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Abstract 
 
Climate-driven changes in range and abundance can go undetected, particularly in regions 
like north-east New Zealand (NENZ) where there have not been routine surveys for many 
species. The Long-spined sea urchin (Centrostephanus rodgersii) has extended its range and 
increased its abundance in Tasmania over the past 40 years, a change that has dramatically 
impacted the ecosystem and local fisheries. Centrostephanus rodgersii is also found in NENZ 
but we lack systematic survey information to understand whether a similar range extension 
could have occurred here. Given the similarity of the Tasmanian and NENZ ecosystems, C. 
rodgersii poses a potential threat to New Zealand’s (NZ) marine biodiversity and fisheries. 
The sizes of individuals within populations were analysed and population genomics was 
used to study the population history, population structure and recruitment dynamics of C. 
rodgersii across its NZ range. Although population size structure revealed no overall 
signatures of a poleward range extension, the northern part of the NENZ C. rodgersii range 
did have patterns indicative of a poleward range extension. Furthermore, the size structure 
of populations further south and east suggested that these populations had more regular 
recruitment than northern populations. Population genomic analysis revealed that 
Rangitāhua (the Kermadec Islands) populations and populations of NENZ are genetically 
differentiated, but there is some ongoing migration from Rangitāhua to NENZ. Within NENZ 
there was no evidence of population genetic structure, however, population graphs 
revealed that some groups of populations were more similar in genetic composition, and 
presumably shared higher geneflow. Two demographic groups (younger than 15 years and 
older than 15 years) were created to examine differences in genetic composition among age 
classes found within the same populations. This comparison recovered different patterns of 
connectivity and within-population variance between the two demographic groups that was 
not present when the groups were combined. My results indicate that the population 
demography and structure of C. rodgersii in NZ is changing and therefore we need to 
routinely monitor this urchin across its NZ range to prevent damage to our ecosystems and 
fisheries. 
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Chapter One: General introduction 
 
This thesis contributes to the understanding of marine species range and abundance 
redistributions in response to climate change. The goals of this thesis were to use the 
individual size structure of populations and population genomics to infer the population 
history and demography of a renowned range extending urchin, Centrostephanus rodgersii 
in New Zealand. Chapter One is an overview of the climate-driven redistribution of 
biodiversity, the impacts of the range redistribution of species, the New Zealand marine 
environment, urchins in north-east New Zealand, the biogeography of C. rodgersii, and how 
we study species redistributions. An overview of subsequent chapters is outlined at the end 
of Chapter One. 
 
Climate-driven redistribution of biodiversity 
 
Climate-driven changes in species distributions are happening in marine, terrestrial, and 
freshwater ecosystems, but the fastest changes in distribution are occurring in marine 
ecosystems (Sorte et al. 2010; Pecl et al. 2017; Pinsky et al. 2020). There are a number of 
reasons why marine species are more sensitive to environmental changes than terrestrial 
ones. First, most marine species are ectotherms and thus more sensitive to changes in 
ocean temperature. Second, marine ectotherms have a smaller thermal tolerance range 
than terrestrial ectotherms (Pinsky et al. 2019). Third, marine species have a greater ability, 
than terrestrial species, to colonise new habitats due to their longer larval dispersal phase 
(Pinsky et al. 2020) and because the ocean has fewer dispersal barriers. Overall, the general 
trends in marine redistributions are species shifting poleward and into deeper waters 
(Poloczanska et al. 2016) because of changing ocean temperatures, ocean circulation, 
oxygen depletion, and increasing acidification. 
 
Increased ocean temperature and marine heatwaves are major climate drivers for range 
redistributions (Hillebrand et al. 2018). In the South Island of New Zealand, Thomsen et al. 
(2019) found that the presence of bull kelp was impacted by the 2017/18 austral summer 
heatwave. The heatwave led to the loss of bull kelp and even the local extinction of the bull 
kelp species, Durvillaea poha, at the warmest location. In contrast, in Japan, four tropical 
coral species (Acropora hyacinthus, Acropora muricata, Acropora solitaryensis, Pavona 
decussata) have extended their range in a poleward direction due to the increase in ocean 
temperature (Yamano et al. 2011). As temperatures get warmer the most common 
response is moving in a poleward direction towards cooler temperatures (Poloczanska et al. 
2013; Melbourne-Thomas et al. 2021), but since warming happens unevenly across the 
ocean, increased temperature will impact species and areas differently. 
 
Climate change is causing oxygen depletion which impacts ocean productivity, nutrient 
cycling, carbon cycling, and habitats (Keeling et al. 2010). Oxygen depletion can impact the 
behaviour and physiology of marine species and in extreme cases can cause local extinctions 
or force redistributions (Townhill et al. 2017). In the northern Gulf of St. Lawrence in 
Canada, modelling found that decreased dissolved oxygen will impact the distribution of the 
Greenland halibut (Reinhardtius hippoglossoides) and northern shrimp (Pandalus borealis), 
and in combination with warming, the impact of oxygen depletion will be even greater 
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(Stortini et al. 2017). Overall, increased ocean temperatures and oxygen depletion will make 
equatorial and shallow regions increasingly hostile (Deutsch et al. 2015). 
 
Ocean acidification impacts the calcification, photosynthesis, nitrogen fixation, and 
reproduction of marine organisms (Doney et al. 2009). Echinoderms and molluscs are 
particularly impacted in both their reproduction and calcification (Doney et al. 2009). When 
the collector urchin (Tripneustes gratilla) was exposed to acidification (pH 7.6) in 
experiments, it produced almost no gonads and grew more slowly compared to at the 
control ambient pH treatment (Dworjanyn et al. 2018). Another echinoderm, the brittle star 
(Amphiura filformis), moved to shallower depths within the sediment in response to severe 
short-term acidification in the laboratory (Murray et al. 2013). We are likely to see local 
extinctions and changes in species distribution as a result of ocean acidification, but 
responses will vary according to species biology and in interaction with other environmental 
factors impacted by climate change. 
 
Climate change also impacts ocean circulation, which in turn can lead to changes in 
dispersal pathways and species distributions (Wilson et al. 2016). Hydrodynamic barriers 
can limit climate-driven range redistributions (Keith et al. 2011), and coupled with changing 
environmental factors, hydrodynamic barriers that prevent poleward range shifts could lead 
to range contractions. However, when a hydrodynamic barrier is relaxed, potentially as a 
result of climate change, species can disperse and therefore extend their ranges. 
Additionally, climate change can strengthen or change currents allowing species to extend 
their ranges in unpredicted directions and/or with unprecedented speed. New dispersal 
routes will not always lead to a range shift, but if the newly colonised location is habitable, 
or made habitable by changing climate, then the species can extend its range. In particular, 
changes in the strength of poleward boundary currents lead to both an increase in poleward 
dispersal potential and a greater penetrance of warm tropical water to higher latitudes. One 
of the most striking examples is the strengthening of the East Australian Current (EAC) 
which caused a climate change cascade in Tasmania (Johnson et al. 2011). The 
strengthening of the EAC has allowed both the common Sydney octopus (Octopus tetricus) 
(Ramos et al. 2018) and the Long-spined sea urchin (Centrostephanus rodgersii) (Ling et al. 
2009c) to extend their ranges to Tasmania. As climate change increasingly impacts ocean 
currents and hydrodynamic barriers we will see more widespread changes to species 
distributions. 
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Figure 1: Different hypothetical scenarios for how a species range and abundance may respond to climate change: a) the range and abundance could 
remain stable; b) the range could have an extension; c) the range could have a contraction; d) the range and centre of abundance could march; e) the  
centre of abundance could lean; f) the species abundance could collapse.
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Climate-driven changes in range and abundance happen in several different ways (see Fig. 
1), but the most advantageous for the spread of a species is a range extension (Fig. 1b). In a 
range extension, the species will travel to a new location, increase in abundance and persist 
in the new location (Bates et al. 2014). Range extensions have occurred in a wide variety of 
species in various parts of the world. For example, range extensions have occurred for: 
mangrove forests on the Florida east coast (Cavanaugh et al. 2014); Mahimahi (Coryphaena 
hippurus) in the North Island of New Zealand (Middleton et al. 2021); four tropical reef 
corals (Acropora hyacinthus, Acropora muricata, Acropora solitaryensis, Pavona decussata) 
in Japan (Yamano et al. 2011); and Adelie penguins (Pygoscelis adeliae) in the Ross Sea, 
Antarctica (Taylor et al. 1990). Range extensions will likely becoming increasingly common 
as we continue to see the impacts of climate change. 
 
In range contractions (Fig. 1c), local extinctions occur at the rear edge of the range and 
therefore a portion of the range is lost. This generally occurs when the environment 
changes and the species cannot adapt or acclimate, but also cannot shift its range because 
of some other limiting feature of the environment. For example, in Western Australia, the 
habitat-forming seaweed species, Scytothalia dorycarpa, lost approximately 100km of its 
range in a marine heatwave as the species could not cope with the increased temperature 
(Smale et al. 2013; Wernberg et al. 2021). In marine species, those species with ecological 
specialization, small geographic ranges and endemic species are more vulnerable to marine 
contractions and extinctions (Dulvy et al. 2003). 
 
In a range march the range size may stay the same but both the leading and trailing edges of 
the range are shifted in the same direction by a similar amount (Fig. 1d). The kelp species, 
Laminaria hyperborea, has had a poleward range march in Europe (Assis et al. 2016). 
Increasing temperatures have made the northern waters warm enough for the kelp while 
the southern waters have become too warm for the kelp, thereby shifting the range north. 
Increasing ocean temperatures are predicted to cause this range march to continue. Climate 
change will likely lead to more marine range marches globally. 
 
Climate-driven changes across a species range are more complex than just an increase 
(range extension), decrease (range contraction), or change in positioning (range march) of a 
species range. Climate change can also lead to changes in species abundances and densities 
without a change in range, particularly where there is no suitable habitat to move into. In a 
range lean, the range extent remains stable but the centre of abundance is shifted towards 
one edge of the range (Fig. 1e). The worst-case scenario is a collapse in the species 
abundance, whereby abundance is decreased, causing a contraction of the species from the 
edges of the range (Fig. 1f). Early detection of climate-driven changes in the range and 
abundance of species is an important part of mitigating the impacts (Melbourne-Thomas et 
al. 2021). To detect these changes we need to be aware of all the complex ways ranges and 
abundance can change in response to climate change. 
 
Impacts of the range redistribution of species 
 
The impacts for humans of the climate-driven redistribution of marine species include loss 
of food security (e.g. loss of fisheries), decreased human health (e.g. distribution of 
pathogens), loss of supporting livelihoods (e.g. fisheries providing people’s livelihoods), 
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climate feedbacks (e.g. melting of sea ice leads to the suppression of spring blooms which 
means less carbon dioxide is absorbed leading to further melting of sea ice), compromised 
governance (e.g. a fisheries stock shifting to a new geopolitical area creating conflict over 
who governs it) and cultural values (e.g. Indigenous groups losing their culturally important 
species) (Pecl et al. 2017; Scheffers et al. 2019; Melbourne-Thomas et al. 2021). These 
impacts can be directly from the species that has changed its distribution or through an 
ecosystem function change impacting other species. Being able to predict these impacts and 
detect them early will help us minimise the effect on human populations. 
 
The effects of range redistribution on ecosystems will vary dramatically depending on the 
ecological role of the species undergoing a redistribution. Habitat-forming species play a 
large role in creating the habitat and ecosystem for other species, such as macroalgae 
(Verges et al. 2016), reef-building corals, and seagrasses, which create habitat for diverse 
assemblages (Bulleri et al. 2018). Habitat-forming species can also modify the temperature 
of the environment, sometimes even mitigating latitudinal and elevational trends in 
temperature (Jurgens et al. 2018). The habitat-forming seaweed, Scytothalia dorycarpa, lost 
100km of its range in Western Australia (Wernberg et al. 2021) and contracted its range by 
about 5% globally in the 2011 marine heatwave (Smale et al. 2013). In Western Australia, 
the loss of this habitat-forming species led to an increase in turf-forming algae and a 
decrease in encrusting algae and sponges, thereby changing the habitat (Wernberg et al. 
2021). Even substitutions of habitat-forming species, such as a different kelp species, can 
still lead to decreased biodiversity (Teagle et al. 2018). 
 
The range redistribution of species that directly interact with habitat-forming species can 
also change communities and ecosystems. A common example is urchins, which graze on 
the habitat-forming macroalgae species, changing the habitat from macroalgae forests to 
urchin barrens. A range extension or abundance increase of an urchin species can cause the 
macroalgae to be overgrazed leading to the loss of the macroalgal forest and the 
community it supports. Poleward range extensions of urchins, likely due to temperature, 
have happened in several locations such as Japan (Heliocidaris crassispina and 
Hemicentrotus pulcherrimus; Agatsuma et al. 2007; Feng et al. 2019), Australia 
(Centrostephanus rodgersii; Ling et al. 2009c), and possibly are beginning in California 
(Centrostephanus coronatus; Freiwald et al. 2016). Likewise, the formation of urchin barrens 
is happening across the globe (Ling et al. 2015). 
 
The New Zealand marine environment 
 
The New Zealand marine environment is varied, ranging from subtropical in Rangitāhua (the 
Kermadec archipelago) to subantarctic in the Subantarctic Islands. Within temperate 
mainland New Zealand there are 11 bioregions, based on macroalgal species presence-
absence, within 2 biogeographical provinces: northern and southern (Shears et al. 2008). 
Ocean warming is already happening in at least some parts of New Zealand (Shears et al. 
2017) and we can expect this to increase (Law et al. 2017a) along with ocean acidification 
(Law et al. 2017b). New Zealand has experienced three recorded marine heatwaves, in the 
summers of 1934/35, 2017/18, and 2018/19 (Salinger et al. 2019; Salinger et al. 2020). The 
2017/18 summer marine heatwave led to the decrease and local extinction of the bull kelp 
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species, Durvillaea poha, in the South Island (Thomsen et al. 2019). Future temperature 
increases will likely impact species across New Zealand’s marine environment. 
 
Currently, there have been few recorded impacts of climate change on the distribution of 
marine species in New Zealand. New Zealand does not have a strong boundary current, 
which is a current that follows the coastline and is often implicated in species range 
extensions. Instead, we have the highly variable East Auckland Current (EAuC) (Stanton et al. 
1997), which may cause range changes to be decoupled with latitude along the coastline 
and therefore difficult to detect. Due to the lack of monitoring, we do not know whether 
changes in species distributions are happening. However, species like C. rodgersii have been 
recorded to be increasing in abundance at some locations (Balemi et al. 2021). Consistent 
monitoring will allow us to detect climate-driven changes in species distribution. 
 
Urchins in north-east New Zealand 
 
In the shallow reef ecosystems of north-east New Zealand, there are four large urchin 
species: the Long-spined sea urchin (Centrostephanus rodgersii), kina (Evechinus 
chloroticus), Heliocidaris tuberculata and Tripneustes kermadecensis. Evechinus chloroticus 
is endemic to New Zealand, a fisheries species, and a taonga, whereas C. rodgersii is found 
in both New Zealand and Australia and does not currently have a fishery in New Zealand. In 
north-east New Zealand, both these urchin species are found in kelp forests, but C. rodgersii 
has been found to eat a higher proportion of invertebrates than E. chloroticus (Balemi et al. 
2021). 
 
In areas of New Zealand kelp forests, urchins have formed barrens (Shears et al. 2002). The 
lack of predators in macroalgal forests, often due to the overfishing of the predator, leads to 
an explosion of the urchin population. The large urchin population leads to the over-grazing 
and loss of macroalgae, along with the many species macroalgae support, creating a 
‘barren’ habitat. Even though there is a lack of macroalgae in barrens, the urchins can 
persist by changing their physiology and behaviour (Johnson et al. 1982) so they can feed on 
filamentous and coralline algae (Ling et al. 2009a), preventing the macroalgae from 
returning. In north-east New Zealand, there are barrens formed by both E. chloroticus and C. 
rodgersii. Some of the impacts from urchins on the shallow marine ecosystems of north-east 
New Zealand, particularly by C. rodgersii, are expected to be exacerbated by climate change. 
 
The Long-spined sea urchin, Centrostephanus rodgersii 
 
Centrostephanus rodgersii has a three-month larval stage (Huggett et al. 2005) which has 
allowed it to travel long distances; and this, combined with increasing ocean temperatures, 
has led to range extensions of this urchin. Historically, C. rodgersii was common off the 
coast of New South Wales, Australia, but the species has now extended its range to 
Tasmania and also occurs in Lord Howe Island, Norfolk Island, north-east New Zealand and 
Rangitāhua (Byrne et al. 2020). In order to extend its range, the C. rodgersii larvae need to 
be able to reach the new area, that has a minimum winter ocean temperature of 15°C 
(Pecorino et al. 2013b). In the last few decades, climate change has strengthened the EAC 
(Oke et al. 2019) which both warmed Tasmanian waters and transported C. rodgersii larvae 
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to Tasmania thereby resulting in a range extension and an increase in abundance of the 
urchin. The range extension occurred through multiple colonisation events, starting in 1978 
(Ling et al. 2009c; Johnson et al. 2011). We may see further similar range extensions in other 
locations, such as New Zealand, due to climate change’s impact on currents and ocean 
warming. 
 
Barrens have been able to form in much of C. rodgersii’s habitat due to the lack of predators 
(Ling et al. 2009b). Centrostephanus rodgersii barrens are found in Tasmania (Johnson et al. 
2005), New South Wales (Andrew 1994), Victoria (Cartwright et al. 2019), and New Zealand 
(Liggins, pers. comm. 2021). Large sized southern rock lobsters (Jasus edwardsii, also known 
as crayfish) and packhorse rock lobsters (Sagmariasus verreauxi) are the natural predators 
of C. rodgersii, and therefore can prevent barren formation by controlling urchin 
populations, but they have been overfished in many of the locations where C. rodgersii is 
found. In Tasmania, barrens have formed where J. edwardsii populations have been 
overfished (Ling et al. 2009b). In New Zealand, the Bay of Plenty J. edwardsii stock is 
overfished (Webber et al. 2018) and in the Hauraki Gulf, J. edwardsii are functionally extinct 
(Hauraki Gulf Forum 2020) leaving these locations vulnerable to the formation of C. 
rodgersii barrens. 
 
In Tasmania, the extensive C. rodgersii barrens have negatively impacted biodiversity and 
fisheries by altering the local ecosystem (Johnson et al. 2005; Ling 2008; Lisson 2018). The 
formation of barrens in Tasmania has caused macroalgae beds to lose about 150 taxa (Ling 
2008). Alongside the loss of biodiversity is the loss of important fisheries species. The 
blacklip abalone (Haliotis rubra) and southern rock lobster (J. edwardsii) fisheries are both 
supported by the macroalgae. The loss of these macroalgae beds due to C. rodgersii barrens 
has resulted in Tasmanian abalone exports decreasing over the last 20 years from 1,500 
tonnes in 1998 to 294 tonnes in 2018 representing an annual loss of $49 million (AUD) in 
export revenue (Lisson 2018). There has been a C. rodgersii fishery in Tasmania started to 
compensate the loss of fisheries, however, the individuals found in barrens are smaller and 
therefore not desirable for fisheries (Ling et al. 2009a).  
 
Centrostephanus rodgersii has been present in New Zealand longer than Tasmania, 
however, less is known about the population history and demography. Centrostephanus 
rodgersii was first recorded in New Zealand in 1897 (Farquhar 1897) but was subsequently 
removed from the faunal list on two occasions for lack of evidence (Fell 1949), potentially 
indicating a low prevalence. It was not until 1949 when live specimens were collected from 
several locations in the North Island (the Cavalli Islands, Stephen’s Island, Whangaroa, and 
Little Barrier) that there was conclusive evidence of the species presence (Fell 1949). 
Population genetic studies confirm that the origin of the New Zealand populations is the 
East Coast of Australia (Banks et al. 2007), but suggest that the New Zealand populations are 
no longer reliant on dispersal from Australia and are a self-sustaining meta-population 
(Thomas et al. 2021). This urchin is increasing in abundance at some locations in north-east 
New Zealand (Balemi et al. 2021) and is the most abundant urchin species at Rangitāhua 
(Liggins, pers. comm. 2021), but outside these few locations, there have not been surveys 
on abundance. Additionally, there are no surveys that would detect a range extension. 
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Climate change will likely lead to increases in C. rodgersii’s range and abundance in New 
Zealand. Currently, C. rodgersii’s range in New Zealand occurs up to its minimum thermal 
temperature 15°C (Pecorino et al. 2013b). As ocean temperatures increase the 15°C winter 
isotherm will likely move south allowing C. rodgersii populations to extend southwards, 
similar to the range extension in Tasmania (Ling et al. 2009c). The other impact of climate 
change is increased ocean acidification. Although decreased pH impacts the jelly coat of C. 
rodgersii’s eggs (Foo et al. 2017) and C. rodgersii’s larval development (Doo et al. 2012), the 
future predictions of pH will likely have minimal impacts on C. rodgersii in New Zealand 
(Pecorino et al. 2013c). Additionally, C. rodgersii may be able to adapt to the decreased pH 
(Foo et al. 2012). Overall climate change is likely to benefit C. rodgersii and extend its range 
in New Zealand (Pecorino et al. 2013c). 
 
Centrostephanus rodgersii poses a threat to New Zealand’s ecosystem and fisheries. The 
dominant macroalgae in north-east New Zealand is Ecklonia radiata, which was also the 
dominant canopy-forming kelp in Tasmania where extensive barrens formed (Ling et al. 
2018). In New Zealand, E. radiata supports a high-value fishery of crayfish (J. edwardsii) 
which is the same species as the Tasmanian southern rock lobster, pāua (Haliotis iris), and 
kina (Evechinus chloroticus). Therefore, New Zealand could have similar losses in 
biodiversity and fisheries to Tasmania (Johnson et al. 2005; Ling 2008; Lisson 2018). 
Centrostephanus rodgersii needs further study in New Zealand for us to understand and 
manage the threat it poses to New Zealand’s ecosystem and fisheries. 
 
Studying species redistributions 
 
In the absence of time-series survey data, population size structure analysis can be used to 
examine changes in a species abundance as well as changes in population demography and 
connectivity to infer range changes. The sizes of individuals in a population indicate the 
range of ages within a population, and therefore population demography. When we study 
demography across multiple populations we can detect past range shifts or expansions 
(Gurevitch et al. 2016). In a range extension (Fig. 1b) of a species with a pelagic larval stage 
and benthic adult stage, the newly established leading edge will have young individuals that 
have newly arrived. In contrast, in a range contraction (Fig. 1c) a population may stop 
recruiting and/or reproducing shifting the demography to older individuals. Measures like 
the coefficient of variance for individual size, have been used to detect relationships 
between recruitment and physical ocean features, like upwelling. For example, Ebert et al. 
(1988) found recruitment of the purple sea urchin (Strongylocentrotus purpuratus) was 
irregular closer to locations of intense upwelling. Similarly, Black et al. 2011 found the 
coefficient of variance for size in the giant clam (Tridacna maxima) increased with increasing 
latitude, indicative of an increase in recruitment at higher latitudes. Size structure is less 
time and resource intensive than the ecological time-series surveys used to regularly survey 
the demography and abundance of a species and therefore is an important tool for 
detecting differences in demography. 
 
Population genomics can be used to identify the population structure and connectivity of a 
species. Neutral and adaptive genetic loci can be used to identify the distinct meta-
populations. Population graphs give more in-depth genetic structuring including the shared 
genetic variance between populations, which indicates the geneflow, and the within-
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population variance (Dyer et al. 2004). The adaptive genetic variance can inform us how 
resilient populations may be to future events (Dalongeville et al. 2018b). Using these 
genomics tools in a species that is potentially changing in abundance and range can inform 
management decisions. 
 
Currently, there is no monitoring of whether a range extension of C. rodgersii could be 
occurring in New Zealand. In this thesis, I used population size structure analysis to look for 
signals of recent range extensions in north-east New Zealand. I also studied the population 
genomics of C. rodgersii in north-east New Zealand and Rangitāhua. Although there have 
been population genetic studies on C. rodgersii in New Zealand (Banks et al. 2007; Thomas 
et al. 2021), this thesis uses the most New Zealand locations and is the first study on C. 
rodgersii to use genome-wide single nucleotide polymorphisms. Using population genomics 
I examined the patterns of connectivity across the range of C. rodgersii and how these 
patterns differed between demographic groups. 
 
Structure of this thesis 
 
This thesis contains two empirical data chapters (Chapters Two and Three) and a general 
discussion chapter (Chapter Four). Chapters Two and Three are written in manuscript 
format as I plan to submit them for peer-review and publication after receiving the 
examiner’s comments. For this reason, there is some repetition of background information 
and explanation of the study system in these chapters. These chapters will be submitted for 
peer-review as co-authored manuscripts, and so I use “we” (first-person plural) to 
acknowledge this; nonetheless, the thesis is my own work, completed under the guidance of 
my supervisors.  
 
Chapter Two uses population size structure to look for signals of a poleward range 
extension. This chapter reviews the use of size to infer demography, recruitment and range 
dynamics. I created a Bayesian model to detect signals of a poleward range extension and 
confirmed the ability to detect demographic changes using the model in a simulation study. 
I then used this model firstly, on the known range extension of C. rodgersii in Tasmania, and 
then, on the data from north-east New Zealand. I discuss the use and limitations of this 
model especially in a changing ecosystem with potentially changing species ranges. 
 
Chapter Three uses population genomics to study New Zealand populations of C. rodgersii. I 
was interested in the patterns of connectivity across north-east New Zealand and 
Rangitāhua. I was also interested in whether population dynamics were changing over time. 
I examined this by dividing the individuals within each population into two demographic 
groups (i.e. up to 15 years old, and over 15 years old) and comparing their genetic 
composition and patterns of population connectivity. I then discuss what this analysis 
means for the New Zealand meta-population of C. rodgersii. 
 
Chapter Four gives a general overview of Chapters Two and Three and how their findings 
cross inform each other. I discuss the future directions and applications of this research and 
the management of range-extending species including future scenarios for New Zealand. 
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Chapter Two: Using the size structure of populations to infer range 
extensions and the regularity of recruitment 
 
Abstract 
 
Climate change is causing shifts in the distributional ranges of species. Range shifts of 
habitat-forming species, or species that influence the predominant habitat-forming species, 
can have great impacts on ecosystems. Centrostephanus rodgersii (the Long-spined urchin) 
extended its range southward to Tasmania, where it drastically reduced biodiversity and 
impacted the local fisheries. Centrostephanus rodgersii is also found in north-east New 
Zealand (NENZ), where it could potentially impact subtidal ecosystems similarly to those in 
Tasmania. Unfortunately, there are no time series data from NENZ from which to infer 
population or recruitment dynamics. Instead, we inferred population dynamics by analysing 
the size structure – the mean and standard deviation of individual urchin sizes – of C. 
rodgersii populations across its range using a Bayesian modelling approach. We detected a 
poleward decrease in mean sizes and a poleward increase in the standard deviations of sizes 
in C. rodgersii in both Tasmania and in northern NENZ, consistent with a poleward range 
extension, which is well-documented in Tasmania but not yet NENZ. Southern NENZ 
populations had varied population mean sizes and similar standard deviations of sizes, 
indicating there has not been a strictly poleward range extension. Across both the 
Tasmanian and NENZ range of C. rodgersii, our model suggested an increase, with latitude, 
in the regularity of recruitment in higher latitude populations, indicating that the southern 
range limits may not be recruitment limited. Our study demonstrates that size structure 
data can be a valuable resource in understanding population histories and recruitment 
dynamics in the absence of time-series data. 
 
Introduction 
 
Climate-mediated range shifts are altering recipient ecosystems causing widespread socio-
economic impacts (Pecl et al. 2017). Range extensions, a common type of range shift, 
involve a species colonising a new location, followed by population growth through 
increased immigration or local recruitment (Bates et al. 2014). In the marine environment, 
we expect to see increased immigration and colonisation of new locations as a consequence 
of climate-forced changes in ocean circulation altering, and in some cases strengthening, 
dispersal pathways (Doney et al. 2012, Wilson et al. 2016). Furthermore, localised warming 
of ocean temperatures due to climate change helps species to survive and reproduce in the 
new location, promoting population growth. Despite the prevalence of range extensions in 
the marine environment (Pinsky et al. 2020), determining whether a certain species is 
undergoing a range extension is often difficult to establish. 
 
