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Abstract

The purpose of this research was to investigate the acquisition, storage, processing and analysis of
hyperspectral data for vegetation applications on the example of New Zealand native plants. Data
covering the spectral range 350nm-2500nm were collected with a portable spectroradiometer,

Hyperspectral data collection results in large datasets that need pre-processing before any analysis can be
carried out. A review of the techniques used since the advent of hyperspectral field data showed the

following general procedures were followed:

I. Removal of noisy or uncalibrated bands

2. Data smoothing

3. Reduction of dimensionality

4. Transformation into feature space
5. Analysis techniques

Steps 1 1o 4 which are concerned with the pre-processing of data were found 1o be repetitive procedures
and thus had a high potential for automation. The pre-processing had a major impact on the results gained
in the analysis stage. Finding the ideal pre-processing parameters involved repeated processing of the
data.

Hyperspectral field data should be stored in a structured way. The utilization of a relational database
seemed a logical approach. A hierarchical data structure that reflected the real world and the setup of
sampling campaigns was designed. This structure was transformed into a logical data model. Furthermore
the database also held information needed for pre-processing and statistical analysis. This enabled the
calculation of separability measurements such as the JM (Jeffries Matusita) distance or the application of
discriminant analysis.

Software was written to provide a graphical user interface to the database and implement pre-processing
and analysis functionality.

The acquisition. processing and analysis steps were applied to New Zealand native vegetation. A high
degree of separability between species was achieved and using independent data a classification accuracy
of 87.87% was reached. This outcome required smoothing, Hyperion synthesizing and principal
components transformation to be applied to the data prior to the classification which used a generalized
squared distance discriminant function.

The mixed signature problem was addressed in experiments under controlled laboratory conditions and
revealed that certain combinations of plants could not be unmixed successfully while mixtures of
vegetation and artificial materials resulted in very good abundance estimations.

The combination of a relational database with associated software for data processing was found to be

highly efficient when dealing with hyperspectral field data.
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1 Introduction

Spectroradiometry has become increasingly popular in the last few years. The technology has advantages
over conventional techniques, allowing the non destructive sampling of objects and enabling users to gain
critical information more quickly and cheaply. The operation of the equipment tends to be relatively easy
and data are collected quickly. However, the interpretation of these data is not dealt with quite as casily.
The main issue when dealing with hyperspectral data is their dimensionality. Hyperspectral data are more
complex than previous multispectral data and different approaches for data handling and information
extraction are needed (Vane and Goetz, 1988; Landgrebe, 1997).

The Institute of Natural Resources, Massey University. had acquired a spectroradiometer built by ASD
(Analytical Spectral Devices) and a study utilizing this instrument was considered 1o be of interest.

The goals of this study were: Enhance the knowledge of the Institute in the field of hyperspectral remote
sensing utilizing the recently acquired FieldSpecPro spectroradiometer; study the processes of field data
acquisition, data processing and analysis: create a spectral database of New Zealand native vegetation:
analyze the spectral separability of New Zealand native vegetation: investigate the problem of mixed
signatures: suggest a basis for the classification of land cover using Hyperion data

While the main focus of this research was on hyperspectral data, the simulation of Landsat7 ETM+ was
also undertaken, mainly to provide a basis for further investigation of the problem of atmospheric
correction. Landsat7 imagery of New Zealand has been successfully corrected for atmospheric influences
by Landcare Research, Palmerston North.

During the project. support was given to a Soil Science PhD study at Massey University and to a study on
soils and pastures at Landcare Research, Palmerston North, in terms of sharing expertise, collecting data
and subsequent processing. These collaborations led to further development of the database and
processing requirements and widened the focus of this study to include data from soil and pasture studies.
As aresult of this. a section on correlation of spectral data with other physical properties was added to the
literature review. It serves to complete the picture of the analysis that can be applied to hyperspectral data.
The above mentioned collaborations also supported the hypothesis that tools for efficient data handling.

organisation and processing were of high interest to scientists.






2 Literature Review

2.1 Hyperspectral Remote Sensing

Hyperspectral remote sensing is a relatively recent development based on the principles of spectroscopy.
Spectroscopy which originated from the area of analytical chemistry is the study of the interaction
between electromagnetic radiation and matter (Milton, 2001).

In order to gain spectral data from an object, its chemical bonds must be stimulated by external energy. In
laboratory conditions, artificial energy sources are usually employed while field measurements mostly
rely on the sun, although some technologies use artificial light sources.

Figure 1 illustrates the interaction between the energy source, object and sensor.

Energy source ///

\.\) g Sensor
Radiance = energy

emitted by energy source

Radiance = energy reflected by object

Irradiance = energy
incident upon object

- =5

Object

Figure 1: Interaction between energy source, object and sensor

A range of instruments are used to capture spectral data. Photometers and radiometers are multiband
instruments; the former are restricted to visible wavelengths only, whereas the latter make use of a wider
range of wavelengths. The prefix ‘spectro’ designates instruments that are used to measure
electromagnetic radiation in many narrow, contiguous wavebands, resulting in detailed, continuous
spectra of the sampled objects (Milton, 2001).

The spectral range covered by spectroradiometers usually starts at blue, visible wavelengths (~400nm)
and goes up to near infrared (~1000nm) or mid-infrared (~2500 nm). Thus, most of the reflectance data
captured consist of responses at wavelengths that are not visible to the human eye.

It is expected that such detailed spectral data permit the identification of most surface types (Price, 1994).
Figure 2 shows examples of rock, snow and vegetation spectra. Note that in the visible part of the
vegetation spectrum (400-700 nm), green wavelengths (500-600nm) show a higher reflectance than blue
(400-500 nm) and red (600-700nm). It is this local reflectance peak that lets humans perceive vegetation

in shades of green.



Spectral signatures of rock, snow and vegetation
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Figure 2: Examples of spectral signatures acquired in the preliminary stage of the project

In contrast to chemistry, remote sensing tends to concentrate on reflectance rather than absorbance.

Reflectance is defined by:

E (4) _energy reflected from object at wavelength A
E.(4)  energyincident on object at wavelength A

pA)=

In order to convert measured radiance to reflectance, spectrometers must either be calibrated against a

reflectance panel or directly measure the incident energy.

2.2 Hyperspectral Sensors

Four major groups of hyperspectral sensors are discernible:
1. Laboratory spectroradiometers
2. Field spectroradiometers
3. Airborne imaging spectroradiometers
4

Spaceborne imaging spectroradiometers

Laboratory spectroradiometers are not much used in remote sensing studies as field spectroradiometers

can also be used indoors and usually offer all the needed data. Therefore laboratory spectroradiometers

are not further discussed in this section.
2.2.1 Field Spectroradiometers

2.2.1.1  Overview

First field sensors emerged in the 1960’s. They were usually modified laboratory instruments and had
limited spectral coverage in the range of 400-1100nm.

Specifically developed, portable field spectroradiometers appeared in the late 1980’s.

The PIDAS (Portable Instant Display and Analysis Spectrometer) instrument was completed in 1987. It
sampled 833 bands in less than 2 seconds, covering a wavelength region from 450nm to 2500nm. Field

and library spectra could be displayed simultaneously (Vane and Goetz, 1988).




The IRIS instrument covered wavelengths from 360 — 3000nm (Hutsinpiller, 1988).

For both of these instruments, spectral resolutions were not uniform over the whole spectral range.
Modern day field spectroradiometers still cover the same wavelength region as their predecessors.
However, the spectral resolution tends to be uniform; around Inm over the whole bandwidth and the
integration times have increased by about factor 10. As well, the use of portable field computers with
some instruments facilitates their operation and the subsequent data transfer to other systems.

Field spectroradiometers can be divided into two classes: single beam and dual beam instruments. Dual
beam instruments are capable of measuring two energy sources simultaneously, i.e. incident energy and
reflected energy can be recorded at the same time. This gives the dual beam instruments an advantage
over single beam instruments, as the latter have to acquire these data consecutively, i.e. there is a time

delay during which the incident energy level can change.

2.2.1.2  Acquisition of Field Data

As mentioned above, if no artificial light source is employed, field measurements rely on the illumination

of the object by the sun. One of the problems posed is the rapidly changing light condition, even on clear

days.

Milton (2001) lists three stages of illumination changes:

Cause Time period Expected changes in irradiation
Streams of atmospheric particulates | Few milliseconds 1%

Probably high altitude cirrus clouds | Seconds to minutes 5%

(invisible to the human eye)

Visible clouds passing in front of | NA Major changes

the sun

The regular calibration of the instrument against a white reference is therefore of high importance if
consistent readings are to be achieved. These references such as the Spectralon® (Labsphere Inc.) panels
are assumed to have a Lambertian surface with a reflectance of 1, thus acting as ideal diffuse reflectors.
The above also implies that sampling should only be done on clear days to exclude the possibility of
visible clouds changing the incident energy. High sun elevations are preferable due to the shorter path of
the sun rays through the atmosphere, resulting in less atmospheric interference.

Consequently, field data collection usually happens in the summer months on cloud free days between
0900/1000 h and 1600 h (Hutsinpiller, 1988; Fyfe, 2003; Schmidt and Skidmore, 2003).

The field of view of spectroradiometers is around 20 degrees and less. Some instruments have inbuilt
lenses while others use fibre-optics as an input device. There is however a constraint to the length of fibre
optics which is currently 2-3 metres. Longer fibres result in loss of signal strength and are not employed.
These technical issues have implications on the size of the sampled area.

Most studies report a nadir view of the optic and a distance of about 1-3 metres to the object, in some
cases, step ladders, cherry pickers and helicopters have been used to raise the instrument into a suitable
position (Thenkabail et al., 2000; Schmidt and Skidmore, 2003; Thenkabail et al., 2004a; Ramsey et al.,
2005).




The field of view (FOV) is dependent on the type of foreoptics used and the distance to the target. The

diameter of the FOV for a given FOV angle a and a height h above target is then calculated by:

dpyy =2-h-tan(@)

2.2.1.3  Applications of Field Spectroradiometers

Milton (2001) differentiates between the following applications of field spectroradiometers:

1. Asaremote sensing technique in its own right.
Basic research and applied technology in areas like soil science, agriculture and horticulture.

2. Ineducation and training.
To teach the interaction of energy with matter and give an understanding of the principles of
remote sensing.

3. Calibration of airborne and spaceborne sensors.
The collection of ground truth data is important for the analysis of airborne and spaceborne
hyperspectral data.

4. As asource of data for quantitative models and spectral libraries.
The assembly of spectral data in libraries forms the base for physical and numerical models

concerned with the interactions between electromagnetic radiation and matter.

2.2.2 Airborne Hyperspectral Sensors

The first airborne hyperspectral sensor AIS (Airborne Imaging Spectrometer) was first flown in 1982
(Vane and Goetz, 1988). The system collected data in 128 bands of 9.3nm width, covering a range from
400-1200nm in ‘tree-mode’ and 1200-2400nm in ‘rock-mode’. It had a swath width of 32 pixels, every
pixel covering approximately 8x8 metres of ground when flown at an altitude of 4200 metres (Lillesand
et al., 2004). Being a prototype system, a series of problems were found such as: excessive electronic
noise, non-uniformity of detector response, optical contamination due to vibrations, vertical and
horizontal striping. The problematic issues found during the tests of AIS were addressed by AIS2 (Vane
and Goetz, 1988). The AIS sensors led to the highly successful AVIRIS sensor generation, which is still
being improved and used today (for technical specifications see Table 1).

Another widely used airborne sensor is the Australian developed HyMap (see specifications in Table 1).
The sensor can be customized to suit demands of clients in terms of spectral coverage and number of
bands. A new version of the system is being engineered offering an additional 32 bands in the thermal
infrared (8-12 um) (Integrated Spectronics Pty Ltd).

Some of the widely used airborne hyperspectral sensor systems are listed in Table 1 (Olsen et al., 1997;

Cocks et al., 1998; GER, 2000; Riedmann, 2003; Lillesand et al., 2004)




Table 1: Widely

used airborne hyperspectral sensor systems

Name Number Wavelength | Bandwidth | Swath width Comment
of bands range

CASI 2 288 400-1000nm | 1.8 nm 512 pixels Fully programmable
AVIRIS 224 400-2450nm | 9.6nm 614 pixels

HYDICE 210 400-2500nm | 10nm 208 pixels

GER EPS-H | 136 + 12 300-2500nm | 8-67nm 512-2048 pixels | Customisable system

8-12um
HyMap 100-200 450-2500nm | 10-20nm 60-70 degrees Customisable system

2.2.3 Spaceborne Hyperspectral Sensors

There are currently two spaceborne hyperspectral sensors in orbit: Hyperion and CHRIS.

Hyperion is flown aboard the EO-1 satellite which was launched in late 2000, Hyperion collects 242
bands from 360-2600nm with bandwidths around 11nm. Some of these bands do not yield valuable data
due to poor signal to noise ratios. The level 1 product subsequently contains only 198 calibrated bands.
The spatial resolution is 30 metres at a swath width of 7.5 km.

This system is experimental and the data shows striping and other irregularitics. Nonctheless Hyperion
data has been used successfully in numerous hyperspectral studies.

CHRIS (Compact High Resolution Imaging Spectrometer) is carried on board the PROBA platform that
was launched by ESA (European Space Agency) in October 2001. Tt samples a spectral range from 410-
1050nm in 19 bands at a spatial resolution of 18 metres or in 63 bands at 36 metre resolution. The image

area is [4km by 14km.
2.3 Hyperspectral Data

2.3.1 Overview and Principles

The main issues when dealing with hyperspectral data are their dimensionality and storage profile. The
physical data size is an especially important issue with imaging spectrometers.

The dimensionality of the data is the result of sampling a wide spectral range in very narrow bands. This
is in itself a problem because the influence of noise on narrow channels 1s much higher than on traditional
broadband channels.

Hyperspectral data are more complex than previous multispectral data and different approaches for data

handling and information extraction are needed (Vane and Goetz, 1988; Landgrebe, 1997).



2.3.1.1  Spectral Space and Feature Space Concept

Landgrebe (1997) based his work on hyperspectral data analysis on the signal theory and the principles of
signal processing.
Hyperspectral data can be represented in three principal ways:
I. Image Space: data are shown as a 2 dimensional raster image. This applies only for imaging
spectrometer data where every spectrum has a spatial location.
2. Spectral Space: the data are shown as spectra, i.e. as the reflectance response per wavelength

3. Feature Space: the data consist of vectors, which define points in an N-dimensional space

Figure 3 illustrates the concepts of spectral space and feature space for the example of three different
spectra. Spectral space shows their reflectance values. In feature space, three classes are shown, defined
by vector positions in a 2 dimensional space.

In the given example, the feature space was formed by choosing a subset of 2 components out of the
possible N components that make up the signal vectors. The vector components are equivalent to the
reflectance values at wavelengths 600nm and 1000nm respectively:
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Figure 3: Examples for spectral space and feature space (Data from a preliminary stage of this study)

2.3.1.2 Data Distributions

Objects of the same type have reflectance vectors that lie close to each other in feature space. Object
types are usually referred to as classes, e.g. snow, vegetation and rock. Vectors of class objects form
clusters in feature space.

Classes in remote sensing applications are assumed to be of Gaussian distribution. An illustration of such
distributions is given in Figure 4.

The mean position and distribution (shape) are defined by the mean vector and covariance matrix
respectively. The covariance is one of the most important mathematical concepts in the analysis of
multispectral (and hyperspectral) remote sensing data (Richards, 1993).

It must be noted that for the sake of visualization only 2 dimensional examples are shown. Real data

distributions will have many more dimensions.
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Figure 4: Probability distributions in a 2d feature space (Richards, 1993)

The mean position of a class consisting of K samples with their respective vectors x; in feature space is

given by the mean vector:

I B
m=— Z X,
K i=1
The shape of the distribution is given by the covariance:
R
Z = ————Z(x, —m)- (x, — 1)
\
K -1 i=1

Figure 5 illustrates the concept of mean vectors and covariances. The data distribution is described by the
covariance matrix (represented by the scatter cloud in the figure). while the mean value is a single point in

space. The oval shape of the cluster shows that the two dimensions are correlated.
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Figure 5: An example of a data distribution in a 2d feature space, showing independent samples of a

class and their mean



The correlation between dimensions can be found by interpreting the covariance matrix (Richards, 1993):
0O If there is little correlation between the axes of a feature space, the off-diagonal elements of
the covariance matrix are close to 0.
0O If there is a correlation, the off-diagonal elements will be large by comparison to the

diagonal elements

The following two covariance matrices are examples of little correlation (a) and high correlation (b). This

is show graphically in Figure 6.
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Figure 6: Two dimensional data with little correlation (a) and high correlation (b) (Richards, 1993)

2.3.1.3  On the Importance of 2" Order Statistics

The use of average values may be useful in some circumstances, however, Landgrebe (1997) notes that

Second order statistics contain vital information about the distribution of data in spectral or feature space.
An example of the loss of data is shown in Figure 7. If only the mean values are used, it seems that the
classes could be discriminated without any problem. But the scatterplot which shows the variability of the
classes reveals an overlap between the classes Lemonwood and Ngaio, thus indicating that a 100%
separability of these classes is less likely if this 2 dimensional feature space is used. The discrimination

could be increased by utilizing more dimensions.
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the reduction of data to mean values results in a loss of information.

ooﬂ
0.03
0.02

0.014

0.001

F= :‘ -
- -,'-l
'..-II
.-II

Speces

—&— Lemonwood
- Manuka
Ngaio

-0.0175

-0.0150

-0.0100 -0.0075

DGVIe

-0.0125 -0.0050
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2.3.2 Data Processing

2.3.2.1  General Structure
The procedures used in several studies of hyperspectral data show a general, discernible structure which
is:

1. Removal of noisy or uncalibrated bands

2. Atmospheric corrections (applies only to airborne and spaceborne sensor data)
3. Data smoothing

4. Reduction of dimensionality

5. Transformation into feature space

6. Analysis techniques

All of these steps are not always necessary. They are described hereafter in detail.

2.3.2.2 Removal of Noisy or Uncalibrated Bands

This step eliminates bands which are either uncalibrated or give no useful signal because of a low signal
to noise ratio.

Uncalibrated bands occur when a sensor contains known, faulty sensor elements. An example is the
Hyperion sensor, where certain bands are listed as non-calibrated. The removal of uncalibrated bands
requires detailed information of the sensor in use.

Low signal to noise ratios are found naturally in some wavelength ranges due to atmospheric interference,
¢.g. water vapour at 1350-1440nm, 1790-1990nm and 2360-2500nm (Thenkabail et al., 2004a).

Water vapour causes the most noise found in field spectroscopy data. Only when the distance between
sensor and sensed object is minimized (e.g. if a contact probe is used) will the influence of the
atmosphere be practically non existent.

An example of a spectrum showing water band noise is shown in Figure 8.
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Figure 8: An example of a spectrum showing water band noise in 3 wavelength ranges



2.3.2.3  Atmospheric Corrections

Atmospheric correction applies only to airborne and spaceborne sensor data. Field sensor data do not
need to be atmospherically corrected due to the small distance between sensor and object (usually only a
few metres maximum).

Atmospheric correction of hyperspectral data is essential and extremely complex (Thenkabail et al.,
2004a) and must be carried out if hyperspectral imagery is to be compared with spectral ground data or
with other. temporally or spatially different hyperspectral imagery (Lillesand et al., 2004). Thus in the
context of this research some form of atmospheric correction will be needed to relate ground spectra to
Hyperion data.

Numerous techniques for atmospheric correction exist, amongst which are:

1 Flat Field (FF) Calibration: the data is normalized against a spectrally flat, uniform area
with known spectral reflectance (Vane and Goetz, 1988 Research Systems Inc., 2004)

0 Empirical Line (EL) Correction: a linear fit between ground reflectance data and raw
spectral data is calculated and then applied to the raw data. Ground data can be collected
simultancously with the satellite overpass (Ramsey and Nelson, 2005) or non
simultaneously (Martin and Aber, 1997; Ben-Dor and Levin, 2000).

O Internal Average Relative Reflectance (IARR): the raw data is normalised against the
average spectrum of the image (Research Systems Inc., 2004).

[0 Model based methods: a radiative transfer model is used to calculate surface reflection from
raw data. The model requires the amount of water vapour, distribution of aerosols and scene
visibility. Due to the contiguous, narrow band spectral data, water vapour information can
be extracted from cvery pixel. Several software packages with this functionality exist:

FLAASH. ATREM and ACORN (Kruse, 2004)

The FF and IARR Calibrations are both normalization processes and generally produce the poorest
results. The model based methods often produce better results than the other corrections but they need
atmospheric information true for the time of data acquisition which can be difficult to obtain. The EL
calibration requires information about ground targets and can produce acceptable results within a few

percent of true reflectance (Smith and Milton, 1999).

2.3.24 Data Smoothing

Hyperspectral data acquired by field, airborne or spaceborne sensors exhibit a certain degree of random
noise. The combination of high spectral and relatively high spatial resolution renders imaging
spectrometers sensitive to noise (Landgrebe, 1997). Field sensors tend to have even narrower bandwidths
than airborne or spaceborne sensors and are sensitive to noise even when close to the object. The
reduction of this noise is especially crucial when derivative analysis is to be employed (Tsai and Philpot,
1998). Explicit data smoothing can be omitted if the dimensionality of the data is reduced by a method
that implicitly applies a smoothing function (see details in section 2.3.2.5).

The goal of every filtering function must be to reduce the noise while preserving the original features.

Some smoothing techniques are reviewed hereafter.




One commonly used operation is the convolution. Here, a convolution function is moved over the data
points and the mid point of this moving window is the data point to be smoothed. One of the best known
convolution functions is the average (Savitzky and Golay, 1964).
The convolution process is described by:
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where

Y, * = smoothed data point

C, = convolution coefficient
Y, ., = original data point
N = moving window size (-m...+m)

For the average, all coefficients are 1 and N is the number of convolution coefficients.

One of the most popular smoothing functions applied to hyperspectral data is the Savitzky-Golay filter
(Tsai and Philpot, 1998). It uses linear least squares regression to smooth the data: a polynomial of a
certain order is fitted to N data points, where N is defined by the filter size. An advantage of this filter is
the ability to calculate smoothed derivative data in one operation.

