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ABSTRACT

When a heat-producing chemical reaction takes place within a
confined region, then under certain circumstances a thermal explosion
will occur. In investigating from a theoretical viewpoint the conditions
under which this happens, it is necessary to study the behaviour of the
solution of a certain non-linear parabolic initial-boundary value
problem.

A frequently used approach is to study the problem indirectly, by
investigating whether positive steady-state solutions exist; the
underlying assumption is that positive steady-state solutions exist if
and only if a thermal explosion does not occur. The main theme of this
thesis is the development and application of an alternative direct
approach to the problem, involving the construction of upper and lower
solutions for the parabolic problem and the application of appropriate
comparison theorems. The assumption here is that a thermal explosion
will not occur if and only if the solution of the parabolic problem
remains bounded for all positive time.

Following three chapters of introductory material, Chapter 4
contains a survey of some of the important known results concerning the
existence of positive steady-state solutions, especially those dealing
with the effect on the theory of different assumptions as to the rate
at which heat is produced in the reaction.

The comparison theorems that are used in the alternative approach,
which are modified versions of known results, are proved in Chapter 5.

In Chapter 6, the equivalence of the two criteria mentioned above
for the occurrence or non-occurrence of a thermal explosion is
established under fairly general conditions. Also in this chapter, a
critical value A* is defined for a parameter \ appearing in the problem,
such that a thermal explosion will not occur if the value of A is
smaller than A%, but will occur if the value of \ is greater than \¥*.

In Chapter 7, upper and lower solutions are constructed for the
time-dependent problem under a variety of assumptions as to the rate
at which heat is produced in the reaction, and these are used to obtain
a number of theorems concerning the behaviour of the solution of the
problem, especially as the time variable tends to infinity. The
information obtained from these theorems is related to and compared with
that known from investigations of the existence of positive steady-state
solutions. In conclusion, a theorem is proved concerning the effect of

reactant consumption on the theory. This is examined in the light of



some recent research, and an apparent defect which is thereby revealed
in the usual criteria for the occurrence of a thermal explosion is
discussed.

The theorems of Chapter 7 are employed in Chapter 8 to obtain
rigorously derived bounds for the critical parameter A*, for a number
of different shapes of the region in which the reaction takes place;
these bounds are compared with known estimates for A* obtained using
an empirically derived formula.

The thesis concludes, in Chapter 9, by using the methods of Chapters
7 and 8 to obtain some results concerning the case where the boundary

condition is non-linear.
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1 INTRODUCTION

The mathematical problem discussed in this thesis arises from a
topic in chemical kinetics, the study of the evolution in time of
chemically reacting systems. Suppose we are dealing with a heat-
producing reaction taking place in a confined region. For simplicity,
we suppose for the time being that there is no consumption of reactant.
If the heat produced by the reaction cannot all be removed at the
boundary of the region, the temperature of the reactant will rise,
leading to an increase in the reaction rate, in turn producing more
heat. In practice, one of two things then happens. Either the rate
of increase of temperature gradually diminishes and the system
approaches a steady state, or the temperature increases rapidly and
without limit, and what is usually called a thermal explosion takes
place. An elementary discussion of this phenomenon is given by
Boudart(5, pp.160-163], and additional information may be found in the
book by Bradley[6, especially pp.2,8-15]. The problem with which we
shall be concerned is that of determining whether or not a thermal
explosion will take place in a given situation.

Suppose we have a heat-producing reaction taking place within a
region V bounded by a surface S. We shall continue to ignore for the
time being the effect of reactant consumption, which will be commented
on in Ch.7, and we also assume that the thermal parameters of the
system are constant in space and time. Then (see, for example,

Ozisik's book[26, p.6]) the system is described by a differential

equation of the form

2 2
K(a L g u

2
o u
+ )
ax2 2

% ” =) = pc-g% + f(u) = 0
z

for (x,y,2z) in the interior of V, and time t > 0, together with the

initial-boundary conditions
3
K 5% + Hg(u) = 0 for (x,y,2) on S and t >0

u=0 for (x,y,2) on V US when t = 0.
Here u(x,y,z,t) is the difference between the temperature T at any
point and the ambient temperature Ta’ K, p and c are the thermal
conductivity, density and specific heat respectively of the reactant,
H is the surface heat transfer coefficient and %% is the outward

normal derivative to S. We shall say that thermal explosion takes



place if u(x,y,z,t) = ®as t = o or if u(x,y,z,t) =« as t = 7- (7T

finite).
The form of the heat-generation function f is still a matter for
debate. It is proportional to the rate at which the reaction takes

place, and the classical form for it is the empirical one due to

Arrhenius:
C2

£(u) = C exp(- E—:—T;J

©
Clexp(— 1%5 (CI’C2 > 0 and independent of u).

Later theories lead to the replacement of the constant C1 by an

/2

expression of the form C3Tn where n is a positive integer which
depends on the nature of the reaction and can at present be found only
empirically (see, for example, the books by Glasstone and Lewis[15,
pp.626-638] and Kaufman(17, pp.198-214 and 233-2u40]).

In work on the theory of thermal explosions, however, it is usual
to use the so-called Frank-Kamenetskii approximation for f, introduced
by D.A.Frank-Kamenetskii[13]:

Csu

£(u) = Ce (C,,Cg > 0).

While this is indeed an approximation to the Arrhenius expression for
f(u) when u is small, the theoretical justification for using it in the
study of thermal explosions (where large values of u occur) is unclear.
It may well be that for large values of u the Arrhenius expression is
no longer valid, and the Frank-Kamenetskii expression is in fact more
accurate. Alternatively, it may be that situations in which the use
of the Frank-Kamenetskii approximation would lead to significantly
inaccurate answers have not yet arisen in practice. We shall be
particularly concerned in this thesis with the effect on the theory
of different assumptions as to the form of f.

Various assumptions may also be made about the form of the function
g which appears in the boundary condition. The usual approach is to
assume that heat loss at the boundary follows Newton's law of cooling,
so that g(u) = u and the boundary condition is linear. Most of the
discussion in this thesis is concerned with the linear boundary
condition, but in Ch.9 we shall discuss the effect of assuming a non-
linear boundary condition. There are two non-linear boundary conditions
which arise naturally, corresponding to different cooling processes at

the boundary. If cooling at the boundary is by natural convection,



then g(u) = us/u

, while if cooling is by thermal radiation, then

g(u) = (u+Ta)u - T: and H = ce where g is the Stefan-Boltzmann constant
and e is the emissivity of the surface (see Ozisik's book[26, pp.7-9
and 348-349]). The discussion in Ch.9 covers more general non-linear
boundary conditions as well as these two conditions in particular.

The customary method of tackling the problem of whether or not a
thermal explosion will take place is to equate the absence of thermal
explosion with the existence of positive stable steady-state solutions,
i.e. solutions of the time-independent equation
32; + 82; + 32;) + f(u) = 0 for (x,y,z) in the interior of V
ox dy oz

together with the boundary condition

K(

K g%-+ Hg(u) = 0 for (x,y,z) on S.

The underlying assumption here is that if positive stable steady-state
solutions u(x,y,z) exist, then the solution of the original time-
dependent problem will approach one of these steady states as t — =,
and so explosion will not take place. We shall show in Ch.6 how this
assumption may be justified mathematically.

A discussion of this question of the existence of positive steady-
state solutions, treated from the chemist's point of view, is given by
Boddington, Gray and Harvey[4]. These authors, using the linear
boundary condition and the Frank-Kamenetskii approximation for f, with
a change to a suitably chosen new variable 6 proportional to u, obtain
the equation

2 2 2
3 g + C g i g g + Yee = 0 for (x,y,z) in the interior of V

ox oy dz
together with the boundary condition
K %% + HB = 0 for (x,y,z) on S.

Here y is a parameter whose value depends on the physical and chemical
properties of the reactant and on the ambient temperature. A positive
stable solution of this steady-state problem is known to exist if and

only if y is less than or equal to a critical value denoted by Yorit

(we shall discuss this point in more detail in Ch.4). Thus, if the
mathematical formulation of the problem is a reasonably accurate model

of the physical situation, a thermal explosion will occur if y > Yorit

but not if y < Yerit: The value of y depends upon the shape of V.

crit

O



The authors are chiefly concerned with methods of determining, or

determining approximately, the values of Yori for various shapes V,

t
using a combination of analytical and empirical methods. In Ch.8, we
shall apply the methods developed in this thesis to the problem of

obtaining lower and upper bounds for Yo for various shapes V, and

rit’
compare the bounds so obtained with the estimates given by Boddington,
Gray and Harvey.

In treating the thermal explosion problem from the mathematician's
point of view, we shall work for the most part with equations more
general than those discussed so far. Letting x denote the n-dimensional

vector (xl,xz,... xn), we consider the equation

n 2

3%u . du du
I a,.(x,t) =—=—+ I b.(x,t) == + c(x,t)u - == + Af(x,t,u) = 0
1,j=1 ij axiaxj 4= & axi ot

for x in the interior of an n-dimensional region V and t > 0, together

with the initial-boundary conditions
do(x,t)g(u) + dl(x,t) %% = 0 for x on the boundary S of V and t > 0
u = uo(x) for x on VUS when t = 0

where the differential operator in the first equation is uniformly
parabolic, g% denotes an arbitrary (not necessarily normal) outward
directional derivative, and appropriate conditions are imposed upon the

coefficients aij’ bi’ ch do, d1 and the functions f and g.

The corresponding time-independent (i.e. steady-state) problem is

described by an equation of the form

n 2 n
a o'u - ou ~ o
) =s [0
I A0 mm t R Pl i v Su M)
i,j=1 g (= | i

for x in the interior of V, together with the boundary condition
a 2 ou _
do(x)g(u) + d1(x) -0 for x on S

where the coefficients are the limits, as t = ®, of the corresponding
time-dependent coefficients, and E(x,u) is the limit of f(x,t,u).

We shall discuss in Ch.4 some of the more important results that
have been obtained on the existence of positive stable steady-state
solutions. In Chs.7, 8 and 9 we shall employ an alternative method
of investigating the behaviour of u(x,t) as t = ®, by using the
comparison theorems proved in Ch.5 to directly attack the original

time-dependent equation. We should mention here that there are



indications that in certain cases neither of these approaches to the
thermal explosion problem is adequate; some remarks on this point appear

at the end of Ch.7.



2 AN EXAMPLE

Before proceeding, we give a simple example of the sort of equation
we shall be studying. We shall be using this example from time to time
for illustrative purposes and as a counter-example.

Consider first the equation

du

a_lzl'at”“”)‘ 0(-1<x<1,t>0)
x

where we assume k > 0, A > 0; further, u(x,t) satisfies the initial-
boundary conditions

u(x,0) =0 for -1 < x <1

u(-1,t) =0 for t 20

u(1,t) = 0 for t 2 0.

Using Laplace transform tec““;ques (see Appendix for details) it may be

shown that if k # &331%2_E_ forn = 0,1,2,...., the above problem has
the solution
. - (x - (2n+1)2'rr2)t
ulx,t) = ETTL ¥ (-1) cos (2n+21)nx . 4
=0 1
Uk - —————(2” L™ J(2n+1)
4 A cos Jkx A
k cos k
. . (2N+1)2‘IT2
while if k = S—— for some N = 0,1,2,...., the above problem has
the solution
2?
n (k _ (2n+1) m )t
L) = L2 5 (-1) cos (2n+)Tx m
T n#n (20+1)°n 2
{x - ——-E—](zml)
a-)Y N+Dmx . ACDNx L (N+D)mx

mk(2N+1) <°S 2 + X Sif 2

- lﬂ —(-1) (2N+1)t cos (N+D)mx % .

2
From this we see that, regardless of the value of A > 0, we have:
2
cos /Kx -
If 0 <k < u,thenu(xt) k—{m—l] as t = o,
2
If k 2 273 then u(x,t) is unbounded as t = =.

The corresponding steady-state problem is

d—“+ku+x 0(-1<x<1)
2
dx



where k > 0, A > 0, and the boundary conditions are u(-1) = u(1) = 0.

In this case (again see Appendix for details) the situation is as

follows:
m2 2
If k # m for any m = 1,2,3,.... , the solution is
_ Apcos JKx
u(x) = F{ — - 1].
7] . .
If k=n1m for somen = 1,2,3,.... , the solution is

u(x) = %[%- 1) + B sin J/Kx

where B is arbitrary.

2.2
+
If k = £22—%2-1L— for some n = 0,1,2,.... , no solution exists.
ﬂ2
In particular, if 0 <k < Tr-then the steady-state problem has the
cos JKx

positive solution wu(x) = %{ - 1], which is also the limit of

cos
the solution u(x,t) of the time-dependent problem as t — «. For larger
values of k, positive solutions of the steady-state problem do not

exist; those solutions which do exist can easily be seen to be negative

for certain values of x in (-1,1).

If we now take k = X, the differential equation becomes

2
d°u  du
— - =— + \(u+1) =0
ax2 ot

with boundary conditions as before. This is a simple example of the
sort of equation we wish to study, with f(x,t,u) = u+l in this case,

using the notation introduced in Ch.1. In this example, we have that
2

if 0 <\ < %r3 the solution u(x,t) tends to the (positive) solution of

2
the corresponding steady-state problem as t — «, while if A 2 qr-the

solution u(x,t) is unbounded as t = «, and the steady-state problem has
2
no positive solutions. So we have a critical value T for A; if X

is greater than or equal to this critical value, thel;olution "explodes".
In the sequel, we shall investigate for which choices of the function f
behaviour similar to this occurs, and also investigate the sort of
behaviour which occurs for other choices of the function f.

We mention in passing that the original example with k # A will be

needed as a counter-example later.



3 DEFINITIONS AND NOTATION

It is convenient to collect here some notational conventions and
basic definitions. Firstly, the following notation will be used

throughout the rest of this thesis:

V denotes a bounded, open, connected set of points in n-dimensional

real Euclidean space En'

X = (xl,x2,... xn) denotes a point in E_.

DT = {(x,t): x€V,0<t < T], regarded as a subset of En+1

D = {(x,t): XxX€EV, t> 0], also regarded as a subset of En+1'
denotes closure.
We shall next defire several important function spaces. We
follow, with some modifications, the definitions used by Ladyzenskaja,
Solonnikov and Ural'ceva[21, pp.2-10]. In framing these definitions,

we shall write L altlu
Hu_

X L, 4

ox," Ox

£
2 n
3xn

2 - " w
where £ = (11,12,... Ln), the Li(i = 1,2,... n) being ncrn-negative

integers, and |£]| = 11 + 12 + e+ Ln. We shall use X to denote
|2 =k
summation over all derivatives of a given order k. We shall also write,
2
for any non-negative integer r, piv = Q_Z =
t atr

Now let k be a non-negative integer and @ a real number with

0 <a<1. We say a function u:V — R satisfies a Holder condition with

(a)

exponent @ on V if (u)v is finite, where

<u)\(lﬂ.) = sup |u(x) = U(Y)l

x,y€0  |x - y[|®
x#y

-

For any function u:V - R which has continuous derivatives up to order
k, and whose derivatives of order k satisfy a Holder condition with

exponent a on V, we define:

lul(o) = sup |u(x)].
L xé%
lulgj) = I |Diu|§0) for j = 1,2,....

|2]=3



k .
g = = (oh)® sz ful(P.

| £=x j=0
The Holder space Ck+a(V3 is the space of all functions u:V = R for
which |u|$k+a) is finite; with lulék+a) as norm, the space Ck+a(V) is

a Banach space.

Again let k be a non-negative integer and a a real number with

0 <a<1. For any function u:ﬁ& - R, we define HOlder constants

<u>(a) and ( >(a) thus:

(u>(a) - S5 [u(x,t) - u(y,t)|
(x,t), (y,t)GD |x - yla
X7y
(a) [u(x,t) - ulx,m) ]
(u = sup : =
©Dr (%), (x, e, [t - 7|®
t#T

For any function u:ﬁ& — R which has continuous derivatives of the form

D: Diu, where 2r + lsl < k, we define:

“u“éO) = sup Iu(x,t)l.
T (x,t)ED
Ci(3) i s 1(0) .
“u“(j = b Y IIDE D2l for § E 152
B orels|zj ¢ X Dp o
(k+a-2r— sly
i < 0% p3u)(®) £ (of ofu), . 2
Dp 2r+|s| -k< D O<k+a—-2r-|s]<2 t R
k :
eox (RS
j=0 T
The Holder space Hk+a(ﬁ&) is the space of all functions u:ﬁ& = R for

which “u“ék+a) is finite; with “u“ék+a) as norm, the space Hk+a(5%) is
T T

a Banach space.

For any real q 2 1, we define the Banach space Lq(V) in the usual

way to be the space consisting of all real measurable functions on V

with finite norm il
= 9ax|? .
lall o =[] e 1%sx]

We say that u € Lq(V) has an Lq—derivative on V with respect to

X, if there exists v € Lq(V) such that, for all functions ¢ which are
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infinitely differentiable on V and vanish on the boundary of V,
I v(x)g(x)dx = -I u(x) aﬁﬂ-dx
v v 3
(the fact that the integral on the right is finite follows from Holder's

inequality). We write v = g%L . Higher order Lq—derivatives of u are

defined iteratively. Integration by parts shows that when u has a

classical derivative g%i-é Lq(V), then the Lq—derivative of u coincides

with the classical derivative.

For q as above and k a non-negative integer, we define the Sobolev

space Sk q(V) to be the space of all functions u € Lq(V) having Lq-
9

derivatives on V up to order k, so that lulék’q) is finite, where:

u (ksq) = : lu 2
ful jf“o{u?:j Io* nq,v}

With lulgk’q) as norm, the space Sy q(V) is a Banach space.
9

For 'any real q 2 1, we define the Banach space Lq(DT) to be the

space consisting of all real measurable functions on D, with finite

T
norm i

= [IZ ‘[v [ulx,t) |Yax dt]a- .

For q as above and k a non-negative integer, we define the Sobolev space

T
u
I hq’DT

wk,q(DT) to be the space of all functions u € Lq(DT) having Lq—

derivatives on DT of the form D: Diu for any r and s satisfying

2r + |s| s k, so that ”u“ék’q) is finite, where:
T

K
il = Io% D3l }
Dy 3=0 2r+]:s|=j t x77a,Dp
)

With Hu“gk’q as norm, the space W q(DT) is a Banach space.
T

K,

For k a non-negative integer and a real with 0 < a < 1, we say

that a surface S C:En is of class Ck+a

if S can be covered by a finite
number m of neighbourhoods Sj’ j=1,2,... m (i.e. the S. are the
intersections of open n-balls with S), and each Sj can be globally
represented by an equation of the form

X; = Xj(xl""xi.-i’xi.+1""xn)
] ] ]
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f .o ¥e . o] o/ 3 i i
or (x1, X _19%f 410 xn) in some bounded, open, connected domain

Qj c En-l’ where Xj € Ck+a(ﬁj) for each j = 1,2,... m.

If S is a surface of class Ck+a

, we say that a function u:S = R
is of class C£+a(S) with £ < k if, for each j = 1,2,... m, the function

u.:Q. = R defined b
34y o

uj(xl""xi.—l’xi.+1""xn)
i ]
= U(xi""xi.-l’xj(xl""xi.-l’xi.+1""xn)’xi.+1""xn)
] ] ]
is an element of the space C£+a(65). We define |u]él+a) to be

(L+a) . .

max[lujl : RS In2n m].

%

Suppose S C'En is a surface of class Ck+a as described in the
previous paragraph. We shall say that a function u:Sx[0,T] = R is of
+ . q
class I-{Jz a(Sx[O,T]) with £ < k if, for each j = 1,2,... m, the function
u.:0.x[0,T] = R defined b
5:05x[0,T] y

uj(xl""xi.—i’xi.+1""xn’t)

= u(xl,.. X Xj(xl,...x.

: ij-i’ lj_1,xij+1,...xn),x. X_,t)

i SRl © S
]

) +a (l.+0.)
is an element of H Sx(0,T]

(L+a) | . _
max{llujllnjx(o"r]‘ = 1’230-- m]-

(ﬁsx[O,T]). We define |ul| to be

With V as defined at the beginning of this chapter, we adopt the
following further notation as standard throughout the rest of this
thesis:

oV denotes the boundary of V, and is always assumed to be a
surface of class C2+a for some a with 0 < a < 1.

Sp = {(x,t): x €3V, 0 <t <TJ.

S = {(x,t): x €3V, t >0].

We shall denote by Lu the expression

n a2 n au
Z  ag.lmt) S——gL—- + I b.(x,t) 3 + c(x,t)u
i,3=1 ij Xy xj i=1 i Xs

where the coefficients aij’ bi and c are assumed to be continuous real
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functions on DT for all T > 0, and aij = aji for i = 1520k - 0
Stronger assumptions regarding these coefficients will be made from
time to time as needed. The differential operator L is assumed to be

uniformly elliptic for each T > 0, i.e. there exists for each T > 0 an
A > 0 such that

n
I a,.(x,t)e.e. 2 A
i1 = ol id

2
€

M9

for all real vectors g = (gl,gz,... g, ) and all (x,t) € 5&.

We shall denote Ly ﬁu the expression

n

r
i,j=1

a2 n 3

<22+ T b.(x) = + &x)u
X, d%. ., 1 OX.

i 1=1 1

(x)

fuy

ij
]
~

where the coefficients aij’ bi and ¢ are assumed to be ccntinuous real

functions on V unless strcnger assumptions are needed, &,. = for

a..

. i3 ji
i,j = 1,2,... n, and tke differential operator L is assumed *o be
uniformly elliptic cn 7 in a sense similar to that defired for the

operator L, but now A dces not depend on T.

We shall denote Ev 3.._u the expression
- lin
- 4

do(x,t)u + dl(x,t) %%

and by Bgenu the expression

du
do(x,t)g(u) + dl(x,t) ey
where do and d1 are assumed to be non-negative, continuous real

functions on §& for all T > 0 unless stronger assumptions are needed.
The function g:R — R is assumed to be strictly increasing. Further,
n denotes an outwardly directed, nowhere tangential unit vector field

on OV of the form n(x) = (nl(x),nQ(x),... nn(x)) where 7,4, 50 00 N

are of class C1+a(bv). We shall denote the outward unit normal vector

to oV by w(x); this is of course a particular case of n(x). éE—denotes

on

n
the directional derivative I n.(x)-ég—.
=y T oAy

We shall denote by Blinu the expression

3

éo(x)u + ai(x) 5%
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and by B _u the expression
gen

ao(x)g(u) + al(x) %%

where do and d1 are assumed to be non-negative, continuous real
functions on OV unless stronger assumptions are needed, and the notation

is in other respects the same as that defined in the previous paragraph.
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4 THE STEADY-STATE PROBLEM - A SURVEY

As remarked in Ch.1, the question of the existence of positive
stable steady-state solutions for the heat-generation problem has
attracted much attention. In particular, the results of Keller and
Cohen[19], Keener and Keller[18] and Amann(2] give quite a good picture
of the relation between the form of the function f (introduced in Ch.1)
and the existence or non-existence of positive stable steady-state
solutions. We shall examine this picture, and then later, in Ch.7,
compare it with the picture cbtained by considering the related time-
dependent problem.

All the above authors restrict themselves to the real self-adjoint
problem described by the equation

n

AL 0 22 - A (0u + A(x,u) = 0 for x €V
. s_, OX, 1j oX. 0
ls]'l 1 ]
together with the boundary condition (1)
dou + &) T v (0i (x) =0 for x € V.
0 1 .. P i ij Q¥
l’j"l ]
In the first equation it is required that aij = aji € C1+G(V) for

i,j =1,2,... n and some awith 0 <a <1, 50 € c%(V) and éo(x) 20
for all x € V, and the differential operator is uniformly elliptic.
Thus the equation is a special case of the equation Lu + x?(x,u) = 0.
In the boundary condition, it is required that ao and 31 be non-

negative functions of class c1+°(av), oV being a surface of class C2+a.

With w(x) denoting as usual the outward unit normal vector to 3V, the
n

quantity T wv.(x)3;.(x) gﬂi. is the conormal derivative; this is a
L |

directional derivative of the form %%-where

n
nj(x) = i§1 vi(x)aij(x) (j 2Mn2,... @

so that, for j = 1,2,... n, nj is of class C1+a(aV). Thus, for all

x € oV: n
n(x).v(x) = i,§=1 aij(x)vi(x)vj(x)

n
2 A I [Vi(X)]2 = A for some A > 0 independent
i=1
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of x, since the differential operator in (1) is uniformly elliptic. It
follows that n(x) is an outwardly directed, non-tangential vector for
each x € dV. Thus the boundary condition is a special case of the

condition Blinu = 0. Finally, it is assumed that aV = 81 U S, where 81

has positive measure and:

ao(x) >0, d.(x) = 0 for all x € 81.

1
do(x) 20, dl(X) >0 for all x € S,.

The condition that S1 should have positive measure is needed in order to
apply a certain uniqueress theorem based on the generalised maximum
principle; one form of <this theorem is given by Protter and Weinberger
(28, Ch.2, Theorem 12].

It should be noted that, apart perhaps from this last restriction
on the boundary condi<ion, the original steady-state heat-generation
problem in the form studied by Boddington, Gray and Harvey[ut] is a
special (three-dimensional) case of this general self-adioint problem

in which §ii(x) = 1(i = 2,2,3) and §ij(x) = 0(i # 3) for all x € V.

Following Keller an¢ Cohen[19], we refer to the set of values of A
for which positive soluzions u(\;x) of (1) exist as the spectrwm of (1),
and denote the least upper bound of this spectrum by A*. Keller and

Cohen begin by assuming that f satisfies the following hypotheses:
HO: £ is continuous for x €V, u=20.

le E(x,O) >0 for x € V.

Hy: f(x,v) > f(x,u) on V if v > u 2 0.

With these hypotheses, Keller and Cohen are able to prove the following:
(i) Only positive X can be in the spectrum of (1).
(ii) For every X > 0 in the spectrum of (1), there exists a positive

solution umin(x;x) of (1) which is minimal, i.e. which is such that
umin(x;x) < u(\;x) on V for any positive solution u(A;x) of (1).

(iii) If A\’ > 0 is in the spectrum of (1), then all \ satisfying

0 <X <)\ are in the spectrum, and umin(x;x) is an increasing function
of A for each x € Vand 0 <\ < \’.

(iv) If there exists a positive function F on V such that f(x,u) < F(x)
for all u > 0 and all x € V, then all A\ > 0 are in the spectrum of (1),
i.e. a finite A* does not exist.

(v) If there exist positive functions F, p such that for all u > 0 and
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all x € V, %(x,u) < F(x) + p(x)u, then the spectrum of (1) contains all

A such that 0 <\ < “1{0]’ where ui{p] denotes the principal eigenvalue
of

n
3 -~ a’\r -~ _
) ?_ §§T(aij(X) ST - dy(x)v + pp(x)v =0 onV
i,j=1 1 j
- - 1 d
d(x)v + d,(x) £ wv.(x)&..(x) =—=0 on dV.
0 1 i,9=1 i 1] ox..

Thus A* 2 pl[p].
If, on the other hand, f(x,u) satisfies f(x,u) > F(x) + p(x)u on V,
for all u > 0, then \* s 1 {p]}.

Assuming that f satisfies Hy (and possibly H2) but not Hl’ Keller

and Cohen prove alsc:

(vi) If there exists a cositive p such that f(x,u) < p(x)u on V, for all

An important pcint that emerges from results (i), (iii) and (iv) is

that, assuming hypctheses K_, H Hy, positive solutions of (1), if they

0 R°
exist at all, exist for A\ on an interval of one of the forms 0 < A < A%,

0 <)X s )\% or A\ >0.

Keller and Cohen next introduce the strong monotonicity condition

H2;: fu(x,u) > 0 and continuous on V for u > 0.

a

On the assumption that f satisfies H_, H, and H2" and that (1) has

0’ 1
positive solutions for all X\ such that 0 < A < \*, they then prove that
each A in this interval satisfies A < pu,(X) where p,(X) is pi[p] as

defined above, with p(x) = fu(x,umin(x;x)). Thus p,(X) is the principal

eigenvalue of the linearization of (1).

Following Keller and Cohen, we say that £ is concave if it

satisfies HQ, and in addition

Hagt fu(x,u) < fu(x,v) onVifu>va20

b

and we say that f is convex if it satisfies H2, and in addition
Hab: fu(x,u) > fu(x,v) on Vif u>vz20.

Keller and Cohen then obtain the following results:

. concave
and is {

(vii) If f satisfies H , H
0 1 convex

}J, and if (1) has the

)



17

increasing}

spectrum 0 < A < A¥ or 0 < X\ < \*, then Ul(l) is an {decreasing

function of A on this interval. Furthermore, if f is concave then
ui(k) < \* for 0 < A < \*, and if f is convex then pi(X) > \* for
0 <\ <2\®,

(viii) If f satisfies HO, Hl and is concave, then lim pl(l) = A% and

AN
A* is not a point of the spectrum. Thus the spectrum must take one of
the forms 0 < A < A* or A > 0. Furthermore, there is exactly one
positive solution of (1) for each )\ in the spectrum.
(ix) If £ satisfies Hy» Hy and is concave, and if in addition

1

lim gu(x,u) = p(x) on V, then A% = pl{p] where we acdopt the convention
y—eo

that pl{p] = = if p(x) = 0.

Thus Keller and Cohen obtain a reasonably complete picture of the
situation in the case c¢f concave f, but rather less information in the
case of convex %. In the case of convex %, note that it is known in
certain special cases that the positive solutions for all A in the
interior of the spectrum are non-unique (see the paper by Laetsch[23]).

