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ABSTRACT 

When a heat-producing chemical re action takes place within a 
confined region, then under certain circumstances a thermal explosion 
will occur. In investigating from a theoretical viewpoint the conditions 
under which this happens, it is necessary to study the behaviour of the 
solution of a certain non-linear parabolic initial-boundary value 
problem . 

A frequently used approach is to study the problem indirectly, by 
investigating whether pos itive steady-state solutions exist ; the 
underlying assumption is that positive steady-state solutions exist if 
and only if a thermal explosion does not occur . The main theme of this 
t hesis is the development and application of an alternative direct 
approach to the problem, involving the construct ion of upper and lower 
solutions for the parabolic problem and the application of appropriate  
comparison theorems . The assumption here is that a thermal explosion 
will not occur if and only if the solution of the parabolic problem 
remains bounde d  for all positive time . 

Following three chapters of introductory material, Chapter 4 

c ont ains a survey of some of the important known results concerning the 
e xistence of positive steady-state solutions,  especially those dealing 
with the effect on the theory of different assumptions as to the rate 
at which heat is produced in the reaction . 

The comparison theorems that are used in the alternative approach, 
which are modified versions of known results , are proved in Chapter 5 .  

In Chapter 6, the equivalence of the two criteria mentioned above 
for t he occurrence or non-occurrence of a thermal explos ion is 
established un der fairly general conditions . Also in this chapter , a 
critical value A* is defined for a parameter A appearing in the problem , 
s uch that a thermal explosion will not occur if the value of A is 
smaller than A*, but will occur if the value of A is greater than A*· 

In Chapter 7, upper and lower solutions are constructed for the 
t ime-dependent problem under a variety of assumptions as to the rate 
at which heat is produced in the react ion, and these are used to obtain 
a number of theorems concerning the behaviour of the solution of the 
problem, especially as the time variable tends to infinity . The 
information obtained from these theorems is related to and compared with  
t hat known from investigations of  the existence of  positive steady-st ate 
solutions . In conclus ion , a theorem is proved concerning the effect of 
re actant consumption on the theory. This is examined in the light of 
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some recent research,  and an apparent defect which is thereby revealed 
in t he usual criteria for the occurrence'of a thermal explosion is 
discussed. 

The theorems of Chapter 7 are employed in Chapter 8 to obtain 
rigorously derived bounds for the critical parameter A*, for a number 
of different shapes of the region in which the reaction takes place;  
these bounds are compared with known estimates for A *  obtained us ing 
an empirically derived formula . 

The thesis concludes, i n  Chapter 9,  by us ing the methods of Chapters 
7 and 8 to obtain some results concerning the case where the boundary 
condition is non-linear . 
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1 INTRODUCTION 

The mathematical problem discussed in this thesis arises from a 
topic in chemical k inetics , the study of the evolution in time of 
chemically reacting systems. Suppose we are dealing with a heat
producing reaction taking place in a confined region. For simp licity , 
we suppose for the time being that there is no consumption of reactant. 
If the heat produced by the reaction cannot all be removed at the 
boundary of the region , the temperature of the reactant will rise , 
leading to an increase in the reaction rate , in turn producing more 
heat. In practice , one of two things then happens. E ither the rate 
of increase of temperature gradually diminishes and the system 
approaches a steady state , or the temperature increases rapidly and 
without limit , and what is usually called a thermal explosion takes 
place. An elementary discussion of this phenomenon is given by 
Boudart(S , pp.160-163],  and additional information may be found in the 
book by Bradley(6 , especially pp. 2 , 8-15]. The problem with which we 
shall be concerned is that of determining whether or not a thermal 
explosion will t ake place in a given situation . 

Suppose we have a heat-producing reaction taking place within a 
region V bounded by a surface S. We shall continue to ignore for the 
time being the e ffect of reactant consumption , which will be commented 
on in Ch.7 , and we also assume that the thermal parameters of the 
system are constant in space and time. Then ( see , for examp le , 
Ozisik's book[26 , p . 6])  the system is described by a different ial 
equation of the form 

2 
K( a u + 

ax2 

for ( x ,y;z) in the interior of  V ,  and time t> 0 ,  together with the 
initial-boundary conditions 

K au + Hg( u )  = 0 av for ( x ,y ,z)  on S and t > 0 

u = 0 for ( x ,y , z) on V US when t = 0. 
Here u( x ,y ,z ,t )  is the difference between the temperature T at any 
point and the ambient temperature T , K ,  p and c are the thermal a 
conductivity , density and specific heat respectively of the reactant , 
H is the surface heat transfer coefficient and �� is the outward 
normal de rivat ive to S . We shall say that thermal explosion takes  
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place if u( x,y , z ,t ) -m as t - m or if u( x ,y,z , t )  -m as t - T- (T 
finite ) .  

The form o f  the heat-generation function f is still a matter for 
debate. It is proportional to the rate at which the reaction takes 
place , and the classical form for it is the empirical one due to 
Arrhenius: 

c2 = C exp( - ---) 1 T Cc1 , c2 > 0 and independent of u ) .  

Later theories lead t o  the replacement of the constant c1 by an 

expression of the form c3Tn/2 where n is a positive integer  which 
depends on the nature of the reaction and can at present be found only 
empirically ( see , for example , the books by Glasstone and Lewis(15 , 
pp.626-638] and Kaufman(17 , pp.198-214 and 233-240]) . 

In work on the theory of thermal explosions,  however ,  it is usual 
to use the so-called Frank-Kamenetskii approximation for f ,  introduced 
by D.A.Frank-Kamenetskii[ 1 3] :  

c5u 
f( u)  = c4e ( C4 , c5 > 0 ) .  

While this i s  indeed an approximation to the Arrhenius expression for 
f ( u )  when u is small , the theoretical justification for using it in the 
study of thermal explosions ( where large values of u occur) is unclear. 
It may well be that for large values of u the Arrhenius expression is  
no  longer valid ,  and the Frank-Kamenetskii expression is in  fact more 
accurate. Alternatively , it may be that situations in which the use 
o f  the Frank-Kamenetskii approximation would lead to  significantly 
inaccurate answers have not yet arisen in pract ice. We shall be 
particularly concerned in this thesis with the effect on the theory 
of different assumptions as to the form of f. 

2 

Various assumptions may also be made about the form of the function 
g which appears in the boundary condition. The usual approach is to  
assume that heat loss at  the boundary follows Newton's law of cooling , 
so that g(u) = u and the boundary condition is linear. Most of the 
discussion in this thesis is concerned with the linear boundary 
condition , but in Ch.9 we shall discuss the effect of assuming a non
linear boundary condition. There are two non-linear boundary conditions 
which arise naturally , corresponding to  different cooling processes at 
the boundary. If cooling at the boundary is by natural convection , 



then 
g( u )  
and 

g(u) = u
514 

, " while i f  cooling is  by thermal radiation , then 
4 4 = (u+T ) - T and H = cre whe re a i s  the Ste fan-Boltzmann con stant a a 

e is  the emi ssivity of the surface ( see Ozisik 's book(2 6, pp .7- 9  

and 3 48-349]) .  The di scussion in Ch.9 cove rs mo re gene ral non-linear 
boundary conditions as well as the se two condition s in particular. 

The customary met hod of tackling the problem of whethe r or not a 
the rmal explosion will take place is  to e quate the absence of  t hermal 
explosion with the exi stence of positive stable steady- state solution s, 
i . e . solution s  of t he time-independent e quation 

2 2 2 
K( o u + o u + o u) + f( u) = 0 

ox
2 gy2 

oz2 

toget her with the boundary condition 

for (x ,y , z )  in the inte rior of V 

K � + Hg( u) = 0 for ( x ,y , z )  on S .  

The unde rlying assumption here is  that if  positive stable steady-state 
solutions u( x ,y , z ) exi st ,  then the solution of the original time 
de pendent p ro blem will approach one of the se steady state s as t - •, 
and so explo sion will not take place . We shall show in Ch . 6  how thi s 
assumption may be justified mathematically . 

3 

A di scussion of  thi s question of the existence of positive steady
state solutions, treated from the chemi st 's point of view , is given by 
Boddington , Gray and Harvey( 4] . The se authors, using the linear 
boundary condition and the Frank-Kamenet skii approximation for f, with 
a change to a suitably chosen new variable 9 p roportional to u ,  obtain 
th e equation 

o2 e + o
2

e + o
2

e + ye e = 0 
ox

2 gy2 
oz

2 for ( x ,y , z )  in the interior of V 

togethe r with the boundary condition 

K �� + H 9 = 0 for ( x ,y , z )  on S • 

H ere y i s  a parameter whose value depends on the phy sical and chemical 
prope rtie s of the reactant and on the ambient tempe rature . A positive 
stable solution of this steady- state problem i s  known to exi st if and 
only i f  y i s  le ss than or  e qual to a critical value de noted by y crit 

( we shall di scuss this point in mo re detail in Ch .4) . Thus, if the 
mathematical formulation of the p ro blem is  a reasonably accurate model 
o f  the physical situation , a the rmal explosion will occur if y > Yc rit 

but not if y s y •t • The value of y 't depends upon the shape of V .  cr1 cr1 
(\ 



The authors are chiefly concerned with methods of determining , or 
determining approximately , the values of y 't for various shap_es V, cr1. 
using a combination of analytical and empirical methods . In Ch . S , we 
shall apply the methods developed in this thesis to the problem of  
obtaining lower and upper bounds for y 't' for various shapes V, and cr1. 
compare the bounds so obtained with the estimates given by Boddington , 
Gray and Harvey . 
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In treating the thermal explosion problem from the mathematician's 
point of view , we shall work for the most part with equations more 
general than those discussed so far . Letting x denote the n-dimens ional 
vector ( x1 ,x2 , • • •  xn ) ,  we consider the equation 

+ 
n ou ou E b . < x ,  t > � + c < x ,  t > u - at 

+ >..f < x , t , u > = o 
i=1 l. uXi 

for x in the interior of an n-dimensional region V and t > 0 ,  together 
with the initial-boundary conditions 

ou d0 ( x , t ) g( u) + d1 ( x ,t ) On = 0 for X on the boundary S of V and t > 0 

u = u0 ( x ) for x on V U S when t = 0 

where the differential operator in the first equation is uniformly 
parabolic , � denotes an arbitrary ( not nece ssarily normal ) outward 
directional derivative , and appropriate conditions are imposed upon the 
coe fficients a . .  , b . , c ,  d0 , d1 and the functions f and g .  l. J l. 

The corresponding time-independent ( i . e .  steady-state ) problem is 
des cribed by an equation of the form 

n ... o2u n ... ou .. ' f 
... 
( x ,u )  E a . .  ( x )  CS 0 

+ E b .  ( x )  � + c (  x )u + 11. = 0 
i ,j= 1 l.J xi xj i = 1  1 uxi 

for x in the interior of V, together with the boundary condition 
... ... ou d0 ( x) g( u) + d1 ( x) � =  0 for x on S 

where the coefficients are the limits , as t �m, of the corresponding 
time-dependent coefficients ,  and f( x ,u )  is the limit of f( x ,t ,u) . 

We shall discuss in Ch . 4  some of the more important results that 
have been obtained on the existence of  posit ive stable steady-state 
soluti ons . In Chs . 7 ,  8 and 9 we shall employ an alternative method 
of investigating the behaviour of u( x ,t )  as t � • ,  by using the 
comparison theorems proved in Ch . S  to directly attack the original 
time-dependent equation . We should mention here that there are 



indications that in certain cases neither of these approaches to the 
thermal explosion problem is adequate ; some remarks on Lhis point appear 
at the end of Ch . 7 .  

l 

5 

I 
I 

\ 



2 AN EXAMPLE 

6 

Before proceeding , we give a simple example of the sort of equation 
we shall be studying . We shall be us ing this example from t ime to t ime 
for illustrative purposes and as a counter-example . 

Consider first the equation 
o2u OU -- - - + ku + A = 0 ( - 1  < x < 1, t > 0 )  
ox2 ot 

where we assume k > 0, A> 0; further , u( x , t )  s atisfies the initial
boundary conditions 

u( x , O) = 0 for -1 � x � 1 
u( -1 ,t) = 0 for t � 0 
u ( 1 ,t) = 0 for t � 0 .  

Us ing Lap lace trans form te chnique s ( see Appendix for details ) it may be 
( 2n+1 ) 2TT2 

shown that if k 1 
4 

for n = 0,1,2 , . . . .  , the above problem has 
the solution 

( -1 )n 
--------��2�2�----- cos ( 2n+1 )TTX 

2 2 
( k _ ( 2n + 1 ) TT ) t 4 u( x ,  t )  

( 2n +�) TT }( 2n+1) 
2 e 

A cos /Kx A + k cos /T( - k 
( 2N+ 1 ) 2TT2 

while if k = for some N = 0,1,2, . . . .  , the above problem has 4 
the solution 

u( x , t )  4' ( -1 )n 
= 11. 't' � --------��2�2�----- cos TT n#N {k - ( 2n+�) TT } ( 2n+ 1 )  

3A( -1 )N ( 2N+1 )nx + TTk( 2N+1) cos 2 + 

( 2n+1 ) TTX 
2 e 

N A( - 1 )  X 
k 

A 
- k 

sin 

2 2 
( k  _ ( 2n+1) TT ) t  4 

( 2N+ 1 ) TTX 
2 

From this we see that , regardless of the value of A >  O ,  we have : 
TT2 �cos /Kx If  0 <k <4, then u( x , t )  - k1 cos ;r;:- 1 }  as t - eo. 

n2 
If  k :t 4' then u( x , t) is unbounded as t ... eo. 

The corresponding steady-state problem i s  
d2 u - + ku +A = 0 ( -1 < x < 1 )  
dx2 



where k > 0, � > 0, and the boundary conditions are u( -1 ) = u( 1 )  = 0 . 
In this case ( again see Appendix for details ) the situation is as 
follows : 

m2n2 
If k # --4-- for any m =  1 , 2 , 3, . . • •  , the solution is 

If k 

u( x) = !rcos /Kx _ 1] . j(l cos IT< 
2 2 = n n for some n = 1 , 2 , 3 , . . . .  , the solution is 

u( x) = e{k
� cos � - 1] + B sin /kx cos 

where B is arbitrary . 
( 2n+1 ) 2rr2 

If k = for some n = 0 , 1 , 2, • . . .  , no solution exists . 4 

2 
In particular , if 0 < k < � then the steady-state problem has the 

pos itive solution u( x) = !rcos Jkx - 1] which is also the limit of kL cos JJ< ' 
the solution u( x,t ) of the time-dependent problem as t - =. For larger 
values of k ,  pos itive solutions of the steady-state problem do not 
exist ; those solutions which do exist can easily be seen to be negative 
for certain values of x in ( -1 , 1 ) .  

If  we now take k = \, the differential equation becomes 
o2u - ou + A<u+1 )  = 0 
ox2 ot 

with boundary conditions as before . This is a simple example of the 
sort of equation we wish to study, with f( x ,t,u) = u+1 in this case , 
using the notation 

2 introduced in Ch . 1 .  I n  this example, we have that 
if o < � < n4 , the solution u( x , t )  tends to the (pos itive ) solution of  2 
the corresponding steady-state problem as t - =, while if  � � n4 the 
solution u( x,t ) is unbounded as t - =, and the steady-state problem has 2 
no positive solut ions . So we have a critical value TT

4 for � ;  if  � 

7 

is greater than or equal to this critical value, the solution "explodes" . 
In the sequel , we shall investigate for which choices of the function f 
behaviour similar to this occurs, and also investigate the sort of 
behaviour which occurs for other choices of the function f. 

We mention in passing that the original example with k # � will be 
needed as a counter-example later .  



' , I 

3 DEFINITIONS AND NOTATION 
It is convenient to collect here some notational conventions and 

basic definitions . Firstly, the following notation will be used 
throughout the rest of this thesis : 
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V denotes a bounded, open, connected set of points in n-dimensional 
real Euclidean space E . n 

x = ( x1,x2, .. . xn ) denotes a point in En. 
DT = {( x,t) : x E V, 0 < t � T }, regarded as a subset of En+1• 
D = { ( x,t) : x E V ,  t > o}, also regarded as a subset of E 1. n+ 

denotes closure . 
We shall next define several important function spaces. We 

follow, with some modifications, the definitions used by Ladyzenskaja, 
Solonnikov and Ural ' ceva(21, pp.2-10] .  In framing these definitions, 
we shall write o l .tlu 

1.1 1.2 J. '::. -::. -:::.x n ux1 ux2 . • •  u n 
where J. = ( .t1 , J.2, . .. .tn ) ,  the J.i ( i = 1,2, .. . n )  being non-negative 
integers, and l .t l  = .t1 + 1.2 + + .t . n We shall use r to denote 

l .t l =k 
summation over all derivatives of a given order k .  

orv 
We shall also write, 

for any non-negative integer r, 
otr 

Now let k be a non-negative integer and a a real number with 
0 < a < 1. We say a function u :V - R satisfies a Holder condition with 
exponent a on V if  (u)�a) is finite, where 

sup 
x,yEV 
xi-y 

ju( x )  - u(y) j  
l x - y jC1 

For any function u : V  - R which has continuous derivatives  up to order 
k, and whose derivatives  of order k satisfy a Holder condition with 
exponent a on V, we define : 

SUE_ j u( x )  1. 
xEV 

E ID!ul�o ) 
l .t l = j  

for j = 1,2,.. . • • 



k lul�k+a) = I: (o.tu)(a) + I: lulv(j) . 
l.tl=k X V j =O 

The Holder space Ck+a(V) is the space of all functions u :V � R for 
which lul�k+a) is finite ; with lul�k+a) as norm , the space Ck+a(Y) is 
a Banach space . 

Again let k be a non-negative integer and a a real number with 
0 <a< 1 . For any function u :DT - R, we define Holder constants 
(u/a) and (u)(a) thus : x , DT t , DT 

sup 
( X ,  t )  , ( y ,  t )  EDT xiy 

lu( x ,t ) - u(y,t) j 
lx-yjCI 

ju( x ,t )  - u( x , T) I 
lt - ,.ja 

For any function u : DT - R which has continuous derivatives of the form 
Dr Dsu ,  where 2r + ls l � k ,  we define : t X 

llu l l�0 ) = sup ju ( x ,t )  j .  T ( x ,t )EDT 

l!ujj�j) = 1: jjor Dsull( o) T 2r+ l s l = j  t X DT 
for j = 1 ,2, .... . 

( k+CI-2r-ls l ) s ) 2 D u t D X , T 
k 

+ I: llull�j )  
· 

j =O T 
k+CI- -The Holder space H (DT ) is the space of all functions u : DT - R for 

which llull�k+CI) is finite ; with llull�kta) as norm , the space Hk+CI(DT ) is 
T T 

a Banach space . 

For any real q � 1, we define the Banach space L ( V )  in the usual q 
way to be  the space consisting of all real measurable functions on V 
with finite norm 1 

llull V = [J j u( x) l qdx] q 
• q ,  V 

We say that u E L (V )  has an L -derivative on V with respect to q q x .  if there exists v E L ( V )  such that , for all functions � which are � q 

9 



infinitely differentiable on V and vanish on the boundary of  V ,  

I v( x )q:(x)dx
. 
= - r u( x )  ".:ioc:p dx 

V JV vxi 

10 

( the fact that the integral on the right is finite follows from Holder ' s  
inequality ) .  We write v = ;u . Higher order L -derivatives of u are xi q 
defined iterat ively . Integration by parts shows that when u has a 
classical derivative ou E L ( V )  then the L -derivative of u coincides ox . q , q 

� 
with the class ical derivative . 

For q as above and k a non-negative integer , we define the Sobolev 
space sk ,q( V ) to be the space of all functions u E Lq( V )  having Lq-

derivatives  on V up to order k ,  so that l u l�k ,q )  is finite , where : 

l u l ( k ,q) = � { I: I ID.tul l } · V j =O l.t l = j  x q ,V 

With l u l�k ,q )  as norm , the space sk ,q(V )  is a Banach space . 

For·any real q � 1 , we define the Banach space Lq( DT ) to  be the 
space consisting of all real measurable funct ions on DT with finite 
norm 

[
T �� liull D = J J ju( x , t )  l qdx dt q . q ,  T 0 V 

For q as above and k a non-negative integer , we define the Sobolev space 
wk ,q( DT ) to be the space of all funct ions u E Lq( DT ) having Lq-

derivatives on DT of the form D� D�u for any r and s satis fying 

2r + l s l :;; k ,  so  that llul l�k ,q)  is finite , where : 
T 

l lull ( k  ,q) = � { � ll n
r Dsu l l  } • DT j =O 2r+ js j=j  t x q , DT 

W � th iiuiiD
( k  ,q) h W ( D  ) . B h • as norm , t e space k ,q T �s a anac space . 
T 

For k a non-negative integer and a real with 0 < a <  1 ,  we say 
that a surface S c E is  of class Ck+a if S can be covered by a finite n 
number m of  neighbourhoods S . ,  j = 1 , 2 , • . .  m J 
intersect ions of  open n-balls with S ) , and 
represented by an equation of the form 

( i . e .  the S .  are the J 
each S .  can be globally 

J 

x .  = X. ( x1 , . . .  x .  1 , x . 1 , . . . x ) 
� J. J � .- � .+ n 

J J 



for C x1 , . . .  x .  1 , x .  1 , . . .  x )  in  some bounded ,  open , connected domain 1.- 1.+ n J J 
k+a - . n. c E 1 , where X. E C (O.) for each J = 1 , 2 , . . .  m .  - l n- J J 

I f S is a surface of class Ck+a, we say that a function u:S - R 

1 1  

is of class Cl+a(S) with l � k if ,  for each j = 1 , 2 , . • •  m ,  the funct ion 
uj : � - R defined by 

U. ( x1 , . , , X .  1 , X .  1 , . . .  X ) J 1.- 1.+ n J J 
= u( x1 , . • •  x .  1 ,X . ( x1 , . . .  x . 1 ,x . 1 , . . . x ) ,x . 1 , . . .  x )  1 .- J 1.- 1.+ n 1.+ n 

J J J J 

is an element of l+a . I I Cl+a) the space C (Oj ) .  We def1ne u 5 to be 
{I I 

( l+a) max u .  r'l : 
J H• J 

j = 1 , 2 , . . .  m) . 

Suppose S c E is a surface of class Ck+a as described in the n 
previous paragraph . We shall say that a function u:Sx[O,T]- R is of 

l+a class H (Sx[O,T]) with! s k if , for each j = 1,2, . . . m ,  the function 
uj :� x[o, T] - R defined by 

u . ( x1 , . . •  x . 1 , x .  1 , . . .  x ,t ) J 1.- 1.+ n J J 
= U ( x1 , . • .  X .  1 , X. ( x1 , , , , X . 1 , X .  1 , , , , X ) , X .  1 , . . .  X , t )  
· 1.- J 1 .- 1.+ n 1.+ n 

J J J J 

is  an element of Hl+a(O.x[O,T]) . J 
max{lluj ll6���b ,Tr j = 1 , 2 , . . .  m) . 

J 

· 11 ll(.t+a) We def1ne u Sx(O,T] to be 

With V as defined at the beginning of this chapter , we adopt the 
following further notation as standard throughout the rest of this 
thesis : 

oV denotes  the boundary of V ,  and is  always assumed to be  a 
2+a surface of class C for some a with 0 < a < 1 . 

sT = { c x ,  t )  : x e ov , o < t s T J. 
s = {C x ,t ) : X E oV , t > o). 

We shall denote by Lu the expression 
n 

+ E b . c x ,  t )  -::..
ou + c < x ,  t ) u 

i= 1 1 oXi 
where the coefficients a . .  , b .  and c are assumed to be cont inuous real 1 ]  1 



functions on DT for all T > O ,  and a . .  = a  . .  for i , j = 1 , 2 ,  . . •  n .  
�] ]� 

Stronger assumptions regarding these coefficients will be made from 
time to time as needed .  The differential operator L is  assumed to be 
uniformly elliptic for each T > 0 ,  i . e .  there exists for each T > 0 an 
A > 0 such that 

n 
r 

i , j  = 1  
for all  real vectors � = 

... 

a . .  (x , t ) � . � · �] � J 

( �1 '�2 , . • .  
�n ) 

� A 

and 

n 2 r � · 
i = 1  � 

all ( x ,  t )  E DT . 

We shall denote by Lu the expression 

+ 
n 
E b . ( X )  ou 

+ c ( X )  u 
i= 1 � oxi 

where the coefficients a . . , b. and c are assumed to be continuous real 
l. J � 

functions on V unless stronger assumptions are needed ,  a . .  = a . .  for 
... l.J ] � 

i , j = 1 , 2 ,  . . .  n ,  and the differential operator L is assumed �o be 
uniformly elliptic on V in a sense similar to that defined for the 
operator L ,  but now A does not depend on T .  

We shall denote by B1 • u the expression _l.n 

ou d0( x , t ) u  + d1(x ,t ) On 

and by B u the expression gen 

where d0 and d1 are assumed to be non-negative , continuous real 

functions  on 
The function 
n denotes  an 
on oV of the 

ST for all 
g : R - R is 
outwardly 
form n(x)  

T > 0 unless stronger assumptions are needed .  
assumed t o  be strictly increasing .  Further , 

directed ,  nowhere tangential unit vector field 
= (n1(x) , n2(x) . , • . .  nn(x) )  where n1 ,n2 , . . . nn 

12  

are o f  class c1+a< oV ) . We shall denote the outward unit normal vector 
ou to oV by v(x ) ; this is of course a particular case of n(x) . On denotes  

the directional derivative 

.. 

n ou I: n . (x)�. 
i= 1 1 uXi 

We shall denote by B1. u the expression 
�n 



A 

and by B u the expression gen 
A A OU d0(x) g(u) + d1 ( x) an 

13 

where d0 and d
1 are assumed to be non-negative , continuous real 

functions on oV unless stronger assumptions are needed , and the notation 
is in other respects the same as that defined in the previous paragraph . 



4 THE STEADY-STATE PROBLEM - A SUR VEY 

14  

As  remarked in  Ch . 1 ,  the que stion of the existence of positive 
stable steady-state solutions for the heat-generation problem has 
attracted much attention . In particular , the results of Keller and 
Cohen[19] , Keener and Keller[18] and Amann[2]  give quite a good picture 
of the relation between the form of the function f ( introduced in Ch . 1 ) 
and the existence or non-existence of  positive stable steady-state 
solutions . We shall examine this picture , and then later , in Ch . 7 ,  
compare it with the picture obtained by considering the related time
dependent problem . 

All the above authors restrict themselves to the real self-adj oint 
problem described by the equation 

n 
E � a . .  ( x )  o

o u ) 
i , j = 1 xi �J xj 

ao ( x )u + Af( x ,u)  = 0 for X E V 

together with the boundary condition 
n ... o u -d1 ( x ) I: v . ( x )a . .  ( x ) � - o . . � �] uX. �.]=1 J 

for X E oV. 

In the first equation it is required that a . .  = a  . .  E c 1 +a(V) for �] ]� 
i , j = 1 , 2 ,  • . •  n and some a with 0 <a< 1 ,  ao E Ca(V) and ao( x) � 0 

( 1 )  

for all x E V, and the differential operator i s  uniformly elliptic . 
Thus the equation is  a special case of the equation Lu + Af( x ,u)  = 0 .  
In the boundary condition , it is required that d0 and d1 be non-

negative functions of class c1+a(oV), oV being  a surface of class c2+a. 
With v( x) denoting as usual the outward unit normal vector to oV, the 

n 
quantity I: v . ( x) a  . .  ( x) � is the aonormaZ derivative; this is a . .  1 � �] ox . �.]= J 
direct ional derivative of the form � where 

n 
n . ( x ) = E v . ( x ) a  . .  ( x ) J i = 1  � �] ( j  = 1 , 2 ,  • . •  n )  

s o  that , for j = 1 , 2 ,  • . .  n ,  n. is  of class c1+a(oV). J Thus , for all 
x E ov: n 

n( X) • \I( X) = L a . .  ( X)\1. (X)\1. ( x )  . . - 1 �] � J �.]-

� A 
n 2 I: [v . ( x ) ]  

i=1 � = A for some A > 0 independent 



of x ,  s ince the differential operator in (1) is uniformly elliptic . It 
follows that n(x ) is an outwardly directed , non-tangential vector for 
each X e oV. Thus the boundary condition is a special case of the ... 
condition B1 . u = 0 .  Finally , it is assumed that oV = s1 u s2 where s1 �n 
has pos itive measure and : 

d
0(x) > 0 ,  d1 ( x )  = 0 for all x e s1. 

d0(x ) ... 
� 0 ,  d1(x) > 0 for all x e s2 . 

15 

The condition that s1 should have positive measure is needed in order to 
apply a certain uniqueness theorem based on the generalised maximum 
principle ; one form of this theorem is given by Protter and Weinberger 
(2 8 ,  Ch . 2 ,  Theorem 1 2] . 

It  should be noted that , apart perhaps from this last restriction 
on the boundary condition , the original steady-state heat-generation 
problem in the for� studied by Boddington , Gray and Harvey[4) is a 
special (three-dimens ional ) case of this general self-ad�oint problem 
in which a . . (x ) = 1(i = :,2,3) and a .. (x ) = O(i 1 j) for all X e V. 

� �  �] 

Following Keller ar.c Cohen[19] , we refer to the set of values of � 
for which positive soluTions u(� ; x )  of (1 ) exist as the spectrum of (1 ) ,  
and denote the least upper bound of this spectrum by A*· Keller and 
Cohen begin by assuming that f satisfies the following hypotheses : 

Ho: f is continuous for x e V, u � o . 
... 

H1: f(x , O ) > 0 for x E V .  

H2: f(x , v )  > f(x ,u )  on V if V > U � Q, 

With these  hypotheses , Keller and Cohen are able to prove the following : 
(i ) Only positive � can be in the spectrum of (1 ) .  
(ii ) For every � >  0 in the spectrum of ( 1 ) ,  there e xists a positive 
solution u . (� ; x )  of ( 1 )  which is minimal , Le . which is such that m�n 
umin(� ; x )  � u(� ;x )  on V for any positive solution u(A ;x )  of (1 ) . 

(ii i ) If  A1 > 0 is  in the spectrum of (1 ) ,  then all A satisfying 
0 < A  � �' are in  the spectrum , and u . (� ; x )  is an increas ing function m�n 
of A for each X e V and 0 < � � A1• 
(iv) If there exists a positive function F on V such that f(x ,u )  < F(x ) 
for all u > 0 and all x E V, then all � >  0 are in the spectrum of (1), 
i . e .  a finite A* does not exist . 
(v ) If  there exist pos itive functions F ,  p such that for all u > 0 and 



· .· 
15 

all x E V ,  f( x ,u)  < F ( x)  + p( x ) u ,  then the spectrum of ( 1 ) contains all 
� such that 0 < � < � {p) ,  where � {p) denotes the principal eigenvalue 
of n 

I: �a . . ( x )  ":>.ov ) . . 1 oX{ �] vX]. a0 ( x)v + �p( x )v  = 0 on V 
� ,]= .... 

Thus �,'; � �1 {p) . 

" n .. ov _ d1 ( x) I: v . ( x )a . .  ( x )  � - 0 
. • � �] vX. �.] =1 J 

on oV . 

I f ,  on the other hand , f( x ,u )  satisfies f( x ,u) > F ( x )  + p( x )u  on V ,  
for all u > 0 ,  then �* �  �{p) . 

.. Assuming that f satisfies H0 ( and possibly H2 ) but not H1 , Keller 
and Cohen prove also : 
( vi )  If there exists a �ositive p such that f( x ,u) < p( x ) u  on V ,  for all 
u > O,  then no � such t�at 0 < � < �1fp) is in the spectrum of ( 1 ) . 

An important point that emerges from results ( i ) , ( i i i )  and ( iv )  is 
that , assuming hypot�eses H0, H 1 , H2 , positive solutions of ( 1 ) , i f  they 
exist at all ,  exist for A on an interval of one of the forms 0 < A < A�·:, 
0 < � � � * or A. > 0 

• 

Keller and Cohen next introduce the strong monotonicity condition 

f ( x , u ) > 0 and continuous on V for u > 0 .  u 
.. 

On the assumption that f satis fies H0 , H1 and H2, ,  and that ( 1 ) has 
positive solutions for all � such that 0 < � < v:, they then prove that 
each X in this interval satisfies X< �1 ( � )  where �1 ( A. )  is �1 {p) as 
de fined above , with p( x )  = f ( x , u . ( � ; x) ) .  Thus �1( A. )  is the principal u m�n 
e igenvalue of the linearization of ( 1 ) . 

Following Keller and Cohen , we say that f is aonaave if it 
satisfies H2, and in addition 

H 3a : fu( x ,u) < fu( x ,v)  on V i f  u > v � 0 
.. 

and we say that f is  aonvex if it satisfies H2, and in addition 

f ( x ,u)  > f ( x , v)  on V if  u > v � 0 .  u u 
Keller and Cohen then obtain the following results : 

( '' ) If f.. · f' H d · {concave ) d 'f ( 1 )  has the v�� sat�s �es 0 , H 1 an �s , an � convex 



is  an {increas�ng)· spectrum 0 < � < A* or 0 < A  � �* , then �1(�) decreas1ng 
... 

function of � on this interval . Furthermore , i f  f is concave . then 

� ( A )  < �* for 0 < � < ��':, and if f is  convex then �( A )  > V: for 
0 < � < �''c • 

... 

( viii )  I f  f satisfies H0, H1 and is concave , then lim �1CA) = A''c and 
A fA* 

�* is not a point of the spectrum . Thus the spectrum must take one of  
the forms 0 < � < A* or � >  0 . Furthermore , there is  exactly one 
positive solution of (1) for each A in the spectrum. 
( ix) If f satisfies H0 , H1 and is concave , and if  iri addition 
lim f ( x ,u )  = p ( x) on V, then A* = � {p) where we adopt the convention 
u-- u 1 

that �1{p) = m if p( x) = 0 .  
Thus Keller and Cohen obtain a reasonab ly comple�e picture of  the 

situation in the case of concave f, but rather less information in the 
... ... case of convex f . In the case of convex f ,  note that it is known in 

certain special cases that the positive solutions for all A in the 
interior of the spectrum are non-un ique ( see the paper by Laetsch[23 ] ) .  

Keller and Cohen conclude by discussing the question of stability . 
For any � in the spectrum of (1), they define a steady-state solution 
u( A ; x )  to be stab le if , roughly , any solution of the time-dependent 
problem which satisfies an initial condition of the form 

u0 ( x) = u( � ; x )  + ev (x )  
decays exponentially in t to  u( A ;x ) , t o  first order in e .  If  one of  
two stable steady-state solut ions is  such that this exponential decay 
described above is more rapid than in the case of the other steady
state solution , then the first solution is said to be re latively more 

s tab le than the second . Keller and Cohen then prove the following : 

17 

( x ) Suppose f satis fies H0, H1 and H2, ,  and is  such that (1) has a non
empty spectrum . Then , for 0 < A. < �* , the minimal positive solut ion 

... 

of (1) is  stable . I f ,  in addition , f is convex , the minimal positive 
solution for a given � is relatively more stable than any other 
positive solution for the same A ( if f is concave , we already know by 
( vi i i )  that the minimal positive solution is in fact the only pos itive 

solution for a given A ) . F. 11 ' f f.. . {concave ) h 1 t' 1na y ,  1 1s , t e re a 1ve convex 

ab '1' f h · · . . 1 . { increases ) , . st 1 1ty o t e m1n1mal pos1t1ve so ut1ons d as A 1ncreases , ecreases 
on 0 < � < �·� . 



The case where f is convex is studied in more detail by Keener �nd 
Keller[18 ] . They use the following strong convexity condition : 

H( 3b ) ' : fuu( x ,u )  > 0 and cont inuous on V for u > 0. 