Savitzky and Golay (1964) provided tables with the convolution coefficients for different combinations of
filter sizes, derivative orders and approximating polynomial orders. While these lookup tables served well
to increase the computing speed of the machines available when this technique was developed, filters are
limited to the filter size/polynomial order/derivative order available in these tables. Modern
implementations therefore calculate the required coefficients at run time (Tsai and Philpot. 1998: Press et
al., 2002).

Tsai and Philpot (1998) noted that the filter size was the principal factor that affected the results of
derivative analysis.

A study conducted by Schmidt and Skidmore (2004) investigated several smoothing techniques (Mean,
Median, Savitzky-Golay, Discrete Wavelet Transformation (DWT), Non-decimated DWT and Cubic
Spline) for noise reduction of vegetation data. It suggested that the wavelet transformations were superior
to the other methods.

Another well-known filtering technique is the Fourier transformation, but it has been shown that wavelet
transformations preserve local features better because they are locally adaptive (Press et al., 2002;
Schmidt and Skidmore, 2004).

Piecewise multiplicative scatter correction (PMSC) is based on linear regressions when fitting against a

standard spectrum. It is used to correct for nonlinear additive and multiplicative scatter (Fyfe, 2003).

2.3.2.5 Reduction of Dimensionality

It has been shown that neighbouring wavebands have a high degree of correlation, i.e. they contain
redundant data (Thenkabail et al., 2004a). This redundancy is created by oversampling, i.e. the spectral

signal is sampled at small enough steps to describe very narrow features that could be discriminating
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(Shaw and Manolakis, 2002). This oversampling is what caused several studies to research the ideal
wavebands needed for certain applications. Such knowledge could then lead to specialised sensors that
capture optimal bands and thus reduce the data redundancy (Thenkabail et al., 2000; Thenkabail et al.,
2004a).

By using appropriate techniques it is possible to reduce the dimensionality significantly while retaining
most of the information.

The most widely used algorithm is the principal component transformation (PCT) (Shaw and Manolakis,
2002). Principal component analysis performs an eigen-decomposition, the resulting eigenvectors are
used to build a transformation matrix, which is then applied to the original data. The PCT is a zero
correlation, rotational transformation. The components are ordered by their power to describe the
variation found in the data. The first few components explain the most variation, while the later
components usually contain noise (Richards, 1993). By choosing a subset of the available eigenvectors to
build the transformation matrix, the data dimensionality can be reduced drastically while retaining most
information.

The Maximum Noise Fraction (MNF) Transform (Green et al., 1988) is similar to the PCT but addresses
the weakness of the latter when the noise variance is not uniform over all bands of the dataset. MNF is a
linear transformation and orders the resulting components by their signal-to-noise ratio. MNF, also known
as NAPC (Noise-Adjusted Principal Components), is therefore a useful technique to reduce the
dimensionality of a dataset while retaining most information and minimizing the noise at the same time
(Lee et al., 1990).

Some researchers have reduced the data by simply selecting every tenth waveband, thus reducing the data
by factor ten (Shepherd and Walsh, 2002). This approach should be treated with caution, as it may violate
the sampling theorem by Shannon (1949). The sampling theorem states that the discrete samples are a
complete representation of the signal if the bandwidth is less than half the sampling rate. Shannon’s
sampling theory is applicable whenever the input function is band-limited. When this is not the case, the
standard signal-processing practice is to apply a low-pass filter prior to sampling in order to suppress
aliasing (Unser, 2000). The process of filtering followed by downsampling is referred to as decimation
(Fliege, 1994). Thus, in the context of spectral data, the application of a smoothing function which is
effectively a low-pass filter, may be advisable prior to a downsampling.

Another possibility of dimensionality reduction is the simulation of other hyperspectral sensors having
fewer bands than the original sensor.

Thenkabail et al (2004a) transformed ASD spectroradiometer data to Hyperion data by using 10nm
bandpasses. The filtering function of the bandpass was not detailed.

A different study also simulated Hyperion data by averaging every ten bands of the ASD data (Mathur et
al., 2002). The use of the average function seems questionable, however, as the sensor response function
of the Hyperion sensor is of Gaussian nature (Zanoni et al., 2002). It would therefore seem logical to use
a Gaussian instead of an average function for the band convolution process.

The simulation of other sensor responses from given data is an important operation, e.g. for the
performance evaluation of new sensors (Zanoni et al., 2002).

As an example, Landsat7 ETM+ was chosen in this study because (a) Landsat imagery is widely available

as the Landsat program has already run for decades (b) many studies of have produced successful results,
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e.g. a study on New Zealand vegetation (Dymond and Shepherd, 2004) and (c) the atmospheric
correction of New Zealand Landsat imagery has been carried out at Landcare Research and Landsat

simulated signatures can therefore provide valuable information when trying to correct Hyperion data.

2.3.2.6  Feature Space Transformation

In feature space, signals are treated as vectors in a multidimensional space (Landgrebe, 1997).
Technically, it suffices to arrange the reflectance bands of a spectrum in vector form to achieve the
transformation into feature space.

From the example given in section 2.3.1.1 where a 2 dimensional feature space was shown, it becomes
clear that a feature space must not be of dimension N if the spectrum was sampled in N bands. A feature
space can be built so that it maximises the discrimination between classes.

The real power of the feature space lies in the possibilities for information extraction. A wealth of
stochastic methods exists that can be applied to vector data (e.g. Minimum Distance to Means or
Maximum Likelihood) (Landgrebe, 1997). Many studies make use of the feature space concept, although
it is usually not explicitly mentioned. A few examples of feature space transformations are given
hereafter.

Principal Components Transformation (PCT) (see also section 2.3.2.5) is widely employed. It is a linear
algebra method and as such operates in feature space. PCT transformed data represent an example of an
optimised feature space as their axes are theoretically uncorrelated.

The calculation of indices also performs a transformation of spectral data into a feature space. Indices are
mathematical combinations of reflectance band data. The simplest index is the difference between the
reflectances of two bands:

I=pb)-pb,)

The influence of illumination conditions, surface slope, aspect and other factors on the indices can be

reduced by normalization (Lillesand et al., 2004):
_pb)-pb,)

NI =
pb )+ pb,)

E.g. by calculating a NDVI (Normalized Difference Vegetation Index). the spectral data is automatically
transformed into a 1 dimensional feature space.
Derivative Greenness Vegetation Indices (DGVI) (Elvidge and Chen, 1995; Thenkabail et al., 2004a:
Thenkabail et al., 2004b) make use of many hyperspectral bands. They describe changes in slopes by
summing up the differences of first derivatives over defined waveband regions.
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p’(b;.b;) = first derivative of reflectance curve between b, ; and b;
m..n = start and end band number of DG VI area

b; = centre wavelength of band 1

i: band number
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These DGVI regions are: 515-535 nm (DGVIL), 540-560 nm (DGVI2), 560-580 nm (DGVI3), 650-670
nm (DGVI4), 700-740 nm (DGVIS), 626-795 nm (DGVI6), 1500-1650 nm (DGVI7), 2080-2350 nm
(DGVI8) (Thenkabail et al., 2004a) and 428-906 nm (DGVI9), 428-2355 nm (DGVI10) (Thenkabail et
al., 2004b).

Thenkabail et al. (2004a) carried out nonparametric least significant tests on the mean DGVIs of different
vegetation. The most discriminating DGVI was found to be DGVIS, followed by DGVI6, DGVIT,
DGVI3, DGVI4 and DGVIS.

Thus, feature spaces can be built of:
O  Any subset of original reflectance bands
O Any subset of zero correlation transforms (e.g. PCT)

0 Any number of indices

2.3.3  Analysis

The typical analyses carried out can be grouped into the following broad categories:
0 Basic research into discrimination, best bands, etc.
[0 Predictive correlation studies to develop measures that can predict physical properties from
spectral data
O Spectral unmixing: estimation of the abundance of endmembers

In practice. these categories often overlap or are combined to get the best results.

2.3.3.1 Discrimination

Theoretically, every material should have a unique spectral signature. The study of the discrimination of
malerials forms a basis for the classification of individual signatures or hyperspectral imagery. Landgrebe
(1997) notes two approaches to the problem of classification: spectral matching and analysis in feature

space.

2.3.3.1.1  Spectral Marching

Spectral matching regards the data to be classified as spectra, i.e. a continuous curve over a defined
wavelength range. Here, an unknown spectrum is compared to known spectra. A match thus identifies the
unknown,

An carly example is the two code binary vector, consisting of amplitude and slope information. A spectral
match is determined by assigning the unknown spectrum to the reference spectrum which has the
minimum Hamming distance (Mazer et al., 1988). An implementation of this algorithm, called Binary
Encoding, can be found in ENVI (Research Systems Inc., 2003).

Other ways to match spectra are: a distance calculation based on the root mean square difference between
two spectra over a wavelength region (Price. 1994) or a least squares fit against reference spectra, termed
Spectral Feature Fitting (SFF) (Research Systems Inc., 2005). SFF uses continuum removal and thus
identifies the absorbtion band centres. It has been successfully used in a preliminary study to detect two

types of aquatic vegetation species (Williams et al., 2002).




A recent development in the domain of spectral matching is the USGS Tetracorder expert system which
uses continuum removal and least squares fitting to match library and unknown spectra. The resulting
correlation values r are termed the fit value. In a study that mapped the landcover of the Yellowstone
National Park, an additional raster image containing these fit values was produced, showing the degree of
confidence of the match. The accuracies achieved were 91% for 4 forest classes and 85% for 4 non-forest
classes. It also showed a classification accuracy of 40.3% - 93% for 5 growth stages of one species

(Kokaly et al., 2003).

The spectral matching makes use of known spectra. usually compiled in spectral libraries, such as the
USGS spectral library (Clark et al., 1993). Such libraries tend to contain only a limited number of spectra
per material type, in many cases just one single, representative spectrum which means that only 1™ order
statistical data is available.

The concept of the Shape Space (Cochrane, 2000) tried to overcome this limitation by defining the
variability of classes by the upper and lower bounds of spectral reflectance. Classification is then
achieved by a process termed shape filtering. The classification criterion is the fit or overlap of the
unknown spectrum with the shape of a class. Although Cochrane reports quite high classification
accuracies, the way in which the reflectance of branches and trees was estimated using leaf spectra

suggests that the results of the shape space approach should not be regarded as conclusive.

2.3.3.1.2  Feature Space Representation

The Feature Space representation, on the other hand. models classes as clusters in a multidimensional
space and as such offers the possibility of using 1" and 2™ order statistics more casily.

The problem of assigning an unknown vector to one of several clusters in a multidimensional space can
be solved by using discriminant analysis, also called supervised pattern recognition. A training set is used
to find a discriminant function (linear or quadratic). This function is subsequently applied to new objects
to allocate it to a group (Miller and Miller, 2005).

Like discriminant analysis, partial least squares regression (PLS) is a method of multivariate analysis.
Although PLS is normally used to model continuous data, it has been successfully used to predict group
memberships for two or three groups by assigning numerical codes to the groups (Richardson et al.,
2003).

A study of classifiers using either mean or covariance or combining both showed that the best
classification results are achieved when a classifier makes use of both statistics (Landgrebe, 1997).

A few examples of studies based on the feature space concept are given hereafter.

Younan et al (2004) studied the discrimination of 8 different sample types (bare soil, soybean, mixed
weeds, combination of soybean and weeds, and 3 types of weed). Half of the samples were used as a
training set and the other half was classified against the training set. Six different nearest neighbour
calculations gave overall classification accuracies between 33% and 68%. A further classification also
used nearest neighbour as the discriminant function but the input data were wavelet coefficients obtained
from a wavelet decomposition of the spectra. Wavelet decomposition represents a signal by

approximation and detail vectors. It is mostly used in signal de-noising and image compression. The



concept of the wavelets can also be extended to feature extraction and classification. The wavelet based
classification resulted in 45% accuracy.

Several points are noteworthy: the species vectors were made up of all sampled bands, thus many
components would be found redundant. As no smoothing was applied, the data was still noisy. The
discrimination of eight surface types, out of which one (the soil) was very different to the vegetative
types, should have yielded quite good results. The tendency of the classification accuracy when adding
more surface classes remains unanswered, but one would expect that more classes result in a reduced
accuracy.

The separability of classes in hyperspectral space can be determined by using a distance analysis. Two
such measures are the Jeffries-Matusita (JM) and the Bhattacharya (B) distance (Schmidt and Skidmore,
2003). The JM distance is asymptotic to 2, i.e. a value of 2.0 would equal a 100% separability of the two
classes (Richards, 1993). A value of 1.9 indicates a good separability (Research Systems Inc., 2004).
Schmidt and Skidmore used the JM and B distances in a study into spectral discrimination of vegetation
types. They reported JM and B distances between 27 classes using 6 wavebands. The JM distances were
between 0.81 and 2.0 with the majority of the distances around 1.8. They concluded that for overlapping
classes, other information such as elevation could aid the distinction.

Instead of measuring the distance between two vectors in space, their separability can also be determined
by calculating the angle between the two vectors (Price, 1994). This measure is called Spectral Angle
Mapper (SAM) (Landgrebe, 2003) and is part of the ENVI software (Research Systems Inc., 2005).
Again, this is a method that works on single vectors and not on clusters and therefore only uses 1% order
statistics. This limitation can be partly overcome by adding numerous variations of the same endmember
to the spectral library. One advantage of SAM is its insensitivity to changes in signal strength, i.e. object
albedo. A lower/higher albedo should only change the length of the signal vector but not its direction.
Mundt et al. (2005) used SAM for the discrimination of an invasive plant species (hoary cress) in airborne
hyperspectral imagery. Reported classification accuracies were around 80% for areas of more than 30%
infestation. Signatures of the target species were selected from the imagery after overlaying ground
survey data. Two endmembers (mesic and xeric) were then formed by averaging the selected regions. No
spectral signature examples that compare target to non-targets were given in the article. However, the
imagery and field surveys took place during bloom. Hoary cress exhibits dense white flowers, the plant
forms flat, mat like covers. Thus, one could assume that hoary cress signatures are significantly different
from the surrounding landcover signatures.

Clark et al. (2005) compared the accuracy of SAM, Maximum Likelihood (ML) and Linear Discriminant
Analysis (LDA) when classifying tropical rainforest trees at leaf and crown scale. Generally the
performance of SAM was lower than 53.7% while LDA and ML reached a maximum of 100% and 87.3%
respectively. It was concluded that the poor result of SAM was due to the interspecies variability which is

not entered into the model as SAM uses no 2™ order statistics.




2.3.3.2 Best Bands

Best bands are a subset of the original bands that maximise the separability of the classes.

As mentioned before, hyperspectral data is usually highly correlated. Thus the search for the best bands
should also identify non correlated bands. The combination of such bands then forms a feature space with
an optimised discrimination. A few examples follow.

The discriminative power of single wavebands (i.e. dimensions) can be tested using statistical methods.
The Mann-Whitney U-test determines if two populations are statistically significantly different. By
applying this test to all species combinations at every waveband and counting the cases where the
populations differ, a histogram is computed that shows the important wavelengths in terms of
discrimination (Schmidt and Skidmore, 2003: van Till et al., 2004). A process called ‘single-factor
analysis of variance’ (Fyfe, 2003) renders the same information as the Mann-Whitney U-test.

The results of the Mann-Whitney U-test with a significance level of 0.01 applied to saltmarsh vegetation
showed that the most discriminating wavebands occurred in the NIR and SWIR regions (740-1820 nm) of
the spectra (Schmidt and Skidmore, 2003). The wavebands in these regions were >83% statistically
different between species, i.e. the p-values of these tests were less than the chosen significance level for at
least 83% of all cases. Wavebands between 1970 and 2450 nm were >77% statistically different.
Lambda-Lambda R* models (LL R* M) are a data mining technique that identifies band combinations of
low correlation (Thenkabail et al., 2004a). By calculating the correlation matrix of a number of given
spectral vectors, a correlation factor r is obtained for every possible band combination. After the
conversion of r to R” the matrix can be plotted as raster or contour image highlighting the least correlated
band combinations. Thenkabail et al. (2004a) used LL R* M in a study into waveband performance,
applied to samples of crops and weeds. The most frequently occurring, non redundant wavebands were:
red, FSWIR (far short wave infrared: 1901-2500 nm), ESWIR (early short wave infrared; 1301-1900 nm)
and late NIR. They suggested that LL R* models are most useful when testing species where spectral
similarities are likely to be close.

Principal Components Analysis (PCA) can also yield information about possible best bands. The
influence of the original bands on the data variability is given by the factor loadings, i.e. components of
the eigenvectors (Thenkabail et al., 2004a). Thenkabail et al. (2004a) carried out PCA on weed and crop
spectra. The first five principal components (PCs) explained 93-95% of the variability. The original 168
bands could therefore be reduced to 5 new bands, resulting in a reduction of the data volume by about
97%. The ESWIR bands had the highest factor loadings in the first PC which explained 65% of the
variability. The second PC was dominated by the red wavelengths and explained 20% of the variability.
PC3-PCS5 had the highest factor loadings in the FSWIR. This indicated the importance of red and SWIR
wavebands for the discrimination of vegetation.

Stepwise Discriminant Analysis (SDA) is a multivariate technique that tries to identify an optimal set of
predictors (bands) by a stepwise selection (Thenkabail et al., 2004a). One of the outputs of SDA is the
Wilk’s Lambda. The smaller Wilk’s Lambda, the better the discrimination. Thenkabail et al. (2004a)
applied SDA to shrub, grass, weed and crop spectra. The most frequently selected wavebands that yielded
optimal Wilk’s Lambda values for shrubs, grasses, weeds and crops were centred at 1215, 730, 1245 and

1285 nm respectively. This indicated that discriminating bands are situated in the NIR.



A method termed best feature selection (Mathur et al., 2002) constructs a feature vector based on the area
under a ROC (Receiver Operating Characteristic) curve. The area under the ROC curve is related to the
amount of histogram overlap of two classes. The feature vector elements are then used as the weights in a
linear discriminant analysis. Mathur et al. used this method to classify grass species into two classes:
weed (1 species) and non-weed (5 species). The field spectra were first convolved into Hyperion sensor
bands and subsequently put through the best feature selection process. Nearest Neighbour was used as the

discriminant function and classification accuracies of 85.47-97.98% were reported.

2.3.3.3 Predictive Correlation

Hyperspectral data offer new, non-destructive and efficient ways of estimating physical properties of
objects. E.g. estimation of biomass, leaf area index (LAI) or prediction of crop yield.

The challenge is to identify spectral features that correlate with physical measurements.

Four approaches to this problem are discernable: (a) to use knowledge about the electron transition or the
bond vibration of chemicals at certain wavelengths or (b) to rely on mathematical tools or (c) to visually
assess the spectral reflectance curves to identify high correlations between predictors (the reflectances)

and the responses (the physical data) or (d) to use or modify indices provided by other studies.

2.3.3.3.1  Absorbtion/Reflectance of Chemical Bonds

Because of the frequent overlap of spectral characteristics of compounds, the interpretation of plant
spectra using compound absorbance is difficult at best (Richardson et al., 2003). The absorbtion features
(position, depth and width) of chemical bonds are however frequently and successfully used in mineral or
chemical applications. The analysis of absorption usually involves continuum removal (Kokaly and
Clark, 1999) as a preceding operation.

However, knowledge about reflectance/absorbance characteristics of compounds can help to understand
the shape of spectra. An example is the low reflectance of plants in the visible wavelengths due to
chlorophyll absorbtion.

Analysis of absorbtion features has been used for the successful estimation of foliar nitrogen (coefficient
of determination r* = 0.85) and most of the known nitrogen absorption features could be identified

(Huang et al., 2004).

2.3.3.3.2 Mathematical Tools

From a statistical viewpoint, the collection of hyperspectral reflectance yields multivariate data.
Multivariate analysis is a branch of statistics that can deal with multiple measured variables per object.
This paragraph is based on Miller et al (2005) and Minitab (2003).

Multiple Linear Regression (MLR) finds regression equations of the form
¢, =by, +b, A +..+b, A,
where

A, = predictor
¢; = response

b, = coefficient to be determined
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The number of sampled specimens must be greater than the number of predictors n. This limits the use of
MLR when hundreds of predictors (i.e. wavebands) are available. The determination of the best
combination of all possible predictor combinations would take a long time. Here, the evaluation of the
best bands can yield useful results. Also, MLR can not handle high colinearity of the predictors. Using
too many predictors can result in an overfit.

MLR was used in a study that tried to estimate foliar nitrogen content of Eucalyptus species from
Hyperion data (Coops et al., 2003). In order to prevent overfitting. three bands were used that explained
the most variation in N at the sample plots: 458, 2264 and 2294 nm. An R’ value of 0.84 was achicved,
although this result must be treated with caution as no jack-knifing procedures were applied.

One solution to the colinearity and overfitting problem of MLR is to apply a principal component
transformation (PCT) to the data first and then carry out a MLR. PCT is a multivariate technique that can
reduce data if the variables are correlated (see section 2.3.2.5).

The combination of PCT and MLR is known as principal components regression (PCR).

Partial least squares (PLS) regression is in its concept similar to PCR as it uses linear combinations of the
predictor variables. However, in contrast to PCR, PLS does not try to maximise the variation of the
predictors but gives extra weight to predictors that are highly correlated with the responses.

Coops et al. (2003) used PLS for the above mentioned Nitrogen estimation and reported an R’ value of
0.68 using cross validation (R 0.95 without cross validation). They also noted that outliers can negatively
affect the accuracy of PLS while MLR tends to be more robust.

Stepwise regression is one more way of multivariate regression. Stepwise regression tries to build an
optimal subset of predictors that maximises the regression correlation. A number of algorithms exist to
derive this best set: add and remove, forward selection or backward elimination (Minitab Inc., 2003).
Thus, it seems that PCR, PLS and stepwise regression are all well suited tools for correlation studies

using hyperspectral data.

2.3.3.3.3  Visual Assessment

Visual assessment of spectral plots may help to identify regions where discrimination seems likely.

This technique was used in a study of sugarcane disease where both the magnitude of the difference
between band reflectances and the direction of relationship (i.e. divided band reflectances) were assessed.

Results of visual assessment were then combined with statistical information to create new indices (Apan

et al., 2003).

2.3.3.3.4  Use and Modification of Existing Indices

To improve existing indices has been the goal of many studies over the past years, e.g. (Thenkabail et al.,
2002; Apan et al., 2003; Haboudane et al., 2004).

