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Abstract 

The purpose of this research was to inves tigate the acqu is ition, storage. processing and analys is of 

hyperspectra l data for vegetation applications on the example of New Zealand nati ve plants. Data 

covering the spectra l range 350nm-2500nm were collec ted wi th a portable spectroradiometer. 

Hyperspectral data collection results in large datasets that need pre-processing before a ny analysis can be 

carried out. A review o f the techniques used s ince the advent of hyper pectra l fie ld data showed the 

fo llowing general procedures were followed: 

1. Re moval of noisy or uncalibrated hands 

2. Data smoothing 

3. Reduct ion of dimensionali ty 

4. Transformatio n into feat ure space 

5. Analysis techniques 

Steps I to 4 which arc concerned with the prc-proce. s ing of data were found to be repe titi ve procedures 

and thus had a high po tentia l for automation. T he pre-proce s ing had a major impact on the results gai ned 

in the analysis stage. rind ing the ideal pre-processi ng parameters involved repeated process ing of the 

data. 

Hypcrspcctral fie ld data should be sto red in a structured way. The utili zation of a re latio nal database 

seemed a logical a pproach. A hierarch ical data s truc ture that re flected the real world a nd the setup o f 

sampli ng campaigns was designed. This . tructure was transformed into a logical data model. Furthermore 

the database also held informatio n needed for pre-processing and stati s tical analys is. Thi. e nabled the 

calculation of separabi li ty measure me nts uc h as the JM (Jeffries Matus ita) distance o r the applicatio n of 

discriminant analys is. 

Software was writte n to provide a graphical user inte rface to the database and implement pre-processing 

and a nalysis functionality. 

The acquisition. processing and analys is steps were applied to New Zealand native vegetation . A hi gh 

degree o f separabi lity bet ween species was achieved and u ing independe nt data a c lass i Ii cation accuracy 

of 87.87% wa reached. This outcome required smooth ing, Hyperion synthesizing and princ ipal 

components transformatio n to be applied to the data prio r to the c lassification whic h used a gcncralizcc.l 

squared d istance d iscrimi nan t function. 

T he mixed sig nature problem was addressed in experiments under controlled laboratory condit io ns and 

revealed that certain combinations of plants could not be unmixed s uccessfull y while mixtures of 

vegetation and artifi cial mate rial s resulted in very good abundance estima t ions. 

The combination of a relational database with associated so ftware for d ata processing was found to be 

highly e ffic ie nt whe n dealing with hype rspcctral fie ld data . 
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1 Introduction 

Spectroradiometry has become increasingly popular in the last few years. The technology has advantages 

over conventional techniques, allowing the non destructi ve sampl ing of objects and enabling users to gain 

cri tical in formation more quickly and cheapl y. The operation of the equipment tends to be relati vely easy 

and data are collected quickly. However, the interpretation of these data is not dealt with quite as easily. 

The main issue when dealing with hyperspcctral data is their dimensionality. Hyperspectral data arc more 

complex than previous multispectral data and different approaches for data handling and in formation 

extraction are needed (Vane and GoetL, 1988: Landgrebe, 1997). 

The Institute of Nalllral Resources, Massey Uni versity, had acquired a spectroradiometer built by ASD 

(Analytical Spectral Devices) and a study utilizing this instrument was considered to be of interest. 

The goals of this study were: Enhance the knowledge of the Institute in the field of hyperspectra l remote 

sensing utilizing the recently acquired FieldSpecPro spectroradiometer: study the processes of field data 

acquisition, data processing and analysis; create a spectral database of New Zealand native vegetation: 

analyze the spectral separability of New Zealand native vegetation: in vestigate the problem of mixed 

signature : suggest a basis for the classification of land cover u ing Hyperion data 

While the main foc us of this research was on hyperspectral data. the simulat ion of Landsat? ETM+ was 

also undertaken. mainly 10 provide a basis for further invest igation of the problem of atmospheric 

correction. Landsat? imagery of New Zealand has been successfull y corrected for atmo. pheric inOuences 

by Landcare Research. Palmerston North . 

During the project, support was given to a Soil Scienc<.: PhD study at Massey Univer ity and to a study on 

soils and pastures al Landcare Research, Palmerston North . in terms of sharing <.:xpcrtise. collecting data 

and subsequent processing. These coll aborations led to further developm<.: nl of the database and 

processing requi rements and wide ned the foc us of this study to include data from soil and pasture studies. 

As a result of thi s, a section on correlation of pectral dma with other physical properties was added 10 the 

literature review. It serves to complete the picture of the analy. i that can be applied to hyperspectral data. 

The above mentioned collaborations also supported the hypothc is that tools for e ffi cient data handling. 

organisation and processing were of high interest to scientists. 
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2 Literature Review 

2.1 Hyperspectral Remote Sensing 

Hyperspectral re mote sensing is a relati vely recent developme nt based on the principles o f spec troscopy. 

Spectroscopy which ori ginated from the area of ana lyti ca l chemistry is the stud y of the interac ti o n 

betwee n elec tro magnetic radi ati o n and matter (Milton, 200 1). 

In order to gain spectral data fro m an object, its chemical bonds must be stimulated by ex ternal energy. In 

laboratory conditi ons, artific ial e nergy sources are usuall y e mployed whil e fi e ld measurement s mostl y 

rely on the sun , a lthough some technologies use artific ial li ght sources. 

Figure I illustrates the interac ti on between the e nergy source, object and sensor. 

Energy source 

0 
Radiance = energy 
emitted by energy source 

lrradiance = energy 
incident upon object 

Radiance = energy reflected by obJect 

Object 

Figu re I : Interaction benreen energy source. object and sensor 

A range o f instruments are used to capture spec tra l data. Photome ters and radi o meters are multiband 

instrument s: the fo rmer are re. tri c ted to visible wave lengths o nl y. whereas the latter make use of a wider 

range of wave le ngths. The prefix ·spec tra' designates instruments that are used to measure 

electro mag neti c radi ati o n in many narrow, conti guous wavebands, resulting in deta il ed , continuous 

spec tra of the sampled objec t. (Milton, 200 1). 

The spec tral range covered by spec troradiometers usuall y starts at blue, visible wavele ngth s (-400nm) 

and goes up to near infrared (- 1000nm) or mid -infrared (-2500 nm). Thus, most o f the reflec tance data 

captured consist o f respo nses at wavelengths that are not visible to the human eye. 

It is expected that such detailed spectral data permit the identificati on of mo t surface types (Price, 1994) . 

Figure 2 shows examples of roc k, snow and vegetati on spectra. Note that in the visible part o f the 

vegetation spec trum (400-700 nm), green wavele ngths (500-600nm) show a higher refl ectance than blue 

( 400-500 nm) and red (600-700nm). It is thi s local re fl ectance peak that le ts humans perceive vegetation 

in shades of green. 
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Spectral signatures of rock , snow and 1.egetation 
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Figure 2: Examples of spectral signatures acquired in the preliminary stage of the project 

In contrast to chemi stry, remote sensing tends to concentrate on refl ectance rather than absorbance. 

Re fl ectance is defined by: 

(A)= E , (A) = energy reflected from object at wavelength ,1, 

p E; (A) energy incident on object at wavelength ,1, 

In order to convert measured radiance to refl ectance, spectrometers must either be calibrated against a 

reflectance panel or directly measure the incident energy. 

2.2 Hyperspectral Sensors 

Four maj or groups of hyperspectral sensors are discernibl e: 

I . Laboratory spec troradiometers 

2. Field spectroradi ometers 

3. Airborne imaging spectroradiometers 

4 . Spaceborne imaging spectroradiometers 

Laboratory spectroradiometers are not much used in remote sensing studies as field spec troradiometers 

can also be used indoors and usually offer all the needed data. Therefore laboratory spectroradiometers 

are not further di scussed in thi s section. 

2.2.1 Field Spectroradiometers 

2.2.1.1 Overview 

First field sensors emerged in the I 960 ' s. They were usuall y modified laboratory instruments and had 

limited spectral coverage in the range of 400-1 I 00nm. 

Specificall y developed, portable field spectroradiometers appeared in the late I 980' s. 

The PIDAS (Portable Instant Display and Analysis Spectrometer) instrument was completed in 1987. It 

sampled 833 bands in less than 2 seconds, covering a wavelength region from 450nm to 2500nm. Field 

and library spec tra could be di splayed simultaneously (Vane and Goetz, 1988). 
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The IRIS instrument covered wavelengths from 360 - 3000nm (Hutsinpiller, 1988). 

For both of these instruments, spectral resolutions were not uni form over the whole spectral range. 

Modern day fi eld spectroradiometers still cover the same wavelength region as their predecessors. 

However, the spectral resolution tends to be uni form ; around I nm over the whole bandwidth and the 

integration times have increased by about factor I 0. As we ll , the use of portable fi eld computers with 

some instruments faci litates their operation and the subsequent data transfer to other systems. 

Fie ld spec troradiometers can be di vided into two classes: single beam and dual beam instruments. Dual 

beam instruments are capable of measuring two energy sources simultaneously, i.e. incident energy and 

refl ected energy can be recorded at the same time. Thi s gives the dual beam instruments an adva ntage 

over single beam instruments, as the latter have to acq uire these data consecuti ve ly, i.e. there is a time 

delay during which the incident energy level can change. 

2.2.1.2 Acquisition of Field Data 

As menti oned above, if no artifi cial light source i employed , field measurements rely on the illumination 

of the object by the sun . One of the problems posed is the rapidly changi ng ligh t condition. even on clear 

clays. 

Milton (200 1) li sts three stages of illumination changes: 

Cause Time period Expected changes in irradiation 

Streams of atmospheric particulates Few milliseconds 1% 

Probabl y hi gh altitude cirrus clouds Seconds to minutes 5% 

(invisible to the human eye) 

Visible clouds passi ng in front of NA Major change 

the sun 

The regular calibration of the instrument against a white reference is therefore of high importance if 

consistent readings are to be achieved. These references such as the Spectralon® (Labsphere Inc.) panels 

are assumed to have a Lamberti an surface with a reflectance of I, thus ac ting as ideal di ffuse refl ec tors. 

The above also implies that sampling should only be done on clear days to exc lude the possibility of 

visible clouds changing the incident energy. High sun elevati ons are preferable clue to the shorter path of 

the sun rays through the atmosphere, resulting in le s atmospheri c interference. 

Consequent ly, fi eld data collec ti on usuall y happens in the summer months on cloud free days between 

0900/1000 h and 1600 h (Hutsinpiller, 1988; Fyfe, 2003; Schmidt and Skidmore, 2003). 

The field of view of spectroradiometers is around 20 degrees and less. Some instruments have inbuilt 

lenses while others use fibre-optics as an input device. There is however a constraint to the length of fibre 

optics which is currentl y 2-3 metres. Longer fibres result in loss of signal strength and are not empl oyed. 

These technical issues have implications on the size of the sampled area. 

Most studies report a nad ir view of the optic and a di stance of about 1-3 metres to the object, in some 

cases, step ladders, chen-y pickers and helicopters have been used to raise the instrument into a suitable 

position (Thenkaba il et al. , 2000; Schmidt and Skidmore, 2003; Thenkabail et al. , 2004a; Ramsey et al. , 

2005). 
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The fi eld of view (FOY) is dependent on the type of foreoptics used and the di stance to the target. The 

di ameter of the FOY for a given FOY angle a and a height h above target is then calcul ated by: 

d m v = 2 · h · tan( a) 

2.2.1.3 Applications of Field Spectroradiometers 

Milton (200 I ) differenti ates between the foll owing applications of fi eld spectroradiometers: 

I . As a remote sensing technique in its own ri ght. 

Basic research and applied technology in areas like soil science, agriculture and horticulture . 

2. In education and training. 

To teach the interaction of energy with maller and give an understanding of the principles o f 

remote sensing. 

3. Calibrati on of a irborne and spaceborne sensors. 

The coll ecti on of ground truth data is important for the analysis of airborne and spaceborne 

hyperspectral data. 

4. As a source of data for quantitati ve models and spectral librari es. 

The assembl y of spectral data in librari es forms the base for phys ical and numerical models 

concerned with the interactions between elec tromagneti c radi ati on and matter. 

2.2.2 Airborne Hyperspectral Sensors 

The first airborne hyperspectral sensor AIS (Airborne Imag ing Spectrometer) was first fl own in 1982 

(Vane and Goetz, 1988). The system coll ected data in 128 bands of 9.3nm width , covering a range fro m 

400- l 200nm in ' tree- mode' and l 200-2400nm in 'rock-mode'. It had a swath width of 32 pixels, every 

pixel covering approximate ly 8x8 metres of ground when fl own at an altitude of 4200 metres (Lillesand 

et al. , 2004). Being a prototype system, a series of problems were found such as: excessive e lectronic 

noise, non-uni formity of detector response, optical contamination due to vibra ti ons, vertical and 

hori zontal striping. The problematic issues fo und during the tests of AIS were addressed by AIS2 (Vane 

and Goetz, 1988). The AIS sensors led to the highl y successful A VIRIS sensor generation, which is still 

being improved and used today (for technical spec ifications see Table I ). 

Another widely used airborne sensor is the Austra lian deve loped HyMap (see specificati ons in Table I ). 

The sensor can be customi zed to suit demands of c lients in terms of spectral coverage and number of 

bands. A new version o f the system is being engineered o ffering an additional 32 bands in the thermal 

in fr a red (8- 12 um) (Integrated Spectronics Pty Ltd). 

Some of the widely used airborne hyperspectral sensor systems are li sted in Table I (Olsen et a l. , I 997 ; 

Cocks et a l. , 1998 ; GER, 2000; Riedmann, 2003; Lillesand et al. , 2004) 
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Table I: Widely used airborne hyperspectral sensor systems 

Name Number Wavelength Bandwidth Swath width Comment 

of bands range 

CASI 2 288 400-I0OOnm 1.8 nm 5 12 pixels Fully programmable 

AVIRIS 224 400-2450nm 9.6nm 6 14 pixels 

1-IYDICE 2 10 400-2500nm 10nm 208 pixels 

GER EPS-1-1 136 + 12 300-2500nm 8-67 nm 512-2048 pixels Customisable system 

8- 12um 

1-IyMap 100-200 450-2500nm 10-20nm 60-70 degrees Customisabl e syswm 

2.2.3 Spaceborne Hyperspectral Sensors 

There arc currentl y two spaceborne hypcrspectral sensors in orbit: Hyperion and CHRIS. 

Hyperion i flown aboard the EO-1 satellite which was launched tn late 2000. Hyperi on col lects 242 

hands from 360-260011111 with bandwidths around I I nm. Some of these bands do not yield valuable data 

due to poor signal to noise ratio . The level I product subsequently contains onl y 198 calibrated band . 

The spatial resolution is 30 metres at a swath width of 7.5 km. 

This system is cxpcrimcntal and the data shows stri ping and other irregu larities. Noncthclcss Hyperion 

data has been usul successfull y in numerous hyperspcctral tudies. 

CHRIS (Compact High Rcsolu tion Imaging Spectrometer) i. carried on board the PROH A platform that 

was lau nched by ESA (European Space Agency) in October 200 I. It . amples a spectra l range from 4 10-

1050nm in 19 bands at a spatial resolution of 18 mctrcs or in 63 band at 36 metre resolut ion. The imagc 

area is 14km by 14km. 

2.3 Hyperspectral Data 

2.3.1 Overview and Principles 

Thc main issues when dealing with hypcrspectral data arc thcir dimcnsionality and storage profil e. The 

physical data size is an especially important issue wi th imaging spectrometers. 

The dimensionality o f the data is the result of sampling a wide spectral range in very narrow bands. This 

is in itself a problem because the influence of noise on narrow channels is much higher than on traditional 

broadband channels. 

Hyperspectral data are more complex than previous mullispectral data and different approaches for data 

handling and information extract ion are needed (Vane and Goetz, 1988; Landgrebe, 1997). 
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2.3.1.1 Spectral Space and Feature Space Concept 

Landgrebe ( 1997) based his work on hyperspectral data analysis on the signal theory and the principles o f 

signal processing. 

Hyperspectral data can be represented in three principal ways: 

I. Image Space: data are shown as a 2 d imensional raster image. This applies o nly for imaging 

spectrometer data where every spectrum has a spatial location. 

2. Spectral Space: the data are shown as spectra, i.e. as the reflectance response per wavelength 

3. Feature Space: the data consist of vectors, which define poi nt s in an N-dimensional space 

Figure 3 illustrates the concepts of spectral space and feature space for the example of three different 

spectra. Spectral space shows their re flectance values. In feature space, three classes are shown, defined 

by vector positions in a 2 dimensional space. 

In the given example, the feature space was formed by choosing a subset of 2 compo nents out of the 

possible N components that make up the signal vectors. The vector components are equivalent to the 

re flectance values at wavelengths 600nm and I 000nm respect ively: 
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Figure 3: Examples for spectral space and feature space (Data from a preliminary stage of this study) 

2.3.1.2 Data Distributions 

Objects of the same type have refl ectance vectors that lie close to each other in feature space. Object 

types are usual ly referred to as c lasses, e.g. snow, vegetation and rock. Vectors of cl ass objects form 

clusters in fea ture space. 

C lasses in remote se nsing applications are assumed to be of Gaussian distribut ion. An illustration o f such 

d istributions is given in Figure 4. 

The mean position and distribution (shape) are defi ned by the mean vector and covariance matrix 

respecti ve ly. The covariance is one o f the most important mathematical co ncepts in the analysis of 

multispectral (and hyperspectral ) remote sensing data (Richards, 1993). 

It must be noted that for the sake or visualization only 2 dimensional examples arc shown. Real data 

distributio ns wi ll have many more dimensions. 
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Figure 4: Probability distributions in a 2d feature space (Richards, 1993) 

The mean position o f a c lass consisting o f K samples with their respecti ve vec tors x, in feature space is 

give n by the mean vec tor: 

- I~ -m= - ~ x, 
K ;=1 

The shape of the di stributio n is given by the covaria nce: 

I ,._. - - - - I 

=--I(x, -111) -(x, -m) 
K-1 ;= i 

I , 
Figure 5 illustra tes the concept o f mean vec tors and covari ances. The data di str ibution is desc ribed by the 

covari ance matri x (represented by the scatte r c loud in the fi gure) , whil e the mean va lue is a sing le po int in 

space. The oval shape of the c luster shows th a t the two dimensio ns are co1Telated. 
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The corre lati on between dimensio ns can be found by inte rpreting the covari ance matri x (Richards, 1993): 

D If there is little corre lati on be tween the axes of a feature space, the off-di agonal e lements of 

the covari ance matri x are c lose to 0 . 

D If the re is a corre lation, the o ff-di agonal e leme nts w ill be large b y compari son to the 

diagonal e lements 

The fo llowing two covari ance matri ces are e xamples of littl e corre lati on (a) and hi gh corre lati on (b). This 

is show graphicall y in Figure 6. 
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Figure 6: Two dimensional da ta with li11/e correlation (a) and high correlation (b) (Richards, 1993) 

2.3.1.3 On the Importance of 2nd Order Statistics 

The use of average values may be useful in some circumstances, however, La ndgrebe ( I 997) no tes that 

the reduc ti on o f data to mean values resul ts in a loss of in formati on. 

Second order stati stics contai n vital in formation about the d istribution of data in spectra l or fea ture space. 

An example o f the loss o f data is shown in Fig ure 7. If onl y the mean values are used, it seems that the 

c lasses could be di scriminated without a ny problem. But the scatterplot which shows the variability of the 

c lasses reveals an overl ap between the c lasses Lemonwood and Ngaio , thus ind icating tha t a I 00% 

separability o f these classes is less like ly if thi s 2 dimensional fea ture space is used. The di scriminati on 

could be inc reased by utili z ing more dimensions. 
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2.3.2 Data Processing 

2.3.2.1 General Structure 

The procedures used in several studies of hyperspectral data show a ge neral , discernible structure which 

is: 

I. 

2. 

3. 

4. 

5. 

6. 

Re moval of noisy or uncalibra ted bands 

Atmospheric corrections (applies onl y to airborne and spaceborne sensor data) 

Data smoothing 

Reducti o n o f dimensio nality 

Transformati on into feature space 

Analysis techniques 

All o f these steps are not always necessary. They are desc ribed herea fter in detail. 

2.3.2.2 Removal of Noisy or Uncalibrated Bands 

Thi s step eliminates bands which are eithe r uncalibrated or give no useful s ig nal because of a low signal 

to noise ratio. 

Uncalibrated bands occur when a sensor contains kn own, fa ult y sensor e le ments. An example is the 

Hyperi o n sensor, where cert ain bands are li sted as no n-ca librated . The removal of uncalibra ted bands 

requires detail ed informati on of the sensor in use. 

Low sig nal to noise rati os arc found natura ll y in some wavelength ranges due to atmospheric interference, 

e.g . water vapour at I 350- I 440nm, I 790- I 990nm and 2360-2500nm (Thenkaba il e t a l. , 2004a). 

Water vapour causes the most no ise fo und in field spec troscopy data. Onl y when the distance between 

sensor a nd sensed object is minimized (e.g. if a contact probe is used ) wi ll the innuence of the 

atmosphere be practically non ex iste nt. 

An example of a spec trum showing water band noise is shown in Figure 8. 
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Figure 8: An example of a spectrum showing water band noise in 3 wavelength ranges 

11 



2.3.2.3 Atmospheric Corrections 

Atmospheric correction applies o nly to airborne and spaceborne sensor data. Fie ld sensor data do not 

need to be atmospherically corrected due to the small distance between sensor and object (usually only a 

few metres maximum). 

Atmospheric correction of hypcrspcctral data is essential and extremely complex (Thenkabail et a l. , 

2004a) and must be carried o ut if hypcrspcctral imagery is to be compared with spectra l ground data or 

with other, temporally or spatiall y different hyperspectral imagery (Li llesand et a l. , 2004). Thus in the 

context of this research some form of atmospheric correction will be needed to re late ground spectra to 

Hyperion data. 

Numerous techniques for atmospheric correc tion exist, amongst which an:: 

D Flat Fie ld (FF) Calibration: the data is normalized against a spectrally nat, uniform area 

with known spectral re flectance (Vane and Goetz, I 988; Research Systems Inc., 2004) 

D Empirical Linc (EL) Correction: a linear fit between ground reflectance data and raw 

spectral data is calculated and then applied to the raw data. Ground data can be collected 

simultaneously with the sate llite overpass (Ramsey and Nelson, 2005) or non 

simultaneously (Martin and Aber, 1997; Ben-Dor and Levin, 2000). 

D Internal Average Relative Rcnectancc (!ARR): the raw data is normalised against the 

average spectrum o f the image (Research Systems Inc., 2004). 

