Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A THERMODYNAMIC STUDY OF SELF-ASSOCIATION IN $\beta\text{-}CASEIN \text{ and } BRIJ \text{ 35 Solutions}$

.

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in Chemistry

at

Massey University

New Zealand

John Leslie Woodhead

1978

ABSTRACT

The self-association of both ρ -casein A¹ and Brij 35 in aqueous solution has been studied at several temperatures using the techniques of microcalorimetry, sedimentation equilibrium, sedimentation velocity, pycnometry and surface tension measurements. Attempts to obtain the equilibrium concentration of the various β -casein species in solution by ultracentrifugation have been unsuccessful owing to both degradation and the rate of equilibration. The equilibrium concentrations for β -casein were estimated from published fluorescence data.

The results have been analysed by treating each selfassociation process as being one of micelle formation. For both systems the standard free energy of micelle formation was negative whereas the corresponding standard enthalpy and entropy changes were positive. The temperature trends in the various thermodynamic parameters were inconclusive owing to experimental uncertainty.

The significance of the values of the thermodynamic parameters is discussed qualitatively. The driving force behind the selfassociation process for both systems appears to be the positive entropy change associated with the hydrophobic effect. A comparison is made between the two systems and it is concluded that β -casein self-association is similar in several respects to micelle formation in solutions of synthetic detergents.

ii

ACKNOWLEDGEMENTS

I would like to express my gratitude to Professor G.N. Malcolm, Dr I.D. Watson and Dr J.A. Lewis for the help and encouragement they provided during their supervision of this thesis.

I would also like to thank Dr G.R. Hedwig for his helpful comments and suggestions.

The advice and assistance of Dr L.K. Creamer, Dr K.N. Pearce and the Technical Staff of the Protein Section of the New Zealand Dairy Research Institute was greatly appreciated.

I acknowledge the financial assistance provided by a Postgraduate Scholarship from the University Grants Committee, a Departmental Demonstratorship from Massey University and a Bursary from the Dairy Research Institute. TABLE OF CONTENTS

			Page
ACKNO	ACKNOWLEDGEMENTS		
LIST	F OF FIGURES		viii
LIST	OF TAB	LES	x
		CHAPTER 1 INTRODUCTION	1
1.1	Self-As	ssociating Systems	1
1.2	Bovine	β-Casein	2
1.3	Amphip	hiles	8
1.4	Thermo	dynamics of Micelle Formation	11
	1.4.1	Simple Mass Action Model	12
	1.4.2	Critical Nicelle Concentration	14
	1.4.3	Free Energy of Micelle Formation	18
	1.4.4	Enthalpy of Micelle Formation	19
	1.4.5	Ideal Associated Solution Model	20
1.5	Presen	t Work	25
		CHAPTER 2 PREPARATION	28
2.1	Purifi	cation of p-Casein A ¹	28
	2.1.1	Preparation of Acid Casein	28
	2.1.2	DEAE-Cellulose-Urea Chromatography	28
	2.1.3	Disc Gel Electrophoresis	29
	2.1.4	Dialysis	31
	2.1.5	Concentration Determination	31
2.2	Prepar	ration of Brij 35	33
		CHAPTER 3 MICROCALORIMETRY	34
3.1	Introd	luction	34
3.2	Description of the Microcalorimeter		36
3.3	Genera	al Experimental Technique	38

			Page
3.4	Calori	meter Calibration	44
3.5	Brij 3	5 Dilution Experiments	46
	3.5.1	Preparation	46
	3.5.2	Calorimetry	46
	3.5.3	Results	48
3.6	β-Case	in A ¹ Dilution Experiments	48
	3.6.1	Preparation	48
	3.6.2	Calorimetry	49
	3.6.3	Results	50
		CHAPTER 4 ULTRACENTRIFUGATION	51
4.1	Introd	uction	51
4.2	Sedime	ntation Equilibrium	54
	4.2.1	General Theory	54
	4.2.2	Self-Associating Systems	56
	4.2.3	Polyelectrolytes	57
	4.2.4	Low Speed Sedimentation Equilibrium	58
	4.2.5	High Speed Sedimentation Equilibrium	59
4.3	Sedime	ntation Velocity	60
	4.3.1	Basic Theory	60
	4.3.2	Self-Associating Systems	61
4.4	Optica	l Alignment	62
4.5	Low Sp	peed Sedimentation Equilibrium Experiments	63
	4.5.1	General Procedure	63
	4.5.2	Brij 35 Runs	65
		4.5.2.1 Preparation and Procedure	65
		4.5.2.2 Results	65
	4.5.3	p-Casein A ¹ Runs	66
		4.5.3.1 Preparation and Procedure	66