In plant studies, one of the most widely used indices is the NDVI (Normalized Difference Vegetation
Index). It is formed by contrasting red band with near infrared (NIR) band reflectance (Elvidge and Chen,
1995):

_ pUR) — p(VIS)

NDVI =
PUR)+ p(VIS)
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It is known that the red band is dominated by chlorophyll absorbtion while the NIR has a high reflectance
due to the internal leaf structure (Lusch, 1989). The NDVI has been used successfully for large area
vegetation monitoring using AVHRR (Advanced Very High Resolution Radiometer) data. Vegetated
areas usually yield a high NDVI value while non-vegetated areas tend to have negative values.

In terms of existing indices, it must be noted that quite a number were developed for use with broadband
sensors. Their direct application to hyperspectral data does not necessarily exploit the higher information
content of these data. In a study that correlated several indices with LAI, it was found that newly
developed, narrow band indices were superior to existing broadband indices, even when the bandwidth of
the latter was reduced (Elvidge and Chen, 1995).

Data mining techniques are also applicable to two band indices to identify the best band combinations,

resulting in an R’ plot similar to the Lambda-Lambda R? band correlation plot (Thenkabail et al., 2002).

2.3.3.4  Spectral Unmixing

Spectral mixing occurs for two reasons: (a) the spatial coverage of the sensor includes more than one
endmember or (b) the material being sampled is in fact a homogenous mixture of two or more
endmembers (Keshava and Mustard, 2002). Endmembers are materials that are pure, i.e. mixtures are
made up of endmembers.

For imaging spectrometers, the spectral mixing results in mixed pixels, also called mixels. Although the
process of unmixing is usually applied to raster images, it can conceptually be applied to field
spectroradiometer data as well.

Spectral unmixing is the procedure that yields the abundances of the involved endmembers.

Two models that describe the mixing exist: Linear Mixing and Nonlinear Mixing.

2.3.3.4.1  Linear Mixing Model (LMM)

Linear mixing assumes that the surface consists of distinct materials (the endmembers) and incident
energy only interacts with these pure materials. The reflectance that arrives at the sensor consists of all
endmember signals in the field of view. If only one endmember takes up the field of view, its abundance
is 100%, if more than one endmember make up the field of view, their abundance is equal to the
proportion of the area they occupy. Figure 9 illustrates the concept of linear mixing: of the three occurring

endmembers A, B and C, A and B have a fractional abundance of 0.25 while C has an abundance of 0.5.

Figure 9: An example of a mixed pixel (linear mixture model)

Mathematically, the linear mixture model can be written as

M
X :Za, s, tw=S8-a+w

i=1
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where X is the N x 1 signal vector received by the sensor, S is a N x M matrix, consisting of M
endmember vectors and w is a N x 1 additive noise vector.

Two further conditions must be satisfied for the unknown abundance vector a: the full additivity
constraint requires that the sum of all abundances must be 1 and the nonnegative constraint requires that

all abundances must be positive:

a=1. az21i=1.M
i=1

The unmixing consists of three consecutive procedures (Keshava and Mustard, 2002):
1. Dimension reduction (optional, reduces computation effort)
2. Endmember determination

3. Inversion (a least squares solution)

The selection of the endmembers is critical. The abundance estimation accuracy is highest when the exact
number of endmembers are used in the model. If too few endmembers are used the estimated fractions
will include the abundance of the missing endmembers. This is termed fraction error. If too many
endmembers are used the model will be sensitive to instrumental noise, atmospheric contamination and
natural variability in spectra, resulting again in fraction errors (Roberts et al., 1998). Additionally, not
only the number of endmembers in the model influences the result but the correct endmembers should be
selected that are present in the scene. A technique called multiple endmember spectral mixture analysis
(MESMA) tries to address these two issues. Based on a collection of endmembers, sets of endmember
mixture models are created. These models are then applied to each pixel in the image. For every model
the root mean square error (RMSE) between modelled spectrum and observed spectrum is calculated. The
model that minimizes the RMSE is chosen (Roberts et al., 1998).

If it is assumed that the endmembers are pure substances then their spectra should reside along the hull of
a multidimensional space. Thus. mixed spectra occupy the interior of the space (Keshava and Mustard,
2002). If two endmembers and their mixtures are plotted in spectral space, the endmembers take up the
highest and lowest reflectance values while their mixtures show reflectances in between, i.e. the
endmember spectra enclose the mixtures. This creates a problem if an endmember C lies totally in
between two other endmembers A and B. In this case it is not possible to distinguish the endmember C
from mixtures of A and B (Price, 1994). In these circumstances spectral unmixing is unlikely to yield

useful results.

2.3.34.2  Nonlinear Mixing Model

In contrast to the LMM, the nonlinear mixing model does not assume that the endmembers appear in
segregated areas but can be mixed at spatial scales smaller than the path length of photons. Sand grains
made up of different compositions are an example of such a surface type. Due to multiple scattering
between the grains, the resulting signal is a nonlinear mixture.

A solution to the nonlinear mixing is the development of models for particulate surfaces. At present it is
still unclear whether spectral signatures of mixed pixels are dominated by linear or nonlinear mixing. If
linear unmixing is applied to nonlinear mixtures, the absolute errors can be up to 30% (Keshava and
Mustard, 2002).
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2.4 Spectral Libraries and Spectral Databases

A main focus of hyperspectral remote sensing research is basic research or correlation studies as
mentioned above. In the context of such studies, spectral libraries are frequently used but rarely are they
explained in detail. Spectral database is a term heard of even less.

At first, it may seem that the difference between spectral libraries and databases is subtle but, as will be

shown in this section, this is not the case.

2.4.1 Spectral Libraries

Spectral libraries are best described as a collection of representative spectra of a variety of materials. As
such, they are crucial for identification of unknown spectra and aid the correction and classification of
remote sensing data by providing endmember spectra.

Some of these libraries are accumulated during a specific study, e.g. a spectral library for urban materials
containing non averaged data from a ground survey (Herold et al., 2004) or land cover types being
averaged AVIRIS pixel signatures (Kokaly et al., 2003).

None of the above studies detailed how the library was organised or what metadata was assembled.

Price (1994) studied the variability found in crops. The accuracy of spectral matching against library
spectra led to the conclusion that the accuracy could be increased if libraries contained a larger number of
cases (i.e. spectra showing the variability of a given material).

A well known public domain spectral library is provided by the USGS. It is focused mainly on laboratory
spectra of rocks and minerals but includes a few vegetation spectra as well. It contains 498 spectra of 444
samples (i.e. different materials). As such, mostly only one representative, high quality spectrum is
available for each material. Consequently, no second order statistics are held in this library.

Technically, the library is one binary file with a record data structure. Apart from reflectance data, each
record holds information such as: record number, title, date of acquisition and length of data set. Also
included in this file is information about the spectrometer used, wavelength range, resolution and spectral
purity (Clark et al., 1993).

The majority of the publicly available spectral libraries are distributed as physical files. This has
drawbacks such as low flexibility and low query performance (Bojinski et al., 2003).

Milton (2001) lists metadata that should be contained in a spectral library of field data such as: location of
site, time/date, sky conditions, instrument details, viewing geometry, height of sensor above ground and
band information.

It is unclear if any libraries have been assembled that include metadata as suggested by Milton. Missing
metadata can render spectral information useless as the circumstances of the capturing event are
unknown. Only a complete metadata allows the researcher to gain confidence that the spectra are indeed
representative for the intended use.

It is concluded that spectral libraries contain vital information but their organisation is unclear in many
cases. It would not be surprising to find some libraries that are merely a collection of single reflectance

files residing in a folder.
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2.4.2 Spectral Databases

‘Data are unstructured facts and figures. When they have been organised or processed, they become

information’ after Williams and Summers (2004).

As pointed out above, the organisation of spectral libraries is rarely an issue.

Generally, the organisation of spectral data collected during studies is never detailed.

Typically, after having conducted several field or laboratory sampling campaigns one can expect to end
up with thousands of files plus associated metadata.

The time and effort that are spent in collecting spectral data, combined with the characteristically large
number of files, makes it clear that spectral data should be well organised. Otherwise valuable data can be
lost or lose their value because of missing metadata.

Considering the above, it seems logical to employ a database to store spectral data in a suitable form.

Only one example of such a database has been found: SPECCHIO (Bojinski et al., 2003) contains spectral
metadata ordered by campaigns, information about sensors, instrument models, landuse type of the
sampled area, spatial position and descriptions of the target. A relational database management system
(DBMYS) is used to hold the above data in several tables. The actual reflectance data is not stored in the
DB but held on a dedicated file server and the spectral database links the metadata to the reflectance file
via a file path.

A web based interface is used to interact with the system. The database can be queried to show e.g.
information about field campaigns, locations. target types and land cover. Researchers can subsequently
download required spectral data to their workstations.

The centralised database approach of the described system facilitates the sharing of field data of different

studies and ensures the integrity of the data.

Despite the fact that modern database systems can handle huge volumes of data easily, a study (Bell and
Baranoski, 2004) has been undertaken to investigate the possibility of reducing the dimensionality, and as
such the data amount, of plant spectral databases.

The data size can be minimized while still retaining much of the information by applying a principal
component transformation to the spectra. The number of utilised principal components influences the
accuracy of the reconstructed spectra. The database needs to store the transformation matrix V or a subset
of V. The decomposition of the observation matrix M is done by applying the singular value
decomposition (SVD) M =USV'or by performing an eigen-decomposition of the covariance (or
correlation matrix) of M.

A spectrum x is then transformed by

y=x-V

respectively reconstructed to a certain accuracy given by the number of components by:

x=y 7
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2.5 Intermediate Conclusions

As demonstrated above, there exists a certain chain of processes that may be applied to hyperspectral data
in order to derive useful information. For all these stages, different techniques and philosophies exist. In
order to gain a sound knowledge of hyperspectral data acquisition and processing, the most suitable and
promising methods should be applied to real data.

The review of spectral libraries and databases reveals an open field where not much work has been done
yet. In terms of organisation and storage of spectral data, the concept of spectral databases seems to be the

best solution.
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3 Methods

3.1 Acquisition and Storage of Field Data

3.1.1 Dataflow Overview

The dataflow adopted for this study is illustrated in Figure 10. An ASD FieldspecPro spectroradiometer
was used to capture the radiance and calculate the reflectance of field objects. A GPS was connected to
the field laptop for most of the field data acquisition and the spatial position of the field object was added
to the metadata, which also included user comments and date/time of capture. Reflectance and metadata
were automatically saved in a binary file for every reading taken.

These binary files were transferred to a laboratory computer where they were read by customised

software and stored in the relevant tables in the spectral database.

GPS
Spatial data
* Reflectance
Hacianco Reflectance & Binary file & metadata
Qi ia 5 -,
.
—
Field ASD Field laptop Lab computer Spectral
object Spectroradiometer database

Figure 10: Dataflow and involved hardware

3.1.2 ASD FieldSpecPro

The Institute for Natural Resources had recently acquired a FieldSpecPro spectroradiometer (Analytical
Spectral Devices Inc.). This instrument records spectra from 350-2500nm and samples at intervals of
I.4nm for the region 350-1000nm and 2nm for the region 1000-2500nm. These known data points are
then interpolated by cubic splines to produce Inm spaced data points. The sampling unit is comprised of
three separate spectrometers: VNIR (Visible and Near Infrared), SWIR1 and SWIR2 (SWIR = Short
Wave Infrared). The data of the three elements are spliced at 1000nm (VNIR — SWIR1) and 1800nm
(SWIRT - SWIR2). The light is fed into the system by a 3 metre fibre optic.

3.1.3 Study Sites

Spectra of native plants were collected at four different sites on the North Island:
0  Massey University Turitea campus, Palmerston North
O  Foothills of the Tararua Range, catchment of Turitea stream
0 Along the Mountain Road between Ohakune and Turoa Skifield, Tongariro National Park
O Queen Elizabeth II Nature Trust(QE II Trust) Land near Otorohanga, King Country

The first two sites were selected due to their proximity to the institute’s location. The Mountain Road,
Tongariro National Park was chosen to (a) capture different species that are found in mountainous areas

only, (b) provide easy accessibility by car and (c) collect ground data to be used in connection with a
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Hyperion image covering the Tongariro National Park that had been acquired. The QE II Trust was used

due to the good accessibility and the variation of podocarp species found.

3.1.4 Structure of Field Data

Storing the binary files in an organised manner helped to keep control of the data and enabled an
automated import into the database at a later stage.
A hierarchical data structure that reflects the real world and the setup of sampling campaigns was
designed. This structure was derived from the following conditions:

1. Reflectances of several different species are captured

2. In order to describe the in-species variation, several specimens of a species are sampled

3. The variability of the specimens is described by several measurements per specimen
The spatial extent where a specimen is sampled was termed a sample site, thus a species contained a
number of sample sites. The sites were numbered in the order of their capturing. At each site, several
readings were taken to capture the variation exhibited by the specimen in question. A site therefore

contained a number of spectra. This led to a hierarchical directory structure (Figure 11).

24 2 X%
Py

ies.
l Site_1 | I Site_2 I I Site_1 I

Spectrum 1 Spectrum | Spectrum |
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Figure 11: Hierarchical directory structure

3.1.5 Acquisition of Field Data

Spectra of New Zealand native plants were acquired in the field using an ASD FieldSpec Pro
spectroradiometer.
Standards for the collection of field data were:
O  Only cloudless conditions were used
Readings were taken from nadir
Data for each specimen were stored as separate site
White references were taken every few readings
An average number of 10 samples were collected per site
The samples were averaged over 10 readings internally by the spectroradiometer
Collection of spectra took place between 11am and 1pm (data collected during winter)
A bare fibre optic with a 25° field of view was used

Homogenous targets were selected to provide the best endmembers possible

O 0O 00o0o0ooaogoaod

The height above the targets was kept approximately 0.5 metres. The resulting FOV was 22

c¢m in diameter
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In order to take nadir samples of shrubs and small trees, the fibre optic was mounted on a swinging head,
which was itself fitted to the end of a pole. This ensured the nadir view of the probe and proved to be a
valuable means of collecting spectral data of taller objects in the field.

As capture date and time were contained in the metadata as well as in the creation time of the binary files,
no additional logs had to be kept to keep track of the field data collection process.

In some cases the capture of leaf litter, soil or other vegetation could not be avoided due to the sparse
foliage structure of some species, e.g. Manuka (Leptospermum scoparium).

The number of spectra captured per site varied slightly with the size or variation exhibited by the target

plant, i.e. more samples were taken from some larger objects to describe them more thoroughly.

3.1.6  Species
Spectra of a total of 39 different species were collected (see Table 2). The species assembled at this point
are by no means sufficient to describe the variety found in New Zealand bush. However, as a first step the

number and variety collected suffices for the purpose of assessing the spectral separability and

classification of New Zealand native vegetation.

Table 2: Collected species

Latin name Common name Maori name No of spectra
Agathis australis Kauri Kauri 18
Brachyglottis repanda Rangiora Rangiora 15
Chionochloa rubra Red tussock 10
Coprosma robusta Karamu Karamu 33
Cordvline australis Cabbage tree Ti kouka 31
Cordyline indivisa Mountain cabbage tree Toii 9
Cortaderia richardii Toetoe Toetoe 27
Corynocarpus laevigatus Karaka Karaka 26
Cvyathea dealbata Silver fern Ponga 35
Cvathea medullaris Black tree fern Mamaku 42
Dacrycarpus dacrydioides White Pine Kahikatea 20
Dacrydium cupressinum Red Pine Rimu 20
Dicksonia squarrosa Rough Tree Fern Wheki 19
Dracophylum subulatum Monoao Monoao 9
Gleichenia dicarpa var. alpina Tangle fern Waewaekaka 18
Griselinia littoralis Broadleaf Papauma 18
Halocarpus biformis Pink pine, yellow pine 27
Hebe stricta Koromiko Koromiko 52
Hedycarya arborea Pigeonwood Porokaiwhiri 23
Knightia excelsa New Zealand honeysuckle Rewarewa 21
Leptospermum ericoides Kanuka Kanuka 10
Leptospermum scoparium Manuka Manuka 73
Libocedrus bidwillii Kaikawaka Kaikawaka, Pahautea 21
Macropiper excelsum Kawakawa Kawakawa 43
Melicytus ramiflorus Whiteywood Mahoe 60
Metrosideros excelsa Pohutukawa Pohutukawa 40
Metrosideros robusta Rata Rata 11
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Myoporum laetum Ngaio Ngaio 48
Myrsine australis Mapou Mapou 45
Nothofagus menziesii Silver Beech Tawhai 21
Nothofagus solandri Mountain beech Tawhairauriki 26
Nothofagus truncata Hard beech Tawhairaunui 37
Olearia paniculata Akiraho Akiraho 10
Phormium tenax New Zealand flax Harakeke 45
Phylocladus alpinus Mountain toatoa Toatoa 18
Pimelea buxifolia Tall pinatoro Pinatoro 18
Pittosporum eugenioides Lemonwood Tarata 58
Podocarpus totara Totara Totara 42
Pseudopanax arboreus Five-finger Puahou 10

3.2 Spectral Database

3.2.1 Spectral Database Model

This section describes the entities that make up the spectral database model. For an overview of this

model showing all entities and their relations please refer to Figure 12.

The spectral database was designed as a relational database. The presented table structure is in third

normal form.

The database was primarily designed to hold spectral data of vegetative studies. Therefore it started with a

simple structure that could hold spectral data sorted into sites and species. The presented model was

iteratively developed during the study, mainly driven by upcoming requirements.

The desired feature list of a spectral database according to the requirements identified in this study is as

follows:

a

[ S

30

Implements the same hierarchical structure as used for the field data to store species, site
and spectrum data

Multiple studies: can hold spectral data of different field/laboratory campaigns

Reflectance storage: stores the reflectance data in the database in its original form
Processing parameters: holds parameters that are needed for the processing of the data
Statistics: holds 1** and 2™ order statistics to enable classification, discriminant analysis and

separability measurements to be carried out efficiently
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Figure 12: Database model overview at entity level

3.2.1.1  Study, Species, Site and Spectrum Entities

The entities species, site and spectrum reflect the hierarchical structure that was introduced previously
(see 3.1.4). The study entity was added to the top of this structure to enable the storage of data belonging

to different studies in the same database (Figure 13).
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Figure 13: ERD of the entities study, species, site and spectrum



Study attributes

Attribute Description
study_id Primary key
name Name of the study

description

Description of the study

datapath

Path to the directory that holds the species folders of this study. This
directory is the start of the hierarchical data structure. The datapath is

used to automatically read the spectra into the database.

min_no_of_spec_per_endmember | This number defines how many spectra a species needs as a

minimum to be included in the creation of statistics. The reason for

this is that the covariance does not describe the shape of the data

adequately enough if only a few samples are used in its calculation.

Species attributes

Attribute

Description

species_id

Primary key

common_name

The common, i.e. English name of the species

latin_name

The latin, i.e. scientific name of the species

maori_name

The maori, i.e. native name of the species

folder_name

Name of the physical folder that holds spectral data of this species

endmember A boolean value. This facilitates data export if only endmembers are to be
exported. It also is used in spectral mixture studies to designate the
endmembers.

study_id Reference to the study this species belongs to

Site attributes

Attribute Description

site_id Primary key

site_no The number of this site

capture_date

Date when the site was captured

longitude Longitude of the spatial position of this site
latitude Latitude of the spatial position of this site
altitude Altitude of the spatial position of this site
study_id Reference to the study this site belongs to
species_id Reference to the species this site belongs to




Spectrum attributes

Attribute

Description

spectrum_id

Primary key

pathname The full pathname of the binary ASD file
reflectances The reflectance data stored as binary object
latitude Longitude of the spatial position of this spectrum
longitude Latitude of the spatial position of this spectrum
altitude Altitude of the spatial position of this spectrum

spectrum_no

The number that is auto-assigned to this spectrum by the ASD controller

software

asd_comment

User comment as entered in the ASD controller software

study_id Reference to the study this spectrum belongs to
species_id Reference to the species this spectrum belongs to
site_id Reference to the site this spectrum belongs to
3.2.1.2  Waveband_filter and Waveband_filter_range

The waveband_filter and waveband_filter_range entities hold data that are needed for the removal of

noisy or uncalibrated bands from the spectra. They were defined at the study level because every study

might have different requirements for the data filtering (Figure 14). E.g. a study that contains data

collected by a contact probe will not need to remove water bands as the influence of the atmosphere is

practically non existent. Similarly, if a study wishes to concentrate on a certain part of the spectrum only,

the unused wavebands can be removed by entering them into the filter structure. The design is thus able to

accommodate not only vegetation data collected under field conditions with solar illumination but can

deal with contact probe data as well.
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Figure 14: ERD of the entities study and waveband_filter and waveband_filter_range

(o8
(93]




Waveband._filter attributes

Attribute Description
waveband_filter_id Primary key
changed_at The date when this filter was last modified
study_id Reference to the study this filter belongs to

Waveband_filter_range attributes

Attribute Description

waveband_filter_range_id Primary key

lower_wavelength The wavelength in nanometres where the filter starts
upper_wavelength The wavelength in nanometres where the filter ends
waveband_filter_id Reference to waveband_filter

study_id Reference to the study this filter range belongs to

3.2.1.3  Library, Statistic, Feature Space, Sensor, Smoothing, Derivative and associated tables

The library can be thought of as a collection of data that is needed to look up unknown signatures. A
library is built for certain settings of the data processing chain, namely waveband filtering, smoothing,
sensor convolution, derivative calculation and feature space transformation. The resulting library is setup
for classification of data that is processed in exactly the same way. In other words, before a classification
can be carried out on a dataset, its library must be built.
A library therefore references the entities smoothing_filter, sensor, derivative and feature_space (see
Figure 15). For a library to be valid its build date must be newer than the dates of modification of the
entities waveband_filter, smoothing_filter, derivative and feature_space.
The actual data needed for a classification is held in the statistic entity in form of a mean vector and a
covariance matrix for every species.
The smoothing_filter entity holds data needed for the smoothing by a Savitzky-Golay filter.
The sensor entity contains data for the synthesizing of sensor responses. Two general classes of sensors
exist, defined by the description of the response type of their elements:

1. Gaussian: each sensor element response is modelled by a Gaussian function. The Gaussian curve

is defined by the average wavelength and the full width at half the maximum (FWHM).
2. Ratio: each sensor element response is modelled by ratios applied to narrow band data over a

certain range of wavelengths.

