge exchange: 

You need a team of people who are smart, experienced, and able to 

challenge. So, where there’s a culture where challenging someone’s 
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view is acceptable rather than just saying, ‘Oh, the boss said that, so 

that’s all good’. So, if you have a collegial environment, where people 

are willing to help each other and share views, then the chances are 

you might get a synthesis of a good answer. (M51) 

Sharing positive results and success stories helps to build this supportive organizational 

culture, enabling employees to see the potential and effect of data (M51, M85). Maturity 

eventually comes with gained experiences and familiarity with the datasets, which in turn 

leads to an even further improved understanding of and trust in the data. Manager M83 

confirmed this by sharing his own experience on becoming more familiar with analytics 

and being able to judge the correctness of results: “What I’ve realized is that, if you 

operate between certain datasets and metrics every month, you just look at something, 

and then…You know there is something not right.” 

The main obstacle for organizations in the awareness and adoption stages was resistance 

from employees (n=8). This resistance mainly stemmed from the complexity of the 

systems and lack of data access (M12, M41, M52, M82, M84, M91, M93). Other factors 

inhibiting data-driven decisions were the cost of data acquisition and of employing the 

required talent, and the managers’ lack of analytics skills. Furthermore, different 

managers have different analytics skills and preferences, a fact organizations must 

remain cognizant of.  

Organizations that have reached the maturity stage are characterized as having their 

analytics teams and the required tools for data analysis in place. Their organizational 

culture is supportive of data-driven decision making, yet open to the challenging of data 

results. A wide and readily available range of data sources are frequently accessed and 

harvested. Organizations in this stage may additionally have champions for BI, analytics, 



                                                      Chapter 6: Managerial Decision-Making Environment 

335 

 

and data. Their primary objective is to further explore sophisticated data analysis 

techniques and new data sources, through experimentation, for example, which is further 

discussed below. These organizations have a positive perception of data and consider it 

a key asset that improves their understanding of business problems. They also see the 

potential of data to explain phenomena and justify decisions (n=6).  

Organizations 1 and 9 are considered mature. As noted in Chapter 4, high-data decisions 

were almost exclusively made by these two organizations. Their analytics maturity 

allowed for successful data-driven decisions. They were also found to make a considerate 

number of the balanced decisions. Correspondingly, as identified in Chapter 5, the 

managers of these organizations were mostly identified as both Type B decision makers, 

i.e. all-rounders, and Type A managers, i.e. analytics-bent. Both organizations are in the 

financial services industry, and participants have long-term experience with using data 

for their decision making. Organization 1 heavily integrated data analytics into their 

operational, tactical, and strategic decision-making processes. Data was used for 

scheduled reporting purposes, ad hoc discoveries, the piloting of new business segments, 

and was an embedded driver of the business model. Analytics was described as part of 

day-to-day work by general manager M12. When daily reports sent by their analysts 

showed anomalies, “tactically you jump on that straight away. That’s just part of our 

business process” (C123).  

Organization 9 equally embedded analytics in all their key business processes (M93). 

However, even mature companies still have room to grow, which organization 9 notably 

recognized. Another characteristic of organizations in this stage is their awareness of 

their own limitations. Manager M92 identified these limitations in the company’s use of 

big data: “I understand big data, [but] I don’t use big data yet to make decisions. But we 
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are trying to create the environment where we do.” They approach overcoming these 

limitations with a pragmatic attitude and experimentation. 

In these experiments, business owners typically set up small scale control and test groups 

to trial new business models or ideas. The concept is considered simple but effective, as 

it provides quick results, objective justification for decisions, and does not depend on 

historic data or complex analytics (M91, M92). One particular benefit of experimentation 

is the direct comparison of several different options. General manager M91 especially 

valued this aspect of experimentation, as it contributed to wise decision making; instead 

of only seeing in hindsight whether or not a decision was wise, managers are given the 

chance to see the outcome of their alternatives on a small scale before rolling the decision 

out on a larger scale:  

The problem [with not experimenting]–and this why experiments are 

so good–is that you don’t know whether you might have gotten a better 

outcome, had you done something slightly differently. And that’s 

where experiments can contribute to wisdom if you like, a wiser 

outcome. (M91) 

Due to their simplicity, experiments were also found to cause less resistance in users and 

could even be seen as a gateway to the acceptance of more data use, as M91 highlighted:  

[Analytics] scares a few people, I think that’s fair to say. But through 

that introduction of the process of experiments, we’re going to have 

an ever greater reliance on analytics and analytical supports to enable 

the experiments to happen in the first place. (M91) 

All participants agreed that analytics maturity contributes to the quality and 

sophistication of data-driven decision making. Reaching this maturity was considered a 
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slow process (M93). Further, organizations identified two primary drivers for moving 

from the stages of awareness and adoption to maturity. One of the drivers is the 

promotion of analytics by executives of the organization (M83, M94). As head of 

department M94 emphasized, leadership is required in order to provide the necessary 

support, motivation, and necessary authority for switching to data-driven decisions: “It’s 

got to be led by the absolute top of the organization. If it doesn’t happen at the very, very 

top, it won’t happen at all” (M94). The other key driver is the sharing of positive results, 

and the quick gathering of small wins to demonstrate the value and potential of adopting 

a new decision-making approach (M14, M71). 

A general sentiment shared by several participants was to slowly adopt the data-driven 

organizational culture and thoroughly assess the reasons, requirements, and status quo 

(M21, M51, M83, M94). Head of department M94, a member of the most mature 

organization among the participants, provided his experience and insight for less mature 

organizations, which additionally summarizes the key insights found in this section:  

My advice to people would be: start with the question, not with the 

data. Where do you believe value could be in your business? And then, 

what’s the fastest, cheapest way for you to demonstrate a test of where 

that value could be? Do you need to develop an analytical model, or 

can you simply create a set of simple hypotheses to test? If you don’t 

even know where to start, you probably want to do some analysis, and 

some interpretation of insights…I think being clear on what things 

mean is a good start. So where exactly is your problem? Is it in 

reporting–well that’s easy to solve. Is it analysis? Well, that’s a 

business side function, so you need to get the right people focused on 
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where they think value could be. If it’s insights, do you have no idea 

of what’s going on? Do you have any intuition that tells you things 

you could test? If it’s analytics, it means you start off with hypothesis–

fair enough, get some operational research PhD people in to discover 

if you believe you’ve exhausted all the insights that will come from 

just asking your people what’s going on. (M94) 

As this section showed, the concept of analytics maturity is closely tied to industry-level 

influences, i.e. data access; organization-level influences in the form of organizational 

culture; and department-level influences, particularly in the form of available analysts. 

Analytics maturity should therefore be considered the most critical component of the 

environmental framework affecting management decision making.  

6.3. Discussion 

This chapter’s findings contribute to extant literature on decision making with (big) data 

analytics in two significant ways. One key contribution is the creation of a managerial 

decision-making environment in the age of big data. This holistic framework brings 

together each of the key decision-making influences, outlining their relation to each 

other. This chapter’s second key contribution is the identification of the most significant 

environmental influences on managerial decision making. These influences, four in total, 

were found to be analyst support, organizational culture, access to data, and analytics 

maturity. Both of these key findings are discussed in the following sections in the context 

of extant literature. 

6.3.1. Ecological Systems Framework 

After focusing on decision-making processes in Chapter 4 and discussing different types 

of decision makers in Chapter 5, this discussion section evolves around the context of 
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those decision makers. There have been several studies identifying the various obstacles 

organizations and managers encounter when using data analytics (e.g. Alharthi et al., 

2017; H.-M. Chen et al., 2017; Davenport et al., 2013; LaValle et al., 2011; McAfee & 

Brynjolfsson, 2012; Watson & Marjanovic, 2013). Many of these obstacles are a result 

of external influences on the managerial decision maker. These external influences, 

which form the context of this study, were therefore explored further to identify exactly 

which factors in the decision makers’ environment influence their decision-making 

processes. To accomplish this, the ecological systems framework created by 

Bronfenbrenner (1977, 1979) was used as a lens to systematically assess the effects of 

the external environment on managerial decision-making behavior. 

Introduced in section 6.1., Bronfenbrenner’s ecological framework postulates the 

influence of an individual’s surroundings on their development (1977, 1979). The 

hierarchical levels of influence outlined by this framework were applied to the findings 

of this research to find an explanation for the collected data, which ultimately led to the 

creation of Figure 17. The resulting model is a managerial decision-making environment. 

As the center of the model, the managerial decision maker is influenced by the 

microsystem, i.e. their department and colleagues. The next level of influences is the 

mesosystem, representing organizational culture in this study. The outermost identified 

level of influence found during data analysis was the exosystem, in this case in the form 

of industry-level influences, or more specifically the industry’s access to data.  

