Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

The dynamics of temporary wetlands in dune slacks at Tangimoana, Manawatu, New Zealand, with special reference to the endangered sand spiked sedge, *Eleocharis neozelandica* Kirk (Cyperaceae).

Nicholas J.D.Singers 1997

A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Science in Ecology at Massey University, Palmerston North.

Ü

Acknowledgements

This research was funded by Department of Conservation and Massey University Graduate Research Fund, and permission to work in the area was granted by the Manawatu District Council.

I would firstly like to thank the lovely Christine Bayler, who was my constant and faithful helper whenever I needed help, putting up with my grumpiness and general irritability. A huge thanks goes to Jill Rapson, for her valuable supervision and sacrificing her own valuable time to help with field work. Without her encouragement and patience this would never have been finished. Colin Ogle proposed the Masterate in the first place, and encouraged me, and sacrificed his scarce time. Thanks Mum, for everything really, but particularly for helping with my statistics; my brother Robert, "flick the little fire engine" who put out the fire lit by the Tangimoana fire-bug, when helping with field work; and all family; Alaster Robertson, for his useful ideas, contributions and supervison; the Department of Ecology, Massey University; especially Jens Jorgensen, the "village blacksmith", for making experimental materials functional and for his valuable field assistance; and Barbara Just; Penny Aspin who enthusiastically jumped, rolled and fell down dunes while getting sunburnt for continuous days on end; Kim McBreen, my fellow sufferer through our extended Masters experience, and fieldwork assistant. Halema Flannagan, Graeme Franklyn, Grant Blackwell, Adele Plummer, for their fieldwork assistance; Robert Burgess, for discussions on dune formation and dune ecology during his visit to the study site; Patrick Hesp, for encouragement and discussions on dune morphology; Mike Shepherd, for discussing the Manawatu dune formation; John Barkla, Don Ravine, Tom Rouse, Wayne Beggs and Shannel Courtney, all good DoC people for their help; Max Barry, for access to the study site and for "pulling me out of sand"; Sam Atkinson, for his rainfall data from Flock House after being bribed with Black Mac; Ewan Cameron

and Euan Nicol for their *Eleocharis neozelandica* herbarium records. And all my flatmates for putting up with Masters stress!

P.S. No thanks to the persons who stole one exclosure plot, damaged others, pulled out or shot off water pipes and all other general vandalism.

ì

Contents	Page
Thesis abstract	8
Chapter One	
Introduction	10
History of the Manawatu dunes	10
The study site	14
References	19
Chapter Two	
The vegetation of the proposed DoC reserve in	a coastal dune
system at Tangimoana, Manawatu New Zealand.	
Abstract	21
Introduction	21
Methods	23
Results	26
Vegetation analysis	26
Geomorphological variables	32
Disturbance factors	33
Soil environmental variables	35
Discussion	37
References	42
Chapter Three	
Eleocharis neozelandica (Cyperaceae) Kirk, a	ın endangered
sedge: habitat and cultivation.	
Abstract	45
Introduction '	45
Recorded history of Eleocharis neozelandica	46
Methods	49
Seed germination and propagation	49
Comparisons of Eleocharis neozelandica popula	ations 51

į

	Page
Results	52
Discussion	55
References	59
Chapter Four	
The planting of a unnamed, rare native dap	ohne, <i>Pimelea</i>
"Turakina" at Tangimoana, Manawatu.	
Abstract	60
Introduction	60
Methods	62
Planting	62
Results	65
Discussion	66
References	69
Chapter Five	
The water table dynamics of temporary dune sla	ck wetlands at
Tangimoana, Manawatu, New Zealand, with	reference to
vegetation change in exclosure and control perman	ent plots.
Abstract	70
Introduction	70
Methods	74
Water table monitoring	74
Rainfall data	75
Vegetation monitoring of the rabbit exclosures	76
Results	77
Wetland water table shapes	77
Water table response to rainfall	81
Vegetation responses to water table	
and inside rabbit exclosures	87
Discussion	91
Water table fluctuations	91
Water table impacts on vegetation	92