The entity sensor_element holds both Gaussian and Ratio settings, depending on the type of sensor. In the
case of Gaussian sensors, one sensor_element entry describes one sensor band. For Ratio sensors, many
sensor_element entries may be needed to describe one sensor band.

The derivative entity holds data for the calculation of derivatives either by an iterative, finite difference
method or by Savitzky-Golay coefficients.

The feature_space entity holds or refers to data needed for the feature space transformation.




A feature space belongs to a type of feature space. The type of feature space defines the way in which the

transformation is calculated.

Three types of feature space were considered to be useful, although more possibilities exist:

1. Derivative Indices (DI): a feature space is formed by calculating several DIs. The band ranges

for these indices are held in the band_range entity.

(8]

The two bands that define one index are held in the band_range entity

9

Normalized Two Band Indices (NTBI): a feature space is formed by calculating several NTBIs.

PCT: a feature space is formed by calculating a certain number of components. The

transformation matrix is held in the pca_data entity. The number of components to be calculated

is equal to the dimension of the feature space.

Similar to the library, the pca_data is calculated for a certain setup of waveband_filter, smoothing, sensor

synthesizing and derivative calculation.

Library attributes

Attribute

Description

library_id

Primary key

build_date

The date when this library was last compiled

feature_space_id

Reference to feature space used when building library

smoothing_filter_id

Reference to smoothing filter used when building library

sensor_id

Reference to sensor used when building library

derivative_id

Reference to derivative used when building library

waveband_filter_id

Reference to waveband filter used when building library

study_id

Reference to study this library belongs to

Statistic attributes

Attribute

Description

statistic_id

Primary key

no_of_samples

Number of samples that were used in the statistic calculation

mean The mean vector stored as binary object
cov The covariance matrix stored as binary object
library_id Reference to library this statistic belongs to

species_id

Reference to species this statistic belongs to




Feature_space attributes

Attribute

Description

feature_space_id

Primary key

fs_type_id Reference to the type of feature space

dimension The dimension of the feature space

name Name of this feature space

description Description

build_date Date when feature space was created or modified

Feature_space_type attributes

Attribute Description

fs_type_id Primary key

name Name of this feature space type (i.e. DI, NTBI or PCT)

type A numeric coding for the type. Identical to the numbers used in the processing
software.

PCA _data attributes

Attribute Description

pca_data_id Primary key

eigenvectors The eigenvector matrix of the principal components analysis stored in binary
format

eigenvalues The eigenvalue matrix of the principal components analysis stored in binary
format

dim The dimension of the above matrices

build_date Date when the eigenanalysis was carried out

smoothing_filter_id

Reference to smoothing filter used when performing PCA

sensor_id

Reference to sensor used when performing PCA

derivative_id

Reference to derivative used when performing PCA

waveband_filter_id

Reference to waveband filter used when performing PCA

study_id

Reference to study on which PCA was performed
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Band_range attributes

Attribute

Description

band_range_id

Primary key

band1 First sensor band to be used for NTBI or start band of DI band range

band2 Second sensor band to be used for NTBI or end band of DI band range
comment Free user comment on this band range

name Name of this band range. This is used as column name when exporting feature

space data.

feature_space_id

Reference to feature space this band range belongs to

Sensor attributes

Attribute Description

sensor_id Primary key

name Name of the sensor
description Description of the sensor

sensor_response_type_id

Reference to sensor type

Sensor_response_type attributes

Attribute

Description

sensor_response_type_id

Primary key

type A numeric coding for the type. Identical to the numbers used in the processing
software.
name Name of this sensor response type (i.e. Gaussian or Ratio)

Sensor_element_attributes

Attribute

Description

sensor_element_id

Primary key

band_no

Band number of the sensor

avg_wavelength

The average wavelength of the sensor element (for Gaussian sensors) or the

wavelength of the input band to be ratio-ed.

fwhm Full width at half the maximum. Essentially defines the shape of the Gaussian
response curve. Only for Gaussian sensors.

ratio The ratio to be applied to the input band (defined by the avg_wavelength). Only
for ratio sensors.

calibrated Boolean, defines if the band is calibrated or not. Uncalibrated bands will not be
used in the processing. Some sensors have certain bands defined as uncalibrated
(e.g. Hyperion) and it may be desired to store this information in the database.

sensor_id Reference to sensor this element belongs to
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Derivative attributes

Attribute

Description

derivative_id

Primary key

polynomial_order

Polynomial order (for Savitzky-Golay derivative calculation only)

filter_size

Size of the filter (for Savitzky-Golay derivative calculation only)

derivative_order

Order of derivative

changed_at

Date when this derivative setup was changed

study_id

Reference to study this derivative setup belongs to

deriv_calc_method_id

Reference to the calculation method

Derivative_type_method attributes

Attribute

Description

deriv_calc_method_id

Primary key

type A numeric coding for the type. Identical to the numbers used in the processing
software.
name Name of this calculation method

Smoothing_filter attributes

Attribute

Description

smoothing_filter_id

Primary key

filter_size

Size of the filter

polynomial_order

Polynomial order

changed_at

Date when this smoothing filter was changed

sf_type_id

Reference to filter type

study_id

Reference to study this smoothing filter belongs to

Smoothing_filter_type attributes

Attribute Description

sf_type_id Primary key

type A numeric coding for the type. Identical to the numbers used in the processing
software.

name Name of this filter type

3.2.1.4  Mixture

The mixture entity (Figure 16) is used to describe mixtures where the abundance is known, such as in

laboratory experiments. The abundance settings are then used to display error statistics after the unmixing

process. Several entries in the mixture entity are needed to describe a mixture, e.g. if a mixture consists of

three endmembers, then three mixture records are required to describe the mixture.




Mixture attributes

Attribute Description
mixture_id Primary key
abundance The fractional abundance of the endmember in this species
endmember_id The species_id of the endmember
species_id The species_id of the mixture.
species Y,
¥ species_id st
CTL *

~ Common_name F -
> latin_name 251 Speces e [1,1] ¥ mixture_id
~ manti_name O + abundance
o Foidr irarie ~ endmember_id

St d‘\(_l d @ species_id (FK)
-~ endmember

Figure 16: ERD of the entities species and mixture

3.2.2 Spectral Database Implementation

The database was implemented in MySQL (MySQL AB, 2005), a GNU open source software. MySQL is
a relational database management system that can handle large amounts of data, allows data access via
standard SQL commands, provides multi-user access over TCP/IP and supports several APIs (Application

Programming Interfaces) amongst which is C/C++.

3.3 A Spectral Data Management and Processing Software

A spectral database as described above is not of much use on its own. Data must be fed into the database
and data extraction routines must exist in order to exploit the benefits of a spectral database. The technical
requirements for such a system were identified as follows:

0  Graphical user interface to the database

O Functions for loading spectral data into the database

O Data pre-processing functions

O Data analysis functions

O File export functions to allow data analysis and plotting in 3" party packages
The resulting software was called SpectraProc. The software architecture is described in section 3.3.2, the
concepts and algorithms used in the spectral data processing and analysis functions are described in the
sections 3.4 and 3.5. For a screenshot of the graphical user interface and according description please

refer to the Appendix.
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3.3.1 Programming Language, Libraries and Environment

The software was developed for the Microsoft Windows environment using Microsoft Visual C++ V6.0.
The graphical user interface was based on Microsoft Foundation Classes (MFC), using a simple
Document-View architecture with one document and one associated view. MySQL C API (Application
Programmer Interface) was used for the database access from C++ code. Matrix calculations were based
on the excellent C++ matrix library NewMat V10B (Davies, 2002) which is available freely on the

internet.
3.3.2 Software Architecture

3.3.2.1  File System Interfaces

SpectraProc provides input and output interfaces to the file system (see Figure 17). Input file formats are:
ASD binary file as produced by the ASD FieldSpecPro Spectroradiometer, ENVI Z-Profiles that are
signatures extracted from hyperspectral imagery in ENVI and sensor specifications in a proprietary,
tabulator separated format. ASD files can be imported into the database as part of a study or loaded into
memory for classification against a study dataset. ENVI Z-Profiles can be loaded for classification only.
Sensor specification files are a way of defining new sensors in the database.

Output can be written in three data formats: (1) CSV (Comma Separated Values) for import into various
3" party applications like spreadsheets or statistic packages, (2) ENVI Spectral Library for import into
ENVI and subsequent use for e.g. signature matching and (3) ARFF which is a special format used by
WEKA (University of Waikato, 2005). WEKA is a collection of machine learning algorithms for data

mining tasks.

ASD 1 1 CSV
Binary > P rile
File
ENVI T " 5 ENVI
’ = SpectraProc =
z > = P = P Spectral
= 3
Profile 2 & :
E—- AE Library
Sensor ARFF
e > >
Specifi I — 1 File
\qeations 3
A
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Figure 17: File system interfaces

3.3.2.2  Class Overview

SpectraProc was designed as an object oriented program. Many of the SpectraProc classes were derived

from MFEC classes as they form part of the graphical user interface.
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Table 3 lists all classes derived from MFC including a short description of the purpose. The non-MFC

classes are described in Table 4 and graphically presented as an UML (Unified Modelling Language)

diagram in Figure 18.

Table 3: Short description of MFC derived classes

Class Name Derived from | Description

CSpectraProcDoc CDocument The document of the document-view
architecture. Holds the runtime objects of:
library, spectra_factory and spec_proc_data

CSpectraProcView CFormView The main form of the application. Manages
all dialogs and handles Windows messages.

Dlg_abundance_setting_class CDialog Defines the known abundances of
endmembers in known mixtures

Dlg_accuracy_check_class CDialog Selection dialog to choose another study to
be used as independent dataset

Dlg_endmember_selection_class CDialog Used to set the endmembers in a given
dataset

Dlg_feature_space_edit_class CDialog Create and modify feature space definitions

Dlg_file_export_class CDialog Choices for file export

Dlg_filterband_def_class CDialog Defines a lower and upper wavelength for a
waveband filter range

Dlg_import_sensor_class CDialog Import dialog for sensor files

Dlg_new_study_class CDialog Creation of new studies

Dlg_progress_class CDialog Progress bar, used by several processes

Dlg_site_accuracy_class CDialog Dialog to select a species for classification
accuracy check on site level

Dlg_Smoothing_filter_settings_class CDialog Set the smoothing parameters for Savitzky-
Golay filters

Dlg_Waveband_Def_class CDialog Defines two wavebands, used for entering
new indices or waveband regions for feature
spaces

Dlg_waveband_filter_setup_class CDialog Creation/Modification of waveband filters
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spectrum class endmember_class

site_class .
classify_endmember_class

species_class

sensor_class

file_class

memory_file_class conf_file_class

smoothing_filter_class

gaussian_sensor_class ratio_sensor_class no_filter_class savitzky _golay _filter_class
spectra_store_class reflectance_class feature_space_class spectra_processing_data_class
Spectra_factory_class fitter_class directory_service_class classification_result_class
report_buffer_class library_class derivative_calc_class

Figure 18: Non-MFC classes

Table 4: Short description of non-MFC derived classes

Class Name Derived from Description
classification_result_class - Storage and manipulation of

classification results

endmember_class £

Represents an endmember with a mean

vector and a covariance matrix

classify_endmember_class endmember_class

Used as endmember in classifications

conf_file_class file_class

Reads and writes configuration files

derivative_calc_class -

Calculate derivatives

directory_service_class =

Creates lists of files and subdirectories of

a file system directory

feature_space_class -

Represents a feature space with its

settings loaded from database

file_class -

File input and output

filter_class =

Class for waveband filtering

gaussian_sensor_class sensor_class

Represents a sensor with elements of

Gaussian response function
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Class Name

Derived from

Description

library_class

Holds functions for: classification,
separability report, building spectral
libraries, eigenanalysis and spectral

unmixing

memory_file_class

file_class

Allows the transposing of structured files
by holding the file structure in memory

before writing to a file.

no_filter_class

smoothing_filter_class

Performs no smoothing but copies the
data directly into the next reflectance

structure

ratio_sensor_class

sensor_class

Represents a sensor with elements of

ratio response function

reflectance_class

Holds spectral data: band number,

reflectance and average wavelength

report_buffer_class

Buffer class for handling the text output

in the main window

savitzky_golay_filter_class

smoothing_filter_class

Smoothes the data using Savitzky-Golay

coefficients

sensor_class

Base class for Gaussian and ratio sensors

site_class

spectrum_class

Represents a site

smoothing_filter_class

Base class for smoothing filter types

species_class

site_class

Represents a species

Spectra_factory_class

Used for loading spectra from files or
database, inserting into the database and

outputting data to text files

spectra_processing_data_class

Central data pool for processing settings
such as: waveband filter, smoothing
filter, sensor, derivative calculator and
diverse waveband filters for the removal

of smoothing or derivative artefacts.

spectra_store_class

A list that holds spectra. Used when
spectra are loaded directly from file into

memory.

spectrum_class

CObject

Represents a spectrum
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3.3.2.3  Spectral Processing Concept

The spectral database only stores the raw spectral data. Further processing of the spectra is performed at
runtime and the results are held in memory. Once a spectrum is loaded from the database it is put through
a cascade of operations as shown in Figure 19. The result of every stage is saved in a separate data
structure in memory. These data structures and processing functions are attributes or methods respectively
of every object of the spectrum class. An instance of the spectrum class offers a method that returns the
data of a certain stage of processing and will internally execute all preceding steps needed for that stage.

This allows the easy file export of spectral data at any processing step.

S

Raw data

Waveband

filtered data

/

Smoothed data

NS

Synthesized data

Derivative

calculation

N/

Derived data

N/

Data in Feature

Space

Figure 19: Spectral data processing cascade
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3.4 Data Processing

The data processing was divided into the following stages:
1. Waveband Filtering
2. Smoothing
3. Sensor Synthesizing / Downsampling
4. Derivative Calculation
5. Feature Space Transformation

The underlying algorithms of these stages are described hereafter.

3.4.1 Waveband Filtering

The data in the following band ranges were seriously affected by atmospheric absorbtion and had to be
removed from the spectra: 1350-1440 nm, 1790-1980 nm and 2360-2500 nm (see Figure 20).
Technically this was done by setting the reflectance values in the filtered regions to -1. The later

processing steps then just ignored these values.

Raw Reflectance Cure of Pittosporum eugenioides Filtered Reflectance Curve of Pittosporum eugenioides
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Figure 20: An example of pre and post filtering of noise bands

3.4.2 Smoothing

The Savitzky-Golay filter was chosen because of its reported good performance and the relatively simple
algorithm involved. As mentioned in the review of smoothing methods, the filter coefficients are
calculated at run time instead of read from lookup tables. The chosen implementation is based on Press et
al. (2002).

In a first step a design matrix is created that holds the polynomial equations:

s R
A,.,. = 1 =~n,,..

wtng, j=0,..M
where

n, , n, = left hand, right hand filter size

M = polynomial order

The coefficients are then calculated by

% {(AT 'A)_I}o n

where

= =

n = vector with elements 1, =1 I =y eyl j=0,...M

Note that for the calculation of the coefficients only the first row of the inversed matrix is used.
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Two possibilitics exist for the smoothing ol the data using the Savitzky-Golay coefficients: convelution

by a moving window filter or by multiplication in frequency space.

The moving window function calculaes the smoothed value tor every band by

Y, * = smoothed data point

C = convolution coeflicient

Y . = original data point

N = moving window size (-m._.+nun)

Hocan be shown that a convolution in tme space is equal to o multiplication in frequency apace. Fast

Fourier Transformation (FEFT) of both the smoothing Tunction and the signal transtorms thein into

frequency space,

s*¥r=5"K

whuere

< = signal

r = response function tsmoothing function)

S.R=FrTisyresp. FFT

The smoothed stgnal in tme space s then the inverse FEFT:

Nt = i FET(S R)

In both cases the result must be Tiltered o remose artefacts that appear at the start end end of every valid

wavehand segment (Figure 21) The new valid segment sizes are caleulated by

Aut
Al

= Au—~ pos _ filter _size

iy = Al —neg _ filter _size

where

Al Aw = lower and upper segment wavelengths

Thus every segmeat looses inlormadion of filter_size - 1,
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Smoothed Reflectance Curve of Pittosporum eugenioides showing smoothing artefacts
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Figure 21: A smoothed signature of Pittosporum eugenoides before and after the removal of smoothing

artefacts

3.4.3 Synthesizing of other Sensors

The synthesizing of other sensor responses using ASD data is useful due to several reasons:

1. Reduction of dimensionality

2. Direct comparison of airborne/spaceborne sensor and ground data

3. Implicit smoothing of the data

4. Prediction and assessment of the usefulness of a certain sensor
The synthesizing of other sensor bands is also called band convolution. The process used is principally a
convolution operation as described in 2.3.2.4. A filter is moved over the data and used to calculate the
band values of the sensor to be synthesized. The process of spectral band synthesis is based on the
algorithm used by Zanoni (2002).
The simulation of Hyperion and Landsat7 ETM+ were of interest for this specific research. These sensor
types can however be generalized and thus a generic synthesizing operation can be designed that allows

the simulation of any sensor that falls into the following two classes: Ratio and Gaussian.
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34.3.1 Ratio Sensors

The sensor element function of these sensors is modelled by a number of known coeflicients, thus the
synthesizing operation is simply a convelution of a defined wavelength region using these cocefficients
{ratios).

An example ol such ratios is shown for Landsat? ETM+ bund | (Figore 227 The ratios tor Landsat7 used
in this study were made available by Dr I, Shepherd of Landeare Rescarch. The ratios were given at Inm

steps. thus they could be directly applied 1o the AS1D band reflectances.

Ratios for Landsai Band 1

Ratio

[ Yo e R N o Ty [T o T o T S - R - i T N e ST o S )
& = = w1 o P P o3 woh o o o= — OF
«t t b= - <+ =r = = = = = T oy ouy w ur
Wavelength (nm)

Figare 220 Ratios for Landsat? ETM+ band |

The convolution 1s caleulated by

} =

where

r.o=the syathesized rellectance value of the 3-th synthesized band

', = the coelficient for wavelength 1
¥, = reflectance value ol 1-th ASD band
fw _ J =lower wavelength of the j-th band

W _ j = upper wavelength of the j-th band

34.3.2  Gaussian Sensors

‘The sensor element response function of these sensors is best approximated by a Gaussian function. The
sensor elements are technically defined by the middle wavelength and the full width at half the maximum
{FWHM) rsee Figure 23).

The Gaussian function is defined by
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2-r-0
where
o = standard deviation

| = mean value

Gaussian function for mu=0 and sigma=2
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Figure 23: Gaussian curve illustrating the FWHM measure

The maximum of a Gaussian function is always at the mean value p and the function is symmetrical to the

mean. Thus for x = p the Gaussian function becomes:

1 p-uY
1 ‘;[ - ] 1
fw=—r——e? ") = ——
N2-m-o N2-w-O
The curve becomes more sharply defined for smaller values of ¢ and wider for bigger values of .
The standard deviation ¢ can be calculated from the FWHM as described hereafter.

As the Gaussian curve assumes half the maximum at the points defined by the FWHM, the function can

be written as:

f<u>=2-f(ut@]=z-fwid>
L _2 futa)

N2 o
where d = FWHM/2

As the curve is symmetric, the above equation can be solved for either x =p+d orx =p—d.
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I Gy
L, 1 A%

E=e
ln(0.5)=—%[§j—
,_ 1 (d)
7= 2 1n(0.5)

o =-0.8493218003-d,0.8493218003-d

The coefficients used for the convolution operation are given by the Gaussian function:

| )

| [ wavelength _band _i—wavelenth _band _ 1\~

¢, = f (wavelength _band _i)= ——¢ - &
N2-w-o

where

wavelength _band _i = wavelength of the i-th ASD band

wavelength _band _ j = wavelength of the j-th band of the sensor to be synthesized

¢, = the i-th coefficient for the convolution operation

The band convolution is calculated by

H+range
Gl
_ I=H—rang
j H+rang
( !
[=[1=range
where

r; =the synthesized reflectance value of the j-th synthesized band
¢, = the coefficient determined by the Gaussian function for the wavelength of the i-th ASD band

1. = reflectance value of i-th ASD band

range = defines the range of values to be used for the band convolution symmetrically to the middle ASD
waveband. The middle ASD waveband is the one closest to the average wavelength of the j-th

synthesized band.

3.4.3.3 Hyperion

The Hyperion sensor captures data from 400 to 2400 nm with bandwidths of 10nm. This spectral range
and resolution of the Hyperion sensor is a generalization. Waveband centres do not lie at whole number
frequencies, bandwidths are not sharply defined and the sensitivity of the sensor is not uniform over the
bandwidth. The sensor characteristics are available in Microsoft Excel format from the United States

Geological Survey (USGS, 2005).
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The Hyperion sensor is an example of a Gaussian sensor. The spectral response function of the sensor
elements is well approximated with a Gaussian function (Liao and Jarecke, undated).

See Figure 24 for an example of the sensor response functions of two neighbouring sensor elements.

Hyperion Sensor Element No 8 and 9 Response Functions

0.09 FWHM

0.08
0.07
0.06
0.05

0.04

Gaussian function value

0.03
0.02
0.01

0 1
410 415 420 425 430 435 440 445 450 455 460

Wavwelength [nm]

Figure 24: Sensor response functions for Hyperion sensor elements 8 and 9 and the FWHM of band 8

Hyperion synthesizing was used in this study for three purposes: (a) create a spectral library that could be
used to classify Hyperion imagery at a later stage, (b) reduce the dimensionality of the data to simplify the
data analysis and (c) implicitly remove noise from the spectra by the smoothing effect of the synthesizing
operation.

The range of values used for the convolution was set to 3 times the standard deviation: range =3-0

i.e. 99.74% of all contributing values are used (Papula, 1994).

This range was practically not usable for all bands because some wavelengths had been filtered
previously. In these situations, the range was symmetrically reduced to avoid filtered areas.

By convoluting the ASD data to Hyperion-like bands, the dimensionality was reduced by approximately a
factor of 10.

The actual synthesizing process was carried out as described under Gaussian Sensors.

The Hyperion band creation resulted in 166 new bands.

3.4.34 Downsampling

The downsampling sensor is a hypothetical ratio sensor. Bands are spaced a certain wavelength apart with
aratio of 1. A convolution of data using a downsampling sensor with a band spacing of 10nm results in a
downsampling of the data by factor ten, i.e. every tenth waveband is chosen. It may be advisable to apply
the downsampling only to smoothed data in order to avoid aliasing. The combination of smoothing and

downsampling is called decimation.