Bronfenbrenner’s (1977) exosystem was also in fact the final layer identified in the 

context of this research, as the macrosystem–encompassing economic, legal, social, and 

political systems–did not show any immediate impacts on managerial decision making 

in this study. Another factor, however, was found to significantly effect managers in their 
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decision making: the analytics maturity of their respective organizations. This factor was 

interpreted, named, and consolidated to form an important additional influence that 

interacted with all the other levels of environmental influences, having a direct impact 

on decision makers. 

A practical application of the ecological framework on managerial decision making was 

found in Harrison’s (1995) work on management decision making. His environmental 

system places the decision maker at its core, with the group–i.e. groups of decision 

makers–and the organization as the next hierarchical levels. Further external influences 

then stem from the economic system, social system, political system, and technology.  

In the context of this thesis, the social and political systems did not apply directly, as 

mentioned in the section 6.2.1. These factors come in the form of legal, privacy, and 

ethical concerns, but they were not explicitly expressed as significant influences by the 

participants on their decision making. Instead, they are more likely to influence the stages 

of data collection, which is an organizational concern that was not found to have a direct 

impact on the actual individual decisions that managers made. If those factors did arise, 

they were identified as part of the industry or organizational level, similar to industry 

standards or organizational governance, not as society-level influences. 

The economic system as outlined by Harrison was ultimately considered too broad for 

this study, as it contains findings on employees, customers, competitors and other 

industries (Harrison, 1995). In this study, these elements were considered separately at 

the industry and team levels. For this study, technology was also not considered as an 

external potential influence, but as an inherent influence, as this specific framework 

evolves around data-driven decision making. The framework created in section 6.2.1. 
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therefore extends Harrison’s (1995) model and applies it specifically to the context of 

data-driven decision making.  

Bronfenbrenner’s (1979) ecological framework allowed for the systematic identification 

of all significant environmental factors influencing managerial decision making, as well 

as their interactions. This provided the outline for a holistic framework incorporating 

insights from the previous Chapters 4 and 5. The result is a depiction of managerial 

decision making in the age of big data as a multi-factorial issue. This original framework 

is thus seen as a key contribution, as existing frameworks in extant literature proved 

insufficient to explain the findings of this research, as is further discussed in the following 

sections. 

Generally, extant frameworks in the discipline of information systems serve the purpose 

of facilitating understanding for complex systems by identifying the different system 

components and their relationships (Phillips-Wren et al., 2015, p. 23). This understanding 

is considered paramount for the implementation of information systems to support 

decision making. While a number of these frameworks were identified in the literature, 

this research is not exclusively focused on technological aspects of data-driven decision 

making. Indeed, this more in-depth approach to answering the research questions 

demanded an interdisciplinary framework that accounted for the diversity among 

managerial decision makers, different decision types, and the various additional external 

factors that influenced the decision maker’s environment. Selected examples of 

information systems frameworks that show at least partial applicability to the findings of 

this study are discussed below. 

The earliest applicable model in this context is Huber’s (1990) theory of the effects of 

advanced information technologies on organizational design, intelligence, and decision 
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making. At the time of publication, advanced technology was understood as 

communication and decision support technologies, e.g. DSS and KMS. Huber postulates 

that introducing these technologies will lead to their use, which will in turn increase 

information accessibility. Increased information accessibility is expected as a result to 

improve the effectiveness of decision making and the organizational design.  

While these general mechanisms could be identified in the findings of this thesis, the 

effects outlined in Huber’s theory were not as straight-forward, and not sufficient to 

reflect the full meaning of the collected data. Firstly, the use of the advanced technology 

was, in most cases, met with significant resistance. Secondly, mastering these 

technologies required a significant amount of experience, and therefore only led to an 

increase of accessible information after a prolonged period of time–if ever.  

Changes in organizational design were also considered by the participants of this study 

to have a positive effect on managerial decision making. Particularly on a team level, the 

organizational changes that led to increased access to analysts were seen as a key 

motivation for employing data analytics in decision making. However, Huber’s (1990) 

theory lacks the range of contextual factors accounted for in this study’s examination of 

the decision-making environment. The framework created in section 6.2.1. accounts for 

a more modern and holistic context, and therefore enhances Huber’s model. 

A related model with limited applicability was created by Cao, Duan, and Li (2015). This 

empirical study focuses on a similar, if limited, context, exploring the relations among 

business analytics, a data-driven environment and decision-making effectiveness. Their 

findings suggest that a data-driven environment functions as a mediator of the business 

analytics effects on the decision makers’ information processing capabilities. This in turn 

was found to have a positive effect on decision-making effectiveness. A data-driven 
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environment is understood in this case to as organizational practices that facilitate the 

use of business analytics activities.  

The findings of this study are supported by Cao and colleagues (2015) who found a slight 

industry influence on business analytics’ enhancement of decision-making efficiency. 

They furthermore conclude that organizational size had no significant effect, supporting 

the results of this study but contradicting Shepherd and Rudd (2014). In essence, while 

Cao et al.’s (2015) findings ultimately support the effects of the decision-making 

environment found in this thesis, the complexity and level of context in their study is 

limited.  

One model that was found to address the conversion of big data into knowledge is the 

performance triangle, as discussed in Bumblauskas et al. (2017). The model highlights 

the importance of peoples’ relationships, purpose and collaboration in their journey to 

reach organizational success. Key components of this model are culture, leadership, and 

systems. Organizational culture and leadership were also identified as key influences on 

the organization level in section 6.2.3. of this study, as was analytics maturity, discussed 

in section 6.2.5. The importance of the above factors was clearly emphasized by the 

managers in this study. However, the model outlined in Bumblauskas et al. (2017) is 

limited to only these factors, which did not sufficiently represent the experiences of this 

study’s participants. 

A more comprehensive model is presented by Shepherd and Rudd (2014), who assess 

the influences of context on the strategic decision-making process in their conceptual 

literature review. Four different categories of influences are identified, all of which 

showed a direct effect on the strategic decision-making process, and consequently a 

moderating effect on decision outcomes. The first of these categories is the high-level 
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management team, which is characterized by demographic factors, personality, and so 

forth. This matches the findings of Chapter 5, which outline the influence of different 

managerial characteristics on the decision-making process. This study extends the model 

of Shepherd and Rudd by going more into depth and recognizing distinct types of 

decision makers.  

The second factor introduced in their conceptual review are strategic decision-specific 

characteristics such as motive, time pressure, and uncertainty (Shepherd & Rudd, 2014). 

This study addressed these decision-specific influences on the decision-making process 

in Chapter 4, and further contributed by determining three distinct decision types that can 

be observed in the age of big data. The third factor in Shepherd and Rudd’s study is called 

the external environment. This factor accounts for external elements of dynamism, 

instability, and so forth. This factor essentially matches the industry-level factors which 

were assessed as part of the environmental framework of this thesis chapter. Shepherd 

and Rudd’s last factor considers firm characteristics, such as structure, size, performance, 

etc. In this study, these factors were also assessed, but were also categorized as part of 

the environmental framework. While the different organizational sizes, etc. were covered 

in the description of the sample in section 3.3.1., their effect on the participants’ decision-

making processes were not deemed significant. 

Three influence categories of the Shepherd and Rudd (2014) model, namely the high-

level management team, external environment and firm characteristics, showed direct 

effects on the decision outcomes, while decision-specific factors were only found to have 

a moderating effect. Contrasting results can be seen in the framework depicted in section 

6.2.1.: Each environmental factor shows an effect on the managerial decision-making 

process, but the most immediate effects were identified as the decision type, i.e. the 
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embedded unit of analysis, analytics maturity, and team-level influences in the form of 

access to data analysts. While Shepherd and Rudd’s model included a number of factors 

that were deemed relevant and significant for the context of this study, their overall 

structure and the relationships between factors did not suffice to explain the findings of 

this thesis.  

Tom Davenport and colleagues have also provided a framework that covers  key elements 

of a successful analytics program. First introduced in 2010, the DELTA model, as it was 

named, covers the components of data, enterprise, leadership, targets, and analysts 

(Davenport, Harris, & Morison, 2010). The first component refers to the structure and 

quality of, as well as access to, the data that is required for the successful use of data 

analytics. An enterprise approach to data analytics refers to the implementation of a 

single and consistent organization-wide analytics strategy, including a unified mission 

and the absence of data silos. Leadership support is seen as crucial for the success of an 

analytics program and is a prerequisite to data-driven organizational culture acceptance. 

Targets in this context refer to the setting of strategic targets by managers to better focus 

their analytics efforts, as not all parts of an organization’s business can be equally 

analytic. Analysts refers here to the talent with sufficient analytics skills needed to fill 

positions of professional analysts, but also to advocates and champions of analytics use. 