	Page
Vegetation change over time	94
Conclusion	96
References	97
Chapter Six	
Dune slack wetland plant growth in respons	e to sand burial,
waterlogging and submergence.	
Abstract	98
Introduction :	98
Anoxia	98
Sand burial	99
Methods	102
Waterlogging	102
Sand burial	103
. Analysis	104
Results	106
Waterlogging	106
Sand burial	109
Discussion	112
Waterlogging	112
Sand burial	115
Waterlogging in relation to the distribution	
of the four dune slack plants in situ.	116
References	119
Chapter Seven	
The construction of a temporary wetland in	dune hollows, for
habitat creation for the endangered sand	d spiked sedge,
Eleocharis ne ozelandica	
Abstract	121
Introduction	121
Methods	124
Results	129

	Page
Eleocharis neozelandica and Isolepis cernua survival	130
Demographics of Eleocharis neozelandica	131
Rabbit browse of Eleocharis neozelandica	132
The colonization of the constructed	
temporary wetlands	134
Discussion	137
Wetland creation	137
Plant survival and colonization	138
Elevation requirements and consequences	139
Rabbit browse	140
Conclusion	141
References	142
Chapter Eight	
Discussion	143
The dunes and their temporary wetlands	143
Rare species	144
Conservation management	146
References	152
Appendix *	
The Tangimoana dump dunes species list	153
Bibliography	158

Thesis Abstract

Parabolic dunes are a feature of the Manawatu, New Zealand coastline. Moving inland, the dunes form temporary wetlands in deflation hollows (dune slacks) on their seaward side. One of the few remaining natural dune systems left in the Manawatu is located south of the Rangitikei River mouth at Tangimoana, the "Tangimoana dump dunes", a proposed DoC reserve. The area contains excellent examples of temporary wetlands in dune slacks, with early successional vegetation well represented. This vegetation is being eliminated by larger wetland plants and is unable to colonize new habitat, as dune stabilization prevents its formation.

The vegetation of the proposed reserve was sampled and vegetation patterns were related to environmental factors. Foredune, dune plain, slack, marram dune, shrub dune and grassland communities were identified. A low species diversity was found, which included a high proportion of exotic species in the grassland, shrub and marram dune communities. The low number of communities and species richness may be related to the area's youth and the dune's dynamic nature.

Water table fluctuations were monitored in two temporary wetlands, which contained the endangered sand spiked sedge, *Eleocharis neozelandica*, an early successional species. The water table fluctuations were directly related to rainfall and season. A high winter and spring water table in 1995 resulted in dramatic changes in the distributions of some dune slack plants. Control and exclosure plots were used to assess the effects of rabbit browse on the dune slack vegetation. These plots also provided valuable information of the vegetation change to water table heights. Species more suited to permanently wet locations increased greatly, while species suited to more temporary wet areas moved higher in elevation, to around the winter high water line.

[;

Two endangered plants of the Manawatu dunelands, Eleocharis neozelandica and Pimelea "Turakina" were cultivated and then established at the Tangimoana dump dunes. Pimelea "Turakina" appears to be well adapted to the Manawatu dune lands and produced abundant seedlings at Tangimoana. Creation of deflation hollows for E. neozelandica habitat was undertaken. E. neozelandica was planted in the constructed hollows at three separate elevations, and survived winter submergence at the medium and high elevation sites, of at least seven months at the medium site, and appears to be a valuable and effective management tool for the conservation of dune slack species. The tolerance and growth of E. neozelandica and other dune slack species in relation to sand burial, waterlogging and submergence was studied in controlled experiments. They appear to be generally intolerant of sand burial, but all survived submergence and thrived in waterloaged conditions.

Temporary wetlands in dune slacks at the Tangimoana are incredibly dynamic in relation to the water table fluctuations, and changes in species distributions resulting from them. Management solutions need to be active and address these results in order to maintain the indigenous flora of the area.