Range shifts of habitat-forming species, or species that influence the predominant habitat-
forming species, can substantially impact the structure and function of marine communities 
(Doney et al. 2012, Jurgens & Gaylord 2018). For example, the loss of a habitat-forming 
species like kelp will dramatically impact the ecosystem (Teagle et al. 2018), and therefore 
an increase or introduction of herbivores that eat kelp can threaten the ecosystem. One 
such species is the Long-spined sea urchin (Centrostephanus rodgersii), which can create 
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‘barrens’ by overgrazing macroalgal kelp forests. The impact of C. rodgersii has been most 
pronounced where the species has extended its range into south-east Australia and 
Tasmania. The strengthening of the East Australian Current (EAC), due to climate change 
(Oke et al. 2019), has enabled C. rodgersii  larvae (capable of dispersing for three to four 
months; Huggett et al. 2005) to disperse into Tasmanian waters (Ling et al. 2009) during 
multiple colonisation events (Johnson et al. 2011). The EAC has also increased the sea 
temperature along the south-east of Australia allowing the persistence of C. rodgersii in 
Tasmania. As a result of the barrens habitats created by C. rodgersii, Tasmanian macroalgae 
forests have lost at least 150 taxa (Ling 2008), and important fisheries such as blacklip 
abalone (Haliotis rubra) and southern rock lobster (Jasus edwardsii) have been affected 
(Johnson et al. 2005, Lisson 2018). 
 
The natural range of C. rodgersii includes the east Australian coast, Lord Howe Island, 
Norfolk Island, Rangitāhua (the Kermadec archipelago), and north-east New Zealand (Byrne 
& Andrew 2013). However, we know little about the historic range-wide dynamics of the 
species. Presumably, C. rodgersii colonised the Tasman Sea Islands (Lord Howe Island and 
Norfolk Island) via the eastern flowing Tasman Front, an offshoot of the EAC (Oke et al. 
2019), and north-east New Zealand was colonised via the south-easterly flowing East 
Auckland Current (EAuC) that arises from the Tasman Front. Centrostephanus rodgersii was 
first recorded in New Zealand in 1897 (Farquhar 1897) but was subsequently removed from 
the faunal list on two occasions for lack of evidence. It was not until 1949, when live 
specimens were collected from several locations (the Cavalli Islands, Stephen’s Island, 
Whangaroa, and Little Barrier), that there was conclusive evidence of the species presence 
(Fell 1949). Population genetic studies identified high connectivity between C. rodgersii 
populations in New Zealand and the East Coast of Australia (Banks et al. 2007), and suggest 
that New Zealand populations have since become a self-sustaining meta-population and are 
no longer reliant on dispersal from Australia (Thomas et al. 2021). Although C. rodgersii is 
now widespread in New Zealand (ranging from Rangitāhua to Ariel Reef, Gisborne), due to a 
lack of survey data, we do not know how this increase in range and abundance since 1897 
occurred, and whether the species continues to extend its range. 
 
Centrostephanus rodgersii likely poses a threat to New Zealand’s coastal ecosystem and 
fisheries. The dominant macroalgae in north-east New Zealand is Ecklonia radiata which 
was the macroalgal species most impacted by C. rodgersii in Tasmania (Ling & Keane, 2018). 
In New Zealand, E. radiata supports a high-value fishery of crayfish (J. edwardsii, also known 
as southern rock lobster), pāua (Haliotis iris), and an endemic urchin, kina (Evechinus 
chloroticus).  Although ocean temperatures have increased over recent decades, the 
climate-driven changes to New Zealand’s oceanography and ocean environment have not 
been as dramatic as those seen in south-east Australia and Tasmania (Law et al. 2017). 
Nonetheless, larval rearing experiments have confirmed that C. rodgersii can reproduce and 
complete the crucial stages of larval development in New Zealand (Pecorino et al. 2013b), 
suggesting the species can self-recruit under current conditions (Pecorino et al. 2012). 
Furthermore, monitoring data from 1999 to 2020 shows there has been an increase in the 
abundance of C. rodgersii at the Poor Knights Islands Marine Reserve and the Mokohinau 
Islands (Shears 2020, Balemi et al. 2021). More generally, however, a thorough 
understanding of the historical and likely future range dynamics of the species in New 
Zealand is lacking. 
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In the absence of time-series survey information, population age-class or size structure 
information can be used to infer the relative timing of colonisation and frequency of 
recruitment into populations. Size structure has been used both alone and in combination 
with abundance and/or density to infer population dynamic for many marine invertebrates, 
including: the red sea urchin (Strongylocentrotus franciscanus;Tegner & Dayton 1981, 
Botsford et al. 1994, Morgan et al. 2001), the purple sea urchin (Strongylocentrotus 
purpuratus; Ebert & Russell 1988, Ebert et al. 1999, Ebert 2010), and the Kellet's whelk 
(Kelletia kelletii) in California, USA (Zacherl et al. 2003); and the mulberry whelk (Morula 
marginalba), a marine snail (Afrolittorina pyramidalis), and the rose barnacle (Tesseropora 
rosea) in south-east Australia (Hidas et al. 2010). The mean size of individuals in a 
population can give an estimation of how long a population has been established. For 
instance, if a population has been present for a long time, a large proportion of the 
individuals will be full-sized adults, so the population will have a large mean size. In contrast, 
a newly colonised population will have a higher proportion of younger individuals, and 
therefore a smaller mean size for the population. The standard deviation of sizes in a 
population also provides information about the regularity of recruitment. For instance, a 
small standard deviation indicates less variation in sizes and therefore similar ages, so there 
may have only been one recruitment event leading to one age class. In contrast, a large 
standard deviation indicates the individuals are spread across all age classes, therefore 
there would have been regular recruitment. 
 
In combination, these two measures – the mean and standard deviation of sizes – have 
been used to calculate the coefficient of variation to reveal how recruitment patterns vary 
across species ranges (Ebert & Russell 1988). A large coefficient of variation indicates the 
sizes of individuals are highly variable relative to the mean and therefore suggests more 
regular recruitment (Morgan et al. 2001). In contrast, a small standard deviation relative to 
the mean, and therefore a small coefficient of variation, may indicate recruitment into the 
population is episodic as only a few size classes are found. For example, a relationship 
between the coefficient of variation and the distance from a headland where upwelling 
occurred for purple sea urchin (S. purpuratus) populations sampled from central California 
to central Oregon (Ebert & Russell, 1988) indicating recruitment was irregular closer to the 
upwelling. Black et al. (2011) also used the coefficient of variation for small giant clam 
(Tridacna maxima) populations within the Ningaloo Marine Park, Australia, to infer that 
recruitment increased with decreasing northward latitude. 
 
Although the coefficient of variation has been used more frequently in previous studies than 
the mean or standard deviation independently, the latter approach may yield more valuable 
insights in climate impacted oceans. For example, a newly established population at the 
leading edge of a range extension that has only young individuals from a few recruitment 
events would have a small standard deviation and small mean size, giving it a medium 
coefficient of variation. Using the coefficient of variation alone, the dynamics of this 
population would be indistinguishable from a long-established population with regular 
recruitment which would have a large mean and large standard deviation also giving the 
population a medium coefficient of variation. Thus, more nuanced analysis of population 
size structures – including the mean, standard deviation, and coefficient of variation – can 
provide a view into both the population histories and ongoing recruitment dynamics of 
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populations, particularly when appropriate measures to the expected demographic 
scenarios are used. 
 
Our study uses population size structure to investigate signs for a recent range extension, 
and to examine patterns of recruitment for C. rodgersii. In Tasmania, Ling et al. (2009) 
examined the abundance and size structure of C. rodgersii urchin populations along the 
range extension axis. The authors found an exponential decline in mean urchin size (and age 
inferred via growth models) with distance from the EAC and a poleward decrease in size, 
and therefore age, and abundance, confirming demographic signatures for the documented 
poleward range extension. Here, we use population size structure data to detect similar 
signs of recent or varied colonisation timing, or varied recruitment, across the north-east 
New Zealand range of C. rodgersii. Specifically, we model trends in population size structure 
parameters (mean size, standard deviation of size and coefficient of variation) with latitude 
where we expect smaller mean sizes in southern populations, indicative of a poleward range 
extension similar to what was observed in Tasmania. In addition, a high standard deviation 
in population sizes could indicate where populations are regularly recruiting. To test the 
performance of our model, we first use simulated data to confirm if trends in both the mean 
and standard deviation of urchin test diameters could be recovered. Second, we modelled 
the size structure data from Tasmanian C. rodgersii populations to test our inferences in the 
case of a known range extension. Last, based on our verified approach and assumptions, we 
use our model to investigate the size structure data of C. rodgersii populations in New 
Zealand to infer the species population history and range dynamics in New Zealand. 
 
Methods 
 
Modelling population size structure trends 
 
Size is typically determined by age and growth rate. For urchins, differences in growth rates 
can be due to differences in food availability or ambient temperature (Pecorino et al. 2012). 
In our study, we assume that all north-east New Zealand locations have similar growth rates 
and so size can be used as a surrogate for age. In support of our assumption, Ling et al. 
(2009) found that all sampled Tasmanian C. rodgersii populations, across a larger latitudinal 
gradient, had the same growth rates. Furthermore, growth models created for C. rodgersii 
at the Mokohinau Islands in north-east New Zealand were very similar to the models 
derived for Tasmanian populations (Pecorino et al. 2012). Additionally, the entire north-east 
New Zealand range of C. rodgersii is within one bioregion within which food availability is 
assumed to be similar (Shears et al. 2008). Nonetheless, our approach will only allow us to 
see signals of a recent range extension, up to 10-15 years prior to the sampling, as once the 
urchins reach full size (at 10-15 years; Pecorino et al. 2012) they are indistinguishable. 
 
Using a Bayesian modelling approach fit with the R package Rethinking version 2.01 
(McElreath 2016, 2020), we created a model to detect trends in the mean size of individuals 
in a location, and the standard deviation of size in a location, across latitude. First (2.2), we 
tested the model’s performance using simulated size structure data with several trends in 
different directions and of different magnitudes. Second (2.3), we used the data from 
Tasmania’s verified poleward range extension of C. rodgersii to test whether we could 
detect the expected poleward trend in size structure. Last (2.4), once we had verified that 
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the model would pick up trends, we used it to infer trends for the New Zealand populations 
of C. rodgersii. The test diameter (size) is based on a normal distribution where both the 
mean and standard deviation are modelled. Both the mean and standard deviation have a 
global mean/standard deviation, a slope for the mean/standard deviation and an error term 
for the mean/standard deviation (full details in Appendix 1). The mean was estimated as 
90mm based on the mean of the observed data and since this is close to the growth 
asymptote for both New Zealand and Tasmania (Pecorino et al. 2012). The standard 
deviation of 15 was based on the observed data. Latitude was standardised and centred in 
the model (see Appendix 1). 
 
(I) Simulation study 
 
In the simulation study, we tested whether the model could recover trends for changes in 
test diameter with respect to latitudes that were of different magnitudes and directions for 
both the location means and location standard deviations. For each scenario, we simulated 
two data sets with two different sample sizes: five locations and fifteen locations (where 
each location represents a population). Within each location, we simulated test diameter 
values for 30 individuals across all simulations. 
 
We simulated nine scenarios for a combination of neutral, positive and negative 
relationships between test diameter and latitude for both the location means and location 
standard deviations. Next, we explored if our model would be sensitive to differences in the 
magnitude of the regression parameters as well as differences in direction. Hence, we 
simulated six additional datasets; three scenarios for a change in the magnitude of the 
regression parameter for location means (bL) and three scenarios for a change in the 
magnitude of the regression parameter for location standard deviations (cL). Lastly, we 
examined if non-linear patterns in the location means or standard deviations across latitude 
influenced our estimates. These two simulations used convex relationships between latitude 
and either location means or location standard deviations, and no relationship with latitude 
and either location means or locations standard deviations, respectively. Full details of the 
simulation study are in Appendix 2. 
 
 
(II) Modelling population size structure for Centrostephanus rodgersii in Tasmania 
 
The range extension of C. rodgersii in Tasmania has been well documented and therefore 
created an opportunity to test the model's ability to detect a known poleward range 
extension using size structure data. Ling et al. collected urchins from five 
locations/populations in 2004 and 2005 (Fig. 2a) on the east coast of Tasmania covering the 
latitude range -43.48° to -41.34° (“Growth and age across range extension region of 
Centrostephanus rodgersii in eastern Tasmania and morphometric comparison of urchins 
inhabiting kelp versus barrens habitats: dataset 3 - Allometry for conversion between jaw 
length and test diameter” accessed from the Australian Ocean Data Network). The urchin 
test diameters ranged from 33 to 133mm. Two of the locations/populations (St Helens 
Island and Elephant Rock) had a site for both barrens habitat and kelp habitat which were 
combined so there was only one dataset per location, each with 600 individuals sampled. 
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Cape Tourville and Mistaken Cape both had 300 individuals sampled and Fortescue had 282 
individuals sampled. 
 
(III) Using population size structure for Centrostephanus rodgersii in north-east New Zealand 
to infer population history and recruitment dynamics 
 
We collected test diameter measurements (mm) of 647 C. rodgersii individuals from 14 
locations along the north-east coast of the North Island of New Zealand (Fig. 3a). Individuals 
ranged from 32 to 130mm and were collected between 2015 and 2018. The majority of 
locations were sampled between late 2015 and early 2016, with a few from August and 
September 2017 and January 2018. 
 
Finally, we used our model to assess patterns across north-east New Zealand's C. rogersii 
locations. We were interested in the trends between latitude and the location means and 
location standard deviations as well as the location coefficient of variation.  
 
Results 
 
(I) Simulation study 

Overall, we found close agreement between the simulated parameters and the model 
estimates of these parameters across a range of realistic scenarios (Fig. 1, further details in 
Appendix 2). Though a more thorough sensitivity analysis is required, there was an 
indication that models slightly underestimated the strength of the relationship between 
latitude and the summary statistics when strong linear relationships were simulated (Fig. 
A2, Appendix 2). When a non-linear, convex relationship between latitude and the summary 
statistics was simulated, and a linear model fit to the simulated data, the relationship and 
the location estimates for the simulated mean test diameter were recovered, but the 
location estimates for the simulated standard deviations were not reliably recovered (Fig. 
A5). Thus, the model can reliably recover a linear relationship with locations means and/or 
location standard deviations. 
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Figure 1: Plot of the regression coefficients bL (regression coefficient between latitude and the mean of test diameters of locations) and cL (regression 
coefficient between latitude and the variation of test diameters of locations). These were plotted for each of the nine simulated scenarios for both 15 
location and 5 location datasets. The models are named based on the relationship between the location means and latitude (“md”: bL = -10 ; “mi”: bL = 10;  
“mn”: bL = 0;) and the relationship between location standard deviations and latitude (“vd”: cL = -5; “vi”: cL = 5; “vn”: cL = 0). The red circles are the 
simulated value for each of the parameters in each simulated scenario, the black circles are the model estimates and the lines are the credible intervals. 
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Figure 2: Results of the model for Tasmanian Centrostephanus rodgersii populations. a) Map of the locations sampled for C. rodgersii on the east coast of 
Tasmania; b) Observed mean test diameter for each location; c) Observed standard deviation of test diameter for each location. Lines indicate 95% credible 
intervals. 

43.5°S

43.0°S

42.5°S

42.0°S

41.5°S

41.0°S

La
tit

ud
e

a) b) c)

144°E 145°E 146°E 147°E 148°E 149°E
Longitude

85 90 95 100 105
Mean test diameter (mm)

10 11 12 13
Standard deviation



 24 

(II) Modelling population size structure for Centrostephanus rodgersii in Tasmania 
 
Using the dataset for Tasmanian C. rodgersii populations, there was a positive trend 

between the location means and latitude (Fig. 2b). Although this trend was not significant 

(bL: mean= 1.77, 95% credible interval: -1.07 to 4.47) the result supports the ability of our 

model to infer signatures of the poleward range extension that has occurred. Furthermore, 

the trend between the location standard deviations and latitude was negative and 

significant (Fig. 2c; cL: mean= -0.75, 95% credible interval: -1.36 to -0.12), suggesting that 

regular recruitment is occurring at the high-latitude, southern locations. 

 
(III) Using population size structure for Centrostephanus rodgersii in north-east New Zealand 
to infer population history and recruitment dynamics 
 

In north-east New Zealand there was no trend between the location means and latitude 

overall (Fig. 3b; bL: mean= -1.79, 95% credible interval: -3.49 to 0.95). The pattern of 

location means was more varied in New Zealand than in Tasmania. At the northern 

locations, the means decreased with latitude indicative of a poleward range extension (to -

36°), but at the southern latitudes there were varied location means without a trend. Similar 

to Tasmania, we found a significant negative relationship between the location standard 

deviations and latitude (Fig. 3c; cL: mean= -1.79, 95% credible interval: -3.09 to 

-0.48), suggesting southern locations could be recruiting more regularly. 

 

Coefficient of variation 
 

In both New Zealand and Tasmania, there was a negative trend between the coefficient of 

variation and latitude (Fig. 4). New Zealand had a steeper trend than Tasmania but it 

comprises more sampled locations and covers a greater absolute range in latitude. These 

results suggest that there is more regular recruitment occurring at more southern, high 

latitude locations for both Tasmania and New Zealand. 
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Figure 3:  Results of the model for New Zealand Centrostephanus rodgersii populations. a) Map of the locations sampled for C. rodgersii in north-east New 
Zealand; b) Observed mean test diameter for each location; c) Observed standard deviation of test diameters for each location. Lines indicate 95% credible 
intervals. 
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Figure 4: Coefficients of variation for each location plotted by latitude. Green is the north-east New Zealand locations and pink is the Tasmania locations. 
Lines indicate 95% credible intervals.
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Discussion 
 
Our study demonstrates that recent range history and regularity of recruitment into 
populations can be examined using size structure data when time-series data is not available. 
Our Bayesian modelling approach found patterns consistent with a range extension of C. 
rodgersii in New Zealand, based on measured size structure data across the species north-east 
New Zealand range. We first validated our model approach using simulated size structure data 
and verified its performance in recovering signatures of recent range extensions using size 
structure data from Tasmania, where C. rodgersii is documented to have undergone a range 
extension. Our results infer previously undescribed patterns of increased regularity of 
recruitment in a poleward direction in both New Zealand and Tasmania and no overall trend in 
the population means in New Zealand. We suggest that C. rodgersii in New Zealand has not had 
the same strictly poleward range extension in the same timeframe as Tasmania. Below we 
discuss the trends detected for C. rodgersii in north-east New Zealand, and the likely drivers 
underlying differences in the population histories of Tasmania and north-east New Zealand 
populations. We also discuss our approach with reference to other population size structure 
analyses, and limitations in such an approach. 
 
The patterns in the mean sizes of individuals across populations demonstrate some differences 
in recent range shifts/colonisation of C. rodgersii between Tasmania and New Zealand. 
Although not statistically significant, we found that the mean sizes of individuals in Tasmanian 
populations decreased in a poleward direction which fits the documented population history of 
this species (Ling et al. 2009). The underlying cause of the pattern in mean sizes is likely due to 
changes in the EAC. In Tasmania, Ling et al. (2009) described an exponential decline in mean 
urchin age with distance from the western edge of EAC. The EAC travels in a poleward direction 
and therefore the range extension in Tasmania is associated with latitude. 
 
In contrast to Tasmania, we did not find an overall trend in the mean sizes of individuals across 
populations associated with latitude in New Zealand. In the north of C. rodgersii’s north-east 
New Zealand range, the mean sizes decreased with latitude, but from approximately -36° to 
East Cape, there was no trend with latitude. It is important to note that the number of locations 
and the breadth of latitudes sampled in New Zealand was greater than in Tasmania, and our 
findings likely correspond to the different physical environments found across latitude in north-
east New Zealand. Latitude itself does not drive biological processes; rather, it is the variables 
that are often correlated with latitude, such as temperature and ocean currents. In this case, 
unlike the EAC in Australia, the EAuC in north-east New Zealand does not track the coastline, 
but stays offshore, and more frequently meets the East Cape than more northerly locations 
(Stanton et al. 1997, Sutton & Bowen 2019). Therefore, a range extension influenced by ocean 
currents in north-east New Zealand may not be strictly poleward, linear, and associated with 
latitude. In southern regions of north-east New Zealand, the range extension of C. rodgersii may 
not be recent enough to detect using an analysis of population size structure. Centrostephanus 
rodgersii has been present in New Zealand a lot longer than in Tasmania (Farquhar 1897; 
Johnson et al. 2005). The size of C. rodgersii is likely to reflect their age up to 15 years old, after 
which their growth slows (estimated from Jolicoeur tag–recapture in Pecorino et al. 2012). 
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Therefore, all the individuals that are over approximately 15 years old (arrived before 
approximately 2001) are indifferentiable using size so range extensions and/or recruitment 
patterns before 2001 cannot be detected using this approach. 
 
For both Tasmania and New Zealand, the standard deviations of sizes within populations 
increased in a poleward direction, suggesting that recruitment is more regular in higher latitude 
populations. In Tasmania, C. rodgersii has more recently colonised southern locations; 
therefore, we expected southern locations to have smaller standard deviations of sizes due to 
having fewer older individuals but, instead, they had a greater standard deviation of sizes. This 
counterintuitive result may be due to currents and marine heatwave events affecting 
recruitment patterns. In Tasmania, the annual length of marine heatwaves (periods of 
abnormally high sea temperature) varies in two ways (Oliver et al. 2018). First, annual variation 
is associated with southward along-shore circulation which comes from the EAC, predominantly 
impacting northern populations. Second, there is a less frequent multi-year variability which 
mainly affects south and south-eastern Tasmania. This multi-year variability is associated with 
weak currents over the eastern continental shelf which could in turn impact recruitment at the 
multi-year scale. When the studied urchins (measured in 2004 and 2005) were recruiting 
between 1993 and 2000 there was a multi-year increase in marine heatwave events (Oliver et 
al. 2018), which could have led to regular recruitment in the southern populations, leading to 
larger standard deviations of sizes. If the population was to be resurveyed now, the patterns in 
standard deviation may be quite different due to the heatwave in 2015/16 from the EAC that 
likely impacted northern populations (Oliver et al. 2017).  
 
Similar to Tasmania, in New Zealand, the pattern in standard deviations may be due to the 
variability in the EAuC affecting recruitment of C. rodgersii. The EAuC varies from year to year 
and regularly will reach the more southern locations but the northern locations are not always 
reached or only reached later in the season (Stanton et al. 1997). Therefore, urchins will likely 
be recruited to southern populations each year but recruitment may not always reach the 
northern populations. 
 
The coefficient of variation of C. rodgersii populations in both Tasmania and north-east New 
Zealand was low compared to other studies. In a study of the purple sea urchin (S. purpuratus) 
along the coast of California and Oregon, the coefficients of variation ranged from 18.5% to 
46.7% and were considered “consistently poor” and “consistently good”, respectively (Ebert & 
Russell 1988). Similarly, a study on the small giant clam (T. maxima) in Western Australia 
recovered coefficients of variation between 23.54% and 44.45% (Black et al. 2011). In contrast, 
the coefficients of variation for New Zealand populations of C. rodgersii ranged from 11.19% to 
23.38%, and between 11.28% and 15.23% for Tasmanian populations. It may be that the low 
coefficients of variance we found were due to the difficulty in surveying the very small urchins 
in the population. Very young urchins tend to have more cryptic behaviour, such as hiding in 
crevices away from predators (Ling & Johnson 2012, Byrne & Andrew 2020) and these small 
urchins could have been missed in the surveys. Hence, our population mean sizes could be 
overestimated, our population standard deviations of size may be underestimated, and our 
population coefficient of variation underestimated. Although such a survey bias compromises 
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our ability to compare our recovered coefficients of variation to other studies, it does not 
impact our study as this bias would have been consistent across all studied locations within 
New Zealand, and likely within Tasmania. 
 
Although we recovered an increase in the coefficients of variation for populations in the 
poleward direction, for both Tasmania and New Zealand, this provided little more information 
than provided by the pattern in standard deviations of sizes. In the case of Tasmania, if only the 
coefficients of variation were used in our analysis, important demographic insights may have 
been missed, such as the trend in the mean size of individuals in Tasmania indicating a 
poleward range extension. Thus, the separation of the regularity of recruitment (i.e., standard 
deviation in sizes) and the length of populations presence (i.e., mean size) may be important 
when addressing demographic scenarios that potentially include range extensions (also 
suggested by Zacherl et al. 2003). 
 
Although a range extension of C. rodgersii in north-east New Zealand may be unrelated to 
latitude, but associated with a more heterogeneous variable (such as sea surface temperature 
or physical oceanography), it is also plausible that no recent range extension has occurred in 
north-east New Zealand. Centrostephanus rodgersii has been present some locations of north-
east New Zealand for at least 120 years (Farquhar 1897) which is much longer than the 40 years 
since they have been recorded in Tasmania (Johnson et al. 2005). Based on historical records in 
New Zealand (Farquhar 1897, Fell 1949) and sex ratios at the Poor Knights Islands (Pecorino et 
al. 2013c), it is possible that the species extended its range throughout many of the studied 
locations before 2001 (i.e. prior to the timeframe we can analyse in this study). Regardless, 
further range extension is possible in future. In New Zealand, the distribution of C. rodgersii 
indicates that the species is limited by winter sea surface temperatures of 15°C (Pecorino et al., 
2013c). Sea surface temperatures around New Zealand are predicted to increase (Law et al. 
2017), which could promote a future range extension of the species (Pecorino et al. 2013a). For 
instance, Tasmania is at a higher latitude than the New Zealand locations sampled, but is a 
renowned global warming hotspot, warming at a much greater rate than north-east New 
Zealand (Shears & Bowen 2017, Sutton & Bowen 2019). Therefore, it is likely the range shifts of 
C. rodgersii differ between Tasmania and New Zealand owing to the different time periods 
studied, as well as the velocity of ocean climate change in each region. 
 
We have demonstrated that modelling the mean sizes and standard deviations in sizes of 
individuals in a population can be used to study population demography and recruitment, 
particularly when time-series data are not available. In the context of the climate crisis, it is 
important to have a range of methods to understand the range history of species. 
Centrostephanus rodgersii has the potential to detrimentally impact New Zealand’s biodiversity 
and fisheries due to our coastal marine ecosystem being similar to Tasmania (Johnson et al. 
2005, Ling et al. 2008, Ling et al. 2009, Lisson 2018). Formal time-series surveys across C. 
rodgersii’s range would give us the fullest and most certain understanding of any future range 
extension, as well as increases in abundance and density in New Zealand over time, beyond the 
15 year post-range extension limit of our approach. However, in many cases, time and/or 
resources to undertake structured time-series surveys are limited, especially as ocean climate 
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changes are already impacting our ecosystems; in these situations, the method presented here 
provides a more immediate and less time-intensive way to infer recent demographic histories, 
recruitment patterns, and to inform impact assessments and management decisions. 
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Chapter Two Appendices: 
 
Appendix 1: Supplementary information and tables 
 
Bayesian model written in equation form: (parameters explained in Table A1) 
 

!"! 	~	%&'()*	(,! , 	.!) 
,! =	," 	+ 	2#	[!]34 + 	5[7]	." 

,"~	%&'()*	(90,10) 
2#		~	%&'()*(0, 5) 
5[7]	~	%&'()*	(0, 1) 

."	~	=>?(2) 
	.! =	,' 	+ 	A#	[!]34 + 	52[7]	.'  

,'~	%&'()*	(15,5) 
A#		~	%&'()*(0, 5) 

52[7]	~	%&'()*	(0, 1) 
.'~=>?(2) 
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Parameter Explanation Prior/value 

TD Test diameter of urchins in mm (individual size)  

sL Standardised latitude  

P Population/location   

, Mean test diameter of a location  

,"  Global mean test diameter Mean: 90; standard deviation: 10 

	2#  Slope of the relationship between standardised 
latitude and the location mean of test diameter 

Mean: 0; standard deviation: 5 

."  and 
z[P] 

Error term for the mean test diameter of a 
location using non-centered parameterisation. 
The z[P] allows the error to differ for each 
location 

z: Mean: 0; standard deviation: 1 

." ∶ Exp(2) 

. Standard deviation of test diameters of a 
location 

 

,'  Global standard deviation of test diameter Mean: 15; standard deviation: 5 

A#	 Slope of the relationship between standardised 
latitude and the location standard deviation of 
test diameter 

Mean: 0; standard deviation: 5 

.'  and 
z2[P]: 

Error term for the standard deviation of test 
diameters of a location using non-centered 
parameterisation. The z2[P] allows the error to 
differ for each location 

z2: Mean: 0; standard deviation: 1 

.' ∶ Exp(2) 

Table A1: Explanation of each of the parameters in the model. 
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Appendix 2: Simulation study examining relationships between latitude and location 
means as well as location standard deviations of sea urchin test diameters. 