The aspect of data management has been addressed in several sections of this thesis, but 

the findings of this literature particularly resonate with the analytics maturity component 

of this decision-making environment. The enterprise factor is also addressed in several 

of the environmental components, but particularly matches the identified importance of 

organization-wide access to data analysts. The leadership aspect is addressed as a crucial 

driver of organizational culture and analytics maturity. Targets have not been addressed 
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as crucial factors within this study, seemed most relevant for the promotion of the use 

and acceptance of analytics. The importance of analysts has also been highlighted in this 

thesis, particularly as a team-level influence.  

While all of the DELTA model’s factors proved to be relevant in the context of this 

thesis, the model itself does not in the end succeed in reflecting the complexity, 

dynamics, and relations among the factors in the environmental framework created as 

part of this study. Most of the DELTA factors could be interpreted as important 

components of the analytics maturity concept, but on the whole the study fails to match 

the holistic nature of the managerial decision-making framework in section 6.2.1. 

Davenport’s DELTA model was extended in a more recent publication by the two factors 

of technology and analytics techniques, creating the DELTA Plus Model framework 

(Davenport & Harris, 2017). Technology here refers to the selection of the right tools, 

enabling more and more employees to meet their data needs independently from analysts. 

Analytics techniques refer to the ever-growing number of available data analysis 

methods and an organization’s requirement to identify the most suitable methods for their 

purposes. Both added factors are mentioned in section 6.2.5., as important components 

in determining an organization’s analytics maturity. An application of the six-factor 

Delta Plus Model is found in a Danish study by Mueller and Jensen (2017) . This study 

did not account for the factors of analytics techniques but confirmed that the creation of 

value with big data depended on all six researched factors.  

Still other frameworks in the information systems literature proved insufficient to explain 

the findings of this thesis or had limited applicability due to differences in the scope or 

setting of the study (e.g. Anya, Moore, Kieliszewski, Maglio, & Anderson, 2015; Cao et 

al., 2015; Curry, 2016; Elgendy & Elragal, 2016). Curry (2016) , for example, provides 
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a contextual framework that identifies key actors required for a well-functioning data 

ecosystem. However, this system approaches the topic from a macro-level, mentioning 

both end-users and vendors in the same breath when identifying factors that are relevant 

for a well-functioning big data ecosystem in Europe.  

While the previously mentioned information systems frameworks offered valuable 

insights into several of the components identified in the findings, none of them had the 

potential to provide a sufficient structure for a comparable equivalent to the results of 

this thesis. The ecological framework thus provided a more suitable basis and lens for 

exploring the collected data and creating a suitable environmental framework for 

managerial decision making with data analytics. In the following sections, the 

components of this environmental framework are further discussed and compared to 

extant literature. 

6.3.2. Team-Level Influences 

An immediately apparent influence on the decision makers was the team surrounding 

them. The findings showed that managers considered access to analysts the primary 

influence at the team level. This aspect was discussed in the previous section, and the 

extant literature confirms it as an important component of successful analytics use 

(Davenport et al., 2010; Müller & Jensen, 2017). According to Wirth and Wirth (2017) , 

one of the key challenges for organizations is the definition of use cases when it comes 

to analytics use. They outline the importance of first clarifying the requirements and the 

actual purpose of the data before wasting time and financial resources on unnecessary 

data collection and analysis. Bumblauskas et al. (2017, p.16) confirm this, and identify 

the managers’ ‘lack of vision’ to ask questions that can be answered with data as a key 

problem of big data analytics. 
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In these situations, analysts take on the role of challenging managers to further define 

their questions and determine their requirements. As outlined in the findings, participants 

saw analysts as a valuable contribution to the decision-making process when taking on 

this role. Access to analysts was therefore considered a key determinant of successful 

decision making. Several organizations had centralized analytics units (e.g. organization 

1, 8, and 9), which benefitted managers by providing them with organization-wide data, 

state-of-the-art analytics capabilities, and sufficient human resources to support their data 

needs. LaValle et al. (2011) confirm this finding by stating that centralized analytics units 

offer several benefits. As a center of excellence, these units can provide advanced 

insights, manage the available resources efficiently, and provide governance around data 

analytics use. They add that these centralized units should be an addition to existing local 

resources and should not detract from the often valuable close relations that local analysts 

might have to their own departments. 

A key advantage of this close contact with local analysts, is that managers can gain an 

advanced understanding of the data that informs their decisions, and in turn lead analytics 

techniques that transform that data into meaningful insights. Janssen, van der Voort, and 

Wahyudi (2016)  confirm the participants’ sentiments. They state that managers’ ability 

to interpret the outcomes of analytics and their understanding of the relationships of 

problem variables significantly improve their decision quality. They add that interactions 

with analysts are therefore equally expected to positively affect decision quality, as they 

contribute to the managers’ exposure to and understanding of data analytics. 

The concept of computer self-efficacy (CSE) introduced in section 5.3.1.3. would 

support these assumptions. As postulated by Bandura’s (1978) self-efficacy theory, 

peoples’ belief in their abilities, and in this case, the interaction with analytics, is highly 
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influenced by other peoples’ behavior. To develop confidence in their data analytics 

abilities and become comfortable in the realm of data-driven decision making, managers 

greatly benefit from interactions and exposure to analysts. 

A key obstacle to establishing centralized analytics units and providing access to local 

analysts is the aspect of talent management (Alharthi et al., 2017; H.-M. Chen et al., 

2017). Organizations face a shortage of skilled individuals that have sufficient experience 

with data analytics and an understanding for its business applications. Overcoming these 

obstacles is part of the data journey the organizations undertake on their way to 

transforming their traditional culture into data-driven decision making. 

6.3.3. Organizational Culture  

Organizational culture was understood as a major contributor to the success of data-

driven decision making by all participants in this study, as well as by the extant literature 

(Watson, 2016). Managers in organizations with highly data-driven cultures credited 

their environment for the extent of data they used in their decision making. Participants 

described the benefits of this culture as being able to defend decisions with objective 

information and as avoiding flying blind, since the data provided valuable insights. The 

use of analytical and technical reports as justification in the decision-making process was 

also seen as a benefit of data-driven cultures, according to the extant literature (McAfee 

& Brynjolfsson, 2012; Nicolas, 2004).  

Organizations 1 and 9, which already embraced data-driven decision making before the 

age of big data, were found to be furthest along in their data journeys. Having been in a 

data-driven environment for a significant amount of time provided these organizations 

with a competitive advantage regarding the exploitation of big data analytics, as well as 

their progress in terms of analytics maturity. As is stated in the extant literature, these 
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large, data-driven and competitive corporations particularly benefit from increasing 

analytical capabilities (Davenport, 2006; Huber, 1990; McAfee & Brynjolfsson, 2012). 

A strong foundation in analytics understanding, skills, infrastructure, and an openness to 

data use are the advantages that these large organizations have over smaller and/or 

judgment-driven organizations. The findings of this study serve to this strong relationship 

between the organizational culture and success in employing data analytics.  

The benefit that organizations with a data-driven culture have becomes particularly 

apparent when looking at the effort and duration of changing organizational culture. But 

as Ross, Beath, and Quaadgras (2013) outline in their work, this transition to a more data-

driven culture should be understood to work best as a gradual shift. A top-down 

approach, which usually works for most change management efforts, is not 

recommended in the instance of readying organizations for big data decision making. 

Ross et al. (2013) advise instead that organizations begin this cultural shift by introducing 

data-driven approaches into ‘important repetitive work that includes some discretion and 

some application of rules’ (p.98). Service work is seen as an ideal starting point for this 

gradual introduction (Motamarri et al., 2017; Ross et al., 2013). 

These repetitive tasks should be enriched through clear business rules, metrics should be 

defined, and decision makers should be provided with sufficient data (Ross et al., 2013). 

Once these tasks are more data-driven, the expectation is that this culture will slowly 

spread to most other roles. The authors furthermore point out that in these early stages, 

problems with business rules, data quality and metrics can also be easily identified. This 

was confirmed by the findings of this study, as participants often emphasized their 

struggles in the beginning stages of their data journey and their resulting need to 
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experiment in smaller test environments to more quickly find those problems. These 

challenges often revolved around data quality issues (M21, M51, M83). 

Besides this high-level strategy, the literature outlines several ways to drive overarching 

cultural change, which are reflected in the findings, and also serve to demonstrate the 

interrelation between the organizational culture and other influences of the managerial 

decision-making environment. Watson (2016) suggests several approaches for 

facilitating the shift towards a data-driven culture.  

The first factor Watson (2016) outlines is the use of dashboards. This refers to addressing 

the varying needs of different managerial decision maker types, as discussed in Chapter 

5. Certain managers benefit from a visualization of their data input (Makonin, McVeigh, 

Stuerzlinger, Tran, & Popowich, 2016; Moore, 2017). Providing managers with 

dashboards that contain KPIs (Key Performance Indicators) relevant to their and their 

teams’ performance holds them accountable while simultaneously demonstrating the 

significance of using metrics (Watson, 2016). Participants expressed strong interest in 

visualized data (M82, M93), and some had initial successes in using KPIs displayed on 

a dashboard when they framed reaching them as a competition among their employees 

(C831). 