3.4.4 Derivative Calculation

Two approaches to the calculation of derivatives were identified.

An explicit calculation of the derivative for a given wavelength by the finite difference method by:
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p(bi+l ) - p(bl )
Ab,,,)— Ab,)

i+1

p’(bin-l) =

where

p(b,) =reflectance of band i
A(b,) = wavelength of band i

p'(bb

i+l

) = first derivative of linear curve segment between reflectances of band i and band i+1

The n-th derivative is thus calculated by applying the above formula n times.

An implicit calculation is possible by Savitzky-Golay coefficients by simply selecting the n-th row of the

inverse matrix and multiplying by n!:

¢ = ({(A" A) }, -ﬁ)- order

However, this method performs automatically a smoothing of the data which may not be needed or
wanted after the sensor synthesizing.

Both methods lose n data points per valid segment. The explicit calculation loses one data point per
iteration. The Savitzky-Golay filtered data lose data points due to the removal of artefacts. The number of
points lost depends on the filter size.

For the calculation of the filter coefficients and correct derivatives the following conditions must be met:

polynomial _order 2 derivative _order
filter _size =2 max( polynomial _order + 1, derivative _order + 1)

Thus the minimal filter size depends on both the polynomial and the derivative order. A minimal filter

size of (derivative_order+1) will result in the removal of n = derivative_order number of points.

3.4.5 Feature Space Transformation
Three types of feature spaces were implemented:
[0 Derivative Indices (DI)
00 Normalized Two Band Indices (NTBI)

0O  Principal Component Transformation (PCT)

3451 DI(DGVI)

DGVIs (Derivative Greenness Vegetation Indices) are examples of DIs. These indices are effectively
describing the shape of the reflectance curve. The DGVI calculation was based on the equations used by
Thenkabail et al. (2004a) and Elvidge and Chen (1995). The derivatives of the reflectance were computed
by using the slopes of linear interpolations between the discrete reflectance band values (Figure 25). The

first derivative of reflectance is therefore:

pH—l _pi

'bb,,) =
p( i l+l) l(b )—/i,(bl)

i+l
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p(blbi+[) Pi+1

o~ W
b, b; bist [wavelength]
Figure 25: Illustration of discrete reflectance values p and interpolated linear curves to form a

continuous reﬂectan('e curve

The DGVIs were calculated using the equation:

pvi=%2 (b0, )A; P (bb,,)

i=m i

where

p’(b;b;) = first derivative of reflectance curve between b;; and b;

m..n = start and end band number of DGVI area
b; = centre wavelength of band i

i = band number

Ab; = step width: b, — by

In detail this meant that for the calculation of the DGVI value for one band, the reflectance of three bands
was needed:
p'(bi)_p'(bwl) _ bi — bi+l _bi

Ab Ab

The above implies that for the calculation of the DGVI over a region of n bands, n+2 bands are needed.

Pi = Pi _ Pix _pL
b,

DGVI(b,) =

3.452 NTBI

Normalized two band indices were calculated by:
pb,)—pb,)
pb)+pb,)

NTBI =
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3453 PCT

Principal components transformation requires as input the eigenvectors of a given dataset. The

eigenvalues are given by the solution of the characteristic equation:

) =det(T, - A1)

where

() o ; .
X = characteristic polynomial of X
Z\ = covariance matrix of the dataset
/ = identity matrix

The eigenvectors are given by the solutions to the equation

XA d =0

where

Z . =covariance matrix of the dataset
J = identity matrix

A =eigenvalue i

X; = eigenvector i

The size of the eigenvalues is an indication of the correlation of the data. A rapid fall off in the size of the
eigenvalues indicates a high correlation. The eigenvalues can be plotted as a scree plot which shows the
drop off graphically. The proportion of variability explained by each component is given by:

eigenvaluei

proportion; =
sum(eigenvalues)

The cumulative proportion is given by:

cum _ proportion: = cum _ proportion. | + proportion:
1 i—1 i

If the eigenvalues are contained in a matrix their sum is given by the trace of the eigenvalue matrix. The
proportion and cumulative proportion indicate how many components the PCT should utilize.

The eigenvectors are then found by solving the characteristic equation for every eigenvalue.

The transformation matrix G is the transposed eigenvector matrix. The original data x is transformed into
a new feature space by:

y=G-x

If only the first n components are to be used, the transformation matrix is a sub-matrix of G, consisting of

the first n components. The dimension of the resulting feature space is therefore n:
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y:Gx

nxl mxm mxl1

where

m = original size of data space

n = new size of data space, equal to the number of selected components

It must be noted that the eigen-decomposition of a dataset should be recomputed if new data is added to a

dataset.

3.5 Statistical Analysis

3.5.1 Classification

Classification is the process of assigning an unknown object to a given class. Classifiers are the
algorithms that are applied to the data during classification. Classifiers can be defined by discriminant
functions. A simple example of a discriminant function is the distance to mean. The discriminant function
of every class is applied to an unknown vector. The classifier then selects the class whose discriminant
function produced the least distance between the unknown and the mean of this class. The resulting
classifier is called ‘Minimum Distance to Mean’.

Three different classifiers were implemented. Their discriminant functions are as follows:

Quadratic (Gaussian) distance (Richards, 1993):

g, (x)= ln‘z ,.‘+(x—m,.)'z i 71(x—m,)

General squared distance (Minitab Inc., 2003):

gl = —Z(m,rz ,. _Ix—O.S-m,.'Z m )+ Y “x

Spectral Angle Mapper (SAM) (Landgrebe, 2003):

1
XxX'm
-1
g:(x)=c08" | ———
1
Vx'xym, m,

where
X = unknown vector
i = species i
z , = covariance matrix of species i
m, = mean vector of species i
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3.5.2 Discriminant Analysis

[scriminant apalysys is similir W classification bui the input consists of data of knewn classes.

Therefore, discriminant analysis con be used 1o west the classifier as wedl as the discriminaiing power of

the feature space. DA ouiputs not only a classification accuracy but also errors ol omission and
COMMISSION.

The output of the DA wax an error matrix built as follows: the columos were the spectra to be classified
ordered by species and the rows were the species that made up the libvary, e the known classes. Al
spectra ol each speeies were Classified wsing one of the discrimimant functions, the results were then
wrillen inte the corresponding column und row. e the number of correctly classified specira ended up in
the diagonal clements while the omission errors were stored 1o the oft diagonal elements. The cofumn and
row total was the sum ol all column or row clements respectively. The tetal number of classitied spectra
wias the suim of all column and row 1otals. The overall accuracy was caleuiated by dividing the sum of dll
diggonal clements by the otal number of spectra tLillesand et all, 2004

Tracelerror _ matrix)
averall | docuracy = —_—
Total nsnber of spectra

The producer and vser accuracies were then given by dividing the diagonal elements with the 1otal of the

respective column or row,

353  Separability Analysis

Separahiliy measures were calculated for all species pair combinations that bad enough spectra to form a
well defined distribution in an n-dimensional feature space.

The Jettries-Matusita (28 and the Bhatacharva (B distances were chosen for this task tRichards, 19935

J, =20-¢")

n which

. IR 1 SO

B= %(m, -m, ¥ (e, ~m _, b+ S inl

* MR

where

L] = species Loresp.

Z . T covarinee matrix of species |
M, = mean veclor of species i

354 Most Discriminating Bands

The discrimination potential of the bands was tested using the Mann-Whitney test. also known as the two

sample Wilcoxon lest. The Wilcoxon wst was applied to all possible species pairs. Only Tibrary refevant



i.e. species with at least 15 spectra were included in this test. The number of possible species pairings is

given by the binominal coefficient:

(N)_ N!
2 (N =2)!2!

Thus the 32 species formed 496 combinations. For all possible species pairs the Wilcoxon test was carried

out for every band:

— -
Pxy i = wilcoxon( Ps i r,._,.)
where
Iy ;= vector containing the reflectances of all spectra of species X at the band i
Iy , = vector containing the reflectances of all spectra of species Y at the band i
Pxy ;= probability of the null hypothesis assuming that the samples supplied in the vectors were drawn

from the same population. The smaller the value of p,, , the stronger the evidence that band i will

discriminate.

A significance level of 0.01 was used to decide if the tested species were significantly different for the
given band. The number of species pairs that were significantly different was counted for each waveband.
This process was implemented in R (Venables et al., 2005) and applied to (a) raw data, (b) Hyperion

synthesized data and (c) first derivative of Hyperion synthesized data.

3.6 Mixed Spectral Signatures

Spectral unmixing is usually applied to imagery. It is however conceivable that spectroradiometer field
data can also be unmixed. A few experiments were conducted as described hereafter to produce spectral
mixtures under a controlled environment.

The general setup for all these experiments is shown in Figure 26. A circular area was illuminated by a
tungsten lamp set at an angle of 45° and sampled by a 25° bare fibre fore optic.

The diameter of the sampling area was chosen as 140mm, i.e. radius r = 70mm. The height h of the optic
above the sampling area was calculated by:

h=

= —=315mm
tan(12.5°)

The distance of the Spectralon panel for the taking of white references was similarly calculated and set to

200mm.
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Figure 26: Generaf mixing setup

3.6.1.1 Paper/Plant Mixture
A set of nuxtures of white printing paper and Kawakawa leaves tMacropiper excelsiwn) was sampled. The
mixtures were defined by the angle of coverage, leading o the abundances shown in Table 5. The step

size between mixtures was 3 ax shown in Figure 27.

Figure 27 Mixture segments

Table 50 Mixtures of paper and kawekawa

" Paper angle - Kawakawa angle Paper abundance . Kawakawa abundance
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3.6.1.2  Paper/Plastic/Plant Mixture

Similar to the above mixture, several combinations of mixtures of three endmembers were produced. The
materials involved were: white printing paper, green plastic from fast binding folders and kawakawa
(Macropiper excelsum) leaves. As 30° steps would have led to too many possible combinations with 3

materials, the step size was increased to 90° which led to the mixtures listed in Table 6.

Table 6: Mixtures of paper, plastic and kawakawa

Paper Plastic Kawakawa | Paper Plastic Kawakawa
angle angle angle abundance | abundance | abundance

0 0 360 0.00 0.00 1.00

0 90 270 0.00 0.25 0.75

0 180 180 0.00 0.50 0.50

0 270 90 0.00 0.75 0.25

0 360 0 0.00 1.00 0.00

90 270 0 0:25 0.75 0.00

180 180 0 0.50 0.50 0.00

270 90 0 0.75 0.25 0.00

360 0 0 1.00 0.00 0.00

90 90 180 0:25 0.25 0.50

90 180 90 0.25 0.50 0.25

180 90 90 0.50 0.25 0.25

270 0 90 0.75 0.00 0.25

180 0 180 0.50 0.00 0.50

90 0 270 0.:25 0.00 0.75

3.6.1.3  Three plant mixture

Similar to the paper/plastic/plant mixture experiment, mixtures of three plants were setup: kawakawa
(Macropiper excelsum), lemonwood (Pittosporum eugenioides) and karaka (Corynocarpus laevigatus)

(see Table 7). The experiment was conducted outdoors with the sun as light source.
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Table 7- Mixnwres of kawakavwa, lemonwood and kareaka

Kawakawa | Lemonwooed . Karaka " Kawakawa | Lemonwood— Karaka
' angle angle 5 angle : abundance abundance abundance
W T T Goo 025
0 80 180 .00 f 0.0 E
n’ 270 90 000 ()?%
0 o . s i’fi’i{i?
90 270 0’ 0.25 075"
"'1'"'8'(')' T s 050
270 90 0 0.75 025 7
e - o 00
T i 180 0,25 0.25
Yo (R0 () 0.25 (.30
180 9e 90 0.50) (.25
270 0o 90 0.75 oo
180 0 180 0.50 0.00 ¢
90 0° 90 025 (00
3.6.1.4  Positional Dependence of Paper/Plastic Mixtures
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In order to establish il the position of g segment on the mixing cirele had any influence on the resaltng

signature, o positional dependence experiment was conducted. To cancel out effects that might be due to

the Huminating tngsten lamp. the experiment was carried out once using the lamp in the laboratory and

onve using sunlight outdeors, Three mixtures were used with cach sxture bemng setup in Tour difterent

pusitions as shown in Table B The ifumination was [rom the right hand side.

Table & Paper/plastic mixtures and positions
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3.6.1.5 Unmixing
The unmixing was implemented in Matlab (The MathWorks Inc., 2004) using a linear mixing model with
full additivity constraint (Keshava and Mustard, 2002):
2 -1
a, =(s7s)"'s"x
% A & A o T s
a, =a, —(s7s)"'z" (Z(STS) ZT) (za, —b)
where:
X = spectrum vector to be unmixed (L x 1)

S = endmember matrix (L x M) consisting of M endmembers with the columns being the endmember

spectra vectors

&U = the unconstrained least squares solution for the abundances of the endmembers in the spectrum
vector X

Z =al x M row vector having all ones

b = set to 1 for the enforcement of the full additivity constraint Za =b

cAl,, = full additivity solution of the abundance of the given endmembers in x

The negativity constraint was not used for the unmixing procedure due to the complexity of the involved

implementation.

3.6.1.6 Probe Rotation

This experiment was designed to establish if the bare fibre optic was sampling the field of view
homogenously. A fifty-fifty mixture of white printing paper and green plastic was sampled outdoors to

remove any influence of the tungsten lamp at four 90° rotational positions of the probe as shown in Figure
28.

Figure 28: Rotational positions of the bare fibre
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4 Results

4.1 Spectral Properties of New Zealand Native Plants

The spectra of the collected species show the typical features of vegetation (see Figure 29): a low
reflection in the visible with a noticeable peak in the green around 570nm for most species. Exceptions
are Chionochloa rubra (Red Tussock) and Dracophylum subulatum (Monoao) that are both of a brownish
colour and therefore show a slope rising from blue to red. The red edge is found around 690nm where a
steep rise begins that starts to level out at the NIR shoulder around 780nm. The first NIR absorbtion
feature lies around 990nm, followed by the 1™ NIR peak (~1090nm). the 2" NIR absorbtion feature
(~1220nm) and the 2™ NIR peak (~1290nm). The shortwave infrared (SWIR) shows two peaks at
~1690nm and ~2220nm respectively.

Figure 30 shows the mean spectra per species of all collected species. The waterband noise was removed

before carrying out a Hyperion synthesizing.

1st NIR peak
1stNIR 2nd NIR
NIR shoulder absorbtion absorbtion
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Figure 29: Features of a vegetation curve

A visual discrimination of the species by their reflectances alone must be regarded as difficult for most
species. As the feature space concept was chosen for this study, pre-processing steps including a feature
space transformation had to be applied before a multivariate discrimination could be carried out. The best
settings for the pre-processing had to be established first. The results of these steps are described in the

following sections.
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Mean Hyperion Sythesized Spectra of NZ Native Plants
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Figure 30: Mean Hyperion synthesized spectra of NZ native plants

4.1.1 Smoothing

A Savitzky-Golay filter was applied to the data. The resulting smoothed data is a function of the filter size
and the polynomial order. The determination of the best parameters that, in the best case, remove all noise
but retain all information is however not straightforward as mentioned by Schmidt and Skidmore (2004).
The main difficulty is that a non-noisy reference spectrum, against which the efficiency of the smoothing

filter could be measured, does not exist. The remaining options to assess the smoothing result were visual
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inspections; either of raw and smoothed data together or of the noise spectra calculated by subtracting the
smoothed from the raw spectra.

To show the trends of the smoothing operation, filter sizes in steps of 10 between 11 and 51 were
combined with polynomial orders 3, 4 and 6. The reason for leaving out order 5 is due to the fact that the
smoothing coefficients for orders 4 and 5 are identical, as are those for orders 2 and 3. All tests were

carried out on a spectrum of Pittosporum eugenioides. The resulting spectra are shown in Figure 31.

Effects of variations of smoothing filter size and polynomial order on smoothed spectra
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Figure 31: Effects of variations of smoothing filter size and polynomial order on smoothed spectra
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Regardless of the polynomial order the bigger filter sizes remove more noise, best seen in the region
around 2300nm. The effect of the order of the fitted polynomial is most noticeable in the NIR at the start
of the first absorbtion feature (~950nm). Orders 4 and 6 still preserve some subtle changes in this region,
even with a 51 filter size while order 3 (filter size 51) almost totally removes these undulations and
produces a smooth curve.

The noise spectra (Figure 33) show that invariably the region between 2000nm and 2300nm is the noisiest
followed by the red-NIR region (700nm-1180nm). As expected, the biggest filter combined with the
smallest order performs the most smoothing. However, the noise spectra just show the removed data
regardless of whether they are noise or valuable information. One would expect noise to be randomly
distributed. A close inspection of the noise spectra in the red-NIR region (see Figure 34) gives an
indication that valid data are removed by the filters of order 3. Regions that seem to consist of valid
features and not random noise are: 700nm-770nm, 900nm-1020nm and 1130nm-1170nm. One can also
observe the jump at 1000nm that occurs where the visible and SWIR1 spectrometer data are spliced.
These findings suggest that polynomial orders of 3 or lower are likely to remove valid information while
order 6 filters might retain too much noise by over-accurate curve fitting. Filter sizes around 31 combined
with polynomial order 4 seem to be a good trade off between retention of spectral features and smoothing
being attained.

An analysis of the RMSE of raw minus smoothed spectra (Figure 32) shows that with order 3 the filtered
noise grows with increasing filter size while for order 5 the RMSE for filter size 51 is actually lower than
for size 41. The phenomenon of decreasing RMSE with increasing filter size for higher orders is because
of (a) a generally lower overall noise due to more accurate curve fitting and (b) a complete loss of
information at every segment due to increasing filter sizes.

Ultimately, the best smoothing filter will be the one that produces the best results in the analysis stage.
Two versions of smoothing using Savitzky-Golay coefficients were implemented: moving window and
convolution by fast Fourier transformed (FFT) data. It was found that the moving window calculation

performed faster than FFT.

RMSE of Raw minus Smoothed Spectra
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Figure 32: RMSE of raw minus smoothed spectra
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Noise Spectra
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Figure 33: Noise spectra of different Savitzky-Golay filter settings (raw minus filtered spectra)
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Figure 34: Red-NIR region of the noise spectra after filtering with order 3 smoothing filters (raw minus

filtered spectra)
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4.1.2 Sensor Synthesizing

Sensor responses for Hyperion, downsampling and Landsat7 ETM+ were calculated. The noise spectra
shown were calculated by first interpolating the sensor bands to ASD bands and then subtracting the
interpolated ASD data from the raw ASD data. The interpolation function was chosen as a linear curve,
based on the fact that straight lines were also used for the explicit calculation of derivatives. These
straight segments between the sensor reflectance values were defined by:
fAy=a+i-p

,D(bj )= p(b,- )

bJ _bi

a= 1ib; ¥y—=by P
where

f(A4)=interpolation function for a curve segment

b; ,bj = wavelengths of consecutive sensor bands

The resulting RMSE could not be directly compared with the RMSE obtained from the different
smoothing parameters. The data reduction of the synthesizing and subsequent interpolation by straight

segments naturally results in a higher loss of data.

4.1.2.1 Hyperion

The Hyperion synthesizing resulted in 166 new bands. The smoothing function of the synthesizing
process proved to be good enough to apply the synthesizing to the raw data without any previous
smoothing step. Figure 35 shows the full raw and Hyperion synthesized spectra of Pittosporum
eugenioides. One can observe that the Hyperion synthesizing results in a good fit of the raw data at least
visually. Figure 36 shows the NIR and SWIR?2 parts where the most data were removed by the smoothing
operation. The NIR part again shows the jump at 1000nm due to the internal spectrometer switchover.

The noise spectrum of raw minus interpolated Hyperion synthesized data with an RMSE of 0.002254 is
shown in Figure 37. The negative and positive noise peaks around 700nm are the effect of the data loss at
the red edge. The spectral curve rises from 0.07 to 0.81 in only about 80nm, i.e. the ASD sensor samples
80 data points while the Hyperion sensor models this curve segment with only 9 data points. The average
vertical difference between data points is 0.00925 for ASD and 0.08 for Hyperion. The exact shape of the

curve is thus lost in this region.
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Figure 35: Raw and Hyperion synthesized spectra of Pittosporum eugenioides
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Figure 37: Noise spectrum of Pittosporum eugenioides (raw minus Hyperion synthesized)

69



4.1.2.2 Downsampling

All downsampling was preceded by a smoothing operation using a filter size of 31 and an order of 4.
Thus the results presented here are the output of a decimation function.

Two different downsampling rates were implemented: factor 5 and factor 10.

A graphical comparison shows that decimation by 5 is superior in retaining details of the spectral curve
(see Figures 38-40). This does not necessarily imply that analysis based on decimation 5 will yield better
results as the retained spectral features might just as easily be noise.

The noise spectra (see Figures 41 and 42) show that decimation by 5 removes less noise than decimation
by 10. This is most obvious in the red edge (700-770nm) where the closer sampling interval of the
decimation by 5 models the curve shape more accurately. The RMSEs were 0.001291 for decimation by 5

and 0.00161 for decimation by 10.
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Figure 38: Raw and decimated by factor 10 and 5 spectra of Pittosporum eugenioides (offset for clarity)
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Figure 39: Raw and decimated by factor 10 and 5 (NIR part of the spectrum)
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Figure 40: Raw and decimated by factor 10 and 5 (SWIR2 part of the spectrum)
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Figure 41: Noise spectrum of Pittosporum eugenioides (Raw minus decimated by factor 5)
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Figure 42: Noise spectrum of Pittosporum eugenioides (Raw minus decimated by factor 10)
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4.1.2.3 Comparison of Hyperion Synthesizing and Decimation

A comparison of the RMSE of the noise spectra of raw minus Hyperion synthesized and decimation by 10
and 5 shows that Hyperion synthesizing removes the most noise (see Figure 43). Again, the optimal
sensor synthesizing for a subsequent analysis task should be chosen based on the analysis results as it is

not easy to distinguish between removed noise and valid spectral features.