D Model based methods: a radiative transfer model is used to calcul ate surface re flection from 

raw data. The model requires the amount of water vapo ur, distributio n of aerosols and scene 

visibility. Due to the contiguous, narrow band spectral data, water vapour informat io n can 

be extracted from every pixel. Several software packages wi th this func tio nali ty exist: 

FLAASH, ATREM and ACORN (Kruse, 2004) 

The FF and IARR Calibrations arc both normalization processes and generally produce the poorest 

results. The model based methods often produce better resul ts than the other corrections but they need 

atmospheric information true for the time o f data acquisition which can be d ifficult to obtain . The EL 

calibration requires informatio n about ground targets and can produce acceptable results within a few 

percent of true reflec tance (Smith and Milton, 1999). 

2.3.2.4 Data Smoothing 

Hyperspcctral da ta acquired by field , airborne or spaceborne sensors exhibit a certain degree of random 

noise. The combination or high spectral and re latively high spatial resolution renders imaging 

spectrometers sensiti ve to noise (Landgrebe, 1997). Field sensors tend to have even narrower bandwidths 

than airborne or spaccbornc sensors and arc sensitive to no ise even when c lose to the object. The 

reduction of this noise is especially crucia l when derivative analysis is to be employed (Tsai and Philpot, 

1998). Explic it data smoothing can be omitted if the dimensionali ty of the data is reduced by a method 

that implic itly applies a smoothing function (sec details in section 2.3.2.5). 

The goal of every fi ltering function must be to reduce the noise while preserving the original features. 

Some smoothing techniques a re reviewed hereafter. 
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One commonl y used operation is the convolution. Here , a convolution function is moved over the data 

points and the mid point of this moving window is the data point to be smoothed . One o f the best known 

convolution functio ns is the average (Savitzky and Golay , 1964 ). 

The convolution process is described by: 

i=+m 

LCY;+i 
y * = _i=_-_11_1 ---

} N 

where 

Y, * = smoothed data point 

C, = convo luti on coeffi c ient 

Y
1
+, = ori g inal data poi nt 

N = movi ng window size (-m ... + m) 

For the average, a ll coefficients are I and N is the numbe r of convo lution coefficie nt s. 

One o f the most popu lar smoothing functi ons applied to hyperspec tral data is the Savitzky-Golay filter 

(Tsai and Philpot, 1998). It uses linear leas t squares regress io n to smooth the data: a po lynomial of a 

cert ain order is fitted to N data points. where N is defined by the filter size . An advantage of thi s filter is 

the ability to calculate smoothed derivative data in o ne operati o n. 

Savitzky a nd Golay ( 1964) provided tab les with the convo lutio n coeffic ients for different combinati ons of 

filter sizes. derivative orders and approx imating polynomial orders. Whil e these lookup tab les served well 

to increase the computing speed of the mac hines avail abl e whe n thi s technique was deve loped , fi lte rs are 

limited to the filt er size/polyno mial order/deri va ti ve order avail ab le in these tables . Modern 

imple mentati o ns there fore calc ul ate the required coeffi c ie nts a t run time (Tsai and Philpo t, 1998: Press e t 

al. , 2002) . 

Tsai and Philpot ( 1998) noted that the fi Iler size was the principal fac tor th at affec ted the result s of 

derivative anal ysis. 

A study conducted by Schmidt and Skidmore (2004) investi gated several smoothing techniques (Mean, 

Medi an, Savitzky-Golay , Discrete Wavelet Transformation (DWT), Non-dec imated DWT and Cubic 

Spline) for noise reduction of vegetation data. It suggested that the wavelet transformati ons were superior 

lo the other methods. 

Another well -known filtering technique is the Fourier transformatio n, but it has been shown that wavelet 

transformatio ns preserve local features better because they are locally adaptive (Press e t al., 2002; 

Schmidt and Skidmore, 2004). 

Piecewise multiplicati ve scatter correcti on (PMSC) is based o n linear regressio ns when fitting aga inst a 

standard spectrum. It is used lo correct for nonlinear additive and multipli cati ve scatter (Fyfe, 2003). 

2.3.2.5 Reduction of Dimensionality 

It has been shown that neighbouring wavebands have a high degree of correlatio n, i.e. they contain 

redundant data (The nkabail e l al., 2004a). This redundancy is created by oversampling, i.e. the spectral 

s ignal is sampled a t small e nough steps lo describe very narrow features that could be di scriminating 
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(Shaw and Manolaki s, 2002). This oversampling is what caused several studies to research the ideal 

wavebands needed for certain applicati ons. Such knowledge could then lead to speciali sed sensors that 

capture optimal bands and thus reduce the data redundancy (Thenkabail et al. , 2000; Thenkabail et al. , 

2004a). 

By using appropriate techniques it is possible to reduce the dimensiona lity significantl y while retaining 

most of the in formation. 

The most wide ly used algorithm is the principal component transformati on (PCT) (Shaw and Manolaki s, 

2002). Principal compo nent analysis performs an e igen-decomposition, the resulting e igenvectors are 

used to build a transformation matri x, which is then applied to the ori ginal data. The PCT is a zero 

corre lation, rotational transformati on. The components are ordered by their power to describe the 

vari ation found in the data. The first fe w components explain the most variation, while the later 

compone nts usuall y contain noise (Richards, I 993). By choosing a subset of the available eigenvectors to 

build the transformation matrix , the data dimensionality can be reduced dras ticall y while retaining most 

informati on. 

The Maximum Noise Fracti on (MNF) Transform (Green et al. , 1988) is similar to the PCT but addresses 

the weakness of the latter when the noise vari ance is not uni form over all bands of the dataset. MNF is a 

linear transformati on and orders the resulting compo nents by their signal-to-noise rati o . MNF, also known 

as NAPC (Noise-Adj usted Princ ipal Components), is therefore a useful technique to reduce the 

dimensionality of a dataset while re taining most in formation and minimi zing the noise at the same time 

(Lee et al. , 1990). 

Some researchers have reduced the data by simply selecting every tenth waveband, thus reducing the data 

by fac tor ten (S hephe rd and W alsh, 2002) . This approach shoul d be treated with cautio n, as it may violate 

the sampling theorem by Shannon ( 1949). The sampling theorem states that the di scre te samples are a 

complete representation of the signal if the band width is less than half the sampling rate . Shannon's 

sampling theory is appli cable whenever the input function is band-limited . When thi s is not the case, the 

standard signal-processing practice is to apply a low-pass filter prior to sampling in order to suppress 

ali asing (Unser, 2000). The process of filtering fo llowed by downsampling is re ferred to as dec imation 

(Fliege, 1994). Thus, in the context of spectral data, the application of a smoothing functi on which is 

e ffecti vely a low-pass filter , may be advisable prior to a downsampling. 

Another poss ibility of dimensionality reduction is the simulati on of other hyperspectral sensors having 

fewer bands than the orig inal sensor. 

The nkabail et al (2004a) transformed ASD spectroradiometer data to Hyperion data by using I 0nm 

bandpasses. The filtering functi on of the bandpass was not detailed . 

A different stud y al so simulated Hyperi on data by averaging every ten bands of the ASD data (Mathur et 

al. , 2002). The use of the average functi on seems questi onable, however, as the sensor response function 

of the Hyperi on sensor is of Gaussian nature (Zanoni et al. , 2002). It would therefore seem logica l to use 

a Gaussian instead of an average functi on for the band convolution process . 

The simulati on of other sensor responses from given data is an important operati on, e.g. for the 

perfo rmance evaluation of new sensors (Zanoni et al. , 2002). 

As an example , Landsat7 ETM+ was chosen in thi s study because (a) Landsat imagery is widely available 

as the Landsat program has already run for decades (b) many studies of have produced successful results, 
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e.g. a study on New Zealand vegetation (Dymond and Shepherd , 2004) and (c) the atmospheric 

correction of New Zealand Landsat imagery has been carried out at Landcare Research and Landsat 

simulated signatures can therefore provide valuable information when trying to correct Hyperion data. 

2.3.2.6 Feature Space Transformation 

In feature space, signal s are treated as vec tors in a multid imensional space (Landgrebe, 1997) . 

Technicall y, it suffices to a1Tange the renec tance bands of a spectrum in vector form to achieve the 

transformation into feature space. 

From the example given in section 2.3. 1.1 where a 2 dimensional feature space was shown, it becomes 

clear that a feature space must not be of dimension N if the spec trum was sampled in N bands. A feature 

space can be built so that it max imises the di scriminati on between classes . 

The real power of the feature space li es in the possibilities for in fo rmati on ex trac ti on. A wealth of 

stochastic methods exists that can be applied to vec tor data (e.g. Minimum Distance to Means or 

Maximum Likelihood) (Landgrebe, 1997). Many studies make use of the feature space concept , although 

it is usuall y not explicitl y ment ioned. A few examples of fea ture space transformations are given 

hereafter. 

Principal Components Transformation (PCT) (see also sec tion 2.3.2.5) is wide ly employed . It is a linear 

algebra method and as such operates in feature space. PCT transformed data represent an example of an 

optimised feature space as their axes are theoreti call y uncorrelated. 

The calculati on of indices also perfo rms a transformati on of spectra l data into a feature space. Indices arc 

mathemati ca l combinati ons of rcnec tance band data. The simplest index is the difference betwee n the 

renec tances of two bands: 

I = p (b.)- p (bJ 

The innuence of illumination conditions. surface slope. aspec t and other fac tors on the indices can be 

reduced by normali zation (Lillesand et al. , 2004 ): 

NI = p (b.)- p (bJ 

p (b.) + p (b,) 

E.g. by calculating a NOVI (Normali zed Difference Vegetation Index). the spec tral data is automatica ll y 

transformed into a I dimensional feature space. 

Deri vative Greenness Vegetati on Indices (DGVI) (Elvidge and Chen, 1995; Thenkabail et al. , 2004a; 

Thenkabail et al. , 2004b) make use of many hyperspectral bands. They describe changes in slopes by 

summing up the differences of first deri vati ves over defined waveband regions. 

where 

p'(b;_1b) = first deri vative ofrenectance curve between b;.1 and b; 

m .. n = start and end band number of DGVI area 

b; = centre wavelength of band i 

i: band number 

L'-.b; = step width : b;+ 1 - b;.1 
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These DGYI regions are: 5 15-535 nm (DGYI I), 540-560 nm (DGYI2), 560-580 nm (DGYI3), 650-670 

nm (DGY l4), 700-740 nm (DGYl5), 626-795 nm (DGVI6), 1500- 1650 nm (DGYI7), 2080-2350 nm 

(DGVI8) (Thenkabail et al. , 2004a) and 428-906 nm (DGY I9), 428-2355 nm (DGVI I 0) (Thenkabai l et 

al. , 2004b). 

Thcnkabail e l a l. (2004a) carried out nonparametric least signi ficanl tests on the mean DGYis of different 

vegeta tion. The most discriminating DGVI was found to be DGYI5, fo llowed by DGYI6, DGYl7 , 

DGYI3 , DGYI4 and DGYI8. 

Thus, feature spaces can be built of: 

D Any subset of original renectance bands 

D Any subset of zero correla tio n transforms (e.g. PCT) 

D Any number o f indices 

2.3.3 Analysis 

The typical analyses carried out can be grouped into the fo ll owing broad categories : 

D Basic research into discrimination, best bands, e tc. 

D Predic ti ve correlat io n studies to develop measures that can predict physical properties from 

spectral data 

D Spectral unmi xing: estimatio n o f the abundance of endmcmbcrs 

In practice, these categories often overlap or a re combined to get the best results. 

2.3.3.1 Discrimination 

Theoretically, every material should have a unique spectral sig nature. The study o f the discriminat ion of 

materia ls forms a basis for the classificatio n of individual signatures or hyperspectral imagery. Landgrebe 

( 1997) notes two approaches to the problem of classificati on: spec tral matching and analysis in feature 

space. 

2.3.3. I . I Speclral Matching 

Spectra l matching regards the data to be classified as spectra, i.e. a continuo us curve over a defined 

wavelength range. Here, an unknown spectrum is compared to known spectra. A match thus identifies the 

unknown. 

An early example is the two code binary vector, consisting o f amplitude and slo pe informati on. A spectral 

match is determined by assigning the unknown spectrum to the reference spectrum which has the 

minimum Hamming d istance (Mazer e t al. , 1988). An implementation of this algorithm, called Binary 

Encoding, can be found in ENVI (Research Systems Inc ., 2005). 

Other ways to match spectra are: a d istance calculation based on the root mean square differe nce between 

two spec tra over a wavelength region (Price, I 994) or a least squares fit against reference spectra, termed 

Spectral feature Filling (SFF) (Research Systems Inc. , 2005). SFF uses continuum removal and thus 

identifies the absorbtion band centres. It has been successfully used in a preliminary study 10 de tect two 

types of aquatic vegetation species (Williams e t a l. , 2002). 
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A recent deve lopment in the domain of spectral matching is the USGS Tetracorder expert syste m which 

uses continuum removal and least squares fittin g to match library and unknown spec tra. The resulting 

correlati on values rare termed the fit value . In a study that mapped the landcover of the Yellowstone 

National Park, an additi ona l raster image containing these fit values was produced, showing the degree o f 

confidence of the match. The acc uracies achieved were 9 1 % fo r 4 fo rest classes and 85 % for 4 no n-forest 

classes. It also showed a classification acc uracy o f 40.3% - 93% for 5 growth stages o f one species 

(Kokaly et al., 2003) . 

The spec tral matching makes use of known spectra, usuall y compiled in spectral libraries, such as the 

USGS spec tral library (C lark et al. , 1993). Such libraries te nd to conta in onl y a limited number of spec tra 

per material type, in many cases just one single, representative spec trum which means that o nl y I ' ' order 

stati stical data is available. 

The concept of the Shape Space (Cochrane, 2000) tri ed to overcome th is limitati on by defining the 

vari ability of c lasses by the upper and lower bounds of spectral renectancc . C lassificati o n is then 

ach ieved by a process termed shape filtering. The classificat ion criterion is the fit or overlap of the 

unknown spectrum with the shape of a class. Althoug h Cochrane reports quite high classificati on 

acc urac ies, the way in which the reflec tance of branches a nd trees was esti mated using leaf spectra 

suggests that the results of the shape space approac h shoul d no t be regarded as concl usive. 

2.3.3. /. 2 Feature Space Representation 

The Feature Space representation, on the other hand , mode ls classes as clusters in a multidime nsional 

space and as such offers the possibility of usi ng I ' ' a nd 2nd order stat istics more easi ly. 

The problem of ass igning an unknown vector to o ne of several clusters in a multidime nsio nal space can 

be so lved by usi ng discriminant analys is, a lso called . upcrvised pattern recognition. A training set is used 

to find a discriminant function (linear or quadratic) . T hi s funct ion is subseque ntl y appli ed to new objects 

to allocate it to a group (M iller and Miller, 2005). 

Like di sc riminant analysis , parti a l least squares regression (PLS ) is a method of multi vari ate anal ysis. 

Altho ugh PLS is normall y used to model continuous data , it has been successfull y used to predict gro up 

memberships for two or three groups by assig ning numerical codes to the groups (Ri chardso n et a l. , 

2003). 

A stud y of classifier using ei ther mean or covari ance or combining both showed that the best 

classification results are achieved when a c lassifier makes use of both stati stics (Landgrebe, 1997). 

A few examples of studies based on the feature space concept are given hereafter. 

Younan et a l (2004) studied the discrimination of 8 different sample types (bare soil , soybean, mi xed 

weeds, combinati on of soybean and weeds, and 3 types of weed). Half of the samples were used as a 

trai ning set and the other half was classified agai nst the training set. Six different nearest ne ighbour 

calcul atio ns gave overall c lassification acc uracies between 33% and 68%. A further classification also 

used nearest neighbour as the discriminant function but the input data were wavelet coeffic ients obtai ned 

from a wavelet decomposition of the spectra. W avele t decompositio n represents a signal by 

approximation and detail vec tors. It is mostl y used in s igna l de-noising and image compression. The 
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concept o f the wavelets can also be extended to feature extraction and classificati on. The wavelet based 

classification resulted in 45% acc uracy. 

Several points are noteworthy: the species vectors were made up of all sampled bands, thus many 

components would be found redundant. As no smoothing was applied, the d ata was still noisy. The 

di scriminati on of eight surface types, out of which one (the soil ) was very di fferent to the vegetati ve 

types, should have yie lded quite good results. The tendency of the classification acc uracy when adding 

more surface c lasses remains unanswered, but one would expect that more classes result in a reduced 

accuracy. 

The separability of classes in hyperspectral space can be determined by using a di stance analysis. Two 

such measures are the Jeffri es-Matusita (JM) and the Bhattacharya (B) distance (Schmidt and Skidmore, 

2003). The JM di stance is asymptotic to 2, i.e. a value of 2.0 would equal a 100% separability of the two 

classes (Richards, 1993). A va lue of 1.9 indicates a good separability (Research S ystems Inc., 2004). 

Schmidt and Skidmore used the JM and B distances in a study into spectral di scrimination of vegetati on 

types . They reported JM and B di stances be tween 27 c lasses using 6 wa vebands . The JM distances were 

between 0. 8 1 and 2.0 with the majority of the di stances around 1.8. They concluded that for overl apping 

classes , other in formation such as elevation could aid the di stinction. 

Instead of measuring the di stance between two vec tors in space, their separability can also be determined 

by calculating the angle between the two vectors (Price, 1994 ). This measure is call ed Spec tral Angle 

Mapper (SAM) (Landgrebe, 2003) and is part of the ENVI software (Research Systems Inc. , 2005). 

Again, thi s is a method that works on single vec tors and not on clusters and the refore onl y uses Is, order 

stati stics . This limitation can be partl y overcome by adding numerous variations of the same endmember 

to the spec tral library. One advantage of SAM is its insensitivity to changes in s ignal strength , i.e . object 

albedo. A lower/higher albedo should onl y change the length of the signal vector but not its direction. 

Mundt et a l. (2005) used SAM for the di scrimination of an invasive plant species (hoary cress) in airborne 

hyperspec tral imagery . Reported classificati on accuracies were around 80% for areas of more than 30% 

infestation. Signatures of the target species were selected from the imagery after overlaying ground 

survey data. T wo endmembers (mesic and xeric) were then formed by averaging the selec ted regions. No 

spectral signature examples that compare target to non-targets were given in the articl e. However, the 

imagery and fi eld surveys took place during bloom. Hoary cress exhibits dense white fl owers, the plant 

forms fl at, mat like covers. Thus, one could assume that hoary cress signatures are significantl y different 

from the surrounding landcover signatures . 

C lark et a l. (2005) compared the accuracy of SAM, Maximum Likelihood (ML) and Linear Discriminant 

Analysis (LDA) when classifying tropical rainforest trees at leaf and crown scale. Generally the 

performance o f SAM was lower than 53 .7% while LDA and ML reached a maximum of I 00% and 87.3% 

respecti ve ly. It was concluded that the poor result of SAM was due to the interspecies vari ability which is 

not entered into the model as SAM uses no 2nd order stati sti cs . 
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2.3.3.2 Best Bands 

Best bands are a subset of the ori ginal bands that maximise the separability of the classes . 

As mentioned before, hyperspectral data is usuall y highl y correlated. Thus the search for the best bands 

should also identify non corre lated bands. The combinati o n of such bands then forms a feature space with 

an optimised di scrimination. A few examples follow. 

The discriminative power of sing le wavebands (i. e. dimensions) can be tested using sta ti stical methods. 

The Mann-Whitney U-test determines if two populations are statis ti ca ll y signifi can tl y different. By 

applyi ng thi s test to all species combinat ions at every waveband and coun ting the cases where the 

populations differ, a hi stogram is computed that shows the important wavele ngt hs in terms of 

discrimination (Schmidt a nd Skidmore, 2003; van Till e t a l. , 2004). A process ca ll ed 'single-factor 

analysis of vari ance' (Fyfe, 2003) renders the same in formati o n as the Mann-Whitney U-test. 

The results of the Mann-Whitney U-test with a sig nifi cance leve l of 0.01 app lied to saltmarsh vegetati on 

showed that the most discriminating wavebands occurred in the NIR and SWIR regions (740-1820 nm) of 

the spectra (Schmidt and Skidmore. 2003). The wavebands in these regions were >83 % statisticall y 

different bet ween spec ies, i.e. the p-val ues of these tests were less than the c hosen s ignificance level for at 

least 83% of a ll cases. Wavebands between 1970 and 2450 nm were> 77% stati sticall y different. 

La mbda-Lambda R2 models (LL R2 M) are a data mining technique that identifies band combinati o ns of 

low correlation (Thcnkabail c t a l. , 2004a). By calcul a ting the corre lati on matrix of a number of given 

spec tral vectors , a corre la ti o n factor r is obtained for every possible band combination . After the 

conversion of r to R2 the matrix can be plotted as raster or contour image hi gh li ghting the least correlated 

band combinati o ns. Thenkabail c t a l. (2004a) used LL R2 M in a study into waveha nd performance, 

applied to samples of crops a nd weeds. The most frequently occ urrin g. non redundant waveband. were: 

red, FSWIR (far short wave infrared: I 90 1-2500 nm ), ESWIR (early short wave infrared : 130 1- 1900 nm) 

and la te NlR . They suggested that LL R2 model s are most useful when testing spec ies where spectral 

si mil ariti es are like ly to be close. 

Principal Components Analysis (PCA) can also yie ld informatio n abo ut possible best bands. The 

innue nce of the ori ginal bands o n the data variability is given by the fac tor loadi ngs, i.e . components of 

the e igenvec tors (Thenkaba il e t al. , 2004a). Thenkabail e t a l. (2004a) carried out PCA on weed a nd crop 

spectra . The first five principal compone nts (PCs) exp lained 93-95 % of the variab ility. The original 168 

bands could therefore be reduced to 5 new bands, resulting in a reduction of the data volume by about 

97%. The ESWIR bands had the highest factor load ings in the first PC which explained 65 % of the 

variability. The second PC was dominated by the red wavelengths and explained 20% of the variability. 

PC3-PC5 had the highest factor loadings in the FSWIR. This indicated the importance of red and SWIR 

wavebands for the discrimination of vegetation . 