Keller and Cohen conclude by discussing the question of stability.
For any X\ in the spectrum of (1), they define a steady-state solution
u(\;x) to be stable if, roughly, any solution of the time-dependent
problem which satisfies an initial condition of the form

Uy (x) = u(k;x) + €v(x)
decays exponentially in t to u(A;x), to first order in €. If one of
two stable steady-state solutions is such that this exponential decay
described above is more rapid than in the case of the other steady-
state solution, then the first solution is said to be relatively more
stable than the second. Keller and Cohen then prove the following:
(x) Suppose f satisfies Hys Hy and H,/, and is such that (1) has a non-
empty spectrum. Then, for 0 < A\ < \*, the minimal positive solution
of (1) is stable. If, in addition, £ is convex, the minimal positive
solution for a given A is relatively more stable than any other
positive solution for the same X (if £ is concave, we already know by
(viii) that the minimal positive solution is in fact the only positive

concave
B

solution for a given A). Finally, if £ is {convex

the relative

increases
decreases

a

stability of the minimal positive solutions { } as i increases,

on 0 <€ \ < )\*.
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a

The case where f is convex is studied in more detail by Keener znd

Keller[18]. They use the following strong convexity ccndition:
H(3b)': fuu(x,u) > 0 and continuous on V for u > 0.
A solution u(A;x) of (1) is said by Keener and Keller to be non-isolated

if the linearization of (1) about that solution, i.e. the problem

n
E ag.[aij(x) ga}_{Yj.—) = 30()()\? + Xi“:u(x,u()\;x))v =0 on V

i,j=1 i

(2)
n
~ ) ” ov  _
do(x)v + dl(X) . §=1 vi(x)aij(x) 5;;-- 0 on oV

has a non-trivial solu%ion. A solution u(A;x) of (1) is said to be a
principal non-isolated solution if it is a non-isolated solution for
which (2) has a positive solution. Keener and Keller then prove the

following fundamental result:

v H 2“" = £y d
Let HO’ Hy» Hys and H(3b)' hold, and for A Ar >0, let (1) have

a positive principal ncn-isolated solution, u(lo;x) > C on V. Then:
(a) Ay = A*, and u(Xg3x) is the unique positive soluticn of (1) for
A= A

(b) A minimal positive sclution of (1) exists for 2121 A € (0,A*), and
no positive scluticns exist for A > A%;

(c) For some sufficientlvy small A& > 0, a pair of pcsitive solutions of
(1) exists for each X € [A*-4,\%).

After this, the major question remaining for Keener and Keller to
deal with is that of the existence of a positive principal non-isolated

solution. They require for this the following hypothesis of asymptotic

linearity:

H, lim{f(x,u) = [Fix) + uG(x)J}_= s

U=

on V, where G(x) >0 on V.

To complete their proof, they also require an hypothesis HS of a rather

technical nature, which need not be given here, since Amann(2] has
shown that it can be dispensed with. On the assumption that £

satisfies H H H

0° Keener and Keller prove that

10 Hors H(Sb)" Hy, and HS,
a positive principal non-isolated solution of (1) does in fact exist
for some positive XO. This shows that for such f the spectrum of (1)

is an interval of the form 0 < A < A%,

Subsequently, Amann(2] has shown that the crucial hypothesis in
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the work of Keener and Keller is that of asymptotic linearity. Amann
assumes only that f satisfies the following conditions:
1) £(x,u) >0 for x € V, u > 0.

2) lim fu(x,u) = fc(x) exists uniformly for x € V, and fc(x) > 0 for
u—o

x € V (this is the crucial assumption of asymptotic linearity).

Amann denotes by A_ the principal eigenvalue “1{§m] (in the
notation of Keller and Cohen introduced earlier). He is then able to
prove the following comprehensive theorem:

There exists A* > 0 such that for every X € (0, %), (1) has a
minimal positive solution umin(k;x), and (1) has no solution for
A > A*. (1) has a solution for \ = \*, in fact a minimal positive

solution u s (\*;x), if and only if {Humln(l;x)“ 0 <\ < 2\*)} is

in i e’
bounded. This is the case if and only if u®*(x) = 1lim u_,_ (X;x)
A=\ - min
exists in C2+a(v3, in which case u®(x) = umin(l*;x).

Further, we have 0 < A_ < \*. If 1lim ﬁumin(l;x)ﬂ
X—ol N

A, = A* (compare this with result (ix) of Keller and Cohen for concave

£). On the other hand, if A, < A*, then (1) has a minimal positive
solution for X = \*, and for every X\ € (XA_,\*), (1) has at least two
distinct positive solutions.

Finally, suppose there exists a positive function y, continuous
on V, and a constant p > 0, such that for all x € V and all u 2 p,

f(x,u) - fu(x,u)u < -y(x).

Then A < \*. Note that this condition is related to convexity, since
it implies that for every x € V and for u 2 p, the tangent to the
graph of f(x,u) against u intersects the negative y-axis.

Amann's theorem therefore gives a rather complete picture of the
situation for the case where f is asymptotically linear, thus filling
in the picture drawn by Keller and Cohen([19] and by Keener and

Keller(18].

The example discussed in Ch.2 serves to illustrate one of the
cases considered by Amann. In this example (the steady-state problem
with k = \) we have f(x,u) = u + 1, which satisfies the conditions for
Amann's theorem with fm(x) = 1. Ours is an example of the case dealt

with by Amann in which 1lim u_. (A;x) does not exist; in our example
X—ox*_
s JXx &

co 1
u . %) i = o=, i nn's theorem
mln(}"’ ) is ?O—S—./‘r- 1 and )\ m In this case Ama
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~ tells us that A\* = \_ = “1{§m]' Now “1{§m] in our example is the

principal eigenvalue of the linear problem

d2u
—2+ Au = 0, u(1) = u(-1) =0
dx
m2112
which has eigenvalues A = 7 (m=1,2,3,... ), so that its principal
11’2
eigenvalue is indeed T as required. Note that, as required by Amann's
2
theorem in this case, the spectrum is the open interval (O,HJ-); no

2
solution exists for A = T—B—- .



5 COMPARISON THEOREMS FOR THE TIME-DEPENDENT PROBLEM

Comparison theorems, based on various versions of the maximum
principle, are a standard tool in the study of differential equations.
They are discussed in the books by Protter and Weinberger(28] and
Friedman[14], and used by many authors, such as Chan[9], McNabb[25],
Sattinger[33] and Wake[35]. The comparison theorems which will play a
fundamental role in the rest of this thesis are based on those proved
by McNabb, but they differ in certain important details, and so the
proofs are given in full here. We require first a lemma due to

Fejer[12], the proof of which we include for the sake of completeness.

n n
LEMMA: If g(x) = I g; %% and h(x) = T h. x;% are two non-
i,k=1 i,k=1
negative quadratic forms, with 85k = 83 @d hy = hys for all
n
i,k = 1,2,... n, then I gikhik 2 0.
i,k=1

Proof: The result is obvious if either g or h is identically zero;

assume therefore that neither g nor h is identically zero. We shall

n

first show that there are n linear forms z_(x) = X Prs¥s (where
s=1

r = 1,2,... n) with real coefficients Prg? such that

n o, n n 5
g(x) = Tz (x) = Z(ZI p_x)"  covveans (3)
~.r rs’s
r=1 r=1 s=1

We know that for all i = 1,2,... n, g.. 2 0, since g1 is the

ii
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value of g(x) when xj = 0(j # i) and x; = 1. Further, the coefficients

g;4 cannot all be zero, for if they were, then since g(x) # 0, there
must be at least one gij # 0(i # j). In that case a negative value of
g(x) could be obtained by choosing X; =1, x4 = 1 (depending on the

]
sign of gij) and X = 0 for k # i,j. Thus, for at least one

i=1,2,... n, we must have g;3 > 0. Without loss of generality,
assume g > 0.

v 11 i 3

ow write: Piq (gll) 4
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g(i)(x) =Ig(x) - zi(x).

(

It is easily seen that the quadratic form g l)(x) is independent of x

1
Furthermore, it is non-negative, for suppose we could obtain a negative

value for g(i)(x) by taking Xy = ai(i = 2,3,... n). Put

- -1

M.
P11 s

nM™M3

al pisas

2
Then, writing a = (al,az,... an), we have zl(a) = 0 and so we obtain
the contradiction g(a) = g(i)(a) < 0.

153 g(i)(x) is identically zero, then (3) is proved already, since

we may take zr(x) =0 for r = 2,3,... n, and we have shown g(x) = zi(x).

If not, we can carry out for g(i)(x) a construction similar to that
n

carried out for g(x), obtaining a linear form 22(x) = I PosXg such
s=2
that g(2)(x) = g(l)(x) - zg(x) = g(x) - [zi(x) + zg(x)] is a non-
negative quadratic form independent of both Xy and Xy Continuing thus,
(n) T 2
after n steps we will obtain g '(x) =0 and so g(x) = X zr(x), which
proves (3). 0 R
It then follows from (3) that 85y © ? PpiPry (Iok = 1,2,... A
n
Similarly, we obtain hik = s§1 CHPL I vk E Hn2ka. . DDl
n n n
Hence I gohw, = B HE 1T duda))
i,k=1 ik"ik 1,341 ped rifrk g=1 S sk
n
= I { T P.9.Pq9,)
i k=1 r,s=1 ri*si“rk*sk
n n 5
= 3 (2 pr.qs.) 2 0.
i,k=1 j-12 TSI

We prove now the first comparison theorem we require; the method is
similar to that used by McNabb[25, Theorem 1].
THEOREM 1: Suppose that
(a) The functions uy and u, are defined and continuous in D, their
first-order xi-derivatives exist in D.., their second-order xi-derivatives
exist and are continuous in D, and their first-order t-derivatives

T’
exist in DT'
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bu1 8u2 -
(b) For all (x,t) € DT, Lu1 - f(x,t,ul) > Lu2 = + f(x,t,uz).

(c) ul(x,o) < u2(x,0) for all x € V.

(d) For all (x,t) € S Bgenul < Bgenu2°

Then u,(x,t) < u2(x,t) for all (x,t) € 5&.

Proof: Suppose, on the contrary, that there is a point P in 5} where

Uy 2 uy. Then (by the continuity of u, and u2) there is a point

(x',T') € 5& such that u, < u, in D.,, while u, = u

. 5 T A & (& STEOn @ B 0.

2

So v(x,t) = ul(x,t) - u2(x,t) has a maximum of zero in Do,
(x, T').

, at the point

Suppose first that we may choose (x’,T’) € D i.e. such that x’

i
is not on the boundary oV. Then the quadratic form
n
L D D v(x’,T')x.x.
o e X. X, SLg
1,J=1 1 7]

n
is non-positive. Since the quadratic form I aij(x',T')xixj is non-
i,j=1
negative by definition of L, it follows by the lemma that:
n
’ ’ 4 ’
- ;- aij(x , T )Dx.Dx.v(x ,T') 20
1,J]=1 1]
n
i.e. £ a,.(x,T')D D w(x’,T') sO0.
L W X, X,
1,]=1 1 )
Further, for each i = 1,2,... n, Dx v(x’, T’) = 0, and also

i
v(x’,T’) = 0. Thus Lv < 0 at the point (x’, T’). Since also
Dtv(x',T') 2 0, it follows that Lv - g% < 0 at the point (x’,T').

du du
. . ’ ’
<+ Luy - 5f s Lu, - 5 at the point (x5 T").

Finally, since ul(x',T') u2(x',T'), we have that at the point

. du du, o
(x, 1), Lu, - 5 f(x,t,ul) < Lu, - i f(x,t,u2), contradicting
hypothesis (b).

If x’ cannot be chosen away from dV, then we must have U =, at
(x', T') with ¥ € 3V, and u <u, in DT"

d 0
Thus 3§<u1 - u2) =0 at (x5 T%).

i.e. < u, at the point (x’,T’), since u, = u, at (xf5 ).

Bgenu2 Bgen 1
This contradicts hypothesis (c), and so the proof of the theorem is

complete.
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In the case where the function f(x,t,u) satisfies a uniform
Lipschitz condition in u on any finite interval, a stronger comparison
theorem can be proved. The method of proof is an extension of that used
by McNabb(25, Theorem 2].

THEOREM 2: Suppose that

(a) The finctions uy and u, are defined and continuous in D., their
first-order xi-derivatives exist in D., their second-order x;-derivatives
exist and are continuous in Dr» and their first-order t-derivatives

exist in D,.

T du du

1 2
(b) For all (x,t) € Dps Lu, it f(x,t,ul) 2 Lu, - 5+ f(x,t,u2).

(c) ul(x,O) < u2(x,0) for all x € V.

(d) The coefficient dy(x,t) of g(u) in Bgenu 18 strictly positive for all
(x,t) € ST.

(e) For all (x,t) € Sps Bgenu1 = Bgenu2'

(f) On oy finite interval [a,b]), the function f(x,t,u) satisfies a
wniform Lipschitz condition in u, i.e. there exists a constant M[a b] >0

]
(depending on the interval [a,b]) such that

|f(x,t,u1) - f(x,t,u2)| < M[a,b]lul - u2|

for all u ,u, € [a,b) ad all (x,t) € B&.

Then ul(x,t) s u,(x,t) for all (x,t) € ﬁ%.

Proof: Since u, is continuous in DT, it is bounded there. Let

2
m, = inf _ u,(x,t) and m, = sup _ uz(x,t). Choose M’ > 0 such that
(x,t)GDT (x,t)GDT
M> sup [M[m 5 %) + c(x,t)) (recall that c(x,t) is the coefficient
(x,t)€ED, 172
T

of u in Lu). For all (x,t) € B& and all \ € [0,1], define

M’ (t-T)

Ux(x,t) = u2(x,t) + e . Then for all (x,t) € 5& and all A€ (0,1],

m < Uz(x,t) < Ux(x,t) <m, + 1. Thus, for all (x,t) € DT'and all

X € (0,1], we have:
U du

X 2
[LUX -5t f(x,t,UX)] - Ly, - 5o+ f(x,t,uz)]
4 ’
= F(x,t,0)) = £(x,t,0)) + Ae(x,te (t-T) _ yyr M (£-T)

’ , ,
= ¥n_m ]t ) 4 xex,p)e 57T L™ (5T 1y (4)
2552

’
3 et (t_T){M[m + c(x,t) - M} < o.

1,m2+1]
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Thus, using hypothesis (b), we have that for all (x,t) € DT and all

A € (0,1],
Lu, - Eil + f(x,t,u,) > LU, - EEL + f(x,t,U,)
1 at ,91 x at ”)\'

Also, for all (x,t) € ST and all A > 0,

BgenUX - Bgenu2 = do(x,t){g(UX) - g(u2)]

> 0 by hypothesis (d) and the fact that g

is strictly increasing by definition of Bgen'
Thus, using hypothesis (e), we have:

£
Bgenul < BgenUX for all (x,t) € ST and all \ > 0.

Further, we have that ul(x,O) < u2(x,0) < Ux(x,O) for all x € V and
all A > 0. It follows by Theorem 1 that, for all A € (0,1],
ul(x,t) < Ux(x,t) for all (x,t) € 5&. Since Ux(x,t) - u2(x,t) as

A — 0+ for each (x,t) € D., it follows that ul(x,t) < u2(x,t) for all
(x,t) € 5&, as required.

Notes: (i) If, in the statement of Theorem 2, we omit hypothesis (f),
that f(x,t,u) should satisfy a uniform Lipschitz condition in u on any
finite interval, then the thecrem fails to hold, as the following
counter-example demonstrates.
2
Take Lu to be é—%, V to be {x: -1 < x < 1}, Bgenu to be
ox g
du _ du [u]
u + 5 - Ut X3y and f(x,t,u) to be 576e .

Consider first the function y(x) = %{xz-l)(S-xz) + 1.

Here v/ (x) = H{(x%-1)(-2x) + (5-x)2x])
= 3.
yi(x) = %(3—x2) + %;(-2x)
= F1-x0),

For -1 < x < 1, the graph of y(x) is as follows:

P .

point of inflection
with non-horizontal
tangent

point of inflection
with non-horizontal
tangent

e —— -~ -
o ——— o — -

> X

I
[
=
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Next we define ul(x,t} = t2, uz(x,t) = tzy(x) for t 20, -1 x<1.

Then:

(a) ul(x,O) =0 = u2(x,0), so certainly ul(x,O) < u2(x,0) for -1< x<1.
du

1 /T
(b) Lu, - o f(x,t,ul) - 2t + 576e’ .

du b
Lu, - a—f + £(x,t,u,) = ty7(x) - 2ty(x) + 5760/ T (X)),
aul au2
So [Luy - 55+ f(xtu))] - [Lu, - 55+ £(x,t,u,)]

%
= 2t{y(x)-1} - t2y'(x) + S?G[ex%‘— eJ?Ty(X)} } = A(x,t), say.
We have that A(x,0) = 0 for -1 < x < 1. Assume now that t > 0 and
-1 < x <1. Then:

/T N %
%A(x,t) = 2{y(x)-1} - 2ty“(x) + 576{27? - gxz STy} } (4)

L
For -1 < x <1, we have 0 < y(x) <1, so 0 < {y(x)}" < 1. Put
{y(x)fc = 1 - §(x) where 0 < &§(x) < 1.

Then y(x) = {1-6(x)}* = 1 - u8(x) + 662(x) - 486°(x) + 86 (x)

L [ %(1-x2)(5—x2).
5(x) (4 - B88(x) + 4d2(x) - 83(x)) = §<1-x2>(5-x2).

2 2
5(x) = (1-x )(5;X ) 5
S{u - 88(x) + L3 (x) - 6" (%)}

2 2
> = 3;5—x ) for -1 < x <1, since then 0 < §(x) < 1.

Thus (4) becomes:

é% A(x,t) %(x2-1)(5-x2) - 3%'5-(1-;{2) + —2781:—8-{@‘/? - {1-6(x)]eﬁ{1—6(x”]

/T _
%{x2-1)(5-x2) - Zgz{i—xz) + ggg%r—{i - [1-8(x)]e 6(X)J?j

/T
2 260 (5-x%) - B + e {e(0)

o 2 2
> %{x2-1)(5-x2) - 2%3(1-11) + zggér—{(l_x J5E4 )] from

40
above.
Further, for t >0, é/? =1+ JT+ %} %gi

2 4061 > 263150 - BEaad) + Zash 1) (-0

= 201-x2)(5-x°) (-1+18) + %{1«2)[— 1+ %-(S—x2)].

QLQ
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The first term is obviously positive for -1 < x < 1; the second is also
positive, since 5—x2 >4 for -1 < x<1. Thus, for -1 < x <1,

A(x,0) = 0 and g% A(x,t) >0 for t > 0. It follows that A(x,t) > 0 for
t >0 and -1 < x < 1.

au1 au2 .
Lu1 o f(x,t,ul) > Lu, - == f(x,t,u2) for t >0, -1 < x < 1.
Bul 5
= + = — =
(c) For x = #1, Bgenul u ot ox == TR
du
) 2 .2 g,
Bgenu2 U, tx ==t y(x) + xty’ (%)
= t2y(x) + %-t2x2(3-x2)
2
=12+ E%— since x> = 1, y(x) = 1.

Bgenul < Bgean for x = *¥1, t > 0.

Thus all the hypotheses of Theorem 2 except hypothesis (f) are
satisfied for any T > 0 (indeed, we have rather more than is required,
since the inequalities in (b) and (c) of the counter-example are

strict > and < rather than 2 and < as in the theorem). Eypothesis (f)
L

o4
. S . . u . . .
is not satisfied, since *he function e does not satisfy a Lipschitz

condition on any interval [C,a] with a > 0, as its derivative

X
& u 3/L‘Leu is unbounded on any such interval. And the conclusion

:hat ul(x,t) < u2(x,t) for all t 2 0, -1 < x <1 is false, since
0 sy(x) <1 if -1 <x <1, and so ul(x,t) > u2(x,t) for all t > 0
and -1 < x < 1.

(ii) Hypothesis (f) of Theorem 2 can, however, be replaced by a
condition that f(x,t,u) be monotone decreasing in uj; this allows the
proof to be slightly simplified. This version of the theorem is of
little or no interest for the present discussion, since in this thesis
the function f(x,t,u) is generally assumed to be monotone increasing
in u, this being the case in the heat-generation problem which
motivates the whole discussion. Note that a comparison theorem
involving monotone decreasing f is proved by Chan(9, Theorem 1] and

used to derive some interesting existence and uniqueness theorems.
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6 RELATIONS BETWEEN SOLUTIONS OF THE TIME-DEPENDENT
AND STEADY-STATE PROBLEMS

It will be recalled that in Ch.1 we discussed two possible
approaches to the problem of determining whether or not a thermal
explosion will take place in a given situation. The usual approach is
to argue that a thermal explosion will take place if the equation
describing the system has no positive steady-state solutions. The
approach used in this thesis is to argue that a thermal explosion will
take place if the solution of the time-dependent equation is unbounded
as t ® o or as t tends to some finite value. We wish to show in this
chapter that, under fairly wide conditions, these two approaches are
mathematically equivalent. Accordingly, we wish to investigate the
relation between the boundedness over all time of the solution of the

time-dependent problem
du _
Lu - S f(x,t,u) = 0 for (x,t) €D
B,.. u=0 for (x,t) € S
u(x,0) = uo(x) for x € V

and the existence of positive solutions of the corresponding steady-
state problem
Lu + g(x,u) =0 for x € V
B..u=0 for x € 3V

where the coefficients are the limits, as t = «, of the corresponding
time-dependent coefficients, and f(x,u) is the limit as t = o of
f(x,t,u). We restrict the discussion to the linear boundary condition
because the fundamental theory on which this chapter is based is not
available for the non-linear boundary condition. The parameter A
which appeared in the equations mentioned in Ch.1 is, for the purposes
of the present discussion, absorbed into the functions f and £. It
will reappear later.

In the book by Friedman(i4, Ch.6] there are some important
theorems concerning the case where f and £ are independent of u.
Friedman uses less general boundary conditions than ours, but his
methods are easily adapted to our boundary conditions, as we shall show

later.

With certain restrictions on the coefficients, Friedman proves
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that, if it is known that the steady-state problem has a wnique
solution, then the solution of the time-dependent problem will tend to
this steady-state solution as t = @. Reynolds[29] extends Friedman's
method to prove a similar theorem for the case where f and £ are
dependent on u (Reynolds' theorem is rather general, since it allows for
non-linearity of the differential operators as well as the functions f
and %). However, Reynolds' result is not quite what we want, since we
are frequently concerned with situations where the steady-state problem
is known to have multiple solutions, as we have seen in Ch.b4.

It should also be mentioned that Liapunov methods have been used
to study problems of this type, for example by Chafee and Infante[8] in
the case of a special one-dimensional problem.

The technique which was found to be appropriate for our purposes
was that of monotone iteration, introduced by Courant(11, pp.370,371]
and developed further by Cohen(10] and others. Using this technique,
Sattinger(31, 32] has proved two existence theorems, for parabolic and
elliptic problems, which are of great value in our present study, and

which we will now discuss in some detail.

Monotone Iteration:

We consider first the parabolic initial-boundary value problem

[u = g%-+ f(x,t,u) = 0 for (x,t) € DT

Blinu

u(x,0)

0 for (x,t) € St R )]

uo(x) for x € V

where L and Blin are as defined in Ch.3, with the additional assumptions
" a= a,= o P~ .

that aj4 % a4 €H (DT), bi €H (DT) and ¢ € H (DT) for all T > 0 also

do and d1 are of class H1+a

(5&) for all T > 0. We assume also that

2+a =

u, € C (V) and f is continuous for (x,t) € Do,

interval.

and at legst some u-

We call ¢(x,t) an upper solution for (5) if @ is continuous in 5&,

has continuous first-order xi—derivatives in DT’ continuous second-order

xi-derivatives in DT and continuous first-order t-derivatives in DT’

and satisfies:

Ly - §+ f(x,t,p) =0 for (x,t) € Dy

Blin®20 for (x,t) € St

w(x,0) = uo(x) for x € V.
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We call @(x,t) a striet upper solution for (5) if ¢ is continuous
in 5}, has continuous first-order xi-derivatives in 5&, continuous

second-order xi-derivatives in D., and continuous first-order t-

T
derivatives in DT’ and satisfies:
Ly - %% + f(x,t,¢p) <0 for (x,t) € DT
Bi;n®>0 for (x,t) € S

o(x,0) > uo(x) for x € V.

The terms lower solution and strict lower solution are defined
analogously by reversing the inequalities in the above definitions.

By a solution of (5) we shall understand a classical solution u(x,t)
of (5) which is continuous in 5&, has continuous first-order x,-
derivatives in DT’ continuous second-order xi—derivatives in DT and

continuous first-order t-derivatives in DT. It follows from Theorem 1
that if @ is a strict upper solution for (5) and u a solution of (5),
then @(x,t) > u(x,t) for all (x,t) € 5&. If f(x,t,u) satisfies a
uniform Lipschitz condition in u on any finite interval, and the
coefficient do(x,t) of u in B jpu is strictly positive for all (x,t) GST,
and if @ is an upper solution for (5) and u a solution of (5), then
Theorem 2 shows that ¢(x,t) 2 u(x,t) for all (x,t) € 5&. Analogous
results with reversed inequalities hold for lower solutions.

Note that, in the case where f and dO satisfy the hypotheses of
Theorem 2, we can use Theorem 2 to prove that the solution of (5), if

it exists, is unique; if u, and u, are both solutions of (5), then by

il 2
Theorem 2, ul(x,t) < u2(x,t) and u2(x,t) < ui(x,t) for all (x,t) € Drps

whence ul(x,t) = u2(x,t) for all (x,t) € 5&.

We shall now give a detailed proof of Sattinger's existence theorem
for parabolic problems[32, Theorem 2.3.2] to illustrate the method of
monotone iteration, and also for the sake of completeness, since the
proof is not given in detail by Sattinger, who proves in detail the

corresponding theorem for elliptic problems. We require first a number

of lemmas.

LEMMA 1: If ug satisfies the bowndary condition, i1.e. if Biipo = O
for t = 0 and all x € oV, then for any g € Hu(ﬁ%), the problem

Lu - %% = g(x,t) for (x,t) € Dy



B,. u

lin 0 for (x,t) € St

u(x,?2) uo(x) for x €V

has a wnique solution v € H2+a(5%) with

(2+a) (a) (2+a)
o527 = eyClllg® + lug {2

where cy does not derend on g or Ug-
Proof: This is a specizl case of Theorem 5.3 on p.320 of Ladyzenskaja,

Solonnikov and Ural'ceva(21].

LEMMA 2: Suppose q > 1. For any h € Lq(DT), the problem

Lu - %h = h(x,t) for (x,t) € Dp

3,..u =0 for (x,t) € St

2(x,0) =0 forx €V

has a wnique (not necessarily classical) solution u € W, q(DT) with
(L,Q) !
22 s e, Il
where <, does not derer.Z cn h.
Proof: Thls is a specizl czse of a theorem analogous to Theorem 9.1 c¢n

p.341 of Ladyzenskaiz, Sclonnikov and Ural'ceva[21], tut with a

different boundary corci<zion; see p.351 of the same reference.

Definition: We say that V satisfies the cone condition if there exists
a fixed finite cone K such that, no matter at what point of V its

vertex is placed, the cone can be swung so that all of it is contained

in V.
LEMMA 3: If V satisfiee the cone condition, if u € Ha(ﬁ%) and also

n+2 n+2

u €W, (D ) for some q such that q >—-2--a:rzd 0<a<?2 - =" then
2,q)
sllp? < g lllp} >
where Cq does not depend om u.
Proof': If we write «@»(],q) = % “D D u“ for j a non-
Dy 2r+|s |=3

negative integer, and also write

(k-2r~isl)

60(1) ( bt >(X [l]) T 2

B 1 )
Dp 2r+lsl ) 0A-2r-|sjc2' X/ tsDp
for \ > 0

()m = sup _ Ju(x,t)|
(%, t)ED

3
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then by the second part of Lemma 3.3 on p.80 of Ladyzenskaja, Solonnikov
and Ural'ceva[21] we have that for any u € W2 S

<u>(x) ﬁx)«@»éz,q) R ch)lbnq’DT ............ (6)

ifos\A<2 - E%Z , where cik) and ch) depend on n, q, T, A and the

dimensions of the cone K, but not on u.

Now Hulll()a) = ()(a) sup  |u(x,t) |

T (x,t)€ DT

< 01)« »(2,q) éa)“u“q QQ(O) by (6) with \=a
2 2
B (C!) « »( »q) m Céa)“u“ " (0)« »( q)
q,D,
cgo)"u“q p. by (6) with \=0
by
(2,q) |
< cf{ o + ) 5 3
€3 ( » q,DT
where c, = max{c(a) + cﬁo), cga) c(o)] does not depend on u. The

+
2
E

lemma follows since “uﬁg2sQ)
T

(Do
Ilullq,DT ¢ <<u>>g;’® + <<u>>g§'q>.