Background: The Long-spined sea urchin (Centrostephanus rodgersii) is found in both Tasmania 
and north-east New Zealand. In Tasmania, the Long-spined sea urchin extended its range 
poleward causing dramatic ecosystem change and socio-economic challenges associated with 
the collapse of lobster and abalone fisheries. Researchers in Tasmania observed that more 
southerly populations of the range extending C. rodgersii had smaller mean test diameters 
(size) and a younger mean age than more northerly populations. 

It is currently unknown whether C. rodgersii is undergoing a similar range extension in north-
east New Zealand. We used test diameter measurements from populations of the Long-spined 
sea urchin distributed along a 7° latitudinal gradient from Spirits Bay to White Island (Whakaari) 
to investigate if we would also observe a decline in mean test diameter with increased 
southerly latitude. In particular, we were interested in examining if latitude is associated with a 
change in the mean test diameters as well as a change in the standard deviation of test 
diameters. 

We felt that flexibility afforded by the R package Rethinking (McElreath 2020) would allow us to 
estimate the location means and standard deviations of test diameters and regress these 
estimates on latitude within a single model. We were unable to identify a suitable example of a 
model parameterization that would allow us to run these models in the literature. Therefore, 
we performed a simulation study to confirm that our model parameterization was appropriate 
for testing our hypotheses relating to relationships between location specific summary statistics 
and latitude. 

Summary: Overall, we found close agreement between the simulated location parameters and 
the model estimates of these parameters across a range of realistic scenarios. Though a more 
thorough sensitivity analysis is required, there was an indication that models slightly 
underestimated the strength of the relationship between latitude and the summary statistics 
when strong linear relationships were simulated. When a non-linear, convex, relationship 
between latitude and the summary statistics was simulated, and a linear model fit to these 
data, the relationship and the location estimates for the simulated mean test diameter were 
recovered, but the location estimates for the simulated standard deviations were not reliably 
recovered.  

Simulation study: For each scenario below we simulated two data sets with two different 
sample sizes: five locations (ending in “_5”) and fifteen locations (ending in “_15”). Within each 
location we simulated test diameter values for 30 individuals across all simulations. 

Our nine different scenarios were: 

sim_mn_vn_5/sim_mn_vn_15: no relationship between location means and latitude (“mn”: bL 
= 0) and no relationship between location standard deviations and latitude (“vn”: cL = 0) 

sim_mi_vn_5/sim_mi_vn_15: positive relationship between location means and latitude (“mi”: 
bL = 10) and no relationship between location standard deviations and latitude (“vn”: cL = 0) 
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sim_md_vn_5/sim_md_vn_15: negative relationship between location means and latitude 
(“md”: bL = -10) and no relationship between location standard deviations and latitude (“vn”: cL 
= 0) 

sim_mn_vi_5/sim_mn_vi_15: no relationship between location means and latitude (“mn”: bL = 
0) and positive relationship between location standard deviations and latitude (“vi”: cL = 5) 

sim_mi_vi_5/sim_mi_vi_15: positive relationship between location means and latitude (“mi”: 
bL = 10) and positive relationship between location standard deviations and latitude (“vi”: cL = 
5) 

sim_md_vi_5/sim_md_vi_15: negative relationship between location means and latitude 
(“md”: bL = -10) and positive relationship between location standard deviations and latitude 
(“vi”: cL = 5) 

sim_mn_vd_5/sim_mn_vd_15: no relationship between location means and latitude (“mn”: bL 
= 0) and negative relationship between location standard deviations and latitude (“vd”: cL = -5) 

sim_mi_vd_5/sim_mi_vd_15: positive relationship between location means and latitude (“mi”: 
bL = 10) and negative relationship between location standard deviations and latitude (“vd”: cL = 
-5) 

sim_md_vd_5/sim_md_vd_15: negative relationship between location means and latitude 
(“md”: bL = -10) and negative relationship between location standard deviations and latitude 
(“vd”: cL = -5) 

For each simulated dataset we then fit a model with the following parameters: 

TD: test diameter of urchins in mm 

sL: standardised latitude 

P: Urchin location ID 

mu: mean test diameter of a location 

mu_a: global mean test diameter 

bL: slope of the relationship between standardised latitude and the location mean of test 
diameter 

sigma_a and z[P]: error term for the mean test diameter of a location using non-centered 
parameterisation. The z[P] allows the error to differ for each location 

sigma: standard deviation of test diameters of a location 

mu_c: global standard deviation of test diameter 

cL: slope of the relationship between standardised latitude and the location standard deviation 
of test diameter 
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signma_c and z2[P]: error term for the standard deviation of test diameters of a location using 
non-centered parameterisation. The z2[P] allows the error to differ for each location 

Data simulation and model function 

The function below was written using the ulam function from the rethinking package. 

data.sim_out <- function(pop, ind, lat, mu, sig){ 
 
  diam_m.v <- cbind(seq(mu[1], mu[2], length = pop), seq(sig[1], sig[2], leng
th = pop)) 
 
  dat <- list(sL = rep(seq(lat[1], lat[2], length = pop), each = ind), TD = c
(apply(diam_m.v, 1, function(x) rnorm(ind, x[1], (x[2])))), P = rep(seq(1, po
p), each = ind)) 
 
  out <- ulam( 
 
    alist( 
 
      TD ~ dnorm(mu , sigma), 
 
      mu <- mu_a + bL*sL + z[P]*sigma_a, 
 
      z[P] ~ dnorm( 0, 1), 
 
      sigma_a ~ dexp(2), 
 
      mu_a ~ dnorm(90, 10), 
 
      bL ~ dnorm( 0 , 5 ), 
 
      sigma <- mu_c + cL*sL + z2[P]*sigma_c, 
 
      cL ~ dnorm( 0 , 5 ), 
 
      mu_c ~ dnorm(15, 5), 
 
      z2[P] ~ dnorm( 0, 1), 
 
      sigma_c ~ dexp(2) 
 
    ), data= dat , chains=4, cores=1 , control=list(adapt_delta=0.99, max_tre
edepth = 15), log_lik = TRUE, iter=3000, constraints=list( mu_c="lower=0", mu
_a="lower=0")) 
 
  out 
 
} 
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Simulating data and generating model output for each of the 9 scenarios for both 5 and 15 
locations: 

sim_mn_vn_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(90,90), 
sig = c(15,15)) 
sim_mi_vn_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(80,100)
, sig = c(15,15)) 
sim_md_vn_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(100,80)
, sig = c(15,15)) 
sim_mn_vi_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(90,90), 
sig = c(10,20)) 
sim_mi_vi_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(80,100)
, sig = c(10,20)) 
sim_md_vi_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(100,80)
, sig = c(10,20)) 
sim_mn_vd_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(90,90), 
sig = c(20,10)) 
sim_mi_vd_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(80,100)
, sig = c(20,10)) 
sim_md_vd_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(100,80)
, sig = c(20,10)) 
 
sim_mn_vn_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(90,90
), sig = c(15,15)) 
sim_mi_vn_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(80,10
0), sig = c(15,15)) 
sim_md_vn_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(100,8
0), sig = c(15,15)) 
sim_mn_vi_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(90,90
), sig = c(10,20)) 
sim_mi_vi_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(80,10
0), sig = c(10,20)) 
sim_md_vi_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(100,8
0), sig = c(10,20)) 
sim_mn_vd_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(90,90
), sig = c(20,10)) 
sim_mi_vd_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(80,10
0), sig = c(20,10)) 
sim_md_vd_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(100,8
0), sig = c(20,10)) 
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Function to plot regression coefficients 

The following function based of the coeftab_plot function plots the regression coefficients (± CI) 
for the relationship between latitude and the location mean (bL) or location standard deviation 
(cL) in each scenario (rows) as well as the simulated bL an cL 

coeftab_plot_with_sim_estimates <- function (x, pars, sim.est, col.ci = "blac
k", by.model = FALSE, prob = 0.95, xlab = "Value", cex) { 
   
  xse <- x@se 
   
  x <- x@coefs 
   
  if (!missing(pars)) { 
     
    x <- x[pars, ] 
     
    xse <- xse[pars, ] 
     
    sim.est <- sim.est[pars, ] 
     
  } 
   
  if (by.model == FALSE) { 
     
    xse <- t(xse) 
     
    x <- t(x) 
     
    sim.est <- t(sim.est) 
     
  } 
   
  z <- qnorm(1 - (1 - prob)/2) 
   
  left <- x 
   
  right <- x 
   
  for (k in 1:nrow(x)) { 
     
    for (m in 1:ncol(x)) { 
       
      ci <- x[k, m] + c(-1, 1) * z * xse[k, m] 
       
      left[k, m] <- ci[1] 
       
      right[k, m] <- ci[2] 
       
    } 
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  } 
   
  llim <- min(left, na.rm = TRUE) 
   
  rlim <- max(right, na.rm = TRUE) 
   
  dotchart(x, xlab = xlab, xlim = c(llim, rlim), cex=cex) 
   
  for (k in 1:nrow(x)) { 
     
    for (m in 1:ncol(x)) { 
       
      if (!is.na(left[k, m])) { 
         
        kn <- nrow(x) 
         
        ytop <- ncol(x) * (kn + 2) - 1 
         
        ypos <- ytop - (m - 1) * (kn + 2) - (kn - k + 1) 
         
        lines(c(left[k, m], right[k, m]), c(ypos, ypos), lwd = 2, col = col.c
i) 
         
        points(sim.est[k,m], ypos, cex = cex, pch = 1, col = "red") 
         
      } 
       
    } 
     
  } 
   
  abline(v = 0, lty = 1, col = col.alpha("black", 0.15)) 
   
} 

Plotting the nine scenarios for both 5 and 15 locations 

md <- -10 
mn <- -0 
mi <- 10 
vd <- -5 
vn <- 0 
vi <- 5 
 
x_sim.est <- matrix(1:36,2,18) 
x_sim.est[1,]<-rep(c(mn,mn,mi,mi,md,md), times = 3) 
x_sim.est[2,]<-rep(c(vn,vi,vd), each = 6) 
rownames(x_sim.est) <- paste(c("bL","cL")) 
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coeftab_plot_with_sim_estimates(coeftab(sim_mn_vn_5, sim_mn_vn_15, sim_mi_vn_
5, sim_mi_vn_15, sim_md_vn_5, sim_md_vn_15, sim_mn_vi_5, sim_mn_vi_15, sim_mi
_vi_5, sim_mi_vi_15, sim_md_vi_5, sim_md_vi_15, sim_mn_vd_5, sim_mn_vd_15, si
m_mi_vd_5, sim_mi_vd_15, sim_md_vd_5, sim_md_vd_15), pars = c("bL", "cL"), si
m.est=x_sim.est, cex=0.5) 

 

 

 
Figure A1: Plot of the regression coefficients bL (regression coefficient between latitude and the mean 

of test diameters of locations) and cL (regression coefficient between latitude and the variance of test 

diameters of locations). These were plotted for each of the nine simulated scenarios for both 15 location 

and 5 location datasets. The red circles are the simulated value for each of the parameters in each 

simulated senario, the black circles are the model estimates and the lines are the credible intervals. 

Note: this is the same figure as Fig. 1 Chapter Two. 

In summary, Figure 1 shows there was good agreement between the simulation parameters 
and the estimated coefficients and that accuracy and precision of our estimated coefficients 
improves with greater samples sizes (i.e. comparing the accuracy of the 5 and 15 location 
datasets for the same scenario). 
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Testing different magnitudes of the regression parameters 

Next, we explored if our model would be sensitive to differences in magnitude of the regression 
parameters as well as differences in direction. Hence, we simulated six additional datasets 
under the following scenarios for both 5 (ending in _5) and 15 locations (ending in _15): 

Changing the magnitude of bL: 

sim_mi_low_vn_5/sim_mi_low_vn_15: low positive relationship between location means and 
increasing latitude (“mi_low”: bL = 5) and no relationship between location variances latitude 
(“vn”: cL = 0) 

sim_mi_med_vn_5/sim_mi_med_vn_15: medium positive relationship between location means 
and increasing latitude (“mi_med”: bL = 10) and no relationship between location variances 
latitude (“vn”: cL = 0) 

sim_mi_hig_vn_5/sim_mi_hig_vn_15: high positive relationship between location means and 
increasing latitude (“mi_hig”: bL = 20) and no relationship between location variances latitude 
(“vn”: cL = 0) 

Changing the magnitude of cL: 

sim_mn_vi_low_5/sim_mn_vi_low_15: no relationship between location means and latitude 
(“mn”: bL = 0) and low positive relationship between location standard deviations and latitude 
(“vi_low”: cL = 2) 

sim_mn_vi_med_5/sim_mn_vi_med_15: no relationship between location means and latitude 
(“mn”: bL = 0) and medium positive relationship between location standard deviations and 
latitude (“vi_med”: cL = 5) 

sim_mn_vi_hig_5/sim_mn_vi_hig_15: no relationship between location means and latitude 
(“mn”: bL = 0) and high positive relationship between location standard deviations and latitude 
(“vi_hig”: cL = 10) 
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Simulating the scenarios for changes in magnitudes of the regression parameters 

sim_mi_low_vn_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(85,
95), sig = c(15,15)) 
sim_mi_med_vn_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(80,
100), sig = c(15,15)) 
sim_mi_hig_vn_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(70,
110), sig = c(15,15)) 
 
sim_mn_vi_low_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(90,
90), sig = c(13,17)) 
sim_mn_vi_med_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(90,
90), sig = c(10,20)) 
sim_mn_vi_hig_5 <- data.sim_out(pop = 5, ind = 30, lat = c(-1, 1), mu = c(90,
90), sig = c(5,25)) 
 
sim_mi_low_vn_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(8
5,95), sig = c(15,15)) 
sim_mi_med_vn_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(8
0,100), sig = c(15,15)) 
sim_mi_hig_vn_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(7
0,110), sig = c(15,15)) 
 
sim_mn_vi_low_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(9
0,90), sig = c(13,17)) 
sim_mn_vi_med_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(9
0,90), sig = c(10,20)) 
sim_mn_vi_hig_15 <- data.sim_out(pop = 15, ind = 30, lat = c(-1, 1), mu = c(9
0,90), sig = c(5,25)) 

 

Plotting regression coefficients (± CI) for the relationship between latitude and the location 
mean (bL) or location standard deviation (cL) for scenarios with different magnitudes of the 
regression coefficient (rows) 

x_sim.est <- matrix(1:24,2,12) 
x_sim.est[1,]<-c(0,0,0,0,0,0,5,5,10,10,20,20) 
x_sim.est[2,]<-c(2,2,5,5,10,10,0,0,0,0,0,0) 
rownames(x_sim.est) <- paste(c("bL","cL")) 
colnames(x_sim.est) <- letters[1:12] 
 
coeftab_plot_with_sim_estimates(coeftab(sim_mn_vi_low_5, sim_mn_vi_low_15, si
m_mn_vi_med_5, sim_mn_vi_med_15, sim_mn_vi_hig_5, sim_mn_vi_hig_15, sim_mi_lo
w_vn_5, sim_mi_low_vn_15, sim_mi_med_vn_5, sim_mi_med_vn_15, sim_mi_hig_vn_5, 
sim_mi_hig_vn_15), pars = c("bL", "cL"), sim.est=x_sim.est, cex=0.5) 
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Figure A2: Plot of the regression coefficients bL (regression coefficient between latitude and the mean 

of test diameters of locations) and cL (regression coefficient between latitude and the variance of test 

diameters of locations). These were plotted for each of the 3 simulated scenarios for the change in the 

magnitude of bL and the change in the magnitude of cL for both 15 location and 5 location datasets. The 

red circles are the simulated values for each parameter in each simulated scenario, the black circles are 

the model estimates and the lines are the credible intervals. 

 

In summary, Figure 2 shows there was good agreement between the simulation parameters 
and the estimated coefficients for all models except for the estimate of bL in model 
sim_mi_hig_vn_15 suggesting that that for steeper slopes the model estimates tend to 
underestimate the magnitude of the relationship. We will perform a follow up sensitivity 
analysis to examine the generality of this result. Nevertheless, although the sim_mi_hig_vn_15 
credible interval of bL did not include the simulated bL it did have a greater magnitude of bL 
than sim_mi_med_vn_15 so the estimates showed an increase in magnitude. 
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Recovering location means and location standard deviations 

Next, examined if the estimates of the location means and location standard deviations were 
reliably recovered. 

Functions to extract the location means and location standard deviation from the model output: 

all_model_samples<- function(modelname){ 
  p<-extract.samples(modelname) 
  mu_out <- matrix(nrow= nrow(p$z), ncol = ncol(p$z)) 
  sigma_out <- matrix(nrow= nrow(p$z), ncol = ncol(p$z)) 
  for (i in 1:nrow(p$z)){ 
    mu_out[i,] <- p$mu_a[i] + p$bL[i]*unique(modelname@data$sL) +  p$z[i,]*as
.numeric(p$sigma_a[i]) 
    sigma_out[i,] <- p$mu_c[i] + p$cL[i]*unique(modelname@data$sL) +  p$z2[i,
]*as.numeric(p$sigma_c[i]) 
  } 
  list(mu_out,sigma_out) 
} 
 
means_TD<-function(modelname){ 
  mu<-apply(all_model_samples(modelname)[[1]],2,mean) 
  sd<-apply(all_model_samples(modelname)[[2]],2,mean) 
  list(mu,sd) 
} 
 
model_credible_intervals_means<-function(modelname){ 
  samples_mu<-all_model_samples(modelname)[[1]] 
  samples_sd<-all_model_samples(modelname)[[2]] 
  ci_out_mu<-matrix(nrow=2,ncol=length(unique(modelname@data$P))) 
  ci_out_sd<-matrix(nrow=2,ncol=length(unique(modelname@data$P))) 
  for (i in 1:length(unique(modelname@data$P))){ 
    ci_out_mu[1,i]<-PI(samples_mu[,i], prob=0.95)[1] 
   ci_out_mu[2,i]<-PI(samples_mu[,i], prob=0.95)[2] 
   ci_out_sd[1,i]<-PI(samples_sd[,i], prob=0.95)[1] 
   ci_out_sd[2,i]<-PI(samples_sd[,i], prob=0.95)[2] 
  } 
  list(ci_out_mu, ci_out_sd) 
} 

Plotting the estimated location means and location standard deviations for different 
directional relationships between the location means and latitude: 

Given that we had good agreement between the simulated parameters and the model 
regression parameters, we explored the accuracy of the model estimates of the location means 
and standard deviations. 

First, we plotted the estimated location means and location standard deviations for simulated 
datasets with 15 populations but different relationships between the latitude and location 
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means (positive, negative and none) and no relationship between latitude and locations 
standard deviations. The following models were plotted: 

sim_mn_vn_15: no relationship between location means and latitude (“mn”: bL = 0) and no 
relationship between location standard deviations and latitude (“vn”: cL = 0) 

sim_mi_vn_15: positive relationship between location means and latitude (“mi”: bL = 10) and 
no relationship between location standard deviations and latitude (“vn”: cL = 0) 

sim_md_vn_15: negative relationship between location means and latitude (“md”: bL = -10) 
and no relationship between location standard deviations and latitude (“vn”: cL = 0) 

Then, we plotted the estimated location means and locations standard deviations for simulated 
datasets with 15 populations but different relationships between the latitude and location 
standard deviations (postive, negative and none) and no relationship between latitude and 
locations means. 

sim_mn_vn_15: no relationship between location means and latitude (“mn”: bL = 0) and no 
relationship between location standard deviations and latitude (“vn”: cL = 0) 

sim_mn_vi_15: no relationship between location means and latitude (“mn”: bL = 0) and positive 
relationship between location standard deviations and latitude (“vi”: cL = 5) 

sim_mn_vd_15: no relationship between location means and latitude (“mn”: bL = 0) and 
negative relationship between location standard deviations and latitude (“vd”: cL = -5) 

plot_location_means_and_sd<-function(modelname, start, end, colour, m_sd){poi
nts(unique(modelname@data$sL), means_TD(modelname)[[m_sd]], col=colour, pch=1
6) 
arrows(unique(modelname@data$sL),model_credible_intervals_means(modelname)[[m
_sd]][1,],y1=model_credible_intervals_means(modelname)[[m_sd]][2,],length = 0
, col=colour) 
points(seq(-1,1,length=length(unique(modelname@data$P))),seq(start, end,lengt
h=length(unique(modelname@data$P))), col=colour, pch=1) 
} 
 
#m_sd=1 for location means and m_sd=2 for location standard deviations 

par(mfrow = c(2, 2), mar = c(4,4,2,2)) 
 
plot(NULL, xlim=c(-1,1), ylim=c(75,105), xlab="latitude", ylab="test diameter
", cex.axis=1.1, cex.lab=1.1, main="a", cex.main=1.3) 
plot_location_means_and_sd(modelname=sim_mn_vn_15, start=90, end=90, colour="
blue", m_sd=1) 
plot_location_means_and_sd(modelname=sim_mi_vn_15, start=80, end=100, colour=
"magenta", m_sd=1) 
plot_location_means_and_sd(modelname=sim_md_vn_15, start=100, end=80, colour=
"green", m_sd=1) 
 
plot(NULL, xlim=c(-1,1), ylim=c(5,25), xlab="latitude", ylab="standard deviat
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ion", cex.axis=1.1, cex.lab=1.1, main="b", cex.main=1.3) 
plot_location_means_and_sd(modelname=sim_mn_vn_15, start=15, end=15, colour="
blue", m_sd=2) 
plot_location_means_and_sd(modelname=sim_mi_vn_15, start=15, end=15, colour="
magenta", m_sd=2) 
plot_location_means_and_sd(modelname=sim_md_vn_15, start=15, end=15, colour="
green", m_sd=2) 
 
plot(NULL, xlim=c(-1,1), ylim=c(75,105), xlab="latitude", ylab="test diameter
", cex.axis=1.1, cex.lab=1.1, main="c", cex.main=1.3) 
plot_location_means_and_sd(modelname=sim_mn_vn_15, start=90, end=90, colour="
blue", m_sd=1) 
plot_location_means_and_sd(modelname=sim_mn_vi_15, start=90, end=90, colour="
magenta", m_sd=1) 
plot_location_means_and_sd(modelname=sim_mn_vd_15, start=90, end=90, colour="
green", m_sd=1) 
 
plot(NULL, xlim=c(-1,1), ylim=c(5,25), xlab="latitude", ylab="standard deviat
ion", cex.axis=1.1, cex.lab=1.1, main="d", cex.main=1.3) 
plot_location_means_and_sd(modelname=sim_mn_vn_15, start=15, end=15, colour="
blue", m_sd=2) 
plot_location_means_and_sd(modelname=sim_mn_vi_15, start=10, end=20, colour="
magenta", m_sd=2) 
plot_location_means_and_sd(modelname=sim_mn_vd_15, start=20, end=10, colour="
green", m_sd=2) 
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Figure A3: Plot of estimated and simulated location means (Figure 3a,c) and location standard 

deviations (Figure 3b,d) for the following models: (3a,b) sim_mn_vn_15: orange (no linear relationship 

between latitude and locations means and location standard deviations), sim_mi_vn_15: green (a 

positive relationship between locations means and latitude and no relationship between locations 

standard deviations and latitude), and sim_md_vn_15: blue (a negative relationship between locations 

means and latitude and no relationship between locations standard deviations and latitude); (3c,d) 

sim_mn_vn_15: orange (no linear relationship between latitude and locations means and location 

standard deviations), sim_mn_vi_15: green (no relationship between locations means and latitude and a 

positive relationship between locations standard deviations and latitude), sim_mn_vd_15: blue (no 

relationship between locations means and latitude and a negative relationship between locations 

standard deviations and latitude). Closed symbols are the estimated location mean and standard 

deviations from the model and open symbols are the simulated location mean and standard deviations. 

The error bars are the 0.95 Highest Posterior Density Intervals (HPDI). Note, that in panels b and c all 

models had the same simulated value i.e. the simulated value is equal to zero. 
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The simulated locations means were within the 95% HPDI for the estimated location means for 
all 5 models. Therefore the model was predicting them reasonably well for all 5 models. For 
both models sim_mi_vn_15 and sim_md_vn_15 the estimates of the location means were all 
slightly higher than was simulated (Fig. 3a). 

The simulated locations standard deviations were within the 95% HPDI for the estimated 
location standard deviations for all 5 models. Although within the 95% HPDI, there was a slight 
negative trend in location standard deviations for models sim_mi_vn_15 and sim_mn_vn_15 
even when there was no simulated slope for location standard deviations. However, the 
simulated location standard deviations were still within the 95% HPDI (Fig. 3b). Similarly, 
although within the 95% HPDI, for model sim_md_vn_15 the locations standard deviations 
were all slightly higher than was simulated (Fig. 3b). 

Testing if non-linear relationships between latitude and the location summary statistics 
influence parameter estimates 

Lastly, we examined if non-linear patterns in the location means influenced our estimates for 
the linear relationships between latitude and the location means, and for no relationship 
between latitude and location standard deviations. These simulations used a convex 
relationship between latitude and either location means or standard deviations. 

sim_mc_vn_5/sim_mc_vn_15: this model has a convex relationship between location means 
and latitude (“mc”: bL = 0) and no relationship between location standard deviations and 
latitude (“vn”: cL = 0) 

sim_mn_vc_5/sim_mn_vc_15: this model has no relationship between location means and 
latitude (“mn”: bL = 0) and a convex relationship between location standard deviations and 
latitude (“vc”: cL = 0) 

Function to create non-linear relationships between latitude and location means or standard 
deviations using the ulam bayesian model from the rethinking package. 

data.sim_out.convex <- function(pop, ind, lat, mu, sig){ 
 
  diam_m.v <- cbind(mu, sig) 
 
  dat <- list(sL = rep(seq(lat[1], lat[2], length = pop), each = ind), TD = c
(apply(diam_m.v, 1, function(x) rnorm(ind, x[1], (x[2])))), P = rep(seq(1, po
p), each = ind)) 
 
  out <- ulam( 
 
    alist( 
 
      TD ~ dnorm(mu , sigma), 
 
      mu <- mu_a + bL*sL + z[P]*sigma_a, 
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      z[P] ~ dnorm( 0, 1), 
 
      sigma_a ~ dexp(2), 
 
      mu_a ~ dnorm(90, 10), 
 
      bL ~ dnorm( 0 , 5 ), 
 
      sigma <- mu_c + cL*sL + z2[P]*sigma_c, 
 
      cL ~ dnorm( 0 , 5 ), 
 
      mu_c ~ dnorm(15, 5), 
 
      z2[P] ~ dnorm( 0, 1), 
 
      sigma_c ~ dexp(2) 
 
    ), data= dat , chains=4, cores=1 , control=list(adapt_delta=0.99, max_tre
edepth = 15), log_lik = TRUE, iter=3000, constraints=list( mu_c="lower=0", mu
_a="lower=0")) 
 
  out 
 
} 

Simulating data and generating model output for the 2 convex scenarios for both 5 and 15 
locations: 

sim_mc_vn_5<-data.sim_out.convex(pop = 5, ind = 30, lat = c(-1, 1), mu = c(10
0,90,80,90,100), sig = c(rep(15,5))) 
sim_mn_vc_5<-data.sim_out.convex(pop = 5, ind = 30, lat = c(-1, 1), mu = c(re
p(90,5)), sig = c(20,15,10,15,20)) 
 
sim_mn_vc_15<-data.sim_out.convex(pop = 15, ind = 30, lat = c(-1, 1), mu = c(
rep(90,15)), sig = c(20,19,18,17,16,15,14,13,14,15,16,17,18,19,20)) 
sim_mc_vn_15<-data.sim_out.convex(pop = 15, ind = 30, lat = c(-1, 1), mu = c(
101,98,95,92,89,86,83,80,83,86,89,92,95,98,101), sig = c(rep(15,15))) 

Plotting regression coefficients (± CI) for the relationship between latitude and the location 
mean (bL) or location standard deviation (cL) for senario with convex relationship between 
latitude and the location means 

x_sim.est <- matrix(1:8,2,4) 
x_sim.est[1,]<-c(0,0,0,0) 
x_sim.est[2,]<-c(0,0,0,0) 
rownames(x_sim.est) <- paste(c("bL","cL")) 
 
coeftab_plot_with_sim_estimates(coeftab(sim_mc_vn_5, sim_mc_vn_15, sim_mn_vc_
5, sim_mn_vc_15), pars = c("bL", "cL"), sim.est=x_sim.est, cex=1) 
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Figure A4: Plot of the regression coefficients bL (regression coefficient between latitude and the mean 

of test diameters of locations) and cL (regression coefficient between latitude and the variance of test 

diameters of locations). These were plotted for models: sim_mc_vn_5/sim_mc_vn_15 (a convex 

relationship between the location means and latitude and no relationship between latitude and the 

location standard deviations) and sim_mn_vc_5/sim_mn_vc_15 (no relationship between the location 

means and latitude and a convex relationship between latitude and the location standard deviations). 

