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ABSTRACT

The self-association of both p-casein A1 and Brij 35 in
aqueous solution has been studied at several temperatures using the
techniques of microcalorimetry, sedimentation equilibrium, sedimentation
velocity, pycnometry and surface tension measurements. Attempts to
obtain the equilibrium concentration of the various pj-casein species
in solution by ultracentrifugation have been unsuccessful owing to both
degradation and the rate of equilibration. The equilibrium concentra-

tions for p-casein were estimated from published fluorescence data.

The results have been analysed by treating each self-
association process as being one of micelle formation. For both systens
the standard free energy of micelle formation was negative whereas the
corresponding standard enthalpy and entropy changes were positive. The

temperature trends in the various thermodynamic parameters were incon-

clusive owing to experimental uncertainty.

The significance of the values of the thermodynamic parameters
is discussed qualitatively. The driving force behind the self-
assocliation process for both systems appears to be the positive entropy
change associated with the hydrophobic effect. A comparison is made
between the two systems and it is concluded that {-casein self-association
is similar in several respects to micelle formation in solutions of

synthetic detergents.
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