18 

A solution u( A ; x )  of (1) is said by Keener and Ke ller to be non-iso lated 

if the linearization of (1) about that solution , i . e .  the problem 
n 
't" 0 1 ,. OV � a-' a . .  ( x )  -'::l. -) 

i,j=1 xi lJ ux
j 

Af ( x , u( A ;x ) )v = 0 u 

n 
ci
1 ( x ) r: v. ( x ) a  . .  ( x )  0

°v = o 
i , j = 1  l lJ xj 

on oV 

on V 

(2) 

has a non-trivial solu�ion . A solution u( A ;x )  of (1) is said to be a 
principal non-isolated so lution i f  it is a non-isolated solution for 
which ( 2 )  has a pos i�ive solution . Keener and Keller then prove the 
following fundamental result : 

Let H0 , H1
, H2, a�d H ( 3b ) ' hold , and for A =  A� > 0, let ( 1 ) have 

a positive principal nc�-isolated solution , u( A0 ;x ) > 0 on V. Then : 
( a )  
A = 
( b )  

A0 = A* , and u( A0 ; x ) is the unique positive solu�ion of  ( 1 ) for 
A:•, ; 
A minimal pos itive solution of ( 1 ) exists for all A E ( O , A* ) , and 

no positive solutions exist for A > A* ;  
( c )  For some sufficiently small 6. > 0 ,  a pair of pos i�ive solut ions of  
( 1 )  exists for each A E (A*-6. , A* ) . 

After this , the major question remain ing for Keener and Keller to 
deal with is that of the existence of a positive principal non-isolated 
solution . They require for this  the following hypothesis of asymptotic 
linearity : 

H4
.. ll' m {

f( x ,u )  - [F
u
( x) + uG( x )] } - -- 0 - - on V ,  where G ( x )  > 0 on V .  

u-co 
To complete their pr9of , they also require an hypothesis H5 of a rather 
technical nature , which need not be given here , since Amann[2)  has 
shown that it can be dispensed with . On the assumption that f 

satisfies  H0 , H1 , H2, ,  H( 3b ) ' • H4 and H5 , Keener and Keller prove that 

a positive principal non-isolated solution of ( 1 ) does in fact exist 
for some posit ive Ao· This shows that for such f the spectrum of  ( 1 )  
is an interval of the form 0 < A � V:. 

Subsequently, P.mann(2] has sho1m that the crucial hypothesis in 



the work of Keener and Keller is that of  asymptotic linearity. Amann 
... 

assumes only that f satisfies the following conditions : 
1 ) f( x ,u )  > 0 for x E V, u > 0 .  
2 )  lim f ( x ,u)  = f ( x) exists uniformly for x E V, and f ( x ) > 0 for u � � u-
x E V ( this is the crucial assumption of  asymptotic linearity ) .  

Amann denotes by �m the principal eigenvalue �(f�) ( in the 
notation of Keller and Cohen introduced earlier) .  He is then able to 
prove the following comprehensive theorem : 

There exists �;': > 0 such that for every A E ( 0 ,�*) , ( 1 ) has a 
minimal pos itive solution u . ( � ; x ) , and ( 1 ) has no solution for m1n 
A > �*. ( 1 ) has a solution for A = �*, in fact a minimal positive 
solution umin ( A1': ; x ) , i f  and only if  { llumin (A ; x )  IIC ( V) : 0 < � < ��·: ) is 

bounded .  This is the case if and only if u* ( x )  = lim u . ( � ; x )  
A-A;·:_ m1n 

exists in c2+a(V), in which case u* ( x )  = u . (A*· x) . m1n ' 
Further , we have 0 < � � � ;': .  � I f  lim JJu . (A ; x )  JJC ( V ) = �, then 

A-��L m1n 

A� = ��·: ( compare this with result ( ix )  of Keller and Cohen for concave 
f). On the other hand , if � < �;': , then ( 1 ) has a minimal pos itive � 
solut ion for A = A;':, and for every A E ( �  ,Af:), (1 ) has at least two � 
distinct positive solutions . 

Finally , suppose there exists a pos itive function y ,  continuous 
on V , and a constant p > 0 ,  such that for all x E V and all u � p ,  

f ( x ,u)  - f ( x ,u )u  � -y ( x) . u 

19 

Then �� < A*· Note that this condition is related to convexity , s in ce 
it implies that for every x E V and for u � p ,  the tangent to the 
graph of f( x , u)  against u intersects the negative y-axis . 

Amann ' s  theorem therefore gives a rather complete picture of the 
s ituation for the case where f is asymptotically linear , thus filling 
in the picture drawn by Keller and Cohen[ 19 ]  ·and by Keener and 
Keller[1 8 ] . 

The example discussed in Ch . 2  s erves to illustrate one of the 
cases considered by Amann . In this example ( the steady-state problem 
with k = A) we have f( x ,u)  = u + 1 , which satisfies the conditions for 
Amann's theorem with f ( x) = 1 . Ours is an example of the case dealt � 
with by Amann in which lim u . ( � ; x )  does not exist ; in our example 

A_A,L m1n 

cos /Ax n2 
urn in 0 .. ; x )  is cos Jt - 1 and A;': = 4 In this case Amann 's theorem 



tells us that A* = A� = �1{fc}. Now �1{fc} in our example is the 
principal e igenvalue of the linear problem 

d2u - t AU = 0, u( 1) = u( -1) = 0 
dx2 

2 2 
h . h h · 1 ' = m n ( 1 2 3 ) th t ' t · · 1 w �c as e �genva ues I\ -

4
- m = , , , • • • , so a � s pr�nc�pa 

2 

20 

· 1 · · d d n · d e�genva ue �s �n ee � as requ�re • Note that , as required by Amann ' s  
2 

theorem in this case , the spectrum is 
2 

solution exists for A = n
4 . 

the open interval (O,n
4 ) ; no 



5 COMPARISON THEOREMS FOR THE TIME -DEPENDENT PROBLEM 

Comparison theorems , based  on various versions of the maximum 
principle , are a standard tool in the study of differential equations . 
They are discussed in the books by Protter and Weinberger(28]  and 
Friedman[14] , and used by many authors , such as Chan[9] , McNabb [2 5 ] , 
Sattinger[3 3] and Wake[35]. The comparison theorems which will play a 
fundamental role in the rest of this thesis are based on those proved 
by McNabb , but they differ in certain important details , and so the 
proofs are given in full here . We require first a lemma due to 
Fej er[12] , the proof of which we include for the sake of completeness . 

n 
LEMMA : If g (x )  = L gikxi� and h ( x )  = 

i ,k=1 

n 
r hikxi� are two non

i ,k= 1 
negative quadratia forms , with gik = gk i  and hik = hk i  for all  

n 
i ,k = 1 , 2 ,  . . .  n, then r gikhik � 0. i ,k = 1  
Proof: The result is obvious if e ither g or  h i s  identically zero ; 
as sume therefore that neither g nor h is identically zero. We shall 

n 
first show that there are n linear forms z ( x )  = L p x ( where r rs s s = 1  
r = 1 , 2 ,  . . . n )  with real coefficients prs ' such that 

n 2 g ( x )  = L z ( x )  = 
r= 1 r • • • • • • • •  ( 3 )  

We know that for all i = 1 , 2 ,  . . •  n ,  g . . � 0, s ince g . .  i s  the 1 1  1 1  
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value of g ( x )  when x .  = O ( j  # i )  and x .  = 1 .  Further , the coefficients J 1 
g . .  cannot all be zero , for if  they were , then since g( x )  � O , there 1 1  
must be at leas t  one g . .  # O ( i  # j ) .  1] 
g ( x) could be obtained by choosing x .  1 
s ign of g . .  ) and � = 0 for k# i , j . 1] K 
i = 1 , 2 ,  • . •  n ,  we must have g . .  > 0. 11 
assume g1 1  > 0. 

Now write : � p 1 1  = ( g1 1 ) . 

In that case a negative value of 
= 1 ,  x .  = ±1 ( depending on tbe J 
Thus , for at least one 
Without loss of generality , 

P 1 1P 1s = g1s ( s  = 2 ' 3'''' n ) . 
n 
r p 1sxs . 

s=1 



2 2  

g( 1 ) ( x ) = g ( x )  - z� ( x ) . 

It is easily seen that the quadrat ic· form g( 1 ) ( x )  is independent of x1 . 
Furthermore , it is non -negative , for suppose we could obtain a negative 

value for g ( 1 ) ( x ) by tak ing x .  = a . ( i  = 2 , 3 ,  . . .  n ) . Put � � 

-1 n 
a = � I: p 1sas ) .  1 P11 s=2  

Then , writing a =  ( a1 , a2 , . . •  an ) ,  we  have z1 ( a ) = 0 and so we  obtain 

the contradiction g( a )  = g( 1 ) ( a ) < 0 .  

I f  g ( 1 ) ( x ) is identically zero , then ( 3 ) is proved already , s ince 
2 we may take zr( x )  = 0 for r = 2 , 3 ,  . . .  n ,  and we have shown g ( x )  = z1 ( x ) . 

I f  not , we can carry out for g ( 1 ) ( x )  a construct ion similar to that 
n 

carried out for g ( x ) , obtaining a linear form z2 ( x) = I: p 2 x such 
s=2  s s 

that g( 2 ) ( x )  = g ( l ) ( x ) - z; ( x ) = g ( x) - [z� ( x) + z; ( x ) )  is a non
negative quadratic form independent of both x1 and x2• Continuing thus , 

after n steps we will obtain g ( n ) ( x ) = 0 and so g( x) = i z2 ( x) , which 
r= l r 

proves ( 3 ) . n 
It then follows from ( 3 )  that gik = I: Pr�Prk ( i ,k = 

r= 1 
n 

Similarly , we obtain h .  = �k r q q c i ,k = s i  sk 

Hence 
n 
I: gikhik = 

i ,k= l 

s= 1 

n n 

1 , 2 ,  . • .  

= I: { I: Priqs iprkqsk } 
i ,k= 1 r , s= 1 

= 
n n 2 r c r P .q . ) � o .  · k 1 J. --1 r] s J �, = 

n ) . 

1 ' 2 ' . . .  n). 

We prove now the first comparison theorem we require ; the method is  
similar to that used  by McNabb[2 5 ,  Theorem 1] .  
THEOREM 1 : Suppose that 

( a ) The funations u1 and u2 are defined and aontinuoUB in DT ' their 

firs t-order x . -derivatives exist in DT ' their seaond-order x . -deri vatives � � 
exist and are aontinuous in DT , and their firs t-order t-derivatives 

exist in DT . 



( b )  For a l l  

( c )  u1 ( x , O ) 

ou1 ( x ,t ) E DT ' Lu1 - ot + f ( x ,t ,u1 ) 

< u2 ( x , O ) for aZZ  x E V. 

( d )  For al l ( x ,t )  E ST , B u1 < B u2. gen gen 
Then u1 ( x , t )  < u2 ( x , t )  for all ( x , t )  E � · 
Proof: Suppose ,  on the contrary , that there is a point P in DT where 
u1 � u2. Then (by the continuity of u1 and u2 ) there is a point 

( x1 , T1 ) E DT such that u1 :s: u2 in DT'  , while u1 = u2 at ( x1, T ' ) ,  T1 > 0 .  

So  v( x , t )  = u1 ( x , t )  - u2 ( x , t )  has a maximum of  zero in DT'  at the point 
( x1, T1 ). 

Suppose first that we may choose ( x1, T1 ) E DT ' ' i . e .  such that x1 
is not on the boundary oV . Then the quadratic form 

n 
I: D D v ( x1, T1 ) x . x . . . 1 X .  X .  � ] � , ] = � J 

n 
is non-positive . Since the quadratic  form I: a . .  ( x1 ,  T 1 ) x . x .  is non-

i , j = 1 � ] � J 
negative by definition of L ,  it follows by the lemma that : 

Further , 

v( x1, T1 ) = 0 .  

Dtv( x1, T ' ) � 

n 
I: 

i , j  = 1  
n 

i . e. I: 
i , j  = 1  

for each i = 

a . . ( x' , T ' ) D  D v( x1, T1 ) 
�] x .  x .  

� J 

a . .  ( x' , T ' ) D  D v( x', T ' ) �] x .  x . 
� J 

1 ' 2 ' • . .  n ,  D v( x1, T ' ) = X .  � 

� 0 

:s: 0 .  

o ,  and also 

Thus Lv :s: 0 at the point ( x', T 1 ) .  Since also 
0 '  it follows that Lv - ov 

dt :s: 0 at the point ( x' , T1 ) .  
ou1 ou2 Lu1 - at :S: Lu2 - Tt at the point ( x', T1 ) • 

Finally , since u1 ( x', T 1 ) = u2 ( x', T1 ) ,  we have that at the point 
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ou1 ou2 ( x1, T' ) ,  Lu1 - -at +  f( x ,t , u1 ) · :s: Lu2 - Tt + f ( x ,t ,u2 ) ,  contradicting 
hypothes is ( b ). 

If x1 cannot be chosen away from oV , then we must have u1 = u2 at 
( x' ,  T' ) with x1 E oV , and u1 < u2 in DT'' 

0 Thus �u1 - u2 ) :s: 0 at ( x', T1 ). 
• B B h • ( I T1 ) • t ( I T 1 ) � . e. genu2 :s: genul at t e po�nt x ,  , s�nce u1 = u2 a x ,  . 

This contradicts hypothesis ( c ) , and so the proof of the theorem is 
complete . 
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In the case where the function f( x ,t ,u )  satisfies a uniform 
Lipschitz condition in u on any finite interval , a stronger comparison 
theorem can be proved . The method of proof is an extension of that used 
by McNabb(2 5 ,  Theorem 2 ) .  
THEOREM 2 : Suppose that 

( a ) The functions u1 and u2 are de fined and continuous in DT , their 

first-order x . -derivatives exist in DT , their second-order x . -derivatives � � 
exist and are continuous in DT , and their first-order t-derivatives 

( d )  The coeffiaient d0 ( x , t )  of g (u )  in B u is strictly positive for a l l  gen 
( x ,t )  E 
( e )  For 

ST . 
aU ( x ,t )  E ST ' B u1 � B u2 • gen gen 

( f ) On any finite interval [a ,b] , the function f( x , t ,u )  satisfies a 

uniform Lipschitz condition in u ,  � . e .  there exists a cons tant M[a ,b] > 0 

(depending on the interval (a ,b] J  such that 

j f( x , t , u1 ) - f( x ,t ,u2 ) I � M(a ,b] lu1 - u2 l 
for a l l  u1 ,u2 E (a ,b] and a l l  ( x , t )  E DT . 
Then u1 ( x , t )  � u2 ( x ,t ) for a l l  ( x , t )  E DT . 

in � ' it is bounded there . Let Proof: Since u2 is cont inuous 
m1 = inf _ u2 ( x ,t ) and m2 ( x ,t )EDT 

= sup _ u2 ( x ,t ) . Choose M' > 0 such that 
( x ,t ) EDT 

M' > sup {M ) + c( x ,  t ) }  ( re call that c (  x ,  t )  is the coefficient 
( x , t )EDT 

[m1 ,m2+1 

of u in Lu) . For 
UA( x , t )  = u2 ( x ,t ) 

all ( x , t )  E DT 
A M' ( t -T ) + e • 

and all A E [ 0 , 1) ,  define 
Then for all ( x ,t )  E DT and all A E 

m1 � u2 ( x ,t )  < UA ( x ,t ) � m2 + 1 .  Thus , for all ( x ,t ) E DT ·and all 
A E ( 0 , 1 ) ,  we have : 

oUA [LUA - � + f( x ,t ,UA) )  

= f ( x , t ,UA ) - f( x ,t ,u2 ) + AC ( x ,t ) eM' ( t-T ) - AM' eM' ( t -T ) 

� M  AeM' ( t -T ) + Ac ( x , t ) eM' ( t -T )  - AM' eM' ( t -T ) by ( f ) [m1 ,m2 +1 ]  

= AeM' ( t -T ) {M ( J + c ( x ,t )  - M' }  < 0 .  m1 ,m2 +1  

( 0 , 1 ) ,  



Thus , using hypothesis ( b ) , we have that for all ( x ,t )  E DT and all 
A E ( 0 , 1] ,  ou1 oUA Lu1 - 3't + f( x ,t ,u1 ) > LUA - � + f (x, t ,UA ) .  
Also ,  for all ( x , t )  E ST and all A > 0 ,  

BgenUA - Bgenu2 = do ( x ,t ) {g ( UA ) - g( u2 ) }  
> 0 by hypothesis ( d ) and the fact that g 

is strictly increasing by definition of  B gen 
Thus , using hypothesis ( e ) , we have : 

B u < B U gen 1 gen A for all ( x ,t ) E ST and all A > 0 .  

Further ,  we have that u1 ( x , O ) � u2 ( x ,O ) < UA ( x , O ) for all x E V and 
all A > 0 .  I t  follows by Theorem 1 that , for all A E ( 0 , 1] ,  
u1 C x ,t )  < UA( x , t )  for all ( x , t )  E DT . Since UA( x , t ) - u2 ( x ,t ) as 
A - 0+ for each ( x ,t )  E DT , it follows that u1 C x ,t )  � u2 C x , t )  for all 
( x , t ) E DT , as required . 

Notes : ( i ) I f ,  in the statement of Theorem 2 ,  we omit hypothesis ( f ) , 
that f( x , t ,u) should satis�; a uniform Lipschit z condition in u on any 
finite interval , then the thecrem fails to hold , as the following 
counter-example demonstrates . 

o2u Take Lu to be -- V to be 2 , 
ox 

{x : -1 < x < 1 } ,  

� ou ou d f( ) b 576e lu l 
B u to be gen 

u + 0\1 = u + x ox an x , t ,u to e 
Consider first the function y (x )  1 2 2 = � x  - 1 ) ( 5 -x ) 5 + 1 .  

Here y' (x ) 1 2 = 5{ C x - 1 ) ( -2x )  + ( 5 -x2 ) 2x} 

y * ( x) 

For - 1  � x � 1 ,  the 

= ¥< 3 -x2 ) .  5 
4 2 = � 3-x ) + 

= ¥< 1-x2 ) .  
graph of  y (x )  

point of inflection /: 
• I w�th non-horizontal 

tangent 

� -2x) 5 

is as follows : 
y 

1 
- - - - - - - -

:""' . . f . 
1 po�nt of �n lect �on 
: with non-horizontal 

tangent 
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Then : 
( a ) u1 ( x , O ) = 0 = u2 ( x , O ) ,  so  certainly u1 ( x ,O ) � u2 ( x , O ) for - 1  � x � 1 .  

ou1 ( b )  Lu1 - dt + 

ou1 [Lu1 - � + f( x ,  t ,  u1 ) ] 

2t + 5 76e.ff'. 

= 2t {y (x ) - 1 }  - t2y ' ( x )  + say . 
We have that A( x , O )  = 0 for -1  � x � 1 .  Assume now that t > 0 and 
- 1  < x < 1 . Then : 
a� A ( x , t )  = 2 (y ( x) -1 }  - 2ty' ( x) + 5 76�� - (��%/' e/t'(y( xll''} ( 4 )  

J,... For -1  < x < 1 ,  we have 0 � y (x )  < 1 ,  so 0 � {y( x) } �  < 1 .  Put 
{y ( x ) }� = 1 - 6 (x ) where 0 < 6 ( x) � 1 .  

Then y ( x )  = {1-6 ( x) }4 = 1 4 6 ( x )  + 662 ( x) - 4 o 3 ( x )  + o4 ( x )  
1 2 2 = 1 "§-< 1-x ) ( 5-x ) .  

6 C x ) {4 - 6 0 C x )  + 462 ( x) - 6 3 ( x) }  = � 1-/ ) ( 5 -x2 ) .  

6 ( x) = ( 1-x2 ) ( 5 -x2 ) 
5 {4 - 6 6 ( x )  + 4 62 ( x) - 63 ( x) } 
( 1-x2 ) (  5-x2 ) > 40 for -1 < x < 1 ,  s ince then 0 < 6 ( x) � 1 .  

Thus ( 4 )  becomes : 
c! A( x ,t )  = � /-1 ) ( 5 -x2 ) - 2�t( 1 -x2 ) + Tf£e/t - {1-6C x ) }e/t{1-6 ( x ) } } 

21 2 1 ) ( 5  2 ) _ 24t( 1-x2 ) = 5' x - -x 5 

/t 2 2 2, 2 1 ) ( 5 2 ) _ 24t( 1-x2 ) 2 88e ( ( 1 -x ) ( 5 -x ) } > S' x  - -x 5 + If 40 
If t tit Further , for t > 0 ,  e = 1 + .If + 2T + V + 

> /t + t� . 

from 
above . 

0 2 2 2 24t  2 72 t 2 2 ot A ( x , t )  > p x  - 1 ) ( 5 -x ) - y-< 1-x ) + fo-< 1+6) ( 1-x ) ( 5-x ) 
2 2 2 24t 2 1 2 } = p 1-x ) ( 5 -x ) {- 1+ 1 8 }  + y-< 1-x ) { - 1 + "fr-< 5-x ) . 
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The first tei'l!l i s  ·obviously pos itive for - 1  < x < 1 ;  the second is also 
. . . 5 

2 f pos 1t1ve , s1nce -x > 4 or -1  < x < 1 .  Thus , for - 1  < x < 1 ,  
0 A( x , O )  = 0 and dt A ( x , t )  > 0 for t > 0. I t  follows that A (x , t ) > 0 for 

t > 0 and -1 < x < 1 .  
ou1 ou2 Lu1 - (ft: t f( x ,t ,u1 ) > Lu2 - (ft: t f( x , t ,u2 ) for t > 0, - 1  < x < 1 .  

( c )  For x = ±1 , B 
ou1 u = u1 + x ax- -gen 1 

B 
ou2 u = u2 t X ax- = gen 2 

= 

= 

t2 . 

2 t y ( x )  t xt2y' ( x) 
2 t y ( x )  4 2 2 2 

+ - t x ( 3 -x ) 5 

t2 Bt2 
s ince 2 + -- X = 

5 
B u < B u2 for x = ±1 , t > 0 .  gen 1 gen 

1 ,  y ( x )  = 1 .  

Thus all the hypotheses o= Theorem 2 except hypothesis ( f )  are 
satisfied for any T > 0 ( indeed , we have rather more than is required ,  
s ince the inequali ties in ( b )  and ( c )  of the counter-example are 
strict > and < rather than � an d � as in the theorem) . Hypothes is ( f ) 

u� is not satisfied , s ince the funct ion e does not satisfy a Lipschitz 
condition on any interval [O , a] �ith a >  0 ,  as its derivative 
1 - 3 / 4  u� . 4 u e 1s unbounded on any such interval . And the conclus ion 
that u1 ( x , t )  � u2 ( x , t )  for all t � 0, - 1  � x � 1 is false , s ince 
0 � y ( x )  < 1 if - 1  < x < 1 ,  and so u1 ( x , t )  > u2 ( x ,t ) for all t > 0 

and - 1  < x < 1 .  
( ii )  Hypothesis ( f ) o f  Theorem 2 can , however , b e  rep laced by a 

condition that f( x ,t ,u ) be monotone decreasing in u ;  this allows the 
proof to be slightly s imp lified . This version of the theorem is of 
little or no interest for the present discussion , s ince in this thesis 
the funct ion f( x , t ,u) is generally assumed to be monotone increas ing 
in u ,  this being the case in the heat-generation problem which 
motivates the whole discussion . Note that a comparison theorem 
involving monotone decreas ing f is proved by Chan[9 ,  Theorem 1] and 
used · to derive some interesting existence and uniqueness theorems . 



6 RELATIONS BETWEEN SOLUTIONS OF THE TIME-DEPENDENT 
AND STEADY-STATE PROBLEMS 
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It will b e  recalled that in Ch . 1  we discussed two poss ible 
approaches to the problem of determining whether or not a thermal 
explosion will take place in a given s ituation . The usual approach is 
to argue that a thermal explosion will take place if the equation 
describing the system has no positive steady-state solutions . The 
approach used in this thesis is to argue that a thermal explosion will 
take place if  the solution of the t ime-dependent equation is unbounded 
as t - m or as t tends to some finite value . We wish to show in this 
chapter that , under fairly wide conditions , these two approaches are 
mathematically equivalent . Accordingly , we wish to investigate the 
relation between the boundedness over all ti�e of the solution of the 
time-dependent problem 

ou Lu - dt + f( x ,t ,u)  = 0 for ( x ,t ) E D 
B 1 . u = 0 �n for ( x ,t ) E S 
u( x ,O )  = u0 ( x ) for x E V 

and the existence of pos itive solut ions of the corresponding steady
state problem 

Lu + f( x ,u )  = 0 for x E V 
Bl . u = 0 for X E oV �n 

where the coefficients are the limits ,  as t - m ,  of the corresponding 
time-dependent coefficients , and f ( x ,u) is the limit as t - � of 
f( x , t ,u) . We restrict the discussion to the linear boundary condition 
because the fundamental theory on which this chapter is based is not 
available for the non-linear boundary condition . The parameter A 
which appeared in the equations mentioned in Ch . 1 is , for the purposes 

A of the present discussion , absorbed into the functions f and f .  It 
will reappear later . 

In the book by Friedman [14 , Ch . 6) there are some important 
theorems concerning the case where f and f are independent of u .  
Friedman uses less general boundary conditions than ours , but his 
methods are easily adapted to our boundary condit ions , as we shall show 
later .  

With certain restrictions on the coe ffic ients , Friedman proves 



that , if  it is known that the steady-state problem has a unique 

solution , then the solution of the t ime-dependent problem will tend to 
this steady-state solution as t - ..., , Reynolds( 29] extends Friedman ' s  

... method t o  prove a s imilar theorem for the case where f and f are 
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dependent on  u ( Reynolds ' theorem is rather general , s ince it  allows for 
non-linearity of the differential operators as well as the functions f 

... and f ) .  However , Reynolds ' result is not quite what we want , s ince we 
are frequently concerned with s ituations where the steady-state problem 
is known to have multiple solutions , as we have seen in Ch . 4 .  

It should also be mentioned that Liapunov methods have been used 
to study problems of  this type , for example by Chafee and Infante(B] in 
the case of  a special one-dimens ional problem . ' 

The technique which was found to be appropriate for our purposes 
was that of  monotone iteration , introduced by Courant(1 1 , pp . 370 , 371] 
and developed further by Cohen(10]  and others . Using this technique , 
Sattinger(3 1 ,  3 2] has proved two existence theorems , for parabolic and 
elliptic  problems , which are of great value in our present study , and 
which we will now discuss in some detail .  

Monotone I teration : 
We consider first the parabolic initial-boundary value problem 

ou Lu - at +  f( x ,t ,u) = 0 for ( x ,t )  E DT 
Blinu = 0 for ( x ,t ) E ST 

u( x , O ) = u0 ( x) for x E V 
. • • • •  ( 5 )  

where L and B1 . are as defined in Ch . 3 , with the addit ional assumptions �n 
a - a - a -that a . .  = a  . . E H  ( DT ) '  b .  E H  ( DT ) and c E H  ( DT ) for all T > 0 ;  also � ] ] � . � 1+a -d0 and d1 are of class H ( ST ) for all T > 0 .  We assume also that 

u0 E c2+a(V) and f is continuous for ( x ,t ) E DT and at leqst some u-
interval . 

We call � x ,t )  an upper soLution for ( 5 ) if � is continuous in DT , 
I has continuous first-order xi-derivatives in DT ' continuous second-order 

xi-derivatives in DT and continuous first -order t-derivatives in DT ' 
and s at i sfies : 

Lcp - � + f( x ,t ,�) � 0 for ( x ,t )  E DT 
Blincp � 0 for ( x ,t ) E S T  

Cj)( x ,O ) · � uo (x )  for X E V .  



We call � x ,t )  a strict upper solution for ( 5 )  if � is cont inuous 
in DT , has· cont inuous first-order xi-derivat ives in DT , continuous 
second-order xi-derivatives in DT and continuous first-order t
derivatives in DT , and satisfies : 

L� - � + f( x ,t ,�) < 0 for ( x ,t ) E DT 
Blin� > 0 for ( x , t )  E ST 

� x ,O )  > uo ( x) for X E V. 
The terms lower solution and strict lower solution are defined 
analogously by reversing the inequalities in the above definitions . 
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By a solution of ( 5 )  we shall understand a classical solution u( x ,t )  
of ( 5 )  which is cont inuous in DT , has continuous first-order xi
derivatives in DT , continuous second-order xi-derivatives in DT and 
cont inuous first-order t-derivatives in DT . It follows from Theorem 1 

that if � is a strict upper solution for ( 5 )  and u a solut ion of  ( 5 ) , 

then � x ,t ) > u( x , t )  for all ( x ,t )  E DT . I f  f( x ,t ,u)  satisfies a 
uniform Lipschitz condition in u on any finite interval , and the 
coefficient d0 ( x , t )  of u in Blinu is strictly positive for all ( x ,t )  E ST , 
and if � is an upper solution for ( 5 )  and u a solution of ( 5 ) , then 
Theorem 2 shows that � x , t )  � u ( x ,t ) for all ( x , t )  E DT . Analogous 
results with reversed inequalit ies hold for lower solutions . 

Note that , in the case where f and d0 satisfy the hypotheses of 
Theorem 2 , we can use Theorem 2 to prove that the solution of ( 5 ) , if 
it exists , is unique ; if u1 and u2 are both solutions of ( 5 ) , then by 
Theorem 2 , u1 ( x ,t ) � u2 ( x , t )  and u2 ( x ,t ) � u1 ( x , t )  for all ( x ,t )  E DT , 
whence u1 ( x , t )  = u2 ( x ,t )  for all ( x ,t ) E DT . 

We shall now give a detailed proof of  Sattinger ' s  existence theorem 
for parabolic problems [ 32 , Theorem 2 . 3 . 2 ] to illustrate the method of 
monotone iteration , and also for the sake of completeness , s ince the 
proof is not given in detail by Sattinger , who proves in detail  the 
corresponding theorem for elliptic problems . We require first a number 
of  lemmas . 

LEMMA 1 :  If u0 satisfies the boundary condi tion, i . e .  if BlinuO = 0 
for t =  0 and a l l  X E oV , then for any g E Hn(DT ) ,  the prob lem 

ou Lu - ot = g ( x ,t )  for ( x , t )  E DT 



Blinu = 0 for ( x ,t ) E ST 
u( x , O )  = u0 ( x) for x E V 

2+a -
has a unique so lution u E H ( DT ) with 

llu ll�2+a) s: c1C I Ig ll�a) + l u0 1�2+a) ) 
T T 

where c1 does not depend en g or u0 • 
Proof: This is a special case of Theorem 5 . 3  on p . 320 of Ladyzenskaj a ,  
Solonnikov and Ural ' ceva(2 1] .  

LEMMA 2 :  Suppose q > 1 .  :or any h E  Lq( DT ) ,  the prob lem 

ou Lu - d-t = h ( x ,t ) for ( x ,t )  E DT 
B ; _ u  = 0 for ( x ,t ) E ST 
u( x , O ) = O  for x E V 

has a unique (not necessarily classical)  solution u E w2 ,q( DT ) wi th 

' . ( L ,q ) 11 1 1 J ,t: I IJT s; c2 h q , DT 
where c2 does not deper.� en h .  
Proof: This is a speci�� case of a theorem analogous to Theorem 9 . 1 on 
p . 341 of Ladyzenskaj a ,  � o lonnikov and Ural ' ceva[21] , b ut with a 
different boundary cor.ci� ion ; see p . 35 1  of the same reference . 

3 1  

Definition : We  say that V satisfies the cone condition if there e xists 
a fixed finite cone K such that , no matter at what point of V its 
vertex is p laced ,  the cone can be swung so that all of it is contained 
in V. 
LEMMA 3 :  If V satisfies the cone condition, if u E Ha(DT ) and also 

h n+2 d n+2 u E W 2 , q ( DT ) for some q such t at q > -2- an o < a < 2 - q' then 

l !u l l�a) 
s: c3 llu ll�2 ,q )  

T T 
where c3 does not depend on u .  

( . ) Proof: If  we write ((u)) J , q = I: I lD� Dsu ll D for j a non-
. 

DT 2r+ I s I = j  x q ' T 
negative integer , and also write 

r (nr 
04-2r- l s I< 2 t 

sup j u( x , t ) j 
( x , t ) EDT 

for "- > 0 
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then by the second part of Lemma 3 .  3 on p .  80 of Ladyzenskaj a ,  Solonn"ikov 
and Ural ' ceva(21)  we have that for any u E w2 ,q( DT ) :  

(u} 0.) � c O.) ((u)) ( 2 ,q) + c 0 . )  l !u l l DT 4 DT S 
. q ,DT 

• • • • • • • • • • • •  ( 6 )  

i f  0 � X < 2 - n�2 , where c�X) and c�X ) depend on n ,  q , T , X and the 
dimensions of the cone K ,  but not on u .  

Now l !u l l�a) = (u} �a) + sup _ lu( x , t )  I T T ( x ,t ) EDT 
� c(a.) ((u)) ( 2 , q) + c (a) llu l l + (u) ( O ) by ( 6 )  with X=a 4 DT S q , DT DT 
� c�a) ((u))�2 ,q) + c�a) !lu l l D + c�O ) ((u))�2 ,q) 

T q , T T 
+ c( O )  !lu l l  by (6 ) with X=O S q , DT 

{ ( a) ( O ) (a) where c3 = max c4 + c4 , cS 
( 0 )  + cs } does not depend on u .  

lemma follows since = � ((u)) ( j ,q ) 
j = O 0T 

Proof: l lfg ll�a) = 
T 

= !lu l l + ((u)) ( l ,q) + ((u)) ( 2  ,q ) . q , DT DT DT 

sup l f( x ,t ) g( x ,t )  I ( x ,  t ) EDT 

The 

+ sup 
(x , t ) , (y ,t )EDT x"#y . 

lf( x , t )g( x , t )  - f(y,t )g(y ,t ) I 
I X - y 1(1 

� sup l f( x , t )  I 
( x , t ) EDT 
+ 

+ 

sup 
( x ,  t ) , (y ,  t ) EDT xt-y 

sup 
(X ' t )  ' (X ' T) EDT tf. T  

+ lfC x ,t )g(x ,t )  - f( x ,T)g( x ,T)  I sup -
I la/2 ( x ,t ) , ( x , T)EDT t - T 

t #T  
sup j g( x ,t )  I 

( x ,t )EDT 
lfC x,t )g( x,t ) -f (x,t )g(y , t ) +f(x ,t )g(y , t ) -f(y, t )g(y, t ) j 

l x - Y la 
jf( x ,t )g( x ,t ) -f( x , t )g( x , T) +f( x ,t )g( x , T) -f( x , T )g( x , T) I 

l t - T la/2 



� sup l f( x , t )  I sup l g ( x , t )  I + 
( x ,t )EDT ( x , t )EDT 

sup 
( X '  t ) , ( y 't ) EDT 

x�y 

lg( x ,t ) - g(y,t ) l 
l x  -. Y la 

+ sup lg ( x ,t )  I sup 
( x ,t ) EDT ( x ,t ) , (y , t )EDT 

xt-y 
+ 

+ sup 
( X , t ) , ( X , T )  EDT 

t�T 
lf( x ,t ) - f(y,t ) l  

lx y ja 

sup 

lg( x ,t ) - g( x , T ) I 
j t  - T la/2 

( X ,  t ) , ( X , T) EDT 
ti-T 

jf( x ,t ) - f( x , T) I 
l t - T la/

2 

Definition : Given two functions f :DT x [a ,b] - R and u :DT - [a ,b] , we 
define the function f[u] :DT - R by 

f[u] ( x ,t )  = f( x ,t ,u( x ,t ) )  for all ( x , t )  E DT . 
LEMMA 5 :  ( a )  If the function f( x , t ,u) is uniformly Lipschitz in ( x , t )  
and in u for a s u s b and ( x , t )  E DT ' and if the function u( x ,t )  is 

such that u E Ha(DT ) and a s  u( x , t )  s b for a l l  ( x , t )  E DT ' then 

f[u] E Ha(DT ) . 
( b ) If, in addi tion to the hypotheses of ( a ) , we have that 

u( x , t )  = u ( x ,t )  = A ( x , t )  + TB ( x ,t )  is a linear function of the T 
parameter T, where 0 s T s 1 and A ,B E Ha(DT ) ,  then for all  T E [0 , 1 ] 
we have l lf[uT] 11��) � M1 + M2 ( I lA 1 1��) + I lB 11��) ) where M1 and M2 are 

independent of T and u • T 
( c ) If the firs t partia l  derivative f of f is uniformly u 

Lipschitz in ( x ,t )  and in u for a � u � b and ( x , t )  E DT ' and if 

u ,v E Ha(�) and a �  u( x , t ) ,v( x ,t )  s b for a l l  ( x ,t )  E DT , then 

l lf[u] - f[v) ll�a) s ( K1 + K2 1 lu l l�a\ K3 l lv l l�a) ) l lu-v l l�a) T T T T 
where K1 , K2 , K3 are independent of u and v . 