The red circles are simulated values for each of the parameters in each of the simulated scenarios, the 

black circles are the model estimates and the lines are the 0.95 credible intervals. 

In summary, Figure 4 shows there was good agreement between the simulation parameters 
and the estimated coefficients. The convex relationship gave an estimate of 0 for bL in models 
sim_mc_vn_5 and sim_mc_vn_15 and an estimate of 0 for cL in models sim_mn_vc_5 and 
sim_mn_vc_15 as was expected. 
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Plotting the estimated location means and location standard deviations for a convex 
relationship between the location means and latitude but no relationship between latitude and 
the location standard deviations 

plot_location_means_and_sd_2<-function(modelname, seq, colour, m_sd){points(u
nique(modelname@data$sL), means_TD(modelname)[[m_sd]], col=colour, pch=16) 
arrows(unique(modelname@data$sL),model_credible_intervals_means(modelname)[[m
_sd]][1,],y1=model_credible_intervals_means(modelname)[[m_sd]][2,],length = 0
, col=colour) 
points(seq(-1,1,length=length(unique(modelname@data$P))),seq, col=colour, pch
=1) 
} 
 
#m_sd=1 for location means and m_sd=2 for location standard deviations 
 
convex.means_5<-c(100,90,80,90,100) 
convex.means_15<-c(101,98,95,92,89,86,83,80,83,86,89,92,95,98,101) 
convex.sd_5<-c(20,15,10,15,20) 
convex.sd_15<-c(20,19,18,17,16,15,14,13,14,15,16,17,18,19,20) 

par(mfrow = c(2, 2), mar = c(4,4,2,2)) 
 
plot(NULL, xlim=c(-1,1), ylim=c(75,105), xlab="latitude", ylab="test diameter
", cex.axis=1.1, cex.lab=1.1, main="a", cex.main=1.3) 
plot_location_means_and_sd_2(modelname=sim_mc_vn_5, seq=convex.means_5, colou
r="purple", m_sd=1) 
plot_location_means_and_sd(modelname=sim_mn_vc_5, start=90, end=90, colour="#
e34234", m_sd=1) 
 
plot(NULL, xlim=c(-1,1), ylim=c(5,25), xlab="latitude", ylab="standard deviat
ion", cex.axis=1.1, cex.lab=1.1, main="b", cex.main=1.3) 
plot_location_means_and_sd(modelname=sim_mc_vn_5, start=15, end=15, colour="p
urple", m_sd=2) 
plot_location_means_and_sd_2(modelname=sim_mn_vc_5, seq=convex.sd_5, colour="
#e34234", m_sd=2) 
 
plot(NULL, xlim=c(-1,1), ylim=c(75,105), xlab="latitude", ylab="test diameter
", cex.axis=1.1, cex.lab=1.1, main="a", cex.main=1.3) 
plot_location_means_and_sd_2(modelname=sim_mc_vn_15, seq=convex.means_15, col
our="purple", m_sd=1) 
plot_location_means_and_sd(modelname=sim_mn_vc_15, start=90, end=90, colour="
#e34234", m_sd=1) 
 
plot(NULL, xlim=c(-1,1), ylim=c(5,25), xlab="latitude", ylab="standard deviat
ion", cex.axis=1.1, cex.lab=1.1, main="b", cex.main=1.3) 
plot_location_means_and_sd(modelname=sim_mc_vn_15, start=15, end=15, colour="
purple", m_sd=2) 
plot_location_means_and_sd_2(modelname=sim_mn_vc_15, seq=convex.sd_15, colour
="#e34234", m_sd=2) 
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Figure A5: Plotting the estimated and simulated location means (a,c) and location standard deviations 

(b,d) for models: sim_mc_vn_5 (organge; a,b)/sim_mc_vn_15 (orange; c,d) (convex relationship 

between the location means and latitude and no relationship between latitude and the location 

standard deviations) and sim_mn_vc_5 (blue; a,b)/sim_mn_vc_15 (blue; c,d) (no relationship between 

the location means and latitude and a convex relationship between latitude and the location standard 

deviations). Closed symbols are the estimated location mean and standard deviations from the model 

and open symbols are the simulated location mean and standard deviations. The error bars are the 0.95 

HPDI. 
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For both the 15 location and 5 location simulations, the convex relationship between the 
location means and latitude was recovered (Fig. 5a,c). However, the extent of the convex 
relationship was less extreme for the estimated location means than the simulated location 
means. For model sim_mc_vn_15, the lowest simulated location mean at latitude 0 was below 
the 0.95 HPDI (Fig. 5c). The rest of the location means had a simulated location mean within the 
estimated 0.95 HPDI. 

For both the 15 location and 5 location simulations, the convex relationship between the 
location standard deviations and latitude was not recovered well (Fig. 5b,d). For model 
sim_mn_vc_5, the simulated location standard deviation at latitude -1 was above the 0.95 HPDI 
and the simulated location standard deviation at latitude 0 was below the 0.95 HPDI. Therefore 
the convex relationship was not recovered and location standard deviation estimates were not 
accurate. For model sim_mc_vn_5, the slope for the location standard deviations was negative 
when there was no simulated slope but the simulated location standard deviations were within 
the estimated HDPI errors. Model sim_mc_vn_5 gave a positive slope for the location standard 
deviations when there was no simulated slope but the simulated location standard deviations 
were within the estimated HDPI errors. For model sim_mn_vc_15, the convex relationship was 
partially recovered. Although the points did not follow the simulated trend, all the location 
standard deviations were within the HDPI error except the location at latitude 1 for which the 
simulated location standard deviation was above the estimated HDPI. 
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Supplementary tables: Outputs from models 

These tables show the estimates for each of the parameters in the model: bL, cL, sigma_a, 
sigma_c, mu_a, mu_c, and z[1] to z[5] (for 5 populations) or z[1] to z[15] (for 15 populations). 

Table A2: Nine different scenarios. 

The estimates for the following 9 scenarios are shown for both 5 and 15 populations: 

sim_mn_vn_5/sim_mn_vn_15: no relationship between location means and latitude (“mn”: bL = 0) and 

no relationship between location standard deviations and latitude (“vn”: cL = 0) 

sim_mi_vn_5/sim_mi_vn_15: positive relationship between location means and latitude (“mi”: bL = 10) 

and no relationship between location standard deviations and latitude (“vn”: cL = 0) 

sim_md_vn_5/sim_md_vn_15: negative relationship between location means and latitude (“md”: bL = -

10) and no relationship between location standard deviations and latitude (“vn”: cL = 0) 

sim_mn_vi_5/sim_mn_vi_15: no relationship between location means and latitude (“mn”: bL = 0) and 

positive relationship between location standard deviations and latitude (“vi”: cL = 5) 

sim_mi_vi_5/sim_mi_vi_15: positive relationship between location means and latitude (“mi”: bL = 10) 

and positive relationship between location standard deviations and latitude (“vi”: cL = 5) 

sim_md_vi_5/sim_md_vi_15: negative relationship between location means and latitude (“md”: bL = -

10) and positive relationship between location standard deviations and latitude (“vi”: cL = 5) 

sim_mn_vd_5/sim_mn_vd_15: no relationship between location means and latitude (“mn”: bL = 0) and 

negative relationship between location standard deviations and latitude (“vd”: cL = -5) 

sim_mi_vd_5/sim_mi_vd_15: positive relationship between location means and latitude (“mi”: bL = 10) 

and negative relationship between location standard deviations and latitude (“vd”: cL = -5) 

sim_md_vd_5/sim_md_vd_15: negative relationship between location means and latitude (“md”: bL = -

10) and negative relationship between location standard deviations and latitude (“vd”: cL = -5) 
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coeftab(sim_mn_vn_5, sim_mn_vn_15, sim_mi_vn_5, sim_mi_vn_15, sim_md_vn_5, sim_md_vn_15, sim_mn_vi_5, sim_mn_vi_15, sim_mi_vi_5, sim_mi_vi_15, sim_
md_vi_5, sim_md_vi_15, sim_mn_vd_5, sim_mn_vd_15, sim_mi_vd_5, sim_mi_vd_15, sim_md_vd_5, sim_md_vd_15) 

##         sim_mn_vn_5 sim_mn_vn_15 sim_mi_vn_5 sim_mi_vn_15 sim_md_vn_5 sim_md_vn_15 sim_mn_vi_5 sim_mn_vi_15 sim_mi_vi_5 sim_mi_vi_15 
## z[1]       0.01        0.08        -0.27        0.10         0.03       -0.05        -0.02       -0.45        -0.25        0.13      
## z[2]       0.01       -0.12         0.10        0.13         0.03        0.13         0.04        0.37         0.18        0.00      
## z[3]      -0.08       -0.11         0.30       -0.19         0.00       -0.08        -0.05       -0.39        -0.10       -0.05      
## z[4]       0.05       -0.01        -0.13        0.07         0.03        0.24         0.08        0.20         0.31        0.25      
## z[5]      -0.01        0.10        -0.01       -0.04        -0.11        0.19         0.00        0.39        -0.13       -0.53      
## sigma_a    0.45        0.42         0.57        0.46         0.45        0.62         0.43        0.67         0.58        0.78      
## mu_a      89.29       89.88        89.82       91.46        91.72       91.02        90.24       90.12        89.29       89.54      
## bL        -0.80       -0.93         7.21       10.08        -8.81      -10.34         1.11        0.80         8.60       10.53      
## cL        -1.23       -0.61        -1.07       -1.63        -1.45       -0.17         3.54        5.37         5.17        3.53      
## mu_c      16.08       15.26        16.26       15.34        15.70       15.65        13.88       15.10        16.00       14.54      
## z2[1]     -0.12        0.21         0.01       -0.20        -0.12       -0.19         0.07       -0.13         0.08       -0.12      
## z2[2]      0.05       -0.10        -0.11        0.01         0.25       -0.07        -0.33        0.07        -0.16        0.04      
## z2[3]      0.12        0.02         0.16        0.05        -0.19        0.06         0.05        0.07        -0.07        0.10      
## z2[4]      0.25       -0.22         0.11       -0.13         0.06       -0.08         0.28        0.05         0.11       -0.03      
## z2[5]     -0.25        0.08        -0.14       -0.09        -0.03       -0.03        -0.12       -0.14         0.04       -0.06      
## sigma_c    0.50        0.44         0.45        0.49         0.47        0.42         0.49        0.35         0.44        0.33      
## z[6]         NA        0.25           NA        0.03           NA       -0.04           NA        0.16           NA        0.26      
## z[7]         NA       -0.02           NA       -0.19           NA        0.12           NA       -0.21           NA        0.17      
## z[8]         NA        0.05           NA       -0.06           NA       -0.37           NA       -0.01           NA       -0.56      
## z[9]         NA       -0.05           NA        0.02           NA       -0.39           NA        0.14           NA       -0.09      
## z[10]        NA       -0.14           NA       -0.12           NA        0.12           NA       -0.41           NA       -0.35      
## z[11]        NA       -0.06           NA       -0.04           NA        0.43           NA        0.09           NA        0.08      
## z[12]        NA       -0.09           NA       -0.08           NA        0.04           NA        0.24           NA        0.49      
## z[13]        NA       -0.04           NA       -0.01           NA       -0.24           NA       -0.06           NA       -0.22      
## z[14]        NA        0.23           NA       -0.05           NA       -0.12           NA       -0.12           NA        0.31      
## z[15]        NA       -0.05           NA        0.39           NA        0.12           NA        0.00           NA        0.12      
## z2[6]        NA        0.21           NA        0.19           NA        0.31           NA        0.01           NA        0.02      
## z2[7]        NA       -0.09           NA       -0.13           NA        0.17           NA       -0.03           NA        0.08      
## z2[8]        NA       -0.10           NA        0.50           NA        0.04           NA        0.20           NA        0.01      
## z2[9]        NA       -0.24           NA        0.02           NA        0.05           NA       -0.11           NA       -0.09      
## z2[10]       NA        0.12           NA       -0.15           NA       -0.03           NA       -0.20           NA       -0.22      
## z2[11]       NA       -0.16           NA        0.45           NA       -0.04           NA        0.14           NA        0.13      
## z2[12]       NA        0.03           NA       -0.17           NA        0.16           NA        0.17           NA        0.19      
## z2[13]       NA        0.37           NA       -0.15           NA       -0.34           NA       -0.02           NA       -0.02      
## z2[14]       NA        0.19           NA       -0.28           NA       -0.15           NA        0.08           NA        0.09      
## z2[15]       NA       -0.28           NA        0.03           NA        0.17           NA       -0.13           NA       -0.12      
## nobs        150         450          150         450          150         450          150         450          150         450      
##         sim_md_vi_5 sim_md_vi_15 sim_mn_vd_5 sim_mn_vd_15 sim_mi_vd_5 sim_mi_vd_15 sim_md_vd_5 sim_md_vd_15 
## z[1]       0.10        0.04        -0.04        0.22        -0.14       -0.09         0.01        0.35      
## z[2]      -0.03       -0.25         0.10       -0.29         0.01       -0.09        -0.05       -0.21      
## z[3]       0.00        0.11        -0.01       -0.14         0.04        0.14         0.23        0.03      
## z[4]       0.09        0.25        -0.06        0.00         0.22       -0.06        -0.17        0.40      
## z[5]      -0.16       -0.04         0.04       -0.03        -0.09       -0.12        -0.08        0.09      
## sigma_a    0.47        0.41         0.43        0.47         0.49        0.39         0.49        0.97      
## mu_a      91.61       89.89        90.77       89.53        90.72       90.08        89.42       90.16      
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## bL       -10.89       -9.05         1.00       -0.91         9.67        9.61        -6.85       -9.05      
## cL         6.44        6.01        -5.43       -3.99        -4.48       -5.18        -2.36       -5.16      
## mu_c      15.82       14.55        13.63       14.72        14.87       15.10        14.12       15.23      
## z2[1]     -0.02       -0.08         0.15        0.00         0.05       -0.12        -0.15       -0.08      
## z2[2]     -0.07        0.12        -0.30       -0.10        -0.26        0.10         0.16        0.14      
## z2[3]      0.08        0.07         0.23        0.08         0.42        0.32         0.10       -0.50      
## z2[4]      0.00        0.08         0.02       -0.11        -0.03       -0.05         0.11       -0.12      
## z2[5]      0.02       -0.21        -0.10        0.05        -0.18        0.03        -0.17        0.32      
## sigma_c    0.41        0.33         0.50        0.32         0.54        0.53         0.45        0.67      
## z[6]         NA        0.25           NA        0.26           NA        0.05           NA       -0.34      
## z[7]         NA       -0.12           NA        0.23           NA        0.11           NA       -0.06      
## z[8]         NA       -0.03           NA       -0.06           NA       -0.05           NA        0.02      
## z[9]         NA       -0.04           NA       -0.23           NA       -0.05           NA       -0.14      
## z[10]        NA       -0.06           NA        0.16           NA        0.10           NA        0.10      
## z[11]        NA       -0.06           NA       -0.09           NA        0.04           NA        0.03      
## z[12]        NA        0.13           NA       -0.01           NA        0.03           NA       -0.67      
## z[13]        NA       -0.15           NA        0.07           NA        0.15           NA        0.67      
## z[14]        NA       -0.05           NA       -0.07           NA       -0.04           NA       -0.71      
## z[15]        NA        0.04           NA       -0.01           NA       -0.11           NA        0.47      
## z2[6]        NA       -0.09           NA        0.12           NA       -0.05           NA        0.54      
## z2[7]        NA        0.01           NA       -0.08           NA        0.34           NA        0.26      
## z2[8]        NA        0.09           NA        0.03           NA       -0.42           NA       -0.42      
## z2[9]        NA        0.01           NA       -0.06           NA       -0.27           NA        0.08      
## z2[10]       NA       -0.05           NA        0.07           NA       -0.27           NA        0.14      
## z2[11]       NA       -0.04           NA        0.21           NA        0.33           NA       -0.12      
## z2[12]       NA        0.08           NA        0.02           NA       -0.40           NA        0.21      
## z2[13]       NA       -0.23           NA        0.05           NA        0.24           NA       -0.56      
## z2[14]       NA        0.15           NA       -0.07           NA       -0.03           NA       -0.01      
## z2[15]       NA        0.12           NA       -0.18           NA        0.21           NA        0.11      
## nobs        150         450          150         450          150         450          150         450 
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Table A3: Testing different magnitudes of the regression parameters. 

The estimates for the following 6 scenarios are shown for both 5 and 15 populations: 

change in bL magnitude: 

sim_mi_low_vn_5/sim_mi_low_vn_15: low positive relationship between location means and increasing 
latitude (“mi_low”: bL = 5) and no relationship between location variances latitude (“vn”: cL = 0) 

sim_mi_med_vn_5/sim_mi_med_vn_15: medium positive relationship between location means and 
increasing latitude (“mi_med”: bL = 10) and no relationship between location variances latitude (“vn”: cL 
= 0) 

sim_mi_hig_vn_5/sim_mi_hig_vn_15: high positive relationship between location means and increasing 
latitude (“mi_hig”: bL = 20) and no relationship between location variances latitude (“vn”: cL = 0) 

change in cL magnitude: 

sim_mn_vi_low_5/sim_mn_vi_low_15: no relationship between location means and latitude (“mn”: bL = 
0) and low positive relationship between location standard deviations and latitude (“vi_low”: cL = 2) 

sim_mn_vi_med_5/sim_mn_vi_med_15: no relationship between location means and latitude (“mn”: bL 
= 0) and medium positive relationship between location standard deviations and latitude (“vi_med”: cL = 
5) 

sim_mn_vi_hig_5/sim_mn_vi_hig_15: no relationship between location means and latitude (“mn”: bL = 
0) and high positive relationship between location standard deviations and latitude (“vi_hig”: cL = 10) 
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coeftab(sim_mn_vi_low_5, sim_mn_vi_low_15, sim_mn_vi_med_5, sim_mn_vi_med_15, sim_mn_vi_hig_5, sim_mn_vi_hig_15, sim_mi_low_vn_5, sim_mi_low_vn_15, 
sim_mi_med_vn_5, sim_mi_med_vn_15, sim_mi_hig_vn_5, sim_mi_hig_vn_15) 

##         sim_mn_vi_low_5 sim_mn_vi_low_15 sim_mn_vi_med_5 sim_mn_vi_med_15 sim_mn_vi_hig_5 sim_mn_vi_hig_15 sim_mi_low_vn_5 
## z[1]      -0.01           -0.15            -0.02            0.07             0.05            0.18            -0.05         
## z[2]       0.06            0.09            -0.01            0.00            -0.13            0.01             0.00         
## z[3]      -0.17           -0.03             0.05           -0.20             0.06           -0.14             0.05         
## z[4]       0.17           -0.08            -0.06           -0.63             0.11           -0.21            -0.11         
## z[5]      -0.03            0.09             0.03            0.36            -0.08           -0.02             0.12         
## sigma_a    0.48            0.67             0.44            0.79             0.44            0.39             0.45         
## mu_a      91.51           90.17            92.13           89.45            88.52           89.34            90.25         
## bL         1.46            0.28            -0.44            0.21             0.31            0.66             6.09         
## cL         2.94            1.60             6.13            4.44             8.83            9.62            -1.49         
## mu_c      14.81           14.77            15.79           14.84            13.82           15.37            15.25         
## z2[1]      0.00            0.19            -0.03            0.20            -0.27            0.04             0.02         
## z2[2]      0.05           -0.17             0.13           -0.29             0.33           -0.14             0.10         
## z2[3]     -0.28            0.02            -0.11            0.04            -0.21           -0.12            -0.07         
## z2[4]      0.27            0.01            -0.15           -0.24             0.09            0.05            -0.09         
## z2[5]     -0.07           -0.13             0.18            0.02             0.02            0.06             0.08         
## sigma_c    0.49            0.33             0.46            0.42             0.49            0.31             0.43         
## z[6]         NA           -0.40               NA            0.16               NA            0.11               NA         
## z[7]         NA            0.08               NA            0.43               NA            0.19               NA         
## z[8]         NA            0.29               NA            0.20               NA           -0.15               NA         
## z[9]         NA            0.10               NA            0.11               NA            0.21               NA         
## z[10]        NA           -0.36               NA           -0.12               NA           -0.09               NA         
## z[11]        NA            0.54               NA            0.10               NA           -0.03               NA         
## z[12]        NA            0.26               NA           -0.33               NA           -0.05               NA         
## z[13]        NA           -0.13               NA           -0.44               NA           -0.09               NA         
## z[14]        NA           -0.14               NA           -0.12               NA            0.10               NA         
## z[15]        NA           -0.25               NA            0.43               NA            0.01               NA         
## z2[6]        NA            0.05               NA            0.28               NA            0.06               NA         
## z2[7]        NA           -0.08               NA           -0.09               NA            0.21               NA         
## z2[8]        NA            0.06               NA           -0.24               NA           -0.06               NA         
## z2[9]        NA           -0.09               NA           -0.04               NA            0.03               NA         
## z2[10]       NA            0.03               NA            0.34               NA           -0.10               NA         
## z2[11]       NA            0.08               NA            0.11               NA           -0.15               NA         
## z2[12]       NA           -0.15               NA            0.02               NA           -0.04               NA         
## z2[13]       NA            0.10               NA            0.01               NA            0.07               NA         
## z2[14]       NA           -0.02               NA           -0.06               NA           -0.09               NA         
## z2[15]       NA            0.07               NA           -0.11               NA            0.20               NA         
## nobs        150             450              150             450              150             450              150         
##         sim_mi_low_vn_15 sim_mi_med_vn_5 sim_mi_med_vn_15 sim_mi_hig_vn_5 sim_mi_hig_vn_15 
## z[1]       0.06            -0.16           -0.08            -0.56            0.12          
## z[2]       0.09             0.07           -0.10             0.18            0.02          
## z[3]       0.02            -0.06           -0.11             0.41           -0.16          
## z[4]      -0.02             0.13            0.13            -0.24           -0.17          
## z[5]      -0.24             0.00           -0.08             0.21            0.01          
## sigma_a    0.42             0.48            0.45             0.82            0.40          
## mu_a      90.02            90.59           90.03            88.96           90.49          
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## bL         3.21             9.54            8.62            17.37           17.09          
## cL         1.50            -0.33            0.33             0.49           -0.85          
## mu_c      15.14            15.90           14.96            15.64           14.10          
## z2[1]     -0.81             0.41           -0.07             0.21           -0.04          
## z2[2]      0.39            -0.43            0.02            -0.21           -0.06          
## z2[3]      0.51             0.03            0.11            -0.08            0.25          
## z2[4]      0.12            -0.38            0.08             0.00           -0.03          
## z2[5]      0.13             0.38           -0.10             0.09           -0.09          
## sigma_c    0.80             0.76            0.38             0.47            0.33          
## z[6]      -0.14               NA            0.00               NA           -0.12          
## z[7]       0.08               NA            0.15               NA           -0.03          
## z[8]      -0.17               NA            0.24               NA            0.13          
## z[9]       0.23               NA           -0.01               NA            0.15          
## z[10]      0.11               NA           -0.03               NA           -0.08          
## z[11]     -0.05               NA           -0.18               NA           -0.14          
## z[12]      0.10               NA            0.04               NA            0.07          
## z[13]      0.02               NA            0.17               NA           -0.02          
## z[14]      0.02               NA            0.17               NA            0.08          
## z[15]     -0.08               NA           -0.22               NA            0.16          
## z2[6]     -0.11               NA            0.14               NA            0.08          
## z2[7]     -0.17               NA           -0.04               NA           -0.11          
## z2[8]      0.21               NA           -0.28               NA           -0.06          
## z2[9]     -0.47               NA           -0.06               NA            0.08          
## z2[10]    -0.25               NA           -0.06               NA           -0.09          
## z2[11]    -0.13               NA            0.12               NA           -0.11          
## z2[12]     0.39               NA           -0.08               NA           -0.01          
## z2[13]     0.37               NA            0.29               NA            0.27          
## z2[14]     0.15               NA            0.14               NA           -0.07          
## z2[15]    -0.39               NA           -0.21               NA           -0.04          
## nobs        450              150             450              150             450 
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Table A4: Testing if non-linear relationships between latitude and the location summary statistics 
influence parameter estimates. 

The estimates for the following model is shown for 5 populations. 

sim_mc_vn_5: convex relationship between location means and latitude (“mc”: bL = 0) and no 
relationship between location standard deviations and latitude (“vn”: cL = 0) 

coeftab(sim_mc_vn_5) 

##         sim_mc_vn_5 
## z[1]       1.44     
## z[2]      -0.42     
## z[3]         -2     
## z[4]      -0.92     
## z[5]       1.96     
## sigma_a    4.74     
## mu_a      91.45     
## bL         1.53     
## cL        -1.51     
## mu_c      15.06     
## z2[1]     -0.11     
## z2[2]       0.2     
## z2[3]      0.01     
## z2[4]     -0.05     
## z2[5]     -0.03     
## sigma_c    0.44     
## nobs        150 
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Chapter Three: Long-distance dispersal and changing meta-
population dynamics shape neutral and adaptive genomic variation 
across the New Zealand range of the Long-spined sea urchin 
(Centrostephanus rodgersii) 
 
Abstract 
 
Climate-driven changes in species range and abundance can influence the genetic 
connectivity between populations and the genetic composition of populations. The Long-
spined sea urchin (Centrostephanus rodgersii) has extended in range and increased in 
abundance in Tasmania impacting both the local fisheries and ecosystem. Centrostephanus 
rodgersii is also found in New Zealand, however, we know little about the its population 
history in its New Zealand range including Rangitāhua (the Kermadec Islands). We used 
population genomics to study the population structure and connectivity of C. rodgersii 
across its New Zealand range. We found that Rangitāhua populations and north-east New 
Zealand populations are genetically differentiated, but there is some ongoing migration 
from Rangitāhua to north-east New Zealand. Centrostephanus rodgersii populations in 
north-east New Zealand did not form distinct genetic clusters indicating one meta-
population. However, modularity analysis of the population graphs, based on genetic 
covariances, showed some groups of populations were more similar to each other and 
presumably share a common colonisation history or higher geneflow. To reveal whether 
there has been a change in the genetic composition and connectivity of populations in 
north-east New Zealand over the last few decades, we compared the genetic composition of 
the younger (smaller) and older (larger) individuals within populations. This comparison 
recovered different patterns of connectivity and within-population variance between the 
two demographic groups that were not present when the groups were combined. The 
changing connectivity and population structure of C. rodgersii in New Zealand along with 
the impact the urchin had on fisheries and the ecosystem in Tasmania indicates that we 
should continue to monitor C. rodgersii within New Zealand. 
 