Stepwise Discriminant Analysis (SDA) is a multi vari ate technique that tries to identify an optimal set of 

predic tors (bands) by a stepwise selection (Thenkabail et a l. , 2004a) . One of the outputs of SDA is the 

Wilk 's Lambda. The smaller Wilk 's Lambda, the better the discrimination. Thenkabail et a l. (2004a) 

applied SDA to shrub, grass, weed a nd crop spec tra . The most frequently selected wavebands that yielded 

optima l Wilk ' s Lambda values fo r shrubs, grasses, weeds a nd crops were centred at 12 15, 730, I 245 and 

1285 nm respectively. This indicated that di scriminating bands are situated in the NIR. 
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A method termed best feature selection (Mathur et al. , 2002) constructs a feature vector based on the area 

under a ROC (Receiver Operating Characteristic) curve. The area under the ROC curve is related to the 

amount of hi stogram overlap of two c lasses. The feature vector elements are then used as the weights in a 

linear discriminant analysis. Mathur e t al. used thi s method to classify grass species into two classes : 

weed ( 1 spec ies) and non-weed (5 spec ies). The fi eld spectra were first convolved into Hyperion sensor 

bands and subsequentl y put through the best fea ture selection process. Nearest Neighbour was used as the 

discriminant function and classification acc uracies of 85.47-97 .98% were reported . 

2.3.3.3 Predictive Correlation 

Hyperspectral data offer new, non-destructi ve and effic ient ways of estimating physical properties of 

objects. E.g . estimation of biomass, leaf area index (LAI) or predicti on of crop yie ld . 

The chall enge is to identi fy spectral fea tures that correlate with physical measurements. 

Four approaches to thi s problem are di scernable: (a) to use knowledge about the electro n transition or the 

bond vibration of chemicals at certain wavelengths or (b) to rely on mathematical tools or (c) to visuall y 

assess the spectral re fl ectance curves to identi fy high correlations between predictors (the refl ectances) 

and the responses (the physical data) or (d) to use or modify indices provided by other studies. 

2.3.3.3. 1 Absorbtion/Reflectance of Chemical Bonds 

Because of the frequent overl ap of spectral characteri stics of compounds, the interpretat ion of plant 

spectra using compound absorbance is di fficult at best (Richardson et al. , 2003). The absorbtion features 

(position, depth and width) of chemical bonds are however frequentl y and successfull y used in mineral or 

chemical applications. The analysis of absorption usuall y involves continuum removal (Kokaly and 

Clark, 1999) as a preced ing operation. 

However, knowledge about re fl ectance/absorbance characteri sti cs of compounds can help to understand 

the shape of spec tra. An example is the low re fl ectance of plants in the visible wavelengths due to 

chlorophyll absorbtion. 

Analysis of absorbtion features has been used for the successful estimation of fo liar nitrogen (coeffic ient 

of determination r2 = 0.85) and most of the known nitrogen absorption features could be identified 

(Huang et al. , 2004 ). 

2.3.3.3.2 Mathematical Too ls 

From a stati stical viewpoint, the coll ecti on of hyperspectral refl ectance yields multi variate data. 

Multi vari ate analysis is a branch of stati stics that can deal with multiple measured vari ables per objec t. 

This paragraph is based on Miller et al (2005) and Minitab (2003) . 

Mul tiple Linear Regress ion (MLR) finds regression equations of the form 

C; = b0; + bliA1 + ... + b,,; A,, 

where 

A,, = predictor 

C; = response 

b,,; = coefficient to be determined 
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The number o f sampled spec imens must be greater than the number of predictors n. This limits the use o f 

MLR when hundreds o f predictors (i.e. wavebands) are available. The determinati on o f the best 

combinatio n o f all possible predic tor combinati o ns would take a lo ng time . Here , the evaluati on of the 

best bands can yi eld use ful results. Also, MLR can not handle high colinearity of the predic tors. Using 

too many predictors can result in an overfit. 

MLR was used in a study that tried to estimate fo li ar nitrogen content o f Eucalyptus spec ies fro m 

Hyperi on data (Coops et a l. , 2003). In order to prevent overfilling, three bands were used that ex pl ained 

the most variati on in N at the sample pl ots: 45 8, 2264 and 2294 nm. An R2 value o f 0.84 was ac hieved , 

although thi s result must be treated with caution as no jack-knifing procedures were applied . 

One so lutio n to the colinearit y and overfilling problem of MLR is to apply a princ ipal compone nt 

transformation (PCT ) to the data first and then carry o ut a MLR. PCT is a multi vari ate technique that can 

reduce data if the vari ables are corre lated (see sec ti on 2 .3.2.5). 

The combinati o n of PCT and MLR is known as princ ipal components regress ion (PC R). 

Parti a l least squares (PLS ) regressio n is in its concept s imilar to PCR as it uses linear combinati ons of the 

predic tor vari ab les . However, in contras t to PC R. PLS does not try to max imi se the vari ati on of the 

predic tors but gives ex tra we ight to predi c tors that arc highl y correlated with the responses. 

Coops c t a l. (2003) used PLS for the above me ntioned Nit roge n estimati on and reported an R2 va lue o f 

0.68 using cross validati on (R2 0 .95 without cross validati on). They a lso noted that outli ers can negati vely 

a ffec t the acc uracy of PLS whil e MLR tends to be more robust. 

Stepwise regressio n is o ne more way o f multi vari ate regression. Stepwise regress ion tri es to build an 

optimal subset of predic tors that max imises the regression correlati o n. A number of algorithms ex ist to 

deri ve thi s best set: add and remove. forward se lec ti o n or bac kward e liminatio n (Minitab Inc. , 2003 ). 

Thus. it seems that PCR. PLS and stepwise regress io n arc a ll well sui ted tools for correlati on studi es 

using hyperspec tral data. 

2.3.3.3.3 Visual Assessment 

Vi sual assessme nt o f spectral pl ots may he lp to identify reg ions where di scriminati on seems likely. 

This technique was used in a study o f sugarcane di sease where both the mag nitude o f the differe nce 

betwee n band re fl ec tances and the directio n of re lati o nship (i.e. di vided band re tlectances) were assessed . 

Results o f visual assessment were then combined with stati sti cal in formati on to create new indices (Apan 

et a l. , 2003). 

2.3.3.3.4 Use and Modification of Ex isting Indices 

To improve ex isting indices has been the goal o f many studi es over the past years, e.g. (Thenkabail e t al. , 

2002; Apan e t a l. , 2003 ; Haboudane et a l. , 2004). 

In plant studies, one of the most widely used indices is the NOVI (Normali zed Difference Vegetati on 

Index). It is formed by contrasting red band with near infrared (NIR) band re fl ectance (Elvidge and Chen, 

1995) : 

NDVI = p(/R) - p (VIS ) 
p(JR) + p (VJS ) 
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It is known that the red band is dominated by chlorophyll absorbtion while the NIR has a high re fl ectance 

due to the internal lea f structure (Lusch, I 989). The NOVI has been used successfully fo r large area 

vegetati on monitoring using A VHRR (Advanced Very High Resolution Radiometer) data. Vegetated 

areas usuall y yield a high NOVI value while non-vegetated areas tend to have negati ve values. 

In terms of existing indices, it must be noted that quite a number were deve loped fo r use with broadband 

sensors. Their direct application to hyperspectral data does not necessarily exploit the higher in formation 

content of these data. In a study that correlated several indices with LAI, it was found that newl y 

developed, narrow band indices were superi or to ex isting broadband indices , even when the bandwidth of 

the latter was reduced (Elvidge and Chen, 1995). 

Data mining techniques are also applicable to two band indices to identify the best band combinations, 

resulting in an R2 plot similar to the Lambda-Lambda R2 band correlati on plot (Thenkabail et al. , 2002). 

2.3.3.4 Spectral Unmixing 

Spec tral mixing occurs for two reasons: (a) the spati al coverage of the sensor includes more than one 

endmember or (b) the material being sampled is in fac t a homogenous mi xture of two or more 

endmembers (Keshava and Mustard , 2002). Endmembers are materials that are pure, i.e. mi xtures are 

made up o f endmembers. 

For imaging spec trometers, the spectral mi xing results in mixed pixels, a lso called mi xels. Although the 

process of unmi xing is usuall y applied to ras ter images, it can conceptua ll y be applied to fi eld 

spectroradiometer data as well. 

Spectral unmi xing is the procedure that yields the abundances of the in volved endmembers. 

T wo models that describe the mixing exist: Linear Mixing and Nonlinear Mixing. 

2.3.3.4.J Linear Mix ing Model (LMM) 

Linea r mixing assumes that the surface consists of di stinct materi als (the endmembers) and incident 

energy onl y interacts with these pure material s. The re fl ectance that arri ves at the sensor consists of all 

endmember signals in the fi eld of view. If only one endmember takes up the fi eld of view, its abundance 

is 100%, if more than one endmember make up the fi eld of view, their abundance is equal to the 

proportion of the area they occupy. Figure 9 illustrates the concept of linear mi xing: of the three occurring 

endmembers A, B and C, A and B have a fractional abundance of 0 .25 while C has an abundance of 0.5. 

A 

C 

B 

Fig ure 9: An example of a mixed pixel (Linear mixtu re model) 

Mathematicall y, the linear mixture model can be written as 

M 

X =Ia; · s; + w = S · a+ w 
i= I 
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where X is the N x I signa l vector received by the sensor, S is a N x M matri x, consisting of M 

endmember vectors and w is a N x I additi ve noise vecto r. 

Two furthe r co nditi ons must be sati sfi ed for the unknown abundance vector a: the full additi vity 

constraint requires tha t the sum o f all abundance. must be I and the nonnegati ve constra int requires that 

all abundances must be positi ve : 

a ; ~ 1 , i = 1..M 

The unmixing consists o f three consecuti ve procedures (Keshava a nd Mustard , 2002) : 

I . Dime nsion reducti o n (optional, reduces computati on e ffort ) 

2. Endmember dete rminati on 

3. In version (a least squares solution) 

The se lecti on o f the e nd me mbe rs is critical. The abundance estimati on acc uracy is hi ghest whe n the e xac t 

number of e ndmembe rs are used in the mode l. If too few endme mbers are used the estimated frac ti ons 

will include the abundance of the mi ss ing endmembers . This is termed frac tio n error. If too many 

endmembers are used the mod el will be sensiti ve 10 instrume nta l noise, atmospheric conta mina ti o n and 

natural vari abilit y in spec tra, resulting again in frac ti on errors (R oberts et a l. , 1998) . Additi ona ll y, not 

onl y the number o f e ndme mbe rs in the mode l influences the result buL the correc t e ndme mbers should be 

selec ted tha t are present in th e scene . A technique call ed multipl e endmember spec tral mixture an a lysis 

(MESMA) tries Lo address these two issues . Based o n a coll ec ti o n of endme mbers, sets o f cndme mber 

mi xture models are c reated . These models arc then applied to each pi xel in the image. For every model 

the root mean square e rror (RM SE) betwee n mode lled spectrum and observed spec trum is ca lcul ated . The 

model that minimi zes the RMS E is chosen (Roberts et a l. , 1998). 

If it is ass umed tha t the e nd me mbers are pure substances then the ir spectra sho ul d reside a lo ng the hull of 

a multidime nsiona l space . Thus. mi xed spectra occ upy the interi o r of the space (Keshava and Musta rd, 

2002). If two endmembcrs and the ir mixtures are plo tted in spec tral space, the e ndme mbers take up the 

hi ghest and lowest re fl ectance values whil e the ir mi xtures sho w re tl ec tances in be tween, i.e. the 

endmember spec tra e nc lose the mixtures. This c reates a problem if an e ndmembcr C lies to ta ll y in 

between two other e ndmembers A and B. In thi s case it is no t possible Lo di sting ui sh the endmember C 

from mi xtures of A and B (Price, 1994). In these c irc umstances spectral unmi xing is unlike ly to yie ld 

use ful res ults. 

2.3.3.4. 2 Nonlinear Mixing Model 

In contrast to the LMM, the no nlinear mixing model does no t assume that the e ndme mbers appear in 

segregated areas but can be mixed at spatial scal es small er th an the path length o f photons. Sand grains 

made up o f diffe rent compositions are an example o f such a surface type. Due to multipl e sca tterin g 

between the grains, the resulting signal is a no nlinear mixture. 

A solution to the nonlinear mixing is the development o f mode ls for particulate surfaces . At present it is 

still unclear whe ther spectra l sig natures of mi xed pixels are dominated by linear o r nonlinear mi xing. If 

linear unmi xing is applied to nonlinear mi xtures, the absolute e rrors can be up to 30 % (Keshava a nd 

Mustard , 2002). 
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2.4 Spectral Libraries and Spectral Databases 

A main foc us of hyperspec tral remote sensi ng research is basic research or corre lation studies as 

mentio ned above. In the contex t of such studies , spectral librari es are frequentl y used but rarely are they 

explained in detail. Spectral database is a term heard of even less. 

At fir st, it may seem that the difference between spectral libraries and databases is subtl e but, as will be 

shown in thi s section, thi s is not the case. 

2.4.1 Spectral Libraries 

Spectral librari es are best described as a collec ti on of representati ve spectra of a variety of materi als. As 

such, they are crucial for identi fica ti on of unknown spectra and aid the correction and classificati on of 

remote sensing data by providing end member spec tra. 

Some of these libraries are accumulated during a spec ific study, e.g. a spectral library for urban materi als 

containing non averaged data fro m a ground survey (Hero ld et al. , 2004) or land cover types being 

averaged A VIRIS pi xel signatures (Kokaly et al. , 2003). 

None of the above studies detailed how the library was organi sed or what metadata was assembled. 

Price ( 1994) studied the vari ability fo und in crops. T he accuracy of spec tral matching against library 

spectra led to the conclusion that the acc uracy could be increased if libraries contained a larger number of 

cases (i.e. spectra showing the variability of a given materi al). 

A well known public domain spectral li brary is provided by the USGS. It is foc used mai nl y on laboratory 

spectra of rocks and minerals but includes a few vegetation spectra as well . It co ntai ns 498 spectra of 444 

samples (i.e. di fferent materi als). As such, mostl y onl y one representati ve, high quality spectrum is 

available fo r each material. Consequentl y, no second order stati sti cs are held in thi s library. 

Technicall y, the library is one binary fil e wi th a record data structure. Apart fro m refl ectance data, each 

record holds information such as: record number, title , date of acquisition and length of data set. Also 

included in thi s fil e is in formation about the spec trometer used, wavelength range, resolution and spec tral 

purity (Clark et al. , 1993). 

The majority of the publicly available spectral libraries are di stributed as physical fil es. This has 

drawbac ks such as low fl ex ibility and low query perfo rmance (Bojinski et al. , 2003). 

Milton (200 I ) li sts metadata that should be contained in a spectral library o f fi eld data such as: location of 

site, time/date , sky conditions, instrument detail s, viewing geometry, height of sensor above ground and 

band in formation. 

It is unclear if any libraries have been assembled that include metadata as suggested by Milton. Missing 

metadata can render spectral information useless as the circumstances of the capturing event are 

unknown. Onl y a complete metadata allows the researcher to gain confide nce that the spectra are indeed 

representati ve for the intended use. 

It is concluded that spectral libraries contain vital in formation but their organi sation is unclear in many 

cases. It wo uld not be surpri sing to fi nd some libraries that are merely a collection of si ngle re fl ectance 

fi les res iding in a fo lder. 
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2.4.2 Spectral Databases 

'Data are unstructured fac ts and figu res. When they have been organ ised or processed, they become 

information' after Williams and Summers (2004). 

As pointed out above, the orga nisati on o f spec tra l librari es is rarely an issue . 

Generall y, the organi sati o n o f spec tral data co ll ected during studi es is never deta il ed . 

Typicall y, a fter hav ing conducted several fie ld or laboratory sampling campaig ns o ne can expec t to e nd 

up with tho usands of fi les plus assoc iated metadata. 

The time a nd e ffort that are spent in coll ec ting spec tral data, combined with the characteri sticall y large 

number of fil es, makes it c lear that spectral data should be well organi sed. Otherwise valuable data can be 

lost or lose their value because o f missing me tadata. 

Considering the above, it seems log ical to e mpl oy a database to store spec tral data in a suitabl e form. 

O nl y one example o f such a database has been fo und : SPECCHIO (Bojinsk i e t a l. , 2003) contains spec tral 

metadata ordered by campaigns, in fo rmat io n about sensors, instrument mode ls. land use type of the 

sampled area, spati a l pos itio n and desc ript ions of the target. A relati onal database ma nage me nt sys te m 

(DBMS) is used to hold the above data in several tables . The actual refl ectance data is not stored in the 

DB but he ld on a ded icated fil e server and the spectral database links the me tadata to the re fl ec tance fil e 

via a fi le path . 

A web based interface i. used to interac t with the sys tem. The database can be queri ed to show e.g . 

informati on about fi e ld campaigns, locati o ns, target type. and land cover. Researchers can subseque ntl y 

downl oad requi red spec tral data to thei r workstati ons. 

The cent ra lised database approach of the described system faci lit ates the sharing of fie ld data of different 

studies and ensures the integrit y o f the data. 

Despite the fact that modern database syste ms can handle huge vo lumes o f data eas il y, a stud y (Be ll and 

Baranoski , 2004) has been undertaken to inves ti gate the poss ibilit y of reducing the dime nsionality, a nd as 

such the data amount , o f plan t spec tral databases. 

The data size can be minimi zed whil e still re taining much o f the in for matio n by applying a principal 

compo nent transformati on to the spectra . The number of utili sed principal compone nts in0ue nces the 

accuracy o f the reconstructed spectra. The database needs to store the transformation matri x V or a subset 

o f V. The decompos ition of the observati on matri x M is do ne by appl ying the sing ul ar value 

decomposition (SYD) M = USV T or by performin g an eigen-decompositio n o f the covari ance (or 

corre lati on matri x) o f M . 

A spectrum x is then transformed by 

y = x ·V 

respecti vely reconstructed to a certain acc uracy given by the number o f compone nts by: 

X = y · V T 
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2.5 Intermediate Conclusions 

As demonstrated above, there ex ists a certai n chain of processes that may be applied to hyperspectral data 

in order to deri ve useful in formation. For all these stages, different techniques and philosophies ex ist. In 

order to gain a sound knowledge of hyperspectral data acquisition and process ing, the most suitable and 

promising methods should be applied to real data. 

The review of spectral libraries and databases reveals an open fi eld where not much work has been done 

yet. In terms of organisation and storage of spectral data, the concept of spectral databases seems to be the 

best solution. 
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3 Methods 

3.1 Acquisition and Storage of Field Data 

3.1.1 Dataflow Overview 

The dataflow adopted for this stud y is illustrated in Figure I 0. An ASD FieldspecPro spectrorad iometer 

was used to capture the radiance a nd calc ul ate the reflectance of field objects. A GPS was connected to 

the field laptop for most of the field data acqui sition a nd the patial position of the field object was added 

to the metadata, which also included user comme nts and date/time of capture. Re fl ec tance and metadata 

were automatically saved in a binary file for every reading taken. 

These binary fi les were transferred to a laboratory computer where they were read by custo mi sed 

software and stored in the relevant tables in the spectra l database. 

GPS 

~ Radiance 

Field 
object 

ASD 
Spectroradiometer 

Field laptop 

Figure JO: Dataflmr and inl'o!l'ed hardware 

3. 1.2 ASD FieldSpecPro 

Binary file 
"' Reflectance 

&metadata B -
Lab computer Spectral 

database 

The Instit ute for Natural Resources had recently acquired a FieldSpecPro spectroradiometer (Analyti cal 

Spectral Devices Inc.) . This instrument records spec tra from 350-2500nm and samples at intervals of 

1.4nm for the reg ion 350- 1000nm and 2nm for the reg io n I 000-2500nm. These known data poi nts are 

then interpolated by cubic splines to produce I nm spaced data points. The sampling unit is compri sed of 

three separate spec trometers: YNIR (Visible and Near Infrared), SWIR I and SWIR2 (SWIR = Short 

Wave Infrared). The data of the three elements are spli ced at I 000nm (Y NIR - SWIR I) and 1800nm 

(SWIR I - SWIR2). The light is fed into the system by a 3 metre fibre optic . 

3.1.3 Study Sites 

Spectra of nati ve plants were collec ted at four differe nt sites on the No rth Island: 

D Massey University Turitea campus, Palmerston North 

D Foothills of the Tararua Range, catchme nt of Turitea stream 

D Along the Mountain Road between Ohakune and Turoa Skifield, Tongariro Nati onal Park 

D Queen Eli zabeth II Nature Trust(QE II Trust) La nd near Otorohanga, King Country 

The first two sites were selected due to their proximity to the institute's locati o n. The Mountain Road, 

T ongariro Nati onal Park was chosen to (a) capture different species that are found in mountainous areas 

o nl y, (b) provide easy access ibility by car and (c) coll ec t ground data to be used in connection with a 

27 



Hyperion image covering the Tongari ro National Park that had been acquired . The QE II Trust was used 

due to the good accessibility and the vari ati on of podocarp spec ies found. 

3.1.4 Structure of Field Data 

Storing the binary fil es in an organi sed manner helped to keep control of the data and enabled an 

automated import into the database at a later stage. 

A hierarchical data structure that re fl ects the real world and the setup of sampling campaigns was 

des igned. This structure was deri ved from the fo llowing conditions: 

I . Retl ectances of several di ffere nt species are captured 

2. In order to describe the in-species vari ati on, several specimens of a spec ies are sampled 

3. The variability of the specimens is described by several measurements per specimen 

The spati al extent where a specimen is sampled was termed a sample si te, thus a spec ies contained a 

number of sample sites . The sites were numbered in the order of their capturing. At each site, several 

readings were taken lo capture the vari ation exhibited by the specime n in question. A site therefore 

contained a number of spec tra. This led to a hierarchical di rectory structure (Figure I I) . 

• • n n u 
Si1i:_ I S11i:_ I 

Spl.'ClfUIT\ I Six-ctrum I Spt."t:trum I 

Sp...'CU-Ull\ 2 Spi.·i:trum ! Srx--cuum ! 

Figure I I : Hierarchica l directory structure 

3.1.5 Acquisition of Field Data 

Spec tra of New Zealand nati ve plants were acquired in the fi eld using an ASD Fie ldSpec Pro 

spectroradiomeler. 

Standards for the collection of fi eld data were : 

28 

D Onl y c loudless conditions were used 

D Readings were taken from nadir 

D Data for each specimen were stored as separate site 

D White references were taken every few readings 

D An average number of 10 samples were coll ected per site 

D The samples were averaged over IO readings internall y by the spectroradiometer 

D Collec ti on of spectra took pl ace between 11 am and I pm (data collected during winter) 

D A bare fibre optic with a 25° fi e ld of view was used 

D Homogenous targets were se lected to provide the best endmembers possible 

D The height above the targets was kept approximately 0.5 metres . The resulting FOY was 22 

cm in diameter 



In order to take nadir samples of shrubs and small trees, the fibre optic was mounted on a swi nging head , 

which was itself fitted to the e nd of a pole. This e nsured the nadir view of the probe and proved to be a 

valuable means of collec ting spectral data of taller objects in the field. 