LEMIA 4: If £,g € HA(D,), then £g € HA(D)), and |ieal(® = [l [l{®.
T T

Proof: “fg“éa) = sup _ |£(x,t)glx,t) |
T (x,t)GDT
N - |£(x,t)g(x,t) - f(z,t)g(y,tll
(x,t),(y,t)€D_ [x - vl
£y
g sup _ AEGElet) - f(:/c;’r)g(x,_'r)_L
(x,t), (x,T)€ED. E - gi*
t#T
< sup__lf(x,t)l sup  |g(x,t)|
(x,t)EDT (x,t)GD
+ 8 lf(x,t)ggx,t)—f(x,t)g(y,t)+f(x,t)g(y,t)-f(y,t)g(yat)I
(x,t),(y,t)€D, [x - y|¢
X7y
+ Sap lfﬁx,t)gjx,t)—f(x,t)g(x,T)+f{x;;)g(x,T)-f(x,T)g(x,T)I
(x,t),(x,T)ED, R

tET T
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< wp_lﬂxﬁ” mm_lyx¢)|+ sup _IQXJ)—gWQﬂl
(x,t)€D,, (x,t)€D, (x,t),gy,t)eDT Ix - y|®
x#y

lg(x,t) - g(x,m)]|

+ sup -

(x,t),(x,T)€D; |t - TIQ/Q
t#T

* S“P__Ig(X,t)l sup -If(x,t) = f(i,t)[
(x’t)EDT (X,t),(y,t)EDT Ix - yl
XZy
|£(x,t) - £(x,m)|
J .1 a/2
(x,t),(x,T)GDT [t - Tl

tET

< HfHﬁ“) ”g”éa) as required.
o T

Definition: Given two functions f:ﬁ} x [a,b] = R and u:ﬁ& - [a,b], we
define the function f[u]:ﬁ& - R by

flul)(x,t) = f(x,t,u(x,t)) for all (x,t) € 5&.
LEMMA 5: (a) If the function f(x,t,u) is wniformly Lipschitz in (x,t)

and in u for a <u <b and (x,t) € ﬁ}, and if the funetion u(x,t) is
such that u € Ha(ﬁf) @d a < u(x,t) b for all (x,t) € 5&, then
£fu] € HHD,).

(b) If, in addition to the hypotheses of (a), we have that

u(x,t) = uT(x,t) = A(x,t) + TB(x,t) 28 a linear function of the
parameter T, where 0 < 1 <1 and A,B € Ha(ﬁi), then for all T € [0,1]

we have ||£[u ]"(a) <M +M (HAH(G)+ “B”(a)) where M, and M_ are
TDT 2 D D

1 - T 1 2

independent of T and U

(c) If the first partial derivative £, of £ is wniformly
Lipschitz in (x,t) and in u for a < u < b and (x,t) € Drp» ad 1f
u,v € H“(BT) and a < u(x,t),v(x,t) Sb for all (x,t) € D, then

(a)
leCud - fmug:’ < (K, + x2||u||1gf+ Kallvllg‘T")llu-vllD:

where Ky» K,» Ky are independent of u and v.
Proof: (a) [leull(® = sup _ |£[ul(x,0) ]
T (x,t)GDT
. m [£LulCx,0)-£LulCy,t) | T _ lffu](x,t)-f[:};x,‘r)l
(x,t),(y,t)€D, x - y[® (x,1),(x,T)€D, |t - 7

X7y tET
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< sup [f(x,t,ulx,t))]

(x,t)éﬁ}
. oo [£(x,t,ulx,t))-fly,tulx,t)) |+[£(y,t,ulx,t))-£(y,t,uly,t)) ]|
(x,1),(y,t)€D, | - y|*
X#y
% s Jjﬁx,t,u(x,t))—f(x,T,u(x,t))|+If(x,f,u(x,t))-f(x,?,u(x,?))[.
(x,t),(x,T)Eﬁk [t - Tla/2
t#T

Because of the uniform Lipschitz conditions satisfied by f, we have that

there exist constants K1 and K2 such that:

"f[UJ“éa) < sup_ |f(x,t,ulx,t)) |
T (x,t)EDT
K, [G6t) = (vt |+ Ky Julx,t) - uly,t) |

+ sup _
(x,t),(y,t)€D, [x - y|®
x#y
Ky | (x5t) = (6,1 |+ Ky Julx,t) - ulx,m) |
+ sup
(x,1),(x,TED, e - |02
t#T
1-a
< sup _ [£Cx,tulx,t))| + sup_‘Kllx - vl
(x,t)€D,, X,y€EV
4 x#y

1_._
2
+ sup Kllt - Tl + K2”uﬂéa).
Ost ,1<T T
t#T

Since we are assuming throughout that 0 < a < 1, it follows that

“f[u]“éa) is finite if Hu“éa) is finite, which proves (a).
T T

(b) This follows from the above argument, since

(i) sup _ If(x,t,uT(x,t))l < sup_ |£(x,t,u)|, independent of T
(x,t)GDT (x,t)GDT
as<usb
and u_.
T

1) o 5 < Al + «lBIS® < (RIS + 8IS, independent of T,
T T T T T
ifosTt<1.
(c) We have that, for all (x,t) € 5},

flul(x,t) - f{v])(x,t) = f(x,t,ulx,t)) - £(x,t,v(x,t))

1
f £, (0,8 ul,t)+T{ue, ) -v (6, t) P (ulx,t)-v(x, )T
0

1
= [ {£,lu + T(u-v)](u-v)}(x,t)dT
0




and also that by parts (a) and (b),

(a) (a) _ (e
“fu[u + T(u—v)]“DT <M l + |u v“DT )

il

sK1+%m%?+Kﬂﬂ$)

where Kl’ K2, K3 are independent of u and v, and of T.

- llegad - 0l - Mjftu+ﬂuwuuwmmm
! (@ (@
S.[ “fu[u + T(u-v)]“Da Hu-v“Da dT using Lemma 4
0 T T

s (K, +<mm@+xunm%j vl ar
T
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= (K4 + K2hu“é:) - K3H “(a) iu—vlif) as required.

THEOREM 3: For the initial-bowndary value problem (S), we suppose, in
addition to the asswmptions already made, that:

(1) Blind = O for t = 0 and all x € dV;

(ii) V satisfies the cone condition;
(iii) the coefficient dp(x,t) of u in B
all (x,t) € ST;

1inY 8 strictly positive for

(iv) there exist upper and lower solutions ¢ and V¥ for (5), with
¥(x,t) s @x,t) for all (x,t) € D, and ¥,9 € H“(ﬁ%);

(v) f satisfies a wniform szschztz condition in u on any finite u-
interval, for (x,t) € D, o> @d in (x,t) on 5%, for

inf _ ¥(x,t) sus sup _ @x,t);
(x,t)GDT (x,t)eDT

(vi) the partial derivative £ is wtiformly Lipschitz in (x,t) and in

u for inf _ ¥(x,t) su s sup_ @(x,t) and (x,t) € 5&.
(x,4)€D, (x,t)€D,

Then there exists a wnique solution u € H2+a(5&) of (5) such that for
all (x,t) € 5&, Y(x,t) < ul(x,t) s @(x,t).

Proof: By hypothesis (vi), £, is bounded for (x,t) € 5% and
inf _ ¥(x,t) susx sup _ @(x,t). Fix Q such that fu+c(x,t)+0 >0
(x,t)GDT (x,t)GDT

for all (x,t) € B& and inf _ ¥(x,t) < us< sup _ @(x,t).
(x,t)EDT (x,t)GDT
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For any u € Ha(ﬁf) such that inf _ ¥(x,t) < u(x,t) < sup _ qu,t)
(x,t)EDT (x,t)EDT

for all (x,t) € 5}, we define Tu by saying that v = Tu if and only if:

(L - c(x,t) - Qv - g% = - {f(x,t,u) + c(x,t)u + (u} for (x,t) € D,
Blinv =0 for (x,t) € ST g
v(x,0) = uo(x) for x € V.

Using hypothesis (v), it follows by Lemmas 4, 5(a) and 1 that Tu is

uniquely defined for each u as specified above, and Tu € H2+a(5&).
(a) We show first that T is monotone, in the sense that if

u(x,t) < v(x,t) for all (x,t) € 5&, and Tu and Tv exist, then
(Tu)(x,t) < (Tv)(x,t) for all (x,t) € 5&.

Suppose then that inf _ §(x,t) < u(x,t) s v(x,t) < sup_ ®(x,t)

(x,t)GDT (x,t)GDT
for all (x,t) € 5&, and u,v € Ha(ﬁf). Then:
(L - c(x,t) - Q)Tu - é%(Tu) = - {f(x,t,u) + c(x,t)u + (u} for (x,t) € Dr3
(L - e(x,t) - Q)Tv - ji(TV) = - {f(x,t,v) + c(x,t)v + v} for (x,t) € Dps

ot
Blin(Tu) = Blin(Tv) = 0 for (x,t) € Ses

(Tu)(x,0) = (Tv)(x,0) = uo(x) for x € V.
Put w = Tv - Tu. Then:

(L = clx,t) - QW - 5% = = [£(x,t,9) + e(x,0)v + Qv
- {£(x,t,u) + c(x,t)u + fu})

< 0 for (x,t) € DT’ since, by the choice of Q,

f(x,t,u) + c(x,t)u + Qu is an increasing function of u for (x,t) € D

T
and inf _ y(x,t) su < sup _ @(x,t).
(x,t)GDT (x,t)EDT

Also, B 0 for (x,t) € Sp3

1in"
w(x,0) = 0 for x € V.

It follows by Theorem 2, taking ul(x,t) =0, u2(x,t) = w(x,t) in the

notation of that theorem, that w(x,t) =2 0 for all (x,t) € 5}.
i.e. (Tv)(x,t) 2 (Tu)(x,t) for all (x,t) € 5&, as required.

(b) Now put u, = Tg. We prove first that ul(x,t) < @(x,t) for all

(x,t) € 5&. We have:
du
(L - c(x,t) = Wu, - === - {£(x,£,0) + c(x,8)% + Q@] for (x,t) € D3

Bijpy = 0 for (x,t) € ST;
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ul(x,o) = uo(x) for x € V.

S (L - et) - )y, - @) - o - @)

du
(L - clx,t) = Qu, - == - {(L - clx,t) - O - %}

- {£(x,t,0) + c(x,t)p + Q@) - {Ly - %SCE] + c(x, )9 + QO

- {Lo + £(x,t,9) - %‘,?}

v

0 for (x,t) € DT since @ is an upper solution for (5).
Also: Blin(ul - = —Blinm <0 for (x,t) € ST;
u (x,0) - ®(x,0) = uy(x) - @(x,0) =0 for x € v.

Applying Theorem 2, we obtain u,(x,t) - @(x,t) <0 for all (x,t) € 5},

as required.
Similarly, if we put v, = TV, then vl(x,t) 2 J(x,t) for all
(x,t) € 5&. Furthermore, since Y(x,t) < ¢(x,t) for all (x,t) € B}, it

follows by the monotone property of T that Ty < T® on T

i.e. vl(x,t) < ul(x,t) for all (x,t) € 5}. So we have:

Su, <@ on DT'

v Sva

g 2+a, = (0905 q _ .
Since uy €H (DT) CE (DT), we may define u, = Tu,. Since u =@

on DT’ we have Tu

< T®cn Dy, i.e. u, su, on D.. Similarly, if we

1 2 1 T

define v, ='rv1,then vy, 2 v, on DT' Since vy Sy on DT’ it follows

also that Tv1 < Tu, on DT’ i.e. v, <u

1 2 5 on D... So we have:

T

V< viSvySu, su <@ on D.,.

il T
Continuing thus, we obtain two sequences {un], {vn], with

u v, € H2+a(5&) for each n, and such that

WSvlsV € ....Su,<u, <@ on'DT'

2 2 il
(c) Since the sequences {un] and {vn] are monotone and bounded, both
converge pointwise. In particular, {un] does so. Let

u(x,t) = lim un(x,t) for (x,t) € 5&. Since, by hypothesis (v), f(x,t,u)

n—o
is continuous in u over the relevant u-interval, the sequence

{f(x,t,un) + c(x,t)un + Qun] converges pointwise to £(x,t,u)+tc(x,t)u+ (u,
for each (x,t) € 5}. Since V{ < un,ﬁ <@ on 5&, it follows by

Lebesgue's dominated convergence theorem that, for any q > 1,



7 g 1/q
{‘[ I If(x,t,u Y+e(x,t)u Hu -[f(x,t,ﬁ)+c(x,t)ﬁ+ﬂﬁ]|q dx dt} -0
odv n n 'n .
as n — o,
Thus the sequence {f[un] teu + Qun] converges in the Lq(DT) norm,

i.e. this sequence is a Cauchy sequence in Lq(DT). Hence, if we write

h  (x,t) = f(x,t,u (x,t)) + c(x,t)u (x,t) + (u_(x,t)
m,n m m m

{f(x,t,un(x,t)) + c(x,t)un(x,t) + Qun(x,t)] for all

(x,t) € 5&
then given any € > 0, there exists a positive integer Ng such that
m,n 2 Ny = IIhm’nllq’DT <e.
2+a
= = = - for
Now let n Tu -Tu =u ., -u.,, then LA €H (D )

each m, n. Further, Wy satisfies

(L - c(x,t) - O)wm,n = g%(wm’n) - hm n(x,t) for (x,t) € D

9

Blinwm,n = 0 for (x,t) € ST
w_ _(x,0) = 0 for x € V.
8!
Thus, by Lemma 2 % “(2,q) < c,|h “ where c, does not
> "myn DT 2" m,n q,DT 2
nt+2
depend on hm n Since we may choose g such that ¢ > —E—-and
9
0<a<?2 - 353 (where n here is the dimension of V), it then follows by
(a)
Lemma 3 that Ih l < c5e “hm,n"q,D where 3 does not depend on hm,n'
T
(a)
m,n 2 Ne = “wm H < c3c2
(a)
= lupyq n+1“ <eg®

Hence the sequence {un] converges in the Ha(DT) norm, so that u € HG(BE)

and Hu -
n

ﬁ“ga) - 0 as n—=o Thus, by hypothesis (vi) and Lemma 5(c),
T

leCu,d - £CQIE® = 0 as n = =
i
If we now let w_ = Tu_ - Tu, then w_ satisfies
n n n

- e
(L - clx,t) - Qw_ - 5¥(wn)

= [f(x,t,un) + c(x,t)un + Qun - {£(x,t,u)+c(x,t)uru}] for (x,t) € DT
linan

Qn(x,O) =0 for x € V.

B

0 for (x,t) € 8o



It follows by hypothesis (v) and Lemmas 4, 5(a) and 1 that
- 2+a,=
w €H (DT) and

R 1527 s I, = £181 + eCuy-®) + Ay 52

r -a(a) (a) -(a)
= ey 0l - G+ el + lal o, 1)

-0 as n = o,

Thus “Tun - Tﬁ“g2+a) -0 as n —~ = Hence Tu € H2+a

(D..), since we know
- T

= 2tQ T . - . 2tq =
Tu =u,, €H (DT), and Tu  converges to Tu in H (DT), so that

(Tun)(x,t) certainly converges uniformly to (Tu)(x,t) on D..

T
ou(x,t) = lim un(x,t) = 1lim (Tun_l)(x,t) = (Tu)(x,t) for all
el e (x,t) € D.

It follows that u € H2+a(5&). Also, Tu satisfies

-

(L - c(x,t) - DTE - 2T = - {E(x,t,D) + clx,0)F + Q1)

for (x,t) € DT

Blin(Tu) 0 for (x,t) € ST

(Tu)(x,0) uo(x) for x € V.

Since Tu = u, we have at orce that u is a solution of (5), which proves

the theorem; similarly one can show that lim v _ = ¥ [€ H2+a(6&) is a
N=—<x

solution of (5). It follows by the uniqueness of the solution that

u = Vv on DT'

We next consider the elliptic boundary value problem

Lu + ?(x,u) =0 for x €V (7)
B..u=0 forx €V
lin
where L and ﬁlin are as defined in Ch.3, with the additional assumptions

that aij = aji € c%", 5; € c%) and & € ¢cHM); also ao and 51 are of

class c1+“(av) and f is continuous for x € V and at least some u-
interval.

We call §(x) an upper solution for (7) if § is continuous in V,
has continuous first-order xi-derivatives in V, continuous second-order

xi—derivatives in V, and satisfies:



Ly

ﬁ@ + %(x,@) <0 for x €V
Blin¢ 20 for x € dV.

The terms strict upper solution, lower solution and strict lower
solution are defined analogously, as for problem (5), and a solution

of (7) is understood to be a solution in a similar sense as for problem

(5).

It is of interest to observe that comparison theorems analogous to

Theorems 1 and 2 do not hold in this case. For example, consider the

2 ~
problem for which Lu is g—%, By;pu is u, f(x,u) is 8u+l and V is

dx
{x: -1 < x<1). Take u,(x) = uxu + '3 u2(x) = 8x2 for all x € V.
Then ﬁul - ?(x,ul) - [f:u2 - f(x,uz)] = 48x% + 32x' + 25 - {sux2 + 17}

3o = LBHE W B

2('+x2-1)2 +6 >0 for all x.

Thus Lu, + f(x,ul) > ﬁu2 + f(x,u ) for all x € V. Also, when x € oV,

1 2

~

i.e. x = #1, then B B, E@ =217 = u, = 8. Thus

1in%1 1 SERL N 2

Blinul < Blinu2 for all x € dV. If theorems analogous to Theorems 1
and 2 held, we would expect at least that ul(x) < u2(x) for all x € V.
However, when x = 0, u1(=3) > u2(=0), so theorems analogous to Theorems

1 and 2 do not hold in this case.

Hence, if there exist upper and lower solutions @ and @ for (7),
then in contrast to the case of the parabolic problem (5), we cannot
assert that every solution u of (7) must lie between § and @ on V.
However, Sattinger's method of monotone iteration is still applicable,
and shows the existence of at least one solution u of (7) lying
between & and @ on V. In this connection, though, it is interesting
to note that it has been shown (e.g. by Parter[27]) that in certain
special cases there exist solutions of (7) which cannot be obtained by
monotone iteration procedures. Such solutions are unstable in the
sense of Keller and Cohen[19] (see Ch.4). A full discussion of these

points is given by Amann(3].

We give now Sattinger's existence theorem[32, Theorem 2.3.1] for
elliptic problems. The proof is similar to that of Theorem 3 and so

is not given in detail, but an outline of the procedure is given, as




41

this will be referred to in the sequel.
THEOREM 4: For the bowndary value problem (7), we suppose, in addition
to the asswmptions already made, that:
(i) there exist upper and lower solutions @ and § for (7), with
H(x) € @x) for all x € V and §,§ € c2™*W;
(ii) f and its first partial derivative Eu are both wniformly Lipschitz
in x and in u for inf I(x) su s sup §(x) and x € V.
xEV xEV
Then there exists a solution u € c2T(¥) of (7) such that for all x € V,
%) s ux) s A(x) .
Proof: The method is similar to that used in the proof of Theorem 3.

Fix 2 > 0 such that gu + &(x) + Q>0 for inf §(x) su s sup ®(x) and
x€EV xEV

x € V. Then define Tu by saying that v = Tu if and only if:
(L - &(x) - Qv = - {E(x,u) + &x)u + )} for x € V3

B,. v=0 for x € dV.
lin

As in the proof of Theorem 3, define sequences {Gr] and {Gn] so that

V=< 01 < 02 < .... < G2 < Gl <® onV, and Gn’G: € C2+G(V) for all

R 2 1. It may then be shown that lim d_ = u and lim G = v are both

solutions of (7), thus proving the theorem; note that in contrast to

Theorem 3 we do not necessarily have u = v on V in this case.

Asymptotic Behaviour of Solutions:

In order to apply the two preceding existence theorems to the
problem of determining the connection between the boundedness over all
time of the solution of (5) and the existence of positive solutions
of (7), we require next two theorems concerning the asymptotic
behaviour of solutions of linear systems. These are analogous to
theorems proved by Friedman[1i4, Ch.6], but with different boundary

conditions.

THEOREM 5: Suppose that the coefficients 3y b;, ¢ in Lu are

wniformly continuous and bownded in D, the coefficients d, and d, in
B jpu are wtformly continuous and bownded in S, and for some By >0,
do(x,t) 2 for all (x,t) € S. Suppose further that u(x,t) satisfies

the differential equation

lu - g% = g(x,t) for (x,t) €D



4?2

where g is continuous on D, together with the bowndary condition
Bl = h(x,t) for (x,t) € S _
where h is continuous om S. If lim g(x,t) = 0, lim h(x,t) = 0 and

t— tT=—0

lim c(x,t) < 0 wiiformly on V, dV and V respectively, then lim u(x,t) = 0

t == )

wt formly on V. Ax

AR o 1(x1 being the first

Proof: Consider the function g(x) = e

component of x), where R is any positive number satisfying R 2 2x, for

1
all x € V, and A is a positive constant to be determined later. Then
@(x) satisfies:

Ax Ax Ax
Ly = - ail(x,t)RQe 1 bl(x,t)le 14 C(x,t)(e)‘R -e 1),

Independently of the value of R, we choose A\ sufficiently large

Axy R M 5
so that Le(x) < - 2e + c(x,t)(e™ - e ), for (x,t) € D. Since

lim c(x,t) < 0, it follows that for some g sufficiently large,
+t =0

Ax Ax
c(x,t)(eXR - e 1) <e L for t > 0, and all x € V.
Ax
Letting § = inf e s we then have:
x€V
LeXx) < -g for t >0 and all x €V .oveennnn (8)

lxl Ax

Also, By, @(x) = do(x,t)(elR —e 1) - A (x,0)n,(x)e

> W, for all (x,t) € D, for some positive Hy s if R is
sufficiently large. Choose R so that this is the case.

Now let 8y = inf (%), Bl = sup @(x). Consider the function

x€EV xEV
Y(x,t) =€ cP(GX) v e EX) A CpéX) e 8t i tsg20
0
where €, g are positive constants and A = suE_lu(x,c)l.
xEV
By (8): Ly(x,t) <-¢ - e _ %ﬁ e-g(t_O), for all x € V.
Hy Y9
oy Agp(x) -e(t-0) BA01 _g(t-0)
Also, 2L - _ 8A®X) -€lt-o) , 2 1 -§ for all x € V. If we
ot Y 84
take g = jlu then %% 5 = gﬁ-e'g(t-c), and so:
9 8o
Ay
Ly(x,t) - 5E < € fort >gand x €V ...... (9)

Clearly: P(x,0) > A for x € V. tirieirnnertnnenns (10)
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€ A
Also: Blinw(x’t) > —;2 + e+ ?E?-e-g(t_C)
>e forall x €OV, t >0  tiierennnnnes (11)

By hypothesis, for any € > 0, there exists o(e) such that
lg(x,t)| <€ and |h(x,t)| < e for t > g; we may assume o(e) 2 g. By two
applications of Theorem 1, using (9), (10) and (11), we have
u(x,t) < y(x,t) and -u(x,t) < Y(x,t) for (x,t) € V and t 2 o.
S Julx,t) | < Y(x,t)  for (x,t) €V
For (x,t) € V and t 2 g, we have:

and t 2 o.

[ulx,t)| = Ale + A2e-g(t-c), A1 and A2 positive constants,

A1 depending only on

g . B4E
< 2A1e ift2g - = 1n(—).

g A,

This completes the proof of Theorem 5.

For the next theorem, we need the following standard result (see,
for example, the book by Ladyzenskaja and Ural'ceva[22, pp.137,138]).
LEMMA: Suppose that the operators L and ﬁlin are as defined in Ch. 3,
with the additional assumptions that:

(1) &5, = 4, € ¢V, b, € cHV), & € cXV) and &(x) < 0 for all x € V;

(ii) &o and 51 are of class C1+a(bV), and there exists p, > 0 such that
d,(x) 2 w, for all x € .
Then for any g € CX(V), the bowndary value problem

fv = 8(x) for x €V
v =0 for x €V

oo Y

lin
has a wnique solution v € c2tW). Thus, certainly, v and all its
first and second partial derivatives are bownded in V.

THEOREM 6: Suppose that the operators L and B satisfy the hypotheses

lin
of Theorem 5, and the operators L and ﬁlin satisfy the hypotheses of
the Lemma. Suppose also that aij(x,t) - aij(X)’ bi(x,t) - bi(x),

c(x,t) = &(x), glx,t) = E(x), dy(x,t) = dy(x) and d,(x,t) = d,(x) as

t = @, wiiformly in V; here g is continuous on D and § € CH(V).

If u(x,t) s a solution of the bowndary value problem



by

Lu - -g%= g(%,t) for (x,£) €D
u=20 for (x,t) €8S

Blin
and v(x) is the wnique solution of the bowndary value problem
Lv = 8(x) for x € V }

-

Blinv

’ 0 for x € ¥V

then u(x,t) = v(x) as t = =, wiformly in V.

Proof: Put w(x,t) = u(x,t) - v(x), for (x,t) € D. Then:
Lw-%%=Lu—?r:—(L—f.)v—ﬁv
= g(x,t) - §(x) - (L-L)v for (x,t) € D.
Blinw = = Blinv 5 (glin = Blin)v for (x,t) € S.

By virtue of the hypotheses cf Theorem 6 and the boundedness of v and
its first and second partisz. derivatives on V (see the Lemma), we may

apply Theorem 5 and cenclude that lim w(x,t) = 0, wniformly on v,
t—
which proves Theorem €.

We are now in a posi<ion to make a first statement about the
relationship between solutions of the parabolic problem (5) and the
elliptic problem (7). We shall assume for the purposes of this

discussion that the operators L, L, Blin and Blin satisfy the

hypotheses of Theorems 5 and 6 in addition to the conditions imposed
when describing problems (5) and (7). We assume also that

f(x,t,u) = %(x,u) as t = o, uniformly in x for x € V and in u on any
bounded u-interval.

Suppose that we have upper and lower solutions @(x,t) and y(x,t)
for (5), for all T > 0, and upper and lower solutions §(x) and ¥(x)
for (7), such that ¢(x,t) = ®(x) and Y(x,t) - ﬁ(x) as t = «, uniformly
for x € V. Suppose also that the conditions for the monotone iteration
theorems, Theorems 3 and 4, are satisfied. It is clear from the
constructions used in these theorems (applied for arbitrarily large T)
that we can, using induction, apply Theorem 6 to the function pairs

un(x,t), ﬁn(x) and vn(x,t), Gn(x), and deduce that for all positive

integers n:

u (x,t) =4 (x) _
n n as t = =, uniformly for x € V.
Vn(x,t) - Gn(x)

We now suppose further that G(x) is the only solution of (7) lying
2)




=
w1

between $(X)Aand &(x). This would be the case, for example, if the
lower solution ﬁ(x) were positive and the hypotheses for result (viii)
of Keller and Cohen (see Ch.4) were satisfied (this means, in particular,
that f(x,u) would be concave in u).
Since 4(x) is the only solution of (7) between J(x) and @(x), and
the sequences {Gn(x)] and {Gn(x)] both converge uniformly to solutions
of (7) lying between §(x) and @ x) by Theorem 4, it follows that
ﬁn(x) - {(x) and Gn(x) — 4(x) as n = », uniformly for x € V, and we
know also that Gn(x) < 4(x) < ﬁn(x) for all x € V and all positive

integers n.

Thus, given any € > 0, there exists a positive integer N(e),

N ®

independent of x € V, such that Iﬁn(x) - Ax) | < % and lGn(x) - Ax) | <
whenever n 2 N(e). Further, there exists T(e,N(€)) independent of
x € V such that IuN(x,t) - ﬁN(x)l < %-and IVN(x,t) - GN(x)I < %-whenever
t > 1(e,N(e)).
Tt IuN(x,t) - ﬁ(x)l < e and lvN(x,t) - 4(x)| <€ whenever

t > 1(e,N(e)).
S Glx) - e < vp(x,t) s ulx,t) S u(x,t) < G(x) + € whenever

t > 1(€,N(e))
where u is the solution of (5) obtained in the procf of Theorem 3;
note that by applying Theorem 3 for arbitrarily large T, we can show
that u(x,t) exists for all t 2 0.

Soou(x,t) = G(x) as t = «, uniformly for x € V.

Thus, under the given conditions, the existence of exactly one solution
to the steady-state problem (7) lying between $(x) and (%) implies
that, for any initial value uo(x) lying between Y(x,0) and @(x,0), the
unique solution u(x,t) of (5) (for arbitrarily large T) will tend to

the steady-state solution G(x) of (7) as t — «, uniformly for x € V.

Let us now consider the special case where the coefficients and
the function f in the parabolic problem are independent of t, so that

we are concerned with the problem
Q du a _
Lu - 5= f(x,u) = 0 for (x,t) €D

B

1ipd = 0 for (R IS . YY)

u(x,0) = uo(x) for x € V

As a particular case of the preceding discussion, we obtain the

following theorem.
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THEOREM 7: Suppose that

(i) the operators L and ﬁlin satisfy the hypothéses of Theorem 6 in
addition to the conditions irposed when deseribing problem (7);

(ii) the initial value u (x) in (12) is non-negative for all x € v,
and there exists a non-negative solution u of (7) such that

p(x) 2 uy(x) 2 0 for all x € V;

(iii) there is no solution u of (7), different from p, such that

0 < u(x) s p(x) for all x € V;

(iv) f(x,0) 2 0 for all x € Vv,

(v) ﬁ, ﬁlin’ £, u, and V satisfy the hypotheses of the monotone
iteration theorems, Theorems 3 and 4.

Then there exists a wiique solution u of (12) such that u(x,t) = p(x)
as t = «, wniformly for x € V.

Proof: Bearing in mind our assumptions that p(x) 2 uo(x) 2 0 for all
x € V and f(x,0) 2 0 for all x € V, it is obvious that p(x) is an
upper solution and 0 a lower solution for both (7) and (12). The
theorem then follows from the preceding discussion.

Note: A crucial hypothesis in Theorem 7 is the existence of a minimal

non-negative solution p of (7); as discussed in Ch.4, such a minimal

non-negative solution does exist under a wide range of conditions.