Furthermore, Watson (2016) agrees with Ross et al. (2013) by suggesting that operational 

decision making should be encouraged, as it allows for the showcasing of the value of 

analytics for decision making in a scaled and governed environment. This approach is 

also related to the recommendation of focusing on early wins to overcome skepticism 

and promote acceptance (H.-M. Chen et al., 2017; Watson, 2016). The participants of 

this study confirmed the importance of this approach and highlighted their success in 
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sharing positive results (M51, M85) and quick wins as use cases with their employees 

(M14, M71).  

To further encourage each employee to use analytics, decision makers should be more 

frequently questioned regarding the data sources and analytics techniques used to arrive 

at their decisions (Watson, 2016). As discussed in section, 6.3.2., analysts can actually 

take on the role of supporting managers to learn more about the data and analytics to 

further develop their understanding. Employing incentives for the use of data analytics 

can work as an external motivator for employees. However, as with most major change 

management initiatives, not all employees will accept the organizational change. Watson 

(2016) therefore concedes that some employees will ultimately have to be replaced to 

create an organization-wide data-driven decision-making culture. 

A general difference in organizational culture could be observed when zooming out to 

the broader context: the industry of each organization. Smaller organizations particularly 

displayed a more traditional judgment-driven culture. These organizations of small to 

medium size, i.e. 3, 5, and 6, had not yet needed to justify their decisions in detail. Hanlon 

(2011)  reports on this effect and describes how organizations in small private sectors 

and family businesses are mostly intuition-driven. In contrast, organizations that had a 

lot of public exposure were faced with the expectation of justifying their decisions and 

of therefore employing a rational decision-making process. Consequently, industry 

context is perceived as a further influence on the managerial decision-making 

environment and is discussed in the following section. 

6.3.4. Industry 

The findings of this research suggest a significant, if indirect, influence of industry on 

managerial decision making. Generally, the findings suggested that participants in a data-
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rich industry significantly benefited from their organizations’ access to data and 

analytics. As discussed in the previous section, long-term exposure to data can support 

the slow and steady journey towards a data-driven culture. However, even industries that 

have historically had access to large amounts of data, such as the financial sector, have 

faced external limitations when attempting to use that data.  

Extant literature confirms this by highlighting that the industry often determines the level 

of regulations, legal constraints, and level of confidentiality required, which in turn 

affects the use of data (Hensman & Sadler-Smith, 2011; Richey Jr et al., 2016). The 

significance of industry influences also seems to outweigh the relevance of 

organizational size in the context of adopting a data-driven culture. A study by Cao et al. 

(2015) on the effects of business analytics on decision-making effectiveness examined 

the influence of these organizational factors. The authors determined that the company 

size of large and medium organizations in fact had a statistically insignificant impact on 

the companies’ path from business analytics to data-driven decision making. However, 

they found differences between the manufacturing and professional services industry, 

indicating a moderating industry-specific effect. Despite this finding, the study fails to 

delve deeper into the specific differences between the industries. 

A significant example of this contradiction between access to data and regulations for 

data use is the financial sector, which was part of the sample of this study and is further 

discussed in this section. While today banks are among the industries spending the most 

on big data and analytics solutions (Goepfert & Shirer, 2018), the banking industry did 

not have the most impressive start compared to other industries, such as retail, insurance, 

or internet companies such as Google (Keenan, 2015). Part of the reason for this late 

entry into big data decision making are the regulations that the banking industry must 
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adhere to, despite having access to large amounts of data. Due to the financial crisis in 

2008, new legislation impacted the adoption of big data in the industry, as “trading 

operations…are re-written to comply with the more prescriptive requirements of the new 

rules” (Kemp, 2014, p. 484). Participants in the financial services industry confirmed this 

influence of legislation by stating that they felt an impact of both social and regulatory 

responsibility (M12, M93). 

These responsibilities and the high demand for decision justifications also leads to a 

rather minimized use of human judgment in the financial services industry. When 

comparing strategic decision making in the computer industry versus banks and utilities, 

intuition was found to be more prevalent and had a more positive association with the 

financial performance of the computer industry (Khatri & Ng, 2000). Meanwhile, banks 

and utilities reported a negative association with the use of intuition regarding their 

financial performance. Generally, companies in the finance industry rely to a significant 

extent on data and objective validation of their decisions (Hensman & Sadler-Smith, 

2011).  

While there is room for intuition, the prevalent organizational culture is more data-driven 

(Hensman & Sadler-Smith, 2011; Trönnberg & Hemlin, 2014): “Policies and procedures 

may impede fast, intuitive decision making in complex, judgmental (that is non-

programmable) scenarios because of the accountability and auditing requirements 

imposed by the industry’s and government regulatory frameworks” (Hensman & Sadler-

Smith, 2011, p.57). Shepherd and Rudd (2014) confirm that external control forces 

organizations to adapt their decision making, as they rely on reporting and formalization 

of processes. 
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The transportation industry also faced difficulties in capitalizing on data analytics, even 

though companies in this industry have a data-rich past resulting from early adoption of 

computerization and standardization (Kemp, 2014). One of the key problems is 

information silos within and among organizations that complicate the analysis of data, 

and therefore the gathering of insights from vast amounts of that data (H.-M. Chen et al., 

2017; Kemp, 2014). This was confirmed by the participants as they outlined their 

difficulties in accessing and integrating the various data sources and gaining permissions 

from different business units to access certain datasets (e.g. M86). On the other hand, 

participants were also optimistic about more recent data sources, such as the increasing 

availability of geographical and sensor data, which provides further insights for planning 

and maintenance (Alharthi et al., 2017).  

6.3.5. Analytics Maturity 

The above described influences follow the hierarchical levels outlined in the managerial 

decision-making environment in Figure 17: the individual decision makers are influenced 

first by factors in their departments, then by their organization, and lastly by their 

industry. However, an additional factor was also identified, which could not solely be 

attributed to just one of the hierarchical levels, as it touches on several of the already 

outlined factors. This key influence on the managerial decision-making environment was 

identified as analytics maturity. The concept interacts with several of the hierarchical 

levels discussed above and is therefore depicted as a parallel force to each of them within 

the environmental framework.  

In the context of this study, the concept encompasses a combination of organizational 

culture and analytics capabilities. Extensive analytics capabilities and a data-driven 

culture are therefore seen as the key determinants qualifying an organization as having 
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reached analytics maturity. Analytics maturity also accounts for factors enabling this 

data-driven culture and these sophisticated analytics capabilities. Qualifying 

organizations need to be ready for data-driven decisions from a technological point of 

view (Jagadish, 2014). They also need to consider HR and change management 

perspectives (Shah et al., 2017), and trigger a cultural shift (Watson, 2016).  

Analytics maturity is understood as a state that is achieved by organizations at the end of 

their data journey after completing the stages of (analytics) awareness and (analytics) 

adoption. The awareness stage describes an organization’s recognition and assessment 

of the potential benefits data analytics could offer their business. Issues with current 

technology, data quality or a lack of required skills were identified as hurdles at this 

stage. The adoption stage signifies the organization’s transition from traditional to data-

driven culture, and thus the tackling of various related management and technological 

challenges. Organizations reach maturity once a data-driven culture is adopted; that is, 

once analytics practices are both embedded in decision making and accepted by the 

workforce. 

These stages were defined by thematically analyzing the data and consulting existing 

maturity frameworks in the extant literature. During the interviews, managers spoke 

about their analytics capabilities, organizational culture, acceptance and use of data 

analytics, and other related aspects. Considering the topic of the study, most participants 

used qualifiers to describe where they saw themselves in comparison to other companies 

in terms of data use. Participants referred to their organizations respectively as ‘mature’, 

‘far along’ in their data journey, in ‘early stages,’ etc. These qualifiers supported the 

creation of an analytics maturity spectrum, which is depicted in findings section 6.2.5. in 

Figure 18. 
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Extant literature presents a range of analytics maturity frameworks, that depict similar 

concepts, albeit with differing factors or relations (Lahrmann et al., 2011; LaValle et al., 

2011). Business Intelligence (BI) maturity models before 2010 were discussed by 

Lahrmann et al. (2010) in order to highlight commonalities, differences, and their 

reliability. Only ten such models had been identified, mostly originating from practice. 

The authors therefore offered a criticism that extant maturity models did not have a 

theoretical foundation sufficient to explain the connection between maturity, impact and 

organizational success (Lahrmann et al., 2011). This shortcoming is addressed in this 

thesis by considering the concept of maturity as a component of the ecological systems 

framework of managerial decision making.  

More recent articles specifically include aspects of big data maturity (Comuzzi & Patel, 

2016; Davenport & Harris, 2017; M. Gupta & George, 2016; LaValle et al., 2011; 

Motamarri et al., 2017). A selection of these frameworks is discussed below to provide 

insights into commonalities with and differences to the findings of this research.  