Proof: ( a ) l lf[uJ I I ( a) = sup l f[u] ( x ,t )  I DT ( x ,t ) EDT 

3 3  

+ sup jf[u]( x , t ) -f[u](y, t )  I + 
( x , t ) , ( y , t ) EDT I x - y I a 

sup 
( x , t )  , ( x , T ) EDT 

lf[u]( x ,t ) -f[u]( x , T ) I 
i t - T la/

2 
x#y t i- �\ 



::s: sup tf( x ,t ,u( x ,t ) )  I 
( x ,  t ) EDT 

3 4 

+ sup lf( x ,t ,u( x ,t ) ) -f( y ,t ,u( x ,t ) ) l+ lf(y ,t ,u( x ,t ) ) �f(y,t ,u(y,t ) ) j 
( x , t ) , (y ,t )EDT l x - y ja 

+ 
x#y 
up jf( x,t ,u( x ,t ) ) -f( x , T ,U( x ,t ) ) j+ lf( x,T ,U( X,t ) ) -f( x , T ,U( X , T) ) j  s a/2 • 

( x ,t ) , ( x , T)EDT l t  - T l  
t #T 

Because of the uniform Lipschitz conditions sat isfied by f ,  we have that 
there exist const ants K1 and K2 such that : 
llf[uJ II�a) ::s: sup _ l f( x ,t , u( x , t ) )  I T ( x ,  t )EDT 

+ 

+ 

sup 
( x ,  t ) , ( y , t )EDT 

x#y 
sup 

( x ,  t ) , ( x , T)EDT 
tiT 

K1 1 < x ,t )  - (y ,t )  I + K2 1 uC x , t ) - u(y , t ) I 
l x  - Y la 

K1 1 ( X ,  t )  - ( x , T )  I +  K2 1 uC x ,t ) - u( x , T ) I 

::s: sup I f( x ,  t ,  u( x ,  t ) )  I 
< x ,  t )ED.,.. 

I 1 1 -a + sup_ K1 x - y 
x ,yEV J. x#y 

a 1- -
+ sup K1 1 t  - T I 

2 
O::s:t , T� 

t#T 
S ince we are assuming throughout that 0 < a < 1 , it follows that 
llf[u] ���a) is finite if llu ll�a) is finite , which proves ( a ) . T T 

(b )  This follows from the above argument ,  since 
( i )  sup _ l fC x ,t , uT( x ,t ) ) l  ::s: sup_ l f( x , t ,u) j ,  independent of T 

( x ,  t ) EDT ( x ,  t )EDT 

and u . T 
( ii )  llu u<a) 

T DT 
if 0 ::S: T ::S: 1 . 

a ::s: u ::s: b 

( c )  We have that , for all ( x ,t ) E DT , 
f[u] ( x ,t ) - f(v] ( x ,t) = f( x ,t ,u( x , t ) ) - f( x ,t ,v( x ,t ) ) -- Jl f ( x ,t ,u( x ,t ) +T{u( x ,t ) -v( x ,t ) ) ) ( u( x ,t ) -v( x ,t ) ) dT 

0 u 
1 

= J {f [u + T( u-v) ] ( u-v) } ( x ,t ) dT 
0 u 



and also that by parts ( a ) and ( b ) , 
l lf)u + T( u-v) J I I��) :s: M1 + M2 C I Iu l l��) + l lu-v ll��) ) 

:s: K1 + K2 llu l l�a) + K3 llv ll�a) 
T T 

where K1 , K2 , K3 are independent of u and v ,  and of ,- . 
1 

:. l if[u] - f[v] l l�a) 
= IIJ f [u + T( u-v) ] C  u-v)dT II�a) 

T 0 u T 
:s: J

1 
0 

l lfu[u + T( u-v) J I I�a) l lu-v ll�a) dT T T us ing 

:s: ( K1 + K2 llu l l�a
) ( ) J1 + K3 l lv i iDCI ) 1 1  I ' ( CI) jU-V ID dT T T 0 T 

Lemma 4 

THEOREM 3 : For the initial-boundary value prob lem ( 5 ) , �e suppose,  in 

addition to the assumptions already made, that : 

( i ) Blinuo = 0 for t = 0 and all X E oV ; 
( ii )  V satisfies the cone condition ; 

( ii i ) the coeffi cient d0 ( x , t )  of u in Blinu is stri ctly positive for 

all  ( x ,t )  E ST ; 
( iv )  there exist upper and lower solutions q> and � for ( 5 ) , with 

Hx , t )  :s: cp(x , t ) for all ( x ,t ) E DT , and � ,q> E Ha(DT ) ; 
( v ) f satisfies a uniform Lipschitz condi tion in u on any finite u
interval, for ( x ,t )  E DT , and in ( x ,t )  on DT , for 

inf � ( x , t ) :s: u s 
( x , t ) EDT 

sup cp( x ,  t )  ; 
(X , t )EDT 

( vi )  the partial derivative f is uniformly Lipschitz in ( x ,t )  and in u 
u for inf vc x ,t )  :s: u :s: 

( x , t )EDT 
sup q>( x ,t )  and ( x , t )  E DT . 

( x ,t ) ED".r 
Then there exists a unique so lution u E H2+CI(DT ) of ( 5 )  such that for 

all  ( x ,t )  E DT , V ( x ,t )  :s: u( x , t )  :s: cp(x ,t ) . 
Proof: By hypothesis ( vi ) , fu is bounded for ( x ,t )  E DT and 

inf V ( x , t )  :s: u :s: sup cp( x ,t ) . Fix 0 such that f +c( x ,t ) +O > 0 
( x ,t )EDT ( x , t )EDT 

u 

for all ( x , t )  E DT and inf v c x ,t )  :s: u :s: sup q>( x ,t ) . 
( x ,t )EDT ( x ,t )EDT 
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For any u E Ha(DT ) such that inf tjr ( x , t )  � u( x ,t )  � sup cp( x ,t )  
( x ,  t ) EDT ( x ,  t ) EDT 

for all ( x , t )  
( L  - c( x , t )  -

e � ,  we define Tu by saying that V = Tu if and only if : 
ov O)v - ot = - {f( x ,t ,u ) + c ( x ,t )u + nu} for ( x ,t )  E DT 

Blinv = 0 for ( x , t )  E ST 
v( x , O )  = uo ( x) for X e V. 

Using hypothesis ( v) , it follows by Lemmas 4 ,  S ( a ) and 1 that Tu is 
uniquely defined for each u as specified above , and Tu E H2+a( DT ) .  
( a )  We show first that T is monotone , in the sense that if 
u( x ,t )  � v( x , t ) for all ( x ,t )  E DT ' and Tu and 
( Tu ) ( x , t )  � ( Tv ) ( x ,t ) for all ( x ,t ) E DT . 

Tv exist , then 

Suppose then that inf tjr( x ,  t )  � u( x ,  t )  
( x , t )EDT 

� v( x ,t )  � sup �( x ,t )  
( x ,t )EDT 

for all ( x , t )  E DT , and u ,v E Ha(�) . Then : 
( L  c( x ,t )  O)Tu 0 if< Tu) - - (f( x ,t ,u ) + c( x , t )u + Ou} for ( X ,  t )  E DT ; 

( L  - c ( x ,t ) O)Tv - � Tv ) = - {f( x ,t ,v) + c ( x ,t )v + Ov} for ( x ,  t )  E DT ; 
B 1 .  ( Tu )  = B1 . ( Tv )  = 0 for ( x ,  t )  E ST ; 1n 1n 
( Tu ) ( x , O )  = ( Tv) ( x , O )  = uo ( x) for X E V. 

Put w = Tv - Tu . Then : 
Ow ( L  - c( x ,t ) - O)w - ot = - [f( x ,t ,v )  + c ( x , t ) v  + Ov 

- {f( x ,t ,u) + c ( x , t )u + nu} ]  
� 0 for ( x , t )  E DT ' s ince , by the choice o f  0 ,  

f( x ,t ,u) + c ( x ,t ) u  + nu i s  an increasing function o f  u for ( x ,t )  E DT 
and inf tjf ( x , t )  � u � 

( x ,t )EDT 
Also , 

sup c:p( x ,t ) . 
( x ,  t )EDT 

B1 . w = 0 1n 
w( x , O )  = 0 for x E V. 

It follows by Theorem 2 , taking u1 ( x ,t )  • 0 ,  u2 C x ,t ) = w( x ,t )  in the 
notation of that theorem , that w ( x , t )  � 0 for all ( x , t )  E DT . 

i . e .  ( Tv ) ( x ,t ) � ( Tu) ( x ,t )  for all ( x ,t )  E DT � as required .  
( b )  Now put u1 = T�. We prove first that u1 ( x ,t ) � cp(x ,t )  for all 
( x ,t ) e DT . We have : ou1 ( L  - c( x , t )  - O)u1 - at = - {f( x ,t ,�) + c ( x ,t )q> + Oq> }  for ( x ,t )  E DT ; 

B1i�u1 = 0 for ( x , t )  E - ST ; 



ul ( x , O )  = uo ( x) for X E V. 

( L  c ( x , t )  O) ( u1 - cp) - ft< u1 - cp) 
oul � = ( L  - c ( x ,t )  O) u1 - � - { C L - c ( x , t )  - O)cp - �) 

- - { f( x ,t ,cp) + c ( x ,t )cp + O cp } - {Lcp - t¥J + c ( x ,t )cp + O cp  

� 0 

Also : 

{Lcp + f( x ,t ,cp) - trJ 
for ( x ,t ) E DT since cp is an upper solution for ( 5 ). 

-B1 . cp � 0 l.n 
ul ( x , O ) - cp( x , O )  = uo ( x ) - cp( x , O )  � 0 for X E V. 

Applying Theorem 2 ,  we obtain u1 ( x , t )  - cp( x ,t )  � 0 for all ( x , t )  E DT , 
as required .  

S imilarly , i f  we put v1 = T � , then v1 ( x ,t )  � $ ( x ,t )  for all 
( x , t )  E DT . Furthermore , since w c x , t )  � cp( x ,t )  for all ( x ,t ) E DT ' it 
follows by the monotone property of T that T $  s Tcp on DT , 
i . e . v1 ( x ,t ) � u1 ( x ,t )  for all ( x ,t ) E DT . So we have : 

$ s v1 s u1 � cp on DT . 
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2 +a - a -Since u1 E H  ( DT ) c H ( DT ) ' we may de fine u2 = Tu1 . S ince u1 s cp 
on DT ' we have Tu1 � Tcp on DT ' i . e .  u2 � u1 on DT . S imilarly , if  we 

define v2 = Tv1 , then v2 � v1 on DT . S ince v1 s u1 on DT , it follows 

also that Tv1 � Tu1 on DT ' i . e .  v2 � u2 on DT . So we have : 

W � v1 � v2 � u2 � u1 � cp on DT . 

Continuing thus , we obtain two sequences {u } ,  {v ) ,  with n n 
2+a -un ,vn E H  ( DT ) for each n ,  and such that 

W s v1 � v2 � • . . .  � u2 � u1 s cp on . DT . 

( c )  S ince the sequences {u ) and {v ) are monotone and n n 
converge pointwise . In particular , {u ) does so . Let n 

bounded , 

u( x , t ) = lim u ( x ,  t )  for ( x ,  t )  E DT . S ince , by hypothesis ( v ) , n n--
is continuous in u over the relevant u-interval , the sequence 

b oth 

f ( x ,t ,u )  

{f( x ,t ,u ) + c ( x ,t )u + Ou )  converges pointwise to  f( x ,t , u ) +c ( x , t ) u+ oU, n n n 
for each ( x ,t ) E DT . Since $ s un ,u  � cp on DT , it follows by 

Lebesgue ' s  dominated convergence theorem that , for any q > 1 ,  



i . e .  

- } 1/q 
j f( x ,t , u ) +c ( x ,t ) u +Ou - {f( x , t , u ) +c ( x , t ) u+oU) Iq dx dt - o n n n 

as n - CD ,  

3 8  

Thus the sequence {f[u ) + cu + Ou ) converges in the Lq( DT ) norm , n n n 
this sequence is a Cauchy sequence in Lq( DT ) .  Hence , i f  we write 

h ( x ,t )  = f( x , t , u ( x , t ) ) + c ( x ,t ) u  ( x ,t )  + Ou ( x ,t )  m ,n m m m 
- {f( x , t , u ( x ,t ) )  + c ( x , t ) u  ( x ,t ) + Ou ( x ,t ) ) for all n n n 

(X, t )  E DT 
then given any e > 0 ,  there exists a positive integer Ne such that 

m ,n :<!: Ne � l ih I ! 0 < e . m ,n q , T 
Now let w = Tu m ,n m Tun = um+l - un+i '  then wm ,n E H2+a(DT ) for 

each m ,  n .  Further , w satisfies m ,n 
( L  - c ( x ,t )  - O)w m ,n 

0 - �t w ) = o m ,n - h ( x ,t ) m , n  for ( x , t )  E DT 
B1 . w = 0 for ( x ,t ) E ST �n m ,n 

w ( x , O )  = 0 for x E V .  m,n 
Thus , by Lemma 2 ,  l lw 1 1 < 2 ,q ) � c2 i ih 1 1 D where c2 does not m ,n DT m ,n q , T 

depend on h m ,n S · h h n+2 d �nee we may choose q sue t at q > --2- an 
n+2 0 < a < 2 - --- ( where n here is the dimension of V ) , it then follows by q 

Lemma 3 that llw l l ( a ) 
m , n  DT 

:s: c3c2 ljh 11 D m ,n q , T 
where c3 does not depend on h m ,n 

m ,n :<!: Ne � l lw l l ( a) 
m ,n DT 

� l lum+i - un+l l l��) < c3c2e .  

Hence the sequence {u ) converges in n the Ha( DT ) norm , so that u E Ha(DT ) 
and llu - u l l ( a) - 0 as n - Cl) ,  n DT 

Thus , by hypothesis ( vi )  and Lemma S ( c ) , 

llf[un) - f[u] l l�a) 
- o as n - Cl) ,  

T 
I f  we now let w = Tu - Tu , then w satisfies n n n 

- 0 -( L  - c ( x , t )  - O)wn - �wn ) 
= - [f( x ,t , un ) + c( x ,t ) un + Oun - {f ( x ,t ,u) +c( x ,t ) u+oU}] for ( x ,t )  E DT 

Blinwn = o for ( x ,t ) E ST 
w ( x , O )  = 0 for x E V. n 



·"' 

It follows by hypothesis ( v) and Lemmas 4 ,  5 ( a ) and 1 that 
w E H2 +<l(D ) and n T 

IIW 11 ( 2+a) :s: c llf(u ] n DT 1 n - f[u] + c ( u  -u) + O( u  -u) IID( a) n n T 

Thus I ITu n 

- 0 as n - CD ,  

n .... Q) ,  

2+a - - 2+a -Tun = un+l E H ( DT ) ;  and Tun converges to Tu in H ( DT ) ,  so that 
(Tun ) ( x ,t )  certainly converges uniformly to (Tu) ( x , t )  on DT . 

u( x ,t )  = lim un ( x , t )  = lim ( Tun_1 ) ( x ,t )  = (Tu) ( x , t )  
n-o<l) n-oa> 

- 2+a. -It follows that u E H  ( DT ) .  Also , Tu sat isfies 
0 -( L  - c ( x , t )  - O)Tu - �Tu) = - {f( x ,t ,u ) + c ( x , t ) u  + oU }  

for all 
( x , t )  E DT . 

for ( x , t )  E DT 
Blin ( Tu ) = o for ( x , t )  E sT 
(Tu) ( x , O )  = u0 ( x )  for x E V. 
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Since Tu = u, we have at once that u is a solution of ( 5 ) , which proves 
the theorem ; similarly one can show that lim vn = v E H2+<l(DT ) is a 

n--
solution of ( 5 ) . It follows by the uniqueness of the solut ion that 
u = v on DT . 

We next consider the ellipt ic boundary value problem 
Lu + �f( x ,u )  = 0 for x E V } � • • • • • • • • • • • • • • • • • • •  ( 7 )  

Bl . u = 0 for X E oV �n 
A where L and Blin are as defined in Ch . 3 , with the additional assumpt ions 

that a . . = a . . E ca.(Y), b�  E c<ICVJ and c E Ca.(Y); also d0 and d1 are of �] J � ... 
1+a. . A class C ( oV )  and f is continuous for x E V and at least some u-

interval . 
We call � x) an upper so lution for ( 7 ) if � is continuous in V, 

has continuous first-order x . -derivative s  in V, cont inuous second-order � 
x . -derivatives in V ,  and sat isfies : � 



£q, + f( x ,�) � 0 for x E V 
Bl . � � 0 for X E oV . �n 

The terms striat upper so lution , lower solution and s triat lower 

so lution are defined analogously , as for problem ( 5 ) , and a so lution 

4U 

of ( 7 ) is understood to be a solution in a s imilar sense as for problem 
( 5 ) .  

It is  of interest to observe that comparison theorems analogous to 
Theorems 1 and 2 do not hold in this cas e .  For example , consider the 

.. d2u .. .. problem for which Lu is --2-, B1. u is u ,  f( x ,u )  is 8u+1 and V is 
dx �n 

{x : - 1  < x < 1 } .  = 8x2 for all x E V. 

= 32x4 

= 2 ( 4/-1 ) 2 + 6 > 0 for all 
f:u1 f( x ,u1 ) 

.. f ( x ,u2 ) Thus + > Lu2 + for all X E V .  Also , when X 
.. ,. 

i . e .  X = ±1 , then B l . u1 = u1 = 7 ,  B linu2 = u2 = 8 .  Thus �n -

x .  
E ov , 

Blinu1 < Blinu2 for all X E oV. I f  theorems analogous to Theorems 1 

and 2 held , we would expect at least that u1 ( x ) � u2 ( x) for all x E V. 

However , when x = 0 , u1 ( = 3 )  > u2 ( =0 ) ,  so theorems analogous to Theorems 

1 and 2 do not hold in this case . 
Hence , if there exist upper and lower solutions � and � for ( 7 ) , 

then in contrast to the case of  the parabolic problem ( 5 ) ,  we cannot 
assert that every solution u of ( 7 )  must lie between � and � on V. 
However , Sattinger ' s  method of monotone iteration is still applicable , 
and shows the existence of at least one solut ion u of ( 7 )  lying 
between � and � on V. In this connection , though , it is interesting 
to note that it has been shown ( e . g . by  Parter[27) ) that in  cert ain 
special cases there exist solutions of ( 7 ) whi ch cannot be obtained by 
monotone iteration procedures .  Such solutions are unstable in the 
sense of  Keller and Cohen[ 19 )  ( see Ch . 4 ) . A full discussion of  these 
points is given by Amann[3) . 

We give now Sattinger ' s  existence theorem[32 , Theorem 2 . 3 . 1 )  for 
elliptic problems . The proof is s imilar to that of Theorem 3 and so 
is not given in detail ,  but an outline of  the procedure is given , as 
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this will be re ferred to  in  the sequel .  
THEOREM 4 :  For the boundary value prob lem ( 7 ) , we suppose, in addition 

to the assumptions already made, that : 

( i )  there exist upper and lower so lutions � and � for ( 7 ) ,  with 

�( x) s <$( x)  for all  X e V and � ,c$ e c2 +<Xc V) ; 
( ii )  f and its first partial  de rivative f are both uniformly Lipschitz u 
-z-n x and in u for inf *( x ) s u s sup c$( x) and x E V. 

xEV xEV 

Then there exists a so lution u E c 2 +a( V) of ( 7 ) such that for a l l  x E V, 
$( x ) s u(x )  s: c$( x) . 
Proof: The method is s imilar to that used  in the proof of Theorem 3 .  
Fix 0 > 0 such that f + c ( x )  + 0 > o for inf $ C x ) s: u s: sup c$( x )  and u xEV xEV 

x E V .  Then define Tu by say ing that v = Tu if and only if :  
( L  - c (x )  - O) v = - {f ( x ,u) + c( x ) u  + Ou} for X E V ;  

... 

Bl . V = 0 for X E oV . l.n 
As in the proof of Theorem 3 ,  define sequences {u } and {v J so that n n 
$ s: v1 s: v2 s: . . . . s: u

2 
s: u1 s c$ on v, and un ,vr. E c 2 +a( v) for all 

... 

n � 1 .  It may then be shown that lim u = u and lim v = v are both n n n....., 
solutions of ( 7 ) , thus proving the theorem ; note that in contrast to 

... ... 

Theorem 3 we do not necessarily have u = v on V in this case . 

Asymptotic Behaviour of Solutions : 

In order to apply the two preceding existence theorems to the 
problem of determining the connection between the boundedness over all 
time of the solution of ( 5 )  and the existence of positive solutions 
of ( 7 ) ,  we require next two theorems concerning the asymptotic 
behaviour of solutions of linear systems . These are analogous to 
theorems proved by Friedman [14 ,  Ch . 6 ] , but with different boundary 
conditions . 

THEOREM 5 :  Suppose that the coefficients a . .  , b . ,  c in Lu are 
l.J l. 

uniformly continuous and bounded in D, the coefficients d0 and d1 in 

Blin u are uniformly continuous and bounded in S ,  and for some 1-11 > 0 ,  
d0 ( x , t )  � 1-lt for a l l  ( x ,t ) E S .  Suppose further that u( x , t )  satisfies 

the differential equation 
ou 

Lu - dt = g( x.1 t )  for ( x ,  t )  E D 



where g is continuous on D, together with the boundary condi tion 

B 1 .  u = h ( x , t )  for ( x , t )  E S �n 
where h is continuous on S . If lim g( x , t ) = 0 ,  lim h ( x ,t )  = 0 and 

t--
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lim c ( x ,t )  � 0 uniformly on V, oV and V respective ly, then lim u ( x . t )  = 0 
t-- t_, 
uniformly on V .  

' R AX1 
Proof: Consider the function � x) = e� - e ( x1 being the first 
component of x) , where R is any positive number satisfying R � 2 x1 for 
all x E V, and A is a posit ive constant t o  be determined later . Then 
cp( x )  satisfies : 

2 AX1 L� = - a11 C x , t ) X  e 
AX1 AR AX1 - b 1 ( x ,  t ) Ae + c ( x ,  t )  ( e - e ) . 

Independent ly of the value of R ,  we choose A sufficiently large 

so that 
AX1 AR AX1 Lcp( x)  < - 2e + c ( x ,t ) ( e  - e ) , for ( x ,t )  E D. S in ce 

lim c ( x ,t )  s o , it  follows that for some a suffi ciently large , 

Letting 9 

XR AX1 AX1 c ( x ,t ) ( e  - e ) < e for t > cr ,  and all X E V. 
AX1 = inf e 

xEV 
we then have : 

Lcp( x)  < -e for t > a and all X E V . . • • • • • • . •  ( 8 )  

Also , B1 .  cp( x) �n 
> � for all ( x ,t ) E D, for some pos it ive � ,  if R is  

sufficiently large . Choose R so that this  is the case . 
Now let 9 0 = in£ cp( x )  , e 1 = suE_ cp( x )  . Cons id er the funct ion 

xEV xEV 

W ( x ,t )  = e �
e
x) + e cp( x) + A  cp

e
( x )  e-s ( t-cr) for t >  0 � cr 1-12 0 

where e ,  s are positive constants and A =  sup l uC x ,cr ) l . 
xEV 

By ( 8 )  : L W( x ,t )  < - e - � -
1-"2 

eA -s < t -o) 9 e , 
0 

for all x E V .  

ow -Also , ot - - e;Acp( x) -s( t-o) 
e e > -

sAe 1 -s< t -cr) for all x E V .  I f  we -- e e o 

t ake s = j-, then 
1 

Clearly : 

0 

�A e -� ( t-cr) , and so : 
0 

L$ ( x , t )  - ov < -e  for t > a  and x E V ot . . . . . .  ( 9 ) 
$ ( x , cr )  > A  for x E V . . . . . . . . . • • • • . . . .  ( 1 0 ) 



Also : 
e� A� -�( t-a) B1 . ljl ( x , t )  > -- + e + -- e m e e 0 

> e for all X E oV , t > a  . . . . . . . . . . . . .  ( 1 1 )  
By hypothes is , for any e > 0 ,  there exists a( e )  such that 

4 3  

j g ( x ,t ) j < e and j h ( x ,t ) j < e for t >  a ;  we may assume a( e )  � O· By two 
applications of Theorem 1 ,  us ing ( 9 ) , ( 10 ) and ( 1 1 ) , we have 
u( x , t )  < ljl ( x , t )  and -u( x ,t )  < ljl( x ,t )  for ( x ,t ) E V and t � a .  

j u( x , t ) j < �( x , t )  for ( x ,t )  E V and t � a. 
For ( x ,t ) E V and t � a , we have : 

j u( x , t )  l � A1e + A2e - � ( t -a) , A 1 and A2 pos itive constants ,  
A 1 depending only on � 

This completes the proof of Theorem 5 .  

For the next theorem , we need the following standard result ( see , 
for example , the book by Ladyzenskaj a and Ural ' ceva[2 2 , pp . 1 37 , 1 3 8) ) .  
LEMMA : Suppose that the operators L and B1 . are as defined in Ch . 3, �n 
with the addi tional assumptions that : 

( i )  a . .  = a  . . E Ca( V) ,  b .  E Ca(V) ,  c E Ca( V) and c ( x )  � 0 for all  X E V; �J J � � 

( ii )  d0 and d1 are of class c1+a( oV ) , and there exists �1 > o such that 
.. 

do ( x) � �1 for all  X E oV . 

Then for any g E Ca(V) , the boundary value prob lem 

Lv = g( x )  for x E V 
.. 

Bl . V = 0 for X E oV 
�n 

has a unique s olution v E c2 +a(V) . Thus, certainly, v and a l l  its 

firs t and second partial derivatives are bounded in V. 

THEORE M 6 :  Suppose that the operators L and Blin satisfy the hypotheses 

of Theorem 5, and the operators L and B1 . satisfy the hypotheses of 
�n 

the Lemma. Suppose also that 

c( x ,t ) - c( x ) , g( x ,t ) - g ( x ) , 

a . .  ( x ,t ) - a . . ( x) , b . ( x , t ) - b . ( x) ,  �J �J � � 

d0 ( x ,t )  - d
0 ( x) and d1 ( x ,t )  - d

1 ( x) as 

t - CD, uniformly in V; here g is continuous on D and g E Ca(Y) . 
If u( x , t )  is a so lution of the boundary value prob lem 



ou Lu - ot = g( X, t )  for (X, t )  E D 

B1 . u = 0 for ( x , t )  E S �n 

} 

and v( x )  is the unique so lution of the boundary value prob lem 
Lv = g ( x) for x E V 
'"' '  

Bl . V = 0 �n for X E oV 

then u( x , t ) - v( x)  as t - � , uniformly in V. 
} 

Proof: Put w ( x , t )  = u( x ,t )  - v( x) , for ( x , t )  E D. Then : 
OW ou C L-L ) v  - '"' Lw - -at = Lu - dt - LV 

= g(  X ,  t )  - g( x) C L-L )v  for ( x, t )  E 
'"' 

B . w = - B V = ( Bl .  - B1 . ) v  for ( x, t )  E l�n l in �n �n 

D .  
s .  

By virtue of  the hypotheses of Theorem 6 and the boundedness  of  v and 
its first and second part ial derivat ives on V ( see the Lemma ) , we may 
apply Theorem 5 and conc�ude that lim w( x , t )  = 0 ,  un iformly on V ,  

t--
which proves Theorem 6 .  

We are now in a pos i� ion to make a first statement about the 
re lat ionship between s olut ions of the parabolic problem ( 5 )  and the 
e llipt ic  prob lem ( 7 ) . We shall as sume for the purposes of this 
discus sion that the operators L ,  £ , B1 . and B

1 . sat is fy  the �n �n 
hypotheses of Theorems 5 and 6 in addition to the conditions imposed 
when des cribing problems ( 5 )  and ( 7 ) . We as sume also that 
f( x ,t , u )  - f( x ,u)  as t - � ,  uniformly in x for x E V and in u on any 
bounded u- interval . 

Suppose that we have upper and lower solut ions cp( x , t )  and 1jl ( x ,t )  
for ( 5 ) , for all T > 0 ,  and upper and lower solutions qx x )  and * ( x) 
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for ( 7 ) , s uch that cp( x ,t )  - qx x) and 1jl ( x ,t )  - *( x) as  t - � ,  uniformly 
for x E V .  Suppose also that the condit ions for the monotone iteration 
theorems , Theorems 3 and 4, are s at isfied . It  is clear from the 

. 

constructions used  in these theorems ( applied for arb itrarily large T )  
that we can , us ing induct ion , apply Theorem 6 to the function pairs 
u ( x , t ) , u ( x ) and v ( x ,t ) , v ( x ) , and deduce that for all positive n n n n 
integers n :  

u ( x , t )  - u ( x ) } n n as t - �, uniformly for x E V. 
v ( x ,t ) - v ( x ) n n 

We now suppose further that u( x) is the only solut ion of ( 7 )  lying 
.\ 



between �( x) _  and 4( x) . This would be the case , for example , if the 
lower solution �( x )  were positive and the hypotheses for result ( vi i i )  

4 5 

of Keller and Cohen ( s ee Ch . 4 ) were satisfied (this means , in particular , 
that f ( x , u )  would be  concave in u ) . 

S ince u( x) is the only solut ion of ( 7 ) between � ( x )  and 4( x) , and 
the sequences {u ( x) }  and {v ( x) }  both converge uniformly to solut ions n n 
of ( 7 ) lying between � (x )  and qx x) by Theorem 4 ,  it follows that 
u ( x )  - u(x )  and V ( x) - u( x )  as n - ., uniformly for X E V, and we n n 
know also that V ( x) � u( x) � u ( x) for all X E V and all positive n n 
integers n .  

Thus , given any e > 0 , there exists a positive integer N( e ) ,  
independent of X E V, such that l un( x) - u( x ) l < % and l vn ( x) - u( x )  I < � 
whenever n � N( e ) .  Further ,  there exists T( e ,N( e ) )  independent of 
X E V such that 1 �1 ( x ,t ) - � ( x ) I < � and l vN( x ,t ) - vN( x) l  < � whenever 
t > T( e ,N ( e ) ) . 

l �< x ,t )  u( x )  I < e and l vN( x ,t ) - u( x)  I < e whenever 
t > -r( e ,N ( e ) ) . 

u( x )  - e < vN( x ,t ) � u( x , t )  � �( x ,t ) < u( x)  + e whenever 
t > T( e ,N ( e ) )  

where u is the solution of ( 5 )  obtained in the proof of Theorem 3 ;  
note that by applying Theorem 3 for arbitrarily large T ,  we can show 
that u( x ,t )  exists for all t � o .  

u( x , t )  - u ( x) as t - � , uniformly for X E V. 
Thus , under the given conditions , the existence of exactly one solution 
to the steady-state problem ( 7 ) lying between � (x )  and � x) imp lies  
that , for any init ial value u0 ( x) lying between �( x , O )  and �( x , O ) ,  the 
unique solution u( x , t )  of ( 5 )  ( for arbitrarily large T )  will tend to 
the steady-state solution u( x )  of ( 7 ) as t - � ,  uniformly for X E V .  

Let us now consider the special case where the coefficients and 
the function f in the parabolic problem are independent of t ,  so  that 
we are concerned with the problem 

... ou ... 
Lu - � + f( x ,u )  = 0 for ( x , t )  E D ... 

Blinu = 0 for ( x ,t )  E S 

u( x ,O )  = u0 ( x) for x E V 

• • • • • • • •  ( 1 2 ) 

As a particular case of the preceding discussion , we obtain the 
following theorem . 



THEOREM 7 :  Suppose that 

( i )  the operators L and B1 . satisfy the hypotheses of Theo�m 6 in 1n 
addi tion to the condi tions imposed when describing prob lem ( 7 ) ; 
( ii )  the initial value u0 ( x) in ( 12 )  is non-negative for all  x E V, 
and there exis ts a non-negative solution � of ( 7 ) such that 

�( x )  � uo ( x) � 0 for all  X E V; 
( ii i )  there is no so lution u of ( 7 ) , different from �, such that 

0 s u ( x) s �( x )  for aLL  x E V; 
( iv )  f( x , O )  � 0 for all x E V ;  
( v ) L ,  Blin ' f ,  u0 and V satisfy the hypotheses of the monotone 

iteration theorems, Theorems J and 4 .  
Then there exists a unique solution u o f  ( 12 )  such that u( x , t )  - �( x )  
as t - "" •  uniformly for x E V. 
Proof: Bearing in mind our assumptions that �( x )  � u0 ( x )  � 0 for all 
x E V and f ( x , O )  � 0 for all x E V ,  it is obvious that �( x )  is an 
upper solution and 0 a lower solution for both ( 7 ) and ( 12 ) . The 
theorem then follows from the preceding discussion . 
Note : A crucial hypothes is in Theorem 7 is the existence of a minimal 
non-negative solution � of ( 7 ) ; as dis cussed in Ch . 4 ,  such a minimal 
non-negative solution does  exist under a wide range of conditions . 

Let us now try to relate the preceding material to the thermal 
explosion problem with which we began . Cons ider the time-dependent 
problem 

"' ou ;\f( x ,u )  Lu - - +  = 0 for ( x , t )  E D ot 
"' 
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B1 . u = 0 for ( x ,  t )  E s . • • • . • • •  ( 1 3 )  1n 
u( x , O ) = 0 for x E V  

and its related steady-state problem 
Lu + .. :\f( x ,u)  = 0 for x E V } 

E � • • • • • • • • • • • • • •  ( 14 )  B1 • u = 0 for x uV 
A A 1n 

where L ,  B1 . , f and V are assumed t o  satisfy the hypotheses  of 1n 
Theorem 7 .  These  problems differ from problems ( 12 )  and ( 7 )  only in 
the re-introduction of  the parameter A and the fact that u0 = 0 ,  and 
represent a modest generalisation of the original heat-generation 
problem . 