Let us now try to relate the preceding material to the thermal

explosion problem with which we began. Consider the time-dependent

problem

fu - %% + Af(x,u) = 0 for (x,t) €D

B

1inY 0 for (x,t) €S ceeeeeaa(13)

u(x,0) =0 for x €V
and its related steady-state problem
Lu + Xf(x,u) =0 for x €V

B u=0 for x € dV N LTS

lin

where L, B 5 f and V are assumed to satisfy the hypotheses of

lin
Theorem 7. These problems differ from problems (12) and (7) only in
0= 0, and

represent a modest generalisation of the original heat-generation

the re-introduction of the parameter A and the fact that u

problem.
If we adopt the orthodox approach and equate the existence of
positive steady-state solutions with the absence of a thermal explosion,

then it is natural to define the critical parameter \* for the pair of
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problems (13), (14) to be the least upper bound.of the set of positive
values of X for which positive solutions of (14) exist (if the set is not
bounded above, we can take A® to be infinite). This conforms with the
notation used by Keller and Cohen[19] and is also the definition used by
Boddington, Gray and Harvey[4]. As discussed in Ch.4, if we assume that
ﬁ and ﬁlin are of the rather special form described in that chapter, it
is known that if f is continuous, positive, and strictly increasing in u,
| 0° H1 and H2 of Keller and
Cohen[19]), then positive steady-state solutions, if they exist at all,

for x € V and u 2 0 (these teing hypotheses H

occur for all X in(0,\*) and for no )\ greater than A*. Thus, by the
orthodox criterion, "explosion" occurs if X > A* but not if 0 € A < A,

Indeed, under the same conditions on f, it is known, as has been
remarked, that a minimal positive solution of (14) exists if 0 < X < A¥.
It then follows from Theorem 7 that if 0 < A < \*, (13) has a unique
solution u(x,t) which is bounded for t 2 0 and tends to the minimal
cositive solution of (14) as t = =,

What of the reverse implication? Suppose we know that (13) has a
solution u(x,t) which is bounded for t 2 0; does it tend to a solution
of (14) as t = «? To deal with this question, we require two theorems
analogous to Theorems 2.5.1 and 2.6.1 of Sattinger(32], but with
different boundary conditions. The proofs are included for the sake

of completeness; they are analogous to those used by Sattinger.

THEOREM 8: Suppose that there exists a lower solution V(%) for the
elliptic problem (7), and a solution u(x,t) of the particular parabolic
problem (12) with u, = V. Suppose also that the coefficient a (x) in
Blin is strictly poszttve for all x € 3V, and the function f(x u)
satisfies a wniform Lipschitz condition in u on ay finite u-interval,
and has partial derivative f continuous for all x € V and all real u.
Then 5—-2 0 for all (x,t) € D.

Proof: For any (x,t) € D, put W (x,1) = u(x,t+h) - u(x,t)

, where h > 0.

h
Then if (x,t) € D, we have:
a ow
~ f(x,u(x,t+h)) - f(x,ul(x,t)) h _
Lwh + B - 0.

Now %(x,b) - f(x,a)

I fu(x,u)du
a

1
J' £ (x, ™+(1-1)a)(b-a)dr.
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Let b = u(x,t+h) and a = u(x,t), where (x,t) € D. Then:

f(x,u(x,t+h))h- £(xulx,t)) _ g0x,t,h)w, (x,t)

1
where g(x,t,h) = [ £ (x, Tu(x,t#h)+(1-Tulx,t))dr. Hence W (%,1)
0

satisfies:
- dwy
Lw, + &% - 57 = 0 for (x,t) € D.
~ -1A ~
Also: Biin¥h © E{BlinU(x’t+h) - Blinu(x,t)]
= 0 for (x,t) € S.
wh(x,O) _ u(x,h) ; u(x,0)
= u(x,h)h— $(X) 20 for x € V, since @ is

also a lower solution for (12), and so u(x,h) = §(x) “or all x € V and
h > 0 by Theorem 2. Applying Theorem 2 again, we see that wh(x,t) 20
for all (x,t) € D, and all h > 0. It follows that g%-= lim wh(x,t) 20

_ ~ h=0+
for all (x,t) € D.

Note: An analogous theorem holds if we have an upper solution § for (7)
and a solution u of (12) with u
(x,t) € D.

DB ®; in that case g% < 0 for all

THEOREM 9: If we make the same asswmptions as for Theorem 8, and suppose
in addition that for some constant K, u(x,t) = K for all (x,t) € D,

then lim u(x,t) = G(x) exists for all x € V, and 4 is equal a.e. to a
t——

classical solution of the elliptic problem (7).
Proof: We use the inner product notation to denote the usual L2(V)

inner product for real functions, i.e. (f,g) = I fg dx. Also, given

two functions £:V x (a,b] = R and u:D —= [a,b], we define the function
f[u]:ﬁ'ﬂ R by g[u](x,t) = f(x,u(x,t)) for all (x,t) € D.
Now consider the operator L, = f - &(x), understood to have as

.. u=0. Lions and
lin

domain the set of all u € 52 2(V) satisfying B
9

Magenes[24, Vol.I, pp.114-121] describe the construction of the adjoint

operator L? and also the adjoint domain consisting of all u € S, 2(V)

b
satisfying an appropriate adjoint boundary condition Cu = 0. As shown
by Lions and Magenes[24, Vol.I, Ch.2, Theorem 2.1, Corollary 2.1 and
Remark 2.2 on pp.119,120], if u € domain L, and v € domain L?, then
(Llu,v) = (u,LTv).
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Now let € be in the domain of L?. We know that u(x,t) is in the

domain of L1 as a function of x, for each t 2 0. Write

£,(x,u) = F(x,u) + &(x)u.

Then since Lu - g% + £(x,u) = 0 for (x,t) €
we have’ (L,u,8) + (flfu],g) - (g,u ) = 0 for all t > 0.

o

i.e. (u,L?g) + (fl[u],g) ~ (g,ut) = 0 for all t > 0.

1]

:§ 1 T
1 " 1 1
So T.fo(“’Lig)dt + ?‘[O(fl[uj,g)dt - T-fo(g,ut}dt 0 for all T > 0.

Now let T = «, Since u(x,t) is non-decreasing in t by Theorem 8, and
bounded above by K for all (x,t) € D by hypothesis, it follows that

lim u(x,t) = G(x) exists for all x € V, and hence that
tT—=

T

T
lim é\r u(x,t)dt = G(x) for all x € V.
0

i T
So 1lim %J‘ (u,L’fg)d‘: = lim (%—I u(x,t)dt,L’fg) by interchanging the
T 0 T 0 ] q
order of integration,
since Li is independent
of t

E (u,ng}.
Here the interchange of the order of integration follows by Fubini's

Theorem, and the final step follows from the Lebesgue dominated

convergence theorem and the fact that §(x) =< u(x,t) = K for all
(x,t) € D.

Similarly, using the fact that fl(x,u) is continuous in u, we

obtain
T
lim l‘r (f,[u),e)dt = (£,[4],8).
Tous TG 2 B
1 IT 1 IT
Also, lim =| (g,u.)dt = lim (€,= u, (x,t)dt)
Tw 190  F Tw VMg T
- %i: (g,u(x,T) ; u(x,O)}

= (g,0) = 0 since u(x,T) is bounded as T = =,
for all x € V. Here again we are using the Lebesgue dominated

convergence theorem.
So, taking limits as T = «, we obtain finally:

(G,L?g) + (flfﬁj,g) = 19. )
Now Ly is invertible, since for g € L,(V), the system L,w = g, B,, w =0

)



has a unique solution, by a result of Agmon, Douglis and Nirenberg(1].
The same applies to L?, since the order of the adjoint boundary
condition is 0 or 1 by Theorem 2.1(b) on p.115 of the book by Lions and
Magenes[24], and so the uniqueness theorem of Agmon, Douglis and
Nirenberg applies. Let G1 be the in&erse of Ll' Then by a result of
Riesz and Nagy[30, p.304], Gf is the inverse of L¥. Put w = —Glfl[ﬁ].
Then:

(w,L¥g) = - (G f,[G],L%e)
= - (flfﬁ],G§L§g)
= - (£,[4],8).
Hence, from above, (G,Lig) = - (fl[ﬁ],g) = (w,L?g). Therefore

(ﬁ-w,L?g) = 0 for all € in the domain of L But the invertibility of

%
'
0

L? implies that the range of L? is all of L2(V). Hence (4-w,n)
for all n € L (V). Thus i=wa.e., i.e. Q0 = —Glfl[ﬁ] a.e. So U is a

weak solution of the elliptic problem (7). By Theorems 2.2.1 and 2.2.2
of Sattinger[32], we conclude that U is equal a.e. to a classical

solution of (7), as required.

Applying Theorems 8 and 9 to problems (13) and (14), we obtain the
following theorem.
THEOREM 10: Suppose that
(1) tég coefficient 30(x) in B
and \f(x,0) 2 0 for all x € V;

(ii) £ satisfies a wniform Lipschitz condition in u on any finite u-

lin is strictly positive for all x € dV,

interval, and has partial derivative ?u continuous for all x € V and
all real u;

(iii) there exists a solution u(x,t) of (13) such that, for some
constant K, u(x,t) <K for all (x,t) € D.

Then there exists a non-negative solution of (14) which is equal a.e.
to the limit as t = = of the solution of (13).

If in addition

(iv) the coefficients ¢ in L and 31 in ﬁlin satisfy &(x) < 0 for all
x € V and dl(X) > 0 for all x € dV;

(v) \f(x,u) >0 forall x € Vard u =0

then the solution of (14) is strictly positive on V.

Proof: Since 0 is obviously a lower solution for both (13) and (14),

we can immediately apply Theorems 8 and 9 to deduce the existence of a
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solution p(x) of (14) such that lim u(x,t) = p(x) a.e. Since u(x,t) 20

t—

for all (x,t) € D by Theorem 2, and p is continuous, it follows that
H(x) 2 0 for all x € V, thus proving the first part.

The second part follows from a form of the maximum principle.
Clearly p is not identically zero, by hypothesis (v). Suppose u(xo) =0
for some Xy €V. If Xy € V, we obtain a contradiction by using
Theorem 6 of Ch.2 of Protter and Weinberger[28]; if Xq € dV, we obtain
a contradiction by using Theorem 8 of the same reference. So p(x) >0

for all x € V, completing the proof.

We have now shown that, under quite wide conditicns, the existence
of a bounded solution of (13) implies the existence of a positive
solution of (14) which is the limit a.e. of the solution of (13) as
t = «. Conversely, we showed earlier that, again under guite wide
conditions, the existence of a (minimal) positive solu+tion of (14)
implies the existence of a bounded solution of (13) which tends to the
(minimal) positive solution of (14) as t — .

Suppose we adoprt the alternative approach to the study of thermal
explosions, whereby one equates the boundedness over zll positive time
of the solution of the time-dependent problem with the absence of a
thermal explosion. This would lead us to define the critical parameter
A* for the pair of problems (13), (14) to be the least upper bound of
the set of positive values of A for which the solution of (13) is
bounded. The results of this chapter establish fairly general conditions
under which the two approaches to the problem and the two definitions
of the critical parameter are equivalent. Certainly this is so for the
cases discussed in Ch.4 and also for most forms of the original heat-
generation problem as discussed by Boddington, Gray and Harvey([4]. It
seems reasonable to suggest that the two approaches are in fact
equivalent under much wider conditions than those given in this chapter.

For the remainder of this thesis, we shall treat the second
approach to the thermal explosion problem as the fundamental one, and
concentrate on describing the behaviour of the solution of the time-
dependent problem under various assumptions. The information obtained
will be compared with that obtained by studying the steady-state

problem.
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7 CONSTRUCTION OF UPPER AND LOWER SOLUTIONS FOR THE
TIME-DEPENDENT PROBLEM

In this chapter we shall examine the behaviour of the solution of
the time-dependent problem under various assumptions as to the nature
of the function f(x,t,u), in particular the rate of growth of f(x,t,u)
as a function of u. We shall do this by constructing upper and lower
solutions for various cases, and then applying a suitable comparison
theorem. 1In all the theorems of this chapter, the existence of a
solution of the time-dependent problem will be taken as a hypothesis.
However, in many cases we will construct both an upper and a lower
solution, whereupon the existence of a solution will follow from
Theorem 3 if the conditions of that theorem are satisfied. In any
event, it is quite sufficient for our purposes in this chapter to show
that 7¢f a solution exists, it must behave in such-and-such a way.

We shall begin by working with a specific domain v (described
below) for which calculations are relatively simple, and later deal
with the problem of extending our theory to general domains. We shall
then discuss the results obtained in this chapter and the relationship
between them and the results already known for the steady-state
problem. The chapter will conclude with an examination of some

theorems concerning the effect of reactant consumption.

Notation:
n 2mi
We write V_ = {x: I x; © < 1} where the m (i = 1,2,... n) are
i=1

arbitrarily chosen positive integers. Lu and Blinu will be as defined

in Ch.3. 1In the directional derivative %%-which appears in B

1in%» €
shall take the unit vector field n to be such that, for each
2m,. -1
. - 1 . 1+a
i=1,2,...n, ni(x) = ai(x)xi where a; is of class C (an).
n 2mi
Since the outward unit normal vector field v to BVm 3 (&= 2 X 2 1]
i=1
is given by 2m, -1
i
2mix.l
v; (x) =

umijf for all x € bvm and i = 1,2,... n

n
\/E Uomi s
i=1
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the vector field n will be outwardly directed and nowhere tangential to
me provided that, for each x € bvm,
n um.-2

T 2m.a. (x)x, .
. i1 b
1=1

n 5 Rmi-E'
T uym, x.

_ ab 1=t

1=1

is positive. We assume that this is the case. We then have that

n(x).v(x) =

du _ ; a.(x) 2mi-1j§L
R e ALARCE SR T
1i=1 1
n 2m:.L
We suppose further that the quantity I ai(x)x; is bounded below
=1 -
and above on me by positive numbers e(al,... QoMyse e mn) and
ap
CKal,... @ oMyse e mn) respectively, and that the quantity I x; 1is
al3]
bounded below and above on me by positive numbers W(ml,... mn) and
Y(ml,... mn) respectively.

We shall be concerned with the parabolic initial-boundary problem

Lu - g% + Af(x,t,u) = 0 for x € Vm, 0<tsT

Blinu

0 for x € avm, 0<tsT ...(15)
u(x,0) = u.(x) for x €V
0 m

where f is continuous for x € V;, 0 <t <T and all u, Uy € C2+G(V6)

and the parameter A is assumed to be positive.

Construction of Lower Solutions on Vm:

THEOREM 11: Suppose that
(a) For all t >0 and x € Moo f(x,t,0) 2 0; furthermore, f satisfies a
wniform Lipschitz condition in u on any finite u-interval.
(b) uo(x) 2 0 for all x € V%.
(c) The coefficient dgo(x,t) of uin By; U is strictly positive for all
t >0 and x € V.
Then: (i) For any T > 0, a lower solution for (15) is given by
w(x,t) = 0 for all x € V%, 0<ts=<T.
(ii) For any T > 0, 1f u(x,t) Zs a solution of (15), u(x,t) 2 0
for all x € Vﬁ ad 0 st <T.
Proof: (I) w(x,0) = 0 < uy(x) for all x € V%.
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£

(I1I1) Bl. w=0for t >0 and x € dV_.
in m
aw = 3
(III) Lw - = ¥ Af(x,t,w) = Af(x,t,0) 2 0 for t >0 and x € Vm.

This proves part (i) of the theorem. If u(x,t) is a solution of (15),
it follows by Theorem 2 that u(x,t) 2 w(x,t) = 0 for all x € Vg and

0 <t <T, thus proving part (ii).

THEOREM 12: Suppose that

(a) There exist constmiis A, > 0(i = 1,...1n), B, 2 0(i = 1,... n) and

C 2 0 such that, for zll x € v ad t >0, 0 < aii(x,t) < Ai(i = My 5
Ibi(x,t)l < Bi(i = 1,... n) and c(x,t) 2 -C.

(b) There exists a ccrstant ¥ > 0 such that, for all t >0, x € Vm and
uz0, f(x,t,u) 2 M. Furthermore, f satisfies a wnifcrm Lipschitz
condition in u on @y Finite u-interval.

(c) There exist corstaiis Dy >0 and 6, >0 such that, fecr all x € ov_
ad t >0, 0 < do(x,t) <D, and 61 < dl(x,t); we require zlso that

26,0

P

these constw:ts be sucn *hat Y < § +

£ 77 7
(d) uy(x) 2 0 for all x € V_.

Then: (i) For @y T > 0, a lower solution for (15) is ziven by

w(x,t) = AK(A - i xi)(l -e %) for all x € V%, 0<sts<T
i=1

where A and K are constants chosen so as to satisfy

28,0
f<A<{§+ EEEE SRR « BB - SRR - (e
D
0
0 <K< i e (1)
n n
2 LA, +2 IB., +(C+t1)A
o 1 0 i
i=1 i=1

(ii) If u(x,t) s a solution of (15), then for any T > 0, u(x,t) >0
for 0 <t =T, and if lim u(x,T) = 4(x) exists, then for all x € V%,

T
2616
AM(Y + e ¥)
A 0
a(x) =2 = = 2619 > 0.
2 LA, +2 ZIB, + (C+1)(Vy + )
o ., D
i=1 1=1 0

Proof: (I) w(x,0) = 0 < uy(x) for all x € V%, by hypothesis (d).
n 2mi—1
(ID) 3,:.W = do(x,t)w + dl(x,t)iglai(x)xi

ow

oX.,
i
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- n 5 —t n 2mi-1 .
= do(x,t)XK(A - .2 xi)(l -e )+ dl(x,t).E (I.i.(x)x__.L {XK(-Qxi)(l-e )}
1=1 . =il
-+ n 5 n 2mi
= AK(1 - e )[do(x,t)(A - iglxi) - 2d1(x,t)i§21ai(x)xi ]

< AK(1 - e-t){DO(A-¢) - 2618} for t > 0 and x € va
<0 for all t >0 by (16).
ow
(II1) Lw - = Af(x,t,w)
n

n
- iflaii(x,t)XK(—2)(1—e_t) o oINS (t5ek

)

n n
+ el KA T x0)(1-e7%) - AK(A- T x3)e™™ + AEGx,t,w)

= 1=1
n n
2 -2XK X Ai - 2XX X Bi - CAKA - XXKA + XM for t >0 and x € Vm
i=1 i=1

n n

= A\{-K(2 Z A, + 2 ZB, + CA + A) + M}
. 1 . 1
i=1 =l

>0 for all t > 0 by (17).
Thus part (i) of the theorem is proved. By Theorem 2, it follows that

if u(x,t) is a solution of (15), then u(x,t) = w(x,t) for x € Vﬁ and
0 <t <T. It follows that u(x,t) > 0 for x € V%, 0<t=<T.

n
Furthermore, w(x,t) — AK(A - I xi) as t = o, so if 1lim u(x,T) = G(x)
i=1 T—

n
exists, then for all x € Vﬁ, d(x) =2 AK(A- Z xi) > AK(A-Y). Since

1=1
2619
A may be chosen arbitrarily close to { + ) and K may be chosen
0
arbitrarily close to - f} , part (ii) of the
2 LA, +2 LB, + (C+t1)A
. a1} b
1=1 1=1

theorem follows at once.
Note: The condition that f should satisfy a uniform Lipschitz condition
in u on any finite u-interval may be removed if we alter hypothesis (d)

to read "uo(x) > 0 for all x € V%." The only change in the proof is

that Theorem 1 rather than Theorem 2 is used in proving (ii).

THEOREM 13: Hypotheses as for Theorem 12 except that in hypothesis (b),
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we suppose that there exist constants My >0, M, >0 such that, for all
t >0, x € Va and u =2 0, f(x,t,u) = Mju + My). We still asswme that £
satisfies a wniform Lipschitz condition in u on any finite u-interval.

Then: (i) For any T > 0, a lower solution for (15) is given by

n
wix,t) = t(A - fo._) for all x€V ,0st<T

i=1
if A 18 a constant chosen so as to satisfy
Y<A< VYV +
D
0
n n
2( Z A, + TB,)+cCA
: = el =1 P A (18)
and if A > max M1(A — y ﬁ; .............
n n 28,8 2618
2( LA, + T B, +cC(y+ ) V o+
. i . 1 D D
A8 i=1 1=1 0 0
(ii) If X\ > max . )
26,8 M,
¥ =)

0
ad 1f u(x,t) is a solution of (15), then u(x,T) = ®as T = =,
wiformly for x € V_.

Proof: (I) and (II) are similar to the proof of Theorem 12.

(III) Lw - 95-+ AE(x,t,w)

ot
n n no,
= Ta,.(x,£)(-2t) + T b,.(x,t)(-2tx,) + c(x,t)t(A - I x:)
q ii . i i 5 1
1=1 1=1 1=1
2 3
- (A - T x:)+ AM(x,t,w)
s i
1=1
n n
2 -2t Z A, -2t ZB, - CtA - A + A[M t(A-Y) + M2] for t >0 and x € V
121 1 =7 1 1 m

1]

n n
taM, (A-Y) - 2{ Z A + .? B;} - cAl + M, - A
i=1 1=1

>0 for all t > 0 by (18).

Thus part (i) of the theorem is proved. Now if A satisfies the condition
2619

B

of part (ii), then we can choose A sufficiently close to | + so that

(18) is satisfied and therefore part (i) will hold. It follows by
Theorem 2 that if u(x,t) is a solution of (15), then u(x,t) = w(x,t) for
all x € V% and 0 <t < T. Now w(x,t) 2 t(A-Y) for all x € V%, so

w(x,t) = ®as t = o, uniformly for x € V%, which proves part (ii).



Note: As in the case of Theorem 12, the requirement that f should
satisfy a uniform Lipschitz condition in u on any finite u-interval may

be removed if we alter aypothesis (d) to read "uo(x) > 0 for all x € Vﬁ."

THEOREM 14: Suppose that
(a) As for Theorem 12.

(b) There exists a comsiant M > 0 such that, for all t >0, x € V_ and
u =20, f(x,t,u) = Mu.

(c) There exist constmts D, 2 0 and 6, >0 such that, for all x € avm

0
ad t >0, 0 < do(x,t) < D, and 61 < dl(x,t); if D0 > 0, then we require
26,3
also that Y < | + DL

G
(d) There exists a ccnstant € > 0 such that uy(x) >e For all x € Vg.

Then: (i) For any T > 0, a strict lower solution for (15) is given by

ac n
wix,t) = E54a - L) forall x €V , 05t <T
‘ i=1 ‘

if A is a constant chcsen so as to satisfy
26,8

Do

Y<A<VY +

(Zf Dy > 0; if 35 = 0 then A 1s chosen to satisfy A > Y)

o n
2{ T A, + IB,}+ (C+t1)A
g4 e R o (19)

ad 1f A D> MA Y trreceeereseeens

n n 2618

2{ Z A, + IB,}+ (C+D)(¥ + )
. Pg :
(ii) If A > —= (if D, > 0; in the
2619 0
M(VY + T 5]
0

case where D, = 0 we require \ > 9%20 and 1f u(x,t) is a solution of

(15), then u(x,T) = ® as T = =, wniformly for x € Vﬁ.

: n
Proof: (I) w(x,0) = K(A - I

x?) < e for all x €V
jop 1 m

< uo(x) for all x € V%, by
hypothesis (d)

(II) is similar to the proof of Theorem 12.
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(IID) LE - g% E DTG0

t
n -2€et n —2xiee e t no,
= Ia,.(x,t){ } + I b.(x,t){—=—} + c(x,t)> e (A- T x%)
JE=1%18 A et A A ; i
1=1 1=1 1=1
ce® B 4
- _K_(A— P xi) + AE(x,t,w)
i=1
i o £t . n t
2 () A, + (2255, - eefe - et + M 4y
i=1 1 ATt A

for t > 0 and x € Vm

eet n n

‘K“{'2 L4, -2ZB, - (C+1)A + \M(A-Y)])
g § 1
1=1 i=1

>0 for all t >0 by (19).

Thus part (i) of the theorem is proved. Now if X satisfies the condition

of part (ii), then we can choose A sufficiently close to

25,0
v o+ 31 (if Dy > 0) or sufficiently large (if D, = 0) sc that (19) is
0

satisfied and therefore part (i) will hold. It follows by Theorem 1

that if u(x,t) is a solution cf (15), then u(x,t) > w(x,t) for all
= ce® -

x € Vm and 0 £t < T. VYew w(x,) =2 _K_<A_Y) for all x € V., SO

w(x,t) = @ as t = o, uniformly for x € Vﬁ, which proves part (ii).

THEOREM 15: Suppose that

(a) As for Theorem 12.

(b) There exist constants M > 0 and a > 0 such that, for all t >0,
1+l

x € 178 and u 2 0, f(x,t,u) =2 Mu e

(c) As for Theorem 14.

(d) As for Theorem 14.

Then: (i) For any T such that 0 < T < t®, a strict lower solution for

(15) s given by

)& 9] =
w(x,t) = _Sﬁ_l_ﬁ_.(A -z xi) for all x € V,0s=ts T
A(t#-1)C =
if A 18 a constant chosen so as to satisfy
2619
Y<A<V{ +
D0

(7 D, > 03 2f Dy = 0 then A is chosen to satisfy A > Y)
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A1/0.

QA n n
and if A\ > 1{t—,.;+ 2'}_:Ai+2-§Bi+CA] veeeesa(20)
1/a 1o = A=
Me (A-Y)

(v + ZEyva
DOI n 2619
{22A SRLE B, AEE =N

(ii) If A > -
1+a i=1 qi=11 0

28.0
Ti..-w)
0

Mei/a(w +

(1f Dy > 0; in the case where Dy = 0 we require \ > " ——) and 1f u(x,t)

1

18 a solution of (15), then there exists a finite nwnber T > 0 such
that u(x,T) = ®as T = 7-, wntformly for x € Vm. In particular, given
any positive €, this will be the case for all sufficiently large \;
and given any positive N\, this will be the case for all sufficiently
large €.
Proof: (I) is similar to the proof of Theorem 14.

(II) is similar to the proof of Theorem 12.

(III) Lw - g% + AE(x,t,w)

n £ Q n —2x. (t#)%
= X aii(x,t) ﬁt—-—)——% + Ebi(x,t) =
sl At*-t) = A(t#-1)%
A n 2\ n
+oalx,t) ELE p - 1) - M:I(A - T x2) 4 AE(x,t,W)
Alt#-t)® =R A(t#-t)® i=1 *
—2(t* n %)%, O %)% %)%
2{2(t)§}zA1+{2(t)a]zBl (t)eg_ a(t)ail
A(t®-t) A(t*-t) (t*-t) (t*-t)
1 1
1+ 1+—
& a+l a ¥ a
+"M(’°)1e (A-¥) for x € V_and 0 <t < t#
1+— 1
A C (tx-t)t
1
1+—
i/a a
H3 s
—tws—ﬂ{(zzA +2£B + CA)(t*-t) - 4 MitTe 15"‘” ]
A(t#-t)® i=1 i=1 * A&
1
14—
a n n i/a a
(t%) e AMt¥e™ T (A-Y)
2 —————{-(2 LA, +2 LB, + CAt* - A + |
Altr-)®1T iogt 0 i d al/a

for 0 € t < t*
> 0 by (20).

Thus part (i) of the theorem is proved. Now if \ satisfies the
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condition of part (ii), then we can choose A sufficiently close to
26,0

v+ Dl (if Dy > 0) cr sufficiently large (if D, =.0) so that
0
A1/(! n n
x> 1{2£Ai+2£Bi+CA]
/ 1+— 1i=1 i=1
mel/%a-y) @

and we may then choose t® large enough so that (20) is satisfied and

therefore part (i) will hold. It follows by Theorem 1 that if u(x,t)

is a solution of (15), then u(x,t) > w(x,t) for all x € V% and

0<ts<T. But w(x,t) 2 _£EilS§_{A_Y} for all x € V_, so w(x,t) = =
As-t)@ "

as t = t*-, uniformly for x € V%. It follows that there must exist

a Twith 0 < T < t#, such that u(x,T) = ®as T = T-; that this limit

is uniform for x € V} czn b2 seen at once by redefining w(x,t) with

t* = 7. Thus part (ii) is troved.

THEOREM 16: Suppose that
(a) As for Theorem 12.

(b) There exist corstoric ¥, >0, M

4 >0, a>0 such that, for all

1
t >0, x € Vm and u 2 €, f(x,t,u) 2 M1u1+a + M2.
satisfies a wniform Lipscrnitz condition in u on any bownded u-interval.
(c) As for Theorem 12.
(d) As for Theorem 12.

Then: (i) For any T such that 0 < T < t*, a lower solution for (15) is

Furtherrore, f

given by -
wix,t) = —5 A - Exl) forall x€V ,0st =T
() i=1 -
1f A 1s a constant chosen so as to satisfy
26,6 ’
Y<A<V{ +
DO

and if \ is chosen sufficiently large, depending on the constants Ass

B, (i=1,...n), C, Ml’ My, @, A, ¥ and t*.

(ii) If A and X\ are chosen as in (i), and if u(x,t) is a solution
of (15), then there exists a number T with 0 < T < t* such that

u(x,T) = =2as T = 7-, wmiformly for x € VE.