An empirical study by Gupta and George (2016) addresses seven resources that are 

required to build big data analytics capability. These seven resources are data, 

technology, basic resources such as investments and time, managerial and technical big 

data skills, as well as data-driven culture and intensity of organizational learning. These 

factors can be compared to Davenport and Harris’ (2017) DELTA model below but are 

also recognized in the managerial decision-making environment of this study. 

Particularly for this component of analytics maturity, data and technology, in 

combination with analytics skills, are accounted for via the extent of analytics capability. 

Organizational culture is seen as a separate factor from analytics capabilities but is 

required as a foundational component of analytics maturity. Capabilities refer to the 
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organization’s potential to employ data analytics, whereas organizational culture refers 

to the acceptance and actual use of data-driven decisions. 

In 2010, Davenport, Harris, and Morton developed the DELTA model, outlining five 

components required for the success of a data analytics program. Davenport and Harris 

then extended this model by two further components in 2017 to account for the extensive 

requirements of big data. Their model reflects the factors covered in the managerial 

decision-making environment. The five original components of the DELTA model were 

accessible and high-quality data, enterprise-orientation of data and analytics 

management instead of decentralized silos, leadership supportive of analytics, analytics 

aligned with strategic targets, and skilled analysts. In 2017, the DELTA Plus model was 

developed by adding the components of fast-developing technology, as well as and 

different models and tools for analytics techniques. All factors outlined by the model are 

accounted for in the managerial decision-making environment of this study. The 

importance of analysts, leadership, organization-wide buy-in, and strategic alignment 

have been identified in the different levels of the framework. Technology, analytics 

techniques, and data quality are considered factors that are particularly relevant in this 

stage of analytics maturity, as they define an organization’s analytics capabilities. 

While these factors are considered prerequisites of successful data programs, Davenport 

and Harris (2017) additionally outline five stages of analytics maturity. These stages are: 

analytically impaired, localized analytics, analytical aspirations, analytical companies, 

and analytical competitors. In contrast, LaValle et al. (2011) identify just three stages: 

aspirational, experienced, and transformed. To fully assess these frameworks in light of 

this study’s findings, Table 31 below compares all three frameworks of maturity stages.  
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Table 31. Analytics Maturity Stages 

Source Maturity Stages 

Davenport 

& Harris 

(2017) 

Stage 1: 

Analytically 

Impaired 

Stage 2: 

Localized 

Analytics 

Stage 3: 

Analytical 

Aspirations 

Stage 4: 

Analytical 

Companies 

Stage 5: 

Analytical 

Competitors 

Findings 

6.2.5. 
Stage 1: Awareness 

Stage 2: 

Adoption 
Stage 3: Maturity 

LaValle et 

al. (2011) 
Stage 1: Aspirational 

Stage 2: 

Experienced 

Stage 3: 

Transformed 

 

The stages of all three maturity frameworks map similar conditions but apply different 

levels of granularity. In the findings of this research, the awareness stage is the first stage 

on an organization’s journey toward data-driven decision making. This stage 

encompasses the first two stages of Davenport and Harris’ (2017) framework, who 

distinguish between virtually no analytics capabilities, and localized analytics efforts that 

are only employed in silos. This study does not distinguish between these two stages, as 

they were considered to pose very similar challenges to organizations. LaValle et al.’s 

(2011) first aspirational stage encompasses the awareness stage of this research. 

However, it also goes beyond that and covers parts of Davenport and Harris’ (2017) 

analytical aspirations stage. 

The analytical aspirations stage (Davenport & Harris, 2017) was widely congruent with 

the adoption stage of this research, referring to the organization’s transition from a 

traditional to a data-driven culture. More centralized data management efforts are 

employed, leaders start recognizing the value of analytics, and analysts become more 
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involved in all business units. LaValle et al.’s (2011) second (experienced) stage could 

be seen as part of this adoption stage, as well as the maturity stage. 

In the third stage of this study’s framework, organizations reach analytics maturity and 

are therefore able to make data-driven and analytics-informed decisions. The 

organizational culture is accepting and supportive of data-driven decisions, and related 

practices are embedded in all key organizational processes. This maturity stage 

encompasses stages four and five of Davenport and Harris’s (2017) framework, which 

distinguishes between organizations that have reached this level of maturity and 

organizations that compete on analytics capabilities. These analytical competitors have 

world-class analysts at their disposal who continuously search for new data sources and 

ways to analyze data. LaValle et al.’s (2011) third (transformed) stage matches these 

criteria. Looking at the findings of this research, the last stage of analytics maturity 

seemed sufficient to cover both of those stages, given that the framework in section 6.2.5. 

is understood as and displayed in form of a spectrum. 

Neither the frameworks from Davenport and Harris (2017) nor LaValle et al.’s (2011) 

account for organizational culture to the extent of the framework outlined in section 

6.2.5. In the findings of this research, culture was identified to be a critical determinant 

of data use and acceptance and is therefore considered an integral part of the concept of 

analytics maturity. 

While the models outlined above clearly vary from the managerial decision-making 

framework introduced in the findings, most components can be found and accounted for. 

The framework developed in this study was specifically created for the findings reported 

by the participants. The concept of analytics maturity therefore focused primarily on the 

aspects of organizational culture and analytics capabilities, as these were the key 
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determinants as identified by the managers themselves. Even though the specifics of the 

models in extant literature might differ from one another, as well as the findings of this 

research, the key assertions were found to match. Equally, similar challenges to reaching 

analytics maturity were identified in both this study and in the extant literature. 

Technological challenges are one of the first challenges organizations encounter on their 

data journey. In particular, insufficient data quality and systems incapable of processing 

the organizations’ data were mentioned as key problems by the participants (M21, M51, 

M83). As discussed in the literature review, establishing an infrastructure capable of 

supporting big data and advanced analytics incurs substantial costs for organizations 

(Alharthi et al., 2017). Therefore, management is advised to select the right framework 

and tools for big data storage and analysis carefully, and to thoroughly consider their 

organization’s needs (McAfee & Brynjolfsson, 2012; Watson & Marjanovic, 2013). 

Experimentation with various tools is recommended in a rapidly changing product 

landscape in order to find the best fit with the organization’s use cases (Wirth & Wirth, 

2017). Given the different managerial decision makers, as identified in Chapter 5, 

organizations need to cater to the varying needs of their managers. 

Reaching analytics maturity at the end of an organization’s data journey depends on a 

variety of contributing factors. Leadership support is particularly crucial (Davenport & 

Harris, 2017; Davenport et al., 2010; Ross et al., 2013; Watson, 2016). Both leadership 

support and managerial oversight might be required when it comes to enforcing the use 

of a single source of truth, and therefore a consistent, integrated, and well-maintained 

foundation for data-driven decision making (Ross et al., 2013). In addition to leadership 

support, coworkers and fellow employees are also found to have a significant effect: 

“Based on findings of critical success factors literature, overall organizational support in 
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the form of sponsorship and championship are preconditions to establish successful BI 

[business intelligence] capabilities” (Lahrmann et al., 2011, p. 5).  

This was especially highlighted in company 9, which had champions for business 

intelligence, data, and experiments. Particularly its instances of experimentation helped 

characterize organization 9 as a very mature organization in terms of analytics; indeed, 

constant experimentation is part of Watson’s (2016) suggested framework towards a 

data-driven culture. He postulates that analytics-driven organizations heavily rely on 

regular experimentation to inform their business decisions. Driven by organization 9’s 

champion for experimentation, the company had begun using experiments as a decision-

making tool, and the practice found quick acceptance. As the participants described, 

business owners quickly adopted the practice of setting up these experiments to trial new 

business models or ideas.  

These experiments were seen as a simple, yet effective method for obtaining quick 

results. They were therefore considered a reliable way of introducing facts-based 

decision making. Through experimentation, managers were able to see the benefits of 

objective justification and data-based information for decisions without engaging in 

complex analytics or searching for historic data (M91, M92). In contrast to descriptive 

historical data, experiments offered the benefit of comparing actual decision options in a 

scaled environment, enabling realistic predictions. Additionally, due to their benefits and 

ease of use, experiments were met with less resistance and encouraged managers to adopt 

more data-driven decision-making processes. 

This acceptance of data use in decision making is the most important indicator of 

analytics maturity, according to how this concept is woven through the context of this 

study. In contrast to mere awareness and the interim stage of adoption, analytics maturity 
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refers to the actual use of data analytics to improve decision-making quality and success. 

Analytics maturity is therefore found to be a highly significant component of the 

managerial decision-making environment, with important relations and connections that 

span all other influences in the framework. 

