Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. SORPTION AND DESORPTION OF INORGANIC PHOSPHATE BY SOILS AS INFLUENCED BY COMPETING INORGANIC AND ORGANIC ANIONS

by

KEVIN DAVID EARL

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF AGRICULTURAL SCIENCE (Soil Science)

at

MASSEY UNIVERSITY 1975

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to :

Professor J.K. Syers for his guidance and stimulating discussion throughout this study. Also, for his friendship, interest and encouragement offered to me at all times.

Dr. M.A. Turner who was responsible for persuading me to stay on at Massey and further my studies in Soil Science.

All post-graduate students and technicians in TVL who helped ease the pressure at crucial times.

J.C.R. and J. McL. for their interest and helpful discussion.

Mrs. Thelma Colquhoun for the long hours put into typing and preparation of this thesis.

Andy, Mike, Alan, and Fred, and all other flatmates who have tolerated my many different moods throughout the last two years.

The Earl family for their support and encouragement at all times.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	v
LIST OF FIGURES	vii
LITERATURE REVIEW	1
Introduction	1
I. THE MECHANISM OF P SORPTION BY SOIL COMPONENTS	
AND SOILS	3
A. Mechanism of P sorption by soil components	3
1. Oxides and hydrous oxides of Fe and Al	4
2. Clay minerals	8
3. Short-range order aluminosilicates .	8
4. Calcium carbonate	9
5. Humic substances	10
B. Mechanism of P sorption by soils	1 1
II. THE INFLUENCE OF COMPETING INORGANIC AND ORGANIC	
ANIONS ON THE SORFTION OF P BY SOIL COMPONENTS	
AND SOILS	14
A. Influence of inorganic anions on P sorption	- 1
by soil components and soils	14
B. Influence of organic anions on P sorption by	417
soil components and soils	17
III. THE INFLUENCE OF COMFETING INORGANIC AND ORGANIC	
ANIONS ON THE DESORPTION OF SORBED P FROM SOIL	
COMPONENTS AND SOILS	20
	20
IMPLICATIONS OF LITERATURE TO PRESENT STUDY	24
LITERATURE CITED	26
ABSTRACT	32

Page

		Page
MATERIALS AND METH	DDS	34
Soils	3	34
Anio	n solutions	34
Analy	vtical methods	35
RESULTS AND DISCUSS	SION	42
Λ .	Sorption of Added P	42
В.	Sorption of Added P in the Presence of	
	Competing Anions	45
	I. As evaluated by P adsorption	17
	isotherms	45
	II. At defined levels of added P	54
C.	Desorption of Previously Sorbed added P-	
	and Native P	66
D.	Kinetics of F Sorption in the Presence	
	and Absence of Competing Anions	76
E.	Removal of Fe and Al from Soils by	
	Anions	83
CONCLUSIONS AND IN	PERPRETATIONS	91
		54, 55 69, 32
LITERATURE CITED		96

iv

LIST OF TABLES

Table		Page
1.	Levels of P added to the four soils expressed on a ug/g soil (or $ug/40$ ml) and a molar basis	37
2.1	Effect of polygalacturonate (PGU) and citrate on the colorimetric determination of inorganic P by the Murphy and Riley (1962) method	39
2.2	Effect of polygalacturonate (PGU) and citrate, in the presence of 40 ug HgCl_2/ml , on the colorimetric determination of inorganic P by the Murphy and Riley (1962) method	40
3.	Some characteristics of the soils used	44
4.	Adsorption maxima (K_2) and binding energy values (K_1) for inorganic P sorbed in regions I and II by the four soils, calculated from the Langmuir adsorption equation following a 40-hour shaking period	48
5.	Amounts of P sorbed at final solution P concentrations of 1 and 4 ug/ml by the Egmont soil in the presence of $10^{-2}M \text{SO}_4^{-2}$, $10^{-3}M \text{HCO}_5$, and $10^{-5}M \text{PGU}$, and by the Waiareka soil in the presence of P alone, $10^{-2}M \text{NO}_5$, $10^{-3}M \text{HCO}_5$, $10^{-2}M \text{SO}_4^{-2}$, and $10^{-5}M \text{PGU}$, following a 40-hour shaking period	55
6.	Effect of competing anions on the final solution P concentration when soils are shaken for 40 hours with solutions containing both inorganic P and anions at the indicated concentration. Amounts of added P correspond to 40% of the adsorption maxima of regions	
	I and II of the Langmuir adsorption isotherm	56
	6.1 Egmont soil	57
	6.2 Waiareka soil	58
	6.3 Okaihau soil 6.4 Porirua soil	59 60
	ART TATTAC DATT S S S S S S S S S S S S S S S S S S	

٣

.