Proof: (I) and (II) are similar to the proof of Theorem 12.
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(1I1I) Lw.- g% + Mf(x,t,w)

n ot n -2xit
= Xz a (X t) —_Q + T bi(x,t) =

i=1 * (t*-t) i=1 (t*-t)

n “~ n
boelot) —E— (A~ £ad) - Bl 5.2 4 afGot,w
(t¥-t) i=1 (t#-t)T fl=a
n .Y

> {———a] z At {——-—-—a} I®; - S BfED ("‘;ﬁt]

(t¥-t) (t*-t) (t¥-t) (t*-t)

T
AM, t (A-Y)
+ o1 + 1M2 for x € Vm and 0 < t < t*
(t*-t)
1 n n =5
= ————— |-(2 Z A, + 2 B, + CAt(t®-t) - A[t* + (a-1)t]
(t-t)t1 i=1 * izt
1+c_11' 1+§ at+l
- l[Hlt (A-Y) + M Ceh-t) } -
n n
Now put K=2ZA. + 2ZB, +CA
. 1 . 1
o] Sl
and g(t) = - Kt(t#*-t) - A[t* + (a-1)t]
2

Kt + t{- Kt* - A(a-1)]} - At*,
Then the minimum value over all real t of the quadratic g(t) is
- ukAtr - {Ke* + A=)} | e LKEF + Ala-1)}°
LK - 4K

Kt* + A(a-1)
2K *

attained when +t =

Thus, for 0 < t < t* and x € Vs we
have:

Lw - %% + AM(x,t,w)

d 1
2 1+— 1+—=
* + Ala-1)] a a a+1
> x o ke + -¥ % .
)a+1 - At T At T @A) T M (er-0) )]
L é - ; at+l
The expression Mt (A-Y) + M2(t*-t) is obviously continuous

and strictly positive for 0 € t < t¥®, so there exists § > 0 such that

145 142

M, C(a-y) @4 M2(t*-t)a+1 26 for 0 <t <t

(Kt + A(a-1)}°
LK

If we then choose X\ 2 % (At* + ], then
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Lw - %%-+ AMf(x,t,w) 20 for 0 < t < t¥® and x € Vm.

Thus part (i) of the theorem is proved. It follows by Theorem 2 that
if u(x,t) is a solution of (15), then u(x,t) = w(x,t) for all x € V;
and 0 £t < T. The rest of the argument parallels the proof of
Theorem 15.

Note: In the case of Theorem 16 where a = 1, § is the minimum value on

[0,t*] of the expression

2 2 R
Mt (A-Y)C + M2(t"-t)

- e, (a-12 1)) - 2Mehe + (02,

2
This quadratic attains its overall minimum value at

M, t*®
g z

2
2[M, (A-¥)" + M ]
which is a value between 0 and t*. Hence § is the overall minimum of

the quadratic.

uM2(t*)2[M1(A-Y)2 + M2] - M ()2
2
Thus 6

2
u[Ml(A-Y) + M2]

0 N
M1M2(t ) (A-Y)

2
M1(A-Y) + M2

Using this we can prove the following:
COROLLARY: Suppose that
(a) As for Theorem 12.

(b) There extist constants M) >0, ¥, >0 such that, for all t > 0,

x € Vm atd u 2 0, f(x,t,u) 2 M1u2 + M, Furthermore, f satisfies a
wiiform Lipschitz eondition in u on any bounded u-interval.

(c) As for Theorem 12.

(d) As for Theorem 12.

Then: (i) For any T such that 0 < T < t*, a lover solution for (15) is

given by n
Wix,t) = A - L x)) for all x €V , 05t sT
i=1
if A 18 a comstant chosen so as to satisfy
' 26,8
Y<A<V + 5

0
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. 2 A 1 ‘n n
[ (A-17 + M2][E§ + {2 T A +2 T B; + cA))

aod if \ =z _ 1;1 st veeesa(21)
M1M2(A-Y)
(ii) If
n n 2619 2613 2
(2ZA, +2ZIB, +C(y+—=)[M, (¥ + -N° + M)
s g L et L D 1 D 2
x> 1=1 1=1 0 0
25,0 2
uH1M2($ + Do -Y)

and 1f u(x,t) 28 a solution of (15), then there exists a finite nwnber
T > 0 such that u(x,T) ~®as T = 1-, wiformly fcr x € V%.
Proof: (i) follows from Theorem 16 with a = 1, using the value of §

obtained in the note above.

If X\ satisfies the condition of part (ii), then we can choose A

28.6
sufficiently close to § + 5 so that
0
n n 5
- M
(2 TA; +2EB; + CAJ[M,(A-1)7 + M)

A=hl 1=

A D> 5
4M1M2(A-Y)

and we may then choose t* large enough so that (21) is satisfied and
therefore part (i) will hold. The rest of the argument parallels the
proof of Theorem 15.

Construction of Upper Solutions on Vm:

THEOREM 17: Suppose that
(a) There exist constants Ay > 0o(i =1,... n), B, 2 0(i =1,... n) aod

C such that, for all x € Vm ad t >0, 0< A, < aii(x,t) 01 = inpr- v
Ibi(x,t)l S B, (i =1,... n) &nd c(x,t) s C,

(b) For any bownded positive u-interval 1, there exists a corresponding
positive number M, depending only on 1, such that f(x,t,u) < M for all
x € Vs t>0and u €1.

(c) There exist constants 6, >0 and D, 2 0 such that, for all x € an

1
and t > 0, do(x,t) z 6, and 0 < di(x,t) < D,.
(d) We require in addition that, if C 2 0, then
n 2D1® n
2 I3 Bi + C(Y + 5 ) <2 I Ai'
i=1 0 i=1
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(e) There exists a constant € > 0 such that uo(x) < e for all x € Vm.

Then: (i) For any T > 0, a strict upper solution for (15) is given by

n
wix,t) = 22y (A - I x;) forall x €7V ,0stsT
i=1

(so that w(x,t) is actu’ally independent of t) 1f A 18 a constant chosen
so as to satisfy

n n -
20,0 2L4A; -2ZB,
1 aR=4! 24=jl; .
Y + <A< 1f C >0
60 €
2D1®
A>Y + 5 ifC=0 \ 0. 022D
0

2D,0® c i e 1
A > max ‘i'-r——l--—,‘i’+11 L we< B
ﬁo C

and i1f 0 <)< mo(e,A) ....................... .(23)

where my(€,A), apart from depending on € and A, depends on the
coefficients in the operators L and Blin® the quantities Y and ©, and

the nature of the function £, but not on T.

(ii) Ifo <A < mo(e,A), and 1f u(x,t) 18 a solution of (15), then

= el
for all T > 0 and x € V_, u(x,T) < ;-;r .

n
Proof: (I) w(x,0) = zy (A - T x2) 2 € >uy(x) for all x € V_, by

1=1
hypothesis (e).
n 2mi-1 3w
(I1) Blinw = do(x,t)w + dl(x,t).E ai(x)xi =
1=1 A
B n 2 n 2mi-1 -2exi
= do(x,t) ¥ (A-ifixi) + dl(x,t)ifiai(x)xi' (ﬂ—a_ )
e n 5 . n 2mi
el v 4 {do(x,t)(A- z xi) - 2d1(x,t) z ai(x)xi ]
3 =l Sl
, €
2 —y [60(A-—‘f) - 2D1®] for t > 0 and x € bvm
2D,0
>0 for all t >0, since A > Y + 3 by (22).
0

(III) Lw - gwt— + ME(x,t,w)

n
a5 () (-2) () + ;51}31(:4,‘:)(-2?:1)(:%?) #a(x, 0w + AE(x,t,W).

n
= R

i=1
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Now for t > 0O ané x € Vm, € s w(x,t) < {?&, so by hypothesis (b) we

have that for all t > 0 and x € Voo f(x,t,w) < M(e,A,Y). If C 20,

n n
then by (22) and hypothesis (d) we have 2 L A, - 2L B, - CA>0,
=g, - g
n n
while if C < 0, then by (22) we have 2 I A, -2 LB; - c(a-Y) > 0.
i=1 i=1

Thus we define the positive number mo(e,A) as follows:

n
ef2Z A, -2 z B, - CA}

£ C 20, m(e,a) = —isL_i=1
ke (A-D)M(e,A,Y)
e C2m)
n
ef2za, -2 2 B, - C(A-¥)]
y i=1 i=1
Now if C 2 0, then we have that for all t > 0 and x € Vm:
n
Lo - 24 AE(x,t,w) = (—-Y) A (w) ):B + 22+ AM(e,A,Y)

If C < 0, then we have that for all t > 0 and x € Vs

3w n
Lw - 3¢ + M(x,t,w) = (__?) z Ay + ( ) z B, + (——YQC(A ¥Y) + AM(e,A,Y).
In either case, it follows by (23) and (24) that Lw - g: + M(x,t,w) <0
for all t > 0 and x € V- Thus part (i) of the theorem is proved.

Now if )\ satisfies the condition of part (ii), then part (i) holds,
and it follows by Theorem 1 that if u(x,t) is a solution of (15), then

u(x,t) < w(x,t) for all x € V' and 0 £ t < T. It follows that for all

T >0 and x € V , u(x,T) < w(x,T) < fﬁ% Thus part (ii) is proved.

Note: That some such condition as hypothesis (d), which places a
definite upper bound on c(x,t), is required in Theorem 17, is shown by
the example given in Ch.2.

In that example, we have c(x,t) = k for all x and t, and
f(x,t,u) = 1 for all x, t and u. It is easily checked that hypotheses

(a), (b), (c) and (e) of Theorem 17 are satisfied, with C = k. As
2

explained in Ch.2, if C = k 2 %r, the solution of the time-dependent

problem is unbounded as t —= ®, for any A\ > 0. Thus Theorem 17 does
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2
not hold in this case unless we require C < — 1+’ i.e. unless we put an

upper bound on c(x,t) as in hypothesis (d) of Theorem 17.
We may also observe in passing that, for the example of Ch.2, we
have n = 1, By =0, 4 =1, ¥ =1 and D, = 0, so that hypothesis (d) of

Theorem 17 reduces to C < 2, which is not much stronger a condition

2
than the weakest possible condition C < T ~2.47.

u

THEOREM 18: Suppose that

(a) As for Theorem 17.

(b) There exist constants My, >0, M, >0 such that, for all t > 0,
x € A ad u 20, f(x,t,u) < Miu + M,.

(c) As for Theorem 17.

(d) As for Theorem 17.

(e) uy(x) is bounded above for x € V%.

Then: If u(x,t) is a solution of (15), and if \ satis;iss

n 2D.0@

n 1
2 ZA. -2XB, -C(Y+ ) 3
i=1 * i=1 * %9
0<A< (if C 2 0)
20,8
M (Y + ) ) (25)
1 )
0
6 e 4
or 0<A< (Zf C < 0)

1

then there exists a constant X > 0 such that, for all T > 0 and x € V%,
u(x,T) < K, where K depends on \.

Proof: We may apply Theorem 17 in this case. In the notation of Theorem

17, if e <w < 5?&, then f(x,t,w) <M (——1ﬂ + M, so in the proof of

Theorem 17 we may take M(e,A,Y¥) = M (——19 + M Thus, if C 2 0, then

n n
24 A -2 XB, -CA
mo(e,A) = i=1 =i , while if C < 0, then we have
Hgh sl 0]
n n
2 LA, -2 ZXZB, -cC(A-Y)
i=1 * i=1 !
mo(e,A) = .

A-Y
MlA + ME(T

Now if C 2 0 and X satisfies (25), then by choosing A sufficiently
2D, 0

close to Y + 5 and ¢ sufficiently large (as we may do, since € may
0
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be chosen as large as we please) we can ensure that

n n 2D1®
2 LA, -2XB, -C(Y + )
g B g s %
0 <X <my(e,A) < 20,8
M, (Y + )
1 60
and so part (ii) of Theorem 17 will hold, which proves Theorem 18 if we
_ €A
takeK-m.

If C < 0 and A satisfies (25), then by choosing A sufficiently
large and € equal to, say, A2, we can ensure that mo(e,A) is as close

as we please to ﬁ93 and so we can certainly ensure that
1

0<) < mo(e,A).

So again part (ii) of Theorem 17 will hold, and Theorem 18 is proved

€
with K = Ké§ .
COROLLARY: Suppose we modify the hypotheses of Theorem 18 by requiring
that f(x,t,u) < M, for all t >0, x € V_and u z 0. Then if u(x,t) is
a solution of (15), we have that for any A\ > 0 there exists a constant
K > 0, depending on \, such that u(x,T) < K for all T > 0 and x € V%.
Proof: For any A > 0, we may choose My sufficiently small so that (25)
holds, and the required result follows at once by Theorem 18.
Notes: (i) For the example discussed in Ch.2, with k = A, we have

n=1, B1 = 0, A1 = 1, Yi= A, D1 = 0, C = 0; also f(x,t,u) = u+1l for

all x, t and u, so that M1 = M2 = 1. Thus in this case Theorem 18

tells us that the solution to the time-dependent problem will be bounded

above as t =« if 0 < A < 2; in fact, as explained in Ch.2, the solution
2

will be bounded above as t = ® if 0 < A < %T‘“ 2.47.

(ii) Theorem 18 and its Corollary relate well to results (iv) and
(v) of Keller and Cohen (see pp.15,16). Keller and Cohen showed (result
(v)) that if %(x,u) < F(x) + p(x)u for x € V, u > 0, then steady-state
solutions exist if 0 < A < p,{p}; Theorem 18 shows that if
f(x,t,u) < M1u + M2 for x € V%, t > 0, u2 0 then time-dependent
solutions are bounded as t = @ if 0 < A < p(say) where y depends on My
but not on M,. Keller and Cohen also show (result (iv)) that if
f(x,u) < F(x) for x € V, u > 0, then steady-state solutions exist for
-all A > 0; the Corollary to Theorem 18 shows that if f(x,t,u) < M, for

2
all x € Vﬁ, t > 0, u2 0 then time-dependent solutions are bounded as
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t = @ for all A\ > 0.

THEOREM 19: Suppose that

(a) As for Theorem 17.

(b) There exists a constant M > 0 such that, for all x € Vm, t >0 ad
u=0, f(x,t,u) < Mu.

(c), (d), (e) as for Theorem 17.

(f) For all t >0 and x € Vo f(x,t,0) 2 0; furthermore, f satisfies a
wiform Lipschitz condition in u on any finite u-interval.

(g) uo(x) 2 0 for all x € B

Then: (i) For any T > 0, a strict upper solution for (15) is given by

e -t - ) -
w(x,t) =—=re "(A- Ix:) forall x€V ,0=<ts=<T
A-1 q 1 m
1=1
if A 1s a constant chosen so as to satisfy
n n ]
) -
20,0 e
Y + <A< if C>0
59 C
2D1@
A> Y + if C =0 \
6O

2D, @ . i ot o
A > max {Y + 62 ;¥ e = X & o= } 1f C <0
n n
2XA. -2XB, -cCA
, i == :
ad 1f 0 << WA T 1) 1f C=20
.(26)
n n
2 XA, -2 ZXB, - c(a-Y)
i=1 *  f=1* .
0 <A< WA+ 1) 1f C <0
(ii) If u(x,t) s a solution of (15), and if \ satisfies
n n 2D,0 "
2ZA.-2ZB.—C(Y+6)
i=1 Y i=1* 0 :
0 << & L)
2D1®
Ml('f + 6_+ 1) y (27)
0
or 0 <A< (if C<0) |

then u(x,T) = 0 a8 T -~ =, wniformly for x € Vm.

Proof: (I) and (II) are similar to the proof of Theorem 17.
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(I1I) Lw - %% + ME(x,t,w)
n -2ee~ Mt -2x.€e P -Xt
= izlaii(X,t) =yt 2 b. (x,t) -——-Y——— + clx,t) £ —?— (A—lzix )
-\t n .
Aee 2
& TY— (A-iflxi) op )\f(x,t,w)
Jaae=AE D -At n -t n
S(—?'%?—)I:Ai + ((.ee )XB + c(x,t)%—-(A—Zx)
i=1 i=1 i=1
-\t -\t n
Aee A ce 2
= Sl = SRS
ee—Xt n n no,
s Sy {- 2 T8 + 253 + clx,t)(A- I x7) + A + 1)
1=1 i=1 1=1

for all t >0, x € Vm.

Now if C 2 0, then we have that for all t > 0 and x € V

e°-xt

— {22:A +2£B + CA + AM(A+1)]

i=1 1 i=1
<0 forall t >0 by (26).

Lw - g%-+ AM(x,t,w) <

If C < 0, then we have *hat for all t > 0 and x € Vm:

-\t n
i = sﬂt +AfGE ) 5 B (- 2121A 2 LB+ Ca) ¢ AM(A+1) }

<0 for all t >0 by (26).
Thus part (i) of the theorem is proved.

Now if A\ satisfies (27), then by choosing A sufficiently close to

2D, 0

b 61 (if C 2 0), or sufficiently large (if C < 0), we may ensure
0

that (26), and therefore part (i) of the theorem, will hold. It follows
by Theorem 1 that if u(x,t) is a solution of (15), then u(x,t) < w(x,t)
for all x € VA and 0 < t <T. Hence, for all T >0 and x € V%:

-AT n -A\T
u(x,T) < w(x,T) = %— (A- T xi) < i%%:?— .
i=1

Also, by hypotheses (f) and (g), it follows from Theorem 11 that
u(x,T) 2 0 for all T >0 and x € V%. Since X > 0, part (ii) of the
theorem follows at once.

Note: Theorem 19 relates well to result (vi) of Keller and Cohen (see

p.16). Keller and Cchen shcwed that if there exists a gositive p(x)
'»"



79

such that f(x,u) < p(x)u for x € V, u > 0, then no positive steady-state
solutions exist if 0 < \ < pi{p]. Theorem 19 shows +hat, if

f(x,t,u) < Mu for all x € Vm, t >0, uz20, and if 0 < \ < p(say) where
4 depends on M, then all solutions of the time-dependent problem
(provided the initial function is bounded) tend to zero as t = @, so

that no positive steady-state solutions will exist if 0 < A < M.

THEOREM 20: Hypotheses as for Theorem 17 except that, <n hypothesis (b),
;2 0, M2
0 <a <1, such that, fer all x € Vm, t>0ad uz20,

we suppose that there exist constants M > 0 and a such that

1-a
f(x,t,u) s M1 + Moum .

Then: (i) For any T > 0, a strict upper solution for (15) is given by

n
wix,t) = k%% - £3d) forall x€7_, 05t ST
i=1

(so that w(x,t) is actually independent of t) if A > 0, A is a constant
chosen so as to satisf: '

v

n n 3
2D 18 21)=:1Ai i 21}3181
Y + <A< “Ee >0
8 C J
0
2D1®
A>Y + i1fC=0 )
6o

2D, @ . i o ol
A>max{¥+ —= , ¥ = 2 =1 if C <0
60 C J

and K is a constant chosen so as to satisfy

1= 3
A aMal/aMl ;s al@ 1/a
K> max {1, . £ ifox0
n n 11/%1/0'(1&—‘&‘)
2 LA, -2ZXB. -CA 2
. it b
1=1 1=1
1_3 »(28)
A aualfaﬁl . Al-a 1/a .
K>max {1, & *f C<0
n n ll/%l/a(A_\f)
2 TA. -2 B, - C(A-Y) 2
. 4 o1
i=1 1=1 4

(ii) For any X\ > 0, if u(x,t) is a solution of (15), and X and A

are as above, then u(x,T) < Kxi/aM;/aA for all x € V% ad T > 0.

Proof: (I) w(x,0) 2 ?Klfqﬂi/a(A—Y) o= S - uo(x) for all x € ?;, using
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(28) and hypothesis (e).

-(II) is similar to the proof of Theorem 17.

(111) LW'; g% + Af(x,t,w)

n ' , n
= T oa..(x,t)(-2k0 /ey zb.(x,t)(-Qx.Kx”“Mg/%
d =4 Tk 2 i=1 1 1

+ c(x,t)w + Af(x,t,w)

n n n
< -2K11/“M§/“-z A + 2KX1/GM%/Q B, + c(x,t)Kll/cMé/a(A— T xi)

i=1 i=1 i=1
1 1
: --1=-1 n
F A, o+ kPR e (a- T x2)1ma),
1 2 2 —
X i=1
Thus, for all t > 0 and x € Vm:
oW
Lw - E + )\f(x,t,w)
n n n
< Kl'axi/amé/“{-2xa LA + 2k T B, + clx,t)K¥A- £ x2)
ied = i=1 * =5

1
1_._
+ 3% G‘Mgl/aMlKu—l 2 Ai—a}

n n n

< Kl-all/aM;/a{Ka[-Q TA, + 2 LB, + clx,t)(A-Z x?)]
" Sl of . i Ll
i=1 i=1 i=1

il
1-=
+ A uM;UuMl + A1-a]

since K > 1 (by (28)) and a-1 <0, so K1 <1,

Now if C 2 0, then we have that for all t > 0 and x € [/

Lw - %% + AM(x,t,w)
n n 1—i
< kI l/ol/an@r o pa, + 2 £8, + ca) + A MM+ a1
2 g | A 4 2 1
1=1 1=1
<0 for all t > 0 by (28).
If C € 0, then we have that for all t > 0 and x € Vm:

Lw - g% + AE(x,t,w)
1

n n 1—
s kK190l g A, + 2 28, + c(a-D] + 1 VM, 4 A1)
i=g * i=m t 3

<0 for all t > 0 by (23).

Thus part (i) of the <hecrem is proved. 5
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Now if A > 0, and u(x,t) is a solution of (15), and X and A are as

above, then it follows by Theorem 1 that u(x,t) < w(x,t) for all x € V%

and 0 £t < T. Hence, for all T > 0 and x € V%, u(x,T) <w(x,T) stlxuMé/uA.

This proves part (ii) of the theorem.

Extension to Other Domairs:

Theorems 12 to 20 apply only to the domain Vm = {x: iglximi <1}
(the m; being arbitrary positive integers); Theorem 11, though stated
for the domain Vm, will obviously hold for any domain V. If one wishes
to extend Theorems 12 to 20 iIn a constructive way to some other specific
domain V#, this may be possile if one can explicitly construct a
diffeomorphism from V#* to ?;, i.e. if one can find open sets 0, 2 v,
O2 > Vm and a homeomorrhism of V* onto V% which can be extended to a
differentiable function g:O1 - O2 with differentiable inverse. It is
necessary also that the seccnd partial derivatives of g should exist
on 01. The construction ¢f such a diffeomorphism is only possible in
certain simple cases.

Then if u(x,t) satisfies (15) on the region {(x,t): x € V%, t 2 0},
we can define v(x,t) = u(g_:(x),t) on the region {(x,t): x € 7%, t 2 0]},
and use standard calculus techniques to transform (15) into the
corresponding initial-boundary value problem satisfied by v. It may
then be possible to apply Treorems 12 to 20 to this problem. The next

chapter includes one simple example of this technique.

However, if one is pregared to abandon to some extent the explicitly
constructive approach used in Theorems 12 to 20, one may prove a
collection of theorems similar to Theorems 12 to 20 but applying to an
arbitrary domain V. The method of proof that will be used here requires
that we restrict ourselves to a time-independent differential operator.

We shall denote by L u the expression

bt
n 2 n
- d'u N du
L 4.(x) som- + I (x) o
1,=0 1377 Oxoxg g1 0%y

where aij = 351 € c*V) for i, = 1,2,... n, and Bi € c%(V) for

i=1,2,... n. The differential operator L. is assumed to be uniformly

1
elliptic. We shall be concerned with the parabolic initial-boundary

value problem
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ﬂlu + c(x,t)u - %% + AMf(x,t,u) = 0 for (x,t) € DT

B.._ u

lin 0 for (x,t) € Sp ' ..(29)

u(x,0) = uo(x) for x € V
2+&

where f is continuous for x € V, 0 <t < T and all u, u, €C (V) and
the parameter A is assumed to be positive.
Now consider the eigenvalue problem
ﬁlw + up =0 for x €V
} e (30)
acp+b§=0 fort x € @V

where a and b are positive constants. If A denotes the inverse of the
operator ﬁl with boundary condition as in (30), then A is a compact
(i.e. completely continuous) operator on the Banach space C(V) of
continuous functions defined on V, with the supremum norm (see

Browder(7]). Further:

Ah = g for x € V & ﬁlg h for x € V and ag + b %% = 0 for x € dV.

Suppose now that Ah = g for x € V, where h(x) 2 0 for all x € V.
If g attains its maximum M in V, then it follows by Theorem 5 of Ch.2

of Protter and Weinberger[28] that g(x) = M for all x € V. But then
%% = 0 for all x € oV, and so from ag + b %% = 0 for all x € oV, it

follows that g(x) = 0 for all x € oV. Thus M = 0, and g is identically
zero on V. So if g is not identically zero on V (equivalently, if h
is not identically zero on V), then the maximum of g on V is attained

at a point P on oV. Then, by Theorem 7 of Ch.2 of Protter and

Weinberger[28], %% >0 at P. Since ag + b g% = 0 at P, it follows

that g(x) < 0 at P, so g(x) < 0 for all x € V.

Thus we have shown that if h(x) = 0 for all x € V, and h is not
identically zero on V, then -Ah > 0 for all x € V.

Now the set of non-negative functions on V is a cone in the
Banach space C(V), with interior the set of strictly positive functions
on V. It follows from the above discussion that the operator -A is
strongly positive with n = 1, with respect to this cone (using the
terminology of Krein and Rutman(20, p.266]). It follows by Theorem 6.3
of Krein and Rutman[20, p.267] that -A has a unique normalised
eigenfunction which is strictly positive on V, and the corresponding

eigenvalue is real, positive and simple. Since (30) may*be written
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(-A)o = % @, it follows that (30) has a unique normalised eigenfunction
¢ﬁ(x;a,b) which is strictly positive on V, and the corresponding
eigenvalue pl(a,b) is real, positive and simple. Obviously, there exist

positive constants al(a,b), a2(a,b) such that

a,(a,b) s @ (x3a,b) s a,(a,b) for all x € V.

Since ap, + b 1;} = 0 on oV and % > 0 on dV, it follows also that

aqﬁ
—&-1-<Oon ov.

We are now in a position to state and prove a theorem analogous
to our earlier Theorem 12.
THEOREM 12°: Suppose that

(a) There exists a constant C 2 0 such that c(x,t) 2 -C for all x € V
ad t > 0.

(b) There exists a constant M > 0 such that, for all t > 0, x € V and
u =20, f(x,t,u) 2 M. Furtherrore, f satisfies a wniform Lipschitz
condition in u on any finite u-interval.

(c) There exist constants Dy >0 and 6, >0 such that, for all x € dV
ad t >0, 0 < do(x,t) < D, and 51 < dl(x,t).

(d) uy(x) 2 0 for all x € v.

Then: (i) For any T > 0, a lower solution for (29) is given by
w(x,t) = AK@, (x3D,,%8,)(1-e™") for all x € D

where K is a constant chosen so as to satisfy

0 KKK

M
a,(Dy,%6,){C + p (Dy,7%6,) + 1]

(i1) If u(x,t) is any solution of (29), then for any T > 0,
u(x,t) >0 for 0 <t < T, and 7f 1lim u(x,T) = G(x) exists, then for all

T
x €V,
1
XMal(Do,ﬁbi)

a(x) 2
a,(D,,%6,)(C + p (Dy,%6,) + 1]

> 0.

Proof: (I) w(x,0) = 0 < uo(x) for all x € V, by hypothesis (d).

dw
(1I1) Blinw do(x,t)w + dl(x,t) S

- awl
AK(1-e t){do(x,t)tpl(x;Do,libl) + dl(x,t) 7;;]

n

AK(1-e~ ) {D ¢, (x;D,. % acpl} £ 0
1-e o®? X’DO’261) + dl(x,t) 5.} for t >0,
x € oV
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_ oP
= AK(1-e ") {- %6, + d,(x,0)] 7;}

<0 for all t > 0 since dl(x,t) 2 61 > %bi'for t >0,

oP

x € 3V, and also 7;%—< 0 for x € oV.

(11I1) ﬂlw + c(x,t)w - g% + Af(x,t,w)

- =ty _ -t
= \K(1-e ) p1(DO,%61) + c(x,t)]cp1 XKmle + AE(x,t,w)
A N 1 _ 1,
2 M{- 1y (Dy,k6,) - CJa,(Dy,k6,) - AKay(Dy,'6,) + AM
>0 fort >0and x € V, by (31).
Thus part (i) of the theorem is proved. By Theorem 2, it follows
that if u(x,t) is a solution of (29), then u(x,t) 2 w(x,t) for all

(x,t) € 5}. It follows that u(x,t) >0 for x € V, 0 <t < T.

Furthermore, w(x,t) - AKQ1 as t = o, so if lim u(x,T) = I(x) exists,
T—

then for all x € V, 4(x) =2 K@, 2 AKa, (D, ,}%8,). Since X may be chosen

M
D T P
@, (D, 728, 01C + 1, (Dy,%6,) + 1]

arbitrarily close to art (ii) of the

theorem follows at once.
Note: As for Theorem .2, the condition that f shculd sz=isfy a uniform
Lipschitz condition in u crn any finite u-interval may te removed if we
assume that uo(x) >0 for all x € V.

In a similar fashicn, one can state and prove Thecrems 13A to 16A
analogous to Theorems 13 to 16. The remaining '"lower solution"

theorem, Theorem 11, holds for arbitrary domains V in any case, as

already remarked.

Next we state and prove a theorem analogous to our earlier
Theorem 17.

THEOREM 17" Suppose that

(a) There extist constants 6, > 0 and D, >0 such that, for all x € dV
ad t >0, do(x,t) 2 8, ad 0 < dl(x,t) < D,.

(b) There exists a constant C < ui(%bo,Dl) such that c(x,t) < C for

all x €EVand t > 0.

(c) For any bownded positive u-interval 1, there exists a corresponding

positive nwmber M, depending only on 1, such that f(x,t,u) s M for all
XxX€EV, t>0amdu€l.