6.4. Summary of Findings and Discussion: Chapter 6 

Even though environmental factors influencing decision making were not incorporated 

into the research from the outset, participants reported frequently and unprompted on 

factors influencing their decision-making process that exceeded decision types, decision 

context, and personal preferences. To explore these environmental factors, the ecological 

systems framework, originally developed by Bronfenbrenner (1977, 1979), was 

employed as a lens for constructing an outline of the managerial decision-making 

environment. This lens, consisting of influences at the individual, the microsystem, 

mesosystem, and exosystem levels, corresponded well with the managerial, team-level, 

organization-level, and industry-level influences identified in this study. The application 

of these levels is further summarized below. The macrolevel of Bronfenbrenner’s 

framework was identified as general big data concerns, such as legal and privacy aspects; 

however, those aspects were not identified as key components of the managerial 

decision-making environment and were therefore exempt. 

At the team level, the main influencing factor was identified as ‘access to analysts’. The 

analysts typically took on the role of the challenging counterpart in the decision-making 

process, providing managers with learning opportunities to improve their skills, and 

ensuring that the manager they were supporting had access to high-quality data.  

The availability of analysts was, in turn, influenced by whether the organizational culture 

valued and prioritized data-driven decision making. Therefore, at the organizational-
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level, the key influencing factor was found to be organizational culture, and whether 

analytics was used and accepted. In fact, culture was found to be even more crucial than 

technological challenges and analytics techniques in the decision-making process.  

At the industry-level, whether or not an organization operated in a data-rich industry 

influenced to a certain degree the organization’s tendency to successfully adopt a data-

driven culture. These influences at the industry-level could be placed into three 

categories. First, organizations experience restrictions due to industry standards or 

regulations that impact what data they can use and how to use it. Second, organizations 

are dependent on the availability of and access to data from within their industry. Third, 

organizations within data-rich industries are increasingly expected by customers and 

competitors to use data-derived insights in the age of big data. 

In addition to the influencing factors corresponding to the different levels of the 

ecological system framework, a final influencing factor was identified that extends across 

all these levels: analytics maturity. Analytics maturity refers to the combination of an 

organization’s analytics capabilities, the extent to which these capabilities are exploited 

for decision making, and their embeddedness in the organizational culture. It contributes 

significantly to the quality of data-driven decision making and was found to be the most 

important environmental factor affecting managerial decision making, prompting the 

need to explore its influences in more depth.  

Analytics maturity was found to consist of three stages. The first stage, awareness, 

describes an organization’s recognition and assessment of the potential data analytics 

could have for their business. The second stage, adoption, signifies the organization’s 

transition from traditional to a data-driven culture by tackling various management and 

technological challenges. The third stage, maturity, is achieved once a data-driven culture 
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had been adopted, analytics practices have been embedded in the decision-making 

process, and the use and benefits of analytics are widely accepted by the workforce. 

While several different frameworks were identified in the extant literature, none of them 

covered the same ground as this thesis regarding the environmental, individual, and 

decision criteria that influence the decision-making process. The result is a holistic 

original managerial decision-making framework that accounts for all of these 

interdisciplinary factors. 
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CHAPTER 7: CONCLUSION 

Managerial decision making in the age of big data has been found to be highly reliant on 

both human judgment and data analytics, each in varying capacities and roles. The 

decision-making process was influenced significantly by the decision context, as well as 

managerial perception and understanding of human judgment and data analytics. These 

factors in turn were influenced by the managers’ characteristics, such as their previous 

relevant experience, training, and aptitude, but also by their environment. Organizational 

maturity in regard to analytics, the managers’ co-workers and leaders, as well as their 

industry, were therefore also found to be of importance to the managers’ decision-making 

behaviour. The implications and contributions of these findings will now be discussed in 

more detail to emphasize the importance of this study. Furthermore, study limitations as 

well as recommendations for future research will also be addressed. The chapter and 

thesis conclude with a reflective journey providing insights on the research journey and 

sharing final thoughts. 

7.1. Overview of Findings 

The aim of this study was to thoroughly and holistically explore managerial decision 

making in the age of big data. Many organizations have perceived the increasing amounts 

of available data and methods of data analysis as a value-adding opportunity. However, 

once organizations begin employing data-driven decision making, they encounter 

numerous challenges that are often difficult to overcome. Big data is therefore seen by 

some as a valuable addition to traditional decision making, and by others as a hindrance, 

too complex, or not applicable. To learn more about how individual managers perceive 

big data, and how they incorporate it into their decisions, this research posed the 

following two research questions: 
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1) How do managers perceive the role of advanced analytics and big data in the 

decision-making process?  

2) How do managers perceive the alignment of advanced analytics and big data with 

more traditional decision-making approaches such as human judgment? 

To cover the different facets of data-driven decision making and to identify key 

influences on the managerial decision-making process, this study employed a qualitative, 

multi-level research design. The first level of analysis addressed decisions as the 

embedded unit of analysis, further identifying significant decision types that influenced 

managerial decision making in Chapter 4. For the purpose of this study, 25 participants 

shared several critical incidents that then became the main data source for this phase of 

the analysis. Their case study interviews were additional sources of valuable information, 

often complementing or contradicting the gained insights from the critical incidents. 

Looking at both perspectives enabled deep insights into the changing decision-making 

processes of managers, as well as the relevant influences on these processes. 

In Chapter 5, the second and main level of analysis focused on the managerial decision 

maker. The chapter builds on the decision-making process insights gained in Chapter 4. 

The managers’ understanding of big data and analytics was assessed first to determine 

the participants’ familiarity with the topic. Then the significance of managerial 

characteristics for their decision-making processes was explored, differentiating between 

the four different types of managers, highlighting their varying preferences, experiences, 

and so forth. 

Lastly, the final findings and discussion Chapter 6 was added as it became evident from 

the analysis of the results that there were additional influencing factors. It explored the 

last level of analysis, i.e. the case context. This led to the identification of several external 
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factors that showed a significant impact on individual managers and their decision 

making. These factors were arranged into a managerial decision-making environment 

according to the directness of their impact and relation to other factors. This framework 

was created using the ecological systems framework as a lens. Significant external 

factors were identified on the team-, organization-, and industry-level. Furthermore, the 

component of analytics maturity was determined as a key influence in this environment 

that spanned across several influence levels. 

7.2. Theoretical Implications 

The extant literature has provided numerous insights on big data technologies, its impact 

on different industries, corporate performance, and analytics techniques. However, the 

application of these insights on an individual level has fallen short. A similar statement 

can be made about the extant literature in the field of decision making. Various studies 

have managed to convey understanding of different forms of decision making.  

The theoretical foundation of this thesis is an example of this: For one, the dual process 

theory has provided key insights into the difference between the use of intuition and 

reasoning in decision making (Bazerman & Moore, 2013; Kahneman, 2003). The theory 

postulates the existence of two different systems, one of which is characterized as 

automatic, unconscious thought (Stanovich & West, 2000), the other as a deliberate use 

of analytic intelligence (Dane & Pratt, 2007). Further academic work, such as the 

Unconscious Thought Theory (Dijksterhuis & Nordgren, 2006) as well as seminal work 

on decision-making processes (Bazerman & Moore, 2013; Eisenhardt & Zbaracki, 1992; 

Harrison, 1995; Mintzberg et al., 1976; Simon, 1960) also contributed to the 

understanding of decision-making processes. While the literature provided a rich 
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foundation, it did not account for the changing circumstances of decision making in the 

age of big data.  

This exploratory, in-depth study built on this theoretical foundation and contributed to 

the listed works in four major ways. The first of these theoretical implications was 

achieved by assessing the validity of seminal decision-making process work (Bazerman 

& Moore, 2013; Eisenhardt & Zbaracki, 1992; Mintzberg et al., 1976; Simon, 1960) in 

the age of big data. These seminal decision-making models and theories were applied to 

this study’s research data collected in the context of data-driven decision making. The 

findings confirmed that decision-making processes still consisted of three main steps: 

identification, development, and selection. However, several observations led to an 

improved understanding of these steps in a data-driven environment, concluding that 

their length and thoroughness were affected. 

In the identification step, four distinct triggers were identified in the context of data-

driven decision making, and analytics was found to be an important one of these four 

initiators of the decision-making process. Analytics furthermore contributed to the 

decision-making process by providing additional insights in the development step, which 

allowed for a more thorough development and evaluation of alternatives. The most 

significant benefit of adding data analytics to the decision-making process was identified 

in the selection step, as data allowed managers to objectively justify their choices to other 

stakeholders.  

The second theoretical implication stems from the use of the dual process theory 

(Bazerman & Moore, 2013; Dane & Pratt, 2007). The two-system view allowed for the 

identification of distinct roles that analytics and human judgment have in the decision-

making process, in which stages, and to what extent. This highlighted how data’s 
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growing potential is leading to an increased importance and variety of the roles analytics 

fulfils within the decision-making process. These insights led to the extension of the 

classic decision-making processes (Bazerman & Moore, 2013; Eisenhardt & Zbaracki, 

1992; Mintzberg et al., 1976; Simon, 1960) in order to account for the different roles of 

data analytics and human judgment, furthering current understanding for the use of both. 