RMSE of Hyperion Synthesizing and

Decimation 10 and 5
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Figure 43: RMSE of Hyperion synthesizing and Decimation 10 and 5

4.1.2.4 Landsat 7 ETM+

Landsat7 ETM+ synthesizing resulted in a drastic data reduction, creating 6 new bands (Landsat bands 1-
5 and 7). The wavelengths chosen for the Landsat bands were the middle wavelengths of the individual
sensor elements. Figure 44 compares the synthesized signatures of Pittosporum eugenioides for Landsat7
ETM+ and Hyperion. While an identification of species using Landsat7 ETM+ data would undoubtedly
be more difficult than using Hyperion, it does feature datapoints in the blue, green, red, NIR and SWIR,
meaning that data for vegetation studies is available as has been demonstrated by many studies using

Landsat data.

Landsat7 ETM+ and Hyperion Signature of Pittosporum eugenioides
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Figure 44: Landsat7 ETM+ and Hyperion signatures
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4.1.3 Derivative Calculation

The derivative calculation was found to be very dependent on the pre-processing of the data; even a slight
noise in the input data resulted in high noise in the derived data. To illustrate this, six different derivatives
of Pittosporum eugenioides are shown in Figure 45. The noisiest derivative was calculated from the raw
data. The sharp spike at 1000nm is exactly at the position of the sensor overlap, i.e. it is an artefact of the
machine. These steps can appear due to a lack of warm up time of the ASD instrument. Information to
support or reject this possibility was not available in this particular case. The derivative of the smoothed
data (Savitzky-Golay smoothed with filter size 31 and order 4) appears much smoother than the derivative
of the raw data, especially so in the region 800-1100nm that includes the sensor overlap and above
1800nm where the raw data show high noise. The noise was further minimized by smoothing the data
using again a Savitzky-Filter followed by a derivative calculation using Savitzky-Golay coefficients for a
first derivative with a filter size of 31 and polynomial order 4 (see curve named ‘1™ derivative (SavGol)
of smoothed data’). The data was thus essentially smoothed twice. The resulting derivative was smoother
than the one that had been smoothed once only. The smoothest derivative was obtained from Hyperion
synthesized data, followed by data decimated by factor 10 and factor 5. The decimations were calculated
by first smoothing with a Savitzky-Golay filter of size 31 and order 4 and then downsampling by afore

mentioned factors.

Derivatives based on different pre-processing and derivative calculations

‘ ) —— 1st derivative
N e L LSy ) sl . Nty b, of raw data
/ "/ = el

- 1st derivative

of smoothed data

1st derivative (SavGol)

of smoothed data

1st derivative

of Hyperion
‘ \ 1st derivative
£y of decimated by 10 data
R e S~ == ~— — 1st derivative

of decimated by 5 data

1st derivative (offset for clarity)

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500
Wavwelength[nm]

Figure 45: Derivatives based on different pre-processing and derivative calculations
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4.1.4 Feature Space Transformation

4.14.1 DGVI

The DGVI regions were based on the wavelengths used by Thenkabail et al. (2004a; , 2004b) 515-535
nm (DGVI1), 540-560 nm (DGVI2), 560-580 nm (DGVI3), 650-670 nm (DGVI4), 700-740 nm
(DGVIS), 626-795 nm (DGVI6), 1500-1650 nm (DGVI7), 2080-2350 nm (DGVI8) and 428-906 nm
(DGVI19), 428-2355 nm (DGVI10). These regions were then slightly modified to render them useful for
Hyperion synthesized data as some Hyperion band wavelengths were just outside the original regions.
These modified regions were: DGVI1 (508-539nm), DGVI4 (650-672nm), DGVIS5 (700-743nm). DGVIS8
and DGVII10 were cut short to avoid the highest noise in the SWIR2 segment: DGVI8 (2080-2336nm),
DGVII0 (428-2336nm).

For clarity these regions are shown in Figure 46. DGVIs 1-4 were narrow (~20nm), DGVIs 5, 7 and 8
were broader (40 — 270nm) and DGVIs 6, 9 and 10 were very broad and included other DG VI regions.
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Figure 46: DGVI regions overlaid with a typical plant spectrum (Pittosporum eugenioides)
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The DGVI transformation resulted in a new 10 dimensional space.

The discriminative power of the DGVIs was measured by means of the Wilcoxon test at a significance

level of 0.01. The process was similar to the one described in section 3.5.4. The result is the count of

species pairs with a statistically significant difference per DGVI (see Figure 47 and Table 9). This

significance test was carried out on:

O

a
O
O

Unsmoothed data

Savitzky-Golay smoothed data with a polynomial order of 4 and filter size of 31
Savitzky-Golay smoothed data with a polynomial order of 4 and filter size of 51

Decimation by 10 (Savitzky-Golay smoothed (size 31. order 4) followed by downsampling
by factor 10)

Decimation by 5 (Savitzky-Golay smoothed (size 31, order 4) followed by downsampling
by factor 5)

Decimation by 5 (Savitzky-Golay smoothed (size 51, order 4) followed by downsampling
by factor 5)

Hyperion synthesized

Hyperion synthesized preceded by a smoothing with a Savitzky-Golay filter (size 51, order

4)

Table 9: Mean frequencies of statistically significant differences in species pairs for DGVIs calculated for

differing pre-processing parameters

Hyperion
Decimation | Decimation | Decimation
Smoothed | Smoothed pre-
Raw data by 10 | by 5 | by 5 | Hyperion
(314) (514) smoothed
(314 (314) (514)
(514)
DGVI_I 57 260 264 277 269 278 275 301
DGVI_2 65 252 248 256 249 254 268 272
DGVI_3 94 270 269 315 288 309 283 282
DGVI_4 62 274 280 277 278 274 281 289
DGVILS 287 327 327 324 332 338 323 333
DGVIL_6 50 250 243 247 242 247 258 276
DGVI_7 84 374 384 392 396 377 396 385
DGVI_8 15 47 103 99 47 150 101 282
DGVI_9 50 246 239 248 242 239 261 282
DGVI_10 12 92 251 215 138 256 206 300
Mean 77.6 239.2 260.8 265 248.1 2722 265.2 300.2
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Figure 47: Frequency of statistically significant differences of DGVIs and their dependence on pre-

processing

Unsmoothed raw data produced the lowest frequencies of all data types tested with a mean of 77.6. Only
DGVIS had a high frequency (287) which can be explained by less noise occurring in the red edge of the
spectrum where the curve rises sharply enough to reduce the impact of noise. All other DGVIs had low
frequencies, especially DGVI8 which covers the very noisy SWIR2 segment and DGVI10 which includes
almost the full spectrum.

The impact of noise on the DGVIs was demonstrated by the fact that smoothed raw data produced much
higher frequencies with a mean of 239.2 for filter size 31 and 260.8 for filter size 51. The bigger filter size
produced smoother curves and resulted in better frequencies for the noisy DGVI segments 8 and 10.
Decimation by 10 preformed similarly to the smoothed raw data with a mean frequency of 265.
Decimation by 5 was again dependent on the filtering preceding the downsampling. A filter size of 31
produced a mean of 248.1 while a filter of size 51 resulted in a mean of 272.2. The most improvement by
larger filter sizes was again found for DGVIs 8 and 10.

Hyperion synthesized data produced similar results as decimation by 10 and 5 respectively with a mean of
265.2.

The best overall result with a mean of 300.2 was achieved by Hyperion synthesized data preceded by a
smoothing (filter size 51 order 4).

Regardless the pre-processing the highest frequencies occurred in the SWIR1 segment which is partly
covered by DGVI7.

The 10 DGVIs define a feature space in which the species form distributions. This concept can be
visualized in two dimensions by scatterplots of two DGVIs (see Figure 48). In this example, the

combination of DGVI2 and DGVI6 showed a considerable overlap of the distribution of Halocarpus
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biformis with Nothofagus menziesii and Pittosporum eugenioides. The combination of DGVI2 and
DGVI7 was more successful in separating the three species. The oval shape of the scatter for DGVI2

versus DGVI6 also indicated that these two dimensions were correlated.
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Figure 48: Example of the discrimination of species by DGVIs (calculation based on Hyperion

synthesized data)

4.14.2 NTBIs

Based on the work on crops by Thenkabail et al. (2000) three narrow band NDVI type indices were used
as examples for NTBIs: NTBII (550nm and 468nm), NTBI2 (550nm and 682nm) and NTBI3 (920nm
and 696nm).

For direct comparison with the discriminating power of the DGVIs, the same pre-processing sets were
used and a Wilcoxon test with a significance level of 0.01 was applied to all NTBIs (see Table 10 and
Figure 49).

Not surprisingly, the pre-processing had little influence on the discriminating power of the three indices.
The effect of smoothing operations was absolutely minimal. Generally, slightly broader bandwidths
(~10nm) preformed a bit better than the very narrow (1nm) bandwidths.

Interestingly, with a mean frequency of 283.5 the NTBIs were more discriminating than the DGVIs which

had an overall mean frequency of 241.

Table 10: NTBI and mean frequencies of statistically significant differences in species pairs

Decimation
Smoothed | Smoothed Decimation | Decimation Hyperion
Raw data by 10 (31 Hyperion
(314) (514) o by 5 (314) by 5 (514) (514)
NTBI 303 304 303.0 301 301 302.0 306 305
NTBI2 268 268 270.0 265 265 269.0 265 265
NTBI3 279 278 279.0 274 281 278.0 288 287
Mean 283.333 283.333 284 280 282.333 283 286.333 285.667
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Figure 49: Frequency of statistically significant differences of NDVIs and their dependence on pre-

processing

4143 PCT

As a first step a principal component analysis was carried out on the Hyperion synthesized and
Decimation 5 (pre-filtered with filter size 51 and order 4) data. The first 18 components including the
eigenvalue, proportion and cumulative proportion of each dataset are shown in Table 11. The eigenvalues
were in both cases rapidly falling (see Figure 50) which indicated that the principal component
transformed data would require only around 10 components to explain most of the variation found in the
data.

Table 11: First 18 components of the eigenanalysis of Hyperion-synthesized and Decimation by 5 data

Hyperion Decimation by 5
PC# Eigenvalue Proportion | Cumulative | PC# Eigenvalue Proportion Cumulative
1 1.8699 0.890947 0.890947 1 3.5218 0.893990 0.89399
2 0.1858 0.088525 0.979472 2 0.3344 0.084881 0.97887
3 0.0215 0.010247 0.989719 3 0.0422 0.010716 0.989587
4 0.01 0.004774 0.994493 4 0.0203 0.005158 0.994744
3 0.0051 0.002446 0.996939 5 0.0089 0.002254 0.996998
6 0.0019 0.000899 0.997838 6 0.0032 0.000813 0.997811
7 0.0012 0.000573 0.99841 T 0.0025 0.000647 0.998459
8 0.0009 0.000422 0.998832 8 0.0016 0.000408 0.998866
9 0.0007 0.000318 0.99915 9 0.0012 0.000312 0.999178
10 0.0004 0.000178 0.999328 10 0.0008 0.000204 0.999382
11 0.0003 0.000136 0.999463 11 0.0005 0.000134 0.999515
12 0.0002 0.000096 0.999559 12 0.0004 0.000099 0.999614
13 0.0002 0.000080 0.999639 13 0.0003 0.000080 0.999695
14 0.0001 0.000050 0.999689 14 0.0002 0.000046 0.99974
15 0.0001 0.000045 0.999734 15 0.0001 0.000035 0.999776
16 0.0001 0.000027 0.999761 16 0.0001 0.000030 0.999806
17 0.0001 0.000026 0.999787 17 0.0001 0.000021 0.999827
18 0 0.000023 0.99981 18 0.0001 0.000019 0.999846
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Figure 50: Scree plots of eigenvalues (Hyperion synthesized and Decimation 5 data)

The discriminating power of the components in the new feature space was assessed by applying the

Wilcoxon test to all possible species pairs at a significance level of 0.01. Interestingly the frequency of

significant differences was not strictly tied to the order of the components. Table 12 lists the ten

components with the highest frequencies ordered by frequency. Component 11 had thus the highest

discriminating power, followed by components 7, 8 and 10. These were followed by the first four

components which all had frequencies between

321 and 325. The last two of these top ten components

were of order 25 and 18, i.e. the highest frequencies are found the first sixth of all components. There was

however a general drop in frequencies with increasing component order (see Figure 51).

Table 12: The 10 principal components with the highest significances (according to the Wilcoxon test)

ordered by significance

Order Significance

11 365
7 360
347

10 327
1 325
3 324
4 323
2 321
25 308
18 298
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Frequency plot of statistically significant differences in
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Figure 51: Histogram of statistically significant differences between species pairs for PC transformed

Hyperion synthesized data

An analysis of the factor loadings of the components gave indications about the importance of the
wavelengths. The average factor loadings were calculated for the visible, NIR, SWIRI and SWIR2
segments (see Figure 52). Component 1 had the highest factor loadings in the SWIRI and the lowest
loadings in the visible. PC2 was dominated by NIR and SWIR2, PC3 by the visible, PC4 by SWIRI and
PCS5 by visible. Interestingly, the coefficient plots formed shapes that were the negative (for PC1) and the

positive (for PC2) of the typical spectral vegetation features (see Figure 53)
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Figure 52: Average PC Factor Loadings for the first five components
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Figure 53: PC factor loadings for PC1 and PC2. The mean reflectance of Pittosporum eugenioides is

displayed to relate the factors to typical vegetation reflectance features

4.1.5 Statistical Analysis

4.1.5.1 Discriminant Analysis

Classifications were carried out using three different discriminant functions: quadratic distance, general
squared distance and SAM.

Two different datasets were classified: (a) the calibration data, i.e. the same data that were used to collect
the statistical information used in the classification and (b) an independent dataset that contained the
spectra of 15 species.

Smoothed Hyperion synthesized data was used to build three different feature spaces: DGVIs, NTBIs and
PCT. The PCT was carried out using the first 25 components, based on the result of the Wilcoxon test on
the PCT data that indicated that the highest frequencies of statistically significant differences occurred in

the first 25 components.
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The overall classification accuracy was found to be dependent on the feature space and the discriminant
function (see Table 13). The highest overall accuracy was achieved by PC transformed data with 96.94%
for the calibration dataset and 87.87% for the independent dataset respectively. The NTBI feature space
was the least discriminating, which is probably directly related to its low dimensionality.

Error matrices were compiled for all classifications listing the correctly classified spectra per species, the
errors of omission and commission, the row and column totals, the total number of classified spectra, the
overall accuracy and the producer and user accuracies. Table 14 shows an example of an error matrix for
the classification of the training data set in DGVI feature space using the quadratic distance
discrimination function. Metrosideros excelsa had the lowest producer accuracy (20.00%) with only 8 out
of 40 spectra being classified correctly. The omission errors in this case were: Phormium tenax (14),
Myoporum laetum (12), Macropiper excelsum (3), Corynocarpus laevigatus (2) and Hebe stricta (1). A
total of 1046 spectra were classified. The trace of the error matrix divided by total number of spectra gave
an overall accuracy of 83.46. The minimum, maximum and mean of the producer and user accuracies
were also calculated. For the above example, the minimum accuracy occurred in the producer accuracy
(20%). The average user accuracy (90.93%) was higher than the mean producer accuracy (82.73%) (see

Table 15).

Table 13: Classification results for calibration and independent datasets (accuracy in percentage)

DGVI NTBI PCT

Calib. Indep. Calib. Indep. Calib. Indep.

Set Set Set Set Set Set
Quadratic distance 83.46 72.39 16.63 20.87 82.98 64.98
Gen. squared distance 75.04 72.05 28.2 23.56 96.94 87.87
SAM 33.07 31.98 19.4 16.16 35.85 22.22
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Table 14: Ervror piatrix for DGVIs of smoothed Hyperion

distcnce discriminent function

Column
Tkl
Producer

RYINTTHESS

LYY

kv

Il ey,

syithesized duta clussified

it

Ay

watlins aesinhis

3 FIIFLIT

tsing

My ausiradis

6.

_.1 .

the quudratic

I8
P .
i '
t -
'
- v
'

JrareRs o ol

%3




Table 14 continued: Error matrix for DGVIs of smoothed Hyperion synthesized data classified using the

quadratic distance discriminant function

. Shaded cells are mentioned in the text

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
£ S o < s g 3 s
g |58 |3 |« |g s Z el 2 |. _|§ 5 | 8 & W z
< o) 5 Y b=1 = E RS- = S = o |2 v |3 2 = &
S |8 |2 BElBsl5g| % |2 2|3 |28 |2 |5 E|l2E|EE|E |G
E |g |2 |E[Fs|25| 2 [23|2 §8le%|= |2 |2E|22|8s|€E |38
2 o « e L1 gl &l 2 [ s £ £ =) =~ 2= 5 5 2 <
s < 51 L O R s = QO = L =} L o b} < L 2|2 E|5 & 2
2 S = s B8 ¢9|8 B 5 s 8| § ° £ 3 o 2 A ZTE 8|l 2 5
5 > s o] = = o= 0 = = Z o > I 38 2 A 8 o 2
B 3 £ A G o | 5 5 £ 3 S =
= = [ © iG] S -
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 92.86
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 100.00
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 93.94
4 0 ! 0 0 14 0 0 2 0 0 0 0 0 0 1 0 95 4526
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 100.00
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 100.00
7 0 0 0 1 2 0 0 1 0 0 0 0 0 0 0 0 30 76.67
8 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 27 85.19
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 100.00
10 0 4 0 0 3 0 0 1 0 0 0 0 0 0 4 0 63 65.08
11 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 37 94.59
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59 9831
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 100.00
14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 91.84
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 100.00
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 100.00
17 47 0 0 0 12 0 0 1 0 0 0 0 0 0 0 0 66 71.21
18 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 100.00
19 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 17 100.00
20 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 2 100.00
21 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 8 100.00
22 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 15 100.00
23 0 0 1 0 0 0 21 3 0 0 0 0 0 0 0 2 28 75.00
24 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 4 100.00
25 0 1 0 0 0 0 0 2 35 0 0 0 0 0 0 5 66 53.03
26 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 [ ] 100.00
27 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 18 100.00
28 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0 27 100.00
29 0 0 0 4 0 0 0 3 0 0 0 0 42 0 0 0 56 75.00
30 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 19 100.00
31 0 5 0 0 0 0 0 0 0 0 0 0 0 0 55 0 60 91.67
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 12 100.00
Col
48 23 18 27 40 15 21 20 35 27 18 27 42 19 60 20 1046
Total
Prod.
97.92 26.09 94.44 31.48 20.00 100.00 | 100.00 | 35.00 100.00 | 85.19 10000 | 100.00 | 100.00 | 10000 | 91.67 60.00 83.46
Acc

Table 15: Producer and user accuracy statistics for DGVIs of smoothed Hyperion synthesized data

classified by the quadratic distance discriminant function (accuracy in percentage)

Prod. Acc. Min 20.00 User Acc. Min 45.26
Prod. Acc. Max 100.00 User Acc. Max 100.00
Prod. Acc. Mean 82.73 User Acc. Mean 90.93
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4.1.5.2  Separability Analysis

The distances between the species in feature space were measured by calculating the JM and the
Bhattacharya distances. The analysis was carried out on the following datasets:
0 DGVIs of Hyperion synthesized data
O DGVIs of Hyperion synthesized data pre-smoothed with a Savitzky-Golay filter of size 51
and order 4
O PCT of Hyperion synthesized data using the first 25 components (data pre-smoothed with a
Savitzky-Golay filter of size 51 and order 4)
As an example, the matrix showing JM and B distances in the upper and lower triangles respectively is
presented for the DGVIs of Hyperion synthesized data in Table 17. The best separability was achieved by
the PCT data with a mean JM distance of 2.00 (see Table 16). Out of a total of 496 species pairs 495
(99.79%) had a IM distance > 1.99. A JM value of 2.0 indicates full separability and a value of 1.9 a good
separability. PCT data therefore achieved a very good separability while DGVI data with a mean of 1.82
still contained some overlaps of species distributions. Interestingly the DGVIs calculated from pre-
smoothed Hyperion data did not perform better than the DGVIs based on non pre-smoothed Hyperion
data as could be expected with regard to the results of the Wilcoxon test of the DGVIs.
The B distance measure produced similar results to the JM distance with PC transformed data having the

best separability. In fact, due to limits in numerical precision, some B distances were infinite.