Introduction 
 
Climate change is impacting the marine environment, through changing ocean 
temperatures, chemistry, oxygen, and circulation. These impacts affect the distribution of 
species, their local abundance, and population connectivity (Wilson et al. 2016). For 
instance, a changing environment leads to local increases or decreases in the abundance of 
species (Wassmann et al. 2011; Poloczanska et al. 2016), in extreme cases causing the 
spatial distribution of species to shift. The most evident climate-driven changes in species 
ranges are away from warming low-latitude regions toward the poles (i.e. poleward range 
shifts; Sorte et al. 2010), but the direction of range shifts may vary according to the 
geography of local environmental changes. As a consequence, subtle changes in the 
abundance and range of species in response to climate change may be difficult to detect. 
Nonetheless, it is important to monitor these early changes, particularly for species 
predicted to have widespread impacts on local ecosystems, food security, and human 
livelihoods (Pecl et al. 2017; Melbourne-Thomas et al. 2021). 
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Changes in a species abundance and range are not independent of changes in the 
connectivity among populations and their genetic composition. Climate-driven range 
extensions can impact the genetic variance of populations and their connectivity, and 
climate-induced population decline can erode the genetic diversity of populations (Coleman 
et al. 2020). Such population genetic inferences have long been used to infer demographic 
and spatial expansion (Excoffier 2004). Seascape genomics has more recently helped to 
characterise physical and environmental influences on the distribution of neutral and 
adaptive genetic variance (Dalongeville et al. 2018a; Dalongeville et al. 2018b). Therefore, 
when a species climate-mediated change in range and abundance is subtle, or still in the 
very early stages, population genomics may be particularly useful in detecting changes in 
the genetic variance and connectivity of populations. 
 
Several high latitude temperate reef areas have suffered climate change impacts, such as 
Western Australia (Smale et al. 2013; Wernberg et al. 2021), Japan (Agatsuma et al. 2007; 
Feng et al. 2019), and Tasmania (Ling et al. 2009c). These locations have all been described 
as climate change hotspots where several species have gone locally extinct as the local 
environment has changed and new species have extended their ranges into the area. 
Although New Zealand is similar in latitude, and its ocean climate has measurably changed 
over recent decades (Law et al. 2017b), species responses to these local environmental 
changes have been less evident. In many climate change hotspots, strong and sometimes 
strengthening boundary currents facilitate poleward range extensions by driving larval 
movement to, and warming, poleward locations (Ling et al. 2009c). In contrast, New 
Zealand’s poleward current, the East Auckland Current (EAuC), is a weak offshoot of the East 
Australian Current (EAC), that travels across the Tasman Sea from Australia as the Tasman 
Front. Along the geographically complex East Coast of north-east New Zealand the EAuC has 
an unpredictable flow, forming many eddies, and often sits far offshore (Stanton et al. 
1997). As a consequence, although there are a few accounts of poleward range shifts in this 
region (Middleton et al. 2021), biodiversity responses to climate change in north-east New 
Zealand may be more subtle than those observed in other temperate reef areas. 
 
Around the world, the impacts of species shifting their ranges cause societal, cultural, 
ecosystem, governance, and climate feedback impacts (Pecl et al. 2017), some of which we 
may soon see in New Zealand. One of the most notorious examples is the Long-spined sea 
urchin, Centrostephanus rodgersii. This urchin is native to New South Wales, but in the 
1980s began to extend its range south toward Tasmania facilitated by the strengthening and 
extension of the EAC, and has been increasing in abundance and range since (Ling et al. 
2009c). The extension of C. rodgersii into Tasmania has dramatically impacted the 
ecosystem and local fisheries of abalone (Haliotis rubra) and rock lobster (Jasus edwardsii) 
(Johnson et al. 2005; Ling 2008; Lisson 2018). Centrostephanus rodgersii also occurs in New 
Zealand, along the north-east coast of the North Island, including several nearshore and 
offshore islands, and at Rangitāhua (the Kermadec archipelago, Fig. 1). North-east New 
Zealand has a similar ecosystem to Tasmania. For instance, the dominant macroalgae 
species in north-east New Zealand is Ecklonia radiata (the most impacted macroalgae 
species in Tasmania; Ling et al. 2018). North-east New Zealand has high-value fisheries, 
similar to Tasmania, of crayfish (J. edwardsii, known as rock lobster in Tasmania), pāua 
(Haliotis iris, an endemic abalone species), and kina (Evechinus chloroticus, an endemic 
urchin). Based on the biodiversity and fisheries impact of C. rodgersii in Tasmania (Johnson 
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et al. 2005; Ling 2008; Lisson 2018), C. rodgersii poses a considerable threat to New 
Zealand’s coastal ecosystem and fisheries. 
 
Although there are no time-series surveys of C. rodgersii throughout its New Zealand range, 
available research suggests the species has increased in abundance in certain locations 
(Shears 2020; Balemi et al. 2021), and likely in range extent. Centrostephanus rodgersii was 
first recorded in New Zealand in 1897 (Farquhar 1897) but was subsequently removed from 
the faunal list on two occasions for lack of evidence (Fell 1949), indicating it was not 
abundant. It was not until 1949 when live specimens were collected from several locations 
in the North Island (the Cavalli Islands, Stephen’s Island, Whangaroa, and Little Barrier) that 
there was conclusive evidence of the species presence (Fell 1949). The species is most 
abundant in Rangitāhua (L. Liggins, pers. comm. 2021), but overall New Zealand’s 
population densities appear to be lower than observed in Australia (Pecorino et al. 2013b; 
Edgar et al. 2017). Population genetic studies identified high connectivity between C. 
rodgersii populations in New Zealand and the East Coast of Australia (Banks et al. 2007), but 
suggest that New Zealand populations are no longer reliant on dispersal from Australia and 
are a self-sustaining meta-population (Thomas et al. 2021). Based on population size 
structure analysis across the species New Zealand range, we expect there has been a 
poleward range extension occurring in the northern part of north-east New Zealand and 
that there is more regular recruitment in southern locations of north-east New Zealand 
(Chapter Two). 
 
Here we studied the population genomics of C. rodgersii across its’ New Zealand range, 
including Rangitāhua. We were interested in patterns of neutral genetic structure and 
covariance across the New Zealand range of C. rodgersii, and whether there was any 
indication of changing population connectivity or genetic composition. To identify changes 
in population connectivity and genetic composition over time, we analysed two different 
age classes within each population – those up to 15 years old and those over 15 years old – 
based on size-at-age relationships determined for the species (Pecorino et al. 2012). We 
additionally considered patterns of adaptive genetic variance and covariance among 
populations. Putatively adaptive loci were identified by several methods that fundamentally 
aim to identify loci that depart from the prevailing pattern of genetic population structure. 
We analysed population structure at this set of loci to further explore the qualitative and 
quantitative differences in patterns of population structure at the putatively adaptive set 
relative to the presumed neutral set of loci to detect signatures of local adaptation, infer the 
adaptive potential of populations, and identify any conspicuous patterns. 
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Methods 
 
Sampling locations and collection 
 
Centrostephanus rodgersii individuals were collected throughout the New Zealand range of 
the species, including the north-east coast of the North Island and Rangitāhua (Fig. 1). 
Gonad tissue was collected from each individual and stored in 95% ethanol. Most 
populations were sampled in late 2015 to early 2016, with a few sampled in late 2017 and 
January 2018. Twenty-nine to thirty-one individuals were used for genomic analysis from 15 
locations including Raoul Island, Macauley Island, L’Esperance Rock, Spirits Bay, Berghan 
Point, Cavalli Islands, Home Point, Poor Knights Islands, Mokohinau Islands, Sail Rock, 
Mercury Islands, Castle Rock, Alderman Islands, Mayor Island, White Island and then 14 
individuals from Takatu Point, where population density was lower.  
 
We measured the size (test diameter in mm) of each individual urchin as a proxy for age. As 
urchin size is determined by both age and the growth rate, which is impacted by food 
availability or ambient temperature (Pecorino et al. 2012), the size-based analyses excluded 
Rangitāhua as the food availability and ambient temperature there is not consistent with 
north-east New Zealand. North-east New Zealand is considered as a single bioregion 
supporting our assumption that food availability and ambient temperature were the same 
for our sites in this region (Shears et al. 2008). We created two size cohorts: below 90mm, 
and 90mm and above. The cut-off point of 90mm was used because this is approximately 
the point where the urchin's growth slows as they reach their full adult size at 15 years 
(Pecorino et al. 2012). Therefore beyond this size, the urchins are indistinguishable by size 
and therefore difficult to age. These two age/size groups were represented across all north-
east New Zealand locations. 
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Figure 1: Map of the sampling locations of C. rodgersii across its New Zealand range using 
abbreviated names as follows: Alderman Islands: Ald, Berghan Point: Ber, Castle Rock: Cas, Cavalli 
Islands: Cav, Home Point: Hom, L’Esperance Rock: LEs, Macauley Island: Mac, Mayor Island: May, 
Mercury Islands: Mer, Mokohinau Islands: Mok, Poor Knights Islands: Poo, Raoul Island: Rao, Sail 
Rock: Sai, Spirits Bay: Spi, Takatu Point: Tak, White Island: Whi. 
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DNA extractions and Genotype-By-Sequencing 
 
Genomic DNA was extracted from the gonad tissue using the Qiagen DNeasy Blood & Tissue 
Kit following the manufacturer's protocol for animal tissue with the following modifications: 
the lysis step was conducted overnight at 56°C with 20µl Proteinase K; after digestion, 3µl of 
RNAse A (Monarch) was added and samples were incubated for 20 minutes at 37°C; and to 
maximize DNA yield, the elution step using UltraPure DNase/RNase-Free Distilled Water 
(Invitrogen) was repeated, 50µl each, for a total of 100µl. Extractions were initially assessed 
for quality by running 2μL of DNA on a 1% agarose gel. A selection of the extractions were 
quantified using a Qubit 2.0 Fluorometer (Fisher Scientific), which were then used to 
estimate the concentration for all extractions. 
 
Genotyping-by-Sequencing (GBS) was done by Diversity Arrays Technology Pty Ltd (DArTseq; 
Australia) using the DArT genome complexity reduction methods followed by 100 cycles on 
an Illumina Hiseq2500 as described in Kilian et al. (2012). After testing several combinations 
of restriction enzymes for the best complexity reduction method, PstI and NlaIII were 
selected to digest DNA prior to library preparation. Library preparation was conducted for 
468 DNA extractions (four of these were individual replicates to investigate genotyping 
and/or variant calling errors). 
 
Single nucleotide polymorphism calling and filtering 
 
Single nucleotide polymorphisms (SNPs) were generated from the Illumina reads using 
proprietary DArT pipelines which demultiplex the reads to each sample using a strict 
barcode mismatch criteria and remove low-quality sequences. The provided DArT SNP file 
was a matrix where 102,052 SNP loci were coded as 0 for homozygotes, 1 for heterozygotes 
and 2 for homozygotes, for the alternative allele, and contained various QC statistics for 
each SNP.  
 
The R dartR version 1.9.4 software package (Gruber et al. 2018) in RStudio Version 1.2.1335 
(RStudio Team 2020) was used to convert the DArT SNP matrix into a genlight object 
(adegenet; Jombart 2008), generate QC reports, and perform several filtering steps. Based 
on the QC reports generated by dartR, loci were removed based on the following criteria: 
minor allele frequencies less than 0.05, more than 80% missing data, read depths less than 
5, DArT replicability score below 0.97, and any monomorphic loci. We pruned the data, 
retaining only one SNP per locus using the filter.secondaries function in dartR, to minimise 
linkage among our SNP loci (Gruber et al. 2018). 
 
Four individuals were sequenced twice. Any loci that provided different genotypes for the 
same individuals were removed from the dataset. Then for these four individuals, the 
replicate with the most data was retained (Table A1).  
 
Detection of loci putatively under selection 
 
Loci that are under selection, or linked to loci that are under selection, can influence the 
inference of population demography. To identify loci that may be under divergent selection 
indicative of local adaptation we used two outlier detection methods: the R packages 
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pcadapt version 4.3.3 (Luu et al. 2017) and Outflank version 0.2 (Whitlock et al. 2015) in 
RStudio Version 1.2.1335 (RStudio Team 2020). Pcadapt identifies outlier loci by their 
divergence from the overall population structure within a Principal Components Analysis 
(PCA) using the method described by Luu et al. (2017). This method does not require a priori 
grouping of individuals and has been shown to perform well in demographic scenarios 
potentially relevant to C. rodgersii in New Zealand, such as continuous population structure, 
hierarchical population structure, the presence of admixed individuals, and range expansion 
(Luu et al. 2017). Using Cattel’s rule, we determined the number of principal components 
for the PCA from the scree plot (Fig. A1) and used the Mahalanobis distance as our test 
statistic where loci with a q-value less than 0.05 were considered to be potentially under 
selection. 
 
Although pcadapt is less sensitive than Outflank to demographic effects that may cause co-
dependence among populations (Lotterhos et al. 2014), it does suffer from low power if the 
spatial pattern of selection does not correlate with spatial genetic structure (Capblancq et 
al. 2018). To detect any loci that pcadapt may have missed for this reason, and to increase 
our confidence in the neutral dataset, we used the R package Outflank (Whitlock et al. 2015) 
as well as pcadapt. OutFlank detects outlier loci based on the distribution of loci-specific FST 
values, where loci with values in the centre of the distribution are assumed to be neutral. 
Loci with the highest (and lowest) FST are identified as outliers. Unlike pcadapt, Outflank 
requires the a priori grouping of individuals into populations and is generally more 
conservative returning few false positives across many demographic scenarios (Whitlock et 
al. 2015; Luu et al. 2017). OutFlank was run using default parameters, and a q-value 
threshold of 0.05 was used to identify loci with the highest FST values which are likely under 
divergent selection. 
 
We created two datasets from the outlier detection methods to be used in subsequent 
analyses. First, the ‘neutral’ dataset included only loci not detected as outliers using either 
Outflank or pcadapt; and an ‘adaptive’ dataset including all loci detected as outliers across 
both Outflank and pcadapt. 
 
Population genetic summary statistics 
 
Several summary statistics were calculated for each of the sampled populations based on 
the neutral loci. The population summary statistics included the number of loci, observed 
heterozygosity, and expected heterozygosity using dartR version 1.9.4 (Gruber et al. 2018); 
the Shannon-Weiner Diversity index and Simpson’s index using poppr version 2.9.1 (Kamvar 
et al. 2014, 2015); and the mean allelic richness using popgenreport version 3.0.4 (Adamack 
et al. 2014; Gruber et al. 2019). Nei’s (1987) pairwise FST was also calculated using hierfstat 
version 0.5-7 (Goudet et al. 2020). 
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Population genetic structure 
 
To examine the neutral population genetic structure, we performed an analysis in 
STRUCTURE (Pritchard et al. 2000). STRUCTURE uses a Bayesian iterative algorithm to 
distinguish groups with similar patterns of variation and assigns individuals to groups based 
on likelihood (Pritchard et al. 2000; Porras-Hurtado et al. 2013). STRUCTURE analyses were 
only used to infer genetic clusters based on the neutral loci, at the recommended value of K 
(clusters), for each of the following data subsets: (1) all populations, (2) north-east New 
Zealand populations only, (3) the large size class across north-east New Zealand 
populations, and (4) the small size class across north-east New Zealand populations. StrAuto 
(Chhatre et al. 2017) was used to automate the STRUCTURE runs without any priors. Ten 
replicate runs, each with 10,000 MCMC chains (after 1,500 burn-in chains were discarded), 
were completed for each data subset. For the (3) and (4) data subsets, 1-9 clusters (k) were 
tested; for (1) and (2), 1-7 clusters were tested. The STRUCTURE results were uploaded to 
Structure Harvester (Earl 2011) to select the best number of clusters for each data subset, 
CLUMPP (Jakobsson 2009) was used to standardize the cluster designations across the 10 
replicate runs, and ggplot2 version 3.3.3 (Wickham et al. 2020) was used to plot the results. 
 
For each of the data subsets, we further investigated genetic structuring based on both 
neutral and adaptive loci using a Discriminatory Analysis of Principal Components (DAPC) 
using the adegenet package version 2.1.3 (Jombart 2008) in RStudio Version 1.2.1335 
(RStudio Team 2020). DAPC is a multivariate method for clustering genetically related 
individuals and can handle a larger number of loci than STRUCTURE, also providing the 
option for significance testing according to a priori groupings (Jombart et al. 2010). In the 
DAPC method, first, a PCA is performed and then a Discriminatory Analysis (DA) that 
maximises the between-group variance and minimises the within-group variance. We used 
DAPC to test for significant genetic structuring naively (using the recommended value of k) 
for data subset (1) and (2), and according to our a priori population designations for (1), (2), 
(3) and (4). The number of principal components used was determined with cross-
validation. We also investigated whether the genetic composition of the population size 
classes within north-east New Zealand populations differ, by using a priori above (large) and 
below (small) 90mm size groups (excluding Rangitāhua). Each of these DAPCs was 
performed using both the adaptive and neutral loci, separately. 
 
Meta-population structure and population genetic covariance 
 
Population graphs and their underlying covariance measures are a model-free way to 
examine meta-population structure. Using the methods of Dyer et al. (2004) the covariance 
measure is derived from an individual pairwise genetic distance calculated across all loci. 
Population graphs are a network created using graph theory with nodes, representing 
populations, connected by edges, which represent the genetic covariance between 
populations (Dyer et al. 2004). They differ from traditional population genomic analyses 
because the relationships among populations are studied simultaneously rather than 
through several pairwise relationships. The edges represent conditional covariance and the 
overall population graph will only include the edges that have significant power (using 
significance of 0.05) in explaining the topology of the population graph (Dyer 2015). In our 
case, we anticipated that only populations that have had recent gene-flow, and/or 
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represent source-sink relationships would retain edges between them. We used the R 
packages ‘gstudio’ version 1.5.2 (Dyer 2012) and ‘popgraph’ version 1.5.1 (Dyer 2017) in 
RStudio Version 1.2.1335 (RStudio Team 2020) to create the population graphs. We created 
population graphs for data subsets (1) - (4) based using both the adaptive and neutral loci, 
separately. Then, we created population graphs, excluding Rangitāhua, for both the neutral 
and adaptive datasets. The edge lengths in the population graphs are based on the 
between-population variance (for edges that are included) and the node size is based on the 
within-population variance (both displayed in three-dimensions). These variances are the 
same as the within and between population variances in AMOVA (Dyer 2015). 
 
Using the R package “graph4lg” (Savary et al. 2020) we analysed the population graphs. 
Using the “compute_node_metric” function we calculated three measures of centrality for 
each node. The “degree centrality” is the number of edges from the node to other nodes 
and shows how many populations that population has significant genetic covariance with 
(Cross et al. 2018). The “closeness centrality” index measures the average shortest path 
from a node to all other nodes and tells us on average how many steps are required for that 
node to share genomic variance with the other nodes (Cross et al. 2018). Lastly, the 
“between centrality” index measures how many shortest paths the node is found on and is 
useful for identifying the importance of a particular node for the genetic exchange in the 
meta-population (Cross et al. 2018). Next, the nodes were grouped into modules using the 
“compute_graph_modul” function. Modules are groups of nodes that are made by 
maximising the modularity, which in our case are groups of populations that are 
demographically interdependent. 
 
To compare the modularity of two graphs constructed based on different data subsets, we 
used the “graph_modul_compar” function of the graph4lg R package (Savary et al. 2020). 
This function calculates the Adjusted Rand Index reflecting how often pairs of nodes from 
the same module in one graph are also in the same module in the second graph. We also 
used the “graph_node_compar” function to assess whether the connectivity of each node is 
similar between the graphs. This function calculates Spearman’s correlation coefficient 
between the graph-theoretic metric values. 
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Results 
 
Single nucleotide polymorphism dataset 
 
The final dataset, after all the filtering steps, had 6,629 binary SNPs. There were 226 outlier 
SNPs identified using pcadapt (based on two PCs, see Appendix, Fig. A1) and 208 identified 
using Outflank. Between both methods, there was a total of 253 outliers (159 of which were 
detected by both Outflank and pcadapt). These loci were used to inform the creation of two 
datasets: adaptive (all outliers from both pcadapt and Outflank, 326 SNPs) and neutral (all 
except adaptive, 6,303 SNPs). 
 
Population genetic summary statistics 
 
All populations had a similar Shannon-Weiner Diversity index (3.367 to 3.434) and Simpson’s 
index (0.966 to 0.968) except Takatu Point (Shannon-Weiner Diversity index 2.639; 
Simpson’s index 0.929; Table 1). The Rangitāhua populations had lower observed 
heterozygosity (Raoul Island 0.155; L’Esperance Rock 0.156, Macauley Island: 0.159), 
expected heterozygosity (Raoul Island 0.250; L’Esperance Rock 0.250, Macauley Island: 
0.252), and mean allelic richness (Raoul Island 1.697; L’Esperance Rock 1.696, Macauley 
Island: 1.701) than the rest of the New Zealand populations that we examined (observed 
heterozygosity 0.168 to 0.188; expected heterozygosity 0.262 to 0.269; mean allelic richness 
1.721 to 1.743; Table 1). Pairwise FST-values were highest between Rangitāhua and north-
east New Zealand populations (Table A2). Based on pairwise FST, Takatu Point was the most 
genetically differentiated of the north-east New Zealand populations (pairwise FST’s 0.0010 
to 0.0033; Table A2). Of the Rangitāhua populations, L’Esperance Rock and Macauley Island 
were the least genetically differentiated based on pairwise FST (0.0005).
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Population Number of 
individuals 

Number of 
individuals 
<90mm  

Number of 
individuals 
≥90mm 

Number 
of loci 

Observed 
Heterozygosity 

Expected 
Heterozygosity 

Shannon-
Weiner 
Diversity 
index 

Simpson’s 
index 

Mean allelic 
richness 

Raoul Island (Rao) 30 NA NA 1864 0.155 0.250 3.401 0.967 1.697 

Macauley Island (Mac) 30 NA NA 1946 0.159 0.252 3.401 0.967 1.701 

L’Esperance Rock (LEs) 30 NA NA 1875 0.156 0.250 3.401 0.967 1.696 

Spirits Bay (Spi) 31 7 24 1975 0.171 0.266 3.434 0.968 1.736 

Berghan Point (Ber) 29 17 12 1758 0.168 0.266 3.367 0.966 1.734 

Cavalli Islands (Cav) 31 13 18 1999 0.172 0.268 3.434 0.968 1.739 

Home Point (Hom) 30 19 11 728 0.172 0.265 3.401 0.967 1.734 

Poor Knights Islands (Poo) 29 14 15 2051 0.173 0.267 3.367 0.966 1.738 

Mokohinau Islands (Mok) 30 22 8 2067 0.179 0.268 3.401 0.967 1.741 

Sail Rock (Sai) 30 12 18 2058 0.180 0.266 3.401 0.967 1.737 

Takatu Point (Tak) 14 3 11 3236 0.188 0.262 2.639 0.929 1.721 

Mercury Islands (Mer) 30 14 16 1977 0.184 0.269 3.401 0.967 1.741 

Alderman Islands (Ald) 30 25 5 2032 0.179 0.268 3.401 0.967 1.740 

Castle Rock (Cas) 30 12 18 1928 0.176 0.267 3.401 0.967 1.739 

Mayor Island (May) 30 5 25 1904 0.187 0.269 3.401 0.967 1.743 

White Island (Whi) 30 19 11 2062 0.179 0.269 3.401 0.967 1.743 

Table 1: Population genetic summary statistics for each sampled population of Centrostephanus rodgersii based on the neutral loci dataset. The number of 
individuals in each of the size categories (<90mm and ≥ 90mm) are not reported for populations of Rangitāhua as they were not included in any size-based 
analyses. The evenness was the same for all populations: 1. Populations are ordered from north to south.
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Population genetic structure 
 
Naïve clustering of individuals based on the neutral loci using both STRUCTURE and DAPC 
found two significant clusters (K = 2), roughly equating to populations from north-east New 
Zealand and populations from Rangitāhua. In the STRUCTURE analysis, four north-east New 
Zealand individuals (one each from Mercury Islands, Castle Rock, Mayor Island, and White 
Island) were assigned to the “Rangitāhua” cluster with almost 100% probability, and several 
others from these populations as well as the Mokohinau Islands were assigned to this group 
with between 50-80% probability (Table A3). In the DAPC without priors, only one 
discriminant function was retained, which distinguished the north-east New Zealand and 
Rangitāhua clusters (Fig. A2). However, between one and three individuals from each of 
Castle Rock, Mayor Island, Mercury Islands, Mokohinau Islands, and White Island were 
placed in the Rangitāhua cluster (Fig. 2b). When we used the k-means clusters on these two 
groups, no further subclusters were found. 
 
In the DAPC that assigned individuals based on population (Fig. 2c; using the first 152 PCs 
and the proportion of conserved variance was 0.46), the first discriminant function 
corresponded to the separation between the same north-east New Zealand and Rangitāhua 
clusters found with the naïve clustering (Fig. A2). The individuals from north-east New 
Zealand that were found clustered with the Rangitāhua group (“Rangitāhua-like” 
individuals) in the naïve DAPC (Fig. 2b, A2) were likely those individuals found between the 
two clusters along the first axis (Fig. 2c). On the second discriminatory axis, only the 
population of Takatu Point was somewhat separated from the other north-east New 
Zealand populations and the population of L’Esperance Rock from the other Rangitāhua 
populations, though to a lesser extent (Fig. 2c). 
 
DAPCs for just the north-east New Zealand populations revealed no further significant 
clustering (either with, Fig. A3, or without a priori population groupings which showed no 
clustering) based on the neutral loci. The DAPC for the north-east New Zealand populations 
using a priori population groupings again showed the population of Takatu Point was slightly 
separated (Fig. A3). The DAPC for the Rangitāhua populations using a priori groupings 
revealed each population centroid differed, but their dispersions overlapped considerably 
(Fig. A4). 
 
Although the STRUCTURE analyses suggested k =2 within the north-east New Zealand 
samples, there was no genetic structuring according to geography (Fig. A5). Instead, the 
same ten individuals (except one), from north-east New Zealand offshore island 
populations, previously assigned to the Rangitāhua cluster (based on neutral SNPs for all 
populations) were all assigned in the same STRUCTURE grouping, with over 100 further 
individuals (Table A3). 
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Figure 2: Clustering of Centrostephanus 
rodgersii individuals from north-east New 
Zealand and Rangitāhua based on the neutral 
loci. a) STRUCTURE analysis result with colours 
representing the two clusters found; b) DAPC 
clustering result without a priori grouping of 
individuals into populations showing two 
clusters (final DAPC in Figure A2); c) DAPC 
clustering result with a priori population 
groupings, colours represent the different 
populations and points represent individuals. 
Full population names are given in Table A11. 
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Figure 3:  Clustering of Centrostephanus rodgersii individuals from north-east New Zealand and Rangitāhua based on the putatively adaptive loci. a) Naïve 
clustering for north-east New Zealand and Rangitāhua, final DAPC in Fig. A9); b) Naïve clustering for north-east New Zealand, final DAPC in Fig. A10; c) DAPC 
with a priori population groupings for north-east New Zealand and Rangitāhua, colours represent the different populations and points represent 
individuals. d) DAPC with a priori population groupings for the north-east New Zealand, colours represent the different populations and points represent 
individuals.  

a)

d)c)

b)
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Naïve clustering based on the adaptive loci only (using DAPC) recovered similar north-east 
New Zealand and predominantly Rangitāhua clusters as when using the neutral loci for all 
populations (Table A3; Fig. 3a; Fig. A9). For the north-east New Zealand populations, two 
clusters were found based on the adaptive loci (Fig. 3b; Fig. A10). The smaller cluster 
contained individuals that had a Rangitāhua-like genotype (based on adaptive and/or 
neutral loci as shown in Table A3), along with six individuals from the Poor Knight Islands 
(one), White Island (two), the Mercury Islands (two), and the Alderman Islands (one) (Table 
A3). 
 
The DAPC using a priori population groupings and based on the putatively adaptive loci 
showed the same separation of the Rangitāhua populations and north-east New Zealand 
populations, similar to the neutral loci, however, the Raoul Island population was distinct 
from the rest of the other Rangitāhua populations (Fig. 3c; based on 220 PCs and the 
proportion of conserved variance was 0.966). In the DAPC for north-east New Zealand 
populations using a priori defined populations, all populations were in one clustered group, 
although the White Island population was slightly differentiated (Fig. 3d; based on first 144 
PCs and the proportion of conserved variance was 0.885). 
 
DAPC suggested a significant difference in the genetic composition of the two size classes 
sampled across populations of north-east New Zealand based on the neutral loci (Fig. 4a; 
using the first 112 PCs and the proportion of conserved variance was 0.41). Within each of 
the size classes, there were no significant genetic clusters according to DAPC (naively or 
using a priori population groupings) based on the neutral loci. Even so, when visualised with 
a priori population groupings, the small size class of the Mercury Islands population was 
somewhat separated from the other populations (Fig. 4b; using the first 54 PCs and the 
proportion of conserved variance was 0.374), and for the large size class, the White Island 
and Takatu Point populations were also somewhat differentiated from the other 
populations (Fig. 4c; using the first 30 PCs and the proportion of conserved variance was 
0.21). 
 