(d) There exists a constant € > 0 such that uy(x) < € for all x € V.
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Then: (i) For any T > 0, a strict upper solution for (29) is given by
= € . . =
W(Xat) [ 01(;560 ,Dl) @1()(,;560 ’Dl) for' aZZ x € DT

(so that w(x,t) is actually independent of t) if
efw, (s6,,D,) - C]

0 €A <€ mm—m———e————— i iee e
M[e ,(11(1560,01) ', (%GU,D]_)]

where M(€,a,,a,) is defined in the proof below, and is independent of T.
p ! ]
M[e ,(:1(%60 ’Dl) sa, (538 ,Dl)]

(ii) If 0 < < ad 1f u(x,t) is

_ €a,(%8,,D,)
a solution of (29), then for all T > 0 and x € V, u(x,T) < ;
a, 384D,

Proof: (I) w(x,0) 2 ¢ > uo(x) for all x € V, by hypothesis (d).

(11) Blinw do(x,t)w + dl(x,t) %%

B 0P,

(365,00 {d,(x, 09, (x5%6,,D,) + d,(x,t) 5.7

o
€ =1 _1
> 0'1( 60,01) {do(x,t)cpl(x,fiﬁo,Dl) - D1 bn] for<t & 0,
a£p1
x € OV, using the fact that =% oy t & 0, x € oV
_ € 1 1
>0 for all t >0 and x € AV since dj(x,t) = &, > 1560

for all t > 0 and x € oV.

(I11) ﬂlw + c(x,t)w - % + Af(x,t,w)
. e 1
= W - ui(%bo,Dl) + c(x,t)} Cpl(x,ﬁéo,Dl) + Af(x,t,w)

< ef- ul(%Go,Dl) + C} + Af(x,t,w) for all t > 0 and x € V,

using the fact that C - ul(%éo,Dl) < 0, and so c(x,t) - ul(%bo,Dl) <0

for all £t > 0 and x € V.

1
ea2(460,D1)

Now for t > 0 and x € V, € < w(x,t) < W,soby

hypothesis (c) we have that for all t >0 and x € V,
f(x,t,w) < M[e ,ai(%éo,Dl),aQ(%éo,Dl)].

Hence, for all t > 0 and x € V:
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flw + c(x,t)w - g% + AE(x,t,w)
< ef~ w(6,,0,) + C} + WM(e,a, (58,,D,) ,a,(}8,,D,)]
<0 for all t >0 and x € V by (32).
Thus part (i) of the theorem is proved.
Now if X satisfies the condition of part (ii), then part (i) holds,
and it follows by Theorem 1 that if u(x,t) is a solution of (29), then
u(x,t) < w(x,t) for all (x,t) € 5&. It follows that for all T > 0 and

. ea,(}s6,,D,)
x €V, u(x,T) <w(x,T) < . Thus part (ii) is proved.
o, (585,0,)

In a similar fashion, one can state and prove Theorems 18A to 20A

analogous to Theorems 18 to 20. Thus the picture built up in Theorems
12 to 20 of the behaviour of the solution of the time-dependent problem
for different classes of functions f holds not only for the special
domain Vm but for any domain V. We shall be discussing that picture
shortly. However, it should be pointed out that both sets of theorems,

A

Theorems 12 to 20 and Theorems 12" to 20A, are of interest. Theorems

12A to 20A are indeed more general as regards the domain V, but the
constructive nature of Theorems 12 to 20 allows us to use these
theorems to obtain, for example, easily calculated bounds for the
critical parameter A%, as well as other quantitative information should

we need it. This aspect of the matter will be examined in the next

chapter.

Discussion:

We shall now summarise and examine one of the most important
aspects of Theorems 11 to 20 and 12A to 20A from our point of view,
namely the information they give concerning the relationship between
the nature of the function f and the behaviour of the solution u of the
time-dependent problem as t = ®. To avoid undue complication, we shall

here assume that we are dealing with the time-dependent problem
Lu - oy + Af(x,u) = 0 for (x,t) €D
5t ' '

B

1inY 0 for (x,t) €S srepspererersiere (1313)
u(x,0) = uo(x) for x € V
and its related steady-state problem
Lu + Af(x,u) = 0 for x € V }

Blinu =0 for x € oV
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We shall suppose that (33) and (34) are such that the discussion at the
end of Ch.6 applies, so that the existence of a positive solution of
(34) is equivalent to the boundedness over all positive time of the
solution of (33) in the case u, = 0. This means, in particular, that
f(x,u) >0 for all x € Vand u 2 0, and uo(x) 20 for all x € V.

First let us review what is known about (34) from the results of
Keller and Cohen, and Amann (see Ch.4). We suppose here that (34) is
such that the theory discussed in Ch.4 applies; this requires in
particular that (34) be self-adjoint. It is convenient to consider

three categories of functions f.

(1) f monotone increasing and concave in u (but not asymptotically

linear):

In this case, Keller and Cohen show (result (viii)) that either
there exists A* > 0 such that a positive solution of (34) exists for

0 < A < A* but not for A 2 \*, or else a positive solution of (34)
exists for all A\ > 0.

(2) f monotone increasing and asymptotically linear in u:

In this case, Amann has shown that there exists a finite \® > 0
such that positive solutions of (34) exist for 0 < A < A\* but not for

A > \*; a positive solution of (34) may or may not exist for A = A¥.

(3) £ monotone increasing and convex in u (but not asymptotically

linear):

In this case, Keller and Cohen show (result (vii)) that there exists
a finite A\* 2 0 such that positive solutions of (34) exist for 0 < A < \*
but not for X > \*; a positive solution of (34) may or may not exist for
A = \*. Note that, as far as is known from the results of Keller and
Cohen, it is possible that A* = 0, i.e. that for certain £ there are no

positive solutions of (3u4).

Now suppose that (33) is such that the theorems of the present
chapter apply. In considering the relation between the nature of the

function f and the behaviour of the solution of (33) as t = o, we again

find three categories of functions f appearing, which while not

identical to the above, clearly correspond closely to them.

(1)A f(x,u) <M, + M ul™®  for some M. > 0, M

A A X >0,0<as1:

2

For any X\ > 0, the solution of (33) is in this case bounded above
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as t = o (Theorems 20, 20A). In the light of the discussion at the end
of Ch.6, this means that positive solutions of (34) exist for all X > 0.
Thus the possibility of a bounded spectrum, which was left open by
Keller and Cohen, can be ruled out in this case.

A partial result in this direction was in fact obtained by Keller

and Cohen[19, Theorem 4.2), who showed that if lim fu(x,u) = 0 then

U
positive solutions of (34) exist for all A > 0. An earlier paper by
Hudjaev[16]), which has not yet been mentioned, deals more fully with
this point. Hudjaev's paper has much in common with the paper of Keller
and Cohen, but he requires that the coefficient éo(x) of u be zero
(using the notation of Ch.4), and also that f(x,u) can be written in
the form a(x)F(u). With these restrictions, he proves[16, Theorem 2]
that a necessary condition for positive solutions of (34) to exist for
F(u)

all X\ > 0 is that lim inf = 0, while a sufficient condition is
u-—o “
g FECU) - :
lim T 0. These conditions are obviously closely related to our
U=
it 2 l-a
condition f(x,u) < Ml + Mout

(2)A M,u + M2 < f(x,u) < M%uy + M% for some positive M

B %
1 1 2 LR M2’

7 T

and f satisfies a uniform Lipschitz condition in u on any bounded

1’

u-interval:

(i) If )\ is sufficiently small, then the solution of (33) is bounded
above as t = « (Theorems 18, 18A), and so (34) will have a positive
solution.

(ii) If X is sufficiently large, then the solution of (33) tends to «
either as t = « or as t tends to some finite value (Theorems 13, 13A),
and so (34) will have no positive solution.

These facts are in general accord with the results proved by Amann for

asymptotically linear ?, but deal with a much wider class of functions.

(3)A %(x,u) 2 Mu1+a for some M > 0, a > 0; and f satisfies a uniform

Lipschitz condition in u on any bounded u-interval:

(i) If X\ is sufficiently small (depending on the initial function uo),
then the solution of (33) is bounded above as t = o (Theorems 17, 17A),
and so (34) will have a positive solution. This suggests that in the
case of convex f discussed by Keller and Cohen, positive solutions of
(34) will exist for all sufficiently small A\, so that the spectrum is

always non-empty.



(ii) Fop any 3 ® 0, if Y

the solution of {33) tends to ® as t tends to some finite value {Thecrems
15, 15%).

is sufficiently large (depending c1 i) . theu

-

(iii) For any positive Up» if X is sufficiently large (depending ou uo)y
then the solution of (33) téends to « as t tends to some finite value

(Theorems 15, 15A)

1+a

(iv) If we impose the stronger condition that f(x,u) 2 M,u + M, for

2

some M1 >0, M2 > 0, a» 0 (as well as satisfying the Lipschitz
condition), then for any non-negative Uy if A is sufficienily large.

the solution of (33) tends to « as t tends to some finite value (Theorems

16, 16A). Thus, for sufficiently large )\, (34) has no positive solution.

Thus the information obtained by studying the time-dependernit prohle.
parallels in many respects that obtained by studying the steady-si:..c
problem; however, the study of the time-dependent problem do=:s seem to
have some advantages.

(a) The conditions which need to be imposed on the function f arc much
less stringent; there are no requirements involving differenciab:.li.y,
monotonicity, concavity or the like, only fairly crude inequalii.c:

(b) There is no requirement that the problem be self-adjoint.

(c) Taking the theorems of this chapter in their full generalitcv o.:
can deal with time-dependent differential and boundary operatows ass eil
as a time-dependent f; indeed, one can handle oscillating systems whsre
no related steady-state problem exists.

(d) As already mentioned, it is possible to extract interesting
quantitative data fairly easily from Theorems 12 to 20 of this chapter;

Ch.8 deals with this point.

The Effect of Reactant Consumption:

In discussing the heat-generation problem in Ch.1l, we assumed that
there was no consumption of reactant. Since this h;rdly seems a
realistic assumption, it is time we considered the effect of reactant
consumption. One way of doing this is to suppose that, for any fixed x
and u, the heat generation function f(x,t,u) decays to zero in a
suitably well-behaved manner as t = ®. We obtain the following theorem:
THEOREM 21: Suppose that

(a) As for Theorem 17.
(b) For all x € Ve 20 ad u 2 0, f(x,t,u) < M(u)F(t), where:

(1) M(u) Zs bowrded and positive on any finite positive u-interval;
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(2) F(t) =0 as t ==, F(t) > 0 and bounded above on {t: t 2 0};
(3) F 28 differentiable for all t 2 0, and there exist positive

’
constants Fi, Ly such that 1%3%5%1-5 T, for all t 2 0, and

é%fgy-s F2 for all t 2 0 2f 0 < X\ < y. WNote that these are not severe

restrictions, since they are satisfied by, for example

F(t) = Ae XT (A >0, k > 0)
ae XD (5 < ¢ <)
and by F(t) = K (A >0, k >0).
At~ (t > 1)

(c), (d) and (e) as for Theorem 17.
(f) and (g) as for Theorem 18.

Then: (i) For any T > 0, a strict upper solution for (15) is given by

n
- € _ 2 =
wix,t) = O (AT (A ifixi)F(Xt) for all x € Vm, 0stsT

if A 18 a constant chosen so as to satisfy

n n w
2D, 2i§1Ai i 21}-:1Bl
Y + <A< = — 1f C >0
5o €
2D1®

A>Y + if C =0 )

60
n n
2D1® 2i}=:1Ai 21¥1Bi
A > max{(Y + , ¥+ 21f C <0
5 C
ad if 0 <X <nyle,A)  eeiiiiiiiiiiii, (35)

where no(e,A), apart from depending on € and A, depends on the

coefficients in the operators L and Blin’ the quantities Y and @, and

the nature of the functions M and F, but not on T.

(ii) If o< < no(e,A), and 1 f u(x,t) is a solution of (15),
then u(x,T) = 0 as T =~ =, wniformly for x € V%.
Proof: (I) and (II) are similar to the proof of Theorem 17.

(III) By hypothesis (b)(2), F(At) is bounded above on {t: t = 0],
so w(x,t) is bounded above on {(x,t): x € V%, t 2 0}. By hypothesis

(b)(1), there exists a positive number N(e,A) such that M(w) < N(e,A)
for all x € Vﬁ, t 2 0.
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s Lw - sﬂt + AM(x,t,w)

-2X, e

n
RATTICHY oy FOE) + Elb L(6,8) Fraymyy FOO)
- i=
n
+ C(Xst) eof(tkt) (A 2 X ) - ﬂﬁ%{eﬁ_-YY (A_ % xi)F'(kt)
e 1=1

+ A(x,t,w)

n
< (———H}eﬂ(ﬁ)‘t)) Z Ay o+ —(—)—(——HF(QH ) E B, + c(x,t) m)_eok'(k;) (A- 2 X3 2y
XeI‘iF()\t)A
+ m + MN(e,A)F(t) for t >0 and x € Vm,
using hypothesis (b)
¢ n n n o,
< F(Xt)[m— 2.2 Ai + 2.2 Bi + c(x,t)(A-.F Xi)}
i=1 i=1 =q

el" A

- K[W + N(e, A)P 1]
if 0 < X\ <y, by hypothesis (b)(3).

We now define the positive number no(e,A) as follows:

n
e(2Z A, -2 LB, -CaA)
= i R -
If C 20, ny(e,A) = min {Y’ eT,A + F(0)(A ?)N(e,A)I‘Q}

\  (36)

n

e[2 I: A; - 2 IB; -C(a-1)]
If c <0, n,(e,A) = min i1 i=1 .
g > TeT,A + F(O)(A-DN(e, AL, [ -

Now if C 2 0, then we have that for all t > 0 and x € Vm, if 0 <A <y:

Lw - %w; + Af(x,t,w)

er,A
< F()Lt)[m)-{ 2 E A + 2 I: B ¥ CA] + l{—m‘l’ N(e A)l" ]]

i=1 i=1
If C < 0, then we have that for all t > 0 and x € Vm, if 0<X<y:

Lw - g¥-+ AM(x,t,w)

eI‘A

< F(lt)[m)-(—“-{- 2 )3 A, + 2 2 B; + C(A- )} + X{T-ﬂ—?-)-+ N(e,A)T,]}].
i=1 IR

In either case, it follows by (35) and (36) that Lw - g¥-+ AM(x,t,w) <O

for all t >0 and x € V- Thus part (i) of the theorem is proved.

Now if A satisfies ,the condition of part (ii), then part (i) holds,
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and it follows by Theorem-1 that if u(x,t) is a solution of (15), then
u(x,t) < w(x,t) for all x € V% and 0 £t < T. It follows that for all °

— €AF (AT)
T >0 and x € Vs u(x,T) < w(x,T) < FOY(ATHY ° Also, by hypotheses

(f) and (g), it follows from Theorem 11 that u(x,T) 2 0 for all T > O
and x € V%. Since, by hypothesis (b)(2), F(AT) = 0 as T = «, part (ii)
is proved.

Note: As in the case of Theorems 12 to 20, one can state and prove

Theorem 21A, analogous to Theorem 21 but applying to an arbitrary

domain V.

Thus, if we allow for reactant consumption, then part (ii) of the
theorem shows that, in terms of the criterion for thermal explosion
that we are working with at present, thermal explosion cannot occur.
Since thermal explosions undoubtedly do occur, there appears to be
something wrong with our criterion. However, a recent paper by
Sattinger(33] sheds some light on this matter.

Sattinger discusses a model of combustion with reactant consumption
which involves two simultaneous partial differential equations, and so
is rather more complex than the one we have used. However, he reaches
the same conclusion - that the solution u(x,t) tends to zero as t — =,
regardless of the initial condition, at least for the particular system
he is dealing with. He then points out that whether or not thermal
explosion takes place depends, not on the final state reached by the
system, but on the manner in which that state is attained. If the
system is initially in what he calls a '"subcritical" state, the combustion
proceeds very slowly, with the temperature reaching an almost steady
value, which it holds for a considerable time before ultimately falling
to the ambient value. Alternatively, the reaction may after a certain
time begin to proceed very quickly, with a rapid rise to a very high
temperature, and this is what in practice constitutes an explosion. The
fact that, in this case also, the temperature will in theory ultimately
fall to the ambient value, is irrelevant, since the explosion will
already have taken place at some finite time.

It therefore appears that, if reactant consumption is to be taken
into account, new criteria for thermal explosion must be used, relating
to the early behaviour of a reacting system rather than to its final
state. However, as Sattinger shows for the particular problem discussed

in his paper, the early behaviour of the system when reactant consumption
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is taken into account is related to the existence of steady-state
solutions for the equation in the form we have treated it, ignoring
reactant consumption. Thus it may well be that, in many cases at least,
there are two equivalent ways of deciding whether or not explosion takes
place - one may ignore reactant consumption and adopt one or the other
of the (equivalent) criteria used in this thesis, or one may take
reactant consumption into account and adopt Sattinger's criterion. The
two approaches may give the same conclusion even though the latter is
based on a model much closer to the actual situation than is the former.
It must be said at once that there is a further complication. The

problem dealt with by Sattinger corresponds to the problem without

&
E:?;)’ the Arrhenius

reactant consumption in which £(x,u) = Clexp(-
formula (see Ch.1). Our Theorems 20, 208 apply to this function, and
show that the solution u(x,t) of problem (15) is in this case always
bounded as t = «, so that, in terms of our criteria, explosion will
never take place. But Sattinger shows that it can take place in terms
of his criterion, if A is sufficiently large, and it is apparent from
his discussion that, at least for this particular %, neither of the

criteria adopted in this thesis is appropriate (this possibility was

also suggested in a private communication by Dr. G.C.Wake).

C
), there are positive

For the case where f(x,u) = Ciexp(- ETT;

steady-state solutions for all X > 0, as is shown by our Theorems 20,
20A and 10. If one analyses the situation more deeply, as has been
done, for example, by Parter[27], one finds that there exist two finite
values *1’X2 > 0 such that the steady-state problem has one positive
solution for 0 < \ < Xl’ two for A\ = Xl, three for Xl <A< X2, two for

A= 12 and one for \ > XQ, as illustrated:

“x“c(V) & SUR [u(x;x) | where u(A;x) is a

T steady-state solution
|
]
|
- I
|
' :
| 1 N l
A A




As )\ passes through the value l2, the number éf positive steady-state
solutions changes from three to one, and (more important, perhaps) the
size of the minimal positive solution increases by an abrupt jump.
Sattinger shows that it is the value X2 which is critical in the sense
that for A > 12, thermal explosion takes place in terms of his criterion,
taking reactant consumption into account.

Thus the orthodox criteria for thermal explosion, which we use in
this thesis and which are used by many other authors, seem not to apply
to the Arrhenius function, at any rate, though they appear to work well
enough if one uses instead the Frank-Kamenetskii approximation for
which %(x,u) = eu, as is done, for example, by Boddington, Gray and
Harvey[u4] (the use of the Frank-Kamenetskii approximation is commented
on in Ch.1 of this thesis).

There is evidently plenty of scope for more cdetailed investigation
of the steady-state problem for different functions ?, looking not
merely at whether or not positive solutions exist but at the number zand
size of such solutions for different values of X. The rroblems
involved seem likely to be difficult - so far only some simple specizl
cases have been studied. In this connection, the theorems we have
proved for the time-derendent problem, giving constructive bounds for
the solution, may prove helpful in determining the size of possible
steady-state solutions, though it is equally likely that these bounds

will turn out to be too crude to be useful for this purpose.
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8 BOUNDS FOR THE CRITICAL PARAMETER

In this chapter, we shall apply the results obtained in the
previous chapter to the problem of finding bounds for the critical
parameter A* (as defined at the end of Ch.6). The steady-state theory
reviewed in Ch.4 gives us upper and lower bounds for A* in certain
cases, these bounds generally involving the principal eigenvalue of
some related linear problem. Also, Wake and Rayner[36] have recently
developed a variational method for estimating A*, again working with
the steady-state problem. The theorems we have proved in Ch.7 provide
another means of obtaining rigorous bounds for A*. As compared to the
steady-state methods, our method has the advantage that it gives
bounds for A* which are easily computable by elementary methods. We
shall shortly illustrate this by calculating these bounds in the cases
of two important functions £. However, these bounds have no pretensions
to being highly accurate estimates; some idea of their closeness to the
exact value of \* will be obtained later in this chapter by comparing

them with the results obtained by Boddington, Gray and Harvey[4] using
an empirical formula for A%.

Preliminaries:

Consider first the original heat-generation problem described in

Ch.1. Using the notation defined in that chapter, this problem is of

the form
3 % T
K.g —5 - pc 3t g(T) =0 for (x,t) €D
i=1 axi

K %% + Hg2(T) = 0 for (x,t) €S

T(x,0) = Ta for x € V.

We shall assume that the boundary condition is linear, corresponding
to heat loss following Newton's law of cooling, so that g2(T) = T-T,.
If we divide the differential equation by K and change to a new time
scale, which we may do without loss of generality, the problem reduces
to

3 2

T T 1
T 3L-Sgem=o0 for(xt) €D
i=1 ¥x}

K g% + H(T-T,) = 0 for (x,t) €S

T(x,0) = Ta for x € V.
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We shall examine two important possibilities for the function gy
1) The Arrhenius formula gi(T) = qpA exp(- , where q is the

exothermicity per unit mass of the reactant, p is again the density of

the reactant, A is a proportionality constant, E is the activation

energy of the reaction and R is the universal gas constant. We follow
here the study by Boddington, Gray and Harvey[4); they use the common
procedure of replacing the Arrhenius function by the Frank-Kamenetskii
approximation, and so we shall do the same. The difficulties associated

with the use of the Arrhenius function itself were discussed at the end

of the previous chapter.

E(T-T_)
Accordingly we make the change of variable u = TR so that
- ) RTa
exp(- RT) = exp(- = 51 1)

T + RT E u

E RTau RTau

s exp(~ W{l - T]) if - is small

a

= exp(- —E-)e !

This is the Frank-Kamenetskii approximation, and using this we obtain

finally the initial-boundary value problem

p) gt u %%-+ E = qpA exp(- ¢ )e = 0 for (x,t) €D
i=1 ax
Hu + K =— ou _ 0 for (x,t) €S
v
u(x,0) = 0 for x € V.
We then write \ = ggég-exp(- ), this being the same as the parameter
KRT

a
y in the notation of Boddington, Gray and Harvey[4].

2) The modified Arrhenius formula gl(T) = qpAT exp(- é%J, the constant

A being not necessarily the same as in the previous case. As mentioned
in Ch.1, recent theory suggests that reaction rates may well be governed
by formulae of this kind rather than by the original Arrhenius formula.
Making the same change of variable as before gives:
E RT,u -E
T exp(~- ==) = (T_ + )exp( )
e 2" & R(T, + RT-E™'u}
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RT?
_ a E E 2 1
= T(u + ﬁ-—)exp[—(w) (__E_)]
a a u+ s/
RT
a
g g orat] - E
Tf(u + g)exp(u = g), writing € ﬁf; .
This leads to the initial-boundary wvalue problem
3 2 T 2
du du a -€
g il + qpA(=") (u + &)exp( ) = 0 for (x,t) €D
i=1 3 E— s uEs ’
a
du _
Hu + K s 0 for (x,t) €S
u(x,0) = 0 for x € V.
. . _ QpAE E . .
If we again write A = > exp (- ﬁT—J, then the non-linear term in the
KRTa
above differential equation becomes
T_e5 2
A exp(RT )(?)(u + g)exp(-—z‘—g) = A= : )(u + g)exp(———&-—u : g)-

We need to consider a slightly modified version of the problem, to
allow bounds for \* to be calculated for certain specific domains V, so

we shall suppose henceforth that we are dealing with the problem

3
b
? *%_§?+)‘f(U)=O forxGVm,t>0 W
i=1 * dx
i
3 2mi-1 au ) (37)

Hu + X T a,(x)x,
i i

i=1

where A1, A

respects we follow the notation of Ch.7.

3_'

u(x,0) = 0 for x € V%

0 for x €3V , t
m

>0

o

29 A3, H and K are positive constants, and in all other

We shall, in the light of the

above discussion, consider two possibilities for the function f:

;2; fi(u) = e, the

T eg

~
H
N
—~
e
~
11}

(=

0

form. Note

)(u + g)exp(

Frank-Kamenetskii version.

5 R
u+g

(u < -e)

that this function is non-decreasing and asymptotically

(u > -e)

, the modified Arrhenius

linear in u, and also satisfies a uniform Lipschitz condition for all u,

since its derivative

is bounded.

Since the values of u that we work

with are always positive, we may define f2(u) as we please for u < -g,
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so we define it in such a way as to make f2 suitably well-behaved.

Bounds for the Critical Value \*:

Let u(x,t) be the solution of (37). For our present purposes, we
shall define the critical value A* to be the value of X\ below which
u(x,t) is bounded as t = o, and above which u(x,t) is unbounded as t —= @
or as t tends to some finite value. As shown in Ch.6, this is the same
as the steady-state critical value above which no positive steady-state

solutions exist.

(a) f(u) = fl(u): For the special problem (37), Theorem 17 tells us that

the solution u(x,t) is bounded as t = « if

2e EAi
i=1

Thus A-DHe. 5D is a lower bound for A%, for any choice of € > 0.

Now M(e,A,Y¥) may be taken as the least upper bound of f(u) on the interval

cA

A

€ <u< f?% . Thus, for f(u) fl(U)’ we have M(e,A,Y) = e . Thus we

have that for any choice of € > 0, the following is a lower bound for A%:

3
2¢ T A, cA
_i:_ll__g-z(jee-cesa
B=1 ¢ 1 S
-C,€
,.Clee #
i 1
C2e

D 3
[y}

1/C2

From the graph, it is clear that the best lower bound for A*, namely

€
T will be obtained by choosing € = éL3 which we may do. We obtain
2
C1 ) 3
therefore as a lower bound for A#* the value C;E-: s .Z Ai'

1=1

Now (i) of Theorem 17 tells us that A may be arbitrarily gqhosen
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2:—6 =Y+ -:';1—9 where h = E- . Since A may be chosen as

close to this value as we please, it follows that a lower bound for A\*

greater than VY +

is given by: 3
2 LA,
e
e(‘f+2h—®) _

2

Y21+ %r for all u 2 0, we can apply the

Further, since fl(u) = e

Corollary of Theorem 16 to (37) in the case f(u) = fi(u). It follows
from this Corollary that, provided X is sufficiently large, u(x,t) is
unbounded as t tends to some finite value. This allows us to obtain

an upper bound for \A* in the case f(u) = fl(u). In fact, the Corollary

2
tells us that, as long as y + —g-> Y, an upper bound for A* is given by

h
R ot 26 2
T Ai[§(w ih T = )7 + 1]
- k=5l (39)
A ———— i ittt
(v + 2. n?
(b) f(u)_f f2£Elj We have that f2(0) = Ta. As u — =, f2(u) is
Taeg Taeg
asymptotic to ( 3 )(u+g), and f2(u) < ( - )(ut+g) for all u 2 0.
2 2
T &8 o - B _ kL
Further, for u 2 0, f;(u) = ( : ) 5%2-6 WHE o UGB
T,(1+g) T e T_e®
So f;(O) E : < é} , and f;(u) - 3 as u - ®, Also, for u =20,
. 2
T e‘.& ..g.._

in =
£(u) = (5 Pt @, 1S 2y,

s (u+g)3




T (1+8) T eb
Thus, for allu 20, T + us<f_(u) <( )(u+g). It follows
a g 2 g
from Theorem 18 that a lower bound for A* is given in this case by
3
2g.£ Ai
x* = 1:1 @
= g 26, -
Tae (Y + h )

It also follows from Theorem 13 that, as long as | + %g-> ¥, an upper

bound for A* is given in this case by

3
2gi‘EiAi e %?
X% = max 5 s =% .
Ta(1+§)(¢ i ¥) a

It will be seen from these illustrations that the calculations
involved in determinirg A* and A* are quite simple. One could readily

perform similar calculations for other forms of the furction f(u) if

desired.

Comparison with Kncwn Values:

While we do nct krow in general how close the bounds \* and 1* are
to the true value of )\, it is possible to get some feeling for this by
comparing these bounds with the known value of \* in certain special
cases. Using the Frark-Kamenetskii approximation in thre original heat-
generation problem, Bcddington, Gray and Harvey(4] have cbtained an
empirical formula for A" which appears to agree well with all known
information; we shall denote the value obtained using their formula by

lgst' Values of Xést for various special regions V are given in Table 1

on p.92, using the notation of Boddington, Gray and Harvey. We shall

first compare, for each of the special regions in Table 1, our lower

bound A* with A%

Bt the size of the upper bound A* relative to \¥

est
will be investigated at the end of the chapter. Apart from giving some
feel for the size of Lﬁ and X*, our calculations will also serve to
illustrate the technique mentioned in Ch.7 (p.72) of transforming from
a region V* to the region Vm for which Theorems 12 to 20 hold, and for

which formulas (38) and (39) for A* and \* were calculated.