Table 16: Statistics of separability analysis

DGVIs (Hyperion) DGVI (smoothed Hyperion) | PCT (smoothed Hyperion)
JM Min 1.23 1.17 1.99
JM Max 1.98 1.98 2.00
JM Mean 1.82 1.82 2.00
B Min 0.96 0.88 5.20
B Max 4.55 4.50 ®
B Mean 2.59 2.65 0
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Table 17: JM distances (upper

feature space

triangle) and B distances

(lower triangle) between species in DGVI

1 2 3 4 3 74 8 9 10 11 12 13 14 15 16
g |2 c|8|f |2 a|Ez|f 8|8 lec|RE|8 [BEE|ESlece|2g|f,
Sl EEE|EE|EE|eE|zF|= 2|8 E|is 8 [EB|2EEE|E R 2
S EEES 2 5|2 E|5 216 8|8 2|2 2|5 § | & | 2|8 g|§§ 2|2 2|8 &
1 - 1.90 1.85 1.72 1.78 1.89 1.79 1.86 1.82 1.65 153 1.68 1.79 1.63 1.90 1.96
2 2.99 1.92 1.85 1.76 1.78 1.82 1.79 1.94 1.88 1.76 1.84 1.87 1.89 1.82 1.93
3 2.61 317 - 1.64 1.80 1.89 1.83 1.89 1.93 1.84 1.74 1.80 1.87 1.83 1.91 197
4 1.97 2.59 .72, - 1.64 1.90 1.76 1.74 1.86 1.72 1.30 1.59 1.59 1.45 1.84 1.97
5 223 2.10 2.32 1.70 - 1.67 177 1.69 1.82 1.79 151 L7 1.78 1.82 1.76 1.83
6 291 2.19 291 2.96 1.79 - 1.86 1.84 1.88 1.92 1.84 1.89 1.87 1.93 172 1.76
7 224 242 248 212 2.17 2.69 - 1.82 1.90 1.76 1.76 1.71 1.88 1.90 1.86 1.95
8 2.67 2.27 2.95 2.04 1.86 251 2.40 - 1.93 1.81 1.66 1.78 1.75 1.82 1.78 1.95
9 2.40 3.54 342 2.67 2.43 2.84 2.96 3i32 - 1.90 1.81 1.85 1.83 1.90 1.92 1.96
10 1.74 2.85 2.54 1.97 2.24 327 2.10 233 297 - 1.64 1.51 1.86 1.66 1.86 1.97
11 1.45 211 2.04 1.05 1.40 2.52 2:13 1.78 2.37 1:71 - 1.45 1.70 1.60 1.85 1.95
12 1.82 2.55 232 1.58 1.93 2.90 1.93 222 2.60 1.41 1.28 - 1.80 1.67 1.83 1.96
13 227 2.76 277 1.59 2.20 2.73 2.79 2.07 2.45 2.64 1.91 232 - 1.69 1.80 1.95
14 1.68 2.87 2.49 1.30 2.40 341 2.95 243 3.01 1.76 1.60 1.80 1.88 - 1.84 1.97
15 3.01 243 314 2.53 2,13 1.95 2.68 222 3.19 2.68 2.60 247 2.28 2:51 - 1.84
16 3.86 3.32 4.17 4.10 2.46 2.12 3.72 3rn 3.87 422 3.64 3.99 3.73 4.35 2.50 -
17 1.97 273 1.82 1.09 2.25 3.26 2.41 244 2.87 2.06 1.26 1.76 2.19 1.41 2.83 4.55
18 2.68 2.31 3.03 2.19 1.37 223 2.36 221 3.09 2.45 1.74 2:15 2.18 2.85 215 2.61
19 352 3.21 2.60 347 2.62 2.35 2.90 3.38 344 3.48 3.26 321 3.81 4.04 2.92 3.57
20 3.49 2.83 3.24 3.62 1.96 1.83 3.34 3.07 3.50 3.84 318 3.39 3.25 3,75 2.00 1.81
21 2.08 171 2.10 1.46 1.20 2.05 1.92 1.28 2.50 1.78 0.96 1.49 2.02 1.94 1.76 3.27
22 2.97 3.34 3.57 242 2.29 3.24 293 2.89 3.04 2.41 2.03 1.75 3:11 261 3.14 4.03
23 215 3.00 2.81 2.62 2.60 2.84 2.03 2.69 3.66 2.74 2.46 2.38 3.26 3.00 2.66 4.23
24 2.94 243 2.78 2.86 2.07 1.58 2.71 2.81 342 2.99 2.35 2.33 2.89 2.80 1.99 2.48
25 1.34 3.04 2.83 1.87 2.34 3.20 2.34 273 1.98 1.52 1.64 1.51 2.35 1:73 3.01 4.36
26 3:33 240 3.40 2.84 1.78 2.01 2.62 2.18 2.89 3.38 2.53 290 2.65 347 2.08 2.48
27 277 241 2.66 2.44 1.62 2.06 2.03 2.19 2.96 2.41 232 2.20 2.56 2.93 1.47 2.52
28 2,52 292 2.09 2.23 2.64 2.90 1.95 2.89 332 1.96 2.21 1.85 2.84 2.63 2.80 3.94
29 2.19 3.14 295 1.92 2.29 2.95 2.51 2.54 2.71 1.97 1.83 1.82 2:53 1.76 2.56 4.05
30 275 3.10 3.06 293 2.58 2.69 2.26 2.78 273 2.80 2.65 2.66 3.34 3.31 2.84 4.17
31 1.74 2.11 275 1.58 1.68 2.69 1.98 1.91 2.54 1.56 1.41 1.39 227 175 2.34 3.84
32 2.76 3.10 3.57 3.09 2.05 2.28 3.08 3.15 2.96 3.15 2.67 2.96 2.52 277 2.61 2.40
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Table 17 continued: JM distances fupper triangle) and B distances tlower triangle) between species

DGVI featitre space
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4.1.5.3  Most Diseriminating Bands
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The results of the Wilcoxon test with a significance level of 0.01 for raw spectra, Hyperion synthesized

spectra and 1% derivative of Hyperion synthusized spectra are graphically depicted as histograms in

Frgures 55-57. Table [8 lists the overall maximun, ninimum. mean and standard deviation frequency

and the same measurements for the visible (350-670mm), NIR (671-134%), SWIR1 ¢(1441-1789nm) and

SWIRZ (1981-2359). These segments divide the speetrum by the position of the red edge and the filtered

water bands.
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Table 18: Significance statistics

Raw Hyperion 1st Derivative of Hyperion

Significance % | Significance % | Significance %o
Min 227 45.8 261 52.6 10 2.0
Max 366 73.8 364 73.4 424 85.5
Mean 328.6 66.2 3252 65.6 287.7 58.0
Stddev 22.1 45 21.8 44 89.5 18.0
Mean + Stddev 350.7 70.7 347.0 70.0 377.2 76.1
Min Visible 282 56.9 283 57.1 285 57.5
Max Visible 361 72.8 359 72.4 371 74.8
Mean Visible 327.7 66.1 325.6 65.6 335.8 67.7
Stddev Visible 18.5 37 22.2 4.5 239 4.8
Min NIR 282 56.9 286 ST1 38 7.7
Max NIR 343 69.2 343 69.2 403 81.3
Mean NIR 317.6 64.0 317.5 64.0 302.7 61.0
Stddev NIR 11.4 2.3 11.0 2.2 53.1 10.7
Min SWIR1 324 65.3 329 66.3 209 42.1
Max SWIRI 366 73.8 364 73.4 424 85.5
Mean SWIR 350.7 70.7 350.8 70.7 357.2 72.0
Stddev SWIR1 9.4 1.9 9.0 1.8 40.8 8.2
Min SWIR2 227 45.8 261 52.6 10 2.0
Max SWIR2 355 71.6 354 71.4 319 64.3
Mean SWIR2 328.6 66.2 3325 67.0 165.9 334
Stddev SWIR2 31.1 6.3 28.3 Si7 84.9 17.1

Table 19: Number of bands with frequencies higher than mean plus one standard deviation

Raw Hyperion 1st Derivative of Hyperion

# of bands % | # of bands % | # of bands o
Total 336.0 19.4 51.0 30.7 10.0 6.1
Visible 22.0 1.3 3.0 1.8 0.0 0.0
NIR 0.0 0.0 0.0 0.0 2.0 1.2
SWIRI 209.0 12.1 28.0 16.9 8.0 49
SWIR2 105.0 6.1 20.0 12.0 0.0 0.0

The maximum frequency for the raw data was 366 in the SWIRI region at 1727nm, i.e. this wavelength
was statistically significant different for 73.8% of all species pairings. The SWIRI region also had the
highest mean significance of 350.7. Separability was generally better in the visible portion of the
spectrum than in the NIR. The lowest significance of the visible and NIR was found around 673nm which
is the start of the red edge.

The significance for the Hyperion synthesized data was very similar to the raw data. The maximum was
slightly lower by 0.4% while the minimum was higher by 6.8%. The average significance of Hyperion
was 0.6% lower than that of the raw data.

The significance frequencies for both raw and Hyperion synthesized data varied with a standard deviation
of 22.1 and 21.8 respectively.

For the first derivative of Hyperion synthesized data, the significance frequencies had a standard

deviation of 89.5, thus the variations in frequency were much higher than for zero derivative data. The
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derivative data did not show any drastic decrease of frequencies in the red edge but dropped to a value of
38 around 1000nm where the spectra often show a little step due to the switch over of internal sensor
elements.

A threshold was calculated by adding the standard deviation to the mean (see Table 18). The number of
bands that had frequencies equal to or higher than this threshold was reported for the full spectrum and
the visible, NIR, SWIR1 and SWIR2 segments (see Table 19). For the raw data 19.4% of all bands had a
frequency of 350.7 or higher, i.e. were significantly different for at least 70.7% of all species pairings. For
Hyperion synthesized data 30.7% of all bands had a frequency of 347 or higher which meant that at least
70% of all species pairs were significantly different at these bands.

Only 6.1% of all bands were equal to or higher than the threshold for the 1™ derivative. These bands had
significant differences for at least 76% of all species pairs.

Figure 54 compares the percentage of bands with frequencies higher than the threshold in the spectrum
segments. The highest percentage for zero order derivatives was in the SWIRI segment, followed by
SWIR2 and visible. The NIR segment had no bands with frequencies above the threshold. SWIRI
recorded the highest percentage for the 1™ derivative, followed by NIR with no bands above the threshold

for the visible and SWIR2 segments.

18.0
16.0
14.0
12.0 1

O Raw

10.0 @ Hyperion
8.0

6.0 0O 1st Derivative of
Hyperion
4.0 | ypo

2.0

s e

Visible NIR SWIR1 SWIR2

Spectrum Segments

Percentage of bands with frequencies
higher than mean+standard deviation

Figure 54: Graphical comparison of the number of bands with frequencies higher than the threshold

(mean + standard deviation) per spectrum segment
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Frequency plot of statistically significant differences in reflectance for raw data
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Figure 55: Histogram of the statistically significant differences in reflectance calculated using raw data
of all library relevant species. The mean reflectance of Pittosporum eugenioides is displayed to relate the

frequency to typical vegetation reflectance features.

Frequency plot of statistically significant differences
in reflectance for Hyperion synthesized data
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Figure 56: Histogram of the statistically significant differences in reflectance calculated using Hyperion
synthesized data of all library relevant species. The mean reflectance of Pittosporum eugenioides is

displayed to relate the frequency to typical vegetation reflectance features
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Frequency plot of statistically significant differences in
1st derivative of reflectance for Hyperion synthesized data
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4.2 Mixed Spectral Signatures

4.2.1 Paper/Plant Mixture

A spectral plot of the mixtures of kawakawa leaves and paper revealed that the endmembers were indeed
encompassing their mixtures. The paper endmember defined the maximum and kawakawa the minimum
of the spectral reflectances found (see Figure 58). The position of the mixtures was linearly dependent on
the abundances, i.e. the higher the abundance of an endmember in the mixture, the closer the spectral
curve was to the endmember curve.

This linearity was also well illustrated by synthesizing Landsat7 data and plotting band | against band 7
(see Figure 59).

Unmixing was carried out in Matlab using Hyperion synthesized data for endmembers and mixtures. The

RMSE for the abundances was 2.68% (see Table 20).

Mixtures of Vegetation and Paper

rAvs oh ) (——————————— IR
—0V_360P
6.00E-01 ——30V_330P
60V_300P
5.00E-01 90V_270P |
o ——120V_240P
é 4.00E-01 ——150V_210P
g - 180V_180P
E 3.00E-01 ——210V_150P
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2.00E-01 270V_90P
300V_60P
100E'01 e % e S TN > Tim Tt 330V_30P ‘
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Figure 58: Spectral curves of mixtures of vegetation and paper
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Scatterplot of reflectances for simulated Landsat bands 1 vs 7 for mixtures of paper and vegetation
0.6 .
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Figure 59: Scatterplot of reflectance values for simulated Landsat bands | vs 7 for mixtures of paper and

vegetation

Table 20: Unmixing results for vegetation/paper mixtures

Estimated
Vegetation Paper Estimated paper
Mixture vegetation Error [%]
abundance [%] abundance [%) abundance [%]
abundance [%]

30V_330P 8 92 10.03 89.97 2.03
60V_300P 17 83 19.69 80.31 2.69
90V_270P 25 75 27.40 72.60 2.40
120V_240P 33 67 36.00 64.00 3.00
150V_210P 42 58 45.94 54.06 3.94
180V_180P 50 S0 52.46 47.54 246
210V_150P 58 42 60.24 39.76 2.24
240V_120P 67 33 70.12 29.88 312
270V_90P 75 25 75.75 24.25 0.75
300V_60P 83 17 86.95 13.06 3.95
330V_30P 92 8 92.94 7.06 0.94

4.2.2 Paper/Plastic/Plant Mixture

The mixture experiment involving three different endmembers was harder to interpret using the full
spectral plots as the spectra for the endmembers vegetation and plastic overlapped (see Figure 60).
However, by plotting reflectances in band 7 versus band | of Landsat7 synthesized data, it was evident
that the endmembers define the extremes of the space that holds the mixtures (see Figure 61). The three
endmembers define a triangle in this two dimensional space with the mixtures lying inside the boundaries

of this triangle.
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The unmixing was carried out using Hyperion synthesized data. The estimated abundances were generally

in reasonable ranges. It is however worth noting that some abundances were negative, e.g. an estimated

vegetation abundance of -0.59% for the VO_P180_PL180 mixture (see Table 21). This was due to the fact

that the negativity constraint was not added to the unmixing procedure. The RMSE for vegetation, paper

and plastic were 7.37%, 4.48% and 4.77% respectively.

Mixtures of Vegetation, Paper and Plastic
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Figure 60: Spectral curves of mixtures of vegetation, paper and plastic. Endmembers are plotted in thick

lines

Scatterplot of refelectances for simulated Landsat bands 1 vs 7 for mixtures of vegetation, paper and plastic
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Figure 61: Scatterplot of reflectances for simulated Landsat bands 1 vs 7 for mixtures of vegetation,

paper and plastic. Endmembers are plotted in bigger symbols
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Table 21: Unmixing results for vegetation/paper/plastic mixtures

— - — — — — = b 2
s s s g g & ® |5 2
§ 3 8 g lggglz ¢l 8 s | =
s £ § |0 § |8 € 8§ |8 § |2 , § 5
z 2 - O :_—). -] £ 8 = £ - B é :_.3 = - © b I
35 25 (g5 £ 85 |€E &5 |£%35 |82 |Ex |E =
> 8 £ 8 |28 8888 4488 @a8 s> @8 |d@&
VO_P180_PL180 0 50 50 -0.59 56.27 44.32 -0.59 6.27 -5.68
VO0_P270_PL90 0 75 25 0.09 75.51 24.40 0.09 0.51 -0.60
VO0_P90_PL270 0 25 75 -0.39 26.38 74.00 -0.39 1.38 -1.00
V180_P0_PL180 50 0 50 53.89 7.92 38.19 3.89 7.92 -11.81
VI180_P180_PLO 50 50 0 59.88 48.26 -8.14 9.88 -1.74 -8.14
V180_P90_PL90 50 25 25 59.01 26.53 14.47 9.00 1.53 -10.53
V270_P0_PL90 75 0 25 76.93 297 20.11 1.93 2.97 -4.89
V270_P90_PLO 75 25 0 82.12 25.36 -7.47 7.11 0.36 -7.47
V90_P0O_PL270 25 0 15 26.51 6.34 67.15 1.51 6.34 -7.85
V90_P180_PL90 23 50 25 28.17 53.06 18.76 317 3.06 -6.24
V90_P270_PLO 25 75 0 27.91 75.53 -3.44 291 0.53 -3.44
V90_P90_PL180 25 25 50 27.01 33.52 39.48 2.01 8.52 -10.53

4.2.3 Three plant mixture

The endmembers were not discernible in the full spectral plots (see Figure 62). Furthermore, the
endmembers no longer defined the boundaries in which the mixtures fell as is illustrated by plotting band
I versus band 7 of Landsat7 synthesized data (see Figure 63). The results of the unmixing as shown in
Table 22 had large errors for most of the estimated abundances with many percentages being negative.

The RMSE for Kawakawa, Lemonwood and Karaka were 68.79%, 51.45% and 26.88% respectively.

3 Plant Mixtures
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Figure 62: Spectral curves for mixtures of three plants. Endmembers are plotted as dashed lines.

95




Scatterplot of reflectances for simulated Landsat bands 1 vs 7 for mixtures of 3 plants
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Figure 63: Scatterplot of reflectances for simulated Landsat bands 1 vs 7 for mixtures of 3 plants

Table 22: Unmixing results for 3 plant mixtures
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Kar0O_L180_Kaw180 50 50 99.94 8.37 -8.31 49.94 -41.64 -8.31
Kar0_1.270_Kaw90 25 75 53.83 72.89 -26.72 28.83 -2.11 -26.72
Kar0_1.90_Kaw270 75 25 0 79.84 72.41 -52.24 4.84 47.41 -52.24
Karl180_L.0_Kaw180 50 0 50 22.01 20.51 57.48 -27.99 20.51 7.48
Kar180_L180_Kaw0 0 50 50 126.96 -49.09 22.14 126.96 -99.09 -27.87
Kar180_1.90_Kaw90 25 25 50 0.85 26.37 T2.77 -24.15 1.37 2297
Kar270_1.0_Kaw90 25 0 a5 -22.27 33.80 88.47 -47.27 33.80 13.47
Kar270_1.90_Kaw0 0 25 75 107.89 -43.21 35.32 107.89 -68.21 -39.68
Kar90_1.0_Kaw270 73 0 25 161.51 -62.95 1.44 86.51 -62.95 -23.56
Kar90_L180_Kaw90 25 50 25 95.76 -2.58 6.82 70.76 -52.58 -18.18
Kar90_1.270_Kaw0 0 75 25 6.78 87.80 542 6.78 12.80 -19.58
Kar90_1.90_Kaw180 50 25 25 147.75 -44.68 -3.07 91.75 -69.68 -28.07
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4.2.4 Positional Dependence of Paper/Plastic Mixtures

The positional experiment confirmed that the position of both the tungsten lamp and the sun for
illumination does influence the resulting spectra. The three different mixtures (plastic abundances of 0.25,
0.5 and 0.75) form three groups when plotted (see Figure 64). Ideally, with no positional dependence, the
spectra of these groups should be identical. Two intra group differences could be observed: offsets of the
spectral curves and shape differences. The shape differences are easily discernible between wavelengths
950-1180nm, 1300-1450nm and 1750-2000nm where a considerable difference in slope gradient between
positions 3 and 4 and positions 1 and 2 can be seen. This is best illustrated by the 1 derivative, shown for

the 50% mixtures in Figure 65.

Positional Dependence for paper/plastic mixtures
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Figure 64: Positional dependence for paper/plastic mixtures
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First derivative of 50% paper/plastic mixtures
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Figure 65: First derivative of 50% paper/plastic mixtures

4.2.5 Probe Rotation

Visually the four positions of the probe resulted in very similar spectra (see Figure 66). RMSE’s were
calculated between the mean and the four positional spectral curves for every wavelength. The mean of

all the RMSE’s was 0.00589.
Probe Rotation on Paper/Plastic Mixture
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Figure 66: Probe Rotation on paper/plastic mixture
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5 Discussion

5.1 Collection of Spectral Data of New Zealand Native Plants

The collection of spectral data of New Zealand native plants that was assembled during this research
provides a valuable data source for future research. It must however be noted that its use will be restricted
by the fact that critical metadata like atmospheric condition was not collected. A further restriction is the
temporal change of spectra that is not described by the current collection. The main reason for these
shortcomings lies in the setup of this project as data were collected well before all implications were
known. Future sampling campaigns should therefore be more thoroughly planned with the appropriate

database structure ;sampling protocol and recording of metadata.

5.2 Spectral Databases

The database developed for this project proved to be ideal for the data analysis that was carried out. It
was, however, not designed to act as a repository for spectra that could be accessed by persons having no
prior knowledge of the stored spectra. Therefore information such as the instrument used, illumination
conditions, collector details and extensive target description was not included. Furthermore, the
hierarchical structuring that features species, sites and spectra could be regarded as too restrictive. The
experiences gained so far indicate that the chosen structure applies to most experiments. In some cases the
site level might not be needed, but this inconvenience could be solved by a simple software modification
leaving the database structure intact.

The database approach also enabled the data to be stored in a central place and the simultancous data
access by several users posed no problem because the database system ensured the data integrity. The
implemented system however does not offer multi-user capability, i.e. users cannot store their own
personalized settings.

Future spectral databases should provide multi-user access to studies and more information on the
instrumentation and environmental conditions of the sampling. The direct linkage with a geographic

information system (GIS) should also be considered when designing the database.

5.3 Spectral Processing Chain

The spectral processing chain consisted of waveband filtering, smoothing, data reduction (sensor
synthesizing / downsampling), derivative calculation and feature space transformation. These are the most
commonly used operations in hyperspectral studies and all pre-processing applied to the data in this study
was achieved by these operations. It is clear though that the implemented steps are not conclusive. Other
data processing such as continuum removal and special indices like band depth indices are in use in the
research community. Such operations do not fit into the current chain. Furthermore one could argue about
the logical order of the processing steps. E.g. the derivative calculation could be before or after the data
reduction. For such a modification, a more flexible approach would be needed where the processing

methods would be modularised allowing the interactive building of processing chains.
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5.4 Processing Speed of Smoothing Operations

Of the two implemented algorithms for the application of Savitzky-Golay filters for smoothing of data,
the moving window (MW) outperformed the FFT. Theoretically the FFT provides faster processing than
conventional convolution above a certain number of N data points. Conventional convolution requires in
the order of N* operations while FFT needs N*Ig(N) operations where 1g(N) is the logarithm-base-2 of N.
FFT outperforms conventional convolution for around 64-128 data points (Smith, 2003). The reason why
MW preformed faster than FFT lies in the processing overhead required for setting up the vectors,
transforming them into frequency space and back into time space and storing the result again in the
internal data structures. To avoid this, the spectral data should at all stages be stored in the Matrix objects

supplied by the NewMat library.

5.5 Data Reduction

The issue of high data redundancy of hyperspectral data was addressed by data reduction techniques,
either by the synthesizing of other sensor responses/downsampling or PCT. Analysis of original data and
reduced data showed that the loss of vital information is minimal. E.g. the histograms highlighting the
most discriminating bands were virtually identical for raw and Hyperion synthesized data. The sharp drop
of the eigenvalues also confirmed that the data had a high redundancy. The first few components
explained almost all variations found in the data.

Data reduction was also successful in the reduction of noise which greatly influenced the calculation of

derivatives as was shown on the example of DGVIs.

5.6 Discriminative Power of Feature Spaces

In this study three different feature spaces were compared: DGVI, NTBI and PCT. PCT had the best
discrimination of species, followed by DGVI and NTBI.

The DGVI was originally designed for correlation with plant properties. It is as such not optimized for the
discrimination between species. A closer study of the DGVI regions (Figure 46) reveals that no narrow
(~20nm) regions exist in the NIR (700-1300nm) and the SWIR segment 1 is also only partly covered by
DGVI7. According to the result for the most discriminating bands carried out for the 1’ derivative,
SWIRI had the highest frequency of statistically significant differences between bands, followed by NIR.
One could expect a better discrimination if the DGVI regions were redefined, possibly featuring narrower
regions for SWIR1 and SWIR 2 and new regions in the NIR.