If  we adopt the orthodox approach and equate the existence of 
pos itive steady-state solutions with the absence of  a thermal exp losion , 
then it is natural to define the critical parameter A* for the pair of 
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problems ( 1 3 ) , ( 14 )  to be the least upper bound of the set of positive 
values of � for which positive solutions of ( 14 )  exist ( if the s et is not 
bounded above , we · can take � :': to be infinite ) • This conforms with the 
notation used by Keller and Cohen[19] and is also the definition used by 
Boddington , Gray and Harvey[4] . As discus sed in Ch . 4 ,  if  we assume that 
L and B1 . are of the rather special form described in that chapter , it 

�n 
is known that if f is continuous , positive , and strictly increasing in u ,  
for x E V and u � 0 ( these being hypotheses  H0 , H1 and H2 o f  Keller and 
Cohen [ 19 ] ) , then pos itive steady-state solutions , if they exist at all , 
occur for all � in( 0 ,�:':) and for no � greater than �:': . Thus , by the 
orthodox criterion , "explos ion" occurs if A > �:': but not if 0 < A < Vi . 

Indeed , under the same conditions on f ,  it is known , as has been 
remarked ,  that a minimal positive solution of ( 14 )  exists if 0 < A < A:':. 
It then follows from Theorem 7 that if 0 < A < V: , ( 1 3 )  has a unique 
solution u( x , t )  which is bounded for t � 0 and tends to the minimal 
positive solution of ( 14 )  as t - � . 

What of the reverse implication? Suppose we know that ( 1 3 )  has a 
solution u( x , t ) which is bounded for t � 0 ; does it tend to a solution 
of ( 14 )  as t - m? To deal with this question , we require two theorems 
analogous to Theorems 2 . 5 . 1  and 2 . 6 . 1  of Sattinger[32] , but with 
different boundary conditions . The proofs are included for the s ake 
of completeness ; they are analogous to those used by Sattinger . 

.. 

THEOREM 8 :  Suppose that there exists a lower solution � ( x )  for the 

e l liptic prob lem ( 7 ) , and a so lution u( x ,t )  of the particular parabo lic 

prob lem ( 12 )  with u0 = � .  Suppose also that the coefficient d0 ( x) in 
Bl . is strictly positive for all X E oV , and the function f( x , u )  

�n 
satisfies a uniform Lipschitz condition in u on any finite u-interval,  

and has partial derivative f continuous for all  x E V and all  real u .  
Th ou u 

en et �  0 for all  ( x , t )  E D. 
u( x ,t+h )  - u( x , t )  Proof : For any ( x ,t )  E D, put wh( x ,t ) = h where h > 0 . 

Then if ( x ,t )  E D, we have : 

Now 
.. 

.. f( x ,u( x ,t+h ) ) - f( x ,u( x ,t ) )  owh -Lwh + h 
- Tt"" - 0 • 

.. f( x ,a )  Jb 
f( X ,b ) = f ( x ,u ) du u 

a 

J1 
.. = f (X, Tb+ ( 1-T )a ) (b-a )dT . u 0 



Let b = u ( x ,t+h )  and a =  u( x ,t ) , where ( x , t )  E D .  Then : 
f( x ,u( x ,t+h ) )  - f( x ,u( x ,t ) )  = � < t h )  ( ) h -:. x ,  , wh x,  t 

where �( x , t ,h ) 

satisfies : 

Also : 

1 
= J f ( x ,  'TU( x , t+h ) + ( 1--r )u( x ,t ) ) dt . 

0 
u 

.. awh Lwh + swh - Tt = 0 for ( X ,  t )  E D .  

B
linwh = �Blinu( x ,t+h )  - Blinu( x ,t ) } 

= 0 for ( x , t )  E s . 

wh ( x , O )  = u( x ,h )  - u( x , O )  
h 

u( x ,h )  - W ( x) = :::!:: 0 for x e h V ,  
.... since � is 

also a lower solution for ( 1 2 ) , and so u( x ,h )  ::2:: ${ x) for all x E V and 
h > 0 by Theorem 2 .  Applying Theorem 2 again , we see that wh ( x , t )  ::2:: 0 
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for all ( x , t )  E D ,  and all h > 0 .  It follows that �u = lim wh ( x , t )  :::!:: 0 ut h-G+ 
for all ( x ,t )  E D. 
Note : An analogous theorem holds if  we have an upper solution � for ( 7 ) 
and a solution u of  ( 12 )  with u0 = �;  in that case ** � 0 for all 
C x ,t )  E D. 

THEOREM 9 :  If we make the same assumptions as for raeorem 8, and suppose 

in addi tion that for some constant K ,  u( x , t )  s K for all  ( x ,t )  E D, 
then lim u ( x ,t ) = u( x )  exists for all X e V ,  and u is equal a. e .  to a 

t....., 
classica l  so lution of the e l liptic prob lem ( 7 ) . 
Proof : We use the inner product notation to denote the usual L2 ( V )  
inner product for real functions , i . e .  ( f , g )  = J fg dx . Also , given 

V 
two funct ions f : V  x [a ,b] - R and u : D - [a ,b] , we define the function 
f[u] : D - R by f[�] ( x , t )  = f( x , u( x ,t ) )  for all ( x ,t )  E D. 

Now cons ider the operator L1 = L - c ( x ) , understood to have as 
domain the set of all u E s 2 ,2 ( V ) satis fying B

linu = 0 .  Lions and 

Magenes [2 4 , Vol . ! ,  pp . 114- 12 1] des cribe the construction of  the adj oint 
operator L� and also the adj oint domain cons isting of all u E s2 , 2 ( V )  
satisfying an appropriate adj oint boundary condition Cu = 0 .  As shown 
by Lion s  and Magenes [24 , Vol . I , Ch . 2 , Theorem 2 . 1 , Corollary 2 . 1 an d  
Remark 2 . 2  on pp . 119 , 120] , if u E domain 1 1 and v E domain Li , then 
( L1u , v )  = ( u , L{v) . 



Now let � be in the domain of Li · We know that u( x ,t )  is in the 
domain of L1 as a function o f  x ,  for each t � 0 .  Write 

f1 ( x ,u )  = f( x ,u) + c( x) u .  

s ince 
.. ou f ( x , u) = 0 ( x ,  t )  E Then Lu - dt + for D 

we have ( L1u , � ) + ( f 1 [u] ,1�) ( � ,ut ) = 0 for all t > 0 .  

i . e .  ( u ,L1� ) + ( f1 [u] , E; )  ( � ,ut ) = 0 for all t > 0 .  

So  for all T > 0 .  

Now let T - � .  Since u( x , t ) is non-decreasing in t by Theorem 8 ,  and 
bounded above by K for all ( x ,t )  E D by hypothes is , it follows that 
lim u( x , t )  = u( x) exists for all X E V ,  and hence that 
t-oa:> 

1 JT 
lim T u( x , t ) dt = 
T-- 0 

T 

u( x )  for all x E V. 
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So 1 T 
lim T J ( u , Li� ;) dt = 
T._, 0 

lim ( f J u( x , t ) dt , Lis )  
T-- 0 

by interchanging the 
order of integrat ion , 
since L* is independent 1 
of t 

Here the interchange of the order of integration follows by Fub ini ' s  
Theorem , and the final step follows from the Lebesgue dominated  
convergence theorem and the fact that $ ( x) � u( x ,t )  � K for all 
( x , t )  E n. 

Similarly , using the fact that f1 ( x ,u)  is  continuous in u ,  we 
obtain 

Als o , . 1 JT T -
ll.m T ( � ,ut ) dt = lim ( � ,} J ut ( x ,t ) dt )  
T-- 0 T-- 0 

= lim ( � , u( x ,T )  � u( x ,O ) ) 
T--

= ( � , 0 )  = 0 s ince u( x ,T )  is bounded as T - � ,  
for all x E V .  Here again we are using the Lebesgue dominated 
convergence theorem . 

So , tak ing limits as T - � , we obtain finally : 
c G , Li� )  + C f1 [GJ , s )  = o . 

.. 

Now L1 is invertible , s ince for g E  L2 ( V ) , the system L1w = g ,  Blinw = 0 

.\ 



has a unique solution , by a result of Agmon , Douglis and Nirenberg( 1 ] . 
The same applies to Li , since the order of  the adj oint boundary 
condition is 0 or 1 by Theorem 2 . 1 ( b ) on p . 11 5  of the book by Lions and 
Magenes [24] , and s o  the uniqueness  theorem of  Agmon , Douglis and 
Nirenberg applies . Let G1 be the inverse of L1 . Then by a result of  
Riesz and Nagy[30 , p . 304] , Gi is the inverse of  Li · Put w = -G1f1 [u) . 
Then : 

( G1f1 [G) ,Li� ) 

( f1 (u] ,G!Li� ) 

( f1 [G] , � ) .  

Hence , from above , ( u ,Li� ) = - ( f1[G] , � ) = (w ,Li� ) .  Therefore 

( u-w , Li� ) = 0 for all � in the domain of  Li · But the invertibility of 

L! implies that the range of L� is all of L2 (V ) . Hence ( u-w ,n) = 0 

s o  

for all � E L2 ( V) . Thus u = w a . e . ,  i . e .  u = -G1f1 [G) a . e .  So u i s  a 

weak solution of the elliptic problem ( 7 ) . By Theorems 2 . 2 . 1  and 2 . 2 . 2  
of Sattinger[ 3 2 ] , we conclude that G is equal a . e . to a class ical 
solution of ( 7 ) , as required .  

Applying Theorems 8 and 9 to problems ( 1 3 )  and ( 14 ) , we obtain the 
following theorem . 
THEOREM 10 : Suppose that 

( i ) the coefficient do ( x) in Bl . is s tri ctly positive for a l l  X E oV , 
A 1n 

and Af( x , O ) � 0 for all x E V ;  
( ii )  f satisfies a uniform Lipschitz condi tion in u on any finite u
interval, and has partial de rivative f continuous for a l l  x E V and u 
all  real u ;  
( ii i )  there exists a so lution u( x ,t )  of ( 13 )  such that, for some 

constant K ,  u( x ,t )  � K for a l l  ( x , t )  E D. 
Then there exists a non-negative solution of ( 14 )  which is equa l  a. e .  

to the limit as t - m of the so lution of ( 13 ) . 
If in addition 

C iv)  the coefficients c in 1 and a1 in B1in satisfy c( x )  � o for a l l  

X E V and d1 ( x) > 0 for a l l  X E oV ; 
( v )  Af( x ,u )  > 0 for all  x E V and u � 0 
then the so lution of ( 14 )  is strictly posi tive on V. 
Proof : S ince 0 is obvious ly a lower solution for both ( 1 3 )  and ( 14 ) , 
we can immediately apply Theorems 8 and 9 to deduce the exis tence o f  a 
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solution �( x) o f  ( 14 )  such that lim u( x ,t )  = �( x )  a . e .  Since u( x , t )  � 0 
t--

for all ( x , t )  E D by Theorem 2 ,  and � i s  continuous , it follows that 
IJ( x) � 0 for all x E V, thus proving the first p·art . 

The second part follows from a form of  the maximum principle . 
Clearly � is not identically zero , by hypothesis ( v) . Suppose 1J( x0 ) = 0 
for some x0 E V .  I f  x0 E V ,  we obtain a contradiction by using 
Theorem 6 of Ch . 2  of Protter and Weinberger( 2 8) ; if x0 E oV , we obtain 
a contradiction by us ing Theorem 8 of the same reference . So IJ( x )  > 0 
for all x E V, completing the proof .  

We have now shown that , under quite wide conditions , the existence 
of a bounded s olution of ( 1 3 )  implies the existence of a pos itive 
s olution of ( 1 4 )  which is the limit a . e .  of the solution of ( 1 3 )  as 
t - �. Conversely , we showed earlier that , again under quite wide 
conditions , the existence of a (minimal )  pos itive solution of ( 14 )  
imp lies the existence o f  a bounded solution o f  ( 1 3 )  which tends t o  the 
(minimal ) positive solution of ( 14 )  as t - � .  

Suppose we adopt the alternative approach to the study of thermal 
exp los ions , whereby one equates the boundedness over all pos itive time 
of the solution of the t ime-dependent problem with the absence of a 
thermal explosion . This would lead us to define the crit ical parameter 
A* for the pair of prob lems ( 1 3 ) , ( 14 )  to be the least upper bound of 
the set of positive values of A for which the solution of ( 1 3 )  is 
bounded .  The results of this chapter establish fairly general conditions 
under which the two approaches to the problem and the two definitions  
of the critical parameter are equivalent . Certainly this is so  for the 
cases discussed  in Ch . 4  and also for most forms of the original heat 
generation problem as discussed b y  Boddington , Gray and  Harvey[4) . I t  
seems reasonab le t o  suggest  that the two approaches are i n  fact 
equivalent under much wider conditions than those given in this chapter . 

For the remainder of this thesis , we shall treat the second 
approach to the thermal explosion problem as the fundamental one , and 
concentrate on describing the behaviour of  the solution of the time
dependent problem under various assumptions . The information obtained 
will be compared with that obtained by studying the steady-state 
problem. 



7 CONSTRUCTION OF UPPER AND LOWER SOLUTIONS FOR THE 
TIME-DEPENDENT PROBLEM 

5 2  

In this chapter we shall examine the behaviour o f  the solution of 
the time-dependent problem under various assumptions as to the nature 
of the function f( x ,t ,u ) , in particular the rate of growth of f ( x ,t ,u )  
as a function of  u .  We shall do  this by constructing upper and lower 
solutions for various cases , and then applying a suitable comparison 
theorem . In all the theorems o f  this chapter , the existence of a 
solution of  the time-dependent problem will be taken as a hypothes is . 
However , in many cases we will construct both an upper and a lower 
solution , whereupon the existence of a solution will fol low from 
Theorem 3 if the conditions of that theorem are satisfied .  In any 
event , it is quite suf�icient for our purposes in this chapter to show 
that if a solution exists , it must behave in such-and-such a way . 

We shall begin by working with a specific domain V ( described m 
below ) for which calculat ions are relatively simple , and later deal 
with the problem of  e xtending our theory to general domains . We shall 
then discuss the results obtained in this chapter and the relationship 
between them and the results already known for the steady-state 
problem . The chapter will conclude with an examination of some 
theorems concerning the effect of reactant consumption . 

Notation : 

We write V m 
n 2m . 

= {x :  r x .  � < 1 )  where the m . ( i  = 1 , 2 ,  . . .  n )  are 
i= 1 � � 

arbitrarily chosen positive integers . Lu and B1 . u will be as defined 
�n 

in Ch . 3 . In the directional derivative ou h ' h . B an w �c appears �n linu ' we 

shall take the unit vector field  n to be s uch that , for each 
2m . -1 

i = 1 , 2 ,  . . . n ,  n . ( x ) = a. ( x ) x .  � where a . is of class  c1+a( oV ) .  
� � � � m 

n 2m .  
Since the outward unit normal vector field v to  oV = {x :  m I: x .  � = 1 )  

i= 1 � 
is given by 

v. ( x) = 
� 

2m . -1 
� 2m . x . � � for all X E oV and i = 1 , 2 , . . .  n m 
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the vector field n will be outwardly directed and nowhere tangential to 
oV provided that , for each x € oV , m m 

n( x ) . v( x)  = 

n 4m . -2 
� E 2m . a. . ( x ) x .  

i = 1  � � � 

J 
n 2 4mi-2' 
E 4m . x . 

i= 1 � � 

is positive . We assume that this is the cas e . We then have that 

ou n 2mi- 1  ou On = :L a. ( x ) x .  � . i= 1  � � xi 
n 2m . � We suppose further that the quantity E a . ( x) x .  is  bounded below 

i=1  � � 

and above on oVm by pos itive numbers 9 (a.1 , . • .  <In ,m1 , . . .  mn ) and 
n 2 G<a.1 , . . .  a.n ,m1 , . . .  mn ) respectively , and that the quantity E x . is  

i= 1 � 

bounded below and above on oV by positive numbers � ( m1 , . . .  m )  and m n 
f( m1 , . . .  mn ) respectively . 

We shall be concerned with the parabolic initial-boundary problem 

Lu - * + ).f( x ,t , u) = 0 for x € V , 0 < t S T m 
B1 . u = 0 for x € oV , 0 < t S T �n m 

for X e V m 

. . .  ( 1 5 ) 

where f is cont inuous for X e Vm , 0 s t s T and all u ,  uo e c2+a.( Vm) 
and the parameter A. is assumed to be pos itive . 

Construct ion of Lower Solutions on V : m 

THEOREM 1 1 : Suppose that 

( a ) For all  t > 0 and X e V , f( x ,t ,O )  � 0 ;  furthermore� f satisfies a m 
uniform Lipschitz condition in u on any finite u-interval . 

( b )  u0 ( x) � 0 for a l l  X € Vm . 
( c )  The coefficient d0( x , t )  of u in Blinu is strictly positive for all  

t > 0 and X E oV m . 

Then : ( i ) For any T > o ,  a lower so lution for ( 15 )  is given by 

w( x ,t )  = 0 for all  x E V ,  0 s t s T .  m 
( ii )  For any T > o ,  if u( x ,t )  is a solution of ( 15 ) , u( x , t )  � 0 

for a l l  X e V and 0 s t s T • m 
Proof : ( I )  w( x , O )  = 0 s u0 ( x) for all X € V m 



( I I )  Bl . w = 0 for t > 0 and X E oV . � n  m 
Ow ( II I )  Lw - dt + Af( x , t ,w) = Af( x , t ,O ) � 0 for t >  0 and x E Vm . 

This  proves  part ( i ) of the theorem . I f  u ( x , t )  is a solution of ( 15 ) , 
it follows by Theoren 2 that u( x , t )  � w( x ,t )  = 0 for all x E V and m 
0 s t s T ,  thus proving part ( i i ) . 

THEOREM 1 2  : Suppose that 
( a ) There exis t  constants A . > 0 ( i = 1 , • • • n ) , B • � 0 ( i = 1 , • • • n ) and � � 
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C � 0 such that, 

j b . ( x ,t )  I s B . ( i 

for c!l  x E V and t > 0 ,  0 < a . .  ( x , t )  s A . ( i  = 1 ,  . . .  n ) ,  m �� � 
� � = 1 ,  . . . n ) and c( x , t )  � -C . 

( b ) There exists a cons tant M > 0 such that, for all  t > O ,  x E V and m 
u � 0 ,  f( x ,t , u )  � M . Furthermore , f satisfies a uniform Lipschitz 

condition in u on any finite u-interval .  

( c )  There exist cons tan ts D0 > 0 and 61 > 0 such that, for a U  x E oVm 
and t > o , o < d

0
( x , t )  s D0 and 61 s d1( x ,t ) ; we require also that 

these cons tants be such that 

( d )  uo ( x) � 0 for a l l  X E vm 
Then : ( i )  Fo� any T > 0 ,  a lower so lution for ( 1 5 )  is given by 

r:. 2 w( x ,t )  = AK ( A - E x . ) ( 1  
i = 1 � e-t ) for all  x E V , 0 s t s T m 

where A and K are cons tants chosen so as to satisfy 

. . . . . . . . . . . . . . . . . . . . . . . . .  ( 1 6 )  

M 0 < K < ------------------------- . . . . . . . . . . . . . .  ( 1 7 )  
2 

n 
E A . + 2 

i = 1  � 
n 
E B .  + ( C+ 1 ) A  

i= 1 � 

( ii )  If u( x ,t )  is a so lution of ( 15 ) , th�n for any T > 0 ,  u( x , t )  > 0 
for 0 < t s T ,  and if lim u( x ,T )  = u( x ) exists ,  then for aU X E vm , 

T-
26 19 

AM( V + -- - '±') Do u< x )  � ----------------'::"":""--:-- > o .  n n 26 19 
2 E A .  + 2 I B .  + ( C+ 1 ) ( V  + -0--) 

i=1  � i = 1  � 0 
Proof: ( I )  w( x , O ) = 0 s uo ( x) for all X E vm ' by hypothesis ( d ) . 

n 2m . -1 ::. l u'fl ( I I )  B li.n;.) = d0 ( x , t ) ·...� + d1 ( x ,t ) E a . ( x) x .  -0 -i = l l l xi 
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n 2 = d0 ( x ,t ) ).K( A - r x . ) ( 1  
i = 1  � 

n 2m . - 1  
e-t ) +  d1 ( x , t )  I: Cl • .  ( x ) x .  � {).K( -2x . ) ( 1-e-t ) } . 1 � � � �= 

n 2m . n 2 E x . ) . 
1 � � = 

2d1 ( x , t )  I: a. ( x)x .  � ) 
i = 1  � � 

� ).K( 1 - e-t ) {D0 ( A- � )  - 2 619 } 

< 0 for all t > .o by ( 16 ) • 

( I II ) Lw - %r + ).f( x , t ,w )  

n n 

for t > 0 and X E oV m 

= L a . .  ( x ,t ) ).K ( -2 ) ( 1-e-t ) + E b . ( x ,t ) ).K( -2x . ) ( 1-e-t ) 
i = 1  �� i=1 � � . 

n 2 -t n 2 -t + c( x , t ) ).K ( A- I: x . ) ( 1-e ) - ).K( A- E x . ) e  + ).f( x ,t ,w)  
i=1  � i = 1  � 

n n 
� -2).K E A . - 2).K E B .  - C).KA - ).KA + ).M 

i= 1 J. i=1  � 

n n 
= ). {-K( 2 E A . + 2 E B .  + CA + A)  + M } 

i = 1  � i=1  � 
> 0 for all t > 0 by ( 1 7 ) . 

for t > 0 and x E V m 

Thus part ( i )  of the theorem is proved .  By Theorem 2 ,  it follows that 
i f  u( x , t )  is a solution of ( 15 ) , then u( x , t )  � w( x ,t )  for x E V and m 
0 � t � T .  I t  follows that u( x , t )  > 0 for x E V ,  0 < t � T .  m 

n 2 Furthermore , w ( x ,t ) - ).K( A - E x . ) as t - � ,  
i=1 J. 

so if lim u( x , T )  
T-

= u( x )  

e xi sts , then for all x E V , m 
n 2 u( x) � ).K( A- I: x . ) � ).K(A-�) . 

i = 1  J. 
S ince 

2 619 A may be chosen arbitrarily close to  � + ---- and K may be chosen oo 
arbitrarily close to _____________ 

M _____________ , part ( ii )  of  the n n 
2 

theorem follows at once . 

E A . + 2 E B .  + ( C+1 )A 
i = 1  J. i = 1  J. 

Note : The condition that f should s atisfy a uniform Lipschitz condition 
in u on any finite u-interval may be removed if we alter hypothes is ( d ) 
to read "u  ( x )  > 0 for all x E V . " The only change in the proof is  0 m 
that Theorem 1 rather than Theorem 2 is used in proving ( i i ) . 

THEOREM 1 3 :  Hypotheses as for Theorem 1 2  excep t that &n hypothesis ( b ) , 



we suppose that there exis t constants M1 > 0 ,  M2 > 0 such that, for a l l  

t > 0 ,  X E Vm and u � 0 ,  f( x , t ,u ) � M1u + M2 . We still  assume that f 
satisfies a uniform Lipschitz condition in u on any finite u-interval .  

Then : ( i ) For any T > o ,  a Lower so lution for ( 15 )  i s  given by 

w ( x , t )  = t ( A  
n 2 :E X . )  for al l X e V ' 0 � t � T 
i= 1 � m 

if A is a cons tant chosen so as to satisfy 

2 619 'f < A < W + 

and if 

n n 
{ 2 (  :E A . +  :E B . ) 

i= 1 � i=1 � A > max M ( A  _ 'f )  1 
n n 

D
o 

+ CA 

( ii )  If A > max 
2 ( :E A . + :E B . ) 

i=1 � i = 1  � 

:2 } 
. . . . . . . . . . . . .  ( 1 8 )  

and i f  u( x ,t )  i s  a so lution of ( 1 5 ) , then u( x ,T ) - = as T - � .  
uniformly for X e V . m 
Proof: ( I )  and ( I I )  are similar to the proof of Theorem 12 .  

( I I I ) Lw - � + Xf( x ,t ,w) 
n n 

= :E a  . .  ( x ,t ) ( -2t ) + :E b . ( x ,t ) ( -2tx . ) + c ( x ,t ) t (A 
i=1 � �  i = 1  � � 

n 2 t X · ) 
i=1 � 

n n 

n 2 - ( A - :E x . ) + Af( x ,t ,w ) 
i = 1  � 

5 6  

� -2t :E A . - 2t :E B .  - CtA - A + A[M1t ( A-'i') + M2) i = 1  � i=1 � 
for t > 0 and x E V m 

n n 
2 {

i�/i + i�1
BJ - CA] + AM2 - A . 

> 0 for all t > 0 by ( 18 ) . 
Thus part ( i )  of the theorem is proved . Now if X satisfies the condition 

2 619 of part ( ii ) , then we can choose A sufficiently close to w + --D-- so that 
0 

( 18 )  i s s atisfied and therefore part ( i )  will hold . It follows by 
Theorem 2 that if u( x , t )  is a solution of ( 1 5 ) , then u( x ,t )  � w( x ,t )  for 
all X e V and 0 � t � T .  Now w( x , t )  � t ( A-'i') for all X E V ' so m m 
w( x ,t ) - � as t - w, uniformly for x E V ,  which proves part ( i i ) . m 
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Note : As in the case of Theorem 12 ,  the requirement that f should 
s atisfy a uniform Lipschitz condition in u on any finite u-interval may 
be removed i f  we alter hypothesis ( d )  to read "uo ( x) > 0 for all X E vm . "  

THEOREM 14 : Suppose that 

( a )  As for Theorem 12 .  
( b )  There exis ts a cons � t  M > 0 such that� for all t > 0 ,  x E V and m 
u � 0 ,  f( x , t ,u )  � Mu .  
( c )  There exis t constants D0 � 0 and 61 > 0 suah that� for all  x E avm 
and t > o ,  0 � d0 ( x ,t ) � D0 and 61 � d1 ( x , t ) ; if D0 > 0 ,  then we require 

also  that 
2619 '±' < * + 
Do 

( d )  There exists a ccr.s �an t e > 0 suah that uo ( x ) > e for �ll X E vm 
Then : ( i )  For any T > o ,  a strict lower so lution for ( 1 5 )  is given by 

t n 2 w (  X '  t )  = €� ( A  -
. 
I: xi ) for al l X E V m '  0 � t s T 

�= 1 
if A is a constant ahcsen so as to satisfy 

2 619 '±' < A < � +  Do 
C if D0 > 0 ;  if D0 = 0 then A is  chosen to satisfy A > '±' )  

n n 
( C+ 1 )A 

and i f  >.. > 

2 ( I: A . +  
i = 1  � 

I: B . }  + 
i= 1 � 

M (A  - '£) . . . . • . • . . • . • • • . •  ( 1 9 ) 

( ii )  If >.. > 

n 
2 {  I: A .  

i= 1 � 
n 

+ I: B . } +  ( C+1 ) ( *  + 
i= 1  � 

( if n0 > O ;  in the 

case where n0 = 0 we require >.. > C�1 ) and if u( x , t )  is a solution of 

( 15 ) , then u( x ,T ) - m as T - m, uniformly for X E V . m 

Proof: ( I )  w ( x ,O ) = �A A 
n 2 l: x . ) s e 

i= 1 � 
for all x E V m 

for all x E V , by m 
hypothes is ( d ) 

( I I )  is s imilar to the proof of  Theorem 12 . 



= 

( I I I ) Lw - � + Af( x , t ,w )  
t n 

{-2ee
t
) 

n -2x . ee € t n . 2 I: a . .  ( x ,t ) -A- + I: b . ( x ,t ) { � } + c ( x ,t )A e ( A- I: x . ) 
i= 1 ��  i= 1 � i = 1 � 

t n 
� A- L x: ) + Af( x ,t ,w) A i= 1 � 

for t > 0 and x E V m 
e t n n 

= � { -2 I: A .  - 2 I: B .  - ( C+1 )A + AM ( A-f) )  i= 1 � i= 1 � 

> 0 for all t > 0 by ( 19 ) . 

5 8  

Thus part ( i )  o f  the theorem is proved .  Now if  A satisfies the condition 
of part ( ii ) , then we can choose A sufficiently close to 

2 �19 W + --D-- ( if D0 > 0 )  or sufficiently large ( if D0 = 0 )  so that ( 19 )  is 
0 

satisfied and therefore part ( i ) will hold . It follows by Theorem 1 
that i f  u( x ,t )  is a solution o f  ( 15 ) , then u( x ,t )  > w( x ,t )  for all 

t 
x E V and 0 s; t s: T .  m 

ee -�kw w( x ,t )  � �A A-f)  for all x E V , so m 
w( x ,t ) - = as t - =, uniformly for x E V ,  which proves part ( ii ) . m 

THEOREM 1 5 :  Suppose that 

( a )  As for Theorem 12 . 
( b )  There exis t cons tants M > 0 and a > 0 s uch that, for all  t > O ,  

1+.!. 
x E Vm and u � 0 ,  f( x ,t ,u) � Mu a 

( c )  As for Theorem 1 4 . 
( d ) As for Theorem 1 4 .  
Then : ( i )  For any T such that o < T 
( 15 )  is  given by 

w( x , t )  ( t1: )ae ( A  -= 
A (t 1:-t )a 

< t l': ' 

n 2 I: x . ) 
i= 1 � 

if A is  a constant chosen so as to satisfy 

2619 f < A < ljl +  Do 

a s trict lower solution for 

for aU X E vm ' O S: t :S: T 

( i f  D0 > 0 ;  if D0 = 0 then A is chosen to satisfy A > f)  

•.\ 
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and if A >  A1/a n n 
_ ___;,_ ___ ....,....

1 
{� + 2 I: A .  + 2 I: B . + CA) . . . . . . .  ( 2 0 )  

1+- i=1  � i= 1 � 
Me1/a.(A-'f) a 

( ii )  If A >  

2 619 1/a ( �  + --) D0 n 
----_;._----

1 
{2  I: A . 

6 . 1 � 
Me1/a( � + 

2 19 - 'f) 
1+-cx �= 

Do 

n 2 619 
+ 2 I B .  + C ( \1 + -D-) } 

i= 1 � 0 

( if D0 > O ;  in the aase where D0 = 0 we require A > �/ ) and if u( x ,t ) 
Me a. 

is a solution of ( 15 ) , then there exists a finite number T > 0 suah 

that u( x ,  T )  - m as T - T- , uniformly for x E V m . In partiaular� given 

any positive e , this wi l l  be the aase for a l l  suffiaiently large A ;  
and given any positive A ,  this wi l l  be the aase for all  sufficiently 

large e . 
Proof: ( I )  is  similar to the proof of Theorem 1 4 . 

( I I )  i s  similar to  the proof of Theorem 12 .  
Ow ( I I I ) Lw - et + Af( x ,t ,w ) 

n - 2 ( t* ) ae n 
= L a  . . ( x ,t ) + I: b . ( x ,t ) 

i= 1 ��  A( t*-t )a. i= 1 � 

( t* )a.e n 2 + c ( x ,t )  --'----'---- (A - I: x . ) 
A( t*-t )a i= 1 � 

a.( t* )ae n 2 ____;;;...;....____;__..,.... ( A - I: X .  ) + Af ( X '  t 'w )  
A( t*-t )a+ 1 i= 1 � 

{-2 ( t* )a.e } 
n 

{- 2 ( t* )a.e ] 
n ( t* )a.ec 

� I A • + I: B • - ..;.___;_...� a( t ;� )a.e 
(t ;Lt )a+ 1 

= 

A( t*-t )a. i= 1 � A ( t*-t )a. i = 1  � ( t*-t )a 

1 � 1� 
AM(t* )a.+1 e a. ( A-'f) a. 

+ ���------�..;.__�-
1� 

A a. ( t*-t )a.+1 
for x E V and 0 < t < t* m 

1� 
( t* )Ue n n AMt*a 1/a(A-'f) a . 

( - ( 2 I A . + 2 I: B .  + CA) (t*-t ) - aA + -��--:-:----) 
A(t*-t )a+1 i= 1  � i= 1  � A1/a 

1� 
( *)a n n ' Mt*e1/a(A-'f) a 

� t e (- ( 2 I: A . + 2 I: B . + CA )t* - aA + .:.:;A;.;..;;..-=-._,...;:-;.;-_,;_-) 
A(t*-t )a+1 i= 1 � i= 1  � A1/a 

for 0 < t < t* 
> 0 by ( 2 0 ) . 

Thus part ( i )  of the theorem is proved . Now if A satisfies the 



condition o f  part ( ii ) , tten we can choose A sufficiently close to 
2 619 

W + � ( if D0 > 0 )  or sufficiently large ( if D0 = - 0 )  so that 

A1/a n 
---....,..----.,.-1 {2 E A . + . 1 l. 1 +- 1. =  
Me1/a( A-'i') a 

n 
2 E B .  + CA} 
i= 1 l. 

and we may then choose t* large enough so that ( 20 ) is sat isfied and 
therefore part ( i ) will hold . It  follows by Theorem 1 that if u( x ,t )  
is a solution of ( 15 ) , then u( x , t )  > w( x , t )  for all X E vm and 

6 0  

0 :s: t :s: T .  But w ( x , t )  � ( t :': )ae ( A-'i') for all x E V ,  so w ( x ,t ) - CD 
A (t*-t )a m 

as t - t*- , uniformly for x E V .  I t  follows that there must exist m 
a T  with 0 < T :s: t :': ,  st.:.c=: -:hat u( x ,T ) - CD as T -+  T- ; that this limit 
is uniform for x E V c � �  be s een at once by redefining w ( x ,t )  with m 
t :': = 1' ·  Thus part ( ii )  is prove d .  

THEOREH 1 6 : Suppose that 

( a )  As for Theorem 1 2 .  
( b )  There exist cor;s tcr: �s \ > 0 ,  M2 > 0 ,  a > 0 such that, for a l l  

1+! 
t > 0 ,  x E Vm and u � 0 ,  =< x , t ,u)  � M1u a + M2 . Furthermore, f 

satisfies a uniform Lipschitz condition �n u on any bounded u-interval . 

( c )  As for Theorem 1 2 .  
( d ) As for Theorem 1 2 .  
Then : ( i )  For any T such that o < T < t* , a lower solution for ( 15 )  is  

given by 
t n 2 w( x ,t )  = A - E x. )  for all x E V ,  0 :s: t :s: T 

( t*-t )a i= 1 1 m 

if A is a cons tant chosen so as to satisfy 

2 619 'i' < A < w + --Do 
and if A is chosen sufficiently large, depending on the constants Ai , 
Bi ( i  = 1 ,  . . . n ) , C ,  M1 , M2 , a , A ,  'i' and t* . 

( i i )  If A and ).. are chosen as in ( i ) , and if u( x ,t ) is a solution 

of ( 1 5 ) , then there exists a nwriber T with 0 < T < t :': such that 

u( x ,T )  - CD  as T - 1'- , uniformly for x E V . m 
Proof :  ( I )  2nd (} I )  are simi lar to the proof o f  The orem 12 . 
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( II I )  Lw Ow \f( x ,t ,w) - � + 

n -2t n -2x . t  
I: a . .  ( x ,t )  + I: b . ( x , t )  � = . 1 l.� ( t*-t )a . 1 l. ( t'Lt )a �= �= 

t ( A  -
n 2 + c ( x ,t )  I: x . ) 

( t*-t )a i= 1 � 
t* + (a-1 ) t  n 2 --.....;....;;.'---':- (A - I: x . ) + U( x , t ,w ) 
(t*-t )a+1 i = 1  � 

n n � { -2t ) I: A .  + { -2t } I: B . _ tCA 
( t'':-t ) a i= 1  � ( t1Lt )a i = 1  � ( t'':-t )a 

A[t* + ( a- 1 ) t] 
( t*-t )a+1 

+ 
( t*-t )a+ 1 

n n 

for x E V and 0 < t < t*  m 

- ( 2  I: A .  + 2 I: B. + CA ) t ( t*-t ) - A(t* + ( a-1 ) t] 
i=1 � i=1 � 

n n 
Now put K = 2 I: A .  + 2 I: B. + CA 

i=1 � i = 1  � 

and g ( t )  = - Kt { tlLt ) - A(t'': + ( a.- 1 )t] 

= Kt2 + t {- Kt* A (a.-1 ) }  - At* .  
Then the minimum value over all real t o f  the quadratic g ( t )  is 

- 4KAt1': - {Kt* + A( a.-1 ) }2 
4K 

{Kt* + A { a.-1 ) }2 
At'': - .... -----:-:-�-----4K 

attained when 
have : 

Kt1: + A (a.-1 ) t = 2K Thus , for 0 < t < t* and x E V , we m 

aw Lw - at + \f( x , t ,w ) 

2 1� 1� 
1 {Kt* + A( a.-1 )} a. a a.+1 } � (- At* - - 4K - + \{M1t (A-'i') + M2 (t 1(-t ) ) .  