As capture date and time were contained in the metadata as well as in the creati on time of the binary files , 

no additional logs had to be kept to keep track of the fi eld data coll ecti on process. 

In some cases the capture of leaf litter, soil or other vegetation could not be avo ided due to the sparse 

foliage struc ture of some spec ies, e.g. Manuka (Leptospermum scoparium). 

The number of spectra captured pe r si te varied s lightl y with the size or vari ati on exhibited by the target 

plant , i. e. more samples were taken from some larger objects to desc ribe them more thorough ly. 

3.1.6 Species 

Spectra of a total of 39 different species were co llec ted (see Table 2) . The species assembled at this point 

are by no means sufficient to desc ribe the variety fou nd in New Zealand bush . However, as a first step the 

number and variety coll ec ted suffices for the purpose of assessing the spec tral separability and 

classification of New Zealand native vegetatio n. 

Table 2: Collected species 

Latin name Common name Maori name No of spectra 

Agarhis ausrralis Kauri Kauri 18 

Brach,·gloffis repa11da Rangiora Rangiora 15 

Chio11ochloa rubra Red IUssock 10 

Copros111a robusra Kararnu Karamu 33 

Cordyline ausrralis Cabbage tree Ti kouka 31 

Cordyli11e indi,·isa Mountain cabbage tree Toii 9 

Corraderia richardii Toetoe Toetoe 27 

Cory11oca1p11s laei·igarus Karaka Karaka 26 

C_rnrhea dea!bara Si lver fern Ponga 35 

Cvarhea 111ed11l!aris Black tree fern Marnaku 42 

Dacr\'carpus dacrwlioides White Pine Kahikatca 20 

Dacrwli11111 c11pressi1111111 Red Pinc Rirnu 20 

Dicksonia squarrosa Rough Tree Fern Wheki 19 

Dracophy/11111 s11b11/ar11111 Monoao Monoao 9 

Gleichenia dicarpa var. alpina Tangle fern Waewaekaka 18 

Grise!inia !ifforalis Broadleaf Papauma 18 

Halocarpus bifor111is Pink pine, ye llow pine 27 

Hebe srricra Kororniko Koromiko 52 

Hedyca1)'a arborea Pigeon wood Porokaiwhiri 23 

Knighria excelsa New Zealand honeysuckle Rewarewa 21 

Leprosper11111111 ericoides Kanuka Kanuka 10 

Leprosper11111m scopari11111 Manuka Manuka 73 

Libocedrus bidwillii Kaikawaka Kaikawaka, Pahautea 21 

Macropiper exce!s11111 Kawakawa Kawakawa 43 

Me!icytus ra111iflorus Whiteywood Mahoe 60 

Metrosideros excelsa Pohutukawa Pohutukawa 40 

Merrosideros robusta Rata Rata II 
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Myopon11 11 lae111111 Ngaio Ngaio 48 

Myrsine a11s1ralis Mapo u Mapou 45 

No1hofag11s menziesii Sil ver Beech Tawhai 27 

Nothofag11s solandri Mountain beech Tawhairauriki 26 

No1hofag11s truncata Hard beech Tawhairaunu i 37 

0/earia paniculata Akiraho Ak iraho 10 

Phorm i11111 renax New Zealand nax Harakeke 45 

Phylocladus alpinus Mounta in toatoa Toatoa 18 

Pimelea b11xifo/ia Tall pinatoro Pi natoro 18 

Pittosporum eugenioides Lemon wood Tarata 58 

Podocarp11s rorara Totara Totara 42 

Pseudopanax arboreus Fi ve- finger Puahou 10 

3.2 Spectral Database 

3.2.1 Spectral Database Model 

T his section describes the entities that make up the spectral database model. For an overview of thi s 

mode l showing all entiti es and their relations please refer to Figure 12. 

The spec tral database was designed as a re lational database. The presented table structure is in third 

normal form. 

The d atabase was primaril y designed to hold spectral data of vegetati ve studies . Therefore it started with a 

si mple structure that could hold spectral data sorted into sites and species. The presented model was 

iterati vely developed during the study , mainl y dri ven by upcoming requirements. 

The desired feature li st of a spectral database according to the requireme nts identified in thi s study is as 

foll ows: 
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0 Implements the same hierarchical structure as used fo r the fi eld data to store spec ies, site 

and spec trum data 

0 Multiple studies: can hold spectral data of different fi e ld/laboratory campaigns 

0 Refl ectance storage: stores the refl ectance data in the database in its ori ginal form 

D Processing parameters: holds parameters that are needed for the processing of the data 

D Stati sti cs: holds I st and 2nd order stati stics to enable c lassification, discriminant analys is and 

separability measureme nts to be carried out effi cientl y 
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Figure 12: Database model 011erl'ie 11 · at enti(v le11el 

3.2.1.l Study, Species, Site and Spectrum Entities 

sensor 
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Rel_l l 
V 
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The entiti es spec ies. s ite and spectrum re nect the hierarchica l structure th at was int roduced previo usly 

(see 3. 1 .4). The study e ntity was added to the top of thi s struc ture to enable the storage o f data be lo ng ing 

to different studies in the same database (Figure 13). 

study · I 
species 

(1, ·1 
study FK 

(1, l l 1/ spec,es_,ct 
,J study_,d <> .., common_name 
.., name 

~ lat1n_name 
., descnptlOn (1, ·1 
., datapath 

(1, · 1 .., maon_narne 
., folder _name 

., mn_no_of_spec_per_endmembe, ..; study _id (FK) 

(1, ·1 ..., endmember 

study FK (1, ·1 

<> study FK species FK 

<> <> <> 
(1, ll species_FK 

spectrun 
(1, ll 1/ spectrum_id 

.; pathname 
(1, ll 

site 
..; reflectances 'l site_ld 
~ site _id (FK) (1, ll .., site_no 
..; latitude .., capttXe_date 
..., longitt.de Site FK ..., long,tt.de 
.., altitude (1, ll (1, · 1 .., latitude 
~ species_id (FK) .., altitude 
..; spectrum_no species _,d (FK) 

study_id (FK) study_id (FK) 
..; asd_comrnent 

Figure 13: £RD of the entities study, species, site and spectrum 
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Study attributes 

Attribute Description 

study_id Primary key 

name Name of the study 

description Description of the stud y 

datapath Path to the di rectory that ho lds the species folders of thi s study. This 

direc tory is the start of the hierarchical data structure. The datapath is 

used to automati call y read the spectra into the database. 

min_no_o f_spec_per_endme mber This number de fines how many spectra a species needs as a 

minimum to be included in the creati on of statistics. The reason for 

thi s is that the covari ance does not describe the shape o f the data 

adequate ly enough if onl y a few samples are used in its calculati on. 

Species attributes 

Attribute Description 

spec ies_id Primary key 

common_ name The common, i. e . Engli sh name o f the spec ies 

latin_ name The latin , i.e. scientific name of the spec ies 

maori_ name T he maori , i.e. nati ve name of the species 

fo lder_ name Name of the physical fo lder that holds spectral data of thi s spec ies 

end me mber A boolean value. This fac ilitates data export if onl y endmembers are to be 

exported. It a lso is used in spectral mi xture studies to des ignate the 

end members. 

study_id Re ference to the study thi s species belongs Lo 

Site attributes 

Attribute Description 

site_id Primary key 

site_no The number of thi s site 

capture_date Date when the site was captured 

longitude Longitude of the spati al position of thi s s ite 

latitude Latitude of the spatial position of thi s site 

a ltitude Altitude of the spatial position of thi s site 

s tudy_id Reference to the study thi s site be longs to 

species_id Reference to the spec ies thi s site be longs to 
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Spectrum attributes 

Attribute Descripti on 

spec trum_id Primary key 

pathname The full pathname o f the binary ASD fil e 

re fl ectances The re fl ec tance da ta stored as binary objec t 

latitude Longitude o f the spati al position of thi s spectrum 

longitude Latitude o f the spa ti al position o f thi s spec trum 

altitude Altitude o f the spa ti al position o f thi s spectrum 

spectrum_ no The number tha t is auto-assig ned to thi s spec trum by the AS D contro ll er 

so ft ware 

asd_comrnent User comment as e ntered in the ASD controll er softw are 

stud y_ id Re ference to the stud y thi s spec trum belongs to 

spec ies_ id Re fere nce to the spec ies thi s spectrum belo ngs to 

site_ id Re fere nce to the site thi s spec trum be longs to 

3.2.1.2 Waveband_filter and Waveband_filter _range 

The waveband_ filte r and waveband_ filter_ range e ntities ho ld data that a re needed fo r the re mova l of 

noisy or uncalibrated bands from the spec tra . They were defined at the stud y level because every stud y 

might have differe nt require ments fo r the data filt ering (Fig ure 14 ). E.g. a study th at conta ins data 

collec ted by a contact probe will not need to remove water ba nds as the influe nce o f the a tmosphere is 

prac ticall y non ex istent. Similarl y, if a stud y wishes to concent ra te on a certa in part o f the spec trum onl y, 

the unused wavebands can be removed by entering them into the filte r struc ture . The design is thus able to 

acco mmodate not onl y vege tati on data co ll ec ted under fi e ld conditi o ns with solar illuminati on but can 

deal with contac t probe data as we ll. 

study 
,J study_1d 
.., name 
.. desrnptJOn 
.. datapath 
.. min_no_of _spec_per _endmember 

stud FK waveband_filter 
[1, '] y_ [1, l] 

~---< ">---- ! ;~~~~~F:\ter_,d 

[1, •1 .., changed_at 

waveband_filter_FKl [1, "l 

study_FK I 

L waveband_filter_r[~ ~ 
,J waveband_filter_range_id 
-, ower_wavelen<,Jth 
-, upper_ wavelength 
~ waveband_filter _id (FK) 
~ study_id (FK) 

Figure 14: ERD of the entities study and waveband_Jilter and waveband_Jilter _range 
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Waveband_filter attributes 

Attribute Description 

waveband - fi lter_id Primary key 

changed_at T he date when thi s filter was las t modi fied 

study_id Reference to the study thi s fi lter belongs to 

Waveband_filter _range attributes 

Attribute Description 

waveband_ fi lter _range_id Primary key 

lower_ wavelength The wavelength in nanometres where the fi lter starts 

upper_ wavelength The wave length in nanometres where the filter ends 

waveband_ filter_ id Reference to waveband_fi lter 

study_id Reference to the study thi s filter range belongs to 

3.2.1.3 Library, Statistic, Feature Space, Sensor, Smoothing, Derivative and associated tables 

The library can be thought of as a collection of data that is needed to look up un known signatures . A 

library is built for certain settings of the data processing chain , namely waveband fi ltering, smoothing, 

sensor convolution, deri vati ve calcul ati on and feature space transformati on. The resulting library is setup 

for classification of data that is processed in exac tl y the same way. In other words, before a class ificat ion 

can be carried out on a dataset, its li brary must be built. 

A library therefore references the entities smoothing_fi lter, sensor, deri vati ve and feat ure_space (see 

Figure 15). For a library to be valid its build date must be newer than the dates of modificati on of the 

entities waveband_fil ter, smoothing_filter, deri vati ve and feature_space. 

The actual data needed for a classifi cati on is he ld in the stat istic entity in fo rm of a mean vector and a 

covariance matri x fo r every spec ies. 

The smoothing_filter entity holds data needed for the smoothing by a Savitzky-Golay filter. 

The sensor entity contains data for the synthesizing of sensor responses. Two general classes of sensors 

ex ist, defined by the description of the response type of their elements: 

I . Gaussian: each sensor element response is modelled by a Gaussian func tion. The Gaussian curve 

is defi ned by the average wavelength and the full width at half the max imum (FWHM). 

2. Rati o: each sensor element response is modell ed by rati os applied to narrow band data over a 

certain range of wavelengths. 

The entity sensor_element holds both Gaussian and Ratio settings, depending on the type of sensor. In the 

case of Gaussian sensors, one sensor_element entry describes one sensor band. For Rati o sensors, many 

sensor_element entries may be needed to describe one sensor band . 

The deri vati ve entity holds data for the calculati on of deri vati ves either by an itera ti ve, finite di fference 

method or by Savitzky-Golay coeffi cients. 

The fea ture_space entity holds or refers to data needed for the fea ture space transformati on. 

34 



A feature space be lo ngs to a type o f fea ture space. The type of fea ture space de fines the way in which the 

transformation is calcula ted. 

Three types o f feature space were considered to be useful , a lthough more possibilities exi st: 

I . Deri vati ve Indices (DI ): a fea ture space is formed by calculatin g several Dls. The band ranges 

fo r these indices are held in the band_range entity . 

2 . Normali zed T wo Band Indices (NTBI): a feature space is formed by ca lc ul a ting severa l NTB!s. 

The two ba nds that de fine o ne index are he ld in the band_range entity 

3. PCT: a feature space is fo rmed by calcul ating a certain number of compo nents. The 

transformati o n matri x is he ld in the pca_data entity. The number o f compo ne nts to be calculated 

is equal to the dimension o f the feature space. 

Simil ar to the li bra ry, the pca_data is calculated for a certa in setup of waveband_ filt e r, smoothing, sensor 

synthesizing and deri vati ve calculati on. 

Library attributes 

Attribute Desc ripti on 

library_id Primary key 

build_date The date whe n thi s library was las t compil ed 

feature_space_id Reference to feature space used when building library 

smoothing_ fi lter_ id Reference to smoothin g filt er used whe n building library 

se nsor_ id Reference to sensor used whe n buildi ng library 

deri va ti ve - id Refere nce to deri vati ve used whe n buil ding li brary 

waveband - filt er - id Reference to waveband fi lte r used when buildi ng library 

stud y_ id Refere nce to stud y thi s library belongs to 

Statistic attributes 

Attribute Descriptio n 

stati stic_id Primary key 

no_of_samples Number o f samples tha t were used in the sta ti stic calcul ati o n 

mean The mean vec tor stored as binary object 

COY The covariance matrix stored as binary object 

library_id Refere nce to library thi s stati sti c belongs to 

spec ies_id Refere nce to species thi s stati stic belongs to 
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Feature_space attributes 

Attribute Description 

feature_space_id Primary key 

fs_type_id Reference to the type o f fea ture space 

dimension The dimension of the feature space 

name Name of thi s feature space 

description Description 

build_date Date when feature space was created or modified 

Feature_space_type attributes 

Attribute Description 

fs_type_id Primary key 

name Name of thi s feature space type (i.e. DI, NTBI or PCT ) 

type A numeric coding for the type. Identical to the numbers used in the processing 

software. 

PCA_data attributes 

Attribute Description 

pca_data_id Primary key 

eigenvectors The eigenvector matri x of the principal components analysis stored in binary 

format 

e igenvalues The eigenvalue matrix of the principal components analysis stored in binary 

format 

dim The dimension of the above matrices 

build - date Date when the eigenanal ysis was carried out 

smoothing_filter _id Re ference to smoothing filter used when performing PCA 

sensor_id Reference to sensor used when performing PCA 

de ri vati ve - id Reference to derivative used when performing PCA 

waveband_ filter - id Reference to waveband filter used when performing PCA 

study_id Re ference to stud y on which PCA was performed 
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Band_range attributes 

Attribute Description 

band_range_id Primary key 

band! First sensor band to be used for NTBI or start band of DI band range 

band2 Second sensor band to be used for NTBI or end band of DI band range 

comment Free user comment on thi s band range 

name Name of thi s band range. This is used as column name when exporting feature 

space data . 

fea ture_space_id Reference to feature space thi s band range belongs to 

Sensor attributes 

Attribute Description 

sensor_id Primary key 

name Name of the sensor 

description Description of the sensor 

sensor _response_type_id Reference to sensor type 

Sensor _response_type attributes 

Attribute Description 

sensor _response_t ype_id Primary key 

type A numeric coding for the type. Identi cal to the numbers used in the processing 

so ft ware. 

name Name of thi s sensor response type (i. e. Gauss ian or Ratio) 

Sensor _element_attributes 

Attribute Description 

sensor _el ement - id Primary key 

band_no Band number of the sensor 

avg_ wavelength The average wavelength of the sensor element (for Gaussian sensors) or the 

wavelength of the input band to be ratio-ed. 

fwhm Full width at half the max imum. Essenti all y de fines the shape of the Gaussian 

response curve. Only for Gaussian sensors. 

rati o The ratio to be applied to the input band (defined by the avg_wavelength). Only 

fo r ratio sensors. 

calibrated Boolean, de fines if the band is calibrated or not. Uncalibrated bands will not be 

used in the processi ng. Some sensors have certain bands defined as uncalibrated 

(e.g. Hyperion) and it may be desired to store this in formati on in the database. 

sensor_id Reference to sensor thi s element belongs to 
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Derivative attributes 

Attribute Description 

derivative - id Primary key 

po lynomial_order Polyno mial order (for Savitzky-Golay derivative calcu lation onl y) 

filter_s ize S ize of the filte r (for Savitzky-Golay derivative calcu lati o n only) 

derivative order Order of deriva tive -

cha nged_at Date when thi s derivative setu p was changed 

study_id Refere nce to study thi s derivati ve setup belongs to 

deriv_calc - method - id Refere nce to the calcul ati o n method 

Derivative_type_method attributes 

Attribute Description 

deriv_calc - method - id Primary key 

type A numeric cod ing fo r the type . Identi cal to the numbers used in the process ing 

software . 

name Name of thi s calcul ati on method 

Smoothing_filter attributes 

Attribute Descripti on 

smoothing_ filter_ id Primary key 

filter _s ize Size of the filter 

po lynomial_order Po lyno mial order 

changed_at Date whe n thi s smoothin g filte r was changed 

sf_type_id Refere nce to filter type 

study_id Refere nce to stud y thi s smoothing filter belongs to 

Smoothing_filter _type attributes 

Attribute Description 

sf_type_id Primary key 

type A numeric coding for the type. Identi cal to the numbers used in the processing 

so ftware. 

name Name o f thi s filter type 

3.2.1.4 Mixture 

The mixture e ntity (Figure 16) is used to describe mi xtures where the abundance is known, such as in 

laboratory experiments. The abundance settings are the n used to di splay error stati sti cs a fter the unmixing 

process. Several entries in the mi xture entity are needed to describe a mixture, e.g. if a mixture consists of 

three e nd me mbers, the n three mixture records are required to de cribe the mixture. 
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Mixture attributes 

Attribute 

mixture_id 

abundance 

end member -

species_id 

species 
ii species _id 
..; common_name 
..; latin_name 
.., maori _ name 
..; folder _name 
.., study_id 
.., endmember 

id 

[1, *] 

Description 

Primary key 

The fracti onal abundance of the endmember in thi s spec ies 

The spec ies_id of the endmember 

The species_id of the mi xture. 

Species FK 

<> 
mixture 

[1, 1] iJ mixture_id 
..; abundance 
v endmember _id 
..; species_id (FK) 

Figure 16: ERD of the entities species and mixture 

3.2.2 Spectral Database Implementation 

The database was implemented in MySQL (M ySQL AB , 2005), a GNU open source so ft ware. MySQL is 

a re lati onal database management system that can handle large amounts of data, allows data access via 

standard SQL commands, provides multi-user access over TCP/IP and supports several APis (Application 

Programming Interfaces) amo ngst which is CIC++. 

3.3 A Spectral Data Management and Processing Software 

A spectral database as described above is not of much use on its own. Data must be fed into the database 

and data extrac tion routines must ex ist in order to exploit the benefit s of a spec tral database. The technical 

requirements fo r such a sys tem were identified as fo llows: 

D Graphical user interface to the database 

D Functions for loading spec tral data into the database 

D Data pre-processing functi ons 

D Data analysis functions 

D File export functi ons to allow data analysis and plotting in 3rd party packages 

The resulting software was called SpectraProc. The software architec ture is described in section 3.3.2, the 

concepts and algorithms used in the spectral data processing and analysis functi ons are described in the 

secti ons 3.4 and 3.5. For a screenshot of the graphical user interface and according description please 

re fer to the Appendi x. 
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3.3.1 Programming Language, Libraries and Environment 

The software was developed for the Microsoft Windows environment usi ng Microsoft Visual C++ V6.0. 

The graphical user interface was based on Microsoft Foundation Classes (MFC), using a simple 

Document-View architec ture with one document and one associated view. MySQL C API (Appl ication 

Programmer Interface) was used for the database access from C++ code. Matrix calcul ati ons were based 

on the excellent C++ matri x library New Mat VI OB (Davies, 2002) which is avail able freely on the 

in ternet. 

3.3.2 Software Architecture 

3.3.2.1 File System Interfaces 

SpectraProc provides input and output interfaces to the file system (see Figure 17). Input fil e formats are: 

ASD binary fil e as produced by the ASD FieldSpecPro Spectrorad iometer, ENVI Z-Profiles that are 

signatures ex tracted from hyperspec tral imagery in ENVI and sensor specifications in a proprietary, 

tabulator separated format. ASD files can be imported into the database as part of a study or loaded into 

memory for class ificati on aga inst a study dataset. ENVI Z-Profi les can be loaded for classification onl y. 

Sensor spec ificati on fil es are a way of defining new sensors in the database. 

Output can be written in three data fo rmats: ( I ) CSV (Comma Separated Values) for import into various 

3rd party applications like spreadsheets or stati sti c packages, (2) ENY ! Spectral Library for import into 

ENVI and subsequent use for e.g. signature matching and (3) ARFF which is a special format used by 

WEKA (U ni versity of Waikato, 2005). WEKA i a co llect ion of mac hine learning algorithms for data 

mining tasks . 

AS D csv 
Bumi) 

'-' '-' 

ENVI ~ 
3 

Z- SpectraProc C: 

'3 
Profil e 9-

::, 

0 
Sen..,or ARFF 

Specifi File 

cation-. 

Figure 17: File system interfaces 

3.3.2.2 Class Overview 

SpectraProc was designed as an object oriented program. Many of the SpectraProc classes were derived 

from MFC classes as they fo rm part of the graphical user interface. 
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Table 3 li sts all classes derived from MFC including a short description of the purpose. The non-MFC 

classes are described in Table 4 and graphicall y presented as an UML (Unified Modelling Language) 

di agram in Figure 18. 

Table 3: Short description of M FC derived classes 

Class Name Derived from Description 

CSpectraProcDoc CDocument The document of the document-view 

architecture. Holds the runtime objects of: 

library, spec tra_factory and spec_proc_data 

C SpectraProcView CFormView The main form of the application. Manages 

all di alogs and handles Windows messages. 