(continued on p.93)



SEMENOV RECIPROCAL SQUARE
s . RADIUS MEAN RADIUS 1 2 il
REGION i | rGH) © o = Rol3r(ay * Topp)] where Bi = hRg is the
R R est ] ] * .
S 0 Biot number
Sphere 1 ok, 4 e, 19 _ .270.9061 + (0.3000)Bi
(radius = a) 2 §ladd2t 3 B a'l3333 * 3Ep) = 27 Bl J
Infinite cylinder 3a 2 2
A - 1 |1.000f = - 3a°.1 e, 1., _ .2,2.0387 + (0.5000)Bi
(radius = a) 2 3a2 T{§+ .2_(.8_{.)] = a 2T J
Infinite slab 1 2, 1 e, 1 2 8.1548 + (1.1669)Bi
. 0 0.857 B L
(thickness = 2a) & 332 o2 [2.571 * T(-B-f)] &l Big ]
Touiovlind ;
T s el 1.178] 1 +J/7 _ 2.4142 3% . 1 e (1)) = a2[2:2061 + (0.3516)Biy
= a) ‘ ‘ 2a? 222 2.414213.538 ' 3.728'B1 Bl
Thin circular disc 2
. S5a 1 0.02 1.0020| 3a 1 e 2.5.6636 + (1.0797)Bi
thickness = 2a 0.437(0.9243 — —[ ] = { + \—.—)] = a‘[ . ]
(radius - 10a) 2 Sa .7 01 3a2 1.0020%2.773 1,437=8 Bi
Long circular cylinder 2 .
. _ 15a 1 ¢1 255 _ 20012} 8a” s i e 1,4 _ .2,1.6853 + (0.4759)Bi
<hi;§?§s_-lga) L1815 O50) 4o 3a2[25+2\/26) T T,.2 |2-0012'3:150 toareand = @l B1 ]
1+ 2@ 2
Cube ™ _ 2.1027 gas o i e ,1.,~ _ .2,0.9061 + (0.3892)Bi
(side = 2a) $.2801d.222) & - ol 5 1027.3.066 T T2t - 2 ( Bi )
1+ Z 2
Infinite square rod 1.u43) 1. 051 3a m_ 1.6366 8a® e 1 e 1 A5y = a2[2.0396 + (0.5811+)Bi:|
(side = 2a) ’ UK 2 322 332 it 6636‘3 153 ' 2.8543 BI Bi
TABLE 1: Values of ngt for various regions.

6



(continued grom p.91)

We begin by working with the heat-generation problem

P R ®
L £ - E =0 fory €VE, t>0
. _ 2 1ot
i=1 9y,
i
HU+K?T::O foryeav*’t>o ""(uo)
u(y,0) = 0 fory € V¥
¥q 2m1 Y, 2m2 2m3

y3 ] . g 5
" i &) + (a—) < 1}; this is the time-

1 2 3

where V¥ = {y: (

dependent version of the problem considered by Boddington, Gray and

Harvey, apart from our choice of the region V#. Following the remarks

<

on p.72, we make the change of coordinates x. = = (i = 1,2,3). This
i a;
transforms V# into the region Vo with dimension n = 3. We then have:
du _ 1 du a2u - il 32u =
oy, a, ox,’ 7= 5 7 (1= 1,2,3).
i i 7L oy, a, ox.
i i 771
ou 3 du
Also, for the region V=, = .g vi(y) §§T3 where:
1=1 1
v(y) = outward unit normal to V¥
2n, y, 2m,-1 2m, y, 2m,-1 2m_, y. 2m,-1
1 1 2 3 3
- - &) wmhd © ase
3 umi s uml—2 1 1 2 2 I
2 '—§<E—)
i=1 a; i
2m, -1 2m2—1 2m,-1
2m, % 2m,x 2m,x
i} 1 Pa%e g%y i
] ] -
3 4m> G4m, -2 | %2 3
P i g
i=1 4 "%
i
Thus, changing coordinates, 5% transforms into
2mi-1
2m. X.
ak=al
3 . =
p) £ 1 CORE ga (x)x2ml ' B__Bu
i=1| [3 wm? um,-2[% %5 =g TP i
I ——x,
i 2 3
i=1 a;
i
g ¢
where ai(X) = = .
3 m, Uum,-2
2 i
a’ I — x,
AU (1 2 1
1=1 a,
i
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Results concerning A\* for the problem (40) will therefore be the same

as for the problem (37) with Ai = j? G = 1,258, ai(x) as above and
£(u) = e, 8
The easiest cases to deal with are those for which m. =1 (i=1,2,3).
3
In that case V_ is the spherical region {x: I xi < 1}, and so, in the
15=4
notation of Ch.7, ¥y = ¥ = 1. Further, 0 and ® are the extreme values
8 Vi
of I ai(x)xi It is easily shown, using Lagrange
=l

R . 1 _ 1 :
multiplier techniques, that 6 = maxla; . O = E{HTEIT . Thus, using
formula (38), we obtain:

2f =
i=1 a;
L‘.’:: 5 .
e(1 + ﬁfﬁrgzﬁ;)
We now apply this to cases where V# is one of the first three regions
listed in Table 1.

nMw

1). Sphere, radius a:

Here a, = a, = ag = a, and so

2
e(1 + ';H-)
= —2&—-— where Bi = ah is the Biot
a‘e(2 + Bi)

number for the sphere.

.. 1 Bi
ie. A% = ;5{0.9061 T (0 5530)5L"

1 Bi
. %’.‘ =~ .
From Table 1: kest ;5{0.9061 s (0_3000}Bi]

= \est _ 0.9061 + (0.4530)Bi
Lﬁ - 0.9061 + (0.3000)Bi °
Jhxgst/ .

151 - —— - — — — — — — — —— — — - — - ==




2). Infinite cylinder, radius a:

Here we take a, =a, =a and let a5 = = and so

u

2
1 .- E—

- 2
e(1 + 534

n

= B where Bi = 3ah is the Biot

a%e(3 + Bi) 2

number for the infinite cylinder.

l.e. A= ;5{2.0387 T (0.5795)311‘
| Bi
Eremi Tabie: & L ;5{2.0387 T (0.5000)354"

Thus Aost _2.0387 + (0.6796)Bi
\* ~ 2.0387 + (0.5000)Bi °*

4
-

4

L 4

[o¢)

3). Infinite slab, thickness 2a:

—

Here we take a = a and let a, °® ay =, and so
a2
a2
)\7'! = _2
e(1 + EHQ
2 Bi

= | i where Bi = 3ah is the Biot
a“e(6 + Bi)

number for the infinite slab.

: PR BE
L€ 2= E ;5{8.15u8 + (1.3591)311'
1 Bi
. 13 = 2
From Table 1: Xest ;5{8.15u8 ¥ (1.1669)Bi]
A%

est _ 8.1548 + (1.3591)Bi
%3 8.1548 + (1.1669)B1

Thus




1

Infinite slab

The next cases we wish to consider are those where V* is one of

the three finite cylindrical regions. To obtain these we take a, =

2
m, = m, = 1 and let m, = = In the limit, as m, = @, Vm becomes the
right circular cylindrical region {x: xi + xg <1, |X3| < 1}. Thus
¥y =1, ¥ = 2. Further, cn aVn:
x2 x2 m x2m
1 K, Tals
2 2 2
3 2m, a a a
b 1 1 3
z ai(x)x: = pre— .
i=1 - 2 2 m2 3
a2 a2 a2
1 1 3
So in the limit, as My = @, we have:
¢ my 2 . .2
£a.(x)x, = — where x{ + x5 =1, [x,] <1
: 1 i 1 2 3
1=1 1
= where |x|=1.
a 3
3
1 1

Thus 0 = min {ai-, E\l—] =

T TN § and similarly © = EEHT;—:;—T .
i 3 ’ 1273 1*%3

So, using formula (38), we obtain:

2 1
2(;5 + ;50
il 3

A

> .
6(2 + _[_J——)
min al,a3 h

We now apply this to the three finite cylindrical regions listed in
Table 1.

4). Equicylinder, height 2a, radius a:

Here a, = a

3 = a, and so

1

96

1’



97

5
a2
bl S ——
R
ah
= —5—:1§i-—— where Bi = ah is the Biot
a“e(1 + Bi)
number for the equicylinder.
. T Bi
e LR ;5{0.9061 T (0,906 DB LY
. x . A Bi
e Febiicmiy \est * ;5{0.9061 + (0.3516)500"
Thue Nest | 0.9061 + (0.9061)Bi
AF 0.9061 + (0.3516)B1 °
A%
aest/ .
/l“
QRSB i v el R o i i
1 3
Equicylinder
1 2 3 § 5 g -

5). Thin circular disc, thickness 2a, radius 10a:

Here a = 10a, ay = a, and so
2( 2 =+ JLQ
A = 100a a
- a(2 ¥ -2
ah
(2.04)Bi

= 3 where Bi = E%E is the
a“e(5 + 2Bi)

Biot number for the thin circular disc.

. | Bi
i.e. A% = a2[6.6625 + (2.6650)Bi]'

_ e - [ Bi
Hrom able) 14 st = lsEese v (TomenELd

\est _ 6.6625 + (2.6650)Bi
¥ ~ 5.6636 + (1.0797)B1

4




w
[\§)

2ag

P e e e - - — — - - — - —— - = — - — - - . e e - . - — o — - — ——

1.18 '///

Thin circular disc

+ ¢ + . — Bi
1 2 3 L

6). Long circular cylinder, height 10a, radius a:

Here a; = a, ag = S5a, and so
2(£L +._l_q
2 2
A = a 25a
- e(2 + 2y
ah
= = . where Bi = l%%E is the
a“e(15 + 11Bi)
Biot number for the long circular cylinder. _
. A Bi
148, i = ;3{1.8170 T (1.3325)504"
“w- . 1A Bi
e Boli) % \est T ;5{1.6853 T (0.5759)513
- Mst | 1.8170 + (1.3325)Bi
U8 TXF T 1.6853 + (0.4759)B1 °
AT
lest/v:
QB0 s s i g S R W S e ey e
1.08

Long circular cylinder
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Finally, we wish to consider the cases where V% is one of the last

two regions listed in Table 1, namely the cube and the infinite square

rod. To obtain these we take mo=m

V% then tends to the rectangular prism with dimensions 2a1 X 2a2 X 2a
and N tends to the cubical region {x: lxil <1, i =1,2,3}. Thus

V=1, ¥ = 3. Further, on an:

p S My =m and let m = «», The region

3’

So in the limit, as m = «, we have:

3 2m, 1 '
z ai(x)xi s T (=) .
2= i such that a.
i
lxil =1

So, using formula (38), we obtain:

e(3 +

ol [V

We now apply this to the last two regions listed in Table 1.

7). Cube, side 2a:

Here a; = a; =3, = a, and so
Ll
a2
E’: = —W—
(3 + T
6 Bi

where Bi = ah is the Biot

a2e(2/? + 3Bi)
number for the cube.

. 1 Bi
* - .
ie. X\ ;5{1.5694 T (1359150
1 Bi
. ¥ E y
From Table 1: Xest ;5{0.9061 s (0.3892)Bi]
X oo

est _ 1.5694 + (1.3591)Bi
A T 0.9061 + (0.3892)Ri

Thu%
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D) e SR - G — - — — — —E - S =

1.73 A
Cube
1 2 5 3 5 %.Bi
8). Infinite square rod, side 2a:
Here we take a1 =a,=a and let ag =@, and so
dl
a2
X:’: =
- e(3 +2—:!)
ah
= 3 =9:51 where Bi = é%h is
3a“e(/7Z + Bi)

the Biot number for the infinite square rod.

R Bi
imer Ny & ;5{2.8831 T (2.0387)35)"
. o m L Bi
Hgom qlptie! ™ : Aest ~ ;5{2.0396 . CRETY TR
- - est _ 2.8831 + (2.0387)Bi
T U X% 7 270396 + (0.5818)B1 °
3, G e i . o e e e
1.41 1

Infinite square rod
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From the foregoing calculations, it can be seen that in the cases

A%
considered, the ratio —%%E lies between 1 and about % in all cases, and

is much less than this in some cases. It is clear that in general A%

cannot be regarded as in any sense an approximation to ngt

it may be of interest as being a rigorous lower bound for A#* which is

y nevertheless

not too remote from the true value, particularly for small values of the

Biot number and certain types of region.

The upper bound given by (39), though of theoretical interest since
it shows that A* is finite, is not as useful for estimation purposes as
the lower bound A* already discussed. We can illustrate this by

considering the case where V# is a sphere of radius a (see p.94). 1In

. _ _ _1 _ _ 1 Ay
this case y = ¥ =1, 6 = 5 and A1 = A2 = A3 = ;7, and so we obtain:
302 44

2= 2.2
T = a”~ a'h
m

a2h2

= —35{2 + (Bi)2] where Bi = ah is the Biot
a

number for the sphere. Thus, using the appropriate value of ngt from

Table 1, we obtain:

A _3[2 + (81)23[0.9061 + (0.3)Bi)
)\'e'st 4 Bi
L
= &5 + 0.6 + (0.9061)Bi + (0.3)(B1)?]
= 3 g(Bi)
= ¢ g(Bi), say.
Evidently g(Bi) — = as Bi = 0+ or as Bi = «. Further:
g’ (Bi) = - 14§1%§ + 0.9061 + (0.6)Bi
(Bi)

= 0 when Bi = 1.0799 (to four places), the solution
being obtained using the Newton-Raphson method. Thus g(Bi) attains its

minimum for Bi > O when Bi = 1.0799, whence g(Bi) = 3.6 for all Bi > 0.

Hence xé;—-z 2.7 for all Bi > 0. Thus the upper bound A* is typically
est

very much larger than A*, which is why it is of theoretical rather than

practical interest.
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9 NON-LINEAR BOUNDARY CONDITIONS

In this final chapter, we shall examine to what extent the methods
of Chs.7 and 8 can be adapted to non-linear boundary conditions. We

shall begin by working with the initial-boundary value problem

Lu - %%-+ Af(x,t,u) = 0 for x € Vm, 0<tsT

B

u=0 for x€Ad ,0<t<=sT (41)
gen m

u(x,0)

u.(x) for x € V
0 m

where, as in the problem (15) discussed in Ch.7, f is continuous for

2ta

x € V%, 0 =t <T and all u, U, (C (V%) and A is taken to be positive.

du . .
Recall that Bgenu = dy(x,t)glu) + dl(x,t) 5,,;» Where g(u) is strictly

increasing for all u (for those functions g which occur in physical
problems, we are only concerned with u 2 0, and we may extend the
definition of g(u) to negative u so as to satisfy this condition without

loss of applicability). As in the case of problem (15) in Ch.7, we shall

suppose that the derivative g;-appearing in Bgenu is of the form

iﬁ, and shall likewise follow in other respects the
il
notation used in studying problem (15) (see p.53).

If we assume further that g(0) < 0 (which is certainly true in
physical applications) then Theorem 11 extends at once to problem (41).
Theorems 17 to 20, on the construction of upper solutions, and also
Theorem 21 on reactant consumption, also extend at once to problem (41)
if we assume that g(u) =2 u for all u 2 0; however, this is certainly not

5/4

true of the function g(u) = u which occurs when cooling at the

boundary is by natural convection. However, a slightly different
condition on g takes account of the case g(u) = us/q and still allows us
to extend the important Theorems 17, 18 and 20, where the upper solution
constructed is independent of t. Theorems 19 and 21 have so far proved
impossible to extend using this condition on g, because the fact that
the upper solution tends to zero as t = « creates technical difficulties
of an apparently insuperable nature in the construction of the proof.

However, extending Theorems 17, 18 and 20 leads to the following

theorems.
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THEOREM 175

: Suppose that

(a) As for Theorem 17 except that we suppose c(x,t) <0 for all x € Vs
t > 0.

(b),(c) As for Theorem 17.

n n
(d) EBi < ):Ai.
dR=1s =i

(e) As for Theorem 17.
(£) There exist constants N > 0 and p > 1 such that g(u) = NuP for all
u=z2 0.

Then: (i) For any T > 0, a strict upper solution for (41) is given by

n
Wix,t) = yop (A - Ix}) forall x €7 ,0stsT
. i=1

if A 18 a constant chosen so as to satisfy

ad if 0 < X <my(€,A)
where m,(e,A) does nct deperd on T.

(ii) If 0 <\ < mo(e,A), aod 1f u(x,t) 28 a solution of (41),
then for all T > 0 and x € 75, u(x,T) < £¥§ .

Proof: (I) As for Theorem 17.

n 2mi—1 e
(I11) Bgenw = do(x,t)g(w) + dl(x,t)i)zllai(x)xi 3;:
& «p n 2.p n 2mi-1 -2€ex,
2 do(x’t)N(K:YJ (A-iflxi) + dl(x’t)iflai(X)xi ( Y )

5 2D1€®
> 6ON€ =i g for t > 0 and x € avm

>0 for all t > 0 by (42).
(III) As for the case of Theorem 17 where C = 0.

THEOREM 18%: This is to Theorem 17° as Theorem 18 is to Theorem 17. The
conclusion of the theorem is:
If u(x,t) is a solution of (41), and 1 f \ satisfies

n n
2 X A, -2 D> Bi
i=1 i=1

MlY

0<A<
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then there exists a comstant K > 0 such that, for all T > 0 and x € V%,
u(x,t) < K, where K depends on \.
COROLLARY: Goes through exactly as it does for Theorem 18.

B

THEOREM 20" : This 18 to Theorem 173 as Theorem 20 is to Theorem 17. The

conclusion of the theorem is analogous to that of Theorem 20 in the case

C = 0, the only change being that the condition that A must satisfy
becomes

2D1® 1/p
A>Y + S %)
p=1 p-1
bonxp”ix & M2°

Proof: Similar to the case C = 0 of Theorem 20. (II) is slightly

modified:

n Qmi—i S
Bgenw = do(x,t)g(w) + di(x,t)iglai(x)xi 3;;
> 60NKpo/aMg/a(A-Y)p - 2D1Kx1/aM%/a® for t >0 and x € AV_
> 0 by (u3).

Extending the '"lower solution" theorems, Theorems 12 to 16, to
problem (41) poses far more problems. Certainly the extension is
immediate if we assume g(u) < u for all u 2 0, but unfortunately this
condition is not satisfied by the non-linear functions g which arise in
applications. If we require g to satisfy some more realistic condition,
then we immediately run into technical difficulties unless | = Y, i.e.

unless the region Vm is spherical. So let us take Vm to be the sphere
Lp

{x: T x; < 1}, so that m. = 1 for i = 1,2,...n, and Yy = ¥ = 1. In
i=1 *

that case we obtain the following extension of Theorem 12.

THEOREM 12B: Hypotheses (a), (b), (c) and (d) are as for Theorem 12,

26,6
except that the condition Y < § + 1 18 omitted in (c). In addition,
0
we suppose that
n
(e) V_ is the sphere {x: I X2 < 1}.
m i=1 1

(£) There exists a constant Q > 0 such that g(u) < Que® for all u=z 0
(this condition is satisfied by the functions g which arise in
applications) .

Then: (i) For any T > 0, a lower solution for (ul) is given by

4]
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n
wixyt) = AK(A - Z )1 - e™%) forall x €7 , 0stsT
i=1

where A and K are constants chosen so as to satisfy

A>1
26.0
(A-1)ekK(A'1) St .. 0. T ceeeea (1)

QD,
0 KKK 2
8o n

2 ZA. +2ZIB. + (C+1)A

0 1 0 1

i=1 i=1

(note that by choosing A sufficiently close to 1, (4u4) can always be
satisfied; the choice of A will depend upon the value of A\, but this is
of no consequence for this theorem).

(ii) If u(x,t) is a solution of (41), then for any T > 0, u(x,t) >0
for 0 <t =T, and i1f lim u(x,T) = 4(x) exists, then for all x € V%,

T=o
a(x) 2 nlMa where a is the solution of the
2 LA, +2ZLB. + (Ct1)(1+a)
. bl . g\
i=1 i=1
26,0
. AKa _ "1
equation Qe 7555—.
Procof: (I) As for Theorem 12.
n
3
(I1) By w = dg(x,)g) +d (x,1) T a;(x)x; 3o
i=1 A
202 t g 2 -t
< do(x,t)QXK(A- z xi)(l—e_ Yexp{A\K(A- L xi)(l—e )]
i=1 i=1

n
+ d (x,t) T a.(x)x, {(AK(-2x.)(1-e %)}
1 i=1 1 1 i

AK(A-1)

< XK(l-e_t){DOQ(A—l)e = 2519] for t > 0 and x € 6Vm

< 0 for all t > 0 by (44).
(III) As for Theorem 12.

This proves part (i). Part (ii) follows as in the proof of Theorem 12,

if we observe that A-1 may be chosen arbitrarily close to Q.

Unfortunately, theorems parallel to Theorems 13 to 16 cannot be
obtained by this method, because in each case a condition on A is
obtained which involves the value of A, which in turn depends on A,

and so a vicious circle results.
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While the preceding theorems are rather incomplete, they do at
least show that certain qualitative aspects of the behaviour of solutions
of (15) still hold for (41). It may well be that in other respects
there are qualitative changes in behaviour when we change from a linear
to a non-linear boundary condition.

The extension to more general domains V which was carried out, in
the case of the linear boundary condition, in Theorems 12A to 20A, has
not proved possible so far in the case of the non-linear boundary
condition. The difficulty is the unavailability of a theory for non-
linear operators comparable to the theory for linear operators which

was used in proving Theorems 12A to 2OA.

In Ch.8 we used Theorem 17 to obtain a lower bound Lﬁ for the
critical value \* in the heat-generation problem, which turned out to
be quite close to A* in certain cases where a good approximation to
the value of A* was known. It is of interest to see whether we can
similarly use Theorem 17B to obtain a lower bound for A* in the case
of certain non-linear toundary conditions, and if so, what information
we can deduce about the size of A% in the case of the non-linear
boundary conditions, compared to its size in the case of the linear
boundary condition.

We shall consider a mcdification of problem (37) on r.88, the
modifications consisting of the introduction of a non-linear boundary
condition and the assumption that f(u) = e", giving the following

problem:

2 82 du u ]
LA S22 - +2e"=0 forx€V,t>0
R ot m
i=1 ~ ox.
i
3 2mi—1 S
g(u) + K.§ ai(x)xi = 0 for x € §Vm, t >0 ) (45)
1=1 i
u(x,0) = 0 for x € V%.

We shall consider particularly two possibilities for g(u):

(a) The natural convection boundary condition:

5/4

In this case g(u) = Hu , SO in the notation of Theorem 17B we

have N = H, p = %3 60 = 1.

(b) The thermal radiation boundary condition:

In this case g(u) = 0€[(u+Ta)u - Tz] 2 geu’ for all u 2 0, so we

may takg N = g€, p = U, 60 = 1 (where here and here only, ¢ denotes the
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emissivity of the surface).
Reasoning exactly as for the linear boundary condition on p.89, we

obtain from Theorem 17B that a lower bound for A* (more precisely, a

number such that for all A\ smaller than this, all solutions of (45) are

3
2¢ T A €A
e s i=1 T A-Y
bounded as T = «) is given by -7 — ¢ i
. 8 2K® J
Now A may be arbitrarily chosen greater than Y + 51’ so if we
Ne
_ 2K® . P
put n=A - (Y + p_1), then both € and n are arbitrary positive
Ne
numbers. The expression for the lower bound on \* now becomes:
3
2¢ T A, cln+ ¥+ 220, ‘e
_.....j_'.=_1___ exp — Nep = _-.-...._-_1—_—_— exp —6(1 + —Y——)
n+ 2K?1 n+ 2K?1 n+ Kzel-p n+ Kzel_p
NeP NeP
3
2K®
where K1 = 2 ? Ai’ K2 Sl

B(e,n), say.

We define B(e,m) for € = 0 or 1 = 0 so that the function B is continuous

on the set {(e,n): e€,m 2 0}; it is easily verified that this is possible.
We wish to find the best possible lower bound for A* that Theorem
178 will give us, so the next step is to find, if possible, a point

(e,n) with €,n 2 0 which maximises B(e,n).

K, € ¥n + p¥K, e P
Now B.(e,n) = __.__1_1r__ o i ~1 exp el % Y —)
n+Ke P (n+ K,e" F) n+Ke P
1-p
Kln + pKlng ¥
+ T3 ©XP -e(1 + = )
(n+Ke P) n+ KelP
2 2
exp{-€(1 + _...Y_)
1-p
n+ Kze s .
= P [Kle[-(n + K€ Py _ (¥n + p¥K € £33
(n+ Kye' P)

1-p 1-p
+ (n+ K,e" T)Km + pKKye )}
= 0 1if and only if
4 20 2-p¢_ 3-2p¢_ 2
ef Kim KlYn] + e“7F( 2nK1K2-pK1K2Y] + € { K1K2]

1-p 2-2p 2 2 _
+ e T {PIKK rK K ) + e (PG} + k" =0 ... (46)
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. K€ ¥
Also, B_(e,n) = exp{-€(1 + — )
1 (n+K e1P)? n+K el P
2 2
K,e
Bracye - et e e
n+K.e P (n+ K.e Py n+ K.e P
2 2 2
¥
K, €exp -e(1 + —m8 ——)
1-p
n+ Kze 1-p
= o {- n-Ke + €Y}
(n+Ke” %)
= 0 if and only if n = €Y - K giR ceeeeeaeaa(17)

2

If (46) and (47) hold simultaneously, then substitution from (47)
into (46) gives the equation K163Y2 = 0, which yields € = 0. Now
B(e,m) = 0 as € = 0, regardless of the value of m, so € = 0 clearly
does not give the desired maximum for B(e,n). For €,n > 0, we now

know that the graph of B(e,n) has no points where the tangent plane is

horizontal. Further, it is easy to see that as J62 + n2 - o in the
first quadrant, B(e,n) —= 0. Hence B(e,n) must attain its maximum value
in the first quadrant on the m = 0 axis. So our problem reduces to
finding a positive value of € which maximises the value of B(€,0).

Now, putting m = 0 in (46), we obtain:
Be(€,0) = 0 if and only if

2-p, _ 3-2p, _ 2 2-2p 2y .
€ = ( pKlKQY) + € ( K1K2) + € (pKle) 0

i.e; = pY¥eP - K,e + pK, =0 TR X:))
If we write h(e) = - p¥eP - K,€ + pK,, then h(0) = pK, >0 and
h’(e) = - szep_l - K2 < 0 for all € > 0, so h is strictly decreasing

for € > 0. Since h(e) < 0 for € sufficiently large, it follows that
(48) has exactly one positive solution. We denote the unique positive
solution of (48) by eg.

Since B(e,0) = 0 as € = 0 and as € = =, it follows that the maximum
value of P(e,0) for € > 0 is attained when € = eg; so we have finally

that the desired first quadrant maximum value of B(e,m) is

¥ p-1
. K, ; -eg{i + E;{eg) }
:':,0 = ¥ cesece e
ep ) Eg(ep) = (49)
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Since N may be chosen arbitrarily close to 0, it follows that
B(eg,o) is a lower bound for A* which is the largest that can be obtained
from the data of Theorem 178.

Tt is of interest to compare B(eg,o) with the lower bound A* that
was obtained in the case where the boundary condition was linear, and

also with the empirical estimate ng of Boddington, Gray and Harvey(4],

t
to see whether we can establish a difference between the value of A%

for the linear boundary condition and the value of \* for the non-linear
boundary condition. Before doing this, we discuss a special case which

we shall use for illustrative purposes.

Example: Sphere of radius 1:

In order to give scme feel for the numbers involved in the problem
under discussion, we shall illustrate the discussion at each stage by
taking the special case where A is a three-dimensional sphere of radius
1; we shall consider the twc values of p that are of special practical

significance, namely p = % and p = U,

As discussed on p.94, fcr a spherical region of radius 1, we have

g
A, = 3, soK, = 6. Alsc ¥=® =1, and so K, = %£ . If we write
j=1 * 1 2 N
| . . 2
h = E—by analogy with the linear case, then K, = E-and (u48) recduces to:
- pheP - 2 = 0
phe €+ 2p .
For the special values p = %-and P = 4, this becomes:
p = %—: - Shes/u = G il 210  SEEEECEEEELEE (50)
p=Uu4: - 2heu -e+ 4 =0 B A S S (- i)
Also, in this case:
~ek{1 + e)P)
B(es,o) = 3h'(e£';)p e P .

From p.94 we have finally that in this special case:

l* = h X* = h R
- 0.9061 + (0.4530)h° est 0.9061 + (0.3000)h

Relationship between B(eg,o) and \¥:

We have from (38) on p.90 that A* for the linear boundary condition

(if we take H = N so as to relate it to the non-linear boundary condition)
O



K
. . 1 3 q
is given by Lf = . We now consider the ratio
eiT+K25
¥ p-1
-e% 3
r(K,,p) = b = Q’e*)p S 2 .
2? A" K. 'p
= 2
Since eg satisfies (u48), we have:
¥(e)P ek
—_f— =1 -2 O+ TS « TS » s+ S3ETS « 15D
K P
2
1
¥+ K, -e*(1 - 2)
S r(K,,p) =—K-43§)-“e P P
2
HR K, e —e*(1 - I)
= -—1r——{1 - De P P,
p
Now it is easily seen from (48) that as Ky =0 (i.e. as Bi = =
where Bi is the Biot number, since Bi is proportional to ﬁLJ, eg -0,
2
while as K2 - » (i.,e. as Bi = 0), eg -~ p. We illustrate this in the
case of the spherical region of radius 1 by giving the values of eg/u
and eﬁ for various values of h, where in this case h = Bi = éL . The
2

equations involved were solved using the Newton-Raphson method.

h(= Bi) eg/u (equation (50)) eﬁ (equation (51))
0.00001 not calculated 3.994306
0.0001 1.249917 3.951251
0.001 1.249175 3.646415
0.01 1.241807 2.789326
Operl; 1.173651 1.817523
1 0.786836 1.097572
10 0.233816 0.640207
100 0.0425397 0.367118
1,000 0.00690082 0.208661
10,000 0.00109779 0.118034
100,000 0.000174091 0.0665939

110

)

It follows in general that, as K2 -0, r(KQ,p) - r(0+,p) = 1, while as
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K2 - @, r(K2,p) -~ r(®,p) = pP el™P. The value of r(®,p) increases

very rapidly with increasing p, as the following table illustrates:

P r(=,p) = pP 7P )
5/4 1.029

2 1.472

4 12.745

8 1.530 x 10"

16 5.643 x 1012

We can thus assert that for large values of K2, i.e. for small
Biot number, the value of B(eg,o) is greater then the value of A%, and
that the ratio between them for small Biot number increases very
rapidly as p increases, i.e. as the non-linearity becomes more
pronounced.