v

		Page
4.6	High Speed Sedimentation Equilibrium Experiments	73
	4.6.1 p-Casein A ¹	73
	4.6.1.1 Procedure	73
	4.6.1.2 Results	74
4.7	Sedimentation Velocity Experiments	74
	4.7.1 p-Casein A ¹	74
	4.7.1.1. Procedure	74
	4.7.1.2 Results and Discussion	77
	CHAPTER 5 DENSITY MEASUREMENTS	83
5.1	Apparent and Partial Specific Volume	83
5.2	Experimental Procedure	84
5.3	Calculation of Density	85
	CHAPTER 6 SURFACE TENSION MEASUREMENTS	86
6.1	Surface Tension and Critical Micelle Concentration	86
6.2	Drop Volume Technique	87
6.3	Drop Volume Apparatus	89
6.4	General Technique for Drop Volume Measurements	89
6.5	Measurements on Distilled Water	91
6.6	Measurements on Brij 35 Solutions	92
6.7	Measurements on β -Casein A ¹ Solutions	92
	CHAPTER 7 EXPERIMENTAL RESULTS	94
	CHAPTER 8 ANALYSIS OF RESULTS	101
8.1	Brij 35 Solutions	101
	8.1.1 Analysis of Surface Tension Measurements	101
	8.1.1.1 Critical Micelle Concentrations	101
	8.1.1.2 Effective Surface Area of the Monomer	101

Page 8.1.2 Analysis of Density Measurements 103 8.1.2.1 Partial Specific Volumes 103 8.1.2.2 Bouyancy Terms 106 8.1.3 Analysis of Low Speed Sedimentation Equilibrium 106 Experiments 106 8.1.3.1 Apparent Weight Average Molar Mass 8.1.3.2 N-mer Molar Mass and the Second Virial 109 Coefficient 8.1.3.3 Monomer and N-mer Concentrations 113 8.1.3.4 Degree of Association and the Equilibrium 118 Constant 8.1.3.5 Error Analysis 119 8.1.4 Free Energy of Micelle Formation 121 8.1.5 Enthalpy of Micelle Formation 121 8.1.6 Heat Capacity Change 122 8.1.7 Entropy of Micelle Formation 124 8.2 p-Casein A¹ Solutions 124 8.2.1 Analysis of High Speed Sedimentation Equilibrium 124 Run Thermodynamic Parameters for β -Casein A¹ Self-8.2.2 126 Association 8.2.2.1 Enthalpy of Micelle Formation 127 8.2.2.2 Heat Capacity Change 127 8.2.2.3 Free Energy of Micelle Formation 127 8.2.2.4 Entropy of Micelle Formation 129 130 CHAPTER 9 DISCUSSION 9.1 Brij 35 Self-Association 130 131 9.1.1 Effect of the Alkyl Chain 9.1.2. Effect of the Head Group 132 133 9.2 B-Casein Self-Association 136 9.3 Conclusion

REFERENCES

vii

137

v	i	i	i

Figure		Page
(1-1)	Amino Acid Sequence of β -Casein A ¹	4
(1-2)	Hypothetical Plots of Monomer and Micelle Concentration vs Total Amphiphile Concentration	16
(1-3)	Extrapolation to Determine Critical Micelle Concentration	17
(2-1)	Elution Profile for DEAE-Cellulose-Urea Chromatography of Whole Casein	30
(2-2)	Alkaline Polyacrylamide Disc Gel Electrophoresis of Whole Casein and $\beta\text{-}Casein \text{ A}^1$	32
(3-1)	Schematic Diagram of LKB Batch Microcalorimeter	39
(3-2)	Voltage-Time Curves for a Typical Calorimetry Experiment	42
(4-1)	Typical Interference and Schlieren Patterns for a $Sin_{S}le$ Sedimenting Solute	53
(4-2)	Interference and Schlieren Patterns During a Boundary Cancelling Test	64
(4-3)	Interference Patterns for Brij 35 Solutions at Low Speed Sedimentation Equilibrium	67
(4-4)	Interference Patterns and Electrophoresis Gels Showing Degradation in $\beta\text{-Casein}\ A^1$ Solutions	69
(4-5)	Interference Pattern for $\beta\text{-}Casein\ \text{A}^1$ Solution at High Speed Sedimentation Equilibrium	75
(4-6)	Schlieren Patterns for p -Casein A ¹ Solutions During Sedimentation Velocity Runs at 14°C and 25°C	78
(4-7)	Combined Interference and Schlieren Patterns for $\beta\text{-}Casein\ \text{A}^1$ Solution During Sedimentation Velocity Run at 21 C	80
(4-8)	Interference Patterns for β -Casein A ¹ Solutions During Sedimentation Velocity Runs at 21 °C	81
(6-1)	Schematic Diagram of Drop Volume Apparatus	90
(8-1)	Plot of Surface Tension vs Log of Solute Concentration for Brij 35 Solutions	102
(8-2)	Plot of Density vs Solute Concentration for Brij 35 Solutions	104