The findings also showed that the influence of Systems 1 and 2 differed depending on 

the decision type the managers encountered, which led to the next contribution. 

The third theoretical implication lies in the addition to extant decision categories (Ackoff, 

1990; Snowden & Boone, 2007), which were deemed insufficient in explaining the 

findings of this study. Therefore, this thesis contributed by putting forward new decision 

types that more accurately reflect decision-making processes in the age of big data. These 

emerging decision types were defined as high-judgment, high-data, and balanced 

decisions, according to their extent of data and judgment use. Furthermore, it was 

examined which decision situations would benefit of which decision type, providing 

insights on when data and judgment are most appropriate to use.  

The fourth theoretical contribution goes beyond individual decision-making processes 

and delivers insights regarding the decision maker’s environment. To this end, 

Bronfenbrenner’s ecological systems framework (1977, 1979) was used as a lens to view 

the collected data from a holistic perspective and identify key influences on managerial 

decision making in the age of big data. While Harrison (1995) has created a version of 

this framework for decision making, this study builds on it by applying the framework 

to the specific context of data-driven decisions.  

The creation of a managerial decision-making environment in the age of big data 

provides valuable insights, as it highlights key internal and external influences: the 
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individual managers themselves; their team-level influences such as the access to 

business analysts for support with data-driven decisions; organizational-level aspects 

such as the prevalent organizational decision making culture, traditional or data-driven; 

and industry-level influences such as the access and exposure to data. The framework 

also incorporates the concept of analytics maturity, providing this concept with a 

theoretical foundation, which had been criticized previously as missing (Lahrmann et al., 

2011). This holistic look at managerial decision making offers an extensive foundation 

for future research. 

7.3. Methodological Contributions 

The methodology underlying this research contributes by offering a combination of CIT 

and case study research, which, to the researcher’s knowledge, has never before been 

employed in such depth. The combination of both methodologies facilitated a data 

collection and analysis approach that allowed for the collection of rich, in-depth data that 

connected real-life experiences with general perceptions. The approach provided a 

contrast between managers’ actual decisions and their views on general decision-making 

processes. This gave participants the opportunity to reflect on their own decision-making 

behavior. 

The methodology applied in this research was, to the best of the researcher’s knowledge, 

the first of its kind by combining CIT and case study research together. Both 

methodologies have previously been used individually in studies on decision making 

(e.g. Coetzer et al., 2012; Popovič et al., 2018; Trönnberg & Hemlin, 2014); however, 

using critical incidents as an embedded unit of analysis within the case studies allowed 

for the collection of particularly rich data. For the field of decision-making literature, this 

combination shows great promise as a significant methodological contribution, as it 
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enabled both the analysis of data in the context of real-life experiences and general 

perceptions from the same participants. The approach consequently provided a contrast 

between managers’ actual decisions and their views on general decision-making 

processes. This gave participants the opportunity to reflect on their own decision-making 

behavior, which led to positive feedback from the managers taking part in the study. 

The combination of both methods particularly benefitted the CIT part of the study. 

Participants were often hesitant at the beginning of the interview, were unsure about the 

topic, or did not have example decisions ready. However, when answering questions 

from the case study portion, they became more at ease and often remembered decisions 

from their past. At these points, the CIT questions could be asked to add further incidents 

to the sample. Furthermore, employing CIT provided an interview framework that led to 

the collection of thorough and comparable data. The collected incidents could as a result 

both be analyzed within the context of their cases and could also be cross-case analyzed 

in the content analysis.  

The combined methodology allowed for a variety of analyses, as can be seen in the multi-

level analysis of this study and enabled a holistic exploration of the topic. The specific 

questions and preparation material required for the application of this methodology, as 

discussed in the methodology section 3.3.2., can therefore also be recommended for 

future research on decision making. 

7.4. Practical Contributions 

Given the topical nature of the research focus, the findings of this study made several 

practical contributions. An immediate contribution participants identified was the 

opportunity for reflection that the interview instrument provided them with. By preparing 
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for the CIT section and responding to the case study questions, managers reflected upon 

their past decisions.  

Reflective thinking is considered an important component of judgment and decision 

making (Wray, 2017). However, managers do not always engage in reflective thinking, 

are often unaware of the reasons for their choices, and might only show minimal concern 

for those reasons (Harrison, p.10). Their participation in the study itself can therefore 

already be considered a practical contribution, as it can be replicated as a beneficial 

practice for managers. This was confirmed by several participants, who referred to the 

interview as a helpful exercise, like executive M61, who highlighted: “It’s been quite 

good actually to think these things out. I really haven’t sat down and stopped and thought 

about these things.” 

The interview experience also provided the participants with more clarity around their 

own decision making and the role of data analytics in it. Manager M41, for example, 

emphasized how he was not aware of how much data he had been using until he prepared 

for the interview. He mentioned that the interview made him realize just how reliant he 

was on data analytics for his decision-making processes. Managers were furthermore 

provided with a report of the initial findings after the interview, which was appreciated 

and created more awareness (M91). 

Looking beyond the pool of participants, the study also contains practical contributions 

for individual managers and organizations: for one, the upcoming textbook ‘Management 

Decision-Making, Big Data and Analytics’ by Gressel, Pauleen, and Taskin (2020) 

guiding managers on their journey to becoming apt decision makers in the age of big 

data.  
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One of these contributions is the definition of different decision-making processes, 

according to decision types and the extent of data and judgment use. These processes can 

assist managers in finding ways to balance data and judgment use and adjust the extent 

of this use, depending on decision-specific factors. The explanation of the various roles 

of data and judgment furthermore clarify their distinct purpose, benefits and relations in 

the decision-making process. Understanding these distinct roles enables managers to 

make more informed use of them and consider their benefits and drawbacks. 

Organizations planning to embrace a more data-driven culture can also draw valuable 

insights from the findings of this research. The distinct managerial decision maker types 

discussed in Chapter 5 can particularly support the approach of increasing the acceptance 

of data use among employees. The findings revealed the participants’ understanding of 

analytics and big data to be often limited. Despite the limitations of this understanding, 

however, it was found to highly impact the managers’ trust and actual use of data in their 

decision-making processes. As such, it was one of the key factors that served as a 

distinguishing criterion when establishing different types of managerial decision makers. 

These four different types, ‘analytics-bent’ (A), ‘all-rounder’ (B), ‘insecure’ (C), and 

‘old-fashioned’ (D) were defined by the managers’ characteristics, preferences, 

experiences, training, and understanding of analytics.  

Every decision maker type was found to have different requirements for data-driven 

decision making. While some managers merely required access to good quality data, 

others relied on analysts, training, and peer support. By being given the tools to 

distinguish between four different types of managers, organizations can customize their 

change management approach to their employees. Each manager type displayed different 
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preferences and varying requirements. Organizations who meet these varying needs with 

more customized solutions can expect the resistance of employees to decrease.  

Furthermore, organizations can gain valuable insights on external factors that influence 

their employees’ decision-making behavior. The managerial decision-making 

environment developed in Chapter 6 summarized these external influences, their 

interactions, and the immediacy of their impact on the individual decision maker. This 

knowledge can assist organizations in creating a beneficial environment for data-driven 

decision making. The concept of analytics maturity can particularly inform the planning 

of an organization’s data journey. The information captured in the different stages 

outlined in the chapter can convey insights into the organization’s current stage, but also 

prepare it for upcoming obstacles.  

7.5. Limitations and Suggestions for Future Research 

This study aimed at providing a holistic view of managerial decision making in the age 

of big data by applying a rigorous research methodology that was best suited to answer 

the research questions. However, certain limitations should be pointed out. One such 

limitation is the use of qualitative research methods and the resulting limited 

generalization of the findings (Walsham, 1995). The insights outlined in this study are 

embedded in their context. This means that the results gained from the 25 participants 

from a total of nine organizations cannot realistically be transferred beyond these 

companies without reservations. The findings should therefore be considered as 

propositions or hypotheses to be tested in different contexts in future research projects. 

More specific limitations pertaining to the use of case study research are the aspects of 

triangulation and sample diversification. Case study research relies on triangulation to 

ensure consistency and credibility (Yin, 2014). As described in Chapter 3, this study 
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employed data source, methods, and theory triangulation. However, the use of data 

source triangulation is considered to be limited. This was mainly due to the nature of the 

research and the confidentiality of managerial decisions. Access to the documents or 

systems of the participating organizations was not an option in most cases and would 

have furthermore required a very high technical understanding on the part of the 

researcher.  