Dlg_abundance_setting_c lass CDialog Defi nes the known abundances of 

endmembers in known mi xtures 

Dl g_accuracy_c heck_class CDialog Selection di alog to choose another stud y to 

be used as independent dataset 

Dlg_endmember_selection_c lass CDialog Used to set the endmembers In a give n 

dataset 

Dlg_feature_space_edit_c lass CDialog Create and modi fy fea ture space defi nitions 

Dlg_fil e_export_c lass CDialog Choices for fil e export 

Dlg_filterband_def_class CDialog Defines a lower and upper wavelength for a 

waveband filter range 

Dlg_i mport_sensor _c lass CDialog Import dialog fo r sensor fil es 

Dlg_new _study _c lass CDialog Creation of new studies 

Dlg_progress_c lass CDialog Progress bar, used by several processes 

Dlg_site_accuracy_c lass CDialog Dialog to select a spec ies fo r classification 

accuracy check on site level 

Dlg_Smoothing_filter_settings_class CDialog Set the smoothing parameters for Savitzky-

Golay filters 

Dig_ Waveband_Def_class CDialog Defines two wavebands, used for entering 

new indices or waveband regions for feature 

spaces 

Dig_ waveband_ filter_setup_class CDialog Creati on/Modificati on of waveband filters 
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spectrum_c lass endrrermer_class file_class 

site_class 
classff y _endmerroer _class rrerrory _f ile_class conf_f ile_c lass 

species_class 

sensor _class smoothing_f ilter_class 

gaussian_sensor _class ratio_sensor _class no_filter_c lass savitzky _golay _filter _class 

spectra_store_class reflectance_class feature_space_class spectra_processing_data_class 

Spectra_! actory _class filter_class directory _service_class classffication_result_class 

report_buffer _class library _class derivative_calc_ class 

Figure / 8: Non- MFC classes 

Table 4: Short description of 11011 -MFC deri1w l classes 

Class Name Derived from Description 

classificati o n - result_class - Storage and manipul a ti on o f 

class ificati o n results 

endme mber_c lass - Represent s an endmcmber with a mean 

vec tor and a covari ance matri x 

classify _e nd me mber _class endmember_c lass Used as endme mber in c lassifi cati on 

conf_ fil e_c lass file_class Reads and writes config uration files 

deri vati ve_calc - cl ass - Calculate deri vati ves 

directory_service_class - Creates li sts of fil es and subdirectories of 

a fi le system directory 

feature_space_class - Represents a feature space with its 

settings loaded from database 

file_class - File input and output 

filter_class - Class for waveband filtering 

gaussian_sensor _c lass sensor - class Represents a sensor with e leme nts of 

Gaussian response function 
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Class Name Derived from Description 

library_c lass - Holds functi o ns for : classificati on, 

separabi Ii ty report , building spectral 

libraries, eigenanal ysis and spectral 

unmi xi ng 

memory_ fil e_c lass fil e_class Allows the transposing of structured fil es 

by holding the fil e structure in memory 

before writing to a fil e. 

no - filter_class smoothing_filter _class Performs no smoothing but copies the 

data directly into the next re fl ectance 

structure 

ratio - sensor_cl ass sensor _class Represents a sensor with elements of 

ratio response functi on 

re fl ec tance_class - Holds spectral da ta: band number, 

re fl ectance and average wavelength 

report_buffer _c lass - Buffer class for handling the text output 

in the main window 

savitzky _go lay _ filter _class smoothing_fi lter_c lass Smoothes the da ta using Sav itzky-Golay 

coefficients 

sensor_class - Base class fo r Gauss ian and rati o sensors 

site_c lass spectrum_c lass Represents a site 

smoothing_filter _c lass - Base class for smoothing filter types 

species_class site - class Represents a spec ies 

Spectra_factory_class - Used for loading spectra from fil es or 

database, inserting into the database and 

outputting data to text fil es 

spec tra_processing_data_c lass - Central data pool for processing settings 

such as: waveband filter, smoothing 

filter, sensor, deri vati ve calculator and 

diverse waveband filters for the removal 

o f smoothing or deri vati ve artefacts. 

spectra_store_c lass - A li st that holds spectra. Used when 

spectra are loaded directl y from fil e into 

memory. 

spectrum_class CObjec t Represents a spectrum 
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3.3.2.3 Spectral Processing Concept 

The spectral database only stores the raw spectral data. Further processing of the spectra is performed at 

runtime and the results are held in memory . Once a spectrum is loaded from the database it is put through 

a cascade of operati ons as shown in Figure 19. The result of every stage is saved in a separate data 

tructure in memory . These data struc tures and processing functions are attributes or methods respec tive ly 

of every object of the spec trum class. An instance of the spec trum c lass offers a me thod that returns the 

data of a certain stage of processing and wi ll interna ll y execute all preced ing steps needed for that stage. 

Thi s allows the easy fi le export of spec tral data at any process ing step. 

Figure 19: Spectral data processing cascade 
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3.4 Data Processing 

The data processing was divided into the fo llowing stages: 

I. Waveband Filtering 

2. Smoothing 

3. Sensor Synthesizing/ Oownsampling 

4 . Deri vati ve Calculation 

5. Feature Space Transformation 

The underlying algorithms of these stages are described hereafter. 

3.4.1 Waveband Filtering 

The data in the fo llowing band ranges were seriously affec ted by atmospheric absorbtion and had to be 

removed from the spectra: 1350- 1440 nm, 1790- 1980 nm and 2360-2500 nm (see Figure 20). 

Technically thi s was done by setting the reflectance values in the filtered regions to -1. The later 

processing steps then just ignored these values. 
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Figure 20: An example of pre and post fi ltering of noise bands 

3.4.2 Smoothing 

The Savitzky-Golay filter was chosen because of its reported good performance and the re latively simple 

algorithm invo lved . As mentioned in the review of smoothing methods, the filter coeffic ients are 

calculated at run time instead of read from lookup tables . The chosen implementat ion is based on Press et 

al. (2002) . 

In a first step a design matrix is created that holds the polynomial equations: 

A = i 1 
I) 

j=O, ... ,M 

where 

nL , n N = left hand, right hand filter size 

M = polynomial order 

The coefficients are then calculated by 

where 

ii= vector with elements n . = i _; 
J 

i = -nL , ... ,+nR j=O, ... , M 

Note that for the calculati on of the coefficients only the first row of the inversed matrix is used. 
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Two possibilities exist for the smoothing of the data using the Savitzky-Golay coefficients: convolution 

by a moving window filter or by multiplication in frequency space. 

The moving window function calculates the smoothed value for every band by: 

y. * = '--1~_-_11_, ---

/ N 

where 

Y
1 

* = smoothed data point 

C, = convolution coefficient 

Y
1
+

1 
= original data point 

N moving window size (-m ... +m) 

It can be shown that a convolution in time space is equal to a multiplication in frequency space. Fast 

Fourier Transformation (FFT) of both the smoothing function and the signal transforms them into 

frequency space. 

s*r=S·R 

where 

s = signal 

r = response function (smoothing function) 

S. R = FFT(s) resp. FFT(r) 

The smoothed signal in time space is then the inverse FFT: 

s = invFFT(S · R) 
\/}//l{l[/1 

In both cases the result must he filtered to remove artefacts that appear at the start and end of every valid 

waveband segment (Figure 21 ). The new valid segment sizes are calculated by: 

Au ,
111

,,,, 11,,,1 = Au - pos _filter_ size 

Al,m,,
0

,1,,,1 = Al - neg_ filter_ size 

where 

Al, Au = lower and upper segment wavelengths 

Thus every segment looses information of filter_size l. 
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artefacts 

3.4.3 Synthesizing of other Sensors 

The synthesizing of other sensor responses using ASD data is use ful due to several reasons: 

1. Reduction of dimensionality 

2 . Direct comparison of airborne/spaceborne sensor and ground data 

3. Implic it smoothing of the data 

4 . Pred icti on and assessment of the usefulness of a certain sensor 

The synthesizing of other sensor bands is also called band convolution. The process used is principall y a 

convolution operation as described in 2.3 .2-4. A filter is moved over the data and used to calculate the 

band values of the sensor to be synthesized. The process of spectral band synthesis is based on the 

algorithm used by Zanoni (2002). 

The simulat ion of Hyperion and Landsat? ETM+ were of interest for thi s spec ific research. These sensor 

types can however be generali zed and thus a generic synthesizing operation can be designed that allows 

the simulation of any sensor that fa ll s into the fo llowi ng two classes: Ratio and Gaussian . 
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3.4.3.1 Ratio Sensors 

The sensor element function of these sensors is modelled by a number of known coefficients, thus the 

synthesizing operation is simply a convolution of a defined wavelength region using these coefficients 

(ratios). 

An example of such ratios is shown for Landsat7 ETM+ band I (Figure 22). The ratios for Landsat7 used 

in this study were made available by Dr J. Shepherd of Landcare Research. The ratios were given at I nm 

steps. thus they could be directly applied to the ASD band reflectances. 
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Figure 22: Ratiosfor Landsat7 ETM+ band I 

The convolution is calculated hy: 

r 
I 

where 

/!H I 

'c ·r L,...; I I 

1=/\1 _ J 

1_:::/11 _ ! 

r
1 

= the synthesized rcllectance value of the j-th synthesized hand 

c, = the coefficient for wavelength i 

r = reflectance value of i-th ASD band 
I 

lw j = lower wavelength of the j-th band 

uw _ J = upper wavelength of the j-th band 

3.4.3.2 Gaussian Sensors 

The sensor element response function of these sensors is best approximated by a Gaussian function. The 

sensor elements are technically defined by the middle wavelength and the full width at half the maximum 

(FWHM) (see Figure 23). 

The Gaussian function is defined by: 
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where 

o = standard deviation 

µ=mean value 

Gaussian funct ion for mu=O and sigma=2 
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Figure 23: Gaussian curve illustrating the FWHM measure 

The maximum of a Gaussian function is always at the mean valueµ and the function is symmetrical to the 

mean . Thus for x = µ the Gaussian function becomes: 

The curve becomes more sharply defined for smaller values of o and wider for bigger values of CJ . 

The standard deviation CJ can be calculated from the FWHM as described hereafter. 

As the Gaussian curve assumes half the maximum at the points defined by the FWHM, the function can 

be written as: 

f(µ)=2·f(µ± FW;M)=2·f(µ±d) 

I 
---=2-f(µ ±d) 
~-a 

where d = FWHM/2 

As the curve is symmetric, the above equation can be solved for either x = µ + d or x = µ - d. 
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l 1 -~(( p+d)-µ )2 
----c= =-- = 2-==-- . e 2 a 
~ -a fi:,i. a 

1 -¾(!'.-)! 
- = e - a 

2 

l ( cf )

2 

In(0.5) = - 2 a 

2 I (d )2 

a =-----
2 In(0.5) 

a= -0.8493218003 · d, 0.8493218003 · d 

The coeffi cients used for the convo lution operati on are g ive n by the Gaussian fun cti on: 

. e
- ~ ( -'n_11·_d,_·11_g,_I, "---'-" '-'"-' __ ,_- ,_n_n·c_·i,_·11_,,,-=-'"-" '" _ } r 

c, = J (wavelength _ band _ i) = ~ a 
-v 2 · Jr · (j 

where 

wa 1•ele11 g1h _ band _ i = wavelength of the i-th ASD band 

11·m ·eleng1h _ band _ J = wave length of the j -th band of the sensor to be synthesized 

C; = the i-th coeffi c ient fo r the convo lution operati on 

The band convolution is calcul ated by 

where 

p +nm!.,'t' 

I c, · r, 
1= µ -rtt11!.,' (' 

µ + r,111-i:1' 

I c, 

r
1 

= the synthesized refl ec tance value of the j-th synthes ized band 

C; = the coeffi cient determined by the Gauss ian functi on for the wavelength of the i-th AS D band 

r; = refl ectance value of i-th AS D band 

rm,gc = defines the range of values to be used for the band convolution symmetricall y to the middle ASD 

waveband. The middle ASD waveband is the one cl osest to the average wavelength of the j -th 

synthesized band. 

3.4.3.3 Hyperion 

The Hype ri on sen or captures data from 400 to 2400 nm with bandwidths of I 0nm. This spectral range 

and resolution of the Hyperion sensor is a generalizati on. Waveband centres do not lie at whole number 

frequenc ies, band widths are not sharpl y defined and the sensiti vity of the sensor is not uni form over the 

band width. The sensor characteristi cs are available in Microsoft Excel fo rmat from the United States 

Geological Survey (USGS , 2005). 
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The Hyperion sensor is an example of a Gaussian sensor. The spectral response function of the sensor 

e lements is well approximated with a Gaussian function (Liao and Jarecke, undated). 

See Figure 24 for an example of the sensor response functions of two neighbouring sensor elements. 
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Figure 24: Sensor response fun ctions for Hyperion sensor elements 8 and 9 and the FWHM of band 8 

Hyperion synthesizing was used in thi s study for three purposes: (a) create a spectral library that could be 

used to class ify Hyperion imagery at a later stage, (b) reduce the dimensionality of the data to simpli fy the 

data analysis and (c) implicitly remove noise from the spectra by the smoothing effect of the synthesizing 

operation. 

The range of values used for the convo lution was set to 3 times the standard deviation : range = 3 · a , 

i.e. 99.74% of a ll contributing values are used (Papula, 1994). 

This range was practically not usable fo r all bands because some wavelengths had been filtered 

previously . In these situations, the range was symmetrically reduced to avoid filtered areas . 

By convoluting the ASD data to Hyperion-like bands, the dimensionality was reduced by approximately a 

fac tor of I 0. 

The actual synthesizing process was carried out as described under Gaussian Sensors. 

The Hyperion band creation resulted in 166 new bands. 

3.4.3.4 Downsampling 

The downsampling sensor is a hypothetical ratio sensor. Bands are spaced a certain wavelength apart with 

a ratio of I . A convolution of data using a downsampling sensor with a band spacing of I 0nm results in a 

downsampling of the data by factor ten, i.e. every tenth waveband is chosen. It may be advisable to apply 

the downsampling onl y to smoothed data in order to avoid ali asi ng. The combination of smoothing and 

downsampling is called dec imation. 

3.4.4 Derivative Calculation 

Two approaches to the calculation of derivatives were identified. 

An explic it calcul at ion of the derivative for a given wavelength by the finite difference method by: 
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P
'(b b ) = p(bi+ I )- p(b; ) 

I 1+1 A(bi+I) - A(b;) 

where 

p(b; ) = reflectance of band i 

A(b;) = wavelength of band i 

p' (b;h;+ i) = first derivative of linear curve segment between retlectances of band i and band i+ 1 

The n-th derivative is thus calculated by applying the above formula n times. 

An implicit calculation is possible by Sav itzky-Golay coeffic ients by simpl y se lec ting the n-th row of the 

inverse matrix and multiplying by n! : 

c = (11(A r . A)-1
} • n)· order! 

1 .~ nrd1 ·r 

However, this method performs automaticall y a smoothing of the data which may not be needed or 

wanted after the sensor synthesizing. 

Both methods lose n data points per valid segment . The explicit calcul ation loses one data point per 

iteration. The Savitzky-Golay filtered data lose data points due to the removal of artefac ts. The number of 

points lost depends on the filter size. 

For the calculation of the filter coeffic ients and correct derivatives the fo ll owing conditi ons must be met: 

polynomial _ order ;::: derivatil'e _ order 

filt er_ si~e ;::: max( polynomial _ order+ I, deri1•ati l'e _ order+ I) 

Thus the minimal filter size depends on both the polynomi al and the deri vati ve order. A minimal filter 

size of (deri vati ve_order+ I) will result in the removal of n = derivati ve_order number of points. 

3.4.5 Feature Space Transformation 

Three types of feature spaces were implemented: 

0 Deri vati ve Indices (DI) 

0 Normalized Two Band Indices (NTBI) 

0 Principal Component Transformation (PCT) 

3.4.5.1 DI (DGVI) 

DGVIs (Derivative Greenness Vegetation Indices) are examples of Dis. These indices are effecti vely 

describing the shape of the reflectance curve. The DGVI calculation was based on the equations used by 

Thenkabail et al. (2004a) and Elvidge and Chen ( 1995). The derivatives of the re fl ec tance were computed 

by using the slopes of linear interpolations between the disc rete re fl ectance band values (Figure 25). The 

first derivative of refl ectance i therefore: 

'(bb ) = Pi+I -pi 
p i i+I A(bi+I) - A(b;) 
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Figure 25: Illustration of discrete reflectance values p and interpolated linear curves to form a 

continuous reflectance curve 

The DGVIs were calculated using the equati on: 

where 

p'(b;_1 b;) = first derivative of reflectance curve between b;_1 and b; 

m .. n = start and end band number of DGYI area 

b; = centre wavele ngth of band i 

= band number 

b.b; = step width: b;+ 1 - b;_1 

In detail this meant that for the calculation of the DGYI value for one band, the reflectance of three bands 

was needed : 

P; - Pi- I P i+I - P; 

DGVI (b ) = p' (bi) - p' (bi+I) = bi - bi- \ bi+I - b; 

' 11b 11b 

The above implies that for the calculat ion of the DGVI over a region of n bands, n+2 bands are needed. 

3.4.5.2 NTBI 

Normalized two band indices were calcu lated by: 

NTBI = p(b, ) - p(b, ) 

p(b, ) + p(b, ) 
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3.4.5.3 PCT 

Principal compone nts tra nsformatio n requires as in put the e igenvectors of a g iven dataset. T he 

eigenvalues are given by the solutio n of the characteri sti c equation: 

Xo:,> = det(I: , - A · !) 

where 

x (L ,) = characteri s tic polyno mia l of L \ 

L , = covari ance matri x of the dataset 

I = identity matri x 

T he e igenvec tors are given by the so lu tio ns to the eq uat ion 

I' - A ·fix = 0 ~ \ I - I 

where 

' = covariance matri x of the dataset ~· 
I = identit y matri x 

A, = eige nva lue i 

,!, = eigenvec tor i 

T he s ize of the eige nvalues is an ind ication of the correlati on of the da ta. A rapid fa ll off in the size of the 

eige nvalues indicates a high correla ti on. The eige nvalues can be plotted as a scree plot whic h shows the 

drop off graphicall y. The proporti on of vari ab ility exp lained by each compone nt is given by: 

proportioni 
eigenva luei 

sum (eigenva lues) 

The cumulati ve proporti on is given by: 

cum_ proportion i = cum_ proportioni- l + proportion i 

If the eigenvalues are contained in a matri x their sum is g iven by the trace of the eigenvalue matri x. The 

proporti on and cumulati ve proporti o n indicate how many components the PCT should utili ze. 

T he eigenvectors are then fo und by solving the charac teri sti c equati on for every eigenvalue . 

The transformation matri x G is the transposed eigenvector matri x. The origi nal data x is transformed into 

a new feature space by: 

y= G ·x 

If o nl y the first n compone nts are to be used, the transformati on matri x is a sub-matri x of G, consis ting of 

the fi rst n components. The dimensio n of the resulting fea ture space is therefore n: 
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y = G · X 
IIX I 11X111 mxl 

where 

m = original size of data space 

n = ne w s ize o f data space, equal to the number o f selected components 

It must be noted that the eigen-decompositio n of a dataset should be recomputed if new data is added to a 

dataset. 

3.5 Statistical Analysis 

3.5.1 Classification 

Classificati on is the process of assigning an unknown object to a given c lass . Classifiers are the 

a lgorithms that are applied to the data during c lassification. Classifiers can be defined by di scriminant 

fun cti ons. A simple example of a di scriminant functi on is the di sta nce to mean. The di scriminant functi on 

o f every c lass is applied to a n unknown vector. The class ifier the n se lects the class whose discriminant 

functi on produced the least distance between the unknown and the mean of thi s class. The resulting 

class ifier is called 'Minimum Distance to Mean'. 

Three differe nt classifiers were impleme nted . Their di scriminant functi o ns are as fo llows: 

Quadratic (Gaussian) di stance (Richards, 1993): 

g; (x) = InlI ;I+ (x -m; )' L; _, (x -m;) 

General squared di stance (Minitab Inc., 2003): 

g ;(x) = -2(m/ L; -'x -0.5 · m/ L; _,m; )+ x ' L; _,x 

Spectral Ang le Mapper (SAM) (Landgrebe, 2003): 

where 

x = unknown vector 

= species i 

L ; = covariance matri x of spec ies i 

m; = mean vector o f spec ies i 
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3.5.2 Discriminant Analysis 

Discriminant analysis is similar to classification but the input consists of data of known classes. 

Therefore, discriminant analysis can be used to test the classifier as well as the discriminating power of 

the feature space. DA outputs not only a classification accuracy but also errors of omission and 

commission. 

The output of the DA was an error matrix built as follows: the columns were the spectra to be classified 

ordered by species and the rows were the species that made up the library. i.e. the known classe;,. All 

spectra of each species were classified using one of the discriminant functions, the results were then 

written into the corresponding column and row, i.e. the number of correctly classified spectra ended up in 

the diagonal elements while the omission errors were stored in the off diagonal clements. The column and 

row total was the sum of all column or row clements respectively. The total number of classified spectra 

was the sum of all column and row totals. The overall accuracy was calculated by dividing the sum of all 

diagonal elements by the total number of spectra (Lillesand et al., 2004 ): 

overall 
Truce(error matrix) 

accurocv = ----------
Total number of spectra 

The producer and user accuracies were then given by dividing the diagonal clements with the total of the 

respective column or row. 

3.5.3 Separability Analysis 

Separability measures were calculated for all species pair combinations that had enough spectra to form a 

well defined distribution in an n-dimensional feature space. 

The .lcffries-Matusita (JM) and the Bhattacharya (B) distances were chosen for this task (Richards. 1993 ): 

]
11 

= 2(1-e-n) 
in which 

where 

i, j = species i, resp. j 

I , = covariance matrix of species i 

m1 = mean vector of species i 

3.5.4 Most Discriminating Bands 

The discrimination potential of the bands was tested using the Mann-Whitney test, also known as the two 

sample Wilcoxon test. The Wilcoxon test was applied to all possible species pairs. Only library relevant 
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i.e. species with at least 15 spectra were included in thi s test. The number of poss ible spec ies pairings is 

given by the binominal coeffi c ient: 

(N) N! 
2 - (N - 2)!-2! 