Figure		Page
(8-3)	Plot of Log of Solute Concentration vs r ² for 1.59mg cm ⁻³ Brij 35 Solution at 25°C	107
(8-4)	Plot of Log of Solute Concentration vs r ² for 1.59mg cm ⁻³ Brij 35 Solution at 35°C	108
(8-5)	Plot of Apparent Weight Average Molar Mass vs Solute Concentration for Brij 35 Solutions at 25 C	110
(8-6)	Plot of Apparent Weight Average Molar Mass vs Solute Concentration for Brij 35 Solutions at 35 C	111
(8-7)	Plot of Reciprocal of Apparent Weight Average Micelle Molar Mass vs Micelle Concentration for 1.59mg cm ⁻³ Brij 35 Solution at 25 C	114
(8-8)	Plot of Reciprocal of Apparent Weight Average Micelle Molar Mass vs Micelle Concentration for 1.59mg cm ⁻³ Brij 35 Solution at 35 C	115
(8-9)	Plot of Monomer and Micelle Concentration vs Total Concentration for 1.59mg cm ⁻³ Brij 35 Solution at 25°C	11 6
(8-10)	Plot of Monomer and Micelle Concentration vs Total Concentration for 1.59mg cm ⁻³ Brij 35 Solution at 35°C	117
(8-11)	Plot of Log of Fringe Displacement vs r^2 for $\dot{\beta}\text{-Casein A}^1$ Solution at 15 C	125

ix

LIST OF TABLES

Table		Page
(1-1)	Literature Values for the Molar Mass and Degree of Association of the $\beta\mbox{-}Casein$ N-mer	9
(3-1)	Electrical Calibration Constants	47
(3-2)	Heats of Dilution of Sucrose Solutions at 298.2 K	47
(7-1)	Heat Changes Observed for Dilution of Brij 35 Solutions	95
(7-2)	Heat Changes Observed for Dilution of $\beta\text{-Casein A}^1$ Solutions	95
(7-3)	Low Speed Sedimentation Equilibrium Data for 0.74mg $\rm cm^{-3}$ Brij 35 Solution	96
(7-4)	Low Speed Sedimentation Equilibrium Data for 1.59 mg cm^{-3} Brij 35 Solution	97
(7-5)	Low Speed Sedimentation Equilibrium Data for 4.12mg cm^{-3} Brij 35 Solution	98
(7-6)	High Speed Sedimentation Equilibrium Data for 0.72mg cm ⁻³ $\beta\text{-}Casein \ \text{A}^1$ Solution at 288.2 K	99
(7-7)	Densities of Brij 35 Solutions at 298.2 and 308.2 K	100
(7-8)	Surface Tension of Brij 35 Solutions at 298.2 and 308.21	K 100
(8-1)	Critical Micelle Concentrations, Surface Excess and Monomer Surface Areas for Brij 35 Solutions	105
(8-2)	Partial Specific Volumes and Bouyancy Terms for Brij 35 Solutions	105
(8-3)	Micelle Size, Virial Coefficients and Equilibrium Constants for Brij 35 Self-Association	123
(8-4)	Monomer Concentrations and Δ $\rm n_{A1}$ Values for Brij 35 Self-Association	123
(8-5)	Thermodynamic Parameters for Brij 35 Self-Association	123
(8-6)	Monomer Concentrations and Equilibrium Constants for $\beta\text{-}Casein\ A^1$ Self-Association	128
(8-7)	Thermodynamic Parameters for β -Casein A ¹ Self-Association	128

х