The NTBI feature space had the lowest discriminative power. This however is very likely a direct result
of the low dimensionality. Adding more dimensions should increase the discrimination. The selection of
the best NTBI's could be achieved by a data-mining process where the Wilcoxon test would be applied to
all possible two band combinations for all species pairs.

Both DGVI and NTBI feature spaces were found prone to have high correlations between dimensions.
E.g. for DGVIs a discriminant analysis could not be carried out in Minitab because the correlations of
certain variables were too high. Even PCT data had correlations between bands despite the fact that in

theory PCT should be a zero correlation transform. A likely solution to this could be the building of a set
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of most discriminating but least correlated variables. This could be achieved by subjecting the variable set

to a stepwise discriminant analysis.

5.7 Discrimination and Classification

Thirty two species were collected as training data set in this study and the highest classification accuracy
(96.94%) was achieved using a generalized squared distance discriminant function on PCT data. This
percentage of correctly classified spectra was astonishing, given that all plant spectra look very similar.
However, one could expect that the classification accuracy would drop if more species were added to the
data set. At some point an over crowding of feature space would take place resulting in overlaps of the
species clusters. It may be necessary to segment the species by spatial properties or temporal information
in order to limit the possible species that are used for classifications.

While the classification of the training data demonstrated the capability of discrimination of species by
spectral data, the application of this technology relies on the result gained from the independent dataset.
The independent set used in this study contained 15 species. i.e. less than half of the training set species.
The maximum classification accuracy (87.87%) should therefore be regarded with caution. Ideally. all

training set species should be included in the independent test set.

5.8 Principal Component Analysis

The variation explained by the first two components of Hyperion synthesized data was 97.9%. This was
higher than the percentage of 85% reported by Thenkabail et al. (2004a). The high factor loadings in the
SWIR mentioned by Thenkabail et al. were also found for New Zealand native plants. But the visible part
of the spectrum had also high loadings, especially for PC3, which was different to the result of
Thenkabail et al. who found the SWIR2 segment to have the highest loadings for PC3.

These findings indicate that the loading factors differ considerably with the training dataset and
information about importance of bands for vegetation discrimination based on the analysis of PC factor

loadings can not be readily generalized for all vegetation types.

5.9 Linear Transformations

PCT was used as a linear transformation in this study. Excellent results have found for both reduction of
dimensionality and discrimination in the resulting feature space. The application of the Wilcoxon test
however showed that the frequency of significant differences was not strictly tied to the components. One
possible explanation could be that the variance explained by the components is partially to be attributed to
the inherent noise. This noise would then decrease the frequency of statistically significant differences
between species.

In the context of linear transformations like PCT the application of the MNF transformation to spectral
data collections would be of interest. As MNF was designed to order the components by their signal to
noise ratio, one could expect to find the frequency of significant differences tied to the component order
when subjected to the Wilcoxon test. Traditionally, the MNF has been applied to imagery and the
estimation of the noise covariance matrix has used the differences between neighbouring pixels (Green et

al., 1988; Lee et al., 1990). The application to time series has been demonstrated by Hundley et al. (2001).
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Whether the MNF transformation can be applied to hyperspectral signatures that have no spatial
component and thus no spatial neighbours remains to be seen. The critical factor will remain the

estimation of the noise covariance matrix.

5.10 Most Discriminating Bands

Interestingly the histogram of the most discriminating bands exhibited some differences to the data shown
by Schmidt and Skidmore (2003). They reported that the most discriminating wavebands for saltmarsh
vegetation occurred in the NIR and SWIR regions (740-1820 nm) of the spectra. The same analysis
applied to New Zealand native plants indicated that NIR had the lowest overall frequencies of statistically
significant differences between species pairs while SWIR segments 1 and 2 had the highest overall
frequencies. This suggests that analyses of the most discriminating bands can again not be generalised but
must be carried out for each differing set of spectral vegetation data.

The histogram calculated from 1™ derivative data suggested that the NIR part of the spectrum contained

important information. Analyses using 1™ derivatives should therefore make use of the NIR region.

5.11 Separability Analysis and Discriminant Analysis

The separability analysis gave indications about the separability of species in certain feature spaces. PCT
data had a mean JM distance of 2.0 which would indicate full separability. However, these results could
not be used directly as a prediction for the accuracy that was achieved in the discriminant analysis. PCT
data was not reaching 100% accuracy as could be expected. The reason for this lies in the different
metrics. The discriminant functions used for the classification are not identical to the distance

measurement of the JM or B distance.

5.12 Spectral Unmixing

While the unmixing of paper/plant and paper/plastic/plant mixtures worked really well, the abundance
estimation for the mixtures of three different plants was unsatisfactory with root mean square errors
between 26.88% and 68.79%. The reason for this is a phenomenon described by Price (1994): if an
endmember can be described by the combination of two other endmembers the result of the unmixing is
unlikely to yield useful results. Exactly this situation applied to the three endmembers of this experiment.
The Kawakawa curve lay between the Lemonwood and Karaka curves and thus could have been a

mixture of the latter two (see Figure 67).
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Spectral curves for the endmembers of the 3 plant mixing
experiment
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Figure 67: Spectral curves for the endmembers of the 3 plant mixing experiment

Another problem found was the positional dependence. The spectroradiometer sampled the field of view
homogenously as was demonstrated by the probe rotation experiment. The positional dependence was
therefore the result of the BRDF (Bidirectional Reflectance Distribution Function) with changing viewing
geometry and fixed illumination geometry. The BRDF therefore biased the abundance estimations. A
quantification of the BRDF influence would require further mixing experiments. One can however expect

that the errors reported for the mixtures are at least partly the result of the BRDF influence.

5.13 Atmospheric Correction of Hyperion Imagery

In order to be able to compare the signature of Hyperion pixels with the collected ground data an
atmospheric correction was applied using the FLAASH module in ENVI (Research Systems Inc., 2005).
A satisfying output could not be achieved despite using various settings for atmospheric and aerosol
models and other parameters. A more thorough investigation into the matter would be needed. Such an
effort was unfortunately beyond the timeframe of this research.

Recent findings point to the fact that FLAASH can produce good results if the scale file is edited in a
certain way. One could also expect to improve the results if FLAASH were coupled with an empirical

line correction.
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6 Conclusion

This study has shown that the results of the analysis of hyperspectral data are heavily influenced by the
preceding pre-processing. The main contributing factors were (a) the smoothing which depended on filter
sizes and polynomial orders, (b) the data reduction achieved by synthesizing other sensor responses or
downsampling and (c) the derivative calculation where a Savitzky-Golay filter was effecting a double
smoothing. The best set of parameters for these operations was identified by testing different settings
followed by statistical analysis.

It became clear that fast and repeatable data processing is a key factor to the efficient study of
hyperspectral data. By storing all spectral data in a database, all subsequent operations could be carried
out on the same dataset which remained unchanged. The implementation of software with a database
interface that handled data input, processing and output proved to be a very effective way of hyperspectral
data processing. The processing chain developed in this study contained methods that are most commonly
used in hyperspectral studies. It is recommended that future processing chains should be of a modular
nature to accommodate more varieties of data processing steps. Statistical research should be carried out
in other software packages and only if a certain method has proven to be useful and often needed should it
be implemented in the database interface software.

The atmospheric correction of Hyperion imagery was found to be difficult and no good match between
ground data and pixel signatures could be achieved. The effort to improve these results was beyond the
timeframe of this research.

The species of New Zealand native plants that were studied showed a very good potential for
discrimination. More research is needed to gain knowledge of temporal and spatial variations. A possible

outcome of such a study might be the collection of spectral reference data for certain seasons or regions.

105



106




7 Bibliography

Analytical Spectral Devices Inc. "Technical Guide." 2006
http://www.asdi.com/TG Ref4 web.pdf.

Apan, A., Held, A., Phinn, S. & Markley, J. (2003). Formulation and assessment of narrow-band
vegetation indices from EO-1 Hyperion imagery for discriminating sugarcane disease.
Proceedings of the Spatial Sciences Conference, Canberra.

Bell, I. E. & Baranoski, G. V. G. (2004). "Reducing the Dimensionality of Plant Spectral
Databases." IEEE Transactions on Geoscience and Remote Sensing 42(3).

Ben-Dor, E. & Levin, N. (2000). "Determination of surface reflectance from raw hyperspectral
data without simultaneous ground data measurements: a case study of the GER 63-channel
sensor data acquired over Naan, Israel." International Journal of Remote Sensing 21(10): 2053-
2074.

Bojinski, S., Schaepman, M., Schlaepfer, D. & Itten, K. (2003). "SPECCHIO: a spectrum
database for remote sensing applications." Computers & Geosciences 29: 27-38.

Clark, M. L., Roberts, D. A. & Clark, D., B. (2005). "Hyperspectral discrimination of tropical rain
forest tree species at leaf to crown scales." Remote Sensing of Environment 96: 375-398.

Clark, R. N., Swayze, G. A., Gallagher, A. J., King, T. V. V. & Calvin, W. M. (1993). The U. S.
Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 microns. U.S. Geological
Survey Open File Report. 93: 1340.

Cochrane, M. A. (2000). "Using vegetation reflectance variability for species level classification
of hyperspectral data." International Journal of Remote Sensing 21(10): 2075-2087.

Cocks, T., Jenssen, R., Stewart, A., Wilson, |. & Shields, T. (1998). The HYMAP airborne
hyperspectral sensor: the system, calibration and performance. 1st EARSEL Workshop on
Imaging Spectroscopy, Zurich.

Coops, N. C., Smith, M.-L., Martin, M. E. & Ollinger, S. V. (2003). "Prediction of Eucalypt
Foliage Nitrogen Content From Satellite-Derived Hyperspectral Data." IEEE Transactions on
Geoscience and Remote Sensing 14(6): 1338-1346.

Davies, R. (2002). NewMat.http://www.robertnz.net.

Dymond, J. R. & Shepherd, J. D. (2004). "The spatial distribution of indigenous forest and its
composition in the Wellington region, New Zealand, from ETM+ satellite imagery." Remote
Sensing of Environment 90: 116-125.

Elvidge, C. D. & Chen, Z. (1995). "Comparison of broadband and narrowband red and near-
infrared vegetation indices." Remote Sensing of Environment 54: 38-48.

Fliege, N. J. (1994). Multirate Digital Signal Processing. Chichester, John Wiley & Sons.

Fyfe, S. K. (2003). "Spatial and temporal variation in spectral reflectance: Are seagrass species
spectrally distinct?" Limnol. Oceanography 48(1): 464-479.

GER (2000). "GER EPS-H Series Airborne Imaging Spectrometer System."
http://www.ger.com/epshman.html.

Green, A. A., Berman, M., Switzer, P. & Craig, M. D. (1988). "A Transformation for Ordering
Multispectral Data in Terms of Image Quality with Implications for Noise Removal." I[EEE
Transactions on Geoscience and Remote Sensing 26(1): 65-74.

107



Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. & Strachan, |. B. (2004).
"Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop
canopies: Modeling and validation in the context of precision agriculture." Remote Sensing of
Environment 90: 337-352.

Herold, M., Roberts, D. A., Gardner, M. E. & E., D. P. (2004). "Spectrometery for urban remote
sensing - Developement and analysis of a spectral library from 350 to 2400 nm." Remote
Sensing of Environment 91: 304-319.

Huang, Z., Turner, B., Dury, S., Wallis, I. & Foley, W. (2004). "Estimating foliage nitrogen
concentration from HYMAP data using continuum removal analysis." Remote Sensing of
Environment 93(1-2): 18-29.

The

Hundley, D., Anderle, M. & Kirby, M. (2001). A Solution Procedure for Blind Signal Separation
Using the Maximum Noise Fraction Approach: Algorithms and Examples. Proceedings of the
Conference on Independent Components Analysis, San Diego, CA.

Hutsinpiller, A. (1988). "Discrimination of Hydrothermal Alteration Mineral Assemblages at
Virginia City, Nevada, Using the Airborne Imaging Spectrometer." Remote Sensing of
Environment 24: 53-66.

Integrated Spectronics Pty Ltd "HyMap Airborne Scanners." 2006
http://www.intspec.com/Products/HyMapProd.htm.

Keshava, N. & Mustard, J. F. (2002). "Spectral Unmixing." IEEE Signal Processing Magazine
19(1): 44-57.

Kokaly, R. F. & Clark, R. N. (1999). "Spectroscopic Determination of Leaf Biochemistry Using
Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression."
Remote Sensing of Environment 67: 267—-287.

Kokaly, R. F., Despain, D. G., Clark, R. N. & Livo, E. K. (2003). "Mapping vegetation in
Yellowstone National Park using spectral feature analysis of AVIRIS data." Remote Sensing of
Environment 84: 437-456.

Kruse, F. A. (2004). "Comparison of ATREM, ACORN and FLAASH Atmosperic corrections
using low-altitude AVIRIS data of Boulder, CO." www.hgimaging.com/PDF/Kruse-
JPL2004 ATM Compare.pdf.

Labsphere Inc. North Sutton, NH, USA.

Landgrebe, D. (1997). On Information Extraction Principles for Hyperspectral Data, Purdue
University.

Landgrebe, D. (2003). Signal Theory Methods in Multispectral Remote Sensing. Hoboken, New
Jersey, John Wiley & Sons.

Lee, J. B., Woodyatt, A. S. & Berman, M. (1990). "Enhancement of High Spectral Resolution
Remote-Sensing Data by a Noise-Adjusted Principal Components Transform." |EEE
Transactions on Geoscience and Remote Sensing 28(3): 295-304.

Liao, L. & Jarecke, P. (undated). "Performance Characterization of the Hyperion Imaging
Spectrometer Instrument." www.eoc.csiro.au/hswww/oz pi/docs/hyperion performance.pdf.

Lillesand, T. M., Kiefer, R. W. & Chipman, J. W. (2004). Remote Sensing and Image
Interpretation, John Wiley & Sons.

Lusch, D. P. (1989). Fundamental Considerations for Teaching the Spectral Reflectance
Characteristics of Vegetation, Soil and Water. Current Trends in Remote Sensing Education. D.
M. Nelliset al. Hong Kong, Geocarta International Centre.

108




Martin, M. E. & Aber, J. D. (1997). "High spectral resolution remote sensing of forest canopy
lignin, nitrogen, and ecosystem processes." Ecological Applications 7(2): 431-443.

Mathur, A., Mann Bruce, L. & Byrd, J. (2002). "Discrimination of Subtly Different Vegetative
Species via Hyperspectral Data." |EEE International Geoscience and Remote Sensing
Symposium 2: 805-807.

Mazer, A. S., Martin, M., Lee, M. & Solomon, J. E. (1988). "Image Processing Software for
Imaging Spectrometry Data Analysis." Remote Sensing of Environment 24: 201-210.

Miller, J. N. & Miller, J. C. (2005). Statistics and Chemometrics for Analytical Chemistry.
London, Pearson Education Limited.

Milton, E. J. (2001). "Methods in Field Spectroscopy."
www.soton.ac.uk/~epfs/methods/spectroscopy.shtml.

Minitab Inc. (2003). MINITAB Statistical Software. State College, Pennsylvania.

Mundt, J. T., Glenn, N. F., Weber, K. T., Prather, T. S., Lass, L. W. & Pettingill, J. (2005).
"Discrimination of hoary cress and determination of its detection limits via hyperspectral image
processing and accuracy assessment techniques." Remote Sensing of Environment 96: 509-
517.

MySQL AB (2005). MySQL.http://www.mysgl.com.

Olsen, R. C., Bergman, S. & Resmini, R. G. (1997). Target detection in a forest environment
using spectral imagery. SPIE 1997 Annual International Symposium on Optical Science,
Engineering and Instrumentation, San Diego.

Papula, L. (1994). Mathematik fuer Ingenieure und Naturwissenschaftler, Viewegs.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (2002). Numerical Recipies in
C++. Cambridge, Cambridge University Press.

Price, J. C. (1994). "How Unigue Are Spectral Signatures?" Remote Sensing of Environment 49:
181-186.

Ramsey, E. & Nelson, G. (2005). "A whole image approach using field measurements for
transforming EO1 Hyperion hyperspectral data into canopy reflectance spectra." International
Journal of Remote Sensing 26(8): 1589-1610.

Ramsey, E., Rangoonwala, A., Nelson, G., Ehrlich, R. & Martella, K. (2005). "Generation and
validation of characteristic spectra from EO1 Hyperion image data for detecting the occurrence
of the invasive species, Chinese tallow." International Journal of Remote Sensing 26(8): 1611-
1636.

Research Systems Inc. (2004). ENVI Tutorials. Boulder, CO.
Research Systems Inc. (2005). ENVI. Boulder, CO.

Richards, J. A. (1993). Remote Sensing Digital Image Analysis. Berlin, Springer Verlag.

Richardson, A. D., Reeves, J. B. & Gregoire, T. G. (2003). "Multivariate analyses of visible/near
infrared (VIS/NIR) absorbance spectra reveal underlying spectral differences among dried,
ground conifer needle samples from different growth environments." New Phytologist 161: 291-
301.

Riedmann, M. (2003). "Laboratory Calibration of the Compact Airborne Spectrographic Imager
(CASI-2)." http://www.ncaveo.ac.uk/site-resources/pdf/MRCasiCal.pdf.

109



Roberts, D. A., Gardner, M. E., Church, R., Ustin, S., Scheer, G. & Green, R. O. (1998).
"Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral
Mixture Models." Remote Sensing of Environment 65: 267-279.

Savitzky, A. & Golay, M. J. E. (1964). "Smoothing and Differentiation of Data by Simplified Least
Squares Procedures." Analytical Chemistry 36(8): 1627-1639.

Schmidt, K. S. & Skidmore, A. K. (2003). "Spectral discrimination of vegetation types in a
coastal wetland." Remote Sensing of Environment 85: 92-108.

Schmidt, K. S. & Skidmore, A. K. (2004). "Smoothing vegetation spectra with wavelets."
International Journal of Remote Sensing 25(6): 1167-1184.

Shannon, C. E. (1949). "Communication in the presence of noise." Proc. IRE 37: 10-21.

Shaw, G. & Manolakis, D. (2002). "Signal Processing for Hyperspectral Image Exploitation."
IEEE Signal Processing Magazine 19(1): 12-16.

Shepherd, K. D. & Walsh, M. G. (2002). "Development of Reflectance Spectral Libraries for
Characterization of Soil Properties." Soil Science Society Am. J. 66: 988-998.

Smith, G. M. & Milton, E. J. (1999). "The use of the empirical line method to calibrate remotely
sensed data to reflectance.” Int. J. Remote Sensing 20(13): 2653-1662.

Smith, J. O. (2003). Mathematics of the Discrete Fourier Transform (DFT), with Music and Audio
Applications, W3K Publishing.

The MathWorks Inc. (2004). Matlab. Natick, MA.

Thenkabalil, P. S., Enclona, E. A. & Ashton, M. S. (2004a). "Accuracy assessment of
hyperspectral waveband performance for vegetation analysis applications." Remote Sensing of
Environment 91: 354-376.

Thenkabail, P. S., Enclona, E. A., Ashton, M. S, Legg, C. & Minko, J. D. D. (2004b). "Hyperion,
IKONQOS, ALI and ETM+ Sensors in the study of African rainforests." Remote Sensing of
Environment 90: 23-43.

Thenkabail, P. S., Smith, R. B. & De Pauw, E. (2000). "Hyperspectral Vegetation Indices and
Their Relationship with Agricultural Crop Characteristics." Remote Sensing of Environment 71:
158-182.

Thenkabail, P. S., Smith, R. B. & De Pauw, E. (2002). "Evaluation of Narrowband and
Broadband Vegetation Indices for Determining Optimal Hyperspectral Wavebands for
Agricultural Crop Characterization." Photogrammetric Engineering & Remote Sensing 68(6):
607-621.

Tsai, F. & Philpot, W. (1998). "Derivative Analysis of Hyperspectral Data." Remote Sensing of
Environment 66: 41-51.

University of Waikato (2005). WEKA.http://www.cs.waikato.ac.nz/~ml/weka/.

Unser, M. (2000). "Sampling—50 Years After Shannon." Proceedings of the IEEE 88(4): 569-
587.

USGS (2005). "EO-1 User's Guide: Data Properties: Hyperion."
http://eo1.usgs.gov/userGuide/hyp prop.html.

van Till, M., Bijlmer, A. & de Lange, R. (2004). "Seasonal Variability in Spectral Reflectance of
Coastal Dune Vegetation." EARSel eProceedings 3(2): 154-165.

Vane, G. & Goetz, A. F. H. (1988). "Terrestrial Imaging Spectroscopy." Remote Sensing of
Environment 24: 1-29.

110




Venables, W. N., Smith, D. M. & and the R Development Core Team (2005). R: A Programming
Environment for Data Analysis and Graphics.

Williams, D. & Summers, R. (2004). "Database Design."
http://gisweb.massey.ac.nz/Topic/DatabaseDesign/lectures/introduction.html.

Williams, D. J., Rybicki, N. B., Lombana, A. V., O'Brien, T. M. & Gomez, R. B. (2002).
"Preliminary Investigation of Submerged Aquatic Vegetation Mapping Using Hyperspectral
Remote Sensing." Environmental Monitoring and Assessment 81(1-3): 383 - 392.

Younan, N. H., King, R. L. & Bennett, H. H. J. (2004). "Classification of Hyperspectral Data: A
Comparative Study.” Precision Agriculture 5: 41-53.

Zanoni, V., Davis, B., Ryan, R., Gasser, G. & Blonski, S. (2002). "Remote Sensing
Requirements Development: A Simulation-Based Approach.”
ISPRS www.isprs.org/commissiont/proceedings/paper/VZanoni ISPRS2002.pdf.

111






8 Appendix

8.1 SpectraProc Graphical User Interface

The graphical user interface (GUI) (for a screenshot please see Figure 68) was based on the structure of

the processing chain (see Figure 19). The left side of the main window consists of controls for the

selection of the study and the main settings for smoothing filter, synthesizing, derivative calculation,

feature space transformation and classifier discriminant function. Processing details are entered in pop up

windows, shown here with the example of the smoothing function. The text output panel in the middle of

the main window is used to display processing and error information.

The listbox on top of the text output panel is used to display spectra files that are loaded directly into

memory. The ‘Indiv. Classify’ button under it classifies the selected, individually loaded spectra against

the current library.

The library status box on the top right of the screen indicates whether statistical information has been

compiled for the current pre-processing settings.
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Figure 68: Screen capture of SpectraProc
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