Thus the 32 spec ies formed 496 combinations. For all poss ible spec ies pairs the Wilcoxon test was carried 

out for every band : 

P xY _; = wilcoxon(r; ;, r;; ) 
where 

rx _; = vector containing the re fl ectances of all spectra of spec ies X at the band i 

ry _;=vector containing the re fl ec tances of a ll spectra of species Y at the band i 

PxY _; = probability of the null hypothesis assuming that the samples supplied in the vec tors were drawn 

fro m the same population. T he smaller the value of p X Y _ ; the stronger the evidence that band i will 

di scriminate. 

A significance level of 0 .0 1 was used to dec ide if the tested spec ies were significantl y di ffe rent for the 

give n band. The number of species pairs that were signifi cantl y di fferent was counted for each waveband. 

This process was implemented in R (Venables et al. , 2005) and applied to (a) raw data, (b) Hyperion 

synthesized data and (c) fi rst deri vati ve of Hyperion synthesized data. 

3.6 Mixed Spectral Signatures 

Spectral unmixing is usuall y applied to imagery. It is however conceivable that spectroradiometer fi e ld 

data can a lso be unmi xed. A few experiments were conducted as described hereafter to produce spectral 

mi xtures under a controll ed environment. 

The general setup fo r all these experiments is shown in Figure 26. A ci rcular area was illuminated by a 

tungsten lamp set at an angle of 45° and sampled by a 25° bare fi bre fore optic. 

The di ameter o f the sampling area was chosen as 140mm, i.e . radius r = 70mm. The height h of the optic 

above the sampling area was calculated by: 

r 
h = - --- = 3 15mm 

tan( l2.5°) 

The di stance of the Spectralon panel fo r the taking of whi te references was similarl y calcul ated and set to 

200mm. 
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Figure 26: General mixing setup 

3.6.1.1 Paper/Plant Mixture 

A set of mixtures of white printing paper and kawakawa leaves (Macropiper excelsum) was sampled. The 

mixtures were defined by the angle of coverage. leading to the abundances shown in Table 5. The step 

size between mixtures was 30" as shown in Figure 27. 

Figure 27: Mixture segments 

Tahle 5: Mixtures of paper and kawakmrn 
-· 

I Pape. abundance I Kawakawa abundance ~ Paper angle Kawakawa angle 
--· 

360 0 1.00 0.00 
·~- --·-. 

330 30 0.92 0.08 . 
~·---·- ·-·----

300 60 0.83 0.17 
·-·· --

270 90 0.75 0.25 
------ ·-

240 120 0.67 0.33 
··-· ·~·---· 

210 150 0.58 0.42 
·-·-

180 180 0.50 0.50 
·-- ·--

150 210 0.42 0.58 

120 240 0.33 0.67 

90 270 0.25 0.75 

60 300 0.17 0.83 
~.~ .. 

3: I 
·-· ··-----

330 0.08 0.92 
--

360 0.00 1.00 
-· ·-
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3.6.1.2 Paper/Plastic/Plant Mixture 

Simi lar to the above mixture, several combinations of mixtures of three endmembers were produced. The 

materials involved were: white printing paper, green plastic from fast binding folders and kawakawa 

(Macropiper excelsum) leaves. As 30° steps would have led to too many possible combinations with 3 

materials , the step size was increased to 90° which led to the mixtures listed in Table 6. 

Table 6: Mixtures of paper, plastic and kawakawa 

Paper Plastic Kawakawa Paper Plastic Kawakawa 

angle angle angle abundance abundance abundance 

0 0 360 0.00 0.00 1.00 

0 90 270 0.00 0.25 0.75 

0 180 180 0.00 0.50 0.50 

0 270 90 0.00 0.75 0.25 

0 360 0 0.00 1.00 0.00 

90 270 0 0.25 0.75 0.00 

180 180 0 0.50 0.50 0.00 

270 90 0 0.75 0.25 0.00 

360 0 0 1.00 0.00 0.00 

90 90 180 0.25 0.25 0.50 

90 180 90 0.25 0.50 0.25 

180 90 90 0.50 0.25 0.25 

270 0 90 0.75 0.00 0.25 

180 0 180 0.50 0.00 0.50 

90 0 270 0.25 0.00 0.75 

3.6.1.3 Three plant mixture 

Similar to the paper/plastic/plant mixture experiment, mixtures of three plants were setup: kawakawa 

(Macropiper excelsum) , lemonwood (Pittosporum eugenioides) and karaka (Corynocarpus laevigatus) 

(see Table 7). The experiment was conducted outdoors with the sun as light source. 
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Table 7: Mixtures of kawakawa, lemonv..-ood and karaka 

Kawakawa Lemon wood Karaka Kawakawa Lemonwood Karaka 

angle angle angle abundance abundance abundance 

0 0 360 0.00 0.00 1.00 

0 90 270 0.00 0.25 0.75 
-

0 180 180 0.00 0.50 0.50 

0 270 90 0.00 0.75 0.25 

0 360 () ().00 1.00 0.00 
··---

90 270 () 0.25 0.75 0.00 

180 180 0 0.50 0.50 0.00 

270 90 () 0.75 0.25 000 
I ---- ........ 

360 0 0 1.00 0.00 0.00 
·- ----------

90 90 180 0.25 0.25 0.50 

90 180 
1 

90 0.25 0.50 0.25 

90' 
............... -------- - -

180 90 0.50 0.25 0.25 
-· 

270 () 90 0.75 0.00 0.25 
·-

]80 0/ 180 0.50 0.00 I 0.50 I 
' --~ 

I 
--------------: 

90 O' 270 0.25 0.00 I 0.75 
J__ _______ 

', 

--~ -· - -------I---------

3.6.1.4 Positional Dependence of Paper/Plastic Mixtures 

In order to establish if the position of a segment on the mixing circle had any influence on the resultrng 

signature, a positional dependence experiment was conducted. To cancel out effects that might he due to 

the illuminating tungsten lamp, the experiment was carried out once using the lamp in the laboratory and 

once using sunlight outdoors. Three mixtures were used with each mixture being setup in four different 

positions as shown in Table 8. The illumination was from the right hand side. 

Table 8: Paper/plastic mixtures and positions 

Paper Plastic Paper Plastic Position Position Position Position 

angle angle abundance abundance 1 2 3 4 

270 90 0.75 0.25 _J 

180 180 0.50 0.50 
.......... 

90 270 0.25 0.75 ,. 
j 
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3.6.1.5 Unmixing 

The unmi xing was implemented in M atl ab (The MathWorks Inc. , 2004) using a linear mi xing model with 

full additi vity constraint (Keshava and Mustard , 2002): 

=(STSt'S TX 

= au -(sT st' zT (z(s T st' zT t (zau -b) 

where: 

X = spectrum vector to be unmi xed (L x 1) 

S = endmember matri x (L x M) consisting of M e ndmembers with the columns being the endmember 

spectra vectors 

au= the unconstrained least squares solution for the abundances of the e ndmembers in the spectrum 

vector X 

Z = a I x M row vec tor hav ing all ones 

b = set to 1 for the enforcement of the full addi ti vity constraint Za = b 

aF = full additi vity solution of the abundance of the give n e ndmembers in x 

The negati vity constraint was not used for the unmi xi ng procedure due to the complexity of the involved 

implementatio n. 

3.6.1.6 Probe Rotation 

This experime nt was designed to establish if the bare fibre optic was sampling the fie ld of view 

homogenously. A fifty-fi fty mi xture of white printing paper and green plas ti c was sampled outdoors to 

remove any influence of the tungsten lamp at four 90° rotational positions of the probe as shown in Figure 

28. 

3 Fibre 

1/ 
4 T 2 

Figu re 28: Rotational positions of the bare fibre 
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4 Results 

4.1 Spectral Properties of New Zealand Native Plants 

The spectra of the coll ec ted spec ies show the typical features of vegetation (see Figure 29): a low 

reflection in the visible with a noticeable peak in the g reen around 570nm for most spec ies. Exceptions 

are Chionoch/oa rubra (Red Tussock) and Dracophylwn subu/atum (Monoao) that are both of a browni sh 

co lour and therefore show a slope ri si ng from blue to red . The red edge is found around 690nm where a 

steep rise beg ins that starts to level out al the NIR shoulder aro und 780nm. The first IR absorbti on 

fea ture li es around 990nm, fo llowed by the I ' 1 NIR peak (- 1090nm), the 2nd NIR absorbtion feature 

(- I 220nm) and the 2nd NIR peak (- I 290nm). The shortwave infrared (SWIR) shows two peaks at 

- 1690nm and -2220nm respecti ve ly. 

Figure 30 shows the mean spectra per species of all coll ec ted species . The waterband noise was removed 

before carryi ng out a Hyperi on synthesizi ng. 

1st NIR 
1st NIR peak 

2nd NIR 
absorbtion 

NIR shoulder 
absorbtion 
feature feature 2nd NIR peak 

1.00 
0.90 
0.80 
0.70 
0.60 

0.50 
04 0 
0.30 
0.20 
0.10 

/ 
0.00 ~---+----<t----------1-------+---

300 

Green peak 

1100 1300 1500 1 00 

Waveleng1 h 1nm] 

1st SWIR maximum 

Figure 29: Features of a vegetation curve 

2nd SWIR maximum 

A visual discrimination of the spec ies by the ir re tlec tances a lone must be regarded as difficult for most 

species . As the feature space concept was chosen for thi s study, pre-processing steps inc luding a feature 

space transformati on had lo be applied before a multi variate di scrimination could be carried out. The best 

settings for the pre-processing had to be established first. The results of these steps are described in the 

fo llowing sections. 
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Mean Hyperion Sythesized Spectra of NZ Native Plants 
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Figure 30: Mean Hyperion synthesized spectra of NZ nati ve plants 

4.1.1 Smoothing 

A Savitzky-Golay fi lter was applied to the data. T he res ulting smoothed data is a function o f the filter size 

and the polynomial order. The determinati on of the best parameters that, in the best case, remove a ll noise 

but re tain a ll in fo rmati on is however not straight fo rward as mentioned by Schmidt and Skidmore (2004). 

T he main difficulty is that a non-noisy reference spectrum, against which the efficiency of the smoothing 

filter could be measured, does not ex ist. The remaining options to assess the smoothing result were visual 
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inspec tions; either of raw and smoothed data together or o f the noise spectra calcul ated by subtracting the 

smoothed from the raw spectra. 

To show the trends of the smoothing operati on, filter sizes in steps of IO between I I and 51 were 

combined with polynomia l orders 3, 4 and 6. The reason fo r leaving out order 5 is due to the fac t that the 

smoothing coeffi cient s fo r orders 4 and 5 are identical , as are those for orders 2 and 3. All tests were 

carried out on a spectrum of Pittosporum eugenioides. The resulting spectra are shown in Figure 3 1. 
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Figure 3 J: Effects of variations of smoothing fi lter size and polynomial order on smoothed spectra 
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Regardless of the polynomial order the bigger filter sizes remove more noise, best seen in the region 

around 2300nm. The effect of the order of the fitted polynomial is most noti ceable in the NIR at the start 

of the first absorbtion feature (-950nm). Orders 4 and 6 still preserve some subtl e changes in thi s region, 

even with a 51 filter size while order 3 (filter size 51 ) almost totall y removes these undulations and 

produces a smooth curve. 

The noise spectra (Figure 33) show that invariably the region between 2000nm and 2300nm is the noisiest 

foll owed by the red-NIR region (700nm-l l 80nm). As expected, the biggest filter combined with the 

smallest order performs the most smoothing. However, the noise spectra just show the removed data 

regardless of whether they are noi se or valuable informati on. One would expect noi se to be randoml y 

di stributed. A close inspection of the noise spectra in the red-NIR region (see Figure 34) gives an 

indication that valid data are removed by the filters o f order 3. Regions that seem to consist of valid 

fea tures and not random noise are : 700nm-770nm, 900nm- l 020nm and I l 30nm- l 170nm. One can also 

observe the jump at I 000nm that occurs where the visible and SWIR I spectrometer data are spliced . 

These findin gs suggest that polynomial orders of 3 or lower are likely to remo ve valid information while 

order 6 filters might retain too much noise by over-accurate curve fitting. Filter sizes around 3 1 combined 

with polynomial order 4 seem to be a good trade off between retention of spec tral features and smoothing 

being atta ined . 

An analysis of the RMSE of raw minus smoothed spectra (Figure 32) shows that with order 3 the filtered 

noise gro ws with increasing filter size while for order 5 the RMS E for filter size 51 is actuall y lower than 

fo r size 41 . The phenomenon of decreasing RMS E with increasing filter size fo r higher orders is because 

of (a) a generall y lower overall noise due to more accurate curve fitting and (b) a complete loss of 

in fo rmation at every segment due to increasing filter sizes. 

Ultimately, the best smoothing filter will be the one that produces the best results in the analysis stage. 

Two versions o f smoothing using Savitzky-Golay coeffi cients were implemented: moving window and 

convolution by fas t Fourier transformed (FFT) data. It was fo und that the moving window calculati on 

performed fas ter than FFT. 
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4.1.2 Sensor Synthesizing 

Sensor responses for Hyperion, downsampling and Landsat7 ETM+ were calculated . The noise spectra 

shown were calculated by first interpolating the sensor bands to ASD bands and then subtracting the 

interpolated ASD data from the raw ASD data. The interpolation functi on was chosen as a linear curve, 

based on the fact that straight lines were a lso used for the explicit calculation of deri vatives. These 

straight segments between the sensor reflectance values were defined by: 

J().) =a+}.-/J 

p (b j) - p (bi ) 
/J= ----­

b. - b, 
J l 

a=f(bi)-bi·/J 

where 

f ().) = interpolation function for a curve segment 

bi , b j = wave lengths of consecuti ve sensor bands 

The resulting RMSE could not be directly compared with the RMSE obtained from the different 

smoothing parameters. The data reduction of the synthesizing and subsequent interpolation by straight 

segments naturall y results in a higher loss of data. 

4.1.2.1 Hyperion 

The Hyperion synthesizing resulted in 166 new bands. The smoothing function of the synthesizi ng 

process proved to be good enough to apply the synthesizing to the raw da ta without any previous 

smoothing step. Figure 35 shows the full raw and Hyperion synthesized spectra of Pittosporum 

eugenioides. One can observe that the Hyperion synthesizing results in a good fit of the raw data at least 

visua ll y. Figure 36 shows the NIR and SWIR2 parts where the most data were removed by the smoothing 

operation. The NIR part again shows the jump at I 000nm due to the internal spectrometer switchover. 

The noise spectrum of raw minus interpola ted Hyperion synthesized data with an RMSE of 0.002254 is 

shown in Figure 37. The negati ve and positi ve noise peaks around 700nm are the effect of the data loss at 

the red edge. The spectral curve ri ses from 0.07 to 0.8 1 in only about 80nm, i.e . the ASD sensor samples 

80 data points while the Hyperion sensor models thi s curve segment with only 9 data points. The average 

vertical difference between data points is 0.00925 for ASD and 0.08 for Hyperion . The exac t shape of the 

curve is thus lost in thi s region. 
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4.1.2.2 Downsampling 

All downsampling was preceded by a smoothing operation using a filter size of 3 1 and an order of 4. 

T hus the results presented here are the output of a decimation functi on. 

T wo different downsampling rates were implemented : fac tor 5 and factor 10. 

A graphical comparison shows that decimation by 5 is superior in retaining detail s o f the spectral curve 

(see Figures 38-40). This does not necessaril y imply that analysis based on decimation 5 will yield better 

result s as the retained spectral fea tures might just as easil y be noise. 

The noise spectra (see Figures 4 1 and 42) show that decimation by 5 removes less noise than decimation 

by I 0 . This is most obvious in the red edge (700-770nm) where the closer sampling interval of the 

decimation by 5 models the curve shape more accurately. The RMSEs were 0.001 29 1 for decimatio n by 5 

and 0.00161 fo r decimation by I 0 . 

300 500 700 900 

Comparison Raw and Decimation by 10 and 5 Spectra 

f 
11 00 1300 1500 

Wavelength[nm] 

1700 1900 2100 2300 2500 

- Raw offset 

Decimation 5 offset 

- Raw 

~ Decimation 10 

Figure 38: Raw and decimated by fac tor JO and 5 spectra of Pittosporum eugenioides ( offset for clarity) 
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4.1.2.3 Comparison of Hyperion Synthesizing and Decimation 

A compari son of the RMSE of the noise spectra of raw minus Hyperion synthesized and decimation by I 0 

and 5 shows that Hyperio n synthesizing removes the most noise (see Figure 43) . Again , the optimal 

sensor synthesizing for a subsequent analysis task should be chosen based on the analys is results as it is 

not easy to di stingui sh between removed noise and valid spectral fea tures. 
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Figure 43: RMS£ of Hyperion synthesizing and Decimation JO and 5 

4.1.2.4 Landsat 7 ETM+ 

Landsat7 ETM+ synthesizing resulted in a drastic data reduction, creating 6 new bands (Landsat bands 1-

5 and 7) . The wavelengths chosen fo r the Landsat bands were the middle wavelengths of the indi vidual 

sensor elements. Figure 44 compares the synthes ized signatures of Pittosporum eugenioides for Landsat7 

ETM+ and Hyperion. While an identifi cation of species using Landsat7 ETM+ data would undoubtedly 

be more difficult than using Hyperion, it does feature datapoints in the blue, green, red, NIR and SWIR, 

meaning that data for vegetation s tudies is available as has been demonstrated by many studies using 

Landsat data. 
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Figure 44: Landsat7 ETM+ and Hyperion signatures 
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4.1.3 Derivative Calculation 

The deri vative calculation was fo und to be very depe nde nt on the pre-processing of the data; even a sli ght 

noise in the input data resulted in high noise in the derived data. To illustrate thi s, six different deri vati ves 

of Pittosporum eugenioides are shown in Figure 45. The nois ies t derivati ve was calcul a ted from the raw 

data. The sharp spike a t 1000 nm is e xac tl y at the position of the sensor overl ap, i.e. it is an artefact of the 

machine . These steps can appear due to a lack of warm up time of the AS D instrume nt. In formation to 

support or reject thi s possibility was not avai lable in thi s particul ar case . The deriva ti ve of the smoothed 

data (Savitzky-Go lay smoothed with filter size 3 1 and order 4) appears much smoother than the derivative 

o f the raw data, espec ia ll y so in the regio n 800- 1 I 00nm that inc ludes the sensor overl ap and above 

1800nm where the raw data show high noise. The noise was further minimi zed by smoothing the data 

using again a Savitzky-Fi lter fo llowed by a deri vative ca lcul a ti on using Savitzky-Golay coefficients for a 

firs t derivati ve with a filt er s ize o f 3 1 and polynomial o rder 4 (see curve named ' I" de ri vati ve (SavGol) 

of smoothed data '). The data was thus essenti a ll y smoothed twice . The resulting derivative was smoothe r 

than the one that had been smoothed once onl y. The smoothest derivative was obtained from Hyperion 

synthesized data, fo llowed by data decimated by fac tor IO and fac tor 5. The decimati ons were ca lc ul a ted 

by first smoothing with a Sav itzky-Golay filter o f s ize 3 1 and order 4 and then clownsampling by afore 

me ntioned factors. 

Derivatives based on different pre-processing and derivative calculations 
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Figure 45: Derivatives based on diffe rent pre-processing and derivative calculations 
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4.1.4 Feature Space Transformation 

4.1.4.1 DGVI 

The DGVI regions were based on the wavelengths used by Thenkabail et al. (2004a; , 2004b) 515-535 

nm (DGVII ), 540-560 nm (DGVl2), 560-580 nm (DGVI3), 650-670 nm (DGVl4) , 700-740 nm 

(DGYl5) , 626-795 nm (DGVI6), 1500-1650 nm (DGVI7), 2080-2350 nm (DGY18) and 428-906 nm 

(DGYl9), 428-2355 nm (DGVII 0). These regions were then slightly modified to render them useful for 

Hyperion synthesized data as some Hyperion band wavelengths were just outside the original regions . 

These modified regions were: DGVI I (508-539nm), DGVI4 (650-672nm), DGVI5 (700-743nm). DGVI8 

and DGVI IO were cut short to avoid the highest noise in the SWIR2 segment: DGVI8 (2080-2336nm), 

DGVI IO ( 428-2336nm). 

For clarity these regions are shown in Figure 46. DGVIs 1-4 were narrow (-20nm), DGVIs 5, 7 and 8 

were broader (40 - 270nm) and DGVIs 6, 9 and 10 were very broad and included other DGVI regions . 
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The DGVI transformation resulted in a new IO dimensional space. 

The discriminative power of the DGVIs was measured by means of the Wilcoxon test al a significance 

level o f 0.0 I. The process was similar to the one described in sect ion 3.5.4. The result is the count of 

species pairs with a stati sti call y signifi cant difference per DGVI (see Figure 47 and Table 9). Thi s 

s ignificance test was carried out on: 

D Unsmoothed data 

D Savitzky-Golay smoothed data with a polynomial order of 4 and filter size o f 3 1 

D Savitzky-Golay smoothed data with a polynomial order o f 4 and filter s ize o f 51 

D Dec imat ion by 10 (Savitzky-Golay smoothed (s ize 3 1, order 4) fo llowed by downsampling 

by fac tor I 0) 

D Dec imation by 5 (Savitzky-Golay smoothed (size 31 , order 4) fo llowed by downsampling 

by factor 5) 

D Dec imation by 5 (Sav itzky-Golay smoothed (size 51 , order 4) fo llowed by downsampling 

by fac tor 5) 

D Hyperi on synthesized 

D Hyperion synthesized preceded by a smoothing with a Savitzky-Golay filt er (size 51 , order 

4) 

Table 9: Mean frequencies of statistica lly significant differences in species pairs for DC Vis ca lculated fo r 

differing pre-processing parameters 

Decimation Decimation Dec imation 
Hyperion 

Smoothed Smoothed pre-
Raw data by 10 by 5 by 5 Hyperion 

(3 1 4) (5 1 4) smoothed 
(3 1 4) (3 1 4) (5 1 4) 

(5 1 4) 

DGVI_ I 57 260 26-l 277 269 278 275 301 

DGV l_2 65 252 248 256 249 254 268 272 

DGVl_3 94 270 269 315 288 309 283 282 

DGV1_4 62 274 280 277 278 274 28 1 289 

DGV l_5 287 327 327 324 332 338 323 333 

DGV l_6 50 250 243 247 242 247 258 276 

DGV1_7 84 374 384 392 396 377 396 385 

DGVl_8 15 47 103 99 47 150 101 282 

DGVl_9 50 246 239 248 242 239 26 1 282 

DGVI_I0 12 92 251 215 138 256 206 300 

Mean 77.6 239.2 260.8 265 248 .1 272.2 265.2 300.2 
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Figure 47: Frequency of statistica lly significant differences of DGV!s and their dependence on pre­

processing 

Unsmoothed raw data produced the lowest frequencies of all data types tested with a mean of 77.6. Only 

DGVI5 had a high frequency (287) which can be explained by less noise occurring in the red edge of the 

spec trum where the c urve rises sharply enough to reduce the impact of noise. All other DGVIs had low 

frequencies , especially DGVI8 which covers the very noi sy SWTR2 segment and DGVII O which includes 

almost the full spectrum. 