STRUCTURE analyses suggested were either K = 2 or K = 7 for the large size class (Fig. A6, 
A7). There was no evident structuring according to populations for K = 7, but in K = 2, a few 
individuals from each of the Mercury Islands, Castle Rock, Mayor Island and White Island 
were being assigned to a second group. Similarly, for the small size class, STRUCTURE 
analyses suggested K = 2, wherein a few individuals from these populations had a high 
probability of assignment to the second cluster, albeit not as high as for the large size class 
(Fig. A8). These were some of the same individuals assigned to the “Rangitahua-like” cluster 
in previous analyses. 
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Figure 4: DAPCs of 
Centrostephanus rodgersii 
individuals from north-east 
New Zealand distinguished into 
size classes, and based on 
neutral loci. a) DAPC using a 
priori size grouping result with 
colours representing the two 
clusters found; b) DAPC using a 
priori population groupings 
using small individuals (under 
90mm), colours represent the 
different populations and 
points represent individuals. c) 
DAPC using a priori population 
groupings using large 
individuals (90mm and over), 
colours represent the different 
populations and points 
represent individuals.  
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Figure 5:  DAPCs of 
Centrostephanus rodgersii 
individuals from north-east New 
Zealand distinguished into size 
classes, and based on putatively 
adaptive loci. a) DAPC using a 
priori size grouping result with 
colours representing the two 
clusters found based on putatively 
adaptive loci; b) DAPC using a 
priori population groupings using 
small individuals (under 90mm) 
based on putatively adaptive loci, 
colours represent the different 
populations and points represent 
individuals. c) DAPC using a priori 
population groupings using large 
individuals (90mm and over) based 
on putatively adaptive loci, colours 
represent the different 
populations and points represent 
individuals.



 77 

Similar to patterns revealed for the neutral loci, the DAPC based on putatively adaptive loci 
indicated a difference in the genetic composition between the size classes sampled across 
populations of north-east New Zealand (Fig. 5a; using the first 144 PCs and the proportion of 
conserved variance was 0.885). With a priori population groupings within the small size 
class, we found no clusters based on the adaptive loci, but there were two clusters found for 
the large size class (Fig. A12). Within the small size class, the Takatu Point and Spirits Bay 
populations were slightly separated from the other populations (Figure 5b; based on the 
first 42 PCs and the proportion of conserved variance was 0.565). Within the large size class, 
the White Island, Berghan Point, and the Alderman Islands populations were slightly 
separated from the other populations (Figure 5c; based on the first 96 PCs and the 
proportion of conserved variance was 0.862). 
 
All the individuals with a Rangitāhua-like genotype based on the neutral loci were from the 
populations: Castle Rock, White Island, Mayor Island, and the Mokohinau Islands and they 
were mostly between 60 and 70 mm, or over 100mm in test diameter (Table A3). Based on 
putatively adaptive loci, the individuals that have a Rangitāhua-like genotype differed 
slightly (eight individuals were detected based on both the neutral and adaptive loci, two 
individuals only based on the neutral loci, and three individuals only based on the adaptive 
loci; Table A3). The individuals with the Rangitāhua-like genotype based on adaptive loci 
came from the same populations as those detected based on neutral loci, but additionally 
included the Sail Rock population, and ranged in size from 46 to 125mm (Table A3). 
 
Meta-population structure and population genetic covariance 
 
The population graph including all populations, based on neutral loci, was split into two 
disconnected, distinct subgraphs: Rangitāhua and north-east New Zealand (Fig. A13a,b). The 
north-east New Zealand subgraph had 13 nodes (populations), and 32 edges were retained 
between populations that had significant conditional genetic covariance. The Rangitāhua 
subgraph had three nodes and three edges that had significant conditional genetic 
covariance. The population graph based on putatively adaptive loci for the same 
populations (Fig. A13c,d) had similar links (correlation 0.506; Table A10) and metric values 
(correlation 0.730; Table A10), comprising 30 edges, and Rangitāhua was a separate 
subgraph. 
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Figure 6: Population graphs of north-east New Zealand: a) based on the neutral loci displayed 
geographically, and b) based on the neutral loci displayed aspatially; and c) based on the adaptive 
loci displayed geographically, and d) based on the adaptive loci displayed aspatially. Each node 
represents a sampled population and edges that significantly contribute to the overall topology of 
the graph are retained. The colours represent the different modules within the graph as shown in 
Tables A4 and A5; the size of the nodes represent within-population variance (values in Tables A4 
and A5), and the length of the edges represent the between-population covariance (Tables A12 and 
A13). Note the aspatial population graphs are three dimensional but are only displayed in two 
dimensions; accurate edge lengths are in Tables A12 and A13. Abbreviated names are as follows: 
Alderman Islands: Ald, Berghan Point: Ber, Castle Rock: Cas, Cavalli Islands: Cav, Home Point: Hom, 
L’Esperance Rock: LEs, Macauley Island: Mac, Mayor Island: May, Mercury Islands: Mer, Mokohinau 
Islands: Mok, Poor Knights Islands: Poo, Raoul Island: Rao, Sail Rock: Sai, Spirits Bay: Spi, Takatu 
Point: Tak, White Island: Whi.  
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The population graph for north-east New Zealand populations based on neutral loci was 
quite connected (Fig. 6b). The four modules detected within the graph did not correspond 
to the geographic proximity of the populations (Fig. 6a). Takatu Point (13.240), White Island 
(13.110), and the Mercury Islands (13.328) populations had the greatest within-population 
neutral genetic variance, whereas the Spirits Bay population had the least (5.000; Table A4). 
Takatu Point and the Mokohinau Islands were the most connected populations (six degrees; 
Table A4) and the Sail Rock population was the least (two degrees; Table A4). Along with 
having the most edges, the Takatu Point population had the shortest edge lengths (9.38 to 
10.82; Table A12) and therefore has the most shared variance with other populations. The 
Sail Rock population had the longest edge lengths (14.65 and 15.02; Table A12) and so is the 
most genetically distinct population. The shortest edge length was between the Takatu 
Point and Mercury Islands populations. The Alderman Islands population had the highest 
closeness centrality index (0.713) and the other populations ranged from 0.512 to 0.697 
(Table A4). The Alderman Islands also had the highest betweenness centrality index (12) 
while the others range from zero to eight (Table A4).  
 
The population graph for north-east New Zealand populations based on putatively adaptive 
loci had three modules which also did not correspond to the geographic proximity of the 
populations (Fig. 6c). The White Island (13.645) and Berghan Point (13.717) populations had 
the most within-population adaptive genetic variance and the Cavalli Islands population had 
the least (5.000; Table A5). The Takatu Point and Home Point population shared the most 
genetic variance (edge length: 11.27; Table A13). The Takatu Point population was the most 
connected (five degrees) and had the shortest edge lengths (11.27 to 12.69; Table A13), 
meaning it shared the highest amount of variance with other populations. All other edge 
lengths ranged from (15.03 to 17.22; Table A13). The Mayor Island population was the least 
connected population (two degrees; Table A5). The Castle Rock population had the highest 
closeness centrality index (0.779) and the Spirits Bay (16) and Castle Rock (15) populations 
had the highest betweenness centrality indices (Table A5). 
 
The two population graphs for north-east New Zealand populations based on neutral and 
adaptive loci differed in their number of edges: the neutral graph had 30 whereas the 
adaptive only had 22. The topography based on edges of the two population graphs for 
north-east New Zealand populations based on the neutral and adaptive loci were not 
correlated (correlation -0.085; Table A10). The degrees of populations between the two 
population graphs based on the neutral and adaptive loci were correlated both with and 
without the Rangitāhua populations (0.426 correlation without Rangitāhua populations; 
0.730 correlation with Rangitāhua populations; Table A10). The modularity between the two 
population graphs for north-east New Zealand populations based on the neutral and 
adaptive loci also differed (Adjusted Rand Index 0.229; Table A10), the neutral graph had 
four modules (Fig. 6a) whereas the adaptive had three modules (Fig. 6c).  
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Figure 7: Aspatial population graphs based on small and large individuals in north-east New Zealand: 
a) based on neutral loci from large individuals in north-east New Zealand; b) based on neutral loci 
from small individuals in north-east New Zealand; c) based on putatively adaptive loci from large 
individuals in north-east New Zealand; d) based on putatively adaptive loci from small individuals in 
north-east New Zealand. There is a node for each population and an edge between the nodes when 
that edge significantly contributes to the overall topology of the graph. The colours represent the 
different modules as shown in Tables A6-A9, the sizes of the nodes are set by the within-population 
variance in three dimensions (numbers in Table A6-A9), and the length of the edges are set by the 
between-population covariance (Tabless A14-A17). Note the aspatial population graphs are three 
dimensional but are only displayed in two dimensions; accurate edge lengths are in Tables A14-A17. 
Abbreviated names as follows: Alderman Islands: Ald, Berghan Point: Ber, Castle Rock: Cas, Cavalli 
Islands: Cav, Home Point: Hom, L’Esperance Rock: Les, Macauley Island: Mac, Mayor Island: May, 
Mercury Islands: Mer, Mokohinau Islands: Mok, Poor Knights Islands: Poo, Raoul Island: Rao, Sail 
Rock: Sai, Spirits Bay: Spi, Takatu Point: Tak, White Island: Whi. 
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The population graph for small individuals based on neutral loci (Fig. 7b) differed from the 
population graph for large individuals based on neutral loci (Fig. 7a) in the edges (0.137 
correlation; Table A10), slightly in the number of node degrees (0.096 correlation; Table 
A10), and in the modules (Adjusted Rand Index 0.026; Table A10); suggesting that there is a 
difference in patterns of population connectivity for individuals up to 15 years old and those 
15 years and older. 
 
In the population graph for large individuals based on the neutral loci, there were five 
modules (Table A7) and the Spirits Bay and the Poor Knight Islands populations were 
disconnected from the graph (Fig. 7a). The Mokohinau Islands population had the largest 
within-population variance (13.086; Table A7) and Takatu Point population had the smallest 
within-population variance (5.000; Table A7). The highest number of degrees was three 
(Alderman Islands and Home Point; Table A7). All populations had a similar closeness 
centrality index (0.032 to 0.034; Table A7) except the disconnected populations (Spirits Bay 
and the Poor Knight Islands). The Alderman Islands (27), Home Point (28), and the 
Mokohinau Islands (25) populations had the highest betweenness centrality indices (Table 
A7). The shortest edge length was between the Alderman Islands and the Mokohinau 
Islands (5.53) populations and all the other shorter edge lengths were between the 
Alderman Islands population and other populations (5.53 to 6.26; Table A14). All remaining 
edge lengths were between 7.31 to 9.74 (Table A14). 
 
In contrast to the population graph for large individuals based on neutral loci, the 
population graph for small individuals based on neutral loci had only the White Island 
population disconnected and there were four modules (Fig. 7b). The Mayor Island 
population had the lowest within-population variance (5.000), and Takatu Point population 
had the highest within-population variance (14.768, in contrast to Takatu Point having the 
lowest within-population variance for the population graph for large individuals based on 
neutral loci; Table A8). The Takatu Point population also had the most edges (four degrees; 
Table A8) and the highest betweenness centrality index (19 along with the Alderman 
Islands; Table A8). The closeness centrality indices ranged from 0.049 (Mayor Island) to 
0.060 (the Alderman Islands and Spirits Bay), except for the White Island population (0.006; 
Table A8) which was disconnected. The smallest edge length was between the Takatu Point 
and Spirits Bay populations (3.84) and all the shortest edge lengths were between the 
Takatu Point population and other populations (3.84 to 4.48; Table A15). 
 
The population graph based on putatively adaptive loci for small individuals differed from 
the population graph based on putatively adaptive loci for large individuals as their edges 
were not correlated (Mathew’s correlation of 0; Table A10), the number of node degrees 
were only slightly correlated (Spearman’s correlations 0.342; Table A10), and the modules 
had an Adjusted Rand Index of 0.062 (Table A10). 
 
The population graph based on putatively adaptive loci for large individuals had four 
modules (Table A9; Fig. 7c). The Alderman Islands (12.529) and Mayor Island (12.376) 
populations had the largest within-population variance and the White Island population had 
the smallest within-population variance (5.000; Table A9). The highest number of degrees 
was four (Alderman Islands and the Poor Knight Islands; Table A9). The closeness centrality 
index range from 0.214 to 0.268 and the Cavalli Islands population had the highest 
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betweenness centrality index (16; Table A9). When the population graph based on 
putatively adaptive loci for large individuals was compared to the population graph based 
on neutral loci for the same large individuals, the modularity has an Adjusted Rand Index of 
0.081, the number of node degrees was 0.120, and the edges were correlated (correlation 
of 0.245; Table A10). The edge lengths for population graph based on putatively adaptive 
loci for large individuals ranged from 4.62 to 9.02 (Table A16) and the smallest edge length 
was between the Mokohinau Islands and the Alderman Islands populations (4.62; Table 
A16). 
  
In the population graph based on putatively adaptive loci for small individuals, there were 
five modules and like the graph based on neutral loci for the same individuals, the White 
Island population was disconnected (Table A8; Fig. 7d). The Takatu Point population had the 
largest within-population variance (14.768 the opposite of the graph based on neutral loci 
for the same individuals) and the Mayor Island population had the smallest within-
population variance (5.000 which was one of the highest for the graph based on neutral loci 
for the same individuals; Table A8). The highest number of degrees was four for the Takatu 
Point population (Table A8) and all the shortest edge lengths were between this population 
and other populations (3.41 to 4.05; Table A17), indicating that individuals sampled at 
Takatu Point share a lot of genetic variance with other populations. All other edge lengths 
ranged from 6.41 to 10.14 (Table A17). The closeness centrality index ranged from 0.049 to 
0.060 except for the White Island population (0.006) which was disconnected. The 
Alderman Islands and Takatu Point populations had the highest betweenness centrality 
index (19; Table A8). Comparing the two population graphs for small individuals for neutral 
and putatively adaptive loci, the modularity had an Adjusted Rand Index of 0.165 and the 
number of node degrees was not very correlated (Spearman’s correlation 0.082, Mathew’s 
correlation -0.015, Table A10). 
 
Discussion 
 
A change in the distribution and/or abundance of a species within a region is associated 
with changes in the genetic composition of its populations and the distribution of genetic 
variation across its range. In this study, we uncovered likely changes in population 
connectivity and the distribution of the neutral and putatively adaptive genetic variance in 
Centrostephanus rodgersii populations over recent decades in New Zealand. We found that 
individuals from Rangitāhua and north-east New Zealand differ genetically but there is some 
ongoing recruitment from Rangitāhua to north-east New Zealand. Through examining the 
population structure and covariance of differently sized cohorts within north-east New 
Zealand, we gained further insights into how the demography of this species has changed 
over the last decade or so. Here we discuss the implications of our results for understanding 
the population history and potential future of C. rodgersii in New Zealand. We also discuss 
the broader contributions of our study to understanding population responses to climate 
change. 
 
Our study revealed that populations of C. rodgersii in Rangitāhua had a different genomic 
composition from populations of C. rodgersii in north-east New Zealand. Our findings 
contrast with a recent study based on microsatellites that suggested that there was little 
genetic differentiation between populations of C. rodgersii in Rangitāhua and north-east 
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New Zealand (Thomas et al. 2021). Nonetheless, our study includes more New Zealand C. 
rodgersii populations than previous studies (Banks et al. 2007; Thomas et al. 2021) and uses 
SNPs, which can reveal finer-scale population genetic differentiation than microsatellites 
(e.g. Candy et al. 2015; Zimmerman et al. 2020). Although our results indicate that there is 
low migration between Rangitāhua and north-east New Zealand populations of C. rodgersii, 
we did recover some individuals from north-east New Zealand that were consistently 
assigned to a cluster dominated by individuals from Rangitāhua, indicating they had a 
Rangitāhua-like genotype. Dispersal between the Rangitāhua archipelago and north-east 
New Zealand is known to occur based on species occurrences. For example, two fish species 
endemic to Rangitāhua, the Kermadec scalyfin (Parma kermadecensis) and the Kermadec 
demoiselle (Chrysiptera rapanui), are reported in north-east New Zealand periodically 
indicating there is larval dispersal from Rangitāhua to north-east New Zealand (Francis et al. 
1999; Liggins et al. 2021). The C. rodgersii individuals with the Rangitāhua-like genotype, 
based on neutral loci, were found in Castle Rock, Mayor Island, the Mokohinau Islands, and 
White Island – which are all offshore islands and in the southern part of the distribution of 
the C. rodgersii in New Zealand. Furthermore, they had a range of sizes from 67 to 125 so 
they likely span multiple migration events. Based on the assignment values of these 
individuals recovered in the STRUCTURE analysis, some are likely to be first-generation 
immigrants from Rangitāhua that have dispersed to north-east New Zealand as larvae, and 
some are likely to be second-generation migrants that are as a result of admixture between 
the first-generation migrants from Rangitāhua and local north-east New Zealand individuals.  
 
In north-east New Zealand, we found that there were no distinct genetic clusters according 
to geography, that genetic differentiation among populations was low, and that 
geographically proximal populations of C. rodgersii did not necessarily have high genetic 
covariance. The population graphs revealed that the north-east New Zealand populations of 
C. rodgersii were a large meta-population, within which some populations uniquely shared 
genetic variance with many other populations (e.g. over eight of the populations had a 
degree of five or six; Fig. 6a,b; Table A4) and some that shared genetic variance with 
relatively few populations (e.g. Sail Rock had only two degrees; Fig.6a,b; Table A4). 
Modularity analysis allows us to split meta-populations into sub-populations that are 
anticipated to share gene flow and therefore have a more similar genetic make-up. Based 
on the population graph topology, four modules were distinguished that comprised of 
geographically distant populations (Fig. 6a). Previous studies have found that although 
modules are often geographically close, such as for the red abalone (Haliotis rufescens) in 
the Southern California Bight (Peña et al. 2017), there are cases where modularity is not 
predictable according to the geographic arrangement of populations (e.g. Fletcher et al. 
2013) and can be the result of dispersal being unrelated to geographic distance (Gilarranz 
2020).  Centrostephanus rodgersii has a long pelagic larval stage (Huggett et al. 2005) and 
the oceanography and currents around north-east New Zealand are complex (Stanton et al. 
1997), potentially leading to counterintuitive dispersal among populations. For instance, 
even the C. rodgersii populations of White Island and Spirits Bay, at the geographic 
extremes of our sampled extent, were still relatively connected to all the other populations, 
have low pairwise FST values, and are genetically similar to each other (pairwise FST of 0 
between White Island and Spirits Bay, Table A2). White Island and Spirits Bay could have 
been colonised at a similar time from the same source, leading to their similarity, and/or 
they could be receiving immigrating larvae from the same source. These results indicate that 
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the leading and trailing edges of the range of C. rodgersii in New Zealand are likely well 
connected by dispersal to other populations. 
 
Our study found lower genetic diversity of C. rodgersii populations in Rangitāhua than in 
north-east New Zealand (Table 1). This result contrasts with previous findings based on 
microsatellites, where populations of Rangitāhua were noted to have higher genetic 
diversity than populations of north-east New Zealand (Thomas et al. 2021). The smaller 
number of individuals sampled from Rangitāhua, relative to mainland New Zealand, could 
have contributed to the lower genetic variance observed in our study due to ascertainment 
bias in bioinformatically selecting polymorphic loci. Nonetheless, Rangitāhua is 
geographically isolated with a small habitat area available to shallow reef organisms and is 
at the edge of the C. rodgersii’s range, that could also lead to the lower genetic variance in 
these populations (as also found in other echinoderms species, e.g. Liggins et al. 2014). In 
contrast to Rangitāhua, north-east New Zealand is influenced by the EAC via the Tasman 
Front, thus over time it has likely had immigration from parts of Australia (Banks et al. 2007; 
Thomas et al. 2021) as well as receiving migrants from Rangitāhua, increasing exchange and 
therefore genetic variance. Within north-east New Zealand, the northern-most populations 
of C. rodgersii had the lowest neutral genetic variance (Fig. 6a). This pattern could indicate 
that these populations are newer as the founder effect can cause new populations to have 
smaller genetic variance (Sirkkamaa 1983). However, size structure analysis suggests there 
has been a poleward range extension of C. rodgersii from North Cape (Spirit’s Bay) to the 
Mokohinau Islands and that southern populations are recruiting more regularly (Chapter 
Two). Therefore, it is more likely that southern populations have higher neutral genetic 
variance because they have a larger population size and have more regular recruitment 
from a diverse range of sources. 
 
Often patterns of spatial genetic differentiation based on putatively adaptive loci correlate 
with those based on neutral loci for the same individuals, but provide greater precision (e.g. 
Candy et al. 2015; Liggins et al. 2019) that can be useful for informing stock assessments 
(Mariani et al. 2013) and conservation. In our analyses, Rangitāhua populations were more 
genetically differentiated from each other based on the putatively adaptive loci compared 
to neutral loci. Additionally, north-east New Zealand populations of C. rodgersii did form 
two clusters based on the putatively adaptive loci (Fig. 3b), as compared to only one based 
on the neutral loci (without population groupings imposed a priori). The clusters 
corresponded to those that had a Rangitāhua-like genotype and those that did not. 
Additionally, the White Island population was more genetically distinct from the other 
north-east New Zealand populations with the DAPC based on putatively adaptive loci (Fig. 
3d) than the DAPC based on neutral loci (Fig. A3). The population graphs provided a view as 
to why patterns of population genetic variation differed for the neutral versus putatively 
adaptive loci. In contrast to the poleward increase of within-population variance detected 
using neutral loci, within-population variance informed by the putatively adaptive loci varied 
among populations in an irregular spatial pattern. Based on these patterns, populations 
with higher putatively adaptive genetic variance such as White Island and Berghan Point 
may have higher putatively adaptive potential, and relaxed selection at those putatively 
adaptive loci (Table A5). In contrast, populations with low putatively adaptive genetic 
variance, such as the Cavalli Islands and Home Point may have low putatively adaptive 
potential, as a consequence of a selection bottleneck or directional selection acting on those 
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particular loci. Both inferences regarding the putatively adaptive potential within a 
population, as well as which populations are under selection within a seascape (and 
according to what selection pressures) are informative for understanding the future 
potential for populations to thrive under future climate scenarios. 
 
When we examined the two size cohorts of C. rodgersii sampled across north-east New 
Zealand separately, the distribution of putatively adaptive and neutral genetic variance 
differed and we recovered patterns that were not present when these size cohorts were 
combined. For instance, when comparing patterns of putatively adaptive genetic variance 
across the sampled size cohorts, the Mayor Island population had high within-population 
putatively adaptive genetic variance in the large/older group (12.376; Table A9) and then 
small within-population putatively adaptive genetic variance in the smaller/younger group 
(5.000; Table A8), potentially indicating a selection bottleneck of these younger cohorts. 
Through comparing the population graphs for the older, younger, and overall population 
samples, we can see how the distribution of genetic variation has shifted over time. For 
instance, in the population graphs for the older/larger group, the populations of Spirits Bay 
and the Poor Knights Islands are disconnected from the graph (Fig. 7a), whereas in the 
younger/smaller group they are connected (Fig.7b). Overall (with both age groups), these 
two populations are connected (Fig. 6b) and have quite low pairwise FST (Spirits Bay -0.0002 
to 0.0016, Poor Knight Islands 0 to 0.0014; Table A2, excluding Rangitāhua) indicating they 
are genetically similar to the other populations overall. The difference in the population 
graphs indicates that the older individuals in each population may have come from separate 
colonisation events, or different genotypes have persisted within each population, since 
which time these individuals have contributed to gene-flow among populations. 
Alternatively, colonisation by the younger/smaller individuals may have been more 
geographically widespread. This could be because of a potential recent range extension of C. 
rodgersii in northern north-east New Zealand (Chapter Two) that has led to the 
younger/smaller individuals being very similar. Furthermore, based on putatively adaptive 
loci, the larger/older individuals of the Spirits Bay population and the Poor Knights Islands 
population are connected in the graph (Fig. 7c). Such a pattern could be due to similar 
environmental pressures (i.e. selection pressures) at these locations, meaning that the 
putatively adaptive variance that is maintained may beneficial for the survival of individuals 
at both locations. 
 
Using a combination of methods to understand patterns in the distribution of genetic 
variation across the C. rodgersii meta-population allowed us to have further confidence in 
our inferences as each analysis had different assumptions, for example, population graphs 
do not assume an underlying model (Dyer 2015). Additionally, each method drew from 
different information within the genotype dataset. For instance, conditional covariances 
among populations based on shared alleles are used in population graphs, whereas the 
discrimination of individuals into clusters based on the decomposition of the overall 
sampled variance is used in DAPCs. The combination of multiple genetic measures, the 
multivariate discriminant analyses, and analyses of genetic covariance and meta-population 
graph topology, revealed some C. rodgersii populations of particular interest. First, Takatu 
Point’s population of C. rodgersii had the lowest genetic diversity (mean allelic richness 
1.721; Simpson’s index 0.929; Table 1; smallest within-population variation for both neutral 
small and neutral large 5.000; Table A6 and Table A7), and was the most genetically 
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differentiated population (FST = 0.0010 to 0.0033; Table A2; and DAPCs in Fig. 2c and 4c) 
within north-east New Zealand. Although the smaller number of sampled individuals (14) in 
the Takatu Point population means population genetic diversity estimates could be 
unreliable (Konopinski 2020), pairwise genetic differentiation measures are more robust to 
sample size differences. Furthermore, the Takatu Point population also had the highest 
observed heterozygosity (0.188) but the lowest expected heterozygosity (0.262) within 
north-east New Zealand (Table 1). These results may indicate that the Takatu Point 
population is the result of only a few immigration events, potentially from formerly 
genetically distinct populations, that are now admixed. Although Takatu Point’s population 
of C. rodgersii was very connected in the population graph (6 degrees; Table A4), and had 
high within-population genetic variance across both size cohorts (13.24), it had a low 
between centrality index (1) meaning it is not important to the overall graph connectivity 
and is likely a demographic sink. Second, our sampling design including two size cohorts, 
and our analysis of both neutral and putatively adaptive loci, revealed White Island’s 
population of C. rodgersii may be self-recruiting more in recent years than previously. Based 
on the neutral loci, White Island’s population of C. rodgersii was connected in the 
older/larger group but not the younger/smaller group (Fig. 7a,b). Although White Island has 
two individuals with a high probability of the Rangitāhua-like genotype (Table A3) this is 
likely not the cause of the disconnected populations as these individuals are large. Instead, 
it may be because the population had been largely self-recruiting in recent years (also 
suggested by Chapter Two). Furthermore, based on putatively adaptive loci, White Island is 
disconnected in the older/large group population graph (Fig. 7c) and appears different to 
other populations in the DAPC (Fig. 3d, 5c) indicating divergent selection at these loci, and 
local adaptation of the White Island population of C. rodgersii. 
 
Overall, we found that population structure and connectivity differed for the two sampled 
size cohorts of C. rodgersii in north-east New Zealand; and that Rangitāhua populations 
have a different genomic composition to those of north-east New Zealand, but some 
migrants from Rangitāhua are received into southern offshore islands. Our analyses 
depended on the sampling of representative size cohorts within populations. In general, 
small individuals are difficult to find as they are able to hide more effectively within 
interstitial spaces (Ling et al. 2012; Byrne et al. 2020), and populations naturally have 
different size landscapes due to their demography and recruitment. Nonetheless, for every 
population of north-east New Zealand, we were able to sample two representative size 
cohorts, relevant to the time scales over which the ocean environment of New Zealand has 
changed (Shears et al. 2017; Salinger et al. 2020). Although the methods we used to detect 
putatively adaptive loci are robust to population genetic structure and admixture (Whitlock 
et al. 2015; Luu et al. 2017; Capblancq et al. 2018), without relating these loci to a known 
divergent selection pressure (i.e. genotype-environment-associations with a seascape 
genomic approach) and a mechanistic link between gene function and the selection 
pressure, interpretation of the patterns in putatively adaptive genetic variance should be 
cautious. Therefore it is important to retain these time-stamped, georeferenced genotypes 
and related measures as a baseline to inform further analyses and future genetic 
monitoring. Centrostephanus rodgersii has an actively changing population structure and 
since it has the potential to dramatically impact our biodiversity and fisheries in New 
Zealand, we should monitor this species and consider ways we can manage the species like 
has been done in Tasmania (Johnson et al. 2013). 