( t *-t )a.+1 

1� 1� 
The expres sion M1t a. ( A-'i') a. + M2 ( t*-t )a.+1 is obviously continuous 

and strictly positive for 0 � t � t* , so there exists 6 > 0 such that 

1+1. 1+1. 
M1t a. ( A-'i') a. + M2 ( t*-t )a.+1 � 6 for 0 � t � t* . 

2 
1 {Kt* + A (a.-1 ) } J If  we then choose \ � � [At* + - 4K , then 



Ow Lw - at + A.f( x ,t ,w ) � 0 for 0 < t < t* and x E V . m 
Thus part ( i )  of  the theorem is proved . It follows by Theorem 2 that 
if u ( x , t )  is a solution of ( 15 ) , then u( x ,t )  � w( x ,t )  for all x E V m 
and 0 � t � T .  The rest of the argument parallels the proof of 
Theorem 15 .  

Note : In the case of Theorem 16 where a =  1 ,  6 is the minimum value on 
[0 , t1:] of the expression 

M1t2 ( A-� ) 2 + M2 ( t*-t ) 2 

= t2 [M1 ( A-� ) 2 + M2) - 2M2t*t + M2 ( t* ) 2 . 

This quadratic attains its overall minimum value at 
2M t* 2 t = 

which is a value between 0 and t* Hence 6 is the overall minimum of 
the quadratic . 

Thus 6 = 
4M2 ( t * ) 2 [M1 (A-Y) 2 + M2 ] - 4M� ( t * )2 

4 [M1 ( A-�) 2 + M2) 

M M ( t �': ) 2 { A-�) 2 
1 2 = ��----�----2 M1 ( A-�) + M2 

Using this we can prove the following : 
COROLLARY : Suppose that 

( a ) As for Theorem 12.  
( b )  There exist aonstants M1 > o ,  M2 > 0 suah that, for all t > o ,  

2 x E Vm and u � o ,  f( x ,t ,u )  � M1u + M2 . Furthermore, f satisfies a 

uniform Lipsahitz aondition in u on any bounded u-interval .  

( c ) As for Theorem 1 2 .  
( d ) As for Theorem 1 2 .  

6 2  

Then : ( i )  For any T s uah that o < T < t* , a lower solution for ( 15 )  i s  

given by 
t n 2 w( x ,t )  = t*-t(A - t x . ) for aU X e V , 0 � t � T 

i= 1 � m 

if A is a aonstant ahosen so as to satisfy 

2 618 
� < A < t + --

Do 



A 1 · n  n 
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and i f  X �  

M2) (t* + -a< 2 I: A . + 2 I: B .  + CA) )  
i=1  � i=1 � 

• • • • • •  ( 2 1 )  

A >  

( i i )  If 

n n 
(2 I: A .  + 2 I: B .  + C( � + 

i= 1  � i= 1 � 

and if u( x , t )  is a solution of ( 1 5 ) , then there exis ts a finite number 

T > 0 such that u( x ,T )  - � as T - T- , uniformly for x E V . m 
Proof: ( i ) follows from Theorem 16 with a = 1 ,  using the value of 0 
obtained in the note above . 

If  A satisfies the condition of part ( ii ) , then we can choose A 

sufficiently close to 

A >  

n 
(2 I: A .  + 

i= 1 � 

n 
2 t B .  + CA) (M1 ( A-f) 2 + M2) 
i= 1 � 

and we may then choose t* large enough so  that ( 21 ) is satisfieu and 
therefore part ( i )  will hold . The rest of the argument parallels the 
proof of Theorem 15 . 

Construction of Upper Solutions on V : m 

THEOREM 17 :  Suppose that 

( a )  There exist constants A . > O ( i  = 1 , . . .  n ) , B . � O ( i  = 1 ,  . . .  n )  and 
� 1 

C such that, for all  x E V and t > 0 ,  0 < A . s: a . . ( x ,t ) ( i  = 1 , • • •  n ) , m � 1� 
jb . ( x ,t ) j s: B . ( i  = 1 , . . .  n )  and c ( x ,t )  s: c . 1 . 1 
( b )  For any bounded positive u-interval 

posi tive number M ,  depending only on I ,  
x E V , t > 0 and u E I .  

I ,  there exis ts a corresponding 

such that f ( x ,t ,u )  � M  for a l l  

m 
( c )  There exis t  constants 00 > 0 and n 1 � 0 such that, for all  

( d ) We require in  addi tion that, if C � 

n 2D 8 
2 I: B . + C ('i' + -1-) 

i=1  1 6o 

0 ,  then 

n 
< 2 E A  . •  

i = 1  1 

x e av m 



( e )  There exists a cons tant € > 0 such that uo ( x ) < € for a L L  X e vm . 
Then : ( i ) For any T > 0 , a strict upper solution for ( 1 5 )  is _given by 

n € . 2 -w( x ,t )  = n ( A  - l: X . ) for aU X e V , 0 � t � T - i= 1 � m 
. 

6 4  

(so that w ( x , t )  is actuaLLy independent of t )  i f  A is a cons tant chosen 

so as to s atisfy 
n n 

2 l: A . - 2 E B . 2 n e 
'f + __ 1_ < A  < 60 

i= 1 � i = 1 � 
c if c > 0 

A > max 

and if 

if c = 0 

n n 

i= 1 � i= 1 � 2 D 1S 2 l: A .  - 2 E B .  } 
-6

--, 'f + -----�c�----o 
if c < 0 

• • • •  ( 2 2 ) 

e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I ( 2 3 )  

where m0 ( e ,A ) , apart from depending on e and A ,  depends on the 

coeffi cients in the operators L and B1 . , the quantities 'f and e� and 
�n 

the nature of the function f ,  but not on T .  
( ii )  If 0 < ).,  < m0 ( e ,A ) , and if u( x , t ) is a so lution of ( 1.� ) , then 

for aU T > 0 and X e V ' u( x ,T )  s � m A-I  

Proof: ( I )  w( x , O )  

hypothes is ( e )  . 

( I I )  B1 . w 
�n 

€ = p:::::y ( A  
n 2 E x . ) � e > u0 ( x ) 

i= 1 � 
for all X e V ' by m 

n 2m .  -1 
= d0 ( x ,t )w + d1 ( x , t )  E a . ( x ) x .  

i= 1 � � 
� 

e n 
2 

n 2mi- 1 -2exi = d0 ( x , t )  -:---m-A- ( A- 1: x . ) + d1 ( x ,t )  l: a . ( x ) x . · ( A-'f ) A- I i =1 � i= 1 � � 

e n 2 . n 2mi = p::::y {d0 ( x ,t ) ( A- 1: x . ) - 2 d1 ( x ,t )  l: a . ( x) x .  } 
i=1 � i= 1 � � 

> 0 

for t > 0 and X E oV m 
2D18 

for all t > 0 ,  s ince A >  'f + --- by ( 22 ) . 60 
Ow ( II I )  Lw - dt + ).,f( x ,t ,w )  

n n 
= i�ta i i ( x ; t ) ( - 2 �1( A:'i' ) + 

1
�

1
b i ( x , t H -2xi ) ( A�'i' ) + c ( x , t ) w + ).,f ( x , t ,w) . 



eA Now for t > 0 and x E Vm , e � w( x ,t )  � A=Y' so by hypothesis ( b )  we 

have that for all t > 0 and x E V , f( x ,t ,w)  � M ( e ,A , f) . I f  C � 0 , m 
n n 

then by ( 2 2 )  and hypothesis ( d ) we have 2 E A . - 2 E B .  - CA > O ,  
i= 1 � i= 1 � 

n n 
while if C < 0 , then by ( 22 )  we have 2 E A . - 2 E B .  - C ( A-f) > 0 . 

i= 1 � i=1 � 

Thus we define the positive number m0 ( e ,A)  as follows : 

If C � O ,  m0 ( e ,A )  = 

If c < o , m0 ( e ,A )  = 

n n 
e {2 E A .  - 2 E B .  - CA } 

i= 1 � i= 1 � 

(A-'f) M ( e ,A ,'f) 
n n 

e {2 E A . - 2 I B .  - C ( A-�) } 
i= 1 � i= 1 � 

( A-f) M( e ,A ,'f) 

Now if C � O , then we have that for all t > 0 and x E V : m 

0 0  0 0  . .  ( 2 4 )  

aw -2e n 2 e  n CeA Lw - � + Af( x ,t ,w)  � ( A_'£') E A . + ( A=Y) E B .  + p:::y + AM( e ,A , f) . 
i= 1 � i= 1 � 

If C < 0 , then we have that for all t > 0 and x E V : m 

6 5  

Ow In either case , it follows by ( 2 3 ) and ( 24 )  that Lw - ot + Af( x ,t ,w)  < 0 
for all t > 0 and x E V . m Thus part ( i )  of the theorem is proved .  

Now if A satisfies the condition of  part ( ii) , then part ( i )  holds , 
and it follows by Theorem 1 that if u( x , t )  is a solution of  ( 15 ) , then 
u( x , t )  < w ( x ,t )  for all x E V and 0 � t � T .  It follows that for all m 

eA T > 0 and x E �,  u( x ,T )  < w( x , T )  � A-'£' Thus part ( ii )  is proved .  

Note : That some such condition as hypothesis ( d ) ,  which places a 
definite upper bound on c( x ,t ) , is required in Theorem 1 7 ,  is shown by 
the example given in Ch . 2 .  

In that examp le , we have c ( x ,t )  = k for all x and t ,  and 
f( x ,t ,u )  = 1 for all x ,  t and u .  It i s  easily checked that hypotheses 
( a ) , ( b ) , ( c )  and ( e )  of Theorem 17 are satisfied , with C = k .  As 

2 
explained in Ch . 2 ,  if C = k � n

4 , the solution of the time-dependent 
problem is unboun ded as t - oo ,  for any A > 0 . Thus Theorem 17 does  
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2 TT not hold in this case unless we require C < �, i . e .  unless we put an 

upper bound on c( x ,t )  as in hypothesis ( d ) of  Theorem 17 .  
We may also observe in passing  that , for the example o f  Ch . 2 ,  we 

have n = 1 , B1 = 0 ,  A1 = 1 ,  � = 1 and n1 = 0 ,  s o  that hypothesis  ( d ) of  

Theorem 17 reduces to  C < 2 ,  which is  

than the weakest possible condition C 
not much stronger a condition 

TT2 
< 4 F::S 2 . 47 .  

THEOREM 1 8 :  Suppose that 

( a )  As for Theorem 1 ?. 
( b )  There exist constants M1 > 0 ,  M2 > 0 such that, for all  t > 0 ,  
x E Vm and u � 0 ,  f( x ,t ,u) � M1u + M2 • 

( c )  As for Theorem 1 ? . 
( d ) As for Theorem 1 ? .  
( e )  uo ( x) is  bounded above for X E vm. 
Then : If u( x ,t )  is a so lution of ( 15 ) , and if A satisfies 

o < A <  

n 
2 I: A .  
i = 1  � 

n 
- 2 I: B .  - C (  � + 

i= 1 � 
2 n  e 

M1 ( �  + _
1_) 

(>0 

or o < A < .:£ ( if c < o )  M1 

2 n  e 
_

1_) 
(>0 

( if c � 0 )  
( 2 5 )  

then there exists a constant K > 0 such that, for al l T > 0 and x E Vm ' 
u( x ,T )  � K ,  where K depends on A. 
Proof: We may apply Theorem 1 7 in this case . In the notat ion of Theorem 

17 ,  i f  eA e < w < r::::'f' then eA f( x ,t ,w )  s M1 ( A_f) + M2 , so in the proof of  

Theorem 1 7  we may take Thus , if C � 0 ,  then 

n n 
2 I: A • - 2 I: B • - CA 
i= 1 � i = 1  � 

M1A + M ( A-f) 2 e 
n n 

2 I: A .  - 2 I: B .  - C ( A-�) 
i=1 � i= 1 � 

while if  C < O ,  then we have 

Now if C � 0 and A satis fies ( 2 5 ) , then by choos ing A sufficiently 
2D18 

close to � + --0-- and e suffic ient ly large ( as we may do , s ince e may 
0 



be chosen as large as we please ) we can ensure that 

o < X  < m0 ( e ,A)  < 

n 
2 I: A .  

i = 1  � 

n 
- 2 I: B .  - C(  'f + 

i=1  � 

2D  E) _1_) 60 
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and so part ( ii )  of Theorem 17 will hold , which proves Theorem 18 if we 
eA take K = A-'f • 

I f  C < 0 and X satisfies ( 2 5 ) , then by choos ing A sufficiently 
large and e equal to , say , A2 , we can ensure that m0 ( e , A )  is as close 

-C as we p lease to �' and so we can certainly ensure that 

So again 

with K = 

1 

part ( ii )  
eA 

n · 

of Theorem 17  will hold , and Theorem 18 is proved 

COROLLARY : Suppose we modify the hypotheses of Theorem 1 8  by requiring 

that f( x ,t ,u )  � M2 for aZZ  t > 0 ,  x E Vm and u � 0 .  Then if u( x ,t ) is 

a solution of ( 15 ) , we have that for any X >  0 there exists a constant 

K > 0 ,  depending on X, such that u( x ,T )  � K for aZZ T > 0 and x E V . m 
Proof: For any X >  O ,  we may choose M1 sufficiently small so that ( 2 5 )  
holds , and the required result follows at once by Theorem 18 . 
Notes : ( i ) For the example dis cussed in Ch . 2 ,  with k = X , we have 
n = 1 ,  B 1 = O ,  A1 = 1 ,  'f = 1 ,  n1 = 0 ,  C = 0 ;  also f( x , t ,u) = u+ 1 for 

all x ,  t and u ,  so that M1 = M2 = 1 .  Thus in this case Theorem 18 

tells us that the solution to  the time -dependent problem will be bounded 
above as t - m if  0 < X <  2 ;  in fact , as explained Jn Ch . 2 , the solution 

n2 
will be bounded above as t - m if 0 < X < 4 F::s 2 . 47 .  

( ii )  Theorem 18 and its Corollary re late well t o  results ( iv )  and 
( v) of Keller and Cohen ( see pp . 15 , 16 ) . Keller and Cohen showed ( result 

.. 
( v ) ) that if f( x ,u )  < F( x )  + p( x)u  for x E V ,  u > 0 ,  then steady-state 
solutions exist if 0 < X <  � { p} ; Theorem 18 shows that if 
f( x , t ,u )  � M1u + M2 for x E Vm ' t > 0 ,  u � 0 then t ime-dependent 
solutions are b ounded as t - m if 0 < X < �( say )  where � depends on M1 
but not on M2 • Keller and Cohen also show ( result ( iv ) ) that if 
f( x ,u )  < F( x)  for x E V,  u > 0 ,  then steady-state solutions exist for 

·all X >  0 ;  the Corollary to Theorem 18  shows that if f( x ,t ,u )  � M2 for 
all X E Vm ' t > 0 ,  U � 0 then time-dependent solutions are bounded as 



t - � for all � > 0 . 

THEOREM 19 : Suppos e  that 

( a )  As for> TheoY'em 1 7 . 
( b )  TheY'e exists a constant M >  0 such that, for> aLl x E V , t > 0 and m 
u � 0 , f( x , t , u )  � Mu .  
( c ) , ( d ) , ( e )  as for' TheoY'em 1 7. 
( f )  For> a l l  t > 0 and x E V , f( x ,t , O )  � 0 ; furthermoY'e, f satisfies a m 
unifor'm Lipschitz condi tion in u on any finite u-interval .  

( g )  u0 ( x )  � 0 for' a l l  x E vm . 

Then : ( i )  For' any T > 0 ,  a str'i ct upper' so lution for' ( 1 5 )  is given by 

' n 2 w( x ,t )  = e - ��.t ( A  - I: x . ) for' all x E V , 0 � t � T A-'f e 
i = 1 l. m 

if A is a cons tant chosen so as to satisfy 

2n  e 
'f + 1 < A <  � 

A > 'f 

n n 
2 I: A .  - 2 :E B . 

i= 1 l. i = 1 l. 
c 

2 n  e 1 
+ --{)0 

n n 

if c 

if c 

> 0 

= 0 

{ 2n  e 
A > max 'f + ---1-60 

2 I: A .  - 2 I: B .  } 
i= 1 l. i = 1 l. 

c if c < 0 

n n 
- CA 

and if 0 < � < 
2 I: A .  - 2 I: B .  

i= 1 l. i = 1 l. 
M(A + 1) if c � 0 

n n 

0 < � < 
2 I: A .  - 2 I: B .  - C (A-'f)  

i= 1 l. i=1  l. 
M(A + 1) if c < 0 

( ii )  If u( x ,t )  is a so lution of ( 15 ) , and if � satisfies 

0 < � < 

n 
2 I: A .  -

i=1 l. 

n 
2 I: B .  

i= 1 l. 

2n e 
- C ( 'f + _1_) {)0 

or' o < � < �c 
< if c < o )  

then u ( x ,T )  - 0 as T - "" •  uniformly for' x E V m 

( if c � 0 ) 

Proof :  ( I )  and ( I I )  are s i�i lar to the proof of The orem 17 . 

• • • •  ( 26 ) 

( 2 7 )  

6 8  
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( II I) Lw - � + A.f( x ,t ,w) 

n -2ee-A.t 
= · r a • .  ( x , t )  '£ 

n 
:r: b . ( x ,t ) 

i=1 � 
-2x . ee � 

-A.t -At n 2 + c ( x ,  t ) .:::.e..;;..e -......- ( A- E x .  ) 
i= 1 u A- + A-'f .' -'f ' "' . 1 ... 

�= 

+ 
-' t A.ee 1\ 

A-'f 
n 2 ( A- :E x . ) 

i= 1 � 
+ A.f( x , t ,w ) 

-At n :s: C2ee ) E A .  A-'£ . � �= 1  
+ 

-At n 
( 2ee ) E B .  A-'¥ • � �= 1  

+ 
-At n 2 c ( x ,t )  ee ( A - E x . )  A-'¥ i= 1 � 

-A.t n 
+ + ee 2 A.M -;::::r ( A- :r: X. ) 

i=1 � 
-At n n n 2 ee { - 2 E A .  + E B .  U� } :s: A-'f 2 + c ( x ,t ) ( A- E x . )  + AA +  

i=1 � i= 1 � i= 1 � for all t > 0 '  

Now if c :<!:: 0 '  then we have that for all t > 0 and x E V : Til 

Ow -A.t n n 
Lw - �t + A.f( x ,t ,w) :s: �A {- 2 E A . + 2 E B .  + CA + A.M( A+ 1) } Ol: • - 't i = 1 � i = 1 � 

< 0 for all t > 0 by ( 2 6 ) . 

If C < O ,  then we have that for all t > 0 and x E V : m 

X E 

� - -At n n 
L vw , ( ) €e f � 't"' ( \!/ ) ( ) } w - ::.t + 1\f X , t , w s �A - 2 L. A . + 2 L. B . + c A- � + A. M A+ 1 V A - I  i = 1  � i = 1  � 

< 0 for all t > 0 by ( 26 ) . 

Thus part ( i ) of the theorem is proved .  

V . m 

Now if A. satisfies ( 2 7 ) , then by choosing A sufficiently close to 
20 e 

'f + ---1- ( if C :<!:: 0 ) , or sufficiently large ( if C < 0 ) , we may ensure 60 
that ( 26 ) , and therefore part ( i ) of the theorem , will hold . It follows 
by Theorem 1 that i f  u( x ,t )  is a solution of ( 15 ) , then u( x ,t )  < w ( x ,t )  
for all x E V and 0 s t s T .  Hence , for all T > 0 and x E V : m m 

ee-A.T n 2 � Aee-A.T 
u( x ,T )  < w( x ,T )  = ( A  I: x ) "" A-'f - i I A-'f i = 1  

Also , b y  hypotheses ( f ) and { g ) , it follows from Theorem 1 1  that 
u( x , T )  :<1:: 0 for all T > 0 and x E V . Since A. >  0 , part ( ii )  of the m 
theorem follows at once . 
Note : Theorem 19 re lates well to result ( vi )  of  Keller and Cohen ( see 
p . 1 6 ) . Ke ller and Cohen 3 howe d that if  there e x i s t s  a p o s i t ive p ( x )  

,\ 
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such that f( x ,u )  < p( x )u for x E V ,  u > 0 ,  then no positive steady-state 
solutions exist if  0 < A <  �{p } . Theorem 19 shows that , if 
f( x , t , u) � Mu for all x E V , t > 0 ,  u � 0 ,  and if  0 < A <  �( say )  where m 
� depends on M ,  then all solutions of the time-dependent problem 
( provided the initial function is bounded )  tend to zero as t - =, so 
that no positive steady-state solutions will exist if 0 < A < �· 

THEOREM 20 : Hypotheses as for Theorem 1 ?  except that, in hypothesis ( b ) , 
we suppose that there exis t  constants M1 � o ,  M2 > o and a such that 

0 < a � 1 ,  such that, fer a l l  x E V , t > 0 and u � 0 ,  m 
1-CI f( x ,t ,u)  � M1 

+ M2u . 

Then : ( i )  For any T > o ,  a s trict upper so lution for ( 15 )  is given by 

w( x ,t )  = KA11�;/a( A -
i
�
1
xf ) for all  X E vm , 0 � t � T 

(so that w( x ,t )  is actually independent of t ) if A >  O ,  A is a constant 

chosen so as to satisfy 

n n 
2n e 2 E A . - 2 E B .  

i= 1 � i=1  � 
1 

'f + -- < A <  
{>0 c if c > 0 

2n e 
A > 'f 

+ 1 
� if c = 0 

n n 
2 E A . . 1 � � = 

- 2 E B .  } 
i= 1 � 

c if c < 0 

cmd K is a constant chosen so as to satisfy 
1 

{ [ A 
1-�;1/�1 

+ A 1 -CI �1/CI 
K > max 1 ,  n n ' 

2 I: A .  - 2 E B .  - CA 
i=1  � i= 1· l. 

1 

K > max {1 , 
[ 

n 
>.
1-a;.;1/�1 

+ A1-a ]1/a
, 

2 I: A .  - 2 E B .  - C ( A-'f) 
i=1 l. i= 1 l. 

( ii )  For any A >  o ,  if u( x , t )  is  a so lution of ( 15 ) , and K and A 
are as abo ve ,  then u( x ,T )  � KA11��/aA for a l l  X E vm and T > 0 .  

( 2 8 )  



( 2 8 ) , and hypothesis ( e )  . 
. ( I I )  is similar to the proof of Theorem 11 : 

. . Ow ( II I ) Lw · :... at + )..f( x ,t ,w) 

n . . 1 la..1 /a n 1la..11a = E a  . .  ( x ,t ) ( -2K).. -M2 ) · + I: b . ( x ,t ) ( -2 x . K).. --M2 ) 
' i = 1  1. 1.  i=1 l. l. 

+ c ( x ,t )w + )..f( x , t ,w )  

. n n n 
� -2K)..1 10M11a I: A .  + 2K)..11�1Ia I: B .  + c ( x ,t )K)..11�1

21
a(A- I: x� ) 

. 2 i�1 l. 2 i = 1  l. i=1 l. 

· !_ 1 .!_ _ 1 n 
+ ).. {M1 + M2K

1-�a M� ( A- I: x� ) 1-a} . 
i =1  l. 

Thus , for all t > 0 and x E V : m. 
Ow Lw - at + H ( X 't 'w )  

1 I I n rt n 2 � K -�1 �1 a{-2KCI I: A . + 2KCI I: B . + c ( x ,t ) KCI( A- L x . ) 2 i = l  l. i = 1  l. i=1 l. 

1 I I n n n 2 � K -�1 �1 CI{Ka[-2 I: A . + 2 I: B .  + c ( x , t ) ( A- I: x . ) ] 2 i=1 l. i = 1  l. i=l l. 
1 1 -�.-11a.. 1-a} + A -M2 --M1 + A 

a- 1  since K > 1 ( by ( 2 8 ) ) and a- 1  � O , so K � 1 .  
Now if  C � 0 ,  then we have that for all t > 0 and x E V : m 

Ow Lw - et + )..f( x ,t ,w ) 

< 0 for all t > 0 by ( 2 8 )  • 

If  C < 0 ,  then we have that for all t > 0 and x E • V : m 
Ow Lw - ot + )..f( x ,t ,w) 

< 0 for all t > 0 by ( 2 8 ) . 
Thus p art ( i ) o f  the �heorem is prove d . .\ 

7 1 
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Now if X >  O , and u( x ,t )  is a solution of ( 15 ) , and K and A are as 
above , then it follows by Theorem 1 that u( x, t) < w( x ,  t) for all x E V m 

- 1/�.1/a and 0 � t � T .  Hence , for all T > 0 and x E Vm ' u ( x ,T )  < w( x ,T )  s KX -M2 A .  
This proves part ( ii )  o f  the theorem .  

Extens ion to  Other Domains : 
n 2m . 

Theorems 12 to 20 apply only to the domain V = {x : I x .  1 < 1 }  m i= 1 1 

( the m .  be ing arbitrary positive integers ) ;  Theorem 11 , though stated 1 
for the domain V , will obviously hold for any domain V .  I f  one wishes m 
to extend Theorems 12 to 20  in a constructive way to some other specific 
domain V* , this may be pos s ible if one can explicitly construct a 
diffeomorphism from V* to V , i . e .  !'!1 if one can find open sets 0 1 � V* , 
o2 � vm and a homeomorphisr. of v* onto vm which can be extended to a 
differentiable function g : 0 1 - o2 with differentiable inverse .  It i s  
necessary ·also that the second partial derivat ives of  g should  exist 
on 01 . The construction o �  such a diffeomorphism is only possible in 
certain s imple  cases . 

Then if u( x ,t )  satis:'ies  ( 1 5 )  on the region { ( x , t ) : X E V�': ' t � 
we can define v( x , t )  = u( g- .:. ( x ) , t ) on the region { ( x , t ) : X E v m ' t � 
and use standard calculus te c!1niques to transform ( 1 5 )  into the 

o } ,  
o } ,  

corresponding initial-boundary value problem satisfied by v .  It may 
then be poss ible to apply Tr.eorems 12  to 20 to this problem . The next 
chapter includes one s imple example of this technique . 

However , if one is pre�ared to abandon to some extent the explicitly 
construct ive approach used  in Theorems 12  to 20 , one may prove a 
collection of theorems s imilar to Theorems 12  to 20 but applying to an 
arbitrary domain V .  The method of  proof that will be used  here requires 
that we restrict ourse lves to a t ime-independent differential operator . 

,. 
We shall denote by L1u the expres sion 

where ... ,. E ca( V) for i ,  j a . .  = a . .  1 ] ] 1  
i = 1 ,  2 ,  • . •  n .  The differential 
elliptic .  We shall be  concerned 
value problem 

= 

n ,. o + I b .  ( x )  u 
. 1 1 'dx':"" 1= 1 

1 , 2 ' . . .  n ,  and b .  E Ca(V) for 1 ... 
operator 11 is assumed to be uniformly 
with the parabolic init ial-boundary 



A OU L1u + c ( x , t ) u - dt + �f( x ,t ,u )  = 0 for ( x ,t )  E DT 
Blinu = 0 for ( x , t )  E ST 

u( x , O )  = u0 ( x) for x E V 

• •  ( 2 9 ) 

where f is  continuous for x E V, 0 � t � T and all u ,  u0 E c2+a(V) and 
the parameter � is assumed to be positive . 

Now consider the eigenvalue problem 
.. 

L1cp + � = 0 for x E V } 
. . . . . . . . . . . . .  ( 30 ) 

acp + b � = 0 for X E oV 

where a and b are positive constants . I f  A denotes the inverse of the 
.. 

operator L1 with boundary condition as in ( 30 ) ,  then A is a compact 
( i . e .  completely cont inuous ) operator on the Banach space C (V) of 
continuous functions defined on V, with the supremum norm ( see 
Browder[7] ) . Further : 

E v  .. 

+ b � = Ah = g for x � L1g = h for X E V and ag 0 for x E oV . 

Suppose now that Ah = g for X E V, where h ( x) :<: 0 for all X E V. 
If g attains its maximum M in V ,  then it follows by Theorem 5 of Ch . 2  
of Protter and Weinberger[28]  that g ( x )  = M for all x E V. But then 
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� = 0 for all X E oV , and so from ag + b � = 0 for all X E oV ,  it 

follows that g ( x )  = 0 for all X E oV .  Thus M =  o ,  and g is identi cally 
zero on V .  So if g is not identically zero on V ( equivalently , i f  h 
is not identically zero on V) , then the maximum of g on V is attained 
at a point P on oV .  Then , by Theorem 7 of Ch . 2  of Protter and 

Weinberger[2 8] , � > 0 at P .  Since ag + b � = 0 at P ,  it follows 

that g ( x) < 0 at P ,  so g ( x )  < 0 for all x E V. 
Thus we have shown that if h ( x )  :.: 0 for all x E V ,  and h is not 

identically zero on V, then -Ah > 0 for all x E V. 
Now the set of non-negative functions on V is a cone in the 

Banach space C (V) , with interior the set of strictly positive functions 
on V. It follows from the above discussion that the operator -A is 
strongly positive with n = 1 ,  with respect to this cone ( us ing  the 
terminology of Krein and Rutman[20 , p . 2 6 6] ) .  It follows by Theorem 6 . 3  
of Krein and Rutman[20 , p . 2 6 7] that -A has a unique normalised 
e igenfunction which is strictly positive on V, and the corresponding 
e igenvalue is real , posit ive and s imple . Since ( 30 ) mayJ be  written 
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( -A ) � = ! �, it follows that ( 30 )  has a unique normalised e igenfunction I.L 
�1( x ; a ,b )  which is strictly positive on V, and the corresponding 
e igenvalue IJ1 ( a ,b )  is real , positive and simple . Obviously , there exist 
positive constants a1 ( a ,b ) , �( a ,b )  such that 

a1 ( a ,b )  � �1( x ; a ,b )  � �( a ,b )  for all X E V . 

S ince acp1 + b 
Oq>1 On < 0 on oV . 

Oq>1 an- = 0 on oV and �1 > 0 on oV , it follows also that 

We are now in a pos ition to state and prove a theorem analogous 
to our earlier Theorem 12 . 

A THEOREM  12 : Suppose that 

( a )  There exis ts a constant C � 0 such that c ( x ,t )  � -C for all  x E V 
and t > 0 .  
( b )  There exists a constant M >  0 such that, for all t > 0 ,  x E V and 

u � o , f( x ,t ,u )  � M .  Furthe�ore , f satisfies a uniform Lipschitz 

condition in u on any finite u-interva l .  

( c ) There exist cons tants D0 > 0 and 61 > 0 such that, for all  x E oV 
and t > o ,  o < d0 ( x , t )  s D0 and 61 s d1 ( x ,t ) . 

( d )  u0 ( x) � 0 for all  x E V. 
Then : ( i )  For any T > o ,  a lower so lution for ( 2 9) is given by 

w ( x , t )  

where K is  a cons tan t  chosen so as to satisfy 

M 0 < K < 
� ( D0 ,�61 ){C + �( D0 ,S61 ) + 1] . • • . . . • . • •  ( 3 1 )  

( ii )  If u( x ,t )  i s  any solution of ( 29 ) , then for any T > O , 
u( x ,t )  > 0 for 0 < t � T ,  and if lim u( x ,T )  = u( x) exists, then for all  

T-c� 
X E V, 

XMa1 C D0 ,�61 ) 
u (x )  � { ( !;; ) J > o .  

a2CD0 ,�61 ) c + � n0 , 261 + 1 

Proof: ( I )  w( x ,O )  = 0 � uo ( x) for all X e V, by hypothes is ( d ) . 
Ow ( I I )  Blinw = d0 ( x ,t )w  + d1 ( x , t )  On 

Ocp1 = XK( 1-e-t ) {d0 ( x ,t )cp1 C x ; D0 ,�61 ) + d1 ( x ,t )  On } 
Ocp1 s XK( 1-e -t ) { D0cp1 ( x ; D0 ,�o1 ) + d1( x ,t ) On }  for t >  O , 

x e -ov 



. Oq>1 -t { ) = �K( 1-e ) - �61 + d1 ( x ,t )  On 
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< 0 for all _ t > 0 since d1 ( x , t )  � 61 > �61 for t >  0 ,  

Oq>1 X E av , and also On < 0 for X E oV . 

.. Ow ( I I I ) L1w + c ( x ,t )w - � + �f( x ,t ,w) 

= �K( 1-e-t ) {- �( D0 ,�61 ) + c( x , t ) }�1- �K�1e
-t + �f( x ,t ,w )  

� �K{- IJ1 ( D0 ,�61 ) - C )� ( D0 ,�61 ) - �K�( D0 ,126 1 ) + )..M 

> 0 for t > 0 and x E V ,  by ( 31 ) .  
Thus part ( i )  of the theorem is proved .  B y  Theorem 2 ,  i t  follows 

that i f  u( x , t )  is a solution of ( 29 ) , then u( x , t )  � w( x ,t )  for all 
( x , t )  E DT . It follows that u( x , t )  > 0 for x E V, 0 < t � T .  
Furthermore , w( x ,t )  - )..K�1 as t - � ,  so if lim u( x ,T )  = �( x )  exists , 

T-oa:> 
then for all x E V, 

arbitrarily close to 

u( x ) � �K�1 � )..Ka1 ( D0 ,�61 ) .  Since K may be  chosen 
M l} , part ( ii )  of  the 

� < �o '�61 ) {c + u1 C Do ,�61 ) + 
theorem follows at once . 
Note : As for Theorem 1 2 , the condition that f should s a� isfy a uniform 
Lipschitz  condition in u on any finite u-interval may be removed if  we 
assume that u0 ( x ) > 0 for all x E V. 

In a s imilar fashion , one can state and prove Theorems 1 3A to 16A 

analogous to Theorems 1 3  to 16 .  The remaining "lower solut ion" 
theorem , Theorem 1 1 , holds for arbitrary domains V in any case , as 
already remarked . 

Next we state and prove a theorem analogous to our earlier 
Theorem 17 .  
THEOREM 17A : Suppose that 

( a )  There exis t constants 60 > 0 and D1 > 0 such that, for al l x E oV 
and t > o ,  d0 ( x ,t )  � 60 and o � d1 ( x ,t ) � n1 . _ 

( b )  There exis ts a constant C < IJ1(�60 , n1 ) such that c ( x ,t ) � C for 

al l x E V and t > 0 • 

( c ) For any bounded positive u-interval I ,  there exists a corresponding 

positive number M ,  depending only on I ,  s uch that f ( x ,t ,u)  � M  for a l l  

x E V ,  t > 0 and u E I .  
( d ) There exis ts a cons tant € > 0 such that uo ( x )  < € for all  X E V. 