One aspect of the sample composition was considered a further limitation, i.e. the 

imbalance of male and female participants. Female participants were underrepresented, 

which was attributed to the seniority level required of participating employees. As 

outlined in Chapter 3, efforts to include more female participants did not achieve the 

desired results. However, there were no clear differences found between the answers of 

participating male and female managers. For example, while manager M72 referred to 

her experience as a mother as a significant influence on her decision making, this did not 

signify a gender difference, as male participants also referred to their experiences as 

parents as important influences on their decision making (M12, M31, M41). As stated 

by Harrison (1995), there is no significant evidence that male and female leaders behave 

differently in their managerial roles. It may also be worth noting that this study is not the 

first in the field of information systems with a low ratio of female participants (Thomas 

& Bostrom, 2010). 

Another limitation regarding the methodology employed was the number and nature of 

the collected critical incidents. When creating the research design, the sample of 

incidents was envisioned as balanced, reporting equally on negative- as well as positive-

outcome decisions. Obtaining a balanced sample of incidents was expected to enable the 

identification of positive as well as negative influences on the decision-making process. 
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At the conclusion of data collection, only three of the shared incidents had negative 

outcomes. However, this did not prevent the identification of negative influences on the 

decision-making process: several of the positive-outcome decisions reported significant 

obstacles, setbacks, and complications encountered during the decision-making process. 

The limited number of negative outcome incidents therefore did not prevent the research 

objective of identifying negative influences on managerial decision making.  

The overall number of collected critical incidents is considered another limitation, as it 

was below the target of three to five incidents per participant. Even though participants 

were sent forms in preparation for recollection of the incidents, many of them were 

nonetheless unprepared. The participants that were prepared rarely adhered to the 

instruction asking for a description of three to five incidents. This was in part attributed 

to a general limitation of CIT, as it relies on the participants’ ability to recollect past 

events (Coetzer et al., 2012). On average, participants contributed only 1.6 incidents. 

This low number led to the increase in the initially planned sample size of 12-15 

managers. As saturation had not been reached, the number of scheduled interviews was 

increased to 25. The eventual number of usable incidents was 43, which matches the 

quotient of 40-50 incidents of other studies reaching theoretical saturation (Gogan et al., 

2014). 

There are several reasons that could be attributed to the suboptimal turnout of critical 

incidents. For one, several participants were uncomfortable with the topic, as they were 

not very familiar with the subject of analytics, did not understand the terminology, or 

simply felt inferior to competitors due to the impression of ubiquitous big data use 

covered in the media. However, this leads back to the benefits of combining CIT with 

case study interview questions: as described above, participants at times felt more 
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comfortable during the course of the interviews, and thus began sharing incidents as it 

carried on. 

Another reason for the low number of incidents, that could also be related to the 

participants’ insecurity around the topic of big data was uncertainty; participants seemed 

unsure of which decisions to pick, or which decisions might be most relevant. Several of 

the managers were also unprepared, or unwilling to share sensitive information, which 

impeded the amount of detail that was provided in describing their decision-making 

process (e.g. M91). This hesitance to share information might have also contributed to 

the low number of shared decisions with negative outcomes, even though this was 

encouraged.  

Not only due to these limitations but also to generally expand on the insights gained in 

this study, further research into data-driven decision making–particularly decision 

making informed by big data and advanced analytics–is advised. As this study 

contributed to the general understanding of decision-making processes in the age of big 

data by identifying distinct roles of analytics and human judgment use, these findings 

could be further explored in depth and breadth. For one, this study could be replicated in 

different geographical settings to explore cultural effects and differences in countries that 

are (less) further progressed in regard to big data. For increased generalizability, a 

quantitative study could be conducted as an extension of this thesis, as demonstrated by 

Taskin, Pauleen, Intezari, and Scahill (2019). An international sample with respondents 

from all over the world would particularly benefit this purpose.  

To expand on the insights gained in Chapters 5 and 6, further in-depth qualitative studies 

could explore in more detail the nuances of different managerial decision maker types 

and the effects of their environment. This study distinguished between four managerial 
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types focusing on their different approaches to decision making. Further characteristics 

could be explored and focused on. Behavioral studies using storytelling might be a 

suitable approach for this. Focusing on the management decision-making environment, 

longitudinal studies set in companies at the beginning of their data journey would be an 

interesting methodology. These approaches could provide further insights into aspects of 

organizational culture shifts, change management, and technology adoption. 

Specifically, action-based research exploring customized training for different 

managerial decision-making types could provide valuable insights for organizations. 

7.6. Reflective Journey and Final Thoughts  

Big data has been promising advantages to innovative companies that are willing and 

able to exploit its capabilities (Gantz & Reinsel, 2012). Businesses and managers are 

therefore eager to capitalize on big data and build a competitive advantage. This can be 

seen in the form of their yearly spending, as the revenue generated by big data and 

business analytics (BDA) is expected to reach $189.1 billion in 2019 (Goepfert & Shirer, 

2019). One of the ways for organizations to realize the value of big data is by 

incorporating it in the decision-making processes of managers. 

Decision making is the most critical component of a manager’s profession (Simon, 

1960). More so, managers’ decision-making skills determine their effectiveness 

(Harrison, 1995). Big data has the potential to significantly improve this decision making 

(Bumblauskas, Nold, Bumblauskas, & Igou, 2017; Davenport, Barth, & Bean, 2013; 

McAfee & Brynjolfsson, 2012). However, not all managers are successful in 

incorporating big data into their decision-making process, as it requires a certain way of 

thinking (S. Shah et al., 2012).  
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This study aimed at identifying what a successful decision-making process is, how it 

balances (big) data analytics and judgment, and how managers and organizations can get 

to that level of effective decision making to capitalize on the value of big data. Setting 

out on this research journey, initial plans evolved into the thesis that is presented here 

today. While the reviewed practitioner and academic literature left the impression of big 

data being an omnipresent phenomenon, early stages of sampling and data collection 

showed a much lower awareness of big data among organizations. One of the first 

adjustments to this research was therefore in scope.  

The initial outline of this research focused solely on big data and advanced analytics use 

in managerial decision making. However, this focus had to be extended to the use of 

more traditional BI&A tools in order to represent an accurate picture of the various 

organizations at the point of data collection. While all organizations in the sample were 

on a journey to data-driven decision making with the eventual goal of using big data, 

most of these organizations were still in the awareness stage of analytics maturity. These 

organizations were not immersed in big data, but mostly still relied on simpler BI 

functionalities and descriptive analytics. In order to provide an accurate depiction of 

current decision making in these organizations, this exploratory study therefore adapted 

its context.  

Another adjustment to the scope of this research can be attributed to its exploratory 

nature. Initially, the research focused on decision-making processes and the managerial 

perceptions thereof, as is illustrated in the research questions. This initial setup, however, 

was extended due to early findings in the data collection. The heterogeneity of managers 

came to be seen as a significant determinant of the decision-making processes they 

followed. Multi-level analysis therefore became an essential tool to transform the data 
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collected into holistic insights. It became clear, that the understanding of managerial 

decision making went beyond process steps and decision types. In order to fully 

comprehend why managers acted in certain ways, they themselves had to be examined 

more closely.  

When differentiating between the distinct managerial types, external factors in the form 

of the managers’ environment were found to significantly contribute to their decision 

making. During the interviews, the participants often brought up factors in their external 

environment that had a significant influence on their actions. Once more, this led to an 

extension of the scope of findings. The ecological systems framework was therefore 

selected during the course of data collection and beginning stages of data analysis in 

order to fully explain the diverse levels of influences on managerial decision making.  

Another adjustment in response to challenges encountered during data collection could 

be seen in the increase of the sample size. Reflecting upon the research design of this 

thesis, the data collection methods delivered the expected rich quality of insights, but not 

the anticipated quantity. Early in the data collection, it became clear that managers were 

not as willing to prepare and share the average 3-5 incidents that are common in the use 

of the Critical Incident Technique. For several of the companies, especially small- and 

medium-sized ones, it was also impossible to get access to more than two participants. 

The initial research design had different targets, expecting 12-15 participants, in 3-4 

companies, each sharing 3-5 incidents. These targets therefore had to be adjusted to 

include more participants from a greater number of organizations. Overall, this led to the 

inclusion of more diverse contexts and environments. Despite the required adjustments, 

the data collected was therefore very rich and particularly the use of multi-level analysis 

enabled meaningful insights and significant contributions. 



                                                                                                         Conclusion 

382 

 

Through the analysis of managers, their decisions, and their environment, a holistic 

framework was created that accounts for all the identified factors in a single framework. 

While the initial setup of the study would have led to a research outcome solely focused 

on the decision-making process itself, this more comprehensive framework can now be 

used as a baseline for managers and organizations to create a roadmap, evaluate where 

they stand, and what potential next steps are to improve their decision making even 

further. As decision making is a complex process, this framework is by no means 

complete, however, it is a step closer to understanding managerial decision making in 

this modern age, where technology is prevalent.  
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Appendix D. Coding Schedule for Content Analysis 
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Appendix E. DRC 16 Forms 

 



                                                                                                         Appendices 

419 

 

 



                                                                                                         Appendices 

420 

 

 