 87 

Chapter Three Appendix: supplementary methods and results 
 
Single nucleotide polymorphism calling and filtering 
 

Individual Match Mismatch NA 
T8276 6355 30 508 
T7284 6300 48 545 
T7234 6284 35 574 
T7290 6340 87 466 

Table A1: Table of the replicate individuals that were sequenced. Match = the number of loci that 
were called the same, Mismatch = the number of loci that were called differently, NA = the number 
of loci where the call was missing in at least one of the replicates. 
 
 
Detection of loci putatively under selection 
 
 

 
Figure A1: Scree plot used to select the value of K used in the outlier analysis of pcadapt. 
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Population genetic summary statistics 
 

  Ald Ber Cas Cav Hom LEs Mac May Mer Mok Poo Rao Sai Spi Tak 

Ber 0.0008               
Cas 0.0012 0.0002              
Cav 0.0007 -0.0005 0.0004             
Hom 0.0016 0.0004 0.0018 0.0009            
LEs 0.0305 0.0309 0.0259 0.0305 0.0310           
Mac 0.0275 0.0279 0.0238 0.0292 0.0281 0.0005          
May 0.0025 0.0013 0.0016 0.0019 0.0013 0.0269 0.0252         
Mer 0.0020 0.0011 0.0016 0.0017 0.0024 0.0257 0.0232 0.0019        
Mok 0.0015 0.0006 0.0004 0.0008 0.0008 0.0297 0.0274 0.0013 0.0017       
Poo 0.0002 0.0001 0 0.0012 0.0004 0.0286 0.0257 0.0012 0.0014 0.0007      
Rao 0.0301 0.0306 0.0266 0.0303 0.0305 0.0012 0.0008 0.0265 0.0254 0.0306 0.0288     
Sai 0.0004 0.0006 0.0011 0.0006 0.0017 0.0311 0.0289 0.0020 0.0016 0.0007 0.0003 0.0307    
Spi 0.0006 0.0002 -0.0002 0.0005 0.0004 0.0313 0.0285 0.0006 0.0010 0.0004 0 0.0311 -0.0001   
Tak 0.0025 0.0026 0.0012 0.0010 0.0031 0.0305 0.0292 0.0016 0.0033 0.0012 0.0012 0.0306 0.0017 0.0016  
Whi 0.0009 0 0.0005 0.0001 0.0010 0.0253 0.0226 0.0005 0.0008 -0.0002 0 0.0256 0.0008 0 0.0020 

Table A2: Pairwise FST matrix based on the neutral SNPs. See Table A11 for full location names for abbreviated terms.
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Population genetic structure 
 

 
Figure A2: The DAPC with no priors based on the neutral SNPs for all New Zealand populations 

(including Rangitāhua). The DAPC is based on the first 111 PCs and the proportion of conserved 

variance was 0.356. 

 

 

 
Figure A3: The DAPC with population priors based on the neutral SNPs for north-east New Zealand 

populations. The DAPC is based on the first 33 PCs and the proportion of conserved variance was 

0.137. 
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Figure A4: The DAPC with population priors based on neutral SNPs for Rangitāhua populations. The 

DAPC is based on the first 10 PCs and the proportion of conserved variance was 0.139. 
 
 

 
Figure A5: STRUCTURE plot based on neutral SNPs for north-east New Zealand populations, k = 2. 

Full population names are given in Table A11. 
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Figure A6: STRUCTURE plot based on neutral SNPs for large individuals in north-east New Zealand 

populations, k = 2. Full population names are given in Table A11. 

 

 

 

Figure A7: STRUCTURE plot based on neutral SNPs for large individuals in north-east New Zealand 

populations, k = 7. Full population names are given in Table A11. 
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Figure A8: STRUCTURE plot based on neutral SNPs for small individuals in north-east New Zealand 

populations, k = 2. Full population names are given in Table A11. 

 

 

 
Figure A9: The DAPC with no priors based on the adaptive SNPs for all New Zealand populations 

(including Rangitāhua). The DAPC is based on the first 200 PCs and the proportion of conserved 

variance was 0.948. 
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Figure A10: The DAPC with no priors based on the adaptive SNPs for north-east New Zealand 

populations. The DAPC is based on the first 247 PCs and the proportion of conserved variance was 

0.989. 
 

 

 

 

Figure A11: The DAPC with population priors based on the adaptive SNPs for Rangitāhua 

populations. The DAPC is based on the first 23 PCs and the proportion of conserved variance was 

0.471. 
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Figure A12: a) clustering based on the adaptive SNPs for large individuals in north-east New Zealand populations which is then used for the DAPC; b) the 
DAPC with no priors based on the adaptive SNPs for large individuals in north-east New Zealand populations. The DAPC is based on the first 75 PCs and the 
proportion of conserved variance was 0.777.

a) b)
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Individual ID Population Size (mm) 

Mainland 

adaptive 

DAPC 

All 

adaptive 

DAPC 

All 

neutral 

DAPC 

All 

neutral 

STRUCTURE 

T7793 Alderman Islands 85 Y   0.4475 
T7773 Castle Rock 67 Y  Y 0.5209 

T7743 Castle Rock 109 Y Y Y 0.6151 

T7768 Castle Rock 125 Y Y Y 0.9971 

T8212 Mayor Island 69 Y Y Y 0.6334 

T8210 Mayor Island 112 Y Y Y 0.9988 

T8229 Mayor Island 122 Y Y  
0.7438 

T7286 Mercury Islands 130 Y   0.5522 

T7296 Mercury Islands 67 Y  Y 0.5255 

T7313 Mercury Islands 90 Y   0.4779 
T7306 Mercury Islands 104 Y Y Y 0.9982 
T7188 Mokohinau Islands 46 Y Y  

0.5376 
T7207 Mokohinau Islands 78 Y Y Y 0.4733 

T8297 Poor Knight Islands 54 Y   0.4779 
T7364 Sail Rock 98 Y Y  0.4503 

T7254 White Island 91 Y Y Y 0.9970 
T7263 White Island 95 Y   0.3628 
T7260 White Island 99 Y   0.2766 

T7233 White Island 100 Y Y Y 0.7269 

Table A3: Table of Centrostephanus rodgersii individuals sampled from north-east New Zealand that 
clustered with Rangitāhua populations in the DAPC analyses without priors, including their 
assignment to the cluster according to their test size, which DAPC analysis clustered them with the 
Rangitāhua populations (indicated by Y), and STRUCTURE. Mainland adaptive – one of the DAPC 
clusters from the analysis based on the putatively adaptive SNPs including populations sampled from 
north-east New Zealand only, which recovered a small number of individuals clustering separately; 
All adaptive –  the Rangitāhua-like DAPC cluster for the analysis based on the putatively adaptive 
SNPs including all sampled populations; All neutral DAPC – the Rangitāhua-like DAPC cluster for the 
analysis based on the neutral SNPs including all sampled populations; All neutral STRUCTURE – the 
probability that the individual was in the Rangitāhua-like cluster from the STRUCTURE analysis based 
on the neutral SNPs including all sampled populations (k=2), bold over 0.5 probability. (Note: the 
DAPC analysis based on the neutral SNPs including populations sampled from north-east New 
Zealand did not recover a Rangitāhua-like cluster).  
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Meta-population structure and population genetic covariance 
 

 
 
Figure A13: Population graphs for all of New Zealand (including Rangitāhua). a) Population graph 
based on the neutral SNPs displayed geographically; b) Population graph based on the neutral SNPs 
displayed aspatially; c) Population graph based on the putatively adaptive SNPs displayed 
geographically; d) Population graph based on the putatively adaptive SNPs displayed aspatially. 
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Population deg close btw str siw miw modules pop var 

Alderman Islands 5 0.713 12 0.363 68.965 13.793 d 10.171 
Berghan Point 4 0.624 4 0.305 52.921 13.230 a 5.762 
Castle Rock 4 0.613 4 0.321 50.694 12.674 a 5.454 
Cavalli Islands 5 0.680 6 0.385 64.931 12.986 b 7.156 
Home Point 5 0.653 2 0.415 60.632 12.126 c 8.011 
Mayor Island 5 0.643 2 0.417 60.924 12.185 b 10.073 
Mercury Islands 5 0.642 0 0.422 60.111 12.022 b 13.328 
Mokohinau Islands 6 0.686 3 0.483 75.351 12.558 b 5.398 
Poor Knights Islands 4 0.650 4 0.308 51.966 12.991 a 7.852 
Sail Rock 2 0.512 2 0.135 29.665 14.833 a 9.659 
Spirits Bay 5 0.697 8 0.394 63.882 12.776 c 5.000 
Takatu Point 6 0.593 1 0.598 60.356 10.059 c 13.240 
White Island 4 0.644 6 0.298 53.815 13.454 d 13.110 

Table A4: Measures from the population graph in Fig. 6a based on neutral loci of individuals from 
north-east New Zealand. Deg = number of degrees/connections to other populations; close = 
closeness centrality index; btw = betweenness centrality index; str = strength (sum of the weights of 
the links connected to a node); siw = sum of the inverse weights of the links connected to a node; 
miw = mean of the inverse weights of the links connected to a node; modules = each letter refers to 
a unique module; pop var = the within population variance. 
 
 

Population deg close btw str siw miw modules pop var 

Alderman Islands 3 0.687 12 0.187 48.205 16.068 a 8.607 
Berghan Point 3 0.551 1 0.204 44.582 14.861 b 13.717 
Castle Rock 4 0.779 15 0.259 61.807 15.452 c 7.659 
Cavalli Islands 3 0.611 6 0.210 43.263 14.421 b 5.000 
Home Point 4 0.670 10 0.276 59.507 14.877 b 6.578 
Mayor Island 2 0.587 2 0.140 29.493 14.746 a 9.390 
Mercury Islands 3 0.595 2 0.194 46.451 15.484 a 7.426 
Mokohinau Islands 4 0.622 5 0.262 62.123 15.531 b 8.981 
Poor Knights Islands 3 0.562 2 0.189 47.622 15.874 a 10.31 
Sail Rock 3 0.656 3 0.185 48.647 16.216 c 9.117 
Spirits Bay 4 0.719 16 0.243 65.921 16.48 a 10.394 
Takatu Point 5 0.617 5 0.411 60.871 12.174 b 8.384 
White Island 3 0.549 2 0.191 47.128 15.709 a 13.645 

Table A5: Measures from the populations graph Fig. 6c based on putatively adaptive loci of 
individuals from north-east New Zealand. Deg = number of degrees/connections to other 
populations; close = closeness centrality index; btw = betweenness centrality index; str = strength 
(sum of the weights of the links connected to a node); siw = sum of the inverse weights of the links 
connected to a node; miw = mean of the inverse weights of the links connected to a node; modules 
= each letter refers to a unique module; pop var = the within population variance. 
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Population deg close btw str siw miw modules pop var 

Alderman Islands 2 0.054 10 0.204 19.677 9.838 c 7.413 
Berghan Point 2 0.056 18 0.243 16.581 8.290 b 9.227 
Castle Rock 1 0.050 0 0.113 8.826 8.826 b 5.577 
Cavalli Islands 3 0.057 14 0.541 17.461 5.820 a 11.764 
Home Point 1 0.053 0 0.131 7.636 7.636 a 13.871 
Mayor Island 4 0.060 38 0.795 20.236 5.059 a 13.36 
Mercury Islands 2 0.057 18 0.289 14.963 7.482 c 10.937 
Mokohinau Islands 2 0.054 10 0.224 17.879 8.94 b 7.195 
Poor Knights Islands 1 0.051 0 0.098 10.159 10.159 c 6.866 
Sail Rock 3 0.059 24 0.571 16.684 5.561 b 8.501 
Spirits Bay 2 0.054 0 0.478 8.441 4.220 a 9.096 
Takatu Point 3 0.056 0 0.716 12.631 4.210 a 5.000 
White Island 0 0.006 0 0 0 NA d 8.010 

Table A6: Measures from the populations graph Fig. 7b based on neutral loci of small individuals 
from north-east New Zealand. Deg = number of degrees/connections to other populations; close = 
closeness centrality index; btw = betweenness centrality index; str = strength (sum of the weights of 
the links connected to a node); siw = sum of the inverse weights of the links connected to a node; 
miw = mean of the inverse weights of the links connected to a node; modules = each letter refers to 
a unique module; pop var = the within population variance. 
 
 

Population deg close btw str siw miw modules pop var 

Alderman Islands 3 0.034 27 0.513 17.589 5.863 a 7.24 
Berghan Point 1 0.032 0 0.127 7.845 7.845 b 12.79 
Castle Rock 2 0.033 9 0.253 15.786 7.893 b 9.221 
Cavalli Islands 2 0.033 9 0.22 18.17 9.085 c 9.967 
Home Point 3 0.034 28 0.374 24.259 8.086 b 6.27 
Mayor Island 1 0.031 0 0.103 9.741 9.741 a 7.169 
Mercury Islands 1 0.032 0 0.109 9.161 9.161 c 9.927 
Mokohinau Islands 2 0.034 25 0.318 12.841 6.421 b 13.086 
Poor Knights Islands 0 0.006 0 0 0 NA d 8.027 
Sail Rock 2 0.032 9 0.219 18.338 9.169 a 9.937 
Spirits Bay 0 0.006 0 0 0 NA e 10.983 
Takatu Point 2 0.033 16 0.276 14.858 7.429 a 5.000 
White Island 1 0.032 0 0.173 5.795 5.795 a 10.149 

Table A7: Measures from the populations graph Fig. 7a based on neutral loci of large individuals 
from north-east New Zealand. Deg = number of degrees/connections to other populations; close = 
closeness centrality index; btw = betweenness centrality index; str = strength (sum of the weights of 
the links connected to a node); siw = sum of the inverse weights of the links connected to a node; 
miw = mean of the inverse weights of the links connected to a node; modules = each letter refers to 
a unique module; pop var = the within population variance. 
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Population deg close btw str siw miw modules pop var 

Alderman Islands 3 0.060 19 0.35 26.761 8.92 a 7.207 
Berghan Point 2 0.058 12 0.21 19.099 9.549 b 8.186 
Castle Rock 2 0.057 10 0.244 16.492 8.246 b 11.767 
Cavalli Islands 3 0.059 18 0.405 22.452 7.484 a 8.779 
Home Point 1 0.052 0 0.112 8.955 8.955 d 10.521 
Mayor Island 1 0.049 0 0.28 3.575 3.575 c 5.000 
Mercury Islands 2 0.055 10 0.237 16.926 8.463 d 6.109 
Mokohinau Islands 2 0.058 12 0.224 18.073 9.036 a 8.975 
Poor Knights Islands 1 0.050 0 0.246 4.058 4.058 c 10.191 
Sail Rock 2 0.055 6 0.389 11.433 5.716 b 9.38 
Spirits Bay 3 0.060 15 0.601 16.435 5.478 a 9.971 
Takatu Point 4 0.057 19 1.076 14.938 3.735 c 14.768 
White Island 0 0.006 0 0 0 NA e 8.336 

Table A8: Measures from the populations graph Fig. 7d based on putatively adaptive of small 
individuals from north-east New Zealand. Deg = number of degrees/connections to other 
populations; close = closeness centrality index; btw = betweenness centrality index; str = strength 
(sum of the weights of the links connected to a node); siw = sum of the inverse weights of the links 
connected to a node; miw = mean of the inverse weights of the links connected to a node; modules 
= each letter refers to a unique module; pop var = the within population variance. 
 
 

Population deg close btw str siw miw modules pop var 

Alderman Islands 4 0.265 10 0.732 22.178 5.545 c 12.529 
Berghan Point 3 0.250 14 0.416 22.203 7.401 b 9.451 
Castle Rock 2 0.232 10 0.236 16.959 8.479 a 9.421 
Cavalli Islands 3 0.268 16 0.394 23.364 7.788 c 8.053 
Home Point 3 0.250 7 0.409 22.501 7.5 c 10.924 
Mayor Island 2 0.238 0 0.218 18.391 9.195 b 12.376 
Mercury Islands 2 0.214 7 0.283 14.206 7.103 a 10.252 
Mokohinau Islands 3 0.254 2 0.552 16.559 5.52 b 6.205 
Poor Knights Islands 4 0.278 19 0.517 31.790 7.948 b 8.83 
Sail Rock 2 0.224 3 0.251 15.927 7.963 c 11.379 
Spirits Bay 3 0.257 13 0.372 24.322 8.107 b 7.152 
Takatu Point 3 0.233 10 0.447 20.837 6.946 a 9.014 
White Island 2 0.218 7 0.273 14.812 7.406 a 5.000 

Table A9: Measures from the populations graph Fig. 7c based on putatively adaptive loci of large 
individuals from north-east New Zealand. Deg = number of degrees/connections to other 
populations; close = closeness centrality index; btw = betweenness centrality index; str = strength 
(sum of the weights of the links connected to a node); siw = sum of the inverse weights of the links 
connected to a node; miw = mean of the inverse weights of the links connected to a node; modules 
= each letter refers to a unique module; pop var = the within population variance. 
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Graph 1 Graph 2 

graph_modul_compar 
(Adjusted Rand Index) 

graph_node_compar 

(Spearman's 
correlation) 

graph_topo_compar 
(Mathew's 
correlation) 

Small|Adp|NENZ Large|Adp|NENZ 0.062 0.342 (0.253) 0 

Small|Neu|NENZ Large|Neu|NENZ 0.026 0.096 (0.756) 0.137 

All|Neu|All All|Adp|All 0.509 0.730 (0.001) 0.506 

Large|Neu|NENZ Large|Adp|NENZ 0.081 0.120 (0.695) 0.245 

Small|Neu|NENZ Small|Adp|NENZ 0.165 0.500 (0.082) -0.015 

All|Neu|NENZ All|Adp|NENZ 0.229 0.426 (0.147) -0.085 

Table A10: Comparisons of populations graphs. Graph 1 and Graph 2: the population graphs which 
are being compared; labelled as: Size class (Small: small individuals, Large: large individuals, All: both 
small and large individuals)|SNPs (Neu: neutral SNPs, Adp: putatively adaptive SNPs)|Populations 
(All: all populations, NENZ: only north-east New Zealand populations). graph_modul_compar uses 
the Adjusted Rand Index to compare if the modules are similarly classified across the graphs; 
graph_node_compar uses Spearman’s correlation coefficient to compare the degrees (chosen 
parameter) of the nodes/populations between the graphs using a sample size of 13, number in 
brackets is the p-value; graph_topo_compar uses Mathew’s correlation coefficient to compare the 
topology/connections between the populations. 
 
 
 

Population Abbreviation 

Alderman Islands Ald 
Berghan Point Ber 
Castle Rock Cas 
Cavalli Islands Cav 
Home Point Hom 
L’Esperance Rock LEs 
Macauley Island Mac 
Mayor Island May 
Mercury Islands Mer 
Mokohinau Islands Mok 
Raoul Island Poo 
Poor Knights Islands Rao 
Sail Rock Sai 
Spirits Bay Spi 
Takatu Point Tak 
White Island Whi 

Table A11: Abbreviations of the population names. 
  



 101 

  
Ald Ber Cas Cav Hom May Mer Mok Poo Sai Spi Tak Whi 

Ald 0 0 0 0.07 0.08 0 0 0 0 0.07 0.07 0 0.07 

Ber 
 

0 0 0.07 0.08 0 0 0 0.08 0.07 0 0 0 

Cas 
  

0 0 0 0.08 0 0 0.07 0 0 0.1 0.07 

Cav 13.62 13.43 
 

0 0.08 0.08 0.08 0 0 0 0 0 0 

Hom 12.9 11.95 
 

12.59 0 0 0 0 0 0 0.08 0.1 0 

May 
  

13.16 12.58 
 

0 0.08 0.07 0 0 0 0.1 0 

Mer 
   

12.72 
 

12.26 0 0.08 0 0 0 0.11 0.08 

Mok 
     

13.38 12.56 0 0.08 0 0.08 0.1 0.08 

Poo 
 

12.53 13.5 
    

13.04 0 0 0.08 0 0 

Sai 14.65 15.02 
       

0 0 0 0 

Spi 14.12 
   

12.73 
  

13.31 12.9 
 

0 0.09 0 

Tak 
  

10.13 
 

10.46 9.55 9.38 10.01 
  

10.82 0 0 

Whi 13.68 
 

13.91 
   

13.19 13.04 
    

0 

Table A12: Edge lengths of the population graph based on the neutral loci of individuals in north-
east New Zealand (Fig. 6b). Above the diagonal is the between-population covariance with zeros 
where the populations are not connected. Below the diagonal is the inverse of the between-
population covariance which corresponds to the lengths of the edges displayed in the population 
graph. 
 
 
 

 Ald Ber Cas Cav Hom May Mer Mok Poo Sai Spi Tak Whi 

Ald 0 0 0 0 0.06 0 0 0 0.06 0 0.06 0 0 

Ber  0 0 0.06 0 0 0 0.06 0 0 0 0.08 0 

Cas   0 0.07 0 0 0.07 0 0 0.06 0.06 0 0 

Cav  15.85 15.03 0 0 0 0 0 0 0 0 0.08 0 

Hom 15.42    0 0 0 0.06 0 0.06 0 0.09 0 

May      0 0 0 0 0 0.06 0.08 0 

Mer   15.28    0 0 0.06 0 0 0 0.07 

Mok  16.05   16.94   0 0 0.06 0 0.08 0 

Poo 16.09      15.98  0 0 0 0 0.06 

Sai   15.88  15.88   16.88  0 0 0 0 

Spi 16.69  15.62   17.22     0 0 0.06 

Tak  12.69  12.39 11.27 12.27  12.25    0 0 

Whi       15.19  15.55  16.39  0 

Table A13: Edge lengths of the population graph based on the putatively adaptive loci of individuals 
in north-east New Zealand (Fig. 6d). Above the diagonal is the between-population covariance with 
zeros where the populations are not connected. Below the diagonal is the inverse of the between-
population covariance which corresponds to the lengths of the edges displayed in the population 
graph. 
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 Ald Ber Cas Cav Hom May Mer Mok Poo Sai Spi Tak Whi 

Ald 0 0 0 0 0 0 0 0.18 0 0 0 0.16 0.17 

Ber  0 0.13 0 0 0 0 0 0 0 0 0 0 

Cas  7.84 0 0 0.13 0 0 0 0 0 0 0 0 

Cav    0 0.11 0 0.11 0 0 0 0 0 0 

Hom   7.94 9.01 0 0 0 0.14 0 0 0 0 0 

May      0 0 0 0 0.1 0 0 0 

Mer    9.16   0 0 0 0 0 0 0 

Mok 5.53    7.31   0 0 0 0 0 0 

Poo         0 0 0 0 0 

Sai      9.74    0 0 0.12 0 

Spi           0 0 0 

Tak 6.26         8.6  0 0 

Whi 5.8            0 

Table A14: Edge lengths of the population graph based on the neutral loci of large individuals in 
north-east New Zealand (Fig. 7a). Above the diagonal is the between-population covariance with 
zeros where the populations are not connected. Below the diagonal is the inverse of the between-
population covariance which corresponds to the lengths of the edges displayed in the population 
graph. 
 
 
 

 Ald Ber Cas Cav Hom May Mer Mok Poo Sai Spi Tak Whi 

Ald 0 0 0 0 0 0 0.11 0 0.1 0 0 0 0 

Ber  0 0 0 0 0 0 0.11 0 0.13 0 0 0 

Cas   0 0 0 0 0 0.11 0 0 0 0 0 

Cav    0 0.13 0.19 0 0 0 0 0 0.22 0 

Hom    7.64 0 0 0 0 0 0 0 0 0 

May    5.35  0 0.18 0 0 0.21 0.22 0 0 

Mer 9.52     5.45 0 0 0 0 0 0 0 

Mok  9.05 8.83     0 0 0 0 0 0 

Poo 10.16        0 0 0 0 0 

Sai  7.53    4.85    0 0 0.23 0 

Spi      4.6     0 0.26 0 

Tak    4.48      4.31 3.84 0 0 

Whi             0 

Figure A15: Edge lengths of the population graph based on the neutral loci of small individuals in 
north-east New Zealand (Fig. 7b). Above the diagonal is the between-population covariance with 
zeros where the populations are not connected. Below the diagonal is the inverse of the between-
population covariance which corresponds to the lengths of the edges displayed in the population 
graph. 
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 Ald Ber Cas Cav Hom May Mer Mok Poo Sai Spi Tak Whi 

Ald 0 0 0 0.16 0.17 0 0 0.22 0 0 0 0.19 0 

Ber  0 0.11 0 0 0 0 0.17 0 0 0.13 0 0 

Cas  8.84 0 0 0 0 0 0 0 0 0 0 0.12 

Cav 6.25   0 0.12 0 0 0 0.12 0 0 0 0 

Hom 6.06   8.58 0 0 0 0 0 0.13 0 0 0 

May      0 0 0 0.11 0 0.11 0 0 

Mer       0 0 0 0 0 0.13 0.15 

Mok 4.62 5.93      0 0.17 0 0 0 0 

Poo    8.53  9.37  6.02 0 0 0.13 0 0 

Sai     7.86     0 0 0.12 0 

Spi  7.44    9.02   7.87  0 0 0 

Tak 5.25      7.51   8.07  0 0 

Whi   8.12    6.69      0 

Table A16: Edge lengths of the population graph based on the putatively adaptive loci of large 
individuals in north-east New Zealand (Fig. 7c). Above the diagonal is the between-population 
covariance with zeros where the populations are not connected. Below the diagonal is the inverse of 
the between-population covariance which corresponds to the lengths of the edges displayed in the 
population graph. 
 
 
 

 Ald Ber Cas Cav Hom May Mer Mok Poo Sai Spi Tak Whi 

Ald 0 0.1 0 0 0 0 0 0.1 0 0 0.15 0 0 

Ber 10.14 0 0.11 0 0 0 0 0 0 0 0 0 0 

Cas  8.96 0 0 0 0 0 0 0 0.13 0 0 0 

Cav    0 0 0 0.13 0.12 0 0 0.16 0 0 

Hom     0 0 0.11 0 0 0 0 0 0 

May      0 0 0 0 0 0 0.28 0 

Mer    7.97 8.96  0 0 0 0 0 0 0 

Mok 10.01   8.07    0 0 0 0 0 0 

Poo         0 0 0 0.25 0 

Sai   7.53       0 0 0.26 0 

Spi 6.62   6.41       0 0.29 0 

Tak      3.57   4.06 3.9 3.41 0 0 

Whi             0 

Table A17: Edge lengths of the population graph based on the putatively adaptive loci of small 
individuals in north-east New Zealand (Fig. 7d). Above the diagonal is the between-population 
covariance with zeros where the populations are not connected. Below the diagonal is the inverse of 
the between-population covariance which corresponds to the lengths of the edges displayed in the 
population graph. 
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Chapter Four: General discussion 
 
In this thesis, I used population size structure analysis and population genomics to examine 
the population history and demography of the Long-spined sea urchin, Centrostephanus 
rodgersii, in New Zealand. Specifically, I used these methods to assess whether there has 
been a range extension or detectable change in the population demography of the species 
over recent decades. Using size structure analysis I found that there has been a possible 
range extension of C. rodgersii in the northern part of north-east New Zealand, and that 
southern locations may have more regular recruitment (Chapter Two). Based on population 
genomic analysis, I found that C. rodgersii populations of the Rangitāhua archipelago are 
genetically differentiated from populations of north-east New Zealand, but that there is 
continuing immigration of C. rodgersii from Rangitāhua to some offshore islands of north-
east New Zealand. Focussing on north-east New Zealand, population genomic analysis of 
different size classes revealed that the distribution of neutral and adaptive genomic 
variation has changed over recent decades, likely associated with demographic changes 
(Chapter Three). In this general discussion, I summarise the main results of my thesis, the 
implications of these findings, and discuss caveats and future directions for research looking 
to understand the management and monitoring of range-extending species, or species 
undergoing demographic changes in response to local and global changes such as climate 
change. 
 