Then : ( i ) For any T > o , a s trict upper so lution for ( 2 9 )  is given by 

w( x , t )  = (�6
e 

D ) cp1( x ;�60 , D1 ) for aU ·x E _DT (11 0 ' 1 
(so that w ( x ,t ) is actual ly independent of t) if 

e(�(�60 , D1 ) - c] 
0 < A <  M[e ,a1(�60 ,D1) ,a2(�60 , D1)J • • • • • • • • • • • •  ( 32 ) 

76 

where M( e ,a1 ,� ) is defined in the proof be low, and is independent of T .  

e[�1 (�60 ,n1 ) - c] 
( ii )  If 0 < A <  and if u( x ,t )  is M[e ,a1(�60 ,n1) ,a2(�60 ,D1)] ' 

ea2 (�60 , n1 ) 
a solution of ( 2 9 ) , then for aU T > 0 and x E V, u( x ,T ) < a1 (�60 , D1 ) 

Proof: ( I )  

( I I )  

w ( x , O )  � e > u0 ( x) for all X E V, by hypothes is 

B 1 . w = d0 ( x , t ) w  + d1 ( x ,t ) Ow 
ln On 

= 

= (1 e 
) {dO ( x ,t ) - �60 } q>1 ( x ;�60 , D1 ) 

Cl1 '2{)0 ,D1 

( d ) .  

> 0 for all t > 0 and X E oV s ince do ( x ,t )  � 60 > �60 
for all t > 0 and X E oV . 

.. Ow ( I I I )  L1w + c ( x , t )w - dt + Af( x ,t ,w )  

= 
a1 (�;0 , D1 ) {- �1(�60 , D1 ) + c( x ,t ) } cp1 ( x ;�60 , D1 ) + Af( x ,t ,w) 

� e {- �(�60 ,D1 ) + C} + Af( x ,t ,w ) for all t > 0 and x E V ,  

using the fact that C - �1 (�60 ,D1 ) < 0 ,  and so c( x ,t )  - �1 (�60 , D1 ) < 0 

for all t > 0 and x E V .  

Now for t >  0 and x E V ,  e � w ( x ,t )  � 
ea2 (�60 , D1 ) 

) ' so by 
a1(�60 , D1 

hypothesis  ( c ) we have that for all t > 0 and x E V ,  
f ( x ,t ,w) � M[e ,a1 (�60 , D1 ) ,� (�60 , D1 ) ] . 

Hence , for all t > 0 and x E V :  



A Ow L1w + c ( x ,t )w - dt + Af( x ,t ,w) 

� e {- �(�60 ,o1 ) + c ) + AM(e ,a1 (�60 ,o1 ) ,� (�60 , n1 ) ] · 

< 0 for all t > 0 and x E V by ( 32 ) .  
Thus part ( i ) of the theorem is proved . 

7 7  

Now if  A satisfies the condition of  part ( ii ) ,  then part ( i ) holds , 
and it follows by Theorem 1 that i f  u ( x , t )  is a solution of  ( 29 ) , then 
u( x , t )  < w ( x , t )  for all ( x , t )  E DT . It follows that for all T > 0 and 

X E V, 
ea2 (�60 , o1 ) 

u( x ,T )  < w( x , T )  � a1 (�60 , D1) 
Thus part ( ii )  is  proved .  

In a s imilar fashion , one can state and prove Theorems 1 8A t o  2 0A 

analogous to Theorems 18 to 20 . Thus the picture built up in Theorems 
12 to 20 of  the behaviour of the s olution of the time -dependent problem 
for different classes of functions f holds not only for the special 
domain V but for any domain V .  m We shall be discussing that picture 
shortly . However , it should be pointed out that both sets of  theorems , 

A A Theorems 1 2  to 20 and Theorems 12 to 20 , are of interest . Theorems 
12A to 2 0A are indeed more general as regards the domain V ,  but the 
constructive nature of Theorems 12 to 20 allows us to use these 
theorems to obtain , for example , e as ily calculated bounds for the 
critical parameter A* , as well as other quantitative informat ion should 
we need it . This aspect of the matter will be examined in the next 
chapter . 

Discussion : 

We shall now summarise and e xamine one of  the most important 
aspects o f  Theorems 1 1  to 20 and 12A to 2 0A from our point of view , 
namely the information they give concerning the relationship between 
the nature of the function f and the behaviour of the solut ion u of the 
t ime-dependent problem as t - m , To avoid undue complication , we shall 
here assume that we are dealing with the t ime-dependent problem 

A ou A Lu - d-t + Af( x ,u )  = 0 for ( x , t )  E D 
A 

B1 . u = 0 for ( x , t )  E S 1n 
u( x , O )  = u0 ( x) for x E V 

and its related steady-state problem 
Lu + Af( x ,u )  = 0 for x E 

... 
Bl . u = 0 for X E oV 1n 

. . • . • • . . .  ( 3 3 )  

• • • • • • • • . .  ( 34 ) 



78  

We shall s uppose that ( 33 )  and ( 34 )  are such that the discussion at the 
end of Ch . 6  applies ,  so that the existence of  a positive sol�tion of 
( 34 )  is equivalent to the boundedness over all positive time of the 
solution of ( 33 )  in the case u0 = 0 .  This means , in particular , that 
f( x ,u )  > 0 for all x E V and u � 0 ,  and u0 ( x) � 0 for all x E V. 

First let us review what is known about ( 34 )  from the results of 
Keller and Cohen , and Amann ( see  Ch . 4 ) . We suppose here that ( 34 )  is 
such that the theory discussed in Ch . 4  applies ;  this requires in 
particular that ( 34 )  be self-adj oint . It is convenient to consider 
three categories of functions f .  
( 1 ) f monotone increasing and concave in u (but not asymptotically 

linear ) : 

In this case , Keller and Cohen show ( result (viii ) )  that either 
there e xists A* > 0 such that a positive solution of ( 34 )  exists for 
0 < A <  A* but not for A �  A* , or else a positive solution of ( 34 )  
exists for all A > 0 .  

( 2 )  £ - monotone increasing and asymptotically linear in u :  

I n  this case , Amann has shown that there exists a finite A* >  0 
such that positive solutions of ( 34 )  exist for 0 < A < A* but not for 
A >  A* ; a posit ive solution of ( 34 )  may or may not exist for A = A* · 

( 3 ) f monotone increasing and convex in u (but not asymptotically 
linear ) : 

In this case , Keller and Cohen show ( result (vii ) ) that there exists 
a finite A* � 0 such that positive solutions of ( 34 )  exist for 0 < A < A* 
but not for A >  A* ; a positive solution of ( 34 )  may or may not exist for 
A = A* · Note that , as far as is known from the results of Keller and 
Cohen , it is poss ible that A* = 0 ,  i . e .  that for certain f there are no 
positive solutions of ( 34 ) . 

Now suppose that ( 33 )  is such that the theorems of the present 
chapter apply . In considering the relation between the nature of the 
function f and the behaviour of the solution of ( 33 )  as t - =, we again 
find three categories  of functions f appearing , which while not 
identical to the above , clearly correspond closely to them. 

( 1 )A f( x ,u )  � M1 + M2u1-a for some M1 > 0 ,  M2 > 0 ,  0 < a � 1 : 

For any A >  0 ,  the solution of  ( 3 3 )  is in this case bounded above 
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A as t - � (Theorems 20 , 20  ) .  In the light of the discuss ion at the end 

of Ch . 6 ,  this means that positive solutions of ( 34 )  exist for all � > 0 .  
Thus the possibility of a bounded spectrum , which was left open by 
Keller and Cohen , can be ruled out in this case . 

A partial result in this direction was in fact obtained by Keller 
and Cohen(19 ,  Theorem 4 . 2] ,  who showed that if lim fu( x ,u)  = 0 then 

u-
positive solutions of ( 34 )  exist for all � > 0 .  An earlier paper by 
Hudj aev(16] , which has not yet been mentioned , deals more fully with 
this point . Hudj aev ' s  paper has much in common with the paper of Keller 
and Cohen , but he requires that the coe fficient a0 ( x) of u be zero 
( us ing  the notation of Ch . 4 ) , and also that f( x ,u)  can be written in 
the form a(x ) F ( u ) . With these  restrictions , he proves(16 , Theorem 2 ]  
that a necessary condition for positive solutions o f  ( 34 )  to exist for 

all A > 0 is that lim inf F( u )  = 0 ,  while a sufficient condition is u u - Cl) 
lim F ( u )  = 0 .  These conditions are obviously closely related to our u u--

( 2 ) A M1u + M2 � f( x ,u) � w':u "1 + M·'· 2 for some positive M1 ' M2 ' W': 1 ' M�': . 2 ' 
... 

and f satisfies a uniform LiEschitz condition in u on anz bounded 
u-interval : 

( i) I f  A is sufficiently small , then the solution of ( 3 3 )  is bounded 
above as t - m ( Theorems 18 ,  1 8A ) ,  and so  ( 34 )  will have a pos itive 
solution . 
( ii )  If  A is sufficiently large , then the solution of ( 3 3 )  tends to m 
either as t - m or as t tends to some finite value ( Theorems 1 3 ,  1 3A ) ,  
and so  ( 34 )  will have no positive solution . 
Thes e  facts are in general accord with the results proved by Amann for 
asymptotically linear f , but deal with a much wider class of functions . 

( 3 )A f( x ,u) � Mu1+a for some M > 0 ,  a > 0 ;  and f satisfies a uniform 
Lipschitz condition in u on anz bounded u-interval : 

( i ) I f � is sufficiently small ( depending on the initial function u0 ) ,  
then the solution of ( 33 )  is  b ounded above as t - � ( Theorems 17 ,  17A ) ,  
and so ( 34 )  will have a positive solution . This suggests that in the 

,. 

case of convex f discussed by Keller and Cohen , positive solutions of 
( 34 )  will exist for all sufficiently small A ,  so that the spectrum is 
always non-empty . 
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( i i )  J?'o:-:- auy i'., > 0 � if t.10 is sufficiently large ( depending c ,l ' ) • ��he·d 
the solution of ( 3 3 )  tends to a» as t tends to some finite val11e ( T·h�c.rems 

A 15 ,  1 5 ) .  
( ii i )  For any positive u0 , if X is sufficiently large ( depending 011 u0 ) p  
then the solution of ( 33) tends to � as t tends to some finite value 
( Theorems 15 ,  1 5A ) .  

.. 1+a ( iv) I f  we impose the stronger condition that f( x ,u)  � M1u + M2 for 
some M1 > O ,  M2 > 0 ,  a > 0 ( as well as satisfying the Lipschitz 
condition ) ,  then for any non-negative u0 , if X is sufficien i.. J_y large � 
the solution of ( 33) tends to m as t tends to some finite value ( Theorems 

A 16 , 16 ) • Thus , for sufficiently large }. �  ( 3lf ) has no positlve solution , 

Thus the information obtained by studying the time-dependen·c proble-u 
parallels in many respects that obtained by studying the steady· ·si:< :;. e 
problem ; however , the study of  the time-dependent problem doeE, ::;eeiJI t 0  
have some advantages . 
( a ) The conditions which need to be imposed on the function f c-.Pc much 
less stringent ; there are no requirements involving differen d a1J 1 . 1 .:, .y , 

munotonici ty , concavity or the like , only fairly crude inequ2..L:i.. '"'(. ' 
( b )  There is no requirement that the problem be self-adj oint _ 
( c ) Taking the theorems of this chapter in their full generali'cy _ o, , _; 
can deal with t ime-dependent different ial and boundary operato;_'s nf� ·ell 

as a time-dependent f; indeed , one can handle oscillat ing systEms wh.:re 
no related steady-state problem exists . 
( d ) As already mentioned ,  it is possib le to extract interesting 
quantitative data fairly easily from Theorems 12 to 20 of this chapter ; 
Ch . 8  deals with this point . 

The Effect of  Reactant Consumption : 

In discuss ing the heat -generation problem in Ch . 1 , we assumed that 
there was no consumption of reactant . S ince this hardly seems a 
realistic assumpt ion , it is  t ime we considered the e ffect of reactant 
consumption .  One way of doing this  is  to suppose that , for any fixed  x 
and u ,  the heat generation function f( x , t ,u) decays to zero in a 
suitably well-behaved manner as t - m, We obtain the following theorem : 
THEOREM 2 1 : Suppose that 

( a )  As for Theorem 1 ?. 
( b )  For al l x E V , t � 0 and u � o ,  f( x ,t ,u) � M( u ) F( t ) , where : m 

( 1 ) M( u )  is boun\ded and positive on any fini te posi tive u-interva l ;  



( 2 )  F ( t )  - 0 as t - m , F( t )  > 0 and bounded above on {t : t � 0 } ;  
( 3 )  F is differentiab le for aU t � 0 ,  and there exist positive 

constants r1 , r2 , y such that lr;(\t)) I :s: r1 for aU t � 6 ,  and 

F( t )  · 

F(Xt) :s: r2 for all  t � 0 tf 0 < � < y .  Note that these are not severe 

restrictions, since they are satisfied by, for examp le 

F ( t )  -kt = Ae (A > 0 ,  

Ae 0 

k > 0 )  

:s: t :s: 
and by F( t )  

{ -k (t- 1 )  ( 
-

At-k ( t  > 1 )  
( c ) ,  ( d ) and ( e )  as for Theorem 1 7 .  
( f ) and ( g )  as for Theorem 1 9 .  

1 )  
( A > O , k > 0 ) . 

Then : ( i )  For any T > o ,  a strict upper so lution for ( 1 5 )  is given by 

8 1  

e n 2 w ( x , t )  = F(OHA-'f) (A  - E x . ) F ( At )  for az:l x E V , 0 :s: t :s: T 
i=1 � m 

if A is a cons tant chosen so as to satisfy 

and if 

n 
2n e 2 E A .  

i = 1  � 
'f + 1 < A < 60 

2D  8 1 A > 'f + � 
{ 2D18 

A > max 'f + � , 'f + 

n 
2 E A . 
i = 1  � 

O < X < n0 ( e ,A )  

n 
- 2 E B .  

c 
i = 1 � 

if c > 0 

if c = 0 

n 
- 2 E B . } 

i = 1 � 
c if c < 0 

• • • • • . • • • • • • • . • . • • . • •  ( 35 ) 

where n0 ( e , A ) , apart from depending on e and A ,  depends on the 

coefficients in the operators L and B1 . , the quantities 'f and 8 ,  and �n 
the nature of the functions M and F ,  but not on T .  

( ii )  If o < ),  < n0 ( e ,A ) , an d  i f  u( x , t )  is a so lution of ( 15 ) , 
then u( x , T )  .... 0 as T - eo , uniformly for x E V . m 
Proof: ( I )  and ( I I )  are similar to the proof o f  Theorem 17 .  

( I I I )  By hypothes is (b ) ( 2 ) , F ( �t )  is  bounded above on {t : t � 0 ) , 
so w( x , t )  is  bounded  above on { ( x ,t ) : x E Vm , t � 0 ) .  By hypothesis  

( b ) ( 1 ) ,  there exists a positive number N ( e ,A )  such that M (w )  :s: N( e ,A )  
for all x E V , t � 0 .  m 



= 

Ow H( x ,t ,w )  Lw - - + at 
n -2e E a . .  ( x ,t )  F O.t )  

i= 1 u .  F(O)(A-'i') 

eF( Xt )  n 1 + c( x ,t )  F(O)(A-'i') ( A- E x . )  
i=1 � 

+ Xf( x , t ,w)  

n -2x . e 
� + E b . ( x ,t )  F(O)(A-'i') F( Xt )  

i=1 � 

Xe n 2 
F(o)(A-'i') (A- E x . ) F' ( Xt )  

i=1 � 

-2eF( Xt ) n 
� ( F( O ) ( A-P) )

i�l
Ai + 2eF( Xt )  n eF( Xt )  n 2 ( F(O)(A-'f) ) . E Bi + c ( x ,t )  F(O)(A-f) (A- E x . ) 

�= 1 i = 1  � 
Xer1r< Xt )A 

+ F(OHA-'f) + ).N ( e ,A ) F( t )  for t > 0 and x E V , m 
using hypothesis ( b )  

n n n 2 � F( Xt ) (F(o)(A-'i'){- 2 E A . + 2 E B .  + c ( x ,t ) ( A - E x . ) }  
i= 1 � i = 1  � i=1  � 

if 0 < X <  y ,  by hypothesis ( b ) ( 3 ) .  
We now define the positive number n0 ( e ,A)  as follows : 

n n 
e [2 E A1 - 2 E B .  - CA] 
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er1�·! r( o ) (�:il�< e ,Alr2 } ( 36 ) 
n n 

{ 

e [2 E A . - 2 E B .  - C (A-Y) ]  
i= 1 � . 1 � 

} 
I f  C < 0 , nO ( e , A )  = min y , -e....,r=-

1
-A_+_F-:-( -0 �.,....) �.,...A-_...,.,'f,..,..)--N-:-( e-, A,....,)""r=-2-

Now if C � 0 ,  then we have that for all t > 0 and x E V , if 0 < X <  y :  m 
Ow Lw - at + H ( X ,  t , w )  

If  C < 0 ,  then we have that for all t > 0 and x E V , if 0 < X <  y :  m 
aw Lw - dt + H ( x ,  t , w )  

n n er1A 
� F( Xt ) [F(O)<A-'i')(- 2 E A . + 2 E B .  + C ( A-Y ) } + X {r(o)(A-'f) + N ( e , A )r2 }] .  

i=1 � i= 1 � 
aw In e ither case , it follows by ( 35 )  and ( 36 )  that Lw - at + Xf( x ,t ,w ) < 0 

for all t > 0 and x E V . Thus part ( i ) o f  the theorem is proved . m 
Now if X satis fies ,1the condition of part ( i i ) , then part ( i ) holds , 
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and it follows by Theorem -· 1 that if u( x ,  t )  is a solution of ( 1 5 ) ,  then 
u( x ,t )  < w( x ,t )  for all x E V and 0 � t � T .  It follows that for all m 

T > 0 and x E V , m 
eAF O ,T )  u( x ,T )  < w( x ,T )  � F(o)(A-f) Also , by hypotheses 

( f )  and ( g ) , it follows from Theorem 1 1  that u( x ,T )  � 0 for all T > 0 
and x E V . Since , by hypothesis ( b ) ( 2 ) , F( �T)  - 0 as T - �, part ( ii )  m 
is proved .  
Note : As in the case o f  Theorems 12 to 20 , one can state and prove 
Theorem 2 1A , analogous to Theorem 2 1 but applying to an arbitrary 
domain V .  

Thus , i f  we allow for reactant consumption , then part ( ii )  of the 
theorem shows that , in terms of the criterion for thermal explosion 
that we are working with at present , thermal explosion cannot occur . 
Since thermal explosions undoubtedly do occur , there appears to be 
something wrong with our criterion . However , a recent paper by 
Sattinger[ 3 3] sheds some light on this matter . 

Sattinger discusses a model of  combustion with reactant consumption 
which involves two simultaneous partial differential equations , and so 
is rather more complex than the one we have used . However , he reaches 
the same conclusion - that the solution u( x ,t )  t ends to zero as t - �,  
regardless  of the initial condition , at least for the particular system 
he is dealing with . He then points out that whether or not thermal 
explosion takes place depends , not on the final state reached by the 
system , but on the manner in which that state is attained .  I f  the 
system is initially in what he calls a "subcrit ical" state , the combustion 
proceeds very slowly , with the temperature reaching an almost steady 
value , which it holds for a considerable time before ultimately falling 
to the ambient value . Alternatively , the react ion may aft er a certain 
time begin to proceed  very quickly , with a rapid rise to a very high 
temperature , and this is what in practice constitutes an explosion . The 
fact that , in this case also , the temperature will in theory ultimately 
fall to the ambient value , is irrelevant , s ince the explosion will 
already have taken place at some finite time . 

It therefore appears that , if reactant consumption is to be  taken 
into account , new criteria for thermal explosion must be used , relating 
to the e arly behaviour of a reacting system rather than to its final 
state . However , as Sattinger shows for the particular problem discussed 
in his paper ,  the early behaviour of the system when reactant consumption 
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is taken into account is related to the existence of steady-state 
s olutions for the equation in the form we have treated it , ignoring 
reactant consumption . Thus it may well be that , in many cases at least , . 
there are two equivalent ways of deciding whether or not explosion takes 
p lace - one may ignore reactant consumption and adopt one or the other 
of the ( equivalent ) criteria used in this thesis , or one may take 
reactant consumption into account and adopt Sattinger ' s  criterion . The 
two approaches may give the same conclusion even though the latter is  
based on a model much closer to  the actual s ituation than is  the former . 

It must be said at once that there is a further complication . The 
problem dealt with by Sattinger corresponds to the problem without 

c 
reactant consumption in which f ( x ,u )  = c1exp ( - u+� ) ,  the Arrhenius 

a 
formula ( see Ch . 1 ) .  Our Theorems 2 0 , 2 0A apply to this function , and 
show that the solution u( x ,t )  of problem ( 15 )  is in this case always 
bounded as t - � , so that , in terms of our criteria , explosion will 
never take place . But Sattinger shows that it can take place in terms 
of his criterion , if A is sufficiently large , and it is apparent from 

,. 
his discussion that , at least for this  part icular f ,  neither of the 
criteria adopted in this thesis is appropriate ( this possibility was 
also suggested in a private communication by Dr .  G . C . Wake ) .  

c2 For the case where f ( x ,u) = c1exp ( - u+T ) ,  there are positive 
a 

steady-state solut ions for all A >  0 ,  as is shown by our Theorems 2 0 , 
20A and 10 . I f  one analyses the s ituation more deeply , as has been 
done , for example , by Parter[2 7] , one finds that there exist two finite 
values A1 , A2 > 0 such that the steady-state  problem has one positive 
solution for 0 < A <  A1 , two for A =  A1 , three for X1 < X <  A2 , two for 
A =  A2 and one for A >  A2 , as illustrated : 

l luA I Ic (V) = suE_ j u( X ;x )  I where u( A ;x )  is a 
xEV steady-state solution 



8 5  

A s  � passes through the value �2 , the number o f  positive steady-state 
solutions changes from three to one , and (more important , perhaps )  the 
s ize of the minimal positive solution increases by an abrupt j ump . 
Sattinger shows that it is  the value �2 which is critical in the sense 
that for � >  �2 , thermal explos ion takes place in terms of his criterion , 
taking reactant consumption into account . 

Thus the orthodox criteria for thermal explosion , which we use in 
this thesis and which are used by many other authors , seem not to  apply 
to  the Arrhenius funct ion , at any rat e , though they appear to work well 
enough if one uses instead the Frank-Kamenetskii approximation for 
which f ( x , u )  = eu , as is done , for example , by Boddington , Gray and 
Harvey[4] ( the use of the Frank-Kamenetskii approximation is commented  
on  in  Ch . 1  of this thesis ) .  

There is evidently plenty of scope for more detailed investigat ion 
of the steady-state problem for different functions f ,  looking not 
merely at whether or not posit ive solutions exist but at the number and 
s ize of such solutions for different values of A .  The problems 
involved seem likely to be difficult - so far only some simple special 
cases have been stud�ed . In this connection , the theorems we have 
proved for the t ime -dependent problem , giving constructive bounds for 
the solution , may prove helpful in determining the size of possible 
steady-state solutions , though it is equally likely that these bounds 
will turn out to be too crude to be useful for this purpose . 
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In this chapter , w e  shall apply the result s obtained i n  the 

previous chapter to the problem of finding bounds for the crit ical 

parameter �* ( as defined at the end of Ch . 6 ) . The steady-state theory 

reviewed in Ch . 4  gives us upper and lower bounds for �* in certain 

cases , these bounds generally involving the principal eigenvalue of 

some related linear problem. Also , Wake and Rayner(36] have recently 

developed a variational method for est imat ing �* , again working with 

the steady-state problem . The theorems we have proved in Ch . 7  provide 

another means of obtaining rigorous bounds for �* . As compared to the 

steady-state methods , our method has the advantage that it gives 

bounds for �* which are easily computable by elementary methods . We 

shall shortly illustrate this by calculat ing the se bounds in the cases 

of two important funct ions f .  However , these bounds have no pretens ions 

to be ing highly accurate estimates ; some idea of their closeness to the 

exact value of �* will be obtained later in this chapter by comparing 

them with the results obtained by Boddington , Gray and Harvey(4] us ing 

an empirical formula for �* . 

Preliminaries :  

Cons ider first the original heat -generat ion problem described in 

Ch . l .  Us ing the notation defined in that chapter , this problem is of 

the form 

for ( x ,t )  E D 

oT K av + Hg2 ( T )  = 0 for ( x ,t ) E S 

T ( x , O ) = T for X e · V. 
a 

We shall assume that the boundary condition is linear , corresponding 

to heat loss following Newton ' s  law of cooling , so that g2 ( T )  = T -Ta . 

If we divide the differential equat ion by K and change to a new t ime 

scale , which we may do without loss of generality , the problem reduces 

to 
3 

o
2

T oT 1 I: -2 - a:t + K g
l ( T )  = 0 for ( x ,t )  e o 

i=l ox . � 
K oT + H ( T-Ta) = 0 for ( x ,t )  e s dv 

T ( x , O )  = T for x E V. 
a 
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We shall examine two important possibilities for the function g1 • 

1 )  The Arrhenius formula g1 ( T )  = qpA exp ( - �) , where q is t�e 

exothermicity per unit mass of the reactant , p is again the density of 

the reactant , A is a proport ionality constant , E is the act ivation 

energy of the reaction and R is the universal gas constant . We follow 

here the study by Boddington , Gray and Harvey(�] ; they use the common 

procedure of replacing the Arrhenius function by the Frank-Kamenetskii 

approximation , and so we shall do the same . The difficult ies as sociated 

with the use of the Arrhenius funct ion itself were discussed at the end 

of the previous chapter . 
E ( T-T ) 

a 
Accordingly we make the change of variable u = ----�-

RT
2 

exp ( - .f..) = 
RT 

E exp ( - it£ 
T 

a 

E RT u 
1':$ exp ( - �1 - _

a_} ) RT E 
a 

E u 
= exp ( - RT ) e  • 

a 

a 

RT u 
· f  

a · 11 � --E- �s sma 

so that 

This is the Frank -Kamenetskii approximat ion , and using this we obtain 

finally the initial-boundary value problem 

3 o
2

u ou E E u E - - � + -- qpA exp ( - -) e = 0 for ( x ,t )  E D 
i=1 ox� � KRT

2 RT
a 

� a 

Hu + K ou = 0 for ( x , t )  E S 0\1 
u( x , O )  = 0 for x E V .  

We then write A =  qp� exp( - Ri ) ,  this being the same as the parameter 
KRT a a 

y in the notation of Boddington , Gray and Harvey(�] . 

2 ) The modified Arrhen�us formula g
1 

( T )  = qpAT exp ( - ;T r '  the constant 

A being not necessarily the same as in the previous case . As ment ioned 

in Ch . 1 ,  recent theory suggests that react ion rates may well be governed 

by formulae of this kind rather than by the original Arrhenius formula .  

Making the same change of variable as before gives : 

T exp ( - ;T ) = ( T  
a 

RT�u 
+ -E-) exp (----..;;;.E--=---::--) 

R {T + RT
2

E- 1u } 
a a 



2 RTa E E 2 1 = T<u + 
RT )exp ( - ( RT ) ( E ) ) a a u + � 

a 
Ta �2 

= -f<u + �)exp( u
-

+ �) ,  writing � = 

This leads to  the initial-boundary value problem 

E � 
a 

for ( x ,t) E D 

Hu + K � = 0 for ( x ,  t ) E S 

u(x , O )  = 0 for x E V .  

If  we again write � = qp� exp ( - R� ) , then the non-linear term in the 
KRTa a 

above differential equation becomes 

88  

We need to consider a slightly modified version of the problem , to 
allow bounds for �* to be calculated for certain specific domains V, so 
we shall suppose henceforth that we are dealing with the problem 

3 2 
I A .  0 u - � + �f( u) = 0 for x E V , t > 0 

i=1 � ox� � m 
� 
3 2m . -1 ( 37 ) Hu + K I a.  ( x) x .  � ou - 0 for X E oV ' t > 0 

i=1 � � <Sxi 
- m 

u( x ,O) = 0 for x E V m 
where A

1 , A2 , A3 , H and K are positive constants , and in all other 
respects we follow the notation of Ch . 7 .  We shall , in the light of the 
above discussion , consider two possibilities for the function f :  

� f1 ( u) = eu , the Frank-Kamenetskii version . 

T e� 2 
� f2 (u )  = <-l:-> < u + �)exp(u

-; �) 

= 0 

( u  > -�)} 
, the modified Arrhenius 

( u  :c -�)  
form . Note that this function is non-decreasing and asymptotically 
linear in u, and also satisfies a uniform Lipschitz condition for all u ,  
since its derivative is bounded .  Since the values o f  u that we work 
with are always positive , we may define f2 ( u) as we please for u � -� , 
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so we define i t  in such a way as to make f2 suitably well-behaved .  

Bounds for the Critical Value �* : 

Let u( x ,t ) be the s olution of ( 37 ) . For our present purposes , we 
shall define the critical value �* to be the value of � below which 
u( x ,t )  is bounded as t - �, and above which u( x ,t )  is unbounded as t - � 
or as t tends to some finite value . As shown in Ch . 6 ,  this i s  the same 
as the steady-state critical value above which no positive steady-state 
solutions exist . 
( a )  f(u)  • f1 ( u ) : For the special problem ( 3 7 ) , Theorem 17 t ells us that 

the solution u( x ,t )  is bounded as t - � if 

0 < � < 
3 

3 
2€ I: A .  

i = l  � 
(A-'f)M(e ,A ,'f) 

Thus 
2e I: A .  

i = l  � 
( A-'f)M( e , A ,  '£) is a lower bound for :\�': , for any choice of € > 0 .  

Now M ( e , A , '±' )  may be taken as the least upper bound of f ( u )  on the interval 
eA 

Thus , for f (  u) - f1 ( u) , we have M ( e ,A , '±' )  = e A7f Thus we 

have that for any choice of € > 0 ,  the following is a lower bound for A.* : 

say .  

From the graph , it  is  clear that the best  lower bound for X* , namely 
cl 1 �· will be obtained by choosing € = c-• which we may do . We obtain 
2 2 cl 2 3 

therefore as a lower bound for A.* the value Ae t A . .  c2e 
i = l  � 

Now ( i ) of Theorem 17 tells us that A may be arbitrarily �hosen 
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greater than 'f + 2�9 = 'f + �(3 where h = � • Since A may be chosen as 

close to this value as we please , it follows that - a lower boUnd for X* 
is given by : 3 

X* = 
2 I: A .  
i= 1  � 

e ( 'f  + 28) h 
• • • . • • • • • . • • • • • • • • • • • • • • •  ( 38 ) 

2 
Further , s ince f1 ( u )  = eu � 1 + � for all u � 0 , we can apply the 

Corollary of Theorem 16 to ( 37 )  in the case f(u)  = f1 ( u) .  It follows 
from this Corollary that , provided X is sufficiently large , u( x ,t )  is 
unbounded as t tends to some finite value . This allows us to obtain 
an upper bound for X* in the case f( u)  = f1 ( u) .  In fact , the Corollary 

29  tells us  that , as  long as $ +  11 >  'f ,  an upper bound for X* is given by 

3 
E A . [� , + � - 'f) 2 + 1 ] 

i=1 � 2 h 
• • • • • • • • • • • • • • • •  ( 39 ) 

( b )  f ( u ) - f2 ( u) : W� have that f2 ( 0 ) = Ta . As u - � ,  f2 ( u) is 

T ef! T e f! 
a a asymptotic to (-�-) ( u+s ) , and f2 ( u) < (-�-) ( u+s) for all u � o .  

2 2 
T e� f 2 - L - £..} 

Further , for u � o ,  f; ( u) = (�)l� e u+s + e u+� . 

T ef! 
a - -- as f! U ... m ,  Also , for u � O ,  

T a 

� - lf2 
T e � 4- � 

= (-a-) e; e u+� > o . � ( u+� ) 3 

- - -
- - - - -

- - -
- - -

- - -

- - - - - - - - -
T a 

--+-------�c�l ________________________________________________ � u 



(\ 

Thus , for all u � 0 ,  
Ta( 1+� ) Tae� 

Ta + � 
u � f2 ( u) � (-�-) ( u+� ) .  It follows 

from Theorem 18 that a lower bound for �* is given in this case by 

v: = 

3 
2� E A .  

i=1  l. 
, 2El • 

T e ":> ( 'i' + -) a h 
29 It also follows from Theorem 1 3 that , as long as * + 1l > Y, an upper 

bound for �* is g iven in this case by 

* 

+ 

-w-} 
, T • 

'i' )  a 

It will be seen from these illustrat ions that the calculations 
involved in determining �* and f* are quite simple . One could readily 
perform s imilar calculations for other forms of the function f( u )  if  
desired . 

Comparison with KnowT. Values : 

9 1  

While we do not know in general how close the bounds �* and f* are 
to the true value of )J: , it is poss ible to get some feeling for this by 
comparing these bounds with the known value of A* in certain special 
cases .  Us ing the Frank-Kamenetskii  approximation in the original heat 
generat ion problem , Boddington , Gray and Harvey[4) have obtained an 
empirical formula for )J: which appears to agree well with all known 
information ; we shall denote the value obtained using the ir formula by 
\ ... 11. " est ' Values of A* t for various special regions V are given in Table 1 es 
on p . 9 2 , us ing the notation of �oddington , Gray and Harvey . We shall 
first compare , for each of the special regions in Table 1 , our lower 
bound A* with A* · ·  the size of the upper bound f* relat ive to  A* - est ' est 
will be invest igated at the end of the chapter . Apart from giving some 
feel  for the s ize of A* and f* , our calculations will also serve to 
illustrate the technique ment ioned in Ch . 7  ( p . 72 )  of transforming from 
a region V* to the region V for which Theorems 12 to 20 hold , and for m 
which formulas ( 3 8 )  and ( 39 )  for �* and A* were calculated . 