The impact of noise on the DGVIs was demonstrated by the fact that smoothed raw data produced much 

highe r frequencies with a mean of 239.2 for filter size 3 1 and 260.8 for filter size 51 . The bigger filter size 

produced smoother curves and resulted in better frequencies for the noisy DGVI segments 8 and I 0 . 

Dec imation by IO preformed similarly to the smoothed raw data with a mean frequency of 265 . 

Dec imation by 5 was again depende nt on the filtering preceding the downsampling. A filter size of 3 1 

produced a mean of 248.1 while a filter of s ize 51 resulted in a mean of 272 .2. The most improvement by 

larger filter sizes was again found for DGVTs 8 and I 0. 

Hyperion synthesized data produced similar results as decimation by IO and 5 respectively with a mean of 

265 .2. 

The best overall result with a mean of 300 .2 was achieved by Hyperion synthesized data preceded by a 

smoothing (fi lter size 51 order 4 ). 

Regardless the pre-processing the highest frequencies occurred in the SWIR I segment which is partly 

covered by DGVI7 . 

The IO DGVIs define a feat ure space in which the species form distributions . This concept can be 

visualized in two dimensions by scatterplots of two DGVTs (see Figure 48) . In this example, the 

combination of DGVI2 and DGVI6 showed a considerable overl ap of the distribution of Ha/ocarpus 
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biformis with Nothofagus menziesii and Pittosporum eugenioides. The combinati o n o f DGVI2 and 

DGVI7 was more successful in separating the three species. The oval shape of the scalier for DGVI2 

versus DGVI6 also indicated that these two dimensions were corre lated. 
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Figure 48: Example of th e discrimination of species by DCV!s (ca lculation based on Hyperion 

synthesi~ed data) 

4.1.4.2 NTB ls 

Based on the work on crops by Thcnkabai l e t a l. (2000) three narrow band NOVI type indices were used 

as examples for NTBis: NTBI I (550nm and 468nm), NTB I2 (550nm and 682 nm) a nd NTBl3 (920nm 

and 696nm). 

For direct comparison with the di scriminating power of the DGYls, the same pre-processing sets were 

used and a Wilcoxon test with a significance leve l of 0.0 1 was applied to all NTBls (sec Table 10 and 

Figure 49). 

Not surpri singly, the pre-processing had Jillie influe nce o n the di sc riminating power o f the three indices. 

The e ffec t o f smoothing operati o ns was abso lute ly minimal. Generall y, sli ghtl y broader bandwidths 

(- 10nm) preformed a bit belier tha n the very narrow ( I nm ) band wid ths. 

Interesting ly, wi th a mean frequency of 283.5 the NTB is were more di scriminating than the DGYis wh ic h 

had an overall mean frequency of 241. 

Table JO: NTBI and mean frequencies of statistically significant differences in species pairs 

Decimation 
Smoothed Smoothed Decimation Decimation Hyperion 

Raw data by 10 (3 1 Hyperion 
(3 1 4) (5 1 4) by5 (3 1 4) by5 (51 4) (5 1 4) 

4) 

NTB I 303 304 303.0 30 1 30 1 302.0 306 305 

TBl2 268 268 270.0 265 265 269.0 265 265 

NTBl3 279 278 279.0 274 281 278.0 288 287 

Mean 283.333 283 .333 284 280 282.333 283 286.333 285 .667 
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Figure 49: Frequency of statistically significant differences of NDV!s and their dependence on pre­

processing 

4.1.4.3 PCT 

As a first step a principal compone nt ana lysis was carried out on the Hyperion synthesized and 

Decimatio n 5 (pre-filtered with fi lter size 51 and order 4) data. The firs t 18 components including the 

eigenvalue, proportion and cumulative proportion of each dataset are shown in T able 11. The eigenvalues 

were in both cases rapidly fa lling (see Figure 50) which indicated that the principa l component 

transformed data would require onl y around 10 components to explain most of the variation fo und in the 

data. 

Table I I : First 18 components of the eigenanalysis of Hyperion-synthesized and Decimation by 5 data 

Hyperion Decimation by 5 

PC# Eigenvalue Proportion Cumulati ve PC# Eigenvalue Proportion Cumulati ve 

I 1.8699 0. 890947 0.890947 I 3.52 18 0.893990 0 .89399 

2 0 .1 858 0.088525 0.979472 2 0.3344 0.08488 1 0 .97887 

3 0.02 15 0.0 10247 0.9897 19 3 0.0422 0.0 107 16 0.989587 

4 0.0 1 0.004774 0.994493 4 0.0203 0.005 158 0.994744 

5 0.005 1 0.002446 0.996939 5 0.0089 0.002254 0.996998 

6 0.00 19 0.000899 0.997838 6 0.0032 0.0008 13 0.9978 11 

7 0.00 12 0.000573 0.9984 1 7 0.0025 0.000647 0.998459 

8 0.0009 0.000422 0.998832 8 0.00 16 0.000408 0.998866 

9 0 .0007 0.0003 18 0.999 15 9 0.00 12 0.0003 12 0.999 178 

10 0.0004 0.000 178 0.999328 IO 0.0008 0.000204 0.999382 

II 0.0003 0.000 136 0.999463 11 0.0005 0.000 134 0.9995 15 

12 0.0002 0.000096 0.999559 12 0.0004 0.000099 0.9996 14 

13 0.0002 0.000080 0.999639 13 0.0003 0.000080 0.999695 

14 0.000 1 0.000050 0.999689 14 0.0002 0.000046 0 .99974 

15 0.000 1 0.000045 0.999734 15 0.000 1 0.000035 0.999776 

16 0.000 1 0.000027 0.99976 1 16 0.000 1 0.000030 0.999806 

17 0.000 1 0.000026 0.999787 17 0.000 1 0.00002 1 0.999827 

18 0 0.000023 0.9998 1 18 0.000 1 0.0000 19 0.999846 
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Figure 50: Scree plots of eigen va lu es (Hyperion synthesi::,ed and Decimation 5 data) 

The di sc riminating power o f the components in the new feature space was assessed by app lying the 

Wilcoxon test to all poss ible spec ies pair at a sig nificance leve l o f 0.0 1. Inte restin gly the freque ncy o f 

signifi cant differences was no t strictl y tied to the order o f the compone nts. T able 12 li sts the te n 

components with the hi ghest frequenc ies ordered by freque ncy. Compo nent 11 had thus the highest 

di sc riminating power, fo llowed by components 7, 8 and I 0 . These were fo ll owed by the first fo ur 

components which a ll had frequencies between 32 1 and 325 . The last two o f these top te n components 

were o f order 25 and 18, i.e. the hi ghest freque nc ies are found the first sixth of a ll compone nts. There was 

however a ge neral drop in frequencies with increas ing compone nt order (see Figure 5 I ). 

Table 12: The JO principa l components 1rith th e highest significances (a ccording to the Wi lcoxon test) 

ordered by significance 

Order Si gnificance 

11 365 

7 360 

8 347 

10 327 

I 325 

3 324 

4 323 

2 32 1 

25 308 

18 298 
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Figure 5 1: Histogram of statistically significant differences between species pairs for PC transformed 

Hyperion synthesized da ta 

An analys is o f the fac tor loadings of the components gave indicati ons about the importance of the 

wavelengths. The average fac tor loadings were calcul ated for the visible, N[R, SWIR I and SWIR2 

segments (see Figure 52). Component I had the highest fac tor loadings in the SWIR I and the lowest 

loadings in the visible. PC2 was dominated by NIR and SWIR2, PC3 by the visible, PC4 by SWIRi and 

PCS by visible. Interestingly, the coeffi cient plots formed shapes that were the negati ve (for PC I ) and the 

positi ve (for PC2) of the typical spectral vegetation features (see Figure 53) 
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Figure 52: Average PC Factor Loadings for the first five components 
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Figure 53: PC fa ctor loadings f or PC! and PC2. Th e mean reflectance of Pillosporum e11genioides is 

displayed to relate the fa ctors to typica l Fegetation reflectance f eatu res 

4.1.5 Statistical Analysis 

4.1.5.1 Discriminant Analysis 

Classificati ons were carri ed out using three different di sc riminant functi ons: quadratic di stance, general 

squared di stance and SAM. 

Two di fferent datasets were classified : (a) the calibrati on data, i.e . the same data that were used to coll ect 

the stati stical in fo rmation u ed in the classifica ti on and (b) an independent dataset that contained the 

spectra of 15 spec ies. 

Smoothed Hyperi on synthesized data was used to build three different fea ture spaces: DGYis, NTBis and 

PCT. The PCT was carri ed out using the first 25 components, based on the result of the Wilcoxon test on 

the PCT data that indicated that the highest frequencies of stati tica ll y significant di fferences occurred in 

the first 25 components. 
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The overall c lass ificati on acc uracy was found to be dependent on the feature space and the di scriminant 

function (see Table 13). The highest overall accuracy was ac hieved by PC transformed data with 96.94% 

for the calibration dataset and 87.87% for the independent dataset respectively. The NTBI feature space 

was the least discriminating, which is probably directl y related to its low dimensionality. 

Error matrices were compiled for all classificati ons li sting the correctl y c lass ified spectra per species, the 

errors of omission and commission, the row and column totals, the tota l number of c lass ified spectra, the 

overall acc uracy and the producer and user acc uracies. Table 14 shows an example of an error matri x for 

the classification of the training data set in DGVI feature space using the quadratic distance 

di scrimination function. Metrosideros excelsa had the lowest producer accuracy (20.00%) with onl y 8 out 

of 40 spectra being class ified correctly. The omiss ion errors in thi s case were: Phormium tenax ( 14), 

Myoporum laetum ( 12), Macropiper excelsum (3) , Corynocarpus laevigatus (2) and Hebe stricta ( I ). A 

tota l of I 046 spectra were classified. The trace of the en-or matrix di vided by total number of spectra gave 

an overall accuracy of 83.46. The minimum, maximum and mean of the producer and user acc uracies 

were al so calculated. For the above example, the minimum acc uracy occurred in the producer accuracy 

(20%). T he average user accuracy (90.93%) was higher than the mean producer acc uracy (82.73%) (see 

Table 15 ). 

Table 13: Classification results for calibration and independent datasets ( accuracy in percentage) 

DGVI NTBI PCT 

Calib . Indep. Calib . Indep. Cali b. Indep. 

Set Set Set Set Set Set 

Quadrati c di stance 83.46 72.39 16.63 20.87 82.98 64.98 

Gen. squared distance 75.04 72.05 28 .2 23.56 96.94 87.87 

SAM 33 .07 3 1.98 19.4 16. 16 35.85 22.22 
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Table 14: Error matrix jl>r DGV!s of smoothed Hyperion synthesized data classified using the quadratic 

distance discriminant function 
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Table 14 continued: Error matrix for DGV!s of smoothed Hyperion synthesized data classified using the 

quadratic distance discriminant function. Shaded cells are mentioned in the text 
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Table 15: Producer and user accuracy statistics for DGV/s of smoothed Hyperion synthesized data 

classified by the quadratic distance discriminant fun ction (a ccuracy in percentage) 

Prod. Acc . Min 20.00 User Acc. Min 45.26 

Prod. Acc. Max 100.00 User Acc. Max 100.00 

Prod. Acc. Mean 82 .73 User Acc. Mean 90.93 
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4.1.5.2 Separability Analysis 

The distances between the spec ies in feature space were measured by calculating the JM and the 

Bhatt ac harya distances. The analysis was carri ed out on the fo llowing datasets: 

D DGYis of Hyperion synthesized data 

D DGYis of Hyperion synthes ized data pre-smoothed with a Savi tzky-Golay filter of size 51 

and order 4 

D PCT of Hyperion synthesized data using the firs t 25 components (data pre-smoothed wi th a 

Savi tzky-Golay filter o f size 51 and order 4) 

As an example, the matri x showing JM and B di stances in the upper and lower tri angles respectively is 

presented for the DGYis o f Hyperio n synthesized data in Table 17 . The best eparability was ac hieved by 

the PCT data wi th a mean JM di stance of 2.00 (see Table 16). Out of a total o f 496 spec ies pa irs 495 

(99.79%) had a JM di stance> 1.99. A JM va lue of 2.0 indicates full separabi lit y and a value o f 1.9 a good 

separability. PCT data therefore achieved a very good separability while DGYI data with a mean of 1.82 

still contained some overlaps of spec ies di stributions. Interestingly the DGYls calcul ated from pre­

smoothed Hyperio n data did not perform better than the DGY!s based on no n pre-smoothed Hyperi on 

data as could be expected with regard to the results o f the Wilcoxon test of the DGV!s. 

The B distance measure produced si mil ar res ults to the JM di s tance with PC trans formed data hav ing the 

best separability. In fact , due to limits in numerical prec ision , some B distances were in fin ite . 

Table 16: Statistics of separability analysis 

DGYis (Hyperion) DGYI (smoothed Hyperio n) PCT (smoothed Hyperion) 

JM Min 1.23 1.1 7 1.99 

.IM Max 1.98 1.98 2.00 

JM Mean 1.82 1. 82 2.00 

B Min 0.96 0.88 5.20 

B Max 4.55 4.50 00 

B Mean 2.59 2.65 00 
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Table 17: JM distances (upp er triangle) and B distances (lower triangle) between species in DGVJ 

f eature space 
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Table 17 continued: JM distances ( upper triangle) and B distances ( lower triangle) between species in 

DGVJ feature space 
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4.1.5.3 Most Discriminating Bands 

The results of the Wilcoxon test with a significance level of 0.01 for raw spectra, Hyperion synthesized 

spectra and I st derivative of Hyperion synthesized spectra are graphically depicted as histograms in 

Figures 55-57. Table 18 lists the overall maximum, minimum, mean and standard deviation frequency 

and the same measurements for the visible (350-670nm), NIR (671-1349), SWIRi (1441-1789nm) and 

SWIR2 ( 1981-2359). These segments divide the spectrum by the position of the red edge and the filtered 

water bands. 
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Table 18: Significance statistics 

Raw Hyperion 1st Derivative of Hyperion 

Significance % Significance % Signifi cance % 

Min 227 45.8 26 1 52.6 10 2.0 

Max 366 738 364 73.4 424 85 .5 

Mean 328.6 66.2 325.2 65 .6 287.7 58 .0 

Stddev 22.1 4.5 2 1.8 4.4 89.5 18.0 

Mean + Stddev 350.7 70.7 347.0 70.0 377.2 76. 1 

Min Vis ible 282 56.9 283 57. 1 285 57.5 

Max Visible 36 1 72.8 359 72.4 37 1 74.8 

Mean Visible 327.7 66.1 325 .6 65 .6 335.8 67.7 

Stddev Vis ible 18.5 3.7 22.2 4.5 23.9 4.8 

Min N[R 282 56.9 286 57 .7 38 7.7 

Max N!R 343 69.2 343 69.2 403 81.3 

Mean NIR 3 17.6 64.0 3 17.5 64.0 302.7 6 1.0 

Stddev NLR 11.4 2.3 I 1.0 2.2 53. 1 10.7 

Min SW IRi 324 65.3 329 66.3 209 42. 1 

Max SW IRi 366 73.8 364 73.4 424 85.5 

Mean SW IRi 350.7 70.7 350.8 70.7 357 .2 72.0 

Stddev SW IR I 9.4 1.9 9.0 1.8 40.8 8.2 

Min SW[R2 227 45.8 26 1 52.6 10 2.0 

Max SW!R2 355 7 1.6 354 71.4 3 19 64.3 

Mean SWIR 2 328.6 66.2 332.5 67.0 165 .9 33.4 

Stddev SW IR2 3 I. I 6.3 28.3 5.7 84.9 17.1 

Table / 9: Number of bands with f requencies higher than mean plus one standard deviation 

Raw Hyperion 1st Derivative of Hyperion 

# of bands % # of bands % # of bands % 

Tota l 336.0 19.4 5 1.0 30.7 10.0 6. 1 

Visible 22.0 1.3 3.0 1.8 0.0 0.0 

NIR 0.0 0.0 0.0 0 .0 2.0 1.2 

SWIRi 209.0 12.1 28.0 16.9 8.0 4.9 

SWIR2 105.0 6. 1 20.0 12.0 0.0 0.0 

The maximum frequency for the raw data was 366 in the SWIR I region at 1727nm, i.e. thi s wave length 

was statisticall y significant different for 73.8% o f all species pairings. The SWIR I region also had the 

highest mean significance o f 350.7. Separability was generall y better in the visible portion of the 

spectrum than in the NIR. The lowest significance of the visible and NIR was found around 673nm which 

is the start of the red edge. 

The signifi cance for the Hyperion synthesized data was very similar to the raw data. The maximum was 

slightl y lower by 0.4% while the minimum was higher by 6.8%. The average s ignificance of Hyperion 

was 0.6% lower than that of the raw data. 

The significance frequencies for both raw and Hyperi on synthesized data varied with a standard deviati on 

o f 22. 1 and 21 .8 respective ly . 

For the first deri vati ve of Hyperion synthesized data, the significance frequencies had a standard 

deviation o f 89.5, thus the vari ati ons in frequency were much higher than for zero deri vati ve data. The 
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deri vati ve data did not show any dras tic decrease of freque ncies in the red edge but dropped to a value of 

38 around I 000nm where the spec tra often show a little step due to the switch over of interna l sensor 

eleme nts. 

A threshold was calculated by adding the standard deviation to the mean (see Table 18). The number of 

bands that had frequenc ies equal to or higher than thi s threshold was reported for the full spec trum and 

the visible, NIR, SWIR I and SWIR2 segments (see Table 19). For the raw data 19.4% of all bands had a 

frequency of 350.7 or higher, i.e. were significantl y different for at least 70.7o/c of a ll species pairings. For 

Hyperi on synthes ized data 30.7% of all bands had a frequency of 347 or higher which meant that at least 

70% of all species pairs were signifi cantl y differe nt at these bands . 

Only 6. 1 % of all bands were equal to or hi gher than the threshold fo r the I ' 1 derivative . These bands had 

s ignifi cant differences for at least 76% of all spec ies pairs. 

Figure 54 compares the percentage of bands with freq ue ncies higher than the threshold in the spec trum 

segments. The hi ghest percentage for zero order derivatives was in the SWIR I segme nt , fo llowed by 

SWIR2 and visible. The NIR segme nt had no bands with frequencies above the thresho ld . SWIR I 

recorded the highest percentage for the I '
1 derivative , fo ll owed by NIR with no bands above the threshold 

for the visible and SWIR2 segments. 
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Figure 55: Histogram of the statistically significant differences in reflectance calcu lated using raw data 

of all library relevant species. The mean reflectance of Pittosporum eugenioides is displayed to relate the 

frequency to typ ical vegetation reflectance f eatures. 
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4.2 Mixed Spectral Signatures 

4.2.1 Paper/Plant Mixture 

A spec tral plot of the mixtures of kawakawa leaves and paper revealed that the endmembers were indeed 

encompassing their mi xtures. The paper endmember defined the max imum and kawakawa the minimum 

o f the spectral retlectances fo und (see Figure 58). The position of the mi xtures was linearly dependent on 

the abundances, i.e. the higher the abundance of an endmember in the mi xture, the closer the spectral 

curve was to the endmember curve. 

This linearity was also well illustrated by synthesizing Landsat7 data and plotting band I against band 7 

(see Figure 59). 

Unmi xing was carried out in Matlab using Hyperion synthesized data for endmembers and mi xtures. The 

RMSE fo r the abundances was 2.68% (see Table 20). 
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Figure 58: Spectral curves of mixtures of vegetation and paper 
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Scatterplot of reflectances for simulated Landsat bands 1 vs 7 for mixtures of paper and vegetation 
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Tab le 20: Un mixing resul!s for vege1m ion/paper mix fures 

Estimated 
Vege1a1ion Paper Es1ima1ed paper 

Mixture vegetalion Error [%] 
abundance [%] abundance [%] abundance I% J 

ab undance ['lo] 

30V _330P 8 92 10.03 89.97 2.03 

60V_300P 17 83 19.69 80.3 1 2.69 

90V_270P 25 75 27.40 72.60 2.40 

120V _240P 33 67 36.00 64.00 3.00 

150V_210P 42 58 45 .94 54.06 3.94 

180V 180P 50 so 52.46 47 .54 2.46 -

2 10V IS0P 58 42 60.24 39.76 2.24 -

240V 120P 67 33 70.1 2 29.88 3.12 -

270V_90 P 75 25 75 .75 24.25 0.75 

300V_60P 83 17 86.95 13.06 3.95 

330V_30P 92 8 92 .94 7.06 0.94 

4.2.2 Paper/Plastic/Plant Mixture 

The mj xture experiment invo lvi ng three di fferent endmembers was harder to interpret using the full 

spec tral plots as the spectra for the endmembers vegetation and plastic overl apped (see Figure 60). 