Page

vi

		1.557/
7.	Effect of anions in the presence of varying levels of	
	added inorganic P on the final solution pH of the super-	
	natants of the four soils recovered following a 40-hour	
	shaking period. Solutions added to Okaihau and Porirua	
	soils were initially adjusted to pH 5.5, whereas those	
	added to Egmont and Waiareka soils were adjusted to pH	
	6.5	64
8.	Effect of competing anions on the final solution P	
	concentration when soils are shaken with inorganic P	
	for 24 hours, competing anions added at the appropriate	
	concentration, and shaking continued for a further 40	
	hours. Amounts of added P correspond to 40% of the	
	adsorption maxima of regions I and II of the Langmuir	
	adsorption isotherm	67
	8.1 Egmont soil	68
	8.2 Waiareka soil	69
	8.3 Okaihau soil	70
	8.4 Porirun soil	71
9.	Effect of competing anions on the desorption of native	
	inorganic P from the four soils in a 40-hour shaking	
	period	75
10.	Amounts of iron and aluminium removed from the Waiareka	
	and Okaihau soils by 10^{-3} M citrate as a function of	
	time of shaking in the presence of added P	87
11.	Amounts of iron and aluminium removed from the four	
	soils by various anions in a 40-hour shaking period	85
10		
12.	Extent to which citrate solutions of varying concentra-	
	tion remove Fe, Al, and (Fe + Al) from the Okaihau soil, and reduce the amount of added P sorbed in a 40-hour	
	shaking period. Inorganic P (850 µg P/g soil) was	
	added with citrate	89
		55

LIST OF FIGURES

Figure	I	lage
1.	Isotherms for the sorption of added inorganic P by the four soils following a 40-hour shaking - period	43
2.1	Isotherms for the sorption of added inorganic P by Waiareka and Porirua soils obtained using the Langmuir adsorption equation	46
2.2	Isotherms for the sorption of added inorganic P in region II by Waiareka and Porirua soils using the Langmuir adsorption equation. Data replotted after K ₂ ^I was subtracted from each of the observed values	
3.	for region II Isotherms for the sorption of added inorganic P by the four soils in the presence and absence of competing anions following a 40-hour shaking period	47 49
	 3.1 Egmont soil	50 51 52 53
4.	Relationship between final P concentration and pH in the supernatants of the four soils following a 40-hour shaking period. The levels of added inorganic P for Egnont, Okaihau, Waiareka, and Porirua soils were 1350, 850, 450, and 350 μ g/g soil, respectively; these correspond to 40% of the adsorption maxima of region II	65
5.	Effect of competing anions on the final P concentration of the four soils as a function of time. Amounts of added P correspond to approximately 40% of the adsorption maxima of regions I and II	77
	 5.1 Egmont soil : 1400 µg P added/g soil 5.2 Egmont soil : 3600 µg P added/g soil 5.3 Waiareka soil : 60 µg P added/g soil 5.4 Waiareka soil :500 µg P added/g soil 5.5 Okaihau soil : 200 µg P added/g soil 5.6 Okaihau soil : 900 µg P added/g soil 5.7 Porirua soil : 50 µg P added/g soil 	78 78 79 79 80 80 80
	5.8 Porirua soil : 400 µg P added/g soil	81

vii

Figure

6.

Page

Introduction

Anions play a very significant role in the retention and plant availability of soil and fertilizer inorganic phosphate (P). Evidence that different inorganic and organic anions can modify P retention was presented by many workers prior to 1950 (Kurtz <u>et al.</u>, 1946; Dean and Rubins, 1947; Swenson <u>et al.</u>, 1949). The exact mechanisms of this effect was little understood. In addition, a range of chemical extractants have been used to assess the available P status of soils; these included citrate, tartrate, fluoride, arsenate, and other anions capable of forming stable complexes with Fe and Al in soils.

It is now well recognised that microorganisms and root excretions greatly modify the chemical environment in the rhizosphere. Organic compounds found in the root exudates of several plants (reviewed by Rovira, 1965), and produced by microorganisms, include many organic acids known to form strong complexes with metal ions. Such compounds may be an important factor affecting the mobility of P in soils.

There is now a reasonable amount of information concerning the reactions of certain anions with soil components. The significance of inorganic and organic anions in the soil solution, and their effect on P sorption and desorption by soil components and soils, however, is not so well documented. Recent studies by Deb and Datta (1967 a, b), Hingston et al. (1970, 1971, 1974), Nagarajah et al. (1968, 1970), and Barrow (1974 a, b) have enabled a better understanding of the extent to which competing anions influence the uptake and release of P by soil components and soils.

The literature pertaining to the uptake and release of P by soils, as influenced by other anions, is reviewed in three sections :

- I. The mechanism of P sorption by soil components and soils,
- II. The influence of competing inorganic and organic anions on the sorption of P by soil components and soils, and
- III. The influence of competing inorganic and organic anions on the desorption of sorbed P from soil components and soils.

1

Sorption reactions may conveniently be divided into adsorption reactions (concentration of ions at solid surfaces due to removal from solution) and absorption (diffusive penetration of ions into retaining components).