On pp.94-100, we discussed in detail the relation between A* and

the empirical ngt for various regions, and determined in particular
X b
- . lest . .
the limit of the rz<io " as Bi - 0, as shown in the next table.

. . Mest
Region lim BCE
Bi=0 =
(1) Sphere, radius a 1
(2) Infinite cylinder, radius a 1
(3) Infinite slab, thickness 2a 1
(4) Equicylinder, height 2a, radius a 1
(5) Thin circular disc, thickness 2a, radius 10a 1.18
(6) Long circular cylinder, height 10a, radius a 1.08
(7) Cube, side 2a 1.73
(8) Infinite square rod, side 2a Pt |
A
. B8L ol #h £ .
If we compare the value of l}m -j}r-WLt that of the quantity
KN Bl-o -
B(e*,0)
r(=,p) = lim ——, we see that for regions 1, 2, 3 and 4, the value

Bi—0 L

I}
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of B(eg,O) exceeds XZé when the Biot number is small, both for p =

Flo

it
and for p = 4, and when p = 4 the excess is quite large. This shows
that, for small Biot number, the true value of A® in the case of a non-
linear boundary condition exceeds the approximate estimate ngt obtained
for a linear boundary condition. The excess is certainly large when
P = 4, but may be rather small when p = %—.

For regions 5, 6, 7 and 8, the above remarks apply only to the case

= = i % % 3
p=4. Whenp =, B(ep,o) does not exceed \¥_. and so no firm

conclusion can be drawn.

We refer several times above to the condition that the Biot number
be '"'small". To give an idea of the size of Biot number for which the
above remarks apply, we again illustrate by considering the case of the
spherical region of radius 1, where Bi = h in our notation. In Tables

2 and 3 on p.113, we tabulate, for both p = %-and p = 4, values of

est’ X and —=3 for various values of h. From

Ble#,0)  Ble*,0)
p(e=* ,0), l:': , A% P B
P - Aest

these tables we have:

(a) p Eﬂ In this case, the value of the Biot number h at which

B(eg,o) starts to exceed \%_. is slightly less than 0.1.

i€
(b) p = 4: In this case, the value of the Biot number h at which

B(eg,o) starts to exceed lgs is slightly less than 1.

t

It appears from Tables 2 and 3 that as h decreases (i.e. as K

B(e*,0)

increases) the ratio r(K2,p) = ——75;——-decreases at first to a value

rather less than 1, and then increases to its limiting value

r(=,p) = pp & B as h =0 (i.e. K2 — ®), We shall show that this is

the case in general.

We have that eg is defined implicitly as a function of K2 by

equation (48); if we differentiate (48) with respect to K2, we obtain

de = gh

P _ P~ %% .
& Zyr gip-1

2 K2 +p ‘t’(es)

(aontén%ed on p.114)
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1"
£Flo

. =, . . B(eg,oi 5(33,0)

b, S B(eﬁ,O) A 1§st

100,000 2.2075 3.3332 2.2074 1.000 0.662

10,000 2.2071 8,,38213 2.20u48 0.999 0.662

1,000 2,.2084 8113238 2.1922 0.995 0.660

100 2.1642 8L123516 2.1143 0.977 0.653

10 1.8396 2.5601 1.7126 0.931 0.669

1 0.7358 0.8291 0.6987 0.950 0.8u3

01 0.1051 0.1068 0.1066 1.014 0.998

0.01 0.01098 0.01100 0.01128 1.027 1.026

0.001 0.001103 0.001103 0.001135 1.029 1.029

0.0001 0.0001104 | C.CC21104 | 0.0001136 1.029 1.029
TABLE 2: Values of parareters for different values of h, with p
B(e*,0) | B(e*,0)

h e Nk, B(e,0) i% lgst
100,000 2.2075 2P¥313132 2.0648 0.935 0.620
10,000 2.2071 Sr3323 1.9606 0.888 0.588
1,000 2.2031 3.3233 1.7891 0.812 0.538
100 2.1642 3.2356 1.5220 0.703 0.470
10 1.8396 2.5601 1.1470 0.62u4 0.4u8
1. 0.7358 0.8291 0.7031 0.956 0.848
0.1 0.1051 0.1068 0.3081 2.932 2.885
0.01 0.01098 0.01100 0.08245 7.509 7.496
0.001 0.001103 0.001103 0.01268 11.496 11.496
0.0001 0.0001104 0.0001104 0.001389 12.582 12.582
0.00001 0.00001104 | 0.00001104 § 0.0001406 12.726 12.726

TABLE 3:

Values of parameters for different values of h, with p=Uu.



(continued grom p.112)

de*

dK2 > 0 for all
K2 > 0, so e; increases steadily from 0 to p as K2 goes from 0 to =,

Since, by (52), eg cannot exceed p, it follows that

1
Y + K e® -gf(1 - 2)
Also, r(Kz,p) = ——1F—2(1 - E?Je P P , and so:

1
K e et -p -e*(1 - =)
r (K,,0) = (1 + (1 - 2y (—E (1 -3 PP
2 K, + p-¥(e*)P P
- P
1 1
K ¢t - p -e*(1 - =) e¥ -e*(1 - 32)
+ (1 + g( . pl)%ep Ply g1 -Rye PP
p-
K, +p Y(ep)
—ef(1 - 1)
(p - eg)e P P

(Y + K.)(e* - p)(1 - 2) - (¥ +K)
(k, + P ¥ePHpy 2P P ?

2 w\P-1
+ (K, + P ¥eHPTD)

p(K2)A(K2) where p(Kz) is positive for all K, > 0, and:

2

p - %t 5
* = o l - = ._é * p_l
AKy) = ¥ek - p)(1 - =) + Ky(1 p)(—p-P—) ¥ + p“¥(ek)

e
Y(e - - 2 b4 - %P 2‘1‘ & p-1 b 52).
(ep p p) + Y(1 p)(ep) +p (ep) y (52)

Now as K, = 0, eg - 0, so A(0+)

-¥p < 0. Also, as K, = =, eg -~ p, SO

2 2
A(®) = - ¥ + ¥(1-p)p® + pszp_l = ¥(pP-1) > 0 since p > 1.
1 . S p-2 e}
’ — ) | e i =yP= - %y R
Further, A (Kz) [¥(1 p) + Yp(1 p)(e;) + p°(p 1)Y(€p) ] K,
de:’:
1 _2 )
= [¥(1 - ) + ¥p(p-1)(e*)P™%(p-¢*)] =&
C 5) + ¥p(p-1)(e)" "(p-ef)) ,
>0 for all K2 > 0 since p > 1 and, for all K2 >0,
de*
% i -
ep < p and dK2 > 0.
Thus, as K2 goes from 0 to =, A(K2) increases steadily from -Y¥p to

¥(pP-1), so Ty (K2,p) increases steadily from a negative value to a
2

positive value. Hence, as required, we have shown that as K

Q

, goes from



B(e*,0)
0 to =, r(K2,p) = oy initially decreases and then increases. Since
the Biot number is proportional to éLw it follows that as the Biot number
2

increases from 0 to =, r(K2,p) initially decreases and then increases.

We have now shown that if the Biot number is small, the non-linear
boundary condition gives a value of A* which is higher than the estimate
ngt of Boddington, Gray and Harvey[4] for the linear boundary condition,
at least when p = 4. When p = %5 this conclusion has been proved only
for some of the regions considered by Boddington, Gray and Harvey. For
larger Biot number, no firm conclusion can be drawn, since we have no
means of knowing how close our lower bound B(e*,0) is to the true value
of A%.

However, one may speculate that the behaviour of A* for the non-
linear boundary condition may perhaps correspond in a qualitative sense

to the behaviour of B(eg,o), i.e. if we write Xg for the critical value
of A in the case of the non-linear boundary condition (p > 1) and X%

for the critical value in the case of the linear boundary condition,
)%

then the ratio Xg-may decrease initially as the Biot number increases
1

from near zero, then increase to a finite limiting value as the Biot

number tends to infinity. One may also ask whether, for all p > 1,

afe
“w

ar > 1 for sufficiently small Biot number. From the evidence given in
al

this chapter, this seems quite likely, but there is evidently plenty of
scope for further research on the case of a non-linear boundary

condition.
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APPENDIX

We give here the details of the example discussed in Ch.2. First
we need to calculate several Fourier series and inverse Laplace

transforms.

LEMMA 1: If f(x) = -f(2-x) for 1 < x s 2, then
1

2 2J.f(x)cos ITX d4x  (n odd)
nmx i 2
J f(x)cos e dx = 0
’ 0 (n even).
2 1 2
Proof: I f(x)cos Egi dx = I Z(x)cos E%Z-dx + I {-£(2-%) Jcos :%5 dx
0 0 1

-

0
J Z(x)cos BB aw = f f(u)cos EEL%:EJ(—i)du
1

5 2
- nrx ] nTu
= I f(x)cos —=— dx - J f(u)cos(nm - ——)du.
2 P

9 0
The lemma now follows since ccs(nm - EgEJ = cos Egﬂ if n is even, and
cos(nm - ) = _ cos I iz 5 ois odd.

2 2
(2“+1)2ﬂ2 :
LEMMA 2: Suppose that k # ————— for any integer n. Let £ be
defined by ii;xx (0 <x <1)
f(x) = 0 (x = 1)

-f(2-x) (1 < x = 2)

and let f be an even fumction, and periodic of period 4. Thus f is

discontinuous at *1, +3, *5, ... as shown:
f(x)
.9
\ '/—:\ l/
i
H

1
w
1
(%]
——— e —-
I
s
PrRRApe ety e
[N
e
e e e e oo
(8%
L 4
=

?
<

Then the Fourier series of f£(xz) is

; (-1)n+1(2n+1)ﬂ (2n+1)mx

cos .
0 - (2n+1)2ﬂ2 2

n
e b
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and this series converges to f(x) for all real x.

Proof: Since f is even and has period 4, it has a Fourier series of

the form = B r a_cos Egz- where:
n=1
2 = 2JJf(x)cos Egl dx (n odd)
a = I f(x)cos % dx = 0 by Lemma 1.
0
0 (n even)
Hence the Fourier series of f(x) is of the form I a2n+1cos £22%§235-,
n=0
il
. . cos/Kx (2n+1)mx
where: a2n+1 = 2 j e cos 5 dx
0
il
2 2 1 (2n+1)m (2n+1)1
= = I 5[cos[ﬂ? + —-—-—-2-—-1-—-]x + cos[Vk - -—-—2—-———-]x]dx
0
1 sinl/E & (2n12-1)n}x sinlE - (2n;1)n]x 1
= +
cos (2n+1)™T (2n+1)m
| VEE == K- == 0
4 cos/X sin £22%1h1 -cos/X sin £22%lh1
} COSEEl_ : (2n+1)m * (2n+1)m
K+ =5 /R - ==
_ (2n;1)ﬁ in (2n;1)ﬂ _ (2n;1)ﬂ R (2n;1)ﬂ
P (2n+1)21'r2
m
n+l
= (-1) (2n¢ 1w forn = 0,1,2,.... , as required.

§ (2n+1) %12
- Gnp

The convergence of the Fourier series of f(x) to f(x) for all real x

follows from a standard theorem on Fourier series.

LEMMA 3: The hypotheses are as for Lemma 2 except that

f(x) = cos/lad _ 1 [for 0] = =E<d 1.
cos
Then f is continuous for all real x, the Fourier series of f(x) is
@ n+l
2 (=1 3 ;k cos LEE%%AEE-, and this series converges
20 - L2t T oneg)m

to f(x) for all real x.

Proof: As in the proof of Lemma 2, the Fourier series of f(x) converges

(4]
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to f(x) for all real x, and has the form I a cos iZBI&lE& , where:
n=0 2n+1 2
a = 2 ‘1f(x)cos (2n+1)mx dx
2n+1 J 2
0
1
_ cos/Kx (2n+1)mx (2n+1)ﬂx
=2 '?Om- cos ) dx - 2 I dx
=0
(2n+1)mi)1
n+1 |-in S2no LTl
= L21) (20 +;)g - 2 Y2n+1; as in the proof of
(2n+1)°m |_ 2D AL Lemma 2
k - e 2 40
_ 0™ enmr | 0™t
K (2n+1)2ﬂ2 (2n+1)m
m
n+1
= (-1) > ;k for n = 0,1,2,.... , as required.
{k - igg:%l—ﬂ—](2n+1)ﬂ
LEMMA 4: Let f be defined as in Lemma 2 except that
N
N_ . (2N+1)mx (-1) (2N+1)mX
= (- DELS WIS - 0 < <1
f(x) = (-1)"x sin > GNrDw 8 > or X

where N is an arbitrary non-negative integer. Like the function
discussed in Lemma 2, f is discontinuous at *1, *3, *5, ... and its

graph has a similar appearance to the graph of the finection discussed
in Lemma 2. Then the Fourier series of f(x) is

T (- 1)n+1(2n+1)n cos (2n+1)mx
nAN (21)°r®  (2n+1)°n? 2
m m

and this series converges to f(x) for all real x.

Proof: As in the proof of Lemma 2, the Fourier series of f(x) converges

s (2n+1)mx

to f(x) for all real x, and has the form I a2 lcos ————— , where:
’ n=0 n+ 2
a =Fr 2 Ilf(X)COS M dx

2n+1 2
0
1

- I (-1)Nx sin (2Nt;)nx s (2nt;)nx i
_ 9 I (- 1) - (2N;§)ﬂx 265 (2n2})ﬂx -

(2Nt;)nx Bs (2nt§)nx

ln[(?brgl)rr+ (2n;—1)ﬂ}x . Sin[(zw;nn

For n # N, sin

"
ol
n

(znzl)n]x].
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' 1
Thus 2 I x sin (2N+1)mx cos (2n+1)mx dx
0 2 2
" Cos{(2N;1)n N (2:1;1)11]x Sin{(m;l)rr N (2m2—1)'n]x
& 28+ (2n+t)T i (2N+1)m  (2n+1)m,2
+ { + }
2 2 2 . 2
. . 1)m i
% Cos{(2N;Z-1)'rr _ (2n;1)ﬂ}x 31n{(2N;1)ﬂ _ (2n; ) Yo
GNaDn _ (2nrDn " T @sDn _ Gormp | -
B - 2 2 2 0
Now (2N;1)n B (2n+2-1)ﬂ - (neN+1)T and (2N;1)‘n ~ (2n;1)rr = (N-n)T, so:
1 1
5 I ks (2N+1)mX o (2nt:)ﬂx .
0 2 2
J =
. (_1)n+h+1 ) (_1)N n
(u+1)m | (2n+d)m (2y+1)m _ (2n+1)W
2 2 2 2
_ o™ N onen
(241)%r°  (2n+1)?n’
0 m
1 -
Also 2 I cos (2Nt;)ﬂx cos (4“t;)ﬂx dx = 0. |
0

n+1l
“ence, for n # N, a = (-1) _(n+1)w

, as required.

ntl - onen)®m? (2n+0)%m
m - m
N |
Also, sin (2N2§)nx cos (2ut;)ﬂx = % sin(2N+1)mx and
: ] )
cos (2Nt;)nx cos (2Nt{)ﬂx = 5{1 + cos(2N+1)mx].
|
Thus 2 I < sin (2N+1)mx cos u+1)mx o
. 2 2
= apet & cos(2N+1)mx sin(2N+1)nxJ1 = 1
(2N+1)™ (on+1)2m2 O (2N+ 1)1
1 :
(2N+1)mx (2N+1)mx _ sin(2N+1)mx~1 _
Also 2 Iocos > cos > dx = [x + N+ T JO = 1. .
A D

Hence AN+t = N+ N Ow = 0 as required.

LEMMA S: Let f be defined as in Lemma 2 except that

N
£(x) = (-1)Vx sin (2N+1)mx 3(-1) (2N+1)Tx

-1
2 t GneDm ©°8 2

for 0 < x < 1.

Then f is continuous for all real x, the Fourier series of f(x) 1is

O
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v (—1)n+1(2N+1)2n cos (2n+1)mx
212! 2" 2 2
n#N [(2N+i) L (2n+i) i }(2n+1)

and this series converges to f(x) for all real x.

Proof: As in the proof of Lemma 2, the Fourier series of f(x) converges
@™

to f(x) for all real x, and has the form I a cos £22122£5.’ where:
n=0 2n+1 2
X (2n+1)mx
a, 41 = 2 Iof(x)cos S dx
1
=2 J. (_1)Nx sin @121)__"5 cos Q.T%J")E dx
1 N
+ 2 J 3(-1) 368 (2N+1)mx — (2n+1)mx i - 2 J (2n+1)ﬂx
o(N+D)m 2 2

Using the integrals evaluated in the proof of Lemma 4, we have:

Forn £ N. a =D Onr)w _oa-n”
2n+1 (2N+1)‘n2 (2n+1)2ﬂ2 (2n+1)m
n - mn
n+1 2
S (- 1; (2N+1)2ﬂ2 as required.
[( \+1) no (2n+1) ™ }(2n+1)
N N N
_ (1) 3(-1) u(-1)" _ .
Also, i = TmDw T TNLw - (w0 38 required.
2.2
LEMMA 6: If k # SZBi%lll—fbr @y n = 0,1,2,.... , then
2 2
(2n+1)mx (2n+1)°m
@ (-1)(2n+1)cos B2 X () - 222 T )¢
L-1[cosh x/s-E] -n T 2 & ¥ - 1}.
s cosh/s- 212
n=0 K - (2n+1)“m
m
2 2
If k = £2§I%2—IL-fbr some N = 0,1,2,.... , then
2.2
(2n+1)mx (2n+1)“m
=4 T (-1)%(2n+1)cos 2R (k - ——)t
L 1t§°225h7§EEJ =ni 2 22 {e ) - 1)
n#N s (2n+1)°1m
T
+ n(-l)N(2N+1)t cos £2§;;212£.

Proof: From Spiegel's tables[34, p.252, entry 125],

_ (2n+1)2n2t

= E (-1)"(2n+1)e * cos en g .

L—1[cosh x/Ej :
n=0

cosh

dx.
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Ay

- 7 - (2n+1)2n2t
o -1[cosh X/SK1 - 1 E (-1)%(2n+1)e 4 gog LAWK
cosh /s-K 2
n=0 .
) + (k - M)u
e L_1[c°3h A ) =mE (-1)%(2n+1)cos {2n+1)me ¥ du.
s cosh/s-K 2
: n=0 0
2.2
(2n+1)°n? i o SELET
. (2n+1)%m? t (k- L Ju e t -1
Now if k # S RSSO then I e du = 7%
0 S (2n+1)'m
m
2.2
-k r (- R,
while if k = —-—TT#IL—then I e du = t. The lemma
0
follows.
LEMMA 7: (2n+1)2ﬁ2
L_l[ cosh x/s-K ] = ekt + 5_; (-1)n+1 o= (2n+1)mx e(k - L )t
(s-k)cosh J/s-K T oo 20+l 2
Proof: From Spiegel's tables[34, p.252, entry 129],
- +1 (2n+1)2n2t
lpcosh w35, , 4 ¢ O™ TR (enmx
s cosh Js- m -y 2ntl € 2 '
The lemma follows from a standard theorem on Laplace transforms.
Example of a Time-dependent Problem:
2%y du
Consider the equation — -5t kut A=0(-1<x<1,t>0)
ox

where we assume k > 0, A > 0; further, u(x,t) satisfies the initial-
boundary conditions

u(x,0) = 0 for -1 < x <1

u(-1,t) =0 for t 20

u(1,t) = 0 for t 2 0.
Let y(s,x) be the Laplace transform with respect to t of u. Taking

Laplace transforms, the problem becomes:

2
Q_%__ sy + ky + % = 0, with y(s,-1) = y(s,1) = 0.

dx
The equation is D2y - (s-K)y = - %-. We may assume s > k, so that
s-k > 0. A particular integral is
;(..&): A = A —..L
2 s s(s-k) k(s-k) ks '

D - (s-k)



Thus the general solution is

y(s,x) = /57K %, - AL Q. |
k(s-k
. B _ . =Js=k Js=k A A
. y(s,-1) = 0 = Ae + Be 2~ o il v
- _ L 5K - J/s-k A A
y(s,1) = 0 = Ae + Be B e gl
(1) - (2): (A - B)(e” V57K _ /57Ky g,

Hence A = B, and substituting back into (1) gives at once:

A A
B pad ks ~ k(s-k)

e./S—k T o J/s-k

Thus the required solution is

cosh x/s-K A

_ A Y
yis,x) = {FE'_ k(s—k)] cosh voox t XG50

0
ks °
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Now L-ifg%F = &% and L_l[éa = 1, Using these and Lemmas 6 and 7,

we may take inverse Laplace transforms to obtain a formal solution

u(x,t).

K # (2n+1)2'n2

Case 1: ——pp—— for any n = 0,1,2,....
(2n+1)T (2n+1) 2
i © (-1)™(2n+1) cos ——%——’i (k - ~—2aed i)t
ulx,t) = 55 % =5 {e - 1}
n=0 K - (2n+1)°m
m
) )
- _ (2n+)°m
mk , 2n+l 2 k
- (x - (2n+1)2n2)t 9
- A ¥ (-1)? (2n+1)mx B (2n+1)m 4
X el 2 & 2_2 ntl
n=0 (2n+1)°mT
e Lo LA LI
[m
® n+1
i g (-1) (2n;1; cos (2n+21)TTx A
n=0 K - (2n+1)°1m
m
2 2
(2n+1) 1
S (-1)" (n+)mx K- g Ot
= ? 5 > 2 Ccos 2 e
n=0 {k _ (2n+i) n ](2n+1)
LS (D™ o) Cnemx 2
X ¢ 2 g cdb 7] K
n=0 , _ (2nt1)'m

[Ty



Now from Lemma 2 we can see that the second of these sums is discontinuous

at x = *1. We must therefore redefine it at x = *1 to make it continuous;

again using Lemma 2 and remembering that in this problem we are only

concerned with the interval -1 < x < 1, we can see that the second sum

must be replaced by ﬁ(izi; = . This gives the formal solution:

2.2

(2n+1)°m

4 I (k = ~——p—t
u(x,t) = 0y (= 1) S (2n+1)mx ! 4
T n=0 (2n+1)°n? 2
(k - S==2j(2n+1)

4 A cos VKx A (s.)
T eos I "k ceceeereee(Sy

It is necessary to verify that this is indeed a solution of the

problem. Clearly u(-1,t) = u(1,t) =0 for t 2 0.

© n
()
Further, u(x,0) = %} pX \ 1é - — (2n§?)ﬁx
LU {(x - QE.%)_-.E—](2H+1)
+ A cos JKx A
X cos Jk  k
X, cos JKx x cos JKx )\
='—<'—"/'E‘-1)+—7—— for -1 s x <1,
e Kees - by Lemma 3
= 0.

Thus all the boundary conditions are satisfied. Checking the

differential equation, we have:

2 2
(2n+1)°m
u ;7 (- )“*1(2n+1)n (onptimn  BE =gt
~ 2 B COS === o
ox 0 {k - (2n+i) n Ju
A cos JKx
cos .
@ n (k _ (2n+1)2ﬂ2)t
du _ i\ v (-1) (2n+1)mx m
3t . 5oil COS ——5—— e .

Note that, here and in Case 2 below, the uniform convergence of the
differentiated series follows easily from the fact that, for t 2 to >0
and n sufficiently large, the general term of each series is smaller in

m o
absolute value than e .
® (k = £22Illflf;t
o's ou, Qu + ku + X\ = 2k T (-1)"cos iZEIllEZ.e 4
2 ot D S 2
ox n=0
o cGne® 1 K
2.2 2n+l )
u{k - (2n+i) m ] (2n+1)[k - (2n+i) ﬂ.]
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= 0 as required.

Thus (Sl) is an actual solution of the problem. It is clear from the

2
form of (Sl) that if 0 <k <-%%‘then u(x,t) is bounded as t = ®, and in
2
fact u(x,t) -'%[CCOOSS"/EX -1} as t =™ Ifk> nTthen u(x,t) is

unbounded as t = «,

20 2
Case 2: k = ngi%lll- for some N = 0,1,2,....
n (2n+1)mx (2n+1}2ﬁ2
ATt (-1) "(2n+1)cos e (k - ——-—1:———~)t
W) = e & 2.2 e - 1)
n#N (2n+1)°m
Kl - el U
m
+ %?(-l)N(2N+1)t cos SEE%;lEE
2.2
(2n+1)°m
ik = 2n+1 . ©98 2 € k
n=0
Calculating as in the previous case, this gives:
2.2
= (x - Lot
u(x,t) = A 3 &, cos £2ns L) e *
T n#N (2n+1}2ﬂ2 2
(k - ——E———](2n+1)
N n+1l
ur(-1) (2N+1)mx AT (-1)"""(2r+1) (2n+1)mx
mk(2N+1) ©°S 2 i g B 2o 2
n#N (2n+d) w1
Kk - =2l o
m
- LH(—l)N(2N+1)t cos (oN+1)mxe  _ L-.
k 2 k
From Lemma 4 we see that, in order to make the second sum in this
expression continuous at x = *1, we must replace it by
N
9.3 N . (2N+1)mx (-1) (2N+1)mx
E{(-l) X sin 3 - G ©°8 3 ]
leading to the formal solution
. (k - (2n+1)2ﬂ2)t
u(x,t) = 2 g CL) cogy ZBEINTX, . *
T o#N (2n+1)°n° ¢
(x - ——u—](2n+1)
N N
3A(-1) (2N+1)1x A(-1)"x .  (2N+1)mx
YWk 9% T2 ¥ B B g
+ %g{—l)N(2N+1)t cos LEE%%lEE- - %- .................. (82)

As before, it is necessary to verify that this is indeed a

solution of theg problem. Clearly wu(-1,t) = u(1,t) =0 for t 2 0.



ey
N)
(§]]

n
Further, u(x,0) = h2.Y b3S (-1 £0S (2n+1)mx
T n#N (2n+1)2ﬂ2 Z
Ll . —u—-](2n+1)
. ot N+ AGDYx . @NsDm A
Tk(2N+1) ©°S 2 2 ko0 2 i
L X (-1)n+1(2N+1)2n (2n+1)mx
o E.ngw (2N+1)2'n2 (21~;+:l.)21'r2 o8 2
= - ——}(2n+1)
. A enepme . ACD o GNsDm A
Tk(2N+1) ©°% 2 k sin 2 i

0 for -1 =x <1, by Lemma 5.
Thus the boundary conditions are satisfied. Checking the differential

equation, we have:

2.2
(2n+1)“m
3%u -8 s (-0 on+1)n? (2n+1)mx G - 4 )t
2 g ©93 2 €
Ax n#N (2n+1)°m
{k - ——T_]LL
N+1 N
3A(-1)""“(2N+1)m (2N+1)mx A(-1) (2N+1)m (2N+1)mmx
cos + cos
bk 2 k 2
= k(—i)N+1(2N+1)2ﬂ2x sk (2N+1)1x 5 l(-i)N+1(2N+1)3ﬂ3t - (2N+1)1x
bk 2 bk 2 '
u_ Mmooy DT (2nrl)mx B s
. m 2n+1 2 £
n#N
+ %(E(-l)N(2N+1)cos w .
agu o)
vy La 35 + ku + A = 0, as is readily checked. Thus (S,) is an
S it 2

actual solution in this case; evidently, we have in this case that

u(x,t) is always unbounded as t = =,

The Corrésponding Steady-state Problem:

2
This is the problem 9—1;-+ ku+ X =0 (-1<x<1), where k > 0,
dx
A > 0, and the boundary conditions are u(-1) = u(1) = 0. The general

solution of the equation is wu(x) = A cos J/kx + B sin J/kx - A |

k
A cos JK - B sin JK -

n
o
"

Jeoou(-1)

u(1)

1]
o
1]

A cos JX + B sin Jk -

Ly
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Adding: A cos JX = %— .
Subtracting: - B sinpois = G
Now if JK # nm, i.e. k # n’n? for n = 1,2,3,.... , we must have B = 0.
If k = n2ﬂ2 for some n = 1,2,3,.... , then B is arbitrary. If
2.2
(2n+1)m (2n+1)°m _ " A
VK # ——F l.e. k # =—F—— forn = 0,1,2,.... , then A = ————p= .
(2n+1)°n?
If k = e faan for some n = 0,1,2,.... , no solution is possible. So

we have the following cases:

2.2
If k # mlf for any m = 1,2,3,.... , the solution is
_ Aprcos JKx
w0 = e - 1)
2P

If k = n'nn for some n = 1,2,3,.... , the solution is

u(x) = %{225—%§;-- 1) + B sin /Kx

cos
where B is arbitrary.

- (2n+1)2ﬂ’2

If k m for some n = 0,1,2,.... , no solution exists.

2
%r-then the steady-state problem has the

cos JKx
“cos JX

coSs

In particular, if 0 < k <

positive solution u(x) = %{ - 1], which is also the limit of

the solution u(x,t) of the time-dependent problem as t — . For larger

values of k, positive solutions of the steady-state problem do not

exist.
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