However, by plotting re fl ectances in band 7 ver us band I of Landsat? synthes ized data, it was evident 

that the end members defi ne the extremes of the space that holds the mi xtures (see Figure 6 1 ). The three 

endmembers defi ne a tri angle in thi s two dimensional space with the mi xture lying inside the boundaries 

of thi s tri angle. 
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The un mixing was carried out using Hyperion synthesized data. The estimated abundances were generally 

in reasonable ranges . It is however worth noting that some abundances were negati ve, e.g. an estimated 

vegetation abundance of -0.59% for the Y0_P I 80_PLI 80 mixture (see Table 2 1 ). This was due to the fact 

that the negati vity constraint was not added to the unrnixing procedure. The RMSE for vegetation, paper 

and plastic were 7.37%, 4.48% and 4.77% respectively. 
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Scatterplot of refelectances for simulated Landsat bands 1 vs 7 for mixtures of vegetation, paper and plastic 
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Table 21: Un mixing results for vegetation/paper/plastic mixtures 

~ 
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"' "' C: " " " " " " C: Q.. C: 

.2 u u u -0 C: u -0 u -0 u .2 C: C: C: " .2 C: " § " C: 
lo "' "' -~ "' lo lo "' lo lo -~ "' lo 
0 -0 .... -0 -0 .5 -0 .S .... -0 E -0 0 .... .... 
oJJ C: " C: C: 0 C: " C: ~ C: 0 oJJ g g 
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::, C. ::, "' ::, ;_,. oJJ ::, ;_,. C. ::, 
"' 

::, t " ~ ~ .,::, "' .,::, .,::, " .,::, "' .,::, ~ .,::, > "' Q.. "' C: "' UJ > ., UJ C. ., C. "' UJ > UJ UJ 

V0_PI 80_PLI 80 0 50 50 -0.59 56.27 44.32 -0.59 6.27 -5.68 

vo_p21o_ PL90 0 75 25 0.09 75.5 1 24.40 0.09 0.51 -0.60 

Y0_P90_pL270 0 25 75 -0.39 26.38 74.00 -0.39 1.38 - 1.00 

VI 80_P0_ PL 180 50 0 50 53.89 7.92 38. 19 3.89 7.92 - 11 .8 1 

V 180_ P I 80_ PL0 50 50 0 59.88 48.26 -8. 14 9.88 - 1.74 -8 .14 

V I 80_ P90_PL90 50 25 25 59.0 1 26.53 14.47 9.00 1.53 -10.53 

Y270_ P0_pL90 75 0 25 76.93 2.97 20. 11 1.93 2.97 -4.89 

Y270_ P90_pL0 75 25 0 82. 12 25.36 -7.47 7. 11 0 .36 -7.47 

V90_P0_pL270 25 0 75 26.51 6.34 67. 15 1.5 1 6.34 -7.85 

V90_P 180_pL90 25 50 25 28.17 53 .06 I 8.76 3. 17 306 -6.2-1 

V90_ P270_ PLO 25 75 0 27.9 1 75 .53 -3.4-1 2.9 1 0.53 -3.44 

V90_ P90_pL 180 25 25 50 27.0 1 33 .52 39.-18 2.0 1 8.52 -10.53 

4.2.3 Three plant mixture 

The c ndme mbers were no t di scernible in the full spec tral pl ots (see Figure 62). Furthermore, the 

e ndme mbers no longer de fin ed the boundaries in which the mixtures fe ll as is ill ustrated by plo tting band 

I ve rsus band 7 of Landsat? synthes ized data (sec Figure 63 ). The result s o f the unmixing as shown in 

Tab le 22 had large errors for mos t o f the estimated abundances with many pe rcent ages being negati ve. 

The RMS E fo r Kawakawa, Lemonwood and Karaka were 68 .79%, 51.45 '/'r and 26.88% respecti vely. 

0.90 

0.80 

0.70 

0.60 
Q) 
(.) 
C 0.50 "' 0 
Q) 

~ 0.40 
a: 

0.30 

0.20 

0.10 

0.00 

3 Plant Mixtures 

~~ 
1--------~ -V -= ~-~ ~------

~-~ ,------

1-----•1!--
350 850 1350 

Wavelength[nm] 

1850 2350 

- - - - K0_L0_P360 

--K0_L180_P180 

K0_L270_P90 

K0_L360_ P0 

--K0_L90_P270 

--K1 80_L0_P180 

-- K180_L180_P0 

-- K180_L90_P90 

K270_L0_P90 

K270_L90_P0 

K360_L0_P0 

K90_L0_P270 

K90_L 180_P90 

K90_L270_P0 

K90_L90_P180 

Figure 62: Spectral curves for mixtures of three plants. Endmembers are plotted as dashed lines. 
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Scatterplot of reflectances for simulated Landsat bands 1 vs 7 for mixtures of 3 plants 
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Figure 63: Scatterplot of rejlectances for simulated Landsat bands I vs 7 for mixtures of 3 plants 

Tab le 22: Unmixing results for 3 plant mixtures 
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KarO_ L I 80_ Kaw I 80 so so 0 99.94 8.37 -8.3 1 49.94 -4 1.64 

KarO_ L270_ Kaw90 25 75 0 53 .83 72.89 -26.72 28.83 -2. 11 

Kar0_L90_ Kaw270 75 25 0 79.84 72.4 1 -52.24 4.84 47.4 1 

Kar l 80_LO_ Kawl 80 so 0 so 22.0 1 20.51 57.48 -27.99 20.S I 

Karl 80_ Ll 80_ Kaw0 0 so so 126.96 -49.09 22.14 126.96 -99.09 

Kar l 80_ L90_ Kaw90 25 25 so 0.85 26.37 72.77 -24.15 1.37 

Kar270_LO_ Kaw90 25 0 75 -22.27 33.80 88.47 -47 .27 33.80 

Kar270_L90_ Kaw0 0 25 75 107.89 -43.2 1 35.32 107 .89 -68.2 1 

Kar90_LO_ Kaw270 75 0 25 16 1 .SI -62.95 1.44 86.51 -62.95 

Kar90_ Ll 80_Kaw90 25 so 25 95.76 -2.58 6.82 70.76 -52.58 

Kar90_ L270_ Kaw0 0 75 25 6.78 87.80 5.42 6.78 12.80 

Kar90_ L90_ Kaw 180 so 25 25 147.75 -44.68 -3.07 97.75 -69.68 
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4.2.4 Positional Dependence of Paper/Plastic Mixtures 

The positional experiment confirmed that the position of both the tungsten lamp and the sun for 

illuminati on does influence the resulting spectra. The three different mi xtures (plastic abundances of 0.25, 

0.5 and 0.75) form three gro ups when plotted (sec Figure 64). Idea ll y, with no positional dependence, the 

spectra of these gro ups should be identical. Two intra gro up differences could be observed : o ffsets of the 

spectral curves and shape differences. The shape differences are eas il y di sce rnible between wavelengths 

950- I 180nm, I 300- I 450nm and I 750-2000nm where a considerable difference in slope gradient between 

positions 3 and 4 and pos itions I and 2 can be seen. This is best illustrated by the I ' ' deri vati ve, shown fo r 

the 50% mixtures in Figure 65. 
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Figure 64: Positional dependence for paper/plastic mixtures 
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4.2.5 Probe Rotation 
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Visuall y the fo ur positions of the probe resulted in very similar spectra (see Figure 66). RMSE' s were 

calculated between the mean and the fo ur positional spectral curves fo r every wavelength. The mean of 

all the RMSE' s was 0.00589. 
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5 Discussion 

5.1 Collection of Spectral Data of New Zealand Native Plants 

The co ll ecti on o f spec tral data o f New Zea land nati ve plants that was assembled durin g thi s research 

provides a valuable data source for future research. It must however be noted that its use wi ll be res tric ted 

by the fac t that criti cal metadata like atmospheric conditi on was not coll ected . A further restri cti o n is the 

te mporal change o f spec tra that is not described by the current co ll ecti on. The main reason fo r these 

shortcomings lies in the setup of thi s project as data were co ll ected we ll before a ll implicati ons were 

kn own. Future sampling campaigns should therefore be more thoroughl y pla nned with the appropriate 

database structure .sampling protocol and recording of metadata. 

5.2 Spectral Databases 

The database deve loped for thi s projec t proved lo be idea l for the data analysis that was carri ed out. It 

was , however, no t designed to ac t as a repos itory for spectra that could be acce. sed by persons havi ng no 

prior knowledge o f the stored spectra. Therefore in fo rmatio n suc h as the instrument used, illuminati o n 

conditi o ns, coll ector details and extensive target description was not included . Furthermo re, the 

hi erarchi cal structuring that features species, sites and spectra could be regarded as too restricti ve . The 

experi ences gained so fa r indicate that the chosen structure applies to most ex perime nt s. In some cases the 

s ite leve l might not be needed , but thi s inconve nience could be so lved by a simple software modificati o n 

leav ing the database structure intac t. 

The database approach also e nabled the data to be stored in a centra l pl ace and the s imulta neous data 

access by severa l users posed no problem because the database syste m ensured the data integrit y. The 

implemented syste m however does not offer multi -user capabilit y, i.e. users cannot store their own 

personali zed settings. 

Future spectral databases should provide multi -user access to studies and more informati on o n the 

instrumentati on a nd environmental cond itions of the sampling. The direct linkage with a geographic 

informati on system (G IS) should also be considered whe n designing the database. 

5.3 Spectral Processing Chain 

The spectral process ing chain consi sted of waveband filtering, smoothing, data reduction (sensor 

synthes izing / downsampling), derivative calcula ti on and fea ture space transformati on. These are the most 

commonl y used operations in hyperspectral studi es and all pre-processing applied to the data in this study 

was achieved by these operati ons. It is clear though that the impleme nted steps are not conclusive . Other 

data processing uc h a continuum removal and spec ia l indices like band depth indices are in use in the 

research community. Such operatio ns do not fit into the c urre nt chain . Furthermore one could argue about 

the log ical order of the processing steps. E.g. the deri vati ve calcula ti on could be before or after the data 

reducti on. For such a modificati on, a more fl ex ible approach would be needed where the processing 

methods would be modulari sed allowing the interactive building o f processing chai ns. 
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5.4 Processing Speed of Smoothing Operations 

Of the two implemented algorithms for the application of Savitzky-Golay filters fo r smoothing of data, 

the moving window (MW) outperformed the FFf. T heoreticall y the FFf provides fas ter processing than 

conventional convolution above a certain number of N data points. Conventional convolution requires in 

the order of N2 operations while FFf needs N*lg(N) operations where lg(N) is the logarithm-base-2 of N. 

FFf outperforms conventional convolution for around 64-128 data points (Smith, 2003). The reason why 

MW preformed faster than FFf lies in the processing overhead required for setting up the vectors, 

transforming them into frequency space and back into time space and storing the result again in the 

internal data structures. To avoid thi s, the spectral data should at all stages be stored in the Matri x objects 

supplied by the NewMat library. 

5.5 Data Reduction 

The issue of high data redundancy of hyperspectral data was addressed by data reduction techniques , 

either by the synthesizing o f other sensor responses/downsampling or PCT. Analysis o f ori ginal data and 

reduced data showed that the loss of vital in formati on is minimal. E.g . the hi stograms highlighting the 

most discriminating bands were virtuall y identical fo r raw and Hyperion synthesized data. The sharp drop 

of the eigenvalues also confi rmed that the data had a high redundancy. The first few components 

expla ined almost all variations fo und in the data . 

Data reduction was also successful in the reduction of noise which greatl y influenced the calculation of 

derivatives as was shown on the example of DGYis. 

5.6 Discriminative Power of Feature Spaces 

In thi s study three different feature spaces were compared: DGVI, NTBI and PCT. PCT had the best 

di scrimination of species, foll owed by DGYI and NTBI. 

The DGYI was originall y designed for corre lation with plant properties. It is as such not optimized for the 

discrimination between species. A closer study of the DGVI regions (Figure 46) reveal s that no narrow 

(-20nm) regions ex ist in the NIR (700- I 300nm) and the SWIR segment I is also onl y partly covered by 

DGYI7. According to the result for the most di scriminating bands carried out for the I st deri vati ve, 

SWIRi had the highest frequency of stati sticall y significant differences between bands, foll owed by NIR. 

One could expect a better di scrimination if the DGVI regions were rede fined, possibly featuring narrower 

regions for SWIR I and SWIR 2 and new regions in the NIR. 

The NTBI feature space had the lowest di scriminative power. This however is very likely a direct result 

o f the low dime nsionality. Adding more dimensions should increase the di scriminatio n. The se lection of 

the best NTBI' s could be achieved by a data-mining process where the Wilcoxon test would be applied to 

all possible two band combinations for all species pairs. 

Both DGYI and NTBI feature spaces were found prone to have high correlati ons between dimensions. 

E.g. for DGVIs a di scriminant analysis could not be carried out in Minitab because the correlations of 

certain vari ables were too high. Even PCT data had corre lati ons between bands despite the fac t that in 

theory PCT should be a zero corre lati on transform. A likely solution to thi s could be the building of a set 
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of most di scriminating but least corre lated vari ables. Thi s could be achieved by subjecting the variable set 

to a stepwi se discriminant analysis. 

5.7 Discrimination and Classification 

Thirty two spec ies were coll ec ted as training data se t in thi s study and the highest c lassificati on acc uracy 

(96.94%) was achieved using a generali zed squared distance discriminant function on PCT data . This 

percentage of correctl y c lass ified spectra was as toni shing, given that all plant spec tra look very si milar. 

However, one could expec t that the cla sifi cation acc uracy would drop if more spec ies were added to the 

data set. At some point an over crowding of feature space wo uld take place resulting in overl aps of the 

spec ies clusters. It may be necessary to segment the species by spati al properti es or temporal in formati on 

in order to limit the possible spec ies that are used for classifications. 

Whil e the classificati on of the training data demonstrated the capability of d iscriminati on of spec ies by 

spectral data, the appli cati on of thi s technology relies on the result gained from the independe nt dataset. 

The independent set used in thi s stud y contained 15 spec ies, i.e. less than half of the train ing set species . 

The maximum classi fi cati on acc uracy (87 .87%) shou ld therefore be regarded wi th caution. Ideally, a ll 

trai ning set spec ies should be included in the independent test set. 

5.8 Principal Component Analysis 

The variati on explained by the first two components of Hyperi on synthesized data was 97.9%. This was 

higher than the percentage of 85 % reported by Thcnkabail ct al. (2004a) . The high fac tor load ings in the 

SWIR mentioned by Thenkabail e t al. were also found for New Zealand nati ve plants. But the visible part 

of the spec trum had also high load ings, especia ll y fo r PC3, which was different to the result of 

Thenkabail e t al. who found the SWIR2 segment to have the highest loadings for PC3 . 

These findings indicate that the loading factors differ considerably with the trai ning dataset and 

informati on about importance of bands for vegetati on discrimination based on the analys is of PC facto r 

load ings can not be readil y ge nerali zed for a ll vegetat ion types. 

5.9 Linear Transformations 

PCT was used as a linear transformation in thi s study. Excelle nt results have fo und fo r both reduction of 

dimensionality and discrimination in the resulting feature space. The application of the Wilcoxon test 

however showed that the frequenc y of significant differences was not strictl y tied to the components. One 

possible explanation could be that the variance ex plained by the components is partiall y to be attributed to 

the inhere nt noise. This no ise would then decrease the freque ncy of statisti ca ll y signifi cant differe nces 

between spec ies. 

In the context of linear transformat ions like PCT the application of the MNF transformati on to spectral 

data collec tions would be of interest. As MNF was designed to order the components by the ir signal lo 

no ise ratio, one could ex pec t to find the frequency of signifi cant differences tied to the component orde r 

when subjected to the Wilcoxon test. Traditionally, the MNF has been appli ed to imagery and the 

estimation of the noise covari ance matrix has used the differences between neighbouring pixels (Green et 

a l. , 1988; Lee el al. , 1990). The applicati on to time seri es has been demonstrated by Hundley et al. (200 I ). 
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Whether the MNF transformati on can be applied to hyperspec tral signatures that have no spatial 

component and thus no spati al neighbours remains to be seen. The critical factor will remain the 

estimati on of the noise covari ance matri x. 

5.10 Most Discriminating Bands 

Interestingly the hi stogram o f the most discriminating bands exhibited some differences to the data shown 

by Schmidt and Skidmore (2003). They reported that the most di scriminating wavebands for saltmarsh 

vegetation occurred in the NIR and SWIR regions (740- 1820 nm) of the spectra. The same ana lys is 

applied to New Zealand native plants indicated that NIR had the lowest overall frequencies of stati sti call y 

significant differences between spec ies pairs whi le SWIR segments I and 2 had the highest overall 

frequenc ies . This suggests that analyses of the most di scriminating bands can again not be generali sed but 

must be carri ed out fo r each differing set of spectral vegetation data. 

The hi stogram calculated from I st derivati ve data suggested that the NIR part of the spectrum contained 

important information. Analyses using I 
st derivatives should therefore make use of the NIR region. 

5.11 Separability Analysis and Discriminant Analysis 

The separability analysis gave indications about the separability of species in certain feature spaces. PCT 

data had a mean JM di stance o f 2.0 which would indicate full separability. However, these results could 

not be used directly as a predicti on for the accuracy that was achieved in the discriminant anal ys is. PCT 

data was not reaching 100% acc uracy as could be expected. The reason for thi s li es in the different 

metrics . The discrimjnant functions used for the classification are not identical to the distance 

measureme nt of the JM or B di stance. 

5.12 Spectral Unmixing 

While the unmjxing of paper/pl ant and paper/plastic/plant mixtures worked reall y well , the abundance 

estimation for the mixtures of three different plants was unsati sfactory with root mean square errors 

between 26.88% and 68.79%. The reason for thi s is a phenomenon described by Price ( I 994): if an 

endmember can be described by the combination of two other endmembers the result of the unmi xing is 

unlike ly to yield useful results. Exactl y thj s situation applied to the three end members of thi s experiment. 

The Kawakawa curve lay between the Lemonwood and Karaka curves and thus could have been a 

mixture of the latter two (see Figure 67). 
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Figure 67: Spectral curves fo r the endmembers of the 3 plant mixing experiment 

Another prob lem fo und was the positio nal dependence. The spec troradi ometer sampled the fi e ld of view 

homogeno usly as was de monstrated by the probe ro tati on experime nt. The positional depe ndence was 

therefore the result o f the BRDF (Bidirectio nal Re n cc tance Distributio n Func ti on) with chang ing viewing 

geometry and fix ed ill uminatio n geo metry . The BRDF therefore biased the abundance es timati ons. A 

quantification o f the BRDF innuence wo uld require further mi xing experime nts. One can ho wever expec t 

that the errors reported fo r the mi xtures are at leas t partl y the res ult of the BRDF in0uence. 

5.13 Atmospheric Correction of Hyperion Imagery 

In order to be able to compare the s ignature o f Hyperi on pi xe ls with the coll ec ted ground data an 

atmospheric correc ti o n was app lied using the FLAASH modul e in ENVI (Research Syste ms Inc. , 2005). 

A sati s fying output could not be achieved despite using vari ous settings for a tmospheri c and aeroso l 

models and other parameters. A more thorough in vesti gati o n into the matte r wo uld be needed. Such an 

e ffort was unfortunate ly beyond the time frame o f thi s research . 

Recent findin gs point to the fac t that FLAASH can produce good results if the scale fil e is edited in a 

certa in way. One could a lso ex pect to improve the results if FLAASH were coupled with a n e mpirical 

line correcti on. 
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6 Conclusion 

This study has shown that the result s of the analysis of hyperspectral data are heavil y influe nced by the 

preced ing pre-processing. The main contributing factors were (a) the smoothing which depended on filter 

sizes and polynomial orders, (b) the data reducti on ac hieved by synthesizing other sensor responses or 

downsampling and (c) the deri vative calcula ti on where a Savitzky-Golay filter was effecting a double 

smoothing . The best set of parameters for these operati ons was ide ntified by testing differe nt settings 

fo llowed by stati stica l a nalys is. 

It became clear that fast a nd repeatable data processing is a key factor to the effic ie nt study of 

hyperspectral data. By storing a ll spectral data in a database, a ll subseq uent operati ons could be carried 

out on the same dataset which remained unchanged. The impleme ntation of so ftware with a database 

interface that handled data input , process ing and output proved to be a very e ffecti ve way o f hyperspec tral 

data process ing. The process ing chai n developed in thi s study contained methods that are most commo nl y 

used in hyperspectral studies. It is recommended that future processing chai ns should be of a mod ular 

nature to accommodate more varie ti es of data processing steps . Statistical research shou ld be carri ed out 

in other software packages and onl y if a certain method has proven to be useful and often needed should it 

be impleme nted in the database interface software. 

The atmospheric correc ti o n of Hyperi on imagery was found to be difficult a nd no good match between 

ground data and pixe l sig natures could be ac hieved. The e ffort to improve these result s was beyond the 

time fra me of thi s research. 

The spec ies of New Zeala nd nati ve plants that were stud ied showed a very good potential fo r 

di scrimination . More research is needed to ga in knowledge of te mporal and spati a l vari ati ons. A possible 

outcome of such a stud y might be the co ll ecti on o f spectral reference data for certai n seasons or regions. 
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8 Appendix 

8.1 SpectraProc Graphical User Interface 

The graphical user interface (GUI) (for a screenshot please see Figure 68) was based o n the struct ure o f 

the processing chain (see Figure 19). The left s ide o f the main window consists of controls for the 

selecti on o f the study and the main settings for smoothing filter , synthesizing, derivative calculatio n, 

feature space transformati on and classifier di scriminant functi on. Processing detail s are entered in pop up 

wi ndows, shown here with the example of the smoothing fun cti o n. The tex t o utput pane l in the middle of 

the main window is used to di splay processing a nd e 1Tor information. 

The li stbox on top of the tex t output panel is used to di splay spec tra fil es that arc loaded directly into 

memory. The ' Indi v. C lass ify' button under it c lassifies the selec ted , individually loaded spectra against 

the curre nt library. 

The library status box o n the top right of the sc ree n indicates whether stati sti ca l informati o n has been 

compiled for the c urrent pre-processing settings . 

fJi Connected to spectral_db on localhost - SpectraProc ~~~ 
Eile E_dit '[iew Library Database Spec tr al Mixing t:!elp Test 

Current Study Loaded S peel! a 

• j r blackfer 000 

I ndiv. Classify 

Lib, a,y Status Not Ready I NZ N alive Plants 

Smoothing Filte, 

[s avitzky-Golay [MW) 

i f l.diLJ! E xpmted 39 specie 
Filte, size ( uneven numbe,s) ~ -'-

•_J 

Current S enso, 

IHype,ion 

De,ivative 
Calculation method 

r,-- jJ lte,ative 

r. SavGol 

F eatu,e Space Types 

r. DI 

C NTBI 

r PCT 

F eatu,e Spaces 

jDGVI 

Classifie, 

j M ahalanobis 

Ready 

E xpmted 39 specie Polynomial mde1 ~ ...:.J _. J 

D isc,iminant Analy: 

E rro, mat,ix w1itten to file 
C:\ Data\MPhil Remote Sensing\S pect1aP1oc_output\Eiro1 Mat,ix. csv 

0 ve1 all Accu, acy: 83. 46080 

1 237.54 ·> Blackfem 
2. 239.27 ·> Silve1fern 
3. 253.26 -> Ngaio 
4. 270.82 · > Flax 
5. 279.59 ·> Mapou 
6. 280.86 ·> T ota,a 
7. 297.61 ·> Cabbage_tiee 
8. 303.92 ·> Kawakawa 
9. 305.23 ·> White Pine 
10. 310.48 ·> Lemonwood 
11 . 319.63 ·> Manuka 
12. 320. 29 -> R ewarewa 
13. 334.87 ·> Haid Beech 
14. 339.22 ·> Kmomiko 
15. 365.84 ·> Ka,aka 
16. 388.46 ·> Kau,i 

Figure 68: Screen capture of SpectraProc 

OK 
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