( eontinu�d on p . 93 )  



REGION j F (  j )  

Sphere 2 1 . 1 1 1  ( radius = a )  

Infinite cylinder _ 1 1 . 000 "' ( radius = a )  

Infinite slab 0 0 . 857  ( thickness = 2 a )  

Equicylinder (heig.ht = 2a) 2 . 72 8  1 . 178  
rad1us = a 

Thin circular disc (thickness = 2� 0 . 4 37 0 . 9243  
radius = 1 0a 

Long circular cylinder (heig�t = 1 0a) 1 . 41 8  1 .  0 50  
rad1us = a 

Cube 3 . 2 80 1 .  222  ( s ide = 2a ) 

Infinite square rod 1 . 44 3  1 .  0 5 1  ( s ide = 2 a )  

�EMENO\ 
RADIUS 

Rs 

a 

3a 
T 

3a 

a 

Sa 
2 

15a 
1 1  

a 

3a 
2 

RECIPROCAL SQUARE 
MEAN RADIUS 

-2 Ro 

1 
2 a 
2 

3a2 

1 
3a2 

1 + fl - 2 . 4142  

3a2 3a2 

� 1 + 0 . 02 ] = 1 . 0020  
pa2 l'i(rr 3a2 

� .l.. + 2JH.) = 2 .  0012  

�a2 2 5  26 3a2 

1 + 2� 
2 . 1027  n = 

3a2 3a2 

2 1 + -
1 .  6 366  n -

3a2 3a2 

1 R2 [ 1 � 1 ) ) h . . A* 
= 

O 3F( j ) + j + 1  Bi w ere B1 = hRS 1s the 
est B .  mb 1ot nu er 

2 [ 1 �.l..) ]  = 2 [0 . 9061 + ( 0 . 3000 ) BiJ a 3 .  333  + 3 Bi a B1 

3a\.!. � .l..) ]  = 2 [ 2 . 0387 + ( 0 . 500 0 ) B i] 2 3 
+ 

2 Bi a B1 

3 2 [ 1 �.l..) ]  = 2 [ 8 . 1 548  + ( 1 . 1 669 ) B iJ a 2 .  571  + 1 Bi a Bi ' 

3a2 [ 1 + e (.l_) ) = a2 [0 . 906 1  + ( 0 . 35 16 )Bi] 2 . 4142  3 . 5 34 3 . 72 8  Bi Bi 

3a2 [ 1 + e c.l..) ] = a2 [ 5 . 66 36 + ( 1 . 0797 ) B i
] 1 . 0020  2 . 773  1 . 437  Bi Bi 

3a2 [ 1 + e (.l_) ) = a2 ( 1 . 68 5 3  + ( 0 . 4759 ) B i) 2 . 00 1 2  3 . 1 5 0  2 . 4 1 8  Bi Bi 

3a2 [ 1 + e (_.;._) )  = a2 [0 . 9061 + <.o . 3892 ) B i] 2 . 1 027 - 3 . 666 4 . 2 80 B1 B1 

3a2 [ 1 + e (__!_) )  = a2[2 . 0 396 + ( 0 . 5 8 1 4 ) B i) 1 . 66 36 3 . 1 5 3  2 . 443  Bi Bi 

TABLE 1 :  Values of  Al': for various regions . est 

' 

lO N 



( eontinu�d 6�om p . 9 1 1  
We begin by working with the heat-generation problem 

3 
o

2u r 2 i=1  oy . � 

ou + 
ot 

)..eu = 0 for y E V* , t > 0 

9 3  

Hu ou + K dv = 0 for y E ov�': , t > 0 • • • •  ( 40 ) 

u( y , O )  = 0 for y E v�': 

y1 2m1 y2 2m2 y3 2m3 where Vi: = {y : ( -) + ( -) + ( -) < 1 } ; this is the t ime-a1 a2 a3 
dependent version of the problem considered by Boddington , Gray and 
Harvey , apart from our choice of the region V* . Following the remarks 

y . 
on p . 72 ,  we make the change of coordinates x .  = -2:.. ( i  = 1 , 2 , 3 ) . This � a .  
transforms V* into 

� 
the region V with dimension n = 3 .  m 

2 2 We then have : 

ou - 1 ou 
cy. - a:- ox:-' 

o u = .1._ o u
( i 2 2 2 = 1 , 2 , 3 ) . 

Also , 

v(y )  = 

= 

= 

for the region 

� � � 

3 

oy . a .  ox . � � � 

ou ou v�: r: vi ( y )  where : ' 0\) = dY-' i= 1 � 

outward uni-: normal to V'"''� 

1 ( 2m1 y1 2m1- 1  
--,�---,�---.... �a-) , 

4m . y .  4m . - 2 1 1 
--i:-< -2:..) � 2 a .  a . � � 

ou Thus , changing coordinates , dv transforms into 

(\ 

3 
r 

i=1  

2m . -1 
2m . x .  � 

� � 
a .  � 

4m . -2 l. 

1 ou 
a:- �  � � 

= 
3 2m . - 1  :::. � uU r a . ( x ) x . � . 1 1 1 ox . 1= 1 

where a .  ( x )  = 1 
2 a .  1 

4m . -2 1 



Results concerning 
as for the problem 
f( u )  :: eu . 

A* for the problem ( 40 )  will therefore be the same 
( 37 )  with Ai = � ( i  = 1 , 2 , 3 ) , ai( x) as above and 

a .  
� 
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The easiest cases to deal with are those for which 
3 2 

m . = 1 ( i = 1 , 2 , 3 ) . 
� 

In that case V is the spherical region { x :  E x . < 1 ) , m i=1  � 
and so , in the 

notat ion of Ch . 7 ,  * = Y = 1 .  Further , 9 and 8 are the extreme values 
3 2 flxi of 1: a. ( x ) x .  = 1: 2 

i= 1 � � i= 1 a .  
on oV m It is eas ily shown , using Lagrange 

� 
multiplier techniques ,  that 9 = rnaxla . } ' e = 

� 
formula ( 3 8 ) , we obtain : 

e ( 1 

3 1 2 E 2 
i= 1  a . 

� 
2 + m in {a . }h ) 

� 

1 Thus , us ing rnin {a . }  
� 

We now apply this to cases where V* is one of the first three regions 
listed in Table 1 .  

1 ) . Sphere , radius a :  

Here a1 = a2 = a3 = a ,  and so 

number for the sphere . 

i . e .  

From Table 1 :  

Thus 
x�': 
est/ V: 

A:': = 

6 
2 a 

2 e ( 1 + ah ) 

6 Bi = where Bi = ah is the B iot 
a2e ( 2  + Bi )  

A:': = 

' ·'· 11." est 

A�'� e st 

= 

� = 

1 B '  �0 . 90 6 1  + C0 . 45 30)Bi] . 
a 
1 B . 
�0 . 9 0 6 1  + (o . 3ooo ) Bi] .  
a 

0 . 90 6 1  + ( 0 . 45 30 ) Bi 
0 . 9061  + (0 . 3000)Bi ' 

1 . 5 1 - - - - - - - - - - - - - - - - - - - - - -

1 
Sphere 

--�--------�----�--�------�--------�--------�-----------+ B i 1 2 3 4 5 



2 ) . Infinite cylinder , radius a :  

Here we take a1 = a2 = a and let a3 � � ,  and so  
4 
2 a 

e ( 1 + a�) 

4 B i  = Where Bi  = 3ah 
· the B iot -2- l.S 

number for the 

From Table 1 : 

' ·'· 11. " est/).�': 

1 .  36 
1 

infinite cylinder . 

i . e .  

Thus 

).)': 

.. )._·'· est 

' ·'· 11." est 

= 

= 

� = 

1 B '  -1i2 . 0 387  (o . 6 796)B) 
· + a 

1 B '  
-1i2 . 0 387  �0 . 5000 ) Bi) .  + a 

2 . 0 387  + ( 0 . 6 796 ) Bi 
2 . 0 387  + (o.5ooo)Bi · 

Infinite cylinder 

1 2 3 4 5 

3 ) . Infinite slab , thickness 2a : 

Here we take a1 = a and let a2 - � ,  a3 - � ,  and so 

).�'; = 
2 
2 a 

2 e ( 1 + ah ) 

= 2 B i  where Bi = 3ah is the  Biot 

number for the infinite slab . 

i . e .  

From Table 1 : 

Thus 

x�·: = 

)._i; = est 

)._)': est 
--p: = 

__!_r Bi ) ' �8 . 1548 + (1 . 3591)Bi . 
a 
1 B ' 

�8 . 1548 + (1 . 1669)Bi) .  
a 

8 . 1548  + ( 1 . 35 9 1 )Bi 
8 . 1 548 + (1 . 1669)Bi 

0 

3 5  



1 . 16 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 

Infinite s lab 

--+--------+--------+--------+--------+-------�--------� B i  1 2 3 4 5 
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The next cases we wish t o  consider are those where V* i s  one of  
the three finite cylindrical regions . To obtain these we take a2 = a1 , 
m1 = m2 = 1 and let m3 - = .  In the limit , as m3 - = ,  Vm becomes the 

right circular cylindrical region fx : 2 2 < 1 ,  l x3 l < 1 } .  x1 + x2 
� = 1 ,  'f = 2 .  Further , on av : m 

2 2 2m3 x1 x2 m3 x3 - +  - +  
3 2m . 

2 2 2 
I: a . ( x ) x .  � a

1 
a1 a3 = 

i=1  � � 2 2 4m -3 x2 m3 x3 - +  2 2 a1 a 3 
So in the limit , as m3 - = , we have : 

3 2mi 1 2 I: a . ( x ) x .  = where x� + x2 = 1 ,  l x3 1 < 1 
i = 1  � � a1 

= where I x3 1 = 1 .  

Thus 

Thus 9 = min {.1..., a1 
1 and s imilarly El = min{a1 ,a3} 

So , using formula ( 38 ) , we obtain : 

2 (2. + .1...) 2 2 a1 a3 

We now apply this to the three finite cylindrical regions listed in 
Table 1 .  

4 ) . Equicylinder , height 2 a ,  radius a :  

Here a3 = a1 = a ,  and so 



A* = 

= 

6 
2 

a 
2 e (  2 + ah ) 

3 Bi where Bi = ah is the Biot 

number for the equicylinder . 

i . e .  

From Table 1 :  

Thus 

2 . 5 8  

1 

1 B . 
A* = �0 . 90 6 1  + Co . 906 1)Bi] .  

v� est 

' ·'· 11." est 

a 
1 B . 

= �0 . 9061  + �0 . 3516 )Bi) . 
a 

A�': = 0 . 9061 + ( 0 . 90 6 1 )Bi  
0 . 9061  + (0 . 3 5 1 6 ) B i  . 

Equicylinder 

--+-------�------��------�-------+--------�--------� B i  1 2 3 4 5 

5 ) .  Thin circular disc , thickness 2a , radius 10a : 

Here a1 = 10a , a3 = a ,  and so 

= 

2 (  2 
1ooi 
e ( 2  + 

1 + -) 2 a 
2.) ah 

( 2 . 04 ) B i  where Bi  = 5�h is the 

Biot number for the thin circular disc . 

i . e .  Ai: = 

From Table 1 :  A ... est = 

A1� 
Thus est 

)J� = 

1 ' 
-¥6 . 66 2 5  a 
1 -¥:5 . 66 36 a 

6 . 662 5  + 
5 . 66 36 + 

(\ 

B . (2 . 665 0 ) BiJ .  + 

B . C1 . 079 7)Bi] . + 

( 2 . 6 650 )Bi  
( 1 . 0 79 7 ) Bi 

9 7  



2 . 47 

1 . 18 

x�t: . 
e s t / )J: 

1 2 

Thin circular disc 

Bi 3 4 5 

6 ) .  Lon� circular czlinder , height lOa , radius a :  

Here a1 = a ,  a3 = Sa ,  and so  

= 

2 (2. + _1_) 
a2 2 Sa2 

2 e ( 2 + ah ) 

( 2 2 . 44 ) Bi where Bi  
a2e ( 1 5 + 11 Bi ) 

1 5ah . the = -u 15  

Biot number for the long circular cylinder . 

i . e .  

From Table 1 :  

Thus 

"-:': est/ Al': 

2 . 80 

1 . 0 8 

x�': = 

"-·'· = est 
\ ... /\est 

"-:': = 

1 B '  � 1 . 8 170 + t1 . 3 32 5 ) Bi] . 
a 
1 B . � 1 . 6 8 5 3  + C0 . 475 9)Bi] . 
a 

1 . 8 170 + ( 1 . 3 32 5 ) B i  
1 . 6 8 5 3  + ( 0 . 47 5 9 ) Bi 

Long circular cylinder 

--�-------+--------+-------�--------�--------�--------� B i 5 1 2 3 4 

9 2  
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Finally , we wish to consider the cases where V* is one of the last 
two regions listed in Table 1 ,  namely the cube and the infinite square 
rod . To obtain these we take m1 = m2 = m3 = m and let m - =. The region 
V* then tends to the rectangular prism with dimensions 2a1 X 2a2 X 2a3 , 
and Vm tends to the cubical region {x : l xi l < 1 ,  i = 1 , 2 , 3 ) .  Thus 
� = 1 ,  l = 3 .  Further , on oV : m 

3 2m . � L a . ( x) x . = . 1 � � �= 

3 
1: 

i = 1  

2m x .  � 
2 a .  � 

So in the limit , as m - =, we have : 
3 2m . � l: a. .  ( x ) x .  = 

i = 1  � � I: ( .2...) 
i such that a� 
l x . l = 1 � 

� 

Thus 9 = 1 and e max{a . )  =t:i · So , us ing formula ( 3 8 ) , we obtain : 
� 

A-;': = 

e( 3 

3 
2 E 1 

2 i = 1  a . � 

We now apply this to the last two regions listed in Table 1 .  

7 ) . Cube , s ide 2a : 

Here a = a 1 2 = a3 = a ,  and so 
6 

>..�': = 

= 

number for the cube . 

From Table 1 :  

i . e . 

Thus l\ 

)._1: = est 

>.,·'· est 
---rr = 

2 a 
e ( 3 + ij!) 

6 Bi  where Bi  = ah is the B iot 
a2e (  2;-:J + 3 B i )  

1 B . 
�1 . 5 6 94 + (1 . 35 9 1 ) B i] . 
a 
1 B "  
�0 . 90 6 1  + (o . 3B92)Bi] . 
a 

1 . 5 6 94 + ( 1 . 3 59 1 ) B i  
0 . 9 061 + ( 0 . 3 892 ) B i  

.. . 
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A�'; est/ X* 

3 .  49 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 .  73  

Cube 

��-------+--------+--------+--------+-------�---------4 B i  1 2 3 4 5 
8 ) .  Infinite square rod, s ide 2a : 

Here we take a1 = a2 = a and let a3 - � ,  and so 
4 

= 

2 a 
2/T. e (  3 + ah ) 

4 Bi  where Bi  

the Biot number for the infinite square rod . 
1 Bi i . e .  ).,•'• = -¥2 . 8 831 + ( 2 . 0 3 8 7 ) Bi) . .. 
a 
1 B '  ).,:'{ = �2 . 0 396 + (o . 58 14)Bi) . est From Table 1 : 
a 

X-'· 

Thus est 2 . 8 8 31 + ( 2 . 0 38 7 ) Bi --... - = 2 . 0 396 + (0 . 5 814)Bi  A" 

3 . 5 1  

1 . 41 
Infin it e  square rod 

1 2 3 4 5 

3ah . = -- lS 2 

Bi 
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From . the foregoing calculatio-ns , it can be seen that in the cases 
V 

considered , the ratio ��t lies between 1 and about } in all cases , and 

is much less than this in some cases . It is clear that in general �* 
cannot be regarded as in any sense an approximation to A* t ; nevertheless es 
it may be of interest as being a rigorous lower bound for A* which is 
not too remote from the true value , particularly for small values of the 
Biot number and certain types of region . 

The upper bound given by ( 39 ) , though of theoretical interest  s ince 
it shows that A* is finite , is not as useful for estimat ion purposes as 
the lower bound �* already discussed . We can illustrate this by 
cons idering the case where V* is a sphere of radius a ( see p . 9 4 ) . In 

1 1 this case * = � = 1 ,  8 = a and A1 = A2 = A 3 = :2' and so we obtain : 

r}� = 

= 

�-2- + 2 2h2 a a 
4 

a2h2 

1] 

�2 + ( B i ) 2] 
4a 

a 

where B i  = ah is the B iot 

number for the sphere . 
Table 1 ,  we obtain : 

Thus , using the appropriate value of A* t from es 

A�': 
v- = 
est 

3[2 + ( Bi ) 2](0 . 90 6 1  + ( 0 . 3 ) B i] 
4 B i  

= J11 ·��2 2  + 0 . 6  + ( 0 . 9 06 1 ) Bi + ( 0 . 3 ) ( Bi ) 2 ] 

= � g( Bi ) , say .  

Evidently g ( B i )  - � as Bi - 0+ or as B i  - m , Further : 

g' ( B i ) = - 1 · 81 2 2  + 0 . 906 1 + ( 0 . 6 )Bi 
( B i ) 2 

= 0 when Bi = 1 . 0799 ( to four places ) , the solut ion 
being obtained using the Newton-Raphson method . Thus g ( B i )  attains its 
minimum for Bi > 0 when Bi = 1 . 0 799 , whence g ( B i )  � 3 . 6  for all Bi > 0 .  

r}·, 
Hence � � 2 . 7  for all Bi  > 0 .  Thus the upper bound r* is typically 

est 
very much larger than A* , which is why it is of theoret ical rather than 
practical interest . 

(\ 
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In this final chapter , we shall examine to what extent the methods 
of Chs . 7  and 8 can be adapted to non-linear boundary conditions . We 
shall begin by working with the initial-boundary value problem 

Lu - ou Af( x , t ,u) 0 for E V 0 < t :S: T rt + = X m '  
B u = 0 for x e ov , 0 < t  :S: T  ( 41 )  gen m 

u( x , O )  = uo ( x) for x E V m 
where , as in the problem ( 1 5 )  discussed in Ch . 7 ,  f is continuous for 

X E vm ' 0 :S: t :S: T and all u ,  uo E c2+a(Vm ) and A is taken to be positive . 

ou Recall that Bgenu = d0 ( x ,t ) g( u) + d 1( x ,t )  an' where g( u )  is strict ly 

increas ing for all u ( for those functions g which occur in physical 
problems , we are only concerned with u � 0 ,  and we may extend the 
definition of g (u )  to negat ive u so  as to sat isfy this condition without 
loss of applicability ) . As in the case of problem ( 1 5 )  in Ch . 7 ,  we shall 

suppose that the derivative � appearing in B u is of the form cm gen 
ou -an- -

n 2m . - 1 ou L a. ( x ) x .  l 
ox . , and shall likewise follow in other respects  the 

i = 1  l l l 

notation used in studying problem ( 1 5 )  ( see p . 5 3 ) . 
I f  we assume further that g( O )  :S: 0 (which is certainly true in 

physical applications ) then Theorem 1 1  extends at once to problem ( 41 ) . 
Theorems 17  to 2 0 , on the construction of upper solut ions , and also 
Theorem 2 1  on reactant consumpt ion , also extend at once to problem ( 41 )  
if we assume that g ( u) � u for all u � 0 ;  however , this is certainly not 
true of the funct ion g( u) = u5 14 which occurs when cooling at the 
boundary i s  by natural convect ion . However , ·a s lightly different 
condition on g takes account of  the case g ( u )  = u5 14 and still allows us 
to extend the important Theorems 17 , 18 and 2 0 , where the upper solut ion 
constructe d  is independent of t .  Theorems 19 and 2 1  have so far proved 
impossible to extend using this condition on g ,  because the fact that 
the upper solution tends to zero as t � � creates technical difficulties 
of an apparently insuperable nature in the construction of the proof .  
However , extending Theorems 17 , 1 8  and 2 0  leads to the following 
theorems . 



. B THEOREM 17 : Suppose that 

1 0 3  

( a ) As for Theorem 1 ?  except that we suppose c ( x ,t )  s 0 for all x E Vm ' 
t > o .  

( b ) , ( c )  As for Theorem 1 ?. 
( d ) 

n n 
E B .  < E A  . •  

i=1 l. i=1 l. 

( e )  As for Theorem 1 ? . 
( f ) There exist constants N > 0 and p > 1 such that g (u )  � NuP for a l l  

u � o .  

Then : ( i ) For any T > 0 ,  a s trict upper so lution for ( 41 )  is given by 

e n 2 w( x ,  t )  = y;::r ( A  - E x . ) for a U  x E V , 0 s t s T 
· i= 1 l. m 

if A is a constant chosen so as to satisfy 

2D18 
A > 'f + ----'7" 

No eP-1 
0 

• . • • . . . . • • • . . . • . . • .  ( 42 ) 

and if o < A <  m0 ( e ,A )  

where m0 ( e ,A )  does n o t  depend on T .  

( ii )  If 0 < A <  m0 ( e ,A) , and if u( x ,t )  is a solution of ( 4 1 ) , 
eA then for a l l  T > 0 and X E vm , u( x ,T )  s A=Y . 

Proof: ( I )  As for Theorem 1 7 .  

( I I )  B w gen 
n 2m. - 1 

= d0 ( x ,t ) g ( w )  + d1 ( x ,t ) E a . ( x ) x .  
i= 1 l. l. 

l. 

n n 2m . - 1 -2ex .  e p 2 p 1. 1. � d0 ( x , t ) N ( A_f) ( A- L x . ) + d1 ( x , t )  E a . ( x ) x .  ( A-'f )  
i=1 l. i = 1  l. l. 

for t > 0 and X E oV m 
> 0 for all t > 0 by ( 42 ) . 
( I I I )  As for the case of Theorem 17  where C = 0 .  

THEOREM 18B : This is to Theorem 1 tB  as Theore� 1 8  is to Theorem 1 ? .  The 

conclusion of the theorem is : 

If u ( x , t )  is a so lution of ( 41 ) , and if A satisfies 

o < A < 

n n 
2 E A .  - 2 E B .  
i = 1  l. i= 1 l. 

M 1 'f  (\ 
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then there exists a aans tant K > 0 such that, for aU T > 0 and x E �,  
u( x ,  t )  :!i: K ,  where K depends on A. 
COROLLARY : Goes through exactly as it does for Theorem 1 8 .  

THEOREM 20B : This is  to Theorem 1 ?B as  Theorem 2 0  is  to Theorem 1 ?·. The 

conc lusion of the theorem is analogous to that of Theorem 20 in the case 

C = 0 ,  the only change being that the condition that A mus t satisfy 

becomes 

A >  y + r. 2D� !2.:£1 1 /p . . . . . . . . . . . . .  ( 4 3 ) 
l6oNKp-1 ).. a M2 

a j 
Proof: Similar to the case C = 0 of Theorem 2 0 .  ( I I )  is slightly 
modified : 

B w gen ox . � 

� 6 NKp)..p/�1p/a( A-'i')p - 2D  K).. 11�11Cl.e for t > 0 and X E oV 0 2 1 2 m 

> 0 by ( 43 ) . 

Extending the "lower solution" theorems , Theorems 12 to  16 , to 
problem ( 4 1 )  poses far more problems . Certainly the extension is 
immediate if we assume g ( u )  :!i: u for all u � 0 ,  but unfortunately this 
condition is not satisfied by the non-linear funct ions g which arise in 
applications . If we require g to sat isfy some more realistic condition , 
then we immediately run into technical difficulties unless W = 'i' ,  i . e .  
unless the region V is spherical . So let us take V to be the sphere m m 

{x :  
n 2 r x . < 1 } ,  so that m . = 1 for i =  1 , 2 ,  . . . n ,  and w = � = 1 .  

i=1 � � In 

that case we obtain the following extension of Theorem 12 . 
THEOREM 1 2B : Hypotheses ( a ) , ( b ) , ( c )  and ( d )  are as for Theorem 12,  

2 6 9 
except that the condi tion 'i' < w + + is omitted in ( c ) . In addition, 

0 
we suppose that 

n 2 ( e )  V {s the sphere {x :  E x .  < 1 } . m i= 1  � 

( f) There exists a constant Q > 0 such that g ( u )  :!i: Queu for a l l  u � 0 
(this condi tion is satisfied by the functions g which arise in 

app l.ications ) . 

Then : ( i ) For any T > 0 ,  a lower solution for ( 4 1 )  �s given by 
tl 



n 2 -t w ( x ,t )  = )J<(A  - I: x. ) ( 1  - e ) foro aU x E V , 0 :S: t  :S: T  
i=1 1 m 

where A and K arae constants chosen so as to satisfy 

A > 1 
2 6  9 ' 

( A- 1 ) eAK( A-1 )  < QD
1 
0 

• • • • • • • • • • • • • • • • • • •  ( 4 4 )  

0 < K < M 
n n 

2 I: A .  t 2 I: B .  + ( C+ 1 ) A  
i = 1  1 . i=1 1 

105 

(note that by choosing A suffi ciently close to 1 ,  ( 44) can always be  

satisfied; the choice of A wi l l  depend upon the value of A� but this is  

of no  consequence foro this theoroem) . 

( ii )  If u ( x , t )  is a solution of ( 41 ) , then foro any T > 0 ,  u( x ,t )  > 0  
foro 0 < t :S: T ,  and if lim u ( x , T )  = u( x) exists� then foro all X E V ,  

T-= 
m 

u( x )  :<!: 

equation 

AM a 
n n 

2 I: A .  + 2 I: B .  + ( C+1 ) ( 1+a) 
i=1 1 i=1  1 

AKa ae = 
2 619 
QDO 

wheroe a is the solution of the 

Proof : ( I )  As for Theorem 12 . 
n ow ( I I )  B w = d0 ( x , t ) g (w )  + d1 ( x , t )  I: a. ( x ) x .  � gen i=1 1 1 oxi 

n n 2 -t { 2 -t } :S: d0 ( x ,t )QAK( A- I: x . ) ( 1 -e )exp AK( A- I: x . ) ( 1-e ) 
i = 1  1 i = 1  1 

n t + d1 ( x ,t )  I: a. ( x ) x . {AK( -2x . ) ( 1-e- ) }  
i= 1 1 1 1 

:S: )J<( 1-e-t ) {D0Q( A- 1 ) eAK( A- 1 )  - 2619 } 

< 0 for all t > 0 by ( 44 ) . 

for t > 0 and X E oV m 

( I I I )  As for Theorem 1 2 . 
This proves part ( i ) . Part ( ii )  follows as in the proof of Theorem 1 2 , 
if  we observe that A-1 may be chosen arbitrarily close to a . 

Unfortunately , theorems parallel  to  Theorems 1 3  to 16 cannot be 
obtained by this method , because in each case a condition on A is 
obtained which involves the value of A ,  which in turn depends on A ,  
and so a vicious circle results . 
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While the preceding theorems are rather incomplete , they do at 
least show that certain qualitative aspects of the behaviour of solutions 
of  ( 15 )  still hold for ( 4 1 ) .  It may well be that in other respects 
there are qualitative changes in behaviour when we change from a linear 
to a non-linear boundary condition . 

The extension to more general domains V which was carried out , in 
the case of the linear boundary condition , in Theorems 1 2

A to 2 0
A

, has 
not proved possible so far in the case of the non-linear boundary 
condition . The difficulty is the unavailability of a theory for non
linear operators comparable to the theory for linear operators which 
was used in proving Theorems 12

A to 2 0
A

. 

In Ch . 8  we used Theorem 1 7 to obtain a lower bound X* for the 
critical value X* in the heat -generat ion problem , which turned out to  
be quite close to  X* in certain cases where a good approximation to 
the value of X *  was known . It is o f  interest to see whether we can 
s imilarly use Theorem 1 7B to obtain a lower bound for X* in the case 
of certain non-linear boundary conditions , and if so , what information 
we can deduce about the size of V= in the case of the non-linear 
boundary condit ions , compared to its size in the case of the linear 
boundary condition . 

We shall consider a modification of  problem ( 37 )  on p . 8 8 ,  the 
modifications consisting of the introduct ion of a non-linear boundary 
condit ion and the assumption that f( u) = eu , giving the following 
problem : 3 2 

r A o u -i :.. 2 i= l vx . l. 

ou ' eu = 0 ot + 1\. 

3 2m . -1 
g ( U)  + K L a. ( X ) X.  l. :..OU = 0 

i= 1 1 1 vxi 

for x E V , t > 0 m 

for X E oV , t > 0 _ m  

u( x , O )  = 0 for x E V m 
We shall consider particularly two possibilities for g (u ) : 
( a ) The natural convect ion boundary condition : 

( 4 5 ) 

In this case g (u) = Hu514 , so in the notation of Theorem 17B we 
5 have N = H ,  p = 4' 60 = 1 .  

( b )  The thermal radiat ion boundary condition : 
4 4 4 In this case g (u )  = ae[ ( u+T ) - T J � creu for all u � 0 , so we a a 

may takr, N = cre ,  p = 4 ,  60 = 1 (where here and here only , € denotes the 
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emissivity of the surface ) .  

Reasoning exactly as for the linear boundary condition on· p . 89 ,  we 
obtain from Theorem 1 7B that a lower bound for X* (more precisely , a 
number such that for all X smaller than this , all solutions of ( 4 5 )  are 

3 
2e 1: A .  eA 

i= 1 � - A=Y bounded as T - �) is given by A-f e 

2K8 Now A may be arbitrarily chosen greater than 'f + --':"" so if we p-1 ' Ne 
put n = A - ( 'f  + 2KE> ) , then both e and n are arbitrary pos itive 

NeP-1 

numbers . The expression for the lower bound on X* now becomes : 
3 2K8 2 e  r A .  

exp f 
e < n + l + -1 )) K1e exp fe ( 1 + i= 1 � NeP l 

1 
2K8 2K8 = 1-p 1-p n + p-1 n + p- 1 n + K2e n + K2e Ne Ne 

3 2K8 where K1 = 2 E A . , K2 = -r . 1 � � = 

= t3( e ,T\) , say .  
We define �( e , n) for e = 0 or � = 0 so that the funct ion � is continuous 
on the set { C e ,n) : e , �  � 0 } ;  it is eas ily verified that this is possible . 

We wish to  find the best possible lower bound for A* that Theorem 
17B will give us , so the next step is to find , if possible , a point 
( e ,n) with e , n  � o which maximises �( e ,n) .  

Now 

+ exp Le e 1 + L n + 

= 

= 0 if and only if  

e {-K1�
2-K1'fn} + e2-P {-2nK1K2 -pK1K2 'f} + e 3-2P { -K1K; } 

1 -p { } 2 -2p { 2 } 2 = + e PnK1K2 +nK1K2 + e pK1K2 + K1n 0 

n + 

. • • • •  ( 46 ) 
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Also , 1311( e ,11) = 

= 

= 0 if and only if 1-p 11 = e'±' - K2e . . . . . . . . . . .  ( 4 7 )  

I f  ( 4 6 )  and ( 47 )  hold simultaneously , then substitution from ( 47 )  

into ( 46 )  gives the equation K1e3'±'2 = 0 ,  which yields e = 0 .  Now 
13( e ,11) � 0 as e � 0 ,  regardless of the value of n ,  so e = 0 clearly 
does not give the des ired maximum for l3( e ,11) . For e ,n > 0 ,  we now 
know that the graph of 13( e ,n) has no points where the tangent plane i s  

horizontal . Further , it is easy to see that as vfe2 + n2' - � in the 
first quadrant , 13( € , 11) - 0 .  Hence 13( e ,n) must attain its maximum value 
in the first quadrant on the n = 0 axis . So our problem reduces to 
finding a positive value of e which maximises  the value of 13( e , O ) . 
Now , putting 11 = 0 in ( 46 ) , we obtain : 

h' ( e )  

13€ ( € , 0 )  = 0 if and only if  

€2 -p ( -pK1K2'±') + € 3-2p ( -K1K� ) + €2-2p (pK1K� ) = 0 

. . . . . . . . . . . . .  ( 4 8 )  

I f  we write h ( € )  = - p'±'eP - K2e + pK2 , then h( O )  = pK2 > 0 and 

p 2'±'ep-l - K < 0 for all € > 0 ,  so h i s  strictly decreasing 2 
for e > 0 .  Since h ( e )  < 0 for e sufficiently large , it follows that 
( 48 )  has exactly one positive solution . We denote the un ique positive 
solution of  ( 48 )  by e* . p 

Since 13( e ,O )  - . o as e � 0 and as e - � ,  it follows that the maximum 
value of 13C e , O )  for e > 0 is attained when e = e* ; so we have finally p 
that the desired first quadrant maximum value o f  13C e ,n) is 

13( e�·: o ) p ' • • . • • • • • •  ( 49 ) 
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Since � may be  chosen arbitrarily close to 0 ,  it follows that 
�( e* , O )  is a lower bound for �* which is the largest that can be obtained p B from the data of  Theorem 17 . 

1t is of interes t  to compare �( e* ,O )  with the lower bound �* that p -
was obtained in the case where the boundary condition was linear , and 
also with the empirical estimate �* t of  Boddington , Gray and Harvey(4] , es  
to  see  whether we  can establish a difference between the value of �* 
for the linear boundary condition and the value of \* for the non-linear 
boundary condition . Before doing this , we discuss a special case which 
we shall use for illustrative purposes . 

Example : Sphere of radius 1 :  

In order to give some feel for the numbers involved in the problem 
under discussion , we shall illustrate the discussion at each stage by 
taking the special case where V is a three-dimensional sphere of radius m 
1 ; we shall consider the two values of  p that are of specia_ practical 

5 significance , namely p = 4 and p = 4 .  
As discussed on p . 94 , for a spherical region of radius 1 '  we have 

3 2K I: A .  = 3 ,  so  K1 
= 6 .  Also y = e = 1 ,  and so K2 = . I f  we write N i=1 

h = 

p = 

p = 

� 

N analogy with linear then 2 ( 4 8 )  reduces K by the cas e , K2 = - and t o :  
h 

5 

- phep - 2e + 2p = o .  

5 For the special values p = 4 and p = 4 ,  this becomes : 

4 5he5 /4 Be + 10  = 0 • • • • • • • • • • • • • •  ( 5 0 )  

4 2h€ 4 4 0 • • • • • • • • . • • • • • • • • •  ( 5 1 )  - e + = 
Also , in this case : 

-e•'c { 1  + � * )p-1 } 
�( e1: 0 )  = 3h'( e 1: )P e P 2 e

p p ' p 
From p . 94 we have finally that in this special case : 

' * h 
h 

= 0 . 9061 + (0 . 45 30)h ' h ��st = 0 . 9061 + (0 . 3000)h · 

Relationship between �( e* ,O ) and �* : 

We have from ( 3 8 ) on p .  90 that ?:_•': for the linear boundary condition 
( if we take H = N so as to relate it to the non-linear boundary condition )  



is given by "-* We now consider the ratio 

Since e* satisfies ( 48 ) , we have : p 

1 10 

• • • • • • • • • • • • • • • • • • • • • • • •  ( 52 )  

r (K2 , p )  

Now it is easily 

= 
'i' + K2 ( e,': )P 

K2 p e 
-e ,'( ( 1 p 

1 - -) p 

'i' + K2 e,': -e,': ( 1 1 - -) 
- .:.E..) e  p p = '£ ( 1 p 

seen from ( 4 8 )  that as K - 0 2 ( i . e .  as Bi - a:>  
1 where Bi  is the B iot number , s ince Bi is proportional to �) ,  e* - O ,  
2 p 

while as K2 - a:> ( i . e .  as Bi - 0 ) , e� - p .  We illustrate this in the 

case of the spherical region of radius 1 by giving the values of eg/4 
and E: 'i': for various values of h ,  where in this h Bi  2 The case = - K2 

. 4 
equations involved were solved us ing the Newton-Raphson method . 

h( = B i )  eg14 ( equation ( 5 0 ) ) e ,•: 4 ( equation ( 5 1 ) )  

0 . 00001 not calculated 3 . 994906 

0 . 0001  1 . 249917  3 . 9 5 12 5 1  

0 . 00 1  1 . 249 175  3 .  646415 

0 . 0 1 1 .  24180 7  2 . 789 326 

0 . 1  1 . 1 73651  1 . 8175 2 3  

1 0 . 7 86836 1 . 0975 7 2  

10 0 . 2 33816  0 . 640207  

100  0 . 042 5 39 7  0 . 367118  

1 , 000  0 . 00690082  0 . 208661  

10 , 000  0 . 00109 779 0 . 1180 34 

100 , 000  0 . 000 1 74091 0 . 06659 39 

It follows in general that , as K2 - 0 ,  r ( K2 , p ) - r( O+ ,p ) = 1 ,  while as 



K2 - m, r (K2 ,p ) - r( m,p) = pP e 1-P . The value of r( •,p ) increases 
very rapidly with increasing p ,  as the following table illustrates : 

p r(  oo,p ) = pp e 1-p 

5 /4 1 . 029 

2 1 . 472 

4 12 . 745 

8 1 . 5 30 X 10 4 

16 5 . 643 X 10 12 

1 1 1  

We  can thus assert that for large values of  K2 , i . e .  for small 
Biot number , the value of 13( e:�': , 0 ) is greater then the value of ).,�': , and p -
that the ratio between them for small Biot number increases very 
rapidly as p increases , i . e .  as the non-linearity becomes more 
pronounced .  

On pp . 94-100 , we discussed in detail the relation between )..* and 
the empirical )..* for est  various regions , and determined in part icular 

' ... 
the limit of the rat io /\est 

--v- as Bi - 0 ,  as shown in the next table . 