Main findings 
 
The range extension and associated impacts of the Long-spined sea urchin, Centrostephanus 
rodgersii, on the marine ecosystems and fisheries of south-east Australia are well known 
(Johnson et al. 2005; Ling 2008; Lisson 2018). My thesis contributes new knowledge about 
the population history and demography of C. rodgersii in New Zealand. Previous research on 
C. rodgersii showed that the species has been in New Zealand since at least 1897 (Farquhar 
1897), that New Zealand’s population is genetically distinct from Australia (Thomas et al. 
2021), is likely self-recruiting (Pecorino et al. 2013a), and is possibly increasing in abundance 
at some locations (Balemi et al. 2021). In Chapter Two, I found an indication that C. rodgersii 
had undergone a range extension in the northern part of north-east New Zealand (from 
Spirits Bay to the Mokohinau Islands), but not across its whole New Zealand range. 
Additionally, I found that the populations in the southern part of the range are likely 
recruiting more regularly. Chapter Three indicated that there have been demographic and 
connectivity changes to C. rodgersii in north-east New Zealand. Based on the combination of 
these results it is likely that there was poleward range extension of C. rodgersii in the 
northern part of north-east New Zealand and that recruitment levels vary across the range. 
 
One of the most evident signs of a change in a species’ range and demography is a range 
extension. Range extensions in response to climate change have been recorded for marine 
organisms in many parts of the world, including mangrove forests on the Florida east coast 
(Cavanaugh et al. 2014); four tropical reef corals (Acropora hyacinthus, Acropora muricata, 
Acropora solitaryensis, Pavona decussata) in Japan (Yamano et al. 2011); and Adelie 
penguins (Pygoscelis adeliae) in the Ross Sea, Antarctica (Taylor et al. 1990). New Zealand 
has few recorded range extensions currently, however, this could be due to a lack of 
monitoring. For instance, recent monitoring from a citizen science project has recorded the 
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range extension of mahimahi (Coryphaena hippurus), in the North Island of New Zealand 
(Middleton et al. 2021). In Chapter Two, I used size structure analysis to reveal evidence of a 
potential past range extension of C. rodgersii in the northern part of the species’ north-east 
New Zealand range. In contrast, in the southern part of C. rodgersii’s north-east New 
Zealand range, I did not detect evidence for a potential poleward range extension. The 
dominant current system in north-east New Zealand, the East Auckland Current (EAuC), is 
very variable (Stanton et al. 1997), and could drive a non-linear non-poleward range 
extension which would not have been picked up the methods that I used in Chapter Two. To 
detect such current-driven non-linear range extensions, the methods used in Chapter Two 
could be extended to incorporate non-linear relationships and/or colonisation/connectivity 
predictions among locations based on a biophysical model of larval dispersal for the species. 
 
This thesis contributed to the understanding of the neutral population genetic structuring of 
C. rodgersii in New Zealand, by using more locations than previous studies and the use of 
single nucleotide polymorphisms (SNPs). Using microsatellite markers, Banks et al. (2007) 
studied only one population from New Zealand (and 15 from Australia) and found little 
genetic differentiation between Australian and New Zealand populations. The study of 
Thomas et. al (2021) included seven New Zealand populations (and seven from Australia) 
and found that Australian and New Zealand populations were substantially differentiated, 
but found little differentiation between Rangitāhua and north-east New Zealand. I used 16 
populations from New Zealand (and none from Australia) and found that Rangitāhua is 
differentiated from north-east New Zealand. The differentiation between Rangitāhua and 
north-east New Zealand found in this study but not in Thomas et al. (2021) may have been 
due to the increased number of locations but could also be due to the use of SNPs rather 
than microsatellites. SNPs can reveal finer-scale population genetic differentiation than 
microsatellites (e.g. Candy et al. 2015; Zimmerman et al. 2020) and have been 
recommended to replace the use of microsatellites (Fischer et al. 2017). Therefore, due to 
the chosen markers and the number of locations, this thesis gives the most robust 
understanding of neutral population genetic structuring of C. rodgersii in New Zealand to 
date. 
 
There is likely some ongoing migration of C. rodgersii from Rangitāhua to north-east New 
Zealand. The clustering of individuals based on genotype in Chapter Three showed that 
some individuals clustered with the Rangitāhua populations but were found in north-east 
New Zealand. Migration from the Rangitāhua populations is likely possible due to the 
Antarctic Intermediate Water that flows south along the Kermadec Ridge (where 
Rangitāhua is located) to north-east New Zealand (Chiswell et al. 2015). There are records of 
other sub-tropical species found at Rangitāhua being sighted in north-east New Zealand 
(Middleton et al. 2021), including the fishes the Kermadec scalyfin (Parma kermadecensis) 
and the Kermadec demoiselle (Chrysiptera Rapanui) (Francis et al. 1999; Liggins et al. 2021). 
Centrostephanus rodgersii’s long larval dispersal stage means that there would be enough 
time for an individual larva to travel from Rangitāhua to north-east New Zealand (Huggett et 
al. 2005). The north-east New Zealand C. rodgersii individuals with the “Rangitāhua-like” 
genotype were found in populations in the southern part of north-east New Zealand, likely 
because the Antarctic Intermediate Water flows from the Kermadec Ridge to central north-
east New Zealand, rather than North Cape, Spirit’s Bay (Chiswell et al. 2015). Based on their 
genotypic composition, I found that the “Rangitāhua-like” individuals in north-east New 
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Zealand are likely to be a mixture of direct migrants, second generation, and third-
generation migrants from Rangitāhua that have interbred with the north-east New Zealand 
populations. 
 
Populations across the New Zealand range of C. rodgersii may be undergoing different 
demographic changes. The more southern populations in north-east New Zealand are likely 
to be recruiting more regularly than the northern populations, based on their greater 
variance in sizes (Chapter Two). Further, I found that in the same populations, younger 
cohorts and older cohorts had different between-population genomic connectivity. For 
instance, the White Island population was connected to other north-east New Zealand 
populations in the younger size cohort, yet not in the older size cohort; and the Poor Knight 
Islands and Spirits Bay populations were disconnected from other populations in the older 
size cohort, but connected in the younger size cohort (Chapter Three). Furthermore, based 
on putatively adaptive loci, the Berghan Point and White Island populations had much 
higher adaptive potential than other populations such as the Cavalli Islands and Home Point 
populations. The analysis based on the putatively adaptive SNPs suggest signs of local 
adaptation. The Cavalli Islands had the lowest adaptive genetic variance indicating that they 
could have recently undergone a selective sweep. These patterns in adaptive genetic 
variance were different when the individuals were split into different demographic groups, 
indicating that recruiting larvae and adults had distinct genomic compositions, potentially 
due to adaptation. Based on these results, the meta-population of C. rodgersii in north-east 
New Zealand is likely undergoing changes, and these changes are likely to continue in the 
future, so ongoing monitoring is important.  
 
My thesis confirms, along with previous studies, that self-recruitment of C. rodgersii is likely 
happening in north-east New Zealand. The environmental conditions in north-east New 
Zealand allow C. rodgersii to reproduce (Pecorino et al. 2013a). Additionally, Thomas et al. 
(2021) found genetic differentiation between Australia and New Zealand suggesting there is 
reproduction occurring in New Zealand. Chapter Two suggests that recruitment is occurring 
in north-east New Zealand from the variation of sizes present in populations and that 
recruitment is higher in southern populations. Chapter Three suggests that there is 
recruitment occurring in both Rangitāhua and north-east New Zealand meta-populations, 
due to the genetic differentiation between them. The population graphs from the two 
demographic groups in Chapter Three indicate that the recruitment and population 
connectivity may be changing for populations in north-east New Zealand. White Island is 
likely self-recruiting, particularly more recently, as it had a high standard deviation of sizes 
(Chapter Two), high within-population genetic variance, and is disconnected in the 
population graph of small individuals (Chapter Three). The changes happening in 
recruitment must be monitored as this species has the potential to dramatically impact our 
ecosystem and fisheries. 
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Using population genomics and size structure to infer population dynamics and detect range 
extensions 
 
To manage the climate-driven redistribution of species Melbourne-Thomas et al. (2021) 
suggests we need to take actions to increase monitoring and detection, harmonize scales of 
management, increase jurisdictional cooperation, enhance adaptation, and support 
Indigenous and traditional rights. My thesis is focused on the first action, of increased 
monitoring and detection. I studied how the analysis of population size structure and 
population genomics can be used to help detect past range extensions, and changes in the 
population connectivity and the recruitment of populations over time. Such methods may 
be particularly important when there have been no previous distributional or abundance 
baselines defined, or when a less resource-intensive option is required rather than resource-
intensive multi-year surveys. 
 
Size structure analysis can be used to look for signals of recent range extensions which can 
inform how much of a priority further monitoring is. Most previous studies that used size 
structure, used it in combination with abundance or density (e.g. the Kellet's whelk, Kelletia 
kelletii, Zacherl et al. 2003; and the red sea urchin, Strongylocentrotus franciscanus, Morgan 
et al. 2001; in California USA), and although it is beneficial to have abundance or density 
information my thesis showed it is not always necessary. Furthermore, size has often been 
analysed using the coefficient of variance (e.g. the purple sea urchin, Strongylocentrotus 
purpuratus, in California USA; Ebert et al. 1988), however, in Chapter Two I show that 
separately analysing the mean and standard deviation can be more informative. The size 
structure analysis I used in Chapter Two detected a likely range extension in the northern 
north-east New Zealand range of C. rodgersii. A survey that only measured presence and 
abundance, but not size, would not have detected such a range extension until comparisons 
from further surveys had been done. This study showed the value of measuring size whilst 
doing surveys. 
 
Using population genomics to analyse two demographic groups, in Chapter Three, allowed 
me to detect potential changes in the Centrostephanus rodgersii meta-population over time. 
This approach may be useful for understanding populations and demographic responses to 
a changing climate/environment. Although comparing surveys over multiple years would 
likely give more accurate data, comparing demographic groups provides a less resource-
intensive and quicker way to look at changes in demography and connectivity over time. 
Using individuals below and above 15 years (estimated from size), I was able to see that the 
older cohort from the Spirits Bay and the Poor Knights Islands populations shared no genetic 
variance with other sampled populations. These findings are lost when the age groups are 
combined. I was able to show that the meta-population structure of the younger cohort 
differed from that of the older cohort. While the best picture of meta-population structure 
can be attained from the comprehensive sampling of the population, I demonstrate age 
cohorts can be used to infer demographic change and whether certain populations may be 
becoming sinks or sources within the meta-population. These findings are important for 
understanding responses to local ocean climate changes as well as fisheries and pest 
management. Furthermore, detecting the age-class specific signature of selection can be 
informative for how specific populations may be responding to climate change pressures. 
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The methods and approaches used in this thesis had some caveats. For instance, it was 
difficult to achieve even sample sizes of age-class cohorts across populations as smaller 
individuals were harder to find. In the future, also recording density and/or abundance for 
each sampled population would help provide further context for the analysis of population 
trends in C. rodgersii. Nonetheless, the data provide a baseline of population genomic 
compositions and size-structures. Resampling of these same populations over time would 
help to reveal changes in the relative connectivity of north-east New Zealand populations 
and Rangitāhua as well as changes to the genetic variance and covariance of populations. 
 
Future research directions 
 
For species with a pelagic dispersal phase, such as C. rodgersii, biologically informed larval 
dispersal models can be informative about population connectivity and demography. 
“Biophysical models” are models that combine physical factors like oceanography with the 
focal species traits, like pelagic larval duration and larval mortality, which are used to 
simulate the movement of the focal species in the ocean (Liggins et al. 2013; Treml et al. 
2015). Combining biophysical models with other analyses allows the detection of more 
complex patterns. 
 
Chapter Two was limited to detecting linear poleward range extensions, but a biophysical 
model could facilitate the detection of some complex non-linear range extensions. The EAuC 
is variable in both strength and position (Stanton et al. 1997), therefore, the current 
patterns in north-east New Zealand may not be correlated with latitude contrasting to the 
consistent poleward flowing East Australian Current (EAC). In the range extension of C. 
rodgersii in Tasmania, the mean age of individuals was related to the distance from the EAC, 
which was correlated with latitude (Ling et al. 2009c). My model only looked at latitude, and 
not currents, therefore if a non-linear non-poleward current-driven range extension of C. 
rodgersii was occurring in New Zealand (if currents and latitude are not correlated), Chapter 
Two would not have detected it. However, in the future, I could add the biophysical model 
output as another predictor variable with latitude to the Bayesian model in Chapter Two to 
detect any range extension that may be correlated with the biophysical model output 
and/or create a non-linear model. 
 
Biophysical models could also be used to give further confidence and reasoning behind 
results found in Chapter Three, such as why populations are genetically similar and the 
directions of the gene flow. A study in the Western Mediterranean on the common sea 
urchin (Paracentrotus lividus) used genomics (SNPs) and a biophysical model to study the 
connectivity between populations (Paterno et al. 2017). The biophysical model explained 
why there was genetic homogeneity in the populations – because of the high gene flow. A 
limitation of the methods used in Chapter Three is that the edges of the population graphs 
were not directional, so we do not know the direction of the gene flow. A biophysical model 
could be used in combination with the genomics, in Chapter Three, to explain the direction 
of gene flow and help in detecting source and sink populations. Source populations have a 
net migration of individuals out of the populations, whereas sink populations have a net 
migration of individuals into the population. Detecting the reasons for genetic similarity and 
source and sink populations is important for management decisions as decreasing the size 
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of a source population will be more effective at decreasing the whole meta-population than 
decreasing the size of a sink population. 
 
Putatively adaptive SNPs, alongside environmental variables, can be used to look for signals 
of adaptation. For instance, a redundancy analysis can be done with SNPs and 
environmental variables to look for correlations between certain SNPs and variables as was 
done in Xuereb et al. (2018). Xuereb et al. (2018) ran a redundancy analysis on SNPs from 
the giant California sea cucumber (Parastichopus californicus) and 11 bioclimatic variables. 
They found 59 candidate SNPs, some of which were correlated with mean bottom 
temperature, surface salinity, and bottom current velocity. A similar analysis could be done 
using the SNPs from Chapter Three and environmental variables, such as minimum sea 
surface temperature and current velocity, to find if local adaptation could be occurring with 
one of these variables. Knowing which environmental variables a species is responding to 
allows predictions about how a species may adapt to future projections of those 
environmental variables, such as increased ocean temperature from climate change. 
 
Future research applications 
 
Centrostephanus rodgersii has been very harmful to Tasmania’s fisheries causing a need for 
management. The formation of barrens from the urchin grazing has led to the loss of about 
150 taxa (Ling 2008). Additionally, there has been a financial loss from the blacklip abalone 
(Haliotis rubra) and southern rock lobster (Jasus edwardsii) fisheries which are supported by 
macroalgae beds (Johnson et al. 2005). It became necessary for Tasmania to take actions to 
control C. rodgersii’s abundance. A wide range of strategies have been trialled to control the 
spread of C. rodgersii, including culling the urchins, management and translocations of the 
rock lobsters, and a fishery on C. rodgersii (Johnson et al. 2013; Cartwright et al. 2018, 
2019). Depending on the trajectory of C. rodgersii in New Zealand, similar measures may be 
required in the future. 
 
Monitoring from 2001 in Tasmania has allowed the documentation of a 75% increase in C. 
rodgersii’s density in eastern Tasmania (excluding the southern sites where they are rarer) 
in 4m to 18m depths (Ling et al. 2018). Most surveys are done by divers but other methods 
like remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) have 
been used to monitor the species (Perkins et al. 2015; Sward et al. 2021). In Tasmania, as 
part of their monitoring, barrens are classified as incipient barrens: small patches of barrens 
within the macroalgae, and extensive barrens: large barrens without macroalgae (Johnson 
et al. 2013). Unlike in Tasmania, here in New Zealand, there is little knowledge about the 
abundance, spread, or impacts of C. rodgersii. There has been monitoring at the Poor 
Knights Islands and Mokohinau Islands which indicates an increase from 1999 to 2021 
(Balemi et al. 2021), however other locations have not been monitored and there is no 
barren classification system. As discussed above the methods in this thesis can be used for 
monitoring purposes and this thesis provides a starting point for the state of C. rodgersii in 
New Zealand. 
 
Unlike in Tasmania, in New Zealand, we have not yet taken actions to control C. rodgersii 
even though we know it has the potential to have similar impacts as it has in Tasmania. We 
know that C. rodgersii is increasing in abundance in at least a few locations in New Zealand 
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(Balemi et al. 2021), that there has likely been a recent range extension in northern north-
east New Zealand (Chapter Two), and that connectivity and demography in New Zealand is 
changing (Chapter Three). According to the future ocean temperature predictions, C. 
rodgersii is likely to become more common (Pecorino et al. 2013c). Some locations in north-
east New Zealand have a high adaptive variance and so could be genetically resilient to 
future events (Chapter Three). Accordingly, we may need to employ some of the 
management methods, such as those being used and trialled in Tasmania. 
 
The potential to monitor and manage range-extending species 
 
Population graphs based on population genetic data have been used to inform conservation 
and the management of invasive species. For instance, in North Carolina Piedmont, USA, 
population graphs were used to inform the conservation of songbirds (Minor et al. 2008). 
Minor et al. (2008) compared graph measures between a graph based on real geographic 
distances and simulated graphs. Measures indicated that the rate of movement through the 
graph was slow, and therefore, although there was still enough connectivity for dispersal 
and gene flow, the spread of disease would be slow. Further measures, like the node-degree 
distribution, indicated the resilience of the meta-population. Similar graph measures could 
be used for monitoring and management the C. rodgersii meta-population in New Zealand. 
Population graphs (or networks) have also been used to inform the management plans for 
the coralivorous crown-of-thorns starfish (Acanthaster planci) on the Great Barrier Reef 
(Hock et al. 2014; Hock et al. 2016). Hock et al. (2016) used state-based models where the 
edge weights represented the probability of colonization at a discrete time step. The goal 
was to prevent the spread of the pest species to ecologically or economically important 
locations. They applied the state-based model to the crown-of-thorns starfish dispersal 
network from Hock et al. (2014) and ran simulations to protect the most important reefs by 
intervening with culling at source patches. This model informed which populations would be 
more effective to cull. We could use a similar model to simulate what the intervention of C. 
rodgersii could look like. 
 
Particular populations (or patches) within population graphs (or networks) are generally 
either important for the within-module connectivity or the between-module connectivity 
(Fletcher et al. 2013). Further investigating the importance of the modules identified in 
Chapter Three would provide information that could be used in management (Peterman et 
al. 2016). If we want a sustained meta-population, for example, in conservation or a fishery, 
then it would be important to make sure the populations that account for between-module 
connectivity are protected or sustainably fished. However, if we wanted to decrease that 
meta-population, for example, through culling to control a species, then it may be 
important to target the populations that are important to between-module connectivity. 
Alternatively, if we want to sustain a module or patch, for example for a fisheries stock, we 
would be interested in those populations that account for within-module connectivity. 
 
Barrens are very difficult to reverse once they are formed (Johnson et al. 2013; Filbee-
Dexter et al. 2014); therefore, it is important that we start preventative actions on C. 
rodgersii in New Zealand before they become an extensive issue. Between kelp forest and 
urchin barrens there is a discontinuous phase shift meaning that to reverse an urchin barren 
back into a kelp forest, the density of urchins needs to be much less than the amount that 
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originally leads to the formation of the urchin barren (Filbee-Dexter et al. 2014; Ling et al. 
2015). For C. rodgersii, in Sydney, Australia, only a third of the density found in barrens was 
needed to maintain the barrens (Hill et al. 2003). In Tasmania, they have had far more 
success with preventing incipient barrens from becoming extensive barrens, and preventing 
incipient barrens from forming, than restoring extensive barrens (Johnson et al. 2013). The 
restoration of extensive barrens is likely to be very expensive and take at least 30 years 
(Johnson et al. 2013). Due to what has happened in Tasmania and the findings of this thesis, 
we have an opportunity to start prevention while it is less cost-intensive and before we 
witness the same level of impacts seen in Tasmania here in New Zealand. 
 
Options for active management of Centrostephanus rodgersii in New Zealand 
 
Control of Centrostephanus rodgersii using culling 
 
Culling of C. rodgersii can be done either to prevent urchin barrens or to restore urchin 
barrens to macroalgae beds, although the prevention is far more efficient. Systematic 
culling by divers has been effective at reducing the density of urchins in incipient barrens on 
the east coast of Tasmania (Tracey 2014). To reduce the cost of culling there have been 
trials to get the abalone divers to cull urchins whilst fishing abalone. Although, many urchins 
were culled there was no detected difference in barrens between the trial and control reefs 
(Sanderson et al. 2016). The lack of detected difference is likely because divers only covered 
small areas. Although abalone divers culling urchins cannot be the only solution, it could still 
be a part of the solution. In the deeper areas (over 20m) it is harder for divers to cull 
urchins, due to dive times, and therefore the cost (Tracey 2014). As an alternative to divers, 
there is a trial using Autonomous Underwater Vehicles (AUVs) to cull the urchins by 
punching a hole in them (Cartwright et al. 2018). Culling has a cost and therefore we must 
prioritise certain locations, using methods like identifying source populations as discussed 
above. 
 
We should be starting to think about whether culling is an option we want to pursue in New 
Zealand. Currently, there is some culling occurring on kina (Evechinus chloroticus), however, 
it is important that iwi are involved in this process as kina are a taonga species and this 
could extend to C. rodgersii. Due to both the cost and cultural considerations, we may only 
want very limited culling, and the research done in this thesis could help inform decisions of 
where that culling should occur. Chapter Two suggests that locations with a smaller 
coefficient of variance (or large standard deviations and small means) are of greater concern 
because either they have recently arrived, so have the potential to cause unknown harm, 
and/or they are recruiting regularly so the population is likely to grow more rapidly. The 
populations in north-east New Zealand that had the highest coefficients of variance were 
White Island, Castle Rock, the Alderman Islands, the Mokohinau Islands, and Sail Rock. In 
Chapter Three, populations with high connectivity and low within-population variance could 
be source populations and therefore more efficient to cull, such as the Mokohinau Islands, 
Spirits Bay, Castle Rock, and Berghan Point. The Mokohinau Islands and Castle Rock are 
likely good populations to cull according to both Chapters Two and Three. To further 
indicate which populations would be best for culling, we could simulate what would happen 
to the meta-population in a culling event, as discussed in the future directions. 
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Control of Centrostephanus rodgersii using natural predators 
 
An alternative to humans culling C. rodgersii is controlling their abundance through natural 
predators. Large rock lobsters (Jasus edwardsii) can eat C. rodgersii and therefore a healthy 
population of rock lobsters can prevent the formation of barrens. Unfortunately, the 
overfished population of rock lobsters in Tasmania, has reduced the resilience of kelp beds 
to the formation of barrens (Ling et al. 2009b). In Tasmania, rebuilding the large rock lobster 
population (individuals over 140mm) on incipient barrens was successful at recovering algal 
cover and preventing barrens, but this was not successful on extensive barrens (Johnson et 
al. 2013). Robinson et al. (2020) proposed eight management strategies for C. rodgersii 
which included, a rock lobster fisheries cap that limits the annual catch on the east coast of 
Tasmania, maximum legal size limits on rock lobsters, and translocations of rock lobsters. A 
set of stakeholders assessed the cost-effectiveness of the proposed management strategies 
and found that, out of the options not including urchin removal, translocation strategies 
were considered the most cost-effective and closing the rock lobster fishery was considered 
the least cost effective. However, overall, the most cost-effective strategies were the ones 
that included both urchin removal (though either culling or fishery harvesting) and a rock 
lobster fisheries cap (Robinson et al. 2020). 
 
In north-east New Zealand, we have the same species of rock lobster as Tasmania (Jasus 
edwardsii, in New Zealand called crayfish), and like Tasmania, our population is overfished. 
Stocks were rebuilt since the 1990s when rock lobsters were overexploited (Breen et al. 
2016), but currently, the Bay of Plenty rock lobster stock is overfished (Webber et al. 2018) 
and in the Hauraki Gulf, rock lobsters are functionally extinct (Hauraki Gulf Forum 2020). 
This means that our ecosystems in north-east New Zealand are vulnerable to the formation 
of C. rodgersii urchin barrens. Therefore it is essential both for the ecosystem and for 
resilience to barrens that we manage and increase our rock lobster populations. 
 
 Control of Centrostephanus rodgersii using fisheries 
 
Urchin roe is a delicacy throughout countries in Asia, the Mediterranean, the Caribbean, and 
South America (Rahman et al. 2014) and there is a market for Centrostephanus rodgersii roe 
in China, Hong Kong, Japan, and Singapore. In Tasmania, Victoria, and New South Wales 
fisheries on C. rodgersii have been formed to help with the control of their numbers. 
Urchins found within barrens are not suitable for harvest as the urchins are smaller with 
slower growth rates and little roe (Ling et al. 2009a). Therefore, it is in the best interests of 
C. rodgersii fisheries to prevent barrens. However, although urchin barrens are not ideal for 
fisheries, a Norway based company called Urchinomics (Urchinomics 2020) removes the 
‘starved’ urchins from barrens and then feeds the urchins in land-based facilities so they are 
suitable for consumption. In Tasmania, the fishery of C. rodgersii helps keep the C. rodgersii 
populations under control thereby preventing barrens from forming. Additionally it has 
created an alternative commercial fishery to the abalone and rock lobster fisheries, that 
have been impacted by the C. rodgersii barrens. 
 
There is likely a viable C. rodgersii fishery in New Zealand that is not currently being utilised. 
Although C. rodgersii is included in the fisheries stock (under the broad description of ‘kina’) 
it is not actively being sold and the current fishery in New Zealand is based primarily on E. 
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chloroticus. The primary method of collection for the commercial fishery of E. chloroticus is 
hand-gathering while free diving, though there have been some small dredge fisheries in 
Nelson/Marlborough and the Hauraki Gulf (Miller et al. 2011). In 2019, the overseas market 
for E. chloroticus urchin roe was mainly Australia with a small proportion to Canada 
(Seafood New Zealand 2019). The 2019 review on the sustainability of the north-east New 
Zealand stocks determined whether there should be an increase to the stock, but, the 
decision was made to maintain the stock amount (Fisheries New Zealand 2019). From this 
thesis and the existing literature, it is likely the population of C. rodgersii in New Zealand is 
robust enough to start a fishery. Chapter Three and Thomas et al. (2021) suggest that C. 
rodgersii is self-sustaining in north-east New Zealand. To have an effectively managed 
fishery we need to differentiate between E. chloroticus and C. rodgersii in the fishing stocks, 
particularly if the fishery is to be used as a method to control the population and prevent 
barrens. Fisheries will be most viable in areas where barrens have not formed, therefore it 
will be important to control barren formation. 
 
The modules of the population graph described in Chapter Three could be used to inform 
the management of a C. rodgersii fishery in New Zealand. However, since the modules were 
not geographically contiguous (also seen in Fletcher et al. 2013; Peterman et al. 2016), this 
may be impractical. Instead, modularity analysis could be used to simulate the impact of 
fishing on the meta-population as was done in Southern California on abalone and sea 
urchins (Peña et al. 2017). Modularity analysis on matrices based on yearly larval 
connectivity found that the urchins had weak spatial structure and changed from year to 
year, similar to how the younger and older groups of C. rodgersii in Chapter Three had 
different modules. Peña et al. (2017)’s simulations indicated that the urchins would have an 
abrupt collapse under high fishing pressure, whilst the abalone would have a more stepwise 
path to extinction. A similar analysis using the modules in Chapter Three could indicate how 
resilient a fishery on C. rodgersii in New Zealand could be. 
 
Conclusions 
 
My thesis highlights several actions that should be taken in north-east New Zealand to 
prevent devastation of our ecosystems and fisheries as was seen in Tasmania (Johnson et al. 
2005; Ling 2008; Lisson 2018). Firstly we need to start a monitoring program that will detect 
range shifts and increases in abundance. If genomic and size data is collected, it can be 
compared to the data in this thesis to detect changes in recruitment and connectivity. 
Secondly, we need to look into prevention measures to stop the formation of extensive 
barrens, such as increasing the crayfish stocks and culling. The restoration methods 
discussed do not work well on extensive barrens (Johnson et al. 2013) therefore we must 
act now. Thirdly, we should create a fisheries stock system for C. rodgersii separate from E. 
chloroticus so if a fishery is started it can be controlled appropriately. Genomics from 
Chapter Three could be used to inform this stock system.  
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