A-;': 
Region lim est 

).,�': Bi-oQ -

( 1 ) Sphere , radius a 1 

( 2 )  Infinite cylinder , radius a 1 

( 3 )  Infinite slab , thickness 2a 1 

( 4 )  Equicylinder , height 2a , radius a 1 

( 5 )  Thin c ircular disc , thickness 2 a ,  radius lOa 1 . 1 8 

( 6 )  Long circular cylinder , height lOa , radius a 1 . 0 8  

( 7 )  Cube , s ide 2a 1 .  7 3  ' 

( 8 ) Infinite square rod , s ide 2a 1 . 41 

)._·'-est . I f  we compare the value of lim "*"" w�th that of  the quantity 
Bi-o I\ 

r( a> ,p ) = lim 
Bi-.Q 

13( e:�·: 0 )  
p , 
' J. 11. " 

we see that for regions 1 ,  2 ,  3 and 4 ,  the value 
ll 



5 of S( &* , O )  exceeds �* · when the Biot number is small , both for p = 4 p est 

1 1 2  

and for p = 4 ,  and when p = 4 the excess i s  quite large . This .shows 
that , for small Biot number ,  the true value of A* in the case of a non
linear boundary condition exceeds the approximate estimate �* t obtained e s  
for a linear boundary condition . The excess is certainly large when 

5 p = 4 ,  but may be rather small when p - 4 
For regions 5 ,  6 ,  7 and 8 ,  the above remarks apply only to the case 

p = 4 .  When p 5 = S( e•� 0 )  does not exceed A'': 
t and so no firm 4' p ' e s  

conclusion can be  drawn . 

We refer several times above to the condition that the Biot number 
be "small" . To give an idea of the s ize of Biot number for which the 
above remarks apply , we again illustrate by considering the case of the 
spherical region o f  radius 1 ,  where Bi = h in our notation . In Tables 
2 and 3 on p . 1 1 3 ,  we tabulate , for both p = � and p = 4 ,  values of 

S<  e :'; , o )  
aC e * O ) A* A* P 

p '  ' - ' est ' A:'; 

these  tab les we have : 

and 
S( e •� o )  

p ' ��-�-- for various values of h .  
A'}'� 
est 

From 

( a ) p In this case , the value of  the Biot number h at which 

SC e :': o )  starts to exceed A�: t is slightly less than o . 1 . p ' es 
( b )  p = 4 : In this case , the value of the Biot number h at which 
S( e* 0 )  starts to exceed A* t is slightly less  than 1 . p ' es 

It appears from Tables 2 and 3 that as h decreases  ( i . e .  as K2 

increases ) the rat io r(K2 ,p )  = 
S( e� , O )  
--��-- decreases at first to a value 

A'}t; 

rather less than 1 ,  and then increases to its limiting value 

r( �, p )  = pp e l-p as h - 0 ( i . e . K2 - �) .  We shall show that this is 
the case in general . 

We have that e� is defined implicit ly as a function of  K2 by 
equation ( 48 ) ; if we differentiate ( 48 )  with respect to K2 , we obtain 

( Qo�nued on p . 1 1 4 !  {\ 



h 

1 0 0 , 000  

10 , 0 0 0  

1 , 0 0 0  

10 0  

10 

1 

0 . 1 

0 . 0 1 

0 . 00 1 

0 . 0001  

TABLE 2 :  

h 

1 00 , 000  

10 , 0 0 0  

1 , 0 0 0  

1 00 

10 

1 . 

0 . 1  

0 . 01 

0 . 0 0 1  

0 . 00 01 

0 . 00001  

TABLE 3 :  

1 1 3 

13(e't; 0 1 13( * 0 ) 
"-* "-:st 13( e* O ) p , -

e
l2 ' 

- p ' ).� ).* est 

2 . 207 5  3 . 3 332 2 . 2074 1 . 0 0 0  0 . 662  

2 . 207 1 3 .  3 32 3  2 . 2048  0 . 999  0 . 66 2  

2 . 20 3 1  3 . 3233  2 . 1922  0 . 99 5  0 . 660 

2 . 1642 3 . 2 35 6  2 . 1 14 3  0 . 977  0 . 65 3  

1 . 8396 2 . 5 6 0 1  1 . 712 6  0 . 9 3 1  0 . 669 

0 . 73 5 8 0 . 829 1 0 . 69 8 7  0 . 95 0  0 . 84 3  

0 . 105 1 0 . 1068  0 . 1066 1 . 0 14 0 . 99 8  

0 . 0 1098  0 . 01100  0 . 0 112 8  1 . 02 7  1 . 02 6  

0 . 001103  0 .  001103  0 . 0 01 1 35 1 . 0 29  1 .  0 29  

0 . 0001 104 0 . 0 0 0 1 104 0 . 0 001 1 36 1 . 02 9  1 . 029 
5 Values of parar.eters for different value s of  h ,  with p =4 . 

�( e :': O )  13( e:': O )  
"'·'· A.J. 13( e:': O )  p ' 12 ' 

.. est )!· �.-·· - p ' .. .. 
- est 

2 . 2 0 7 5  3 .  3332 2 . 0 648 0 . 9 35 0 . 620 

2 . 2071  3 . 3323 1 . 9606 0 . 88 8  0 .  5 88 

2 . 2 0 31 3 .  32 33 1 . 7 891 0 . 812 0 . 5 3 8  

2 . 1642 3 . 2 356  1 . 5 220 0 . 70 3  0 . 470 

1 . 8396 2 . 560 1 1 . 14 70 0 . 624  0 . 448 

0 . 73 5 8  0 . 829 1 0 . 7031 0 . 9 5 6  0 . 848  

0 . 1 0 5 1 0 . 1068  0 . 3081 2 . 9 32 2 . 88 5  

0 . 01098  0 . 0 1 100 0 . 0 8245 7 . 5 09 7 . 49 6  

0 . 001 103 0 . 001103  0 . 01268  11 . 496 11 . 49 6  

0 . 0 001104 0 . 00 0 1104 0 . 0 0 1389 12 . 5 82 12 . 5 82 

0 . 0 0001 104 0 . 00001104  0 . 0 00 1406 12 . 726  12 . 72 6  

Values o f  parameters for different values o f  h ,  with p=4. 



( continULd 6�om p . 1 1 2 1  
de* 

Since , by ( 52 ) , e* cannot exceed p ,  it follows that � > 0 for all p 2 
K2 > O ,  so e� increases steadily from 0 to p as K2 goes from 0 to m . 

Also , r ( K2 , p )  = and so : 

-e* ( 1 - �) e* -e*( 1 � e P p + j(1 - f> e p 

·'·( 1 1 ) - E: "  - -
( p  - e* ) e  P P 

= P
2 -1 { ( 'f + K2 ) ( e* - p ) ( 1 

( K  + p '±'( e:�': ) P ) p '±'  p �) ( '±' + K2 ) 
2 p 

+ ( K2 + p2 '±'( e� ) p- 1 ) }  

= p ( K2 )A ( K2 ) where p ( K2 ) is pos itive for all K2 > 0 ,  and : 

= '±'( e;1: p 

= '±'( e;1: p 
Now as K - 0 e* - 0 so A( O+ )  2 ' p ' 

by ( 5 2 ) .  
= - 'fp < 0 .  Also , as K2 - CD '  e1: - p ,  so p 

> 0 for all K2 > 0 since p > 1 and ,  for all K2 > 0 ,  

Thus , as K2 goes from 0 to m ,  A ( K2 ) increases steadily from - 'fp to 

'f(pP- 1 ) ,  so rK ( K2 ,p )  increases  steadily from a negative value to a 
2 

pos itive value . Hence , as required , we have shown that as K2 goes from 

(\ 



1 1 5  

�( e* , O )  
0 to eo, r (K2 ,p ) = f* initially decrease s  and then increases . Since 

the B iot number is proportional to i , it follows that as the Biot number 
2 

increases from 0 to �, r(K2 ,p ) initially decreases and then increases . 

We have now shown that i f  the B iot number is small , the non-linear 
boundary condition gives a value of X* which is higher than the estimate 
X* t o f  Boddington , Gray and Harvey[4) for the linear boundary condition , es 
at least when p = 4 .  When p = �, this conclusion has been proved only 
for some of the regions considered by Boddington , Gray and Harvey . For 
larger Biot number , no firm conclusion can be drawn , s ince we have no 
means of knowing how close our lower bound �( e* 0 )  is to the true value p ' 
of x.··· . 

However , one may speculate that the behaviour of X* for the non-
linear boundary condition may perhaps correspond in a qualitative sense 
to the behaviour of P( e:'= O )  i . e .  if  we write x··· for the crit ical value .. 

p ' , p 
of A. in the of the non-linear boundary condition ( p  > 1 )  and x··· case .. 1 
for the critical value in the case of the l inear boundary condition , 

).,1: 
then the ratio rt may decrease initially as the B iot number increases  

1 
from near zero , then increase to a finite l imiting value as the B iot 
number tends to infinity . One may also ask whether , for all p > 1 ,  

� > 1 for sufficiently small Biot number .  From the evidence given in 
1 

this chapter , this seems quite likely , but there is evidently plenty of 
scope for further research on the case of  a non-linear boundary 
condition . 



1 1 6  

APPENDIX 

We give here the details of the example discussed in Ch . 2 .  First 
we need to calculate several Fourier series and invers e  Laplace 
trans forms . 

LEMMA 1 :  If f ( x )  = -f( 2-x) for 1 < x � 2 ,  then 

J
2 nnx {2 t f ( x ) cos n� dx 
f ( x ) cos --2- dx = 0 

0 0 

(n odd ) 

(n even) . 

Proof :  
2 J f ( x ) cos nTTX dx = 
0 2 

1 2 J =< x ) cos � dx + J {-f ( 2 -x ) }cos � dx 
0 2 1 2 
1 

= f=< x ) cos 
0 

nnx dx 2 
0 

I f( u ) cos nn( 2 -u) ( -1 ) du 
1 2 

1 
= f=c x ) cos 

0 

nnx d --2- X 
1 J f (u ) cos (nrr 
0 

nnu -2-)du . 

The lemma now follows s ince cos ( nn - nnu ) = cos nnu if  n is even , and 2 2 
Cos ( nn - �) nTTU . � . dd 2 = - cos --2- l =  n �s o . 

LEMMA 2 : Suppose that k '1 ( 2r:+1 ) 
2
ti for a:ny integer n .  4 

defined by cosli<x 
( 0  cos/k' :S: X <  1 )  

f ( x )  = 0 ( x  = 1 )  
-f ( 2 -x )  ( 1  < X :S: 2 )  

Let c be .L 

a:nd let f be an even function, and periodic of period 4 .  Thus f is 

dis continuous at ±1 , ±3 , ±5 , . . . as shown : 

f ( x )  

1 1--1 I I 

____ _.
l -
-3�----�-�2------��-�1------+-------��1-------+2�------�

:
�3�� x 

I I I I I I � 

Then the Fourie r  series of f ( x )  ts 

-1 

00 
E 

n=O 

I I ----------1 

( - 1  ) n+\ 2n+1 )n 
( 2n+1 ) 2n2 

k - 4 

cos ( 2n+ 1 )TTX 
2 



and this series converges to f( x )  for all  real x .  
Proof: Since f i s  even and has period 4 ,  it has a Fourier series of 

the form 
a0 CD -- + E a  cos nnx where : 2 n=l  n -2-

2 ,-1 f( x ) cos nnx dx (n  odd) 
j o 2 by Lemma 1 .  

0 (n  even ) 
( 2n+1 )TTx Hence the Fourier series of f( x )  is of the form E a2 1cos 2 

where : a = 2n+1 

1 
2 
J 

cos/Kx ( 2n+1 )nx d /1(' COS 2 X cos 
0 

1 

n=O n+ 

= co�/r I �(cos [/k + ( 2n+1 )TTJ [j1( ( 2n+1 )TTJ }d 2 X + COS - 2 X X 

= 

= 

0 [ . { ( 2n+1 )TT J 1 sm .;; + 2 x 
COS7'l< .11< ( 2 n + 1 ) TT K + 2 { . ( 2n+1 )TT 

1 cos/K s�n 2 
cos/t /k + (2n;1 )TT + 

+ 
. {Jk ( 2n+1 )TTJ j s�n - 2 x 

(2n+1)TT .IT< - 2 
Jk . ( 2n+1 )TT} -cos s �n 2 

.11< _ ( 2n+1 )TT 
2 

( 2n+1 )TT ( 2n+1 )TT ( 2n+1 )TT . 
2 s in 2 2 sm ( 2n+1 )TT 

2 = ------------------------��-----------------( 2n+1 ) 2TT2 
k - 4 

( - 1 )n+l ( 2n+1 )TT = 2 2 for n = 0 , 1 , 2 ,  . . . .  , as required .  
k _ ( 2n+1 )  TT 

4 

1 

0 

The convergence of  the Fourier series of f (x )  to f( x )  for all real x 
follows from a standard theorem on Fourier series . 

LEMMA 3 :  The hypotheses are as for Lemma 2 except that 

cosJl(x f (x )  = cos/J(' - 1 for 0 :S: x < 1 . 

Then f is continuous for all  real  x ,  the Fourier series of f( x)  is , 
Cl) ( - 1 )n+l4k 
I: _____ 

...:,__.;;..;_�2-2.,.;...;..----- cos 
n= O (k - ( 2n+!) TT ) ( 2n+1 )TT 

to f( x )  for a l l  real x.  

( 2n+;)nx , and this series converges 

117 

Proof: As in the proof of Lemma 2 ,  the Fourier series of f( x )  converges 

(\ 



1 1 8  

( 2n+1 )TTX to f ( x )  for all real x, and has the form r a2 lees 2 ' where : 
n=O n+ 

1 
a = 2 J f (x ) cos ( 2n+l )rtx dx 2n+1 0 2 

1 
2 
J 

cos./1(x = cosf!f< cos ( 2n+1 )TTX d 2 Jl ( 2n+1 )TTX 
2 x - cos 2 dx 

0 0 

= ( -1 )n+l ( 2n+l )TT 
2 2 

k _ ( 2n+1 )  TT 
4 

( -1 )n+l ( 2n+1 )TT = + 
( 2n+1 ) 2TT2 

= 

k - 4 

( - 1 )0+14k 

�in ( 2n+
2
1 )rrxj 1 

2 ( 2n+1 )TT 
2 0 

( -1 )n+14 
( 2n+1 )TT 

as in the proof of 
Lemma 2 

for n = 0 , 1 , 2 ,  . . . .  , as required .  2 2 
{k - ( 2n+�) TT ) ( 2n+1 )TT 

LEMMA 4 :  Let f be defined as in Lemma 2 except that 

f( ) _ ( l )N . ( 2N+1 )TTX X - - X S lO ��2�� ( -1 )N ( 2N+1 )TTX 
( 2N+1 )TT cos 2 for 0 � x < 1 

where N is an arbi trary non-negative integer. Like the function 

dis cussed in Lemma 2, f is discontinuous at ±1 , ±3 , ± 5 , and its 

graph has a s imi lar appearance to the graph of the function discussed 

in Lemma 2 .  Then the Fourier series o f  f( x )  is 

r 
n#N 2 2 2 2 cos 

( 2N+1 )  TT ( 2n+1 ) TT 
4 4 

( 2n+1 )nx 
2 

and this series  converges to f( x )  for all  real x .  
Proof: As in the proof o f  Lemma 2 ,  the Fourier series of f ( x )  converges 

to f ( x )  for all real ( 2n+1 )TTX x, and has the form :E a2 1 cos 2 , where : 
n =O n+ 

a = 2n+1 

= 

1 
2 J f (x ) cos ( 2n�l )TTX dx 

0 

2 J1 N s in ( 2N+1 )TTX ( -1 )  X 
0 2 

( 2n+1 )TTX cos 2 dx 

Jl ( -1 )N ( 2N+1 )TTX ( 2n+1 )TTX 2 (2N+l)TT cos 2 cos 2 dx . 
0 

( 2N+1 )TTX For n ¥ N ,  sin 2 ( 2n+1 )TTX cos 2 
lr . { ( 2N+ 1 )n ( 2n+ 1 )n ) = 21_ s 1n 2 + 2 x + . { ( 2N+ 1 )n ( 2 n + 1 )n) J S lO 2 - 2 X • 



Thus 2 J1
x s in ( 2N+;)nx ( 2n+1 )nx dx cos 2 0 

X COS 2 + 2 X [ { ( 2N+1 )n ( 2n+1 )n) . { ( 2N+1 )n ( 2n+1 )n) s �n 2 + 2 x 
= - (2N+1)n ( 2n+1 )n  + 

2 + 2 { ( 2N+1 )n (2n+1 )n) 2 
2 _ + 2 

{ ( 2N+1)n ( 2n+1 )n} X COS 2 - 2 X 

(2N+1)n ( 2n+1)n 
2 2 

+ 
. { ( 2N+1 )n ( 2n+1 )n) J 1 s �n 2 - 2 x 

{ ( 2N+1 )n _ ( 2n+1 )n}2 
2 2 0 

N ( 2N+1 )n ( 2n+1 )n ow 2 + 2 = ( 2N+1 )n (n+N+ 1 )n and 2 
( 2n+1 )n ...:...;;;...;.,.-._;_;.... = 2 ( N-n )n, so : 

J1 ( 2N+1 )nx ( 2n+1 )nx 2 x s in 2 cos dx 
0 

Also 

( -1 )n+N+1 
- - �����----� 

( 2N+1 )n ( 2n+1 )n 

= 

2 + 2 

( - 1 )n+1+N( 2n+1 )n 
( 2N+1 ) 2n2 ( 2n+1 ) 2n2 

4 4 

2 J1 ( 2N+1 )nx ( 2�+1 )nx d = 0 COS 2 COS 2 X • 

0 

( _ 1 )N-n 
( 2N+1 )n ( 2n+1 )n 

2 2 

Hence , for n # N ,  a2n+ l = ( -1 )n+1 ( 2n+1 )n --'---:::�-'---'---::-2--::-2 , as require d . 
( 2H+ 1 ) 2n2 ( 2n+1 )  n 

4 4 

Als o ,  s in ( 2N+
2
1 )TTX cos ( 2N+2

1 )nx = � s in ( 2N+1 )nx and 

Thus 

= 

Also 

cos cos ( 2N+� )nx 
2 = �{ 1  + cos ( 2N+1 )nx) . 

2 J1 . ( 2N+1 )nx ( 2N+1 )nx dx x s �n . 2 cos 2 0 

[-
X cos ( 2N+1)nx 

( 2N+1 )n 
1 ( 2N+1 )nx 2 J cos 
0 2 

+ 

cos 

sin ( 2N+1 )nx] 1 
( 2N+1 ) 2n2 0 

( 2N+1 )nx dx = 2 

1 = (2N+Un . 

[ + s in ( 2N+1 )nx] 1 X ( 2N+1 )n 0 = 

Hence a2N+1 
( -1 )N ( - 1 )N 

= = (2N+1)n - (2N+1)n 0 as required .  

LEMMA 5 :  Let f be defined as in Lemma 2 except that 

N ( 2N+1 )nx 3 ( - 1 )N ( 2N+1 )nx f( x )  = ( - 1 )  x sin 2 + (2N+1)n cos 2 - 1 

1 .  

1 19 

for 0 � x < 1 .  
Then f is con tinuous for a l l real x ,  the ?ourier series of f ( x )  is 

t\ 



I: 
n1N 2 2 2 2 cos 

{
( 2N+t) n _ ( 2n+t) n } ( 2n+i ) 

( 2n+.-1 )TTX 
2 

and this series converges to f( x )  for a l l  real x .  

1 2 0  

Proof: As  in  the proof of  Lemma 2 ,  the Fourier series o f  f( x )  converges 
CD 

to f ( x )  for all real x ,  and has the form I: a2 1cos 
n=O n+ 

1 
a2n+i = 2 J f( x ) cos ( 2n+;)TTX dx 

0 

+ 

= 2 J1
( - 1 )Nx sin ( 2N+1 )TTX ( 2n+1 )TTX dx 2 cos 2 0 

J i 3 ( - 1 )N ( 2N+1 )TTX 2 
o ( 2N+1 )n cos 2 cos ( 2n+1 )TTX 

2 dx 

( 2n+ 1 )TTX 
2 , where : 

2 J 1 ( 2n+1 )TTX cos 2 dx . 
0 

Using the integrals evaluated in the proof of Lemma 4 ,  we have : 

For n 1 N ,  

= 

( 2N+1 ) 2n2 ( 2n+1 ) 2TT2 
4 4 

( - 1 )n+1 ( 2N+1 ) 2n 

4 ( - 1 )n 
(2n+ 1 )n 

as required .  

Also , ( -1 )N = (2N+1)TT + 3 ( - 1 )N 
(2N+1)TT -

4( -1 )N 
- 0 (2N+1)TT - as required .  

( 2n+1 ) 2n2 f LEMMA 6 :  If k 1 4 or any n = 0 , 1 ,2 ,  . . . . , then 

L - 1 [cosh xiS='!<] 
s cosh/s-k 

If k 

L - 1 [cosh x/S=K] 
s cosh/s-k 

= ( -1 )n ( 2n+1 ) cos ( 2n+1 )TTX ( k  -

2 = n I: 2 2 {e 
n=O ( 2n+1 )  n k - 4 

0 , 1 , 2 , . . . . , then 

( k  

2 2 ( 2n+1 )  TT ) t  4 

2 2 ( 2n+1 )  TT )t 4 

- 1 } .  

- 1 }  

cos ( 2N+1 )TTX 
2 

Proof: From Spiegel ' s  tables[34 , p . 2 5 2 , entry 125] , 
2 2 ( 2n+1 ) TT t 

4 cos ( 2n+1 )TTX 
2 



L-1 (cosh �] 
cosh /s-k 

2 2 
CD kt _ ( 2n+ 1 )  TT t 

= TT E ( -1 )n ( 2n+1 )e  4 
n=O 

CD 

cos ( 2n+1 )TTX 
2 

( 2n+1 ) 2TT2
) 

.. 2 1  

L -1 (cosh x/S-1<] s . cosh/s -k' = TT E ( - 1 )n ( 2n+1 ) cos 
n=O 

( 2n+1 ) TTX  Jt ( k  - 4 u 

2 e du . 
0 

while if k 

follows . 

2 2 
2 2 t ( k  _ ( 2n+

4
1 )  TT ) u  ( 2n+1 ) TT J = -'----:-4�""-- then e d u = t . 

0 
The lemma 

LEMMA 7 :  

L-1 [ cosh x!S=k J _ kt 
(s -k)cosh /s-k - e + 4 CD ( -1 )n+1 ( 2n+1 )nx - E cos e 

2 2 
( k _ ( 2n+!) TT )t  

TTn=O 2n+1 2 

Proof:  From Spiegel ' s  table s [ 34 , p . 2 5 2 , entry 129 ] , 

4 CD ( -1 )n+1 
- E e TT n=O 2n+1 

( 2n+1 ) 2TT2t 
4 cos ( 2n+1 )nx 

2 

The lemma follows from a standard theorem on Laplace trans forms . 

Example of a Time-dependent Problem : 

o2u ou -- + ku + A = 0 ( -1 < x < 1 ,  t > 0 )  
OX2 - dt 

Cons ider the equat ion 

where we assume k > 0 ,  A >  0 ;  further , u( x , t )  sat isfies the initial
boundary condit ions 

u( x , O )  = 0 for - 1  s x s 1 
u( - 1 ,t )  = 0 for t � 0 
u( 1 ,t )  = 0 for t � 0 .  

Let y ( s , x )  be the Laplace transform with respect to t of u .  Taking 
Laplace trans forms , the problem becomes : 

� - sy + ky + � = 0 ,  with y ( s , - 1 )  = y ( s , 1 )  = 0 .  
dx2 s 

The equation is n2y - ( s -k )y  = - A s 
s-k > 0 .  A particular integral is 

1 �) - A = s - s(s -k) 2 D - ( s -k ) 
t\ 

We may assume s > k ,  so that 

A A 
k(s -k) - ks 



Thus the general solut ion is 

y ( s ,x )  

. y ( s , -1 ) 0 = = 

y( s , 1 ) = 0 = 

( 1 )  - ( 2 )  : 

;s:l( X = Ae + - /S-'1( X ). Be + k(s -k) 
- ./s -k' Js -k ). Ae + Be + k(s-k ) 
js::1( - js::1( ). Ae + Be + k(s -k) 

( A  ) (  - JS-K 
- B e - ers::K) 

). - ks 
). - ks 

= 0 .  

). - ks . 

. . . . . . . . . . . .  ( 1 )  

. . . . . . . . . . . .  ( 2 )  

Hence A =  B ,  and substituting back into ( 1 ) gives at once : 
). ). 

A = B = ks k(s -k) 
Js -k - Js-k e + e 

Thus the required solution is 

y( s , x )  = { ). ). } cosh x.rs=K + ks - k(s-k) cosh /s -k' 
). 

k(s -k) - ks · 

12 2 

Now kt = e and Using these and Lemmas 6 and 7 ,  
we may take inverse Laplace trans forms to obtain a formal solution 
u( x , t ) .  

Case 1 :  

u(  x ,  t )  

( 2n+1 ) 2n2 
k -1 4 for any n = 0 , 1 ,  2 , .  . . . : 

CD ( - l )n ( 2  1 )  ( 2n+ 1 ) nx 
).n · n+ cos 2 = k E 2 2 n=O k _ ( 2n+1 )  n 

4 

e 

2 2 
(k _ 

( 2n+1 )  n )t 4 - 1 ) 

4). CD ( - 1 )n+1 
- - E ...;......,.....;._- cos nk n= O 2n+ 1 

( 2n+1 )nx 
2 

2 2 
(k  _ ( 2n+1 ) n )t  4 e 

2 2 
CD ( k - ..:..< ;:..;2n;.;..+��;;..:;)___:.;,n_) t {:-('-2_E_+�2_'1!_

2
-::-:::-= � E ( - 1 )ncos ( 2n+1 )nx e kn n=O 2 ( 2n+1 ) 2n2 

4 

+ --4 } 2n+ 1 

CD 
4). = n E 

n=O 

CD 
+ ).n E k n=O 

( -1 )n+1 ( 2n+1 )  
( 2n+1 ) 2n2 

4 k -

{k -
2 2 cos 

( 2n+�) n ) ( 2n+1 )  
CD 

+ � E 
n=O  

( -1 )n+1 ( 2n+1 )  
2 2 ( 2n+ 1 )  n k - 4 

cos ( 2n+1 )nx 
2 

( 2n+1 )nx 
2 2 

( k  _ ( 2n+1 ) n ) t  4 
2 e 

cos ( 2n+ 1 )nx 
2 

). 
- k 



Now from Lemma 2 we can see that the second of  these sums is discontinuous 
at x = ±1 . We must therefore redefine it at x = ±1 to make it continuous ; 
again us ing Lemma 2 and remembering that in this problem we are only 
concerned with the interval - 1  � x � 1 ,  we can see that the second sum 

must be  replaced by � cos � 
k cos . This gives the formal solution : 

u( x , t )  
CD 

= 4� 
n E n=O 

( -1  )n 
--------

��2�2�----- cos 
( 2n+�) n } ( 2n+1 ) {k -

( 2n+1 )TTX 
2 e 

2 2 
(k  _ ( 2n+1 ) n )t 4 

� cos fix � + k Jt< - -k • • • • • • • • • •  ( S 1 ) cos 
It is  necessary to verify that this is indeed a solut ion of the 

problem .  Clearly u( -1 ,t ) = u( 1 ,t )  = 0 for t � 0 .  
4� CD ( -1 )n 

Further , u ( x , O )  = - E --------..;__�-.,..------ cos n n=O  ( ) 2 2 
(k - 2n+t n } C 2n+1 ) 

+ 

= � cos JKx 1 )  A cos fix A - k cos 11< - + k cos Jk - k 
= o .  

( 2n+1 )nx 
2 

A cos Ji<x 
k cos ll< 
for -1  � 

by 

Thus all the boundary condit ions are satisfied . Checking the 
differential equat ion , we have : 

( - 1 )n+1 C 2n+1 )n2 
2 2 ( 2n+1 ) n }4 

cos ( 2n+1 )nx 
2 e 

A - k 
X � 1 ,  

Lemma 

4 � cos Ji<x 
cos JJ< 

cos ( 2n+1 )nx 
2 e 

2 2 
( k  _ ( 2n+1 )  n ) t  4 

3 

Note that , here and in Case 2 below , the uniform convergence of the 
differentiated series follows easily from the fact that , for t � t0 > 0 
and n s ufficiently 

absolute value than 

large , the general term of  each series is smaller in 
2 2 

( k  _ ( 2n+1 ) n )t 
e 4 0 

2 2 
CD ( k  _ ( 2n+1 )  n ) t  ou 

at + ku + � = 4� n ( 2n+1 )TTX 4 
n n

�
0

( -1 )  cos 2 e 

X 2 2 - 2n+1 + l - ( 2n+1 )n2 1 

4 (k - ( 2n+t) n } .< 2n+ 1 )  {k 
2 2 

k I _ ( 2n+�) n } 



= 0 as required .  
Thus ( 51 ) is an actual solution of the problem . I t  i s  clear f�om the 

2 

1 2 4  

form of  ( 51 ) that if 0 < k < : then u( x , t )  is bounded as t - m, and in 

fact u ( x ,t ) - �cos ./Kx - 1 ) k cos Jk' as t - CD , TT2 
I f  k > 4 then u( x , t )  is 

unbounded  as t - CD , 

Case 2 :  

u ( x ,t ) 

( 2N+1 ) 2TT2 
k = 4 for some N = 0 , 1 , 2 ,  . . • •  : 

( -1 )n ( 2n+ 1 ) cos ( 2n+�)TTX 

2 2 

2 2 
( k  _ ( 2n+�) TT ) t  

e - 1 }  
k _ ( 2n+1 )  TT 

4 

+ �- 1 )N ( 2N+1 )t cos 

4A CD ( -1 ) n+1 - - I: ....:.......,,......:......,...-- cos TTk n= O 2n+1 

( 2N+1 )TTX 
2 

( 2n+1 )TTX 
2 e 

2 2 
( k  _ ( 2n+1 )  TT )t 4 A - k 

Calculat ing as in the previous case , this gives : 

u( x , t ) = 4A I: TT n#N 

+ 

( - 1 )n 

{k -
2 2 ( 2n+t) TT } C 2n+ 1 )  

4A( -1 )N ( 2N+1 )TTX 
TTk(2N+1) cos 2 

cos ( 2n+1 )TTX 
2 e 

2 2 
(k _ ( 2n+1 ) TT ) t  4 

+ ATT I: 
k nr!N 

( - 1 )n+ 1 ( 2n+1 )  
2 2 ( 2n+1 )  TT k -

cos ( 2n+ 1 )TTx 
2 

A - j( · 
4 

From Lemma 4 we see that , in order to make the second sum in this 
expres sion continuous at x = ±1 , we must replace it by 

leading 

u( x , t )  = 

N � ( 1 )N . ( 2N+1 )TTX ( -1 )  ( 2N+1 )TTX) ](1- - X Sl.n 2 - ( 2N+1 )TT cos 2 
to the formal 

4A I: TT n#,N {k -

solution 

( - 1 )n 
2 2 ( 2n+�) TT ) ( 2n+1 )  

cos ( 2n+1 )TTx 
2 e 

( k  -
2 2 ( 2n+1 )  TT ) t  4 

+ 3A( - 1 )N ( 2N+1 )TTX N A ( - 1 )  X sin ( 2N+1 )TTX 
TTk ( 2N+1) cos 2 + k 2 

A - k . . . . . . . . . . . . . . . . . .  ( 52 ) 

As be fore , it is necessary to verify that this is indeed a 
solution of th� problem. Clearly u( - 1 ,t )  = u( 1 ,t )  = 0 for t � 0 .  



Further , u( x ,O )  41 ( -1 )n 
= - E -----=-_..::.::--::----- cos 

TT n"'N ( 2 1 )  2 2 
r {k - n+

4 TT } ( 2n+1 )  

+ 3l ( - 1 )N ( 2N+1 )TTX 
TTk ( 2N+1 )  cos 2 + 

( 2n+1 )TTX 
2 

1 2 5  

+ 3H - 1 )N 
TTk( 2N+1) cos ( 2N+1 )TTX 

2 + 
N )..{ -1 ) X 

k s in ( 2N+1 )TTX 
2 

1 
- k 

= 0 for -1  � x � 1 ,  by Lemma 5 .  
Thus the boundary conditions are satis fied .  Checking the different ial 
equat ion , we have : 

+ 

+ 

( - 1  )n+ 1 ( 2n+1 )TT2 
2 2 

{k _ ( 2n+1 ) TT )4 4 
31( -1 )N+l ( 2N+1 )TT 

4k cos 

cos ( 2n+1 )TTX 
2 

( 2N+ 1 )TTX 
2 + 

e 

2 2 
( k  _ ( 2n+�) TT )t  

1 ( - 1 )N ( 2N+1 )TT ( 2N+1 )TTX 
k cos 2 

( 2N+1 )TTx 
2 + � ( -1 ) N+ l ( 2N+1 ) 3TT3t 

4k cos ( 2N+1 )TTX 
2 

ou = 41 r ( -l )n 
ot TT n;tN 2n+1 cos ( 2n+1 )TTX 

2 e 

2 2 
( k  _ ( 2n+�) rr )t  

�TT N ( 2N+1 )rrx + -r - 1 )  ( 2N+1 ) cos 2 
ou 
ot + ku + 1 = o ,  as is readily checked . 

actual solution in this case ; evidently , we h ave in this case that 
u( x , t ) is always unbounded as t - �. 

The Corresponding Steady-state Problem : 

d2u This is the problem -2- + ku + 1 = 0 ( - 1  < x < 1 ) , where k > 0 ,  
dx 

1 > 0 ,  and the boundary condit ions are u( - 1 )  = u( 1 )  = 0 .  The general 
solution of the equat ion is u( x )  = A cos Jkx + B sin Jkx - � • 

u( -1 ) 

u( 1 )  

= 0 = A cos Jk - B s in jk - 1 
k 

= 0 = A cos Jk + B s in Ji< - � . 



1 2 6  

Adding : A cos Jk = � • 

Subtract ing :  B sin ./K = 0 .  
Now if .!k # nn,  i . e .  k # n2n2 for n = 1 , 2 , 3 ,  • . . .  , we must have B = 0 .  

2 2 If  k = n n for some n = 1 , 2 , 3 ,  . . . .  , then B is arbitrary . If  
� ..� ( 2n+ 1 )n . k ..� .; �<.. r 2 , 1 . e .  r ( 2n+ 1 ) 2n2 

f 4 or � n = 0 , 1 , 2 , .  • • • , then A = :-k-..;.;.._711 __ • cos f/ 1\.  

( 2n+1 ) 2n2 
f I f  k = 4 or some n = 0 , 1 ,2 , . . . •  , no solution is poss ible . 

we have the following cases : 
2 2 m n I f  k # -4-- for any m =  1 , 2 , 3 ,  . . . . , the solution is 

u ( x )  = �cos /Kx 
_ 1] . )(1. cos j1( 

If  k = n2n2 for some n = 1 , 2 , 3 ,  . . . . , the solut ion is 

u ( x )  = ffk� 
cos � - 1] + B s in /kx cos 

where B is arbitrary . 
( 2n+1 ) 2n2 

I f  k = 4 for some n = 0 , 1 ,2 ,  • . . .  , no solution exists . 

So 

TT2 
In particular , if  0 < k < � then the steady-state problem has the 

pos it ive solut ion u ( x)  = � cos J!x - 1] which is also the limit of  k'- cos fi( ' 
the solution u( x ,t )  of the t ime- dependent problem as t - � .  For larger 
values of k, posit ive solut ions of the steady-state problem do not 
exist . 
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